National Repository of Dissertations in Serbia
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   NaRDuS home
  • Универзитет у Нишу
  • Природно-математички факултет
  • View Item
  •   NaRDuS home
  • Универзитет у Нишу
  • Природно-математички факултет
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Aproksimacije rešenja stohastičkih diferencijalnih jednačina primenom Taylor-ovih redova

Thumbnail
2021
Djordjevic_Dusan_D.pdf (363.4Kb)
Doctoral_thesis_12931.pdf (3.191Mb)
Author
Đorđević, Dušan D.
Mentor
Jovanović, Miljana D.
Committee members
Pilipović, Stevan
Milošević, Marija
Krstić, Marija
Metadata
Show full item record
Abstract
The subject of the doctoral dissertation is the application of the Taylor formula for the coefficients of various types of stochastic differential equations, for the purpose of the approximation of theirs solutions under non standard conditions, such as the global Lipschitz condition and the linear growth condition. Under certain assumptions, the almost sure convergence and the convergence in the p-th mean, p>0, of the sequence of approximate solutions towards the solution of the initial equation, is shown. The rate of the Lp convergence increases as the orders of the Taylor approximations of the coefficients of the initial equation increase. Shown results are illustrated through the examples which are designed such that the global Lipschitz condition and/or the linear growth condition for the drift and diffusion coefficients are not satisfied. That way, the need for the shown results is satisfied. Techniques used in the proofs are determined by the type of the considered equation, as ...well as by the conditions which are assumed for the coefficients of the equations.

Faculty:
Универзитет у Нишу, Природно-математички факултет
Date:
17-12-2021
Keywords:
Lp konvergencija, polinomijalni uslov, skoro izvesna konvergencija, stohastičke diferencijalne jednačine, stohastičke diferencijalne jednačine sa vremenski zavisnim kašnjenjem, funkcionalne stohastičke diferencijalne jednačine, neutralne stohastičke diferencijalne jednačine sa vremenskim kašnjenjem, Tejlorova aproksimacija, Frešeov izvod / Lp convergence, polynomial condition, almost sure convergence, stochastic differential equations, stochastic differential equations with time dependent delay, stochastic functional differential equations, neutral stochastic differential equations with time related delay, Taylor approximation, Frechet derivative
[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_nardus_21025
URI
http://eteze.ni.ac.rs/application/showtheses?thesesId=8534
https://fedorani.ni.ac.rs/fedora/get/o:1802/bdef:Content/download
https://plus.cobiss.net/cobiss/sr/sr/bib/57006345
https://nardus.mpn.gov.rs/handle/123456789/21025

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS
 

 

Browse

All of DSpaceUniversities & FacultiesAuthorsMentorCommittee membersSubjectsThis CollectionAuthorsMentorCommittee membersSubjects

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS