Ispitivanje mogućnosti korišćenja nanočestica TiO2 kao nosača za ciljanu i kontrolisanu dostavu lekova na bazi kompleksa prelaznih metala
Author
Nešić, Maja D.Mentor
Petković, MarijanaCommittee members
Stepić, MilutinTrifunović, Srećko

Radoičić, Marija
Šaponjić, Zoran

Metadata
Show full item recordAbstract
Sinteza i primena kompleksa prelaznih metala u lečenju kancera je predmet
istraživanja velikog broja naučnika. Potreba za razvojem novih citostatika
proizilazi iz želje da se prevaziđu nedostaci već postojećih, kao što su
rezistencija, toksičnost i uzak terapeutski opseg (aktivnost protiv malog broja tipova tumora). Tako se pored kompleksa platine, i dalje najčešće korišćenih citostatika u kliničkoj praksi, razvila čitava serija novih kompleksa redizajniranjem već postojećih izmenom liganada i/ili izmenom centralnog metalnog jona. Posebno su se izdvojili kompleksi rutenijuma zbog manje toksičnosti, aktivnosti na metastazama i tumorima na kojima su dotadašnji citostatici bili
neaktivni, a neki od njih su pokazali aktivnost tek kada se ozrače svetlošću
odgovarajuće talasne dužine i potencijal za primenu u fotodinamičkoj terapiji.
Uprkos razvoju novih generacija citostatika s poboljšanim karakteristikama, kao
problem ostaje kontrola postizanja maksimalne koncentracije leka u tumors...kom
tkivu. Na putu do ciljnog, tumorskog tkiva i ciljnih biomolekula, lek interaguje i s
brojnim drugim biomolekulima što za posledicu može imati toksičnost, pojavu
rezistencije, inaktivaciju leka i smanjenje njegove efektivne koncentracije na
željenom mestu dejstva. Potreba za prevazilaženjem ovog problema dovela je do brzog
razvoja nosača za lekove. Njihova uloga je da vežu ili inkapsuliraju lek, nose ga do
tumorskog tkiva sprečavajući njegovu interakciju s okolnim biomolekulima i zatim
ga otpuste, aktivnim ili pasivnim mehanizmom, u ciljnom tumorskom tkivu. Cilj
upotrebe ovakvih sistema je smanjenje štetnog dejstva leka na zdravo tkivo, mogućnost
kontrole doziranja leka tj. postizanje njegove optimalne koncentracije u tumorskom
tkivu, a samim tim i postizanje veće efikasnosti terapije.
Nosači koji se testiraju za mogućnost primene u kontrolisanoj i ciljanoj dostavi
medikamenata su uglavnom na bazi organskih i neorganskih nanomaterijala, međutim
mali broj njih je u kliničkoj upotrebi (lipozomi i polimerni nanomaterijali). U
fazi ispitivanja su mnogobrojni nosači koji reaguju na stimulanse kao što su pH
sredine, ultrazvuk, temperatura i svetlost. U novijim istraživanjima veliku pažnju
kao nosači za lekove zauzimaju nanočestice TiO2 zbog svoje biokompatibilnosti,
fotoaktivnosti, dostupnosti i mogućnosti modifikacije površine.
A significantly rising interest in the design and use of metal complexes for cancer treatment is currently observed in the area of scientific inquiry. There has been a growing demand for development and improvement of metal-based compounds used in routine clinical practice in order to overcome disadvantages and limitations such as resistance, toxicity and narrow
spectrum of activity (activity against a small number of tumor types). Beside platinum complexes, the leading agents in clinical use, many more metal-based compounds have been synthesized by redesigning the existing chemical structure through ligand substitution and/or central metal ion switching. Among them ruthenium complexes have been investigated as one of the most promising candidates because they shown less toxicity, significant activity
against cancer metastases, and activity on tumors that were resistant to a variety of standard chemotherapeutic agents. Moreover, some of them are light sensitive drugs i.e. their funct...ions is triggered once they are activated by light of a specific wavelength which make them promising candidates for photodynamic therapy.
Despite fast development of new generation of cytostatics with better characteristics, there are still areas where substantial improvements need to be made. One such area is achievement of a maximum concentration of the drug on tumor site. Once the drug enters the systemic circulation, it could face a number of challenges. Drug could react with nontarget biomolecules on its way to target biomolecules in tumor tissue which could cause
severe side effects such as toxicity, resistance, inactivation of the drug and reduction of its effective concentration at the target tumor site. One way to solve these problems is the development of drug delivery systems which consist of drug and drug carrier. Role of drug carriers is to bind or encapsulate the drug, prevent its interaction with non-target
biomolecules, to carry the drug to the target tumor tissue and then release it with active or
passive mechanism. The main advantages of using drug delivery systems are reduction of
side effects of drug onto the healthy tissue, dosage control, optimal concentration of drug in
the tumor tissue, and more effective treatment which could improve outcome of therapy.
Many organic and inorganic nanoparticles have been tested as drug carriers, but just few of
them are in clinical use (liposomes and polymers). In recent years smart nanosystems for
targeted drug delivery that respond to various stimuli including pH, ultrasound, temperature
and light irradiation are in the center of many investigations.