Development and implementation of thermo-mechanical constitutive model for numerical analysis of shape memory alloys
Razvoj i implementacija termo-mehaničkog konstitutivnog modela za numeričku analizu ponašanja materijala sa svojstvom pamćenja oblika
Author
Dunić, Vladimir
Mentor
Slavković, RadovanCommittee members
Pieczysks, Elzbieta A.Živković, Miroslav

Filipović, Nenad

Sedmak, Aleksandar

Metadata
Show full item recordAbstract
Shape memory alloys (SMA) have wider and more frequent application in cases when
it is useful to employ their advantages through specific behavior (pseudoelasticity and shape memory effect) in various conditions. As a side effect due to the high thermosensitivity, strong thermomechanical coupling occurs what increases the need
for simulation of complex thermomechanical response in realistic problems. The
complex stress states and deformation range impose the requirements for accurate
analysis of large strain problems. The presented requirements are solved in several
steps:
(1) Phenomenological constitutive SMA model (Lagoudas) has been reformulated
by derivation of variables to depend on effective values of stress and strain
and martensitic volume fraction. Gibbs free energy is reduced to scalar form what
provides stress integration in the direction of deviatoric stress for forward transformation
or total transformation strain for the reverse transformation.
(2) Simulation o...f SMA thermomechanical behavior is realized using partitioned
approach by coupling of programs for structural analysis - PAK-S and heat transfer
PAK-T. Dissipative energy of martensitic phase transformation imposes change of
the material temperature as an internal heat source. As a communication interface
between the PAK-S and PAK-T, Component Template Library (CTL) is used.
(3) Extension to the large strain problems is based on multiplicative decomposition
of the deformation gradient to decompose deformation on elastic and inelastic
part. Using the energy conjugated stress and strain measures, easy extension of the
algorithm for small strain is provided to solve complex stress states for large strains.
(4) Experimental investigation of TiNi SMA samples under various loading rates
is used for verification of thermo-mechanical coupling. Numerical simulation of initiation,
development and saturation of the martensitic phase transformation under
various loading rates is compared to experimental results to show qualitative and
quantitative accuracy of such approach. Extension to large strain problems is realized
using the logarithmic strain. Simulation of the chosen examples from literature,
the functionality and accuracy of the presented approach is verified.