Sinteza, karakterizacija i ispitivanje mehanizma supstitucionih reakcija rutenijum(II) kompleksa
Author
Rilak Simović, Ana
Mentor
Bugarčić, Živadin
Committee members
Đuran, Miloš
Tešić, Živoslav

Petrović, Biljana

Metadata
Show full item recordAbstract
Neorganska jedinjenja imaju važnu ulogu u biološkim i biomedicinskim
procesima. Poznato je da mnoga jedinjenja koja se koriste u medicini nemaju samo
organski način delovanja. Neki su aktivirani ili biotransformisani pomoću jona
metala, uključujući metaloenzime. Drugi imaju direktan ili indirektan uticaj na
metabolizam jona metala. Joni metala su takođe veoma važni za strukturu i funkciju
nukleinskih kiselina. Pored toga, neesencijalni joni metala veoma često se koriste u
biološkim sistemima u terapeutske i dijagnostičke svrhe.
Nakon velikog uspeha cisplatine u lečenju kancera, posebna pažnja je posvećena
razvoju rutenijum(II/III) kompleksa kao potencijalnih antitumorskih agenasa. Glavne
razlike između rutenijuma i platine su: opseg dostupnih oksidacionih stanja,
koordinacioni broj i geometrija. Vezivanje rutenijuma za biomolekule može biti
reverzibilno, što može redukovati toksičnost metala, za razliku od platine. Rutenijum
spada u VIII grupu prelaznih metala kao i gvožđe.... Rutenijum može da zameni gvožđe pri
vezivanju za biomolekule, a kako ćelije tumora imaju povećanu potrebu za gvožđem, to će
omogućiti efikasniju dostavu kompleksa rutenijuma do željene mete.
Primarni cilj razvoja rutenijum antitumorskih kompleksa je naći takvo jedinjenje
koje će imati aktivnost prema tumorima koji su rezistentni na lekove platine.
Sekundarni cilj je da aktivnost ne bi trebalo da bude praćena velikom toksičnošću,
odnosno da jedinjenja imaju dobru podnošljivost i širok terapeutski opseg (tj. veliki
opseg efektivne doze pre pojave štetnih efekata).
Kako je DNK važna biološka meta za mnoge antitumorske komplekse različitih
metala, od velikog je značaja poznavanje mehanizma koordinovanja za DNK potencijalnih
antitumorskih agenasa. Utvrđeno je da se arena rutenijum(II) kompleksi koordinuju
pretežno za guanin preko N7 azotovog atoma. Zatim su istraživanja okrenuta ka
interakciji antitumorskih kompleksa rutenijuma sa proteinima. Nedavno je pronađeno
da i enzimi mogu biti mete u hemoterapiji kancera.
Inorganic compounds play crucial roles in biological and biomedical processes, and it is evident that many organic compounds used in medicine do not have a purely organic mode of
action; some are activated or biotransformed by metal ions including metalloenzymes, others
have a direct or indirect effect on metal ion metabolism. Metal ions are also very important for
the structure and function (in the case of RNA) of nucleic acids. Inorganic chemistry offers many
opportunities for medicinal chemistry, and the discovery of metal-based drugs has moved on
from chance discovery to rational drug design. Moreover, nonessential metal ions are very often
used in biological systems either for therapeutic application or as diagnostic aids.
After the great success of cisplatin in cancer treatment, special attention was devoted to
evalaution of ruthenium complexes as potential antitumor agents. The major differences between
ruthenium and platinum are the range of accessible oxidation states..., coordination numbers and
geometries available. Potentially, ruthenium binding to biomolecules may be reversible, in
contrast to platinum, which subsequently reduces the toxicity of the metal. Ruthenium is in the
same group of the periodic table as iron (group 8) and may mimic iron in its binding to
biomolecules which, as tumor cells have a high demand for iron, would enable the drug to be
delivered more effectively to the target side.
The primary goal of developing ruthenium antitumor complexes is to find activity against
tumors that are resistant to platinum drugs. A secondary goal is that activity should not be
accompanied by severe toxicity, that the compounds have a good tolerability and a large
therapeutic window (i.e. a large range of effective dosage before the onset of severe adverse
effect).
As DNA is an important potential biological target for many metal-based anticancer
complexes, it is of a great importance to understand DNA binding properties of potential anticancer
agents. It has been found that the arene ruthenium(II) ethylenediamine complexes bind
preferentially to guanine residues in double-helical DNA. Currently drug development involving
ruthenium complexes has shifted from DNA targeting toward protein targeting drugs. Recently,
it was found that enzymes also can be targets in cancer chemotherapy.