YHUBEP3UTET ¥ HOBOM CAY

AS ST,
335"\‘ w2,
Z e 'é
> W%, SC = ®AKYJITET TEXHUUKUX HAVKA ¥V
/If*l)fiuur\o{" HOBOM CAJTY
Op W
{ANTE

PenaTuBHA €KCPECUBHOCT MPOIECHUX payyHa KOJU
noceayjy MOryhHOCT ajjanTtanyje u JTMHaAMHAYKOT
aXypupama TOKOM H3BpIllaBamka

JOKTOPCKA INCEPTALIMJA

Relative Expressiveness of Process Calculi with
Dynamic Update and Runtime Adaptation

DOCTORAL DISSERTATION

Kanaunar:

Menropu:
[Ipod. np Josanka [TantoBuh JoBana Jleneunh
Prof. dr Jorge Andres Pérez Parra

Hosu Capg, 2021. ronune

YHUBEP3UTET Y HOBOM CALlY

OBPA3AII - 52

OAKYJITET TEXHUYKHUX HAYKA

K/bYYHA JOKYMEHTAIIMICKA HHOOPMAILUJA®

Bpcra pana:

Jlokropcka nucepranuja

Vwme u npezume
ayrtopa:

JoBana Jleneunh

Menrop (turysa, ume,
Ipe3uMe, 3Babe,
MHCTUTYLIH]ja)

np Joanka ITanrosuh, penoBuu npodecop, PakyaTeT TEXHUUKHUX HayKa,
VYuusepsuter y Hosom Cany,

np Xopxe Annpec [lepes Ilapa, Banpeauu nmpodecop,

YHuBep3uter y I'poHUHIeHy

Hacnos pana:

PenaTtuBHa eKCIIPECHBHOCT MPOIECHUX pavyyHa KOju moceayjy MoryhHoct
aJlanTanyje U THHAMHYKOT a)KypHpama TOKOM H3BpIIIaBamka

Jesuk myOnukaryje
(mmcemo):

Enrneckn

Pu3nyKy onuc paja:

YHertu Opoj:
Crpanuua 205
TlornaBma 7
Pedepennu 56
TabGena 8
Cnuka 41
I'paduxona 0
Ipuora 0

Hayuna o6Gunacr:

HpHMCH:eHa MaTeéMaTHKa

Vka Hay4Ha obnact

(Hay4YHA JUCLMITIMHA):

dopmaaHu MOAEIH y pauyHapCTBY

Kibyune peun /
npeaMeTHa
OJIPETHHUIIA;

KoHkypeHTHH cucTeMu, JUCTPUOYUpPAaHU CUCTEMH, CEMAHTHKA MPOrPAMCKHUX
je3uKa, MPOIECHH PaYyHH, PyKOBakhe KOMIICH3AIIH]jOM, THHAMHIKO
AKYpUpPabE, EKCIPECUBHOCT

Pe3ume Ha je3uky
pana:

VYV Tesu cy pasmarpaHd M[poOJIeMH MPOTPAaMCKUX KOHCTpyKara Koju
HOJp)XKaBajy ympaBJbalbhe IpelIKaMa y LEHTPY MEXaHH3aMa KOjH OTKPHUBAjy
rpemke u Bpahajy cucteM y KOH3UCTEHTHO cTame. Te3a (opMaaHO moBesyje
[POTpaMCKe amncTpakiyje 3a pPyKOBame KOMIICH3alHjaMa M AWHAMHYKOT
@Kypupama TOKOM H3BpIIaBama. AHAIU3MpA ce pejaTHBHA eKCHPECHBHOCT
NOMEHYTHX pauyyHa. Pa3BujeHO je IBaHAeCT KOAWpama, IIECT MPOLECHHUX
padyHa 3a pyKOBambe KOMIICH3alMjaMa y IBa padyHa 3a aJalTHBHE IIpoLece.

Jatym mpuxBaTtama
TeMe O CTpaHe
HauiexxHor Beha:

24.09.2020.

Jlatym onbpane:
(ITonymasa
oxrosapajyha ciryx06a)

Y1aHOBH KOMHUCH]E:
(turyna, ume,
npe3umMe, 3Bambe,
HHCTHUTYLH]a)

IIpencennux:
ap Jenena Viseruh, Banpenau mpogecop,
®dakynTeT TEXHUYKUX Hayka, YHuUBep3ureT y HoBom Cany

1 AyTop nokTopcke mucepranmje notnucao je u npunoxuo cienche O6pacue:

56 — U3jaBa o ayTopcTBY;

5B — M3jaBa 0 HCTOBETHOCTH IITAMIIaHE U €IEKTPOHCKE BEP3Hje U O INUYHUM I10JJallUMa;
5t — U3jaBa o kopumihemy.
Osge U3jaBe ce uyBajy Ha (aKyiTeTy y MITaMIIaHOM U EIEKTPOHCKOM OOJIHMKY M HE KOpHUE Ce Ca TE30M.

Unan:
ap dyman I'ajuh, Baupeaan npogecop,
dakynTeT TeXHUYKHUX Hayka, YHuBep3ureT y HoBom Cany

Unan:
np Wsan [pokuh, noueHT,
QdaxynTeT TEXHUUKHUX Hayka, YHuBep3ureT y Hosom Cany

Unan:
np Xyro ®unune Mennec Topec Bueupa, BuIlin HayyHH capajHUK,
Yuusep3uter beupa Nureprop KoBusba

Unan, MEHTOP:
np Xopxe Auapec [epes Iapa, Banpeaau npodecop,
VYHuBep3uter y I'poHUHIeHY

Unan, MEHTOP:
np Joanka ITantoBuh, penoBHu npodecop,
dakynreT TEXHUYKHX Hayka, YHuBep3uteT y HoBom Cany

Hanomena:

UNIVERSITY OF NOVI SAD
FACULTY OF TECHNICAL SCIENCES

KEY WORD DOCUMENTATION?

Document type: Doctoral dissertation
Author: Jovana Dedei¢
Supervisor (title, first Dr. Jovanka Pantovic, full professor, Faculty of Technical Sciences,
name, last name, University of Novi Sad,
position, institution) Dr. Jorge Andres Pérez Parra, associate professor, University of Groningen
S Relative Expressiveness of Process Calculi with Dynamic Update and
Thesis title: - .
Runtime Adaptation
English
Language of text g
(script):
Number of:
Pages 205
Chapters 7
Physical description: References 56
Tables 8
Illustrations 41
Graphs 0

Appendices 0

Scientific field: Applied mathematics

Scientific subfield Formal Models in Computer Science
(scientific discipline):

Concurrent systems, distributed systems, semantics of programming
Subject, Key words: languages, process calculi, compensation handling, dynamic update,
expressiveness

The thesis considers problems of programming constructs that support failure
handling at the heart of mechanisms that detect failures and bring the system
back to a consistent state. We formally connect programming abstractions for
compensation handling and runtime adaptation and analyzes the relative
expressiveness of these calculi. More concrete, we develop twelve encodings
of six process calculi with compensation handling into two calculi of
adaptable processes.

Abstract in English
language:

Accepted on Scientific | 24.09.2020.
Board on:

Defended:
(Filled by the faculty
service)

President:
dr. Jelena Iveti¢, associate professor,
Faculty of Technical Sciences, University of Novi Sad

Thesis Defend Board:
(title, first name, last
name, position,
institution)

2 The author of doctoral dissertation has signed the following Statements:
56 — Statement on the authority,
5B — Statement that the printed and e-version of doctoral dissertation are identical and about personal data,
Sr — Statement on copyright licenses.
The paper and e-versions of Statements are held at he faculty and are not included into the printed thesis.

Member:
dr. Dusan Gaji¢, associate professor,
Faculty of Technical Sciences, University of Novi Sad

Member:
dr. Ivan Proki¢, assistant professor,
Faculty of Technical Sciences, University of Novi Sad

Member:
dr. Hugo Filipe Mendes Torres Vieira, senior researcher,
C4, Universidade de Beira Interior, Covilhad

Member, Mentor:
dr. Jorge Andres Pérez Parra, associate professor,
University of Groningen

Member, Mentor:
dr. Jovanka Pantovi¢, full professor,
Faculty of Technical Sciences, University of Novi Sad

Note:

Acknowledgements

Jovanka Pantovi¢ and Jorge A. Pérez deserve my deepest gratitude. It has been truly inspiring
to have them as supervisors. Their close supervision has had a significant impact on the way I
conduct and approach research work. I especially appreciate that Jovanka always made time for
me, not only for scientific discussions but also for resolving mundane difficulties. I was fortunate
enough to meet Jorge at the beginning of my research career. I express my gratitude to Jorge,
especially because he was a wonderful host during my visits to Groningen, where most of the
results of this dissertation have been obtained.

In addition, T am grateful to the following members of my defense committee: Dr. Jelena
Iveti¢, Dr. Dusan Gaji¢, Dr. Ivan Proki¢, and Dr. Hugo Filipe Mendes Torres Vieira for their
effectiveness, constructive comments, and suggestions.

I also express my gratitude to all my dear colleagues at the Chair of Mathematics, Faculty
of Technical Sciences. They welcomed me into the collective and give me support during my
professional career.

Thank you so much to all of my friends for their unwavering support and love over the years.
Marija, Bosko, and Sanja deserve special recognition for being my professional partners and
sincere friends throughout my entire career and life.

My family members, without a doubt, are the persons to whom I owe the most. Thank you,
my parents, Veselinka and Danilo, for your unwavering love and support throughout life. One of
the most crucial sources of motivation in my life has been their love and kindness. I am grateful
for all of their advice and care. Thanks to them, I can persevere in all life and professional
challenges. Thank you for being perfect siblings, Jelena, Mira, and Milan. Throughout my life,
you take the time to be in the right places at the right times. I would not be the same without
you, and I am lucky to have grown up with you.

Milena, Mirceta, and Sanda, my “in-law” family, have been tremendously supportive.

Last but not least, an immense thanks to my husband Strahinja and our sons Danilo and
Luka for their unquestionable love, support, and patience. This thesis would not have been
finished without their constant support and motivation. Thank you boys, I am happy to have
you in my life.

Rezime

0.1 DMotivacija

Razvoj informacionih tehnologija (IT): ra¢unarstvo u oblaku, ra¢unarstvo orijentisano na usluge,
vestacka inteligencija, analiza podataka, pracenje i predvidanje itd. podrzani su od strane velike
rac¢unarske infrastrukture, kao $to su centri podataka. Takode, I'T Gesto koriste beZi¢ne i mobilne
mreze, paralelne i distribuirane sisteme. Distribuirani sistem je sistem ¢&ije se komponente nalaze
na razli¢itim rac¢unarima, koji su umreZeni, komuniciraju i koordini$u svoje procese prenoseci
poruke medu sobom. Stoga, moZzemo zakljuciti da su distribuirani sistemi pogodniji za reSava-
nje problema u poredenju sa sekvencijalnim sistemima. Ipak, treba imati na umu da prilikom
modeliranja i implementacije sistema, distribuirani sistemi namec¢u odredene prepreke. U svim
softverskim sistemima komunikacija 1 interakcija postali su centralne karakteristike sistema. Ta-
kode, analiza i verifikacija softvera je slozen i izazovan zadatak jer postoji opsta pretpostavka da
softverski sistemi moraju da rade neograniceno i bez neocekivanog prekida. Tokom prethodnih
nekoliko decenija, infrastruktura poput one koja podrzava racunarstvo visokih performansi po-
rasla je u obimu i slozenosti. Njihova snaga, fleksibilnost i pogodnost idu zajedno sa potrebom
za efikasnom potrognjom energije.

Veliki racunarski sistemi sve ¢esc¢e dozivljavaju prekide ili greske, a mehanizmi/tehnike za
njihovo prevazilazenje su od presudne vaznosti. Formalne metode su tehnike koje omoguéavaju
formalnu specifikaciju i verifikaciju slozenih (softverskih i hardverskih) sistema, zasnovane na
matematici i logici. Posto]ji veliki broj formalnih metoda koje se koriste za poboljSanje razvoja
softvera, koji radi na velikim ra¢unarskim infrastrukturama. Formalne metode imaju primarni
zadatak, da predvide moguénost pojave greSke u aplikacijama i obezbede pravovremenu reak-
ciju. Takode, one treba da obezbede da ne dode do nepotrebnog rasipanja resursa (kao $to je,
na primer, energija). Jedna od najées¢ih formalnih metoda koji se koristi za analizu sloZzenih si-
stema je proceni racun (ili procesna algebra). Procesni ra¢uni su raznovrsna porodica povezanih
pristupa za formalno modeliranje slozenih sistema. Stoga procesni ra¢uni se mogu koristiti za iz-
razavanje razli¢itih koncepata, na primer, nedeterminizma, paralelizma, distribucije, problema u
realnom vremenu, stohasti¢kih fenomena, itd. Kako je navedeno u [38], procesne algebre dolaze
sa preciznim matematickim okvirom koji ima dobro definisanu sintaksu i operacionu semantiku.
Operaciona semantika opisuje i verifikuje svojstava konkurentnih komunikacionih sistema. Da-
kle, procesna algebra se fokusira na specifikaciju i manipulaciju procesnim termima baziranih
na kolekciji simbola operatora [18], koji se koriste za konstrukciju: kona¢nih procesa, paralelno
izvr8avanje, komunikaciju i oblik rekurzije za izrazavanje beskona¢nog ponaSanja. Primarna
komponenta procesne algebre je sintaksa. Kada je jezik sintaksno definisan, onda je klju¢no
obezbediti nacin da se opiSe ponasanje sistema koji se modelira, §to se postize uvodenjem opera-
cione semantike. Operaciona semantika treba da opiSe nacin na koji se proces realizuje/redukuje.
Tokom proteklih ¢etrdeset godina, istrazivacki rad na procesnim algebrama je veoma intenzivan i
objavljen je zancajan broj rezultata. Kratak istorijski pregled razvoja procesne algebre predsta-
vljen je u radu [3]. Milnerov 7-racun [33] u novije vreme je postao znacajan kao procesni ra¢un
za razmisljanje o mobilnim sistemima. Postoji znacajan broj racuna za teoriju konkurentnih
sistema u kojima se m-ra¢un koristi kao osnova [1, 12, 20, 24, 23, 28, 41, 47, 29, 30, 49].

i

Analizom softverskih aplikacija ustanovljeno je da je veliki broj istih zasnovan na dugorocnim
transakcijama (eng. long-running transactions) kao osnovnom gradivnom elementu. Dugoroc¢ne
transakcije se ¢esto primenjuju u servisno orijentisanim sistemima [17], i opisuju vremenski op-
sezne aktivnosti koje ukljucuju nekoliko distribuiranih komponenti slabo povezanih resursa. U
ra¢unarskim naukama: atomicnost, doslednost, izolovanost i trajnost (eng. atomicity, consi-
stency, isolation, and durability — ACID) je skup svojstava transakcija ¢iji je cilj da garantuje
validnost ¢ak i u sluéaju da se pojave greske, dode do nestanka struje ili neke druge nepredvidene
situacije. Dugoro¢ne transakcije ipak ne zadovoljavaju sva navedena svojstva. Tafnije, one ne
zadovoljavaju izolovanost jer izvodenje jedne dugorocéne transakcije nema za cilj blokiranje celog
sistema. Odnosno, zbog prirode ovih sistema i vremenskog trajanja aktivnosti, nije moguce
zakljucati (nelokalne) resurse. Za upravljanje dugoroénim transakcijama, otkazivanje upravlja-
nja je osetljiv aspekt: potrebno je eksplicitno programirati mehanizme za otkrivanje gresaka i
vrac¢anje dugoroc¢ne transakcije u konzistentno stanje. Buduéi da je projektovanje i potvrdivanje
ispravnosti ovih mehanizama sklono greskama, specijalizovani konstrukti, kao §to su izuzecs i
kompenzacije, predlozeni su da ponude direktnu programsku podrsku.

Literatura nudi razli¢ite konstrukte. U Javi, na primer, nalazimo konstrukciju ,,obrada izu-
zetka”, eng. try P catch e Q, gde je proces @ zaduzen za upravljanje izuzetkom e koji je podignut
unutar procesa P; u WS-BPEL [2] nalazimo napredne mehanizme koji koriste gresku, prekid i
kompenzaciju za reSavanje greske u kodu.

U ovoj disertaciji fokus je na istrazivanju programskih konstrukata koji podrzavaju upra-
vljanje greskama u centru mehanizama koji otkrivaju kvarove i vrac¢aju sistem u konzistentno
stanje. Kao $to im ime sugeriSe, mehanizmi za kompenzacije imaju za cilj da kompenzuju ¢inje-
nicu da je dugoro¢na transakcija naisla ne gresku ili je otkazana (tj. nije uspela da se realizuje).
Po prijemu signala greSke, od mehanizama za kompenzaciju se ocekuje da instaliraju i aktivi-
raju alternativna ponaganja za oporavak doslednosti sistema. Takvo kompenzaciono ponasanje
moze se razlikovati od pocetnog ponaSanja dugoroc¢ne transakcije. Siroko proucavani u servisno
orijentisanim sistemima, mehanizmi za upravljanje kompenzacijama takode nalaze primenu u
kolektivno adaptivnim sistemima (bar konceptualno), posebno zato §to se autonomni uredaji
pocdinju koristiti u tradicionalnim transakcionim aktivnostima, poput distribucije i isporuke, na
primer, Amazon Prime Air i DHL-ov Parcelcopter.

U literaturi su predlozeni razli¢iti rac¢uni za konkurentne sisteme sa konstruktima za upra-
vljanje kompenzacijama (na primer, [5, 10, 31, 11, 17]). Nadovezujuéi se na procesne rafune kao
Sto su Milnerov ra¢un komunikacionih sistema (eng. Calculus of Communicating Systems —
CCS) [32], Hoareov ra¢un komunikacionih sekvencijalnih procesa (eng. Communicating Sequ-
ential Processes — CSP) [27] i Milnerov m-racun [33], oni obuhvataju razli¢ite oblike oporavka
sistema usled greske i nude tehnike rezonovanja (npr. bihevioralnu ekvivalenciju) o komunici-
ranju procesa koji sadrze konstrukte za kompenzacije. Sli¢nosti izmedu mnogobrojih razli¢itih
predloga (racuna) nisu uvek sasvim jasni, a u literaturi postoje radovi koji imaju za cilj formalno
uporedivanje ekspresivnosti predloZenih mehanizama. Konkretno, ekspresivna mo¢ takvih pro-
cesnih ra¢una proucavana je u radovima [11, 8, 29, 30]. Lanese sa koautorima u radu [29] bavi
se ovim pitanjem razvijajuéi formalno poredenje razlic¢itih pristupa dugoro¢nim transakcijama u
konkuretnom i mobilnom okruzenju. U [29] autori razmatraju procesni jezik koji sadrzi razli¢ite
mehanizme za rukovanje greSkama.

Detaljnije, Lanese sa koautorima u [29] definiSe osnovni ra¢un sa kompenzacijama, koji pro-
giruje Milnerov m-rac¢un sa sledeéim procesima:

e transakcija t[P,Q)], gde procesi P i @ predstavljaju podrazumevanu i kompenzacionu ak-
tivnost, respektivno,

e zasticen blok (Q) i

e aZuriranje kompenzacije inst|AX.Q].P, koji ponovo konfigurise kompenzacionu aktivnost

Q.

iii 0.1. Motivacija

Kompenzabilni procesi (Stati¢ki oporavak) — C Oznaka
Racun za kompenzabilne procese sa semantikom odbacivanja Cp
Racéun za kompenzabilne procese sa semantikom ocuvanja Cp
Racun za kompenzabilne procese sa semantikom prekida Cy

Kompenzabilni procesi (Dinami¢ki oporavak) — C* Oznaka
Racéun za kompenzabilne procese sa semantikom odbacivanja C3
Racun za kompenzabilne procese sa semantikom o¢uvanja Cp
Radun za kompenzabilne procese sa semantikom prekida Cj

Adaptivni procesi Oznaka
Racun za adaptivne procese sa subjektivnim aZuriranjem S
Racun za adaptivne procese sa objektivnim azuriranjem O

Slika 1: Oznake za procesne ratune koji se koriste u tezi.

Procesni racun sa kompenzacijama sainjen je od statickog i dinamickog oporavka. Ukoliko
nije dopusteno azuriranje kompenzacione aktivnosti onda za procesni ra¢un sa kompenzacijama
kazemo da je sa statickim oporavkom, u suprotnom je sa dinamickim oporavkom. U ovom
procesnom rac¢unu odgovor na greske moze se realizovati uz pomo¢ tri semantike:

e semantike odbacivanje (eng. discarding semantics),
e semantike ocuvanja (eng. preserving semantics),
e semantike prekida (eng. aborting semantics).

Jezik u [29], shodno gore navedenom, ima Sest razli¢itih formalnih ra¢una koji sadrze osnovne
elemente za kompenzacije, Slika 1.

Blisko povezan sa mehanizmima za rukovanje kompenzacijama, ali na drugaciji nacin, pre-
dloZen je procesni rac¢un za adaptivne procese. Procesni ra¢un za adaptivne procese je predlozen
za specifikaciju dinamickog aZuriranja u komunikacionim sistemima [7]. Adaptivni procesi odre-
duju oblike dinamicke rekonfiguracije koji su pokrenuti usled nekog neocekivanog dogadaja, ali
ne nuzno katastrofalnog. Jednostavan primer je rekonfiguracija specifi¢nih jedinica rojeva robota
(eng. robot swarm), §to je obi¢no tesko predvideti i podrazumeva promenu ponaSanja uredaja.
Adaptivni procesi mogu se primeniti na lokacijama, koje sluze kao grani¢nici za dinamicka azu-
riranja. Proces P koji se nalazi na lokaciji [, oznaen sa [[P], moZe ponovo da se rekonfigurige
pomocu prefiksa za aZuriranje 1{(X).Q}.R, gde proces @) oznacava rutinu prilagodavanja za
lokaciju [, parametrizovanu procesnom promenljivom X. Sa ova dva konstrukta, dinamicko azu-
riranje se ostvaruje prema slede¢em redukcionom pravilu, u kojem C7 i Cs oznacavaju kontekste
proizvoljno ugnezdenih lokacija:

C1[I[PY) | G [H{(X).Q}.R] — C1[Q{F/X}] | Ca[R] ®

Ovaj tip azuriranja nazivamo objektivnim aZuriranjem: locirani proces se ponovo konfigurise u
svom kontekstu koristeéi prefiks za azuriranje, koji se nalazi u drugom kontekstu.

Zaista, prefiks azuriranja [{(X).Q} komunicira sa procesom azuriranja I[P] i premesta proces
Q iz konteksta Co u kontekst C7, tako da je rekonfigurisano ponasanje Q{F/X} ostavljeno u

iv

kontekstu C';. Procesna promenljiva X se moze pojaviti nula ili viSe puta u procesu (. Na-
pominjemo, ako @ ne sadrzi X, kao rezultat azuriranja trenutno ponaSanje P ¢e biti obrisano.
Na ovaj nacin, dinamicko azuriranje je oblik mobilnosti procesa, implementirano koriSéenjem
komunikacije procesa viseg reda (eng. higher-order process communication). Ovakav oblik ko-
munikacije nalazi se u jezicima kao §to su, na primer, 7-rac¢un viseg reda [51], Kelov racun [52]
i Homer [25].

Alternativa objektivnom azuriranju je subjektivno aZuriranje u kojem se rekonfiguracija pro-
cesa odvija u suprotnom pravcu: proces P na lokaciji [se pomera iz svog konteksta u kontekst
u kojem je smesten prefiks za azuriranje:

CL[I[P]| Ba] | C2[{(X).Q}-R] — C1[0| Ra] | Co[Q{F/X} | R] (2)

Kao i objektivno aZuriranje, subjektivno azuriranje se oslanja na mobilnost procesa. Medutim,
kao §to je ve¢ napomenuto, pravac pomeranja procesa se razlikuje. U (2) proces P se premesta
iz konteksta C; u kontekst Cy, a rekonfigurisno ponasanje Q{F/X} ostaje u svom kontekstu Cs.
Primer koji sledi, ilustruje objektivno i subjektivno azuriranje.

Primer 1. Poredimo subjektivno i objektivno azuriranje pomoc¢u primera koji smo pruzeli iz [7]
i adekvatno prilagodili. Posmatramo operator prekida koji zapocinje izvrSavanje procesa P, ali
moze napustiti njegovo izvr8avanje radi izvr8avanja procesa (). Kada) emituje signal za prekid
tg, operator se vraca da izvrsi ono Sto je preostalo od procesa P. Koriste¢i adaptivne procese,
ova vrsta ponaSanja mose se opisati kao sto sledi u nastavku:

Sys =11 [Z[P] | Rl] | lo [l{(X)Q | tQ.X}.RQ]

gde su [, [i [razlicite lokacije, a ime tg je poznato samo procesu (). Proces @ ne sadrzi
procesnu promenljivu X. Ako proces P evoluira u proces P’ neposredno pre nego §to bude
prekinut, koristeé¢i sematiku sa objektivnim azuriranjem imamo sledeéi scenario:

Sys — ll [Z[Pl] | Rl] | lg [l{(X)Q | tQ.X}.RQ]
— U1 [Q | tQ.Pl | Rl] | lo [RQ]
—* ll [P/ | Rl] | lQ [Rz]

Na ovaj nacin dobijeno je da proces P i njegov derivat P’ ostaju na lokaciji ;. Treba uociti
da bi izvr8avanje Sys upotrebom semantike sa subjektivnim azuriranjem dovelo do drugacijeg
ponaganja, jer bi proces P’ (kao i proces @) pogresno bio premesten na lokaciju lo:

Sys —* LL[I[P] | Ra] | L[I{(X).Q | tq.X}.Ry]
— L [Rl] | Iy [Q | tQ.P/ | RQ]
—F ll [Rl] | lQ [P/ | RQ]

Ovo pokazuje da bi se za postizanje planiranog ponaSanja prekida u subjektivnom okruZenju
Sys trebao izmeniti, kako bi se proces P’ na kraju vratio na lokaciju ;. Sledeca varijacija Sys
to postize:

Sys' = L[I[P] | '{(X).X}.Ri] | L[IH{(X).V[Q | to.X]}.Rs]

gde se koristi I’ kao pomoc¢na lokacija koja treba da posluzi da se proces P’ iz lokacije Iy vrati
na lokaciju ;.

Na osnovu prethodnog pregleda procesnih racuna sa kompenzacijama i adaptacijama, vazno
je da primetimo da su kompenzacije i azuriranje intuitivno sli¢ni. Sli¢nost ovih racuna ogleda se
u tome §to oba odreduju kako se osobina konkurentnog sistema menja u vremenu kao odgovor
na neocekivani dogadaj. Sa druge strane, treba naglasiti da su ovi rac¢uni tehnicki veoma razli¢iti.

v 0.1. Motivacija

Staticki oporavak .
CILJANI FORMALNI RACUN

KOMPENZABILNI PROCESI ADAPTIVNI PROCESI
IZVORNI FORMALNI RACUN

Sekcija 3.2

Racun za adaptivne
procese sa
subjektivnim azuriranjem

procese sa
semantikom odbacivanja

03\

Racun za kompenzabilne\
Cp

semantikom ocuvanja

Racun za kompenzabilne
Cp procese sa

Racun za adaptivne
O procese sa
objektivnim azuriranjem

procese sa
semantikom prekida

[C Racun za kompenzabilne %e\&“a A
A

Slika 2: Kodiranje Cp,Cp,Cy u S i O. Strelica oznacava kodiranje.

Cilj ove teze je da formalno poveze programske apstrakcije za rukovanje kompenzacijama
(tipi¢ne za modele namenjene za usluge i dugoro¢ne transakcije) i dinamic¢kog azuriranja tokom
izvrsavanja. U disertaciji, porede se mehanizmi za rukovanje kompenzacijama i dinamickim azu-
riranjem u racunima za konkurentne sisteme. Analizirala se relativna ekspresivnost pomenutih
ra¢una. Konkretno, razvijeno je dvanaest kodiranja: Sest procesnih ra¢una za rukovanje kom-
penzacijama u dva rafuna za adaptivne procese. Pregled rezultata ilustrovan je pomoéu Slike 2
i Slike 3.

Takode, kodiranja rac¢una sa kompenzacijama u ra¢un sa adaptacijama zadovoljavaju (sve ili
odabrane) dobro poznate kriterijume kodiranja, koje je predstavio Gorla u radu [22]:

1) kompozicionalnost
74 A .
strukturns kriterijumi

)
(2) invarijantnost kodiranja u odnosu na izbor imena

(3) operaciona korespodencija (kompletnost i valjanost)
(4) refleksija divergencije semanticki kriterijumi
(5) osetljivost na uspeh

Studije o ekspresivnosti procesnih ra¢una imaju dugu istoriju i predstavljaju veoma aktivnu
oblast istrazivanja. Nedavni prikaz savremenih pristupa o formalnim poredenjima razli¢itih
procesnih ra¢una predstavljen je u [44]. Analizirati kvalitet kodiranja i iskljuciti trivijalna ili
besmislena kodiranja je zadatak kriterijuma za kodiranje ([45, 39, 37, 40, 22|). Kao §to je veé
prethodno navedeno, za formalizaciju kodiranja u ovoj disertaciji koriste se kriterijumi koje je
predstavio Gorla u [22]. Izabrani kriterijumi kvaliteta omoguéi¢e da dobijeni rezultati kodira-
nja budu razumni i uporedivi. U odnosu na kriterijume iz [22], definicija validnog kodiranja
(Definition 2.3.5) sadrzi sledece razlike:

vi

KOMPENZABILNI PROCESI ADAPTIVNI PROCESI

Dinamicki oporavak .
. CILJANI FORMALNI RACUN
IZVORNI FORMALNI RACUN

Racun za adaptivne
procese sa
subjektivnim azuriranjem

o)

semantikom odbacivanja

Racun za kompenzabilne

\ Sekcija 5.2
Racun za kompenzabilne

C

C

procese sa
Racun za kompenzabilne| .-~

A
D
A
P
C procese sa
A . g
semantikom prekida

Slika 3: Kodiranje C3,C3,Cp u S i O. Strelica oznacava kodiranje.

procesa sa

semantikom oCuvanja Racun za adaptivne

O procese sa
objektivnim azuriranjem

“'%e\{\c\}aﬁ

(1) kako bi se uzele u obzir putanje p u kojima se nalaze transakcije, razmatra se pojam
kompozicionalnost koji je manje fleksibilan od Gorlinog,

(2) oslanjamo se na oblik operacione korespodencije — kompletnost koja, za razliku od Gorline,
eksplicitno opisuje broj koraka u ciljanom formalnom ra¢unu potrebnih za oponaSanje
koraka u izvornom formalnom rac¢unu i

(3) razmatra se novi kriterijum kodiranja, nazvan efikasnost, koji omogucava da se precizno
uporede kodiranja.

U verzi sa tackom (3) treba napomenuti da se ne zna za radove koji koriste kriterijum koji je slican
kriterijumu efikasnosti. Najblizu povezanost mozemo naéi sa radom koji su predstavili Lanese,
Vaz i Fereira [29] kao i sa radom Lanese i Zavataro [30]. Rad u [29] analizira ekspresivhu mo¢
rac¢una sa kompenzacijama fokusirajuéi se na tri razli¢ita mehanizma specifikacije za kompenza-
cije: staticki oporavak, paralelni oporavak i dinamicki oporavak. Autori pokazuju da se paralelni
oporavak (gde se kompenzacija dinamicki gradi kao paralelni sastav kompenzacionih elemenata)
moze kompoziciono kodirati pomoc¢u statickog oporavka. Takode, autori u [29] pokazuju ne-
mogucnost kodiranja dinamickog oporavka pomocu statickog oporavka. Rad u [30] predstavlja
fundamentalne razlike izmedu statickog i dinamickog oporavka: pokazano je da je prekid (tj.
odsustvo beskonacne putanje ra¢unanja koja pocinje od datog procesa) odlu¢ivo svojstvo za
procese sa statickim oporavkom, ali neodlucivo za procese sa dinamickim oporavkom.
Rezultati o ekspresivnosti, predstavljeni u disertaciji, dopunjuju rezultate predstavljene u [29,
30| implementacijom statickog i dinamickog oporavka u kompenzabilnim procesima koristeci
razli¢ite okvire procesa definisane za adaptivne procese. U istom kontekstu, ali manje povezano,
Vaz i Fereira [29] proucavaju kriterijume kada su kompenzabilni procesi ispravni i uspostavljaju
da je ,self-healing” kompenzacija korektna. Kriterijumi predstavljeni u [29] su razli¢iti od dobro

vii 0.2. Doprinosi disertacije

formiranih kompenzabilnih procesa koje smo mi razvili kako bismo formalizovali kodiranje, za
koje je notifikacija greske od krucijalne vaznosti.

Braveti i Zavataro [8] porede ekspresivnost racuna koji predstavlja varijantu Milnerovog
CCS-a prosirenog sa operatorom prekida iz CSP: obrada izuzetka” (eng. ,try-catch”) operator
za rukovanje izuzetkom, operatori replikacije i rekurzije. Njihovo poredenje zasnovano je na
(ne)odlucivosti egzistencijalnih i univerzalnih problema prestanka: prvi se ti¢e postojanja jednog
zavrénog ra¢unanja, dok se drugi pita da li se sva ra¢unanja zavrsavaju. Autori dokazuju da u
CCS-u sa replikacijom nema razlike izmedu prekida i ,obrade izuzetka” univerzalni prekid je
odluciv, dok egzistencijalni nije. Nasuprot tome, u CCS-u sa rekurzijom i ,obradom izuzetka”,
univerzalni problem zavrSetka postaje neodluciv, otkrivajuéi tako jaz u ekspresivnosti u odnosu
na jezik sa rekurzijom i prekidom.

U nastavku su predstavljeni konkretni doprinosi ove teze.

0.2 Doprinosi disertacije

Disertacija doprinosi teoriji konkurentnih sistema sa originalnim rezultatima o relativnoj ekspre-
sivnosti procesnih ra¢una koji poseduju moguénost adaptacije i dinamickog azuriranja tokom iz-
vriavanja. Rezultati predstavljeni u disertaciji su jedinstveni u literaturi. Takode, predstavljeni
rezultati produbljuju i poboljSavaju razumevanje teorije konkurentnih sistema u celosti.
Preciznije, glavna tema disertacije je uporedivanje procesnih rac¢una za rukovanje kompenzaci-
jama sa dinamickim azuriranjem, sa stanovista relativne ekspresivnosti.

Postoje opravdani razlozi za prouCavanje ra¢una za rukovanje kompenzacijama, formalizo-
vanom u [29] i za dinamictko azuriranje, formalizovanom u [7]. S jedne strane, rac¢un za kom-
penzacije u [29] je dovoljno ekspresivan da obuhvati nekoliko razli¢itih jezika koji su predlozeni
u literaturi. Analize izrazajnosti u [29] su prili¢no iscrpne i donose istovetnost u proucavanju
formalnih modela za dugoro¢ne transakcije. Zbog svoje izraZajnosti, ovaj racun predstavlja
odgovarajucu polaznu tacku za dalja istrazivanja. S druge strane, racun za adaptivne procese
predstavljen u [7] je jednostavan procesni model dinamicke adaptacije i rekonfiguracije, zasnovan
na nekoliko procesnih terma i operacionoj semantici, koja podrzava dve vrste azuriranja: objek-
tivno i subjektivno azuriranje. Nasuprot tome, kao §to ¢emo prikazati, ra¢un za kompenzacije
oslanja se na zamrsen oznaceni tranzicioni sistem. Kao takvi, adaptivni procesi obezbeduju flek-
sibilan okvir koji koristimo za razjasnjavanje osnova mehanizama za rukovanje kompenzacijama,
iz nove perspektive.

Preciznije opisan doprinos disertacije predstavljen je u nastavku:

(1) Pruzamo objedinjenu, sveobuhvatnu prezentaciju dvanaest preslikavanja izmedu rac¢una
za kompenzacije u rac¢un za adaptivne procese, uzimajuéi u obzir objektivna i subjektivna
azuriranja. Pratimo i poboljsavamo rezultate o ekspresivnosti koje smo predstavili u [16]
i [14], respektivno.

(2) Utvrdujemo ispravnost posmatranih dvanaest preslikavnja. Tacnije, utvrdujemo da su
prevodi Cp u S i O walidna kodiranja — zadovoljavaju kompozicionalnost, invarijantnost
kodiranja u odnosu na izbor imena, operacionu korespondenciju, refleksiju divergencije i
osetljivost na uspeh — svojstva koja svedoce o robusnosti preslikavnja. Za prevodenja Cg,
Cx, Cp u Si O utvrdujemo da zadovoljavaju osobine: kompozicionalnost, invarijantnost ko-
diranja u odnosu na izbor imena i operacionu korespondenciju. Analize ostalih kriterijuma
ostavljene su za buduéi rad. Utvrdujemo i da prevodi Cp i Cp u S i O zadovoljavaju kri-
terijume invarijantnosts kodiranja u odnosu na izbor imena i operacionu korespondenciju,
dok su analize ostalih kriterijuma ostavljene za buduéa istrazivanja.

(3) Koristimo uvedenih dvanaest preslikavanja kako bismo jasno razlikovali subjektivno i
objektivno aZuriranje u racunima za konkurentne sisteme. Razmatra se novi kriterijum

viii

kodiranja, nazvan efikasnost, koji omogucava da se kodiranja precizno uporede. Efikasnost
se definiSe apstraktno, uzimajuéi u obzir broj koraka redukcije koji su potrebni ciljnom
jeziku da bi imitirali ponaSanje izvornog jezika. U disertaciji je dokazano sa su subjek-
tivna azuriranja bolje prilagodena za kodiranje kompenzabilnih procesa jer ostvaruju bolje
rezultate operacione korespondencije.

(4) Razvili smo klasu dobro formiranih kompenzabilnih procesa za formalizovanje kodiranja.
Preciznije, ova klasa procesa onemoguc¢ava odredene nedeterministicke interakcije koje
uklju¢uju ugnezdene transakcije i obavesStenja o greskama.

Tacku (3) je potrebno dodatno objasniti. Cvrsto verujemo da postoji opravdana potreba za
konstruisanjem i dokazivanjem dvanaest preslikavanja. Glavni razlog je §to tri razli¢ite semantike
sa, statickom kompenzacijom: odbacivanje, o¢uvanje i prekidanje implementiraju razli¢ite nivoe
zastite. Intuitivno:

e kompenzabilni procesi sa semantikom odbacivanja vode ra¢una samo o kompenzacionoj
aktivnosti u transakciji i zaSati¢enom bloku,

e kompenzabilni procesi sa semantikom oc¢uvanja pored zasti¢enih blokova takode Stite i
ugnezdene transakcije. Svi procesi koji nisu zatvoreni u zasti¢éenom bloku se odbacuju,

e kompenzabilni procesi sa semantikom prekida zadrzavaju sve zasti¢ene blokove i kompen-
zacijske aktivnosti u podrazumevanoj aktivnosti, uklju¢ujuéi one u ugnezdenim transakci-
jama.

Kao ilustraciju posmatrajmo proces P = t[tl[Pl,Ql] | t2[(P2),Q2] | R | (Pg),Q5]. Dakle, u zavi-
snosti od izbora semantike dobijamo sledece:

Co: t|P oy (P3)](Qs);
Co: | P —p (P5)|(Qs) | t1[P1,Q1] | t2[(P2),Q2);
Co: TIP —=a (P5) | (Qs) | (P2) | (Qu) | (Qa).

U semantici odbacivanja sa¢uvani su samo zasti¢eni blokovi na najvisem nivou. Stoga se vodi
ra¢una samo o kompenzacionoj aktivnosti za transakciju ¢ i zagticenom bloku (Ps). Semantika
oCuvanja Stiti i ugnezdene transakcije t; i to. Proces kao §to je R, bez zastiéenog bloka, se
odbacuje. Konac¢no, semantika prekida zadrzava sve zagti¢ene blokove i aktivnosti kompenzacije
u podrazumevanoj aktivnosti za ¢, ukljuc¢ujuéi i one u ugnezdenim transakcijama, kao §to je
proces (P).

Takode, u disertaciji razmatramo kompenzabilne procese sa dinamickim oporavkom. Glavna
razlika u poredenju sa kompenzabilnim procesima sa stati¢kim oporavkom je u tome $to proces
P iz transakcije t[P,Q)] moZe da azurira kompenzacionu aktivnost). AZzuriranje kompenzacione
aktivnosti zapravo vr&i novi operator inst|\Y.R|.P’, gde je funkcija AY.R aZuriranje kompenza-
cije (Y se moZe pojaviti unutar R). Primena takvog azuriranja kompenzacije na kompenzacionu
aktivnost Q proizvodi novu kompenzacionu aktivnost R{®/Y}, nakon internog prelaska. Treba
imati na umu da se proces R mozda nece pojaviti u nastaloj kompenzacionoj aktivnosti, a moze
se pojaviti i vise puta. Na primer, \Y.0 briSe trenutnu kompenzacionu aktivnost.

Na osnovu prethodno predstavljene intuicije za razli¢ite semantike, koristimo sledeéi primer
da jo§ jednom ilustrujemo kompenzabilne procese sa semantikom odbacivanja.

Primer 2. Posmatrajmo jednostavan scenario rezervacije hotela, u kojem hotel i klijent stupaju
u interakciju kako bi klijent rezervisao i platio sobu, a potom razmenjuju fakturu. Ovaj scenario
moze biti predstavljen kori§¢enjem kompenzabilnih procesa na sledeéi naédin:

Reservation < Hotel | Client

ix 0.2. Doprinosi disertacije

Client book.pay.(invoice + t.re fund)

Hotel ™ t[book.pay.invoice,re fund]

Ponasanje hotela predstavljeno je kao transakcija ¢t koja omogué¢ava klijentima da rezervisu sobu
i da je plate. Ako je klijent zadovoljan rezervacijom, hotel ¢e mu poslati ra¢un. U suprotnom,
klijent moze otkazati transakciju; u tom sluéaju hotel nudi klijentu povrat novca. Pretpostavimo
da klijent odluci da otkaze svoju rezervaciju. Kao §to ¢emo videti, postoje Cetiri koraka prelaska
za proces Reservation:

Reservation ——p t[pay.invoice,refund] | pag.(invoice + t.re fund)
s tlinvoice,refund) | invoice 4 t.refund
.

—p (refund) | refund

T

—p (0)] 0.

Kako bismo jo§ jednom uputili ¢itaoca na sli¢nosti i razlike izmedu kompenzabilnih i adap-
tivnih procesa, prethodni primer analizira¢emo i u kontekstu adaptacija.

Primer 3. Razmotrimo ponovo scenario rezervacije hotela iz Primera 2, ovaj put izrazen kori-
steéi rac¢un za adaptivne procese:

. d .
Reservation < Hotel | Client

Client book.pay.(t.refund + invoice)

Hotel ™ t[book.pay.invoice| | t.t{((Y).0)) | pe[refund]

Koristimo CCS procese sa lokacijama i (subjektivnim) prefiksima aZzuriranja. PonaSanje
klijenta ukljucuje slanje zahteva za rezervaciju i plac¢anje sobe, nakon ¢ega sledi prijem racuna
od strane hotela ili greska na t koja oznatava kraj transakcije i zahtev za povrat novca. Oc¢ekivano
ponaganje hotela nalazi se na lokaciji t: hotel omogucava klijentu da rezervige sobu i plati je. Ako
je klijent zadovoljan rezervacijom, hotel ¢e mu/joj poslati ra¢un. Specifikacija hotela ukljucuje:

(i) subjektivni prefiks azuriranja ¢(((Y").0)) (na isti na¢in moZe se koristiti objektivno azurira-
nje t{(Y).0}), koji brige lokaciju ¢ sa njenim sadrzajem u slu¢aju da klijent nije zadovoljan
rezervacijom i

(ii) jednostavnu proceduru povrata novca koja se nalazi na lokaciji p;, koja upravlja interak-
cijom sa klijentom u tom scenariju.

Ako klijent odlu¢i da otkaZe rezervaciju, koraci redukcije za proces Reservation bi bili slededi:

tlpay.invoice| | t.t{(Y).0)) | p¢[refund] | pay.(t.refund + invoice)
tlinvoice] | t.t{((Y).0) | pe[refund] | t.refund + invoice

tlinvoice] | t{(Y).0) | p¢[refund] | refund

Reservation

p[refund] | refund
pe[0].

LILD

U ovom primeru mogli smo da upotrebimo i objektivno azuriranje ¢t{(Y").0} umesto subjek-
tivnog azuriranja t(((Y").0)). Upotrebom objektivnog azuriranja, ponasanje procesa Reservation
je veoma sli¢no prikazanom.

Razvili smo kodiranje za razli¢ite semantike kompenzabilnih procesa u adaptibilne procese
u dva slucaja, tj. za subjektivno i objektivno azuriranje. Kodiranje u adaptibilne procese
sa objektivnim azuriranjima otkriva izvesna ogranicenja: predstavljajuéi ,relokaciju” zagti¢enih

blokova rasporedenih unutar ugnezdenih transakcija, objektivna aZzuriranja ostavljaju procese
na ,pogresnoj” lokaciji. Ova situacija podseca na razlike prikazane u Primeru 1. Da bi se to
ispravilo, kodiranje koristi dodatne sinhronizacije za dovodenje procesa na odgovarajuée lokacije.
Ovo se znacajno odraZava na cenu oponaSanja koraka izra¢unavanja izvornog ratuna, mereno
brojem povezanih koraka rac¢unanja ciljanog ra¢una (koji su navedeni u tvrdenjima o operacionoj
korespodenciji). Kodiranje u ra¢un sa subjektivnim aZuriranjima nema ovo ogranicenje, pa je u
skladu sa tim efikasnije od kodiranja koje koristi objektivno azuriranje.

Rezultati kodiranja pokazali su da je kodiranje kompenzabilnim procesa sa semantikom pre-
kida (sa statitkim i dinamickim oporavkom) u adaptibilne procese (sa subjektivnim i objektiv-
nim azuriranjem) najsloZenije. Ovakvi dobijeni rezultati su o¢ekivani, jer je semantika prekida
pokazala da ima najvi§i nivo zastite.

0.3 Publikacije i struktura disertacije

Publikacije Disertacija objedinjuje, revidira i dopunjuje rezultate iz rada predstavljenog na
medunarodnoj konferenciji:

e J. Dedei¢, J. Pantovi¢, and J. A. Pérez. On compensation primitives as adaptable
processes. In S. Crafa and D. Gebler, editors, Proceedings of the Combined 22nd
International Workshop on Expressiveness in Concurrency and 12th Workshop on
Structural Operational Semantics, and 12th Workshop on Structural Operational
Semantics, EXPRESS/SOS 2015, Madrid, Spain, 31st August 2015., volume 190 of
EPTCS, pages 16 — 30, 2015 (|16]).

U ovom radu predstavljamo translacije iz ra¢una za kompenzabilne procese u racun za
adaptibilne procese sa objektivnim aZuriranjem. Nastavak istrazivackog rada inspirisan je
istom temom. Kao rezultat daljeg istrazivanja objavljen je sledeé¢i rad:

e J. Dedei¢, J. Pantovié, and J. A. Pérez. Efficient compensation handling via subjective
updates. In Proceedings of the Symposium on Applied Computing, SAC’17, pages
51 — 58, Marrakesh, Morocco, April 3 — 7, 2017. ACM (|14]).

U ovom radu predstavili smo translacije iz ra¢una za kompenzabilne procese u racun za
adaptivne procese sa subjektivnim azuriranjem i uporedili ih sa rezultatima iz [16]. Izveli
smo zakljufak da su translacije/kodiranja sa subjektivnim aZuriranjem bolja, u smislu
efikasnosti, od kodiranja sa objektivnim aZzuriranjima, jer produkuju bolje rezultate ope-
racione korespondencije.

Istrazivanje smo nastavili, jer smo uocili da prethodni rezultati koje smo objavili zahtevaju
dodatnu analizu, verifikaciju i proSirenja. Novodobijeni rezultati objavljeni su u:

e J. Dedei¢, J. Pantovi¢, and J. A. Pérez. On primitives for compensation handling
as adaptable processes. Journal of Logical and Algebraic Methods in Programming,
page 100675, 2021 ([15]).

Ovaj rad prikuplja i poboljsava preliminarne rezultate iz radova [16] i [14]. Dok smo
u [16] proucavali kodiranje u adaptibilne procese sa objektivnim azuriranjem, u [14] smo
proucavali kodiranje u adaptibilne procese sa subjektivnim azuriranjem i uporedivali ih
sa rezultatima iz [16]. Glavna razlika izmedu radova [16, 14| i rada koji je objavljen u
¢asopisu ([15]) je u tome 8to se u konferencijskim radovima koncentriSemo na odredeni
izvorni racun, naime na racun u |29| sa statickim oporavkom i semantikom odbacivanja
(Figure 2, kodiranje Cp u S i O). Istrazivanje u radovima [16, 14] uzima u obzir i izvorne
rac¢une sa dinamic¢kim oporavkom i/ili semantikom ocuvanja i prekida. Racun sa statickim
oporavkom i semantikom odbacivanja nedvosmisleno definiSe najjednostavnije podesavanje

xi

0.3. Publikacije i struktura disertacije

za oba kodiranja, u kojem se klju¢ne razlike izmedu kompenzacionih i adaptibilnih procesa
mogu preciznije predstaviti. Takode, fokus na semantici odbacivanja nam omogucava
sazetu prezentaciju rezultata. U radu iz ¢asopisa prosirujemo analizu (efikasnog) kodiranja
izvornih racuna sa semantikom koju smo razmatrali u [16] i [14].

U nastavku navodimo klju¢na prosirenja rezultata koji su razvijeni u radu iz ¢asopisa:

(1)

(3)

Razvijamo klasu dobro formiranih kompenzabilnih procesa za formalizovanje kodira-
nja, za koje su obavestenja o greSkama klju¢na. Preciznije, ova klasa procesa onemo-
gucéava odredene nedeterministicke interakcije koje uklju¢uju ugnezdene transakcije i
obavestenja o greskama.

Prosirujemo kriterijume ukljucene u definiciju validnog kodiranja. Dodati su sledeci
kriterijumi: ‘nvarigantnost kodiranja u odnosu na izbor imena, refleksija divergencije
i osetljivost na uspeh. Stoga smo progirili rad sa dodatnim definicijama i teoremama
koje imaju za cilj da verifikuju da kodiranje zadovoljava novouvedene kriterijume.

Razvijamo dodatne definicije i teoreme potrebne za dokaze operacione korespodencije
(potpunost i valjanost).

Struktura disertacije Disertacija je organizovana u sedam poglavlja.

Prvo poglavlje prikazuje osnovne motive za razvoj translacije procesnog ra¢una za kom-

penzacije predstavljenog u [29] u procesni ra¢un sa adaptacijama predstavljenog u [7].
Takode, ovo poglavlje daje pregled literature koja je povezana sa temom istrazivanja
predstavljenoj u disertaciji.

Drugo poglavlje pruza pregled teorijskih osnova za disertaciju, uvodi osnovnu termino-

logiju i pojmove koji se koriste u disertaciji. Takode, pruza fundamentalni pregled
ra¢una za kompenzabilne procese i rac¢una za adaptivne procese. Najpre na nefor-
malan nadin, kroz primere, uvodimo procesne racune, a zatim sledi njihov formalan
prikaz kroz detaljnu analizu sintakse i operacione semantike. Ovo poglavlje sadrzi i
definiciju dobro formiranih kompenzabilnih procesa, klase procesa koja onemogucava
odredene nedeterministicke interakcije. Dobro formirani kompenzabilni procesi pred-
stavljaju, izmedu ostalog, originali nau¢ni doprinos ove disertacije. Pored navedenog,
drugo poglavlje predstavlja glavna pitanja analize ekspresivnosti procesa u konku-
rentnim sistemima i daje pregled literature o studijama ekspresivnosti i tehnikama
koje su koriséene.

Treée poglavlje ima za glavnu temu, da predstavi translaciju/kodiranje ra¢una za kom-

penzabilne procese u racun za adaptivne procese sa subjektivnim azuriranjem. Dakle,
uvodimo osnovne pojmove i oznake, zatim predstavljamo kodiranja Cp, Cp i Cy u S.
Dokazujemo da kodiranja zadovoljavaju sve ili odredene osobine definisane za validno
kodirange.

Cetvrto poglavlje predstavlja translaciju /kodiranje ra¢una za kompenzabilne procese u

rac¢un za adaptivne procese sa objektivnim aZuriranjem. Dakle, uvodimo osnovne
pojmove i oznake, zatim predstavljamo kodiranja Cp, Cp i Cy u O. Dokazujemo da
kodiranja zadovoljavaju sve ili odredene osobine definisane za validno kodiranje. Ta-
kode, u ovom poglavlju bavimo se pitanjem efikasnosti kodiranja. S obzirom da
su u disertaciji razvijene dve vrste kodiranja kompenzabilnih procesa u adaptibilne
procese, u smislu: kodiranje sa subjektivnim i objektivnim azuriranjem, u ovom po-
glavlju uporedujemo njihovu efikasnost. Efikasnost se definiSe apstraktno, uzimajuci
u obzir broj koraka redukcije koji su potrebni ciljnom jeziku da bi imitirali ponasa-
nje izvornog jezika. Preciznije, dokazujemo da su kodiranja koja koriste subjektivno
azuriranje efikasnija od kodiranja koja koriste objektivno azuriranje.

xii

Peto poglavlje prosiruje sintaksu za kompenzabilne procese za dinamicko aZzuriranje
kompenzacione aktivnosti. Takode, diskutuju se odgovarajuca prosirenja dobro for-
miranih kompenzabilnih procesa. Medutim, glavna tema ovog poglavlja je predsta-
vljanje prevodenja kompenzabilnih procesa sa dinamickim oporavkom, C3, C3 i Cp u
adaptivne procese sa subjektivnim azuriranjem, S. Zatim se dokazuje da definisana
kodiranja zadovoljavaju odabrane osobine iz definicije validnog kodiranja.

Sesto poglavlje predstavlja translacije /kodiranja kompenzabilnih procesa sa dinamickim
oporavkom, CS‘, CQ i Cﬁ‘ u adaptivne procese sa objektivnim azuriranjem, O. Nakon
definisanja kodiranja sledi postupak dokazivanja da kodiranja zadovoljavaju odabrane
osobine iz definicije validnog kodiranja. Ovo poglavlje se takode bavi pitanjem efika-
snosti kodiranja kompenzabilnih procesa sa dinamickim azuriranjem. Tacnije, ponovo
je dokazano da su kodiranja koja koriste subjektivno azuriranje efikasnija od kodiranja
koja koriste objektivno azuriranje.

Sedmo poglavlje sadrzi zakljucak disertacije. Takode, prikazuje diskusiju o aktuelnim i
buduéim pravcima istrazivanja kandidata.

xiii 0.3. Publikacije i struktura disertacije

Abstract

Identifying uniform and rigorous ways of comparing different models of computation from the
point of view of their expressiveness is a longstanding and important research theme in con-
currency theory. In the case of process calculi, these comparisons aim at clarifying to what
extent the process constructs in already existing calculi relate to each other. We see this as
an essential prerequisite step towards the definition of sensible, widely applicable programming
abstractions. This dissertation contributes to foundational studies of the relative expressiveness
of process calculi. We concentrate on calculi with constructs for compensation handling and dy-
namic update, which are increasingly relevant in the rigorous specification of reliable computing
systems. Compensations and updates are intuitively similar: both specify how the behavior of a
computing system changes at runtime in response to an exceptional event. Process calculi with
these constructs, however, are technically quite different. We study the relative expressiveness
of these calculi by developing encodings: language translations that enjoy precise correctness
properties, which bear witness to the quality of the translation. Encodings can be seen as formal
compilers that correctly translate process terms from a source language (in our case, a calculus
with compensation handling) into a target language (in our case, a calculus of adaptable pro-
cesses, which implements dynamic update). We consider two different target languages, which
account for complementary forms of process mobility: the first consists of adaptable processes
with subjective updates, in which, intuitively, a process reconfigures itself; the second target lan-
guage considers objective updates, in which a process is reconfigured by another process in its
context. Our main technical contributions are encodings that preserve well-known correctness
properties, namely compositionality, name invariance, operational correspondence, divergence
reflection and success sensitiveness. Our encodings not only represent a non-trivial application
of process mobility as present in adaptable processes; they also shed light on the intricate se-
mantics of processes with compensation.

Key Words: concurrency, semantics of programming languages, process calculi, compensation
handling, dynamic update, expressiveness.

Xiv

XV

0.3. Publikacije i struktura disertacije

Contents

Rezime i
0.1 Motivacija L e i
0.2 Doprinosi disertacijeo vii
0.3 Publikacije i struktura disertacije o o oo X

Abstract xiv

1 Introduction 1
1.1 Motivation e e 1
1.2 Contributions L 6
1.3 Publications and Structure Lo oL 7

2 Preliminaries 12
2.1 Process Calculi 12
2.2 The Calculi 13

2.2.1 Compensable Processes 0oL 13
2.2.2 Well-formed Compensable Processes 19
2.2.3 Adaptable Processes 27
2.3 Expressiveness of Concurrent Calculi 30
2.3.1 Generalities oL L 30
2.3.2 The Notation of Encoding o oL 31

3 Encoding Compensable into Adaptable Processes with Subjective Update 36
3.1 Preliminaries e 36
3.2 Translating Cpinto S L 38

3.2.1 The Translation, Informally 38
3.2.2 The Translation, Formally 38
3.2.3 Translation Correctness o 41
3.3 Translating Cpinto S 74
3.3.1 The Translation, Informally 74
3.3.2 The Translation, Formally 76
3.3.3 Translation Correctnesso 78
34 Translating Cy into S L 92
3.4.1 The Translation, Formally 93
3.4.2 Translation Correctness o 94

4 Encoding Compensable into Adaptable Processes with Objective Update 105

4.1 Translating Cpinto O 105
4.1.1 The Translation, Informally 106
4.1.2 The Translation, Formally 107
4.1.3 Translation Correctnesso 107

xvi

xvil Contents

4.1.4 Comparing Subjective vs Objective update 117
4.2 Translating Cpinto O 118
4.2.1 The Translation, Informally 118
4.2.2 The Translation, Formally 120
4.2.3 Translation Correctness 120
4.2.4 Comparing Subjective vs Objective update 129
4.3 Translating Cy into O 129
4.3.1 The Translation, Formally 130
4.3.2 Translation Correctness 130
4.3.3 Comparing Subjective vs Objective update 137
5 Encoding Dynamic Compensation Processes into Adaptable Processes with
Subjective Update 140
5.1 Compensable Processes with Compensation Update 140
5.1.1 Well-formed Compensable Processes 142
5.2 Translating Cp into S. o . 143
5.2.1 Translation Correctness Lo 144
5.3 Translating Cp into S. 158
5.3.1 Translation Correctness Lo 159
54 Translating Cp into S. 175
5.4.1 Translation Correctness Lo 176

6 Encoding Dynamic Compensation Processes into Adaptable Processes with

Objective Update 187
6.1 Translating C) into O 187
6.1.1 Translation Correctness 188
6.1.2 Comparing Subjective vs Objective update 190

6.2 Translating Cp into O 190
6.2.1 Translation Correctness Lo 191
6.2.2 Comparing Subjective vs Objective update 193

6.3 Translating Cp into O 193
6.3.1 Translation Correctness 194
6.3.2 Comparing Subjective vs Objective update 196

7 Conclusions and Perspectives 198
7.1 Concluding Remarks L 198
7.2 Future work 199

Bibliography 202

CHAPTER 1

Introduction

1.1 Motivation

Recent information technology (IT) advances: cloud computing, service-oriented computing,
artificial intelligence, data analytics, monitoring and predicting, etc., are supported by large
computing infrastructures such as data-centers. Also, IT frequently uses wireless and mobile
networking, parallel and distributed systems. A distributed system is one in which the com-
ponents are spread across multiple networked computers, which communicate and coordinate
their actions by sending messages to one another. Therefore, distributed systems are more
convenient than sequential systems for solving a problem. In sequential computing, each step
is carried out one at a time, while in distributed computing, a problem is distributed across
multiple computing devices. Sequential computing has drawbacks: takes a long time and is
very expensive in programs with large number of steps. Nonetheless, when modeling and im-
plementing correct systems, distributed systems impose greater obstacles such as: unreliable
network, slow processes, unexpected load, etc. In all software systems, communication and in-
teraction have become central features. Also, analysis and verification of software are complex
and challenging assignments since there is a general assumption that software systems have to
operate indefinitely and without unexpected termination. Over the last few decades, infrastruc-
tures such as those supporting high-performance computing have grown in scale and complexity.
Their power, flexibility, and convenience go hand-by-hand with the need for efficient energy con-
sumption. Large systems may experience a variety of faults or errors with increasing frequency,
and mechanisms/techniques for overcoming them are of crucial importance. Formal methods
are techniques suitable for the formal specification and verification of complex (software and
hardware) systems based on mathematics and logic. There are plenty of formal methods for
improving software development that runs on large computing infrastructures. Formal methods
have the primary task of anticipating the possibility of errors in applications and ensure a timely
response. They should also avoid unnecessary waste of resources (such as energy, for example).

Building on what has been said before, many software applications are based on long-running
transactions (henceforth LRTs) as a fundamental building block. Frequently found in service-
oriented systems, [17], LRTs describe time-extensive activities that involve several distributed
components, and loosely coupled resources. In computer science, ACID (atomicity, consistency,
isolation, and durability) is a set of attributes for transactions that ensures their validity even
in the face of errors, power outages, and other problems. LRTs do not satisfy isolation since
the execution of a single LRT is not intended to block the whole system, i.e., due to the nature
of these systems and the time duration of the activities, it is not feasible to lock (non-local)
resources. For LRTs management, handling failures is one sensitive aspect: mechanisms for
detecting failures and bringing the LRT back to a consistent state need to be explicitly pro-
grammed. As designing and certifying the correctness of such mechanisms are error prone,

Chapter 1. Introduction 2

specialized constructs, such as ezceptions and compensations, have been put forward to offer di-
rect programming support. The literature offers a variety of constructs. In Java, for instance, we
find the counstruct try P catch e @, where @ is in charge of managing exceptions e raised inside P;
in WS-BPEL |2] we find advanced mechanisms exploiting fault, termination, and compensation
handlers to handle errors.

We are interested in researching programming constructs that support failure handling at
the heart of mechanisms that detect failures and bring the system back to a consistent state.
As their name suggests, compensation mechanisms are meant to compensate the fact that an
LRT has received a failure signal. Upon receiving a failure signal, compensation mechanisms are
expected to install and activate alternative behaviors for recovering system consistency. Such
compensation behavior may be different from the LRT’s initial behavior. Widely studied in
service-oriented settings, forms of compensation handling also find an application in Collective
Adaptive Systems (at least conceptually), especially as self-autonomous devices begin to be
used in traditional transactional activities, such as distribution and delivery — consider, e.g.,
Amazon’s Prime Air and DHL’s Parcelcopter.

A variety of calculi for concurrency with constructs for compensation handling has been pro-
posed (see, e.g., |5, 10, 31, 11, 17]). Building upon process calculi such as CCS [32], CSP [27], and
the m-calculus [33], they capture different forms of error recovery and offer reasoning techniques
(e.g., behavioral equivalences) on communicating processes with compensation constructs. The
relationships between the different proposals are not clear, and there has been work aimed to
formally compare the expressiveness of the proposed mechanisms. The expressive power of such
proposals has also been studied [11, 8, 29, 30]. Lanese et al. [29] address this question by devel-
oping a formal comparison of different approaches to LRTs in a concurrent and mobile setting.
They consider a process language on top of which different primitives for error handling are
uniformly considered.

More in detail, Lanese et al. [29] define a core calculus of compensable processes, which
extends the m-calculus with transactions t[P,Q] (where processes P and @ represent default
and compensation activities, respectively), protected blocks (Q), and compensation updates
inst|[AX.Q].P, which reconfigure a compensation activity. To this end, compensations may
admit static or dynamic recovery (depending on whether compensation updates are allowed)
and the response to failures can be specified via preserving, discarding, and aborting semantics.
The language in [29] thus leads to six distinct calculi with compensation primitives.

Related to compensation handling, but on a somewhat different vein, a process calculus of
adaptable processes was proposed to specify the dynamic update in communicating systems |[7].
Adaptable processes specify forms of dynamic reconfiguration that are triggered by exceptional
events, not necessarily catastrophic. A simple example is the reconfiguration of specific units
of a robot swarm, which is usually hard to predict and entails modifying the device’s behavior;
still, it is certainly not a failure. Adaptable processes can be deployed in locations, which serve
as delimiters for dynamic updates. A process P located at [, denoted [[P], can be reconfigured
by an update prefix 1{(X).Q}.R, where @) denotes an adaptation routine for [, parameterized by
variable X. With these two constructs, dynamic update is realized by the following reduction
rule, in which C7 and Cs denote contexts of arbitrarily nested locations:

1 [IP]] | C2[I{(X).Q).R] — C1[Q{F/x}] | Ca[R] (L1)

We call this an objective update: a located process is reconfigured in its own context by an
update prefix at a different context. Indeed, the update prefix I{(X).Q} interacts with update
process [[P] and moves process @ from Cy to C1, such that the reconfigured behavior Q{F/X}
is left in C;. After the located process [[P] synchronizes with the appropriate update prefix, the
location name [is deleted. As expected, X may occur zero or many times in @Q; if) does not
contain X then the process P will be erased as a result of the update. This way, dynamic update
is then a form of process mobility, implemented using higher-order process communication as

3 1.1. Motivation

found in languages such as, e.g., the higher-order m-calculus [51], the Kell calculus [52], and
Homer [25].

An alternative to objective update is subjective update, in which process reconfiguration
flows in the opposite direction: it is the located process that moves its process (e.g., P) to a
(remote) context with an update prefix:

C1[I[P] | Ri] | C2[{(X).Q}.R] — C1[0 | R1] | Co[Q{F/X} | R] (1.2)

Same as an objective update, subjective update relies on process mobility; however, the direction
of movement is different: above, process P moves from C; to Cs, and the reconfigured behavior
Q{P/X} is left in Cy, not in C;. Thus, in an objective update, the located process “reconfigures
itself”, which makes for a more autonomous semantics for adaptation than subjective updates.'

Example 1.1.1. We contrast objective and subjective update by means of an example, adapted
from [7]. Consider an interrupt operator that starts executing process P but may abandon its
execution to execute () instead; once () emits a termination signal t¢, the operator returns to
execute what is left of P. Using adaptable processes, this kind of behavior can be expressed as
follows:

Sys =11 [Z[P] | Rl] | Iy [l{(X)Q | tQ.X}.RQ]

where [, [1, and [are different locations and name t¢g is only known to (). Process () does
not contain process variable X. If P evolves into P’ right before being interrupted, under a
semantics with objective update we have

Sys —* L[I[P]| R1] | L[I{(X).Q | tg. X }.Rs]
— I3 [Q | tQ.P/ | Rl] | lo [RZ]
—* ll [P/ | Rl] | lg [RQ]

This way, P and its derivative P’ reside at location l;. Notice that executing Sys under a
semantics with subjective update would yield a different behavior, because P’ (and Q) would
be moved to ls:

Sys —* [Z[Pl] ’ Rl] | lo [l{(X)Q | tQ.X}.Rg]
— L [Rl] | lo [Q | tQ.P, | RQ]
—" 1y [Rl] | lo [P/ | RQ]

This shows that to achieve the intended interrupt behavior in a subjective setting, Sys should
be modified in order to eventually bring process P’ back to l;. The following variation of Sys
achieves this:

Sys' = W[IIP] | 10X YR | 1 [{(X).[Q | o X]}.Re)

where we use I’ as an auxiliary location that “pulls back” P’ from I into I;.

Based on the previous overview of compensable processes and adaptable processes, it is
important to keep in mind that compensations and updates are intuitively similar. The similarity
is that both specify how the behavior of a concurrent system changes at runtime in response to
an exceptional event. On the other side, these calculi are technically very different.

The context of this thesis is to formal connect programming abstractions for compensation
handling (typical of models for services and LRTS) and for runtime adaptation. In Figure 1.1, we
present notations, which will be used in the thesis, to denote different calculus of compensable
processes and different calculus of adaptable processes.

'We use adjectives ‘subjective’ and ‘objective’ for updates following the distinction between subjective and
objective mobility, as in calculi such as Ambients [12] and Seal [13]. As explained in [13], Ambients use subjective
mobility (an agent moves itself), while Seal uses objective mobility (an agent is moved by its context).

Chapter 1. Introduction 4

Compensable processes (Static recovery) — C Notation
Calculus of compensable processes with discarding semantics Cp
Calculus of compensable processes with preserving semantics Cp

Calculus of compensable processes with aborting semantics Cy
Compensable processes (Dynamic recovery) — C* Notation

Calculus of compensable processes with discarding semantics G

Calculus of compensable processes with preserving semantics C

Calculus of compensable processes with aborting semantics Cp
Adaptable processes Notation

Calculus of adaptable processes with subjective update S

Calculus of adaptable processes with objective update O

Figure 1.1: Notation of process calculus.

In particular, we compare in a systematic way mechanism for compensation handling and
dynamic update in calculi for concurrency. We have analyzed the relative expressiveness of these
calculi. More concrete, we develop twelve encodings of six process calculi with compensation
handling into two calculi of adaptable processes. These results are illustrated in Figure 1.2
and Figure 1.3. The encodings preserve all or some of the following well-known correctness
properties, namely: compositionality, name invariance, operational correspondence, divergence
reflection and success sensitiveness. The encodings not only represent a non-trivial application
of two sensible types of mobility for adaptable processes, they also provide new insight into the
complex semantics of compensable processes.

Studies on the expressiveness of process calculi have a long history and constitute a vibrant
research area. A recent account of modern approaches to formal comparisons between different
process calculi is presented in [44]. To analyze the quality of encodings and to rule out trivial
or meaningless encodings, they are augmented with encodability criteria (|45, 39, 37, 40, 22]).
In this dissertation, we have followed Gorla’s framework for formalizing encodability and sep-
aration results [22]. With respect to the criteria in [22], our definition of walid encoding (cf.
Definition 2.3.5) presents the following differences:

- first, to account for the paths p in which transactions reside, we consider a notion of
compositionality that is slightly less flexible than Gorla’s. More precisely, we consider
compositional contexts that depend on an arbitrary list p of external transaction names.
Nevertheless, encoding still preserves the main principles of the notion of compositionality.
We can translate compensable terms by translating their operator without need to analyze
the structure of the subterms,

- second, we rely on a form of operational completeness that, unlike Gorla’s, explicitly
describes the number of steps required to mimic a step in the source language, and

- finally, we consider a new criterion, called efficiency, which allows us to precisely compare
encodings (Definition 4.1.7).

We do not know of prior works using criteria similar to efficiency. The efficiency clarifies funda-
mental differences between subjective and objective updates. Since subjective updates induce

5 1.1. Motivation

Static recovery TARGET CALCULUS

COMPENSABLE PROCESSES ADAPTABLE PROCESSES
SOURCE CALCULUS

Section 3.2

Calculus of adaptable
processes with
subjective update

03\

processes with
discarding semantics

Calculus of compensable\
Cp

Calculus of compensable
CP processes with
preserving semantics Calculus of adaptable
O processes with

objective update

processes with
aborting semantics

[C Calculus of compensable %emwys
"

Figure 1.2: Encoding Cp,Cp,Cy into S and O. An arrow indicates encoding.

tighter operational correspondences, we can formally declare that subjective updates are more
suited to encode compensation handling than objective updates. The closest related works are
by Lanese, Vaz, and Ferreira [29] and by Lanese and Zavattaro [30]. The work in [29] ana-
lyzes the expressive power of the compensation calculus focusing on three different specification
mechanisms for compensations: static recovery, parallel recovery, and dynamic recovery. The
authors show that parallel recovery (where the compensation is dynamically built as the parallel
composition of compensation elements) can be compositionally encoded using static recovery;
they also show the impossibility of encoding dynamic recovery using static recovery. The work
in [30] sheds further light on the fundamental differences between static and dynamic recovery:
it is shown that termination (i.e., the absence of an infinite computation path starting from
a given process) is a decidable property for processes with static recovery but undecidable for
processes with dynamic recovery.

Our expressiveness results complement the findings in [29, 30| by implementing static and
dynamic recovery in compensable processes using the different process framework defined by
adaptable processes. In the same line, although slightly less related, Vaz and Ferreira [54] study
criteria for determining when a compensable process is correct and establish that self-healing
compensations are correct. The criteria in [54] are different from the notion of well-formed
compensable processes that we developed to formalize encodings, for which error notifications
are crucial.

Bravetti and Zavattaro |8] compare the expressiveness of variants of Milner’s CCS extended
with the interrupt operator of CSP, the try-catch operator for exception handling, and operators
for replication and recursion. Their comparison is based on the (un)decidability of existential
and universal termination problems: the former concerns the existence of one terminating com-
putation, whereas the latter asks whether all computations terminate. They prove that in CCS
with replication there is no difference between interrupt and try-catch: universal termination is

Chapter 1. Introduction 6

Dynamic recovery TARGET CALCULUS

COMPENSABLE PROCESSES ADAPTABLE PROCESSES
SOURCE CALCULUS

Section 5.2

)

Calculus of adaptable
processes with
subjective update

o)

Calculus of compensable
CS‘ processes with
discarding semantics

Calculus of compensable
Cf,\ processes with
preserving semantics Calculus of adaptable
O processes with

objective update

Calculus of compensable %ect‘o“ 3
Ci\ processes with i
aborting semantics

Figure 1.3: Encoding C3,Cp,Cp into S and O. An arrow indicates encoding.

decidable while existential termination is not. In contrast, in CCS with recursion and try-catch,
the universal termination problem becomes undecidable, thus revealing an expressiveness gap
with respect to the language with recursion and interrupt.

In the following section, we present the original contribution of this thesis.

1.2 Contributions

The dissertation presents novel and unique results on the expressiveness for process calculi with
dynamic update and runtime adaptation. As a result, this dissertation contributes to the theory
of concurrency. More precisely, the purpose of this thesis is to compare process calculi with
compensation handling (as formalized in [29]) and with dynamic update (as formalized in [7]),
from the point of view of relative expressiveness.

There are good reasons for focusing on compensation handling as formalized in [29] and on
dynamic update as formalized in [7]. On the one hand, the calculus of compensable processes
in [29] is expressive enough to capture several different languages proposed in the literature;
the analyses of expressiveness in [29] are rather exhaustive, and bring uniformity to the study
of formal models for LRTs. Because of its expressiveness, this calculus provides an appropriate
starting point for further investigations. On the other hand the calculus of adaptable processes
in [7] is a simple process model of dynamic adaptation and reconfiguration, based on a few
process constructs and endowed with operational (reduction) semantics, which can support
both objective and subjective updates. In contrast, as we will see, the calculus of compensable
processes relies on an intricate labeled transition system. As such, adaptable processes provide
a flexible framework to elucidate the underpinnings of compensation handling, from a fresh
perspective.

We present our contributions as follows:

7 1.3. Publications and Structure

(1) We provide a unified, comprehensive presentation of twelve processes translations between
the calculus of compensation handling into the calculus of adaptable processes, considering
both objective and subjective updates. We follow and refine the expressiveness results in
[16] and [14], respectively.

(2) We establish the correctness of the twelve process calculus translations. Precisely, we prove
that translations of Cp into § and O are walid encodings — they satisfy compositionality,
name invariance, operational correspondence, divergence reflection and success sensitive-
ness properties that bear witness to the robustness of translations. For translations of
C3, Ca, Cp into S and O we prove that they satisfy: compositionality, name invariance
and operational correspondence. We establish that translations of Cp and Cp into S and O
satisfy name invariance and operational correspondence, the analysis of the other criteria
are left for future work.

(3) We exploit our twelve translations to clearly distinguish between subjective and objective
updates in calculi for concurrency. We state it in terms of efficiency: subjective updates
are better suited to encode compensation handling because they induce solid results of
operational correspondence.

Point (3) deserves further explanations. We strongly believe that there is a justified need to
construct and prove twelve translations. The main reason is that the three different semantics
with static compensation: discarding, preserving, and aborting implement different levels of
protection. Intuitively, the discarding semantics only concerns the compensation activity for
the transaction and the protected block. The preserving semantics also protects the nested
transactions, all processes without an enclosing protected block are discarded. Finally, the
aborting semantics preserves all protected blocks and compensation activities in the default
activity, including those in nested transactions. We also consider dynamic compensations where
using compensation updates one may specify an update for the compensation behavior in default
activity.

We developed encodings for all different semantics of compensable into adaptable processes in
two cases, i.e., for subjective and objective update. The encoding into adaptable processes with
objective updates reveals a limitation: in the representation of the “recollection” of protected
blocks scattered within nested transactions, objective updates leave behind processes in the
“wrong” location. The situation is reminiscent of the differences shown in Example 1.1.1 for the
“interrupt” behavior. To remedy this, the encoding uses additional synchronizations to bring
processes into the appropriate locations. This reflects prominently in the cost of mimicking a
source computation step, as measured by the number of its associated target computation steps
(which are spelled out by statements of operational correspondence). The encoding into the
calculus with subjective updates does not have this limitation, and so it is more efficient than
the encoding that uses objective update.

Ultimately, results of encoding presented in the dissertation have shown that encoding of
aborting semantics (with static and dynamic compensation) into adaptable processes (with sub-
jective and objective update) is the most complex. These are expected results since aborting
semantics provide the highest level of protection.

1.3 Publications and Structure

Publications This thesis distills and brings together results from the workshop paper:

e J. Dedei¢, J. Pantovi¢, and J. A. Pérez. On compensation primitives as adaptable
processes. In S. Crafa and D. Gebler, editors, Proceedings of the Combined 22nd
International Workshop on Expressiveness in Concurrency and 12th Workshop on
Structural Operational Semantics, and 12th Workshop on Structural Operational

Chapter 1. Introduction 8

Semantics, EXPRESS/SOS 2015, Madrid, Spain, 31st August 2015., volume 190 of
EPTCS, pages 16 — 30, 2015 ([16]).

Particularly, in this paper we present translations from the calculus of compensable pro-
cesses into the calculus of adaptable processes with objective updates. The continuation
of our research work has been inspired by the same topic. Therefore, we got the next
conference paper as a result:

e J. Dedei¢, J. Pantovi¢, and J. A. Pérez. FEfficient compensation handling via sub-
jective updates. In Proceedings of the 32nd ACM SIGAPP Symposium On Applied
Computing, SAC’17, pages 51 — 58, Marrakesh, Morocco, April 3 — 7, 2017. ACM

([14])-

In this conference paper we presented translations from the calculus of compensable pro-
cesses into the calculus of adaptable processes with subjective updates, and compared
against those in [16]. We state that encodings with subjective update are better than
encodings with objective updates in terms of efficiency.

The previous results required additional analysis, verification, and extensions that are
published in:

e J. Dedei¢, J. Pantovi¢, and J. A. Pérez. On primitives for compensation handling
as adaptable processes. Journal of Logical and Algebraic Methods in Programming,
page 100675, 2021 ([15]).

This journal paper distills, improves, and collects preliminary results from our papers [16]
and [14]. A main difference between [16, 14] and the journal paper ([15]) is that here we
concentrate on a specific source calculus, namely the calculus in [29] with static recovery
and discarding semantics (cf. Figure 1.2, encoding Cp into § and O). Indeed, the devel-
opments in [16, 14] consider also source calculi with dynamic recovery and/or preserving
and aborting semantics. The calculus with static recovery and discarding semantics ar-
guably defines the simplest setting for both encodings, one in which the key differences
between compensable and adaptable processes can be more sharply presented. Also, this
focus allows us to have a concise presentation. In this thesis, we extend the analysis of the
(efficient) encoding to source calculi with the semantics that we considered in [16] and [14].

Below we list the key extensions of the results that are developed with respect to the
journal paper [15]:

1. We develop the class of well-formed compensable processes to formalize encodings,
for which error notifications are crucial. More precisely, this class of processes disal-
lows certain non-deterministic interactions that involve nested transactions and error
notifications.

2. We extend the criteria included in the definition of valid encoding. The following
criteria have been added: name invariance, divergence reflection and success sensi-
tiveness. Therefore, we included additional definitions and theorems that establish
that encoding satisfies these new criteria.

3. We develop additional definitions and theorems necessary to complete the proof of
operational correspondence (completeness and soundness).

The work presented in the thesis builds on the work presented in the journal paper ([15]) by
providing a more pedagogical introduction to the model and incorporating all additional
results. Results presented in the thesis extend results of other source calculi by following
the insights in [16, 14]. More precisely, the extension of results was done through a detailed
analysis of the remaining semantics of compensable processes: preserving, aborting, and

9 1.3. Publications and Structure

dynamic recovery. In the thesis, we also prove that translations from the calculus of
compensable processes into the calculus of adaptable processes with the subjective and
objective update are valid encodings. In such a way, twelve different encodings of the
calculus with compensation into calculus with the dynamic update have been obtained and
proved.

We point out that in the dissertation, there are: definitions, theorems, lemmas, proofs,
examples with their relevant explanations, and notation conventions, taken in the original
from the papers [14, 15, 16]. The other materials in the dissertation which came from
another source are cited adequately.

Structure of the thesis. The thesis consists of seven chapters.

Chapter 1 Introduction. Describes the main subject and goals of the research and
provides motivation for the development of the encoding presented in Chapter 3 to
Chapter 6. Also, this chapter provides an overview of the literature related to the
research topic.

Chapter 2 Preliminaries. This chapter introduces the theoretical foundation for the
dissertation. It provides a fundamental overview of the calculus of compensable pro-
cesses and the calculus of adaptable processes. First, we introduce process calculi
informally, through examples, and then present their formal presentation follows
through a detailed analysis of syntax and operational semantics. This chapter also
contains a definition of well-formed compensable processes. Well-formed compensable
processes represent a class of processes. As noted, this class of processes disables cer-
tain non-deterministic interactions. Well-formed compensatory processes represent,
among other things, the original scientific contribution of this dissertation. Also, it
provides a general overview of the expressiveness of concurrent languages, an overview
of the literature, and the techniques used in them.

Chapter 3 Encoding compensable into adaptable processes with subjective up-
date. In this chapter, we study the expressive power of the encoding calculus for
compensable processes into the calculus of adaptable processes with the subjective
update. Precisely, we present translations of calculus for compensable processes with
static recovery, Cp, Cp, Cy into calculus of adaptable processes with subjective update,
S. We also prove that translations satisfy all or selected properties defined for a valid
encoding.

Chapter 4 Encoding compensable into adaptable processes with objective up-
date. This chapter studies the expressive power of the encoding of calculus for com-
pensable processes into calculus for adaptable processes with objective update. First,
it introduces the basic concepts and notions, and then we define the translations, Cp,
Cp, Cy into O. Afterward, it proves that translations satisfy all or selected properties
defined for a valid encoding. Also, in this chapter, we deal with the efficiency of
encoding, i.e., we introduce a new criterion. Since in the dissertation we develop two
kinds of encodings of compensable processes into adaptable processes: encoding with
the subjective and objective update, in this chapter we compare their efficiency. We
define efficiency in abstract terms, considering the number of reduction steps that
a target language requires to mimic the behavior of a source language. We prove
that encodings that use subjective updates are more efficient than encodings that use
objective updates.

Chapter 5 Encoding dynamic compensation processes into adaptable processes
with subjective update. This chapter introduces preliminaries for encodings of
C* into A. Also, it studies the expressive power by the encoding of a calculus for
compensable processes with dynamic recovery, C, C3, Cp into calculus for adaptable

Chapter 1. Introduction 10

processes with subjective update, S. We prove that translations satisfy selected
properties defined for a valid encoding.

Chapter 6 Encoding dynamic compensation processes into adaptable processes
with objective update. This chapter studies the expressive power of the encoding
of calculus of compensable processes with dynamic recovery, C3, C2, Ca into calculus
of adaptable processes with the objective update, O. We also analyze the question of
the efficiency of encodings. Specifically, we have again proved that encodings that use
a subjective update are more efficient than encodings that use an objective update.

Chapter 7 Conclusions and perspectives. We conclude with an overview of the con-
tributions of the thesis. We additionally provide suggestions/ideas on how the work
presented in the dissertation can be enhanced and extended. We state several open
questions that we plan to consider as a part of further research work.

11

1.3. Publications and Structure

CHAPTER 2

Preliminaries

In this chapter, we introduce the theoretical background for the dissertation. The chapter is
formed of the following three sections, in which we give a brief introduction to the most important
concepts related to the development of the thesis:

Section 2.1 introduces the basic terminology and concepts used in the dissertation. More
precisely, it gives a brief introduction to process calculi — compensable processes and
adaptable processes.

Section 2.2 intuitively, by using examples, introduces core calculi for compensable processes
(|29]) and adaptable processes ([7]). In the continuation of the section, we formally present
the corresponding calculi through their syntax and operational semantics. Also, this sec-
tion contains the definition of well-formed compensable processes. Well-formed compens-
able processes present a class of processes that disallows certain non-deterministic interac-
tions involving nested transactions and error notification names. Well-formed compensable
processes present, among others, an original contribution of our work.

Section 2.3 presents the most significant issues of the analysis of the expressiveness of concur-
rent languages. We provide an overview of expressiveness studies as well as the techniques
utilized to conduct them.

2.1 Process Calculi

The complexity of programs increases, and naturally, this affects the complexity of the models
required to reason about them. As stated in [48], formal methods are used for the analysis
of properties of complex systems. The design and verification of software systems should be
mathematically based since ensuring the reliability and correctness of software systems is very
difficult. Formal methods are techniques based on mathematical and logical frameworks, and
they are used for the specification and verification of complicated systems. In terms of the formal
specification, a system is defined with a modeling language. A modeling language employs
accurate mathematical syntar and semantics. Also, when formal specification is created, one
can demonstrate a set of properties of the system. Mathematical proofs are used to verify the
theorems. In the following, we list some formal methods for concurrency, as examples of formal
approaches that one may use to specify and verify application behavior: Petri nets [46, 50],
communicating state machines [6], and process calculi |26, 32, 33, 34].

One of the most used formal methods for the analysis of complex systems is process calculi
(or process algebra). The process calculi are a diverse family of related approaches for the formal
modeling of complex systems. Therefore, they can be used to express different concepts, e.g.,
nondeterminism, parallelism, distribution, real-time, stochastic phenomena, etc.

12

13 2.2. The Calculi

As stated in [38], process algebras come with a precise mathematical framework that has
well-defined syntax and semantics. Semantics permit describing and verifying properties of com-
municating systems. Therefore, process algebra focuses on the specification and manipulation
of process terms as induced by a collection of operator symbols [18]. The operator symbols are
used to build finite processes, parallel execution, communication, and some form of recursion to
express infinite behavior. The first component of process algebra is syntax. It contains all the
necessary rules to build terms from the operators and other language constructors. When the
language is syntactically defined, then it is crucial to provide a way to describe the behavior of
the system being modeled. The prior goal will be achieved if we introduce semantics. Semantics
should describe the way a process reduces.

Over the past forty years, research work on process algebras has been very intensive, and
a large number of results have been published that started with the introduction of CCS [32],
CSP [26], and ACP [4]. A brief historical overview of process algebra is presented in the paper [3].
The m-calculus [33] has become more recently prominent as a process calculus to reason about
mobile systems. There is a large number of calculi for the concurrency theory in which the
m-calculus is used as a core: [1, 12, 20, 24, 23, 28, 41, 47, 29, 30, 49]. Our interest is in CCS and
m-calculus.

2.2 The Calculi

In this section, we introduce formally the calculus of compensable processes and the calculus
of adaptable processes. To focus on their essentials, both calculi are defined as extensions of
CCS [32].

We especially emphasize subsection §2.2.2 where we identify/develop a class of well-formed
compensable processes. This class of compensable processes is very useful in our developments.
We start by defining some relevant base sets for names.

Definition 2.2.1 (Base Sets). We assume the following countable sets of names:

e)N, is a finite set of transaction names, ranged over by t,t',s,s',..., also used as error notifi-
cation names;

e N is a set of location names, ranged over by 1,1',t,t',s,',..., also used as input names;

e N is the set that collects all other (input/output) names, ranged over by a,b,c,

For compensable processes, we shall use the set N, = N; UN; for adaptable processes, we shall
use the set NV, = N;UN,. Some assumptions on these sets are in order. First, AjNN; = () and
N;NN; = 0. Also, Ny € Nj: our encoding will map each transaction into a process residing at
a location with the same name. Finally, we shall use z,y,w,2’,y’,w’, ... to denote elements of
the three sets when there is no need to distinguish them. For adaptable processes, we shall use
XY, Z,... to denote process variables.

Figure 2.1 illustrates base sets of names that are given in Definition 2.2.1.

2.2.1 Compensable Processes

In the field of concurrent and mobile systems, the concept of a long-running transaction is
utilized to solve challenges caused by unexpected events that commonly occur during application
execution (such as the Internet or wireless networks). As stated in [9], compensable programs
offer an appropriate paradigm to carry out long-running transactions. They provide a structured
and modular approach to the composition of distributed transactional activities. The main idea
is that a particular activity has its compensation and that the compensable program fixes the
order of execution of such activities.
Throughout the following subsections, we assume the following notation conventions:

Chapter 2. Preliminaries 14

Figure 2.1: Base sets of names.

e (Cp denotes the calculus of compensable processes with discarding semantics and static
recovery;

e Cp denotes the calculus of compensable processes with preserving semantics and static
recovery;

e C, denotes the calculus of compensable processes with aborting semantics and static re-
covery.

2.2.1.1 Compensable Processes, by Example

The process language with compensations that we consider here is based on the calculus in [30]
(which is, in turn, a variant of the calculus in [29]). The calculi in [30, 29] were introduced as
extensions of the m-calculus with primitives for static and dynamic recovery. We consider a vari-
ant without name mobility and with static recovery; this allows us to focus on the fundamental
aspects of compensations. Later, in the thesis, we will extend our focus and analyze dynamic
recovery in detail (Chapter 5). The languages in [30, 29| feature two salient constructs:

1. Transactions t[P,Q)], where ¢ is a transaction name and P, () are processes;
2. Protected blocks (@), where @ is a process.

A transaction t[P,Q)] is a process that consists of a default activity P and a compensation
activity (). Transactions can be nested: process P in t[P,Q] may contain other transactions.
Also, they can be cancelled: process t[P,Q] behaves as P until an error notification (failure
signal) arrives along name ¢. Error notifications are output messages coming from inside or
outside the transaction. To illustrate the simplest manifestation of compensations, consider the
following transitions:

tP,Q) | &R —+ Q| R Py | Poy@] — Q (2.1)

The left (resp. right) transition shows how ¢ can be canceled by an external (resp. internal)
signal. Failure discards the default behavior; the compensation activity is executed instead. In
both cases, the default activity (i.e., P and both P;, P») are entirely discarded. This may not
be desirable in all cases; after the compensation is enabled, we may like to preserve (some of)
the behavior in the default activity. When compensation is executed, then the system must be
returned to a consistent state. This consistent state may be different from the state in which
the transaction started. To this end, one can use protected blocks to shield a process from failure

15 2.2. The Calculi

signals. These blocks are transparent:) and (@) have the same behavior, but (@) is not affected
by failure signals. This way, the transition

ta[P2,Q2] | T2 —— (Q2),

says that the compensation behavior Qs will be immune to failures. Now consider process

P = t1[t2[P2,Q2] | t2.R1,Q1],

in which transaction ¢ occurs nested inside ¢; and P, does not contain protected blocks. The
semantics in [30, 29| refines (2.1) by providing ways to (partially) preserve behavior after a
compensation step. This is realized by the eztraction function on processes, denoted extr(-). For
process P, the semantics in [30, 29| decree:

t1 [t2[P2,Q2] | T2-R1,Q1] —— t1[(Q2) | extr(P,) | R1,Q1].

There are different choices for this extraction function: in the discarding semantics that
we consider here, only top-level protected blocks are preserved (cf. Figure 2.2); hence, in the
example above, extr(Py) = 0.

We consider discarding, preserving, and aborting variants for extr(-). They define three
different semantics for compensations (cf. Figure 2.2). Noted extrp(-), extrp(-), and extry(-),
respectively, these functions concern mostly protected blocks and transactions. Given a process
P, we would have:

e extrp(P) keeps only protected blocks in P. Other processes (including transactions) are dis-
carded.

e extrp(P) keeps protected blocks and transactions at the top-level in P. Other processes are
discarded.

e extry(P) keeps protected blocks in nested transactions in P, including their respective com-
pensation activities. Other processes are discarded.

As an example, consider the process P = t[t1[P1,Q1] | t2[(P2),Q2] | R | (Ps),Q5]. We then have:

Co: TP p (P3)](Qs);
Co: 1| P —op (P5) | (Qs) | ta[Pr,Qu] | t2[(P2),Q2);
Co: | P = (B) | (Qs) | (P2) | (Q1)] (Q2).

Notice that the three different semantics provide varying levels of protection. In the dis-
carding semantics only top-level protected blocks are preserved. Therefore, it only concerns the
compensation activity for transaction ¢ and the protected block (Ps). The preserving seman-
tics protects also the nested transactions ¢; and t9; a process such as R, without an enclosing
protected block, is discarded. Last but not least, the aborting semantics preserves all protected
blocks and compensation activities in the default activity for ¢, also including those in nested
transactions, such as (Ps).

With these intuitions in place, we illustrate compensable processes with discarding semantics,
by means of an example.

Example 2.2.1. Consider a simple hotel booking scenario in which a hotel and a client interact
to book and pay a room, and to exchange an invoice. This scenario may be represented using
compensable processes as follows (below we omit trailing 0s):

Reservation < Hotel | Client

Chapter 2. Preliminaries 16

Client book.pay.(invoice + t.re fund)

Hotel ™ t[book.pay.invoice,re fund]

Here we represent the hotel’s behavior as a transaction ¢ that allows clients to book a room
and pay for it. If the client is satisfied with the reservation, then the hotel will send his/her an
invoice. Otherwise, the client may cancel the transaction; in that case, the hotel offers the client
a refund. Suppose that the client decides to cancel his/her reservation; as we will see, there are
four transition steps for process Reservation:

Reservation ——p t[pay.invoice,re fund] | pay.(invoice + L.re fund)

s tlinvoice,refund) | invoice 4 t.refund

T

—p (refund) | refund

T

—p (0)] 0.

2.2.1.2 Compensable Processes, Formal Description

This section formally introduces the semantics for the language of compensable processes with
static recovery. Likewise, compensable processes with dynamic recovery will be discussed in
Chapter 5.

2.2.1.2.1 Syntax - Static recovery processes

The calculus of compensable processes considers prefixes m and processes P, (@, . .. defined as:
T = a ‘ x
P,Q == O|xnP|'nP|@wz)P|P|Q | tP,Q| Q)
CCS processes extension

Prefixes 7 include input actions (a), output actions (@) and error notifications (¢). Processes
for inaction (0), action prefix (7w.P), guarded replication (!7.P), restriction ((vx)P) and parallel
composition (P | Q) are standard. Protected blocks (@) and transactions ¢[P,Q] have already
been motivated. Name z is bound in (vz)P, i.e., name x is known only to the process P.

2.2.1.2.2 Operational Semantics

Following [29, 30], the semantics of compensable processes is given in terms of a labeled
transition system (LTS). Ranged over by «a, o/, the set of labels includes a, @, ¢, ¢ and 7. As in
CCS, a denotes an input action, @ denotes an output action, ¢ denotes an error notification and
7 denotes synchronization (internal action). As explained in §2.2.1.1, this LTS is parametric
in an extraction function, which is defined in Figure 2.2. Error notifications can be internal or
external to the transaction: if the error notification is generated from the default activity then
we call it internal; otherwise, the error is external.

Formally, we have three different LTSs, corresponding to processes under discarding, pre-
serving, and aborting semantics. Therefore, for each x € {D,P,A}, we will have an extraction
function extr,(-) and a transition relation —~,. The rules of the LTSs are given in Figure 2.3.
As a convention, whenever a notion coincides for the three semantics, we shall avoid decorations
D, P, and A. This way, e.g., by writing extr((P)) = (P) we mean that the extraction function for
protected blocks is the same for all three semantics. Figure 2.3 gives the rules of the LTS; we
comment briefly on each of them:

e Axioms (L-IN) and (L-OuUT) execute input and output prefixes, respectively.

17 2.2. The Calculi

extrp(t[P,Q]) =0 extrp(t[P,Q)]) = t[P,Q)]
extry (t[P,Q]) = extra(P) | (Q) extr(P | Q) = extr(P) | extr(Q)
extr((P)) = (P) extr((va)P) = (va)extr(P)
extr(m.P) =0 extr(Im.P) =0

Figure 2.2: Extraction function for static recovery.

1.0 (L-REP) (L-PAR1) (L-PAR2)
(L-In) (L-Our) 7P 5 P P2, p 0 -5 @

aP-*5P z.p-1spP a a a
v WP 5P |nP P|Q-5P|Q P|lQP|Q

(L-RES) (L-Commt) (L-Comm2) (L-BLOCK)
PP ad{rz PP Q5Q PSP Q5HQ PSP
(vz)P == (va)P’ PlQ=P|Q PlQ=P|Q (P)—(P)
(L-ScopE-OuT) (L-Rec-IN)
(L-REc-OUT) PP a#l P p

tP,Q] - extr(P) | (Q) tP,Q] = t[P,Q] t[P,Q] — extr(P) | (Q)

Figure 2.3: An LTS for compensable processes.

Rule (L-REP) deals with guarded replication, i.e., the replicated process executes an action
while simultaneously activating a copy of the original process.

Rules (L-PAr1) and (L-PAR2) allow one parallel component to progress independently.

Rule (L-RES) is the standard rule for restriction. A transition of process P determines a
transition of process (vz) P, where the side condition provides that the restricted name x does
not occur in a.

Rules (L-CoMM1) and (L-CoMM2) define synchronization on z, i.e., performs communication
between output and input action.

Rule (L-Brock) specifies that protected blocks are transparent units of behavior.

Rule (L-REC-OuT) allows an external process to abort a transaction via an output action
t. The resulting process contains two parts: the first is obtained from the default activity of
the transaction via the extraction function (cf. Figure 2.2); the second corresponds to the
compensation activity, executed in a protected block.

Rule (L-ScopPe-OuT) allows the default activity of a transaction to progress in case there is
no internal error notification.

Rule (L-REC-IN) handles failure when the error notification is internal to the transaction.

Chapter 2. Preliminaries 18

To define the semantics and to capture the fundamental properties of language constructs, we
use structural congruence. In the following, we define structural congruence (=) and evaluation
contexts for compensable processes.

Definition 2.2.2 (Structural congruence). Structural congruence is the smallest congruence
relation on processes that is generated by the following rules:

PlQ=Q|P (vz)0 =0

PIQIR)=(P|Q)IR (v2)(vy)P = (vy)(v2) P

Plo=r Q| (wa)P = (va)(P | Q) if = ¢ £2(Q)
In.P=n.P|!n.P t{(vx)P,Q] = (va)t[P,Q] if t # x, = ¢ fn(Q)
P=QifP=,Q (v2)P) = (va)(P)

The first column in Definition 2.2.2 contains standard rules: commutativity, associativity and
neutral element for parallel composition. We rely on usual notions of a-conversion (noted =,).
The second column contains garbage collection of useless restrictions, swapping of restrictions,
and scope extrusion for parallel composition. Rules for transaction scope and protected blocks
are in red because these are rules created due to the extension of CCS syntax (cf. Paragraph
2.2.1.2.1).

Definition 2.2.3 (Evaluation Contexts). The syntax of evaluation contexts of compensable
processes is given by the following grammar:

Clo] zi=T[o] | (Clo]) | t[C[s],P] | C[o]| P | (va)Clo],
where P is a compensable process.

We write C[@Q] to denote the process obtained by replacing the hole [e] in context C[e] with Q.
In the following we will use Ele|, D[e] to denote contexts. Before the proof of Proposition 2.2.3,
we present the following auxiliary lemma:

Lemma 2.2.2. Let P be a compensable process.

(a) If P 25 P’ then P = Cla.Py] and P’ = C[Py];

(b) If P -4 P’ then P = C[t[P,Q1]] and P' = Clextr(Py) | (Q1)];

(c) If P -2 P’ then P = C[z.Py] and P’ = C[Py],

for some context C[e], names a,t,z and processes Pp, Q1.

Proof. The proof is by induction on the derivation of P —* P’ where a € {a,t,7}. |
The following proposition is key to operational correspondence statements.

Proposition 2.2.3. Let P be a compensable process. If P — P’ then one of the following
holds:

(a) P = FE|[C[a.P]| D[a.P,]] and P' = E[C[P,] | D[P]],
(b) P = E[C[t[P1,Q]] | D[t.P.]] and P’ = E[Clextr(P1) | (Q)] | D[P]],
(c) P=C[t[D[t.P1],Q]] and P’ = Clextr(D[P1]) | (Q)],

for some contexts C|e], D[e], E[e], processes Py, P>, and names a,t.

19 2.2. The Calculi

Proof. The proof proceeds by induction on the inference of P —— P’. We will show that the
proposition is true for the base cases, whereas the inductive step follows directly.

By LTS (cf. Figure 2.3), in accordance with Rules (L-ComM1), (L-CoMM2) and (L-
REC-IN) we have two possible cases, for E[e] = [e] and some contexts Cle], D[e], process
P, Py, P, P}, P, P},Q,Q1 and names a,t:

e Case (L-Comm1): By Rule (L-ComM1) we have: P = P] | P}, P| =+ P/', P, -+ Py,
P’" = P{' | P} and by Lemma 2.2.2, we conclude that:

(a) Pj = Dla.P], Py = D[R], P{ = Cla.Py], and P = C[P], or
(b) Py = D[t.Py], Py = D|P], P{ = C[t|P1,Q1]], and P{' = Clextr(Py) | (Q1)].

o Case (L-REC-IN): By Rule (L-REC-IN) we have: P = t[P/,Q], P/ - R, P’
extr(R) | (@) and by Lemma 2.2.2, we conclude that: P{ = D[t.P] and R = D[P)].

Remark 2.2.4 (Reductions). We define a reduction semantics for compensable processes by
exploiting the LTS just introduced: we shall write P — P’ whenever P — P” and P = P/,
for some P”. As customary, we write —* to denote the reflexive and transitive closure of —.

2.2.2 Well-formed Compensable Processes

We shall focus on well-formed compensable processes: a class of processes that disallows certain
non-deterministic interactions involving nested transaction and error notification names. Concise
examples of processes that are not well-formed are the following:

P=t [a | tg[b,B],&] | t1 | t2 %
P1 = tl[a,b] | to E,d} | E X (2.2)
PQ =1 @,a] | tg[a,b] X
Processes P, P, and P, feature concurrent error notifications (on ¢; and ¢2), which induce
a form of non-determinism that is hard to capture properly in the (lower level) representation
that we shall give in terms of adaptable processes. Indeed, P features an interference between
the failure of ¢; and t9; it is hard to imagine patterns where this kind of interfering concurrency
may come in handy. For the same reason, we will assume that all transaction names in a well-

formed process are different. In contrast, we would like to consider as well-formed the following
processes:

P =t[a| tsb,b),a] | T2 Fr P = tiaa] | t2[bsb] | 1 | B2 (2.3)

In what follows, we formally introduce well-formed compensable processes. We require some
notations: (a) sets of pairs I'; A C N; x My, (b) sets 7,0 € M, and (¢) boolean p € {T, L}.
These elements have the following reading:

- T'is the set of (potential) pairs of parallel failure signals in P;

- A is the set of (potential) pairs of nested transaction names in P (with form (parent,child));
- 7y is the set of failure signals in P;

- ¢ is the set of top-level transactions in P;

- pis T iff P contains protected blocks.

Chapter 2. Preliminaries 20

(W-Ourl) (W-Ourt2) (W-In)
%'T\“L) . 50 | P L0 | P 50 | P
; 051 7 . — .
F®|7U{t}@1_ t.P F,@|m a.P F,@]maP
(W-RES) (W-BLOCK) (W-REP)
I’,A\m(um)P FA|75T<) F;@|m Ir.P
(W-TRANS)
FlvAl |'Yl 131 P F2>A2 |'Y2 8a:p2 Q ft(P(‘P)aP(Q)) :(FaA) FsﬂAtZ@
LAl 71Uv2;{t};p1Vp2 tP,Q)]
(W-PAR)
Fla A1 |,y1 11 P F2; A? ‘72;52;;,2 Q f(P(P)7P(Q)) = (F7 A) ren At = @

A PlQ

Y1Uy2;01Ud2;p1 VP2

Figure 2.4: Auxiliary relation for well-formed compensable processes.

We say P is well-formed if ['; A | P can be derived by means of the rules in Figure 2.4. We

write P(P) to denote the parameters I, A, 7, and ¢ associated to P, i.e., P(P) = (I, A,~,9).
We briefly comment on the rules in Figure 2.4:

e Rule (W-NIL) states that the inactive process has neither parallel failure signal nor nested
transactions; it also does not contain protected blocks.

e Rules (W-Outl), (W-OuT2), and (W-IN) enforce that protected blocks or transactions do
not appear behind prefixes (i.e., p =1, 6 = (). Rule (W-OuT1) says that if the name of the
prefix is the failure signal then it will be collected by v. Rule (W-OuT2) says that if the name
of the prefix is not the failure signal then the set of the failure signals will be as in the process
that appears after the prefix. For example, by (W-NIL) and two successive applications of
(W-OuTtl), we can infer

0;0 ’7{t1,t2};@;L to.t1.

e Rule (W-RES) says that if P satisfies the predicate for some parameters, then (vz)P satisfies
the predicate with the same parameters.

e Rule (W-BLOCK) specifies that if P satisfies the predicate for some parameters, then (P)
satisfies the predicate with the same I', A~ and . The fifth parameter for (P) specifies that
it contains protected blocks (p = T in the conclusion). This way, for example, we have

0;0 |{t1’t2}®T (ta.11).

Rules (W-REP), (W-TRANS) and (W-PAR) rely on the following auxiliary notations. First,
given sets 71,72, ¢ and a name ¢, we introduce the following sets:

Xy ={t ")t ey At €y} {t} x 6 = {(t,t') : t' € §}. (2.4)

21 2.2. The Calculi

Also, we write I'Y and A’ to denote the symmetric closure of I' and the transitive closure of
A, respectively. We will use, respectively the following functions f; and f for conditions in
Rules (W-TRANS) and (W-PAR):

ft(P(P),P(Q)) = (1 UT2U (71 X 72), A1 U Ay U ({t} x (01 Ud2 Uy Ur2))) (2.5)
f(P(P),P(Q)) = (T1UT2U (71 X 72), A1 UAy)

where P(P) = (I't, A1,71,61) and P(Q) = (I'2, Az, 2, d2).

We may now discuss Rules (W-REP), (W-TRANS), and (W-PAR):

e Rule (W-REP) says that the set of pairs of parallel failure signals in !7.P is v X ~, where ~
is the set of failure signals in 7.P. This is directly related to the transition rule (L-REP) in
Figure 2.3. All other parameters of the predicate satisfied by !n.P are the same as for 7.P.
For example, we can derive:

{(tl? t1)7 (tl, t2)7 (tQ, tl)? (t27 t2)}; 0 ‘W 'gﬂ

e Rule (W-TRANS) specifies the conditions for ¢[P,Q)] to be well-formed. First, § = {t}. The
set of pairs of parallel failure signals is the union of the respective sets for P and) and set
whose elements are pairs of failure signals; in the pair, with the first component belonging to
the set of failure signals of P and the second component belonging to the set of failure signals
of . This extension with 7 X 72 is necessary for ¢[P,Q)], because P may contain protected
blocks which will be composed in parallel with (@) in case of an error. The set of pairs of
nested transaction names is obtained from those for P and @, also considering further pairs
as specified by A(t,d1 U da Uy Ura) (cf. (2.4)). The rule additionally enforces:

(T1UT2U (71 % 72))° N (A1 UA2 UA(t, 61 Udy Uy Una)) =0
For example, we can derive:

@, {(tl, tg)} ‘m t [(I | tQ[b,B],EL]

e Rule (W-PAR) specifies the cases in which process P | @ satisfies the predicate provided that
P and @ individually satisfy it. The set of pairs of parallel failure signals is obtained as in
Rule (W-TRANS). The set of pairs of nested transactions is obtained as the union of sets of
pairs of nested transactions for P and (). Also, it must hold that:

(Fl ul'y U (’yl X 72))5 N (Al @] AQ)t = @
For example, for processes P’ and P” in (2.3) we have

@, {(tl,tQ)} ‘m tl [a | tg[b,i)},&] | EE and

{<t1’t2)};® I {t1,t2}i{t1,ta}; L 2 [a,d] | tz[b’[;} | E | 5

One should notice that processes from (2.2) do not satisfy the predicate, since their sets of
pairs of parallel failure signals and nested transaction names are not disjoint: they are both

equal to {(t1,t2)}.
We then have the following definition:
Definition 2.2.4 (Well-formedness). A compensable process P is well-formed if

(i) transaction names in P are mutually different, and

Chapter 2. Preliminaries 22

(i) I A]m P holds for some T', A, v, §, p.

The following theorem captures the main properties of well-formed processes: they do not con-
tain subterms with protected blocks or transactions behind prefixes; also, they do not contain
potential parallel a failure signals for nested transaction names. Since the former is required to
hold also for compensations within transactions, we introduce specific evaluation contexts (cf.
Definition 2.2.3) as follows:

Cvfle] u=[o] | (C™f[o]) | tiC™f[o],P] | C¥[o] | P | (vz)C™T[e] | t[P,C"f]e]].

Proposition 2.2.5. Let ['; A \ P for some I"; A, ~,§ and p. Then the following holds:

(i) if P = C®/[r.Py] then I'; ()] Py, for some I and +/, and

0L
(ii) TSN At = 0.
Proof. (i) By induction on the structure of C*fJe].

(ii) By induction on the derivation I'; A \W P.
b -

In the following, we are going to prove that well-formed processes always evolve into well-
formed processes. Before giving the statement we present several auxiliary results.

Lemma 2.2.6 (Inversion Lemma). For some I'1, Ay, 71,01, p1, 2, Ag, y2, 02, p2, the following
holds:

1) If T A\ OthenF A, 7,6 are empty sets and p =1;

2) T A |—tPthen there is 7' such that v =+ U {t} and T} ®| — Pand A=10.
3) IfFA| aPthenF@| - Pand A=0and p=1;

4)IfFA| aPthenF@| s Pand A=10,6 =0 and y=10;

. _ . / :
6) If I'; A |7;5;p (P) then p=T and I'; A |%§;p, P for some p’ € {T, L};

7) A |m Im.P then T; () |m mPand'=vyx~vyand A=0,0=0and p=1,

8) IfF7A ‘m P | chen Fl;Al ”‘/1 5o P and FQ;AQ ”y2;62;p2 Q andF:F1UP2U(’)/1 X’)/Q)
and A = A1 UAyand vy =7 U~ and § = 6; Uds and p = po V pg and I N Al = ();

9) IfFA‘ pes [PQ]thenFl,A1] T PandFQ,A2] 2QandF:F1UF2U(71><’yQ)
and A = AluAQU({t} (61U52U71U72))and’y 71U'ygandézéluégandp:pg\/pg
and I'* N A? = ();

Proof. The proof follows directly from the auxiliary relation for well-formed compensable pro-
cesses, cf. Figure 2.4. |

In the following we introduce auxiliary statements that are needed for proving that well-
formedness of compensable process is preserved by the rules in Figure 2.3.

Lemma 2.2.7. If T; A |W t[P,Q)] then there are Ay, d; such that I, Ay ’WP | (Q) and
A CA. ; o

23 2.2. The Calculi

Proof. Let T'; A \ [P Q).

- By Lemma 2.2.6 it follows I'}; A} Pand I'y; AL F=—— v %7 Q where T' = T, UTLU (7} x74)
and A = AJUALU({t} x (53U5§U71U72)) and v =7} U72 :aundp:p1 Vph and IS NA? = ().

S
717617

- By formation on Rule (W-BLOCK) we get that I'y; A, |———= T Q).

- By formation on Rule (W-PAR) we get that ', Ay ‘W P | (Q) where Ay = A} UA) and
it is clear that Ay C A. o

- Tt should be noted that for Ay C A, based on basic properties of set operations from I'*NA?! =
0, that it follows I's N AL = ().

Lemma 2.2.8. If ;A |—p P then there are I'1,A1,71,01 and p; such that
I, Aq ‘71611)1 extr(P) and 'y CT, Ay C A and 71 C ~.

Proof. The proof proceeds by induction on the derivation I'; A |W P.

Base case: If I'; A |T P was derived by (W-NIL) then P =0, extr(0) = 0. ' =T =0,
A=A1=0,vy=y=0,0=6=0,and p; = L.

Induction step: There are six cases, depending on the last rule applied in the derivation.
Below we present three cases since the proof follows directly for the other cases.

e Case 1 (W-PAR): Assume that I'; A |W P @ follows from I'); A} |m P’ and
Ig) 1Y1H1
09 A% bz @

- By (W-PaR) it follows that I' = Ty UT5U(y] x~5) (cf. (2.4)), A = AJUAL, § = 01U
and p = p) V p), and holds that ['* N A? = (.

V5505505

- By definition of extraction function (cf. Figure 2.2) we get: extr(P'| Q')
extr(P’) | extr(Q').
- For process P’ by induction hypothesis there are T'{ C I} and AY C A/ such that:
1’\/1/’ A,ll |ﬁ eXtr(P/).
71 ?51 3Py

- Similarly, for process " by induction hypothesis there are I'y C I, and AJ C A}
such that: T0; Al ——— TSI extr(Q").

- By formation on Rule (W-PAR) we get: I'1; Ay |71T1'p1 extr(P’) | extr(Q') where I'; =
TYUTSU () x~4), Ay = AYUAY 51 = 87Uy and py = pvpl, also holds T§NAY = (.
- It is easy to conclude: I'y C T, A1 C A and 71 C .

e Case 2 (W-BLOCK): Assume that I'; A | = (P') follows from I'; A |— P’. By defini-

tion of extraction function (cf. Figure 2. 2) we get extr((P")) = (P’). Therefore it is easy
to be concluded that the statement holds.

e Case 3 (W-TRANS): Assume that I'; A]— t[P’,Q'] follows from I'{; A} |==—
/. / /
Ta; A |'Y§;5§;p/2 @

- By Rule (W-TRANS) we get: ' =T{ UTL U (74 x4), A = A UALU ({t} x (05 U
S U~ UAL)), 6 =687 U, and p = p) Vv ph, also condition I' N A? =) holds.

. P’ and

/537

Chapter 2. Preliminaries 24

- By definition of extraction function (cf. Figure 2.2) we get extr(P) = 0. Therefore,
statement holds directly.

For all other cases for the proof follows directly, because of definition of extraction function.
|

Lemma 2.2.9. If FA| P|Q then there are T'1,A1,71,01 and p; such that

Fl’Al‘w o extr(P)|QandF1CF A1 CAand vy CH.

Proof. Let T'; A \m P|Q.

- By Lemma 2.2.6 we get I'/; A’1|,5,,PandF’2;A’2| i QwhereF—F’UF’ (7] %
17 1P 2P
v4) (ef.(2.4)),A =AJUAY v = Uny,d =01 U¢" and p pl V ply and condition I N A! = ()
holds.

- For process P by Lemma 2.2.8 there are I/ C TI'j, A7 C Al, and 7/ C 4] such that:
I A borgrr extr(P).
71 751 ;P7

- For processes extr(P) and @ by formation on Rule (W-PAR) the following holds:
;A |'71 5o extr(P) | @ where I'y =T/ UT, U (7] x 7%), A1 = AT UAL v =~ UAS, 00 =
67 U8, and p1 = pi V ph and T N A = () holds by basic properties of set operations.

We may now prove a soundness result, which ensures that well-formedness is preserved under
LTS rules.
Theorem 2.2.10. If T’; A| P and P -5 P’ then there are IY C T and A’ C A such that
I A'b—— T P

Proof. The proof proceeds by induction on the depth of the derivation P — P'.

Base cases: In the following we consider four base cases.

e (ase (L-Outl): Assume that I'; A] t P and L.P -5 P. By Lemma 2.2.6 Case 2) we
get T'; () ’W P.
e Case (L-OuT2): Assume that I'; A \ S a P and a.P -%5 P. By Lemma 2.2.6 Case 3) it

holds that T';0) |

Case (L-IN): Assume that I'; A |W a.P and a.P %+ P. By Lemma 2.2.6 Case 4) we have
that T'; 0 ‘7'—5'L P

Case (L-REC-OUT): Assume that T A | [P,Q], and ¢[P,Q)] s extr(P) | (Q).

- By Lemma 2.2.7 there are IV, A’,+/, ¢’ and p’ such that A’ C A and the following holds:
A g P @)

- By Lemma 2.2.9 we finally get: I'|; A}
v C .

extr(P) | (@) where I} C T, Al € A and

| YR
1’617

Induction step: In the following we consider seven cases. We omit symmetric cases (-
PaARr2) and (L-CoMM2).

25 2.2. The Calculi

o Case (L-PAR1): Assume that I'; A \W Py | @Q and if the last applied rule is (L-PAR1) then
P | Q = P| | Q is derived from P, — P,

- By Lemma 2.2.6 Case 2) the following holds: I'1; A |71 5 Py and T'9; Ag |72 5o Q such
that T =T1UT2U (11 X y2) (cf. (2.4)),A =A1UAy, vy =1 Uv2,d =01 Ud and p = p1 Vs
and condition I'* N A? = () holds.

- By induction hypothesis there are I'y C I'y and A} C Ay, such that I'; A} === P’

M3815P)
- We get that condition (A} UA2)'N(TUT2U (Y] X 72))* = 0 holds based on basic properties
of set operations.
- For processes P| and @ by formation on Rule (W-PAR) we get: I'; A/ |W P| | Q where
I"=T,UT2U (7] X 72), A" = Al UAg, vy =7 U2,d =07 Udg and p = pj V po.

Therefore, we obtain that the conditions of the theorem are satisfied.

e Case (L-Comm1): Assume that I'; A | P | @ and if the last applied rule is (L-ComMm1)
then P | Q — P’ | Q' is derived from P 25 P and Q =5 Q.

- By Lemma 2.2.6 Case 2) the following holds: T';; Ay | P and T'o; Ag | Q such
that I' = F1UF2U(Y1 X ’yg) A=ATUAyy = 71U72,5 =01 Udy and p —p1 \/pQ and
condition I'* N A? = () holds.

- For process P’ by induction hypothesis there are F’1 C I'y and A’l C Aq, such that
I3 A gy P
’717617p1
- For process @' by induction hypothesis there are I, C I'y and A}, C Ay, such that
;A% o @
105505
- We get that condition (AJUAL)!N(TLUTHU (7] x44))* = (0 holds based on basic properties
of set operations.
- For processes P’ and @' by formation on Rule (W-PAR) we get: I"; A’ |——— T P’ | Q where

I"=T{UT,U () x %), A=A UAL vy =9, U~b, 0 =0 U, and p = p) V ph.
Therefore, we obtain that the conditions of the theorem are satisfied.

e Case (L-REP): Assume that v x v; A]m I7.P and if the last applied rule is (I.-REP) then

l7.P %5 P' | !n.P is derived from 7.P =+ P’.

- By Lemma 2.2.6 Case 7) we get I'; Q)\— 7m.P and A = ().
- By induction hypothesis there is I'} C I such that I'}; 0 | i
- For processes !7.P and P’ by formation on Rule (W-PAR) we get: I'1; A4 "71'51'1’1 P |\n.P

such that 'y = Tf U (y x 11),A1 = 0,11 =yU~/,01 =06 U and p; = p Vv p'. Condition
['$ N Al = 0 holds by basic properties of set operations.

Therefore, we obtain that the conditions of the theorem are satisfied.
e (Case (L-REC-IN): Assume that I'; A \ [P Q} and if the last applied rule is (L-REC-IN)

then t[P,Q] — extr(P’) | (Q) is derlved from PP

- Using the assumption and by Lemma 2.2.6 Case 9) we get that for process P the following
holds: T'1; A | P for some I't, Ay, 71,01, p1, and for process @ the following holds:

FQaAQ ’

v1;01;p1

Py Q for some I'y, Ay, 2, b2, 2.

Chapter 2. Preliminaries 26

- By induction hypothesis there are I'jy C I';, A} € Aq such that I'); A} |m P’
Y1H1

- For transaction ¢[P,Q] by Lemma 2.2.7 there are A, ¢’ such that I'1; A’ ’WP | (@) and
A C A.

- For process P’ by formation on Rule (W-PAR) and by set operations’ properties the following
holds: T'y; Al |W P’ | (Q), where T, =T UT92 U (7] X 72), Ay, = AL UAg, 75 = 7] U~e,
d, = 87 U da.

- Applying Lemma 2.2.8 on process extr(P’) and Applying Lemma 2.2.9 we finally get:

Iy Al]7%,;5,2,;T extr(P’) | (Q) where I'y C T, AT C Al 65 C 65 and 74 C ~5.

e Case (L-SCOPE-OUT): Assume that T'; A ’m‘p t[P,Q] and if the last applied rule is
(L-ScopE-OuUT) then t[P,Q] = t[P’,Q] is derived from P %= P’

- By Lemma 2.2.6 Case 9) we get: I'1; Aq]m P and I'y; Ag |72'52,}72 Qand I' =T UL U

(11 x72), A=A1UAU({t} x (01 UG U1 U)), vy =71Unr2, 0 ={t} and p = p1 V p2,
also condition I'* N A! = () holds.

- By inductive hypothesis there are Iy C T'j1,A] C A; and §1,7],p] such that
PpAY b P

’717617p1

- Based on set operations’ properties for I' = Iy UT2 U (71 X 72) and A = A} U Ag U ({t} x
(01 U b2 U1 Unz)) the condition I'* N A? = () holds too.

- For process @ and obtained process P’ by formation on Rule (W-TRANS) we get:
I’: A \m, t[P,Q], where I" =T UT2U (7] X 72), A = AJUAU ({t} x (01 Uda Uy U

72)), ¥ =71 U2, 6 = {t} and p = p| V.
Therefore, we obtain that the conditions of the theorem are satisfied.
e Case (I-RES): Assume that T'; A \m (vz)P and if the last applied rule is (L-RES) then
(vz)P 5 (vz)P' is derived from P 2> P’
- By Lemma 2.2.6 we get: I'; A]m P.
- By inductive hypothesis there are IV C T', A’ C A,+/, ¥, p’ such that I'; A’ \W P
(vz)P'.

- For process P’ by formating on Rule (W-RES) the following holds: T"; A’ ’W

e (Case (L-BLOCK): Assume that I'; A ‘7'—5'T (P) and if the last applied rule is (L-BLOCK) then
(P) =5 (P') is derived from P % P’
- By Lemma 2.2.6 we get: I'; A]m P.
- By inductive hypothesis there are IV C T', A’ C A,~/, ¢, p' such that TV; A’ \W P
(P)'.

