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Abstract

The agent technology represents one of the most consistent approaches to dis-
tributed artificial intelligence. Agents are characterized by autonomous, reactive,
pro-active, and social behavior. In addition, more complex, intelligent agents are
often defined in terms of human-like mental attitudes, such as beliefs, desires,
and intentions.

This thesis deals with software agents and multiagent systems in several
ways. First, it defines a new reasoning architecture for intelligent agents called
Distributed Non-Axiomatic Reasoning System (DNARS). Instead of the popular
Belief-Intention-Desire model, it uses Non-Axiomatic Logic, a formalism devel-
oped for the domain of artificial general intelligence. DNARS is highly-scalable,
capable of answering questions and deriving new knowledge over large knowledge
bases, while, at the same time, concurrently serving large numbers of external
clients.

Secondly, the thesis proposes a novel agent runtime environment named
Siebog. Based on the modern web and enterprise standards, Siebog tries to
reduce the gap between the agent technology and industrial applications. Like
DNARS, Siebog is a distributed system. Its server side runs on computer clusters
and provides advanced functionalities, such as automatic agent load-balancing
and fault-tolerance. The client side, on the other hand, runs inside web browsers,
and supports a wide variety of hardware and software platforms.

Finally, Siebog depends on DNARS for deploying agents with unique reason-
ing capabilities.
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Sažetak

Agentska tehnologija predstavlja dosledan pristup razvoju distribuirane veštačke
inteligencije. Ono što agente izdvaja od ostalih pristupa su autonomno, reak-
tivino, pro-aktivno, i socijalno ponašanje. Pored toga, kompleksniji, inteligentni
agenti se često definǐsu koristeći ljudske mentalne konstrukcije, kao što su vero-
vanja, želje i namere.

Disertacija se bavi softverskim agentima i multiagentskim sistemima sa neko-
liko aspekata. Prvo, definisana je nova arhitektura za rasudivanje sa primenom
u razvoju inteligentnih agenata, nazvana Distribuirani sistem za ne-aksiomatsko
rasudivanje (eng. Distributed Non-Axiomatic Reasoning System) (DNARS).
Umesto popularnog BDI modela za razvoj inteligentnih agenata (eng. Belief-
Desire-Intention), arhitektura se zasniva na tzv. Ne-aksiomatskoj logici, formal-
izmu razvijenom u domenu veštačke opšte inteligencije. DNARS je skalabilan
softverski sistem, sposoban da odgovara na pitanja i da izvodi nove zaključke na
osnovu veoma velikih baza znanja, služeći pri tome veliki broj klijenata.

Zatim, u disertaciji je predložena nova multiagentska platforma nazvana
Siebog. Siebog je zasnovan na modernim standardima za razvoj veb aplikacija,
čime pokušava da smanji razliku izmedu multiagentskih sistema i sistema koji
se koriste u industriji. Kao DNARS, i Siebog je distribuiran sistem. Na server-
skoj strani, Siebog se izvršava na računarskim klasterima, pružajući napredne
funkcionalnosti, poput automatske distribucije agenata i otporonosti na greške.
Sa klijentske strane, Siebog se izvršava u veb pretraživačima i podržava široku
lepezu hardverskih i softverskih platformi.

Konačno, Siebog se oslanja na DNARS za ravoj agenata sa jedinstvenim
sposobnostima za rasudivanje.
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Preface

Artificial intelligence (AI) can be defined as “the science and engineering of
making [...] intelligent computer programs” (McCarthy, 2007). Although fairly
simple, this definition poses a rather difficult question: what does it mean for a
software system to be intelligent?

One of the earliest attempts at describing intelligent software was the famous
Turing test (Turing, 1950). In this test, a human user is seated in front of two
chat windows. One of its chat buddies is a human, and the other one is a software
system. If the user cannot distinguish which one is which, then the software is
said to be intelligent. Although relatively simple to conduct, over time the test
has received many criticisms. For example, it unnecessarily limits the machine’s
capabilities, forcing it to imitate human behavior, when it could do much more.

This is just one experiment that shows how difficult it is to recognize intel-
ligence, or intelligent behavior in artificial systems. Nonetheless, a thesis that
deals with intelligent machines requires a working definition of intelligence. The
definition that best describes the end-goal of the ongoing research presented in
this thesis is as follows:

“Intelligence is the capacity of a system to adapt to its environment
while operating with insufficient knowledge and resources.” (Wang,
2007, p. 33)

AI has generally been divided into two main branches: weak and strong
(Sharkey and Ziemke, 2001). According to the weak AI, a software system can
only imitate human cognition; the best it can do is manipulate symbols, without
really understanding them (e.g. Preston and Bishop, 2002).

The strong AI, also known as Artificial General Intelligence (AGI), has the
long-term goal of developing a software system that can really act like the human
mind, that attaches meanings to terms, and has internal desires and beliefs.
These reasoning systems often consist of a logical and a control part (Wang,
2006). The logical part includes a formal grammar, a semantic theory, and a set
of inference rules for manipulating the symbols; the control part incorporates
different types of memories, and a mechanism for resource management.

Both branches of AI have their supporters and opponents, as well as strengths
and weaknesses. For example, weak AI is divided into number of techniques, each
dedicated to solving a small set of problems, and further divided into incompati-

xv
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ble sub-techniques (McCorduck, 2004), with often limiting results. On the other
hand, the AGI’s end-goal is still pretty much in the realms of science fiction.

Intelligent agents

Although there is no generally agreed-upon definition of software agents (or,
simply, agents), they can be described as autonomous software entity, with var-
ious degrees of intelligence, capable of exhibiting both reactive and pro-active
behavior (Wooldridge, 1999). An agent may possess many additional character-
istics, such as mobility, but the former are often considered to be the defining
properties of complex agents.

According to the definition of AI given earlier, an intelligent agent would
need to express adaptable and flexible behavior. As discussed in more details
in Chapter 1 and by e.g. (Franklin, 2007), intelligent agents can be classified as
AGI systems.

An agent rarely exists on its own. Instead, it is a member of an agent
society. A software system that has a society of agents at its core is referred to
as a multiagent system. More formally, a multiagent system represents a software
system in which a group of agents interacts with each other and the environment
in order to solve the problem at hand (Bădică et al., 2011). This interaction can
take many different forms, from cooperation, action coordination, and knowledge
sharing, to negotiation and mutual competition of self-interested agents. In any
case, the social aspect is what distinguishes the agent technology from other
artificial intelligence approaches.

Motivation

The most widely-used approach for designing intelligent agents is the so-called
Belief-Desire-Intention (BDI) architecture (Rao and Georgeff, 1995). It models
the agent in terms of its beliefs – statements about the world that might (or
might not) be true, desires – states of affairs the agent would like to achieve,
and intentions – desires that the agent is committed to achieving.

Over the years, a number of formalisms for BDI agents have been developed
(e.g Cohen and Levesque, 1990; Dunin-Keplicz and Verbrugge, 2010; Guerra-
Hernandez et al., 2009; Singh et al., 1999; van der Hoek and Wooldridge, 2013).
Although providing strong mathematical backgrounds for developing intelligent
agents, these formalisms generally do not consider practical applications. That
is, they do not take into an account various practical issues, such that the agent
might not have enough resources, in terms of time and space, to solve the problem
(Wang, 2013).

There are also other practical issues with the BDI model. For example, as
noted, the belief is a statement about the world that might or might not be
true. However, concrete realizations of the BDI model do not offer the way of
expressing the degree to which the belief is true; it is often left to the agent
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developer to somehow deal with the belief validity. Other critiques of the BDI
model include the lack of goal representation, support for learning, planning, and
social behavior, etc., although several extensions have been proposed to resolve
some of these issues (e.g. Dunin-Keplicz and Verbrugge, 2010; Jarvis et al., 2010;
Meneguzzi et al., 2007).

Finally, there is a strong suggestion that using only the three notions of
beliefs, desires, and intentions might not be sufficient for modeling human be-
havior. This shortcoming becomes apparent when the BDI approach is compared
to other reasoning and cognitive architecture. As shown in Chapter 6, the AGI
research community has generally abandoned the BDI model for constructing
“thinking machines,” and has instead focused on other, or additional, aspects of
human reasoning.

Along with the development of the agent technology, the web has recently
been transformed into an important software platform. It has gradually evolved
into an environment capable of providing functionalities previously available
only in desktop applications. The client-side enhancements of the web technol-
ogy have brought significant benefits to both software developers and end-users.
Software developers benefit from the cross-platform support as the same code
can be re-used in many different environments. End-users, on the other hand,
are given the access to online applications in a variety of ways, without the
significant loss of functionalities.

These client-side improvements have been supported by corresponding server-
side technologies. This means that, on the server, the focus has been on assuring
the high-availability of deployed applications, which is concerned with fault-
tolerance, scalability, and constant, uninterrupted delivery of services, regardless
of software or hardware failures.

In general, the agent research community has followed these ongoing trends
of moving the software systems from traditional desktop to web environments.
However, the full potential of web and enterprise technologies has yet to be
harnessed by a multiagent middleware. For example, most existing middlewares
still rely on Java Applets for client-side code execution – the approach long
surpassed by more advanced technologies.

Therefore, the work presented in this thesis is motivated by two major factors:
the shortcomings of the BDI agent architecture, and the lack of support for
modern web and enterprise technologies in existing multiagent middlewares.

Main contributions of the thesis

The main contributions can be briefly summarized as follows.
First, a new architecture for developing intelligent agents is proposed. It

abandons the BDI model and its formalisms, and instead uses the so-called
Non-Axiomatic Logic (NAL), an AGI formalism designed for practical realiza-
tions of systems that work under the “assumption of insufficient knowledge and
resources” (Wang, 2013). The main novelty of the proposed architecture is in
the layered and distributed organization of its backend knowledge base. It is
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designed with scalability and fault-tolerance in mind, enabling agents to reason
over very large knowledge bases.
Two concrete realizations of the proposed architecture are discussed as well.

Secondly, the thesis proposes an architecture of a unique multiagent middle-
ware. The new middleware is designed to fulfill the functional requirements im-
posed by modern enterprise and web applications. Many multiagent middlewares
do already exist; however, none of them provides all the benefits included in the
newly proposed system, including, for example, true platform-independence on
the client side, and the support for clustered environments on the server side.

Finally, the thesis presents the very first multiagent system comprised of
intelligent agents that rely on distributed non-axiomatic reasoning in order to
solve concrete practical problems.

Thesis organization

The thesis is organized into 3 parts. Part I lays the necessary foundations. Chap-
ter 1 provides a detailed overview of the agent technology. It sets the proper
definitions of agents and agent architectures, describes cooperation in agent soci-
eties, and discusses most widely-used multiagent frameworks and agent-oriented
programming languages. Chapter 2 presents the basic principles of the Non-
Axiomatic Logic (NAL), including its syntax and semantics, as well as the in-
ference rules available in the first four layers of the formalism.

Part II presents the main contributions of the thesis. Chapter 3 describes an
architecture of the new Distributed Non-Axiomatic Reasoning System (DNARS),
built using the concepts of NAL and modern scalable software development. It
discusses how the system’s backend is organized in order to support large-scale
knowledge bases of NAL statements, while, at the same time, providing real-
time services to large numbers of concurrent users. Two sets of algorithms that
realize NAL inference rules in a efficient manner are presented as well.

Chapter 4 starts by introducing our new multiagent middleware, named
Siebog. As a distributed system, Siebog provides scalability and fault-tolerance
on the server, and true platform-independence on the client side. Furthermore,
by integrating web and enterprise standards into a unified multiagent framework,
Siebog easily achieves cross-platform messaging, agent code sharing, and hetero-
geneous agent mobility. Finally, the chapter discusses the process of adding
support for DNARS-based intelligence and reasoning to Siebog agents.

In Chapter 5, three case studies are presented. The first one shows the
benefits of Siebog in practice. The second case study evaluates the run-time
efficiency of DNARS, i.e when operating on a large knowledge base and serving
high numbers of concurrent users. The final, third case study demonstrates how
a multiagent system based on non-axiomatic reasoning can be used to derive
new knowledge and solve a concrete problem.

Part III of the thesis is dedicated to the related and future work. Chapter 6
provides a detailed insight into existing related architectures, and highlights the
advantages (and disadvantages) of Siebog, both with and without the DNARS-
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based reasoning. Finally, Chapter 7 draws the overall conclusions, analyzes the
completed work, and proposes future research directions.
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Chapter 1

An Overview of the Agent
Technology

The agent technology includes a wide range of concepts for advanced develop-
ment of agents and distributed multiagent systems. This chapter provides a gen-
eral insight into some of the most important concepts: agent architectures, coop-
erative decision making, platforms and frameworks, agent-oriented programming
languages, and mobility. Additional information may be found in e.g. (Bordini
et al., 2009; Bădică et al., 2011; de Weerdt and Clement, 2009; Dunin-Keplicz and
Verbrugge, 2010; Henderson-Sellers and Giorgini, 2005; Macal and North, 2009;
Salamon, 2011; Shoham and Leyton-Brown, 2008; Singh et al., 1999; van der
Hoek and Wooldridge, 2012; Vlassis, 2007; Weiss, 1999, 2013).

Many aspects of the agent-based software development are standardized by
the Foundation for Intelligent Physical Agents (FIPA) (FIPA Home). FIPA is a
non-profit governing body for the standardization of agent-related technologies,
with the aim of assuring interoperability between different implementations. As
an important factor in the design and development of agent-based software,
FIPA specifications will be referred to throughout this chapter.

1.1 Agents

There are many possible applications of the agent technology, each requiring a
different set of functionalities. For example, some problems can be elegantly
solved by exploiting mobility (Urra et al., 2010), while for others stationary
agents represent better solutions. Because of this, it is often difficult to outline
a single, all-encompassing definition of the term agent.

The two most thorough definitions are so-called weak and strong notions of
agency (Wooldridge and Jennings, 1995). According to the weak notion, agents
are executable (software) entities characterized by autonomous, reactive, pro-
active, and social behavior. Autonomy assumes that the agent has a control over
its actions and can operate without instructions from an external entity. Agents

3
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are able to react to changes in their environment, but also to take the initiative
and perform actions without external stimuli. Finally, during the pursuit of
their goals agents often communicate with other entities, such as other agents
and human users.

The strong notion extends this definition by including human-like mental
attitudes, such as beliefs, desires, and intentions, as well as other advanced
concepts: mobility, rationality, benevolence, etc. (Bădică et al., 2011).

Another way of defining agents is by comparing them to objects in object-
oriented programming (Wooldridge, 1999). First of all, agents communicate by
exchanging messages. Although communication between objects is also defined
as message passing (Briggs and Werth, 1994), in most actual implementations it
is performed by invoking a method on the object reference. In practice, agents
are more loosely coupled than objects. Secondly, an agent can decide on its own
whether to perform the task or simply ignore the request (e.g. if the request is
not in the agent’s best interest). When a method is called, the object is expected
to execute it, provided that all preconditions are satisfied. Then, agents exhibit
pro-active behavior, unlike objects which need to be invoked in order to perform
some actions. Finally, an agent has its own thread of control. As discussed by
(Wooldridge, 1999), all agent properties can be built into objects. For example,
one can easily implement a system of concurrent objects which communicate
by sending custom messages to one another, take the initiative, and can choose
to ignore receiving requests. However, these are not defining properties of the
object-oriented paradigm; one does not expect objects to behave this way.

One of the main topics of this thesis are intelligent agents. An intelligent
agent is the one exhibiting adaptable and flexible behavior. A more formal
definition of intelligent (or, deliberative) agents can be specified as follows:

“We define a deliberative agent or agent architecture to be the one
that contains an explicitly represented, symbolic model of the world,
and in which decisions (for example about what actions to perform)
are made via logical (or at least pseudo-logical) reasoning, based
on pattern matching and symbolic manipulation.” (Wooldridge and
Jennings, 1995, p. 130)

In accordance to the aforementioned definitions of agents, several architec-
tures have been proposed. The architecture defines internal organization of an
agent: how perceiving the environment triggers actions, for example, or how
complex decision-making is performed. The three most widely-used architec-
tures are reactive, Belief-Desire-Intention, and hybrid or layered architecture.

1.1.1 Reactive agent architecture

Reactive agents operate by continuously adapting their behavior to changes in
the environment. By frequently perceiving the environment and producing a
small number of actions for each change, they are well-suited for (highly) dy-
namic environments. Reactive agents generally operate in reasoning cycles, with
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each cycle consisting of the following operations (Bordini et al., 2007; Salamon,
2011; Wooldridge, 1999):

� The agent observes its environment and creates one or more percepts;

� The percepts change the agent’s internal state; and

� The changes in this internal state trigger one or more actions, which, in
turn, affect the environment.

There is a number of possible design approaches for reactive agents, includ-
ing finite state machines (Shalyto et al., 2005), the subsumption architecture
(Brooks, 1991; Luck et al., 2004; Salamon, 2011), and the agent network archi-
tecture (Luck et al., 2004; Maes, 1991; Salamon, 2011). An example of a state
machine design is shown in Fig. 1.1. It represents a simple football playing agent,
with the following possible states (Mitrović et al., 2013b):

� Idle: the agent waits for the game to start;

� Searching ball : the agent cannot see the ball, and tries to find it;

� Walking to ball : the agent sees the ball, but is too far away for the kick;

� Kicking : the agent is sufficiently near the ball to perform the kick;

� Done: the agent has scored a goal; and

� Lying down: the agent has fallen down.

The subsumption architecture is one of the more influential architectures for
reactive agents (Brooks, 1991; Luck et al., 2004; Salamon, 2011; Wooldridge,
1999). The agent’s behavior is organized into hierarchical layers. Each layer has
a set of pre-conditions and a set of actions that are executed if the pre-conditions
are met. Because different layers can have their pre-conditions satisfied simul-
taneously, the execution priority is introduced. Lower layers represent more
specific behavior (e.g. avoid the obstacle) and have a higher priority than higher
layers.

There are several extensions of this original approach. For example, the
dynamic subsumption architecture allows for layer priority to be changed dur-
ing the execution (Nakashima and Noda, 1998; Salamon, 2011). Additionally,
vertical layering is introduced, where each layer represents a single functionality.

Although seemingly simple and with limited functionalities, reactive agents
can be efficiently used to solve complex problems (Nolfi, 2002; Sakellariou, 2014).
However, they are domain and environment-dependent, they become increas-
ingly complex as the number of environmental states increases, and finally lack
the pro-active component and the possibility of long-term planning and goal-
commitment found in deliberative agents (Salamon, 2011).
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Figure 1.1: Simple reactive football playing agent designed as a finite state
machine. Taken from (Mitrović et al., 2013b).
Slika 1.1: Jednostavan reaktivan agent koji igra fudbal, dizajniran kao
konačan automat stanja. Preuzeto iz (Mitrović et al., 2013b).

1.1.2 Belief-Desire-Intention

The Belief-Desire-Intention (BDI) agent architecture was first proposed by (Rao
and Georgeff, 1995). Since then, it has had a major influence on the agent
technology, becoming the most widely-researched approach for deliberative agent
development.

BDI agents are described using human-like mental attitudes, and the notions
of beliefs, desires, and intentions. Beliefs represent the agent’s knowledge about
the environment, which might or might not be true. Desires describe the state
of affair the agent will eventually like to achieve. Intentions are desires to which
the agent is committed.

The definition of a deliberative agent based on desires and intentions is more
of a philosophical nature (Salamon, 2011). In practical systems, such as Jason
(Bordini and Hubner, 2006), goals and plans are often used instead of desires
and intentions, respectively. The set of goals includes additional restrictions,
mainly that there are no conflicting goals. A plan is a concrete sequence of
actions designed to achieve a goal.

A general construction of a BDI agent (e.g. Wooldridge, 1999) consists of sev-
eral components, outlined in Fig. 1.2. Along the beliefs, desires, and intentions,
the proposed BDI architecture includes a number of functions:

� Belief revision: takes environmental percepts and current beliefs as inputs,
and generates a new set of beliefs;

� Desire generation: generates agent’s desires, based on current beliefs and
intentions;
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Figure 1.2: General architecture of BDI agents as proposed by (Wooldridge,
1999).
Slika 1.2: Opšta arhitektura BDI agenata, predložena u (Wooldridge, 1999).

� Filter : function that generates intentions, based on the agent’s current
beliefs, desires, and intentions; and

� Action selection: chooses an action to be performed on the basis of current
intentions.

The filter function represents the agent’s deliberation process. Its main pur-
pose is to discard intentions that the agent cannot achieve anymore and to select
new intentions, while making sure that there are no conflicts. This process is
guided by a pre-defined commitment strategy, which determines the agent’s level
of commitment to a certain intention. Through various experimental evalua-
tions (e.g. Pollack et al., 1994), it has been shown that the optimum commitment
strategy depends on the environment: more dynamic environments require more
flexible commitment strategy, and vice versa.

One of the strengths of the BDI architecture is the wide range of formalisms
that have been developed over time (e.g. Cohen and Levesque, 1990; Dunin-
Keplicz and Verbrugge, 2010; Guerra-Hernandez et al., 2009; Singh et al., 1999;
van der Hoek and Wooldridge, 2013). In addition, the original design has been
extended with other more advanced concepts, such as learning and planning
(Phung et al., 2005; Singh et al., 2011), and even emotions (Pereira et al., 2008),
making BDI the most feature-rich agent architecture.

1.1.3 Hybrid architectures

As indicated by the weak notion of agency, agents need to efficiently combine
both reactive and reasoning components. That is, they need to appropriately
act to changes in their environment, but also to make decisions and take actions
on their own. This is why the so-called hybrid (or, layered) agent architecture
is often used in practical applications. The two most popular hybrid architec-
tures are TouringMachines and InterRRaP (Luck et al., 2004; Salamon, 2011;
Wooldridge, 1999).
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Agents based on the TouringMachines model include three main components:
reactive, planning, and modeling. The reactive component is at the lower level
and should quickly transform percepts into actions. The planning component
constructs more complex action plans, while the modeling component maintains
models of other agents and the environment, trying to predict future behaviors.
Each of the components can directly perceive the environment, and produce ac-
tions. In addition, the components themselves are interconnected. Their opera-
tion can be managed by a controller, which should, for example, choose between
conflicting actions proposed by individual components.

Since TouringMachines components can directly communicate with each other
and with the environment, this architecture is often described as horizontally lay-
ered (Luck et al., 2004; Wooldridge, 1999). In InterRRaP, the vertical layering is
introduced so that each component/layer can interact only with its direct parent
and child layers. The three standard layers of this architecture are, from bottom
to top: behavior-based, plan-based, and cooperation layer. The first two corre-
spond to reactive and planning components of TouringMachines, respectively,
while the cooperation layer deals with social interactions. Additionally, each
layer is associated with its own knowledge of the world.

InterRRaP layers interact in a two-way fashion (Wooldridge, 1999). If a
lower layer is incapable of handling the current situation, it will activate its
parent layer. Similarly, once a higher layer makes a decision on which action(s)
to take, it will employ top-down execution and forward its decision to the lower
layer. By using these decision making approaches, InterRRaP does not require
a (complex) control component as TouringMachines.

As noted, InterRRaP includes a layer dedicated to interactions in complex
agents societies. In general, this social interaction represents one of the core
features of the agent technology, and is discussed in more details in the following
section.

1.2 Interaction in agent societies

The social ability is one of the defining properties of agents. It has therefore
received a great deal of attention from agent researchers and practitioners.

The social interaction can be performed at different abstraction and complex-
ity levels. In the simplest form, agents interact by directly exchanging messages
of a pre-defined format. At the more advanced level, agents follow certain norms
and coordinate their actions, cooperate in order to achieve common design goals,
resort to negotiation for conflict resolution, or, in case of self-interest agents,
compete against each other (Huhns and Stephens, 1999; Salamon, 2011).

1.2.1 Peer-to-peer communication

In order to maintain loose coupling of agents, the following two concepts are
generally applied in the design of multiagent systems:

� An agent can reference its peers only through their names/identifiers.
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� The communication is asynchronous (non-blocking). It is a well-known
fact that asynchronous communication of concurrently executing entities
can prevent tricky synchronization issues, such as deadlocks.

These concepts are implemented in and enforced by an agent middleware, a
runtime environment which provides the infrastructural support for agent exe-
cution. It is the job of the agent middleware, for example, to obtain a memory
reference to the actual agent and deliver the message to it. Middlewares are
described in more details in Section 1.3.

In order to achieve communication-level agent interoperability between dif-
ferent agent vendors (Georgousopoulos et al., 2004), FIPA defines Agent Com-
munication Language (ACL) as the standard message format (FIPA Acl). The
message is a set of key-value parameters. Standard parameters, many of which
are optional, are described in Table 1.1. Custom, user-defined parameters can
be included in the message as well, and are prefixed by “X-”.

The most important part of the message – its content – can be represented
using any language, as long as the receiving agent can understanding it.

Messages based on the FIPA ACL standard include support for interaction
protocols. An interaction protocol identifies different roles of agents, and de-
scribes the conversation – the order in which different types of messages are
expected to be exchanged. One of the most popular protocols is Contract Net.

1.2.2 The Contract Net protocol

Contract Net is a standard agent interaction protocol (FIPA CNet). It is ap-
plicable to scenarios in which an agent has a task that it needs to distribute to
other agents. The protocol recognizes two roles: Initiator and Participant. The
general flow of messages between them is as follows:

� Initiator first issues a call for proposals. The call describes the task that
needs to be solved, along with any restrictions (e.g. the deadline);

� Interested Participants send their proposals or refuse to participate;

� Initiator analyzes received proposals and selects zero or more Participants
to carry out the task. Each bidder will be notified whether its proposal
has been accepted or refused;

� Selected Participants execute their tasks. In the end, they inform the
Initiator of the result, or about a possible failure.

Therefore, Contract Net can be seen as both a cooperation protocol, when
the Initiator engages Participants in order to solve the task, and a competitive
protocol, when Participants compete with and try to outbid each other.

Contract Net can be applied to many different real-life scenarios, such as
automatic problem resolution in power grids (Kodama et al., 2009). Also, several
extensions and improvements of the protocol have been proposed. For example,
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Table 1.1: Standard parameters of a message, as defined by the FIPA Agent
Communication Language specification.
Tabela 1.1: Standardni parametri poruke, kao što je definisano u FIPA speci-
fikaciji za Agentski Jezik Komunikacije.

Parameter Description

performative Type of the message, e.g. request, proposal, agree-
ment, etc. See (FIPA Act) for more information.

sender Message sender.

receiver One or more receivers of the message.

reply-to If specified, identifies the agent to which the reply
to this message should be delivered. If omitted, the
reply is delivered to the sender.

content Message payload. It contains the actual data the
sender is trying to communicate to intended re-
ceivers.

language Defines the language in which the content is ex-
pressed.

encoding Content encoding.

ontology Content ontology. Together with language and en-
coding, it helps the receiving agents to understand
and interpret the message content.

protocol Identifies the ongoing interaction protocol, if any.

conversation-id Identifies the conversation. It helps the agents to, for
example, keep track of conversations with different
agents.

reply-with Expression that should be included in the “in-reply-
to” parameter that is a reply to this message.

in-reply-to References the “reply-with” parameter in an earlier
message to which this message is a reply.

reply-by The deadline by which the agent expects to receive
the reply to this message.
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Competitive Contract Net introduces support for negotiations regarding contract
conclusion and dissolution (Vokř́ınek et al., 2007).

Contract Net is an example of a one-to-many agent cooperation protocol.
When many agents need to share information with one another, an efficient
blackboard system can be used instead.

1.2.3 Blackboards

The blackboard system represents one of the earliest collaboration techniques
(Corkill, 2003; Huhns and Stephens, 1999). It is best-suited for cooperative
problem solving. A blackboard is a shared repository, analyzed and updated by
a set of agent specialists (or, knowledge sources). At the beginning, the problem
description and any input data are written to the blackboard. Each agent then
monitors the changes and makes contributions from its domain of expertise. In
general, agents do not communicate with each other directly. Instead, they only
see public (and possibly, anonymous) contributions made by other, as well as
the overall progress of the problem resolution.

A blackboard consists of a shared memory, communication channels, and an
event mechanism (Corkill, 2003). The memory part maintains the progress and
history of the problem solving process. It should utilize one of the standard
knowledge representation languages (e.g. Schreiber and Raimond), in order to
accommodate a diverse group of agents. The communication channel needs to
be efficient, and allow for concurrent access and modifications of the memory.
Finally, the blackboard solving process is based on events. Agents register them-
selves to receive notification about events, e.g. when a new piece of information
is added.

An integral part of a blackboard system is the control component. It steers
the decision-making process, manages priorities between concurrent agents, etc.
In more advanced architectures, the control component itself can be designed as
a blackboard (Corkill, 2003).

The blackboard system represents an incremental approach to problem res-
olution, by joining parts contributed by different agents. It can be used to solve
complex problems, as long as a diverse group of agents is employed. Therefore,
agents in blackboard systems should possess advanced reasoning capabilities.

1.2.4 Cooperative learning

The social aspect and cooperation of agents can efficiently be utilized in machine
learning. Cooperative learning in multiagent systems can be defined as a joint
effort of many agents in pursuit of the common goal (Panait and Luke, 2005; Sen
and Weiss, 1999). By interacting and sharing their knowledge and experience,
agents can learn better and reach the goal faster than isolated systems.

According to the study published by (Panait and Luke, 2005), two main
categories of cooperative multiagent learning exist: team and concurrent. In
team learning, a single agent learns for the entire team. The agent observes and
tries to improve the team’s overall performance, by applying traditional machine
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learning techniques. On the other hand, in concurrent learning each member of
the team takes part in the learning process: the problem is divided into smaller,
more manageable parts that can be handled in parallel.

Each category has its advantages and disadvantages (Panait and Luke, 2005).
For example, in team learning the focus is on the performance of the entire
team, and not on the needs of individual agents. However, all learning efforts
are concentrated in a single agent, which might not be suitable for very complex
problems, such as combinatorial optimizations – finding the optimum solution
within the large set of possible solutions.

Based on the types of agents, team learning can further be divided into
three sub-categories: homogeneous, heterogeneous, and hybrid. In homogeneous
learning, all agents have identical capabilities, and so the learned concepts can
equally be applied to every member of the team. Heterogeneous learning is
concerned with the construction of a diverse team of specialists. Although more
complicated than homogeneous learning, it can utilize smaller number of agents
and provide better results than other machine learning methods (Nitschke et al.,
2012; Panait and Luke, 2005). Finally, hybrid team learning combines several
distinct groups of homogeneous or heterogeneous agents.

As noted, concurrent learning may be used to efficiently solve more complex
problems that team learning, but it possess its own set of challenges (Panait and
Luke, 2005; Sen and Weiss, 1999). One notable issue is credit assignment, which
deals with splitting the reward to individual agents, according to their learning
performance. In addition, in order to improve the learning process, the agent
should keep models of other agents and adapt to their behavior.

The remainder of this sections discusses two popular cooperative learning
approaches used in multiagent systems: Swarm intelligence and Reinforcement
learning.

1.2.5 Swarm intelligence

Swarm intelligence (SI) belongs to the category of concurrent learning. It is a
branch of the so-called bio-inspired computing, which tries to mimic the behavior
of animals in order to solve complex, usually NP -hard problems. SI is primarily
focused on social insects and animals, including ants, bees, and birds. The
main assumption is that a single agent is relatively simple. But, when acting
in a group, their cooperation results in a global intelligent behavior (Blum and
Merkle, 2008; Panigrahi et al., 2011). Within the group, there is no centralized
monitoring or control. Each agent can only interact with neighboring agents,
either directly or through the environment.

The two most popular SI techniques are particle swarms and ant colonies.
Particle swarms are based on the flocking behavior of birds (Blum and Merkle,
2008). Each agent (or particle) has a position within the problem search space,
it has a velocity, and remembers its earlier position with the optimum value. It
can share these information directly with other near-by particles.

Let p be the particle’s current position, v its velocity, popt its optimum posi-
tion so far, and pglob the optimum position of its neighbors. In each step of the
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PSO algorithm the particle updates its information according to the following
equations (Blum and Merkle, 2008; Kennedy and Eberhart, 1995):

v ← c0v + c1R1 × (popt − p) + c2R2 × (pglob − p) (1.1)

p← p+ v (1.2)

The three addends of the first equation are interpreted as momentum, cog-
nitive, and social part (Blum and Merkle, 2008). Momentum expresses the
particle’s tendency to maintain its current velocity. The cognitive part indicates
that the particle tends to return to its previous best position. Finally, the social
aspect steers the particle towards the best position found by its neighbors. In
the equation, c0, c1, and c2 are constants that determine the particle’s overall
behavior, while R1 and R2 are random values in [0..1].

The ant colony algorithm mimics the behavior of foraging ants (Blum and
Merkle, 2008; Dorigo and St uzle, 2004). It uses pheromone depositing and de-
tection as the main communication method. Fig. 1.3 demonstrates one classical
scenario – choosing the shortest path from the nest to the food source. When
an ant reaches the crossroad for the first time (a), it chooses one of the available
paths with equal probability. Once it reaches the food source, the ant returns
back to the nest, leaving the pheromone trail along the way (shown as a dotted
line in (b)). Since now there is a pheromone trail on the upper (shorter) path,
there is a higher probability that the third ant will choose this path (c). Over
time, more and more pheromone will be deposited on the shorter path. Since
the pheromone evaporates, all ants will eventually use only the shorter path.

As noted, SI techniques are best applied to combinatorial optimization prob-
lems with large search spaces. One well-known problem in this category is the
Traveling Salesman Problem, for which there are efficient algorithms based on
both ant colonies (Ilie and Badica, 2013) and particle swarms (Yan et al., 2012).

