On some classes of multipliers and semigroups in the spaces of ultradistributions and hyperfunctions
O nekim klasama multiplikatora i semigrupana prostorima ultradistribucija i hiperfunkcija
Author
Velinov, DanielMentor
Pilipović, Stevan
Committee members
Nedeljkov, MarkoPilipović, Stevan

Teofanov, Nenad
Perišić, Dušanka
Kostić, Marko
Metadata
Show full item recordAbstract
We are study the spaces of convolutors and multipliers in the spaces of tempered ultradistributions. There given theorems which gives us the characteri-zation of all the elements which belongs to spaces of convolutors and multipliers. Structural theorem for ultradistribution semigroups and exponential ultradistri-bution semigroups is given. Fourier hyperfunction semigroups and hyperfunction semigroups with non-densely dened generators are analyzed and also structural theorems and spectral characterizations give necessary and sucient conditions for the existence of such semigroups generated by a closed not necessarily densely dened operator A. The abstract Cauchy problem is considered in the Banach valued weighted Beurling ultradistribution setting and given some applications on particular equations.
U disertaciji se proučavaju prostor konvolutora i multiplikatora na prostorima temperiranih ultradistribucija. Dokazane su teoreme koji karakterišu elemente prostora konvolutora i multiplikatora. Date su strukturne teoreme za ultradistribucione polugrupe i eksponenecijalne polugrupe. Furijeve huperfunkciske polugrupe i hiperfunkciske polugrupe sa generatorima koji su negusto definisani su analizirani, takođe su date strukturne teoreme i spektralne karakterizacije kao i dovoljni uslovi za postojenje na takvih polugrupa za operator A koji ne mora biti gust. Apstraktni Košijev problem je proučavan za težinske Banahove prostore kao i za odgovarujuće prostora ultradistribucija. Takođe su date i primene za određene klase jednačina.