Show simple item record

Radiation compatibility of thin layer resistors in integrated technology

dc.contributor.advisorJanićijević, Aco
dc.contributor.otherKartalović, Nenad
dc.contributor.otherŠašić, Rajko
dc.contributor.otherKočinac, Saša
dc.contributor.otherKovačević, Dragan
dc.creatorTimotijević, Ljubinko B.
dc.date.accessioned2022-09-06T14:03:03Z
dc.date.available2022-09-06T14:03:03Z
dc.date.issued2021-10-11
dc.identifier.urihttps://eteze.bg.ac.rs/application/showtheses?thesesId=8726
dc.identifier.urihttps://fedorabg.bg.ac.rs/fedora/get/o:26304/bdef:Content/download
dc.identifier.urihttps://plus.cobiss.net/cobiss/sr/sr/bib/70951945
dc.identifier.urihttps://nardus.mpn.gov.rs/handle/123456789/20627
dc.description.abstractU radu se razmatra dejstvo nuklearnog i elektromagnetnog zračenja na tanke izolacione slojeve koji su presudni u odvajanju elektronskih komponenti i struktura u višeslojnim gusto pakovanim integrisanim kolima. Naime, smanjenje debljine aktivnih i pasivnih slojeva integrisanih kola čini iste veoma osetljivim na dejstvo jonizujućeg zračenja i pojave prenapona atmosferskog i komutacionog porekla. Paralelno sa proizvodnjom takvih elektronskih kola razvoj tehnologije je doveo do povećanja nuklearne i elektromagnetne kontaminacije životne sredine. Istovremena pojava tankih višeslojnih elektronskih kola i nuklearne kontaminacije rezultirala je sinergijom koja je ograničila dalju minimizaciju elektronskih komponenti i sklopova postavivši jasnu granicu do koje ona može da ide. U pogledu dejstva nuklearnog zračenja i prenapona posebno je nepoželjan efekat koji može da dovede do proboja tankih izolacionih struktura. Takav efekat dovodi do kratkog spajanja elektronskih sklopova i komponenata čime se u potpunosti uništava višeslojno gusto pakovano integrisano kolo kao i ukupan sistem u koji je to kolo ugrađeno. Posebno nepovoljna situacija je kada se dejstvom jonskog zračenja stvori veće oštećenje u izolacionom sloju koje onda probiju i prenaponi submilivoltnog intenziteta, tj. kada dođe do sinergije između mehanički razarajućeg dejstva jonskog zračenja i električnog razaranja brzih prenaponskih pojava. Da bi se dobila slika o pouzdanosti komercijalnih električnih višeslojno integrisanih elektronskih komponenti u polju jonskog zračenja u ovom radu se opredelilo za numericki eksperiment primenom metode Monte Karlo. Pri tome je izabran optimalan generator slučajnih brojeva i napravljen je model ispitujućeg višeslojnog integrisanog kola pogodan za primenu postavljenog numeričkog eksperimenta. Realni eksperiment, koji je lakše izvodljiv, je izbegnut pošto se njime dobija integralna radijaciona kompatibilnost, a ne i diferencijalna, kao u slučaju numeričkog eksperimenta. Monte Karlo simulacije transporta protona kroz tanke slojeve SiO2, AlN, Al2O3 i polikarbonata su pokazali da su navedeni slojevi imuni na prolazak protona sa energijama većim od ∼10 MeV. Nejonizujući gubici energije ovih visokoenergetskih protona su mali i oni prolaze kroz slojeve bez mnogo atomskog rasejavanja. U donjem delu istraženog opsega protonske energije (od 10 keV do 1 MeV), treba očekivati značajne gubitke jonizacije. Jonizacija i oštećenja uzrokovana pomeranjima usled prolaska protona mogu uticati na svojstva pomenutih izolatora i ugroziti njihovu pouzdanost u složenim sklopovima i uređajima. Tačkasti defekti, od kojih su neki donori nosača naelektrisanja, nastaju u ozračenim izolatorima kao rezultat pomeranja (dislokacije) atoma. Visoko reaktivni slobodni radikali koji se mogu pojaviti u ozračenom leksanu izazivaju cepanje lanca i/ili umrežavanje, što utiče na izolaciona svojstva polikarbonatnih slojeva.sr
