National Repository of Dissertations in Serbia
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   NaRDuS home
  • Универзитет у Новом Саду
  • Природно-математички факултет
  • View Item
  •   NaRDuS home
  • Универзитет у Новом Саду
  • Природно-математички факултет
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Varijeteti grupoida

Thumbnail
2008
Disertacija.pdf (1.474Mb)
IzvestajKomisije.pdf (178.5Kb)
Author
Đapić, Petar
Mentor
Marković, Petar
Committee members
Crvenković, Siniša
Marković, Petar
Madaras-Silađi, Rozalija
Dolinka, Igor
Ćirić, Miroslav
Metadata
Show full item record
Abstract
Ova teza se bavi ¤-kvazilinearnim varijetetima grupoida. Pokazano je da postoji ta·cno dvadeset osam idempotentnih ¤-kvazilinearnih varijeteta grupoida, od kojih dvadeset ·sest varijeteta imaju kona·cnu bazu i te baze su i navedene, dok preostala dva varijeteta imaju inherentno beskona·cnu bazu. U tezi je opisano ured enje svih idempotentnih ¤-kvazilinearnih varijeteta grupoida i nalazimo male grupoide koji generi·su svaki od navedenih varijeteta. Na kraju je pokazano da postoji kontinum mnogo ¤-kvazilinearnih variejeteta grupoida.
The topic of this thesis are ¤-quasilinear varieties of groupoids. We show that there exist exactly twenty-eight idempotent ¤-quasilinear varieties of groupoids, twenty-six of which are ¯nitely based (and we explicitly give ¯nite bases for each of them), while two are inherently non¯nitely based. We describe the ordering of these twenty-eight idempotent ¤-quasilinear varieties of groupoids and ¯nd small generating algebras for each of them. In the end we show that there exist continuum many ¤-quasilinear varieties of groupoids, not all of which are even locally ¯nite.
Faculty:
Универзитет у Новом Саду, Природно-математички факултет
Date:
30-12-2008
Keywords:
baze / base / groupoid / ¤-linear equational theories / nlinear equational theories / ¤-quasilinear equational theories / n-quasilinearequational theories / linear terms / regular identity / grupoid / ¤-linearne jednakosne teorije / n-linearne jednakosne teorije / ¤-kvazilinearne jednakosne teorije / n-kvazilinearne jednakosne teorije / linearni termi / regularni identiteti
[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_nardus_17871
URI
https://www.cris.uns.ac.rs/DownloadFileServlet/Disertacija140438608784782.pdf?controlNumber=(BISIS)73379&fileName=140438608784782.pdf&id=2410&source=NaRDuS&language=sr
https://www.cris.uns.ac.rs/record.jsf?recordId=73379&source=NaRDuS&language=sr
https://www.cris.uns.ac.rs/DownloadFileServlet/IzvestajKomisije159421327096681.pdf?controlNumber=(BISIS)73379&fileName=159421327096681.pdf&id=15998&source=NaRDuS&language=sr
/DownloadFileServlet/IzvestajKomisije159421327096681.pdf?controlNumber=(BISIS)73379&fileName=159421327096681.pdf&id=15998
https://nardus.mpn.gov.rs/handle/123456789/17871

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS
 

 

Browse

All of DSpaceUniversities & FacultiesAuthorsMentorCommittee membersSubjectsThis CollectionAuthorsMentorCommittee membersSubjects

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS