Prostiranje svetlosti u kompleksnim fotonskim rešetkama sa zasićujućom nelinearnošću
Propagation of light in complex photonic lattices with saturable nonlinearity
Author
Beličev, Petra
Mentor
Milanović, VitomirCommittee members
Stepić, MilutinRadovanović, Jelena

Hadžievski, Ljupčo

Radunović, Jovan

Metadata
Show full item recordAbstract
U ovoj disertaciji teorijski i eksperimentalno su analizirani linearni i nelinearni efekti
koji prate prostiranje vidljive laserske svetlosti kroz različite jednodimenzionalne (1D) fotonske
rešetke napravljene od materijala sa zasićujućom (saturacionom) nelinearnošću, kao što je, na
primer, litijum niobat (LiNbO3). Zbog nelinearnog odziva kakvim se odlikuju ovakvi materijali,
moguće je formiranje stabilnih prostornih lokalizovanih struktura na granicama između dve
uniformne rešetke istih, odnosno različitih perioda, kao i unutar binarnih superrešetki, kako u
nelinearnom režimu, tako i u linearnom kada do lokalizacije dolazi u okolini defekta. U
doktorskoj tezi razvijeni su odgovarajući matematički modeli i primenjene različite numeričke
metode za dobijanje odgovarajućih rezultata, dok su neki od rezultata potvrđeni i
eksperimentalno u nelinearnim 1D fotonskim rešetkama proizvedenim u LiNbO3. Korišćeni
matematički modeli zasnovani su na sistemima spregnutih diferencno-diferencijalnih je...dnačina,
tačnije 1D diskretnim nelinearnim Šredingerovim (Schrödinger) jednačinama sa nelinearnostima
Kerovog (Kerr) i zasićujućeg tipa, dok je stabilnost dobijenih rešenja ispitivana primenom
metoda linearne analize stabilnosti. Za rešavanje stacionarnih i dinamičkih jednačina izloženih u
tezi, korišćene su numeričke metode pod nazivom Gaus-Njutnova metoda (Gauss-Newton) i
Runge-Kuta (Runge-Kutta) metoda, respektivno. Dobijeni numerički i eksperimentalni rezultati
pokazuju da prisustvo defekta utiče na formiranje lokalizovanih modova kako u nelinearnom,
tako i u linearnom režimu, tj. pri malim upadnim snagama nedovoljnim za ispoljavanje
nelinearnog odziva sredine. Rezultati pokazuju da pored pojave linearnih lokalizovanih stanja, u
nelinearnom režimu dolazi do narušavanja simetrije lokalizovanih rešenja kada su ispunjeni
odgovarajući uslovi. U slučaju prostiranja svetlosti kroz binarne superrešetke, rezultati ukazuju na
postojanje novih tipova lokalizovanih rešenja, kao i otvaranje dodatnog procepa u zonskoj
strukturi posmatrane rešetke. Pored ovoga, prikazani su i numerički rezultati dobijeni analizom
međusobnih interakcija solitonskih rešenja, kao i ispitivanjem osobina modova lokalizovanih na
površini rešetke.
In this dissertation the linear and nonlinear effects accompanying the propagation
of visible laser light through a different one-dimensional (1D) photonic lattices made of material
with a saturable nonlinearity, such as, for example, lithium niobate (LiNbO3) are both
investigated, theoretically and experimentally. Due to the nonlinear response of these materials
to the intensity of incident radiation, the light passing through the photonic lattice causes local
change in the refractive index, providing necessary conditions for the formation of stable
localized spatial structures at the interfaces between two uniform lattices of the same or different
periods, and also within the binary superlattices, in the nonlinear regime, as well as in the linear
regime when the localization occurs in the vicinity of the defect. In this dissertation, appropriate
mathematical models are developed and various numerical methods for obtaining the relevant
results are applied. Some of the results have bee...n confirmed experimentally in 1D nonlinear
photonic lattices fabricated in LiNbO3. Mathematical models are based on systems of coupled
difference- differential equations, namely the 1D discrete nonlinear Schrödinger equation with
the nonlinear term of Kerr and saturable type, while the stability of the obtained solutions was
investigated using the method of linear stability analysis. To solve stationary and dynamic
equations presented in this dissertation, numerical methods such as the Gauss-Newton and
Runge-Kutta methods are performed, respectively. The obtained numerical and experimental
results show that the presence of the defect affects the formation of localized modes in the
nonlinear, as well as in the linear regime, i.e. for intensities insufficient for the manifestation of
the nonlinear response of the medium. Furthermore, the results indicate to the possible
appearance of the symmetry breaking of the mode profiles of certain nonlinear localized
solutions when appropriate conditions are met. In the case of light propagation through binary
superlattices, results show the emergence of new types of localized solutions and the opening of
an additional gap in the observed energy spectrum of the lattice. Additionally, numerical results
obtained by analyzing the mutual interaction of soliton solutions, as well as examining the
properties of localized modes at the surface of the lattice, are presented as well.