Matematičko modelovanje višefaznih reakcionih procesa u proizvodnji obnovljivih i mineralnih dizel goriva
Mathematical modelling of myltiphase reaction of renewable and mineral diesel fuels
Author
Almagrbi, Abdualnaser MuftahMentor
Orlović, AleksandarCommittee members
Glišić, Sandra
Jovović, Aleksandar M.

Metadata
Show full item recordAbstract
Višefazni reakcioni procesi predstavljaju ključne stupnjeve u proizvodnji dizel
goriva, obnovljivih i mineralnih. U savremenim rafinerijama proces hidrotritinga
zauzima značajno mesto pri čemu se odvija u prisustvu čvrstog katalizatora. Glavni
ciljevi procesa hidrotritinga u preradi nafte su uklanjanje sumpora, stabilizacija
proizvoda i uklanjanje drugih neželjenih primesa. Hidrodesulfurizacija gasnog ulja se
odvija u reaktoru sa nepokretnim slojem katalizatora uz prisustvo vodonika na
povišenom pritisku (uobičajeno do 60 bar-a) i temperaturi (633 K). U ovoj disertaciji
razvijen je deterministički matematički model reaktora za simulaciju procesa. Model
čine diferencijalni bilansi toplote i hemijskih vrsta, kao i odgovarajuće kinetičke
jednačine za reakcije desulfurizacije. Sistem diferencijalnih jednačina koje čine model
je rešavan primenom programa napisanog u MATLAB-u.
Višefazni reakcioni proces sinteze biodizela je modelovan i simuliran za
nekatalitičku etanolizu i metanolizu trigli...cerida na povišenom pritisku i temperaturi.
Raspodela faza i ravnoteža za sistem para – tečnost i para – tečnost – tečnost metanola i
etanola sa trioleinom je ispitivana sa ciljem određivanja parametara koji omogućavaju
visoku konverziju ulja. Simlacija ravnoteže faza korišćenjem RK-Aspen jednačine
stanja u UniSim softveru pokazala je veoma dobro slaganje sa eksperimentalnim
podacima. Rezultati simulacija ukazuju na važan uticaj na reakcioni mehanizam i na
ukupnu kinetiku procesa u sub-kritičnoj oblasti (T < 270 ◦C na 200 bar-a) s obzirom da
u početnoj fazi reakcije egzistiraju dve faze, što uzrokuje lošiji kontakt između
reaktanata. U slučaju postojanja jedne reakcione faze (T > 270 ◦C na 200 bar-a)
inicijalno visoka brzina reakcije je limitirana na visokim konverzijama zbog porasta
stepena odigravanja povratne reakcije. Matematički model nekatalitičke sinteze
biodizela je tretiran kao kompleksna uzastopno – paralelna povratna reakcija. Kinetički
parametri su određeni primenom standardnih optimizacionih metoda i najbolji rezultati
su dobijeni primenom metode genetičkog algoritma. Primena ove metode za
određivanje kinetičkih parametara rezultovala je povešanom preciznošću predviđanja
koncentracija važnih intermedijera, monoglicerida i diglicerida. Energije aktivacije u
izrazima za kinetičke konstante dobijene primenom metode genetičkog algoritma su u
veoma dobrom slaganju sa teoretskim vrednostima određenim metodom proračuna
molekulskih orbitala.
Multiphase reaction processes constitute key steps in manufacturing of diesel
fuels, both renewable and mineral. In modern refineries there is a major role for the
hydrotreating processes that operate under high pressure in the presence of a solid
catalyst. The main role of hydrotreating within the petroleum refining is the removal of
sulphur compounds, the stabilization of the product and the removal of other
undesirable impurities. Hydrodesulphurization of gas oil takes place in a reactor with a
fixed bed catalyst in the presence of hydrogen at elevated pressure (normally up to 60
bar) and temperature (633 K). In this thesis, a mathematical model of a deterministic
type was developed and used to simulate the hydrotreating reactor operation. The model
consists of differential balance equations of heat and chemical species, and the
corresponding kinetic equations for the reactions of hydrodesulphurization of sulphur
compounds. The system of differential equations that constitute the ma...thematical model
was solved using the MATLAB software package.
Multiphase reactions for biodiesel synthesis were modeled and simulated for
non-catalytic methanolysis and ethanolysis of triglycerides under high pressure and at
elevated temperature. The vapour–liquid or vapour–liquid–liquid equilibrium and phase
distribution of methanol and ethanol with triolein were investigated in order to
determine the range of pressure and temperature required for high oil conversion.
Simulation of phase equilibrium using RK-Aspen EOS and UniSim software were
found to correlate well with the experimental data. Simulation results show the
important influence of the phase equilibrium on the reaction mechanism and overall
kinetics under subcritical conditions (T < 270 ◦C at 200 bar) since the two liquid phases
exist at the beginning of reaction, thereby limiting the contact between the reactants. In
case of single reaction phase (T > 270 ◦C at 200 bar) the initially high reaction rate is
limited at high conversion levels due to increasing extent of reversible reaction.
Mathematical model of non-catalytic biodiesel synthesis was treated as complex parallel
and consequtive reversible reaction. Kinetic parameters were estimated using standard
optimization methods and the best results were obtained with Genetic Algorithm
procedure. The application of this method resulted in kinetic parameters with improved
accuracy in predicting concentrations of important reaction intermediates, i.e.
diglycerides and monoglycerides. Activation energies of kinetic parameters obtained by
the Genetic Algorithm method are in very agreement with theoretical values determined
by molecular orbital calculations.