Specijalni elementi mreže i primene
Special elements in lattices and applications
Author
Tepavčević, AndrejaMentor
Milić, SvetozarCommittee members
Grulović, MilanMilić, Svetozar
Acketa, Dragan
Mijajlović, Žarko

Perović, Žikica
Metadata
Show full item recordAbstract
Data je karakterizacija raznih tipova specijalnih elemenata mreže, kao što su kodistributivni, neutralni, skrativi, standardni, izuzetni, neprekidni, beskonačno distributivni i drugi i ti rezultati su primenjeni u strukturnim ispitivanjima algebri, posebno u mrežama kongruencija, podalgebri i slabih kongruencija algebri. Specijalni elementi su posebno proučavani i u bipolumrežama i dobijene su nove teoreme reprezentacije za bipolumreže. Ispitana je kolekcija svih mreža sa istim skupom i-nerazloživih elemenata, pokazano je da je ta kolekcija i sama mreža u odnosu na inkluziju i daju se karakterizacije te mreže. Rešavan je problem prenošenja mrežnih identiteta sa mreže podalgebri i kongruencija na mrežu slabih kongruencija. Proučavane su osobine svojstva preseka kongruencija i svojstva proširenja kongruencija i neke varijante tih svojstava u vezi sa mrežama slabih kongruencija. Date su karakterizacije mreže slabih kongruencija nekih posebnih klasa algebri i varijeteta, kao što su unarn...e algebra, mreže, grupe, Hamiltonove algebra i druge.
A characterization of various types of special elements in lattices: codistributive, neutral, cancellable, standard, exceptional, continuous, infinitely distributive and others are given, and the results are applied in structural investigations in algebras, in particular in lattices of subalgebras, congruences and weak congruences. Special elements are investigated also in bi-semilattices and new representation theorems for bisemilattices are obtained. The collection of all lattices with the same poset of meet-irreducible elements is studied and it is proved that this collection is a lattice under inclusion and characterizations of this lattice is given. A problem of transferability of lattice identities from lattices of subalgebras and congruences to lattices of weak congruencse of algebras is solved. The congruence intersection property and the congruence extension property as well as various alternations of these properties are investigated in connection with weak congruence lat...tices. Characterizations of weak congruence lattices of special classes of algebras and varieties, as unary algebras, lattices, groups, Hamiltonian algebras and others are given.
Faculty:
Универзитет у Новом Саду, Природно-математички факултетDate:
29-06-1993Keywords:
Mreže / Lattices / algebarske mreže / bipolumreže / distributivni elementi / neutralni elementi / standardni elementi / neprekidni elementi / reprezentacija mreža / nerazloživi elementi / mreža slabih kongruencija / svojstvo preseka kongruencija / svojstvo proširenja kongruencija / varijetet / algebraic lattices / bisemilattices / distributive elements / neutral elements / standard elements / continuous elements / representation of lattices / irreducible elements / weak congruence lattices / congruence intersection property / congruence extension property / varietiesRelated items
Showing items related by title, author, creator and subject.
-
Potencijal vrsta Alyssum murale Waldst. and Kit., Thlaspi kovatsii Heuffel i Lepidium campestre (L.) R.Br. (Brassicaceae) sa serpentinskih staništa u Bosni i Hercegovini za bioakumulaciju metala / Potential of Alyssum murale Waldst. and Kit., Thlaspi kovatsii Heuffel and Lepidium campestre (L.) R.Br. (Brassicaceae) from serpentine habitats in Bosnia and Herzegovina for metal bioaccumulation
Matko Stamenković, Una (Универзитет у Београду, Биолошки факултет, 28-01-2021) -
Ekstrakcija, sastav, delovanje i moguće primene odabranih vrsta pečuraka / Extraction, content, activity and possible applications of selected mushroom species
Vidović, Senka (Универзитет у Новом Саду, Технолошки факултет, 30-05-2011) -
Algebarske strukture oslabljenih mreža i primene / Algebraic structures of weakened lattices and applications
Lazarević, Vera (Универзитет у Новом Саду, Природно-математички факултет, 13-07-2001)