- For process P’ by formating on Rule (W-BLOCK) the following holds: TV; A’ |W

|
The following is immediate from Definition 2.2.4 and Theorem 2.2.10:

Corollary 2.2.11. If P is a well-formed compensable process and P —* P’ then P’ is also
well-formed.

27 2.2. The Calculi

2.2.3 Adaptable Processes

Process calculi have certain limitations for the description of the pattern of dynamic evolution
and adaptable processes are introduced as a way of overcoming these limitations. As stated in
[7], such patterns rely on direct methods of controlling the behavior and location of running
processes. Therefore, adaptable processes are at the heart of the adaptation capabilities present
in many modern concurrent systems.

This section is divided into two parts:

Section 2.2.3.1 illustrates most salient features by means of a simple example for better
understanding the concept of adaptable processes introduced by Bravetti et al. [7].

Section 2.2.3.2 presents formal description of adaptable processes, through their syntax and
operational semantics.

2.2.3.1 Adaptable Processes, by Example

The calculus of adaptable processes was introduced as a variant of Milner’s CCS [32] (without
restriction and relabeling), extended with the following two constructs, aimed at representing
the dynamic reconfiguration (or update) of communicating processes:

1. A located process, denoted [[P], represents a process P which resides in a location called
l. Locations can be arbitrarily nested, which allows to organize process descriptions into
meaningful hierarchical structures.

2. Update prefizes specify an adaptation mechanism for processes at location [. We write
I{(X).Q) and I{(X).Q} to denote subjective and objective update prefixes; in both cases,
X is a process variable that occurs zero or more times in Q).

This way, in the calculus of adaptable processes an update prefix for location [can interact with

a located process at [to update its current behavior. Depending on the kind of prefix (objective

or subjective), this interaction is realized by a reduction rule ((1.1) or (1.2), see also below).
We illustrate adaptable processes by revisiting example in Section 2.2.1.1:

Example 2.2.12. Consider again the hotel booking scenario in Example 2.2.1 | this time ex-
pressed using the calculus of adaptable processes (below we omit trailing Os):

Reservation < Hotel | Client

Client book.pay.(t.refund + invoice)

Hotel t[book.pay.invoice] | t.t{((Y).0) | pe[refund]

We use CCS processes with the located processes and (subjective) update prefixes. The client’s
behavior involves sending requests for booking and paying for a room, which are followed by
either the reception of an invoice or an output on ¢. If the client sends output on ¢, then it follows
the request for a refund. The expected behavior of the hotel is located at location ¢: the hotel
allows the client to book a room and pay for it; if the client is satisfied with the reservation, the
hotel will send him /her an invoice. The hotel specification includes also (i) a subjective update
prefix t{((Y).0)) (in the same way, can be used objective update ¢{(Y").0}), which deletes the
location ¢ with its content if the client is not satisfied with the reservation, and (ii) a simple
refund procedure located at p;, which handles the interaction with the client in that case. If
the client decides to cancel his reservation, the reduction steps for process Reservation can be
as follows:

Reservation — t[pay.invoice] | t.t{(Y).0) | pi[refund] | pay.(t.refund + invoice)

Chapter 2. Preliminaries 28

tlinvoice] | t.t{((Y).0) | pi[refund] | t.refund + invoice

tlinvoice] | t{((Y).0)) | pi[refund] | refund

N
N
— prefund] | refund
— p]0].

In this example, we could have used objective update t{(Y").0} instead of subjective update
t{((Y).0)); with the objective update, the behavior of process Reservation is quite similar. Once
we formally define our translations, a detailed derivation and explanation for this scenario will
be provided later on.

2.2.3.2 Adaptable Processes, Formal Description

Below is a formal and detailed description of the core calculus for adaptable processes.

2.2.3.2.1 Syntax

We consider prefizes m and processes P, @, ... defined as:
CCS prefixes extension
—
row= oz |z | KE0Q) | HE.Q)
PQ = 0| xnP | nP | wo)P | P|Q | I[P | X
CCS procesess extension

We consider input and output prefixes (denoted x and Z, respectively) as well as the update
prefixes [{((X).Q)) and I{(X).Q} for subjective and objective update, respectively. We assume
that @ may contain zero or more occurrences of the process variable X. Although here we
consider a process model with both update prefixes, we shall consider target calculi with only
one of them: the calculus of adaptable processes with subjective and objective update will be
denoted S and O, respectively. The syntax includes constructs for inaction (0); action prefix
(m.P); guarded replication (!7.P), i.e. infinitely many occurrences of P in parallel, each of them
are triggered by prefix m; restriction ((vx)P); parallel composition (P | @); located processes
(1[P]); and process variables (X). We omit 0 whenever possible; we write, e.g., [{((X).P)) instead
of I{(X).P)).0.

Name z is bound in (vx)P and process variable X is bound in [{{(X).Q)). Given this, the
sets of free and bound names for a process P — denoted by fn(P) and bn(P) — are as expected
(and similarly for process variables). We rely on expected notions of a-conversion (noted =,)
and process substitution: we denote by P{@/X} the process obtained by the (capture-avoiding)
substitution of) for X in P.

2.2.3.2.2 Operational Semantics

Adaptable processes are governed by a reduction semantics, denoted P — P’; a relation on
processes that relies on structural congruence (denoted =) and contexts (denoted C, D, E).

Definition 2.2.5 (Structural congruence). Structural congruence is the smallest congruence
relation on processes that is generated by the following rules, which extend standard rules for

29 2.2. The Calculi

(R-IN-OvT)
EB|C[z.P] | D[2.Q])] — E|C[P] | D[Q]]

(R-OB-UPD)
EB[CiP)] | DI{(X).Q}.R]| — E|C[Q{F/x}] | D[R]

(R-SuB-UPD)
E[C[;[P]] |D[l(((X).Q>>.RH s E[C[o] | D[Q{F/X} | RH

(R-STR)
PEPIPIHQ/QIEQ
P—Q

Figure 2.5: Reduction semantics for adaptable processes.

the CCS calculus with scope extrusion for locations:

PlQ=Q|P (vx)0=0

PI@QIR=(P|Q)IR (v)P = (vy) (va) P

Plo=Pp Q| ()P = (va)(Q | P) if & ¢ £n(Q)
In.P=m.P|!x.P (va)l[P] = l[(vz)P]if | # x

P=Qif P=,Q

Contexts are processes with a hole [e]; their syntax is defined as follows:

Definition 2.2.6 (Evaluation Contexts). The syntax of contexts is given by the following gram-
mar:

Clo] ==1o] | 1[C[e]] | Clo]| P | (va)Clo).

We write C[Q] to denote the process resulting from filling in the hole [e] in context C with
process (. Reduction — is the smallest relation on processes induced by the rules in Figure 2.5,
which we now briefly discuss:

e Rule (R-IN-OuT) formalizes synchronization between processes Z.P and z.Q), enclosed in
contexts C' and D, respectively.

e Rules (R-SuB-UpPD) and (R-OB-UPD) formalize the equations (1.1) and (1.2) given in the
Introduction. They implement subjective and objective update of a process located at location
[that resides in contexts C' and E. In general, we shall use one of these two rules, not both.

e Rule (R-STR) closes the reduction relation under structural congruence.
Remark 2.2.13. We write —* to denote the reflexive and transitive closure of —.

We close this section with the following example because we want to emphasize the differ-
ence between subjective and objective updates. We note once again that the difference in the
movement through updates is crucial for encodings.

Chapter 2. Preliminaries 30

Example 2.2.14. Let s,t,[1, and ls be location names. Let us consider reduction steps for the
following processes P, and P» for subjective and objective update, respectively:

e For subjective update we have the following two reduction steps:

P = t[ll al | l1[b] | c} | outd® (11, l2,2,Q)

= t[lfa] | o] | e] | (X))l ((X2)-(l[X0] | 12[X2] | Q)
— t[l1[b] |] | Li((X2).(I2]a] | L2[X2] | Q)))
— t[c] | la[a] | 12b] | Q

= t[ll{ | ll b | C] | outd°(l1, l2,2 Q)

= tllifa] | L[b] | ¢] | Lh{(X1).h{(X2).(la[X1] | 2[X2] | @)}}
— t[ll{((lz[a] | [Xa] | @)} | | 1a[b] | €]
— t]

The difference between subjective and objective update:

- by using subjective update, after two reduction steps, processes on location [y that are
nested in location ¢, have been relocated to location lo and moved out of location ¢;

- by using objective update, after two reduction steps, we got that processes on location [y,
nested in location ¢, have been relocated to location lo. They are still nested in location ¢.
Therefore, if we want to relocate processes on location Iy out of the location t, we need to
perform at least one more reduction step.

2.3 Expressiveness of Concurrent Calculi

In this part of the dissertation, we provide a general survey of the most significant approaches
to the expressiveness of concurrent languages. Throughout the following subsections we assume
the following notation conventions. We use L1, Lo, ... to range over languages and Lg, Lt to
range over source and target languages, respectively.

2.3.1 Generalities

Calculi are subject to evaluation and an important criterion for assessing their significance is their
expressiveness. The theory of concurrency lacks a distinctive argument on a formal definition of
the expressive power of a language. Although a unified theory would be ideal, a large number and
variety of concurrency models suggests that there is no single theory for language comparison
that incorporates all of them [42].

As explained in [43], for the study of expressiveness, the notion of encoding is of crucial
importance. The encoding is a function [-] from the terms of a source calculus into the terms of
a target calculus that satisfies correctness criteria which cover structural and semantic criteria
of function [-]. Because many criteria arise from different practical needs, defining these criteria
is the main difficulty in defining a unique theory for language comparison. Several times in the
literature (e.g., in [39, 37, 40, 22]), it is stated that there is no consensus on what set of criteria
constitutes a reasonable and meaningful encoding. It is common to create criteria based on the
requirements of the current analysis. Also, in [40] author states that with the significant increase
in the number of process models, their comparison in a systematic way represents an important
aspect of research in the field.

31 2.3. Expressiveness of Concurrent Calculi

The question of the purpose of the existence of expressiveness can be posed. In this regard,
expressiveness studies usually consider: encodability and non-encodability results. Naturally,
encodability is studying the existence of an encoding. The non-encodability, on the other hand,
deals with the opposite problem. Let us consider languages £1 and Lo, if we want to confirm
that £; is more expressive than Lo, we have to provide the existence of both results: we should
present/prove an encoding [-] : £o — £3 and, simultaneously, we should provide a formal
argument demonstrating that an encoding [-] : £1 — L2 does not exist.

The literature also has another classification of expressiveness. As explained in [42, 43|,
there are two approaches to evaluate the expressive power of a language that consider absolute
or relative expressiveness:

- If we consider the expressive power of a single process calculus, we yield an absolute
result. We usually get a positive absolute result by proving the ability to solve some
kind of problem. Otherwise, we obtain a negative absolute result by demonstrating the
inability to solve a problem (|40], [22]). In [40] has been explained that this question entails
determining exactly the transition systems that are expressible in a given language. The
term absolute expressiveness is used to describe the expressive power of a language and its
semantics. As a result, the emphasis is on the expressiveness of the terms of the language,
as well as the kind of operators that can be expressed in it. The answers to these questions
are contingent on the use of appropriate denotations of LTS. Hence, only basic process
calculi with simple labels have been reported to have absolute expressiveness ([40]).

- Relative expressiveness, which is studied in this dissertation, measures the expressive power
of a language £ by taking some language Lo as a reference. When we want to show that
L1 and Lo have the same expressive power, we use this type of expressiveness. The goal
is to get two encodability results, one for each direction. Other situation is to determine
the impact of a specific operator or construct on the expressiveness of a language £1. The
language L9 is the fragment of £1 without the operator(s) of interest. Precisely, one goal
can be that we want to show that £; cannot be encoded into L£o. If this is the case then
the difference in the expressive power between the two languages exists. The difference is
in the operators that £1 has but that Lo lacks, and in the literature, this scenario is known
as a separation result. It examines a construct that separates the world with it from the
world without it ([56, 55]).

A more detailed historical overview of the evolution of the definition of encoding starting
from proposal, within programming language at large and concluding with the most relevant
proposals for concurrent languages can be found in [42].

2.3.2 The Notation of Encoding

As we previously stated, an encoding function is a function from the set of processes of the source
calculus into the set of processes of the target calculus. The existence of an encoding shows that
the target language is at least as expressive as the source language. Conversely, proving the
non-existence of such an encoding shows that the source language can express some behavior
not expressible in the target language. By combining these encodability results (positive and
negative), the differences in expressivity between languages can be established.

Also, it is common to interpret the translation as a mapping of the syntax of the language, Lg
into the language £y and Ps and Py are set of process terms of the source and target language,
i.e., [-] : Ps — P¢. Such defined functions can be obtained by doing some trivial mappings. One
trivial example can be that we define the encoding that translates every process to the inaction.
This is a reasonable assumption because the inaction is a part of every process calculus. It
is important to remember that such encoding says nothing about the expressive power of the
considered calculi. Therefore, if we want to analyze the quality of encodings and also to rule

Chapter 2. Preliminaries 32

out trivial or meaningless encodings, encodings are augmented with a set of correctness criteria,
which attest to their quality. Overview and discussion of commonly used correctness criteria
can be found in [40, 22, 35, 36, 55, 21, 43].

Our objective is to relate the calculus of compensable and the calculus of adaptable processes
through walid encodings (simply encodings in the following). Here we define a basic abstract
framework that will help us formalize these relations.

To define valid encodings, we adopt five correctness criteria formulated by Gorla [22]:

(1) compositionality o
structural criteria

(2) name invariance

(3) operational correspondence
(4) divergence reflection semantic criteria

(5) success sensitiveness

Structural criteria describe the static structure of the encoding, whereas the semantic criteria
describe its dynamics — how the behavior of encoded terms relates to that of source terms, and
vice versa. As stated in [40], structural criteria are needed in order to measure the expressive-
ness of operators in contrast to expressiveness of terms. As for semantic criteria, operational
correspondence is divided into completeness and soundness properties: the former ensures that
the behavior of a source process is preserved by the translation in the target calculus; the latter
ensures that the behavior of a translated (target) process corresponds to that of some source
process. Divergence reflection ensures that a translation does not introduce spurious infinite
computations, whereas success sensitiveness requires that source and translated terms behave
in the same way with respect to some notion of success.

Following [22], we start by defining an abstract notion of calculus, which we will later in-
stantiate with the three calculi of interest here:

Definition 2.3.1 (Calculus). We define a calculus as a triple (P, —, =), where:
e P is a set of processes;
e — is its associated reduction semantics, which specifies how a process computes on its own;

e = is an equality on processes, useful to describe the abstract behavior of a process, which is
a congruence at least with respect to parallel composition.

We will further assume that a calculus uses a countably infinite set of names, usually denoted
N. Accordingly, the abstract definition of encoding refers to those names.

Definition 2.3.2 (Encoding). Let N5 and A be countably infinite sets of source and target
names, respectively. An encoding of the source calculus (Ps, —4, ~s) into the target calculus
(Pt, —¢, =) is a tuple ([], ¢pp) where [-] : Ps — Pt denotes a translation and ¢pg : Ng —
N denotes a renaming policy for [-].

The renaming policy defines the way names from the source calculus are translated into the
target calculus. A valid encoding cannot depend on the particular names involved in source
processes.

We shall use the following notations. We write —* to denote the reflexive, transitive
closure of —». Also, given k > 1, we will write P —* P’ to denote k consecutive reduction
steps leading from P to P’. That is, P, —"* Pj,1 holds whenever there exist P, ..., P such
that P, — Py, — --+ — P, — Pr11.

33 2.3. Expressiveness of Concurrent Calculi

For compositionality, we use a context to combine the translated subterms, which depends
on the source operator that combines the subterms. This context is parametrized on a finite set
of names, noted N below, which contains the set of free names of the respective source term. In
a slight departure from usual definitions of compositionality, the set N may contain transaction
names that do not occur free in the term. As we will see, we have an initially empty parameter
on the encoding function that is accumulated while translating a source term.

For the operational correspondence we follow more strict criteria than Gorla in [22]. We rely
on a form of operational completeness that, unlike Gorla’s, explicitly describes the number of
steps required to mimic a step in the source language.

For divergence reflection we will use the following definition:

Definition 2.3.3 (Divergence). A process P diverges, written P — if there exists an infinite
sequence of processes {P;};>o such that P = Py and for any i, P; — Pit1.

To formulate success sensitiveness, we assume that both source and target calculi contain
the same success process v'; also, we assume that | is a predicate that asserts reducibility (in a
“may” modality) to a process containing an unguarded occurrence of v'. This process operator
does not affect the operational semantics and behavioral equivalence of the calculi: v cannot
reduce and n(v') = fn(v') = bn(v') = 0. Therefore, this language extension does not affect the
validity of the encodability criteria.

Definition 2.3.4 (Success). Let (P,—,~) be a calculus. A process P € P (may)-succeeds,
denoted P |}, if it is reducible to a process containing an unguarded occurrence of v/, i.e., if
P —* P and P’ = C|[v] for some P’ and context Cfe].

In the following definition, we formally present the five criteria for valid encoding where
n-adic context Cleq,...,,] is a term such that n occurrences of 0 are replaced by the holes

[o1],..., [®n]:

Definition 2.3.5 (Valid Encoding). Let Lg = (Ps, —¢, ~s) and Ly = (Pg, —, &) be source
and target calculi, respectively, each with countably infinite sets of names Nz and N;. An
encoding ([-], ¢py), where [-] : Ps — Pt and ¢p : Ns — N, is a valid encoding if it satisfies
the following criteria:

(1) Compositionality: [-] is compositional if for every n-ary (n > 1) operator op on Py and for
every set of names N there is an n-adic context Cgp [e1,...,e,] such that, for all Pi,..., P,
with £n(Py, ..., P,) C N it holds that [op(P, ..., P,)] = Oy, [[P1], - - -, [Pa]]-

(2) Name invariance: [-] is name invariant if for every substitution o : Ny — Njs there is a
substitution o’ : Ny — N such that (i) for every a € N : ¢pp(o(a)) = o' (¢p(a)) and (ii)
[o(P)] = o' (IPD)-

(3) Operational correspondence: [-] is operational corresponding if it satisfies the two re-
quirements:

a) Completeness: If P —, Q then there exists k such that [P] —F~ [Q].
b) Soundness: If [P] —; R then there exists P’ such that P —% P’ and R —§~ [P’].

(4) Divergence reflection: [-] reflects divergence if, for every P such that [P] —¢, it holds
that P —¢.

(5) Success sensitiveness: [-] is success sensitive if, for every P € Pg, it holds that P | if
and only if [P] .

Chapter 2. Preliminaries 34

2.3.2.0.1 Concrete Instances

We now instantiate Definition 2.3.1 with the source and target calculi of interest:

Source Calculus: Cp, Cp and Cp The source calculus will be the calculus of compensable pro-
cesses defined in §2.2.1. The set of processes, which we denote Cp, Cp and Cy will contain
only well-formed compensable processes (cf. Section 2.2.2). We shall consider the reduc-
tion relation — defined at the end of Section 2.2.1. We shall use structural congruence
(Definition 2.2.2) as behavioral equivalence.

Target Calculi: S and O There will be two target calculi, both based on the calculus of
adaptable processes defined in Section 2.2.3. The first one, with set of processes denoted S,
uses subjective updates only; its reduction semantics is as given in Figure 2.5, with updates
governed by Rule (R-SUB-UpPD). Similarly, the second calculus, with set of processes
denoted O, uses objective updates only; its reduction semantics is governed by Rule (R-
OB-UPD) instead. In both cases, the structural congruence of Definition 2.2.5 will be used
as behavioral equivalence.

In the definition of operational correspondence (Definition 2.3.5 (3)), the purpose of & is to
abstract away from “junk” processes, i.e., processes left behind as a result of the translation that
do not add any meaningful behavior to translated processes. As we will see, in our translations
the inactive process 0 will be the only possible junk process; as such, it is inactive junk in the
sense that it does not perform further reductions on its own nor interact with the surrounding
target terms. This is why it suffices to use structural congruences on source and target processes
as behavioral equalities.

Brief summary of the chapter:
This chapter introduced: (i) basic concepts and terminology; (ii) core calculi for compensable
and adaptable processes; (iii) a class of well-formed compensable processes that disallows non-
deterministic interactions involving nested transactions and error notification names; (iv) an
overview of expressiveness studies and the techniques utilized to conduct them.

In the next chapter, we introduce all preliminaries for encodings C into A. Tt also presents
the encoding compensable into adaptable processes with subjective update (encodings Cp, Cp
and C, into S).

35

2.3. Expressiveness of Concurrent Calculi

CHAPTER 3

Encoding Compensable into Adaptable
Processes with Subjective Update

The main purpose of this chapter is to present walid encodings of calculus for compensable
processes into calculus of adaptable processes with subjective update. In the following, a brief
structure of the chapter is given:

Section 3.1 introduces all preliminaries for encodings C into A.

Section 3.2 at the beginning introduces the translation of Cp into § in an informal way to
acquaint the reader with the basic intuition. Then it follows the formal definition of
encoding Cp into §. The main contribution is a valid encoding Cp into S.

Section 3.3 presents the translation of Cp into § informally and formally. Then it follows
the formal definition of encoding Cp into §. We prove that the encoding satisfies name
invariance and operational correspondence (completeness and soundness).

Section 3.4 presents the translation of Cy into § informally, then goes on to give a formal
definition of the encoding. We prove that encoding Cy into S satisfies the following crite-
ria: compositionality, name invariance, and operational correspondence (completeness and
soundness).

3.1 Preliminaries

Recall the base sets defined in Definition 2.2.1; in particular, N; denotes the base set of trans-
action names. Encodings of Cp, Cp, Cy into S rely on the following notion of path, a sequence of
transaction names:

Definition 3.1.1 (Paths). Let N (with & € N) be the set of sequences/tuples of length k
of names in N;. These sequences will be denoted by pu, 1/, ...; we assume they have pairwise
distinct elements. We write € to denote the empty path. The concatenation of such sequences
with € at the end will be referred to as paths and denoted by p, o/, ... (i.e., p = pe, p' = ple,...).
We will sometimes omit writing the tail ¢ in p (i.e., ue = p,p'e = ¢/, ...). By a slight abuse of
notation, given a transaction name t and a path p, we will write ¢t € p if ¢ occurs in p.

We also require sets of reserved names. We have the following definition:

Definition 3.1.2 (Reserved Names). The sets of reserved names N[and N] are defined as
follows:

o N7 ={hy,ju Tz, ke | © € Ni}is the set of reserved synchronization names, and

36

37 3.1. Preliminaries

Figure 3.1: Base sets of names and reserved names.

o N/ ={p,,B, | pisa path} is the set of reserved location names.

If t1,to € Ny such that t1 # to then hy, # hyy, P, # pr, and By, # Br,. We let N C N\ Ny and
NsNNT = 0. In what follows we shall use the set N, = N; U (N;UNT) for adaptable processes.

Figure 3.1 illustrates base sets of names that are given in Definition 3.1.2.
We will find it convenient to adopt the following abbreviations for adaptable processes.

Convention 3.1.1. Recall that [{((X).Q)) and I{(X).Q} denote subjective and objective update
prefixes, respectively.

e We write [] /[X;] to abbreviate the process [[X1] | ... | I[X4y].

=1

o We write ¢((1)) to denote the subjective update prefix ¢(((Y").0)), which “kills” both location ¢
and the process it hosts. This way, for instance:

sltle]] | (1) — s[0] (3.1)
Similarly, we write t{f} to stand for the objective update prefix that “kills” ¢ and its content.

e We write t(((Y7,Y2,...,Y,).R)) to abbreviate the nested update prefiz:

t((Y1)£((Y2). - t{(Yn)-R) -~)

For instance:
s|tfilal | le] | e] | (X, Xo)-(alXa] | 2[Xa]))| —* s|t[e] | tala] | Lale]]-
Similarly, ¢{(Y7,Y2,...,Y,).R} will stand for the objective prefix:

V). H{(Ya). -+ H{(Yn).R} - - }}.

Below, this chapter contains three sections. They present the encoding source calculus
presented in [29] with static recovery and discarding (Section 3.2), preserving (Section 3.3) and
aborting (Section 3.4) semantics into adaptable processes.

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 38

3.2 Translating Cp into S

In this section we concentrate on a specific source calculus, namely the calculus in [29] with
static recovery and discarding semantics. Before giving a formal presentation of the encoding
we introduce some useful conventions and intuitions.

3.2.1 The Translation, Informally

In compensable processes: transactions, protected blocks, and the extraction function (cf. Fig-
ure 2.2) represent the most interesting process terms to be addressed in encodings.

We shall use paths (cf. Definition 3.1.1) to represent the hierarchical structure induced by
nested transactions. That way, we can represent and trace the location of the transactions and
protected blocks in a process. Our translation of Cp into § will be indexed by a path p: it will
be denoted [-], (cf. Definition 3.2.3 below). This way, e.g., the encoding of a protected block
found at path p will be defined as:

[(P)], = pp[[[P]]e}

where p, is a reserved name in N} (cf. Definition 3.1.2).

A key aspect in our translation is the representation of the extraction function. As we have
seen, this function is part of the operational semantics and formalizes the protection of transac-
tions/protected blocks. Our translation explicitly specifies the extraction function by means of
update prefixes. We use the auxiliary process outd®(ly,l2,n, @), which moves n processes from
location [to location I3, and composes @ in parallel. Using the notations from Convention 3.1.1,
this auxiliary process can be defined as follows:

Q ifn=20

ot (e Q)= 0y viwy LX) (TTBIX] Q) i >0 3.2)

Example 3.2.1. Consider the process:

s[tlilal | 1[b] | ¢] | outd®(ly, 12,2, Q)]

We have two reductions:

slt[lafal [1fp] | e] | h{(X1, Xo).(12[X3] | 12[X2] | Q)]
— s[t[L[o] | C} | 1{(X2).(I2[a] | 12[X2] | Q)]
— st[e] | l2la] | 22[b] | Q]
The first reduction corresponds to the synchronization between Ij[a] and
L{(X1, X2).(I2[X1] | I2[X2] | @))), while the second is the synchronization between [;[b]

and 11 (((X2).(I2[a] | l2[X2] | Q))). Figure 3.2 depicts these interactions using boxes to denote
nested locations.

The auxiliary process outd®(ly,l2,n, Q) will be used in Definition 3.2.2 — see next.

3.2.2 The Translation, Formally

Our translation of compensable processes into adaptable processes relies on an auxiliary process,
denoted extrd((t,l;,l2)), that explicitly represents the extraction function. Its definition uses
some additional functions, which we present below:

Definition 3.2.1. Let P be a closed adaptable process.

39 3.2. Translating Cp into S

t

t lo Iy

I l
Ca JI[b Jle| | outa®(h,2,2,Q) | —2 [e]Ia]1[®] 1@

Figure 3.2: Illustrating outd®(ly, 3,2, Q) in Example 3.2.1.

1. Function n1(l, P) denotes the number of locations [in process P. It is defined as follows:

nl(l,l[P]) = nl(l,P) + 1 nl(ll,lg[P]) == Ill(ll,P) if ll 75 l2
nl(l, (va) P) = nl(l, P) nl(l,P| Q) =nl(l,P)+nl(l,Q)
nl1(/,0) =nl(l,X) =0 nl(l,m.P) =nl(l,!r.P) =0

2. For a name t and a process P, function ch(t, P) returns h;.0 if P equals to an evaluation
context with the hole replaced by h;.P’ up to structural congruence (for some P’), where
the hole is not located within p; ,, and returns 0 otherwise. It is defined as follows:

Ch(t, htP) = htO Ch(S,ht.P) =0
0 ifl = Dt P
ch(t,l|P]) = ’ ch(t, P = ch(t, P) | ch(t,
(t.11P) {CW, P otherms (t.P] Q) =ch(t.P) | ch(t, Q)
ch(t,!7.P) =0 ch(t,0) =ch(t,X) =0
ch(t,m.P) =0 if m # hy ch(t, (vx)P) = ch(t, P)

We assume that functions nl(-,-) and ch(-,-) operate only over closed processes and, in the
style of a call-by-need evaluation strategy, we assume that they are applied once they are provided
with an argument. We are now ready to define process extrd((t, (1, l2):

Definition 3.2.2 (Update Prefix for Extraction). Let t, [;, and lo be names. We write
extrd((t,lq,l2)) to stand for the following (subjective) update prefix:

extrd(t, 11, b)) = t{(Y)4[Y] | ch(t,Y) | outd®(ly, lo,n1(l1, Y), (1) .]r)). (3.3)

Intuitively, process extrd((t,l;,l2)) serves to “prepare the ground” for the use of
outd®(l,l2,n, Q) which is the one that actually extracts processes from one location and relo-
cates them into another one. Once that occurs, location ¢ is destroyed, which is signaled using
name hy.

We are now ready to formally define the translation of Cp into S.

Definition 3.2.3 (Translating Cp into S). Let p be a path. We define the translation of com-
pensable processes into subjective adaptable processes as a tuple ([-],, ‘p[[']]p) where:

(a) The renaming policy ¢, : Ne = P(Ng) is defined as:

Rt if x € N
P11, (@) = {{:z:, heyU{p,:xze€p} ifzel (3:4)

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 40

[(P)]p = po[[P]]
[1P.QI = ¢[[Ple] |1 (extralt.pe.) | polIQ1:)
[a.P], = a.[Pl,
[a.Pl, =a.[Pl,
[t.P],=th.[P],
[0],=0
[[(Vx)Pﬂp = (Vx)ﬂp]]p
[Py | P2l =[], | [P2]p
['n.P], =![~.P],

Figure 3.3: Translating Cp into S.

(b) The translation [-],: Cp — S is as in Figure 3.3.

Some intuitions are in order. The renaming policy focuses on transaction names: if x is
a transaction name, then it is mapped into the set of all (reserved) names that depend on it,
including reserved names whose indexed path mentions z. Otherwise, x is mapped into the
singleton set {x}.

We now explain the process mapping in Figure 3.3, which is parametric into a path p that
records the hierarchical structure induced by nested transactions. This way, top level process
P € (Cp is translated as [P]e.

Unsurprisingly, the main challenge in the translation is in representing transactions and
protected blocks as adaptable processes. More in details:

e The translation of a protected block found at path p will be enclosed in the location p,.

e In the translation of ¢[P,Q)] we represent processes P and () independently, using processes in
separate locations. More in details:

- The default activity P is enclosed in a location ¢ while the compensation activity @ is
enclosed in a location p,. That is, () is immediately treated as a protected block.

- The translation of P is obtained with respect to path t, p, thus denoting that ¢ occurs nested
within the transactions described by p.

- In case of a failure signal ¢, our translation activates process extrd((t,p,,pp)) (cf. Defi-
nition 3.2.2): it extracts all processes located at p;, (which correspond to translations of
protected blocks) and moves them to their parent location p,,.

- The structure of a transaction and the number of its top-level processes change dynamically.
Whenever we need to extract processes located at py ,, we first substitute ¥ in process out®
(cf. (3.2)) and in functions ch(¢,-) and nl(ly,-) (cf. Definition 3.2.1), by the current content
of the location t.

- We use the reserved name h; (introduced by extrd((t, p: p,p,))) to control the execution of
failure signals; it is particularly useful for error notifications that occur sequentially (one
after another in the form of a prefix, e.g. t.t1..... tn).

- Once the translation of protected blocks has been moved out of ¢, the location only contains
“garbage™ we can then erase the location ¢ and its contents. To this end, we use the prefix
t((t)) (cf. Convention 3.1.1), which is also introduced by extrd((t, psp,p,))-

41 3.2. Translating Cp into S

- In case of an internal error notification ¢, function ch(t,) does the following: it searches for
processes of the form h;. P within the current content at ¢t and replaces them with h;.0. This
is done before the update prefix ¢((1)) deletes both location ¢ and processes located at ¢, as
described above. Notice that we would need to preserve synchronizations between input hy
and its corresponding output h;.

With the above intuitions, translations for the remaining constructs should be self-explanatory.

3.2.3 Translation Correctness

We now establish that the translation -], is a valid encoding. To this end, we address the
five criteria in Definition 2.3.5: compositionality, name invariance, operational correspondence,
divergence refection, and success sensitiveness.

Our results apply for well-formed processes as in Definition 2.2.4. Consider P =
ti]a | ta[b,b],a] | &1 | 2, the ill-formed process presented in (2.2). Intuitively, P is not well-
formed because it can either compensate ¢ or t2 in a non-deterministic fashion:

- if t1 is compensated then the failure signal on to will not be able to synchronize;
- if t9 is compensated then ¢; can still be compensated.

That is, P —* (b) | (@). Consider how this possibility would be mimicked by [P], the encoding
of P:

[Ple = tafa | t2[b] | ta. (t2((YV)-£2[Y] | ch(t2,Y) | t2{(1)-he)) | P, [0])]
| t1. (81 ((YV)41[Y] | ch(t1,Y) | outd®(pry, pe, nl(pry, Y), t1 (1)) | pelal)
| t1.he, | t2.hy,
— ti]a | ta[b] | ta. (2((Y)12[Y] | ch(ta,Y) | hey)) | Py [0])]
| t1. (L ((V) 6 [Y] | ch(t1,Y) | outd®(pry, pe, 0l (pey, Y), t1 () -hey) | pelal)
| t1.he, | hay
— tifa | t2[b] | t2{((Y)t2[Y] | ch(ta, Y) | t2((1)-hts)) | Doy e [b]]
| t1{((Y).ta[Y] | ch(t1,Y) | outd®(psy, e, 01 (pey, Y), b (1)-Ray) | pelal | gy | g,
— t1[a | t2[b] | ch(ta,b) | t2{(1) ., | Peyc[b]]
| t1((YV)41[Y] | ch(t1,Y) | outd®(pey, pe, n1(pty, Y), tr (1) e | pel@) | oty | Py
— tila | t2[b] | 2(1)-hey | Dy,e[b]] | Py, ((X0)- (pe[Xa] [1 {(EN Pty)) | pe(@] | Py | Py
— ty[a | t2[b] | t2((1)-hey]| | pe[B] | £ (1) Pty | pel@] | Py | Pt
— p:[0] | Dy | pelal | by | B,
— pe[b] | pe[al | he,

Hence, when applied into ill-formed processes, encoding induces target processes with “garbage
processes” (such as hy, above), which do not satisfy operational correspondence as defined in
Definition 2.3.5. Specifically, the soundness property would not hold, because [P]e would have
behaviors not present in P. A similar conclusion can be drawn for the other two ill-formed
processes presented in (2.2).

3.2.3.1 Structural Criteria

We prove the two criteria, following the order in which they were introduced in Definition 2.3.5,
i.e., compositionality and name invariance.

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 42

3.2.3.1.1 Compositionality

Compositionality is not a trivial criterion at all. It should be borne in mind that well-known
encoding from the asynchronous m-calculus into the join-calculus in [19] is not compositional.
Also, in the recent work [19] is presented that the encoding from m-calculus into C calculus is
not compositional.

The compositionality criterion says that the translation of a composite term must be defined
in terms of the translations of its subterms. The translation is initially parametrized with € (i.e.,
without external names); afterwards, when applied to nested subterms, the list of parameters
is extended with transaction names p, as specified in Definition 2.3.5. Accordingly, we consider
compositional contexts that depend on an arbitrary list p of external transaction names. Nev-
ertheless, encoding still preserves the main principles of the notion of compositionality. We can
translate compensable terms by translating their operator without need to analyze the structure
of the subterms. Another peculiarity appears in the process extrd((t, p; p, p,)), which is defined
in Definition 3.2.2. It depends on the function n1(l;,Y) that dynamically counts the current
number of locations [; in the content of t. To mediate between these translations of subterms,
we define a context for each process operator, which depends on free names of the subterms:

Definition 3.2.4 (Compositional context for Cp). For every process operator from Cp, we define
a compositional context in S as follows:

Cy plo] = pp|[o]] Cypyplon,92) = t[[o1]] | t. (extrd((t, pi.p. pp)) | Dp[[e2]])
C| [o1,02] = [01] | [o2] C; [o] = L.hy.[o]

Cale] =a[e] Colo] = a.[o]

Clom)le] = (v)[e] Cir o] =!rr.[o]

Using this definition, we may now state the following result:

Theorem 3.2.2 (Compositionality for [-],). Let p be an arbitrary path. For every process
operator in Cp and for all well-formed compensable processes P and @ it holds that:

[(P)]p = Co,p [IPIE] [P, Q1, = Cipp [[Plepr [Qe] [P 1Q], =C ([Pl [Q,)
[a.P], = Ca. [[P],] [t.P], = C: [P, [(vz)P)], = Ciuay [[P]]
[[E'Pﬂp = Ca. H[P]]p] [[!W-P]]p = O H[P]]p]

Proof. Follows directly from the definition of contexts (Definition 3.2.4) and from the definition
of [-], : Co — S (Figure 3.3). Indeed, for all operators and all well-formed compensable processes
P and @ we have:

[P @I, =C ([Pl QI = [P, | [Q,

[t[P,Q1], = Ci(,)p [P, [QL] = t[[Plep] | . (extrd{(t, pr,p, pp)) | PoIIQE]) -
[{P)]p = Cy,p [[P]e] = pp[[P]e]
[a.P], = Ca. [[P],] = a-[Pl,
[[E-P]]p = Ca. [HP]],,] =q. HPHP
[t.P], = Cg [[P],] = t.he.[P],

[(vz)P)]p = Cluwy [[P],] = (v)[P],
['n.P], = C. [[7.P],] ='[7.P],.

43 3.2. Translating Cp into S

3.2.3.1.2 Name invariance

Below we consider name invariance but first, we have the following remark:

Remark 3.2.3. We will say that a function o : N. — N, is a wvalid substitution if it is the
identity except on a finite set and it respects syntactically the partition of N, into subsets N
and N, i.e., o(N;) C Ns and o(N;) € N; where o is injective (due to the condition that we
observe only well-formed compensable processes for the translation). If p = t1,...,t,, e, we
write o(p) to denote the sequence o(t1),...,0(tn), €

We now state name invariance, by relying on the renaming policy in Definition 3.2.3 (a).

Theorem 3.2.4 (Name invariance for [-],). For every well-formed compensable process P and
valid substitution o : N, — A there is a ¢’ : N, — N, such that:

(i) for every z € Ne: oy, (0(x)) ={0'(y) 1 y € oy, (2)}, and
(i) [0(P)ogp) = o' (IP1,)-
Proof. We define the substitution ¢’ as follows:
o) fx=aorxz=t
o'(x) =9 hopy ifz=h (3.5)
Po(p) T =pp.
Now we provide proofs for (i) and (ii):
(i) Since N, = N; U N, we consider two sub-cases for x:

o if x € N, then it follows that:
{o'(y) 1y € ppy,(0)} ={0'(y) ry € {z}} = {'(2)} = {o(2)} = ¢y, (0(2)).

e if z € N; then:
- by Definition 3.2.3:

Plo (@) ={0(2), ho@)} U {Po(p) 1 0(x) € o(p)}

- by definition of o'

{o(2), ho(x)} U{ps(p) s o(z) € 0(p)}
= {o'(x),0' (hy)} U{c'(p,) : o' (z) € o' (p)}
={o'(y) ry e{z,ha}} U{d'(y) ry € {pp: o(a) € 7 (p)}}
={d'(y) 1y € ¢, (2)}

(ii) The proof proceeds by structural induction on P. In the following, given a name z, a path
p, and process P, we write ox, op, and o P to stand for o(x), o(p), and o(P), respectively.

Base case: The statement holds for P = 0: [0(0)],, = ¢'([0],) < 0 = 0.

Inductive step: There are six cases, but we show only the following three cases: trans-
action scope, protected block, and input/output prefix. The proof for all the other cases
proceeds similarly.

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 44

e Case P =t[P1,Q1]: We first apply the substitution o on process P:

[o(t[P1,@1])]op = [otlo(P1),0(Q1)]]op-

By expanding the definition of the translation in Definition 3.2.3, we have:

[[U(t[Planm]op = Ut[[[g(Pl)]]Ut,Up] | ot. (eXtrd<<Utapcrt,crpapap>> | pOp[[[U(Ql)]]E])

By induction hypothesis it follows:
[o(t[P1,@1])]op = ot[o’ ([P1]e)] | ot. (extrd{(0t. Pot.op: Pop)) | Poplo’ ([Q1]:)]) (3.6)

On the other side, when we apply definition of substitution ¢’ on [P], the following
holds:

o ([t[P1,@ullp) = o' (¢[[P]le,p] | ¢ (extrd{(t, pep, o) | Po[[Q1]E])

=o't [0/ ([[Pl]]t,p)] | O'/t.(eXtrd«U/t,pa’t,a’p7pa’p>> | pa’p[gl ([[Ql]]f)])
(3.7)

Given that it is valid ¢/(t) = o(t) (cf. (3.5)), it is easy to conclude that (3.6) is equal to
(3.7).

e Case P = (Py): We apply substitution o on process P:
[o((P)]op = [lo(PL)]op

By Definition 3.2.3, [o((P1))]op = Pop[[o(P1)]:], and by induction hypothesis:
[[a«Pl))ﬂop = Pop [U,([[Pl]]s)] . (3.8)
On the other side, when we apply substitution ¢’ on [P], the following holds:

U,([[<P1>ﬂp) = U,(pp[[[Pl]]s]) = Po'p [O-/([[Pl]]s)] : (39)

Based on definition of the function ¢, i.e. 0'(p,) = po(p) and o'(t) = o(t) (cf. (3.5)), it
is easy to conclude that (3.8) is equal to (3.9).

e Case P = m.P;: Here we distinguish two sub-cases. In the first sub-case we consider
input on name a € Ny (proof follows similarly for output). In the second sub-case we
consider that the output message is an error notification on name t € N.

e (Clase P = a.Py: We apply substitution ¢ on process P:

[o(a-F1)]op = [oa.0(P1)]op-

Next, we apply Definition 3.2.3: [o(a.P1)]sp = ca.[o(P1)]s,- By induction hypothesis
it follows:

lo(a.P1)]sp = ca.c’'([P1],)- (3.10)
We now apply substitution ¢’ on [P],:
o' ([(@-P)],) = o' (@[Pl,) = a0 ([P1],). (3.11)

By definition of ¢’ (cf. (3.5)), ¢/(a) = o(a) and so we conclude that (3.10) is equal to
(3.11).

45 3.2. Translating Cp into S

e Case P =t.P;: We apply substitution o on process P:
lo(t.P1)]op = [ot.o(P1)]op-

Next, we apply Definition 3.2.3: [o(t.P1)]sp = 0t.hot.[0(P1)]sp. By induction hypoth-
esis:

[0(E.P)]op = 0fhor.o’ ([P1],). (3.12)

We apply substitution o’ on [P],:

o' ([(t.P1)],) = o' (t.he.[P1],) = 0't-hore.0’ ([Pi]p)- (3.13)

By definition of ¢’ (cf. (3.5)), o/(t) = o(t) and so we conclude that (3.12) is equal to
(3.13).

|

3.2.3.2 Semantic Criteria
We prove the three semantic criteria, following the order in which they were introduced in

Definition 2.3.5: operational correspondence, divergence reflection, and success sensitiveness.

3.2.3.2.1 Operational Correspondence

Among the semantic criteria, operational correspondence is usually the most interesting one,
but also the most delicate to prove. We are interested in giving a statement of operational cor-
respondence that includes the number of reductions required in S to correctly mimic a reduction
in Cp, Cp and Cy. Indeed, this will allow us to support our claim that subjective updates are more
efficient than objective updates (cf. Definition 4.1.7). To precisely state completeness results we
introduce some auxiliary notions: pby(P), pbp(P) and pb,(P). Whenever a notion coincides for
the all semantics, we shall avoid decorations D,P and A.

Definition 3.2.5. Given a compensable process P, we will write pb(P) to denote the number
of protected blocks in P — see Figure 3.4 for a definition.

Given a transaction t[P,Q)], the following lemma ensures that the number of protected blocks
in the default activity P is equal to the number of locations p; , in [P], (Definition 3.2.1).

Lemma 3.2.5. Let t[P,Q] and p be a well-formed compensable process and an arbitrary path,
respectively. Then it holds that pby(P) = nl(pyp, [Plt,p)-

Proof. The proof is by induction on the structure of P.

e Case P=0or P =m.P, or P =!w.P;: By Definition 3.2.1, Definition 3.2.5 and Defini-
tion 3.2.3, we can derive nl(py,, [Plt,) = 0 = pby(P).

e Case P = (P)): By Definition 3.2.1, Definition 3.2.5 and Definition 3.2.3,
n1(prp, [(P1)]t,p) = 01(ptp, i [[P1]e]) = 1 = pbp((P1)).
e P = s[P1,Q1]: By Definition 3.2.3,

[[S[Plan]]]t,p = S[leﬂs,t,p] | S. (eXtrd<<37ps,t,p7 Pt,p>> | pt,PH[Ql]]a]) .

Noticing that n1(pt ,, [Pi]ss,) = 0, by application of Definition 3.2.1 and Definition 3.2.5,
we get nl(py,p, [s[P1,Q1]]¢,p) = 0 = pby(s[P1,Q1]).

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 16

pb((P)) =1 pb, (t[P,Q]) = 1+ pb,(P)
pby (t[P,Q]) = pbp(t[P,Q]) = 0 pb(!m.P) = pb(m.P) = pb(0) = 0
pb(P | Q) = pb(P) + pb(Q) pb((vz)P) = pb(P)

Figure 3.4: Number of protected blocks for Cp, Cp and Cy

e Case P = Py | Q1: By Definition 3.2.1 and Definition 3.2.3,

n1(pr,p, [P1|Q1]tp) = n1(pt,p, [Prllepl[@1]1.0) = 01(prp, [P1]e,0) + 01 (pr,p, [Qu]le,p)-
By induction hypothesis, we conclude nl(py p, [P1|Q1]t,,) = pbp(P1) + pbp(Q1).

e Case P = (vx)P;: By Definition 3.2.1 and Definition 3.2.3,

n1(pep, [(v2) Pile,p) = 01(pep, (v2)[Pi]e,p) = nl(pep, [P1]ep)-
By induction hypothesis and Definition 3.2.5,

nl(pyp, [(ve)Pi]i,p) = pbp(Pr) = pby((va) Pr).

The following example illustrates this claim.
Example 3.2.6. Notably, P = t[P;,d] is a well-formed compensable process, with default
activity P1 = (a) | (b) | c. By Figure 3.4, we have pby(P;) = 2. Also, by Definition 3.2.3, we
have:

[Pl = t[[Pile,] | t-(extea((t,prp,po) | p[d]),

such that [Pi]¢, = prp[a] | pep[b] | c. Now, by Definition 3.2.1 it is clear that nl(pt,, [P1],p) =
2.

We shall now prove that the translation [-], satisfies operational correspondence (complete-
ness and soundness).

Theorem 3.2.7 (Operational Correspondence for [-],). Let P be a well-formed process in Cp.
(1) If P — P’ then [P]. —* [P']. where for

a) P = FE[C[a.P\] | D]a.P]] and P’ = E[C[P,] | D[P]] it follows k = 1,

b) P = E[C[t[P1,Q]] | D[t.P]] and P' = E[Clextrpy(P1) | (Q)] | D[P2]] it follows k = 4 +
pby (F1),

¢) P =ClulF[u.P],Q]] and P’ = Clextrp(F[P1]) | (Q)] it follows k = 4 + pby(F[P1]),

for some contexts C[e], D[e], E[e], F'[e], processes Pi,), P, and names ¢, u.
(2) If [P]c: —™ R with n > 0 then there is P’ such that P —* P’ and R —* [P’]..

In the Theorem 3.2.7, Case (1) concerns completeness while Case (2) describes soundness.
Case (1)(a) concerns usual synchronizations, which are translated by [-],. Cases (1)-(b) and (c)
concern synchronizations due to compensation signals; here the analysis distinguishes four cases,
as the failure signal can be external or internal (cf. (2.1), Page 14) and the transaction can be
replicated or not. In all cases, the number of reduction steps required to mimic the source tran-
sition depends on the number of protected blocks of the transaction being canceled. Therefore,
in the proof we will consider completeness and soundness (Parts (1) and (2)) separately.

Due to the complexity of the proof for Theorem 3.2.7 we first present some auxiliary results
for completeness and soundness, respectively.

47 3.2. Translating Cp into S

3.2.3.2.2 Auxiliary Results for Completeness

For the proof of operational correspondence, we introduce a mapping of evaluation contexts
for compensable (cf. Definition 2.2.3) into evaluation contexts for adaptable processes (cf. Def-
inition 2.2.6). For this mapping we rely directly on translation Cp into S (cf. Definition 3.2.3).

Definition 3.2.6. Let p be a path. We define mapping [-], from evaluation contexts of com-
pensable processes into evaluation contexts of adaptable processes as follows:

[[e]l, = o]
[(CleD1, = ppllCTol]e]
[t1C1e), @11, = t[[C[e]]t,] | t- (extrd{(t, pe.p, pp)) | P,lIQIE])
[Cle] | Pl, = [Clel], | [P,
[(vz)Cle]], = (va)[Cle]],
Convention 3.2.8. We will use [C],[P] to denote the process that is obtained when the only
hole of context [Cle]], is replaced with process P.

Lemma 3.2.9. Let P be a well-formed compensable process, C[e] an evaluation context, p an
arbitrary path, and p’ the path to the hole in Cle]. Then, [C[P]], = [C],[[P]y]-

Proof. The proof proceeds by induction on the structure of Cfe].
Base cases: Assume that Cle] = [¢] then C[P] = P, and [C[P]], = [P],.

Inductive step: There are four cases to consider. They all proceed by Definition 3.2.3,
Definition 3.2.6, and the inductive hypothesis:

o Case C[o] = (C]e]): Then C[P] = (C}[P]) and

[CIPIL, = [CLIP)T, = p,lICH[PIL]

' [[C1IPI = pol[Ca]]] [[P]]
et [Cﬂp[ﬂpﬂp’]
e Case Clo] = Ci[e] | Q: Then C[P] = C1[P] | @ and

Def.

[ClPIl, = [P QL, =" [C1[P]], | @1,

2 [, 1P | QI
= [[Cl | Qﬂp[ﬂpﬂp’ = [[Cﬂp[[[P]]p’]

o Case C[e] =t[C}[e],Q]: Then C[P] = t[C}[P],Q] and

[CIP]], = [[PLQY, = [[C1[P)]i,o] |t (extrd((t, prps b)) | pplIQLE))

' [[C1p[[PIN] | £ (extxd(t, pep, pp)) | PHI[QIE])
— (t[IC1]ep) | £ (extxa((t, prps pp)) | 2,l[Q1])) [[P1,]
= [[C]]p H[Pﬂp’]

e Case C[o] = (vz)Ci[e]: Then C[P] = (vz)C1[P] and
[CIPIl, = [(w2)C1[P]], & (va) [P,
2 (wa)[C1], 1Py) = [C1,[1P]y).

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 48

3.2.3.2.3 Auxiliary Results for Soundness

For the proof of soundness, we will need the converse of Lemma 3.2.9, which is stated by the
following two results.

Lemma 3.2.10. Let P be a well-formed compensable process and p a path. If [P], = C[P']
then there are C[e] and P; such that C[e] = [C}[e]], and P’ = [P1],, where p' is the path to
the hole in C[e].

Proof. The proof is by induction on structure of context Ce].
Base case: If Clo] = [o] and [P], = P’ then it follows directly that C'[e] = [e] and P, = P.

Inductive step: We consider the following three cases:

e Case Clo] =1[C"[o]]: Let [P], = [C'[P']]. By Definition 3.2.3, we have that | = p, and there
is P| such that [P{], = C’'[P’]. By the induction hypothesis, there are C[e] and P; such that
C'le] = [C1[e]], and P' = [Py] s, where p is the path to the hole in C[e]. By Definition 3.2.6,
Clo] = p,l[Ci[e]l,] = [(C1[e])],, and hence Ci[o] = (Ci[e]).

e Case Clo] = (vx)C'[o]: Let [P], = (vx)C'[P’]. By Definition 3.2.3, there is P| such that
[P], = C'[P']. By induction hypothesis, there are C{[e] and Py such that C'[e] = [C]]e]], and
P" = [P1] v, where p' is the path to the hole in C}[e]. Now, we have that Cle] = (vx)[C][e]], =
[(vz)Ci[e]], and hence C[o] = (va)Ci]e].

e Case Clo]| = C'[o] | Q: Let [P], = C'[P'] | Q. By Definition 3.2.3, we have two possibilities:

(i) If @ = t.(extrd((t,prp,pp) | Ppl[Q']c])) and C'[P'] = t[[P[]:,] for some t, P{,Q’, then
[P{]t,, = C{[P’] for some C}. By induction hypothesis, there are C'[e] and P; such that
Cile] = [C{[e]], and P" = [P1],/, where p’ is the path to the hole in C7'[e]. We complete
the proof by choosing C[e] = t[C[¢],Q'] and P' = [Pi]¢ .

(ii) If C'[P'] = [@1], and Q = [Q2], for some Q1,Q2, then, by induction hypothesis, there
are C'|[¢] and P; such that C'[e] = [C][e]], and P’ = [Py], where p’ is the path to the
hole in C{[e]. In this case, C[e] = C[e] | Q2.

|

As a direct consequence of Case 3 in the previous proof, we can identify two possibilities for a
process that is obtained via our translation and equals to a parallel composition of processes.

Corollary 3.2.11. Let P be a well-formed compensable process and p a path.
If [P], = C[P'] | D[Q'] then either:

(i) There are Ci[e], D1[e], P1, and Q1 such that:

= Clo] = [Cile]],,

= Dle] = [D1[e]],,

— P’ = [Pi], and Q" = [Q1],, where p’ and p” are paths to holes in C[e] and Dle],
respectively.

(i) There are Ci[e], P1, Q,t such that Q' = t. (extrd({t,ptp,pp) | Ppl[Q]:]), D[e] = [o], and
Clo] = t[Ci[e]].

49 3.2. Translating Cp into S

The proof of soundness proceeds by induction on n. The base case uses the following lemma. In
cases (b) and (c), we use a process of the form It(l)([[P]]tpu, [Q]:) and Oqgl)(ﬂF]]p[hu.[[P]]pf], [Q]:)
where ¢, u are names and “1” intuitively denotes the first intermediate process in the translation.
In fact, processes of the form I* ([Pl [Q]c) and O ([F],lhu-[P],], [Q):) with p,q > 1,
that are introduced in Figure 3.6 and Figure 3.7, will be important in the proof of soundness.

Lemma 3.2.12. Suppose [P], — R. Then one of the following holds for P and R:

a) P = E[Cla.P] | Dla.P]] and R = [E],|[C]p, [[Pi]p] | [D]p, [[P2]p]], or

b) P = E[C[E.Pl] | D[t[P»,Q]]] and
R = [EL, | [Clps b [P | [Py (1 ([Pa]e . [QD:)]] where
LV ([P 1Q1:) = t[[Paleyr] | extrd((t per, ppr) | 0 [[QIE], or

¢) P = E[u[C[a.Py),Q]] and R = [E], [013”([[011%,31 e [P1]), [[Q]]g)] where

Ol(tl)([[c]]u,m [hu'[[Pl]]p/]a [Qle) = u[[[c]]u,pl [hu-[[Pl]]p/H | eXtrd«tapu,plvpm A pp[[[Q]]E]a

for some contexts Cl[e], D[e], E[e] and processes Pi, P2, Q. Also, paths p, p/, and p” are paths to
holes in contexts E|e]|, Cle], and D|e|, respectively.

Proof. The proof is by induction on the reduction [P], — R. There are three base cases,
which can be obtained by applying Rule (R-IN-OUT)) with x = a or x = t.

a) [P], = E'[C"[a.P[] | D'[a.P3]] — E'[C'[P] | D'[P]] = R.
By Lemma 3.2.10, Corollary 3.2.11, Definition 3.2.3 and Lemma 3.2.9, we get the following
derivation:

[[P]]P = [[E]]P[[[S]]Pl]’ (1)
= [E]ol[CTp [[51]] | [Py (152111, (2)
= [ELo([C]p [a-[P1]] | [D]p, [a-[P2] 1), (3)

[

= [ET,(ICTpu [a-P1]] | [D] s [la- Po] o]
= [EC[a-~] | Dla-Poll,

where

(1) [y =C'[a.P]] | D'[a.P3],
2) [S]y =a.P[S]y = a.Ps,
(3) [[Pl]]p’ :P{’Hpﬂ]p” :PQ,a

and [D],, [e] = D'[e], [C[e]],, = C’[e], and p1, p' and p” are paths to holes in E[e], C[e] and
Dle], respectively.

b) [Pl, = E'[C'[t.P{] | D'[t.P3]] — E'[C'[P{] | D'[P]] = R and D'[e] # [e].
By Lemma 3.2.10, Corollary 3.2.11 and Definition 3.2.3, we get the following derivation:

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 50

[[P]]p = [[EHP[[[SHFHL
= [ETUICT o (510 0] TP [[52] 11,
= [ETp(ICT pu [8-he- [P) | TDT o [T P2]]
| t. (extrd((t,pt,p'upp”» | Pp”[[[Q]]e])]a
= [ETp(ICTpu [TE-PiD] | [P [[E[P2,Q1]]
. = [E[C[t.P1] | D[t[P,Ql]]1,

[S1p, = C'[t.P1] | D"[t[P5] | £.P3]
[S1], = .1, [Selr = t[Py] | t.P;
P = hi.[Pi]y, Py = [Pa],r,
Py = extrd({t, pr.pr, ppr)) | ppr[[Qe]

~~ ~ —~~
V)

=~ o
N’ e N N

and [D],,[¢] = D"[e], [C[e]],, = C'[e], and p1, p', p” are paths to holes in E[e], C[e], DJe],
respectively.

c) [P], = FE[C'uP]]|DwupP)] — EI[C'P]]|D[P)] = R and D’le] = [e] and
C'[o] = u[C"[e]].
By Lemma 3.2.10, Corollary 3.2.11 and Definition 3.2.3, we get the following derivation:

E'[u[C"[u.P{]] | u.Pj)
= [ET,(15T,1]
= [EDp [P]u,p,]
| u. (extrd{(u, pup,: Pp.)) | Pr [[Q]E])]
= [ETp[ul[Cllspu [T AT 1] | - (ext2d (s pusprs Do) | P [[QLe])]
= [ElulCla.P1],Q]],-

[P1,

where

(1) [S]p = ulC"[@.P]} | u.P;
2) [Plup =C"[a.P]] =t[P)]| t.P;
3) Py= extTd (U, Pu,pys Pp1)) | Doy [[Q]

and [Cle]]:, = C"[e] and p1 and p’ are paths to holes in E[e] and C/[e], respectively.
Note that since we analyze only one (first) reduction step, i.e. [P], — R, the case of a
reduction derived by Rule (R-SuB-UPD) is excluded by definition of translation.

Finally, the inductive step considers cases when the last step was derived by Rule (R-STR).
In that way, we get case with “=" instead of “=" in the three base cases. |

Starting from an adaptable process P that results from our translation, we single out those
processes that P reduces to but that do not correspond to the translation of any compensable
process. Such processes always appear after a synchronization on some name ¢ and before
synchronization on the reserved name h;. We will first consider computations of a process that
results from translating the parallel composition of a transaction and its failure signal (possibly
with some continuation).

Recall that function ch(¢, R) (cf. Definition 3.2.1) checks whether R is structurally equivalent
to a process of the form C[h;.S], for some context C[e] and process S: if this is not the case,

51 3.2. Translating Cp into S

then ch(¢, R) = 0. In a process obtained from our translation, process h;.S always occurs within
a process of the form t.h¢.S (cf. Figure 3.3), directly implying that any process [P], cannot be
congruent with C[h.S]. This is stated by the following lemma.

Lemma 3.2.13. Let P be a well-formed compensable process. If [P],=n.Q) then 7 = a or
m=aor m=t, for some a € N and t € N;.

Proof. Follows directly from definition of the translation (cf. Definition 3.2.3). [

The following lemma holds also for all translations that will be considered in the thesis, i.e.,
for translation Cp into O, Cp and C, into S and O.

Lemma 3.2.14. Let P be a well-formed compensable process, t a transaction name, and p a
path. Then, it holds that ch(t, [P],) = 0.

Proof. By contradiction. Suppose, for the sake of contradiction, that ch(t, [P],) = h+.0. Then,
[P], = C[h¢.S]. By Lemma, 3.2.10, there are C1[e] and @ such that [C[e]], = C[e] and [Q],y =
h.S, where p' is the path to [e] in C[e]. But this contradicts Lemma 3.2.13: it is not possible
that [Q], = h¢.S since, necessarily, h; is a reserved name in N; by Definition 3.1.2, N7 NN; = 0
and N7 NN = 0. []

In studying the processes that are obtained by translating the parallel composition of a transac-
tion and its (externally triggered) failure signal (and its computation), we come to the lemmas
that identify processes that are created before a synchronization on h;.

Lemma 3.2.15. If [E],[P] | Q = C[S] where S = 7m.R or S = v then there exist contexts
E'[e], E"[e], and E"'[e] such that:

1. [Ele]], = [E'[e]], | [E"],[S] and for S = 7.R it holds 7 € {z, T}, or
2. P=E"[S], or
3. Q= E"[S].
Proof. The proof proceeds by induction on the structure of context Cle]. n

The following definition formalizes all possible forms for the process It(p) ([P]¢,p, [@Q]c). Recall
that function nl(l, P), defined in Definition 3.2.1 (1), returns the number of locations [in process
P.

Definition 3.2.7. Let P,(Q be well-formed compensable processes. Given a name ¢, a path p,
and p > 1, we define the intermediate processes It(p)([[P]]t,p, [Q]:) (Figure 3.6) depending on
m = nl(p,;p, [[Pﬂtm):

1. if m =0 then p € {1,2,3};
m

2. otherwise, if m > 0 then [P, = [pep[[P{]c] | S and p € {1,...,m+ 3}.
k=1

Figure 3.5 illustrates how intermediate processes relate to the encoding of well-formed com-
pensable processes. The main role of these processes is to extract all processes p ,[-] from [P]; ,
using the process outd.

Lemma 3.2.16. Let P; be a well-formed compensable process such that

o [P]e = [E]: [[Gl, [IC]y [[t[PQ:)]] | [D]y [[E-Selpr] | Mi] | Ma] | M3 and

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 52

m=0 It(l) It(2) 115(3)
[HP,Qll, | [l \[[extr (P) (@]
N O — P s) pmt3) i ’
Figure 3.5: Process It(p).
() LP([P]ep, [Q:) for nl(pep, [Ple,) =0
(1) t[[[P]]t,p] | extrd«t,pt,p,pp» |pp[[[Q]]€]
= t[[Ple) | 44(Y)-4[Y] | ch(t,Y) | ¢(E)-Fe)) | pplIQIE]
(2) t[[Plep] | 410 e | pol1QI]
(3) he | pol[QI:]
(p) IP([P]ep, [Q:) for nl(pep, [Ple,) > 0
(1) t[[P]e] | extrdlt, pip,pp) | pollQI:]
= t[[P]e,] | t((Y)-t[Y] | ch(t,Y)
| outd®(pt,p, Pp,nL(pt,p, V), t(T) Ft)» | pol[Q]e]
G+2,0<j<m—1 | t[[Ply] | pepl(X,.... ij»(jgfpp[xk] | ki[lppmp,;ﬂs]
| 1) 7)) | pol[Q:D:]
(m+2) HIPTeo] | TT 2lIPLD 600 Fe | pl1L
(m+3) T1 polIP{1:] | e | pp([Q1

Figure 3.6: Process It(p)([[P]]tvp, [Q]:) with p > 1.

° [[Pl:[l&‘ _>n—1 R,
R=[E. [[Gi, [[C1ly [17 (1P, [QUC)] I [[SiDp] | 03] | M5 | 03,

where It(p)([[Pt]]t’pu, [Q¢]:) in R is as in Definition 3.2.7. If R — R’ then either

D R = [B. [[Gi], [[C0y [17 (1P 101 11Dy [heISdpe] | 7] | 3] | b

or
1) R = [B]. [[Ga], [[Coly |17 (1P T 1011)] 1Dl [ISip) | MY | 0] | 2.
where:
o n>1;
e pis the path to holes in [E[e]]. and [Ej[e]]. and k € {1,2};

e o' is the path to holes in [G[e]],, and [Gy[e]], and k € {1,2};

53 3.2. Translating Cp into S

e p” is the path to the hole in [C[e]] y and [Cy[e]] s and k € {1,2};
o " is the path to hole in [D]e]], and [Dy[e]],y and k € {1,2}.

Proof. By Definition 3.2.3, we get:

[[Plﬂs E[[E]]E [[[G]]p [[[C]]p/ [t[[[Pt]]t,p”] | t-(eXtrd«t’pt,prp”» | pp”[[[Qtﬂs])]

| [D)y [E-he-[Sel] | M) | Ma] | Ms (3.14)

We continue with the proof by case analysis for the step, R — R/, that can be realized.
The analysis depends on the shape It(p)([[Pt/]]t,p"a [Q:]c). Hence, there are multiple cases, for
p€{l,...,m+ 3} and m > 0. We detail only one case, namely p = 1; all other cases proceed
similarly.

If p=1 then

1
R=[E). [[Gil, [[C1ly |1V (1P, [QUE)] 1 I [he[Sidp] | 03] | M5] | M. (3.15)
In the analysis, we will use the following representation of process R:
R = [E1],[P'] | M5 where

P' =[G, |[Cily |1 ([P, [Q1)] 1 IDiLy (e [Sdp] | 01 | 03 (3.16)

For R — R’ we analyze the following two sub-cases, based on the rules from reduction semantics
for adaptable processes: Rule (R-IN-OUT) and Rule (R-SuB-UPD) (cf. Figure 2.5).

A) By using Rule (R-IN-OUT):
R=E|C[z.P] | D[z.Q]| — E|C[P]| D[Q]] =R
Therefore, we have:

R = E'[2.Q] where E'[e] = E[C[z.P] | D[e]] and
R = E"[7.P] where E"[e] = E[C|[e] | D[x.Q]].

In (3.16), based on Lemma 3.2.15 for R = E'[2.Q], the following holds:
(1) [Erle]], = [Ex[o]l, | [EY],[2-Q), or

(i) P = E"[z.Q),or
(iil) M = E"[2.Q).

In the following, we present detailed analysis only for case (i). Proofs of cases (ii) and
(iii) follow in a similar way, i.e., with the case analysis that is result of applying Lemma 3.2.15.

Therefore, if (i) holds then R = [Ei],[P'] | M5 = [E{],[P'] | [EY],[z.Q] | M. For R =
E"[z.P] the following holds based on Lemma 3.2.15:

(a) [Eq[ell, = [E5[e]l, | [E2],[z-P], or

(b) P’ = ElJ'[z.P], or

(c) Mz | [EY],[x.P) = E5'[z.P].

In the following we analyze the sub-cases. It should be noted that in all sub-cases, obtained
process R’ corresponds to the case II) from the statement:

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 54

(a)
R = [E5[Pl, | [B2]ol@-P) | [EDole.Q) | My
— (B[P, | [EZ],[P) | [ETD,[Q) | My =R, or

(b) R = [Er],[Ey [P | EY[x.Q | My — [Erl,[E5[P]] | EY[Q] | M3 = R',or
(¢) we distinguish two cases based on Lemma 3.2.15:
e M} = E[z.P] and it follows

R = [E{],[P] | [E{],[=.Q] | EY’[7.P] — [E1],[P'] | [EY],[Q] | EY’[P] = R, or
o [EY], o] = [EV[e]], | [EY],[®.P)] and it follows:
R=[EPLIP) | B{@.P)| | B 2.Q) | My — [EPLIP] | EVP)| | EY(Q)| My =R.
B) By using Rule (R-SuB-UPD):
R= E[CU[PH | D[l(((X).Q)).S]] — E[c[o] | D[Q{P/x} | SH - R.

Therefore, we have that R = E'[I{((X).Q)).S] such that E'[e] = E[C[I[P]] | D[e]]. In (3.16),
based on Lemma 3.2.15, the following holds:

(i) Mj = E"[I((X).Q).S], or
(i) P'= E"[I(X).Q).5).

By Definition 3.2.3, for every process P; a location name in [P;]. is either a transaction
name or a reserved name ps , for some s, p. Therefore, if interaction on them exists then

they should be part of some process Is(p)([[PS’]]s,p, [Q%L]:), ie.,
IO ([Pl [QUe) = s[[Pisr] | s((Y).5[Y] | ch(s,Y)
| 0utd®(ps s P, 01(Ps 7, Y), (1) -hs))) | Py [[QL]E]

(cf. Figure 3.6 for the other forms). This directly provides that process in the form s[P] (i.e.,
Ds,p[P]) and update s(((X).Q)).S (i-e., ps,((X).Q)).S) have to be in parallel composition.
In the following, we analyze cases (i) and (ii). It should be noted that in all obtained cases
and sub-cases, except sub-case (2.2.2) below, we have that process R’ corresponds to the
case I) from the statement. Process R’ obtained in (2.2.2) corresponds to the case II).

(1) If (i) holds, then R = [E1],[P'] | E"[I{(X).Q)).S], cf. (3.16). In the following we
analyze where location [[P] can occur. We have the following cases:

- E"[e] = E{'[e] | I[P] and for this case it follows that:
R' = [E]. [P] | M where My = E{'[Q{F/X} | S] | 0, or
- [EAl,lo] = Bale] [1[P] | M}
R = [B]. [P] | My where Mj =0 | E"[Q{F/X} | S].
(2) If (ii) holds then
E"[I((X).Q).B] = [Gil,[[C1 T (1Y (1P e, [QU | [D1] e [Se] o] | MY | M,

In the following analysis we consider two sub-cases:

55 3.2. Translating Cp into S

(2.1) By exploiting (i) it holds that [G1],[P"] | M5 where
P = [Cily |1V (IP1ep [Q0)] | D1y [he-[Silp] | M and
My = EY[I{(X).Q).R.
We have that E"'[e] = E{"[e] | [[P] and for this case the following holds:
R = [B]e [[Gh], [P"] | M5] | M.
(2.2) By exploiting case (ii) it holds that [G1],[P"] | Mj
P" = E"[I{(X).Q)).R]
= [C1]y 1V (1P Q1) 1 [DiLy [P IS | M1

We consider the following two sub-cases:
(2.2.1) By exploiting case (i) it holds [C1],[P"] | M] for

P" = [Cily [V ([P, [QUC)] 1 ID1] [S]]
M = EVI((X).Q).S].
We have that E"'[e] = E!"[e] | I[P] then the following holds:
R =[E]- [[Gi], [P | M{] | M5] | M.
(2.2.2) By exploiting case (ii) it holds [C1],[P"] | Q" for
P = E"[I((X).Q).R) = I{([Pl.,. [Q]¢) and
Q" = [[Dlﬂp’ [ht-[[st]]p”’] | M7,
and follows directly that

I[P [Q0) — T2 ([P [Q4]e) for nl(pr o, [Pilev) > 0, or
IV (@) — IO ([PTepr, [QU:) for nl(py . [Pr]spr) = 0.

Therefore, process R’ is as presented in the following, where It(2)([[Pﬂ]t7pu, [Q]-
has an appropriate form, that is described above:

R = B [IG D, [[Cuy (1 (1P [QU] | IO [1] 51y
| Mi] | M) | Ms
|

The following lemma formalizes all possible forms for the process
O (IF] y [h-[Pull), [QL]<) for m >0 and g € {1,...,m +4} .

Definition 3.2.8. Let P,Q be well-formed compensable processes. Given a name u, paths

p,p', and ¢ > 1, we define the intermediate processes qu)([[F}]p[hu.[[P]]p/]7 [Q]:) (Figure 3.7)
depending on m = nl(py,p, [F]p[hu-[P]y]):

1. for m = 0 we have q € {1,2,3,4}, and

2. for m > 0 and [F]p[hu-[Ply] = [PupllPile] | S we have ¢ € {1,...,m+4}.
k=1

56

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update
(9) O ([F] lhu-[P1); [Q12), 01 (pups [F1plhu-[P]]) = 0
(1) u[[Fplha-[P1] | extrd(u, pup pp) | ,[[Q1]
= w[[F] [hu [PL] | uf(Y)-ulY] | ch(u, ¥) | ud(t)-u) | p,[[QL]
(2) u[[FTplhu-IP1)] | s | w(1) P | po[IQIL]
(3) hu | T | ,[[QIE]
(4) pollQI]
(9) O ([F 1 lhu-[P1), [Q1:), 01 (pup, [F1plhu-[P]]) > 0
(1) u[[Fplha-[P1] | extrd(u, pup, pp) | p,[[Q1]

= u[[F] [[P1/]] | w((Y)ulY]] ch(u,Y)

| 0utd®(pu,p , Pps 01 (Pup, ¥, (T -hw)) | 2ol Q]

G+2) [l [PL] | A | D (X X))
(T o | T olIA 0 5)) | p,l1QL

0<j=m-1

(m+2) ullE Tl DPL] | TT 2lP] | P | pplIQIL] | (1) F
(m+3) TLpolIP1:] | | l1QD] |
(m+4) T pl171:] | pp([Q1

Figure 3.7: Process O&q)([[F]]p[hu.[[P]]p/], [Q]:) with ¢ > 1.

We now continue with the analysis of adaptable processes that can be obtained starting
from the translation of a transaction that contains failure signal in its body, which is triggered

internally.

Lemma 3.2.17. Let P; be a well-formed compensable process such that
o [P = [E]: [IG], [[L]y [[ulF[EPu),Qull,r] | Mi] | Ma] | Ms, and
e [P]. —" 'R,

R=[BL [[G1 1, ([Tl [0 (UL o [P), [Q41)] | M1 | M1 | M5,

where Ong)(IIFﬂp// [h-[Pult, 7], [Qule) in R is a process from Definition 3.2.8.
If R — R’ then either

D R =Bl [[G1], [[0 (TR e 1P o), 1QU1)] 101 1 5] | 03, ox

M) R = [B]. |[Gal, 1221y |08 (IRl [Pdip), [QU)| | M) | 03] |

where:

57 3.2. Translating Cp into S

[P]e

\ -

n

R

Figure 3.8: Diagram of Lemma 3.2.19.

o n>1;

p is the path to hole in [F]. [e];

¢’ is the path to hole in [G], [e] and [Gi], [e] and k € {1,2};

P is the path to the hole in [L][e]; [Li][e] and k € {1,2};

p"" is the path to the hole in [F],»[e] and [F}],[e] and k € {1,2}.

Proof. By Definition 3.2.3, we get

[P1]e =[EL: | [GL, (121 [u[TF] [@ - [P]
| w.(extrd(u, pupr,) | ppr[[QuID)] | M) | M) | My,

and the proof continues by case analysis for the step, R — R/, that can be realized. The
proof follows the same idea that is presented for the proof of Lemma 3.2.16. |

Remark 3.2.18. We will use the following abbreviations, where we use i, ¢, k, w as indexes of
t,u and F":

It(zz,)l)e,w = It(zz,?cw (H:Pt/i,k,ﬂ):l]t7p//’ [[Q;i,k,w}]e)’
O'l(lgz),k,w = Oqgi?k,u;([[chkvwﬂpH [huc,k,w'[[Puc,k,w]]P/N]? [[Q;c,k,w]]e)'

The following lemma is crucial for the proof of soundness, and it is illustrated in Figure 3.8.
In Figure 3.8 we have [P]. —"™ R and lemma will provide the shape of process R. On the other
side, lemma will provide the shape of the process P’. The proof of soundness will provide that by
successive application of completeness on the derivation P —* P’ it holds that [P]. —* [P']-.

Lemma 3.2.19. Let It(f;)c , and Oi(fi),k,w be processes from Definition 3.2.7 and Definition 3.2.8,

respectively. If [P]. —>”7R, with n > 1, then

1)
Sw Uk

2 L
R= H [[Ew]]e |: H [[Gk,w]]pw [H[[Ci,k,w]]p;c7w [It(f),)cyw] | H [[Dj,k,w]]p;cyw [htj,k,w [Stjkwﬂpgw]
w=1 k=1 =1

=1

mg
| TIiZerals, (09, 1]
c=1
(3.18)

and P —* P’, where P’ is of the following form:

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 58

2)
z Sw Uk Tk
Pl = H Ew |: H Gk’w |: H Ci7k7w |:tl7k7w [Ptiqkyw ’Qti,kﬂﬂ]] | H Djvkvw [tjukvw'stj,k,w]

w=1 k=1 i=1 J=1

e (3.19)
| H Lc,k,w [Uc,k,w[Fc,k,w[uc,k,w-Pucyk,w]’Quc,kyw]]})
c=1

for some Ey o], G o], Cikwl®], Djkwle], and L¢j (8] where w € {1,..., 2}, k€ {1,... 50},

iG{1,...,lk},j6{1,...,7‘k}, andce{j,...,mk}.

Proof. The proof proceeds by induction on n.

Base case: Assume that n = 1, i.e. [P]c. — R. By application of Lemma 3.2.12
there are three possible cases:
o Case P= E(C'a.P] | D'[aR] and R = [E'][[CLIIALy] | DLl
In this case we have: z =1 and s; = 0 and it holds E1[e] = [e] | E'[C'[a.P] | D'[a.Py]]
and P = P’
o Case P= [C/[t[PQ,Q]] | D'[.Py]] and

R = (L[1Ot [Pl] | extra(t, e, o) | oy IQ1ED) | 1D Lolhe [P
In this case we have: z = 1,s1 = 1,1 = 1,71 = 1 and m; = 0. Therefore, the following
holds: Ej[e] = [¢], Gy 1[e] = E'[e] C1 1 1[e] = C'[e],D;1 1 18] = D’[o],Ptl’M =P,Q4 ., =

Q, St ., = P1 and It(ll)11 = t[[P3]er] | extrd((t,pe . pp) | P [[Q]:) and P = P’
e Case P = C'[u[D'[u.P,],Q]] and

R = [[C/]]E [u[ﬂDlﬂu,p[hu-[[Pl]]p’H | eXtrd«“:ﬂu,pHPp’» | pp’[[[Q/]]s]} :
In this case we have: z = 1,s1 = 1,13 = 0,77 = 0 and m; = 1. Therefore, the following
holds: E[e] = [e], Gy 1[e] = C'[e],L;1,1]e] = D’[o],Pul,l,1 =P1,Qu,;, = Q and

1Y, = u[[D'Tuplhu [P]] | extrd{(u, puy,py) | pyl[Q]:] and P = P'.

Inductive hypothesis: Assume that the statement holds for n — 1 reduction steps, i.e. if
[P]e —"™ ! Ry then the statement holds.

Inductive step: We consider that [P]. —" ! R; — R. We know, by inductive
hypothesis:

1) R; has the following form:

z Sw lk
R, = Hl[[Ew}]e TGkl [TTIC k0l [H2)]
w= k=1 =1
Tk

Mg
| H[[Dihw]]pg,w [htj,k,w’ﬂstj,k,w]]pg’w] HHLc,k,wﬂpgyw [Ol(ch)kw]H)
c=1

J=1

2) P —* P” such that P” has the following form:

z Sw Iy Tk
P” = H Ew [H Gk,w [H Ci,k,w [ti,k,w [Pti7k,u,aQt7;7k;’u,]] | H Dj,k,w [tj,k,w-stj,kﬂu]
w=1 k=1 i=1 j=1
mg

| H Lc,k,w [uc7k7w [chkvw [ucvkyw'Puc,k,w] ’Quc,k,wH i| °

c=1

59 3.2. Translating Cp into S

We continue with the proof by case analysis for the last step, Ry — R, that can be realized.
In the following we consider six interesting cases.

(1) Let It(l) is a process that has the form as presented in Definition 3.2.7 where t = ¢1 1.1, G1[e] =
Giale],Cile] = Cia[e], Dife] = D11 1[e] and

Rl = HEl]]e’;‘ [[[Gl,l]]pl [Hcl,l,l]]le [It(ll’)Ll (H‘Ptllylyl]]t,p"ﬂ IIQllfl,lyl]]E)]
| [[Dl,l,lﬂpl,l [htl,l,l'[[stl,l,lﬂpll,_yl] | Mﬂ | Mé] | Mé

According to the Lemma 3.2.16, it follows that Ry — R such that R has the form
)

= [B1][[Gralo[[Craaly [b, 1 LA P (o 5]
| [[Dl]]p’ [htl,l,l'[[st1,1,1]]p”’] | Ml] | M2] | Mé,OI‘

1I)

= B0 [1G3 o [[CT 1 [0 (UPE s D [[Qi'l,l,l]]e)]
| [[Dlll]]p [ht111 IISt111]]p’”] |] |] |

Here we comment case IT), while case I) follows the idea that is given in case a) from Base
case.

In case when we get the form II) it directly follows that P” = P’.

Similarly, for all ") ([[P’]]t,,/, [Q/]e) with ¢ € {t211,. - b, 5.2}

Similarly, for cases I, t(l P D [QF (D) where p € {2,4,...,m + 3}

(3.20)

(2) Let Ol(,,l) is a process that has a form as presented in Definition 3.2.8, where u = u; 1 1, G1[e] =
Giale], Li[e] = Li[e], Fi[e] = F11,1[e] and

Ry = [B1]e[[Gralp [[L11a]p [0 ([FPL1 1T (g gy TPy T 1 1) (@0, T
| M) | M) | M.
According to the Lemma 3.2.17, it follows that Ry — R such that R has the form
I)
R=[E]. {[[Gl,l]]p (11110 [OP ([P 1 ATy (Pru gy [Pus 12 Trp), (@ 1 T)]
| 7] | Mg | Az or

1)

R = [E]. [[[G’l,l]]p (12,1110 [OD, (I 1 1o - [Py s Jun,) (@0 1))

(3.21)
| 2] | My | by

Here we comment on the case II), while case I) follows the idea that is given in case a) from
the base case.

In case when we get the form IT) it directly follows that P = P’.

Similarly, for all ol ([[F]]pu [P [Pu]le, o], [@Qe) with w € {ug a1, .., Um,_s,,2}-

Similarly, for cases O ([F] o [hu.[Puls], [QL]2) where g € {2,4, ..., m +4}.

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 60

(3) Let It(g) is a process that has the form as presented in Definition 3.2.7, where where t =
t1,1,1,G1[e] = G11[e], C1[8] = C11,1[e], D1[e] = D1 11[e] and

Ry = Bl | [G1aln [[C11.1101. (e | 2, (14, 1]
| [[Dl,l,l]]pl,l [ht1,1,1'[[st1,1,1]]p’1”1] | M{] | Mé} | Mé

According to the Lemma 3.2.16, it follows that we can derive Ry — R such that R has the
form of (3.20) or

R = [E): | [Gralon [1Cv 1,10 [Py, Q4 o JI) | 1D 1D [[S000 0y,) | M) | M) | 05,

(3.22)
In case when we get the form (3.22) it holds that P” — P’ where:
P'= By [Gra[Craal(@i,,)] | DunalSu] | MI] | M3 | At
I T1
= £ [Gl,l [H Cz{,l,l [ti,l,l [Pti,l,l ?Qt¢,1,1]] | H D;‘,l,l [tj,Ll'Stj,m]
i=2 =2
my
| HLC,M[uc,1,1[Fc,1,1[Uc,l,l-Puc,l,l],Quc,l,lH}
c=1
z Sw g Tk
| H Ey [H Grw [H Cikw [ti,k‘,w [Pti,k;w’Qti,k,wH | H Dj kew [tjvkvw'stj,k,w]
w=2 k=1 i=1 j=1
my
| H Lcak’w [ucyk:w [chkvw [ucvkyw'Puc,k,w]’Quc,k,w]]:| ?
c=1
such that:
- Chq4[e] = Cona[e] | N, where N = C1,1,1[{@4, ,)] and Cj j[o] = Cj1[e] for i €
{3,...,01}, and
- Dj4[e] = Dojyfe] | N1, where Ny = D111[Sy,,,] and Dj, j[e] = Dji.1[e] for i €
{3,...,11}.

Similarly, for all I ([P/],., [Q)]-)with t € {ta11,. s}
Similarly, for I ([P/]; 7, [@.]-) in Definition 3.2.7.

(4) 01([3) is a process that has a form as presented in Definition 3.2.8, where, where u =
u1,1,Gi[e] = Giale], L[e] = Lyy[e], Fi[e] = F111[e] and

Ry = (B [[Gualps [[Eaalyy, [Pusss | P | 2o l[@, 1| 1 0] 1 5] | a3,

According to the proof of Lemma 3.2.17, it follows that and R; — R such that R has the
form (3.21) or

Ry = (B [[Gralo [[Baaly, [por(1Qu,, 1] 1 0] | M5] | 05, (3.23)
In case when we get the form (3.23) it holds P” — P’ where

P' = By Gra[Liaa (@i, 0 | M) | 03] | MG

u1,1,1

61 3.2. Translating Cp into S

1

= I [Gl,l [H Cit1 [t [Pr Q] H Djia[tji1-Se..]
=1

my
| H L/c,l,l [UC,LI[Fc,l,l[UC,LI-Puc,1,1]aQuc,mH}

c=2
Tk
| H E |:Hka HCzkw zk'w Ptlkw7Qtzkw | HDjvkvw [%.Stjykﬂw]
w=2 j=1
my
| H Lcak’w [U/C,k,w [FC,’C,’LU [ucvkyw'Puc,k,w]’Quc,k,w]]:| ?
c=1
such that L/27171[o] = Loa[e] | N, where N = L1,11[{Qy,,)] and L;, ;[e] = L;1,1[e] for
ie{3,...,m},

Similarly, for all o ([[F]]pu [P [Pulle,pm], [@Q1]e) with w € {ug 1,1, -+, Um,_s,2}-
Similarly, for case of OY™ ™ ([F] [[Pule.), [@.]<) in Definition 3.2.8.

(5) In this case let us consider the following context:

GLl[.] = Gll,l[.] | C(ll—i—l)l,l [t(l1+1)1,1[Pt(lqu)l,l’Qt(zk+1)171]] | D(T1+1)1,1[t(T1+1)1,1‘St(r1+1)14,1]'
(3.24)

Therefore, the following holds:

Tk
= [B1]: | [G1.], Hﬂcmﬂpn LR LR R P N I PR DA R BT D
j=1

= [B1]: | [G1.1Jn1 | Hﬂcz L, [19.)1 Tl 50,00
7j=1
| [[C(lﬁ—l)l,l]]p'l,l[(zl+1)1,1[[[]]t(ll_,'_l)l,l,p’l’,l]

| t@nynn-(extrd{{t, 11)1,15 P iynty » Pot,) 1 Py [[QIE])]
| [[D(r1+1)1,1]]p’1_’1[t(r1+l)1,1-ht(r1+1)1,1'[[St(r1+1)1,1ﬂp'1'71] | M{] | Mé:| | Mé

For process R, which is obtained from R; — R, one possible reduction is caused by
synchronization on name input ¢, 41)1,1, as presented in the following:

R = [Eie |[Ghl Hﬂcmﬂpn CRIR (R PR T Py
7=1
(3.25)
| [[C(ll+1)171]]p/1,1[It((li-kl)l,l] | [[D(T1+1)171]]p/1,1[ht(r1+1)1«,1'[[St(T1+1)L1]]P/1/,1}

| M) | M3) | M,

where

(1) _
It<11+1)1,1 = lh+11,1 [[[Pt(11+1)1,1]]t(zl+1)1,1vﬂ'1',1} | eXtrd<<t(ll+1)171’pt(zl+1)1,1,P'{,1’pp’{,l»

I pp,ll,l [[[Qt(l1+1)1,1ﬂ6}

In case when we get (3.25) it follows that P” = P'.
It should be noted that here we considered one particular case. Precisely, we consider

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 62

scenario where for transaction t(ll+1)171[Pt<11+1>1,1’Qt<11+1>1,1] error notification comes from
context D(r1+1)171[0]7 but that is not the only possible case. For the other cases, when the
error notification £(;,,)11 comes from some other context, i.e. from Dj11[e],j € {1,...,7r1}
or Ciy1le],i € {1,...,l1} or G ;[e] or Ey[e], discussion follows similarly.

(6) In this case let us consider that:

Gl,l['] = G/1,1M | L(m1+1),1,1 [U(m1+1),1,1[F(m1+1)1,1[U(m1+1),1,1-Pu(mﬁl),l,l]aQu(mlH),l,lH
(3.26)

Therefore, the following holds:

my
Ry = [E1]- [[[G/Lﬂ]m [1_1[[Lc,1,1]]p’171 [1152?1,1]
c=1

| [[L(ml-‘rl),l,l]]pll’l [u(ml—‘rl),l,l[[[F(mk—‘rl),l,l]]p/l/ﬁl [u(mk—l-l),l,l‘hu(m1+1),171‘[[PU(m1+1),171]]p/1/11H
00T 10,11 P ot P 17 @121
| i) | M) | M

For process R, which is obtained form R; — R, one possible reduction is caused by a
synchronization on name u,,, +1),1,1, 88 presented in the following:

m
R= B [[G00n [TT1eraly, 09,)| iy aily, (O, L, | ME] | M5 | A,

m

c=1
(3.27)
where
1
1(L<3n1+1>,1,1 = “(m1+1)71’1[[[F(mﬁl)vl,l]]p’{,l[hu<m1+1>,1,1'[[Pwmﬁn,l,l]]ﬂ’{,l“
| eXtrd<<u(m1+1),1,17pu(m1+1)’1’1,p’1”1) pp’1’71>> | pp/{,1 H[Qu(m1+1),171]]€]'
In case when we get (3.27) it follows that P” = P’. [|

Lemma 3.2.20. Let processes It(p)([[P{]]typn, [Qi]-) and O&q)([[Fﬂp,/ [P [Pu] p], [@Q,]¢) be defined
as in Definition 3.2.7 and Definition 3.2.8. For any contexts C[e], D[e|, and L[e| the following
holds:

CLP ([Pl [QH)] | D[A[Si],) —* Cllextr(P)],y | [(QN]] | D[[Si],] and (3.28)
LIOW ([F]pr[Pu-[Pul), [Q4]e)] —* Ll[extr(Fy [Py | (@) (329)
Proof. The proof proceeds directly by application of the reduction rules from Figure 2.5. |

Lemma 3.2.21. If P and @) are well-formed compensable processes such that P = () then

[Ple = [Qle-
Proof. The proof is by induction on the derivation P = @), and perform the case analysis on the
last rule applied. In all cases the proof follows directly. |

3.2.3.2.4 Proof of Operational Correspondence — Theorem 3.2.7

Due to the complexity of the proof for Theorem 3.2.7 we first present an overview of the
proof.

63 3.2. Translating Cp into S

3.2.3.2.5 A Roadmap for the Proofs

Part (1) of Theorem 3.2.7 is completeness, i.e.,
If P — P’ then [P]. —* [P'].

where k£ > 1 is given precisely by our statement. This property ensures that our translation
faithfully simulates the behavior of compensable processes. The proof is by induction on the
derivation of P — P’ and uses:

e Proposition 2.2.3 (Page 18) for determining three base cases.
e Definition 3.2.3 (Page 39), i.e., the definition of translation.

e Lemma 3.2.9 (Page 47), which maps evaluation contexts in Cp into evaluation contexts of

S.
e Lemma 3.2.14 (Page 51), which concerns function ch(-,-).
Part (2) of Theorem 3.2.7 is soundness, i.e.,
If [P]. —™ R then there is P’ such that P —* P’ and R —* [P’].

This property ensures that target terms never exhibit behavior that can not be attributed
to some compensable process. As usual, proving soundness is more challenging than proving
completeness.

The proof of soundness is by induction on n, i.e., the length of the reduction [P], —" R.
We rely crucially on two lemmas (Lemma 3.2.19 and Lemma 3.2.20). Lemma 3.2.19 concerns
the shape of processes R and P’, whereas Lemma 3.2.20 ensures that the obtained adaptable
process R can evolve until reaching a process that corresponds to the translation of a compensable
process. More in details:

e By analyzing the processes obtained by translating the composition of a transac-
tion and its externally triggered failure signal (and its computation), we come to
Lemma 3.2.16 (Page 51), which identifies processes that are created before a synchro-
nization on hy.

e Similarly, the analysis of the processes obtained by translating a transaction and its inter-
nally triggered failure signal (and its computation) leads us to Lemma 3.2.17 (Page 56),
which identifies processes that are created before a synchronization on h,,.

e In the statement of Lemma 3.2.16 and Lemma 3.2.17 we use the definition of intermediate
processes given by Definition 3.2.7 and Definition 3.2.8, respectively. The proofs proceed
by case analysis for the step R — R/.

e Lemma 3.2.19 (Page 57) is about the shape of process R, and also ensures that there is a
process P’ with an appropriate shape. The proof proceeds by induction on n. The base
case uses Lemma 3.2.12 (Page 49); in the inductive step, we exploit the fact that the target
term R; has a specific shape, which is in turn ensured by Lemma 3.2.16 and Lemma 3.2.17.

e Lemma 3.2.20 (Page 62) ensures that the adaptable process obtained thanks to
Lemma 3.2.16 and Lemma 3.2.17 can evolve until reaching a process that corresponds
to the translation of a compensable process.

Using these guidelines as a proof sketch, we now repeat Theorem 3.2.7 (Page 46) and present
its proof in full detail:

Theorem 3.2.7 (Operational Correspondence for [-],). Let P be a well-formed process in Cp.

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 64

(1) If P — P’ then [P]. — [P']. where for

a) P=FE|[C[a.P] | D[a.P]] and P' = E[C[P1] | D[P]] it follows k =1,

b) P = E[C[t[P1,Q]] | D[t.P]] and P' = E[Clextrp(P1) | (Q)] | D[P2]] it follows k = 4 +
pby(F1),

¢) P =CulF[u.P1],Q]] and P’ = Clextrp(F[P1]) | (Q)] it follows k = 4 + pby(F[P1]),

for some contexts C[e], D[e], E[e], F'[e], processes Pi, @), P, and names ¢, u.

(2) If [P]: —™ R with n > 0 then there is P’ such that P —* P’ and R —* [P’]..

Proof. (1) Part (1) — Completeness: The proof proceeds by induction on the derivation of
P — P'. We consider three base cases, corresponding to cases a), b) and c) of Propo-
sition 2.2.3 (Page 18). In all cases, we use Definition 3.2.3, Lemma 3.2.9 (Page 47), and
Lemma 3.2.21.

a) This case concerns an input-output synchronization on a name a € Ns. Therefore, we
observe that P = E[C[a.Pi] | D[a.P%]] and P' = E[C[P1] | D[P]], and we have the
following derivation:

[Pl. = [E[C[a.P\] | Dla.Bs]]].
= [El[[Cla-P1] | Da.Ps]],]
= [E](ICT,l]a- Pﬂ]p] | [D]plla-Po]]]
= HE]] H[C]]p HPl | [[D]]p[[[PZ]]p”H (3 30)
— [E[[[CL[[A]p] | [PDo[[P2]] '
= [E]:[[C[PA] | D[P2],]
= [E[C[A] | D[P]]]e
= [P].
Therefore, the thesis holds with £ = 1.

b) This case concerns a synchronization due to an external error notification for a trans-
action scope. We consider P = E[C[t[P1,Q]] | D[t.P.]], with m = pby(Py), and
P’ = E[Clextrp(P1) | (Q)] | D[P»]]. We have the following derivation:

[P = [E[CHPLQ]] | DEP])
= [EL[[CHPLQI, | [DE-F2],|
— [BL|[CL,(1H1PQ1Ly] | [DL, [Pl
= [ELICT[t[IPLep] | & (extrd(t.pi,py) | Py IIQL]) |
| [P fEh 2], 1]
— [EL[[CT, (1Y (1P, [Q1C)] | [Pl [Pa],]
—m 42 [[IC1, [(1P, [Q1)] 1 IDL (e [Ps]]]
— [EL[[CL[[extro(Py) | (@)1,] | [DL,[1P2],0]]
= [BL:|[Clextro(P1) | (@)1l | [DIP]], |

= [ElClextro(P1) | (@)] | D[P2]]]e
[P'].

65 3.2. Translating Cp into S

Since we have that the error notification is external, in extrd((t, p. ,/, py)) (cf. eq. (3.3))
we get that ch(t,[P1],) = 0. (c¢f. Lemma 3.2.14 for more details). The order/nature of
these reduction steps is as follows:

i) The first synchronization concerns ¢ and t.

ii) The following m + 2 synchronizations can be explained as follows:

- First, we have a process relocation through the update of location ¢, as enforced
by the definition of process extr. Process I£1)(HP1]]t7px, [Q]:) is as in Defini-
tion 3.2.7 (Figure 3.6); as shown in Figure 3.5, there are two possibilities for
reduction, depending on m.

- Subsequently, due to process

outd® (pt,p’app/7 nl(pt,p’a [[Pl]]t,p/)’ t<<T>>E)
we have m reduction steps that relocate processes on location p; s to location
Py, as also shown in Figure 3.5.

- The final reduction corresponds to the erasure of the location ¢ with all its
contents, obtained by updating prefix ¢((t)).

iii) Finally, we have a synchronization between h; and hy, which serves to signal that all
synchronizations related to location ¢ have been completed.

Therefore, we can conclude that for [P]. —* [P']. where k = 4 4 m.

c¢) This case concerns a synchronization due to an internal error notification (i.e., the error
comes from the default activity of transaction). Here we have P = Clu[F[u.P],Q)]], with
m = pby(F[P1]), and P’ = Clextrp(F[P1]) | (Q)]. Then we have the following derivation:

[Pl = [C[u[F[u.P1],Q]]]-
= [C] [[ulF[a.P],Q]],)
=]]6[MF U.Py]], p] | u. (extrd{(u, pu,p, Pp)) | ppllQ]e])m
= [Cl:[u [[[F]]up @l [Pi])] | u(extrd{(u, pup, pp) | ppl[Qe])]
—]]a [O [[F]]up h [[Plﬂp] [[Q]])]
—m 2 [C] [OF™) ([Flu - [Pi]], [QIE))]
(O ([FLLuplhu-[P1],], [Q1-)]
[Hextro [P, | poll@QI]]

[C]e
= [Cle
[C[extro(F[P1]) | (@)]]
I

[P

Process O ([[F]]up[h [P1]], [Q]e), where g € {1,...,m 4 4}, is as in Definition 3.2.8
(Figure 3.7). It should be noted that the location on name w and its content will be
erased before interaction on name h, and h, (cf. Figure 3.7 for ¢ = (m + 2) and
g = (m + 3)). Therefore, in this case, the role of function ch(u,-) is central: indeed,
ch(w, [Flu,p [hu-[P1],]) provides the input hy, which is necessary to achieve operational
correspondence.

The order/nature/number of reduction steps can be explained as in Case b) above. We
can then conclude that [P]. —* [P']. for k = 4 + m.

(2) Part (2) — Soundness: Given [P]. —" R, by Lemma 3.2.19, process R has the following
form:

z Sw lk
R= H [Ew]e [kl_[lﬂGk,w]]pw [Hﬂci,k,w]]pgﬁw [It(f),)cw]

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 66
[P]e

N

HPI/]]E
R

* [P'].

Figure 3.9: Diagram of the statement of soundness for [-].

n

Tk

| TTDswalsg, [Bt | HnLckwupk o, 11].

j=1

Also by Lemma 3.2.19, we have P —* P” where

Tk
H Ey, [Hka chkw zkw Ptlkw7Qtzkw | HDj,k,w [tj,k,w‘stj,k,w]
1 =1
w= . J
| H LC,]C,’U) [ucvkzw [Fczkyw [ucvkyw'Puc,k,w} ’Quc,k,w]]:| ?
c=1

where by successive application of completeness it follows that [P]. —* [P"]..

By Lemma 3.2.20, i.e., by lj successive applications of (3.28) and my successive applications
of (3.29) on process R, it follows that:

Sw

R—" H[[Ewu [H[{kaﬂpw H[[Czkw]]p [lextro (P, I, 1@ 0T]

| H[[Dj,kw [[St]kw]]p H[[ckw]]p [[eXtrD ckw[Puckw])]]p
| ﬂ<@u5kw>ﬂpgwm

Tk

= [[1_[1E [Hka chk:w extro(Ff,,) 1 (Q)] | 1_[1Dj7k7w .
” ol
| ﬁLC,k,w lextrp(Fepw[Pucyo0)) | <Qlc,k,w>ﬂhs = [P']..
Therefore, it follows that
H o [Hka HCZ,W lextro (P,) (@7,)] | ﬁle,k,w [St;]
w1 i

| L 2eslexttolForalPac,)| Q..)1

c=1

67 3.2. Translating Cp into S

[Pl = [t[{a | @),0] | £ | u[w,0]].)
= t[pm[a | 6]] | t. (extrd((t,pre, pe)) | pe[O]) | t.o
| w[@.ha] | . (extrd{(u, puc, p=) | p:[0])

!

It(l) | he | u[ﬂhu] | w. (extrd{(w, puc, pe) | Pe[0])
It(l) = t[pt’a[a | a]] | extrd((t,pre, pe)) | pE[O])
!

iV | b | O

= ufhn] | extrd(u,pu o) | p:[0])
! [P"]e = [{a | @) | (0) | {0)]-
LY e o
(It’(l) = t[p:[0 | 0]] | extrd((t, pec, pe)) Ips[O])
13

R=p.[0]0]|p[0] | OV

\\\\\\\\\\\prkwﬁm|@|mw

Figure 3.10: Example for operational soundness.

[(a | @) | (0) | ulw,0]].

—
&0
=

(0

£

Also, by Proposition 2.2.3, i.e., by I successive applications of case b) and and my, successive
applications of case ¢) on process P”| it follows that: P” —* P’
By successive application of (1) — Completeness on the derivation P —* P’ it follows
that [P"]. —* [P’].. The proof scheme is shown in Figure 3.9.

|

We illustrate the encoding with the following examples.
Example 3.2.22. The example presented in Figure 3.10 illustrates the statement of soundness
(Figure 3.9).
Example 3.2.23. Notably, P = s|t[(a) | (b) | c,d],0] | .5 is a well-formed compensable process.
By the LTS of Cp (cf. Figure 2.3), we have:
P —p sl(a) | (b) | (d),0] | 5 = (a) | (0) | (d).

The encoding of P is obtained by expanding Definition 3.2.3:
[P]: = s[t [pt,s [a} | Dt.s [b} | C] | t.(extrd((t,pms,ps)) | ps [d})} | s.extrd((s, ps,pe) | t.he.5.hs

6 S[ps[a] | ps[B] | ps [dﬂ | s.extrd((s, ps, pe)) | 5.hs
—" pela] | pe[b] | pe[d]

= [{a) [(0) [(D)]e-

Let us write P; to denote the process (a) | (b) | ¢ (the default activity of transaction ¢) and P» to
denote the process (a) | (b) | (d) (the process obtained above). Our operational correspondence
result ensures that k in [P]. —" [P]- is equal to

k=44 pby(P1) + 4+ pby(FPa)

for transaction ¢ for transaction s

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 68

=6+7=13
Let us analyze in detail these reduction steps:
i) The first step corresponds to the synchronization between ¢ and ¢.

ii) Once process extrd((t,pis,ps) is released, the second step is a synchronization
on update prefix t{((Y).t[Y] | ch(¢,Y) | outd®(pts, ps,nl(prs,Y),t((1)).ht)) and location

tlpeslal | pes[b] |]

iii) Since we get process outd®(pis, ps,2,t({(1).ht), the third and fourth steps correspond
to synchronizations between locations p; s[a] and pgs[b] with the (nested) update prefix

Pe.s (X1, X2).ps[X1] | ps[X2] | t(1)).he)), which relocates the encoding of protected blocks.

iv) The fifth step is the synchronization between update prefix ¢((1)) and location ¢[...], whereby

the location is deleted together with its content (cf. equation (3.1));

~—

v) The sixth reduction step is a synchronization on name h;, which enables behavior corre-
sponding to the encoding of transaction s.

To encode the failure of transaction s, we repeat the exact same steps as befgre. For location
s we have one more reduction step, because in process outd®(ps, pe, 3, s((1)).hs) we have three
locations pg|. . .| that have to be relocated on location p.|...].

We illustrate the encoding also on the Hotel booking scenario discussed earlier (Example 2.2.1,
Page 15).

Example 3.2.24. Recall the hotel booking scenario (§2.2, Example 2.2.1) where the client
wants to cancel a reservation after booking and paying.

[Reservation]. = t[bookf.pay.invoz’ce] | t.(extrd((t, pr, pe)) | pelrefund]) | book.pay.t.he.refund
t[pay.invoice| | t.(extrd((t, ps, p:)) | pe[refund)]) | pay.t.hs.refund
t[invoice] | t.(extrd((t,ps, p:)) | pe[refund)) | t.he.refund

t[invoice] | t{(Y).t[Y] | ch(¢,Y)

| 0utd® (pe , pe L (pr, ¥), £4H) Bl | pelrefund] | hy.refund

t[invoice] | ch(t,invoice) | outd®(ps , pe, nl(py, invoice), t{(t).hy)

L

!

| pelrefund] | hy.refund
= t[invoice] | outd®(p¢, pe, 0,t((1).he) | pe[refund] | hy.refund
= t[invoice] | t(1).h¢ | pe[refund] | hy.refund
— T | pelrefumd) | horefund

— pe[refund] | refund
— p:[0]

Therefore, we get [Reservation]. —7 p.[0]. There are three reduction steps as a result of
synchronizations on input prefixes: book,pay and t with corresponding outputs. Now, the
structure of the default activity of transaction is changed and we have one reduction step for
updating its current content. After that, there are three more reduction steps: one for erasing
the location t and its content, and two reduction steps as result of synchronizations on input
names h; and refund with corresponding outputs.

69 3.2. Translating Cp into S

npb((F)) = 1+ npb(P) npb(P | Q) = npb(P) + npb(Q) npb((vz) P) = npb(P)
npb(!7.P) = npb(7.P) =0 npb(¢[P,Q]) =1+ npb(P) + npb(E)) npb(0) =0

Figure 3.11: Number of protected blocks.

3.2.3.2.6 Divergence Reflection

In the following, we are going to prove that the encoding does not introduce divergent
computations. We need the following definition, which counts all protected blocks in process P.

Definition 3.2.9. Given a well-formed compensable process P, we will write npb(P) to denote
the number of protected blocks in P — see Figure 3.11 for a definition.

Notice that npb(P) is different from pb(P) in Definition 3.2.5. The difference is in the
definition for processes (P) and ¢[P,Q]. In Definition 3.2.5 we count all processes that may
become protected, e.g., after a reduction of the considered compensable process. Intuitively, with
npb(P) we are looking for protected blocks at all levels of the observed compensable process.

To establish divergence reflection, we relate a sequence of adaptable processes and a sequence
of compensable processes. One reduction of an adaptable process from the sequence corresponds
either to one reduction of the corresponding compensable process or to equal subsequent com-
pensable processes. This reflects that a single reduction of a compensable processes is mimicked
by several reductions of a corresponding adaptable process. The following lemma proves that
such a relation does exist, providing also the upper bound for the number of successive, non-
equivalent, adaptable processes with the property that their corresponding adaptable processes
are equal. This last property directly induces that the set of compensable processes is infinite,
too.

Lemma 3.2.25. Let {R;}i>0 be a sequence of adaptable processes such that R; — R;11, with
Ry = [R],, for some compensable process Py and path p. Then for every ¢ > 1 there is P; such
that:
(i) R —* [P,
(11) P,_1=Por P — Pi, and
(111) Ri#Riy1#...# Ry and P, = Pi1=...=PFp imply m <4+ npb(Po)

Proof. The proof for (i) and (ii) proceeds by induction on i.
Base case: Assume that i = 1. By the proof of Lemma 3.2.19, i.e. its Base case, we have
three cases:

a) Py = FE[Cla.P{] | Da.R]] and Ry = [[E]]E{[[C’]]p[[[Pﬂ]pz] | [[D]]p[[[PQ]]pN]} = [P1],, it follows
Py — Py (cf. Proposition 2.2.3 (a)).

b) Py = E|C[t[P:,Q]] | DIE.P]]] and

= [F]. [[[Cﬂp[t[[[Pz’]tpr] | extrd((t,pr . 0y) | P [[Q']]] | [[D]]p[ht.[[Pl’]]pu]}. There is Py
such that by Lemma 3.2.20 (3.28) it follows Ry —* [P1],. Also, it follows Py — P; (cf.
Proposition 2.2.3 (b)).

&) Py = ClulD[P{),Q)) and R, = ﬂg[u (Dl (7] | 55520 |2 llQ1].
There is P; such that by Lemma 3.2.20 (3.29) it follows Ry —* [P1],. Also, it follows
Py — Py (cf. Proposition 2.2.3 (c)).

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 70

Inductive step: By inductive hypothesis, there are processes Pi,...,FP,_1,P; such that
Ri_1 —* [Pi—1], and either P,_y = P; or Pi_y — P;. Let us now consider R; — R
(ie., [P], —" Ri — Rit1). By the proof of Lemma 3.2.19, i.e., its Inductive step, we get
that there is P;y1 such that either P; = P, 11 or P, — P,y (cf. for example (3.20) and (3.22)).
By Lemma 3.2.20 it follows R 1 —* [Pi+1]p-

Now, we are going to prove the last assertion in the statement, (iii). In the following, we give
guidelines on how to obtain the proof since it follows from (the proof of) Lemma 3.2.19:

(1) The form of process R; is given with (3.18), and process P; has a form given with (3.19).

(2) In the proof, its Inductive step, we consider only cases such that R; # R;+1 and P; =

P;11. Therefore, we consider the cases in which intermediate processes It(p i and Oggm

i,k,w

inside process R; (cf. Definition 3.2.7 and Definition 3.2.8, respectively) have been changed.

(3) From Figure 3.6 and Figure 3.7 we obtain the form and the number of all intermediate
processes. We remind the reader that the number of intermediate processes directly de-
pends on the number of protected blocks in the observed transaction, more precisely in its
compensation activity (cf. for example Figure 3.5).

(4) We conclude, for each | € {1,...,m} it follows that m is at most 4 + npb(F), i.e.,
m =4+ pb(Q') < 4+ npb(Fy), for some Q' that appears in Py.

The following theorem concerns infinite reduction sequences: it says that an infinite reduc-
tion sequence originating from a target term can only arise from an infinite reduction sequence
of a corresponding source term. Hence, it suffices to establish divergence reflection, as in Defi-
nition 2.3.5:

Theorem 3.2.26 (Divergence Reflection for [-],). Let {R;};>0 be an infinite sequence of adapt-
able processes such that

(1) Ry = [FRo], for some Py and p, and (2) R; — R;y1 for any i > 0.

Then there is an infinite sequence of adaptable processes {P]’ }j>0 such that

(3) Py = P, and (4) P} — P}, for any j > 0.

Proof. By Lemma 3.2.25, there is a sequence {P;};>o such that
(i) R —* [P, and (i) Pi_y = P;or P,_1 — P,.
Consider now a sequence of compensable processes Pj, P{, Pj, ... such that
(1) P,y — Pj, for any j > 1, and
(2) for every i there is j such that P; = Pj.

By Lemma 3.2.25, at most 4 + npb(FPp) reduction steps from the sequence {R;}i>o correspond
to one reduction step of {P;};>0. Hence, the number of processes in {P]};>0 is not less then
the number of processes {R;}i>o divided by 4 4+ npb(Fp). Since the sequence {R;}i>o is infinite,
the same holds for {P]};>0. [|

71 3.2. Translating Cp into S

3.2.3.2.7 Success Sensitiveness

To prove that the translation satisfies success sensitiveness we need first to extend Defini-
tion 3.2.3 with [v], = V.

Further, we adapt the definition of may-succeed (Definition 2.3.4) to adaptable and com-
pensable processes. It is defined in exactly the same way for the two calculi, but it relies on
different definitions of operational semantics and evaluation contexts.

Definition 3.2.10. Let P be an adaptable/compensable process. We say that P may-succeed,
denoted P |}, if P —* P" and P’ = C[v] for some process P’ and evaluation context Cle].

Theorem 3.2.27 (Success Sensitiveness for [-],). Let P be a well-formed compensable process
and p an arbitrary path. Then P | if and only if [P], {.

We shall prove that success sensitiveness holds for the translation [-],. The first part of the
statement
P |l implies [P], |

follows directly from operational completeness (Theorem 3.2.7 (1)) and Lemma 3.2.9. The proof
for the opposite direction

[P], § implies P |
is derived through the following steps:
e By Definition 3.2.10, if [P], | then [P], —* R and R = C[v] for some context C[s].
e By Lemma 3.2.19, we conclude that process R has the form given in (3.18).

e Assuming that R = C[v], we identify all possible positions of v" in the form (3.18). For
that purpose, we introduce some auxiliary lemmas:

— By Lemma 3.2.15, either v' appears at top level of some context (in parallel), in a
form [C'[v]],, or it is nested inside some locations. There are four additional nested
places that we consider separately and list in the following items.

— Lemma 3.2.28 considers the case with It(p)([[Pl]}t,p, [@]:) = C"[v] and
nl(pep, [Pille,p) = 0and p € {1,2,3}, where It(p)([[Pl]]tp, [@1]e) is given in Figure 3.6.
— Lemma 3.2.29 considers the case with It(p)(ﬂPl]}t,p, [@i]:) = C"[v] and

n1(ptp, [Pili,p) = m > 0 and p € {1,2,...,m + 3}, where I[” ([Pi]s,p, [Q]:) is given
in Figure 3.6.

— Lemma 3.2.30 considers the case with OqSQ)([[F]]p[hu.[[Plﬂp/],[[Ql]]e) = C"[V] and
01 (pu,p, [F]p[hu-[P1]y]) = 0 and p € {1,2,3,4}, where O ([F],[hu-[Po] 4], [Q1]:)
is given in Figure 3.7.

— Lemma 3.2.31 considers the case with O&q)([[F]]p[hu.[Pl]]pr}, [@1]:) = C"[V]
and nl(pup, [Flplhu-[Pily]) = m > 0 and p € {l,...,m + 4}, where
Ol(LQ)([[F]]p[hu.[[Pg}]p/], [@1]:) is given in Figure 3.7.

e Finally, after identifiying the place of v/, using (3.19) of Lemma 3.2.19, we get the proof.
We proceed to introduce the auxiliary lemmas that consider nested appearances of v'.

Lemma 3.2.28. Let t be a name, p a path, and P, () well-formed compensable processes such
that nl(p,, [P]t,) = 0. If It(p)([P]]W, [Qle) = C[v], for p € {1,2,3} and some context C|e],
then

(i) either [P], = Ci[V], (ii) or [Q]s = C1[V]

for some context C[e].

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 72

Proof. There are three possible forms of I ([[P]]t s [@le), given in the first three rows of Fig-
ure 3.6.

o p € {1,2}: T ¢[[Pl,] | RIppl[Q)] = C[v] and (R = t{(Y)[Y]| ch(t,Y) | t{t}.7ui} or
R =t{t}.ht), by Definition 2.2.6, we have the following two possibilities:

tClol] | B | plQLL] and €[] = [Pl on

t[[Plep] | B | pplCile] and C1[v] = [Q]..

3: If by | po[[Q]:] = C[v], by Definition 2.2.6, C[e] = h; | p,[C1[e]] and therefore
v =1Ql.

(i) Clo]
(i) CTe]

XY
|

Lemma 3.2.29. Let ¢t be a name, p a path, and P,Q well-formed compensable processes

such that [Pli, = I] pr,[[P)] | S with n1(pe,y, [Pli,) = m. 1f 7 ([Pls, [Q]e) = C[v], for
k=1

p € {1,...,m+ 3} and some context CJe], then

(i) [P]e = Culv], or (i) [Q]e = C1lv]; or (i) S = C1[v]
for some context C1[e] and k € {1,...,m}.

Proof. The proof is similar to the proof of Lemma 3.2.28 and follows directly from Definition 2.2.6
and the process defined in Figure 3.6. |

Lemma 3.2.30. Let u be a name, p a path, and P, Q well-formed compensable processes such
that n1(pup, [Flplhe-[P]y]) = 0. I O ([F],[h-[P]], [Qle) = Clv], for p € {1,2,3,4} and
some context Cle], then

(i) either [F],[hy.[P]y] = Ci[V], (ii) or [Q]: = C1[V]
for some context C1[e].

Proof. The proof is similar to the proof of Lemma 3.2.28 and follows directly from Defini-
tion 2.2.6, and the process defined in Figure 3.7. |

Lemma 3.2.31. Let u be a name p a path, and P,Q well-formed compensable pro-
cesses such that [F],[h..[P]y] = H Pupl[PLle] | S with nl(pyp, [Flplhu-[Ply]) = m. If
k=1

O ([F1,hu.[P1,), [Q]e) = C[v], for p € {1,...,m + 4} and some context C[e], then

() IF b [P1y) = Cilv), or (i) [Q)- = C1[v], o (i) [PL). = C1[v]
for some context Ci[e] and k € {1,...,m +4}.

Proof. Similar to the proof of Lemma 3.2.28 and follows directly from Definition 2.2.6 and the
process defined in Figure 3.7. |

Now we will give the proof of the success sensitiveness (cf. Theorem 3.2.27):

Proof of Success Sensitiveness — Theorem 3.2.27. (=) Let P |}, i.e., P —* P and P’ = C|[V].
By Theorem 3.2.7 (1) — Completeness we have that [P], —* [P'], = [C[V]],- By Conven-
tion 3.2.8 and Lemma 3.2.9 it follows:

[Clplv] = [Clell,[Iv1y],

73 3.2. Translating Cp into S

where p' is a path to hole in context C[e]. By [v], = v' we have that [P], —"* [C[e]],[v].
This implies that [P], |
(«) Conversely, Let [P], |, i.e., [P], —" R and R = C[v']. By Lemma 3.2.19 it follows:

Sw

Ik Tk
H [[Ew]] |: H [[Gk:,w]]pw [H[[Ci,k:,w]]p;cyw [(Zp,)f w | H[[Dj,kﬂﬂ]]p;)w [htj,k,w‘ﬂstj,k,wﬂpg,w]

j=1

| H[[Lckw]]pk 0w,]
(3.31)

By Lemma 3.2.15, Lemma 3.2.28, Lemma 3.2.29, Lemma 3.2.30, and Lemma 3.2.31 we analyze
all possible places where v* occurs in (3.31). By Lemma 3.2.15,

(1) either

civl= [E")1v] 1| TTIEL- [H[[ka]]pw H[[me]]pkw[o]
w=1 k=1 (3.32)

Tk
| HHDjvk/w]]P;“w [htj,k,w ‘[[Stj,k:,w]]pl H[[LC k w]]Pk [Uc, k, w]]

Jj=1

(2) or, there are w € {1,..., 2} and C[e] such that

Sw Iy Tk
= H[[Gk,w]]pw [Hﬂcivkvw]]p;,w [It(Lp;)cw] | H[[Djykyw]]p;,w [htj,k,w'[[Stj,k,w]]p%,w]
k=1 =1 i=1 (3.33)

|H[[L6kw]]pk [Uckw]]}

By Lemma 3.2.15,
(2.1) either

Uk
Cilvl= [Gulpulv HHG wlpw [H[[Ci’k’“’]]f’%,w [It(f)’)cw]
i=1 (3.34)

Tk

mg
| H[[Dj}k,w]]p;ﬂw [htj,k,w'[[stj,k,w]]pgyw] | H[[LC,k,wﬂpjc,w [Ov(;i)kw”}
c=1

j=1

(2.2) or, there are Cs]e] and k € {1,...,s,} such that one of the following three cases
holds:

(2.2.1) Colv] = [Cikuly, , ME

zkw

(2:2.1.1) either Colv] = [CF 0 [V] H[[Lyl (1)

z,k,wj|
(2.2.1.2) or, there are C3le] and 7 € {1,. lk} such that

03[‘/] t kw(ﬂpmwﬂt,p 7[[Qt7kwﬂ).

Assume that nl(py e, [[Pti,k,w]]t»pu) = 0 and p € {1,2,3} (other cases are
similar). By Lemma 3.2.29,

(221.21) [P, Ty = Cal], 0

(22.1.2.2) [QIL = 4[]

for some Clyle].

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 74

(222) Colv] = [Djruly, [htjyk,w.[[stjyk,w]]p,,w]: By Lemma 3.2.15,
[[Dj,k,w]]p;mw [htjyk,w‘HStjyk,w]]pg,w] = [[D‘%k’w]]p;c’w [‘/] | [[Djykyw]]p;“w [htj,k,w'HStj,k,wﬂpZ’w] .
(2:2.3) Co[v] = [Lepuly, (0%, .]:

Jky,w
(2.2.3.1) either Co[v] = [, 1 [V] 120,00 [0,]

(2.2.3.2) or, there are Cy[e] and ¢ € {1,..., my} such that
Calv] = O, o ([Feanl s [Pacy). 1@, D)
Assume that Ill(uqhw, o, [[Fc,k,w]]p” [huc,k,w'[[Puc,k,w]]/?”'])) = 0 and ¢ €
{1,2,3,4} (other cases are similar). By Lemma 3.2.30,
(2.2.3.2.1) either [[Fc,k,w]]p” [huc,k,w‘[[Puc,k’,w]]p/N] = 05[\/]
(2.2.32.2) or, [Qy,, Ic) = C5[V]
for some Cj|e].

In all the cases listed above, it follows directly by Lemma 3.2.19 that P | since

z Sw I T
P= H E, [H G’W[H Citesw [biesw[Pry o @t)] | H Dj b [Eikw-St; 1)
w=1 k=1 i=1 j=1 (335)
my,
| H Lc,k,w [Uc,k,w[Fc,k,w [uc,k,w-Puc,kﬂu]7Quc$k,wH} s
c=1
Other cases are similar. |

3.3 Translating Cp into S

In this section we concentrate on a specific source calculus, namely the calculus in [29] with
static recovery and preserving semantics. Before giving a formal presentation of the encoding
Cp into S we introduce some useful conventions and intuitions.

3.3.1 The Translation, Informally

The translation Cp into S, denoted (-),, uses very similar ideas as the encoding [-],. This way,
the translation of a protected block found at path p, is defined as:

(P))p = po[(P)e]-

To encode a preserving semantics we use the base sets given in Definition 3.1.1. We use the
set of reserved location names with name (3,, because besides protected blocks we have to keep
transactions that are in default activity P (cf. Figure 2.2) in the case that a failure signal is
fired. We use a revised auxiliary process, denoted outp®(¢, P, 11,1}, l2,15, n,m), which:

(i) moves n processes from location 3 to location I};

(il) moves m processes from location Iy to location I}.

To define process outp®, we need some auxiliary notions. In the case when we move m processes
from location Iy to location I it will be necessary to remove some names from the path in
processes that are enclosed in I5. The following function removes a name from a path:

Definition 3.3.1. Let p =t1,...,t, be a path and r be a name in ;. We define the function
p/r as follows:

tlat27'"7tiflati+17"'7tn lftl =T
plr =
0 ift; £rforl<i<n.

75 3.3. Translating Cp into S

It should be noted that name r can occur only one time in p (cf. Definition 2.2.4 (i)).

The following definition serves to remove names mentioned in an adaptable process. This is
important: if a transaction ¢ had nested transactions and location name ¢t is lost, then we have
to remove ¢ from all the paths that contained it.

Definition 3.3.2. Let P be a closed adaptable process, and let p be a path that contains name
s. The function E(P, s) is defined as follows:

E(IP],s) = LE(P, s)] if 1 & N} EPplPl,5) = pp/slE(P, 5)]
E(Bpl P, 5) = Byys[E(P5)] E(P|Q,s)=E(P,s) | £(Q,s)
E(m.P,s) =m.E(P,s) E(lm.P, s) =In.E(P, s)
E((va)P,s) = (vx)E(P,s) £(0,s) =

E(X,s)=X

The auxiliary processes outp® should depend on all location names which derive from the
names of nested transactions (e.g., t1,...,%,). The following definition has just that role, to
denote the list of location names from adaptable process P that are nested (at top level) in [.

Definition 3.3.3. Let [be a name and P an adaptable process. Function top(/, P) denotes the
list of location names from P that are nested (at top level) in [. Tt is defined as follows:

top(1,I'[P]) = {{l"} if I =10"and P =1"[Q] | R for some Q and R and I” € \;

0 otherwise
top(l, P | Q) = tOp(l,P) U top(l, Q) top(l, O) = top(l,X) =0
top(l, (vz)P) = top(l, P) top(l, w.P) = top(l,!7m.P) =)

The following example illustrates this definition.

Example 3.3.1. Given P = B p[ti[ma] | prp[ma]] | Be,plms | ta[ma] | t3[ms]], by Definition 3.3.3
we have the following list of location names from P:

tOp(ﬂt7p, P) = {tl, tQ, tg}.

We assume that function £(-,) operates only over closed processes and, in the style of a call-
by-need evaluation strategy, we assume that it is applied once it is provided with an argument.

For the definition of outp®(¢t, P,l1,1},12,15,n,m) we introduce the following auxiliary pro-
cesses:

outpi(t,i1,11,n) = L (X1, ..., Xn). (H X | t<<T>>-J't-7“t>);
i=1

Outp;(t,tl, ooy tm, L, lévm) = l2<<(Yi, cee aYm)'

(Tt- (H (BIE Ve O] | Gty 15{(X). X)) T P,) | ¢t J)

k=1
Outpg(t,tl,... tm,ll,lll,lg,lé,n,m) = ll<<(X1,...,X Yl,.. ,Ym
(H 0[X0] | re. <H (IBEVe,)] | Gty -5 ((X). X)) T Ty, > | (T)
k=1

We are now ready to define process outp®(t, P, 11,1}, 12,15, n,m).

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 76

S S S

t Ul

L non
I_LLI ||_i||6 |outp§(t,ll,l’172) _>2 ||z|||z||t trt —_— EIHIH]T‘Tt

Figure 3.12: Illustrating outp$(t,11,1},2) from Example 3.3.2 .

The auxiliary process outp®(t, P, 1,11, 2,15, n,m), where top(la, P) = {t1,...,tm} for m > 0,
is defined as follows:

() -ge-re itn,m=20

outps(t,ly,lh,n ifn>0m=0
outp® (¢, P,11, 1}, o, Iy, n,m) = piltlnfhm)

outps(t,t1, ..., tm,l2,l5,m) ifn=0,m>0

outps(t, t1, ..., tm, 11,14, l2,lh,nym) i n,m >0

(3.36)
The following example illustrates process outp® (cf. (3.36)). A more detailed explanation is
given later on.

Example 3.3.2. We illustrate the revised auxiliary process:

s|tfila] | ule] | o] | outpi(t, b, 14, 2)]
= s[tftafa] [18] |] (X0 Xo)- (X | G| 1))
— st | €] | (X)) | 51] | £GE) Feore))]
— stle] | 2lal 1) 148 For
—> s|lila] | 4 10] | o

Above, the two reduction steps are used for relocation of [;[a] and [1[b] that are nested in
location ¢ (with omitted trailing occurrences of 0). The third step is the synchronization between
update prefix ¢((1)) and location t[c|, where the update deletes the location and its content. This
is illustrated in Figure 3.12.

3.3.2 The Translation, Formally

In order to give a precise account of the number of computation steps, i.e., reductions required
in S to correctly mimic a reductions in Cp we use pb(P) as presented in the Definition 3.2.5
(cf. Figure 3.4). We need the following definition for tsp(P), which counts all transactions in
process P. Since translations Ca into S and O will also need tsy(P), in the following definition
we will include it.

Definition 3.3.4. Given a compensable process P, we will write tsp(P) and ts,(P) to denote
the number of transactions in P for Cp and Cy, respectively — see Figure 3.13 for a definition.

Whenever a notion coincides for the both semantics, we shall avoid decorations P and A. It
should be noted that the number of protected blocks and transactions in the default activity
of the transaction corresponds to the number of locations p; ,[-] and B[] after encoding of
protected blocks and transactions in this transaction. The last ingredient we need to translate

77 3.3. Translating Cp into S

tsp(t[P,Q]) =1 tsa(t[P,Q]) = 1+ tsa(P) ts(m.P) =ts((P)) =0
ts(P | Q) = ts(P) + ts(Q) ts((vx)P) = ts(P) ts(Im.P) =ts(0) =0

Figure 3.13: Number of transactions.

(]<P>Dp :pp[qpl)s]
(tLP,QNy = B[t (P | . (exETp(t, (Phis s s s B | olIQDD)]
| Ge-Bp (X)X) Tr.he

Figure 3.14: Translating Cp into S.

Cp into S is the following auxiliary process, where we use functions nl(l,-) and ch(¢,-) defined
in Definition 3.2.1. Note that, we assume that functions nl(-,-) and ch(,-) operate only over
closed processes and, in the style of a call-by-need evaluation strategy, we assume that they are
applied once they are provided with an argument.

Definition 3.3.5 (Update Prefix for Extraction). Let t,11,1], 12,1, be names and P is an adapt-
able process. We write extrp((t, P,l1,1],12,15)) to stand for the following (subjective) update
prefix:

extrp((t, P, 11,1, 12, 1)) = t{(Y).t[Y] | ch(t,Y) | outp®(t, P, 11,11, 12, l5,n1(l1,Y),n1(l2,Y))))
(3.37)

Now, we may formally define translation (- ,:

Definition 3.3.6 (Translating Cp into S). Let p be a path. We define the translation of com-
pensable processes with preserving semantics into (subjective) adaptable processes as a tuple

((]-[)p,goq,l)p) where:
(a) The renaming policy ¢, : Ne = P(N,) is defined with

{1‘} if[EENs
. _ 3.38
SOGDP(:E) {{-%hxajxarx}u{ppvﬁp:xefo} if € Ny ()

(b) The translation (), : Cp — S is as in Figure 3.14 and as a homomorphism for other
operators.

As in previous presented encodings, here again the main challenge in the translation is in
representing transactions and protected blocks as adaptable processes. More in details:

e The translation of a protected block found at path p will be enclosed in the location p,.

e In the translation of t[P,Q] we represent processes P and @ independently, using processes in
separate locations. More in details:

- As in the encoding [-], (cf. Figure 3.3), the structure of a transaction and the number of
its top-level processes dynamically changes if there is a failure signal.

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 78

- Whenever we need to extract processes located at p;, and 3;, we will first substitute Y in
process outp® (cf. (3.36)) by the content of the location ¢ and count the current number of
locations p;, and Sy p.

- The translation of the transaction body P with location ¢ is nested in location f3,, and the
compensation activity @) is encoded as a protected block and nested in location p,,.

- If P contains n top-level protected blocks and m top-level transaction scopes (with n,m > 0)
when the failure signal ¢ is activated, after synchronizations on ¢t and updates, the translation
will release n 4+ m successive update prefixes by using auxiliary processes outp®.

- Indeed, thanks to processes outp®, n protected blocks at location p;, and m transaction
scopes at location f;, will be moved to their parent locations (p, and f,, respectively).
Subsequently, there is a synchronization on location ¢ that discards it with its content.

- After that, there are synchronizations on names j, 8,, ¢, and h;. If transaction ¢ had nested
transactions and location name t is lost, we have to take the name ¢ out also from all the
paths that contained it. To this end we use function (P, s) (cf. Definition 3.3.2).

e With the above intuitions, translations for the remaining constructs should be self-explanatory.

The next subsection provides correctness of the translation presented in Definition 3.3.6 and
includes proofs of structural criteria and operational correspondence.

3.3.3 Translation Correctness

In this section, we address the two criteria in Definition 2.3.5: name invariance and operational
correspondence. We will investigate the other criteria as a part of future work. Our results apply
for well-formed processes as in Definition 2.2.4.

3.3.3.1 Semantic Criteria - Name invariance

We now consider name invariance. For name invariance we use Remark 3.2.3. In the following
theorem we state name invariance, by relying on the renaming policy in Definition 3.3.6 (a).

Theorem 3.3.3 (Name invariance for (-),). For every well-formed compensable process P and
valid substitution o : N, — N, there is a ¢’ : N, — N, such that:

(i) for every z € N, : Ploy) (o(z))={d'(y):y € go(].Dp(x)}, and

(i) (o(P)eo(p) = o' ((PDy)-

Proof. We define the substitution ¢’ as follows:

ox) ifz=aorz=t

how itz =h

" if x =y,

o' (z) = { T70 . (3.39)
To@ry ifx=rm

Po(py o =pp
ﬁo(p) if x = ,Bp

Now we provide proofs for (i) and (ii):

(i) Since N, = N; U N, we consider two sub-cases for x:

79 3.3. Translating Cp into S

e if x € N, then it follows that:

{o'(y) 1y € ¢, (@)} ={0'(y) 1y € {a}} = {0"(2)} = {o(2)} = ¢y, (0(2)).
e if x € N; then:
- by Definition 3.3.6:

10,0 (0(2)) = L0(0), Bty o) Totey} U Doty Bty + () € 00}
- by definition of o
{0(2), ho(), Jot): o)} YU {Po(p): Ba(p) - o(x) € 0(p)}

={0'(2),0'(ha), 0 (JI), "(re)} U {U/(pp>v o'(Bp) : o'(z) € o' (p)}
={0'(y) 1y €{x, ha, jus 72}y U{0'(y) sy € {pp. By 1 @ € p}}
={0'(y) 1y € oy, (x)}
(ii) The proof proceeds by structural induction on P. In the following, given a name x, a path
p, and process P, we write ox, op, and o P to stand for o(x), o(p), and o(P), respectively.

Base case: The statement holds for P = 0: ((0)),, = ¢’((0),) < 0 =0.

Inductive step: There are six cases, but we content ourselves by showing the case for
transaction scope. Proof for all other cases are similar as in the proof of Theorem 3.2.4.

e Assume that P = t[P;,Q1]. We first apply the substitution o on process P:
(o(t1P1,@1)ep = (0t[o(P),0(Q1)])ay
By expanding the definition of the translation in Definition 3.3.6, we have:
(o (t[P1,@1 oy = fiop [0t ({7 (Pt
| ot.(extrp((ot, (0(P1))ot.ops Potops Pop: Bot.op: Bop)
| Popllo(QUIN) | | ot-Bopl{(X). X)) Tt oot
By induction hypothesis it follows:
[0ty = Bop| oo’ ((Pi)ep)]
| ot.(extrp((at, o’ ((Pi)tp) s Pot.ops Pops Bot.ops Bop)) (3.40)
| Pople” (1QuN)] | dor-Bop((X). X)) Tt Fion

On the other side, when we apply definition of substitution ¢’ on (P), the following
holds:

o ((t[P1,Q1]Dp) = o' (B, [tNPDt,p] | . (extrp((t, (P)t.p, Pr.o Pos Bro Bp)) | pp[dQl)g])]
| Ge-Bp((X). X)) 75)
= Bty 1[0 ((PDe)]
| o't.(extrp((a't, o' ((P)i,p)s Portops Pops Bottio ps Botp))

| PorolIQ])] 1 o Bor (X)X T B
(3.41)

Given that it is valid o/(t) = o(t) (cf. (3.39)), it is easy to conclude that (3.40) is equal
o (3.41).

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 80

3.3.3.2 Semantic Criteria - Operational Correspondence

We now shall prove that the translation (-), satisfies operational correspondence (completeness
and soundness). We now state our operational correspondence result:

Theorem 3.3.4 (Operational Correspondence for (-)c). Let P be a well-formed process in Cp.
(1) If P — P’ then (P). —F* (P’). where for

a) P=FE[C[a.P\] | D]a.P,]] and P’ = E[C[P1] | D[P2]] it follows k = 1,

b) P = E[C[t[P1,Q]] | D[t.P2]] and P" = E[Clextrp(Py) | (Q)] | D[P%]] it follows k = 7 +
pbp(P1) + tsp(F1),

¢) P = Clu[F[u.P1],Q]] and P' = Clextrp(F[P1]) | (Q)] it follows k = 7 + pby(F[P1]) +
tsp(F[P1]),

for some contexts C[e], D[e], E[e], F'[®] processes P;,Q, P, and names ¢, u.

(2) If (P): —™ R with n > 0 then there is P’ such that P —* P’ and R —* (P’)..

In Theorem 3.3.4, Case (1) concerns completeness while Case (2) describes soundness.
Case (1)(a) concerns usual synchronizations, which are translated by (-),. Cases (1)-(b) and
(c) concern synchronizations due to compensation signals; here the analysis distinguishes four
cases, as the failure signal can be external or internal (cf. (2.1), Page 14) and the transaction can
be replicated or not. In all cases, the number of reduction steps required to mimic the source
transition depends on the number of protected blocks and nested transactions of the transaction
being canceled.

Before we present the proof with all details, we first present all ingredients of the proof for
Theorem 3.3.4.

3.3.3.2.1 Auxiliary Results for Completeness and Soundness.

Given a transaction t[P,Q)], the following lemma ensures that the number of protected blocks
and transactions in the default activity P is equal to the number of locations p;, and 3;, in
(P)¢,p, respectively.

Lemma 3.3.5. Let ¢t[P,Q] and p be a well-formed compensable process and an arbitrary path,
respectively. Then it holds that pby(P) = nl(pyp, (P)¢,p) and tsp(P) = nl(B,p, (P)i,p)-

Proof. The proof is by induction on the structure of P. In what follows, we illustrate two cases,
P = (Py) and P = s[P1,Q1]. The proofs for the other cases proceed similarly as in the proof of
Lemma 3.2.5.

e Case P = (P1): By Definition 3.2.1, Definition 3.2.5, Definition 3.4.5 and Definition 3.3.6
we have:

81(pt,ps ((P))ep) = 81 (01, P1p | (P1)e|) = 1 = po((P2)), and
81(Brp ((P)1p) = 11 (B prp [(P1):]) = 0 = top((P1)).
e P = s[P;,Q1]: By Definition 3.3.6,
[51P1,Qu)p =81 [3[1PDstp] | 5. (XETD(5, (Pt ps Dot Prgs Bt Bp) | Prpl(@aD:))
| Js-Br,p{(X)-X))-Ts.Ps.

Noticing that nl(pyp, (Pi)s:,,) = 0, by application of Definition 3.2.1 and Definition 3.2.5,
we get n1(pyp, (s[P1,Q1])e,p) = 0 = pbp(s[P1,Q1]).

Also, n1(S: p, (Pi)st,p) = 0, by application of Definition 3.2.1 and Definition 3.4.5, we get
n1(Bp, (s[P1,Q1])t,p) = 1 = tsp(s[P1,Q1]).

81 3.3. Translating Cp into S

To simplify proofs of correctness, we start by defining a mapping of evaluation contexts for
compensable (cf. Definition 2.2.3) into evaluation contexts for adaptable processes (cf. Defini-
tion 2.2.6). For this mapping we rely directly on translation Cp into S (cf. Definition 3.3.6).

Definition 3.3.7. Let p be a path. We define the following mapping (), from evaluation
contexts of compensable processes into evaluation contexts of adaptable processes:

t[Cle],Qlp = By [t[GCMDt,p} | t. (extrp((t, (Clollt,p, Pr.ps Py Br.ps Bo)) | Ppl(Q)e])
')

The following definition formalizes all possible forms for the process It(p) ((P)¢,p, (Q)e). Recall
that function nl(l, P), defined in Definition 3.2.1 (1), returns the number of locations [in process
P.

Definition 3.3.8. Let P,Q be well-formed compensable processes. Given a name ¢, a path p,
and p > 1, we define the intermediate processes It(p)((]Pl)np, (Q)e) (cf. Table 3.1) depending on
n =nl(ptp, (Pt,p) and m =n1(Byp, (Pe,p):

1. if n=0and m =0 then p € {1,...,6};

2. if n > 0 and m = 0 then then (P)¢, = [] pepl(Pl)e] | Sand p € {1,...,n+6};
k=1
3. if n =0and m > 0 then (P, = [[Bep[(Pi)e] | S and p € {1,...,m +6};
i=1

n m
4. otherwise, if n > 0 and m > 0 then (P)s, = [] peol(Pp)e] | T Bepl(Pr)e] | S and p €
k=1 i=1
{1,...,n+m+6}.

Table 3.1: Process It(p)((]P[)mp,QQI)E) with p > 1. We use abbreviation outp® for process
Outps (t7 (]PDt,pa pt,pv pp7 Bt,pv /pr nl(pt,pa Y)7 nl(/Bt,/h Y))

») 17 (P (Q)-) for mym =0

M B [t0P)es] | (Y)Y) h(t,Y) | (H)-Fere) | mol(QDe]
| Ge-8o(((X)-X) 75 R

@) By [#10PDeo] 1 ECH)-Fere | polUQD] 1 5e-Bo0((X).X) TR

3) By |Feere | o lIQ] 1 508, (X)X) T

() Bo[re 1 pol(Q)]] 1 85 ((3). X) TP

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 82

(5) o | pol(Qe] | 7
(6) pl(Q):) | 7
(v) 17 ((PYep: (Q):) for n > 0,m =0
M) B[t1UPDe] 14G(V) YT | ch(t,Y) | ouep®) | p,[(Q)-]]
| i Bol((X)X) e
2+3) 80 107] 1ol X (T mplXi) |18 i)
| T1Ro[0P)) Fere) | pplIQA] 18, ((X) X)) 75 P
0<j<n-1
(2+n) 5o [H10Pes] | TT polUPD) | 45 Fore |)]
| i Bol((X) X T2 R
(3+n) o[TT pplUPD) | Tore | mplUQ] | By((2X) X 7R
(4+n) o[TLo P e ppl0QDI] 1 8,(((X)-) 5.
(5+n) rel TLnplPD) | Q)] |75k
(6+n) 11021, [02):) | T
() It@)(qzaptp (@) for n = 0,m > 0 and
Nesteds = T AP | duc-55(((X)- X)) 7o
M) Bp[1IPDe,] | 44(V)AIYT | ch(t, Y) | outp®) | pl(Q)-]
| i Bol((X)X) e
(2+35) 8o [t 0P | Bep((Var- - ¥oro): (e T (BolECYi 1)
e B XD 7o) | TT (B l0PDD | ey 850X 75)

| 40)-3)) | pol(QD]] | (X)X 7

0<s<m-1

(2+m) B | t[P")e] 1 44E) Jt | 7e-(Nesteds) | pplQD]] | e-Bp((20)- X)) T
(34 m) B[t | re-(Westeds) | polQD]] 118y ((X).X) TR
(4+m) B, ry.(Nested,) | pp[chpa]} | Bo(((X). XYy

(5+m) 1. (Netseds) | pp[(Q)e] | T2l

83 3.3. Translating Cp into S

(6+m) Netsed: | p,[(Q)] | 7
(») 17 ((PYe,ps (Q):) for n,m > 0
(1) B [PDe] | (Y)Y | h(t,Y) | outp® | p,[(Q)-])]
|Gt Bp((X)-) 75 R
@+i+9) | BftPI X X B Vo) (T ol

J

| T lIP:] e ﬁs (Bol€(YVir)] | dua-Bp (X)) i o)

=1

| TT (BolUPLE] | oy-Bp () X 7)) 1 GED-T5) D)

k=1
| PolQ)]} | iBp (X)) 75 R
0<j<n-1

0<s<m-1

@tntm) | B [HPY] LG T | TTpUP)e] | i (Nesteds) | (1)
| -8y (X)X) e

(3+n +m) B[| H Pol(P!)] | ri.(Nesteds) | p,[(Q)]] | ju-B,((X).X) 75
(4+n +m) ﬂp[LT pol(P)e] | re-(estede) | po[IQD:I] | B, (((X) X)) 7o
(5+n+m) n pol(P)e] | e (Nesteds) | ppl(Q):] | 77

(6+n+m) prm /)] | Nested. | p,[(Q)e] | Fu

Definition 3.3.9. Let P,Q be well-formed compensable processes. Given a name w, paths
p,p, and ¢ > 1, we define the intermediate processes O&q)(QF[)p[hu.QP[)px], (Q)e) (cf. Table 3.2)
depending on m = nl(py,p, (F)p[hu-(P) »]) and n = nl(Bu,p, (F)plhu-(P)y]):

1. if n =0 and m = 0 then g € {1,..., 7}

2. if n > 0,m = 0 then (F),[hu.(P)y] = [1 pupl(PL)e] | S we have g € {1,..., 7+ n};
k=1
3. if n =0,m > 0 then (F),[hu.(P)y] = IT Bupl(Pr)e] | S we have ¢ € {1,.. ., 7+ m};
i=1
4. otherwise, if n > 0 and m > 0 then (F)),[hu-(P)y] = [T pupl{Pi)e] | T Bupl(Pe] | S we
k=1 i=1

have ¢ € {1,..., 7T+ n+m}.

Table 3.2: Process Oq(ﬂ)((]}fﬁ[),)[hu.(]Pl)p/7 (Q)<]) with ¢ > 1. We use abbreviation outp® for process
outp® (u, (]FDp[hu'(]PDp’]apu,papm Bu,pa ﬁpa nl(pu,m Y), nl(ﬂu,pa Y))

(q) O ((F) plhu- (P, (Q)e]) for n = m =0

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 84

M B (Dol APY] 1w)ulY] | e, Y) | uh) Fura)
| DolIQ)I] | By (X)X)P
@ B [ulUEDp APV] | o | () Tur | 2o (]
| uBp((X)-X) TR
3) B | Fura | BolQD] 1 e Bp (X)X TR
@) By | 7 | o lIQVI] | B0) T
(5) P | | B[(Q)] | T
(6) hu | BolQ)] | Fou
(7) pl(Q)]
(q) O ((F)olhu-(P)yr, (Q)e]) for n > 0,m =0
M B [u[(FDpla-(PY] | w(Y)ulY] | ch(u,Y) | outp®))
AL, D]} | u-Bp (X)X T o
(2+7) ﬁp[[(F) Do 1] | B | Pupl(Xis -y Xnj)-
(iglpp[11 prm D) ul) Fura) | polQD]
| u-Bp((X).X) T
0<j<n-1
(2+n) 85 [l 0PD b APD 1) | B () T | TT polOP2DE] | l020]
| uBp((X)-X) T
(3+mn) o[1 T | TLpplUP] 1 BUQ] | By ((3)-X) 7
(4+n) o[t 1 | TL pol(PE] | o l0QUI] 1 By (X)X 7
(5+n) v | KT o l0P:] | ppllQ)] | 7
(6+n) hul TL pol(PDE] |, 0QDe] | T
(7+n) IPAARIEACe
(9) oé‘”(@Fop[h%QPDp/, (Q)]) for n = 0,m > 0 and
Nesteds = [T Apl0ADe] | Jus 5p(((X) X)) T T,
M B [u[LBVl (PDy]] | uf(¥)ulY] | ch(u,Y) | outp?)

85

3.3. Translating Cp into S

| BolIQ)] | By (). X)P

(2+s)

B [[PVl 0PV] | s | BV Vi),
(- CTL (Bl) e 8,400 XD 7B} | T (300200

k=1
| B4 (0 X T o)) | al(£)-3))

| PolIQV]] 1 By ()X)PP

(2+m) By [[0FD [(P 1] | P | () T | - (Wested) | pp[(Q)-]]
| B () X)) T
(3+m) B [1 T | 7 (Nested) | ppl0QDe]| | By (X)X .7 P
(44m) By [| 7. (esteds) | p,1Q)e] | | B,((X). X)) P
(5+m) hu | Tu.(Nestedy) | po[(Q)e] | Tu-hu
(6+m) hu | Nested, | p,[(Q)]| |
(7+m) Nested, | p,[(Q).]
(9) OP((F)plha- (P, (Q)]) for n,m >0
(1) By [w(FDp [(PYy]] | w{(Y)-ulY] | ch(u,Y) | outp®)
| PlIQV:1] | By (). X)) P
(+s+2) B [ulUFD ol (P 1] | P | g (X X) Bup (Vi Yo,
(T w1 T oaltP) 1T (e 0)
s B 00) X F) | TT (Bl | B (500 T)
| wl£)-7) D) | 2, l1Q)- J} | u-Bp (X)) T
0<j<m-1
0<s<n—-1
(2+n+m) B [UFDp e (P') 1] | P | () | n Pol(P)e] | o (Nested,)
| BolIQ)] | By (). X)P
(3+n+m) B[| 7u | H PolPI)e] | 7o (Nesteds) | pl(Q)-]]
| B (X)X) T
(4-+n+m) o[t | TLnplUPD | (Hesteds) | mplIQDI] | 8,(((X)-) 7
(5+n+m) | TTpl0Pe] | - (Nesteds) | [0Q)] |

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 86

(6+n+m) | TT pol(Pe] | Nested | Q)] |
@nsm) | 0P | vesteds | ()]

For the proof of operational correspondence we also need the following statement:

Lemma 3.3.6. If P and @ are well-formed compensable processes such that P = () then

(P)p = (QDp-
Proof. The proof is by induction on the derivation P =), and perform the case analysis on the
last rule applied. In all cases the proof follows directly. |

3.3.3.2.2 Proof of Operational Correspondence — Theorem 3.3.4

Before we provide the proof of operational correspondence (cf. Theorem 3.3.4) in detail in
the following we present the roadmap of the proof. The proof follows the idea that is presented
in Paragraph 3.2.3.2.5 with modified: definitions, lemmas, and theorems for translation (-),.

3.3.3.2.3 A Roadmap for the Proofs

Part (1) of Theorem 3.3.4 is completeness, i.e.,
If P — P’ then (P). —" (P').

where k > 1 is given precisely by our statement. The proof is by induction on the derivation of
P — P’ and uses:

e Proposition 2.2.3 (Page 18) for determining three base cases.
e Definition 3.2.3 (Page 77), i.e., the definition of translation.

e Lemma 3.2.9 (Page 47), which maps evaluation contexts in Cp into evaluation contexts of
S. This lemma completely applies for mapping evaluation contexts in Cp into evaluation
contexts of S (cf. Definition 3.3.7).

e Lemma 3.2.14 (Page 51), which concerns function ch(-,-). It holds also for the (:),, and
the proof proceeds in the same direction.

e Definition 3.3.8 and Definition 3.3.9 (Page 81 and Page 83, respectively). These definitions
are significant because they formalize the intermediate processes which appear during
derivation.

Part (2) of Theorem 3.3.4 is soundness, i.e.,
If (P): —™ R then there is P’ such that P —* P’ and R —* (P’).

Proof is by induction on n, i.e., the length of the reduction (P), —™ R. We rely on several
auxiliary results:

e Lemma 3.2.19 (Page 57) holds also for translation (-),. We emphasize that for translation
Cp into S this lemma uses Definition 3.3.8 and Definition 3.3.9. To remind the reader:
Lemma 3.2.19 is about the shape of process R, and also ensures that there is a process P’
with an appropriate shape. The proof proceeds by induction on n. We will omit the proof
since it can be derived in the same way for translation (-),.

87 3.3. Translating Cp into S

e Lemma 3.2.12 (Page 49) holds also for (-),. For the proof we use Lemma 3.2.10 and
Corollary 3.2.11 (Page 48) that are adapted to (P),. Also, the proof uses Definition 3.3.6.

e The statement of Lemma 3.2.16 (Page 51) and Lemma 3.2.17 (Page 56) hold also for ().
These lemmas use the definition of intermediate processes given by Definition 3.3.8 and
Definition 3.3.9, respectively. The proofs proceed by case analysis for the step R — R’
and uses Lemma 3.2.15.

e Lemma 3.2.20 (Page 62) also holds also for (),, and use Definition 3.3.8 and Defini-
tion 3.3.9.

Using these guidelines as a proof sketch, we now repeat Theorem 3.3.4 (Page 80) and present
its proof in full detail:

Theorem 3.3.4 (Operational Correspondence for (-)c). Let P be a well-formed process in Cp.
(1) If P — P’ then (P). —"* (P’). where for

a) P=E[C[a.P)] | D][a.P]] and P’ = E[C|P1] | D[P]] it follows k = 1,

b) P = E[C[t|P1,Q]] | D[t.P2]] and P' = E[Clextrp(Py) | (Q)] | D[P%]] it follows k = 7 +
pbp(P1) + tsp(P1),

c) P = Clu[F[u.P],Q]] and P’ = Clextrp(F[Py]) | (Q)] it follows k = 7 + pbp(F[P1]) +
tsp(F[P1]),

for some contexts Cle], D[e], E[e], F'[e] processes P;,Q, P, and names t, u.
(2) If (P). —™ R with n > 0 then there is P’ such that P —* P’ and R —* (P’)..
Proof. We consider completeness and soundness (Parts (1) and (2)) separately.

(1) Part (1) — Completeness: The proof proceeds by induction on the derivation of P — P’.
We consider three base cases, corresponding to cases a), b) and c¢) of Proposition 2.2.3
(Page 18). In all cases, we use Lemma 3.3.6, Definition 3.3.6, and Lemma 3.2.9 (Page 47)
which holds for (-,

a) This case concerns an input-output synchronization on a name a € N;. Therefore, we
observe that P = E[C[a.P\] | D[a.P]] and P’ = E[C[P] | D[P2]], and we have the
following derivation:

s[(]CI)p a.(| (D)yla- 0P2|)p /]
— (E):[(C),] (l | (D) [4P2) 1] (342
= (E):[(C[P] | D Pz]l)p]
= C[Pl] | D[P]])e

Therefore, the thesis holds with £ = 1.

b) This case concerns a synchronization due to an external error notification for a transaction
scope. We consider P = E[C[t[P1,Q]] | D[t.P]], with n = pby(P;) and m = tsp(Py),
and P’ = E[Clextrp(P1) | (Q)] | D[P2]]. We have the following derivation:

(P)e = (E[C[t[P1,Q]] | DIt Po]])e

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 88

= (B)- |(ClHPLQID, | (DE-P2I),

— (ED[(C P ,@D) | (DD, [P,

= (ED[(CDs By [t[1PD1] | t-(extxp(t, (P Dyt s B B7) | 2 [(QD])]
| Gu-B (X)X Fe-ha] | (D)ofE-hi (P2,]

—%qmgwmwkwwwwmm|ummw&wﬂ
(B (O[O (WP (@] | (DD, [P
— (B):[(C) [lextra(PL) | (@] 1 (D[P
= (B) |(Clextre(P1) | (@) | (DIP]), |

q
q

The order/nature of these reduction steps is as follows:

i) The first synchronization concerns ¢ and t.
ii) The following n + m + 5 synchronizations can be explained as follows:

- First, we have a process relocation through the update of location ¢, as enforced
by the definition of process extrp. Process It(l)((]Pll)t’p/, (Q)e) is as in Defini-
tion 3.3.8 (cf. Table 3.1); there are four possibilities for reduction, depending
on n and m.

- Subsequently, thanks to process

outp ((]PIDt o Pt Pp! 7615 N 7Bp' nl(pt,p'7 (]Pll)t,p’>7 nl(ﬁt,p’a (lpll)t,p’))

we have n +m reduction steps that relocate processes on location p; ,» and 3;
to locations p,y and 3; ,, respectively.

- Next reduction corresponds to the erasure of the location ¢ with all its contents,
obtained by updating prefix ¢((f)).

- The following reduction step is synchronization on j; and j;.
- Next, it follows to delete the location name 3, [.] with 8, ((X). X))

- The final reduction corresponds to the synchronization on names r; and 7.

iii) Finally, we have a synchronization between h; and hy, which serves to signal that all
synchronizations related to location ¢ have been completed.

Therefore, we can conclude that (P). —* (P’). for k = 7 +n + m.

c¢) This case concerns a synchronization due to an internal error notification (i.e., the error
comes from the default activity of transaction). Here we have P = C[u[F[u.P;],Q]], with
n = pbp(F[Py]) and m = tsp(F[P1]), and P’ = Clextrp(F[P1]) | (Q)]. Then we have the
following derivation:

(P)e = (C[u[F[PL,Q])
C’E[(]u [w.P1],Q [)]
= () [y [u[(F [Pr))ug] | -(exexp (. pus Py, Bt B | 2oIIQ)D)]
|h@w<> » wh
C)e |OL (FDuplhu-(PiDy] (QD)]

89 3.3. Translating Cp into S

Process O ((F)u plhu-(Pi) /], (Q)e), where ¢ € {1,...,7 4+ n + m}, is as in Defini-
tion 3.3.9 (cf. Table 3.2). In this case, the role of function ch(w,-) is central: indeed,
ch(w, (F)u,p[hu-(P1),]) provides the input h, which is necessary to achieve operational
correspondence.

The order/nature/number of reduction steps can be explained as in Case b) above. We
can then conclude that (P). —* (P'). for k =7 +n +m.

(2) Part (2) — Soundness: The proof of soundness follows the explanation presented in
Roadmap 3.3.3.2.3 and the similar derivation that that we present in the proof of soundness
for translation Cp into S (cf. Theorem 3.2.7).

Given (P). —" R, by Lemma 3.2.19 which holds also for ()., process R has the following

form:
z Sw lk
R= H (Ew)e [H(]Gk,w[)pw [H(]Ci,k,wl)p;,w [I?f(zpl)cw]
w=1 k=1 i=1
Tk mg
| TL0Dswabop ey St] | TTE ek, [0S, 1)
j=1 c=1
Also by Lemma 3.2.19, we have P —* P” where
Tk
H E, { H G W H C; k w ti ke w Ptl & waQtz k w | H Dj,k,w [mstjkw]
1 i=1
w= e J
| H Lc,k,w [uc,k,w [Fc,k,w[uc,k,w-Puc,k,w}aQuC’kyw]H y
c=1

where by successive application of completeness it follows that (P). —* (P”)-.
Lemma 3.2.20 also hols for (-),. Therefore, by I successive applications of (3.28) and my

successive applications of (3.29) on process R, it follows that:

Uk

n—]t [lf[qu,prw L0y, Llextro(PL, Dy 1 (@,]
=1

=1

| H k) o (St) o H[[Ck‘w]]p [((extre (ckw[Puc,k,w])ng’w
| o<Q;ck,w>ngw]]}

Tk

H o8 [Hakw Hcm lextro(P,) 1@,)] | TT Dikao[Sty]
w=1

J=1

T Ze [t (ol Pacy)| Q.. e = (P

c=1

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 90

Therefore, it follows that:

Tk
H E [Hka HCzkw extrp Pt kw) | <Q21kw>] I HDj,k,w [St]-,hw]
w=1

j=1
mg

| T e [extro (Pl Pucs)) 1 (@, M.
c=1

Also, by Proposition 2.2.3, i.e., by I successive applications of case b) and and my, successive
applications of case ¢) on process P”| it follows that: P” —* P’

By successive application of (1) — Completeness on the derivation P” —* P’ it follows
that (P")e —* (P’)e.

The following example illustrates the translation.

Example 3.3.7. Let P be a well-formed compensable process such that P =
s[t[v[b,0],c] | (d),0] | £.5. By the LTS (cf. Figure 2.3), we have

P —p s[v[b,0] | {¢) | (d),0] | 5 = v[b,0] | (c) | (d).

We have that pbp(P) = 0 and tsp(P) = 1. Let P, = t[v[b,0],c]: by Figure 3.4 it follows that
pbp(P1) = 0; by Figure 3.13 we have tsp(P;) = 1. We have a sequential error notification such
that activation starts from nested transactions on name t. By expanding Definition 3.3.6, we
have the following translation and derivation:

(P). = Bes[8, |t |Brs[]b] | v (extxp0, Butss Putss Pross Bus: Bes)) |
| o (X)X) T |
| £ (extrp((t, (0[b,0])1.0,pt,s, s, Brsr Bs) | s [c]) } | G840 X) e | p[d]|

= B[] Bs [t |Brs 0[] 1 0- (ex52D(w, (Bhurtss Pt Prss Bt Bes))]
| o Brs (X)X)P | | (EG(V) Y] | ch(t, Y)
| 0utp® (£, (0[6:0]D 1.0 Prss s Bt Bos 0L (pr,s, ¥, 11 (B Y))) | 25 [e])]
| G5 () X 75 | pod]
| 5. (extrp((s, (Pt | (d)es psspes Bos BN) | | G- B(X)-X0) 7R | Tohecsh
—* B [s[B [0[0] 1v- (extxp((v, Bos, pusspes Buss B) |
| 3B ((X) X)) 75 | pife] | pild]
|5 (sQ(V)-LYT | h(s, ¥) | outp*(s, (Pr | (), by pes B B L (pss ¥), 01 (B0, Y)))) |
|G Bo((X).) 7 | 5.
—% B [o[b] 0. (extep(, Bos P pes Bus D) | |- B=(X). X 70T | pefe] | pe[d]
= (v[5,0] | {¢) | (d))e

Therefore, the number of reduction steps is k = 17. Indeed, we have 8 reduction steps for
location t and 9 reduction steps and for location s:

91 3.3. Translating Cp into S

i) the first step is a synchronization on name t;

ii) now the process extrp((t, (b)¢,s, Dt.s, Pss Bt,s, Bs)) is released and the second step is synchro-
nization on update prefix and location, respectively:

t<<(Y)t[Y] | Ch(ta Y) | OU-tPS (t) (]U[b’o][)t,sapt,sap.s’ Bt,sa BS7 nl(?t,s: Y)) nl(/Bt,sv Y))>>)
(B [0[0] 10 (extxDU0, Wutos Pt Pross Buss Bros)) | 1 v Brs (X)X
iii) as a result, process outp®(t, v, pt.s, Ps, Br.s, Bs, 0, 1) triggers the third step: the synchroniza-
tion of location B 4[...] with update prefixe By s((X1).8s[X1] | t{T)-71));

iv) the fourth step is the synchronization between update prefix ¢((f)) and location ¢[...], where
the update deletes the location and its content (cf. (3.1));

v) the fifth step is a synchronization on name jy;

vi) the sixth step is a synchronization between [4{((X).X)) and 55[. . .}, which deletes the

location [s;
vii) the seventh step is a synchronization on name ry;
viii) the eighth step is a synchronization on h;, which activates visit to location on name s.

At this point, we have the same reduction steps but for location s. We have one more reduction
step, though, since in process outp®(s,t, ps, pe, Bs, Be, 1, 1) we have a location pg|...] that has to
be relocated to pc[...]. Consequently, we have 9 reduction steps for handling the location on
name s.

We illustrate the encoding also on the Hotel booking scenario discussed earlier (cf. Exam-
ple 2.2.1, Page 15).

Example 3.3.8. Recall the hotel booking scenario where the client wants to cancel a reservation
after booking and paying. In compensable processes for preserving semantics we have that:

Reservation —p t[pay.invoice,re fund) | pay.(invoice + t.re fund)

p tlinvoice,refund) | invoice + t.refund

T

—p (refund) | refund
—p (0).

We apply the translation (cf. Definition 3.3.6) on process Reservation: Reservation:
(Reservation)). = Be {t [book.pay.invoice]

| . (extrp((t, book.pay.invoice, pi, pe, Bt, Be)) | pg[refund]) }

| ji-Be((X).X).77.hy | book.pay.t.hy.refund

— B t[pay.im;oice] | t. (extrp((t,pay.invoice,pt,ps,,Bt,ﬁg» | e [refund])}

| 4.8 ((X). X)) . 7.y | pag.L.he.refund
— B t[invoice] | . (extrp((t, invoice, pt, pe, Bt, Be) |p5[refund})}
| e (X)X) 5T | Ehy.re fund
— Be|t[invoice] | t{(Y).t[Y] | ch(t,Y)

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 92

| outp®(t, book.pay.invoice. pi, pe, B, B, L (p, V), 018y, Y))) | pefre fund)|
| je-B(X).X)T T | he.re fund
—> B [t[invoice] | t(t) Fore | polrefund)] | jeBo(((X).X) oy | hure fund
— B [Jere | pelrefund]] | je.8:((X).X). 7R | he.re fund

—s B [r | pelrefund)| | B-((X).X) 75k | hu.re fund
— vy | pelrefund) | 7ok | hyrefund

— pelrefund] | hy | herefund

— pe[refund] | refund

— p:[0]

Therefore, (Reservation). —' p.[0]. There are three reduction steps as a result of synchro-
nizations on names book, pay, and t. Now, the structure of the default activity of transaction
is changed and we have one reduction step for updating its current content. After that, there
are six additional reduction steps: one for erasing location ¢ and its content, a synchronization

between j; with j;, an update on location J3. [ﬁ.rt |p5[refund]} with B:((X).X)), and three
reduction steps that result from synchronizations on names ry, by, and refund.

3.4 Translating C, into S

In this section we concentrate on a specific source calculus, namely the calculus in [29] with
static recovery and aborting semantics. Before giving a formal presentation of the encoding C,
into S we introduce some useful conventions and intuitions.

3.4.0.1 The Translation, Informally

The translation Cy into S, denoted (-}, relies on the key ideas of encoding Cp into S, [],- The
most interesting processes for translation are protected block and transaction.
The translation of a protected block (P) found at path p is defined as before:

(P)), = po[{P).]-

To translate a transaction t[P,Q] we use the base sets in Definition 3.1.1. Also, we use auxiliary
process outd® (cf. (3.2)) that is defined for encoding Cp into S. As expected, this translation
also requires the introduction of some additional auxiliary processes.

The aborting semantics keeps not only top-level protected blocks of a transaction, but also
protected blocks from nested transactions (cf. Figure 2.2). To handle this, we define the ac-
tivation prefizes of a process, which captures the hierarchical structure of its nested locations.
Nested locations arise as a result of a translated transaction with its nested transactions. The
activation prefixes contain the names of the nested locations. These names originate exclusively
from its corresponding transaction name and the names of its nested transactions (i.e., locations
on names p, are not included in the activation prefixes).

Definition 3.4.1 (Activation Prefixes). Given a located process [[P], we denote by St(I[P]) the
containment structure of process [[P]: the labeled tree (with root [) in which nodes are labeled
with names from N; such that sub-trees capture nested locations. The activation prefizes for
[[P], denoted T;(P), are obtained by a post-order search in St(I[P]) in which the visit to a node
labeled [; adds prefixes 77, .k, .

93 3.4. Translating Cy into S

Figure 3.15: Tree for process P in Example 3.4.1

Example 3.4.1. Given Z[P} with P = ll[lg[pp[ml]] | mg] | lg[m3 | l4[m4] | l5[m5]], by Defini-
tion 3.4.1 we use post-order search, therefore the root node [is visited last. First, we traverse
the left subtree, then the right subtree, and finally the root node (cf. Figure 3.15). In that
manner we have the following activation prefixes:

W(P) = m'klz .m.k‘ll .m.kjh 'ﬁ'kls .@.k‘l?’.’ﬁ.kl.
Once again, it should note that locations on names p, are not included in the activation prefixes.
We assume that 7;(-) operates only over closed processes and, in the style of a call-by-need
evaluation strategy, we assume that they are applied once they are provided with an argument.
3.4.1 The Translation, Formally

As we discussed before, a failure signal extracts all nested protected blocks and erases nested
locations; our translation does the same with the corresponding located processes and nested
locations. We define the following auxiliary process, where we use functions nl(/,-) and ch(t,-)
defined in Definition 3.2.1. Note that, we assume that functions nl(-,-) and ch(-,) operate only
over closed processes and, in the style of a call-by-need evaluation strategy, we assume that they
are applied once they are provided with an argument.

Definition 3.4.2 (Update Prefix for Extraction). Let t,l;, and la be names and outd®(-) is
defined with (3.2). We write extra((t, [, l2)) to stand for the following update prefix:

extra((t,ly,lo)) = t{(Y).t[Y] | ch(t,Y) | outd®(I1,l2,n1(1,Y), t{(1)).¢))). (3.43)
Now we can present the translation (-) formally. It is defined as follows:

Definition 3.4.3 (Translation C into S). Let p be a path. We define the translation of com-
pensable processes with aborting semantics into adaptable processes as a tuple ({-) o gowp) where:

(a) The renaming policy @), Nz = P(N,) is defined with

{z} if x € N

(), (T) = _
{@, hg kg, 2} U{pp iz € p} iz eN;

(b) The translation Hp : Cp — S is as in Figure 3.16 and as a homomorphism for other
operators.

In the following we comment encoding more in details:

e The translation of a protected block found at path p will be enclosed in the location p,.

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 94

Figure 3.16: Translating C, into S.

e Asin the previously presented encodings, the translation of ¢[P,Q)] represent processes P and
Q@ independently by using processes in separate locations:

- The presence of a failure signal dynamically changes the structure of a located process
on transaction name (e.g. t) and the number of its nested processes. Therefore, we need
first to substitute Y in activation prefixes 7;(Y') by the content of location ¢.

- For the same reason, whenever we need to extract processes located at p;, we will
substitute Y in process outd® by the content of the location t.

- We count the current number of locations p; , using function nl(-, -) (cf. Definition 3.2.1).

- We use the reserved name h; to control the execution of failure signals.

e Translations for the remaining constructs should be self-explanatory.

3.4.2 Translation Correctness

In this subsection we give proof of correctness of the translation presented in Definition 3.4.3
which includes proofs of structural and semantic criteria.

3.4.2.1 Structural Criteria

In this subsection we prove the two criteria compositionality and name invariance.

3.4.2.1.1 Compositionality

For the proof of compositionality criterion, we need to define a context for each process
operator, which depends on free names of the subterms. This definition relies entirely on the
definition of compositional context for Cp (cf. Definition 3.2.4, Paragraph 3.2.3.1.1) by using Mp
instead of [-],. The process extra((t,ps,,p,), is defined in Definition 3.3.5 and it depends on
the function n1(l/y,Y") that dynamically counts the current number of locations I in the content
of t. Another main point is 7;(Y") that dynamically generates activation prefixes. To mediate
between translations of subterms, we define a compositional context for each process operator,
which depends on free names of the subterms:

Definition 3.4.4 (Compositional context for Cp). For all process operator from C,, instead

transaction, we define a compositional context in S as in Definition 3.2.4. For transaction
compositional context is:

Cigplo1, 92] = t[[oa]] | re. (extralt, prp, po)) | Plle2l]) | t:((V)A[Y] | Te(Y).h))

Using this definition, we may now state the following result:

95 3.4. Translating Cy into S

Theorem 3.4.2 (Compositionality for MP) Let p be an arbitrary path. For every process
operator in Cp and for all well-formed compensable processes P and @ it holds that:

(P, = Co.pllP)] (t[P,Ql), = Ci,pl(P)y s (Q)] (Ple),=cipr), Q)
la.P), = Ca[[P),] {t.P), = C[P),] {(v2)P)), = CrayllP),]
@.p), = Ca[lP) 7P}, = Cir [IP)

ol ol

Proof. Follows directly from the definition of contexts Definition 3.4.4 and from the definition
of translation MP :Cy — S (cf. Figure 3.16). Therefore, considering these definitions we have
similar derivation as the proof of Theorem 3.2.2. |

3.4.2.1.2 Name invariance

We now state name invariance, by relying on the renaming policy that is presented in
Definition 3.4.3 (a) and using Remark 3.2.3.

Theorem 3.4.3 (Name invariance for () p). For every well-formed compensable process P and
valid substitution o : N, — AN, there is a ¢’ : N, — N, such that:

(i) for every x € No: ¢y
(i) {o(P)),(,y = ' ((P),)-

Proof. We define the substitution ¢’ as follows:

(o0(z)) ={o'(y) : y € @) (2)}, and

a(p)

o) fx=aorx=t
how ifx=h
o'(x) =9 kypy ifz=k (3.44)

To@ry fx=r

Pop) T =pp
Now we provide proofs for (i) and (ii):

(i) The poof uses substitution o’ (cf. (3.44)) and has the same derivation as the proof of
Theorem 3.2.4 (i).

(ii) The proof proceeds by structural induction on P. In the following, given a name x, a path
p, and process P, we write ox, op, and o P to stand for o(x), o(p), and o(P), respectively.

Base case: The statement holds for P = 0: QJ(O)DUP =o' (40%) < 0=0.

Inductive step: There are six cases, but we content ourselves by showing the case for
transaction scope. Proof for all other cases are similar as in the proof of Theorem 3.2.4.

e Case P =t[P1,Q1]: We first apply the substitution o on process P:

(o (t[P1,@1]))y, = lotlo(P1),0(Q1)])y,-

By expanding the definition of the translation in Definition 3.4.3, we have:

qa(t[Pl’Ql])Do'p = ot [<O'P1Dgt,gp] | ror. (extral(ot, potop, Pop) | popNU(Ql)bg])

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 96

| oLt ((V).otY] | Toe(Y) oot)
By induction hypothesis it follows:

<O—<t[P1’Q1])DUp = ot [<0—/P1>a't,op} | 7ot (eXtra«Utapot,op?pap» | Pap[<Ul(Ql>Ds]) (3.45)

On the other side, when we apply definition of substitution ¢’ on (P) p the following holds:

o' ((t[P1,Q1))p) = o' (t[(P1),) | 74 (extral(t, i, pp) | DplIQ1).])
| £ ((Y)tY] | Te(Y)-he))
= o't[o'((P),)] | rort- (extral(o’t, port,orps Porp)) | PorpllQ).])
| o't.o"t(V).0"t[Y] | Tore(Y).gre))

(3.46)

Given that it is valid o/(t) = o(t) (cf. (3.44)), it is easy to conclude that (3.45) is equal
to (3.46).

3.4.2.1.3 Semantic Criteria - Operational Correspondence

The analysis of operational correspondence follows the same ideas as in the translations Cp
into S.

Precisely, for the proof of operational correspondence, we fully rely on Roadmap 3.2.3.2.5,
Paragraph 3.2.3.2.2 and Paragraph 3.2.3.2.3. We use <-Dp instead [-],.

In the following we present definitions that differs from those represented in the Roadmap
3.2.3.2.5 and some additional auxiliary definitions. Also, we introduce some auxiliary notions to
precisely describe the number of required reduction steps.

Definition 3.4.5. Given a compensable process P, we will write ts,(P) to denote the number
of transaction scopes in P — see Figure 3.13 for a definition.

Remark 3.4.4. The number of protected blocks pb,(P) is as in Figure 3.4. Also, it should be
noted that directly from Figure 3.4 and Figure 3.13 the following holds:

e If pb,(P) = 0 then tsy(P) = 0;
e If pb,(P) =m and m > 0 then tsp(P) =n and 0 <n < m.

In addition to the listed functions, we need two more functions, denoted with d(P) and S(P),
that are given in the following definition:

Definition 3.4.6. Let P be a well-formed compensable process.

1. Function d(P) denotes the set of default activities of transactions in P. It is defined as
follows:

d(t[P,Q]) = {P}uUd(P) d(P | Q) =a(P)ud(Q)
d((vx)P) = d(P) d(!7.P) =d(w.P) =4(0) =d((P)) =0

2. Function S(P) is defined as follows:

pb,(P) if |d(P)| =0

S(P): pbA(P)“‘f:leA(Pl) if d(P):{Pl,,Pn}

97 3.4. Translating Cy into S

The following definition formalizes the intermediate processes that appear during derivation,

denoted with It(p) (QP% p,4Q>€). As in previously presented encodings, it plays a significant role
in proving completeness and soundness.

Definition 3.4.7. Let P,(Q be well-formed compensable processes. Given a name ¢, a path p,

and p > 1, we define the intermediate processes It(p) (QPDW,QQDE) (cf. Table 3.3) depending on

n= nl(ptp,qpbt,p), m = tsy(P) and s = S(P):

1. if n =0 then p € {1,...,6};

2. otherwise, if n > 0 and m > 0 then QPDW = T pepl(P)).] | Sandp € {1,...,6 +n+4m}.
k=1

Table 3.3: Process It(p)((]P[)t,p, (Q)e) with p > 1.

(p) L7((P), ,.1Q).) for n =0
(1) t[P),,] | 7r. (extxallt, prp o) | poIQL]) | (Y)AY] | Ti(Y))
(2) 1Pl] [re.(H(Y)Y] | ch(t,)
| Ut (pr,p, s mL(prp0 ¥), L) T | QL) | Tk T
(3) t[1P),,] 1 H((¥V)AY] | ch(t,)
| Ut (prp, s mL(ptp, ¥), 1) F0)) | polIQL] | e
(4) t[1P),) | pollQLY | £t K | heToe
(5) PollQ)] | T | kT
(6) pollQ)) | B
(p) L7((P), . 1Q).) for n > 0
1) P, | re. (extralt,prp,po) | poIQL]) | (Y)AY] | Ti(Y))
(2+4m+5s—n) P | T peollPI] | () 4] [eh(t.Y)
| 0wt (p1p, s mL(prp, ¥), L) T | QL) | ke T
(3+4m + s —n) P, | TT R P) 1 G(Y)A1Y] | ch(t.Y)
| 0wt (prp, o mL(p1p, ¥), LN T | 2 [QL) | ke
@dmts—nt3) | P, | TRl Pl Xomy)
(T paXe) | 1T P10) Q0 |
0<j<n-1
(4+4m + 5) P | TT pallPO) L) | 2oL | b

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 98

n

(5 4m +5) TLnpl(PELIR QL]
(6+4m -+ 5) T npliPiL) olL) 1T

The following definition formalizes all possible forms for the process ol (QFDp[hu.QPDp/], Q).)-

Definition 3.4.8. Let P, Q be well-formed compensable processes. Given a name u, paths p, p/,
and ¢ > 1, we define the intermediate processes O ((F) [hy.[P)],(Q).) (Table 3.4) depending

on n = nl(py,p, (F) [hu{P),]), m = tsa(F[P]) and s = S(pF[P]): ’)

p['p

1. for n =0 we have ¢ € {1,...,7}, and

2. for n > 0 and (F),[hy{P),] = T] pu,plP)] | S we have ¢ € {1,...,7+4m + s}.
k=1

Table 3.4: Process OW ((F) o[hu.(P)], (Q)<) with g > 1.

(a) OM((F), [P)y1,Q)), n =0
(1) w[lF), [hu{P)y] | ru (extralu, pup, po)) | PolIQ)])

| u(V)-ulY] | Tu(Y)-ha)

(2) ulend(F),[hy(P),]] | ru-(u{(Y)u[Y] | ch(u,Y)
| outd®(Pu,p, Pps 01 (Pup, Y), ul(t) k) | ollQ)]) | Turbou T

(3) wllF), [P AP]] [ul{(Y)ulY] | ch(u,Y)
| 0utd® (pu,p; Ppy 01 (Puyp, ¥), ul(th-Fu) D) | PpUIQN] | K-
(4) wllF)hudP)y]] | | Q)] T () Ko | Koo
(5) PollQ)] | b | e | P
(6) PollQ)] | P | P
(7) PollQ).]
(a) O ((F), [hu{P),1,(Q),) for n >0
1)) et Pl 1] | 7 (extral(e, g 2 | olIQ))

| u(V)-ulY] | Tu(Y)-ha)

(2+4m+s—n) w[lF), [P, | fg’fpu,p[m} | ru(ul(Y).ulY] | ch(u, Y)

| 0utd® (pu,p: Py 01(Pu,p: ¥), ullt) k) | Dp[lQL]) | 7B P

(8+4m +s—n) ullE P | TT R P] (Y)Y] | e, Y)

| 0utd® (pu,p; Doy 0L (Puyp, ¥), ul(th-Fu)) | b | POlQI] | Bouw-Pra

99 3.4. Translating Cy into S

(4+4m+s—n+7) wllB), [hu P, | ﬁ; pollPILI] | Pl (X X,
(T 2] | T o) 0D F)) | | lQud) | T
0<j<n-1
(4+4n+) ullF, P I) | T ppllPLLT)R | pplIQLT
(54 4m + 5) TLppllPy) | o 1R | l1QU) | KT
(64 4m + 5) T1 Rl | 2elQU] 1
(74 4m + 5) T1pFL] ol

For the proof of operational correspondence we need the following statement:

Lemma 3.4.5. If P and @ are well-formed compensable processes such that P = () then

Proof. The proof is by induction on the derivation P = @), and perform the case analysis on the
last rule applied. In all cases the proof follows directly. |

We now state our operational correspondence result:

Theorem 3.4.6 (Operational Correspondence for <-Dp). Let P be a well-formed process in Cy.
(1) If P — P’ then (P). —* (P’)_ where for

a) P = E[C[a.Pi] | Dla.Ps]] and P’ = E[C[P,] | D[R] it follows k = 1,

b) P = E[C[t[P1,Q]] | D[E.P]] and P’ = E[Clextrs(P1) | (Q)] | D[Ps]] it follows k = 7 +
S(Py) + 4tsa(Py),

¢) P = ClulFlu.P\],Q]] and P = Clextra(F[P1]) | (Q)] it follows k = 7 + S(F[P]) +
4tsp(F[P1]),

for some contexts C|e], D[o], E|e|, F'[e] processes P;,Q, P> and names ¢, u.
(2) If (P). —™ R with n > 0 then there is P’ such that P —* P’ and R —* (P')..

Proof. As in all previously presented encodings, in the following we consider completeness and
soundness (Parts (1) and (2)) separately.

(1) Part (1) — Completeness: The proof proceeds by induction on the derivation of P — P’.
We consider three base cases, corresponding to cases a), b) and c¢) of Proposition 2.2.3
(Page 18). In all cases, we use Lemma 3.4.5, Definition 3.4.3, and Lemma 3.2.9 (Page 47)
that applies also for 4->p.

a) This case concerns an input-output synchronization on a name a € Ns. Therefore, we
observe that P = E[C[a.P;] | D[a.P]] and P’ = E[C[P] | D[P.]], and we have that
derivation corresponds to the derivation presented in (3.30). Therefore, the thesis holds
with k£ = 1.

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 100

b) This case concerns a synchronization due to an external error notification for a transaction
scope. We consider P = E[C[t[P1,Q]] | D[t.P2]], with n = pb,(P1), m = tsp(Py) and
s =8(P1), and P’ = E[Clextry(P1) | (Q)] | D[P2]]. We have the following derivation:

(P). = (E[CIHP,Q)] | DE-P]).
= (E). [[C1P,QIl), | (DE.P2), |
[(C), 11PQ), 1 1 (D), [Pl
= (). [(C), [t[(P),] | 7s- (extral(t,prppp) | PlIQ)L)
Itw<)ﬂﬂ|70ﬂﬁ»]HDhBMMwwH
€, [V (P, QU] D), (e (P2,
—yimtemn () | A[“*“*S“4Pm¢x@L>WDnmem4}
= (B[00, ([(P QL) 1D P)
[, lextra(Po) 1 (@0),/] 11D), [1P2),]|

— (B)[(Clextna(P) | (@), 1 (DI,
= (E[Clextra(P1) | (@)] | DIP]].

) 1V

The order/nature of these reduction steps is as follows:

i) The first synchronization concerns ¢ and ¢.
ii) In the next step we have a process relocation through the update of location t.
iii) There are 4m + s — n reduction steps and their description is given in the following:
e 4m reduction steps correspond to:
- relocation through the update of (nested) location t¢;, where i € {1,...,m},
- synchronization on names 7, k;, with corresponding r;, and k;,, respectively.
These steps come from activation prefix ﬁ((PDt, o) and,

- erasure of the location ¢; with all its contents, obtained by updating prefix

ti{(1)-

e s —n reduction sreps occur as a consequence of relocation all processes that are
on location py, ; » to location p; v (i.e., in the calculus of compensable processes
this means that we have to extract all protected blocks from transaction that
are nested in t[P,Q]).

iv) We have reduction step as a synchronization on r; and 7.

v) We have again a process relocation through the update of location ¢, as enforced by
the definition of process extra.

vi) Subsequently, thanks to process

outd® (pt,p’ »Pp’s nl (pt,p/7 [[Pl]]t,p’)a t<<1—>> E)

we have n reduction steps that relocate processes on location p; to location p, .

vii) Next reduction corresponds to the erasure of the location ¢ with all its contents,
obtained by updating prefix ¢((t)).

viii) Next reduction corresponds to the synchronization on names k; and k;.

Finally, we have a synchronization between h; and h;, which serves to signal that all
synchronizations related to location ¢ have been completed.

X

~—

101 3.4. Translating Cy into S

Therefore, we can conclude that for (P), —k

(P'). such that k =7+ 4m + s.

c¢) This case concerns a synchronization due to an internal error notification (i.e., the error
comes from the default activity of transaction). Here we have P = C[t[F[u.P;],Q]], with
n = pb,(F[P1]), m = tsp(P1), s = S(P1) and P’ = Clextry(F[P1]) | (Q)]. Then we have
the following derivation:

QCE[U (F[z. P1]>u ,,] | ru. (extral(u, pu,p, pp)) | PolQ)])
qu«(Y) ulY] | Tu(Y)-hu)]]]

O [u[(F), [k {Pr}y]] | Tu- (extral(u, pup. pp)) | pollQ)])
| wul(Y)ulY]| Tu(Y)-hu)]

e |0 (), [(P11 1Q),)

— (C) [

—y2HAmtsn (o) o m s (F), Tha{P1),),(Q)))]
e[
)e

kg O(7+4m+5)(4FDup[h (P1), 1.0Q))]

3 u

C [<e><trA)Dpl pllQ).1]

{
{
{
= |
= (Cextra(F[P1]) | {@)]):
= (P'),

Process Oq(,q)(QFDup[hu.dPﬁp,], [Ql:), where ¢ € {1,...,7 + 4m + n}, is as in Defini-
tion 3.4.8 (Tab1e73.4). In this case, the role of function ch(u,-) is central: indeed,
ch(u,(F), ,[hu-{P1),]) provides the input h, which is necessary to achieve operational
correspondence.

The order and number of reduction steps can be explained as in Case b) above. We can
then conclude that (P). —* (P’)_ such that k = 7 + 4m + s.

)

(2) Part (2) — Soundness: For the proof of soundness we use auxiliary results presented in
Paragraph 3.2.3.2.3 applied to encoding of aborting semantics instead encoding of discarding
semantics. Also the proof use Definition 3.4.7 and Definition 3.4.8. Therefore, the proof of
soundness follows the explanation presented in Roadmap 3.2.3.2.5 and the same derivation
that is presented in the proof of soundness for translation Cp into S (cf. Theorem 3.2.7 —
Soundness).

|
The following example illustrates the translation C, into S.

Example 3.4.7. Notably, P is well-formed compensable process from Example 3.2.23. By the
Figure 2.3 we have:

P Sy sl(a) | (8) | (d),0] | 5 on {a) | (8) | (d).

We apply the translation () ,on P and illustrate its behaviors:

{P). = s[t [pt,s [a] | pt.s [b] | c] | rt.(extra<<t,pt7s,ps>> | ps [d]

[LLUAYT| T)] | (ecera(is)
| 5.5((V).s[Y] | To(Y)Tia)) | Ehe5.hs
—?s |:t [pt,s [a] | be,s [b] | C] | rt'(extra«tapt,saps» | ps [d]):| | Tk hy

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 102

| ro-(extral(s, po, o)) | s.5((Y):5[Y] | To(V)B) | hesihs
—7 s[pfa] | ps[8] | ps[d]] | rs-(extras, po,pe)) | s:sG(V).sY] | To(Y).Ba)) | 5.0
—2 s[ps[a] | s8] | pold] | | s (extrafis, po, pe)) | Fokohs | B
—* pea] | p-[b] | p[d].

The total number of reduction steps is k = 19. There are 9 steps for location ¢ and 10 steps
for location s. In the following we provide explanation for these steps:

i) the first step is a synchronization on name t;

ii) the second step 1is the synchronization between t{(Y).t[Y]|7:(Y).h) and

tlpesla) | pes[b] | c];

ili) the third step is synchronization on name r;, where 7 comes from 7;(ps s [a] | Dt.s [b] | c) =
Ttk

iv) now the process extrp((t,pts,ps) is released and the fourth step is the synchronization
between update prefix and location, respectively:

t((V)-t[Y]] ch(t,Y) | outd®(pe,s, ps, nl(prs, Y), t(1)-ke)) | tpes[a] | pes[0] |]

v) we get process outd®(pys,ps,2,t((T).jt), which triggers the fifth and sixth re-
ductions: the synchronizations between p;gla] and p;g[b] and update prefixes

prs (X1, X2).ps[Xa] | ps[Xa] | t{(1)-Je);

vi) the seventh step is the synchronization between update prefix ¢((t)) and location t[c], where
the update prefix deletes the location together with its content (cf. (3.1));

vii) the eighth and ninth reduction steps are synchronizations on names k; and hy.

At this point, we have the same reduction steps for location s. We have one more reduction
step, though, since in process outd®(ps, pe, 3, s((1)).ks) we have 3 locations ps|...] that have to
be relocated to pe[...]. Consequently, we have 10 reduction steps for handling location s.

We illustrate the encoding also on the Hotel booking scenario discussed earlier (§2, Exam-
ple 2.2.1, Page 15).

Example 3.4.8. Recall the hotel booking scenario where the client wants to cancel a reservation
after booking and paying. Using compensable processes with aborting semantics we have the
following derivation:

Reservation —, t[pay.invoice,re fund) | pay.(invoice + t.re fund)

—y tlinvoice,refund] | invoice + t.re fund
-

— (refund) | refund
—Sa {0).

We apply the translation in Definition 3.4.3 to process Reservation:

(Reservation), = t[book.pay.invoice| | ry. (extra((t, ps,pe)) | pe[re fund))
| tt{((Y).t[Y] | T:(Y).he)) | book.pay.t.hy.refund
— t[pay.invoice| | . (extra((t,ps, pe)) | pe[refund))
| t{(V)2Y] | Te(Y)-he)) | pagt.hy.refund

103 3.4. Translating Cy into S

— tlinvoice] | re. (extra((t, ps, pe)) | pe[refund))
| tt((Y)[Y] | Te(Y).he)) | £.hy.refund
— t[invoice] | re. (extra((t, ps, pe)) | pe[refund))
| (V) £YT | Te(Y)-he) | here fund
— tlinvoice] | re.(¢{(Y).t[Y] | ch(t,Y)
| outd®(pe, nl(pe, Y), (1) ko)) | pelrefund]) | 7.ke.he | hevefund
— t[invoice] | t{(Y).t[Y]]| ch(¢,Y)
| outd®(pe, n1(py, Y), (1) ko)) | pelrefund] | kihe | he.refund
— t[invoice] | outd®(ps, pe, 0, t(1).k¢) | p[refund)] | ke.hy | he.re fund
= t[invoice] | t{(1)).k¢ | p:[refund] | ki.hy | he.refund
— ki | pelrefund] | kil | hyre fund
— pelrefund] | hy | hy.re fund
— pe[refund] | refund
— pe[0]

The three steps taken at the beginning are explained in all variants of this example (cf.
Example 3.3.8). The fourth step is the update on location ¢; the fifth step is a synchronization
on name r; the sixth step is again an update on the location ¢; the seventh step is a synchro-
nization on name k¢; the eighth step deletes location ¢t with its content; the last two steps are
synchronizations on names h; and refund. Therefore, we get (Reservation). —10 p,]0].

Brief summary of the chapter:
In this chapter, we introduced all preliminaries for encodings C into A and informally acquainted
the reader with the basic intuition of encoding. Also, the main result is the wvalid encodings of
calculus for compensable processes into the calculus of adaptable processes with the subjective
update (encodings Cp, Cp, and Cy into S).

Encodings Cp, Cp, and Cy into O, which is analyzed in the next chapter, follow and mimic
the basic intuition of the encoding presented in this chapter. Therefore, we believe that it will
be easier for the reader to follow and adopt the results from the upcoming chapter.

Chapter 3. Encoding Compensable into Adaptable Processes with Subjective Update 104

CHAPTER 4

Encoding Compensable into Adaptable
Processes with Objective Update

In the previous chapter, we provided a detailed explanation of the translation of the calculus
of compensable processes with static recovery (Cp, Cp and C,) into the calculus of adaptable
processes with subjective update (S). This chapter turns our attention to the translation of
Cp, Cp, and Cy into adaptable processes with objective update (O), where a located process
is reconfigured in own its context by an update prefix residing in a different context. Also, it
introduces an encodability criterion called efficiency. In the following we present a brief structure
of the chapter:

Section 4.1 introduces the translation of Cp into O in an informal way to acquaint the reader
with the basic intuition and the difference concerning the translation of Cp into O. Then
the formal definition of encoding follows. The main result is valid encoding Cp into O.
Also, in this section we introduce a criterion called efficiency. We prove that encoding Cp
into S is better suited than the encoding Cp into O because they induce tighter operational
correspondences.

Section 4.2 presents the translation of Cp into O informally and formally. Then the formal
definition of encoding follows. Also, we prove that encodings satisfy name tnvariance and
operational correspondence (completeness and soundness). We compare encodings Cp into
O with encodings Cp into §. Based on the efficiency criterion, we prove that encoding Cy
into S is better suited than the encoding Cp into O because they induce tighter operational
correspondences.

Section 4.3 presents the translation of Cy into O informally, then goes on to give a formal
definition of translation. Then the formal definition of encoding follows. We prove that
the encoding satisfies compositionality, name invariance, and operational correspondence
(completeness and soundness). By using the efficiency criterion, we prove that encoding Cp
into S is better suited than the encoding C, into O because they induce tighter operational
correspondences.

4.1 Translating Cp into O

In this section we concentrate on a source calculus with static recovery and discarding seman-
tics. Before a formal presentation of the translation we introduce some useful conventions and
intuitions. It is important to emphasize that the encoding of Cp into O relies on the basic
idea/intuition that we presented in the encoding of Cp into S (cf. Section 3.2, §2.2.3).

105

Chapter 4. Encoding Compensable into Adaptable Processes with Objective Update 106

4.1.1 The Translation, Informally

To encode transactions and their extraction function we wuse the auxiliary process
outd®(ly,ls,n, @), which is similar to the process outd®(l1,l2,n,Q) (cf. (3.2)) that we used
in the encoding [-],. Using objective update prefixes, we define this auxiliary process as follows:

Q ifn=20
W{(X1,...,X,).2{(2). 1;[1 l2[Xi] | @}}.2¢[0] ifn>0.

outd®(ly,la,n, Q) = (4.1)

It is instructive to compare processes outd® (3.2) and outd® (4.1), because differences between
them will reflect directly on the efficiency of encodings.

Remark 4.1.1 (Comparing outd® and outd®). We consider two cases:

e If n = 0 then we have that both processes out® and out® are equal to some process Q.
Therefore, these processes are identical, and the difference is reflected in the use of an
appropriate update.

n

e Consider the case n > 0. In outd® the process [] [2[X;] | @ appears enclosed inside an
i=1

update prefix on name z;, while in outd® this is not the case. In outd®, once n updates

on name [; have been executed, the resulting process H l2[P;] | @ will be enclosed in a
i=1

location (say, t). Process H l2[P;] | @ must be relocated and ¢ must be deleted. In (4.1),
i=1
this relocation is achieved via a synchronization on name z;. In contrast, because outd®

uses subjective updates, process reconﬁguration follows in the opposite direction. This

ensures that, after n updates, process H l2[P;] | @ will remain in its original location, and
i=1
so no relocation using z; is needed — see Example 3.2.1 and Figure 3.2.

Example 4.1.2 (Example 3.2.1, revisited). Consider process
P = s[t[zl[a] | 1[B] |] | outd®(ly, 1,2, Q)|

similar to process P in Example 3.2.1. P’ has the following reductions, which are illustrated in
Figure 4.1:

P =s t[h | (0] |] | 1{(X1, X2).26{(2)12[X1] | 12[X2] | Q}}-zt[o]}
—s t[h{ (X2).2{(2).Ia[a] | 12[Xo] | @3} | u[b] | €] | zt[O]}

—s s[t[={(Z)ala] | 0] | @} | ¢] | (0]

s t[cm{ ofa] | b | Q)] | 0]

— s[t[e] | tfa) m}l@]

In this case, the wrong location is ¢: the last reduction is needed to move process la[a] | l2[b] | @
out of z.

Notice that the number n of protected blocks in the default activity of the transaction scope
is directly related to the number of reduction steps induced by our translations. If n = 0 then
the number of reduction steps will be the same for subjective and objective updates; otherwise,
if n > 0, the translation with subjective update will exhibit less reduction steps than the
translation with objective update.

107 4.1. Translating Cp into O

t t

Iy 1o t lo Iy

l1 l
[a]] IIlH c| |outd®(l1,15,2,Q) | _2| |clz{(Z2)[a]l[o]] @} z[0]|—s| [¢]| [a]|[B] | @

Figure 4.1: Hlustrating outd®(ly, Iz, 2, Q).

[(P)Ig = po[1PIE]
1PN = t[IPI2,] |t (extra{t,pip.py)} | polIQI2)
[7.P]S =Lhe[PIS

Figure 4.2: Translating Cp into O.

4.1.2 The Translation, Formally

The function for determining the number of locations nl(-,-) in an adaptable process and the
function ch(t,-) are as introduced in Definition 3.2.1. We assume that function nl(-,-) and
ch(t,-) operate only over closed processes and, in the style of a call-by-need evaluation strategy,
we assume that they are applied once they are provided with an argument. We now define
process extrd{t,l;,l2}:

Definition 4.1.1 (Update Prefix for Extraction). Let t, [y, and ls be names. We write
extrd{t,l1,l2} to stand for the following (objective) update prefix:

extrd{t,l1,lo} =t{(Y).t[Y]|ch(t,Y) |outd®(ly, l2,nl(l,Y),t{t}.h)} (4.2)

The intuitions for process extrd{t,l;,lo} are just as for process extrd((t,li,l2)) given in
Definition 3.2.2. We can now formally define the translation of Cp into O:

Definition 4.1.2 (Translation Cp into O). Let p be a path. We define the translation of
compensable processes into objective adaptable processes as a tuple ([[]]z, cpﬂ,]]%) where:

(a)
Rt if x € N
P11, (@) = {{x, he,ze} U{p,:x € p} ifzel (4:3)

(b) [-]5: Co — O is as defined in Figure 4.2 and as a homomorphism for other operators.

The intuition for the translation of ¢[P,Q)] is as in the case of subjective update. For erasing
the location and all unnecessary processes in it, we need an update prefix denoted with ¢{t}
(cf. Convention 3.1.1).

4.1.3 Translation Correctness

We prove that the translation [-]5 is a valid encoding (cf. Definition 2.3.5). We thus consider
five criteria: compositionality, name invariance, and operational correspondence, divergence
reflection, and success sensitiveness.

Chapter 4. Encoding Compensable into Adaptable Processes with Objective Update 108

4.1.3.1 Structural Criteria

We consider two criteria compositionality and name invariace.

4.1.3.1.1 Compositionality

The first property is compositionality. Compositionality for [[]]‘;, as well as compositionality
for [-], (cf. Theorem 3.2.2) includes a path p in its formulation. Initially, we need to define a
compositional contezt.

Definition 4.1.3 (Compositional context for Cp). For every process operator from Cp, instead
transaction scope, we define a compositional context in O as in Definition 3.2.4. For transaction
scope a compositional context is defined with:

C’t[,Lp[ol,oQ} = t[[ol]] | t. (extrd{t,ptp,pp} | pp“oz]])

Using this definition, we may now state the following result:

Theorem 4.1.3 (Compositionality for [-]3). Let p be an arbitrary path. For every process
operator in Cp and for all compensable processes P and @) it holds that:

[(P)I5 = Co., [IPI2] [£[P,QII5 = Cuyyo [[P1E,: QU] [P 1@l =Cy (1715, [Ql7)]
[o.PT5 = Ca. [[P]7)] [£.P]; = Cr [[PT5)] [(va)P)]5 = Ciuy [[P15)]
[a.P]% = Cq. [[P]3] ['7.P]3 = Cir. [[PI3)]

Proof. Follows directly from the definition of contexts, Definition 3.2.4, and from the definition
of [-]5 : Co — O (Figure 4.2) and has the same derivation as the proof of Theorem 3.2.2. |

4.1.3.1.2 Name invariance

The second property is name invariance with respect to the renaming policy in Defini-
tion 3.2.3 Case (b).

Theorem 4.1.4 (Name invariance for [-]). For every well-formed compensable processes P
and substitution o : N, — N there is o’ : N, — N, such that:

(i) for every z € N, : P, (0(z)) ={0'(y) 1 y € o5 (2)}, and
(i) [o(P)]5,) = ([PI7)
Proof. The proof proceeds in the same way as the proof of Theorem 3.2.4 by using [[]]g instead

of [-],. [|

4.1.3.2 Semantic Criteria

We counsider three criteria operational correspondence and divergence reflection and success sen-
sitiveness.

4.1.3.2.1 Operational Correspondence

In this section we shall prove that operational correspondence (completeness and soundness)
holds for the translation [-]¢.

As before, we are interested in precisely accounting for the number of computation steps
induced by our translation. We need the following definition:

109 4.1. Translating Cp into O

Definition 4.1.4. Let P be a well-formed compensable process, then function Z4(P) is defined
as follows:

0 if pb(P)

-0,
Z4(P) =
1 if pb(P) > 0.

The number of reduction steps required for translating transaction scopes depends on the
number of protected blocks in the default activity of that transaction. As already mentioned,
if the transaction scope in the default activity contains at least one protected block then in
the translation of such transaction there is an update location on name z; (it occurs in process
outd®, see equation (4.1)); otherwise (if the number of protected blocks is zero) the number of
reduction steps is the same as in the subjective case. This fact is presented by using the function
Z4(P) in the following theorem for operational correspondence.

Most of the lemmas, definitions, and theorems we have introduced to prove the operational
correspondence for the translation with subjective update (c¢f. Theorem 3.2.7), can be adapted
for the translation with objective update. Therefore, we will reuse the following statements for
[-]5, assuming the expected modifications:

e Definition 3.2.6 (Page 47) and Lemma 3.2.9, (Page 47), that are related with a mapping
of evaluation contexts for Cp into evaluation contexts of S.

e Lemma 3.2.10, (Page 48) and Corollary 3.2.11, (Page 48), are the converse of Lemma 3.2.9.

e Lemma 3.2.14, (Page 51), shows that ch(¢, [P[$) = 0 for all [P]5 and use Lemma 3.2.13,
(Page 51), for the proof.

e Lemma 3.2.15, (Page 51), identify processes that are created before a synchronization on
hy.

We first present an overview of the auxiliary results (and proofs) that are different from those
presented in Paragraph 3.2.3.2.2 and Paragraph 3.2.3.2.3. The following definition formalizes all

possible forms for the process It(p)([[P]];p, [Q2)-

Definition 4.1.5. Let P, Q be well-formed compensable processes. Given a name t, a path p,
and p > 1, we define the intermediate processes It(p)([[P]]gp, [Q]2) (Figure 4.3) depending on
n= nl(ptﬁ? [[P]]ap):

1. if n =0 then p € {1,2,3};

n

2. otherwise, if n > 0 then [P[7, = [] pr,[[F]2] | S and p € {1,...,4 +n}.
k=1

The following lemma formalizes all possible forms for the process
O (LF 13 - [Pl [@1]:)-

Definition 4.1.6. Let P,Q be well-formed compensable processes. Given a name u, paths
p,p', and ¢ > 1, we define the intermediate processes 05Q)(ﬂFﬂg[hu.[PﬂZ,], [Q]2) (Figure 4.4)
depending on m = n1(py,p, [F]5[ha-[P]5]):

1. for n = 0 we have ¢ € {1,2,3,4}, and
2. for n >0 and [F]3[ha.[P]5] = [T pu,pl[F%12] | S we have g € {1,...,n +5}.
k=1
The following lemmas, which we established for the translation with subjective update [-],,,

hold also for translation with objective update [-]5; the difference is that they use Definition 4.1.5
and Definition 4.1.6 instead of Definition 3.2.7 and Definition 3.2.8, respectively:

Chapter 4. Encoding Compensable into Adaptable Processes with Objective Update

110

(p) PNIPIe . [Q12) for nl(pep, [PIS,) =
(1) t[[P1e,] | extra{t, pppp} | polIQIC)
= t[[PIe,] | {(Y)-4[Y] | ch(t,Y) | t{t}.Tc} | p,[[QIS]
(2) t[[PIe,] | 41} e | pol1QD)
(3) T | p,l1QI2]
(p) N[PIe . [Q12) for nl(pp, [P]g,) > 0
(1) t[[P1e,] | extra{t, pppp} | polIQIC)
= t[[P]g,] | H{(Y)[Y] | ch(t,Y)
| outd®(prp, Pp,nL(pey, Y), t{1}-he)} | p,[[Q]°]
© HIPIE] | ep{(Xr, - X 20 (2). (1T pplXi)
| {1} Re) }2000] | pol[Qu]2)
2+7) HIPE, | pep{(Xae e X)) 2 d(2).(TT polXa] | (i} 70)

1<j<m-—1

k=1

| kﬁlpp[[[Pé]]S]}}] | 2:[0] | pp[[Q:]2]

(2+m) HIP'TE, | 24(2). kijlppmp,;ug] |t} T} | 2200] | ppl1QI
(3+m) LIPS, | kglppmpguz] | () | p,l1QI°)
(4+m) 11 2,[1PL12] | Fir | 2, [1QIS]

k=1

Figure 4.3: Process I ([[P]]tp, [Q]2) with p > 1.

e Lemma 3.2.19,(Page 57)), is about the shape of process R in [P]. —"™ R, and also ensures
that there is a process P’ with an appropriate shape. The proof proceeds by induction on

n.

e Lemma 3.2.12,(Page 49), is used as the base case in the proof of Lemma 3.2.19.

e Lemma 3.2.16 (Page 51) and Lemma 3.2.17 (Page 56) are used in the inductive step of the
proof of Lemma 3.2.19.

e Lemma 3.2.20,(Page 62),

ensures that the adaptable process obtained thanks to

Lemma 3.2.16 and Lemma 3.2.17 can evolve until reaching a process that corresponds
to the translation of a compensable process.

For the proof of operational correspondence we need the following statement:

Lemma 4.1.5. If P and @) are well-formed compensable processes such that P = () then

P15 = Q15

Proof. The proof is by induction on the derivation P = @, and perform the case analysis on the
last rule applied. In all cases the proof follows directly.

111

4.1. Translating Cp into O

(@) O (IF I [P 1, 1Q12): (P [FI5I- [PI3]) =
0 ullFIglh LPIS)] | exeralu. pups} | pylIQIE)
= W[l LPII] |l (V)ul¥] | chwY) | uf}Fu) | polIQL)
) ullFI3lha [PIy 1] | B |)b |y lIQIE)
) IATAEE
(@) pollQl2
(@) O ([FI3 - PI3): [Q12), w1 (pups [FLpli [PI3)) > 0
(1) u[[FD3 0 [PI1] | extra{u, pu,y, po} | p,l[Q1]
= u[(Il LPI3]] |l (V)ul¥] | chu,Y)
0w (P P (P Vs 1T} | 2, Q12
@) ullFRS 0 LPII) | | g (X, X)-2e(2).(1T pplXi]
[u(£)Bu)}}-2110] | p,[TQLE
(2+1)
t<ign=1 | ullFRmePI) o X (2T pl
[l | T pol[PIE] o 0] 11
(2+n) PR [PI) 1 (20T mol6e) La0)5)3] || 00
| TLplIP2] | pollQl
(3+n) ullF T3 IPI] | TT 2lP0E) | A | mplIQIE) |
(4+n) L oplIP1E] | | MIQIE] | T
G+n) 11 pol1712) | pol1QIE)

Figure 4.4: Process ol ([[F]] [ha-[P]5/], [Q]2) with ¢ > 1.

In the following we prove that operational correspondence hols for translation [[]]z

Theorem 4.1.6 (Operational Correspondence for [-]2). Let P be a well-formed process in Cp.

(1) If P — P’ then [P]2 —*

[P']e where for

a) P=FE[C[a.P)] | D]a.P,]] and P’ = E[C[P1] | D[P2]] it follows k = 1,
b) P = E[C[t[P1,Q]] | D[t.P]] and P' = E[Clextrp(Py) | (Q)] | D[P]] it follows k = 4 +

pby(F1) + Za(F1),

¢) P = Clu[F[u.P],Q]] and P = Clextrp(F[P1]) | ()], it follows k = 4 + pby(F[P1]) +

Za(F[P1])-

Chapter 4. Encoding Compensable into Adaptable Processes with Objective Update 112

for some contexts C|e]|, D[e], E[e], F[e], processes Pi, (), P> and names ¢, .
(2) If [P]2 —™ R with n > 0 then there is P’ such that P — P’ and R — [P’]2.
Proof. We consider completeness and soundness (Parts (1) and (2)) separately.

(1) Part (1) — Completeness: The proof proceeds by induction on the derivation of P — P’.
We have three base cases, corresponding to cases a), b) and ¢) of Proposition 2.2.3 (Page 18).
Also, we prove all cases by using Lemma 4.1.5, Definition 4.1.2, and Lemma 3.2.9.

a) This case corresponds to an input-output synchronization, such that a € N. Therefore,
we observe that P = E[C[a.Py] | D]a.P;]] and P’ = E[C[P;] | D[P]]. The derivation
that corresponds to this case is as the derivation presented in Part (1) — Completeness
case (a) for translation with subjective update (cf. Derivation 3.30). Therefore, the thesis
holds with k£ = 1.

b) This case corresponds to a synchronization due to an external error notification for a
transaction scope. Therefore, for this case we consider that P = E[C[t[P1,Q]] | D[t.P]]
and P’ = E[Clextrp(P1) | (Q)] | D[P2]]. We will consider two sub-cases depending on
whether process P; contains or not protected blocks. Below, we will use that n = pb,(P}).

(i) In this sub-case n = 0. Therefore, we have the following derivation:

P12 = [E(CIHP,Q) | DEPIIE
= [E]2 [[CHPLQIIIG | [DE oI
= [EL|[CTSIRP Q1Y) | [P Pl
= [B)2 [[CIS IR,] | ¢ (extra{t, puy,py} | [IQIN)] | IDISE e [P5]]
— [EL2[ICT5 [V (IPTE 1 [QI9)] | [DIelhe-[P2])]
—? [ER2|[CT| 17 (IPi12 - 1QI2)] | DI (e [P0 |
— B[[CTS[[@13] | DI IR0]|
= [ER[[CLQII | [DIPIE]
= [E[CLQ)] | DIPI]IS
= [P']:

Thus, the number of reduction steps is k = 4. Notice that here —? tells us that
there have been two reduction steps: the first one is an update on location name
t; the second reduction step “kills” with ¢{t{} both the location ¢ and the process it
hosts.

(ii) In this sub-case we consider n > 0, i.e., this is when there is at least one protected
block in the default activity P;. We have the following derivation:

[PI = [BIC1HP,QI) | DE-PIE
= [E]2 [[CHPLQIIG | [DEBIIG)
= [E1 | [CRel1PL QUG | [P Py
= (B2 [ICI3 [P] | . (extra{t,pey. pr} | ppIQIN] | [DISEAe [P
— [EL[ICTs [(IP2 . [Q12)] | IDI3[he [Pa]]
—m [B]e [[CT5 [(AP, [QI2)] | D15 [he [Ps]]|

113 4.1. Translating Cp into O

— [EL|[CT |1 (1PJg . 1Q1) | 1 DD (e [P)|
= [E12|[CT5 | [extro(POI | 9 [1QD)] | [DI3[1P205] |
= [E2[[Clextrs(P) | (@15 | [DIPI]S]

[<

= [E[Clextro(P) [(Q)] | DIP]]2
= [P]2

Therefore, k =4 4+ n+ Zg(P1) = 5 + n, where:
- 4 steps are as described in Theorem 3.2.7 and under a semantics with objective
update, after n updates, processes located at p; , will stay at location ¢, and

- Zq(P1) gives 1 more step; to avoid leaving such processes in the wrong location,
the translation in [16] use an (objective) update on auxiliary location z, so to
take them out of ¢ once m updates on p; ,» have been executed. This additional
synchronization step on name z; is the key to the efficiency gains when moving
from objective to subjective updates (cf. Definition 4.1.4, Page 109).

c¢) In this case we consider that error notification arrives from the default activity of transac-
tion; the error notification is internal. Again, according to Proposition 2.2.3 we consider
the following case. Let P = C[u[F[u.P1],Q]] and P’ = Clextrp(F[P1]) | (Q)]. Letting
n = pb(F[P1]), we consider two cases n = 0 and the second is when n > 0:

(1) If n =0 then there is the following derivation:

[P]2 = [ClulFu.ALQII
= [CI[[u[Fu.-~L,QI]
= [CRu[[F[@.P]];] | u. (extrd{u, pu,, pp} | l1QI2])]
= [CT2fu [[[F]]up[uh [P50] | u-(extrd{w, pu,p, po} | ppl[Q12])]
— [CI2[O IF el [P, 1Q12)]
—? [CL2 [0 ([FI R [P1]), [QD2)]
= [P]¢
Therefore, the number of reduction steps is k& = 4.
(ii) If n > 0 then there is the following derivation:

o
€
o
3
[e]
3

[P]2 = [ClulF[u.ALQII2

= [CI2[[ulFu.P1],QIT}]

= [CRL[[F[a-Al7,] | v (extrd{u, pup,po} | pol[Q12])]

= [CI2[u [[[F]]upu ha [PA]] | w-(extrd{u, pup, pp} | PollQI2])]

— [CI2[O F el [P, 1Q12)]
—m O[O IR b [P [Q2)
— [CI2[O ([FIglh [P [QD)]
= [C12 | Textro(FIP)IS | 2, [[QI2)]

= [Clextro(FIP)) | Q]2
= [P]2

o
3
o
15

Therefore, the number of reduction steps is k = 4 +n + Zq(F[P1]) = 5 + n.

Chapter 4. Encoding Compensable into Adaptable Processes with Objective Update 114

(2) Part (2) — Soundness: The proof for soundness follows the approach described in detail
for encoding with subjective update (cf. page 65). Therefore, Given [P]¢ —" R, by
Lemma 3.2.19 (which also applies to [-]9), process R has the following form:

z Sw Uk
R= [TEu | TGkl [[Ty, [17),]] med°mmwmmuk}
w=1 k=1 =1
my
| H[[Lc,k,w]];;“w [O'l(/ch)kw]]] ’
c=1

c,

where It(f I)C , and O&q)kyw are processes from Figure 4.3 and Figure 4.4, respectively.

Also by Lemma 3.2.19, we have P —* P” where

Tk
HE [Hka chkw ik,w Ptzkw’Qtzkw | HDj,k,w[tj,k,w'Stj,hw]
1 =1
w= " J
I H Lc,k,w [uc,k,w [Fc,k,w [uc,k,‘ﬂU'PU(;,k,w:I7Quc’k’w}i|:|)
c=1

where by successive application of completeness it follows that [P]2 —* [P”]2.

By Lemma 3.2.20 (which also applies to [-]3), i.e., by i successive applications of (3.28) and
my, successive applications of (3.29) on process R, it follows that:

R IIHE@V[[IquwLM Ilwzkwn IGO0 R N (o)
w=1

k=1

|med RIE Hmmw [lextro(Fee[Pu DI

"
pk:,w
J=1

|wmm>]ﬂ
= [[H E, [H ka chkw extrp Pt kow) <Q:€ka>] | HDjukuw [Stj,k,ur]
w=1

Jj=1

|HQMWm@mw%muuwﬂmg

c=1
= [P']2.

Therefore, it follows that

Sw Tk
H E |: H Gk w H C’L k,aw eXtrD t k w) | <Qtz k2w | H Djvkvw [Stjyk:,w}
1 =1
w= . J
| H Legw [eXtrD(FC,k,w [Puc,k,w]) | <Q;Ckw>”} .
c=1

Also, by Proposition 2.2.3, i.e., by [, successive applications of case b) and and my, successive
applications of case ¢) on process P”| it follows that: P” —* P’

By successive application of (1) — Completeness on the derivation P” —* P’ it follows
that [P"]2 —* [P]2.

115 4.1. Translating Cp into O

|
The following example illustrates the operational correspondence property:

Example 4.1.7. Let P be a process as in Example 3.2.23 (Page 67). Expanding Definition 4.1.2
the following holds:

[Ple = S[t [pt,s [a] | P, [b | C] | t.(extrd{t,pt,S,ps} | ps [d])ﬂ

| s.extrd{s,ps,pe} | t.h¢.5.hs
= s[tlprs[a] | prs[o] €] | (V) 4Y] | eh(t,Y)

| outd®(prs, ps;nl(prs, V), t{t}-he)} | ps [dm

I S‘eXtrd{37p87pE} | E'ht-g-hs

2 s[tlpala) | s8] | €] | oued®(pre. po.2. (1)) | o[d]

|_s.extrd{s,ps,p€} | heS.hs
—? s[t[2{(2)-pula] | pa[b] | #{1}-he}] | [0] | pa[d] |

| s.extrd{s, ps,p:} | he.5.hs

—3 s _ps[a] | ps [b] | ps [d]] | s.extrd{s, ps,p:} | S.hs
—® pela] | p:[b] | p:[d]
= [{a) [(b) [(D2
We have [P]2 —* [P]2 with k = 15:
k= 44 pby(P1) + Za(t[{a) | (b) | ¢,d]) + 4 + pbp () + Za(s[(a) | (b) | {d),0])

for transaction ¢ for transaction s

= 442+14+44+3+1=15.

We briefly analyze the reduction steps that are related to the translation of transactions on
name t and s:

- For location ¢ there are 7 reduction steps: synchronization on ¢ and ¢, updating location t,
two steps as relocation of process on location p s by process outd® to location ps, update on
location z, erasing location ¢ using ¢{1} and synchronization h; with corresponding output h;.

- For location s there are 8 reduction steps, one more step than for location t; because now
location s contains three processes on location ps that has to be relocated on location p. by
process outd®.

Example 4.1.8. Recall process Reservation from the hotel booking scenario (cf. Example 2.2.1,
Page 15). We use encoding with objective update:

[Reservation]? = t[book;.pay.invoice] | t.(extrd{t, pt, pe} | pe[refund)) | book.pay.t.hy.refund
—3 t[invoice] | t{(Y).t[Y] | ch(t,Y)
| outd®(ps, pe,nl(py, Y), t{t}.h)} | pe[refund] | hy.refund
— t[invoice] | ch(t, invoice) | outd®(ps , pe,nl(py, invoice), t{1}.hy)
| pe[refund] | hy.refund
= t[invoice] | outd®(py, pe,0,t{t}.he) | pe[refund] | hy.refund

= t[invoice] | t{t}.hs | pc[refund] | hi.refund

Chapter 4. Encoding Compensable into Adaptable Processes with Objective Update 116

—3 p.[0]

Therefore, we get [Reservation]? —s" p-[0] and so the number and justification for the obtained
reduction steps is the same as in Example 3.2.24. This is because the transaction ¢ does not
contain protected blocks. In turn, in encodings, this means that there are no differences between
processes outd® and outd®, i.e., they are equal to some process Q. In this example, Q = t{(1)).h.

4.1.3.2.2 Divergence Reflection

We are going to prove that the encoding does not introduce divergent computations. We
need Definition 3.2.9, also we need to revise Lemma 3.2.25 as in the following.

Lemma 4.1.9. Let {R;};>0 be a sequence of adaptable processes such that R; — R;y1, with
Ry = [[Po]];’,, for some compensable process Py and path p. Then for every ¢ > 1 there is P; such
that:

(i) Ry —* [R5,
(11) Pi—l = PZ or Pi—l — Pz‘, and
(i) Ri ZRit1# ... % Riym and P, = Py = ... = P, imply m <5+ npb(Fp).

Proof. The proof follows the same idea as a proof of Lemma 3.2.25. Therefore, the proof for (i)
and (ii) proceeds by induction on i. The proof for (iii) is obtain from (the proof of) Lemma 3.2.19
which holds also for [-]°.

|

Theorem 4.1.10 (Divergence Reflection for [-]9). Let {R;};>0 be an infinite sequence of adapt-
able processes such that

(1) Ro = [Po]5 for some Py and p, and (2) R; — R;y1 for any i > 0.

Then there is an infinite sequence of adaptable processes {PJ’ }j>0 such that

(3) Py = P, and (4) Pj — Pj,, for any j > 0.

J+1

Proof. By Lemma 4.1.9, there is a sequence {P;};>¢ such that
(i) R, —* [[P’]]Z and (ii) P,1=Por F_1— P,
Consider now a sequence of compensable processes P, P{, P}, ... such that
(1) P[_y — Pj, for any j > 1, and
(2) for every i there is j such that P; = P).

By Lemma 4.1.9, at most 5 + npb(F) reduction steps from the sequence {R;};>o correspond to
one reduction step of {P/};>o. Hence, the number of processes in {P;};>0 is not less then the
number of processes {R; }i>o divided by 5+ npb(Fp). Since the sequence {R;}i>o is infinite, the
same holds for {P;}};>0. [|

4.1.3.2.3 Success Sensitiveness

Theorem 4.1.11 (Success Sensitiveness for [-]9). Let P be a well-formed compensable process
and p an arbitrary path. Then P | if and only if [P]5 {.

Proof. The proof proceeds similarly as the proof for Theorem 3.2.27. |

117 4.1. Translating Cp into O

4.1.4 Comparing Subjective vs Objective update

In this section we exploit the correctness properties of encodings to distinguish between sub-
jective and objective updates in calculi for concurrency. We introduce an encodability criterion
called efficiency. Since subjective updates induce tighter operational correspondences, we can
formally declare that subjective updates are more suited to encode compensation handling than
objective updates.

Having introduced encodings of compensable processes with discarding semantics into adapt-
able processes, here we compare their efficiency. We define efficiency in abstract terms, consid-
ering the number of reduction steps that a target language requires to mimic the behavior of a
source language:

Definition 4.1.7 (Efficient Encoding). Let £; = (P;, —,;,~;) (with i € {1,2,3}) be calculi
as in Definition 2.3.1. Suppose [-]1 : P1 — P2 and [-]o : P1 —> P3 are encodings as in
Definition 2.3.5. We say that [-]; is as or more efficient than [-]2 if for every process P from
P the following implication holds (with ki, ko > 0):

If P — P’ and [P]y —*2 [P, then there is k; such that [P]; —** [P']; and k; < ko.

The following statement is a corollary of Theorem 4.1.6, where Zq4(+) is defined in Defini-
tion 4.1.4.

Corollary 4.1.12. Let P be a well-formed process in C. If P — P’ and [P]° —* [P’]2 then:

b) 1 P = E[C}t[P1,Q]] | DIE.Py]] and P! = E[Clextrs(P) | (Q)] | DIP]] then k > 4+pby(Py) +
Za(P1),

c) If P=Clu[F[u.P1],Q]] and P' = Clextrp(F[P1]) | (Q)] then k > 4 + pby(F[P1]) + Za(F[P1]).
for some contexts C[e], D[e], E]e|, Fe], processes Pi,), P> and names ¢, u.

We then have the following theorem:
Theorem 4.1.13. The encoding [-], : Co — S is as or more efficient than [-]% : Cp — O.

Proof. Let P — P’ and [P]2 —*2 [P']°. By Theorem 3.2.7, there is k; such that [P]. —*
[P']: and

a) k= 1if P = E[C[a.P1] | D[a.P%]] and P’ = E[C[P\] | D[P]],
b) ki =4+ pby(P1) if P = E[C[t[P1,Q]] | D[f.P]] and P’ = E[Clextrp(P1) | (Q)] | D[P]],
¢) k1 =4+ pby(F[P)]) if P = Clu[F[a.P1],Q]] and P’ = Clextrp(F[P1]) | (Q)].

By Theorem 4.1.6, Proposition 2.2.3 and Corollary 4.1.12 we have the following three cases, for
some contexts Cle], D]e|, E]e], F'[e], processes P, Q, P, and names ¢, u:

a) P = E[C[a.P\] | Dla.Ps]] and P' = E[C[P1] | D[R] and ko > 1 = k1,

b) P = E[C[t|P,Q]] | D[t.P]] and P’ = E[Clextr(P}) | (Q)] | D[P]] and ks > 4 + pby(Py) +
Za(P1) > 4+ pby(P1) = ki,

¢) P = Clu[F[u.P1],Q]] and P' = Clextr(F[P1]) | (Q)] and ko > 4 + pby(F[P1]) + Za(F[P1]) >
4 + pr(F[Pl]) = kl.

Thus, in all three cases k1 < ko; by Definition 4.1.7 we conclude that [-]- is as or more efficient
than [-]2. [|

Chapter 4. Encoding Compensable into Adaptable Processes with Objective Update 118

Let us dwell a bit on the content of the previous theorem, to understand better the differences
between the two encodings (and between objective and subjective update). Recall that the main
difference between encodings is in the auxiliary processes

extrd((t,l1,l2)) and extrd{t,li,la}

which are used in the encoding of transaction scopes in the subjective and objective case,
respectively. In turn, those auxiliary processes rely on processes outd®(l1,l2,n,Q) and
outd®(t,l1,l2,n,Q) (cf. (3.2) and (4.1), respectively), which extract n processes located at [;
in @ and relocate them to ls.

A closer look at outd®(ly,l2,n, Q) and outd®(t,l,ls, n, Q) reveals that they differ in the use
of name z;, which is used in the objective case (when n > 0) but not in the subjective case. The
use of z; appears indispensable: under a semantics with objective update, after n updates, the
located processes will stay at the wrong location (i.e. t). To avoid this, we use z; as an auxiliary
location. This auxiliary location enables us to move processes out of ¢ and to relocate them to
their parent location.

This synchronization step on name z; is the key to the efficiency gains obtained when mov-
ing from objective to subjective updates—clearly, the improvement will be proportional to the
number of compensation operations in the source process. Consider again Example 3.2.23 and
Example 4.1.7, which translate process P = s[t[(a) | (b) | ¢,d],0] | £.5 using subjective and ob-
jective updates, respectively. Here the subjective encoding outperforms the objective encoding
by two reduction steps. In Example 4.1.7, these two steps correspond to two synchronisations
on name z;, which are not needed in Example 3.2.23.

Finally, as the proof of Theorem 4.1.13 makes explicit, the two encodings are equivalent, in
terms of efficiency, when n = 0 in outd®(l1,ls,n,Q) and outd®(t,ly,ls,n,Q). This is because
in this case we do not need to save any process from the default activity of the transaction
scope—we need an equal number of reduction steps for achieving operational correspondence.

4.2 Translating Cp into O

In this subsection we concentrate on a source calculus with static recovery and preserving se-
mantics. Initially, we introduce some useful conventions and intuitions for the encoding and
then we give the formal presentations of the encoding.

4.2.1 The Translation, Informally

To encode transactions and their extraction function we use Definition 3.3.1 and Definition 3.3.2.
Also, we need auxiliary process outp®(t, P, l1,1},l2,15,n,m), which is similar to the process
outp®(t, P, 11,1}, 12,15, n,m) (cf. 3.36) that we used in the encoding (-),. Therefore, auxiliary
process outp®(t, P, 11,11, 1l2, 15, n,m):

(i) moves n processes from location I3 to location I};

(ii) moves m processes from location Iy to location 1.

119 4.2. Translating Cp into O

Initially, for the definition of outp®(t, P, l1,11,l2,15,n,m) we introduce the following auxiliary
processes:

Outpi(tvllvllbn) :l1{<X1""’ Zt{ (Hlll | t{T} Jt- Tt) }} zt[]
outpd(t,t1,. .., tm,lo, 15, m) = l{(Y1,...,Yn).

z2{(Z). (Tt- (H (ol (Y,)] |jtk‘lé{(X)-X}-m-htk)> | t{T}-jt> t-z[0];

k=1
outpg(t,tl, ey b, ll, lll, lg, l'z,n,m) = ll{(Xl, ceey Xn)lg{(yl, ... ,Ym)

2{(Z (Hz;]| 7s. (H(z;[s(yk,t)]|jtk.z;{<X>.X}.mm)) |t{T}.jt>}}}.zt[O]
k=1

The auxiliary process outp®(t, P, 11,11, 12,15, n,m) where top(la, P) = {t1,...,tm} for m > 0 is
now defined as follows:

(1) - Je-re ifnm=0

outpl(t, 1,1}, n ifn>0,m=0
outp®(t, P, 1y, 1, Iy, Iy, n,m) = pi(f . fy,m) (4.4)

outp$(t,t1, ..., tm,l2, 15, m) ifn=0,m>0

outpl(t,t1, .. tm, 11,1, 2,5, n,m) ifn,m>0

We compare processes outp® (3.36) and outp® (4.4), because differences between them will
reflect directly on the efficiency of encodings.

Remark 4.2.1 (Comparing outp® and outp®). Differences appear when parameter n > 0 and/or
m > 0. In these cases, it should be noted that in outp® (cf. (4.4), i.e., outp$, outp3, outp$)
appears processes that are enclosed inside an update prefix on name z;, while in process out®
(cf. (3.36)) this is not the case. In outp®, once:

- n updates on name /1, in the case n > 0, m =0, or
- m updates on name ls, in the case n =0, m > 0, or
- n 4+ m updates on names l1,ls in the case n > 0,m > 0,

have been executed, the resulting processes:

Hll)| {1} gere (4.5)

rie([T BIE0G] i 50X} 750 hey) | 11150 (4.6
k=1

TT40x0 e (TT Bl O) | (005D R) | (1) (4.7
1=1 k=1

will be enclosed in a (wrong) location (say, t). Such a location should be deleted, but before
doing so process enclosed in update prefix on z;, must be relocated. In eq. (4.4), this relocation
is achieved via a synchronization on name z;. In contrast, because process outp® uses subjective
updates, process reconfiguration follows in the opposite direction. This ensures that, after n,
or m, or n + m updates, the processes given with (4.5, 4.6, 4.7) will remain in their original
location, and so no relocation using z; is needed.

Chapter 4. Encoding Compensable into Adaptable Processes with Objective Update 120

(P))p = po[(P)2]
(]t[P,Q]DZ =D [tNPDZp] | t. (extrp{t, (]PD;papt,pappa Bt.ps Bp} | pp[(]QDg]) }
| 3e-Bp{(X). X} 7oy

Figure 4.5: Translating Cp into O.

At this point, we are going to specify an important fact: the number n of protected blocks
and the number m of nested transactions in the default activity of the transaction is directly
related to the number of reduction steps induced by our translation. If n = 0 and m = 0 then
the number of reduction steps will be the same for subjective and objective updates; otherwise,
ifn>0m=0,orn=0m >0, or n,m > 0 the translation with subjective update will
exhibit less reduction steps than the translation with objective update. Therefore, translation
with the subjective update will be more efficient than the translation with the objective update
(cf. Definition 4.1.7). We will prove this statement in Section 4.2.4.

4.2.2 The Translation, Formally

The function for determining the number of locations nl(-,-) in an adaptable process and the
function ch(t,-) are as introduced in Definition 3.2.1. Also we use Definition 3.3.4 to count the
number of nested transactions.

We now define process extrp{t, P,l1,1},l2,1}}:

Definition 4.2.1 (Update Prefix for Extraction). Let ¢, l1,1],1l2,l5 be names and P is an
adaptable process. We write extrp{t, P, 11,1}, 12,15} to stand for the following (objective) update
prefix:

extrp{t, P,11,11,12,15} =t{(Y).t]Y] | ch(t,Y) | outp®(t, P, 11,1},l2,15,01(l1,Y),nl(l2,Y))}
(4.8)

°, and the intuition for the translation of ¢t[P,Q)] is as in the

Now, we may formally define ()¢,

case of subjective update.

Definition 4.2.2 (Translating Cp into O). Let p be a path. We define the translation of
compensable processes with preserving semantics into (objective) adaptable processes as a tuple

(1, 9ps) where:
(a) The renaming policy @qpo : Ne — P(N,) is defined with

{z} it x € N

) = 4.9
(p(][)p(x) {{‘T7hx7jx7rm}u{pp’ﬁp:xE’O} 1fx€M ()

(b) The translation ()5 : Cp — O is as in Figure 4.5 and as a homomorphism for other
operators.

In the upcoming section, we prove the correctness of the translation for Cp into O.

4.2.3 Translation Correctness

To this end, we address the two criteria in Definition 2.3.5: name invariance and operational
correspondence. We will investigate the other criteria as a part of future work. Our results apply
for well-formed processes as in Definition 2.2.4.

121 4.2. Translating Cp into O

4.2.3.1 Semantic Criteria - Name invariance
We prove name invariance with respect to the renaming policy in Definition 3.2.3 Case (b).

Theorem 4.2.2 (Name invariance for (-)9). For every well-formed compensable processes P
and substitution o : N, = N, there is o’ : N, — N, such that:

(i) for every z € N, : Pz, (o(z))={c'(y):y € gpq,Dz(:E)}, and

(i) (o(P)g(, =o' ((P)7)

Proof. The proof proceeds in the same way as the proof of Theorem 3.2.4 by using (][)Z instead
of [-]p. [|

4.2.3.2 Semantic Criteria - Operational Correspondence

In this section we shall prove that operational correspondence (completeness and soundness)
holds for the translation (-)5. We need the following auxiliary definition.

Definition 4.2.3. Let P be a well-formed compensable process, then function Zy(P) is defined
as follows:

2. (P) 0 if pbp(P)=0and tsp(P)=0,
P =
1 if pbp(P) >0 or tsp(P) > 0.

The number of reduction steps for the translation of transaction scope depends on the number
of protected blocks and transactions in the default activity of that transaction. This dependence
occurs if the transaction scope in the default activity contains at least one protected block or
at least one transaction. In the translation of such transaction, there is an update location on
name z; (it occurs in process outp®, see equation (4.4)). Otherwise, if the number of protected
blocks and transaction is equal to zero in a default activity of transaction, which is attacked
by an abortion signal, then the number of reduction steps is equal in both considered updates.
Therefore, update on name z; make a significant difference, in terms of efficiency to achieve
operational correspondence, between translation with the subjective and objective update. In
the following, we prove that translation with the objective update also satisfies operational
correspondence.

Most of the lemmas, definitions, and theorems we have introduced to prove the operational
correspondence for the translation with subjective update (Section 3.3.3, Theorem 3.3.4), can be
adapted for the translation with objective update. We first present an overview of the auxiliary
results (and proofs) that are different from those presented in Paragraph 3.3.3.2.1. We start with

the following definition which formalizes all possible forms for the process It(p)((]Pl)f 0 (Q)2)-

Definition 4.2.4. Let P,Q be well-formed compensable processes. Given a name ¢, a path p,
and p > 1, we define the intermediate processes It(p)((]P[)gp, (Q)2) (cf. Table 4.1) depending on
n =nl(p,, (P)7,) and m =nl(B, (P)?,):

1. if n=0and m =0 then p € {1,...,6};
2. if n > 0 and m = 0 then then (P)? , = [] pe,[(P)2] | S and p € {1,...,7+n};
k=1

3. if n=0and m >0 then (P)?, = [] Bi,p[(P)2] | Sand p € {1,...,7+m};
i=1

n m
4. otherwise, if n > 0 and m > 0 then (P)g, = [pe,o[(P2] | T1 Bepl(P)2] | S and p €
k=1 i=1
{1,..., 7+ n+m}.

Chapter 4. Encoding Compensable into Adaptable Processes with Objective Update 122

Table 4.1: Process I()((]P[)tp (Q)2) with p > 1. We use abbreviation outp® for process

£

outp’ ((]Pl)t 00 Pt, p7pp75t p,Bp,nl(pt,p,Y),nl(Bt,p,Y)).

(») 17 ((P)3,, (Q)2) for nym =0

(M B [t0PI3,] | (Y)Y | eh(t,Y) | (e} | pol(QD2]]
| je-Bp{(X). X} 7.hy

(2) B | [UPI3,) |t} Tere] | pol(Q2] | i Bp{(X). X} e

3) By |G | D LUQY] 1 5084 (X). X } 7o R

4) Bo|re | ol(Q]] | BA (X)X} Ty

(5) e | ppl0QIZ] | 7ok

(6) PlQ] | T

(v) 1P (P)3 5, (Q)2) for n > 0,m =0

(M) Bo[t[UPD2,) 1 H{()41Y] [ch(t, ¥) | outpe} | p,[1Q)2)]

| Ge-Bp{(X). X} T.he

(2+3) B[t 1l (K X)), Tl
| TLnp P02 | 48T hal0] | liQI] 13550 X)0

0<j<n-1
(2+m) 5211022, | 2L (2). T pol(P2] (1) T} | 200] | mpl1QD2
| By (X). X} T
(3+n) ARG AR | PACS IRl
| By (X). X } 7
(44 n) 5o e | XL pol0PE] 1 2(QUEI] 1.8, (X).) 7o
(5+n) ﬁp[m TLol0PD) | Q] 1 3, X) 70
(6+n) el TLpplUPD2) | Q) | 75
(7+n) 1T o l0P02] | pol(QE] | B
(») fﬁ”(qPDw, (@) for n = 0,m > 0 and
Nesteds = IT AUPIE] | o Ao (X) X .75
(1) B [t[qPDt,p] | H{(V)4Y] | eh(t, V) | outp®} | pyl1QD2)]

| §e-Bp{(X). X} T he

123 4.2. Translating Cp into O

(2+5) 8o [tLUPYE,) | Bep iYoo) 202 (v TT (BolE Y, 1)
i B (X)X} 7B | T (Bpl0PLE] | i 50) 75,)
| {132 }24[0] | pol(@Q D]} By (0) X) 7 T

(2+m) B[0PV, | 2(2) (1)1 | o (Westeds)] | (0] | p,[(Q)e]]
| j¢-Bp{(X). X} 7.y
(3+m) B [ELUPD,) | 101} | e (Nestede) | ppl(@)2)] | Bt (X)X} 7oy
(4+m) B[t | ru-(Nesteds) | p,[(QN2] 1 - B,{(X) X } 7P
(5 +m) B[11 (Nesteds) | p, Q] | BA(X). X)7
(6+m) ri-(Netseds) | p[(Q)2] | 7.7
(7+m) Netsed, | p,[(Q)) | e
(») 17 ((P)g . (Q)2) for n,m > 0
M B[t10PD2,] [() 4Y] | ch(t,Y) | outp}
| pol0@D2)] 1 Gu-Bpd (X)X 1R
(2+]+5) By|t[1P 2] oK Ko B (Yoo Yoo

(2).(T o1 Tl (T (Bl 0)

| oo {(X). X})

| T (BUPAE] o B (X) X)) 1)) 1) -]
| pol0QD2)] 1 Gu-Bo (X)X 1R

0<j<n-1

0<s<m-1

(2+n+m) 5o [HLP, | 11} 1 20(2). TT mplUPE] | re-(Nesteds)]| =[O
| pol0QD2)] 1 Gu-BoA (X)X 1R
(3+n+m) 5a[H10P02,) #1130 | T w4Pe) | e (esteat) | (1)
| e BA (X)X Y7 T
(4+n+m) 50 1 TL pol(POZ] | e (esed) | po[UQIEL] |3y (X) X} e
(5+n-+m) ﬁp[ﬁlppm 102 | 72 (Nesteds) | polIQD2)] | B,{(X). X 17

(6+n+m) T pplUPE] | re-(Nesteds) | QU] | 7ihe

Chapter 4. Encoding Compensable into Adaptable Processes with Objective Update 124

(T+n+m) 11 pol(P)2] | Nestedy | po[(Q)2] | hu

Definition 4.2.5. Let P,Q be well-formed compensable processes. Given a name u, paths

p,p, and g > 1, we define the intermediate processes O&q)((]F[)Z[hu.(]PI);,}, (Q)2) (ct. Table 4.2)

depending on n = nl(pu,p, (F)p[hu.(P)5]) and m = n1(Buy,p, (F)5[hu-(P)5]):
1. for n =0 and m = 0 we have ¢ € {1,. 6};
2. for n > 0,m = 0 and (F)j[h..(P)5,] = H Pupl(P)2] | S we have g € {1,...,7+ n};

3. for n =0,m > 0 and (F)p[hu.(P)5] = H Bupl(Pi)2] | S we have ¢ € {1,...,7+ m};

4. otherwise, for n,m > 0 and (F)p[h..(P)5,] = H Pup[(PL)2] | H Bupl(PL)2] | S we have

qge{l,....,7T+n+m}.

Table 4.2: Process O&q)((]F[)Z[hu.(]PDZ,, (Q)2]) with ¢ > 1. We use abbreviation outp® for process
Outpo (t7 (]P[)?,p7pt,p7pp7 Bt,pa ﬁpa nl (pt,p7 Y)a nl(ﬁt,pa Y))

(q) o&”(@bz[hu.mg/, (Q)2]) for n,m =0
M) B [u[(V1P] ()l]| ch(u, Y) |)T}
PACE]} | uBA ()X} 70 Ry
2) By [u[(D1 APIS] | B |) Tura | pol0GQDE)
A6 >X} Fuh
3) By [| T | LUQVEN| 1B (X)X}
@ ol |7 | pol0Q]] | BoA(X). X} o
(5) B | | 2pl(Q] | P
(6) hu | plIQ)) | P
(7) p QD)
() O ((F)3[hu-(P) (Q)2]) for m > 0,m =0
(1) Bo [u[(FDR [(PY]) | w(Y)-ulY] | ch(u,Y) | outp®}
| Pol0@D2)] | G- (X)X}
2+) B s LUF0IAPI) B | o (X, Xl 2).(T il
| iﬁlppmzﬂgbg] | u{th-Fura) (0] | po QD] | du-Bpd (X)X} T
0<j<n-1
(2+n) B[0PVl (PO | 2 (2) {1} T | TT mplUPDEIY] | 2l(QDE]

125 4.2. Translating Cp into O

| | 2200]] | B (). X b

(3+4n) 5o [[0FVglB (PU3) |) T | 1T ml4PE] | mpl1DE
|h}|juﬁp{<X>X}ru .

(4+n) o[1 T | TT molUPD) | 002 l)]] | B (X)X} T

(5+n) o[1 | TL pol(POZ] | pplIQUEI] 1 8,(X) X

(6+n) | LT pol0P0E] | mollQUE] | 7

(7+n) | T1 pol (2] o lIQDE] |

(8+n) 11 l0P2) | 2ol0Q02)

(a) oW ((F F3lhucAPY, (Q)2) for n = 0,m > 0 and
Nesteds = TT AP | Juc-55((X).X) Ty

(1) B [u[(F)3huc (PI] | (V) ulY] | eh(u,Y) | outp®)
| PolIQ2] | Gu-Bo (X)X} P

(2+5) Bo [IRV APUT) | B | Bupd (Vi Yin)2 (2):

(- CIT (B 0k 0] | B (X)X) | T (810710

o (). X) 7 Fu)) | ult}) Yy 24[0)
| PolUQR] | Gu-Bo (X)X}

0<s<m-—-1

(2+m) B [w 0PV AP)S] | 24(2).u{t} T | 7 (Nestedu) 1] | 20[0] |
| pol0QIZ]] 1 Ju B (X)X } T

(3 +m) By [w 0PV APV | ft}Fu | v (Nestedy) | hu
| D lIQV] | B (X)X b7 P

(4+m) B | T | - (Nestedu) | pp 0021 | By {(X) X} T

(5+m) By | 7. (Nesteds) | pol(Q)2]] | B,{(X). X Ty

(6 +m) hu | Tu.(Nestedy) | po[(Q)2] | T hu

(7 +m) hu | Nestedy | p,(1Q)]] | T

(8 +m) Nested, | p,[(Q)?]

(9) O ((F)3lhu-(P)S, (Q)2]) for n,m > 0

(1) Bo [U[GFI)Z[MGPDZ/H | u{(Y).u[Y]] ch(u,Y) | outp®}

Chapter 4. Encoding Compensable into Adaptable Processes with Objective Update 126

| polIQ2] | Gu-Bo (X)X} P

(J+s+2) Bp [u[QF[)Z[hUQP[)O]] | R | Pupf{ (X1s o Xnmj) Bup{ (Y1, .o, Yi—s).
(@), (T ol pr[dP’D]Im(klj((i,)

e B A (X)X}) | TT (BlUPAE] | s B (X)X o o))
| u{t}du) 13-l0] | polQD2)] | 3ucBo{ (X)X }F

0<j<n-1

0<s<m-1

(2+n+m) 6o [l 0PVl APV 264(2). T mplUPIE] | o (Nesteds | w1} 7))
| 24[0] | B | PoIQYE)] | JuBd ()X b

(34 n+m) 50 [u[0PV5l0APD3I) | T ppl(PZ] | - (Nesteds | u{f).72)
EAPACE 1} | uBA (). X YT b

(4+n+m) o[170 TTnplUPE] | (esteds) | pol()S]]
| B (X)X} T

(54 n+m) o[| TLppl(PD2] | (esteds) | mol(QUE]] | Bp{(X)-X) 7

(64 n+m) | T ppl(P2] | - (Nesteds) | p,[(QI2] | 75

(7+n+m) | TL ppl(P02] | Nestea | p,[(Q)2] | T

(8+n+m) 11 2, [UP)e] | Hesteds | ()]

For the proof of operational correspondence we need the following statement:

Lemma 4.2.3. If P and @ are well-formed compensable processes such that P = () then
(P)y = (QDp-

Proof. The proof is by induction on the derivation P = @), and perform the case analysis on the
last rule applied. In all cases the proof follows directly. |

In the following we prove that operational correspondence hols for translation (][)Z

Theorem 4.2.4 (Operational Correspondence for (-)7). Let P be a well-formed process in Cp.

(1) If P — P’ then (P)° —* (P’)° where for

a) P=FE|[C[a.P] | D[a.P]] and P’ = E[C[P1] | D[P]] it follows k =1,

b) P = E[C[t[P1,Q]] | D[t.P]] and P' = E[Clextrp(P1) | (Q)] | D[P2]] it follows k = 7 +
bp(F1) + tsp(P1) + Zp(P),

c) P = Cu[F[u.P],Q]] it follows k = 7 4 pbp(F[P1]) + tsp(F[P1]) + Zp(F[P1]),
for some contexts C|e]|, D[e], E[e|, F[e] processes P;,), P, and names t, u.

(2) If (P)2 —™ R with n > 0 then there is P’ such that P —* P’ and R —* (P’)?2.

127 4.2. Translating Cp into O

Proof. We consider completeness and soundness (Parts (1) and (2)) separately.

(1) Part (1) — Completeness: The proof proceeds by induction on the derivation of P — P’.
We consider three base cases, corresponding to cases a), b) and c¢) of Proposition 2.2.3
(Page 18). In all cases, we use Lemma 4.2.3, Definition 4.2.2, and Lemma 3.2.9 (Page 47)
which holds for (-)3.

a) This case concerns an input-output synchronization on a name a € N;. Therefore, we

observe that P = E[C[a.Py] | D[a.P]] and P’ = E[C[P] | D[P.]], and we have that
derivation corresponds to eq. (3.42) (Page 87). Therefore, the thesis holds with k& = 1.

(1) In this sub-case n,m = 0. Therefore, we have the following derivation:

(P)

E(CIP,Ql} | DRI
(CHPLQID | (DE-P)]
(COSLELPLQING] | ADDSIE P3|
o

o
£

= (B2 [(CO3[(Pg] | 1 (extep{t, (PG, b2yt B By} | 2y [(QD2))]
DS [E-he-(P5)S)
2[5 [1 (AP, 0Q1)] 1 (D3 - (22D
—> (ED2|(C)S,

l

/s /s s s P—N = = = = =

(4.10)

Thus, the number of reduction steps is £ = 7, and it has the following description:
e The first synchronization concerns ¢ and t.
e Notice that here —5 tells us that there have been five reduction steps:
- the first one is an update on location name t;

- the second reduction step “kills” with ¢{{} both the location ¢ and the process
it hosts;

- the third reduction step is synchronization on name j; and ;.

- the fourth reduction step is an update on location name f3,;

- the fifth reduction step is synchronization on name r; and 7.
e The last synchronization concerns h; and hy.

(ii) In this sub-case we consider the following: n > 0,m = 0 or n = 0,m > 0 or
n,m > 0, i.e., this is when there is at least one protected block and/or transaction
scope in the default activity P;. We have the following derivation:

((CL[PL,QI | IDE-Pa))g]
2 [(COS1LPHLQNE] | IDYIGEPa)]|
[

(]CDZ [t [(]PID?,p’] | L. (eXtrp{tv (Ipll)g,p’?pt,p/?pp’ > ﬁt,p% Bp’}

Chapter 4.

Encoding Compensable into Adaptable Processes with Objective Update 128

| P [(Q)2)}(] Do [Tt (P2) S]]

— (BD[(CO [V UPDE - Q)] | (DYS[E-Ae- (P23]
T ()2 (O ([(P, (D)) | (DD [(o)]|
— (B[(CD3 [(extro(P2) | ¢ Q>D2/}IQDD2NP2I)2~H
= (E)2[(Clextrs (P1) | (@)])5 | (DIP2IDg)

— (E[Clextre(P) | (@)] | DI
= (P')2

Notice that by Lemma 3.2.14 we know that ch(t, (P)7) = 0. The order/nature of
these reduction steps is similar as in the proof of Part (1) — Completeness 1 for
translation Cp into S (cf. explanation 1b). The difference is in the synchronization
on update prefix and location with name z;. This extra step we need for the
relocation of processes p,[-], which are enclosed on location ¢. Therefore, we can
conclude that (P). —* (P’). where k = 8 +n + m.

Process I(p)((]Pl[)t »+(Q)2) is as in Definition 4.2.4 (cf. Table 4.1).

b) This case concerns a synchronization due to an internal error notification (i.e., the error
comes from the default activity of transaction). Here we have P = C[u[F[u.P],Q]], with
m = pbyp(F[P1]) and n = tsp(F[Py]), and P’ = Clextrp(F[P1]) | (Q)]. Then we analyze
the following two cases:

(i)

In this sub-case we consider n,m = 0, and we have the derivation that is

like derivation presented with eq. (4.10). The difference is that in this case
we use O(q)((]F[)Z’p[hu.dPll)Z,],(]QD°) with ¢ € {1,...,6} (cf. Table 4.2) instead

£

P (P, (Q)2) with p € {1,...,6} (cf. Table 4.1). Thus, the number of re-

15
duction steps is k = 7.

This sub-case analyses scenarios in which: m > 0,n = 0 or m = O,n > 0 or
m > 0,n > 0. We have the following derivation:

|
[
[u[(F[a.P)S,]
[u[AFDS, @ (P

| w.(extrp{u, (F@.PL)S, s Pups Pps Bups B} | polIQD])]
— (C)2 [OD(AFDS, - (P, 1Q2)]

Q
(0]

X

—+
-~

o

—
|
o
=
9
-~
A ——
(U]

Process O&q)((]Fl)up[h (P15, (QD2), where ¢ € {1,...,7+n+m}, is as in Defi-
nition 4.2.5 (cf. Table 4.2) In this case, the role of function ch(u,-) is central:
indeed, ch(u, (F)3, , [hu-(]PIDZ/D provides the input h, which is necessary to achieve
operational correspondence.

The order /nature/number of reduction steps can be explained as in Case b) above.

We can then conclude that (P)° —* (P’)° where k = 8 + n + m.

129 4.3. Translating Cy into O

(2) Part (2) — Soundness: The proof of soundness follows the explanation presented in
Roadmap 3.3.3.2.3 and the same derivation that is presented in the proof of soundness for
translation Cp into O (Theorem 4.1.6).

4.2.4 Comparing Subjective vs Objective update

In this subsection, we provide that subjective updates are better suited to encode compensation
handling with preserving semantics than objective updates, again because they induce tighter
operational correspondences.

The following statement is a corollary of Theorem 4.2.4.

Corollary 4.2.5. Let P be a well-formed process in C. If P — P’ and (P)2 —* (P’)° then:

b) if P = E[C[t[P1,Q]] | DEE.E]] and P! = E[Clextr(P,) | (Q)] | D[Py]] then k > 7+ pbp(P) +
ZP(Pl)v

c) if P = Clu[F[u.P1],Q]] and P" = Clextrp(F[P1]) | (Q)] then k > 7 + pby(F[P1]) + Zp(F[P1]).
for some contexts C[e], D[e], E[e], F[o], processes P;, Q, P> and names ¢, u.
We then have the following theorem:

Theorem 4.2.6. The encoding (), : Cp — S is as or more efficient than ()5 : Cp — O.

Proof. Let P — P’ and (P)° —*2 (P')°. By Theorem 3.3.4, there is k; such that (P). —*
(P’)e and

a) ki = 1if P = E[C[a.P,] | D[a.Ps)] and P' = E[C[P}] | D[R],
b) ki =T+ pbe(Py) if P = E[C[t[P1,Q]] | D[E.P]] and P’ = E[Clextrs(P1) | (Q)] | D[R],
¢) ki = 7+ pbp(F[P1]) if P = Clu[F[a.P],Q]] and P' = Clextre(F[P1]) | (Q)].

By Theorem 4.2.4, Proposition 2.2.3 and Corollary 4.2.5 we have the following tree cases, for
some contexts Cle], D[e|, E]e], F'[e], processes P, Q, P, and names ¢, u:

a) P=FE|[Cla.P\] | D]a.P]] and P’ = E[C[P,] | D[P]] and ko > 1 = kq,

b) P = E[C[{P,,Q]] | DIE.P]] and P’ = E[Clextrs(P1) | (Q)] | DIP3]] and ks > 7+ pby(P1) +
Zp(Pl) > 7 —|—pbP(P1) = k1,

¢) P=ClulF[u.p],Q]] and P’ = Clextrp(F[P1]) | (Q)] and kg > 7+ pbp(F[P1]) + Zo(F[P1]) >
7+ pop(F[P]) = k1.

Thus, in all three cases k1 < kg; by Definition 4.1.7 we conclude that (). is as or more efficient
than (-)2. |

£

4.3 Translating C, into O

In the this subsection we concentrate on a source calculus with static recovery and aborting
semantics. We introduce useful conventions and intuitions for the translation and then we give
the formal presentations of it.

Chapter 4. Encoding Compensable into Adaptable Processes with Objective Update 130

(P = pp[(P)2]
[t[P,QI; =t[(P);,] | re- (extra{t,prp,pp} | PoQE]) | £{(Y)L[Y] | Te(Y).he}
(TP =The|P)

Figure 4.6: Translating Cy into O.

4.3.1 The Translation, Formally

The translation Cy into O, denoted (-}?, also relies on the key ideas of encoding (-),, Section 3.4.
We use paths and reserved names given in Definition 3.1.1 and Definition 3.1.2, respectively. For
encoding protected block we use the same intuition as in all previous presented encodings. To
encode transactions and their extraction function we use the auxiliary process outd®(l,l2, n, Q),
given with eq. (4.1).

A failure signal extracts all nested protected blocks and erases nested locations; our trans-
lation does the same with the corresponding located processes and nested locations. We define
the following auxiliary process:

Definition 4.3.1 (Update Prefix for Extraction). Let ¢, [, and lo be names and out®(:) is
defined with 4.1. We write extra{t,l1,l2} to stand for the following update prefix:

extra{t,ly,lo} = t{(Y).t[Y] | ch(t,Y) | outd®(l1,l2,n1(l,Y), t{t}.]¢)}. (4.11)
Now we can present the translation <D; formally. It is defined as follows:

Definition 4.3.2 (Translation C, into O). Let p be a path. We define the translation of
compensable processes with aborting semantics into adaptable processes as a tuple (M;, cpwr;)
where:

(a) The renaming policy @) : No — P(N,) is defined with

{z} if x € N

o () = .
{@, ha, ko, 2, 22} U{pp:x € p} fx €M

P

(b) The translation <D; : Cyp — Sisasin Figure 4.6 and as a homomorphism for other operators.

The basic intuition for the translation of (@) and t[P,Q)] is as in the case of the encoding
Cy into S§. The difference is in the processes out® and out®, and it has been explained in
Remark 4.1.1.

4.3.2 Translation Correctness

In this subsection we give proof of correctness of the translation presented in Definition 4.3.2
which includes proofs of structural criteria semantic criteria.

4.3.2.1 Structural Criteria

In this subsection, we prove the compositionality and name invariance.

131 4.3. Translating Cy into O

4.3.2.1.1 Compositionality

The first property is compositionality. For the proof of compositionality criterion, we need
to define a context for each process operator, which depends on free names of the subterms.
This definition relies entirely on Definition 3.2.4 by using (- > instead of (- >

Definition 4.3.3 (Compositional context for Cy). For all process operator from C,, instead
transaction we define a compositional context in O as in Definition 3.4.4. For transaction
compositional context is:

Cig.pler, o2 = t[[o1]] [ri- (extralt, pr,p pp} [pplleal]) | £{(YV) Y]] Te(Y) P}

Using this definition, we may now state the following result:

Theorem 4.3.1 (Compositionality for (-)°). Let p be an arbitrary path. For every process
operator in Cp and for all compensable processes P and @ it holds that:

4<P>> C ,p QPD] qt[P,Q]DZ = Ct[7]vﬁ[<PD§,p’4QDg] 4P | QDZ = CI NPDZaQQDZ]
=Ca |IPp] Pl =GPy ((va) P)lf = Cloa 1P
D = Ca [IP)S) (tm.PJf, = Cin [1PJ]

Proof. Follows directly from the definition of contexts (Definition 3.2.4) and from the definition
of M; : Cp — O (Figure 4.6) and has the same derivation as the proof of Theorem 3.2.2. [|
4.3.2.1.2 Name invariance

The second property is name invariance. We analyze this property with respect to the
renaming policy presented in Definition 3.2.3 (b).

Theorem 4.3.2 (Name invariance for 4);) For every well-formed compensable processes P and
substitution o : N, — N there is ¢’ : N, — N, such that:

(i) for every x € Ne: e (0(x)) ={0"(y) 1 y € @) ()}, and
(i) (o(P))g(,) = o' (P))
Proof. The proof proceeds in the same way as the proof of Theorem 3.2.4 by using (- > instead

of [],- u

4.3.2.2 Semantic Criteria

In the following we prove that translation C, into O satisfied operational correspondence. We
leave the analysis of divergence reflection and success sensitiveness for future research.

4.3.2.2.1 Operational Correspondence

In this section we shall prove that operational correspondence (completeness and soundness)
holds for the translation (7.

We are interested in precisely accounting for the number of computation steps induced by
our translation. We need the following definition.

Chapter 4. Encoding Compensable into Adaptable Processes with Objective Update 132

Definition 4.3.4. Let P be a well-formed compensable process, then function Z,(P) is defined
as follows:

1 it P=(P),
14 Zo(Py) if P =t[P,Q1],

Za(P) = § Za(P1) 4+ Za(P2) if P =Py | Py,
Zo(Py) if P = (va)Py,
0 otherwise.

Motivation for this definition is similar with the motivation in the discarding and preserving
semantics. When the number of protected blocks is at least one we have that there exist update
location on name z;. The level of protection that has abortion semantics orders that when the
number of nested transactions is at least one (there exists at least one nested transaction), the
structure of these transactions must be researched. When in nested transaction, the number of
protected blocks in default activity is at least one, the number of update location on name z;
will be increased for one.

Most of the lemmas, definitions, and theorems we have introduced to prove the operational
correspondence for the translation with subjective update (cf. Theorem 3.4.6), can be easily
adapted for the translation with objective update.

The following definition formalizes the intermediate processes that appear during derivation,
denoted with It(p) (P); .(Q)2). As in previously presented encodings, it plays a significant role

t,p’
in proving completeness and soundness.

Definition 4.3.5. Let P, () be well-formed compensable processes. Given a name ¢, a path

p, and p > 1, we define the intermediate processes It(p) (P)? ,{Q)2) (Table 4.3) depending on

t,p?
n = 1nl(pip, (P}), m = tsa(P) and s = S(P):

1. if n=0then p e {1,...,6};

n
2. otherwise, if n,m > 0 then (P); = [] pe,[(P)] | S and p € {1,...,6 +4m + s}.
T k=1

Table 4.3: Process It(p) (P); ,,(Q)2) with p > 1.

t,p’
(p) IP((PE . 1Q)) for n=0
(1) t[LPe] | re. (extralt, prp,pp} | DOlIQL])
| H{(Y)4[Y] | To(Y)-)
2) t{(P),] | e (extra{t, prp, pp} | pLIQRN) | T(P)). he

t[(PR,] | e (H{(Y).(¢[Y] | ch(t,Y)
| outd®(pe,p, 0p, 01 (P, Y, t{1}Ke))} | Dol QD) | 72Kt

(3) t{(P)] 1 H{(Y).(¢[Y] | ch(t,Y)
| 0utd®(pr,ps Py 01(prp, V), {1 1K)} | D [QI] | et
(4) t{P)] 1 ppllQIZ] | t{t} e | KroPy

() PollQIEN | ke | Kee.he

133 4.3. Translating Cy into O

(6) pollQ) | T
(p) L1, (Q)2) for and n,m >0
(1) P2, | o (extralt, pup.py} | pIQ]) | H{(Y)41Y] | Te(Y)T}
2+ 4m + 5 —n) PR, | T prallPIEI) e (e(0)-(1¥] | eh(t.)
| 0utd® (pr . s mL (P, ¥), (11T} | R IQRY) | 7ok
3+ 4m + s —n) PR, | T Pl PRI [H((V)-e1Y] | ch(t.)
| 0utd® (pr . by mL (P ¥). {1} T} | 2o IQUL] | R
(44 4m+s—n+) PR, | T RollP) | g o),
2{(2)(pr[xm pr[<P’D]|t{T} R} | #[0)
| polQu) | ke T
0<j<n-1
(4+4m + 5) P, | 2 >kﬁ1ppm 02 () Fe) | 400] | ppllQI] | kel
(5+4m + 5) t[(P);,] | gpp[P,;b ke | po[lQIET | e-Pe
(6+4m +5) TTpllPUETRe o lQ) | ke
(7 +4m+5) TTpllBLE] | Q1 |

The following definition formalizes all possible forms for the process oY (F D;[hu.<P DZ,] Q).

Definition 4.3.6. Let P, Q be well-formed compensable processes. Given a name u, paths p, o/,

and ¢ > 1, we define the intermediate processes O'% (F)P[hu{P)],{Q)2) (Table 4.4) depending

onn = nl(pu’p,QFD;[hu(sz,]), m = tsy(F[P]) and s = S(F[P]):

1. for n =0 we have ¢ € {1,...,7}, and

2. for n,m > 0 and (F))[hy{P)))] = T] pu,l{P{)] | S we have g € {1,...,7 +4m + s},
k=1

Table 4.4: Process O ((F)3[hu.(P)%],1Q)) with ¢ > 1.

(a) O ((F)2 [ha {P)3).1Q)), n = 0
(1) (Pl dPIR] | 7 (extral(u, pup po)) | PollQL])

| uf{(V)ulY] | Tu(Y) B}

extra{u, pu,p, Pp} | PollQ)])

Tu- (
| Tu((F) (R APJ D) P

Chapter 4. Encoding Compensable into Adaptable Processes with Objective Update 134

= UNPDZ,p] | Py (u{(Y).u[Y] | ch(u,Y)
| OUtdu(pu,p,ppanl(pu,p,Y)au{T}E)} |ppNQD;D | ﬁkuhiu

(3) w[lFR [P | ud(Y)ulY] | ch(u,Y)
| 0utd®(Pu,ps P 01 (Pupy Y, uft}-Eu)}) | 0ol Q] | Fuw-Prs
(4) wllFP [P dPI] | ha | QU] | w1} K | KuPru
(5) PollQI] | b | s | KuFo
(6) pollQI] | | P
(7) pollQ)2]
(a) O (F5[huPJy],(QF2) for nym > 0
(1) t[(F), [d P)y]] | ru- (extral(u, pup, pp) | polQ)])
| u{(V)-ulY] | Tu(Y)hu}
(24 4m+ 5 —n) u[lFp [Pl | Hpup[< 0] | e (uf (V) ulY] | eh(u, Y)

| outd” (pu,pyppanl(pu,p,)vu{T}ku)} |ppNQDaD |ﬁ]€uh7u

(3+4m+ s —n) ullFl PR | TT RPN | uf{(V)0lY] | chu,Y)

| 0utd®(Pu,ps Pps 01 (Pup, Y, u{t}-Eu)} | B | pol(Q 1l ky.hy

(4+4m+s—n+j) wl(F)p[hu{P'l})] |pr[4 T | pup{ (X, Xny).

a{(2).(H o[Xk] | H pollPLEN | u{t}-Ru) 1} | (0]

| hu |pPNQu>a] | ku-P

0<j=<n-—1
(4+4m + 5) ullP AP 24(2)- TT (B2)R] | =)
[o | QL) |
5+ dm +5) ullF AP) | TT po(PUE) Lt} R | | lIQE] |
(6-+4m + 5) ﬁ[ppm 1 | B | alIQE] | B
(7 +dm+3) TT Rl | | l1QE] |
(3 +4m+3) 11 pllBLE] | 2,121

For the proof of operational correspondence we need the following statement:

Lemma 4.3.3. If P and @ are well-formed compensable processes such that P = () then
(Pl = QIS

Proof. The proof is by induction on the derivation P =), and perform the case analysis on the

135 4.3. Translating Cy into O

last rule applied. In all cases the proof follows directly. |

We now state our operational correspondence result:

o

o). Let P be a well-formed process in Cy.

Theorem 4.3.4 (Operational Correspondence for ()

(1) If P — P’ then (P)> —* (P')2 where for

a) P=E[C[a.P|] | D][a.P]] and P’ = E[C[P1] | D[P]] it follows k = 1,
b) P = E[C[t[P1,Q]] | D[t.P]] and P' = E[Clextry(P1) | (Q)] | D[P2]] it follows k = 7 +
S(Pl) + 4tSA(P1) + Za(Pl),
c) P = Clu[F[u.P1],Q]] and P’ = Clextry(F[P1]) | ()], it follows k = 7 + S(F[P1]) +
4tsp(F[P1]) + Zo(F[P1]),
for some contexts Cle], D[e], E[e], F'[e] processes P;,Q, P, and names t, u.
(2) If (P)? —"™ R with n > 0 then there is P’ such that P —* P’ and R —* (P')2.

Proof. We consider completeness and soundness (Parts (1) and (2)) separately.

(1) Part (1) — Completeness: The proof proceeds by induction on the derivation of P — P’.
We consider three base cases, corresponding to cases a), b) and ¢) of Proposition 2.2.3
(Page 18). In all cases, we use Lemma 4.3.3, Definition 4.3.2, and Lemma 3.2.9 (Page 47)
that applies also for M;

a) This case concerns an input-output synchronization on a name a € N. Therefore, we ob-
serve that P = E[C[a.Py] | D[a.P2]] and P’ = E[C[P1] | D|P]], and we have that deriva-
tion corresponds to the derivation presented in (3.30) but here we use Definition 4.3.2
instead Definition 3.2.3. Therefore, the thesis holds with k£ = 1.

b) This case concerns a synchronization due to an external error notification for a transaction
scope. We consider P = E[C[t[P1,Q]] | D[t.P]], with n = pb,(P1), m = tsa(P;) and
s =8(P1), and P’ = E[Clextra(P1) | (Q)] | D[P:]]. We consider the following two cases

and their derivation. Process It(p) (<P1D§7p,, (Q)2) is presented in the Table 4.3.

(i) In this sub-case n = 0. Therefore, we have the following derivation:
(P2 = (BICIP,Q)) | DE-P])2

= (B2 [[CHPLQII | (DR

— (B2 [(C), 1P, QUI) | DI Pl]

— (BE[(C[t[1P),] | re. (extralt, peppp} | polIQL))
| LAY]| To(V)] (DI Pof]|
— (ER[ICp [(P; (@) 1 (D) [hedPagy]

— (BR[ICE [P (P Q) 1DIg e (Palf]|
— (B [iClg lextra(Py) | Q5] 1D [P}]]
— (BE[(Clextra(P) | Q)5 1 (DIP])5]

= (E[Clextry(P1) | (@)] | D[P]])2
= <]D/>f€J

Therefore, we can conclude that (P)? —* (P')° where k = 7.

Chapter 4. Encoding Compensable into Adaptable Processes with Objective Update 136

(ii) In this sub-case n > 0 and m > 0. Therefore, we have the following derivation:
(P = (B[Ct[PLQ]) | DEEP))
— (B[(ClPLQIIl; | DE-Po]))
(B (1), [it1PLQUE | (DISIE. Pl]
[ZP[WHH@HMHMMAWMVD

|tﬂ@vﬂ1|ﬁ@wmﬂ|u%ﬁmww;n

— (B[O IO, Q)] DR AP
st el ;Hﬂ&ﬁm“ PR 1) | DI P]
__44n QEDE Z[[I(7+4m+s (P, 1Q12) | (D) [ht.dPQDZuH
Rl

extra(P1) | (@))3] D[22]

:wmamman@mwmmm
— (B[Clextra(P) | ()] | DIPS])E
= (P}

The order/nature of these reduction steps is similar as in the proof of Part (1) —

Completeness 1 for translation Cy nto S (cf. explanation 1b). The difference exists

in the synchronization on update prefix and location with name z;. This extra step

we need for the relocation of processes p,[-|, which are enclosed on location ¢ out of

it.

Therefore, we can conclude that (P)° —* (P')° for k = 8 + 4m + s.

c¢) This case concerns a synchronization due to an internal error notification (i.e., the error
comes from the default activity of transaction). Here we have P = C[t[F[u.P;],Q]], with
n = pb,(F[P1]), m = tsp(P1), s = S(P1) and P’ = Clextra(F[P1]) | (Q)]. Then we
consider two cases and have the following derivations.

(i) In this sub-case we consider that n = 0.
(Pl = (C[ulFla. P,
4 D ([u[F[a.~],QI)7]
[[<F u.P] up] | 7. (extra{u, py papp} |ppNQD°D
| wa{ (V). ulY] | Tu(Y)-hu}]]
= (CR[u[lF), [k {APL)]] | Tu- (extrafu, pu,,pp}) | PolIQ]
| wu{(Y).u[Y]| Tu (Y)F}]
— (C[OPAFR, PR, (1))
W UFR, [(PG) (QID)]

Therefore, we can conclude that (P)° —* (P')° for k = 8.
(ii) In this sub-case we consider that n > 0 and m > 0.

(P2 = (ClulF[u.P1,Q]])2

137 4.3. Translating Cy into O

=(C) [u NF)Z’p[H.hu.QPlDZ,H | 7. (extra{u, pu,p, Pp})
| BlQI] | el (V) ul¥] | TulY)-Pu}]

— (ClR[ODUFY, It il Q)]

[03+4m+”m Jhac P QD)]

[08+4m+s (P P 1 QID)

[

Process O\ (([F F)y [ha{ P10 (Q)2), where ¢ € {1,...,8 + 4m + s}, is as in Defini-
tion 4.3.6 (cf. Table 4.4). Tn this case, the role of function ch(wu,-) is central: indeed,
ch(u,(F); [hu-{P1)3]) provides the input h, which is necessary to achieve opera-
tional correspondence.

The order/nature/number of reduction steps can be explained as in Case b) above.

We can then conclude that (P)2 —* (P')? for k = 8 + 4m + s.

S

(2) Part (2) — Soundness: The proof of soundness follows the explanation presented in
Roadmap 3.2.3.2.5 and the same derivation that is presented in the proof of soundness for
translation Cp into S (Item 2).

4.3.3 Comparing Subjective vs Objective update

In this subsection, we provide that subjective updates are better suited to encode compensation
handling with aborting semantics than objective updates.
The following statement is a corollary of Theorem 4.3.4.

Corollary 4.3.5. Let P be a well-formed process in C. If P — P’ and (P) —* (P’)? then:

b) if P = E[C[[P,Q]] | DEP)] and P' = E[Clextra(P1) | (Q)] | DIPy]] then k > 7+ S(P,) +
4tSA(P1) + Za(Pl),

c) if P = Clu[F[u.P1],Q]] and P’ = Clextra(F[P1]) | (Q)] then k > 7T+S(F[P1])+4 tsa(F[P1])+
Za(F[P1]),

for some contexts C[e], D[e], E]e|, F[e], processes Pi,), P> and names ¢, u.
We then have the following theorem:

Theorem 4.3.6. The encoding (), : Cx — S is as or more efficient than (-7 : Co — O.

Proof. Let P — P and (P)° —*2 (P')?. By Theorem 3.4.6, there is k; such that (P). —"
(P'). and

a) k1 = 1if P = E[C[a.P1] | D[a.R)]] and P' = E[C[P}] | D[P]],

b) ki = 7 + S(P1) + 4tsa(P) if P = E[C[t[P,Q]]|D[t.P.])]] and P =
E[Clextra(P1) [(Q)] | DP],

Chapter 4. Encoding Compensable into Adaptable Processes with Objective Update 138

¢) ki =7+ S(F[P]) + 4tsa(F[Py)) if P = Clu[F[@.P1],Q]] and P’ = Clextra(F[P1]) | (Q)].

By Theorem 4.3.4, Proposition 2.2.3 and Corollary 4.3.5 we have the following tree cases, for
some contexts C|e], D[e], E[e], F'[e], processes Pp, @, P, and names ¢, u:

a) P = E[C[a.Pi] | Da.Ps)] and P' = E[C[P1] | D[R] and ks > 1 = k1,

b) P = BCHP,Q]] | DEP]] and P’ = E[Clextra(P1) | (Q)] | DIBs]] and ks > 7+ S(Py) +
4tSA(P1) + Za(Pl > 7+ S(Pl) + 4tSA(P1) =]{717

)
¢) P =CulF[a.P1],Q]] and P' = Clextra(F[P1)) | (Q)] and ky > 7+ S(F[P1]) + 4 tsa(F[P1]) +
Zo(FIP]) > 7+ S(F[P1]) + 4 tsa(F[P1]) = k1.

Thus, in all three cases k1 < ko; by Definition 4.1.7 we conclude that (-), is as or more efficient

than (-)2. [|

Brief summary of the chapter:
In this chapter, we have two main results: (i) we presented the encodings of calculi for com-
pensable processes into the calculi of adaptable processes with the objective update (encodings
Cp, Cp, Cy into O); (ii) we exploit the correctness properties of encodings to distinguish between
subjective and objective updates in calculi for concurrency. We introduce an encodability crite-
rion called efficiency. Since subjective updates induce tighter operational correspondences,; we
can formally declare that subjective updates are more suited to encode compensation handling
than objective updates.

In the next chapter, we introduce dynamic compensation processes. We proved encodings of
dynamic compensation processes into adaptable processes with subjective updates (i.e., encod-
ings Cp, Cp, and Cp into S).

139 4.3. Translating Cy into O

CHAPTER 5

Encoding Dynamic Compensation Processes
into Adaptable Processes with Subjective
Update

Previous chapters of the thesis have dealt with encodings of the calculus of compensable processes
with static compensations under discarding, preserving, and aborting semantics into the calculus
of adaptable processes with subjective mobility. In this chapter, we discuss how to extend
the previous encodings to account for compensation updates inst|AY.R]|.P. Therefore, we
developed encodings of calculus of compensable processes with dynamic compensations, denoted
C*, under discarding, preserving, and aborting semantics into calculus of adaptable processes
with subjective mobility. In the following is given a brief structure of the chapter:

Section 5.1 introduces preliminaries for encodings of C* into A. More specifically, the section
contains an extension of syntax for compensable processes presented (cf. Section 2.2.1) for
a dynamic update. We also discuss the appropriate extension of well-formed compensable
processes.

Section 3.2 presents the translation of C into S. Then the formal definition of the encod-
ing follows. We prove that the encoding satisfies compositionality, name invariance and
operational correspondence (completeness and soundness).

Section 5.3 presents the translation of C3 into S. We introduce the formal definition of encod-
ing. We prove that the encoding satisfies name invariance and operational correspondence
(completeness and soundness).

Section 5.4 presents the translation of Cj into S. Then the formal definition of the encod-
ing follows. We prove that translation satisfies compositionality, name invariance and
operational correspondence (completeness and soundness).

5.1 Compensable Processes with Compensation Update

Compensable processes, which realize general dynamic recovery, extend static recovery processes
presented in Paragraph 2.2.1.2.1. In the following, we present compensable processes with
compensation update.

5.1.0.0.1 Syntax.

The calculus of compensable processes considers prefixes w and processes P, @, . .. defined as:

m™Tol= a|x

140

141 5.1. Compensable Processes with Compensation Update

P,Q == Static recovery processes ‘ Y | inst|\Y.R|.P

The main difference comparing with static recovery is that in compensable processes, the
body P of transaction t[P,Q] can update the compensation (). Compensation update is per-
formed by a new operator inst|\Y.R].P’, where function A\Y.R is the compensation update
(Y can occur inside R). Applying such a compensation update to compensation) produces a
new compensation R{@/Y} after the internal transition. Note that R may not occur at all in
the resulting compensation, and it may also occur more than once. For instance, AY.0 deletes
the current compensation. A compensation update has priority over other transitions; that is, if
process P in transaction t[P,Q] has a compensation update at top-level then it will be performed
before any change of the current state.

5.1.0.0.2 Operational Semantics

Following [29, 30|, the semantics of compensable processes with compensation update is
given in terms of an LTS. The LTS is parametric in an extraction function, which is defined as
in Figure 2.2 and additionally extended with the following rule:

extr(inst|A\Y.Q|.P) = 0. (5.1)

As before, error notifications can be internal or external to the transaction. The rules (L-
Our), (L-IN), (L-REP), (L-PAR1), (L-RES) and (L-BLOCK) are as in Figure 2.3. The other
LTS rules (L-Scope-OuT), (L-RECOVER-OUT), (L-RECOVER-IN), (L-INST) and (L-SCOPE-
CLOSE) are presented in Figure 5.1. The final two rules are peculiar of processes with dynamic
compensations. We comment briefly on each of them:

e Rules (L-REC-OUT) and (L-REC-IN) have the explanation as in Figure 2.3, with the
addition of a premise noComp(P);

e Rule (L-ScopPe-OuT) allows the default activity P of a transaction to progress, provided
that the performed action is not a compensation update and that there is no pending
compensation update to be executed. The latter is ensured by condition noComp(P), this
condition guarantees that there is no pending compensation update in P and is defined in
Definition 5.1.1). The condition is true if and only if process P does not have compensation
update which waits for execution. This means that a compensation update has priority
over other transitions;

e Rule (L-INST) performs a compensation update;

e Rule (L-ScopPE-CLOSE) updates the compensation of a transaction.

Definition 5.1.1 (noComp(e) predicate). The predicate noComp(P) that verifies that there are
no pending compensation updates inside P is true in the cases specified in Figure 5.2 and false
otherwise.

The following proposition and Proposition 2.2.3 are key to operational correspondence state-
ments. First, we present one auxiliary result that is needed for the proof of the Proposition.
Lemma 5.1.1. Let P be a compensable process. If P 2RO pfthen P = Hlinst|\Y.R].P)]
and P’ = H[Pj] for some evaluation context H[e] and processes P; and R.

Proof. The proof is by induction on the derivation of P > P’. |

Chapter 5. Encoding Dynamic Compensation Processes into Adaptable Processes with

Subjective Update 142
(L-Scope-Our) (L-RECOVER-OUT)
P% P a#)\Y.Q noComp(P) noComp(P)
HP,Q) 5 tP',Q)] t{P,Q] = extr(P) | (Q)
(L-RECOVER-IN) (L-Scope-CLOSE)
7 L-I

P i) Pl noCOmP(P) (NST) AY.Q P —)AY.R Pl
p= i AY.Q|.P——= P p=

(PQ 5 e(P) | (@) AT 11P.Q] 5 P R(QYY

Figure 5.1: LTS for compensable processes with compensation update.

noComp(0) noComp((P)) if noComp(P)

noComp(.P) noComp(t[P; Q]) if noComp(P)

noComp(!P) noComp(P|Q) if noComp(P) and noComp(Q)
noComp((ra)P) if noComp(P)

Figure 5.2: No pending compensation update predicate.

Proposition 5.1.2. Let P hbe a compensable process. If P - P then P =
C[s[H[inst|\Y.R].P1],Q] and P’ = C[s[H[P1], R{Q/Y}]], for some contexts C, H processes
R, P, @ and name s.

Proof. The proof proceeds by induction on the inference of P 5 P’. We will show that the
proposition is true for the base cases, whereas the inductive step follows directly. By LTS
(cf. Figure 5.1), in accordance with the Rule (L-SCOPE-CLOSE) we have the following: if

P = s[P/,Q] and P| 2RO P then P = s[P1,R{?A}] and by Lemma 5.1.1, we conclude that
P/ = H[inst|\Y.R|.Pi] and P, = H[P,] for some process P;. [|

5.1.1 Well-formed Compensable Processes

For compensable processes with compensation updates, the definition of well-formed processes
must account for compensation updates. Therefore, in the following, we present revised well-
formed compensable processes presented in Section 2.2.2.

Remark 5.1.3 (Well-Formed Processes with Dynamic Recovery). We revisit the notion of well-
formed compensable processes, now with compensation updates. An example of a process that
is not well-formed is the following:

% Py =ti[inst|\Yita[X,a] b | T | T — t1[bytalcsa]] | T | o (5.2)

Process P; has concurrent error notifications (on ¢; and t3), and a pair of nested transactions
(i.e., (t1,t2)) that is hard to capture properly in the representation that we shall give in terms of
adaptable processes. In contrast, we would like to consider as well-formed the following processes
(where t1 # t9):

P = t1[inst|\Y.t2[X,a]].byc] | T1.Ta — t1[byta[c,a]] | T1.E2. (5.3)

143 5.2. Translating C3 into S

For C* processes, the relation for well-formed compensable processes (cf. Figure 2.4) should be
extended with the following rule:

(W-INsT)
. . AL s t __
;4 |’Yl;51§p1 P Ty Aq ’72;52412 Q T3A3 ”73;53§p3 £ "nA" =0
A = ——— tlinst|[A\Y.R|.P,Q)]
U v U 65 V pi
i=1 i=1 i=1
where
(v, y2,73) = {(t,t") ' e m A" € 2 Uz}, A(t,0) = {(t,t) : ¢ € 6}, (5.4)

P(P) = (T'1,A1,7,61), P(Q) = (T'2, A2, 72, 02), P(R) = (I's, Ag,3,93) and

3 3
HAPP),PQ),PR) = (|JTi UT(11,72,78), [Ai U A 61 UG Uz Um Una U ys))
i=1 i=1

(5.5)

Rule (W-INST) specifies the conditions for ¢[inst|\Y.R|.P,Q] to be well-formed; it relies
on the key ideas of the Rule (W-TRANS). Therefore, § = {t}. The set of pairs of parallel
failure signals is the union of the respective sets for P, () and R and the set whose elements
are pairs of failure signals; in the pair, one element belongs to the set of failure signals of P,
the second element is from the union of sets of failure signals of @) and R. This extension with
(71,72, v3) is necessary for t[inst|AY.R]|.P,Q)], because P may contain protected blocks which
will be composed in parallel with R{@/Y'} in case of a failure signal. The set of pairs of nested
transactions is obtained from those for P, @), and R also considering further pairs as specified
by A(t,01 Uda Ud3 Uy Uy U~s) (cf. (5.4)). The rule additionally enforces that the sets of
parallel failure signals and nested transaction names in the parallel composition are disjoint. For
example, for process (5.3) above we can derive:

@, {(tl, tQ)} |m t]_ [inst L)\YtQ[X,a” .b,C] | Eg

In contrast, process (5.2) does not satisfy the predicate, since its sets of pairs of parallel failure
signals and nested transaction names are not disjoint: they are both equal to {(1,%2)}.

Building upon the syntax defined in Section 2.2.1, we shall write C3, Cp, C; to denote
compensable processes with compensation updates. Also, translations of C3, Cg, Cp into S and
O will be defined for well-formed compensable processes.

5.2 Translating C; into S

The translation C) into S, denoted [[-]]f,‘, extends the key ideas of the encoding [-], (cf. Sec-
tion 3.2).

Remark 5.2.1 (Reserved names). The translation requires sets of reserved names and therefore
we need to revised Definition 3.1.2 as in the following:

(i) the set of reserved location names N is unchanged and,

(ii) the set of reserved synchronization names is extended such that

N; = {hx7mI7kmaux7vxael‘vngfx ‘ X EM}

Chapter 5. Encoding Dynamic Compensation Processes into Adaptable Processes with
Subjective Update 144

Remark 5.2.2. The function for determining the number of locations (cf. Definition 3.2.1)
should be extended with the following:

nl(l,inst|AY.R|.P) = nl(l, P), and (5.6)
ch(t,inst|[\Y.R|.P) = ch(t, P) (5.7)

We will use process outd® as defined for [-], (cf. (3.2)). We need some additional auxiliary
process.

Definition 5.2.1 (Update Prefix for Extraction). Let ¢, I3, and Iy be names. We write
extrd((t,l1,l2)) to stand for the following (subjective) update prefix:

extrd(t, Iy, o) = t((V). (t[Y] | ch(t,Y) | outd®(ly, o, n1(L, V), iz e t (1) 7)) (5.8)

The intuition for the process extrd((t,l1,[2)) is the same as in the translation of Cp into S
with static recovery (cf. Definition 3.2.2). The only difference is in the third parameter for
process outd®, which enables us to have a controlled execution of adaptable processes, which is
important to establish operational correspondence. The prefix ¢((f)) and name h; have the same
roles as in [-],. The differences concern names m; and k;: while name m; ensures that every
translation of compensation () is updated if the translation of compensation update exists, name
k; controls the execution of failure signals.

Using well-formed compesable processes (cf. Section 5.1.1), the translation of C3 into S
extends Definition 3.2.3 (see Page 39) as follows:

Definition 5.2.2 (Translating C3 into S). Let p be a path. We define the translation of
compensable processes with dynamic recovery into (subjective) adaptable processes as a tuple

(L1p, ¢ppy) where:

(a) The renaming policy

{z} if z € N
80[[.]]3(95) = .
{xvhxamxakxauxavx7€z79x7fa:}U{pp3$€P} lffL’E./V;t.

(b) The translation [[]]2 : C3 — S is as in Figure 5.3.

Key elements in Figure 5.3 are the translations of ¢[P,Q] and inst|AY.R|.P;, which are
closely related to each other. Indeed, these translations share location names uy, vy, and e; (as
well as names f; and ¢;) in order to account for the possible replacement of @ in ¢t[P,Q] with R in
inst|AY.R|.P), using updates. As stated earlier, inst|\Y.R].P produces a new compensation
behavior R{Q/Y} after an internal transition.

5.2.1 Translation Correctness

We now establish that the translation [[]]; is a valid encoding. To this end, we address the three
criteria in Definition 2.3.5: compositionality, name invariance, and operational correspondence.
Other criteria have been left as a research topic for future work.

5.2.1.1 Structural Criteria

We prove the two criteria, following the order in which they were introduced in Definition 2.3.5,
i.e., compositionality and name invariance.

145 5.2. Translating C3 into S

(P =, [[P]2]
[HPQIL) = ¢[[PI2,] 1 t(extra(t, pi pp)
| e [0 l((X).(X | welFegi-ke)))])
| v [(2).(Z | ellQ2) | firer§(X)-X)).00))]
[inst|AY.R]. P, = w[e (V). (@ l(2).(Z | el[R])
| frer(X) X0-900-Frerl0]] | 1P
[£.P]) = t.he.[P])

Y, =Y
[a.P]) = a.[P])
[a.P]) = a.[P])

[0], =0

[(va)P]) = (vx)[P])
[Py | Py = [P | [P2])
[[!W.P]];\ =! [[W.P]];\

Figure 5.3: Translating C3 into S.

5.2.1.1.1 Compositionality

As previously stated, the compositionality criterion states that a composite term’s translation
must be defined in terms of its subterms’ translations. To mediate between these translations
of subterms, we define a context for each process operator, which depends on free names of the
subterms:

Definition 5.2.3 (Compositional context for C)). For all process operator from Cp, instead
transaction we define a compositional context in S as in Definition 3.2.4. For transaction and
compensation update compositional contexts are as follows:

Cupgloroa] =][] [.(extra(t,pup. pp) | mep[wl((X)-(X | wlFogik)))])
| ve[we{(2).(Z | edl[o2]] | free((X).X).g0))]
Cinst,p[®1, ®2] =uy [et«(Y)-@-Ut«(Z)-(Z | eclled]] | ft.€t<<(X)-X>>'gt)>))>>-(ﬁet[0])} | [o2]
Cyle1] = [o]
Using this definition, we may now state the following result:

Theorem 5.2.3 (Compositionality for [[]]f)‘) Let p be an arbitrary path. For every process
operator in G and for all well-formed compensable processes P and @ it holds that:

[P)3 = Co, [IPI2] [ELP,QID; = Cuyy [P, [Q2] [P 1 QD5 = Cy [[PT5, [QI5)]
[a.P]; = Co [[P];] [Pl =G [[P]})] [(v2)P)]; = Cuay [[PT))]
[@.P]) = Ca [[PI}] ['.P]) = Cu. [[P])]

Y]y = Cy [IY])] [inst|\Y.R].P]}, = Cinst o[[R]2, [P]},]

Chapter 5. Encoding Dynamic Compensation Processes into Adaptable Processes with
Subjective Update 146

Proof. Follows directly from the definition of contexts (cf. Definition 6.1.3) and from the defini-
tion of [H]l))‘ : Cp — S (cf. Figure 5.3). Therefore, considering Definition 6.1.3 and Figure 5.3 we
present derivation for: transaction, compensation update, process variable and all well-formed
compensable processes P, () and R. The other operators have the same derivation as in the
proof of Theorem 3.2.2. Therefore, the following holds:

[1[P,QII) = Cuyy,p [1P, Q12
= t[IPI,] | t-(extra(t, pops o) | e [0 {(X)-(X | walFr-gie]))])
| o [uel(2)-(Z | llQI) | froer((X)-X).90)]
[inst[AY.R].P]}, = Cinst o[[R]2. [P]}),]
= w e (V)@ l((2).(Z | elIRI] | foer{(X).XD-g00))-(FeerlO])] | IPDR,
YI) =Cy VD] = VT

5.2.1.1.2 Name invariance

We now state name invariance, by relying on the renaming policy in Definition 3.2.3 (a).

Theorem 5.2.4 (Name invariance for H;‘) For every well-formed compensable process P and
valid substitution o : N, — A there is a ¢’ : N, — N, such that:

(i) for every z € N : e, (o(z)) = {o'(y):y € 4,0[[.]]3(30)}, and

a(p)
(i) [o(P)I2,) = o' ([PL)-

Proof. We define the substitution o’ as follows:

o(x) ifx=aorz=t
ho@y fz=Mnh

My if z=my

koiry ifxz=kt

Ug(ry T =1y

Vory ifx =1

ety fx=¢

oty fx=g

foy ifz=fi

Do(p)y i x=p,

Now we provide proofs for (i) and (ii):
(i) The poof uses 5.9 and has the same derivation as the proof of Theorem 3.2.4 (i).

(ii) The proof proceeds by structural induction on P. In the following, given a name x, a path
p, and process P, we write oz, op, and o P to stand for o(x), o(p), and o(P), respectively.

147

5.2. Translating C3 into S

Base case: The statement holds for P = 0: HU(O)MP = 0',([[0]];\) & 0=0.

Inductive step: There are seven cases, but we show only the case for transaction scope and

compensation update. Proof for all other cases are similar as in the proof of Theorem 3.2.4.

e Case P = t[P;,Q1]: We first apply the substitution o on process P:

[o(t[P1,Q1])]5, = [otlo(P1),o(Q1)]]5,-

By expanding the definition of the translation in Definition 5.2.2, we have:

[o(t[P1,@1])]5, = ot[lo(P)]51,0,] | ot (extrd{(ot, pot,op, Pop))
| Mot pop [Vor (X)X | uot[for-Got-kot]))])
| Vot [t ((2)-(Z | eatllQ1I2] | fot-eorl{(X).-X)-gor))]

By induction hypothesis it follows:

[o(t[PLQDI, = ot|o'(IP1,)] | ot.(extrd(ot, potp: o)
| mat-pop [0t ((X). (X | ot for Gat-kor)))]) (5.10)
| 0t ot ((2)-(Z | eatlo” (IQUN] | Forr-car(((X).-X)-got))]

On the other side, when we apply definition of substitution o’ on [[P]];‘ the following
holds:

o (PLQULY) =o' (t|IPD] | t-(exteat, b))
| my.p, [%«(X)-(X | wel fege. k‘tD»D
| ve[uel((2).(Z | efl[QI2] | frer(((X o))
= o't[o’ ([[Pl]]f‘,/) | | o't.(extrd((0"t, Dot o ps Do p>>
| Mg't-Pa’p [Ua’t«()-(X | ua’t[fa’t Go't-kort])])
| Vort[ugr((2)-(Z | €orelo”(IQI] | fors-eorsl((X).XN-goru))])-

Given that it is valid o’(t) = o(t) (cf. (5.9)), it is easy to conclude that (5.10) is equal
to (5.11).

e Case P = inst|\Y.R]|.P;: We apply substitution o on process P:

(5.11)

[o(inst|AY.R].P;) = [inst|\Y.oR].0 P2, op

]]Ut ,op

By Definition 5.2.2
[o(1nsEAY. R} Py = ot [eor((V)-(Gat-uot ((2).(Z | eotlor(IR)]
| fot-eot{(X)-X) 90000 (ot €otlOD| | [(P) L3y
and by induction hypothesis:
[o(intNY-RJ P, = tor ot (V). (G-t ((2).(Z | emlo ([R2)]

o (5.12)
| for-eot((X)-X)-got))))-(For-eot[0]) | | o' ([P1]51,0)

Chapter 5. Encoding Dynamic Compensation Processes into Adaptable Processes with
Subjective Update 148

On the other side, when we apply substitution ¢’ on [P}];\ the following holds:

o' ([inst|AY-R].PI]R,) = o (u [er((V).(G5.u:((2).(Z | el [R]2)
| frer (X)X D900 (Frea0)| | [PI2,)
= ot | ol (V)-Gor-11 ((2)(Z | oo’ (IRI2)
| Sorton{((X)-X) g0 0)-(Fore-conlOD)] | o' (IPI2,)

(5.13)

Based on definition of the function o', i.e. o'(p,) = py(p) and o’(t) = o(t) (cf. (5.9)), it
is easy to conclude that (5.12) is equal to (5.13).

5.2.1.2 Semantic Criteria

In this subsection we prove that translation C into S satisfies operational correspondence (com-
pleteness and soundness). The other two criteria, divergence reflection and success sensitiveness,
are left for future work.

5.2.1.2.1 Operational Correspondence

The following statement formalizes the encoding of process R{@/Y}, and holds also for (][)2‘
and Mg
Lemma b5.2.5. Suppose R is a well-formed compensable process. Then [R{&/ Y}]]z =
(R0 x}.

We are likewise interested in giving a precise account of the number of calculation steps
for establishing operational correspondence in encoding dynamic compensable processes into
adaptable processes. We claim that subjective updates are more efficient than objective updates,
and this is to support it.

The following definition formalizes all poss1ble forms of the process I ([[P}]t ' [Q]2). Also,

due to the simplicity of writing for the process I ([[P]]t ' [Q]2), we will use the abbreviation

It(p) in all places where we do not violate the rationing of the content.

Definition 5.2.4. Let P, be well-formed compensable processes. Given a name ¢, a
path p, and p > 1, we define the intermediate processes Iép)([[P]]ap,[[Q}]g‘) depending on

n= nl(pt,pa [[P]]g\,p)
1. if n =0 then p € {1,...,10} and

1 = t[IPIY,] | extrd((t, peps pp) | mepp [0 {(X)-(X | walfrgiok]))]

ot [ur((2)(Z | el[QI2] | freel (X).X).90))]

TP | 1) (Y] 1 eh(t,Y) | 0utd® (s pps L (b1, V), Tz B £{(1)-Pi)))

| mepp [0 (X)X walFogi k)] | o[(2)(Z | lIQD] | fren((X).X)-00))]
1 = o[[P,] e et) e

| mepp [0 (X)X | walFegi kD)) | o[(2)(Z | lIQI] | fo-er((X).X)-00))]
1 = | [P, 1Rt e | [0 (X)X | el Fe-gioe]))]

-~

Il
~

149 5.2. Translating C3 into S
| [uel((2)(Z | el TQI | fren{(X)-X)-00))]
1 = [P, 1Rt) o | 2 [we((2)-(Z | ealTQIT | firen((X)-XD-900) | el]
1 = | 1PR, | 1 Rt B | pp [Fegicke | edllQIY] | firen((X).X).91]
1% = ¢ [[PIR, | | Rt ()R | py[gecke | e [QD2] | ec((20)-X).gt]
17 = t[IPIY,] 1 Rt) o | po [k | [QD2 | g0)
1 = | IPL,] | Rt) Fr | pp [| 1QI2]
1 = [IPI,] 447 | 2, [1QI2]

1" = 1 |, [[QD2]

2. otherwise, if n > 0 then [[P]]i:p

n
=TI pepllP}]2] | Sandpe{l,...,n+10},0<j <n-—1
k=1

and
= t|[PL,] 1 extrd(t. peps pp) | mepy [ve((CO-(X | wlFegiiki))))]
| efuel((2)(Z] llQR] | eeel((X).X)-900)]
1742 = t[1PI, | | pep(Xas pr Xel | TT polIPI2) | e Rt)
k=1
e OO | T k) | 0 [s2)-2 | ellQRY | foe(X)- -0
1 =t [IPR) | TT pollPE2) | et (4)-Re | mepy o0 ((0)-(X | wilFege-ke]))]
k=1
| ve[w(2)-(Z | edllQI2] | firerl((X).X)-00)))]
19 =P}, | TP Rt P w00 (X | i)
w22 | lIQR | Feed (X)X 0]
[= ¢[[P],] | H (IPI2) | Rt (1) e
|pp[+{((Z (Z|€t[[[Q]])| fre((X)X>>gt)>>|ut[ﬁ§kt]]
149 =t 1P, | TL ool | e (00 T) o o | QI | frer ())-01])
k=1
10 = ¢[1P,] | TT wollPIT | Rt (i)-Pa | py gk | edlQI2] | end((X).X).91]
k=1
10 = t[1PI,] | TT wollPAI) | Rt (iR | py [ke | 1QD2 | g2]
k=1
19 = t[1PI,] | TT pollPI2) | Fet (5B | py ke | QL]
k=1
179 = t[1PI,] | TT polLPI2) 1 6)-Be | p, Q1]
k=1

Chapter 5. Encoding Dynamic Compensation Processes into Adaptable Processes with
Subjective Update 150

11— T] plIP) 1 B | o112,
k=1

The following lemma formalizes all possible forms for the process
O ([F1 [P [PI) [QL]2) for m > 0 and ¢ € {1,...,n + 11}. Due to the surnph(:lty

of writing for the process Ong)(IIF]];\// [hu.IIPu]];\///], [[Q/u}]s), we will use the abbreviation Q'Y in
all places where we do not violate the rationing of the content.

Definition 5.2.5. Let P,Q be well-formed compensable processes. Given a name w, paths
p,p', and ¢ > 1, we define the intermediate processes qu)([[F]]é[hu.[[P]];)\,], [Q]2) depending on
n = nl(pu,, [[F]];);\[hu[[P]];\'])

1. for n =0 we have ¢ € {1,...,11}, and
oW _u[m [h-[PD) } Y).(u[Y] | ch(u,Y)

| outd®(py,p, Py ,nl(pup, Y), E (1) -hu))))
| M. Do’ [Uu«()-(X | Uu[fu Gu-ku)) >]

0P = u[[FR R [PIM] | B V)
| vuwal((2)(Z | eallQR] | fu-eu(X).X))-g0))]
O = u[[} IPIY]] | o | B u«ﬂ)ﬂlw 0ul((X)-(X | walFu b))
| vu[wal((2)(Z | eallQR] | fureu(X).X))-g0))]

O = u|[FI [IPIY]| | B | T o

|pp/_[uu<<<z>.<2|eum@u | fu- u<<X> X).90)) | walFo Gkl
0P = u|[FI;lhu[PT; Py [FaGaku | €allQI | fureu (X)X)-gu]
Py [Tk | €al QI | ew((X)-X)-0u]
Py [Guku | QL2 | 9u)
o [k | [QI2]
| B | wl() P | D [[Q12]

0 = u[[F][ha.[P])

[
[
O = u[[F1)[he [P
[
[

0V =4 '[F}]A h [P])

]
]
|

OF) = u|[FI [IPIY]| | B | T o |
|
I

0(10 = hy |h |pp [[[Q]
01(}1) = Dy MQ]]E]

2. for n > 0 and [[F]];‘[hu.ﬂP]]z,] = [I pu,llP/]2] | S we have ¢ € {1,..., n+ 11} and 0 <
k=1
j<n—-1.

OV = u|[F Ik IPIY]] 1 ul((Y)-(ulY] | ch(u,Y)
| 0outd® (pu,y, Py, 0L (Puprs), Mgk u (1)))))
| -y [0 (). (X | G-k)]
| vu [t (2)(Z | eal Q) | fuend((X). X)) gu))]
07 — | [FT) [[PI]] | P

151 5.2. Translating C3 into S

J

| Pupl (Xt X)) (T ol Xe] | T polIPAIR) | 0 Bewad()))
k=1

k=1
| M py [0u{((X)-(X | wulfu-Ga-ku]))]

O = w|[FIhu [PYI] | Pl T] pollFD2)
k=1

| Ko () P | Tpyr [0 (X)) (X | [for- G- Ful))]

O = w|[FIu [PTY]] | P | T] pollFD2)
k=1

| Ruww((t)-hu | [0 ((X)-(X | wulfuGu-ku]))]

O = [P APIS] 1 b | [T pollP2 | Fealit) e

by (22 | ullQ] | (X)) 00 | T
09 — [F AP | b | [T wollP)

e | o | collQR | Fueul(C9) X0 0]
09 — u[F P | b | [T ool

o) Ly e | IO | ea().)04

0D = wu[[F e IPIY] 1 | T polIP2) | Tl o | e [| IQD2 | 9]
k=1

O™ = u|[F)[R [PL)]

| B | TT pollPEI2) | Fua()-Fou | iyt [| [QI2]
k=1

O+ = u|[F) [hu [PLY]

| hy | pr[ﬂplé]]?] | U<<Jf>>h7u | Dy [[[Q]]é\]
k=1

O = T pollPiD2] | | o | Dy [[QI2]
k=1

0+ = T wellPI | oy [1Q1]-

k=1

The following definition formalizes all possible forms for the process
ér)(ﬂH]]é‘[[[P]]Qp],[[R]]?,[[Q]]g‘). Due to the simplicity of writing for the process

Uér)([[H]]ﬁ[[[P]]gp],[[R]]é‘,[[@]]é‘), we will use the abbreviation U{"” in all places where we
do not violate the rationing of the content.

Definition 5.2.6. Let P, @, R be well-formed compensable processes. Given a name s, a path
p, and r > 1, we define the intermediate processes Us(r) as in the following:

U =s|[HRAPL,)] | 5. (extra((s, pep.py)

Chapter 5. Encoding Dynamic Compensation Processes into Adaptable Processes with
Subjective Update 152

| 2 [06 GCOX | [ks)N]) | s [esl((V) (5505 ((2).(Z | € [[RL]
| foes§0X)-XD-g0))D- (Fores[0]) | exIQI2] | fures((X). X))
U§2) = S[[[H]] [[P]] ﬂ s. extrd (5, 0s,0,Dp)
| 2 [0 §O-X | [Tk D) | 0 [G:0((2)(Z | e, [IRIZHIE Y]
| fses«(X)X»gs)» |ﬁ~es[0] | fs~es<<(X)'X>>-gs]
U = s [[HIIPI,)| | 5. (extra((s, poy. py)
| 2 [0 {0 | s [Fogoks D) | 0 [G:0l(2)(2 | e, IR Y]
| foes((X).X).9)) | €[0] | e, ((X).X).g,]
U = s [[HIIP,)| | 5. (extra((s, po,.)
| a2 [0 ()X | wa[Fogoka)D]) | 0 [G2:u((2)(Z | e [IRIZH{TF)]
| foes((X).X).90) | 95]
UL = s[[HRAPR,)] | 5. (extra((s, pep.py)
| i[5 ((X)-(X | s [T s ksDN]) | 0 [ul((2)-(Z | es[TRI2p Y]
| fores (X)X D.g6)))].

Corollary 5.2.6. Let P be a well-formed compensable process and p a path.
If [P]) = C[P'] | D[Q'] then either:

(i) there are Ci[e], Dile], Pi, and Q; such that
— Clo] = [Cu[e]]}
— Dlo] = [D1[e]]7

- P = [[Pl]];‘, and Q' = [[Ql]];‘,,, where p’ and p” are paths to holes in C[e] and DJe],
respectively.

(ii) there are Ci[e], Pi, Q,t such that
Q' =t.(extrd((t, pe.p, pp)) | me-pp v (X)(X | Ut[ge-k)N])
| oe[ue((2)(Z | e[QI2] | free((X).X]
P = u[eil((V) (g0 (2)Z | e [RI2] | i et<<<) X)-90M)-(Frelo)] | TPITR,
and D[e] = [e], and C[e] = t[C]e]].
Lemma 5.2.7. Suppose [[P]];‘ — R. Then one of the following holds for P and R:
a) P = E[C[a.Py] | Dla.Py]] and R = [E];|[C]), [[P]] | [[D]]pl[[[Pﬂ]p"]} or
b) P = E[C[t.P] | D[t[P2,Q]]]
and R = [E]|[CI, (he [P | [P, (1 ([P [QIR)]| where
L[]} v, [Q12) s given in Definition 5.2.4. or
¢) P = E[u[Clu.Pi],Q]] and R = [E]} |08 (ICT3,, [k [PT)), [Q])| where
O(l)([[C]]u o1 P .[[Pl]];‘,], [Q]2) is given in Definition 5.2.5.

d) P = E[s[Clinst|\Y.R].P],Q)] and R = [E]}[UM([CI) [P ,), R [QD2)| where
DL 1. TRI2, [Q]2) is given in Definition 5.2.6.

153 5.2. Translating C3 into S

for some contexts C|e], D[e], E[e] and processes Py, P>, @, R. Also, paths p; is path to holes in
contexts E[e] and NJe], p’ is path to holes in contexts C[e] and H[e] and p” is path for DJe].

Proof. The proof is by induction on the reduction [P], — R. There are three base cases,
which can be obtained by applying Rule (R-IN-OuT)) with x = a or = = ¢, and this follows
the same idea presented in the proof of Lemma 3.2.12. There are one base cases, which can be
obtained by Rule (R-SUB-UPD) and the proof is in the following. We consider

[Pl, = E'[C'[P]| D'[s.Py | Ps]] — E'[C'[P{] | D'[s.P; | P§]l = R

and D'[e] = [e] and C’[e] = s[C"[e]]

The proof use Lemma 3.2.10, Corollary 5.2.6 and Definition 5.2.2.
[P, = [EILIIST,,] (1)
= [EDRs(IP]2,,] (2)
| 5. (extrd((s, ps,p, D)) | Ms-pp [0s (X)X | us[fo-Gs-ks]))]) (3)
| vs [us{(2)-(Z | es[[QI2]] fs-es((X).X)).g5))] (4)
= [EIS(ICTs o ([P]]
| 5. (extrd((s, ps.p, D)) | Ms-pp [Us (X)X | us[fo.Gs-ks]))])

| Us [US«(Z)(Z | BS[HQH?] | fses<<(X)X>>gs)>>]
_ [E[s[Clinst|AY.R].P,Ql,.

where
(1) [81,, = s[C"[PI]} | 5P | P}
@) [P/, = C"[P]), and
Pl = [es(V)-@-us ((2)(Z | €[TR | foes§(0)-X0-g00)-(Fo-es[OD] | IPD2,
(3) P = extrd(s,pappp) | map[os{(X).(X | uslFogak]))]
(4) Py = [us(2)-(Z | eallQI) | foresl((X).X).50)))]

where [[C[o]]]t):pl = ("[e] and p; and p’ are paths to holes in E[e] and Cle], respectively.
]

In the following, we analyze adaptable processes obtained from the translation of a transac-
tions that contains a failure signal in its body, which can be internal or external. For this we use
the Lemma 3.2.17 and Lemma 3.2.16, where we use [H];‘ instead [-],. In the following lemma we
will consider analysis of adaptable processes that can be obtained starting from the translation
of a transaction that contains compensation update.

