Sistem za inteligentno otkrivanje uzroka problema u relacionim bazama podataka u klaud okruženju
Automatic intelligent database troubleshooting system in cloud environment
Author
Dunđerski, DejanMentor
Tomašević, Milo
Committee members
Bojović, Miroslav
Vlajić, Siniša

Cvetanović, Miloš

Protić, Jelica

Metadata
Show full item recordAbstract
Oblast računarstva u klaudu se veoma intenzivno razvijala tokom prethodne decenije. Klaud
okruženja i servisi koji takva okruženja pružaju postoje u različitim oblicima koji su i diskutovani u
ovom radu. Prilikom njihove upotrebe uočeni su različiti problemi koji predstavljaju velike izazove
za korisnike. Administratori i korisnici relacionih baza podataka su morali da rešavaju različite
probleme i pre postojanja klaud platformi. Ažuriranje softvera, kao operativno zahtevan problem,
pojavom relacionih baza podataka kao platforme u klaud okruženju postao je isključiva
odgovornost pružaoca usluge. Nasuprot tome, problemi koji zahtevaju unapređivanje rada i
optimizovanje relacione baze podataka postali su još izraženiji usled višeg nivoa apstrakcije koji
donosi klaud okruženje i većeg broja relacionih baza koje je potrebno istovremeno održavati. S
obzirom da se u klaud okruženju prikupljaju i čuvaju detaljne informacije o upotrebi servisa, u
ovom radu je realizovan sistem koji na osnovu a...nalize prikupljenih podataka olakšava korisnicima
razumevanje funkcionisanja relacione baze podataka i pronalaženje uzroka problema koji se u radu
sa njima mogu pojaviti. Nakon detaljnog pregleda uže i šire naučne oblasti, predložen je i definisan
sistem koji uključuje dve vrste statističkih modela da bi se obezbedila i sveobuhvatnost i preciznost.
Za donošenje konačnih odluka nad dobijenim podacima od strane statističkih modela o tome šta je
uzrok a šta je posledica definisan je i ekspertski sistem. Opisan je i izgled infrastrukture koja je
zasnovana na konceptu mikroservisa. Pored definisanog sistema, predstavljen je način organizacije
tima sačinjenog od različitih aktera sa različitim odgovornostima. Konkretna implementacija
sistema je izvršena u Azure platformi kompanije Microsoft. Implementirani sistem je potom
podrobno testiran i evaluiran upotrebom realnog radnog opterecenja iz produkcionog okruženja
Azure SQL relacione baze podataka tokom perioda od 6 meseci. Dobijeni rezultati su pokazali
značajno unapređenje u pogledu performansi izvršavanja upita. Od pojedinačnih korisnika je
dobijena i eksplicitna usmena i pismena potvrda o tome. Izvršena je i analiza dobijenih podataka o
unapređenju korišćenja relacionih baza podataka svih korisnika platforme koji su se prijavili na ovaj
sistem. Zaključak rada sadrži pravce i mogućnosti budućih istraživanja u ovoj oblasti.
Development of the cloud computing area has grown immensely in the past decade. This work
evaluates various types of cloud environments and services provided to clients. Various problems
have been found in the use of the cloud and these present big challenges for the users. Users and
administrators of the relational databases have encountered various problems even in times before
the cloud existed. Problems such as software updates of relational databases services in s a cloud
platform became the responsibility of the service provider. This was a significant improvement that
reduced operational costs. However, problems with service improvement and query optimizations
scaled to a higher level due to the number of the relational databases and the higher level of
abstraction introduced by the cloud environment. In the cloud environment very detailed
information about service usage are accumulated constantly. Here is proposed a system that, based
on these data, allows users to understand h...ow the relation database works and detects the source of
the problem much easier. After a detailed analysis of related work, the system is carefully designed
and elaborated. It includes two types of statistical data models to provide both recall and precision,
and an expert system for making final decisions. The appropriate infrastructure is based on a
microservice architecture. The project team organization was composed of several actors with
different skillsets. The system is implemented within the Microsoft Azure platform. Some specific
details of this implementation are also presented. The system was fully tested and evaluated using
real data workload from the production environment of the Azure SQL relation database in a period
of 6 months. The results have shown a significant improvement in the query execution performance.
A response from the customers who used this service has shown that the user experience was
significantly improved. The conclusion contains an overview of the project, suggests the ideas for
improvement of the system, and discusses how the similar approach can be used in scientific areas.