dc.description.abstractThe doctoral dissertation discusses the effect of nuclear and electromagnetic radiation on thin insulating layers that are crucial in the separation of electronic components and structures in multilayer densely packed integrated circuits. The thickness reducing of the active and passive layers of integrated circuits makes them very sensitive to the effects of ionizing radiation and the occurrence of overvoltages of atmospheric and commutation origin. In parallel with the production of such electronic circuits, the development of technology has led to an increase in nuclear and electromagnetic environmental contamination. The simultaneous emergence of thin multilayer electronic circuits and nuclear contamination has resulted in synergies that have limited further minimization of electronic components and assemblies by setting a clear limit to which it can go. With regard to the effects of nuclear radiation and overvoltage, the effect that can lead to the breakthrough of thin insulating structures is particularly undesirable. Such an effect leads to a short circuit of electronic assemblies and components, which completely destroys the multilayer densely packed integrated circuit as well as the overall system in which the circuit is installed. A particularly unfavorable situation is when the action of ion radiation creates greater damage in the insulating layer, which then breakthrough even overvoltages of submilivolt intensity, ie. when there is a synergy between the mechanically destructive effect of ion radiation and the electrical destruction of rapid surges. In order to obtain a picture of the reliability of commercial electrical multilayer integrated electronic components in the field of ion radiation, in this doctoral dissertation we decided on a numerical experiment using the Monte Carlo method. In doing so, the optimal random number generator was chosen and a model of the test multilayer integrated circuit suitable for the application of the set numerical experiment was made. A real experiment, which is easier to perform, is avoided because it gives integral radiation compatibility, and not differential, as in the case of a numerical experiment. Monte Carlo simulations of proton transport through thin layers of SiO2, AlN, Al2O3 and polycarbonate have shown that the investigated layers are immune to the passage of protons with energies higher than ∼10 MeV. Nonionizing energy loss of these high energy protons is low, and they traverse the layers without much atomic displacement. In the lower part of the investigated proton energy range (from 10 keV to 1 MeV), however, substantial ionization losses are to be expected. Ionization and displacement damage produced by protons could influence the properties of these insulators and compromise their reliability within complex structures and devices. Point defects, some of which are charge-carrier donors, arise in irradiated insulators as a result of atomic displacements. Highly reactive free radicals that can appear in irradiated lexan cause chain scission and/or cross-linking, which then affects the insulating properties of polycarbonate layers.en
dc.formatapplication/pdf
dc.languagesr
dc.publisherУниверзитет у Београду, Технолошко-металуршки факултетsr
dc.rightsopenAccessen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceУниверзитет у Београдуsr
dc.subjecttankoslojni izolacioni materijali, višeslojna integrisana kola, polje jonskog zračenja, generatori slučajnih brojeva, Monte Karlo metodasr
dc.subjectthin layer insulating materials, multilayer integrated circuits, ion radiation field, random number generators, Monte Carlo methoden
dc.titleRadijaciona kompatibilnost tankoslojnih otpornika u integrisanoj tehnologijisr
dc.title.alternativeRadiation compatibility of thin layer resistors in integrated technologyen
dc.typedoctoralThesis
dc.rights.licenseBY-NC-ND
dc.identifier.fulltexthttp://nardus.mpn.gov.rs/bitstream/id/145470/Disertacija_12432.pdf
dc.identifier.fulltexthttp://nardus.mpn.gov.rs/bitstream/id/146553/Izvestaj_Timotijevic.pdf
dc.identifier.rcubhttps://hdl.handle.net/21.15107/rcub_nardus_20627


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record