Neke klase spektralno ograničenih grafova
Some classes of spectrally constrained graphs
Author
Koledin, Tamara D.Mentor
Stanić, Zoran
Committee members
Cvetković, Dragoš M.Radosavljević, Zoran
Dugošija, Đorđe
Metadata
Show full item recordAbstract
Spektralna teorija grafova je grana matematike koja je nastala pedesetih godina
pro²log veka i od tada se neprestano razvija. Njen zna£aj ogleda se u brojnim
primenama, naro£ito u hemiji, zici, ra£unarstvu i drugim naukama. Grane matematike,
kao ²to su linearna algebra i, posebno, teorija matrica imaju vaºnu ulogu
u spektralnoj teoriji grafova. Postoje razli£ite matri£ne reprezentacije grafa. Najvi
²e su izu£avane matrica susedstva grafa i Laplasova (P.S. Laplace) matrica, a
zatim i Zajdelova (J.J. Seidel) i takozvana nenegativna Laplasova matrica. Spektralna
teorija grafova u su²tini uspostavlja vezu izme u strukturalnih osobina grafa i
algebarskih osobina njegove matrice, odnosno razmatra o kojim se strukturalnim
osobinama (kao ²to su povezanost, bipartitnost, regularnost i druge) mogu dobiti
informacije na osnovu nekih svojstava sopstvenih vrednosti njegove matrice. Veliki
broj dosada²njih rezultata iz ovog ²irokog polja istraºivanja moºe se na¢i u slede¢im
monograjama: [20], [21], ...[23] i [58].
Disertacija sadrºi originalne rezultate dobijene u nekoliko podoblasti spektralne
teorije grafova. Ti rezultati izloºeni su u tri celine glave, od kojih je svaka podeljena
na poglavlja, a neka od njih na potpoglavlja. Na po£etku svake glave, u posebnom
poglavlju, formulisan je problem koji se u toj glavi razmatra, kao i postoje¢i rezultati
koji se odnose na zadati problem, a neophodni su za dalja razmatranja. U ostalim
poglavljima predstavljeni su originalni rezultati, koji se nalaze i u radovima [3], [4],
[47], [48], [49], [50], [51] i [52].
U prvoj glavi razmatra se druga sopstvena vrednost regularnih grafova. Postoji
dosta rezultata o grafovima £ija je druga po veli£ini sopstvena vrednost ograni£ena
odozgo nekom (relativno malom) konstantom. Posebno, druga sopstvena vrednost
ima zna£ajnu ulogu u odre ivanju strukture regularnih grafova. Poznata je karakterizacija
regularnih grafova koji imaju samo jednu pozitivnu sopstvenu vrednost
(videti [20]), a razmatrani su i regularni grafovi sa osobinom 2 ≤ 1 (videti [64]). U
okviru ove disertacije pro²iruju se rezultati koji se nalaze u radu [64], a predstavljaju
se i neki op²ti rezultati koji se odnose na vezu odre enih spektralnih i strukturalnih
osobina regularnih nebipartitnih grafova bez trouglova...
Spectral graph theory is a branch of mathematics that emerged more than sixty years
ago, and since then has been continuously developing. Its importance is reected
in many interesting and remarkable applications, esspecially in chemistry, physics,
computer sciences and other. Other areas of mathematics, like linear algebra and
matrix theory have an important role in spectral graph theory. There are many
dierent matrix representations of a given graph. The ones that have been studied
the most are the adjacency matrix and the Laplace matrix, but also the Seidel
matrix and the so-called signless Laplace matrix. Basically, the spectral graph
theory establishes the connection between some structrural properties of a graph
and the algebraic properties of its matrix, and considers structural properties that
can be described using the properties of the eigenvalues of its matrix. Systematized
former results from this vast eld of algebraic graph theory can be found in the
following monographs: [...20], [21], [23] i [58].
This thesis contains original results obtained in several subelds of the spectral
graph theory. Those results are presented within three chapters. Each chapter is
divided into sections, and some sections into subsections. At the beginning of each
chapter (in an appropriate sections), we formulate the problem considered within
it, and present the existing results related to this problem, that are necessary for
further considerations. All other sections contain only original results. Those results
can also be found in the following papers: [3], [4], [47], [48], [49], [50], [51] and [52].
In the rst chapter we consider the second largest eigenvalue of a regular graph.
There are many results concerning graphs whose second largest eigenvalue is upper
bounded by some (relatively small) constant. The second largest eigenvalue plays
an important role in determining the structure of regular graphs. There is a known
characterization of regular graphs with only one positive eigenvalue (see [20]), and
regular graphs with the property 2 ≤ 1 have also been considered (see [64]). Within
this thesis we extend the results given in [64], and we also present some general
results concerning the relations between some structural and spectral properties of
regular triangle-free graphs...
Faculty:
Универзитет у Београду, Математички факултетDate:
08-07-2013Keywords:
matrica susedstva grafa / adjacency matrix / nenegativna Laplasova matrica grafa / spektar grafa / nenegativni Laplasov spektar grafa / druga sopstvena vrednost / regularan graf / bipartitni graf / ugneº eni graf / uravnoteºena nekompletna blok-²ema / delimi £no uravnoteºena nekompletna blok-²ema / signless Laplace matrix / graph spectrum / signless La- place spectrum / second largest eigenvalue / regular graph / bipartite graph / nested graph / balanced incomplete block design / partially balanced incomplete block de- signRelated items
Showing items related by title, author, creator and subject.
-
Neke klase grafova sa datim ograničenjima druge sopstvene vrednosti / Some classes of graphs with given bound for second largest eigenvalue
Mihailović, Bojana Lj. (Универзитет у Београду, Математички факултет, 14-07-2016) -
Анализа прстена и модула придруживањем графова / The Analysis of the rings and modules using associated graphs
Pucanović, Zoran S. (Универзитет у Београду, Математички факултет, 22-03-2013) -
Maker–Breaker games on graphs / Mejker–Brejker igre na grafovima
Forcan, Jovana (Универзитет у Новом Саду, Природно-математички факултет, 25-01-2022)