Show simple item record

Conservation laws in heterogeneous media

dc.contributor.advisorPilipović, Stevan
dc.contributor.otherStojanović, Mirjana
dc.contributor.otherPilipović, Stevan
dc.contributor.otherMitrović, Darko
dc.contributor.otherAtanacković, Teodor
dc.contributor.otherPerišić, Dušanka
dc.creatorAleksić, Jelena
dc.date.accessioned2021-02-25T14:52:39Z
dc.date.available2021-02-25T14:52:39Z
dc.date.issued2009-10-16
dc.identifier.urihttps://www.cris.uns.ac.rs/DownloadFileServlet/Disertacija157243124755490.pdf?controlNumber=(BISIS)6026&fileName=157243124755490.pdf&id=14072&source=NaRDuS&language=srsr
dc.identifier.urihttps://www.cris.uns.ac.rs/record.jsf?recordId=6026&source=NaRDuS&language=srsr
dc.identifier.urihttps://www.cris.uns.ac.rs/DownloadFileServlet/IzvestajKomisije159377034211394.pdf?controlNumber=(BISIS)6026&fileName=159377034211394.pdf&id=15947&source=NaRDuS&language=srsr
dc.identifier.uri/DownloadFileServlet/IzvestajKomisije159377034211394.pdf?controlNumber=(BISIS)6026&fileName=159377034211394.pdf&id=15947
dc.identifier.urihttps://nardus.mpn.gov.rs/handle/123456789/17887
dc.description.abstractDoktorska disertacija posve¶cena je re·savanju nelinearnih hiperboli·cnih skalarnih zakona odr·zanja u heterogenim sredinama, prou·cavanjem osobina kompaktnosti re·senja familija aproksimativnih jedna·cina. Ta·cnije, u cilju dobijanja re·senja u = u(t; x) problema @ t u + divx f (t; x; u) = 0;uj t=0 = u 0(x); gde su promenljive x 2 R d i t 2 R+ , posmatramo familije problema koji na neki na·cin aproksimiraju po·cetni problem, a koje znamo da re·simo, i ispitujemo familije dobijenih re·senja koja zovemo aproksimativna re·senja. Cilj nam je da poka·zemo da je dobijena familija u nekom smislu prekompaktna, tj. da ima konvergentan podniz ·cija granica re·sava po·cetni problem.sr
dc.description.abstractDoctoral theses is dedicated to solving nonlinear hyperbolic scalar conservation laws in heterogeneous media, by studying compactness properties of the family of solutions to approximate problems. More precise, in order to obtain solution u = u(t; x) to the problem @ t u + divx f (t; x; u) = 0; uj t=0 = u 0 (x); (4.18) where x 2 R d and t 2 R+ , we study the solutions of the families of problems that, in some way, approximate previously mentioned problem, which we know how to solve. We call those solutions approximate solutions. The aim is to show that the obtained family is in some sense precompact, i.e. has convergent subsequence that solves the problem (4.18).en
dc.languagesr (latin script)
dc.publisherУниверзитет у Новом Саду, Природно-математички факултетsr
dc.relationinfo:eu-repo/grantAgreement/MESTD/MPN2006-2010/144016/RS//
dc.rightsopenAccessen
dc.sourceУниверзитет у Новом Садуsr
dc.subjectzakoni odr·zanja, heterogene sredine, H-mere, prekompaktnost re·senja, difuziono-disperzivna granica, prirodna nelinearnostsr
dc.subjectconservation laws, heterogeneous media, H-measures, precompactness, di®usion-dispersion limit, genuine nonlinearity.en
dc.titleZakoni održanja u heterogenim sredinamasr
dc.title.alternativeConservation laws in heterogeneous mediaen
dc.typedoctoralThesisen
dc.rights.licenseBY-NC
dc.identifier.fulltexthttp://nardus.mpn.gov.rs/bitstream/id/68483/IzvestajKomisije.pdf
dc.identifier.fulltexthttp://nardus.mpn.gov.rs/bitstream/id/68482/Disertacija.pdf


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record