Numerička simulacija prostiranja temperaturskih talasa pri strujanju nosioca toplote u složenim cevnim mrežama
Numerical simulation of hot water temperature waves propagation in complex networks
Author
Milivojević, Sanja S.
Mentor
Stevanović, Vladimir
Committee members
Gajić, AleksandarStanojević, Miroslav
Živković, Branislav
Rajković, Milan
Metadata
Show full item recordAbstract
U okviru doktorske disertacije je razvijen numeriĉki postupak za proraĉun
prostiranja temperaturskih talasa i razdelne površine izmeĊu stuba teĉnosti i parne faze
u cevovodima i sloţenim cevnim mreţama. Postupak je zasnovan na rešavanju
energijske jednaĉine jednodimenzionalnog strujanja homogenog fluida. Energijska
jednaĉina se rešava numeriĉki duţ karakteristiĉnog pravca odreĊenog kretanjem
fluidnog delića u vremensko-prostornom koordinatnom sistemu. Postupak numeriĉkog
rešavanja je eksplicitan i vremenski korak integracije je odreĊen minimalnim vremenom
potrebnim da fluidni delić preĊe rastojanje od poĉetnog poloţaja, koji se u opštem
sluĉaju nalazi izmeĊu ĉvorova mreţe, do najbliţeg susednog numeriĉkog ĉvora u pravcu
strujanja, u okviru cele mreţe (Courant-ov kriterijum). Primenom Lagrange-ovog
interpolacionog polinoma se odreĊuje vrednost temperature ili entalpije u poĉetnom
vremenskom trenutku izmeĊu ĉvorova numeriĉke mreţe, na karakteristici koja
predstavlja pravac prostiranja fl...uidnog delića. Razvijene su bilansne jednaĉine koje
omogućuju proraĉun graniĉnih uslova, kao što su spoj tri ili više cevi u ĉvoru, toplotnorazmenjivaĉke
podstanice kod potrošaĉa i u izvoru toplote. Razvijena metoda je
primenjena na simulaciju prelaznog procesa u okviru sistema daljinskog grejanja
toplane Zemun nastalog usled promene snage izvora toplote.
Razvijeni numeriĉki postupak je primenjen i za simulaciju i analizu hidrauliĉkog
udara izazvanog kondenzacijom pare. Neposredni kontakt pothlaĊene teĉnosti i pare u
stanju zasićenja dovodi do intenzivne kondenzacije. Brzina kondenzacije zavisi od
specifiĉne razdelne površine teĉne i parne faze i koeficijenta prelaza toplote usled
kondenzacije. Razdelna površina teĉnosti i pare ima veoma nepravilan oblik. Za vreme
hidrauliĉkog udara izazvanog kondenzacijom pare nestacionarni mlazevi teĉnosti i kapi
se odvajaju sa ĉela stuba teĉnosti i ukljuĉuju se u zapreminu pare. Ova pojava
ukljuĉivanja znaĉajno povećava razdelnu površinu i brzinu kondenzacije. U cilju
predviĊanja brzine kondenzacije u ovakvim sloţenim uslovima, razvijena je korelacija
izmeĊu ubrzanja ĉela vodenog stuba i proizvoda specifiĉne razdelne površine teĉne i
iv
parne faze i koeficijenta prelaza toplote pri kondenzaciji...
A high-order accurate numerical method for prediction of thermal transients and
propagation of interfacial area between liquid column and steam in pipelines and
complex pipe network is presented. It is based on the numerical solution of the transient
energy equation for one-dimensional homogeneous fluid flow. Transient onedimensional
energy balance equation is solved along the characteristic path that is
determined by the fluid particle motion in time-space coordinate system. Numerical
method of solving is explicit and the time step of the integration is determined by the
minimal time needed for fluid particle to cross the distance between the initial point, in
general case positioned between two adjacent nodes of numerical mesh, and the closest
node in the flow direction, in whole mesh (Courant criterion). The initial value of
temperature or enthalpy between nodes of numerical mesh, on characteristic path which
represents fluid particle propagation direction, is determined by the appl...ication of
Lagrange's interpolation polynomial. Balance equations for boundary conditions are
developed, e.g. junctions of three or more pipelines, heat exchanger substations at
costumers and in heat source. Thermal transients caused by an increase and decrease of
the heat power plant load are simulated for real operating conditions of the district
heating system Zemun.
Developed numerical model is also applied for simulation and analysis of
condensation induced water hammer. Direct contact of subcooled liquid and saturated
steam leads to intensive condensation. Condensation rate is highly influenced by the
interfacial area concentration and condensation heat transfer coefficient. The interfacial
area has very irregular shape. During the condensation induced water hammer transient
liquid jets are formed and liquid column is dissintegrated so that droplets from the head
are entrained in steam volume. This droplet entrainment increases interfacial area and
condensation rate. Two-phase system of liquid and steam is described by the mass,
momentum and enthalpy conservation equations which form a system of quasi linear
partial differential equations of the hyperbolic type. Given system is solved by the
vi
method of characteristics...