1.2.6 Reinforcement learning

Reinforcement learning is a well-known machine learning technique based on
rewards (Alpaydin, 2004; Busoniu et al., 2008; Sen and Weiss, 1999). Here,
the agent is situated in an environment with a set of states S, in which it can
execute actions from the set A. The state transition function f is defined as
f : S ×A→ S: the agent executes an action a ∈ A, causing the environment to
transition from state s to state p, s, p ∈ S. For non-deterministic environments,
the function is defined as the probability of transitioning to state p when action
a is performed in state s, f : S ×A× S → [0, 1].

The agent executes actions at distinct time intervals. For each action (or, a
transition step) the agent receives a scalar reward r ∈ R, which can be negative.
The agent’s overall behavior is described by a policy π which maps states to
actions, π : S → A. In the non-deterministic case, it is again defined as a
probability, π : S × A → [0, 1]. The goal of the agent is to adopt the policy
which maximizes its reward.



14 CHAPTER 1. AN OVERVIEW OF THE AGENT TECHNOLOGY

Figure 1.3: The process of selecting the shortest path from the ant nest to
the food source. Ants deposit pheromone on their way back from the food
source (marked by dotted lines). As the pheromone level increases on the
upper path, and decreases (through evaporation) on the lower path, all ants
will eventually take the shorter path to the food source.
Slika 1.3: Proces pronalaženja najkraće putanje od gnezda mrava do izvora
hrane. Mravi ostavljaju feromonski trag na svom putu od izvora hrane
(predstavljen tačkastom linijom). Kako se nivo feromona povećava na gorn-
joj putanji, a smanjuje (kroz isparavanje) na donjoj, svi mravi će naposletku
početi da koriste kraću putanju do izvora hrane.

The most popular variant of Reinforcement learning is the so-called Q-
learning, which does not require a model of the environment (Alpaydin, 2004;
Busoniu et al., 2008). It uses a Q-function which determines the reward for
each state-action pair for a given policy, Qπ : S × A → R. In practice, these
Q−values are calculated iteratively using the greedy policy: selecting the action
that returns the maximum reward.

Let the agent follow some greedy policy π. At each time step t it executes
an action at. This causes the environment to transition from state st to st+1,
and the agent receives the reward rt+1. Q− values are then iteratively updated
as follows (Busoniu et al., 2008):

Qπt+1(st, at)← (1− α)Qπt (st, at) + α(rt+1 + γmax
a∈A

Qπt (st+1, a)) (1.3)

Here, α ∈ (0, 1] is the learning rate, and it controls how much the new value
affects the existing one. The discount factor γ ∈ [0, 1) determines the importance
of future rewards.

Reinforcement learning is one of the most popular machine learning tech-
niques employed in and by multiagent systems. Some concrete examples of these
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Figure 1.4: Simple action coordination in Reinforcement learning. In addi-
tion to choosing the maximum Q-value, agents need to avoid colliding into
each other while avoiding the obstacle (adapted from (Busoniu et al., 2008)).
Slika 1.4: Jednostavna koordinacija akcija u Učenju sa podsticajem. Pored
odabira najveće Q-vrednosti, agenti paziti da ne dode do medusobnog sudara
pri izbegavanju prepreke (adaptirano iz (Busoniu et al., 2008)).

applications can be found in e.g. (Busoniu et al., 2008; Gabel and Riedmiller,
2007). The technique can be used both in form of a team (single-agent) and a
concurrent (multi-agent) cooperative learning. As noted earlier, in the concur-
rent approach, a special care needs to be taken. For example, Fig. 1.4 shows two
agents moving in opposite directions and encountering an obstacle on the road
(Busoniu et al., 2008). Each agent can move up or down, and will receive equal
reward for either action. However, if both agents move in the same direction,
they will collide. Therefore, some form of a strategy or action coordination is
required; for example, if two positions result in the same reward, choose the one
which is to the right of your moving direction.

1.3 Multiagent platforms and frameworks

Agents need infrastructural support in order to perform their tasks. For example,
they require an efficient communication infrastructure, which operates regardless
of the receiving agents’ physical locations. Furthermore, agents need to be able
to publish their capabilities to others, or to move to another node in the network.
These and other functional requirements have been described and standardized
by the FIPA Agent Management specification (FIPA Ams).

The three main agent management components are Agent Management Sys-
tem (AMS), Directory Facilitator (DF), and Message Transport Service (MTS).
The core functionalities of an AMS are as follows (FIPA Ams):

� Register agents: AMS maintains the list of unique agent identifiers. During
the initialization phase, the agent’s identifier needs to be registered with
the AMS; the agent “officially exists” only after this step.

� Modify the agent description.

� Deregister an agent from the AMS, which makes it unavailable.

� Search for agents registered in the AMS.

� Get the description of the Agent Platform.
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DF acts as a yellow pages service. Agents can publish (remove, modify) their
capabilities and services to the DF, and search the DF in order to learn about
other agents. DF does not guarantee the validity of information - description
of the agent’s service might be outdated, the agent might refuse to execute its
service, etc. Finally, an agent might subscribe to the DF and be notified when
another agent publishes, removes, or modifies its capabilities.

MTS is the component in charge of transporting messages between agents.
A message is comprised of an envelope and a payload (FIPA Mts). The envelope
is a set of key-value parameters, some of which are required (such as to and
from). The payload is context-specific – MTS is concerned with the message
envelope only. As discussed in the specification, besides delivering messages
to local agents, MTS is expected to enable interaction with remote agents as
well, and should provide error handling mechanisms (e.g. when the remote host
cannot be reached).

The components are organized inside an Agent Platform (AP), also known
as the agent middleware. Inside an AP, AMS and MTS are mandatory, while
DF is optional. There can be any number of DFs in a single AP, in which
case the specification assumes that the depth-first search is performed. General
organization of an AP is shown in Fig. 1.5. In addition to the core components,
AP can include any other component that can support and enhance agents’
problem-solving capabilities

As discussed by (Bădică et al., 2011), a large number of agent middlewares
has been implemented over the years, but, unfortunately, most of them are
not being improved or maintained anymore. The remainder of this section de-
scribes several interesting solutions with original design approaches. Radigost
and XJAF, which represent the foundation of this thesis, are described in more
details in Chapter 4.

1.3.1 Cougaar

Cognitive Agent Architecture (Cougaar) is a component based multiagent mid-
dleware developed in Java (BBN, 2004; Siracuse et al., 2007). It is designed
as a fault-tolerant, scalable distributed architecture. That is, Cougaar and its
agents can continue to operate even if a large number of network nodes becomes
unavailable. It is, therefore, well-suited for unstable environments.

The platform consists of a number of nodes that act as agent hosts. From
an external view, a node is just a special type of an agent, executed inside its
own Java Virtual Machine.

A Cougaar agent is defined as a set of plug-ins. A plug-in is an independent
software component. It does not rely on other plug-ins for its functioning, but
can utilize a number of services, either readily available in the middleware, or
developed by a third-party. Example services include the blackboard, white and
yellow pages, logging service, etc.

Blackboard is the main communication interface in Cougaar. It provides
asynchronous message exchange, and follows the publish-subscribe model. There
is no centralized blackboard, since it would represent the single point of failure.
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Figure 1.5: Outline of an agent platform comprised of three main com-
ponents: Agent Management System, Directory Facilitator, and Message
Transport Service.
Slika 1.5: Organizacija agentske platforme, koja sadrži tri osnovne kompo-
nente: Sistem za upravljanje agentima, Moderatora direktorijuma i Servis
za transport poruka.

Instead, each agent has its own blackboard, and can write onto another agent’s
blackboard, indirectly, through a robust message transport service.

Cougaar offers an advanced persistence sub-system for dealing with hardware
and software failures. It can be applied to blackboards, agents, and nodes. The
sub-systems preserves internal state of an object on an external storage, and
can later restore it, in case of a failure. Two persistence modes are supported:
conservative and lazy. The former uses more network traffic and is suitable
for highly unstable environments, while the latter is more optimized for stable
environments.

Cougaar was developed as an 8-year military project, and it included some
advanced solutions for its time. Unfortunately, the system does not appear to
be maintained anymore.

1.3.2 JADE

Java Agent DEvelopment Framework (JADE) is a FIPA-compliant Java-based
multiagent framework (Bellifemine et al., 2005, 2007). It is currently the most
stable and widely used open-source solution.

JADE platform consists of three core components: Agent Management Sys-
tem, Directory Facilitator, and Message Transport System. These components
and the platform itself are built in accordance to the FIPA specification de-
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scribed earlier. The platform can be executed in form of one or more containers.
A container is an agent runtime environment. The main container is the one
that hosts the AMS and DF components. Other, peripheral containers can be
distributed across the computer network in order to build distributed systems.
Besides distributing agents themselves, this organization provides fault-tolerance
through container and agent replication.

Agent communication is achieved through asynchronous message exchange.
The message format is based on FIPA ACL. In addition to the simple mes-
sage passing, JADE supports various interaction protocols, such as Contract
Net. This allows the development of more complex agents at a higher level of
abstraction.

Agents are written primarily in Java, and can be both static and mobile.
They are defined in terms of one or more behaviors. A behavior represents a
task that the agent can perform. In order to simplify the agent-development
process, a number of behavior templates are provided, e.g. cyclic, one-shot,
waker etc. (Bellifemine et al., 2007). Finally, intelligent agents can be written
for JADE using third-party languages and tools, such as AgentSpeak and Jason,
described in more details in Section 1.4.

JADE has an extensive ecosystem of plug-ins and extensions. For example,
a more recent extension named WADE (Workflows and Agents Development
Environment), which operates as a workflow engine on top of JADE. More in-
formation about this and other extensions are available at the JADE homepage1.

1.3.3 Magentix

Magentix is one of the very few modern multiagent middlewares which does
not run in a virtual machine. Instead, it is implemented in C and compiled for
Unix-based (i.e. Linux and Mac OS) operating systems (Alberola et al., 2013).

The Magentix platform can be distributed across a number of hosts. A
host includes three layers of processes. At the top layer, the main process is
used to start and control the platform itself as well as other processes. Below
it are a number of services, including the Organizational Unit Manager which
adds support for group communication. Finally, agents are executed as child
processes of the FIPA AMS service.

Information held by each service is replicated on all hosts. In case of the
AMS, for example, this means that every host includes information about agents
running in all hosts. This design approach was made for speed purposes, in order
to reduce network communication.

As noted, Magentix agents are represented by processes. Each agent con-
sists of three separate threads: for executing the main code, for sending, and
for receiving messages. Any number of mailboxes can be attached to an agent.
Furthermore, for message filtering purposes, a mailbox can be assigned a conver-
sation identifier. Subsequently, messages with the given identifier will be routed
to the proper mailbox.

1http://jade.tilab.com/, retrieved on August 12, 2014.

http://jade.tilab.com/
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Magentix might lack portability of other (e.g. Java-based) multiagent so-
lutions. However, the main reason for its design is runtime performance: as
demonstrated by (Alberola et al., 2013), under heavy loads Magentix performs
on the orders of magnitude faster than JADE.

1.3.4 SPADE

Smart Python multi-Agent Development Environment (SPADE) is a multiagent
middleware that utilizes Extensible Messaging and Presence Protocol (XMPP)
for agent communication (Aranda et al., 2012; Argente et al., 2007). XMPP
is an XML-based, open, decentralized, and asynchronous communication proto-
col2. It acts as a layer on top of an existing infrastructure, such as HTTP or
WebSocket, and includes many advanced features, such as automatic discovery
of participants, postponed delivery to offline clients, etc.

The two main components of SPADE are the multiagent platform, and an
agent library. The platform is FIPA-compliant, with the Message Transport
Service provided in form of an XMPP server. This approach enables SPADE
agents to, for example, easily participate in group conversations. The agent
library is written in Python, and simplifies the overall agent development process.

Agents are modeled in terms of behaviors, similarly as in JADE. One more
advanced behavior available in SPADE is Finite-State-Machine, which defines
an agent in terms of distinct states, as well as transitions between these states.

Besides reactive, SPADE also supports deliberative agents based on the BDI
model.

1.4 Agent-oriented programming languages

Just as there are dedicated, object-oriented programming languages, the exis-
tence of agent-oriented programming languages (AOPL) is crucial for a wider
acceptance of the agent technology. AOPLs offer programming constructs that
hide the overall complexity of developing agents and allow the developer to focus
on solving the problem in question. They represent one of the crucial compo-
nents of the agent-oriented programming paradigm, which views (social) agents
as building blocks of software systems (Shoham, 1993).

As with platforms, a relatively large number of AOPLs has been developed.
Several popular languages that are still being actively developed and used are de-
scribed in the remainder of this section. For others, see e.g. (Bordini et al., 2009;
Bădică et al., 2011; Dastani et al., 2003; Davies and Edwards, 1994; Shoham,
1993; Thomas, 1994)

1.4.1 2APL

A Practical Agent Programming Language (2APL) combines declarative and
imperative programming styles (Dastani, 2008). It offers several concepts for

2http://xmpp.org/, retrieved on August 12, 2014.

http://xmpp.org/
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the programming and execution of agents. These include beliefs, goals, events,
actions, plans, and rules. Belief and goals are declarative constructs that describe
the agent’s mental state. Events carry information about some change in the
environment, and are used to trigger plan execution.

Actions describe agent’s capabilities, and are divided into six categories. Be-
lief update actions modify the belief base, in response to, for example, external
events or received messages. Test actions query the belief base. Goal update ac-
tions are used by the agent to drop existing or adopt new goals. Abstract actions
represent procedure calls, that is, they trigger the execution of plans. Communi-
cation actions are used for inter-agent communication. Finally, external actions
are performed by the agent when it needs to affect its environment.

Plans represents the means for achieving the goals. A plan consists of a
sequence of actions, with the addition of conditional statements, loops, and non-
interleaving operators for building atomic plans. Note that, due to the existence
of abstract actions, a plan can, for example, represent a sequence of other plans.

2APL support three types of rules that control the agent’s reasoning process
(Dastani, 2008). Planning Goal Rules create and execute plans in response
to some changes in the agent’s beliefs and goals. Procedure Call Rules create
and execute plans in response to environmental changes, received messages, or
abstract action. Finally, Plan Repair Rules define how a failed plan can be
substituted with another plan, as long as some beliefs hold.

As it can be concluded, 2APL provides a rich set of programming constructs
for agent development. The language has a strong theoretical basis, and has
seen some interesting practical applications (Dastani, 2008).

1.4.2 AgentSpeak and Jason

AgentSpeak is a declarative, logic-based language first proposed by (Rao, 1996).
Although envisioned as an abstract language, AgentSpeak has recently gained
more popularity due to the development of a practical interpreter named Jason
(Bordini and Hubner, 2006; Bordini et al., 2007).

AgentSpeak/Jason agents are defined in terms of beliefs, goals, and plans.
Beliefs are expressed as first-order logical formulae. Goals can be either test
or achievement. Test goals simply query the belief base in order to determine
whether some facts are true or false. Achievement goals, on the other hand,
trigger the execution of plans.

Plans outline the set of actions for achievement goals. They are specified in
the form of triggeringEvent : context ← body (Bordini et al., 2007; Mitrović
et al., 2013b). Once there is a change in the agent’s mental state (e.g. a new
belief has been added), a plan with such triggering event is selected. But, before
the plan is executed, the validity of its context is evaluated. This increases the
chances of the successful plan execution and is useful in dynamic environments.

Jason is designed to be highly customizable. Besides the possibility of im-
plementing custom actions in Java, different components of the interpreter itself
can be replaced. This design approach has undoubtedly contributed to the
popularity and practical applicability of Jason, allowing its agents to run on
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Figure 1.6: On-the-fly compilation of an ALAS source code into the ex-
ecutable code of the concrete multiagent platform (taken from (Mitrović
et al., 2012a)).
Slika 1.6: U-letu prevodenje izvornog koda pisanog u ALAS-u u izvršni kod
konkretne multiagentske platforme (preuzeto iz (Mitrović et al., 2012a)).

different software infrastructures, such as JADE (Bordini et al., 2007) and Java
EE (Mitrović et al., 2013a).

1.4.3 ALAS

Unlike other languages described in this section, ALAS 3 is an imperative lan-
guage, suitable for reactive agent architectures (Mitrović et al., 2011; Mitrović
et al., 2012a). One of its main goals is to support agent mobility between plat-
forms that offer different sets of APIs, or that are executed on top of different
virtual machines. This goal is achieved by recompiling the agent’s source code
on-the-fly, as it reaches the target platform.

The re-compilation process is shown in details in Fig. 1.6. First, the ALAS
source code is transformed into an abstract syntax tree and then fed into VM
selector, which associates it with the correct standard library. Then, MAS selec-
tor replaces all platform-related calls to the appropriate API calls offered by the
target platform. Finally, the resulting code is forwarded to the native compiler
to produce the executable code.

ALAS agents are defined in terms of services and properties (Mitrović et al.,
2011; Mitrović et al., 2012a). A service is a distinct piece of functionality that the
agent offers to external entities. Service execution can be requested by sending
an appropriate message to the agent. Properties describe the state of an agent.
They can be either persistent or transient. During the migration process, only
persistent properties are transferred along with the agent, reducing the overhead
of agent mobility.

3Developed at the University of Novi Sad, Serbia.
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1.4.4 GOAL

Mental state of an agent written in GOAL (Goal-Oriented Agent Language)
consists of knowledge, beliefs, and goals (Hindriks, 2014, 2009). The difference
between knowledge and beliefs is that the former is static and cannot be changed
at runtime, while the belief base can (and is) continuously updated. All three
constructs are written declaratively, using Prolog-like facts and rules.

The language supports different types of goals, including achievement and
maintenance goals (Hindriks, 2014, 2009). In both cases, the goal describes de-
sired environment state. However, in case of achievement goals, the environment
is not currently in that desired state, and the agent needs to act in order to reach
it. In case of maintenance goals, the agent can refrain itself from acting in order
to keep the current state.

GOAL agents follow the blind commitment strategy (Hindriks, 2014, 2009;
Rao and Georgeff, 1993). This means that the agent will not drop an active goal
until it is fully completed (i.e. including all sub-goals).

Actions are mostly user-defined, and are guarded by precondition and post-
condition expressions. If its precondition can be derived from the agent’s beliefs,
the action is said to be enabled. The postcondition is generally split into two
lists, add and delete, consisting of, respectively, positive and negative literals.
Once the action is executed, literals in the delete list are removed from the belief
base, and only then are literals in the add list included.

1.5 Mobility

During the mid-1990s, mobility was the defining property of agents (which were
often referred to as mobile agents). After the initial “hype,” it became apparent
that mobility does not represent the solution to all problems, and that in practice
it often adds more overhead than the theory might suggest (Carzaniga et al.,
2007). Nonetheless, mobility is still an interesting research topic, with some
important problems yet to be efficiently solved (Medvidovic and Edwards, 2010).

The mobility process consists of several stages (Cabri et al., 2000; Mitrović
et al., 2011):

1. Suspend the agent’s execution flow;

2. Store its runtime state;

3. Migrate the agent’s code and state to the destination machine;

4. Restore the runtime state; and

5. Resume the agent’s execution flow.

Depending on how these stages are realized, there exist two types of mobility:
weak and strong (Cabri et al., 2000; Mitrović et al., 2011). With weak mobility,
only (some or all of) agent’s properties are transfered, and the agent’s execu-
tion is restored by, for example, sending it a predefined message. With strong
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mobility, the entire runtime state, including the execution stack, the program
counter, etc. is transferred. Weak mobility is easier to implement, as it does not
require any support by the underlying infrastructure (e.g. the virtual machine).
Strong mobility is more transparent, but due to various technical difficulties, it
is supported only by a small number of usually older systems (e.g. Suri et al.,
2000; Tardo and Valente, 1996).

One of the technical difficulties in implementing agent mobility is the lack
of interoperability between existing agent platforms (Pinsdorf and Roth, 2002).
This lack of interoperability often appears inadvertently, e.g. due to the usage
of different virtual machines, by exposing different sets of APIs to agents, etc.
Depending on the types of platforms that comprise the network, agent mobility
can be classified as follows (Mitrović et al., 2011; Overeinder et al., 2006):

1. Homogeneous: all platforms offer the same API and are running on the
same virtual machine;

2. Cross-platform: offered APIs differ, but platforms run on the same virtual
machine;

3. Agent-regeneration: virtual machines differ, but each platform offers the
same API; and

4. Heterogeneous: all platforms offer different sets of APIs and are running
on different virtual machines.

Cross-platform mobility can be achieved through software layering, by build-
ing an intermediary API layer between agents and platforms (Fortino et al., 2008;
Grimstrup et al.). In case of 3., the agent’s executable code needs to be regener-
ated for each virtual machine the agent visits. Obviously, heterogeneous mobility
poses the most difficult technical challenges. Generative migration (Overeinder
et al., 2006), the usage of model-driven engineering (Gherbi et al., 2009), and
ALAS (Mitrović et al., 2011; Mitrović et al., 2012a) represent possible approaches
to achieving full heterogeneous mobility.

1.6 Summary

The agent technology includes a wide variety of theoretical concepts and prac-
tical solutions for building distributed, autonomous, deliberative systems. In
addition to introducing new concepts, such as autonomy and mobility, it has
successfully enhanced many existing approaches, such as multiagent reinforce-
ment learning. As a research field, the agent technology is very active, with
numerous high-impact journals and international conferences dedicated to the
latest breakthroughs in the field.

Unfortunately, agents are yet to be adopted by the mainstream industry.
Researchers generally agree that there is no “killer application” for the agent
technology – the application that undoubtedly proves its core value. Nonetheless,
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over the years the advantages of agents over other approaches have been shown
many times.

This chapter has provided an overview of some of the most important re-
search topics in the field of software agents. Besides studying these topics fur-
ther, interested readers are also encouraged to explore other concepts, including
multiagent planning (de Weerdt and Clement, 2009), agent formalisms (Dunin-
Keplicz and Verbrugge, 2010; Singh et al., 1999; van der Hoek and Wooldridge,
2012), agent-based modeling and simulation (Macal and North, 2009), etc.

In the next chapter, a formalism named Non-Axiomatic Logic is presented.
It serves as the basis for a distributed non-axiomatic reasoning system proposed
later, in Chapter 3.



Chapter 2

Non-Axiomatic Reasoning

Non-Axiomatic Logic (NAL) represents a formalism for reasoning systems in
the domain of Artificial General Intelligence (AGI) (Wang, 2006, 2013; Wang
and Awan, 2011). It includes a symbolic grammar, a set of inference rules, and
a semantic theory. However, NAL is different from many other logics used to
define reasoning in intelligent systems, in the sense that it is a term logic (Smith,
2012; Sommers and Englebretsen, 2000; Wang, 2013). Its sentences are given in
the form of subject-copula-predicate, where subject and predicate are terms.

The term non-axiomatic in NAL indicates that the logic is constructed
around the notion of insufficient knowledge and resources (Wang, 2013; Wang
and Awan, 2011). In fact, this notion is one of defining characteristics of NAL,
and it encompasses several important concepts.

First of all, knowledge is uncertain, and not necessarily consistent. New
evidence can be accepted at any time, it can include any content, and can affect
the truth of any existing statement. But, this truth is not expected to converge to
any value. At the same time, the system usually does not have enough resources,
in terms of space and time, to consult its entire knowledge base when solving a
problem. It cannot apply the full set of inference rules, nor follow a predefined
algorithm. Finally, the problem-solving process is localized, in the sense that
only a fraction of statements is used to reach the conclusion.

NAL includes built-in mechanisms for dealing with the aforementioned is-
sues. It can efficiently manage uncertainty and statement inconsistencies, and
summarize existing knowledge in order to reduce the sheer amount of state-
ments. Besides providing sound theoretical basis for logical reasoning, NAL is,
therefore, highly practical, and can be efficiently realized using the present-day
technology.

NAL is organized into 9 layers. Each layer builds on top of the previous one,
by introducing new concepts, grammar, and/or inference rules. Briefly, each
layer includes the following (Wang, 2013):

� NAL-1 : Inference rules for inheritance.

� NAL-2 : Similarity, instance, and property copulas.

25
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� NAL-3 : Compound terms.

� NAL-4 : Arbitrary relations among terms.

� NAL-5 : Higher-order statements.

� NAL-6 : Variables.

� NAL-7 : The concept of time.

� NAL-8 : Support for operations, i.e. procedural statements.

� NAL-9 : Self-control and self-monitoring.

The work presented in this thesis is roughly based on layers 1 – 4, which will
be discussed in the remainder of this chapter. As shown later in Chapter 5, the
use of the first four layers is sufficient for implementing a system that achieves
concrete practical results. Realization of the remaining layers, which are required
for more advanced reasoning, is planned for future work (Chapter 7). For a more
comprehensive theoretical discussions about these and other NAL layers, see e.g.
(Wang, 2006, 2013).

2.1 Experience and truth-values

As noted, NAL is a term logic that operates on statements in the form of subject-
copula-predicate. The basic and most common type of a statement is inheritance.

Definition 2.1. Inheritance statement in NAL is a statement in the form of
S → P , where S and P are terms denoting the subject and object, respectively,
and → denotes the inheritance copula (Wang, 1994, 2006, 2013).

The inheritance statement S → P can be read as S is a type of P, for ex-
ample: cat is a type of animal. Subject and predicate are atomic or compound
terms1. An atomic term is a word consisting of characters from a finite al-
phabet. Compound terms are build by connecting atomic or compound terms
(Section 2.5). By definition, inheritance is transitive and reflexive. Inheritance
statements in the form of S → S are called tautologies, and are often excluded
from the system’s experience for redundancy reasons (Wang, 2013).

NAL has an experience-grounded semantic (Rodriguez and Geldart, 2009;
Wang, 2005), which is based on the concepts of specializations and generaliza-
tions.

Definition 2.2. In an inheritance statement S → P , S is said to be the spe-
cialization of P , while P is said to be the generalization of S (Wang, 2013).

1In higher NAL layers, subject and object themselves can also be statements.
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Let VK be the set of all terms appearing in system’s experience K. The exten-
sion TE and intension T I of a term T ∈ VK can be defined using specializations
and generalizations as follows (Wang, 2011, 2013):

TE = {x|(x ∈ VK)(x→ T )} (2.1)

T I = {x|(x ∈ VK)(T → x)} (2.2)

The evidence for a term T (or, its meaning) consists of both TE and T I .
That is, the meaning of a term is defined through its relations with other terms.
The term has a meaning for the system only if it appears in its experience;
otherwise, it is meaningless and has no interpretation.

For a statement S → P , positive and negative evidence, denoted as E+ and
E−, respectively, are defined as follows (Wang, 2011, 2013):

E+ = {SE ∩ PE} ∪ {P I ∩ SI} (2.3)

E− = {SE \ PE} ∪ {P I \ SI} (2.4)

The amount of positive evidence w+ represents the cardinality of E+, while
the amount of negative evidence w− represents the cardinality of E−. The
amount of total evidence w is calculated as w+ + w−.

An example shown in Table 2.1 outlines the initial experience of a system
which consists of four inheritance statements. The first three statements describe
the flying bat as a type of animal and mammal. In the last statement the term
bat refers to a club, and the statement indicates that baton is a type of bat (e.g.
used by law enforcement).

In order to collect evidence for the statement bat→ mammal, we construct
extension and intension sets shown in the second column of Table 2.1. Then, by
applying Eq. 2.3 and 2.4, we can determine that animal and bat represent posi-
tive evidence for the given statement, while baton represents negative evidence.

Positive and negative evidence is used to determine the truth-value of a NAL
statement.

Definition 2.3. The truth-value of a NAL statement is represented by a pair
of real numbers in [0, 1], named frequency (f) and confidence (c) (Wang, 1994,
2001b).

Frequency is the ratio of positive and total evidence, while confidence de-
scribes how stable this frequency will be when the system gains new evidence
(Wang, 1994, 2001b):

f = w+/w (2.5)

c = w/(w + k) (2.6)

Here, k is the evidential horizon, a constant used to prevent the system from
comparing possibly infinite future to the relatively short past. When a unit
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Table 2.1: Example of the initial knowledge base, as well as the extension,
intension, and evidence sets for the statement bat→ mammal.
Tabela 2.1: Primer početne baze znanja, proširujućih i sužavajućih skupova,
kao i skupa dokaza za rečenicu bat→ mammal.

Knowledge base Extensions & intensions Evidence

bat→ animal SE = {bat, baton} E+ = {animal, bat}

bat→ mammal PE = {animal, bat,mammal} E− = {baton}

mammal→ animal SI = {animal, bat,mammal}

baton→ bat P I = {animal}

amount of future evidence is considered (i.e. k = 1), the truth-value of the
statement bat→ mammal is 〈f, c〉 = 〈0.67, 0.75〉.

These specifications of evidence and truth-values lay the foundations for for-
mal reasoning in NAL.

Definition 2.4. Inference rules in NAL are used to derive new knowledge, to
provide answers to questions, or to deal with statement inconsistencies, referred
to as forward, backward, and local, respectively (Wang, 2013).

Most of the rules take the syllogistic form (Smith, 2012). A syllogistic infer-
ence rule takes two premises that share a term, and then derives a conclusion
consisting of the remaining two terms. Depending on the copulas and positions
of the shared term in premises, different inference rules can be applied.

2.2 Forward inference rules

As noted, forward inference rules are used to derive new knowledge. The three
most important inference rules that operate on inheritance statements are de-
duction, induction, and abduction, defined respectively as follows (Wang, 2001a,
2013):

{M → P 〈f1, c1〉, S →M〈f2, c2〉} ` S → P 〈f1f2, f1f2c1c2〉 (2.7)

{M → P 〈f1, c1〉,M → S〈f2, c2〉} ` S → P 〈f1,
f2c1c2

f2c1c2 + k
〉 (2.8)

{P →M〈f1, c1〉, S →M〈f2, c2〉} ` S → P 〈f2,
f1c1c2

f2c1c2 + k
〉 (2.9)

Additional rules can be defined as different forms of these three rules. For
example, exemplification is similar to deduction, but derives the conclusion in
an opposite direction, while conversion is a form of abduction when terms S and
M are the same.
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Truth-value functions are defined first by treating frequency and confidence
as extended boolean variables, which take their value in [0, 1]. The set of operators
for working with extended boolean variables is defined as follows (Wang, 2001a,
2007, 2013):

not(x) = 1− x (2.10)

and(x1, x2, . . . , xn) = x1 × x2 × · · · × xn (2.11)

or(x1, x2, . . . , xn) = 1− ((1− x1)× (1− x2)× · · · × (1− xn)) (2.12)

For each inference rule, relationships between positive and negative evidence
of premises and the conclusion are analyzed. Truth-value of the conclusion is
then specified as a function of extended boolean operators on frequency and
confidence. For example, truth-value function for deduction can be written as
f = and(f1, f2), c = and(f1, f2, c1, c2), which results in the expressions shown
earlier.

2.3 The similarity copula

To increase the expressive power of NAL, a new copula – similarity – is intro-
duced.

Definition 2.5. Similarity is denoted by↔ , and can be defined as a symmetric
inheritance: (S ↔ P )⇔ (S → P ) ∧ (P → S) (Wang, 2009, 2013).

Intuitively, the similarity statement S ↔ P indicates that S and P are
identical to each other. By definition, similarity is transitive, reflexive, and
symmetric. As with inheritance, similarity statements in the form of S ↔ S are
tautologies, and are usually excluded from the system’s experience.

Similarity copula brings three new forward inference rules: comparison, anal-
ogy, and resemblance (Wang, 2006, 2009, 2013). Comparison takes two inher-
itance premises as those in induction and abduction, but derives a similarity
statement. Two versions of the rule exist: extensional and intensional, corre-
sponding respectively to induction and abduction (Wang, 2006, 2013):

{M → P 〈f1, c1〉,M → S〈f2, c2〉} ` S ↔ P 〈f, c〉 (2.13)

{P →M〈f1, c1〉, S →M〈f2, c2〉} ` S ↔ P 〈f, c〉 (2.14)

For example, from the two premises tiger → cat and lion→ cat, intensional
comparison derives the conclusion that lion ↔ tiger. The truth-value of the
conclusion can be calculated using the following pair of equations:

f = f1f2/(f1 + f2 − f1f2) (2.15)

c = ((f1 + f2 − f1f2)c1c2)/((f1 + f2 − f1f2)c1c2 + k) (2.16)
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Analogy operates as deduction, but with one premise being a similarity state-
ment. Depending on the position of the shared term in premises, there can be
four versions of the rule (Wang, 2006, 2009, 2013):

{M → P 〈f1, c1〉, S ↔M〈f2, c2〉} ` S → P 〈f, c〉 (2.17)

{P →M〈f1, c1〉, S ↔M〈f2, c2〉} ` P → S〈f, c〉 (2.18)

{M ↔ P 〈f1, c1〉, S →M〈f2, c2〉} ` S → P 〈f ′, c′〉 (2.19)

{M ↔ P 〈f1, c1〉,M → S〈f2, c2〉} ` P → S〈f ′, c′〉 (2.20)

For example, from the two premises cat → animal and feline ↔ cat, the
first version of analogy concludes that feline → animal. In case of analogy,
truth-values of conclusions are calculated using the following sets of equations:

f = f1f2 (2.21)

c = f2c1c2 (2.22)

f ′ = f1f2 (2.23)

c′ = f1c1c2 (2.24)

Finally, resemblance derives a similarity conclusion from two similarities, and
is defined as (Wang, 2006, 2013):

{M ↔ P 〈f1, c1〉, S ↔M〈f2, c2〉} ` S ↔ P 〈f1f2, (f1 + f2 − f1f2)c1c2〉 (2.25)

2.4 Instance and property copulas

The NAL-2 layer introduces two additional copulas: instance, and property,
denoted as �→ and → �, respectively (Wang, 2006, 2013). However, two new
concepts are required to define these new copulas: extensional and intensional
sets.

Definition 2.6. If T is a term, the extensional set that contains only T , denoted
as {T}, is defined as (∀x)((x→ {T})⇔ (x↔ {T})) (Wang, 2006, 2013).

Definition 2.7. If T is a term, the intensional set that contains only T , denoted
as [T ], is defined as (∀x)(([T ]→ x)⇔ ([T ]↔ x)) (Wang, 2006, 2013).

Intuitively, an extensional set represents the most specialized term – one that
no other term can inherit. An intensional set represents the most general term,
i.e. one that inherits no other term. For example, statement {Lefty} → dog
indicates that Lefty is one specific dog, while the statement animal → [alive]
indicates that animals are alive.

Now, the instance statement S�→ P is defined through inheritance as {S} →
P , while the property statement S → �P is defined as S → [P ]. Since fully
reducible to inheritance, instance and property copulas result in no new inference
rules.
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2.5 Compound terms

So far, only atomic terms have been analyzed. However, all aforementioned
inference rules operate on compound terms as well. A compound term consists
of a connector and one or more (atomic or compound) terms.

Definition 2.8. A compound term has the form of {T1 con T2 con . . . con Tn},
where con is the connector2, and T1 . . . Tn are terms, n ≥ 1 (Wang, 2006, 2013).

It is often useful to have the means for expressing the compound term’s com-
plexity.

Definition 2.9. Syntactic complexity of a compound term is defined as 1 plus
syntactic complexities of its components, where the complexity of an atomic
term is 1 (Wang, 2006, 2013).

According to the experience-grounded semantic, the meaning of a term T is
defined through its relations with other terms in the system’s experience. Now,
with the addition of compound terms, this definition is extended. The pres-
ence of a compound term {T1 con . . . con Tn} contributes to the meaning of its
components T1 . . . Tn. Generally speaking, the compound term itself represents
a completely new construct, and its meaning cannot be simply reduced to the
meanings of individual components.

NAL-3 recognizes four connector types: extensional intersection (∩), in-
tensional intersection (∪), extensional difference (–), and intensional difference
(	). For two terms T1 and T2 the connectors are defined, respectively (Wang,
2006, 2013):

(∀x)((x→ (T1 ∩ T2))⇔ ((x→ T1) ∧ (x→ T2))) (2.26)

(∀x)(((T1 ∪ T2)→ x)⇔ ((T1 → x) ∧ (T2 → x))) (2.27)

(∀x)((x→ (T1 − T2))⇔ ((x→ T1) ∧ ¬(x→ T2))) (2.28)

(∀x)(((T1 	 T2)→ x)⇔ ((T1 → x) ∧ ¬(T2 → x))) (2.29)

In addition to inference rules discussed previously, composition is introduced
to exploit these four connectors. The rule is used to build new compound terms,
and, by doing so, to summarize the system’s experience. This is one concrete
example of how the concept of insufficient knowledge and resources is built into
NAL: the logic employs composition in order to reduce the sheer amount of
statements in its experience, and enable more efficient reasoning.

2Infix notation can be used as well: {con T1 T2 . . . Tn}
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2.6 Relational terms

In order to support arbitrary relations between terms, NAL-4 first introduces
additional connector, product (×). This connector defines inheritance among
individual components of a compound term (Wang, 2006, 2013):

((S1 × . . .× Sn)→ (P1 × . . .× Pn))⇔ ((S1 → P1) ∧ . . . ∧ (Sn → Pn)) (2.30)

Definition 2.10. A relational term R is defined as an atomic term related to
a product term by inheritance: (T1 × T2) → R or R → (T1 × T2) (Wang, 2006,
2013).

For example, the sentence cat eats bird can be written as (cat×bird)→ eats.
Here, eats is the new relation between cat and bird.

However, some structural transformations of these kinds of sentences are
often required. For example, by applying deduction to premises (cat× bird)→
eats and tiger → cat, the system should be able to conclude that (tiger×bird)→
eats. Currently, this is not feasible since the rule is not able to recognize cat
as the subject of the first premise. Therefore, it is necessary to define two new
constructs, extensional image connector (/) and intensional image connector
(\), respectively (Wang, 2006, 2013):

((T1 × T2)→ R)⇔ (T1 → (/R � T2))⇔ (T2 → (/R T1�)) (2.31)

(R→ (T1 × T2))⇔ ((\R � T2)→ T1)⇔ ((\R T1�)→ T2) (2.32)

Here, the � symbol marks the position of either T1 or T2. The first premise
can now be rewritten as cat → (/eats � bird). This structural transformation
enables the system to conclude that tiger → (/eats � bird), or, when rewritten,
that (tiger × bird)→ eats.

2.7 Handling inconsistencies

Unlike forward inference rules discussed so far, a local rule accepts two or more
statements of the same form, and produces a conclusion with the same form, but
a different truth-value. The main purpose of a local rule is to handle knowledge
base inconsistencies (Wang, 1994, 2006, 2013). Two statements are said to be
inconsistent if they have the same subject, copula, and predicate, but different
truth-values. This situation might occur if, for example, the statements are
derived from different evidential bases, or by using different inference steps.

There are two local inference rules that deal with inconsistencies: revision
and choice (Wang, 1994, 2006, 2013). Revision is used when the two statements
are derived from disjoint evidential sets, while choice is used when the sets
share some elements. Given two inconsistent premises with truth-values 〈f1, c1〉
and 〈f2, c2〉, revision employs the following functions to calculate the merged
statement’s truth-value (Wang, 2006, 2013):
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f = (f1c1(1− c2) + f2c2(1− c1))/(c1(1− c2) + c2(1− c1)) (2.33)

c = (c1(1− c2) + c2(1− c1))/(c1(1− c2) + c2(1− c1) + (1− c1)(1− c2))
(2.34)

In case of choice, the conclusion with higher confidence is selected, because
it is supported by more evidence. Keeping track of which evidence contributed
to which of the two conclusions would be highly impractical, and would severely
limit the system’s performance.

2.8 Answering questions

Choice is also used to select between competing answers to questions.

Definition 2.11. NAL questions are statements specified using one of the two
forms: “? copula P” and “S copula ?”, or “S copula P” (Wang, 2006, 2013).

For the first form, the system is supposed to return the best possible candi-
date for “?”. If, on the other hand, the question is posed using the second form,
the system should return the truth-value of the statement that matches it.

However, the knowledge base might contain multiple answers for the same
question. For example, the question ?→ cat might be answered using sentences
tiger → cat〈1.0, 0.8〉 and lion → cat〈0.9, 0.9〉. Here, the choice rule selects the
answer with higher expectation of frequency.

Definition 2.12. The expectation of frequency, e, specifies how likely is the
value of frequency to be confirmed in the near future. It takes the value in (0, 1)
and is calculated as e = (f − 1/2)c+ 1/2 (Wang, 2006, 2013).

Higher expectation values indicate that the answer is supported by more
positive and less negative evidence, while the middle value (i.e. e = 0.5) indicates
that the system has either equal amount of positive and negative evidence, or
knows little about the statement. By relying on the expected frequency value,
in the above example the system will select tiger as the best answer to the posed
question.

When working with compound terms, another factor, syntactic simplicity of
the compound terms is also taken into account.

Definition 2.13. Syntactic simplicity s is calculated as s = 1/nr, where n
is syntactic complexity of the term, as defined earlier, and r > 0 is a system
parameter (Wang, 2006, 2013).

If the two competing answers have the same expectation, the simpler answer
is chosen (Rodriguez-Fernandez, 1999; Wang, 2013). If the expectations differ,
the answer with higher product of e and s is selected.

As shown, choice is used to find the best possible answer to the posed ques-
tion. However, the answer might not be directly included in the system’s ex-
perience. Backward inference rules are applied in these situations (Wang, 2006,
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2013). A backward inference rule accepts a question Q and a premise P . It then
constructs another question, Q′, such that a forward inference rule on Q′ and P
produces an answer to the original question Q. Since inference rules in NAL are
reversible (i.e. a premise and the conclusion can be used to produce the other
premise), the derived question Q′ is obtained by applying a forward inference
rule to the original question Q and the premise P .

2.9 Summary

Non-Axiomatic Logic (NAL) is a term logic with a well-defined language, the
experience-grounded semantics, and a set of inference rules for deriving new
knowledge and answering questions. It serves as an underlying formalisms for
systems that operate under the notion of insufficient knowledge and resources.
For example, in NAL the knowledge base does not have to be consistent at all
times, and its revision rule is used to handle inconsistencies. Also, if the amount
of statements becomes too large, the composition rule can be used to combine
them and enable more efficient reasoning. These properties make NAL a good
starting point for realizing concrete, practical reasoning systems.

Tables 2.2 and 2.4 represent the summary of forward and compositional in-
ference rules discussed in this chapter. They can be used as a quick reference
point for implementations. As a convenience, truth-value functions for syllogis-
tic rules are shown in Table 2.3. For all compositional rules, confidence of the
conclusion is calculated as c1c2. Frequency of the intersection is expressed as
f1f2, of the union as 1 − ((1 − f1)(1 − f2)), and of the difference as f1(1 − f2)
(Wang, 2013).

As shown in Chapter 5, the first four NAL layers discussed in this chapter
provide sufficient theoretical foundation for developing systems that can solve
concrete practical problems.

The remaining 5 layers introduce higher-order statements, variable terms,
events, time, and operations, and include (so far) theoretical discussions on self-
monitoring and consciousness. These layers, however, are not required for the
goal of this thesis and will not be discussed. For more information see e.g.
(Wang, 2006, 2013), as well as other work of (primarily) dr Pei Wang3.

The next part of this thesis includes discussions on and concrete proposals of
two systems: a distributed non-axiomatic reasoning system that provides agents
with cognitive abilities, and a multiagent middleware suitable for deploying these
agents in a wide range of web and enterprise applications.

3http://www.cis.temple.edu/~pwang/, retrieved on August 12, 2014.

http://www.cis.temple.edu/~pwang/
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Table 2.2: Summary of syllogistic forward inference rules, which accept two
premises and derive a conclusion: {P1〈f1, c1〉, P2〈f2, c2〉} ` C〈f, c〉. The
top-most row contains P2 statements, while the left-most column contains
P1 statements (Wang, 2006, 2013).
Tabela 2.2: Pregled silogističkih pravila izvodenja unapred, koja prihvataju
dve premise i izvode zaključak: {P1〈f1, c1〉, P2〈f2, c2〉} ` C〈f, c〉. Gornji red
sadrži P2, dok leva kolona sadrži P1 rečenice (Wang, 2006, 2013).

S →M〈f2, c2〉 S ↔M〈f2, c2〉 M → S〈f2, c2〉

M → P 〈f1, c1〉 S → P 〈Fded〉 S → P 〈Fana〉 S → P 〈Find〉
S ↔ P 〈Fcmp〉

M ↔ P 〈f1, c1〉 S → P 〈Fana′〉 S ↔ P 〈Fres〉 P → S〈Fana′〉

P →M〈f1, c1〉 S → P 〈Fabd〉
S ↔ P 〈Fcmp〉

P → S〈Fana〉

Table 2.3: Summary of truth-value functions for syllogistic forward inference
rules shown in Table 2.2. Function 〈Fana′〉 is equal to 〈Fana〉 with the
reversed order of premises (Wang, 2006, 2013).
Tabela 2.3: Pregled funkcija za istinitosne vrednosti silogističkih pravila
izvodenja unapred iz Tabele 2.2. Funkcija 〈Fana′〉 je ekvivalentna funkciji
〈Fana〉 sa obrnutim redosledom premisa (Wang, 2006, 2013)

Function Frequency Confidence

〈Fded〉 f1f2 f1f2c1c2

〈Find〉 f1
f2c1c2
f2c1c2+k

〈Fabd〉 f2
f1c1c2
f2c1c2+k

〈Fcmp〉 f1f2
f1+f2−f1f2

(f1+f2−f1f2)c1c2
(f1+f2−f1f2)c1c2+k

〈Fana〉 f1f2 f2c1c2

〈Fres〉 f1f2 (f1 + f2 − f1f2)c1c2
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Table 2.4: Summary of compositional forward inference rules. Note that T1
and T2 need to be different, and should not contain each other as compo-
nents (Wang, 2006, 2013).
Tabela 2.4: Pregled kompozicionih pravila izvodenja unapred. Napomena:
termovi T1 i T2 moraju biti različiti, i jedan term ne sme predstavljati kom-
ponentu drugog (Wang, 2006, 2013).

M → T1〈f1, c1〉 T1 →M〈f1, c1〉

T2 →M〈f2, c2〉 (T1 ∪ T2)→M〈Fint〉
(T1 ∩ T2)→M〈Funi〉
(T1 	 T2)→M〈Fdif 〉
(T2 	 T1)→M〈Fdif ′〉

M → T2〈f2, c2〉 M → (T1 ∩ T2)〈Fint〉
M → (T1 ∪ T2)〈Funi〉
M → (T1 − T2)〈Fdif 〉
M → (T2 − T1)〈Fdif ′〉
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An overview of Part II

Part II represents the main part of this thesis, and discusses its main contribu-
tions. It consists of three chapters.

In Chapter 3, we propose an architecture of a new reasoning system based on
the Non-Axiomatic Logic, named Distributed Non-Axiomatic Reasoning System
(DNARS). The main advantage of DNARS, when compared to all other exist-
ing reasoning and cognitive architectures, is that it leverages state-of-the-art
techniques for large-scale, distributed data management and processing. This
approach allows DNARS to operate on top of very large knowledge bases, while
serving large numbers of external clients with real-time responsiveness.

The overall architecture of DNARS, presented in Section 3.2, consists of
inference engines for answering questions and deriving new knowledge, and a
backend knowledge base for storing the system’s knowledge and experience.

DNARS uses a graph-based representation of knowledge. Therefore, Sec-
tion 3.3 analyses state-of-the-art approaches for large-scale graph processing,
while Section 3.4 discusses how the knowledge base in DNARS is modeled using
this graph-based approach. In Sections 3.5 and 3.7 we propose two possible con-
crete realizations of this model, along with appropriate algorithms for inference
processes. In addition, Section 3.6 presents how external clients can be notified
of changes in the system’s knowledge base in order to act accordingly.

In the next chapter of this part (Chapter 4) we propose a new multiagent
middleware named Siebog. Siebog is an enterprise-scale multiagent middleware
designed to support agents in web environments, but in accordance to the mod-
ern standards. It successfully combines features of clustered computing on the
server and cross-platform execution on the client side, in order to provide agent
load-balancing, fault-tolerance, true platform-independence, heterogeneous mo-
bility, cross-platform messaging etc.

During the development of Siebog, a strong emphasis has been put on stan-
dards compliance. All of its internal components, including agents, can easily
interact with, or be integrated into existing web and enterprise software sys-
tems. For example, Siebog agents can publish their functionalities in form of
web services, can easily invoke other enterprise components, or perform object-
relational mapping. Therefore, Siebog may help in bridging the gap between the
agent technology and industrial, non-agent-based software systems.

The main benefits of Siebog are summarized in Section 4.1. The architec-
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ture of Siebog’s server-side component, its characteristics and functionalities,
is described in Section 4.2. The client-side features of Siebog are described in
Section 4.3. Section 4.4 discusses how the integrated, unified Siebog framework
can additionally provide heterogeneous mobility, cross-platform messaging, and
code sharing. Finally, Section 4.5 describes the process of extending Siebog with
the support for DNARS-based intelligent agents.

In the last chapter in this part (Chapter 5) we present several case studies
that confirm some important assertions made throughout the thesis. First, Sec-
tion 5.1 shows how the combination of enterprise and web standards in Siebog
can be used to develop an agent-based application that mimics the behavior
of modern content-sharing networks. Section 5.3 evaluates the runtime perfor-
mance of the DNARS’ Resolution engine, and demonstrates its efficiency in prac-
tice. Finally, Section 5.4 presents how DNARS-based intelligent Siebog agents
can be used to solve a particular problem of deriving new structured knowledge.



Chapter 3

Distributed Non-Axiomatic
Reasoning System

This chapter presents a novel general-purpose reasoning architecture named Dis-
tributed Non-Axiomatic Reasoning System (DNARS). DNARS is built on top
of the NAL formalism (Wang, 2013), and on the general guidelines for non-
axiomatic reasoning (Wang, 2006). It incorporates an efficient knowledge man-
agement system, and a set of inference engines for answering questions and
deriving new knowledge.

3.1 Motivation and main features of DNARS

The term Big Data is used to describe large quantities of highly diverse infor-
mation, often collected at high frequencies, which traditional approaches cannot
efficiently process and analyze (Baesens, 2014). In recent years, the need for
Big Data analytics has found its place in a wide range of industrial applications,
and is often seen as a crucial asset in the world that produces an ever increasing
amounts of information (Simon, 2012).

The overall need for Big Data analytics has resulted in a number of concrete,
practical technologies, including NoSQL and Graph databases (Robinson et al.,
2013; Sadalage and Fowler, 2012; Tiwari, 2011), the MapReduce programming
model (Dean and Ghemawat, 2008; White, 2012), etc.

For an artificial intelligence system, the ability to efficiently process large
amounts of knowledge is one of the key requirements (Hovy et al., 2013). DNARS
is designed to exhibit this property, for which it relies on a number of Big Data
concepts. For example, DNARS includes a distributed, highly-scalable backend
knowledge base, which also features fault-tolerance through data replication.

In order to work with these kinds of knowledge bases, DNARS includes a
set of algorithms that realize NAL inference rules in an efficient manner. As a
result, DNARS can provide thousands of answers per second from a knowledge
base of over 75 million statements (see Section 5.3).
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NAL is used as the underlying formalism in DNARS because its “philosophy”
fits nicely into the DNARS’ overall goals. As discussed previously, the logic is
built around the concept of insufficient knowledge and resources. Unlike many
other formalisms for intelligent agents (e.g. Guerra-Hernandez et al., 2009; Mora
et al., 1999; Singh et al., 1999), NAL can work with inconsistent knowledge bases
and use the revision and choice rules to handle these inconsistencies. In line with
this feature, the NoSQL database used in DNARS is designed to temporarily
sacrifice data consistency in order to achieve high availability (Gilbert and Lynch,
2002; Hewitt, 2010).

The overall functionalities of DNARS’ inference engines are directed by NAL
inference rules and by discussions in (Wang, 2006, 2013). The novelty in DNARS
are the algorithms (Sections 3.5 and 3.7) that enable these engines to operate in
highly-scalable environments. Furthermore, the overall architecture of DNARS
(Section 3.2) and its organization of the backend knowledge base (Section 3.4,
along with Section 3.6), is what distinguishes DNARS from other existing arti-
ficial intelligence systems.

3.2 General overview of the architecture

General architecture of DNARS is outlined in Fig. 3.1. The main components
of the proposed system are:

� Resolution engine: answers client’s questions.

� Forward inference engine: derives new knowledge.

� Short-term memory : contains statements relevant to the active processing
cycles, and problems that need to be solved.

� Knowledge domain: a sub-set of the overall knowledge base, containing
mutually dependent or related statements.

� Backend knowledge base: the system’s overall knowledge base, representing
its entire experience.

� Event manager : a handler for events generated by changes in (parts of)
the knowledge base.

Components are broadly organized into two categories. Resolution and For-
ward inference engines are referred to as DNARS Inference engines, while the
remaining components are described as the Backend knowledge base. Each ex-
ternal client is associated with one set of inference engines, but there is only a
single Backend knowledge base for all of them. However, the knowledge base
is designed to be highly scalable, and can be partitioned to support multiple
isolated and cooperating clients.
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3.2.1 DNARS inference engines

Resolution and Forward inference engines are used to, respectively, answer ques-
tions and derive new knowledge. Therefore, they represent the core of DNARS’
inference capabilities. As discussed in Chapter 2, two types of questions are
supported:

� Questions containing “?”, i.e. “S copula ?” or “? copula P”. In this case,
the Resolution engine inspects the system’s knowledge base and finds the
best substitute for “?”.

� Questions in the form of “S copula P”. The answer to this question is a
statement “S copula P 〈f, c〉”. If the answer is not directly available in the
system’s knowledge base, the engine will try to derive it using backward
inference rules.

In general, the Resolution engine should provide answers in real time for the
first type of questions. For the second type, the answer is given in real time
only if it is directly available in the system’s knowledge base. Otherwise, the
backward inference process is started in the background and the client is notified
of the solution later on.

The Forward inference engine provides direct implementation of forward in-
ference rules defined by NAL. It operates in inference cycles, as follows. The
execution of each cycle is triggered either by an external client or by an internal
process. In case of the former, input statements provided by an external client
are used to load all relevant statements from the system’s knowledge base. Rel-
evant statements for the input S copula P 〈f, c〉 are statements that have S or P
as subject or predicate. The unified set of input and relevant statements serves
as a starting point for forward inference rules, which may produce another set
of conclusions. As the final step of the inference cycle, input, relevant statement
and conclusions are merged together, any inconsistencies are resolved, and the
final output is stored back in the system’s knowledge base.

However, the Forward inference engine can also operate on its own. When
idle and not receiving any new input from external clients, the engine will select
a (random) statement from the knowledge base and use it as the input. As
noted by (Wang, 2013), this continuous internally-triggered inference is one of
the main differences between inference engines and advanced knowledge retrieval
systems.

3.2.2 Backend knowledge base overview

One of the main design goals for DNARS is to develop a system that can effi-
ciently handle large quantities of knowledge1. Therefore, the Backend knowledge
base of DNARS is designed as a distributed, scalable architecture that consists of
three layers. At the bottom-most layer, the entire knowledge base is physically

1In today’s terms, large quantities of knowledge refer to terabytes or petabytes of data.
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partitioned and distributed across a number of machines. It uses horizontal scal-
ing : as the amount of data increases, the runtime performance is maintained by
simply adding more processing nodes to the underlying cluster (Michael et al.,
2007). This design approach has two main benefits:

� It enables the backend storage to manage large amounts of data. By in-
troducing proper data distribution rules, faster lookups and retrievals of
relevant statements can be achieved.

� It provides fault-tolerant features, as the data is replicated across cluster
nodes. There is no single point of failure, and the knowledge base can
remain intact in case of hardware and software failures.

On top of this layer, the entire knowledge base is organized into one or
more Knowledge domains. Domains partition the system’s knowledge base into
distinct categories. This enables the system to work with and focus on a subset
of its knowledge. At runtime, one or more domains can be consulted. This
organization also supports the multi-client nature of DNARS. The knowledge
belonging to one external client can be stored in a separate domain. However,
many clients can also work with same domains (one or more), and, by doing
so, exhibit cooperated behavior through knowledge and experience sharing. As
shown in Fig. 3.1, the content of one domain can be physically distributed across
many machines of the bottom layer, and can be intermingled with the content
of other domains. The task of properly storing and retrieving the domain data
is delegated to the bottom layer.

Finally, the Short-term memory (STM) module is placed at the top layer.
This is the knowledge base directly available to DNARS inference engines, and
represents the basis for their inference cycles. The main purpose of STM is to
serve as the optimization module. Its content should entirely fit in the runtime
memory of the host machine, acting as a fast in-memory storage. Once a set
of related inference cycles is completed, the STM content is merged back into
corresponding (again, one or more) domains.

It is important for clients, especially in cooperative, domain sharing mode,
to learn about changes in the knowledge base. For example, the client may wish
to perform certain actions in response to newly derived conclusions. To support
this feature, DNARS incorporates the Event manager module. A change in a
knowledge domain will generate one or more events, which will be collected by
the manager and delivered to clients connected to the domain. This behavior
can be seen as a simulation of the blackboard system used in multiagent coop-
eration, described earlier. Together with continuous processing of the Forward
inference engine, it provides the basis for reactive behavior of intelligent agents
(Wooldridge and Jennings, 1995).

Knowledge bases based on NAL statements can be represented by property
graphs. A property graph is a directed, multi-relational graph with any number
of properties attached to vertices and edges (Robinson et al., 2013; Rodriguez
and Shinavier, 2010). That is, it is a graph which can include different types of
edges (e.g. for representing inheritance and similarity), and in which each vertex
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or an edge can have any number of key → value pairs attached to it. Fig. 3.2
shows an example of a set of NAL statements and the corresponding property
graph.

In relatively recent times, large-scale analysis and processing of (property)
graphs has become especially important, due to increasing demands of modern
web applications, such as social networks. Therefore, there exists a range of
algorithms and technologies for efficient graph analytics. These solutions provide
a strong basis for an efficient realization of the proposed DNARS architecture.

3.3 Large-scale graph processing

Large-scale graph analysis and manipulation is a thriving area, with a num-
ber of frameworks utilized by both the scientific community and the industry.
This section briefly analyses the most popular approaches, and then provides a
discussion on their usage in implementing DNARS architecture.

3.3.1 NoSQL databases

Transactions in relational database systems have been designed around the con-
cepts of atomicity, consistency, isolation, and durability (ACID) (Haerder and
Reuter, 1983). Atomicity requires all parts of the transaction to succeed, or the
entire transaction fails. Consistency ensures that the transaction leaves the data
in a consistent state, according to predefined constraints, relations, etc. Isolation
ensures that transactions don’t depend on each other, and that a set of trans-
actions can be applied sequentially or in parallel. Finally, durability indicates
that the results of a transaction need to remain permanent.

Over the years, relational databases have become the most widely used stor-
age systems, to the great part due to these characteristics. However, in recent
years, they have proven to be inadequate for handling large quantities of unstruc-
tured and interconnected information, such as those generated by modern web
applications (Robinson et al., 2013; Sadalage and Fowler, 2012; Tiwari, 2011).
For example, relational databases require a well-defined model of the data, which
these applications cannot easily define. In addition, they do not scale well enough
to handle large volumes of data or numbers of concurrent users.

To alleviate these and other issues, a new model of a database, named
NoSQL2 has been proposed. NoSQL databases generally operate on top of
computer clusters and employ horizontal scaling to meet increasing demands.
This is not their defining characteristic, as some NoSQL databases operate on
a single machine (for example, Oracle Berkeley DB3). However, those that do
operate in clustered environments can easily provide advanced features, such as
fault-tolerance techniques through data replication.

2The term NoSQL is somewhat inadequate and misleading, since many of these database
do employ SQL-like languages. NoSQL is therefore often defined to stand for Not Only SQL.

3http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/

overview/index.html, retrieved on August 12, 2014.

http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
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Figure 3.2: A set of arbitrary NAL statements and the corresponding prop-
erty graph. Note that edges representing similarities are bidirectional, ex-
pressing the symmetric nature of the copula.
Slika 3.2: Skup proizvoljnih NAL rečenica i odgovarajući graf osobina. Dvos-
merne grane prestavljaju sličnosti, čime se izražava simetričnost ove relacije.

Clustered NoSQL databases are much more complex to manage and, in gen-
eral, do not exhibit all ACID properties. More concretely, the so-called CAP
theorem (or, Brewer’s Conjecture) suggests that distributed systems, includ-
ing NoSQL databases, cannot fully achieve all three of the following properties
(Gilbert and Lynch, 2002):

� Consistency : All nodes have the same view of data;

� Availability : Every operating cluster node will (eventually) produce the
requested response;

� Partition tolerance: The system continues to operate even if some cluster
nodes fail.

Here, it is important to note that distributed systems do not have to choose
exactly two out of the three properties, but can instead achieve one to a lesser
and other to a higher degree (Sadalage and Fowler, 2012). Nonetheless, this
situation fits nicely into the NAL’s assumption of insufficient knowledge and
resources, as discussed earlier.

Based on the underlying data model, many categories of NoSQL databases
exist, including key-values, column-oriented, document, and graph databases
(Tiwari, 2011). Obviously, for DNARS, graph databases are of the special im-
portance.

A graph database includes a concrete storage system, and a processing engine
for graph traversals and manipulations. In addition, the so-called native graph
databases provide index-free adjacency, which means that they store adjacency
lists directly, instead of relying on index-based lookups (Robinson et al., 2013).
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Adjacency lists can be stored in a specifically-built architecture or in an existing
database. The most notable implementation of the first approach is Neo4j 4,
whereas Aurelius Titan5 can store graphs in a number of NoSQL databases.

The graph stored in a NoSQL database can be accessed and processed in
several ways, with the three most widely-used approaches described in the re-
mainder of this section.

3.3.2 The MapReduce programming model

MapReduce is not a graph processing framework per se, but a general-purpose
programming model for large-scale data analysis and manipulation (Dean and
Ghemawat, 2008; White, 2012). However, it can be used as the basis for higher-
level graph-oriented algorithms.

The MapReduce model incorporates two sets of functions: mappers and re-
ducers. A mapper receives a set of key-value pairs as the input, and produces
another set of (intermediate) key-value pairs as the output. There can be any
number of mappers operating in parallel, on different machines, and processing
distinct parts of the initial dataset. Mapper results are collected in runtime
memory, periodically written to disk, and distributed among reducers.

A reducer is a functions that receives a key and a set of values as the input,
and produces a reduced set of values (e.g. a single value) as the output. Before
the reducer can start processing the data, the sort and shuffle phase is executed
(Dean and Ghemawat, 2008; White, 2012). During this phase, the output of
mappers is grouped by keys, with the goal of sending one group to one reducer.
Of course, a reducer can process many groups. Since, like mappers, there can be
many reducers operating in parallel, on different machines, there can be many
end results. These end results can either be merged together to produce the
final output, or serve as an input for the next set of mappers and/or reducers.

The entire process is controlled by the master node (with mappers and re-
ducers being referred to as workers). It keeps track of the dataset partitions,
intermediate results, the state of each worker, etc. Since it may represent a sin-
gle point of failure, the state of the master is periodically stored on a separate
machine. However, the general approach is that the master should not fail, and
if it does, the entire execution fails (Dean and Ghemawat, 2008).

MapReduce is designed to operate in clusters of commodity hardware: regu-
lar, cheap personal computers. Since the cluster can include thousands of these
machines, hardware (and software) failures are to be expected. Therefore, fault-
tolerance techniques are built into the model. For example, the master node will
ping its workers at regular time intervals. If no response is received, the worker
is assumed to be unavailable, and its jobs are re-assigned.

The most widely-used open-source implementation of MapReduce is Apache
Hadoop6 (White, 2012). Hadoop represents an extensive “eco-system” of li-
braries, tools, and even programming languages that simplify the development

4http://neo4j.org/, retrieved on August 12, 2014.
5http://thinkaurelius.github.io/titan/, retrieved on August 12, 2014.
6http://hadoop.apache.org/, retrieved on August 12, 2014.

http://neo4j.org/
http://thinkaurelius.github.io/titan/
http://hadoop.apache.org/
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of applications based on MapReduce. It is supported by a large base of contrib-
utors and end-users.

3.3.3 Bulk Synchronous Parallel

Bulk Synchronous Parallel (BSP) is a model for parallel computations (Valiant,
1990). It incorporates a number of components, each with its own memory and
processing capabilities, and capable of communicating with other components.
The overall computation is performed in so-called supersteps. Within a super-
step, a component can receive messages sent to it during the previous superstep,
perform a number of local calculations, and send messages to other components.
A superstep ends once all components reach a certain barrier.

The use of BSP for graph processing has been popularized by by the Pregel
system (Malewicz et al., 2010). Pregel is a vertex-centric system, which means
that graph vertices play the role of BSP components. A user-defined function
is attached to vertices and executed in each superstep. Besides sending and
receiving messages, the function can modify state of the vertex, its outgoing
edge, or even make global changes to the graph.

In Pregel, a vertex is either in active or self-imposed inactive state. It will
remain inactive unless it receives a message, in which case it has to explicitly set
its state to inactive again. The overall computation is considered to be finished
once all vertices are inactive, and there are no pending messages.

An open-source, Hadoop-based implementation of Pregel is available to the
wide community of users in form of the Apache Giraph project7.

3.3.4 The TinkerPop stack

The TinkerPop stack is a set of standards dedicated to large-scale processing
of property graphs, either on a single machine or in a computer cluster8. It
incorporates the following set of technologies:

� Blueprints API : A standard interface for (property) graph databases9.

� Pipes: A data-flow framework10 based on the Kahn process network (Kahn,
1974).

� Gremlin: A graph traversal language11.

� Frames: An object-to-graph mapper12.

� Furnace: An extensive higher-level library of graph algorithms13.

7http://giraph.apache.org/, retrieved on August 12, 2014.
8http://www.tinkerpop.com/, retrieved on August 12, 2014.
9https://github.com/tinkerpop/blueprints, retrieved on August 12, 2014.

10https://github.com/tinkerpop/pipes, retrieved on August 12, 2014.
11https://github.com/tinkerpop/gremlin, retrieved on August 12, 2014.
12https://github.com/tinkerpop/frames, retrieved on August 12, 2014.
13https://github.com/tinkerpop/furnace, retrieved on August 12, 2014.

http://giraph.apache.org/
http://www.tinkerpop.com/
https://github.com/tinkerpop/blueprints
https://github.com/tinkerpop/pipes
https://github.com/tinkerpop/gremlin
https://github.com/tinkerpop/frames
https://github.com/tinkerpop/furnace
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� Rexster : A server that exposes Blueprints-enabled database through REST
and binary protocols14.

There are a number of open-source and commercial, full or partial imple-
mentations of the TinkerPop stack. One notable open-source implementation is
Aurelius Titan15. As noted earlier, Titan acts as a layer on top of “regular,”
non-graph-oriented databases, both relational and NoSQL.

MapReduce and its extension, Pregel, represent excellent frameworks for
large-scale graphs. However, they cannot easily satisfy all functional require-
ments of the proposed DNARS architecture. For example, MapReduce is a
batch processing framework and, in practice, some time is usually spent on job
preparations. Therefore, it might be unsuitable for real-time responsiveness
of the Resolution engine. Similarly, these frameworks are best-suited for global,
whereas DNARS requires local graph analysis: its inference engines usually start
with a single vertex, and then explore its immediate neighbors.

Titan is optimized for local, vertex-centric graph analysis and manipulation.
Its additional characteristics include the following:

� Titan is a clustered graph database, which means that it can support all
functional requirements of the DNARS Backend knowledge base.

� As noted, Titan can use a number of databases to actually store the graph.
Therefore, different backend solution can be tested without affecting the
remaining parts of DNARS.

� Besides providing graph storage, Titan implements the entire TinkerPop
stack, encompassing a set of standards and algorithms for distributed,
large-scale graph processing, and covering many aspects of graph analysis
and manipulation.

Given these properties, Titan has eventually been selected as the framework
for realizing DNARS. Nonetheless, Section 3.7 discusses the approach of imple-
menting DNARS in pure MapReduce. The purpose of this approach is mainly
to serve as a case-study.

3.4 Backend knowledge base as a graph database

Titan currently operates on top of several databases, including Apache HBase16

and Apache Cassandra17. Both can be executed on top of a computer cluster,
and can easily be integrated with Hadoop (although HBase currently provides
better integration). HBase is based on the BigTable model (Chang et al., 2008),
while Cassandra stores the data as key-values organized in column families (sim-
ilar to tables in relational databases).

14https://github.com/tinkerpop/rexster, retrieved on August 12, 2014.
15http://thinkaurelius.github.io/titan/, retrieved on August 12, 2014.
16http://hbase.apache.org/, retrieved on August 12, 2014.
17http://cassandra.apache.org/, retrieved on August 12, 2014.

https://github.com/tinkerpop/rexster
http://thinkaurelius.github.io/titan/
http://hbase.apache.org/
http://cassandra.apache.org/
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Regarding the CAP theorem, HBase sacrifices availability in case of high
loads, while Cassandra sacrifices consistency (Hewitt, 2010). Possible lack of
consistency in Cassandra is more in line with the NAL’s assumption of insuffi-
cient knowledge and resources. In addition, Cassandra provides lower latency
in random read operations (Rabl et al., 2012), which is essential for real-time
responsiveness of the Resolution engine. Due to these reasons, DNARS Backend
knowledge base is based on Titan over Cassandra.

Titan stores each vertex of a graph as a separate row in the database. Vertex
identifier (i.e. a hash) represents the row-key, while individual columns hold
vertex properties and edges (along with their properties). This means that
the edge is stored twice in the database – once for each vertex. However, this
approach increases the system’s runtime performance. During the process of
loading relevant statements into the Short-Term Memory (STM), DNARS selects
vertices representing subjects and/or predicates of input statements and loads
them along with their corresponding adjacency lists. Therefore, the actual STM
content is graph vertices and their adjacency lists.

Knowledge domains of the DNARS architecture are mapped to Cassandra
keyspaces (Hewitt, 2010). A keyspace roughly corresponds to a database in the
relational model and can have its own set of settings, such as the replication
factor related to fault-tolerance.

Once the correct backend system has been chosen and configured, very little
needs to be done in order to satisfy functional requirements of the Backend
knowledge base. All functionalities and possible issues are efficiently handled by
the Titan-Cassandra combination, allowing the development focus to be placed
on realizing the remaining parts of DNARS.

3.5 Inference based on the TinkerPop stack

The inference process in DNARS is realized as a set of graph traversal and
manipulation algorithms. Titan includes an expressive domain-specific language
for this purpose, named Gremlin. The actual implementation in DNARS uses a
third-party Scala-based realization of the language18.

3.5.1 Forward inference engine

Earlier, Table 2.2 summarized NAL’s syllogistic forward inference rules. To
recall, syllogistic rules accept two premises with a shared term and derive a con-
clusion using the remaining terms. The concrete rule to be applied is determined
by the position of the shared term and the actual copulas in the premises.

For the purpose of realizing the Forward inference engine, all syllogistic rules
are organized into groups and each group is implemented as a separate function.
For example, in one group, the first premise is Prem1 : P → M〈f1, c1〉 while
the second premise is either Prem2 : S →M〈f2, c2〉 or Prem3 : S ↔M〈f2, c2〉.
In this case, abduction, comparison and analogy can be applied, as follows:

18https://github.com/mpollmeier/gremlin-scala, retrieved on August 12, 2014.

https://github.com/mpollmeier/gremlin-scala
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{Prem1, P rem2} ` {S → P 〈Fabd〉, S ↔ P 〈Fcmp〉} (3.1)

{Prem1, P rem3} ` P → S〈Fana〉 (3.2)

Listing 3.1 shows how these three forward inference rules have been realized
in the graph-based implementation of DNARS.

Listing 3.1: A function that accepts either S → M〈f2, c2〉 or S ↔ M〈f2, c2〉 as
the second premise (judgment), uses an existing statement P → M〈f1, c1〉 as
the first premise, and produces conclusions shown in Eq. 3.1 and Eq 3.2.

def abductionComparisonAnalogy(judgment: Statement): List[Statement] = {

graph.getV(judgment.pred) match {

case Some(m) => // m is the shared term

val incomingEdges = m.inE(Inherit).toList

incomingEdges.flatMap { e: Edge => inferForEdge(judgment, e) }

case None =>

List()

}

}

def inferForEdge(judgment: Statement, e: Edge): List[Statement] = {

val p = e.getVertex(Direction.OUT).term

if (judgment.subj == p) {

List() // avoid tautologies

} else if (judgment.copula == Inherit) {

abduction(p, judgment, e) ::: comparison(p, judgment, e)

} else {

analogy(p, judgment, e)

}

}

def abduction(p: Term, judg: Statement, e: Edge): List[Statement] = {

val truth = e.truth.abduction(judg.truth)

val derived = Statement(judg.subj, Inherit, p, truth)

keepIfValid(derived)

}

def comparison(p: Term, judg: Statement, e: Edge): List[Statement] = {

val truth = e.truth.comparison(judg.truth)

val derived = Statement(judg.subj, Similar, p, truth)

keepIfValid(derived)

}

def analogy(p: Term, judg: Statement, e: Edge): List[Statement] = {

val truth = e.truth.analogy(judg.truth, false)

val derived = Statement(p, Inherit, judg.subj, truth)

keepIfValid(derived)

}
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The execution sequence of this function can be summarized as follows:

� The expression graph.getV(judgment.pred) selects the vertex that cor-
responds to the input judgment’s predicate (denoted here as m), since this
is the shared term in the given three syllogistic rules.

� The expression m.inE(Inherit) loads all incoming edges for the shared
term. Each edge, along with its source and target vertices, represents the
existing statement to be used as the first premise. Therefore, a helper
function inferForEdge is called for each edge.

� The helper function first retrieves the source vertex for the given edge
(denoted here as p). That is, in the function inferForEdge the entire first
premise P →M〈f1, c1〉 is retrieved.

� Finally, based on the input judgment’s copula, the new conclusions are
derived through abduction and comparison, or through analogy. To avoid
generating grammatically incorrect statements, the validity of each con-
clusion is also checked.

All remaining forward inference rules are realized in a similar pattern. As a
concrete example of the forward inference process, Listing 3.2 shows a starting
knowledge base comprised of three inheritance and two similarity statements.
The graph representation of this knowledge base is shown in Fig. 3.3(a).

Listing 3.2: Starting knowledge base of the forward inference example.

tiger ↔ cat 〈0.9, 0.5〉
tiger → animal 〈0.7, 0.7〉
cat → animal 〈1.0, 0.9〉
cat ↔ feline 〈0.8, 0.7〉
lion → feline 〈0.4, 0.8〉

The forward inference process starts as the system receives a new input judg-
ment, cat→ mammal〈1.0, 0.9〉 and adds it to the knowledge base (Fig. 3.3(b)).
In this scenario, three forward inference rules are applicable: induction, exten-
sional comparison, and analogy. They are discussed in Chapter 2 and summa-
rized here, respectively:

{M → P 〈f1, c1〉,M → S〈f2, c2〉} ` S → P 〈f, c〉 (3.3)

{M → P 〈f1, c1〉,M → S〈f2, c2〉} ` S ↔ P 〈f, c〉 (3.4)

{M ↔ P 〈f1, c1〉,M → S〈f2, c2〉} ` P → S〈f ′, c′〉 (3.5)

Since induction and extensional comparison take very similar premises and
produce similar conclusions, they belong the the same group and are applied in
parallel. When applying forward inference rules, DNARS always takes the first
premise from the knowledge base, while the new input represents the second
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(a) (b)

(c) (d)

Figure 3.3: An example of a forward inference process in DNARS, from
the initial knowledge base (a), after the addition of a new judgment cat →
mammal〈1.0, 0.9〉 (b), after applying induction and extensional comparison
(c), and finally, after applying analogy (d). Unidirectional arrows represent
inheritance, while bidirectional arrows represent similarity.
Slika 3.3: Primer procesa izvodenja unapred u DNARS-u, od početne baze
znanja (a), nakon dodavanja nove činjenice cat → mammal〈1.0, 0.9〉 (b),
nakon primene indukcije i proširujućeg poredenja (c), i, konačno, nakon
primene analogije (d). Jednosmerne strelice predstavljaju nasledivanje, dok
dvosmerne predstavljaju sličnosti.

premise. In case of induction and extensional comparison, the first execution
step determines that the shared term m is cat. In the second step, the system
selects cat ’s outgoing edges, along with their respective incoming vertices; more
concretely, it determines that statements 3 and 4 in Listing 3.2 should be used in
place of the first premise. The two inference rules can now be applied, deriving
that mammal is a type of animal (mammal → animal〈1.00, 0.45〉) and that
mammal is animal (mammal↔ animal〈1.00, 0.45〉). The new knowledge base,
i.e. with two new conclusions, is shown in Fig. 3.3(c).

In case of analogy, the shared term m is also cat. The two existing simi-
larity statements that include this term are tiger ↔ cat〈0.9, 0.5〉 and cat ↔
feline〈0.8, 0.7〉. Although the rule 3.5 is directly applicable only to the second
premise, DNARS uses the fact that similarity is symmetric by Def. 2.5. There-
fore, it automatically transforms the first statement into cat ↔ tiger〈0.9, 0.5〉
and derives two new conclusions: tiger → mammal〈0.90, 0.41〉, and feline →
mammal〈0.80, 0.50〉. The final knowledge base is shown in Fig. 3.3(d).
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3.5.2 Resolution engine

The Resolution engine is in charge of answering questions in form of S → ? and
? → P . It also needs to perform this task as fast as possible. To accommodate
this requirement the knowledge base in DNARS includes edge indexes.

As discussed in Section 2.8, if there are multiple answers to a question, the
choice rule is used to select the answer with the higher expectation of frequency,
e = (f −1/2)c+ 1/2. If two terms have the same expectation, the rule considers
syntactic simplicity of terms, s = 1/nr, where n is syntactic complexity of the
term, and r > 0 is a system parameter. The syntactic complexity is further
defined to be 1 for atomic terms or 1 plus complexities of compound term’s
components. If two answers have the same expectation, the simpler one is chosen
(Wang, 2006, 2013).

DNARS encodes these expressions into a numeric value that represents the
edge index. More concretely, an edge between vertices S and P has two indexes:
one including the expectation and the simplicity of S, and one including the
expectation and the simplicity of P . When posed a question, for example S → ?,
the Resolution engine sorts all candidate answers C by the indexes of edges that
come out of S and into C, and then returns the best one (or n best ones).

The use of indexes speeds up the Resolution engine’s execution significantly.
It, however, may slow down the forward inference, the indexes need to be up-
dated as edges are added or as the truth-value of an existing edge is changed.
However, there are no strict time constraints for the forward inference (Wang,
2006) and it is usually executed in the background, so this is a suitable trade-off.

The question answering process of the DNARS’ Resolution engine is shown
in Listing 3.3. The main function (answer) accepts the question and the de-
sired number of answers and returns a list of terms that fit the missing el-
ement. It relies on two helper functions, getBestSubjects for ? → P and
getBestPredicates for S → ?.

The execution sequence of the helper function getBestPredicates can be
summarized as follows. First, the expression getV(subj) returns the vertex
corresponding to the question’s known term S. If this vertex does not exist in
the knowledge base, there are no possible answers. Otherwise:

� Keep only the edges that match the question’s copula;

� Out of those, keep only the edges that come out of the known term;

� Sort them in a descending order by the value that encodes the expectation
of frequency and the syntactic simplicity of the missing predicate term;

� Keep only the first limit edges and get their target vertices.
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Listing 3.3: The question answering process performed by the DNARS’ Resolu-
tion engine.

def answer(question: Statement, limit: Int = 1): List[Term] = {

if (question.subj == Question) {

getBestSubjects(question.pred, question.copula, limit)

} else if (question.pred == Question) {

getBestPredicates(question.subj, question.copula, limit)

} else {

throw new IllegalArgumentException("Invalid question format.")

}

}

def getBestPredicates(subj: Term, copula: String, limit: Int):

List[Term] = {

getV(subj) match {

case Some(v) =>

val vertices = v.asInstanceOf[TitanVertex].query()

.labels(copula)

.direction(Direction.OUT)

.orderBy("predExp", Order.DESC)

.limit(limit)

.vertices()

iterableToList(vertices)

case None =>

List()

}

}

As a concrete example, Listing 3.4 shows a knowledge base of five statements
describing a cat. Fig. 3.4(a) shows how these statements are stored in the graph.
When the system receives the question cat→ ?, the Resolution engine will:

� Exclude tiger, as it is related to cat through similarity;

� Exclude fluffy, as in this relation cat represents the target vertex;

� Sort the remaining edges as described previously. The resulting graph is
shown in Fig. 3.4(b); and

� Keep only the first edge, and return feline as the best possible answer.

Listing 3.4: Initial knowledge base of five statements describing a cat.

fluffy → cat 〈1.0, 0.9〉
cat ↔ tiger 〈1.0, 0.9〉
cat → mammal 〈0.6, 0.3〉
cat → feline 〈1.0, 0.9〉
cat → animal 〈0.6, 0.4〉
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(a) (b)

Figure 3.4: For the question cat→ ?, the best answer is feline. Knowledge
base initially includes three cat-related statements (a), which are sorted dur-
ing the question answering process, and according the coresponding edges’
indexes (b).
Slika 3.4: Najbolji odgovor na pitanje je cat → ? je feline. Baza znanja
na početku sadrži tri rečenice koje opisucu mačku (cat) (a), koje se sorti-
raju prilikom traženja odgovora, a na osnovu indeksa odgovarajućih grana
u grafu (b).

The Resolution engine is also in charge of performing backward inference.
In this case, it accepts a question in form of S → P . If the answer is not
directly available in the system’s knowledge base, it will try to derive it using
the backward inference process described in Section 2.8. Since this process can
take longer time to complete, it will be performed asynchronously, and the client
will be notified of the result through the Event stack, described next.

3.6 Event manager

Event manager in DNARS is designed using the well-known Observer design
pattern (Purdy and Richter). In this pattern, the subject maintains a list of
observers, and notifies them of state changes. The Observer pattern is most
commonly used in event notifications; for example, in the Java Swing GUI li-
brary, observers are built by implementing corresponding listener interfaces.

The internal functioning of the Event manager is shown in Fig. 3.5. Each
Knowledge domain has a single Event manager associated with it, and the do-
main publishes descriptions of changes to the manager. At the same time, in-
terested clients are registered to receive notifications from the manager.

The Event manager holds two lists: the list of pending events, and the list of
observers. Both lists are directly controlled by internal Event Dispatch Threads
(EDTs). An EDT polls pending events and notifies all registered observers. It
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Figure 3.5: Internal organization of the Event manager.
Slika 3.5: Interna organizacija Rukovodioca dogadajima.

uses simple synchronization primitives in order to prevent data corruption (e.g.
missed events), as shown in Listing 3.5.

Listing 3.5: The core functionality of the Event manager and its Event Dispatch
Thread.

override def run(): Unit = {

while (!Thread.interrupted) {

processEvents()

}

}

def processEvents(): Unit = {

try {

waitAndDispatch()

} catch {

case _: InterruptedException => Thread.currentThread.interrupt()

case ex: Exception => LOG.warn("Exception in EDT.", ex)

}

}

def waitAndDispatch(): Unit = {

var eventsToDispatch: List[EventPayload] = null

pendingEvents synchronized {

waitForEvents()

eventsToDispatch = cloneOfPendingEvents

}

dispatch(eventsToDispatch)

}
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def waitForEvents(): Unit = {

while (pendingEvents.length == 0) {

pendingEvents.wait()

}

}

def cloneOfPendingEvents(): List[EventPayload] = {

val copy = pendingEvents.toBuffer

pendingEvents.clear()

copy.toList

}

The actual event dispatching (the dispatch function) is designed to be exten-
sible. In order to support intelligent agents in the Siebog multiagent middleware,
the function actually sends FIPA ACL messages to registered observer agents.
These messages are then intercepted by the middleware and delivered to ap-
propriately annotated methods of the agent class, as discussed more details in
Section 4.5.

3.7 Inference based on MapReduce

Apache Hadoop (an open-source implementation of MapReduce) is currently one
of the most widely-used frameworks for large-scale distributed data processing.
Here, we propose an alternative set of algorithms for DNARS inference engines
that utilize the MapReduce programming model.

Although Hadoop is Java-based, writing mappers and reducers in Java can
be a difficult task. It requires a lot of boilerplate code, the use of custom data
types, etc. This is why Hadoop supports many different languages and ap-
proaches for writing worker functions (White, 2012). Functional programming
languages represent a “natural fit” for data processing algorithms. One such lan-
guage targeting Hadoop is Scalding, a domain-specific language based on Scala19.
Scalding itself further relies on Cascading20, a data-flow framework that acts as
an abstraction layer on top of Hadoop.

With Cascading, NAL statements are taken from a source (e.g. the knowledge
base), flow through one or more pipes and are finally written to a sink (e.g. back
to the knowledge base) (Nathan, 2013). NAL inference rules are expressed as
operations on pipes. With Scalding, this approach is abstracted even more, and
allows for inference rules to be expressed as functions on regular Scala collections.

Therefore, in the Hadoop-based realization of inference engines, the system’s
knowledge and experience is handled in form of pipes or collections, while the
engines themselves are defined as functions on these pipes. The entire inference
process is organized into a number of Scalding jobs, which are automatically
transformed into Hadoop mappers and reducers.

19https://github.com/twitter/scalding/, retrieved on August 12, 2014.
20http://www.cascading.org/, retrieved on August 12, 2014.

https://github.com/twitter/scalding/
http://www.cascading.org/
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3.7.1 Forward inference engine

When working with Scalding over Hadoop, it is useful to abandon the graph-
based nature of NAL statements, and treat them as independent tuples flowing
through pipes. A tuple is described using the following set of fields, that re-
spectively correspond to subject, copula, predicate, and frequency-confidence
elements of a NAL statement:

Listing 3.6: Description of NAL statements that flow through Cascading pipes.

object StatFields extends Enumeration { val s, c, p, fc = Value }

Similarly as with the Titan implementation, NAL rules are first organized
into logical groups, and then each group is implemented as a separate function.
Listing 3.7 shows a function that derives the three conclusions in equations
3.1 and 3.2. The implementation corresponds to previous Titan-based approach
shown in Listing 3.1.

Listing 3.7: A function that accepts P →M〈f1, c1〉 as the first, and either S →
M〈f2, c2〉 or S ↔ M〈f2, c2〉 as the second premise, and produces conclusions
shown in Eq. 3.1 and Eq 3.2.

def abd_cmp_ana(prem1: Pipe, prem2: Pipe): Pipe = {

join(p1 -> p2, prem1, prem2)

.filter(s1, s2, c1) { (s1: Term, s2: Term, c1: Copula) =>

s1 != s2 && c1 == Inheritance

}

.flatMapTo((s1, p1, s2, c2, fc1, fc2) -> StatFields) {

(s1:Term, p1:Term, s2:Term, c2:Copula, fc1:Truth, fc2:Truth) =>

c2 match {

case Inheritance =>

val con1 = (s2, Inheritance, s1, fc1.abduction(fc2))

val con2 = (s2, Similarity, s1, fc1.comparison(fc2))

List(con1, con2)

case Similarity =>

List((s1, Inheritance, s2, fc1.analogy(fc2, false)))

}

}

}

The function accepts two pipes of premises: prem1 includes existing state-
ments taken from the system’s knowledge base, while prem2 includes new state-
ments. As noted earlier, these new statements can be specified by external clients
or chosen randomly during the continuous inference. The two input pipes are
first joined on common fields, to produce a temporary third pipe, which is then
filtered and transformed according to the inference rules.

In the given listing, fields s1, c1, p1, and fc1 are used to represent, respec-
tively, subjects, copulas, predicates, and truth-values of statements in the first
pipe. In the first execution step, the two input pipes are joined so that state-
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ments with a shared term are grouped together. As an example, the next set of
expressions represents contents of input pipes and the intermediary joined pipe:

prem1 : cat,→ , animal, 〈1.0, 0.9〉
water,→ , liquid, 〈1.0, 0.9〉
animal,↔ ,mammal, 〈1.0, 0.9〉

prem2 : tiger → animal〈0.6, 0.5〉
joined : cat,→ , animal, 〈1.0, 0.9〉, tiger,→ , 〈0.6, 0.5〉

animal,↔ ,mammal, 〈1.0, 0.9〉, tiger,→ , 〈0.6, 0.5〉

In the second step, the joined pipe is filtered to exclude tautologies and to
keep only the statements in which the first premise is inheritance. In the final
step, the function flatMapTo is used to transform each remaining statements
using the three inference rules – abduction, comparison, and analogy.

Possible execution of this Scalding job is shown in Fig. 3.6. The system
knowledge base is split among a number of joinWithTiny mappers, used by the
helper join function in the above listing. Mapper joinWithTiny is efficient when
the second pipe (i.e. the one containing input statements) is tiny21, and can be
directly copied to each mapper. Two joinWithTiny mappers produce results,
sending them to corresponding filter mappers. The second filter will discard
its pipe, since c1 is a similarity copula. The output of the first filter is forwarded
to the flatMapTo mapper, which, finally, produces the two conclusions.

3.7.2 Resolution engine

The process of answering question in form of S copula ? and ? copula P consists
of two steps. First, the Resolution engine needs to filter the knowledge base,
and to keep only the relevant statements – those that have the known term as
subject or predicate. Relevant statements are then transformed into tuples in
the form of (answer, expectation, simplicity), where answer represents
the candidate answer term, while the expectation and simplicity were described
in Section 2.8. The source code for this step is shown in Listing 3.8.

Afterwards, the function needs to choose the best possible answer. Here,
the groupAll function is used, which sends all candidate answers to a single
reducer. Although this can be very inefficient if the pipe is large, it is necessary
in order to appropriately sort the candidates. In any case, it is not expected that
a question will have a large number of possible answers. The answer selection
process is shown in Listing 3.9.

21According to the Scalding documentation, the adjective tiny describes a pipe with up to
a couple of thousands of elements.
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Figure 3.6: Possible execution of the Scalding job presented in Listing 3.7.
The entire job can be executed using only mappers.
Slika 3.6: Moguć proces izvršavanja Scalding posla iz Listinga 3.7. Ceo posao
može biti izvršen koristeći samo mapere.

Listing 3.8: Calculating candidate answers and their expectations and syntactic
simplicities for questions in form of in form of S copula ? and ? copula P .

val candidates =

if (question.subject == AtomicTerm.Question) { // ? copula P

kb.filter(p, c) { (p: Term, c: Copula) =>

p == question.predicate && c == question.copula

}

.mapTo((s, fc) -> (‘answ, ‘exp, ‘simp)) { (s: Term, fc: Truth) =>

(s, fc.expectation, 1.0 / s.complexity) // parameter r = 1

}

} else { // S copula ?

kb.filter(s, c) { (s: Term, c: Copula) =>

s == question.subject && c == question.copula

}

.mapTo((p, fc) -> (‘answ, ‘exp, ‘simp)) { (p: Term, fc: Truth) =>

(p, fc.expectation, 1.0 / p.complexity)

}

}

Function sortWithTake sorts the group of elements and keeps only the first
n of them (here: 1), while the final project function keeps only the answer part
of the tuple. Possible execution of this job is presented in Fig. 3.7.



3.7. INFERENCE BASED ON MAPREDUCE 63

Figure 3.7: Execution scheme of the question answering job presented in
Listings 3.8 and 3.9.
Slika 3.7: Šema izvršavanja posla za pronalažanje odgovora na pitanja iz
Listinga 3.8 i 3.9.

Listing 3.9: Choosing the best answer from the pipe of candidate answers.

candidates

.groupAll {

_.sortWithTake((‘answ, ‘exp, ‘simp) -> ‘temp, 1) {

(a1: (Term, Double, Double), a2: (Term, Double, Double)) =>

val absDiff = math.abs(a1._2 - a2._2)

// if the two competing answers have the same e,

// the simpler answer is chosen

if (absDiff < Global.EPSILON) a1._3 < a2._3

// if the expectations differ,

// the answer with higher e * s is selected.

else a1._2 * a1._3 > a2._2 * a2._3

}

}

.flattenTo[(Term, Double, Double)](‘temp -> (‘answ, ‘exp, ‘simp))

.project(‘answ) // keep only the answer

Obviously, the realization of DNARS inference engines in form of MapReduce
algorithms is not straightforward. One of the main disadvantages is that it
does not allow us to directly express our thoughts; by reading the function
for abduction, comparison, and analogy in Listing 3.7, for example, it is not
immediately obvious how it operates or what it does. The situation becomes
worse once other, higher-level NAL rules are introduced. Due to these and
other issues discussed earlier, DNARS uses the Titan-based implementation by
default.
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3.8 Summary

DNARS represents a general-purpose reasoning system that combines the pow-
erful NAL formalism with the state-of-the-art algorithms and technologies for
large-scale graph processing. Its unique scalable architecture enables it to effi-
ciently manage large knowledge bases, and serve multiple concurrent users, as it
will be demonstrated in Section 5.3.

DNARS implements the concepts and inference rules of the first four NAL
layers, including:

� First-order inheritance and similarity statements;

� Deduction, induction, and abduction, as well as comparison, analogy, and
resemblance;

� Choice and revision; and

� Relational terms.

Although NAL includes more concepts in these first four and, especially,
higher layers, the given set of copulas and inference rules is sufficient for per-
forming cognitive tasks with practical applications, as presented in Section 5.4.

DNARS is designed as a standalone system, and provides a common interface
that can easily be used by any external client, including human users and soft-
ware agents. However, its primary purpose is to act as a support for deliberative
agents in the Siebog multiagent framework presented in the next chapter.



Chapter 4

The Siebog Multiagent
Middleware

The HTML5 standard represents one of the driving forces behind the recent
proliferation of web applications. With much of the technologies implemented in
all major web browsers, HTML5-based application can be executed without any
modifications on a wide variety of hardware and software platforms, including
standard desktop computers, smartphone and tablet devices, Smart TVs, etc.

Improvements brought by HTML5 on the client side have been matched
by corresponding server-side technologies. The Enterprise Edition of the Java
platform (Java EE) represents one of the most widely used technologies for
server-side software development. It offers a wide range of technical solutions
suitable for developing scalable, secure, and reliable software systems.

This chapter introduces a novel multiagent middleware, named Siebog1, which
includes the following two main components:

� Extensible Java EE-based Agent Framework (XJAF), a server-side multi-
agent middleware with the support for clustered environments (Mitrović
et al., 2012a, 2014b; Vidaković et al., 2013).

� Radigost, a client-side multiagent platform built on the HTML5 and related
standards (Mitrović et al., 2014; Mitrović et al., 2014a).

In addition, Siebog has been integrated with DNARS in order to support
agents with advanced reasoning capabilities. The main features of Siebog and
advantages over existing multiagent solutions are summarized in the following
section.

1In the old Slavic mythology, Siebog was a god of love and marriage, which reflects the fact
that our Siebog middleware was build by joining two existing systems – XJAF and Radigost.
Similarly, Radigost was a god of hospitality. The name roughly translates to dear guest,
indicating that Radigost agents are dear guests of the client devices.

65
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4.1 Main features of Siebog

During the last decade, there has been an obvious paradigm shift in software
development. The web has evolved into an environment capable of providing
functionalities not so long ago available only in desktop applications. And since
web-based applications can mostly be executed as native applications on portable
devices (Xanthopoulos and Xinogalos, 2013), the desktop-only technologies are
becoming less and less important.

Currently, there exists a large number of both open-source and commercial
agent middlewares (Bordini et al., 2006; Bădică et al., 2011). As discussed in
Chapter 6, however, none of these systems has fully exploited the advantages of
web environments. Some efforts towards extending existing systems with web
support have been made, but usually in a inefficient manner. For example, in
many Java-based middlewares, such as JADE (Bellifemine et al., 2007) or JaCa-
Web (Minotti et al., 2010), the extensions are based on Java applets. But Java
applets requires a browser plug-in, which is unavailable on some platforms (e.g.
iOS and Smart TVs). Their applicability is therefore limited to a narrower set
of hardware and software configurations.

The goal of Siebog is to provide an infrastructure for executing agents in
web environments, but in accordance to the modern standards. It builds on our
previous two systems, XJAF and Radigost, in a way that not only combines
their individual functionalities, but also results in new features. On the server
(Section 4.2) Siebog offers:

� Scalability: agents are automatically distributed across the cluster in order
to reduce to computational load of individual nodes. This makes Siebog
suitable for applications that need to launch large populations of agents in
a computer cluster (e.g. Panigrahi et al., 2011; Simon, 2013).

� Fault-tolerance: the state of each server-side component, including agents
themselves, is copied to other nodes. This makes the whole system resilient
to hardware and software failures.

The support for distributed execution is present in almost all existing agent
middlewares. However, most existing systems use plain computer networks
and/or implement their own approaches for agent load-balancing and fault-
tolerance (e.g. Alberola et al., 2013; Bellifemine et al., 2007; Faci et al., 2006;
Siracuse et al., 2007). One disadvantage of these approaches is lower flexibil-
ity. For example, in JADE the agent developer needs to manually specify which
agent is hosted on which computer, while in Siebog this process is performed
automatically.

With Siebog we also demonstrate that it is not necessary to “reinvent the
wheel.” Instead, it is more beneficial to use existing, standards-compliant, and
well-tested solutions offered by Java EE. This approach also increases the inter-
operability of Siebog, since its agents can seamlessly be integrated into non-agent
enterprise software. This in turn may help in bridging the gap between the agent
technology and the industrial software systems.
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The client-side component of Siebog (Section 4.3) has the following set of
unique characteristics:

� It is platform-independent, and supports a range of hardware and software
platforms (Mitrović et al., 2014; Mitrović et al., 2014a). To agent develop-
ers, this provides the write once, run anywhere approach. The end-users,
on the other hand, can utilize the benefits of the agent technology in the
most convenient manner.

� It requires no prior installation or configuration steps.

� Its client-side runtime performance is comparable to that of a classical,
desktop multiagent platform (Mitrović et al., 2014a).

Currently, there exists only one fully-featured HTML5-based middleware
(Jarvenpaa et al., 2013). Although it conveniently relies on a JavaScript-based
server, it does not use the full set of HTML5-related standards, such as Web
Workers and WebSockets, and also lacks Siebog’s server-side features.

It is worth noting that Siebog is more than just a sum of its individual
components. As presented in Section 4.4, Siebog also features:

� Cross-platform messaging: client-side agents can communicate with server-
side agents or even client-side agents hosted in different browsers/devices.
The communication is performed transparently, i.e. as if all agents are
located at the same place.

� Code sharing: an agent written once can be executed both on the client
and on the server.

� Heterogeneous agent mobility: an agent can move freely between the client
and the server.

Finally, by using DNARS as the intelligence sub-system, Siebog “breaks
away” from the traditional BDI model and enables the development of agents
with unique reasoning capabilities.

The described range of functionalities is not available in any existing multi-
agent middleware (Chapter 6). Therefore, Siebog represents a novel approach
for deploying intelligent agents in web and enterprise environments.

4.2 The server-side architecture

The server-side of Siebog (its XJAF component) is designed as a set of loosely-
coupled components called managers (Mitrović et al., 2012a, 2013b; Vidaković
et al., 2013). Each manager is dedicated to handling a distinct part of the overall
functionality. A manager is represented and used only by its interface, and even
multiple implementations of the same interface can be active simultaneously.

The manager-based approach offers the highest level of flexibility, and al-
lows third-party re-implementations of individual components. The three most
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important managers are Agent Manager, which controls the agent life-cycle, Mes-
sage Manager, which handles the inter-agent communication, and Connection
Manager in charge of maintaining networks of distributed Siebog clusters.

The first version of XJAF was described in 2002 (Vidaković and Konjović,
2002) and has since been revised several times. The latest incarnation – the one
used in Siebog and described in this section – is focused on harnessing previ-
ously described benefits of computer clusters: scalability and fault-tolerance. It
achieves these features by relying on a range of Java EE technologies (Vidaković
et al., 2013), the most important of which are Enterprise JavaBeans.

4.2.1 An overview of Enterprise JavaBeans

Enterprise JavaBeans (EJBs, or simply beans) implement the business logic of
an enterprise application (DeMichiel and Keith, 2006). EJBs are often described
as managed components, since their life-cycle and behavior is controlled by an
enterprise application server.

In general, there are two categories of EJBs (DeMichiel and Keith, 2006;
Mitrović et al., 2012b, 2013a): message-driven, and session. A message-driven
bean is used along with the Java Message Service (JMS)2, an additional Java EE
technology that deals with asynchronous messaging. In the context of JMS,
message-driven beans act as message receivers: they are never invoked directly
but are instead used to process messages in the JMS pipeline.

Session beans can further be categorized into singleton, stateless, and stateful.
As its name suggests, there is a single instance of a singleton EJB per Java
Virtual Machine (VM) instance. Concurrent access is managed by the EJB
container and can be fine-tuned by the developer. Stateless EJBs maintain
no conversational state between distinct invocations. They are well-suited for
operations that can be executed in a single method call. A stateful EJB, on
the other hand, is used when the client requires an ongoing, more complex
conversation.

Stateless EJBs offer the best runtime performance, since the application
server does not have to maintain the conversational state. When a request
arrives the server can freely create a new stateless EJB instance on any node in
the computer cluster. However, they have a limited application in the context
of agent development since two messages cannot be delivered to the same EJB.
More details about the concrete uses of EJBs on the Siebog server and their
benefits are given in the remainder of this section.

2http://www.oracle.com/technetwork/java/index-jsp-142945.html, retrieved on Au-
gust 12, 2014.

http://www.oracle.com/technetwork/java/index-jsp-142945.html
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4.2.2 Agent management

A server-side Siebog agent can be represented by a stateless or a stateful EJB.
The choice of which concrete category to use has an implication on the agent’s
runtime behavior, as discussed later.

It has been argued that EJBs, as reactive components, might not be suitable
for developing more complex agent architectures (Luck et al., 2004). While in
their simpler form, Siebog agents do operate by reacting to external messages,
the system includes a service that can be used to implement more complex
behavior. The idea is to register an internal timer (heartbeat) to ping the agent
at certain time intervals, allowing it to perform tasks when there is no external
stimuli. This approach of having an external component that calls predefined
methods of the agent object is also found in other software systems for developing
reasoning agents, such as Jason (Bordini et al., 2007).

Each server-side agent has its own thread of execution, but there is no thread-
to-agent mapping. Instead, the underlying enterprise application server main-
tains a thread pool and automatically assigns threads to agents as needed. For
example, when a message is received, the agent will be given a thread to pro-
cess it. In the worst-case scenario, when all agents are actively executing tasks,
there will be as many threads as there are agents. However, the server will try
to reduce the resource consumption when possible by, for example, deallocating
threads that have not been used for a certain amount of time. Additionally, if an
agent is inactive for a sufficient amount of time, it will be passivated (Goncalves,
2010): removed from the runtime memory and stored on a secondary storage
(e.g. the hard-disk). When needed the agent will be re-activated to resume its
execution.

The directory of agents is implemented through Java Naming and Directory
Interface (JNDI)3, which also works in clustered environments. It enables any
interested third-party to find details about available agents with the support for
pattern-based searches.

4.2.3 Clustering features

The organization of an Siebog cluster is shown in Fig. 4.1. A single node within
the cluster is described as master, while the others (zero or more) are described as
slaves. Within a node, the host controller is used to manage the Siebog instance
(Marchioni, 2014). In addition, the master node can be used to remotely control
the entire cluster, through the domain controller (Marchioni, 2014). This is the
only difference between the master and the slaves; all nodes in a cluster have
the same execution priority, can directly communicate to each other, etc.

Siebog managers are designed to be completely independent of each other.
They share information with each other through a distributed, concurrent, and
highly-efficient Infinispan cache (Marchioni and Surtani, 2012). Whenever it
runs a new agent, for example, the Agent Manager stores all the necessary

3http://www.oracle.com/technetwork/java/jndi/index.html, retrieved on August 12,
2014.

http://www.oracle.com/technetwork/java/jndi/index.html
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Figure 4.1: Siebog operates in a symmetric cluster: each node is connected
to every other node. A single node is recognized as the master and can be
used to remotely control the cluster.
Slika 4.1: Siebog funkcionǐse u simetričnom klasteru: svaki čvor je povezan sa
svakim drugim čvorom. Jedan čvor, označen kao gospodar, se može koristiti
za udaljenu kontrolu klastera.

information in the cache. This information can later be retrieved by the Message
Manager to deliver a message to the agent. Since the cache is distributed across
the cluster, the managers themselves can be hosted on any node.

The cluster has two main functionalities: state replication and failover and
load-balancing. State replication and failover are applicable to stateful EJBs
only. Whenever a stateful EJB’s internal state is changed, the replication process
copies it across other nodes in the cluster. In case the EJB’s node becomes
unavailable, the failover process fully restores the EJB object on one of the
remaining nodes. From the client’s point of view, the entire process is executed
transparently: all subsequent method invocation will end-up in the newly created
object.

Two state replication modes are supported (Surtani et al.): replicated and
distribution. The replicated mode copies the state across all nodes in the cluster.
It can withstand high failure rates, but works efficiently only in clusters that
consists of up to 10 nodes (Surtani et al.). The distribution mode, on the other
hand, is more suitable for larger clusters, as it copies the state to a configurable
number of nodes. It uses hashing algorithms and parallel execution to achieve
linear scaling as more nodes are added to the cluster. The distribution mode
includes other advanced features as well, such as L1 caching (Surtani et al.).

Load-balancing is used to automatically distribute agents across different
nodes in the cluster, and to speed up the overall runtime performance of server-
side Siebog. It works with both stateful and stateless EJBs, although the be-
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havior is slightly different. When the client creates a new stateful EJB instance,
the server places it in one of the available nodes, and all subsequent invocations
of the EJB’s methods end-up there. In case of stateless EJBs the load-balancing
works on a per-method basis. When the client makes a request to a stateless
EJB, a new instance is created on one cluster node. Once it serves the request,
the instance is destroyed.

The described load-balancing process has a major implication on the develop-
ment of agents. If an agent is based on a stateless EJB, it becomes theoretically
impossible to send it more than one message. Since there is no state sharing
between distributed stateless EJBs, two consecutive messages sent to the agent
might end-up in two unrelated EJB instances. Even a seemingly simple opera-
tion, such as replying to the message sender, cannot be performed. Given these
properties, as well as the lack of state replication and failover, stateless EJBs
have only a limited application in Siebog; in the majority of cases, stateful EJBs
should be used.

4.2.4 Message management

Siebog agents, both on the server and on the client side, communicate by ex-
changing messages based on the standard FIPA ACL (FIPA Acl). The exchange
is asynchronous, although a number of methods is provided to enable blocking
behavior, in order to simplify agent development in certain scenarios.

Java EE includes a communication architecture named Java Message Ser-
vice4 for asynchronous message exchange between loosely-coupled components.
It supports two communication patterns: point-to-point, and publish-subscribe.
In the first pattern, a producer places messages in a queue to be processed by
a single consumer. The publish-subscribe pattern is realized around a topic:
the producer sends a message to the topic to be processed by all subscribed
consumers.

In the server-side Siebog, the communication is achieved via the point-to-
point model with the Message Manager acting as the producer. Messages are
published to a queue and consumed by message-driven beans (MDBs). MDBs
are organized in a pool, which can automatically grow (and shrink) according
to the demand.

MDBs deliver messages to target agents by invoking the appropriate method
of the agent class. Once successfully processed, the message is acknowledged and
then removed from the queue. If, however, there is an error, the message is re-
queued and the delivery is retried at a later time. After a number of unsuccessful
deliveries, the message is stored in the so-called dead-letter queue and can be
inspected and processed manually. All of these and other issues (such as message
ordering, concurrent access, cluster-wide coordination, etc.) are handled by the
underlying JMS.

4http://www.oracle.com/technetwork/java/index-jsp-142945.html, retrieved on Au-
gust 12, 2014.

http://www.oracle.com/technetwork/java/index-jsp-142945.html
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4.3 The client-side architecture

The client-side of Siebog (its Radigost component) is designed to support the
execution of agents in web environments. These include web browsers but any
JavaScript runtime can be used5. On the client, Siebog provides the neces-
sary infrastructure for the deployment, execution, and interaction of agents. Its
core functionalities include agent life-cycle management, a communication in-
frastructure, and a yellow-pages service. Additionally, it supports agent state
persistence, which allows an agent to become detached from its host web page,
and run across multiple browser sessions.

Siebog depends on a range of HTML5 and related standards for its client-
side functionalities, the two most important of which are Web Workers and the
WebSocket protocol. These two technologies and their respective roles in Siebog
are described next.

4.3.1 Mapping agents to Web Workers

Web Workers define a model for true multi-threading and asynchronous mes-
saging in JavaScript6. Before the introduction of Web Workers, all JavaScript
applications were inherently single-threaded, with developers having to rely on
timers and scheduling in order to simulate asynchronous code execution.

Web Workers are based on the actors concurrency model initially proposed
in (Hewitt et al., 1973). Unlike classical threads actors utilize a share-nothing
approach: an actor shares none of its runtime resources with other actors. It
operates as a self-contained entity, whose only means of communication with the
environment and other actors is message exchange. The exchange of messages
might be slower than the shared memory, but it relieves the developer from hav-
ing to worry about proper synchronization techniques – the advantage especially
important in complex software systems.

A software agent and an actor share several core properties: both are self-
contained entities, with their own threads of execution and relying on messages
to communicate with other entities. Therefore, the mapping from agents to ac-
tors/Web Workers is a natural process. A multiagent platform could be imple-
mented in JavaScript without using Web Workers, but the development process
would become more difficult because of the need to efficiently simulate multi-
ple threads. This would undoubtedly affect the execution performance as well.
The Web Workers technology and modern web browsers also provide an efficient
communication infrastructure (e.g. message queuing and ordering). Having all
these benefits in mind, client-side Siebog agents are realized in form of Web
Workers.

5Such as Node.js, http://nodejs.org, retrieved on August 12, 2014.
6http://www.w3.org/TR/workers/, retrieved on August 12, 2014.

http://nodejs.org
http://www.w3.org/TR/workers/
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4.3.2 Two-way communication through WebSockets

For an extended period of time, the client-server communication on the web could
be performed using the polling model only. In the polling model, when the client
needs some information from the server, it must initiate a request and receive
the required information in response. The AJAX technology (Asynchronous
JavaScript and XML) has improved the polling model significantly by enabling
asynchronous communication and eliminating the need to refresh the entire page
only to display the newly retrieved information. Although the polling model
was sufficient for many web applications, there was still a need for a long-held
connection between a web client and a server.

The WebSocket protocol represent relatively new, but standardized tech-
nology for establishing persistent TCP connections between web clients and
servers7. It enables full-duplex connections, i.e. simultaneous, two-way exchange
of text and binary information over the same channel. It brings the push model
to modern web applications: once the connection is established, the server can
initiate information delivery on its own, and even make requests to the client.

The WebSocket protocol is designed to be backwards-compatible. The initial
request for establishing a persistent connection is incorporated into the HTTP
Upgrade header. The WebSocket-enabled server recognizes this request, sends
an agreement to the client, and then establishes the full-duplex communication
over the existing TCP connection. Additionally, the protocol uses only ports 80
(HTTP) or 443 (secure HTTP – HTTPS), requiring no configuration changes to
the server’s firewall.

The use of WebSockets is very important for the practical application of
Siebog. It enables a third-party, server-side agent to take the initiative and
start the conversation with a client-side agent. Without WebSockets it would
be possible only for client-side agents to send requests to the server, and not the
other way around, which would severely limit the flexibility of our system.

4.3.3 Client-side agents

In order to facilitate the development and execution of client-side agents, Siebog
provides a dedicated client library. At its core, the library includes a number of
agent prototypes. The basic prototype (Agent) defines functionalities common to
all agents. Other prototypes are included as well; for example, CNetContractor
can be used to model the role of a Contractor in the standard Contract Net
protocol (FIPA CNet). As a simple example of using prototypes, Listing 4.1
shows a Calculator agent based on the Agent prototype, which simply returns
the sum of two received numbers.

As shown, communication between client-side Siebog agents is also based on
the FIPA ACL format. The basic representation of a FIPA ACL message is
also included in the client library and it is shown in Listing 4.2. As noted in
(FIPA Acl), the FIPA specification defines many more message fields than shown
here. However, since JavaScript allows the addition of new object properties at

7https://www.websocket.org/, retrieved on August 12, 2014.

https://www.websocket.org/
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runtime, only the minimally required set of fields is included by default in order
to optimize the runtime performance.

Listing 4.1: A simple example of a Calculator client-side Siebog agent.

importScripts("/siebog/radigost.js"); // import the client library

// defining a new agent based on the Agent prototype

function Calculator() { };

Calculator.prototype = new Agent();

Calculator.prototype.onMessage = function(msg) {

var sum = msg.a + msg.b;

// ACLMakeReply is a helper function for constructing a reply to ’msg’

var reply = ACLMakeReply(msg, Performative.INFORM, this.aid);

this.post(reply);

};

Listing 4.2: Definition of a FIPA ACL message used on the client side of Siebog.

function ACLMessage(performative) {

// a constant in ACLPerformative object

this.performative = performative;

// an array of receivers

this.receivers = [];

// message content

this.content = null; };

In addition to inter-agent communication, there needs to be a way for an
agent to communicate to its host environment (e.g. the web page). This com-
munication is realized through the Observer software design pattern (Purdy and
Richter). The client library includes a prototype named AgentListener with the
following set of methods:

� onStart(aid): The agent has been started. The parameter represents the
agent’s identifier.

� onStop(aid): The agent has been stopped.

� onError(aid, msg): An error has occurred while running this agent. The
optional msg parameter might provide more details about the error.

� onStep(aid, msg): The agent has finished a “computational step”. The
optional msg parameter might include more information, such as the com-
putational sub-result.

The first three methods are invoked by the client library, while the last one
is optional and can be invoked by the agent itself.

Each client-side agent is assigned a globally-unique agent identifier (AID),
which is also used in the aforementioned functions. An AID is a string in the
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form of name@hap#user. Here, name is locally-unique name of the agent, used
to differentiate between, for example, agents Smith and Jones hosted in the
same web page. The hap part is globally-unique domain name of the Siebog
application, such as example.org.

The user part is used to identify and extend the user’s session and his/her
interaction with the same agent. If a web application is available to registered
users only, then the user part of an AID can be some server-generated key tied
to the particular user. In a web-based learning system this would be a unique
string that identifies the student. For general-purpose applications that do not
require users to register, the user part of the AID can be generated in many
different ways, e.g. from the HTTP session. Cookies, or more modern HTML5
web storage options8 can be used to preserve the session ID locally.

4.3.4 Agent state persistence

The lifespan of a client-side agent is inherently tied to its host web page. Once
the user loads another web page or closes the browser, the agent is automati-
cally destroyed. However, for any meaningful application of Siebog it is crucially
important for the client to be able to continuously interact with the same agent
over an extended period of time and across multiple browser sessions. For exam-
ple, in an online learning and tutoring system, the pedagogical agent needs to be
able to track student’s progress through a course during the entire semester. To
achieve this functionality, Siebog relies on the concept of persistent agent state.

On the server agent state is stored in form of a key-value pair, where AID is
used as the key. The actual state can be practically any JSON (JavaScript Object
Notation9) object. When the user visits a web page that hosts Siebog agents, any
previously stored states are automatically downloaded and injected into agents.
Similarly, as the user leaves the page, agent states are automatically stored on
the server. The base Agent prototype defines two functions, getState() and
setState(state) for, respectively, retrieving and injecting the agent state. If
an agent does not require state persistence these two functions can simply be
left unimplemented.

The agent state persistence sub-system provides the possibility for imple-
menting agent mobility. In the context of Siebog, a mobile agent can migrate
from the web browser of one client to the web browser of another, and continue
its execution there. During the migration process, the agent stores its state on
the server, and then the server pushes it to the target client over the WebSocket
protocol. An example of a mobile agent and its usage is shown in Section 5.1.

Once the HTML5 web storage specification has been standardized and fully
supported by modern web browsers, Siebog will use it as a temporary storage.
This will help to reduce the server bandwidth when the user is simply leaving
the current page to load another page of the same Siebog web application. For
now, other approaches can be employed (e.g. the HTML iframe element).

8http://dev.w3.org/html5/webstorage/, retrieved on August 12, 2014.
9http://json.org, retrieved on August 12, 2014.

http://dev.w3.org/html5/webstorage/
http://json.org
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4.3.5 Security concerns

The popularity and wide-spread usage of JavaScript have resulted in the lan-
guage being increasingly used as a tool for malicious browser-based attacks
(Guarnieri and Livshits, 2009; Yu et al., 2007). Because of the issues, JavaScript
code is often subjected to a range of limitations implemented at the browser level.
For example, JavaScript applications are executed in a sandbox and are forbid-
den any direct access to system resources, such as the file system. Additionally,
a JavaScript application can only access remote resources hosted on the same
domain as the script itself – a limitation known as Same Origin Policy10. These
are only some of the limitations any Siebog developer needs to be aware.

An important thing to note is that JavaScript is an interpreted language:
the source code of a JavaScript program is sent to and executed by the web
browser, making it open to any interested party. Although there exist various
source code obfuscation tools (e.g. YUI11), client-side agents should not include
any proprietary algorithms. One possible solution for this problem would be to
leave the proprietary algorithms in a server-side agent, and then interact with
them as described in the next section.

When it comes to the server-to-client communication through WebSockets,
all server-side components are under the direct control of the system adminis-
trator. This can prevent an unwanted deployment of any malicious code. To
increase the user’s trust in a Siebog-based application administrator can install
security certificates. For the confidentiality of exchanged information, they can
additional employ WebSockets’ inherent support for secure HTTP connections
(i.e. HTTPS).

4.4 Client-server integration

Heterogeneous system integration is a common and a well-understood prob-
lem. Several integration patterns have emerged over time: the Shared Database,
Message-Oriented Middleware, and Remote Procedure Invocation pattern (Hohpe
and Woolf, 2003). Shared Database is applicable when different sub-systems
need to share the data but otherwise operate independently of each other. The
database is directly accessible by all components and usually provides a single
schema. The Message-Oriented Middleware pattern offers the greatest degree
of component independence (Hohpe and Woolf, 2003). Different parts of the
system exchange messages, carrying (usually) small packets of information in an
asynchronous manner.

Remote Procedure Invocation enables heterogeneous sub-systems of the over-
all application to share their functionalities rather than data (Hohpe and Woolf,
2003). The public functionality of each sub-system is exposed using an agreed-
upon format. During the invocation, all internal communication (i.e. within a

10https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript, retrieved on
August 12, 2014.

11http://yui.github.io/yuicompressor/, retrieved on August 12, 2014.

https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript
http://yui.github.io/yuicompressor/
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sub-system) is automatically transformed into a standardized external protocol.
Over time, Remote Procedure Invocation has been realized in a number of con-
crete forms, including CORBA, Java RMI, and web services, where web services
currently represent the most widely-used approach.

In case of Siebog, the integration approach is mainly dictated by their under-
lying implementation technologies. The most natural and straightforward way
of integrating the JavaScript-based client and the Java EE-based server is to
use the Remote Procedure Invocation pattern, and its realization based on web
services.

4.4.1 A web services-based layer

The goal of web services is “to support interoperable machine-to-machine in-
teraction over a network.”12. In general, a web service consists of an interface
understandable by machines (and humans), and a communication protocol. The
first step in developing Siebog is, therefore, to provide web service-based inter-
faces for its managers. This, however, can be achieved in different ways.

XML web services represent one of the two competing approaches for devel-
oping and using web services. It encompasses a wide range of standards and
specifications13, covering interface definition, description and discovery, com-
munication, security, etc. Communication is in most cases performed using
XML-encoded messages transmitted over HTTP, although other approaches are
possible as well. Unfortunately, the sheer amount of (sometimes conflicting)
standards and specifications related to XML web services has turned out to be
their weakest point preventing them from gaining much traction.

Representational state transfer (REST) is a more recent, alternative design
approach for applications based on web services (Fielding, 2000). It uses the four
HTTP operations – GET, POST, PUT, and DELETE – to query and manip-
ulate resources. Resources themselves are represented using Uniform Resource
Identifiers (URIs). REST is a “standard-less” set of architectural design prin-
ciples and constraints. The Stateless constraint, for example, states that all
communication between the client and the server is stateless, in the sense that
the server should not store any contextual information about the client (Field-
ing, 2000). Web services that adhere to all of REST principles and constraints
are often referred-to as RESTful.

It is worth noting that an older version of XJAF has been also provided in
form of a web service-oriented architecture, with its managers designed as XML
web services (Mitrović et al., 2012a). However, RESTful web services represent
a “better fit” for the intended purpose of integrating JavaScript and Java EE
systems. They are much easier to use from the JavaScript client, especially when
JSON format is used to represent objects. In addition, RESTful services provide
better performance due to less runtime overhead (e.g. Mulligan and Gracanin,
2009).

12http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice, retrieved on Au-
gust 12, 2014.

13http://www.w3.org/2002/ws, retrieved on August 12, 2014.

http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice
http://www.w3.org/2002/ws
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Table 4.1: A subset of the Agent Manager’s REST API. All methods con-
sume and produce objects of type application/json. Parts of URIs en-
closed in curly braces represent variables.
Tabela 4.1: Podskup REST API -a Agentskog menadžera. Svi metodi pri-
hvataju i vraćaju objekte tipa application/json. Delovi URI adresa u
vitičastim zagradama predstavljaju promenljive.

Method URI Description

GET /classes Returns the list of available
agent classes.

GET /running Returns the list of running
agents (their AIDs).

PUT /running/{agClass}/{name} Runs a new agent of the given
class, and with the given runtime
name.

DELETE /running/{aid} Stops the given agent.

Since EJBs are used to implement major parts of the server-side Siebog,
including the managers, the process of transforming them to RESTful web ser-
vices is straightforward. This is one example of how the standards-compliance
can bring benefits to software development. The majority of work has con-
sisted on annotating the appropriate parts of code. Custom (de-)serializations
for JSON messages had to be provided in some cases (e.g. for objects repre-
senting FIPA ACL messages), but the entire process was completed without any
technical difficulties.

Table 4.1 outlines the proposed REST interface of the Agent Manager. Its
base URI is “/agents”, and in all cases the input arguments and return values
are represented as JSON-formatted strings.

Although managers have been re-designed as RESTful web services, internal
Java components, such as agents, still invoke them as regular EJBs. This is
because EJB invocations incur far less overhead than REST interfaces. For
example, when both the agent and the manager are located on the same machine
(which is the usual case), no serialization of method parameters is required.
Luckily, REST interface definitions can be mixed in with regular EJB method
implementations. Listing 4.3 shows the header of the Message Manager’s post

method, which is used to send a FIPA ACL message.

The given method can be invoked both through the REST API and using
standard EJB invocation approach. The client-side agents can use it to send
messages to server-side agents, or even to other client-side agents hosted in
different web pages and different devices. This is achieved by providing client-
side agents with stub implementations of server-side managers. An example stub
implementation for the Message Manager’s post method is given in Listing 4.4.
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Listing 4.3: Header of the Message Manager’s post method, used for sending
FIPA ACL messages. The method can be invoked both using Java Remote
Invocation and REST

@POST

@Path("/")

@Consumes(APPLICATION_FORM_URLENCODED)

@Produces(APPLICATION_JSON)

@Override

public void post(@Form ACLMessage msg) { ... }

Listing 4.4: Client-side stub implementation of the Message Manager’s post

method.

XJAF.post = function(msg, onSuccess, onError) {

$.ajax(XJAF.messageManager, {

type : "POST",

data : JSON.stringify(msg),

success : onSuccess,

error : onError

});

};

Once the web service layer is added on the server, the two sides of Siebog
can be integrated into a single system. This final integrated architecture of
Siebog is outlined in Fig. 4.2. As shown, in addition to stub implementations
of manager on the client, each client-side agent has its own stub counterpart on
the server. To external entities, a stub appears as a regular server-side agent,
but any messages sent to it will be forwarded to the concrete client-side agent.

The use of stubs does not introduce more computational overhead than neces-
sary. In the client-server agent communication, messages have to be transferred
as JSON strings. Instead of having a centralized repository of client-side agents
which also acts as a message (de-)serializer, a more efficient approach is used
(e.g. no bottlenecks, no single point of failure, etc.). Since the agent identifier on
the client includes the browser session identifier, it is impossible for two different
client-side agents to reference the same server-side stub.

In order to facilitate server-to-client messaging, a new manager (WebClient)
is introduced. The new manager provides two main functionalities. First, it acts
as a WebSocket server endpoint, keeping the track of all active client-side, and
forwarding messages from server-side components (incl. agents). Secondly, the
new manager is in charge of agent state persistence described earlier.

The integrated Siebog architecture enables transparent inter-agent commu-
nication and action coordination, regardless of the types and physical locations
of agents. A client-side agent agent can send a message to a server-side agent
via the appropriate stub call. However, if the target agent is actually a stub
representation of a different client-side agent, the message may end up in a dif-
ferent web page or on a different device. This opens up a range of possible
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Figure 4.2: The final integrated architecture of Siebog.
Slika 4.2: Konačna integrisana arhitektura Siebog-a.

practical applications; for example, in case of smart environments (Nakashima
et al., 2010) agents hosted in physically distributed smart objects can seamlessly
exchange information and coordinate their actions.

4.4.2 Cross-platform interaction

In Siebog, both client-side and server-side agents can initiate an interaction.
As shown in Fig. 4.2, client-side agents use stub implementations of server-
side managers to perform asynchronous AJAX calls to the appropriate RESTful
services. On the other hand, when a server-side agent needs to interact with
a client-side agent, the standard WebSocket protocol is used. The message
is serialized on the server side into a JSON-formatted string, transferred to
the client’s web browser, de-serialized into a corresponding message object, and
delivered to the target. Unfortunately, the (de-)serialization process cannot be
fully avoided at the moment, as web browsers in general do not support binary
data transfer through WebSockets. Fig. 4.3 shows an example of a client-side
agent that creates, interacts with, and finally destroys a server-side agent.

As noted earlier, the interaction between client and server side is manifested
in three different ways: code sharing, message exchange, and agent mobility.
Obviously, code sharing is possible as long as the agent implementation satisfies
all the constraints imposed by web environments and relies only on libraries
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Figure 4.3: Sequence of messages initiated by a client-side agent which starts,
interacts with, and finally destroys a server-side agent.
Slika 4.3: Sekvenca poruka koju je inicirao klijentski agent, a koji pokreće,
komunicira sa, i konačno unǐstava serverskog agenta.

available in both JavaScript and Java.
Message exchange is the easiest to achieve. It is enough to extend the agent

identifier (AID) representation with a platform identifier. The message sending
routines in both the server and the client side can then simply compare this value
with their host platforms’ identifiers, and forward the message appropriately.

The idea of code sharing is that the agent developer can write an agent
once, using his/hers preferred programming language. The Siebog platform
then takes care of executing the agent on the client and on the server, as needed.
This feature has two aspects: executing JavaScript agents in the Java VM, and
executing Java agents in web browsers.

The execution of JavaScript agents on Java VM is a much simpler task. Java
Specification Request (JSR) 223 defines the standard Scripting API for Java
VM (Grogan, 2006). Besides executing JavaScript code, the API offers some
advanced features. For example, JavaScript programs can import and use Java
classes, indirectly implement Java interfaces, which are then directly accessible
in Java programs, etc.

Unfortunately, there is no standard way of executing Java code in web
browsers. The approach of embedding server-side agents into Java applets would
be subpar. However, an efficient third-party solution does exist. Google Web
Toolkit (GWT) is a popular set of open-source libraries and tools that trans-
form complex Java-based web applications into pure JavaScript applications
(Tacy et al., 2014). One of its defining features is cross-browser compatibility:
GWT will produce a number of compilations from the same Java source, each
optimized for a distinct web browser. In this way developers are relieved from
worrying about browser-specific implementations, and the best possible runtime
performance can be achieved. Given its many advantages, Siebog relies on GWT
for executing Java agents on the client.
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Although the code sharing feature of Siebog does work in practice, developers
need to be aware of its limitations. For example, writing performance-centric
agents in JavaScript and then executing them in Java VM might not be the best
option. Instead, it would be better to move the core implementation to a server-
side agent, and then communicate with it from the client. Similarly, although
powerful, GWT poses a number of limitations on Java implementations; more
details are available in the official GWT documentation14.

The final aspect of the client-server interaction is agent mobility. For exam-
ple, an agent running in the web browser should be able to migrate to the server,
replicate and distribute itself across the cluster, and finally return to the web
browser carrying the computational result. With the existence of state persis-
tence and code sharing, this functionality can be achieved easily. An example of
its use is shown in Chapter 5.

4.5 DNARS-based intelligent agents in Siebog

DNARS was built from ground-up to support a range of external clients. Its
entire functionality is exposed in form of a REST API, for example:

� GET /dnars/anwser?q={question}&domains={domains}: Returns an an-
swer to question while consulting the specified list of domains.

� POST /dnars/judgements?domains={domains}: Adds new judgements to
the given list of domains. The actual judgements are specified in the
request body. This action can trigger the Forward inference engine, which
might derive and include even more new judgements.

The architecture of DNARS has previously been presented in Chapter 3 and
shown in Fig. 3.1, but it will be briefly summarized here. DNARS consists of
two main parts: the Inference engine and the Backend knowledge base. The
Inference engine itself includes:

� Resolution engine for answering questions;

� Forward inference engine for deriving new knowledge;

� Short-term memory for storing relevant statements; and

� Event stack for receiving the knowledge base notifications.

The Backend knowledge base is divided into distinct Knowledge domains;
domains are (not necessarily disjoint) subsets of the overall knowledge. Finally,
changes in the Backend knowledge base are detected and appropriately handled
by the Event manager.

Although Siebog agents could simply use the REST API as well, a tighter
integration with DNARS has been realized. The two main reasons for doing

14http://www.gwtproject.orc/doc/latest/DevGuide.html, retrieved on August 12, 2014.

http://www.gwtproject.orc/doc/latest/DevGuide.html
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Figure 4.4: The architecture of server-side Siebog agents.
Slika 4.4: Arhitektura serverskih agenata u Siebog-u.

this are lower communication overhead, and a simpler agent development pro-
cess through agent-oriented programming abstractions. Fig. 4.4 outlines how
the building blocks of DNARS have been merged into server-side Siebog agents.
As shown, each server-side Siebog agent now consists of the reactive and the in-
telligent part. The reactive part simply operates on the basis of external events,
such as messages received from other agents, internal triggers, notifications from
the knowledge base, etc.

The intelligent part is the DNARS Inference engine. That is, Resolution
engine, Forward inference engine, Short-term memory, and Event stack are in-
tegral parts of Siebog server-side agents. The Backend knowledge base, on the
other hand, is essentially external to the agent. Since the knowledge base can
store very large amounts of information, it would be impractical to incorporate
it into the agent itself. Finally, the agent’s individual knowledge and experience
is mapped to a DNARS Knowledge domain.

The final step in Siebog-DNARS integration is to introduce agent-oriented
programming abstractions. Their purpose is to enable developers to define agents
in the usual sense, e.g. in terms of beliefs and goals.

Since annotations are the standard meta-programming constructs of Java EE,
the same approach can be applied for defining server-side DNARS agents. Anno-
tation based development of intelligent agents has also been used elsewhere (e.g.
Pokahr et al., 2014). Currently, Siebog agents that rely on DNARS reasoning are
programmed in terms of beliefs and actions. The three main annotations for be-



84 CHAPTER 4. SIEBOG

lief and action management are @Beliefs, @BeliefAdded, and @BeliefUpdated.
As noted in Section 3.6, the Event manager in DNARS features several Event

Dispatch Threads (EDTs) that collect events generated in the knowledge base
and dispatch them to registered observers. In case of Siebog, these event notifi-
cations are dispatched in form of FIPA ACL messages. The Siebog framework
uses the Reflection API 15 to scan each DNARS agent for annotated methods. It
then intercepts all messages delivered to these agents from EDTs, extracts their
contents, and calls the corresponding methods. Therefore, the entire process
is performed transparently from the agent’s and the agent developer’s point of
view. An example usage is shown in Listing 4.5.

Listing 4.5: Annotation-based belief management in Siebog. Instead of Strings,
the appropriate data types can be used (e.g. siebog.dnars.base.Statement

for representing statements).

public class DNarsExample extends DNarsAgent {

@Beliefs

public String[] initBeliefs() {

return new String[] { "carnivore -> agent_eater (1.0, 0.9)",

"tiger -> carnivore (1.0, 0.9)"

};

}

@BeliefUpdated(pattern=".")

public void beliefUpdated(Statement st, Truth oldTruth) { /* ... */ }

@BeliefAdded(subj="tiger", copula="->", pred="agent_eater", truth=".")

public void runFromTheTiger(Statement... added) { /* ... */ }

}

The given agent has two initial beliefs, defined in the annotated initBeliefs

method. The agent is notified when new beliefs are added, or when its exist-
ing beliefs are updated. The corresponding two annotations support statement
filtering. In the given example, the agent will be notified when a new belief
tiger → agent eater is added. It will also be notified whenever any of its beliefs
is updated.

The @BeliefAdded and @BeliefUpdated annotations can be used to define
actions carried out by the agent. The method runFromTheTiger can be seen
as an action triggered when the agent learns that the tiger is an agent-eater.
Therefore, the @BeliefAdded annotation’s pattern represents the action’s pre-
condition. In any case, an additional set of annotations for expressing actions
directly is also provided. The alternative definition of the runFromTheTiger

method is shown in Listing 4.6.
With the integration in place, Siebog can be used to deploy intelligent agents

with advanced reasoning capabilities, in web and enterprise environments. One
practical application of this feature is demonstrated in Section 5.4.

15http://docs.oracle.com/javase/tutorial/reflect/, retrieved on August 12, 2014.

http://docs.oracle.com/javase/tutorial/reflect/
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Listing 4.6: An alternative definition of the agent shown in Listing 4.5, based
on action-oriented annotations.

public class DNarsExample extends DNarsAgent {

/* ... */

@Action(precondition="tiger -> agent_eater (.)")

public void runFromTheTiger(Statement... reasons) { /* ... */ }

}

The remaining agent-oriented programming constructs, such as goals and
plans, will be included later once the remaining NAL layers are implemented
(Wang, 2012b). More details on further development are given in Chapter 7.

4.6 Summary

Siebog is a multiagent middleware that builds on the successes of modern web
and enterprise technologies. As shown in this chapter, this design approach has
yielded several important features.

On the client, Siebog offers true platform-independence. By running in web
browsers, Siebog agents can be executed on a wide variety of hardware and
software platforms. This is beneficial to both agent developers, which can write
agents in the write once, run anywhere manner, and to end-users, which can
access their Siebog-based applications in the most convenient way.

The server-side of Siebog runs on top of computer clusters, offering high-
availability of deployed applications. The system achieves scalability through
automated agent load-balancing, as well as fault-tolerance through state repli-
cation and failover.

Moreover, by combining HTML5 and Java EE technologies in a convenient
manner, Siebog offers several advanced features, including cross-platform agent
interaction, code sharing, and even heterogeneous agent mobility.

Finally, the integration with DNARS enables the deployment of intelligent
agents with very useful, practical applications. Case studies that outline the
benefits of using the Siebog multiagent middleware are presented in Chapter 5.

Fig. 4.5 outlines the entire technology stack. Contributions of the thesis and
our previous research are shown in bold. All underlying technologies: Wild-
Fly16, Apache Cassandra17, and Aurelius Titan18 are available as open-source
software. DNARS and Siebog (including XJAF and Radigost) are released under
the generous Apache License 2.019.

16http://wildfly.org/, retrieved on August 12, 2014.
17http://cassandra.apache.org/, retrieved on August 12, 2014.
18http://thinkaurelius.github.io/titan/, retrieved on August 12, 2014.
19http://www.apache.org/licenses/LICENSE-2.0.html, retrieved on August 12, 2014.

http://wildfly.org/
http://cassandra.apache.org/
http://thinkaurelius.github.io/titan/
http://www.apache.org/licenses/LICENSE-2.0.html
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Figure 4.5: The technology stack that forms the basis of DNARS and Siebog,
including XJAF and Radigost.
Slika 4.5: Skup tehnologija koji čine osnovu za DNARS i Siebog, uključujući
i XJAF i Radigost.



Chapter 5

Case Studies

The purpose of this chapter is to present case studies that evaluate and validate
the work presented in the previous two chapters. They confirm some of the
assertions made earlier and demonstrate practical applications of Siebog. More
concretely, three case studies have been developed in order to:

� Demonstrate the Radigost-XJAF integration in practice, in form of a web
application that mimics certain functionalities of modern content-sharing
networks;

� Evaluate the Resolution engine’s responsiveness and scalability, in a sce-
nario which involves a large knowledge base and large numbers of concur-
rent external clients; and

� Demonstrate how a set of intelligent agents based on DNARS can be used
to solve a concrete problem.

5.1 Heterogeneous agent mobility and its appli-
cation

The previous performance evaluation of Radigost presented in (Mitrović et al.,
2014a) has shown that the system offers the runtime execution speed compara-
ble to that of a desktop-based multiagent solution. Similarly, it has been shown
in (Mitrović et al., 2013b) that XJAF performs better than a third-party mul-
tiagent solution for scenarios with large populations of agents. Here, instead of
a performance evaluation, one practical application of Siebog will be presented.
The case study utilizes the heterogeneous agent mobility which emerges from
the Radigost-XJAF integration.

The case study includes a couple of hardware devices; for example, a smart-
phone and a Smart TV. The user visits the application’s web page on the smart-
phone, takes a photo using the device’s camera, and assigns it one or more

87
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Figure 5.1: Execution flow of the heterogeneous mobility case study.
Slika 5.1: Izvršavanje primera heterogene mobilnosti.

hashtags1. He/she then activates the mobile agent, which:

� Moves to the server, carrying the photo with it;

� Persists the photo in the database using the set of hashtag(s);

� Moves to the Smart TV, and displays the photo.

The application’s execution flow is shown in Fig. 5.1. This case study was
partially inspired by the one presented by (Jarvenpaa et al., 2013).

As noted, whenever a web page with Siebog agents is loaded on a client
device, the agents and the client device itself are registered with the server.
This enables any interested party to inspect and interact with client-side Siebog
agents regardless of their physical location. Also, it provides the starting point
for agent mobility required here.

The case study consists of the host web page, and the mobile agent. The
web page enables the user to take a photo and assign a set of hashtags. It does
not require any external plug-ins to take photos, since the media capture and
streaming are part of the HTML5 standard2. Security is provided at the web
browser level: the user is asked whether the application can access the camera.

The full source code of the mobile agent, named PhotoAgent, is shown in
Listing 5.1. Its initialization function onInit, receives the photo along with the
assigned hashtags. At the end of the initialization phase, the agent moves itself
to the server.

1http://en.wikipedia.org/wiki/Hashtag, retrieved on August 12, 2014.
2http://w3c.github.io/mediacapture-main/getusermedia.html, retrieved on August 12,

2014.

http://en.wikipedia.org/wiki/Hashtag
http://w3c.github.io/mediacapture-main/getusermedia.html
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The migration process is performed as follows:

� Siebog retrieves and remembers the agent’s internal state.

� An appropriate REST API call to the WebClient Manager is made, and
the state is transferred to the server.

� On the server, the state is injected into an instance of the RadigostAgent
component. RadigostAgent uses the Java Scripting API to execute and
interact with the embedded JavaScript code.

� The system invokes the agent’s onArrived function and the agent contin-
ues its execution.

Listing 5.1: The full source code of the PhotoAgent used in the heterogeneous
mobility case study. This mobile agent moves between client devices and the
server, carrying the user’s photo with it.

importScripts("/siebog/radigost.js");

function PhotoAgent() { };

PhotoAgent.prototype = new Agent();

PhotoAgent.prototype.onInit = function(args) {

this.photo = args.photo;

this.hashtags = args.hashtags;

this.moveToServer();

};

PhotoAgent.prototype.onArrived = function(hap, isServer) {

if (isServer) {

importClass(Packages.siebog.agents.radigost.photo.PhotoAgentJPA);

var jpa = Packages.siebog.agents.radigost.photo.PhotoAgentJPA;

var destClients = jpa.persist(this.hashtags, this.photo);

this.moveToClients(destClients);

} else // on the dest client, show the photo

this.onStep(this.photo);

};

On the server, the agent uses a helper component named PhotoAgentJPA.
The component is a wrapper around the Java Persistence API 3, providing the
higher-level access to the backend database. The agent uses it to store the photo
and to retrieve all destination clients that are observing the hashtags. Finally,
the agent moves (in parallel) to each destination client and shows the photo.

In conclusion, this case study demonstrates the benefits of combining agents
with HTML5 and Java EE technologies. It offers functionalities similar to many
modern web applications, such as social and content sharing networks, but con-
veniently uses mobile agents to deliver information across remote client devices.

3http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.

html, retrieved on August 12, 2014.

http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
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Therefore, the Siebog multiagent middleware can seamlessly integrate software
agents into modern web and enterprise applications.

In the remaining two case studies, the focus is on intelligent DNARS agents
within the Siebog framework. The first case study of the two will evaluate the
Resolution engine’s runtime efficiency, and requires a large backend knowledge
base.

5.2 Creating a large knowledge base for DNARS

The large knowledge base needed for the second case study has been extracted
from the DBpedia datasets, available in form of Resource Description Framework
(RDF) statements. This section provides more details about the RDF data
model, as well as the motivation behind the DBpedia project and its end-goals.

5.2.1 Resource Description Framework

RDF is one of the most popular knowledge representation and sharing standards,
widely used in e.g. the Semantic Web4. It represents a data model for describing
and inter-linking (most-commonly) web resources (Brickley and Guha; Schreiber
and Raimond).

RDF includes a human- and machine-readable language with a formal gram-
mar and an accompanying set of tools for writing, querying, analyzing, etc.
RDF-based data. The RDF-based data can be written using several notations
and can be serialized in a number of ways. RDF-related specifications are pub-
lished and maintained by the World Wide Web Consortium5.

The three main data types that can be used in RDF are International Re-
source Identifiers (IRIs), literals, and blank nodes (Schreiber and Raimond).
IRIs are globally-unique identifiers. They are based on the more-common Uni-
form Resource Identifiers (URIs)6, but can also include non-ASCII characters.
An example of an IRI denoting the famous scientist Albert Einstein is:7

http://dbpedia.org/resource/Albert_Einstein.

RDF literals are primitive types, and are used to represent numbers, strings,
etc. For a more convenient interpretation, the literal can be associated with the
concrete data type identifier. Furthermore, string literals can be marked using a
language identifier. Finally, blank nodes are used in RDF to denote anonymous
resources, i.e. resources that are not explicitly represented by an IRI.

RDF uses statements to describe resources. A statement is a triplet in the
form of subject-predicate-object. It describes a relationship between the two
resources (Schreiber and Raimond). In a statement the subject can be an IRI
or a blank node, the predicate must be an IRI, while the object can be an IRI,

4http://www.w3.org/standards/semanticweb/, retrieved on August 12, 2014.
5http://www.w3.org/RDF/, retrieved on August 12, 2014.
6http://tools.ietf.org/html/rfc3986, retrieved on August 12, 2014.
7The example is taken from a DBpedia dataset, described in Sub-section 5.2.2.

http://dbpedia.org/resource/Albert_Einstein
http://www.w3.org/standards/semanticweb/
http://www.w3.org/RDF/
http://tools.ietf.org/html/rfc3986
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a literal, or a blank node. For example, in the following statement, subject and
predicate are IRIs, while the object is a string literal:

<http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/ontology/birthDate>

"1879-03-14"^^http://www.w3.org/2001/XMLSchema#date .

The given statements describes Albert Einstein’s date of birth. The object
is thus a string literal associated with the date type.

RDF uses a Schema to structure and provide semantic information about
resources (Brickley and Guha). RDF Schema represents the way of building the
so-called vocabularies (or ontologies) to be used alongside the actual data. Its
terminology is based on the one used in object-oriented programming and in-
cludes classes, inheritance, properties, etc. For example, the following statement
can be used to describe that Albert Einstein is an instance (or a type) of the
class Person:

<http://dbpedia.org/resource/Albert_Einstein>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://xmlns.com/foaf/0.1/Person> .

As noted, RDF-based data can be written using many different notations.
The examples given above use the N-Triples notation, which is a simple, text-
based format that allows for fast and easy parsing. Descriptions of other popular
formats can be found in e.g. (Schreiber and Raimond).

RDF also offers the way for querying the data. SPARQL is a standard8

language for querying and updating RDF-based datasets. Its syntax is loosely-
based on SQL, with the support for joins, sorting, aggregation, etc. Listing 5.2
shows a simple SPARQL query that retrieves the Einstein’s birth place.

Listing 5.2: A SPARQL query that retrieves information about Albert Einstein’s
birth place.

PREFIX resource: <http://dbpedia.org/resource/>

PREFIX ontology: <http://dbpedia.org/ontology/>

SELECT ?birthPlace

WHERE { resource:Albert_Einstein ontology:birthPlace ?birthPlace }

As it can be seen, NAL and RDF use the same form of subject-predicate-
object statements. This is why RDF has been chosen as the main data model
for the remaining two case studies.

A large number of publicly-available RDF-based datasets can be found online.
Datasets used in this section have been retrieved from the DBpedia project.

8http://www.w3.org/2011/05/sparql-charter, retrieved on August 12, 2014.

http://www.w3.org/2011/05/sparql-charter
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5.2.2 DBpedia

DBpedia (Lehmann et al., 2014) is a community-driven project aimed at orga-
nizing and structuring the information extracted from the free Wikipedia ency-
clopedia9. The project’s goal is to “... make it easier for the huge amount of
information in Wikipedia to be used in some new interesting ways. Further-
more, it might inspire new mechanisms for navigating, linking, and improving
the encyclopedia itself.” 10

At the time of writing, the latest version of DBpedia is 3.9, published in
201411. Its English version describes 4.58 million entities, such as persons, or-
ganizations, places, species, etc. The data is also provided in 125 different lan-
guages, which, together with the English version, sums up to 38.3 descriptions.
A large portion of these information is classified using a manually-created, con-
sistent ontology, which defines 685 classes and 2795 properties. All the data is
licensed under the terms of the Creative Commons Attribution-ShareAlike 3.0 12

and the GNU Free Documentation13 licenses.

DBpedia information is available in form of RDF statements. Each DBpe-
dia entity is identified using an IRI, which is derived from the corresponding
Wikipedia entry. The data is organized into a number of datasets14. For the re-
maining DNARS-related case studies, three datasets were of the special interest.
The Short Abstracts dataset contains approximately 4.5 million short abstracts
of Wikipedia articles. The Mapping-based Types dataset describes types/classes
of approximately 28 million entities.

Finally, Mapping-based Properties (Cleaned) includes information extracted
from Wikipedia infoboxes. Here, the infobox is a summary of the entire article,
and contains important facts and statistics. It is usually present in form of
a table on the right side of the article. The dataset is cleaned and improved
through the use of heuristic inference (Paulheim and Bizer, 2014). The 2014
version includes approximately 26 million RDF statements.

In essence, each DBpedia dataset contains different information (or different
form of information) about a particular entity. As an example, Listing 5.3 shows
how Albert Einstein is described in each of the three datasets.

DBpedia is being actively developed and improved, and has inspired several
interesting projects. For example, the research presented by (Mendes et al.,
2012) shows how DBpedia datasets can be used to improve natural language
processing. Similarly, the DBpedia Spotlight project (Mendes et al., 2011) can
be used to identify DBpedia resources in unstructured texts.

9http://www.wikipedia.org/, retrieved on August 12, 2014.
10http://dbpedia.org/About, retrieved on August 12, 2014.
11http://blog.dbpedia.org/2014/09/09/dbpedia-version-2014-released/, retrieved on

August 12, 2014.
12http://creativecommons.org/licenses/by-sa/3.0/legalcode, retrieved on August 12,

2014.
13http://www.gnu.org/copyleft/fdl.html, retrieved on August 12, 2014.
14http://wiki.dbpedia.org/Datasets, retrieved on August 12, 2014.

http://www.wikipedia.org/
http://dbpedia.org/About
http://blog.dbpedia.org/2014/09/09/dbpedia-version-2014-released/
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://www.gnu.org/copyleft/fdl.html
http://wiki.dbpedia.org/Datasets
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Listing 5.3: Descriptions of Albert Einstein in DBpedia datasets.

/*** Mapping-based Properties (Cleaned) ***/

<http://dbpedia.org/resource/Albert_Einstein>

<http://xmlns.com/foaf/0.1/name>

"Albert Einstein"@en .

<http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/ontology/birthDate>

"1879-03-14"^^<http://www.w3.org/2001/XMLSchema#date> .

<http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/ontology/birthPlace>

<http://dbpedia.org/resource/German_Empire> .

<http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/ontology/residence>

<http://dbpedia.org/resource/Switzerland> .

<http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/ontology/residence>

<http://dbpedia.org/resource/United_States> .

<http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/ontology/spouse>

<http://dbpedia.org/resource/Mileva_Mari%C4%87> .

<http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/ontology/field>

<http://dbpedia.org/resource/Physics> .

/*** Short Abstracts ***/

<http://dbpedia.org/resource/Albert_Einstein>

<http://www.w3.org/2000/01/rdf-schema#comment> "Albert Einstein (/\u

02C8\u 00E6lb\u 0259rt \u 02C8a\u 026Ansta\u 026An/; German: [\u

02C8alb\u 0250t \u 02C8a\u 026An\u 0283ta\u 026An] ; 14 March 1879

\u 2013 18 April 1955) was a German-born theoretical physicist. He

developed the general theory of relativity, one of the two pillars

of modern physics (alongside quantum mechanics). He is best known

for his mass\u 2013energy equivalence formula E = mc2 (which has

been dubbed \’the world’s most famous equation\’)."@en .

/*** Mapping-based Types ***/

<http://dbpedia.org/resource/Albert_Einstein>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/ontology/Scientist> .

<http://dbpedia.org/resource/Albert_Einstein>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://wikidata.dbpedia.org/resource/Q5> .

<http://dbpedia.org/resource/Albert_Einstein>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://xmlns.com/foaf/0.1/Person> .

<http://dbpedia.org/resource/Albert_Einstein>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/2002/07/owl#Thing> .

<http://dbpedia.org/resource/Albert_Einstein>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://schema.org/Person> .
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5.3 Evaluating the speed of question answering

As discussed in Chapter 3, the Resolution engine of DNARS is responsible for an-
swering questions. For questions containing “?” (i.e. S copula ? or ? copula P ),
the engine returns the best possible candidate for the missing term. For ques-
tions in the form of “S copula P” it checks whether the corresponding statement
exists in the knowledge base, or whether it can be derived using NAL’s backward
inference rules.

The backward inference engine can take an undetermined amount of time to
execute (Wang, 2013). On the other hand, one of the functional requirements
of DNARS is to answer the first type of questions as quickly as possible, in real-
time. The following case study has been designed to evaluate this capability of
the Resolution engine.

The DBpedia dataset used in this case study is Mapping-based Properties
(Cleaned) described earlier. Its RDF statements have been imported into the
DNARS Backend knowledge base by using arbitrary relations of NAL-4 discussed
in Section 2.6. For example, the following RDF statement describes one property
of Albert Einstein:

<http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/ontology/field>

<http://dbpedia.org/resource/Physics> .

In the given statement, the first line represents the subject (Albert Einstein),
the second line represents the predicate (his field of study), while the third line
represents the object (physics). The field of study is the arbitrary relation, so
the corresponding NAL-4 statement is written as follows:

(× <http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/ontology/field>) →
<http://dbpedia.org/resource/Physics>

As noted in Section 2.6, in order to more easily apply inference rules, the
NAL-4 statement can be structurally transformed into extensional and/or in-
tensional images. These images are just different forms of the same statement;
they show how individual atomic terms from the original statement link to the
remaining parts of the statement. For the statement given above, the two ex-
tensional images are written as follows:

<http://dbpedia.org/resource/Albert_Einstein> →
(/ <http://dbpedia.org/ontology/field> �
<http://dbpedia.org/resource/Physics>)

<http://dbpedia.org/resource/Physics> →
(/ http://dbpedia.org/ontology/field>

<http://dbpedia.org/resource/Albert_Einstein> �)

Instead of creating images at runtime, DNARS stores three NAL statements
per one RDF statement. This design approach was made in order to improve
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the runtime efficiency of the Resolution engine. It represents a standard practice
– systems that work with NoSQL databases often repeat the stored information
in order to improve their runtime efficiency (Schram and Anderson, 2012).

As noted in Subsection 3.2.2, NAL-based knowledge bases are actually prop-
erty graphs: directed multi-relational graphs with any number of properties
attached to vertices and edges (Robinson et al., 2013; Rodriguez and Shinavier,
2010). Once the entire Mapping-based Properties (Cleaned) dataset was im-
ported into DNARS, the resulting graph consisted of approximately 60 million
vertices and 77 million edges. According to today’s standards, the graph can be
called large (e.g. McColl et al., 2014).

5.3.1 Speed benchmarks

The experiments were performed in clusters provided by the Microsoft Azure
cloud computing platform15. Two types of machines were used (both using an
SSD storage):

� D3 : 4 virtual CPUs, 14 GB of RAM.

� D4 : 8 virtual CPUs, 28 GB of RAM.

In order to simulate large numbers of concurrent users, the Yahoo! Cloud
Serving Benchmark (YCSB) was used (Cooper et al., 2010; Kuhlenkamp et al.,
2014). YCSB is an open-source tool16 designed for load-testing of (primarily)
NoSQL databases. It can be configured through a range of parameters, most
important of which is the desired number of operations per second (throughput),
but also the number of concurrent threads, maximum execution time, etc.

Two types of scenarios were examined: read-only and read-write. In the
read-only scenario, clients only ask questions and no writing to the DNARS
knowledge base is performed. The read-write scenario, on the other hand, is
more realistic (and computationally more demanding), since some clients ask
questions, while others add new knowledge to the system.

Within each scenario, DNARS was deployed on three different hardware con-
figurations. The goal was to determine how the underlying hardware affects the
system’s performance.

YCSB client was executed on a separate D4 machine, and was configured to
use 100 threads. The CPU utilization on the client machine was never over 20%,
so it did not represent the bottleneck.

The YCSB client executed a number of test-cases, each lasting for 1 hour.
The desired throughput (i.e. the number of questions per second) was increased
for each test-case, until the system could not reach it anymore. The efficiency
of DNARS is expressed in terms of average, 95th percentile and 99th percentile
latencies. The later two values indicate the maximum latencies exhibited by,
respectively, 95% and 99% of clients (Cooper et al., 2010; Kuhlenkamp et al.,
2014).

15http://azure.microsoft.com/en-us/, retrieved on August 12, 2014.
16https://github.com/brianfrankcooper/YCSB/, retrieved on August 12, 2014.

http://azure.microsoft.com/en-us/
https://github.com/brianfrankcooper/YCSB/
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Finally, DNARS was restarted before each test-case. Questions were con-
structed by selecting random statements from the dataset. Approximately 80%
of questions that were asked were new, while the remaining 20% were repeated
questions. This put an additional strain on the system, as it could not fully
benefit from answer caching.

The question answering capabilities of DNARS in the read-only scenario
are shown in Fig. 5.2. More specifically, Fig. 5.2(a) shows the performance of
DNARS on a single D3 node, Fig. 5.2(b) shows its performance on a single D4
node, while Fig. 5.2(c) shows how the system performs when it’s distributed over
two D3 nodes.

The obvious conclusion for all three configurations is that DNARS performs
exceptionally well. On the lowest hardware configuration (Fig. 5.2(a)), the sys-
tem is capable of answering almost 5800 questions per second, with the 99th
percentile latency being 100 milliseconds. Once the number of virtual CPUs is
doubled (Fig. 5.2(b)), the maximum number of answers per second jumps to
over 9200, with 99% clients having to wait no more than 30 milliseconds. In
the final hardware configuration (Fig. 5.2(c), two D3 machines), DNARS can
provide answers to approximately 8300 questions per second, in which case the
99th percentile latency is just over 50 milliseconds.

The underlying Apache Cassandra database was obviously an excellent choice
for the backend storage, as it can efficiently use all the available hardware re-
sources. Vertical scaling (i.e. adding more virtual CPUs) yields better per-
formance than horizontal scaling (i.e. adding more machines). However, in
addition to practical limitations of vertical scaling, horizontal scaling has one
major advantage – it can provide fault-tolerance through data replication.

For the second, read-write scenario, an additional YCSB client was launched
on a separate machine. Its task was to add 100 statements per second to the
DNARS knowledge base, throughout the duration of the experiment. Moreover,
it added only statements that already existed in the knowledge base. This is
because adding an existing statement is slower than adding a new statement. In
the first case, the system needs to read the existing truth-value from the hard-
disk, perform revision, and write the new value back (which will also update the
database indexes).

Again, three different hardware configurations were deployed – one D3, one
D4, and two D3 machines – and the results are shown in Fig. 5.3. Obviously,
simultaneous writing to the database incurs some runtime penalty, and the la-
tencies are generally higher than in the read-only scenario. Nonetheless, the
results can still be considered excellent.

The most affected configuration is the single D3 node (Fig. 5.3(a)), but it can
still deliver 4400 answers per second, with 99% clients having to wait up to 100
milliseconds. The simultaneous writing to the database did not affect the D4
node as much, since it was still capable of answering over 8800 questions per sec-
ond, while keeping the 99th percentile latency at 30 milliseconds. Finally, when
distributed over two D3 nodes, in the read-write scenario DNARS can answer
7700 questions per second with the 99th percentile latency at 60 milliseconds.
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Figure 5.2: Runtime performance of DNARS in the read-only scenario, on
(a) a single D3 node, (b) a single D4 node, and (c) two D3 nodes.
Slika 5.2: Performanse izvršavanja DNARS-a u scenariju sa samo čitanjem
podataka, na (a) jednom D3 čvoru, (b) jednom D4 čvoru, i (c) dva D3 čvora.
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Figure 5.3: Runtime performance of DNARS in the read-write scenario, on
(a) a single D3 node, (b) a single D4 node, and (c) two D3 nodes.
Slika 5.3: Performanse izvršavanja DNARS-a u scenariju sa pisanjem i
čitanjem podataka, na (a) jednom D3 čvoru, (b) jednom D4 čvoru, i (c)
dva D3 čvora.
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These experiments confirm that the functional requirement imposed on the
Resolution engine in Chapter 3 has been fulfilled. That is, the engine is capable
of supporting a large knowledge base and providing real-time responses to high
numbers of external clients.

5.4 Deriving new knowledge for DBpedia

One final question still remains – can intelligent agents based on the current
implementation of DNARS solve a concrete practical problem? The third case
study provides an affirmative answer and validates the overall work of the thesis.

The main goal of this case study is to derive new structured knowledge base
for DBpedia using information available in unstructured texts. It relies on the
three DBpedia datasets described earlier. More concretely, the case study derives
new knowledge for the Mapping-based Properties (Cleaned), using information
in Short Abstracts and Mapping-based Types.

The case study is shown graphically in Fig. 5.4. Its execution sequence can
be described in 5 distinctive steps.

Step 1. The case study is started by an end-user, who asks a question about
a specific resource. The question ends up in the Resolver agent, which returns
all the information available in Short Abstracts and Mapping-based Properties
(Cleaned). The agent relies on the Resolution engine to find the required answers.

Step 2. Once the answers are returned the Resolver activates the Annotator
agent. This new agent annotates the unstructured text obtained from Short Ab-
stracts, by invoking the DBpedia Spotlight RESTful web service17. In response,
the agent receives a list of DBpedia resources found in the text. Now, the sys-
tem needs to determine the exact relations between the properties of the initial
resource and the received annotated resources.

Step 3. For each annotated resource, the Annotator creates an instance of
the Learner agent. The Learner agent first retrieves all statements relevant
to its resource. Relevant statements are answers to questions R → ? and
? → R, where R denotes the agent’s resource. The answers are retrieved from
the Mapping-based Properties (Cleaned) dataset.

Step 4. Now, the Learner agent employs the Forward inference engine to de-
rive intermediary conclusions. Known properties of the initial resource are used
as the knowledge base, while the relevant statements represent new judgments.
Intermediary conclusions derived in this step serve as initial links between prop-
erties of the initial resource and properties of annotated resources.

17http://spotlight.dbpedia.org/rest/annotate, retrieved on August 12, 2014.

http://spotlight.dbpedia.org/rest/annotate


100 CHAPTER 5. CASE STUDIES

Figure 5.4: Execution flow of the case study for deriving new structured
knowledge.
Slika 5.4: Izvršavanje primera izvodenja novog struktuiranog znanja.

Step 5. Finally, intermediary conclusions obtained in the previous step are
again matched against properties of the initial resource, to derive the set of
conclusions. This set is first filtered, merging duplicate statements using the
revision rule (Section 2.8), and resulting in the final, new structured knowledge
about the initial resource.

In this multiagent system, the Resolver and Learners represent true intelli-
gent, deliberative agents, with respect to the definition outlined at the end of
Section 1.1. That is, both agents use a symbolic model of the world and apply
logical reasoning to answer questions and derive new knowledge. The Annotator
is a simpler, reactive XJAF agent with the task of invoking a web service and
distributing the computational load across the computer cluster.

5.4.1 A concrete execution example

In this sub-section, we will illustrate the above steps on a concrete example. Let
the end-user ask: Albert Einstein → ? (“Who was Albert Einstein?”). In Step
1, the Resolver uses the Resolution engine to retrieve the short abstract and the
list of existing properties from the knowledge base. In Step 2, the Annotator
sends the short abstract to the DBpedia Spotlight web service and receives the
four DBpedia resources shown in Listing 5.418.

Listing 5.4: Annotated resources detected in the short abstract for
http://dbpedia.org/resource/Albert Einstein.

<http://dbpedia.org/resource/General_relativity>

<http://dbpedia.org/resource/Max_Born>

<http://dbpedia.org/resource/Quantum_mechanics>

<http://dbpedia.org/resource/Theoretical_physics>

18Only resources available in the Mapping-based Properties (Cleaned) dataset are shown.
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At this point the system knows that these resources are somehow related
to Albert Einstein. Now it needs to determine the exact relations. This is
initiated in Step 3. A new Learner agent is created for each annotated resource
in Listing 5.4. The agent first retrieves statements relevant to its resource. Then,
in Step 4, it uses forward inference with known properties of Albert Einstein as
the knowledge base, and the relevant statements as new input judgments. This
step derives a set of intermediary conclusions (the total of 249 for all Learners).
For example, intermediary conclusions include 13 statements stating that general
relativity is similar to physics, that is:

<http://dbpedia.org/resource/General\_relativity> ↔
<http://dbpedia.org/resource/Physics> 〈1.00, 0.45〉

In the final step (Step 5) each Learner again applies the forward inference
using known properties of Albert Einstein as the knowledge base and interme-
diary conclusions now as new input judgments. Conclusions derived in this step
are first filtered to merge duplicate statements and to exclude already known
properties.

The end-result – the newly derived structured knowledge about Albert Ein-
stein – is shown in Listing 5.5. Only statements with the confidence level of
0.9 or higher are taken into account as this is the value assigned to existing
statements (Wang, 2013).

Listing 5.5: The newly derived structured knowledge about Albert Einstein.

(× <http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/resource/General_relativity>) →
<http://dbpedia.org/ontology/field> 〈1.00, 0.90〉

(× <http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/resource/Quantum_mechanics>) →
<http://dbpedia.org/ontology/field> 〈1.00, 0.92〉

(× <http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/resource/Theoretical_physics>) →
<http://dbpedia.org/ontology/field> 〈1.00, 0.99〉

Manual inspection of these results confirms that they are correct. General
relativity, quantum mechanics, and theoretical physics were indeed Einstein’s
fields19. This information is present in the Short Abstracts but not in the
Mapping-based Properties (Cleaned) dataset (Listing 5.3) and represents new
structured knowledge.

The fourth annotated resource denoting the physicist Max Born could not
be linked to Einstein in a confident manner. The Mapping-based Properties
(Cleaned) dataset version 3.9 (2014) includes the total of 14 statements about
Albert Einstein. These statements use the following set of relations: doctoral

19However, he was displeased with the principles of quantum mechanics and was trying to
disprove the theory (Kumar, 2009).
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advisor, academic advisor, name, birth place, birth date, death place, death date,
residence, spouse, and field. Since at the current level DNARS cannot derive
new relations, it has incorrectly concluded that Born was Einstein’s doctoral
advisor20. Although incorrect, it would have been much worse if the system had
derived:

(× <http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/resource/Max_Born>) →
<http://dbpedia.org/ontology/birthPlace> 〈1.00, 0.90〉

Therefore, DNARS has still selected the arguably best possible relation
among the available ones. It is also worth noting that this conclusion had a
lower confidence value then the required 0.9.

5.4.2 Analysis of the reasoning process

Let us now analyze how the first conclusion in Listing 5.5 was derived. At some
point during the reasoning process, the Forward inference engine takes the two
premises shown in Listing 5.6.

Listing 5.6: The initial premises that will lead to the conclusion that General
relativity was Einstein’s research field.

(× <http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/resource/Physics>) →
<http://dbpedia.org/ontology/field>

(× <http://dbpedia.org/resource/Charles_W._Misner>

<http://dbpedia.org/resource/General_relativity>) →
<http://dbpedia.org/ontology/field>

By intensional comparison (Eq. 2.14), the system derives a similarity be-
tween two compound terms shown as the first statement in Listing 5.7. Since
the relation between compound terms defines relations between their respective
components, this statement can be transformed into the latter two intermediary
conclusions in Listing 5.7. The Mapping-based Types dataset is employed during
this transformation step. The transformation will be applied only if the related
components belong the same type, preventing the system to conclude that, for
example, a person is similar to a geographic location.

This process of deriving and transforming intermediary conclusions is re-
peated for many other physicists in the Mapping-based Properties (Cleaned)
dataset, and the revision rule steadily increases the system’s confidence about
the fact that General relativity is similar to Physics. On the other hand, the
similarity between Charles W. Misner and Albert Einstein is derived only once,
retaining a relatively low confidence (although the two are similar to some re-
spect).

20The two famous physicist were, however, colleagues and friends (Born, 1971).
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Listing 5.7: The first statement represents an intermediary conclusion derived
by applying intensional comparison to the premises from Listing 5.6, while the
latter two statements are obtained by transforming the first one.

(× <http://dbpedia.org/resource/Charles_W._Misner>

<http://dbpedia.org/resource/General_relativity>) ↔
(× <http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/resource/Physics>)

<http://dbpedia.org/resource/Charles_W._Misner> ↔
<http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/resource/General_relativity> ↔
<http://dbpedia.org/resource/Physics>

In the final inference step the system uses the analogy rule (Eq. 2.17) on the
known statement:

(× <http://dbpedia.org/resource/Albert_Einstein>

<http://dbpedia.org/resource/Physics>) →
<http://dbpedia.org/ontology/field>

or its extensional image:

<http://dbpedia.org/resource/Physics> →
(/ <http://dbpedia.org/ontology/field>

<http://dbpedia.org/resource/Albert_Einstein> �)

and the intermediary conclusion:

<http://dbpedia.org/resource/General_relativity> ↔
<http://dbpedia.org/resource/Physics>

to derive the final, highly-confident conclusion that General relativity was an
additional research field of Albert Einstein.

5.5 Summary

In order to validate the work presented in this thesis, three case studies have
been presented.

The first case study demonstrates how the Siebog multiagent middleware can
be used to integrate agents into modern web applications. It exploits the support
for heterogeneous agent mobility in order to provide functionalities commonly
found in modern social and content-sharing web applications. Therefore, it
conveniently bridges the gap between the agent technology and the industry.

The second case study was developed in order to evaluate the responsiveness
of the Resolution engine. Its results have shown that the engine can support
large numbers of external clients, even with a large backend knowledge base. It
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performed exceptionally well in all three hardware configurations, both in the
read-only and read-write scenarios.

Finally, the third case study has shown how intelligent agents based on
DNARS can be used to solve a concrete problem. A set of both intelligent
and reactive agents was deployed in a distributed setting in order to generate
new structured knowledge. In the end, the case study has shown how an AGI
system, built by combining the agent technology with DNARS, can be used to
make contributions to the community-driven DBpedia project.

In the next, and final part, the focus will be on analyzing the existing, related
work. The overall conclusions and planned future research directions will be
discussed as well.
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Chapter 6

Related Work

Non-axiomatic logic (NAL) is different from many other logics used by the agent
technology or artificial (general) intelligence researchers. Its differences stem
from the fact that NAL is a term logic with syllogistic inference rules and the
experience-grounded semantics. In-depth comparisons of NAL and other for-
malisms can be found in many existing research papers (e.g. Wang, 2000, 2001a,
2006, 2011, 2012a, 2013).

This chapter provides a comparison of the work presented in this thesis with
other relevant work. Section 6.1 discusses the advantages (and disadvantages) of
Siebog when compared to other existing multiagent middlewares without con-
centrating on agents’ reasoning capabilities. Section 6.2 focuses on existing rea-
soning and cognitive architectures, both general-purpose and BDI-based, and
compares them with DNARS.

6.1 Multiagent middlewares

Most existing multiagent middlewares have been designed as desktop or server-
side systems, with the addition of various bridges (in form of Java Applets, for
example), that enable web access (Jack WebBot; Kelemen, 2006; Minotti et al.,
2010). The first part of this section analyzes existing web-enabled multiagent
middlewares, while in the second part the focus is solely on server-side function-
alities.

6.1.1 Web-based multiagent middlewares

There exist several interesting multiagent middlewares that enable web-based
clients. JACK Intelligent Agents WebBot (Jack WebBot), for example, is based
on Java Servlet1 and JavaServer Pages2 technologies. It provides a link between

1http://www.oracle.com/technetwork/java/index-jsp-135475.html, retrieved on Au-
gust 12, 2014.

2http://www.oracle.com/technetwork/java/javaee/jsp/index.html, retrieved on August
12, 2014.
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web clients and JACK agents running in a web server.

Similarly, JadeGateway and GatewayAgent classes (Kelemen, 2006) enable
web clients to communicate with JADE agents hosted on a remote server. The
main disadvantage of these approaches, when compared to Siebog, is that their
agents are executed on a web server, rather than on clients devices. Large num-
bers of hosted agents and client requests can pose significant computational loads
on the server. Instead, the usage of Web Workers for delegating tasks to remote
clients can substantially reduce the server’s computational load (Okamoto and
Kohana, 2010).

Smart Python multi-Agent Development Environment (SPADE) is a multi-
agent platform characterized by the usage of XMPP/Jabber instant messaging
protocol3 for agent communication (Aranda et al., 2012). XMPP/Jabber en-
ables the system to employ “an existing communication channel, the concepts
of users (agents) and servers (platforms) and an extensible communication pro-
tocol based on XML” (Aranda et al., 2012). SPADE supports the client-server
architecture, with a designated server machine, and agents distributed across
remote client devices.

JaCa-Web is a multiagent platform aimed at developing agent-based web
applications (Minotti et al., 2010). It is built on top of JaCa, which consists
of the Jason interpreter (Bordini and Hubner, 2006; Bordini et al., 2007), and
the CArtAgO framework for artifact modeling (Boissier et al., 2013). JaCa-Web
agents and artifacts are hosted and executed inside the client’s web browser. The
platform includes two predefined artifacts: Page for two-way communication
between agents and the web page, and HTTPService for remote HTTP service
invocation.

JaCa-Web brings the full power of Jason and CArtAgO to web applications,
and can currently offer a much wider range of functionalities than Siebog. The
main advantage Siebog has over JaCa-Web is its platform independence de-
scribed earlier. More concretely, JaCa-Web requires Java runtime environment
to be present on the client device. Examples found on the framework’s web site4

were not able to run on an Apple iOS -powered smartphone device, which was
perfectly capable of running Siebog agents (Mitrović et al., 2014a).

The main difference between Siebog and all of these middlewares is that its
client side (i.e. Radigost) is developed in the manner of modern web applications:
using the HTML5 set of technologies. An important advantage of this approach
is greater platform-independence: Siebog is the only system among this group
that requires no virtual machine or browser plug-in to run. For example, in order
to run a SPADE agent, the client must be equipped with the Python runtime
environment, which might not be available for all platforms. Siebog is also
readily available to end-users, without any installation or configuration steps.
Finally, unlike JACK WebBot and JadeGateway, Siebog agents are actually
executed on the client side, reducing the server load.

At the time of writing, the only other purely HTML5-based agent platform

3http://www.jabber.org/, retrieved on August 12, 2014.
4http://jaca-web.sourceforge.net/, retrieved on August 12, 2014.

http://www.jabber.org/
http://jaca-web.sourceforge.net/
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is described by (Jarvenpaa et al., 2013). There are several important differences
between the two systems. Siebog is more advanced on the client side, as it fully
utilizes the advantages of Web Workers and the WebSocket protocol. On the
server side, while Siebog relies on Java EE, their platform conveniently uses
Node.js, a JavaScript-based server framework5. Although this approach simpli-
fies the implementation of certain functionalities, such as agent mobility, it lacks
the cluster-based features of Java EE available in Siebog.

6.1.2 Comparing the server-side features of Siebog

Agentis is one of the earliest multiagent architectures (D’Inverno et al., 1998;
Kinny, 1999), built on top of the BDI reasoning engine dMARS (D’Inverno
et al., 2004). It placed a great emphasis on agent interaction protocols, which
were designed as reliable and efficient, supporting multiple concurrent execu-
tions. Agents were organized in a hierarchical fashion and communicated using
a strongly-typed language. Their capabilities were expressed in terms of services,
complex activities initiated by external clients and tasks, simpler activities used
to realize services. Unfortunately, the system does not appear to be developed
or maintained anymore.

Currently, there are several multiagent middlewares that offer agent load-
balancing and/or fault-tolerance. Cognitive Agent Architecture (Cougaar) is a
Java-based distributed agent architecture specifically designed for unstable envi-
ronments (BBN, 2004; Siracuse et al., 2007). Cougaar provides state persistence
and error recovery for its agents. Since its internal components are designed as
agents they too are protected by the fault-tolerance sub-system. Agent distribu-
tion and fault-tolerant features in Cougaar are more powerful than those found
in Siebog. However, the development of Siebog demonstrates how many of these
features can be realized with much less effort and much fewer resources, by using
standard and ready-made solutions in Java EE.

Magentix is a Linux-based multiagent middleware. It is built with the run-
time performance as the primary focus (Alberola et al., 2013). For this purpose,
the system is heavily based on low-level features offered by the operating system.
For example, each agent is represented by a Linux process with three internal
threads. The platform itself can be distributed across a number of computers.
Although it achieves remarkable runtime performance, Magentix lacks previously
described features of XJAF that stem from the use of computer clusters.

JADE is a popular, Java-based multiagent middleware (Bellifemine et al.,
2005, 2007). It supports the development of both reactive and cognitive agents,
and features an extensive ecosystem of plug-ins. JADE’s agent containers can
be distributed across a computer network, and has a support for fault-tolerance
at the container level.

There are many differences between inner workings of JADE and Siebog. By
analyzing the source code of Siebog one can conclude that there is no messaging

5http://nodejs.org/, retrieved on August 12, 2014.

http://nodejs.org/
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infrastructure implementation; instead, the underlying Java Message Service6 is
used. The biggest difference is that JADE agents have to be manually distributed
among the containers, whereas in Siebog this process is performed automatically.
More concretely, a Siebog agent lives on top of the entire cluster and not on
a single computer. When it needs to process a message it can do so on any
computer available. As shown by (Mitrović et al., 2014b), Siebog represents a
better solution for applications that need to launch large populations of agents
(e.g. Ilie et al., 2011), and/or need to provide high-level of fault-tolerance. For
example, JADE consumes a single thread per agent and has a pre-fixed number of
message processing threads. In Siebog, these numbers are increased or decreased
automatically depending on the current load.

So far only a few agent middlewares have been built using Java EE. Agent
Developing Framework (Nichifor and Buraga, 2004) employed a minimum set
of Java EE technologies for some of its functionalities but does not seem to be
developed anymore. Voyager7 is a commercial product and more of an enterprise
middleware with agent support, than a fully-featured multiagent framework.

Whitestein LS/TS represents a comprehensive set of development tools, a
UML-based modeling language and a high-level Java library for writing and de-
ploying agents (Rimassa et al., 2005). It is offered in three different editions
– Personal, Business, and Enterprise, with the first two running on Java SE
and the third one employing Java EE technologies. Due to the high-level li-
brary an agent is written only once and can run on any of the editions. The
Enterprise edition can be run on top of a computer cluster in order to provide
fault-tolerance. However, since this edition is a commercial product, a deeper
comparison with Siebog could not be provided.

Finally, as it can be concluded from the presented analysis, none of the
described multiagent middlewares provides the combination of features available
in Siebog, namely the HTML5-based agent support on the client side, and the
Java EE-based agent support for clustered environments on the server side. This
combination of functionalities is in line with modern approaches to enterprise
web application development, enabling an easier integration of Siebog and its
agents into mainstream enterprise solutions.

6.2 Reasoning and cognitive architectures

Throughout the literature, concrete system architectures developed as part of
the AGI research are referred to as cognitive or reasoning. Although the two
terms denote similar things, there are some differences. As discussed in (Wang,
2006, 2013), reasoning is performed at a higher-level of abstraction and includes
one or more cognitive functions, such as decision making and learning. It is not
concerned with lower-level details, such as perceptual and motor skills, often

6http://www.oracle.com/technetwork/java/index-jsp-142945.html, retrieved on Au-
gust 12, 2014.

7http://www.recursionsw.com/products/voyager/voyager-intro.html, retrieved on Au-
gust 12, 2014.

http://www.oracle.com/technetwork/java/index-jsp-142945.html
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found in cognitive architectures.
Cognitive architectures can generally be organized into three categories: sym-

bolic, emergent or connectionist, and hybrid (Duch et al., 2008; Goertzel et al.,
2010b; Oentaryo and Pasquier, 2008; Polk and Seifert, 2002). Symbolic architec-
tures manipulate symbols at a higher level of abstraction, whereas the emergent
architectures incorporate individual units for processing lower-level signals that
flow through the network. Hybrid architectures represent combinations of the
earlier two.

Obviously, DNARS is a symbolic reasoning architecture. This section first
analyzes a number of well-established symbolic and hybrid reasoning and cog-
nitive architectures. For additional information on these and other systems, see
e.g. (Chong et al., 2007; Duch et al., 2008; Goertzel et al., 2010b; Oentaryo and
Pasquier, 2008; Polk and Seifert, 2002; Thorisson and Helgasson, 2012). After-
wards, the focus will be on concrete BDI implementations, i.e. those used by
the multiagent community.

6.2.1 Symbolic and hybrid architectures

ACT-R is a hybrid cognitive architecture, based on the so-called Unified Theo-
ries of Cognition (Newell, 1994), as well as the cognitive neuroscience research
(Anderson et al., 2004; Duch et al., 2008; Lebiere and Anderson, 1993). For
example, the ACT-R operation is based to a certain extent on the experimen-
tal data obtained from neuroimaging, such as Functional Magnetic Reasoning
Imaging (fMRI) and by observing how different parts of the brain interact dur-
ing the reasoning process. As such, ACT-R can also be used as a framework for
emulating human reasoning.

The most important components of the ACT-R architecture include the
perceptual-motor sub-system, for obtaining visual information about the world
and performing physical actions, the goal module, which manages the system’s
intentions, and the declarative module, which holds the system’s overall knowl-
edge (Anderson et al., 2004). A limited amount of the information from each
component is stored into corresponding buffers, to be used by the central produc-
tion system for component coordination. Symbolic pieces of information (chunks
in declarative, or productions in procedural knowledge) are also described by nu-
merical parameters, allowing the construction of a associative memory/network
(Duch et al., 2008; Lebiere and Anderson, 1993).

ICARUS is a symbolic cognitive architecture with several types of memories
(Duch et al., 2008; Langley and Choi, 2006). Its perceptual memory includes
descriptions of observed objects, the belief memory describes relations among
objects, while the conceptual memory holds general knowledge. In each inference
cycle, the system observes its environment and creates a set of percepts. The
percepts are then matched against the conceptual knowledge to deduce new be-
liefs. Additional two memories are introduced to guide and control the system’s
behavior. Goal memory includes the system’s actively managed goals, while
the skill memory describes complex, hierarchical activities that the system can
perform. It is worth noting that, among the cognitive architectures described
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in this sub-section, the architecture of ICARUS bears the closes resemblance to
the BDI agent architecture.

OpenCog represents a general-purpose framework for AGI researchers. It is
not a cognitive architecture per se but a collection of reusable modules, which
provide data structures and algorithms for building concrete cognitive architec-
tures (Hart and Goertzel, 2008). Several systems have been built on OpenCog,
including the OpenCog Prime and OpenCogBot cognitive architectures (Go-
ertzel, 2009; Goertzel et al., 2010a).

OpenNARS is a reference open-source implementation8 of non-axiomatic rea-
soning (Wang, 2006, 2013). The latest version implements the logic of all 9 layers
of NAL as defined in (Wang, 2013). Its architecture consists of the memory mod-
ule, the inference engine, and a control mechanism, which handles the system’s
reasoning cycles (Wang, 2006).

Soar is one of the earliest, and a well-known symbolic cognitive architecture
(Duch et al., 2008; Laird, 2012; Laird et al., 2012). As ACT-R, it represents
a concrete realization of the Unified Theories of Cognition. Soar programs are
specified in the form of if-then production rules, which, in turn, are used to select
and apply operators and execute actions. The system’s knowledge is divided into
the long-term and working memory. The long-term memory can be procedural,
containing the knowledge on how to do things, semantic, containing declara-
tive knowledge about the world, and episodic, which summarizes the previous
experience.

The working memory of Soar contains knowledge that is relevant to the cur-
rent situation, and is directly tied to the perception, action, and decision making
modules. Several extensions of the core Soar architecture have been proposed
as well, including the use of Reinforcement learning in operator selection, visual
imagery modules, semantic and episodic learning, etc. (Duch et al., 2008; Laird,
2008).

OpenNARS and DNARS represent concrete realization of non-axiomatic rea-
soning. Their differences from other cognitive and reasoning architectures stem
from the use of NAL as the underlying formalism. For example, no other system
deals with the issue of insufficient knowledge and resources to the degree done in
NAL. In addition, unlike many systems described here, OpenNARS and DNARS
are more focused on emulating the human thought processes at a higher level
of abstraction, rather than trying to accurately model the human brain (Wang,
2006). However, it remains to be seen which approach works the best, as all the
systems are yet far from reaching the goal of building a “thinking machine.”

DNARS is built by combining NAL and the Big Data paradigm, because the
two try to solve a similar issue: how to handle and process large amounts of in-
formation with limited time and resources. NAL, for example, includes inference
rules that deal with knowledge inconsistencies only when necessary, e.g. when
there are different answers to the same question. It also includes constructs for
combining individual pieces of information and reducing the amount of raw in-
formation. Similarly, the NoSQL database used in DNARS includes a number

8https://github.com/opennars/opennars, retrieved on August 12, 2014.

https://github.com/opennars/opennars
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of techniques for dealing with large amount of information and strict time con-
straints, and temporarily sacrifice information consistency if needed. Therefore,
in DNARS we combine the “best of both worlds” in an efficient manner.

There are some important differences between OpenNARS and DNARS.
OpenNARS has been developed for a significantly longer period of time, and
is a more mature product. In the latest version, OpenNARS implements all
layers of NAL, and includes more advanced control mechanisms. The main ad-
vantage of DNARS, however, is in the organization of its backend knowledge
base. That is, DNARS is currently capable of reasoning over much larger knowl-
edge bases than OpenNARS. By utilizing modern approaches to large-scale data
processing, DNARS can easily be used to, for example, realize the case study
presented in Section 5.4.

6.2.2 Concrete BDI implementations

As noted, BDI is to most popular model for developing intelligent agents. Over
time, several interesting concrete realization of the model has been proposed
(Bordini et al., 2007; Braubach et al., 2013; D’Inverno et al., 2004; Georgeff and
Lansky, 1987; Hindriks, 2014; Jarvis et al., 2010; Nunes et al., 2011).

BDI4JADE extends JADE with the support for BDI agents (Nunes et al.,
2011). Its authors argue that, although sometimes convenient, agent-oriented
programming languages usually represent a barrier that limits the wider adoption
of the BDI model. Therefore, the BDI4JADE framework is based on pure Java.

BDI4JADE agents are defined through their capabilities, which include plans
and relevant beliefs along with public interfaces. Additional essential compo-
nents include desires, intentions and goals, with their usual meanings, events
that signal changes in the goal and belief bases, as well as strategies for cus-
tomizing the reasoning cycles. A reasoning cycle includes a number of steps
(Nunes et al., 2011), which can be summarized as follows. The agent first re-
vises its belief base, removes completed goals, and then proceeds to choosing a
set of applicable goals (i.e. desires). A subset of desires is selected for achieve-
ment becoming the agent’s intentions. Finally, active intentions are associated
with plans that can fulfill them.

Procedural Reasoning System (PRS) is one of the earliest agent architec-
tures based on the BDI model (Georgeff and Lansky, 1987). It includes four
databases, containing agent’s beliefs, goals, declarative procedures (i.e. plans),
and intentions (i.e. active plans). These databases are managed the interpreter,
which operates in reasoning cycles. In each cycle it selects applicable plans,
whose pre-conditions match the current beliefs and goals. One applicable plan
is then selected, placed on the intention stack, and then executed. During the
execution, new beliefs and/or goals may be generated, which will create new in-
tentions. Finally, it is worth noting that multiple PRS interpreters can operate
in parallel and communicate with each other.

More recently, PRS has been extended in form of the Distributed Multi-
Agent Reasoning System (dMARS) (D’Inverno et al., 2004). In addition to
beliefs, goals, plans, and intentions, dMARS supports external and internal ac-
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tions, which, respectively, affect the environment or the agent’s state. A plan
can include the total of six components: a triggering event, pre-conditions, a
body, a maintenance condition which must hold throughout the plan’s execu-
tion, and two sets of internal actions to be executed if the plain succeeds or fails.
dMARS has reportedly seen some important practical applications, including
NASA space shuttle fault diagnosis, air traffic control, supply chain manage-
ment, etc. (Mascardi et al., 2005)

GOAL is a practical agent-oriented programming language (Hindriks, 2014,
2009). The mental state of a GOAL agent is defined through a static knowledge
base, a dynamic belief base, as well as different types of goals. Active goals
are removed from the agent’s mental state using the blind commitment strategy,
which means that only successfully achieved goals are dropped (Hindriks, 2014,
2009; Rao and Georgeff, 1993). The action execution strategy is guided by so-
called action rules. They are specified in the form of IF mental state THEN
action. If the given mental state is true, the action is said to be applicable. An
action that is both applicable and enabled (Sub-section 1.4.4) is called an option.
Action rules can be checked in several way (e.g. in the order they are written,
randomly, etc.), and the first action that becomes an option is executed.

GORITE is a BDI framework that highlights teamwork as the main advan-
tage of the agent technology over other A(G)I approaches (Jarvis et al., 2010;
R onnquist, 2008). Therefore, a team of agents is viewed as a distinct entity,
with its own beliefs, desires, intentions, and goals. Each team member is as-
signed one or more roles, where a role is defined as a set of related goals (Jarvis
et al., 2010). When a goal needs to be achieved by the team, a subset of agents
with the required roles is selected and activated. The default sub-team selection
process can be customized by the end-user.

Jadex follows the object-oriented model for representing beliefs and goals,
instead of the more common approach based on logical formulae (Braubach
et al., 2013; Pokahr and Braubach, 2008). The Jadex infrastructure consist of
the agent platform (e.g. standalone or JADE), active components, and kernels.
Active components, broadly speaking, represent the merger of agents and service-
oriented systems, while kernels define internal workings of active components.
Here, the most important is the BDI agent kernel (Braubach et al., 2013). It
is based on the PRS described earlier, with the addition of the goal deliberation
technique for maintaining a consistent set of goals.

It is worth noting that, among the BDI architectures described here, Jadex
is currently the most actively developed system. In the latest version, Jadex
agents can be written using pure Java (Pokahr et al., 2014). Different BDI
elements can be specified using annotations, which is also the approach used in
Siebog-DNARS integration.

Jason is a popular interpreter for an agent-oriented programming language
AgentSpeak and a reasoning engine for BDI agents (Bordini and Hubner, 2006;
Bordini et al., 2007). Agents are defined in terms of beliefs, goals, and plans. The
interpreter operates in reasoning cycles, divided into 10 individual steps. First,
the agent perceives its environment (generating a perceptual information), pro-
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cesses a single message received from another agent, while filtering-out “socially
unacceptable” messages, and updates its belief base accordingly. The remaining
six steps represent the core of agent’s reasoning and acting:

� A single event is selected to be processed. An event represents a change
in the agent’s mental state (e.g. a new belief has been added).

� A set of relevant plans, i.e. plans corresponding to the selected event, is
constructed.

� Of those, a set of applicable plans (also called options) is determined.

� An applicable plan is put on a stack to become an intention. This is the
plan to which the agent will commit.

� An intention is selected from the stack.

� A single step of the selected intention is executed.

Jason is designed as a highly-customizable architecture, and has been inte-
grated with a number of other agent-based systems9.

NAL provides a number of advantages over the traditional BDI model. First
and foremost, NAL statements are associated with truth-values. In concrete
BDI implementations discussed earlier, there is no way of expressing the agent’s
confidence in a belief; it is left to the agent developer to somehow handle the
notion that a belief might not be true. NAL statements, on the other hand, are
beliefs in their true definition.

Additionally, unlike the BDI model, inconsistency resolutions (through back-
ward inference), learning (through forward inference), and working under the
assumption of insufficient knowledge and resources (e.g. compound terms dis-
cussed in Section 2.5), represent inherent features of NAL-based agents.

These are the main advantages of DNARS over the presented BDI systems.
Finally, as in OpenNARS-DNARS comparison, DNARS offers the possibility
of reasoning over much larger knowledge bases than any existing BDI system.
This opens up DNARS to a wider range of possible practical applications, as
demonstrated by the case study in Section 5.4.

6.3 Summary

Obviously, the work presented in this thesis belongs to the thriving scientific
areas. That is, multiagent middlewares, BDI agent architectures, as well as
general-purpose cognitive and reasoning systems, have received a great deal of
attentions from artificial intelligence and artificial general intelligence (AGI)
researchers and practitioners.

9http://jason.sourceforge.net, retrieved on August 12, 2014.

http://jason.sourceforge.net
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When compared to existing systems, the Siebog multiagent middleware of-
fers numerous advantages, which stem from the use of standard software de-
velopment techniques and principles. To recall, these include scalability and
fault-tolerance on the server, true platform independence on the client, as well
as cross-platform interaction, code sharing, and heterogeneous mobility. No
other existing multiagent middleware provides the benefits of both client-side
and server-side technologies to the degree achieved in Siebog.

As shown, many AGI researches and practitioners have moved away from
BDI as the model for developing intelligent software systems. This is also the
approach taken in Siebog: instead of the BDI model, intelligent agents in Siebog
rely on the non-axiomatic logic realized in form of a distributed system.

The next, and final, chapter of this thesis summarizes the completed work,
and also proposes the planned future course of development.



Chapter 7

Conclusions and Future
Work

Software agents represent one of the most consistent approaches to distributed
artificial intelligence, and distributed computing in general. Agents are, first
and foremost, social (artificial) entities. This allows them to share the workload,
cooperate and coordinate their actions, and even negotiate and compete against
each other in order to fulfill the target goals.

Agents need a run-time environment that supports their execution. The job
of this multiagent middleware is to provide, among other things, efficient and
reliable communication channels, a yellow-pages service, mobility, and execution
in distributed environments. A large part of the work presented in this thesis has
been focused on designing a novel multiagent middleware that provides these,
and other functionalities, but which also takes into an account the functional
requirements of modern enterprise and web applications.

As discussed thoroughly in Chapter 1, the two prevalent definitions of agents
include the so-called weak and strong notions of agency. According to the weak
notion, the main characteristics of agents include autonomous, reactive, pro-
active, and social behavior. The work presented in this thesis, however, is
concerned more with the strong notion, which also includes the concepts of
intelligent and human-like behavior.

7.1 The work done

The completed work and the main contributions of the thesis can be summarized
as follows.

First, Chapter 3 proposes an architecture of a new system for intelligent
agents. It discards the BDI model commonly used by the agent research com-
munity, and instead it aligns with the AGI research community. The proposed
system, named Distributed Non-Axiomatic Reasoning Systems (DNARS), uses
the Non-Axiomatic Logic (NAL) as its formal reasoning framework.

117
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As discussed in Chapter 2, NAL provides a well-defined syntax, experience-
grounded semantics, and a set of inference rules, but works under the assumption
of insufficient knowledge and resources (Wang, 2013). The main novelty of
DNARS, especially when compared to OpenNARS, is its ability to efficiently
handle large quantities of knowledge, while providing service to high numbers
of external clients. This ability was achieved by a uniquely designed backend
knowledge base, and a set of algorithms that adequately realize NAL inference
rules in these distributed, highly-scalable settings.

The second main contribution of the thesis, presented in Chapter 4, is the
new Siebog multiagent middleware. Although many multiagent middlewares al-
ready exist, none of them provides the full set of advantages offered by Siebog.
For example, the client-side of Siebog is executed in web browsers, without any
external requirements. Therefore, it is supported on a wide variety of hard-
ware and software platforms, such as desktop computers, smartphone and tablet
devices, Smart TVs, etc. On the server side, Siebog uses modern enterprise soft-
ware development standards, in order to provide high-availability of its agents,
namely through load-balancing, and state replication and failover.

However, the Siebog is more than a “sum of its parts.” Unlike existing
agent middlewares, it combines web and enterprise technologies into a unified
framework which allows for agent code sharing, heterogeneous agent mobility,
and cross-platform communication.

Finally, Siebog has been extended with the support for DNARS-based in-
telligent agents. The final result of this work is a multiagent middleware with
a unique architecture, and a unique reasoning system for intelligent agents. It
offers new and interesting ways of applying the agent technology in a range
of domains. An example of extending the DBpedia project by deriving new
structured knowledge has been shown in Section 5.4, while other possibilities
for practical application include intelligent virtual assistants (overview of agents
in knowledge management, 2006), systems with large agent societies (Ilie et al.,
2011), the domains of Internet of Things and smart environments (Nakashima
et al., 2010), etc.

As indicated earlier, this work is a long-term, ongoing research effort. The
completed work opens up an array of new questions, problems and possibilities
for further research. Some of the planned future research directions are discussed
in the next section.

7.2 Open questions and opportunities for future
work

The two main results of the thesis, Siebog and DNARS, offer several possibilities
for future research directions. Both as separate systems and parts of the unified
framework, they pose a number of challenges that need to be solved.

Obviously, the remaining layers of NAL need to be added to DNARS. As
shown in Section 5.4, currently implemented NAL layers are sufficient for simple
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reasoning tasks. The remaining layers, however, would provide agents with
higher-level reasoning capabilities. In particular (Wang, 2013):

� Starting from layer NAL-5, statements can be used as terms, and new
copulas (such as implication and equivalence) are supported.

� NAL-6 adds support for variables, and would enable agents to work with
more general rules.

� NAL-7 introduces the concepts of time and events, as well as temporal
connectors (e.g. sequential and parallel) and relations (e.g. before and
when).

� Procedural knowledge, in form of operations and goals, is added in NAL-8.

� Finally, agents based on NAL-9 would be capable of processing emotions,
and exhibit self-monitoring and self-control.

Regarding the Siebog middleware, several directions of improvements are
planned as well. For agent developers who insist on using the BDI model, we
plan to integrate Jason into the server-side of Siebog. This would enable AgentS-
peak/Jason agent to run in Java EE environments, and employ automatic load-
balancing and fault-tolerance.

An implementation of a higher-level, agent-oriented programming language
for Siebog, inspired by ALAS (Mitrović et al., 2012a), is planned as well. This
would bring the existing code sharing feature of Siebog to a new level, allowing
developers to write the agent code only once.

Finally, although fully functional on the server, the Siebog-DNARS integra-
tion needs to be further developed on the client side in order to allow direct
representations of NAL concepts. This could be achieved directly in JavaScript,
or via the proposed agent-oriented programming language.
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Prošireni izvod

Disertacija se sastoji iz 7 glava, podeljenih u tri dela. Deo I definǐse osnovne
pojmove. Glava 1 predstavlja opis generalnih principa i koncepata softverskih
agenata i agentske tehnologije uopšte, koji predstavljaju osnovnu temu dis-
ertacije. Glava 2 uvodi osnove tzv. Ne-Aksiomatske Logike (NAL) koja pred-
stavlja formalni okvir za rezonovanje korǐsćen u radu.

Deo II predstavlja glavne doprinose disertacije. U Glavi 3 je predstavl-
jena arhitektura Distribuiranog Sistema za Ne-Aksiomatsko Rasudivanje (eng.
Distributed Non-Axiomatic Reasoning System) (DNARS). DNARS je zasno-
van na principima NAL-a, u kombinaciji sa savremenim pristupima i standard-
ima za obradu velikih količina podataka. Njegova jedinstvena arhitektura mu
omogućuje da radi sa veoma velikim bazama znanja, te da odgovara na pitanja
korisnika u realnom vremenu. Pored arhitekture, za potrebe DNARS-a su razvi-
jeni i odgovarajući algoritmi koji mu omogućuju da efikasno izvršava zadate
operacije.

Glava 4 opisuje multiagentsku platformu Siebog1 koja kombinuje savremene
principe serverskog i klijentskog razvoja sistema u jedinstven programski okvir za
agente. Sa serverske strane, Siebog nudi automatsko rasporedivanje (eng. load-
balancing) agenata po čvorovima klastera, kao i otpornost na hardverske i soft-
verske greške (eng. fault-tolerance). Sa klijentske strane, Siebog funkcionǐse kao
platformski-nezavistan sistem, odnosno dizajniran je tako da može da se izvršava
na velikom broju uredaja, poput klasičnih desktop računara, “pametnih” tele-
fona i tableta, “pametnih” televizora, itd. Serverska i klijentska strana su,
dalje, integrisane u jedinstveni okvir koji donosi vǐseplatformsku komunikaciju
agenata, heterogenu mobilnost, kao i deljenje koda. Konačno, Siebog je povezan
sa DNARS-om, kako bi se omogućio razvoj inteligentnih multiagentskih sistema
sa jedinstvenim mogućnostima.

Tri konkretna primera praktičnih primena multiagentskih sistema zasnovanih
na DNARS-u i Siebog-u su data u Glavi 5. Prvi primer demonstrira kako se
pomoću Sieboga može razviti sistem čije funkcionalnosti odgovaraju postojećim
mrežama za razmenu sadržaja. Drugi primer predstavlja rezultate eksperimenta
koji pokazuju kako DNARS može davati odgovore na veliki broj pitanja, i to u

1U staroslovenskoj mitologiji, Siebog je bio bog ljubavi i braka. Naziv tako oslikava činjenicu
da je predložena platforma nastala spajanjem dva postojeća sistema - XJAF i Radigost. Sa
druge strane, Radigost je bio bog gostoprimstva (radi, odnosno dragi gost), što govori da su
Radigost agenti dragi gosti klijentskih uredaja.
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122 PROŠIRENI IZVOD

realnom vremenu. Treći i poslednji primer pokazuje kako se inteligentni multi-
agentski sistem zasnovan na Siebog-u u DNARS-u može iskoristiti za praktičnu
primenu generisanja novog struktuiranog znanja.

Konačno, Deo III opisuje relevantna postojeća istraživanja, poredi ih sa rezul-
tatima disertacije (Glava 6) i, na kraju, sumira rezultate i predlaže mogućnosti
za dalja istraživanja (Glava 7).

Osnovni pojmovi i definicije

Agenti

Iako ne postoji opšte prihvaćena definicija softverskih agenata (ili, jednostavno
agenata), isti se mogu opisati kao autonomni sofverski entiteti, sa različitim
nivoima inteligencije, koji su sposobni da deluju samostalno kako bi postigli
zadate ciljeve (Wooldridge, 1999). Nedostatak sveobuhvatne definicije agenata
potiče iz njihovih brojnih praktičnih primena; na primer, dok se neki problemi
mogu uspešno rešiti upotrebom mobilnih agenata (Medvidovic and Edwards,
2010; Urra et al., 2010), za druge mobilnost samo uvodi nepotreban nivo kom-
pleksnosti (Carzaniga et al., 2007).

Osnovna tema doktorske disertacije su inteligenti agenti, tj. agenti koji is-
poljavaju odredeni nivo inteligencije u vidu fleksibilnog, adaptivnog delovanja.
Formalnije, u disertaciji se pod pojmom inteligentni agent podrazumeva agent
definisan na sledeći način:

“Inteligentnog agenta ili agentsku arhitekturu definǐsemo tako da
sadrži eksplicitnu, simboličku reprezentaciju sveta i u kojoj se odluke
(npr. o tome koje akcije primeniti) odreduju na osnovu logičkog
(ili bar pseudo-logičkog) rasudivanja zasnovanog na prepoznavanju
obrazaca i manipulaciji simbola”. (str. 130 Wooldridge and Jennings,
1995)

Tokom godina je predloženo nekoliko internih arhitektura agenata. Reaktivni
agenti su agenti koji kontinualno prilagodavaju svoje ponašanje promenama u
svom okruženju (Bordini et al., 2007; Salamon, 2011; Wooldridge, 1999). Kao
takvi, pogodni su za dinamična okruženja. BDI arhitektura (eng. Belief-Desire-
Intention), sa druge strane, koristi koncepte verovanja, želja i namera kako bi
opisala funkcionisanje agenta (Rao and Georgeff, 1995). Verovanja su činjenice
za koje agent pretpostavlja da su tačne, iako to zapravo ne mora biti slučaj. Želje
opisuju stanja sveta koje bi agent hteo da postigne, dok su namere želje kojima se
agent posvetio. BDI arhitektura predstavlja najpopularniju i najvǐse istraženu
arhitekturu inteligentnih agenata, sa brojnim teorijskim osnovama (Cohen and
Levesque, 1990; Dunin-Keplicz and Verbrugge, 2010; Guerra-Hernandez et al.,
2009; Singh et al., 1999; van der Hoek and Wooldridge, 2013) i praktičnim re-
alizacijama (Bordini et al., 2007; Braubach et al., 2013; D’Inverno et al., 2004;
Georgeff and Lansky, 1987; Hindriks, 2014; Jarvis et al., 2010; Nunes et al.,
2011).
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Agenti veoma retko funkcionǐsu samostalno, već rade u grupama, odnosno
u agentskim društvima. Zapravo, ovaj socijalni aspekt je jedan od najbitnijih
karakteristika agenata, odnosno karakteristika koja izdvaja agente od drugih
grana veštačke inteligencije. Unutar grupe, agentska interakcija može imati ra-
zličite forme, kao što su: direktna razmena poruka, koordinacija akcija, koop-
eracija i razmena znanja i iskustava, pregovaranje u cilju prevazilaženja kon-
flikata ili, u slučaju koristoljubivih agenata, tačkmičenje i sabotaža (Huhns and
Stephens, 1999; Salamon, 2011). Interakcija socijalnih agenata je temeljno is-
tražena naučna oblast, koja je rezultovala brojnim standardima i protokolima,
kao što su Contract Net (FIPA CNet), sistem table (eng. the blackboard system)
(Corkill, 2003; Huhns and Stephens, 1999), kooperativno učenje (Panait and
Luke, 2005; Sen and Weiss, 1999), inteligencija roja (eng. swarm intelligence)
(Blum and Merkle, 2008; Panigrahi et al., 2011), itd.

Kako bi uspešno obavljali svoje zadatke, agentima je neophodna odgovarajuća
arhitektura. Ove arhitekture, poznate pod nazivom multiagentski programski
okviri ili multiagentske platforme (eng. multiagent framework ili multiagent plat-
form, još i multiagent middleware), uključuju efikasnu infrastrukturu za agentsku
komunikaciju, obezbeduju podršku za mobilnost agenata, omogućuju agentima
da objavljuju svoje mogućnosti i da pretražuju mogućnosti drugih agenata, itd.

Formalnije, funkcionalnosti multiagentskog programskog okvira su standard-
izovane u okviru specifikacije za upravljanje agentima koju je donela Fondacija
za inteligentne fizičke agente (eng. Foundation for Intelligent Physical Agents)
(FIPA) (FIPA Home). Ova FIPA specifikacija definǐse tri osnovne komponente
multiagentskog okvira:

� Sistem za upravljanje agentima (eng. Agent Management System, AMS)
(FIPA Ams), zadužen za registraciju i deregistraciju agenata, kao i pre-
tragu registrovanih agenata.

� Moderator direktorijuma (eng. Directory Facilitator, DF) (FIPA Ams),
koji ima ulogu “žutih strana”, odnosno objavu i pretraživanje mogućnosti
agenata.

� Servis za transport poruka (eng. Message Transport Service, MTS) (FIPA
Mts), čiji je zadatak prenos poruka izmedu agenata.

Specifikacija još definše AMS i MTS kao obavezne komponente konkretne
multiagentske platforme, dok je DF opciona komponenta. Primer unutrašnje
organizacije agentske platforme i odnos komponenti je dat na Slici 1.5.

Tokom godina je razvijen veliki broj konkretnih multiagentskih platformi,
ali se, nažalost, relativno malih broj njih i dalje aktivno razvija (Bădică et al.,
2011). Neke od popularnijih i uticajnijih platformi su opisane u Poglavlju 1.3,
kao i u Glavi 6.

Ne-Aksiomatska Logika

Ne-Aksiomatska Logika (eng. Non-Axiomatic Logic) (NAL) je formalizam za
specifikaciju sistema za rezonovanje u okviru Veštačke opšte inteligencije (eng.
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Artificial General Intelligence) (Wang, 2006, 2013; Wang and Awan, 2011). NAL
obuhvata gramatiku, odnosno alfabet, skup pravila za izvodenje, i semantičku
teoriju. Za razliku od mnogih drugih formalizama koji se koriste u račnuarstvu,
medutim, NAL je logika termova (Smith, 2012; Sommers and Englebretsen, 2000;
Wang, 2013): rečenice su date u obliku subjekat-relacija-objekat, pri čemu su
subjekat i objekat termovi.

Pojam ne-aksiomatska označava da je logika pogodna za razvoj sistema koji
funkcionǐsu u uslovima nedovoljnog znanja i resursa (Wang, 2013; Wang and
Awan, 2011). To najpre znači da je znanje koje sistem poseduje nesigurno i
ne obavezno konzistentno. Novi dokazi se mogu pojaviti u bilo kom momentu,
mogu imati bilo kakav sadržaj i mogu promeniti istinitost bilo koje postojeće
rečenice. Pored toga, sistem najčešće nema dovoljno resursa (u smislu vremena,
memorijskog prostora, itd.) da konsultuje svoje celokupno znanje kako bi rešio
problem. Dodatno, sistem ne može primeniti pun skup pravila za izvodenje niti
prati neki unapred zadati algoritam.

NAL uključuje brojne mehanizme za rad u uslovima nedovoljnog znanja i
resursa. Na primer, može efikasno upravljati nekonzistentnim bazama znanja,
te sumirati postojeće znanje i time umanjiti ukupan broj rečenica u bazi.

Čitava logika je organizovana u devet nivoa. Svaki nivo uvodi dodatnu gra-
matiku i pravila izvodenja, te proširuje ekspresivnost logike i mogućnosti sistema
koji su na njoj zasnovani. Prvi nivo, u oznaci NAL-1, definǐse osnovnu relaciju,
nasledivanje.

Definicija 7.1. Rečenica nasledivanja je rečenica oblika S → P , gde su S i P
termovi koji označavaju, redom, subjekat i objekat, dok → označava relaciju
nasledivanja (Wang, 1994, 2006, 2013).

Nasledivanje je po definiciji tranzitivno i refleksivno, pri čemu se rečenice
oblika S → S nazivaju tautologije i najčešće se ne uključuju u bazu znanja
sistema. Rečenica nasledivanja S → P neformalno označava S je tipa P, npr.
mačka je tip životinje. U prvom nivou, subjekat i predikat su atomski termovi
(tj. reči). Na vǐsim nivoima, termovi se mogu sastojati od vǐse reči povezanih
konektorom, te mogu biti i cele rečenice.

NAL koristi tzv. semantiku zasnovanu na iskustvu (eng. experience-grounded
semantic) (Rodriguez and Geldart, 2009; Wang, 2005). Po ovoj semantici, term
S ima značenje za sistem samo ako postoji u prethodnom iskustvu sistema. Na
osnovu relacije terma S sa drugim termovima utvrduju se količine pozitivnih i
negativnih dokaza, na osnovu kojih se, dalje, izvode istinitosne vrednosti rečenica.

Definicija 7.2. Istinitosna vrednost NAL rečencice je par realnih brojeva u in-
tervalu [0, 1], koji se nazivaju učestalost (f) i poverenje (c). Učestalost pred-
stavlja odnos pozitivnih i ukupnih dokaza, dok poverenje definǐse koliko će
učestalost biti stabilna kada se pojave novi dokazi. (Wang, 1994, 2001b, 2006,
2013).

Pravila izvodenja u NAL-u imaju silogistički oblik (Smith, 2012). Silogističko
pravilo izvodenja prihvata dve rečenice sa deljenim termom i izvodi novi za-
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ključak koji obuhvata preostale termove. Pravila izvodenja u NAL-u su organizo-
vana u tri grupe (Wang, 2006, 2013): izvodenja unapred (eng. forward inference)
izvode nove zaključke, izvodenja unazad (eng. backward inference) odgovaraju
na pitanja, dok lokalna izvodenja (eng. local inference) rade sa nekonzistentnim
rečenicama.

Tri osnovna pravila izvodenja unapred u NAL-1 su dedukcija, indukcija i
abdukcija, koje se, redom, definǐsu na sledeći način (Wang, 2001a, 2013):

{M → P 〈f1, c1〉, S →M〈f2, c2〉} ` S → P 〈f1f2, f1f2c1c2〉 (7.1)

{M → P 〈f1, c1〉,M → S〈f2, c2〉} ` S → P 〈f1,
f2c1c2

f2c1c2 + k
〉 (7.2)

{P →M〈f1, c1〉, S →M〈f2, c2〉} ` S → P 〈f2,
f1c1c2

f2c1c2 + k
〉 (7.3)

Sledeći nivo, NAL-2, uvodi novu relaciju – sličnost – i odgovarajući skup
novih pravila izvodenja.

Definicija 7.3. Sličnost, u oznaci ↔ , je relacija koja se definǐse kao simetrično
nasledivanje: (S ↔ P )⇔ (S → P ) ∧ (P → S) (Wang, 2009, 2013).

Rečenica sličnosti S ↔ P neformalno označava S je P, npr. tigar je mačka.
Kao kod nasledivanja, rečenice oblika S ↔ P su tautologije, koje se najčešće ne
uključuju u bazu znanja sistema.

Relacija sličnosti omogućuje uvodenje tri nova pravila izvodenja (Wang, 2006,
2009, 2013): poredenje, analogiju i nalikovanje (eng. resemblance). Poredenje
postoji u dve varijante, koje su poput indukcije odnosno abdukcije, pri čemu je
jedna od premisa rečenica sličnosti. Analogija je poput dedukcije, pri čemu je,
ponovo, jedna od premisa rečenica sličnosti. Konačno, nalikovanje prihvata dve
rečenice sličnosti kao premise i izvodi zaključak koji je takode rečenica sličnosti.

Nivo NAL-3 uvodi mogućnost rada sa složenim termovima. Složeni term se
sastoji od jednog ili vǐse atomskih ili složenih termova, koji su povezani odgo-
varajućim konektorom.

Definicija 7.4. Složeni term je term oblika {T1 con T2 con . . . con Tn}, gde con
predstavlja konektor2, a T1 . . . Tn su atomski ili složeni termovi, n ≥ 1 (Wang,
2006, 2013).

NAL-3 podržava četiri tipa standardnih konektora: proširujući presek (∩),
sužavajući presek (∪), proširujuća razlika (–), i sužavajuća razlika (	), defin-
isanih u jednačinama 2.26 do 2.29. Konačno, uvedeno je i novo pravilo izvodenja,
kompozicija, koje koristi ova četiri konektora kako bi sumiralo postojeće znanje
u bazi i time efektivno smanjilo broj rečenica sa kojima sistem mora da radi.

Kako bi podržao proizvoljne relacije izmedu termova, nivo NAL-4 najpre
uvodi novi konektor, proizvod, u oznaci ×. Ovaj konektor definǐse odnos izmedu
komponenti složenih termova:

2Podržana je i infiksna notacija, tj. {con T1 T2 . . . Tn}
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((S1 × · · · × Sn)→ (P1 × . . .× Pn))⇔ ((S1 → P1) ∧ . . . ∧ (Sn → Pn)) (7.4)

Definicija 7.5. Relacioni term R se definǐse kao atomski term koji je sa složenim
proizvodnim termom povezan relacijom nasledivanja, odnosno:
(T1 × T2)→ R ili R→ (T1 × T2) (Wang, 2006, 2013).

NAL-5 uvodi rečenice vǐseg reda, odnosno rečenice čiji su termovi rečenice.
NAL-6 donosi podršku za promenljive, NAL-7 uvodi pojam vremena, dok NAL-8
uključuje podršku za operacije, odnosno proceduralne rečenice. Konačno, NAL-
9 definǐse samokontrolu i samo-praćenje. Disertacija se, medutim, detaljnije
bavi samo nivoima NAL-1 do NAL-4. Kako je pokazano u Glavi 5, sistem za
rasudivanje zasnovan na prva četiri nivoa NAL-a je dovoljan za razvoj inteligent-
nih agenata sa konkretnim, praktičnim primenama.

Rezultati disertacije

DNARS

Za sistem u domenu veštačke inteligencije, mogućnost rada sa velikim bazama
znanja predstavlja jednu od ključnih osobina (Hovy et al., 2013). Distribuirani
sistem za ne-aksiomatsko rasudivanje (eng. Distributed Non-Axiomatic Reason-
ing System) (DNARS) je sistem za rasudivanje koji je zasnovan na NAL-u i
generalnim principima razvoja ne-aksiomatskih sistema za rasudivanje (Wang,
2006, 2013). Novine koje DNARS donosi su jedinstvena arhitektura i odgo-
varajući skup algoritama koji mu upravo omogućuju da radi sa veoma velikim
bazama znanja.

NAL se koristi kao formalizam u DNARS-u, jer se “filozofija” iza ove logike
uklapa u opšte ciljeve DNARS-a. Kao što je ranije rečeno, NAL je izgraden
oko koncepta nedovoljnog znanja i resura. Na primer, za razliku od mnogih
formalizama koji se koriste u agentskoj tehnologiji (npr. Guerra-Hernandez et al.,
2009; Mora et al., 1999; Singh et al., 1999), NAL može da radi sa nekonzistentnim
bazama znanja, te da se oslanja na pravila revizije i izbora kako bi rešio ove
probleme (Wang, 2013). S tim u vezi, sama arhitektura DNARS-a i tehnologije
koje su korǐsćene za njenu realizaciju takode žrtvuju konzistentnost podataka u
cilju skalabilnosti (Gilbert and Lynch, 2002; Hewitt, 2010).

Arhitektura DNARS-a je predstavljena na Slici 3.1. Osnovne komponente
predloženog sistema su:

� Sistem za odlučivanje: odgovara na pitanja korisnika.

� Sistem za izvodenje unapred : izvodi nove zaključke i znanja.

� Kratkotrajna memorija: sadrži rečenice koje su od značaja za trenutni
ciklus rasudivanja i probleme koje treba rešiti.
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� Oblast znanja: podskup celokupne baze znanja koji sadrži medusobno za-
visne ili povezane rečenice.

� Pozadinska baza znanja: celokupno znanje i iskustvo sistema.

� Rukovodilac dogadajima: upravlja dogadajima koji opisuju promene u bazi
znanja.

Prilikom definisanja arhitekture DNARS-a, posebna pažnja je posvećena or-
ganizaciji baze znanja. Baza je dizajnirana u vidu distribuirane, skalabilne
arhitekture koja se sastoji iz tri nivoa. Na najnižem nivou, celokupno znanje
je izdeljeno i podeljeno na vǐse računara u klasteru. Upotrebljeno je tzv. hor-
izontalno skaliranje: kako se količina znanja povećava, performanse sistema se
održavaju jednostavnim dodavanjem novih računara u klaster (Michael et al.,
2007). Ovaj pristup ima dve glavne prednosti:

� Baza znanja može da sadrži i upravlja sa velikim količinama podataka.
Uvodenjem odgovarajućih pravila za distribuciju podataka, omogućeno je
brže pronalaženje i pribavljanje relevantnih rečenica.

� Omogućena je otpornost sistema na greške, jer se podaci kopiraju na
računare klastera; tj. ne postoji jedna tačka neuspeha i sistem može nas-
taviti da funkionǐse bez obzira na hardverske ili softverske greške.

Na drugom, srednjem nivou, celokupno znanje je podeljeno na jednu ili vǐse
Oblasti znanja. Oblasti organizuju podatke iz nižeg nivoa u logičke kategorije
i omogućuju mu da radi sa podskupom znanja. Tokom izvršavanja, sistem
može konsultovati jednu ili vǐse oblasti. Ova organizacija takode podržava vǐse-
klijentsku prirodu DNARS-a. Konkretno, znanje koje pripada jednom klijentu
može biti smešteno u jednu oblast. Ali, vǐse klijenata može raditi sa istom
oblašću (jednom ili vǐse) i time deliti znanje i stečeno iskustvo.

Konačno, Kratkotrajna memorija se nalazi na trećem, najvǐsem nivou ap-
strakcije. Sadrži znanje koje je direktno dostupno pravilima za izvodenje, te
predstavlja polaznu osnovu za rasudivanje u DNARS-u. Glavni zadatak Kratko-
trajne memorije je da služi kao modul za optimizaciju izvršavanja. Njen sadržaj
bi trebalo u potpunosti da stane u radnu memoriju jedne mašine, pružajući
maksimalne performanse. Kada se skup relevantnih ciklusa rasudivanja završi,
sadržaj Kratkotrajne memorije se upisuje u i spaja sa odgovarajućim Oblastima
znanja (jednom ili vǐse).

Za klijente je veoma važno da budu obavešteni o promenama u bazi znanja,
naročito ako vǐse klijenata deli istu Oblast znanja. Na primer, klijent može
želeti da preduzme niz akcija kao odgovor na novostečeno znanje. Da bi podržao
ove funkcionalnosti, DNARS uključuje Rukovodioca dogadajima. Promena u
Oblasti znanja može generasati jedan ili vǐse dogadaja, koji će zatim biti priku-
pljeni od strane Rukovodioca i poslati odgovarajućim klijentima. Na ovaj način,
DNARS nudi mogućnost razvoja reaktivni inteligentnih agenata (Wooldridge
and Jennings, 1995).
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Nakon predstavljanja opšte specifikacije DNARS-a, njegove arhitekture i os-
novnih funkcionalnosti u Poglavlju 3.2, predložena su i dva moguća pristupa za
konkretnu realizaciju sistema.

Baza znanja zasnovana na NAL rečenicama se zapravo može predstaviti
pomoću tzv. grafa osobina (eng. property graph). Graf osobina je usmereni graf
za različitim tipovima grana i sa, dodatno, osobinama “zakačenim” za čvorove
i grane (Robinson et al., 2013; Rodriguez and Shinavier, 2010). U ovakvog
grafu, termovi NAL rečenica su predstavljeni čvorovima, relacije (nasledivanje i
sličnost) su predstavljane odgovarajućim granama, dok su istinitosne vrednosti
rečenica osobine zakačene za ove grane.

Kada se baza znanja predstavi grafom osobina, pravila izvodenja se mogu
realizovati u vidu algoritama za pretraživanje i procesiranje grafova, kao što je
opisano u Poglavlju 3.5. Na primer, neka je DNARS-u dat zadatak da pronade
najbolji odgovor na pitanje oblika S → ?. Odnosn, potrebno je pronaći term
koji nedostaje, tako da odgovarajuća rečenica ima najbolju istinitosnu vrednost
(Poglavlje 2.8). U ovoj situaciji, DNARS prikuplja sve grane koje napuštaju
čvor S, sortira ih po odgovarajućim kriterijumima i vraća ulazni čvor najbolje
grane.

Kao alternativno rešenje, u Poglavlju 3.7 je iskorǐsćen model programiranja
poznat pod nazivom MapReduce (Dean and Ghemawat, 2008; White, 2012).
Predstavljeni su algoritmi koji funkcionǐsu u strogo distribuiranim sistemima,
deleći bazu znanja na kolekcije i realizujući pravila izvodenja u obliku funkcija
nad tim kolekcijama. Na taj način je velike količine podataka moguće veoma
efikasno obraditi u skoro realnom vremenu, kao što zahteva data specifikacija
DNARS-a.

Problem je, medutim, u tome što je realizacija zasnovana na MapReduce
modelu komplikovana i često teško razumljiva. Time je, dugoročno gledano,
teška za održavanje i dodavanje novih funkcionalnosti iz npr. vǐsih nivoa NAL-
a. S toga DNARS u osnovni podešavanjima koristi algoritme za izvodenje koji
su zasnovani na grafovima osobina.

Pri realizaciji DNARS-a na osnovu grafa osobina korǐsćeni su savremeni stan-
dardi za razvoj sistema za obradu velikih količina podataka, te trenutno najbolje
tehnologije. Kao rezultat, kao što je prikazano u Poglavlju 5.3, DNARS može
u realnom vremenu davati odgovore na, na primer, hiljade pitanja u sekundi,
pri konsultovanju baze sa preko 70 miliona rečenica. Odnosno, odgovarajuća
baza je graf sa oko 60 miliona čvorova i oko 77 miliona grana; ovakav graf se,
prema današnjim standardima, može okarakterisati kao velik (npr. McColl et al.,
2014)).

Siebog

Kao što je zaključeno u (Bordini et al., 2006; Bădică et al., 2011), trenutno pos-
toji relativno veliki broj multiagentskih platformi – kako besplatnih, tako i onih
koji se plaćaju. Medutim, nijedna postojeća platforma nije u potpunosti iskoris-
tila savremene pristupe razvoju softvera. Iako su u postojećim sistemima uloženi
neki napori kako bi se dodala podrška za veb pristup, to je najčešće učinjeno na
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neefikasan način. Na primer, sistemi kao što su JADE (Bellifemine et al., 2007) i
JaCa-Web (Minotti et al., 2010) koriste Java aplete za čije izvršavanje je neopho-
dan odgovarajući dodatak (eng. plug-in) za veb pretraživač. Ovakvi dodaci,
pak, nisu dostupni za pojedine popularne uredaje (poput iOS -a i “pametnih”
televizora), te je i primena ovakvih sistema ograničena.

Siebog je multiagentska platforma koja pruža infrastrukturu za izvršavanja
agenata u veb okruženjima, ali u skladu sa savremenim standardima i specifikaci-
jama. Sistem uključuje dve osnovne komponente – serversku XJAF (Mitrović
et al., 2012a, 2014b; Vidaković et al., 2013) i klijentsku Radigost (Mitrović et al.,
2014; Mitrović et al., 2014a) – i kombinuje ih na način koji ne samo da uključuje
njihove pojedinačne funkcionalnosti, već donosi i nove mogućnosti.

Na serverskoj strani, Siebog je dizajniran tako da se izvršava u klasterima
računara. Na ovaj način, predloženi sistem nudi dve bitne funkcionalnosti:

� Skalabilnost: agenti se automatski raporeduju po čvorovima klastera, čime
se smanjuje opterećenje pojedinačnih računara. Na taj način, Siebog je
pogodan za razvoj multiagentskih sistema koji moraju da pokrenu velike
brojeve agenata (npr. Panigrahi et al., 2011; Simon, 2013).

� Otpornost na greške: stanje svake serverske komponente, uključujući i
agente, se kopira na preostale čvorove klastera. Ukoliko dode do kvara na
računaru, komponenta/agent može nesmetano nastaviti svoj rad na nekom
od preostalih računara.

Iako podrška za distribuirano izvršavanje agenata postoji u gotovo svim mul-
tiagenskim platformama, ista je najčešće realizovana na neefikasan način. Na
primer, druge platforme često implementiraju svoje pristupe za rasporedivanje
agenata i otpornost na greške (npr. Alberola et al., 2013; Bellifemine et al., 2007;
Faci et al., 2006; Siracuse et al., 2007). Ovaj pristup nije dovoljno fleksibilan,
jer, na primer, korisnik mora sam odrediti koji agent će biti na kom računaru,
dok se u slučaju Siebog-a ovaj proces odvija automatski.

Takode, jedan od ciljeva Siebog-a je demonstracija činjenice da nije potrebno
“izmǐsljati toplu vodu” i nanovo realizovati gorenavedene funkcionalnosti. Mnogo
je efikasnije iskoristiti postojeće standarde i tehnička rešenja koja nudi Java EE
platforma. Time se ujedno i povećava interoperabilnost Siebog-a i omogućuje se
lakša integracija platforme i njenih agenata u ne-agentske sisteme koji se koriste
u kompanijama.

Na serveru, Siebog je dizajniran kao modularna arhitektura. Sastoji se iz
nekoliko tzv. menadžera, pri čemu je svaki menadžer odgovoran za odredeni pod-
skup svih funkcionalnosti. U trenutnoj realizaciji, postoje tri osnovna menadžera:

� Menadžer agenata: upravlja životnim ciklusima agenata i realizuje direk-
torijum agenata.

� Menadžer poruka: upravlja komunikacijom izmedu agenata i razmenom
poruka.
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� Menadžer konekcija: služi za povezivanje distribuiranih Siebog klastera u
jedinstven sistem.

Menadžeri su potpuno nezavisni jedan od drugog, a predstavljeni su i ko-
riste se samo pomoću interfejsa, čime je postignuta maksimalna fleksibilnost u
implementacijama.

Kao što je napomenuto, serverska strana Siebog-a se zasniva na ranijem sis-
temu XJAF, koji je prvi put predstavljen u (Vidaković and Konjović, 2002),
a u meduvremenu je prošao kroz nekoliko iteracija (Mitrović et al., 2012a; Vi-
daković et al., 2013). U poslednjoj inkarnaciji (Mitrović et al., 2013b), koja je
iskorǐsćena u Siebog-u, fokus je na podršci za izvršavanje u klasterima računara.
Siebog, tako, podržava tzv. simetrične klastere, tj. klastere u kojima je svaki
čvor povezan sa svakim drugim čvorom. Jedan čvor je identifikovan kao gospo-
dar (eng. master), dok su drugi opisani kao robovi (eng. slaves). Jedina razlika
izmedu ova dva tipa čvorova je što se gospodar može iskoristiti za direktnu
kontrolu robova; čvorovi su ravnopravni po svim drugim pitanjima (npr. po
prioritetu izvršavanja).

Jedna od osnovnih prednosti ovakve organizacije klastera je velika fleksibil-
nost. Na primer, kako bi postigao otpornost na greške, Siebog ,kao što je rečeno,
kopira stanja agenata na čvorove klastera. Zahvaljujući simetričnom klasteru,
korisnik može birati izmedu nekoliko načina replikacije stanja, kako bi prilagodio
sistem manje, odnosno vǐse, nestabilnim okruženjima (Surtani et al.).

Što se tiče klijentske strane, Siebog takode nudi jedinstveni niz osobina i
funkcionalnosti, poput sledećih:

� Siebog je nezavisan od platforme i podržan na velikom broju uredaja.

� Ne zahteva prethodnu instalaciju ili podešavanja. Od ovoga imaju koristi i
programeri agenata, jer jednom napisanog agenta mogu koristiti na vǐse sis-
tema, i krajnji korisnici, jer mogu koristiti pogodnosti agentske tehnologije
na najpogodniji način.

� Performanse sistema se mogu porediti sa performansama klasičnih multi-
agentih platformi za desktop računare (Mitrović et al., 2014a).

Trenutno postoji samo jedna multiagentska platforma sa sličnim pristupom
(Jarvenpaa et al., 2013). Njen nedostatak je, medutim, što ne koristi pun skup
mogućnosti koje donose HTML5 i povezani standardi. Pored toga, nedostaju
joj i ranije opisane napredne serverske mogućnosti Siebog-a.

Jedna od poteškoća u realizaciji klijentske strane Siebog-a je predstavljala
činjenica da je životni vek agenta direktno vezan za veb stranicu u kojoj se
izvršava. Ukoliko korisnik zatvori stranicu, agent automatski prestaje da pos-
toji. Medutim, za bilo kakvu smisleniju primenu Siebog-a, neophodno je bilo
omogućiti dugotrajno izvršavanje agenata. Ovaj problem je rešen automatskim
čuvanjem internog stanja klijentskih agenata na serveru. Tačnije, kada korisnik
zatvori stranicu, stanje agenta se kopira na server. Kasnije, kada korisnik ponovo
učita stranicu, stanje se automatski ubacuje u agenta. Ceo proces se odvija
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transparentno tj. agent nije ni “svestan” činjenice da je dolazilo do prekida u
radu.

Bitno je još istaći da Siebog ne predstavlja jednostavnu uniju svojih poje-
dinačnih komponenti. Kao što je predstavljeno u Poglavlju 4.4, Siebog takode
nudi:

� Vǐseplatformsku razmenu poruka: klijentski agenti mogu nesmetano komu-
nicirati sa serverskim agentima, pa čak i klijentskim agentima na drugim
uredajima.

� Deljenje koda: jednom napisan agent se može, bez izmena, izvršavati i na
serveru i na klijentu.

� Heterogena mobilnost: agenti se mogu nesmetano kretati izmedu servera
i klijenata.

Integracija klijentske i serverske strane Siebog-a je izvršena kroz nekoliko
faza. U skladu sa principima integracije heterogenih sistema (Hohpe and Woolf,
2003), najpre je napravljen sloj iznad serverske strane, zasnovan na veb servisima.
Tačnije, funkcionalnosti menadžera su ponudene u obliku tzv. RESTful veb
servisa (Fielding, 2000). Klijenska strana je proširena odgovarajućim medu-
realizacijama menadžera (eng. proxy ili stub implementation). Za klijentskog
agenta, tako, komunikacija sa menadžerom deluje kao komunikacija sa nekom
lokalnom komponentnom, a svi pozivi se u pozadini prosleduju ka i od konkretne
serverske implementacije.

Dalje, kako bi se pojednostavila vǐseplatformska razmena poruka, za svakog
klijentskog agenta se na serveru kreira odgovarajući medu-objekat. Sve poruke
upućene ovom medu-objektu na serveru se, ponovo u pozadini, prosleduju odgo-
varajućem klijentskom agentu. Siebog tako nudi interesantne modele za komu-
nikaciju fizički udaljenih agenata. Na primer:

� Klijentski agent šalje poruku preko Menadžera poruka sa kojim komunicira
kao sa lokalnom komponentom.

� Poruka se prebacuje na server i upućuje serverskom agentu.

� Serverski agent, koji zapravo predstavlja medu-objekat, prosleduje poruku
svom klijentskom agentu na udaljenom uredaju.

Na ovaj način, agenti koji su zapravo fizički udaljeni, komuniciraju kao da se
nalaze na istom uredaju.

Konačno, Siebog je proširen tako da uključuje podršku za rasudivanje za-
snovano na DNARS-u. Na serverskoj strani je primenjena čvršća integracija
dva sistema, kako bi se smanjili troškovi njihove komunikacije, te da bi mogle
biti ponudene programske apstrakcije za definisanje agenata. Pošto su ano-
tacije jedan od standardnih tehnika za meta-programiranje u Java EE platformi,
isti pristup je primenjen i prilikom integracije serverskog Siebog-a i DNARS-
a; tj. programerima je ponuden niz anotacija za označavanje npr. ciljeva
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agenta. Sistem zatim u pozadini automatski prevodi signale koje šalje DNARS-
ov Rukovodilac dogadajima u pozive odgovarajućih metoda.

Integracija klijentske strane Siebog-a sa DNARS-om je realizovana na sličan
način kao i integracija sa serverskom stranom Siebog-a, odnosno kroz komu-
nikaciju sa odgovarajućim veb servisima.

Po pitanju podrške za inteligentne agente, Siebog, dakle, “napušta” tradi-
cionalnu BDI arhitekturu. Umesto toga, ponudena je mogućnost razvoja in-
teligentnih multiagentskih sistema koji uključuju agente sa inovativnim sposob-
nostima rasudivanja. Jedan konkretan primer praktične primene ovakvog pris-
tupa, dat u Glavi 5, bi, na primer, teško mogao biti rešen nekim od postojećih
sistema.

Na ovaj način, Siebog i DNARS predstavljaju jedinstven multiagenski okvir
za razvoj i izvršavanje inteligentnih agenata u veb okruženjima, te nude nove
i zanimljive načine za praktične primene agentske tehnologije. Primer gener-
isanja novog struktuiranog znanja za projekat DBpedia-e (Lehmann et al., 2014)
je opisan u Pogljavlju 5.4. Dodatne mogućnosti primena uključuju, na primer,
razvoj personalnih inteligentnih asistenata (overview of agents in knowledge
management, 2006), sisteme sa velikim agenatskim društvima (Ilie et al., 2011),
razvoj inteligentnih komponenti u domenima Interneta Stvari (eng. Internet of
Things) i tzv. “pametnim” okruženjima (Nakashima et al., 2010), itd.
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udžbenika iz programiranja za studente informatike, kao i skoro 30 naučnih radova iz oblasti
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NN veća: 25. april 2014.
DP
Datum odbrane:
DO



155
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MN

Title: Intelligent multiagent systems based on
distributed non-axiomatic reasoning

TI
Language of text: English
LT
Language of abstract Serbian/English
LA
Country of publication: Republic of Serbia
CP
Locality of publication: Vojvodina
LP
Publication year: 2015
PY

Publisher: Author’s reprint
PU
Publ. place: Novi Sad, Trg D. Obradovića 4
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