Nacionalni Repozitorijum Disertacija u Srbiji
    • English
    • Српски
    • Српски (Serbia)
  • Srpski (latinica) 
    • Engleski
    • Srpski (ćirilica)
    • Srpski (latinica)
  • Prijava
Pregled disertacije 
  •   NaRDuS - početna
  • Универзитет у Нишу
  • Природно-математички факултет
  • Pregled disertacije
  •   NaRDuS - početna
  • Универзитет у Нишу
  • Природно-математички факултет
  • Pregled disertacije
JavaScript is disabled for your browser. Some features of this site may not work without it.

Algoritmi za brzo aproksimativno spektralno učenje

Thumbnail
2021
Trokicic_Aleksandar_B.pdf (385.8Kb)
Doctoral_thesis_12919.pdf (2.865Mb)
Doktorand
Trokicić, Aleksandar B.
Mentor
Todorović, Branimir
Članovi komisije
Ćirić, Miroslav
Ognjanović, Zoran
Janković, Dragan
Petković, Marko
Metapodaci
Prikaz svih podataka o disertaciji
Sažetak
This thesis presents learning algorithms which use the information stored in the spectrum (eigenvalues and eigenvectors) of a matrix derived from the input set. Matrices in question are graph matrices or kernel matrices. However, the algorithms which use these matrices have either a quadratic or cubic time complexity and quadratic memory complexity. Therefore, in this thesis the algorithms will be presented that approximate those matrices and reduce the time and memory complexity to the linear one. Also, these algorithms will be compared with the other algorithms that solve this problem, and their empirical and theoretical analysis will be presented.
Fakultet:
Универзитет у Нишу, Природно-математички факултет
Datum odbrane:
2021
Ključne reči:
klasterovanje, kernel regresija, spektralne metode, aproksimacija, Nistromova metoda, Laplasova matrica / clustering, kernel regression, spectral methods, approximation, Nystrom method, Laplacian matrix
[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_nardus_21017
Ostali linkovi:
http://eteze.ni.ac.rs/application/showtheses?thesesId=8522
https://fedorani.ni.ac.rs/fedora/get/o:1790/bdef:Content/download
https://plus.cobiss.net/cobiss/sr/sr/bib/56370441
https://nardus.mpn.gov.rs/handle/123456789/21017

DSpace software copyright © 2002-2015  DuraSpace
O NaRDuS portalu | Pošaljite zapažanja

OpenAIRERCUBRODOSTEMPUS
 

 

Pregled

Sve disertacijeUniverziteti i fakultetiDoktorandiMentoriČlanovi komisijaTemeFakultetDoktorandiMentoriČlanovi komisijaTeme

DSpace software copyright © 2002-2015  DuraSpace
O NaRDuS portalu | Pošaljite zapažanja

OpenAIRERCUBRODOSTEMPUS