Kontrolisano oslobađanje antibiotika iz nanosfera poli(D,L-laktid-koglikolid)/hidroksiapatita sintetisanih u ultrazvučnom polju
Controlled release of antibiotic from poly(D,L lactide-co-glycolide)/hydroxyapatite nanospheres synthesized in the field of ultrasound
Author
Vukomanović, Marija S.Mentor
Uskoković, Dragan
Committee members
Ćirić-Marjanović, Gordana
Damjanović, Ljiljana

Kapetanović, Vera
Metadata
Show full item recordAbstract
U ovoj doktorskoj disertaciji primenjen je novi koncept inkapsulacije aktivne i proaktivne
forme leka u okviru nosača koji bi bio u mogućnosti da kontroliše proces njihovog lokalnog
otpuštanja u toku dužeg vremenskog perioda. Cilj formiranja ovakvog sistema su produžetak
perioda lokalnog otpuštanja antibiotika i veći stepen kontrole nad njegovom koncentracijom.
To su uslovi koji su neophodni za unapređenje tretmana hroničnih infekcija koštanog tkiva.
Poli(D,L-laktid-ko-glikolid)/hidroksiapatit (PLGA/HAp) kompozitni materijal, izgrađen iz
„jezgro-omotač“ nanostruktura, primenjen je kao nosač klindamicin-baze kao modela aktivne
i klindamicin-2-fosfata kao modela proaktivne forme leka. Polimerni omotač, izgrađen iz
nanosfernih primarnih čestica dijametra do 20 nm, ima ulogu matrice u okviru koje je
dispergovan jedan deo leka. Biokeramičko jezgro je izgrađeno iz štapićastih čestica HAp-a na
čijoj je površini, na granici između polimera i keramike, adsorbovan preostali deo leka.
Optimizacij...om uslova za procesiranje PLGA/HAp materijala i inkapsulaciju leka utvrđeno
je da koncentracija leka i priroda izabranog sistema rastvarač/nerastvarač polimera, značajno
utiču kako na morfološke karakteristike (oblik i veličinu) čestica PLGA/HAp-a tako i na
efikasnost procesa inkapsulacije. Sa povećenjem koncentracije leka i sa povećenjem njegove
rastvorljivosti u sistemu rastvarač/nerastvarač polimera postižu se veća pravilnost
morfologije čestica i veći stepen inkapsulacije.
Tokom procesa degradacije kompozita postiže se kontrolisano otpuštanje proaktivne
(fosfatne) forme leka, koju odlikuje bolja rastvorljivost u vodi, i odloženo otpuštanje aktivne
(bazne) forme leka, čija je rastvorljivost u vodi slabija. Rezultat toga je visoka koncentracija
ukupno otpuštenog leka u toku perioda od 30 dana u in vitro uslovima. U toku ovog procesa dešavaju se promene morfoloških, strukturnih, makromolekulskih i površinskih karakteristika nosača leka. Njihova promena zavisi od prirode inkapsuliranog leka čijainterakcija sa nosačem utiče na kinetiku njegove degradacije.
Važnost prisustva HAp-a, kao biokeramičke faze u okviru PLGA/HAp-a, pripisana je kako
usporavanju procesa degradacije polimera tako i unapređenju površinskih karakteristika
kompozita. Porast specifične površine i unapređena kvašljivost materijala ukazuju na
mogućnost njegove dobre interakcije sa ćelijama. Ove osobine su blisko povezane sa
bioaktivnošću i biokompatibilnošću ovog materijala za koji je u toku in vitro testova utvrđen
visok stepen citokompatibilnosti i netoksičnosti.
Na osnovu postignute kinetike otpuštanja leka kao i izuzetno dobre citokompatibilnosti
može se zaključiti da formirani materijal pokazuje dobar potencijal za primenu u biomedicini
kao nosač koji, nakon lokalne primene, lek dostavlja direktno na mesto infekcije uz
minimalizaciju ili eliminaciju efekata koje uzrokuje tip dostave kod koga se lek distribuira u
celom organizmu. To je pristup od koga se očekuje efikasnije lečenje infekcija koštanog tkiva i
eliminacija neželjenih efekata.
In this doctoral dissertation a new concept of encapsulation of active and proactive drug
forms within a carrier which will be able to provide a control over the process of their local
release during extended period of time is applied. The goal of formation of such a system is
prolongation of the period of local release of antibiotic and higher control over its
concentration. These are conditions which are required for improvement of the treatment of
chronic bone tissue infections.
Poly(D,L-lactide-co-glycolide)/hydroxyapatite (PLGA/HAp) composite material, built of
core-shell nanostructures, was applied as a carrier of clindamycin-base, as a model of active
drug form, and clindamycin-phosphate, as a model of proactive drug form. Polymeric shells
consisting of small nanospheres up to 20 nm in size act as a matrix in which one part of the
drug is dispersed. Ceramic cores are formed of rod-like hydroxyapatite particles at the surface
of w hich a nother p art o f t he d rug i s a dsorbed-... into the interface between polymer and
ceramics.
During the optimization of the conditions for processing of PLGA/HAp material and
encapsulation of the drug it was observed that concentration of the drug as well as the nature
of selected polymer solvent/nonsolvent system, significantly influence morphological
properties of PLGA/HAp particles and efficacy of encapsulation process. Whith increase of the
concentration of the drug and increase of the solubility of the drug within solvent/nonsolvent
system, more regular morphology and higher encapsulation degree are obtained.
During the process of degradation of the composite controlled release of the more soluble
proactive (phosphate) form and the sustained release of the less-soluble active (base) form of
clindamycin are achieved, resulting in a high overall concentration of released drug during a
period of 30 days in vitro. During this process morphological, structural, macromolecular and
surface changes occurred. Their c hange d epends o n t he n ature of encapsulated drug that
interacts with the drug carrier influencing the kinetics of composite degradation.
Importance of the HAp, as bioceramic phase within the PLGA/HAp, is assigned to delay of
the process of polymer degradation and to improvement of the surface properties of drug
carrier. Increase of the surface area and improved wettability of prepared composite suggests
possibility for its good interaction with cells. These properties are closely related to
bioactivity and biocompatibility of this material for which in vitro tests showed high level of
cytocompatibility and non-toxicity.
On the basis of obtained kinetics of drug release as well as very good cytocompatibility it
can be concluded that formed material shows high potential for the application in biomedicine
as a locally applied carrier of drug able to deliver drug directly to the place of infection with
minimization or elimination of effect developed by types of delivery in which the drug is
distributed in the whole organism. It is expected that this approach will be able to provide
more efficient treatment of bone tissue infections and elimination of side effects.