National Repository of Dissertations in Serbia
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   NaRDuS home
  • Универзитет у Новом Саду
  • Факултет техничких наука
  • View Item
  •   NaRDuS home
  • Универзитет у Новом Саду
  • Факултет техничких наука
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Upotreba veštačkih neuronskih mreža za predviđanje ponašanja i upravljanje složenim energetskim sistemima

The use of artificial neural networks for complex energy systems’ prediction and control

Thumbnail
2020
Disertacija.pdf (5.041Mb)
IzvestajKomisije.pdf (315.5Kb)
Author
Đozić, Damir
Mentor
Gvozdenac‐Urošević, Branka
Committee members
Maksimović, Rado
Banjac, Miloš
Stankovski, Stevan
Vukmirović, Srđan
Gvozdenac‐Urošević, Branka
Metadata
Show full item record
Abstract
Problem velike količine emisije CO2 u atmosferi je međunarodno prepoznat a Evropska unija je dokumentom „Energetska mapa puta 2050 Evropske unije“ najviše doprinela u prepoznavanju i realizaciji mera za njegovo sprovođenje. Jedan od ključnih segmenata dokumenta predstavlja energetska politika. U ovoj tezi su prepoznati ključni indikatori vezani za energetsku politiku, a zatim je formiran model veštačkih neuronskih mreža koji je u stanju da predvidi emisiju CO2 do 2050. godine. Model je u mogućnosti da nauči funkcionisanje celog sistema i omogućava simulaciju raznih scenarija energetske politike kako bi se ispunio cilj da se što efikasnije i brže dođe do željenog smanjenja emisija CO2.
The problem of high CO2 emission has been recognised internationally. European Union has contributed the most to recognition and realization of measures and actions, needed to solve this problem, by developing document Energy Roadmap 2050. One of key segments of this document is energy policy. In this thesis, key indicators for energy policy are found, after which the artificial neural network model which is capable of CO2 emission prediction by the year 2050 is formed. Model is capable of learning the whole complex energy system and enables simularion of different energy policy scenarios in order to reach the EU goal and decrease CO2 emission by the year 2050 in most efficient and easiest way.
Faculty:
University of Novi Sad, Faculty of Technical Science
Date:
10-07-2020
Keywords:
Energetska politika / Energy policy / artificial neural networks / European Union / CO2 / veštačke neuronske mreže / Evropska unija / CO2
[ Google Scholar ]
URI
https://www.cris.uns.ac.rs/DownloadFileServlet/Disertacija158313417058789.pdf?controlNumber=(BISIS)114129&fileName=158313417058789.pdf&id=15012&source=NaRDuS&language=sr
https://www.cris.uns.ac.rs/record.jsf?recordId=114129&source=NaRDuS&language=sr
https://www.cris.uns.ac.rs/DownloadFileServlet/IzvestajKomisije158261972929352.pdf?controlNumber=(BISIS)114129&fileName=158261972929352.pdf&id=14958&source=NaRDuS&language=sr
/DownloadFileServlet/IzvestajKomisije158261972929352.pdf?controlNumber=(BISIS)114129&fileName=158261972929352.pdf&id=14958
http://nardus.mpn.gov.rs/handle/123456789/17377

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS
 

 

Browse

All of DSpaceUniversities & FacultiesAuthorsMentorCommittee membersSubjectsThis CollectionAuthorsMentorCommittee membersSubjects

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS