Dejstvo impulsnog lasera na titanijumsku metu: površinski efekti
Action of pulsed lasers on titanium target: surface effects
Author
Ciganović, JovanMentor
Matavulj, Petar
Committee members
Mihailović, Peđa
Stašić, Jelena
Momčilović, Miloš
Cvetić, Jovan
Metadata
Show full item recordAbstract
Interakcija lasera sa metalima proučava se decenijama, a posebno je intenzivirana u
poslednje vreme, usled razvoja novih, efikasnih impulsnih lasera. Istraživanja u ovoj tezi su
fokusirana na titanijum, koji poseduje niz odličnih osobina, što ga čini primenljivim u različitim
savremenim tehnologijama. Obrada i procesiranje titanijuma mogući su različitim tehnikama, a
primena lasera daje poseban kvalitet, poput visoke preciznosti obrade ili dobijanja specifičnih
struktura na površini koje nije moguće generisati drugim metodama.
Cilj ove doktorske disertacije je eksperimentalna optimizacija površinskog modifikovanja
titanijuma impulsnim nano-, piko-, i femto-sekundnim laserima. Kao izvori laserskog zračenja
korišćeni su nanosekundni CO2 laser, pikosekundni Nd:YAG, i femtosekundni Ti:safirni laser.
Poznato je da stepen površinske modifikacije mete zavisi od parametara laserskog zračenja (talasne
dužine, dužine trajanja impulsa, energije impulsa, itd.), od geometrije fokusiranja, od stanja...
površine i apsorptivnosti mete, kao i od sredine u kojoj se interakcija odvija. U cilju nalaženja
optimalnih uslova za površinsku modifikaciju titanijuma ispitan je uticaj pojednih parametara lasera,
kao i uticaj ambijenta. Utvrđeno je da primenjeni intenziteti laserskog zračenja dovode do
modifikacija površine mete, pri čemu impulsi različitog trajanja drugačije modifikuju titanijumsku
metu. Nanosekundni i pikosekundni laseri dovode do difuznog karaktera oštećenja uz prisustvo
termalnih efekata, dok korišćenje femtosekundnih impulsa rezultuje u bolje definisanim oblastima
oštećenja. Pokazano je da promena sredine ozračivanja presudno utiče na hemijski sastav i
morfologiju površine mete.
The interaction of lasers with metals has been studied for decades, and has been especially
intensified lately, due to the development of new, efficient pulsed lasers. Research in this thesis is
focused on titanium, which has a number of excellent properties, making it applicable in various
modern technologies. Treatment and processing of titanium is possible with various techniques, and
the application of lasers gives a special quality, such as high precision machining or obtaining
specific structures on the surface which cannot be generated by other methods.
The goal of this doctoral dissertation is the experimental optimization of surface processing
of titanium by pulsed nano-, pico-, and femto-second lasers. Laser radiation sources used were
nanosecond CO2 laser, picosecond Nd:YAG, and femtosecond Ti: sapphire laser. It is known that
the degree of surface modification of the target depends on laser radiation parameters (wavelength,
pulse duration, pulse energy, etc.), focus geometr...y, the state of the surface and the absorption of the
target, as well as from the environment in which the interaction takes place. In order to find the
optimal conditions for surface modification of titanium, the influence of certain laser parameters, as
well as the influence of the ambient, was examined. It has been found that the applied laser
radiation intensities lead to the modification of the target surface, and that the pulses of different
duration modify the titanium target in various way. Nanosecond and picosecond lasers lead to a
diffuse character of damaged area with the presence of thermal effects, while the use of
femtosecond pulses results in better defined area of damage. It has been shown that the change in
the ambient of the irradiation affects the chemical composition and morphology of the target surface.
Faculty:
Универзитет у Београду, Електротехнички факултетDate:
12-03-2020Projects:
- Fabrication and characterization of nano-photonic functional structrues in biomedicine and informatics (RS-45016)
- Effects of laser radiation and plasma on novel materials in their synthesis, modification, and analysis (RS-172019)