National Repository of Dissertations in Serbia
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   NaRDuS home
  • Универзитет у Нишу
  • Електронски факултет
  • View Item
  •   NaRDuS home
  • Универзитет у Нишу
  • Електронски факултет
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

New power composite ultrasonic transducers

Thumbnail
2018
Disertacija.pdf (28.45Mb)
Jovanovic_Igor_D.pdf (2.848Mb)
Author
Jovanović, Igor D.
Mentor
Mančić, Dragan
Committee members
Petrović, Branislav
Stančić, Goran
Paunović, Vesna
Praščević, Momir
Metadata
Show full item record
Abstract
The dissertation presents the design, development and realization of two novel structures of high-power composite ultrasonic transducers. The proposed composite transducers as a novelty contain a central metal mass, so instead of the classical structure of the Langevin’s transducer (back mass - active piezoceramic block - front mass) the following structure is obtained: back mass - active piezoceramic block - central mass - active piezoceramic block - front mass. Active blocks contain one or more pairs of piezoceramic rings, which are mechanically connected in series and have opposite polarized orientations. The difference between the proposed structures is that in the first structure, the central mass is connected to the metal endings with two central bolts, while in the second structure the prestressing is achieved with a single central bolt, which connects only metal endings and is not in contact with the central mass. With the proposed composite transducer without the direct contac...t between the central mass and the bolt, problems related to impedance adjustment with a mechanical load can be avoided. The proposed structures also increase the total output ultrasonic power of the transducers. If the mechanical load is connected via an acoustic transmission line, composite transducers can produce thickness, radial, flexion, edge, torsion and other vibration modes in the working environment. In order to model the proposed composite transducers, one-dimensional models and approximate three-dimensional matrix models are developed. Firstly, general one-dimensional models, which include all the constituent parts of the transducers, have been developed. Also, a one-dimensional model, which does not include impact of the central bolt, has been developed. A one-dimensional model, which neglects the central bolt impact, is, according to its structure, suitable for simultaneous operation analysis of both proposed composite ultrasonic transducers. Due to the complexity of the proposed structures, the three-dimensional matrix electromechanical models of complete composite transducers were developed using modular solutions of the three-dimensional model of piezoceramic rings and the three-dimensional model of passive metal endings. The advantage of the newly developed three-dimensional models of the transducers is reflected in the possibility of predicting the thickness and radial oscillation modes, as well as their mutual couplings. With a minor modification of the three-dimensional models it is possible to determine any transfer function of the observed composite transducer. In the dissertation, in addition to the analysis of the basic thickness resonant mode, special emphasis is devoted to the shape and position of higher resonant modes, as well as to the impact of various parameters on their characteristics. By comparing the experimental measurements of the input electrical impedance, of the realized novel composite transducers, and the corresponding Matlab/Simulink simulation results, the accuracy of the proposed three-dimensional models compared to the one-dimensional models was confirmed.

Faculty:
Универзитет у Нишу, Електронски факултет
Date:
18-12-2018
Keywords:
Kompozitni ultrazvučni pretvarač / Composite ultrasonic transducer / one-dimensional model / three-dimensional model / high-power ultrasound / Piezoelectric transducers optimization / jednodimenzionalni model / trodimenzionalni model / snažan ultrazvuk / optimizacija piezoelektričnih pretvarača
[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_nardus_10785
URI
https://nardus.mpn.gov.rs/handle/123456789/10785
http://eteze.ni.ac.rs/application/showtheses?thesesId=6645
https://fedorani.ni.ac.rs/fedora/get/o:1559/bdef:Content/download
http://vbs.rs/scripts/cobiss?command=DISPLAY&base=70052&RID=534046102

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS
 

 

Browse

All of DSpaceUniversities & FacultiesAuthorsMentorCommittee membersSubjectsThis CollectionAuthorsMentorCommittee membersSubjects

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS