National Repository of Dissertations in Serbia
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   NaRDuS home
  • Универзитет у Новом Саду
  • Факултет техничких наука
  • View Item
  •   NaRDuS home
  • Универзитет у Новом Саду
  • Факултет техничких наука
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analiza ponašanja proizvodnih sistema na osnovu teorije energetskih tokova nelinearnih dinamičkih sistema

BEHAVIOR ANALYSIS OF PRODUCTION SYSTEMS BASED ON THE ENERGY FLOW THEORY OF NONLINEAR DYNAMIC SYSTEMS

Thumbnail
2022
Disertacija_12906.pdf (35.76Mb)
Izvestaj_komisije_12906.pdf (529.8Kb)
Author
Medojević, Milovan
Mentor
Kljajić, Miroslav
Committee members
Ćosić, Ilija
Maksimović, Rado
Ćulibrk, Dubravko
Stojiljković, Mirko
Bukurov, Maša
Kljajić, Miroslav
Metadata
Show full item record
Abstract
Mnoge proizvodne organizacije nedovoljno razumeju odnos između načina korišćenja energije i procesa proizvodnje, pri čemu, one koje su započele tranziciju ka konceptima industrije 4.0 shvatile su da im ovaj vid digitalizacije proizvodnih procesa omogućava da bolje razumeju stvarnu potražnju za energijom svojih sistema, procesa ili čak mašina. U ovom radu, predloženo je, razvijeno i implementirano tehničko rešenje koje predstavlja hardverski uređaj za efikasno praćenje korišćenja energije brzoreaktivnih energetskih sistema u industrijskim okruženjima, odnosno za akviziciju podataka o intenzitetu struje, koje pripada kategoriji industrijskih IoT uređaja. Generisani podaci korišćeni su za izradu modela za automatizovano profilisanje ponašanja sistema na osnovu praćenja tokova energije, kao i za izradu dinamičkok modela za predviđanje budućih stanja sistema koji se zasniva na implementaciji dubokog učenja.
Many manufacturing organizations lack an understanding of the relationship between energy use and production processes, and those who have begun the transition to Industry 4.0 concepts have realized that this type of digitization of production processes allows them to better understand the actual energy demand of their systems, processes or even machines. In this dissertation, a technical solution is proposed, developed and implemented, which is a hardware device for efficient monitoring of energy use of fast reactive energy systems in industrial environments, ie for the acquisition of data on current intensity, which belongs to the category of industrial IoT devices. The generated data were used to develop a model for automated profiling of system behavior based on monitoring energy flows, as well as to develop a dynamic model for predicting future states of the system based on the implementation of deep learning.
Faculty:
Универзитет у Новом Саду, Факултет техничких наука
Date:
02-07-2022
Keywords:
Proizvodni sistemi, tokovi energije, ponašanje, klasterizacija, duboko učenje / Production systems, energy flows, behavior, clustering, deep learning
[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_nardus_20934
URI
https://www.cris.uns.ac.rs/DownloadFileServlet/Disertacija164803166541383.pdf?controlNumber=(BISIS)120357&fileName=164803166541383.pdf&id=19720&source=NaRDuS&language=sr
https://www.cris.uns.ac.rs/record.jsf?recordId=120357&source=NaRDuS&language=sr
https://www.cris.uns.ac.rs/DownloadFileServlet/IzvestajKomisije164803176881699.pdf?controlNumber=(BISIS)120357&fileName=164803176881699.pdf&id=19722&source=NaRDuS&language=sr
https://nardus.mpn.gov.rs/handle/123456789/20934

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS
 

 

Browse

All of DSpaceUniversities & FacultiesAuthorsMentorCommittee membersSubjectsThis CollectionAuthorsMentorCommittee membersSubjects

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS