Primena retke reprezentacije na modelima Gausovih mešavina koji se koriste za automatsko prepoznavanje govora
An application of sparse representation in Gaussian mixture models used inspeech recognition task
Author
Jakovljević, NikšaMentor
Delić, VladoCommittee members
Trpovski, Željen
Jovičić, Slobodan
Grbić, Tatjana
Sečujski, Milan

Metadata
Show full item recordAbstract
U ovoj disertaciji je predstavljen model koji aproksimira pune kova- rijansne matrice u modelu gausovih mešavina (GMM) sa smanjenim brojem parametara i izračunavanja koji su potrebni za izračunavanje izglednosti. U predloženom modelu inverzne kovarijansne matrice su aproksimirane korišćenjem retke reprezentacije njihovih karakteri- stičnih vektora. Pored samog modela prikazan je i algoritam za estimaciju parametara zasnovan na kriterijumu maksimizacije izgeldnosti. Eksperimentalni rezultati na problemu prepoznavanja govora su pokazali da predloženi model za isti nivo greške kao GMM sa upunim kovarijansnim, redukuje broj parametara za 45%.
This thesis proposes a model which approximates full covariance matrices in Gaussian mixture models with a reduced number of parameters and computations required for likelihood evaluations. In the proposed model inverse covariance (precision) matrices are approximated using sparsely represented eigenvectors. A maximum likelihood algorithm for parameter estimation and its practical implementation are presented. Experimental results on a speech recognition task show that while keeping the word error rate close to the one obtained by GMMs with full covariance matrices, the proposed model can reduce the number of parameters by 45%.