Lemma 5.2.8. Let P; be a well-formed compensable process such that

[P12 = [ER[[GT) [INT) [[s[Hlinst (\Y-Ry) PLQJILY) | Mi] | My | Ms| | My and
. [{Pl]]g‘ —n-l R,
R= (B2 G} (I [P ([P/er 1Q10)| 1 03| | M5 | M3 | i,

where It(p)([[Pt]]typu, [Q¢]:) in R is as in Definition 5.2.4. If R — R’ then either

Chapter 5. Encoding Dynamic Compensation Processes into Adaptable Processes with

Subjective Update 154
D
= (B2 [GA I ([N (U U TP), IRAD2 QU] | MY | M3 | M3] | M,
1)
= [|[Gal) [[NaLy (U (LD (TP o), TRU2 TQU2)) | M) | Mg | g] | MY
where
o n > 1;

e p is the path to holes in [E[e]]2 and [Ex[e]]2 and k € {1,2};
e 0/ is the path to holes in [Gle]]}, and [Gy[e]]} and k € {1,2};
e p" is the path to the hole in [[N[o]]] , and [Ng[e]]] ,and k€ {1,2};

e " is the path to hole in [[H[o]]] , and [Hy[e] >‘, and k € {1,2}.
Proof. The proof follows the same idea that is presented for the proof of Lemma 3.2.16. |

The following lemma is crucial for the proof of soundness. We use abbreviation as presented
in Remark 3.2.18 and additionally we use

U'S(;?k7w - Usg)kw(HH¢kw]] ”I:[[5¢kw]]>\”’] [[quﬁkw IS [[Q5¢kw]])

Lemma 5.2.9. Let It(ipi . ijgk’w and Us(;,)k,w be processes from Definition 5.2.4, Definition 5.2.5

and Definition 5.2.6 respectively. If [P]} —" R, with n > 1, then

1)

z Sw Iy Tk
R= H [[Ew]]a { H [[Gk,w]]pw [H[[Ci,k,w]]p;,w [It(zpl)cw] | H[[Dj,k,w]]p;’w [htj,k,w'ﬂstj,k,wﬂpgﬁw]
w=1 = i=1

j=1

| H[[N¢kw]]pk S¢kw :l_A[[[LCI“U]]P;c [uckw]]:|
o=1
(5.14)

and P —* P’ where P’ is of the following form:
2)

z Sw Iy Tk
Pl = H Ew [H Gk,w [H Ci,k,w [ti,k,w[Pti,hw 7Qti,k7w]] | H Dj,k,w [tj,k,w-stjyk,w]
w=1 k=1 i=1 J=1
Ok
I H Nqﬁ,k,w [Sqﬁ,kﬂu [qu,k:,w[inSt L/\Yqb,k,w'R(z),k,wJ 'Pqﬁ,k,w]’qu,k‘,wH (5'15)
d=1
mg

| H Lc,k,w [Uc,k‘,w [Fc,k,w [Uc,k,w-Pucﬂhw]7Quc7k,w]ﬂ)
c=1

for some Eyle], Giwle], Cirwl®l, Djkwl®], Nekw®l, Hprw® and Ly [e] where w €
{1,...,zh ked{l,.. . swh,te{l,....k}, g e{1,...,re}, o€ {1,...0op} and c € {1,...,my}.

155 5.2. Translating C3 into S

Proof. The proof proceeds by induction on n and follows the same idea as presented in the proof
of Lemma 3.2.19. [|

Lemma 5.2.10. Let processes 1" ([P}, [Qi2), O (IFD h.[PuY], [QL]2) and

D HDIPIL). [RA2, [Qs]2) be defined as in Definition 5.2.4, Definition 5.2.5 and Def-
inition 5.2.6, respectively. For any contexts Cf[e], D[e]|, H[e], N[o] and L[e| the following holds:

CIIP (P [| D[he [Si])] — Cllextrn (P | QDI | DIISDY], (5.16)

N[US[H] IR), [R2, [Qs12)] — NIls[HIP], R { %A 111] (5.17)
LIOS(IE] o[- [Pul], [Q112)] —" L{[extro(Fr[Pu)]y | [(Q0)10] (5.18)

Proof. The proof proceeds directly by application of the reduction rules from Figure 2.5. |

For the proof of operational correspondence we need the following statement:

Lemma 5.2.11. If P and @ are well-formed compensable processes such that P = @ then
[P, = [QI;.

Proof. The proof is by induction on the derivation P = @, and perform the case analysis on the
last rule applied. In all cases the proof follows directly. |

Operational correspondence for the translation of dynamic compensable processes with dis-
carding semantics into adaptable processes with subjective update is given in the following
theorem:

Theorem 5.2.12 (Operational Correspondence for [-]7). Let P be a well-formed process in Cp.
We have:

1. If P 5 P’ then [P]} —* [P']? where either

a) P = E[C[a.P1] | D[a.P,]] and and P’ = E[C[P;] | D[P.]] it follows k = 1,

b) P = E[C[t[P1,Q]] | D[t.P]] and P' = E[Clextry(Py) | (Q)] | D[P2]] it follows k& = 11 +
pby(P1) or

¢) P =Clu[F[u.P],Q]] and P’ = Clextrp(F[P1]) | (®)] it follows k = 11 + pby (F[P1]),
d) P = C[s[H[inst|\Y.R|.P1],Q]] and P’ = C[s[H[P],R{%/}]] it follows k = 5,

for some contexts Cle|, D[e|, E|e|, F'[e|, H][e], processes P, @, P>, R, and name t, u, s.
2. If [P]2 —™ R with n > 0 then there is P’ such that P —* P’ and R —* [P']2.

Proof. Case (1) concerns completeness and Case (2) describes soundness. Case (1)(a) concerns
usual synchronizations, which are translated by [H]é Cases (1)-(b) and (c) concern synchroniza-
tions due to compensation signals. The fault signal can be external or internal to the transac-
tion, which implies that the analysis has two cases. Case (1)-(d) concerns synchronization due
to dynamic update of compensation in transaction. In all cases, the number of reduction steps
required to mimic the source transition depends on the number of protected blocks of the trans-
action being canceled. In the following, we consider the proof of completeness and soundness
separately.

(1) Part (1) — Completeness: The proof proceeds by induction on the derivation of P — P’.
We consider three base cases, corresponding to cases a), b) and c¢) of Proposition 2.2.3
(Page 18). In all cases, we use Lemma 5.2.11, Definition 5.2.2 and Lemma 3.2.9 (Page 47).

Chapter 5. Encoding Dynamic Compensation Processes into Adaptable Processes with
Subjective Update 156

a)

This case concerns an input-output synchronization on a name a € Ns. Therefore, we ob-
serve that P = F[C[a.P1] | D]a.P,]] and P’ = E[C[Py] | D[P%]], and we have a derivation
that is as Part (1) — Completeness for discarding semantics and static recovery processes,
in case a) (cf. page 64, (3.30)). Here we use Definition 5.2.2 instead Definition 3.2.3.

This case concerns a synchronization due to an external error notification for a trans-
action scope. We consider P = E[C[t[P1,Q]] | D[t.P2]], with n = pby(P;), and
P’ = E[Clextrp(Py) | (@ >] | D[P,]]. We have the following derivation where we use Defi-

nition 5.2.4 for process I” ([[P]]?p, [QY), pe{1,...,n+10}:
[PI2 = [EICP,Q]) | DEP]]

= [ER[[CIPLQIL) | [DEPII)]

= [ER[IC) [[1PQI}] | [IDDE-PI]

= [ER[IC) [[IAL,] | (extragt,

(X).(X | welfe-ge-ke))))]

(Z 1 &llQR] | fie(X)-X).90))] | [DIEhe [PL]

KR, [QI)] | DRl [P]

70 [[Pl]]tp QI | [P he [Pa]]

lextro(P1) | (@] | [P ([P

~ [E]2 _[[C[extrD<P> (@ >n13 | [DIRID;)]

= [E[Clextro(P1) | ()] | DIP]]]2

= [P']2
Therefore, k = 11 4+ n.

Dt,p Dp'))
| my. -Pp [vt {)
| v [us (2

— [E]Z HC

£

&€

)
A
—m0 B [[CT)
]

— [E]Z HC

£

c¢) This case concerns a synchronization due to an internal error notification (i.e., the error

comes from the default activity of transaction). Here we have P = Clu[F[u.P],Q)]], with
n = pby(F[P1]), and P’ = Clextrp(F[P1]) | (Q)]. Then we have the following derivation:

PR = [[C[U[D[uPl] m]s
= [CI2[[u[F[u.P],Qll,)
= [CR[u[[FmPIL,) | u. (extrd{(u, puppp) | polIQ12])]]
= [CR[u[[FI3 @k [P | u-(extrd{u, pu,y, po) | p,IQ12)]
— [CR |08 (TP [[P, QD)
—mt9 [CR[OSTOFL b [P, [QI2)]

[
— [CRIOTTVAFL h [P, [Q1D)]
=[O [[extro(F [Pﬂ)]]ﬁlpp[[[Q}]gH

= [C [extrD(F[P1]> | <Q>]]]?
P2

Process O&q)([[F]]f;,p[hw[[Pl]];/], [Q]2), where ¢ € {1,...,n+11}, is as in Definition 5.2.5.
In this case, the role of function ch(u,-) is central. Therefore, k = 11 + n.

157 5.2. Translating C3 into S

d) We have that P = C[s[H[inst|\Y.R|.P1],Q]] and P’ = C[s[H[P1],R{?}A}]]. We will use
Definition 5.2.6 for process US(T)([[H]]Qyp[[[Pl]]Qp,], (Q)2) where r € {1,...,5} and have
the following;:

[P]2 = [Cls[H [inst [AY.R].PLQII
:[[C]]g[s[[[ﬂ]] Jlinst|\Y.R|.P, }
| 5. (extxa((s. peys. 2y) | mapy [o3((X).(X | waFogeka))])
|03 [us((2)-(Z | e6[IQI] | foresl((X)-X).9,))]
— [CT[s | [HI2 lus [es((V)-(g5-us ((2).(Z | €, [[RL]

(
| fores (X)X g0 (Foesl0D] | IPIX,1] |5 (extra(is, ps,p ppr)
| iy [0al{(X).(X | walFegeka))))])
|05 [1s((2)(Z | € [[QI2] | fures((X)-X).g0))]]
— [CR UM HD, AL, Q1)
4 O U AH, 1AL, (1)
= [Cls[H [P, R{% NI

Therefore, k = 5. Let us analyze these reduction steps:

i) In [inst L)\Y.RJ.Pl]]Qp we find process [R] on location us, which is composed in
parallel with process [[P]];\ ,- This location may synchronize with the update prefix
on name ug that is implemented in [[S[P,QH]I’D\: such a step would move [R]2 from
location s to location v, leaving [[P]];\yp in s.

ii) In the translation of s[P,Q], process [Q]2 resides in location e;. This location
may synchronize with the update prefix implemented in [inst|\Y.R|.P]? s Which
contains [R]2: such a step allows us to obtain [[R]];\{[[QHP/Y} (cf. Lemma 5.2.5).

iii) The translations use synchronizations on fs, es, and gs to preserve operational cor-
respondence.

(2) Part (2) — Soundness: Given [P]} —" R, by Lemma 5.2.9, process R has the following
form:

R= H [[Ewﬂg [H [[Gk w]]pw H[[Cz k w]] It(l k w H[[D]JC w]]/\ [htj,k,w ' [[Stj,k,w]]zg’w]

k=1 Jj=1
| H[[N@k,w]];\;c o] H[[L wlpy OQ(Z),k,wm
¢=1

Also by Lemma 5.2.9, we have P —* P” where

Sw Tk
H Ey, [Hka chk’w i,k,w Ptlkw’Qtzkw | HDj,k:,w [tj,k,w-stmk,w]
w=1 j=1
Ok
| TT Vo [56.k0 [Hp b [108t [N ko Res ko |- Pos o)y @]
p=1
my

| H Lcakzw [ucvkvw [Fc7k>w [uc,k,w 'Puc,k,w] ’Quc,k,wH :| ?
c=1

Chapter 5. Encoding Dynamic Compensation Processes into Adaptable Processes with
Subjective Update 158

where by successive application of completeness it follows that [P]2 —* [P"]2.

By Lemma 5.2.10, i.e., by [; successive applications of (5.16), o successive applications of
(5.17) and my, successive applications of (5.18) on process R, it follows that:

R H[[Ew]]s[H[[ka]] H[[cmﬂ extro(P,, Oy 1 1@, 0] |

w=1
H[[ngw]] [0S, 015]

Q%
| H[[N¢,k,w]]2/k7w (56 [Ho b aw Peg 15 R U050 A NI]

| Hu el (lextro(FoplPuy D0y V1@, Ty 1]

Tk

= [[H E, [Hka chkw EXtrD Pt kow) | <Q£ka>] | HDJ'JWU [Stj,k,w]
w=1 j=1
O ,
| TT Now [sokwl Hopaw[Pey s R {50504 Y]]
p=1
my
| T Lo [extro(Fepul Puacse)) | (@ |12
c=1
= [P
Therefore, it follows that
Tk
~ 1] . [Hakw Hakw extro(Py,) 1(Q1) | T Dok [St]
w=1 j=1
Og ,
| T Noukao [S6.00 [How [Poy)5 Ry L S0 V]
=1
mg
| T B [extro(Fepal P | (@,]
c=1

Also, by Proposition 2.2.3 (i.e., by [} successive applications of case b) and and my, successive
applications of case ¢)) and by Proposition 5.1.2 (i.e., by oy applications of it) on process
P it follows that: P —* P'.

By successive application of (1) — Completeness on the derivation P —* P’ it follows

that [P"]} —* [P']).
|

5.3 Translating C; into S

The translation Cp into S, denoted (][)l); This translation relies on the main idea and principles
of encoding Cp into S (cf. Section 3.3).

Remark 5.3.1 (Reserved names). We require sets of reserved names and need to revised Defi-
nition 3.1.2 as in the following:

159 5.3. Translating Cp into S

(i) the set of reserved location names N is unchanged and,

(ii) the set of reserved synchronization names is extended such that

NsT :{hxamxakxvuxavzaexagmafxajx | z EM}

Accordingly, the function that counts the number of protected blocks is as Figure 3.4, while
the function that counts the number of transactions represents the extension of the function in
Figure 3.13, as in the following:

Definition 5.3.1 (Number of transactions). Let P = inst|AY.R].P; be a well-formed com-
pensable process. The number of transactions which occur in P, denoted tsp(P), is equal to
tSp(Pl).

Below we give a formal definition of the translation Cp into S. We instruct the reader that
this translation relies directly on the ideas that are presented in Section 3.3.1 and Section 3.3.2.

5.3.1 Translation Correctness

We need auxiliary processes extrp, that represent appropriate extensions of processes (3.37).
For extrp we will use process outp®(t, P, 1,1}, l2,l5,n,m) which is defined similarly as (), (cf.
(3.36)). Therefore, the auxiliary process outp®(t, P, 1,1}, 12,15, n,m): (i) moves n processes from
location I to location I}; (ii) moves m processes from location Iy to location l).

For the definition of outp®(t, P,l1,1},12,l5,n,m) we introduce the following auxiliary pro-
cesses for n,m > O:

outps(t,l1,11,n) = 11 {(X1,...,Xn). <H 11X | nlt.k:t.t«T)).jt.rt) V;

i=1
outps(t,t1,- - tm, la, Iy, m) = L((Y1,...,Ym).

(Tt- (H (BIE Ve,)] | e, 1o ((X). X >>-m-htk)> |7nt-kt-t<<Jf>>-jt>);
k=1

outpg(t,tl, coytm, U1, lll, l2, ZIQ,TL, m) = l1<<(X1, - ,Xn).l2<<(Y1, - ,Ym)
(H nXil | re. (H (15[€ (Ve 1)] |jtk'l/2<<(X)'X>>'Ttk'htk)> |mt-/~€t-t<<T>>-jt> M-
=1 k=1

The auxiliary process outp®(t, P, 11,11, 12,15, n,m), where top(la, P) = {t1,...,tm} (cf. Defi-
nition 3.3.3) for m > 0, is now defined as follows:

g ke) Jere ifn,m=0

outps(t,ly,ly,n ifn>0m=0
ou.tps(t7 P, ll, l/17 l27 l/2, n7 m) _ pl(1 1)

outp;(tatlw-"tmal%léam) ifn=0m>0

outps(t, t1, ..., tm, 1,11, 12,15, n,m) if n,m >0

(5.19)

Definition 5.3.2 (Update Prefix for Extraction). Let ¢, l1,1],l2, and I be names and P is
an adaptable process. We write extrp((t, P,l1,1],12,15)) to stand for the following (subjective)
update prefix:

extrp((t, P,i1, i, lo, b)) = t((¥)4]Y]] ch(t,Y)

5.20
| outp®(t, P, 11,11, 12,15,01(l1,Y),nl(l2, Y))) ()

Chapter 5. Encoding Dynamic Compensation Processes into Adaptable Processes with
Subjective Update 160

(P = po[1PD]
([P.QI); = By [t [1PD,] | t-(extrp (it 1PV P12y B)
[[0 (). (X | walFegi-ki])))
e[(2)-(Z | ed(@02] | Frerd((X)-X)-00)]]
| 30-B,((X).X) 7P
(inst [\Y.R].P)Y, = ue | er((V). @ ((2)-(Z | erllR)]

| free ((X)-X).g00))-(feeel0D| | (P2,

Figure 5.4: Translating C3 into S.

The intuition for the process extrp((t, P, 1,1}, l2,1})) in preserving semantics with dynamic
recovery is the same as in static recovery (cf. Definition 3.3.5). The only difference comparing
with static compensation is the third parameter. This parameter enables us to have a controlled
execution of adaptable processes due to achieve the operational correspondence. The explanation
of names m; and k; is the same as presented in the encoding discarding semantics with dynamic
update.

Based on the above modifications, the encoding of processes with dynamic compensations is
given with the following definition:

Definition 5.3.3 (Translating Cp into S). Let p be a path. We define the translation of
compensable processes with preserving semantics into (subjective) adaptable processes as a
tuple ()7, QD)\) where:

(a) The renaming policy ¢y : N = P(N,) is defined with

x if x € N
o) = 4 1 | | | (5.21)
r {xahzammvkmyuzvvmaeac?gmafm]xﬂax}U{ppaﬁp .pr} if v € Ny

(b) The translation (][)/\

» : Cp — Sis as in Figure 5.4 and as a homomorphism for other
operators.

5.3.1.1 Structural Criteria
In the following, we prove that translation Cp into S satisfies name invariance (cf. Defini-

tion 2.3.5). Analysis of compositionality is left for future research work.

5.3.1.1.1 Name invariance

We now state name invariance, by relying on the renaming policy in Definition 5.3.3 (a).

Theorem 5.3.2 (Name invariance for (-)7). For every well-formed compensable process P and
valid substitution o : N, — N there is a ¢’ : N, — N, such that:

(i) for every z € N, : cp(]_[)i(p) (o(z))={0d'(y):y € P ()}, and

(i) (o(P),) = o' ((P)))-
Proof. The proof follows the idea presented in the proof of Theorem 5.2.4. |

161 5.3. Translating Cp into S

5.3.1.2 Semantic Criteria

In this subsection we prove that translation Cp into S satisfies operational correspondence.
Analysis of divergence reflection and success sensitiveness are left for future research work.

5.3.1.2.1 Operational Correspondence

We use Lemma 5.2.5 for the proof of operational correspondence. Also, as in previously
presented encodings, we are interested in giving a precise account of the number of computation
steps for achieving operational correspondence. We claim again that subjective updates are more
efficient than objective updates. We will use Definition 3.2.1 (1) and Remark 5.2.2 (eq. (5.6)),
since we need function nl(l, P) to give us the number of locations [in process P.

The following definition formalizes all possible forms for the process It(p)((]Pl)i‘ y (Q)2). Due to

the simplicity of writing for the process I ((]P[)tp, (Q)2), we will use the abbreviation It(p) in

all places where we do not violate the rationing of the content.

Definition 5.3.4. Let P,() be well-formed compensable processes. Given a name t, a
path p, and p > 1, we define the intermediate processes I(”)((]P[)W,QQI)Q) depending on

n =nl(pp, (]P[)g\W) and m = nl(f;,, (]P[)f"p):

1. if n=0and m =0 then p € {1,...,13};
Y = 8, [L0PI,] | extrp(t, (P)y prps s Brps)
| mpp [0 {((X).(X | wel fr.G2-ke]))]
| ve[ur((2).(Z | ed(Q D?] | ft.et«(X).X)).gt)»H | Je-Bp (X)X) Tr.he
= Bp[[(P)),] | ¢ Y] | ch(t,Y)
| outp®(t, qPDtht,p,Pmﬂt ps Bp:01(pt,p, Y),n1(Brp, Y))))
| m.pp [0e(((X) (X | e[fo-G2Fa]))]

|wm«m<|M@Mummxuwmmﬁﬁm«mwaﬁ
1 = B[[(POA,) |70 Tt) oo | ey [n(X).(X | il - ka]))]
| v [un(2)-(Z | edllQ)2] | el (X).XD-g00]] 1By (X)) 7R
_ Bp[[UPDR,] | Tt (1) e | o [0 (X (X | welFogiRe]))]
|0 [uel((2)-(Z | eI | Froen((X).XD-g00] | |30, (X)X)72 R

1 = 8, [t[1PD,] | Rt »%ﬂmm«mwummﬁmﬁ«mxmm
| welFegikel] | 1 i Bp((X)-2) 75 R
Jﬁzm[qbﬂk«WvﬂmT%mmmm
| Feeel()-X) 2] 1B () X) T
zﬁzm[MMMEwm | po[gicke | (@2 | er((X)-X).91]|
(
)

| Je-Bp{((X)- X)) 2. he
g [[M’AIttﬁ»tﬁl%bﬂ%NQMl%HLﬁ%@X)X»ﬁE

It(S) [[P P} AN -Jere | pplke | (]QD?H | 5e-Bo{((X). X)) 7.y

Chapter 5. Encoding Dynamic Compensation Processes into Adaptable Processes with
Subjective Update 162

17 = B[10PY) | £(1)-Gere | [0 é}mﬁp i
18 = B, [Gore | ol D}mtﬂp X).X).7hy
1" = [p{b}ﬁ X7k
1% =1 | 5, [(QR] | 72
18 = p,[(Q0] | e

n
2.if n > 0 and m = 0 then then (P), = [[pepl(Pp)e) | S and p € {1,...,n + 13},
k=1
0<j<n-—1and:

1 = 3, [t[(PD,] | extrp(t, 1PV o P Bros By

| mepp [0 (- (X | walfo-gika)))]

| v [un(Z)Z | elQI | fieell (X)X D000 | | e-Bp (). X) 75 T
I8 = 8, [t [P | prpl((X1s - Xamy) pr pr

| 2Rt (4)-Gere)) | i [0 ((X)-(X | wlFr gi))]
| v [ul((2)(Z] e(QD | ft.et<<<X>.X>>.gt>>>]] | i Bp((X).) 75 T

17+ = B, [¢[(P pr] | Rt () o

| me.pp [oe (X)-(X | wel fe-Ge-ke]))]
| 0e[u(2).(Z | ecl(QD2]] froer((X)-X>>'gt)>>]] | Je-Bol(X).X)).T7.he

1 = g, e[(P pr Rt () Fere | oo [0 0(X)-(X | welFe-gika]))]
| o[(2)Z | el@] fierd (X)X D000 | 1By (). X). 75 T
1 = 8, [P, |pr Rt () dire | o [un(2).(Z | e (QD)
| el (X)X D000 | walFegil]] 1 Bl (X)-X) 7T

19 = g, [1[4P) | Bt (1) Gere | pp[fr-Gi ke |

:]:

.

(@ D]|ftet<<) X)-g }] | B ((X). X) 7 R

170 = 8, [t[0PY,) TTmol0PE) | Rt (5) G | o [G7-ke | edl(Q)?]
=1
| er{((X)-X).g Hutﬁp«()X)7 h
10 [|1 Lot Rt T | ol | 2 | 40]]

163 5.3. Translating Cp into S

n

10 = B, [t [1P02,) | TLeolCPDE) Rt (t) Fore | pp ke 1 QD] 1 e X) 72T
=1

10 = B[t [0PIA) | TT ol0PDC] 1) Fere | 9o [(QV] 1 de-Bof(3).) 75 e

i=1

n+10) [pr) | jere | Pp[(] e H | 5e-Bo{((X). X)) .74 hy

1 = ﬁp[pr e 1w [(Q1] 1 B,((X). X)) 75 R
1 = pr SIEAPAC RN
n+13) pr] Iht
3. if n = 0and m > 0 then (P [)tp—Hﬁtp[(] WDe] | Sand, pe{1,..., m+13},0<j<m-—1
and:

10 = 8, [t[(PI,] | extep(t, (P): ptps s s By)
| .o [0 (X)X | el fe-gioke])]
| [e(2)-(2 | eallQVT | frer(X)X)-90)] | 1 o8 (X) X TR

| G- Bpl()- XN TR) | T T (Bol0PRDE] | - Bp (). X)) Tt Py))
k

| TR b0 2)) | i [on GO X | el ki)

127 = 8, ([P, (T (Bol0PT | e Bo((X).- X)) 75)

k=1
| g Ke £ (1)-G | me-pp[ve(((0)-(X | wel fr-g2-ke)))]

| [(2)-(Z | el | fier(X). X900 | 18, 4(X) X)) 7 T
170 = By [t e (T (Bol0PDDE] | B ((X). X)) TR,)
k=1
| T t(5)-3e | 2 [oel((0)-(X | wal i Ra]))]
| [(2)-(Z 1 el | fier(X). X900 | 18, 4(X) X)) 7 T

1 = By [t 0P, e (T (Bol0P0DE] LB ((X).X) TR,)

k=1
| et ()¢ | pp[we((2).(Z | e:[(Q)2]
| fee:((X).X0).90)) | wel fz-gz. ktm | Je-Bo{((X). X)) 77 hy

Chapter 5. Encoding Dynamic Compensation Processes into Adaptable Processes with
Subjective Update 164

P = Bp [t UP] Ve (TT (BolUPDD i £3) 20 7)
| Kot (1) -J¢ |pp[ft-gt-kt | e[(Q)2] | ft-€t<<(X)-X>>'gtH | e-Bo{((X). X)) T by
187 = B, [t [0PI] 1o (TT (Bol0P] |t Bo((X)-X) 75 ey)

k=1

| ket ()Gt | pp[geke | e[(QD?] | 6t<((X)-X>>-gt]] | Je-Bo(X).X)72 he

17 = 8, [1P, | e H Bol(PA)E) | e -Bp((X). X)T e,)
0T ol | (O L] 1B, (). X) 7
15—, [i[P1] e ﬁ (BoUPL] | o By ((X). X)))
| Tt ()7 | 2 [k _|<1 QX] 1B (X)X 7
o _ 5/){ Il ﬁlﬁp (P | o Bp(X) X 7o o))
)-de | po[(Q jUt o rhe

[0+ _ g,,[(T (BolUPIEL | B (X)X 73 oy

k=

1
| T po IRV] 1 5u-Bo4((X). X) e
15 = 8, ro.(TT ol | i Bl). XD TR) |9 [0Q02] | 1 B, (X)X) T

k=1
I = H [0PI] | ey Bl (X). X0 Tt) | 2p [(QD2] | 72t
I = H D 1Bl (X). XN T) | 9o [AQDY] | e
4. otherwise, if n > 0 and m > 0 then (P)¢, Hptp[(] el | H Bipl(Pl)e] | S and p €

{1,... n+m+13},0§j§n—1,0<s<m—land

1 = B,[t[(PD,] | extrp((t, (P) s props s Brs By
|-y [or (X)X | wlFegi k)]
| [((2)-(2 1 ell(@2) | frenl (X)X D-g0)D]] 1 5e-Bp0((X0)-X) TR
[+ [[o |pt,, (X1, X)) Bipl(Yiy oo Vi),

n—s

(pr pr e (TT (Bol€ W, 0] i -Bo((X)-X) 7)

k=1
| H (BollPEDe] | e -Bp{((X). X)) T Py,)) IW-E-t«T»ﬁ) M)
k=1
| ma-pp [ve (). (X | wel fo-ge-ke))))]

165 5.3. Translating Cp into S

| 0 [ur((2)-(Z | e[(QD] | ft-et<<(X)'X>>'gt)»]] | e-Bo(X).X) .75 b

125 = g, [e[(P02,) | TTpel0P)-]
=1

| 7e-(TT (Bol0PADE] | ey -Bo (X)X) T2, Py))

k=1

| ke (1) -Je | me-pp [ve((X)(X | wel fr-ge ki))]

1 = g, [t [(P)y,)] | [Tneltrye

| 7e-([T (BolBR)E] | G- Bo (X)X T e,))
k=1

| et (1)-3¢ | 2o [0rl((XO-(X | wilFeika])))
|0 [un((2)(Z | ell(@2] | Froer{(0).XD-g0)] | | e, (X)X)-Teche

I = g, [P, | [Irol070

| 7e-(TT (BolAPADE] | - B (X)X) T2, Py))
k=1

| Bt ()3 | 2o e ((2)-(2 | exl(@2] |
fie((X)X D000 | wnlfo-gikal] | 1 G08,4(X).X) ke

187 = g, [t [0P),) | T pol0P]
=1

| e (T (Bol(PEDE] | ey -Bol((X)X T R,)) | Rt () T

k=1

| o [Fegike | el Q0] | freell(X)-X)-g1] | 1 5B ((X).-2) 75 R

18 = g, [e[P),) | TTeol0P]
=1

:]:

| e (L (BollPRDe] | - Bo (X)X) Tr e,)) | et (1) -

k

| o (g | edllQD) | ex((X)-2X).01] | | 5B, (((X).X) e

I = g, [P, | [Ipol0P1 1 0722

Il
:?H

| 7e-(TT (Bol0PADE] | ey -Bo (X)X T2, Py))
k=1
| Rt () 72 | p [mt|qQDA|gt]}|jtﬂp<<<). X))k

1S — gl p pr A eI GpE] i 8,305 7))

Chapter 5. Encoding Dynamic Compensation Processes into Adaptable Processes with

Subjective Update 166
| et (0)-3e | polke 1 002 1]] 1 Bp (X)X) P
10— [Tttt 0P, e T e
o B0 T o) 00|y [0Q] 18000) 75T
I ﬁp[pr I]f[l(ﬁpmpkb]
| o Bl X0) 7)) Vi | pp QU] 1By (X)X) i T
e ﬁp[pr S Hﬁp (7]

| i Bl((X).) 75 htk) | 2 [(Q2]] 1 8,((0)-X) T2k

[zemm) _ pr AN Hﬁp (P | gty -Bo(X)-20) 7 he) | 9o [0QD] | T
[t pr 1 TT 0] 800 X)) 2, [0Q2] |

The following lemma formalizes all possible forms for the process
O ((F) X[(Pu) 3, (QL)2) for mym > 0 and ¢ € {1,...,n + m + 14}. Due to the
simplicity of writing for the process O&q)((]F [)2,/ [hu.(]Pul);\///], (Q.)2), we will use the abbreviation

Oq(ﬂ) in all places where we do not violate the rationing of the content.

Definition 5.3.5. Let P,Q be well-formed compensable processes. Given a name u, paths
p,p, and ¢ > 1, we define the intermediate processes Oﬁq)((]F[)p[hu.QPl)px], (Q):) depending on
n = n1(pu,p, (F)plhu-(P)y]) and m = nl(Bu,p, (F)p[hu-(P) »]):

1. for n =0 and m = 0 we have ¢ € {1,...,14} and
O = B, [u[(FD, (A q D 1) 1 extep(u, (FDplhu-AP)], Bups P B o)
[)]

~

|mupp vy (((X Uu[fu Gt-ku])
|vu[uu<<<z> <Z|eum D211 foeeull)-X-gu)D]] 1 B §(X)- X)) TP
= B, [u[tFDplhu-(P)]] | ul(¥)-ulY] | ch(u,Y)

| outp®(u »(]FD [(P D]pupvppaﬂumﬁmnl(pum)anl(ﬂu,p’y))»
| ™ -Pp [”u« (X uu[fu Gu- u])»]

| vu [((2). <z | ul QD | freall (X)X -] 1 duBol(X) X 5 T
0P = 6, [u[(FVp [(PY1] | P | 0 For (1) T

| M- [0 (X)) (X | v fu-Gi-Ru]))]

|0 [0l{(2)Z | €all@2) | Forenll (X)X 9u))] | | B ()X) 7 T
0 = By [u[(F)o - APV | o | Tt (1) T

| o [0 0 (X | [Fui- k)]

|0 [0l (2)Z | €all@2) | Forenll(X).X))] | | B0 X) 7 T

/—\

167 5.3. Translating Cp into S

O = By [u[(F)o - APV | o | B ()T
| o[22 | ellQ2] | fueul((X).X) .00} | walFoiha]]]
| uBp (). X) 7 T

(

O = B, [w[(F)p o APV | o | B () T

| Do [ik | €allQI] | fr-eull(X) X0 gu] | | GuBol((X)- X)) P
0L = By [u[tFo - (V1] | P | Tt Fura

| P Gk | €al(Q2] | eu(X).X)). guﬂ | uBp (20 X) P
O = By [u[(F Dol 1PV | P | T

| o [k | IQDX 1 9] | 1 5B, ((X0)-X) 7
O = By [u[tF ol (Php]] | B | Fue(E) T |pp[k [6@I2]] 1 u-Bp (). X0) T T
O = By [u[LDl APV 1] | B |) ura | [DH | u Bpl((X).) T P
O = By [| Guema | 2o [(Q DH | u Bpl((X). X7
= By | I | po (2]|

)
O = hu | v | pp [(QD2] | 7
) —
)

h‘ |pp[(] De] |hu

2. for n > 0,m = 0 and (F)),[h.(P)y] = kﬁlp%p[(]P,;Dg] | S we have ¢ € {1,..., 14+ n} and
0<j<n—1and
O = B, [u[IF Dy - 1PV 1] | xCTp(tt Pus s B By
| 0 [0 (X)X | [T eu])]
| vu[wall(2)-(Z | €lIQD2] | frewll(X)-XN-9u)D]] | Bl (X)X P

OF) = 6, [u[(F) ol (P)1]] | B

| ey [(X)X | T G

OF™ = B [u[(F)plhu-(PY] | 1 | T] pol(P):]
=1

| ot () e | e [0 G(X)-(X | v [ForG-ka)))
| [0 (2)-(Z 1 eal0@D2) | Fi-eal{ (X)X gu))]] 1 B (). X) 7T

O™ = B, [u[(Folhu-APY1] | o | TTppl0PAD]
=1
| Futal()-Fora | 2[00 00O (X | walFoogi)]

Chapter 5. Encoding Dynamic Compensation Processes into Adaptable Processes with
Subjective Update 168

| ouunl((2)-(Z | eallQ2] | freu((X)-X).)] | | duBpl((X). X) 7o R
05" = B, [l (P, [hu- 4Py 1] | b | TLpol0P]

| Fucu0) T | 2o [0 (207 | eallQ] | Feewl((X)-X)) | e [T
| uBpl((X). X) T

O™ = By [u[(FDlhu-(PY1] | 1 | TT pol0P):]
=1

| Butl(t)-Ju-ra | o[fu-Geku | eal(QD] | ft-eu«(X)-X))-guH
| Ju-Bp{(X). X)) Fu-hu

O™ — B, [u[(F)ylhu-AP)1] | R | T]2o[0P):]
=1

| () Fu-ru | p G-k | €ul(QD2] | eu(((X). X))_gu”
| Ju-Bp (X)X T

O+ = By [ul(PY, huPY] | o | f[lpp[qpo]

) o |l | @1] 300 X) 75
O+ — B, [ulUF) AP] | s | f[lppmpo]

Tl e ol @] 1w () X) 75
O+ — B, [ulUF)lhucAPY]) | o | f[lpp[dPD]

i) Fara | 00 DAH B X T

0 = 3, n, |pr I Gura | 2o (0D | 1 B (X)) 7o
o™ = g, [, |pr)1 7 |2 [0QD2]] 18,400 X) 7
oLz pr T 7|2 [0Q0] | 7T
oy pr) | o | 2o [(Q)E] | P

14+n H pp | pp D/\]

3. forn =0,m > 0 and (F),[hy.(P)y] = [1 Bupl(Pi)e] | S we have ¢ € {1,...,14+m} and
k=1
0<j7<m-—1 and:

O = B [(D[(P1] | extep(fu, (FD, o APY L, s s s)

169 5.3. Translating Cp into S

| [0 (X)X |l b))
| o[((2).(Z | el | Fenll (X)X -] | | GuBp (X)X T
0P+ = g, [U[GFl)p[hu (P)] | b

m—s

| Bup((Vi, ., - (ra(TT (BplE iy w)] | G- Bp (). X) 71,)

k=1

| M pp [0u({(X)-(X | wul fu-Gi-ku]))]

| 7 H Bol (Pe)e] |JUk5p<<(X)X>>mTw)) | Ko (1)) -

k(X)X T k)]
| v [((2)-(Z 1 (@] | fi-eall (X)X 9]] | B (0 X) T T
O™ — B, [u[(F) lhu- (PD 1] | P

| ru- (1] (BolAPRD] | G- B (). XN T o)) | Ko u{(1) -

k=1
| Po[vu{((X)-(X | walfu-ge-Ru]))]

|0 [0l (2)Z | €all@I2] | Forenl((X).X).9u))] | | B (). X) 7 T
O™ = [u[FDp Phyl] |
w-(TT (BolBDED | - Bo (X)) T P) | (1)
k=1
| o[(2)-(Z 1 €al0@D2] | frenl((X)- X)) | walFo i]|
| B ().).

Tu-hy
O™ = B, [u[(FDplhu-(P)1] | B

| 7 (1T BolUPEDE] | e -Bp {020 T o)) | R
k=1

pT* | €l | Frreu (X)X D-gu] | | GuBp((X). XY TR
o™ ~ [[P)]] | b |

(T BolOPID] | B (X)) P o)) | Bt (1) e
k=1
| P (g | eall@D] | euf((3)- >>guﬂ|guﬁp<<<> X)

o+m = 5, [u[qF[)p[huG 1 e (TT (Bol0PADE) | G- Bo(X)-X0) PP)) |
k=1

Chapter 5. Encoding Dynamic Compensation Processes into Adaptable Processes with
Subjective Update 170

Rt | po[Gik | (QD2 1 9] | 1 dueBol((X)-) 7 P

O™ = 8, [u[(F) [l (PY 1] | o | 7o ﬁ (BolPD] | g -Bp (X)X) P o))
| Fustul(£-7u | pp [k 1 0QD]] 1 u-Bp (20 X) T T

O™ = B, [u[(E - AP))] | B | 7 kH BollP] | - Bp((X)-X) o Fo)) |
wl) G | 2o [UQDY]] 1 GuBy (). X) 7o

O™ = 6, | ﬁ (BolPIE] | g B4 (X)-X) T o))

|Tu|pp[Qﬂ|yuﬂp) X) T

O’l(l,ll+m) =5 [hu | 7o (H (/Bp[(]Pkl) I - Bp((X). X)) Ty)) | pp[(] D)\H

4. otherwise, for n,m > 0 and (F),[hy.(P)y] = Hpup[(]P’[) 11 H Bupl(P)e] | S we have
qge{l,..., 14+n+m}and0<j<n—1and0<k<m—1and

O = By |w[(E - AP)1] | exerp(u, (EDolhac-(P)). P Pps Bug o)
| 100 [0u (X)) (X | [fu-Gi-ku]))]
| [0l{(2)-(Z] eult@D2] | Freenl((X).X).9u))] | | B (X)-X) T
0P = 8y [u[(F)olhu-AP)]] | B

=1 k=1

| T (Bol0PD 1 s B0 X0) T o)) | () 7) D)
k=1

| 1y [oul((X).(X | walFa GrR))]
o022 | el l@] | Frenl((X)-0).00)]] 1 uBol((X)-) 7T

OF) = 3, [u[(F [k (PYy]] | | | [T pol0PID]
=1

171 5.3. Translating Cp into S

| 7u- H BolAPE)E] | us-Bo (X)X Torp sy)) | o () -
| 170 pp[vu«()-(X | wal fuge-ku]))]
| vu[wal{(2)-(Z | eal(@)2] | ft-€u<<(X)'X>>'gu)>>H | Ju-Bp (X)X) Fu-hu

O = 3, [u[(FY, [k (PYy]] | | [T 2ol(PI]
=1

| - (LT (BolPDE] | B ((X)- 200 -) | R ()
k=1

| Po [vu{(X)-(X | wul fu Gt -Ku]))]

| vu[wal{(2)-(Z | eal(Q)2] | ft-€u<<(X)'X>>-gu)>>H | Ju-Bp((X). X)) Fu-hu

O — B, [u[(F) R (P) 1] | P | T 2 l0PID]
1=1

7“u~(H (ﬂp[qplél)s] | Juy,-Bp((X). X)) T 1)) | Fu (1) -Ju

k=1

| 2o [wa((2)-(Z | (@] | Fr-eul((X).X)-g0)) | uu[ﬁ@.kulﬂ
| Ju-Bo{(X). X)) Fu-hu

Ot mm) — B, lu[(F)plha-AP) 1] | | T] ol 0PI
=1

|7 (TT (BollPD | B (X)X P o)) | Bl o
k=1
| o [Fugick | €allQD] | freall(X)X)-gu] | 1 5ueBo{((X).) 70 P
O+ = 3, [u[(FY [(PYy]] | B | pr[GPD)

k

[y

w-(TT (BB | -Bol(X) -2 T Fr)) | et T
| o[-k | eal(QD] | eu(X).X)-g Huuﬂp«(xyxm.m

O+ = 6, [u[(F)p - (PY] | |] polP)
=1

Py) | R ()

>

Pur([T (BolPED] | - Bp (X)X) Ty
k

[y

| o[-k 1 0QDX | 9] | 1 By (X)X) TP

O+ = 3, [u[(FY, [l (PYy1] | | TT 2ol
=1

| 7o (TT (BolAPID] | g -Bo € (X)X) T)) | Bt (1)

k=1

| o o QD] 1B (X)X) 7 T

Chapter 5. Encoding Dynamic Compensation Processes into Adaptable Processes with
Subjective Update 172

O+ = 3, [u[(FY [k (PYy]] | B | [T pol(PI]
=1

,ﬁ 5o l0PDE] | i Bo(X). X)) () o
|pp[q_ 2] | GuBo (X)X TP
Oomtm) — g, [h, | Hp S f[l(ﬂpmz%og]|juk.ﬁp<<<x>.X>>.m.m))|
u |pp[qc;D 2] L Bpl(X X).X) e
onm = g, [, |pr S Aﬁl(ﬁpmaéw|jukﬂp<<<x>.x>>.m.m>)
| ps[1Q DAH | m«(x»x»%ﬁ
offEmm) pr 01 e TT BolAP] 1 B30 X7)

k=1
Ih | po (@ DA} | u-hu

Offs+mm = pr 1 TT Bol0PE] | 8o G ()X Ty) | B | 2o [(QD2] | P

o = T iiP).

E:ls

53

(BolAPE] | G -Bo {(X)-X) Ty P) | 2 [1Q)2]

b
Il
—

The following lemma formalizes all possible forms for the process
S(T)((]H[)?[(]P[)é?p],(]RI)Q\,GQD?,) for r € {1,..., 5}. Due to the simplicity of writing for

the process US(T)((]HI)?[(]PI)?W], (R)2, (Q)2,), we will use the abbreviation U in all places where
we do not violate the rationing of the content.

Definition 5.3.6. Let P,Q, R be well-formed compensable processes. Given a name s, a path
p, and r > 1, we define the intermediate processes Uy)((]Hl)g\[(]P[))‘ 1, (R)2, (Q)2,)

s,pl> € €9

UL =B, 5[(HXAPY]] | 5-(ex6rp(s, Dops s B Bo)
| s [0 OO | s [T s RDD) s [es GV) G505 ()2 | esl(R)]
| Foes (X)X g0 (Fs s[0]) | eslUQD] | foves §(X)-X)0

Q

| 35 Bp(X).) 75 s
U = B, s [(HIP),)] | 5. (ex6rp(s,pops Py B Bo)
|02 (06X L uslFs GoksD]) | os[G04(2)-(2 | el (RN)]
| Fues () X).00) | FoeealO] | fueaf(X).X).01]|
| 358, ((X).X) 75 s

Ts.lg
2PI] | £ (extrp (5, Do D B B0)
{

| us[FoG5- kD)) | 0s [G5-0((2)-(Z | es[(RIM{ D }]
| fores(X)-X0).9.)) | es[0] | e (X)X)-g5] |
X

173 5.3. Translating Cp into S

UL = By || GHDIPI,)| | 5.(extxD(, P s s B By)
| e [00((X).(X | a[FoGaka)D)]) | vs [F50((2)-(2 | e[(R}
| Foresll () X000 | 96]] 1 B 4(X). X)) 75
US) = 8, [s (HDUPI,)] | 5-(extxp(s. P P B By
| -0 [0s((X)-(X [ws[Fogaka))]) | 05 [u6(2)-(Z | ea(RI2{ 4}
| fooesll (X)X -g00)] | 1Bl (20)-X) 7o

Operational correspondence for the translation of dynamic compensable processes into adapt-
able processes with subjective update, is given in the following theorem:

Theorem 5.3.3 (Operational Correspondence for (]D;‘) Let P be a well-formed process in Cp.

(1) If P — P’ then (P)2 —* (P’)2 where for

a) P=FE[C[a.P\] | D]a.P,]] and P’ = E[C[P1] | D[P2]] it follows k = 1,

b) P = E[C[t[P1,Q]] | D[t.P]] and and P’ = E[Clextrp(Py) | (Q)] | D[P]] it follows k =
14 + pbp(Pl) + tSp(Pl),

¢) P = Clu[F[u.P1],Q]] and P' = Clextrp(F[P1]) | ()] it follows k = 14 + pbp(F[Py]) +
tsP(F[Pl])a

d) P = C[s[H[inst|\Y.R|.P],Q]] and P’ = C[s[H[Pi],R{?}}]] it follows k = 5,

for some contexts C[e], D[e], E|e], F'[o], H[o], processes Pi,Q, P>, R, and name t, u, s.
(2) If (P)2 —"™ R with n > 0 then there is P’ such that P —* P’ and R —* (P').

Proof. Case (1) concerns completeness and Case (2) describes soundness. Therefore, in the
following we consider completeness and soundness (Parts (1) and (2)) separately.

(1) Part (1) — Completeness: The proof proceeds by induction on the derivation of P — P’.
We consider three base cases, corresponding to cases a), b) and c¢) of Proposition 2.2.3
(Page 18). In all cases, we use Definition 5.2.2 and Lemma 3.2.9 (Page 47).

a) This case concerns an input-output synchronization on a name a € Ns. Therefore,
we observe that P = F[C[a.Py] | D]a.P]] and P’ = E[C[P1] | D[P.]], and we have a
derivation that is as Part (1) — Completeness for preserving semantics and static recovery
processes, in case a). Here we use Definition 5.3.3 instead Definition 3.3.6.

b) This case concerns a synchronization due to an external error notification for a transaction
scope. We consider P = E[C[t[P1,Q]] | D[t.P%]], with n = pbp(P;) and m = tsp(P1),
and P’ = E[Clextrp(P1) | (Q)] | D[P,]]. We have the following derivation where we use

Definition 5.3.4 for process I ([[P]]tp, [QIY), pe{l,...,14 +n+m}:

(P)2 =(B[CIH[P1,Q]] | DE.P]])2

= (B[(CIH[P1,QI) | (DEP2ID))]
= (ED[(COMIPLQIM | (D)IE P]
= (ED2[(cD)

03 (B [£ (P02, 1 - (xtxp(t,pr s By B, B)
| [0 CO)- (X L el k)]
(

(X [f2
| ve[ur((2)-(Z | e[(QD] | ft-et<<(X)-X>>-gt)>)]]

Chapter 5. Encoding Dynamic Compensation Processes into Adaptable Processes with

Subjective Update 174

|8 (X)) 7. ht] | (D) R (Pe)]

— (ED2 [0 [Z (1P Q)] | (D)) [he-(Pa) |

R () coz[[f<m+"“3> (P2 QU] 1 4DD [(2]

— (B0 [(C0) [lextre (1) | (@3] 1D (P2

— (D[(Clextrs(P1) | (@)D} | (DIP2]))]
= (E[Clextrs(P1) | (Q)] | DIP]])?

= (P)?

Therefore, k = 14 4+ n + m.

c) This case concerns a synchronization due to an internal error notification. Here we
have P = Clu[F[u.P1],Q]], with n = pbp(F[P1]), m = tsp(F[Pi]) and and P’ =
Clextrp(F[P1]) | (Q)]. We have the following derivation where we use Definition 5.3.5
for process O&q)((]Fl)g// [hu.(]Pul);‘,,,], (Q.)2), and g € {1,..., m+n+ 14}

1P)2 = (C[ulF[.P,QI])2

= (CD2[QulF[a.P1,Q1))]

= (DB, [u[tF[@. P, | (TPt Pups s B By
| b [0 (X)X |l kal))])
| vl (Z)Z | eallQ]] fueal((X).XD-0))]]
| u Bpl((X).) T T

— (CD[ODUFY [(P, (QD)]
B (O[O (B - (P (Q)2)]

= (C). {extre(FIAN, | 20D]

= (Clextrs(F[P) | (@)])e

= (P).

We can then conclude that (P)2 —* (P')2 where k = 14 4+n +m.

S

d) We have that P = C[s[H[inst|\Y.R].P1],Q]] and P’ = s[C[P1],R{%}}],. We will use

Definition 5.3.6 for process US(T)((]H[)?7/,[[[P1]];\7P,], (Q)2) where r € {1,...,5} and have
the following:

1P)2 = (Cls[H[inst[AY-R]. PiQI))2
= (CD2[B, | s[(H (inst [\Y.R].P1),]
| 5.(extrp((s, ps.pt ' Bo,ots B)
| sy [0 40 (X | sl T kD)D)
|03 [us ()2 | e6l0Q02] | Foes (). XD-00))]]
| i Bp (). X) 7]
= (O (8, [$[(HD s [es((V)- (G115 ((2)-(Z | es[IRD]
)

| foes(0-XD-g0)0)- (Foes[O])] 1 1PD2,1]

175 5.4. Translating Cp into S

X).(X | s (o3 ks))])
Z | eslI@2] | foest(X)-X)-g0)]]

Therefore, K = 5. The explanation for the reduction steps is as in the proof of Theo-
rem 5.2.12 (Part (1) — Completeness 1-(d)).

(2) Part (2) — Soundness: The proof of soundness follows the explanation presented in the
proof of Part (2) — Soundness for Theorem 5.2.12 (cf. 2).

5.4 Translating C; into S

The translation Cp into S, denoted HZ‘, relies on the idea and principles of encoding Cy into S (cf.
Section 3.4). We also require sets of reserved names as in Remark 5.2.1 and we use function for
determining the number of locations as in Remark 5.2.2. We will use process outd® as defined
for [-], (cf. (3.2) and Example 3.2.1). We need some additional auxiliary processes.

Definition 5.4.1 (Update Prefix for Extraction). Let t, [;, and lo be names. We write
extra((t,ly,l2)) to stand for the following (subjective) update prefix:

extra((t, Iy, lo) = (V). (Y] | ch(t,Y) | outd®(ly, lo,n1(L, V), Fzjt (1) 7)) (5.22)

The intuition for the process extra((t, 1, l2)) is the same as in the translation of Cy into S with
static recovery (cf. Section 3.4.0.1 and Section 3.4.1). The difference is in the third parameter for
process outd®, which enables us to have a controlled execution of adaptable processes, which is
important to establish operational correspondence. The prefix ¢((f)) and name h; have the same
roles as in <D " The differences concern names m; and j;: name m; ensures that every translation
of compensation @ is updated if the translation of compensation update exists, name j; controls
the erasing of location on name ¢ with its contents. Using well-formed compesable processes,
the translation of Cp into S is as follows:

Definition 5.4.2 (Translating C; into S). Let p be a path. We define the translation of
compensable processes with dynamic recovery into (subjective) adaptable processes as a tuple

(<-D;, gowz) where:

(a) The renaming policy

{z} if z € N,
SOM; (z) =

{@, hay My, kg, o, Ug, Uz, €2, Gay [Jas Mz} U{pp 1@ € p} iz € N

(b) The translation Mz : Cp — S is as in Figure 5.5 and as a homomorphism for other
operators.

Chapter 5. Encoding Dynamic Compensation Processes into Adaptable Processes with
Subjective Update 176

{(P))) = p,[(P)]
QI = t[(PI,] | re-(extralt,pep o) | PAlIQ)
| mepp [0 | walFogigena RD)]) | 4400 AY] | oY) T
o[(2)(Z | QR | frenl((X).X)-90))]
(inst[AY.R].P)}, = ut e (V). (Gu{((2)-(Z | edllR)]
| free (X)X)-g00)-(Fredl0D] PR,

[£.P)) =T.he(P))

Figure 5.5: Translating Cp into S.

As in previous introduced encodings, key elements in Figure 5.5 are the translations of ¢t[P,Q)]
and inst|AY.R].P;. Indeed, these translations share location names wu;, v, and e; (as well as
names f; and ¢;) in order to account for the possible replacement of @ in ¢[P,Q] with R in
inst|AY.R|.Py, using updates. As stated earlier, inst|\Y.R].P produces a new compensation
behavior R{®Q/Y} after an internal transition.

5.4.1 Translation Correctness

We now prove that Mz satisfies the three criteria in Definition 2.3.5: compositionality, name
invariance, and operational correspondence. The other criteria are left as a research topic for
future work.

5.4.1.1 Structural Criteria
In the following, we prove the two criteria, compositionality and name invariance which are

introduced in Definition 2.3.5.

5.4.1.1.1 Compositionality

As we described in the previous encodings, to mediate between translations of subterms, we
define a context for each process operator, which again depends on free names of the subterms:

Definition 5.4.3 (Compositional context for Cp). For all process operator from C3, instead
transaction we define a compositional context in S as in Definition 3.2.4. For transaction and
compensation update compositional contexts are as follows:

Ciplon, o2 = t|[o1]] | 72.(extralt,prp, o) | mepp [0el{(X)-(X | welFrge-dens Fel))])
| £4((Y) Y] | Ta(Y)he) | v [uel((2)-(Z | edlloal] | Freer((X).-X).00)))]
Ciast plo1, 02] =z e ((V).(Ge-ue((2)-(Z | ealloa]] | Froes((X)-XD-g00)))-(FecelO])] | [o2]
Cyl[e1] = [o1]

Using this definition, we may now state the following result:

177 5.4. Translating Cp into S

Theorem 5.4.1 (Compositionality for <D;\) Let p be an arbitrary path. For every process
operator in Cp and for all well-formed compensable processes P and @ it holds that:

(P = Cyp | (PR]

(P) P b—cﬂ]p[q Q2] (Plep=cy [iPh.iep)]
(a.P)) = C.. [[P)

(@

4

0
. D [mz} ((v2)P))) = Cumy [(P)]
fim
4

]
Py =0z [1P))]
Yy = Cy (V)]

Proof. Follows directly from the definition of contexts (c¢f. Definition 5.4.3) and from the defini-
tion of <D2 : C — S (cf. Figure 5.5). Therefore, considering Definition 5.4.3 and Figure 5.5 we
present derivation for: transaction, compensation update, process variable and all well-formed
compensable processes P,() and R. The other operators have the same derivation as in the
proof of Theorem 3.2.2. Hence, the following holds:

- [

inst|AY.R]. P}, = Cinse o[|[RI, (P)]

#P.QY) = Cuyp PR Q1
= tHP%,p} | re. (extral(t, prp, o)) | me-pp [0 ((X)-(X | we[fe-Gr-gene-ke]))])

| £t ((V)tYT | Te(Y)Ro) | oe[ue((2)-(Z | eallQ2] | fe-er{((X)-X))-90))]

(inst|\Y.R| .PDZ\J, = Cinst,pKRg\aqPD?,p]

= wec{(V)- (G l((2)-(Z |l RRT | fier((X)-X).000) - (Fredlo])] 1P,
) =y || = i)

5.4.1.1.2 Name invariance
We now state name invariance, by relying on the renaming policy in Definition 5.4.2 (a).

Theorem 5.4.2 (Name invariance for Mz) For every well-formed compensable process P and
valid substitution o : N, — N there is a ¢’ : N, — N, such that:

() for every v € No: o (0() = {0'(y) :y € 9pp(a)}, and

a(p)

(ii) (o(P))3,) =o' ((P):

Proof. The proof proceeds in the same direction as the proof of Theorem 5.2.4. |

5.4.1.2 Semantic Criteria - Operational Correspondence

The analysis of operational correspondence follows the same ideas as in the translations C, into
S (cf. Section 3.4). Therefore, we use Definition 3.4.5, Remark 3.4.4 and Definition 3.4.6.
Below we state the premise (theorems and lemmas) that are necessary for the proof of operation
correspondence.

The following definition formalizes the intermediate processes that appear during deriva-

tion, denoted with It(p)(QPﬁ:p,dQD?). Also, due to the simplicity of writing for the process

It(p) (P) p,dQD;\), we will use the abbreviation It(p) in all places where we do not violate the
rationing of the content. As in previously presented encodings, it plays a significant role in

proving completeness and soundness.

Chapter 5. Encoding Dynamic Compensation Processes into Adaptable Processes with
Subjective Update 178

Definition 5.4.4. Let P,Q be well-formed compensable processes. Given a name ¢, a path p,

and p > 1, we define the intermediate processes It(p) (QPDZ\W (Q)}) depending on n = nl(p;,, (P),),

m = tsy(P) and s = S(P):

1. ifn=0thenpe{l,..., 14};

1 = (PR,] 1 re-(exerat. pops o) | mep [ve{(X)-(X | walfr-gione-ki]))])
| t((Y)-t[Y] |T() >> |Ut[ut< (Z | etNQD | frec((X)X>>9t)>>]

= 1[(P),] 17 (V). (1YY | eh(r Y) | 0wt (prp, oy 1L (p1 . ¥), TzJe-t(1)-72)))

| mep, [(X |mMmmanw<>[HmnE»
|mhmwMZMMQm|ﬁa«> X).90)))]

1 =P, | 1.t Y@[| ch(t,Y) | outd® (pt,p, By 1 (s Y), 7 G2 L) 70)))
| m.pp [ve (X w[fr.Ge-ge- e ke))]) | Tk he
| vt [Ut«(Z) (Z | €tN > Q]| frer(((X).X)). gt)»]

1 =t (PR,] 1440). (HY] | eh(t,Y) | 0utd® (prp, ppr m1(pr,ps Y), T i (D))

| m.pp [ve((X).(X | w[fr.Gege-ne ki))] | keohy

| ve[uel(2)(Z | ellQR] | fr-er((X).X).0)))]

= t[[PI, | 172 30t 0) 7 | ey [0 (X)X | el FeGiegeme R | e
| ve[ul((2)(Z | ellQR] | fr-er((X).X).0)))]

1 = (PR, | 1 7040 7 | 2 [on(X)-(X | el et gene F)D] | Kb

| ve[uel(2)(Z | ellQR] | fr-er((X).X).0)))]

1 = (PR, | 1704 72 | pp e ((2).

| Ut[ft gt-j-ne.k H | ke.hy

17 = | TP | Tt | p [FogdonnFe | edllQR] | frea (X)X)-g0] | e
1 = | 1PR,| 1 70400 72 | 2y [Gi-eme R | eallQ] | end((X)-XD-g1] | T
1 = t[IPR) VTt 0 78 | p (G QP |) | Ko

189 = t[IPIR,] 1 70440 75 | pp e QL | b

18D = [IPI,| 1 07 | o e Q] | e

1 =7 | ppneke QL] | ke

189 = p [Q2] | ke

1 = p, QL] | T

(Z | €t[4 D Q11| free(((X).X)).9t)))

2. otherwise, if n > 0 then (P), /= [] pi,[(F;).] | Sand pe{1,..., 14+ n+4m}.
k=1

]t(l) = t{[[P]]Z\,p} | Tt.(extra<<t,pt7p,pp>> | m¢.p, [Ut«(X)-(X | Ut[ﬁﬁ]t”zk@)))])
| t((V)LYT | TeY)) | on[we((2)(Z | elQ2] | fre((X).X)).g0))]

179

5.4. Translating Cp into S

Ge-ge-ne-k))]) | 7 kehe
| ve[ue((Z) (Z | ed[Q) | freel((X).X)).90))]

I(4+4m+s n+j) _ _ t[<Pltp | Hptp D]:| |ptp<<(X1> cee 7X”*j)'
=1

pr X! | pr Pp)] | mjet (1))

k=1
Imt Pove (X)X | wel fegegerna kD] | KeToe

| ve[ue((2). (] ellQR] | frerl(X)-X)-90))]
1) — [P, 1 T ppllB) | mede)
k=1
| mepp [0 ((X)-(X | we fe-Ge-jene-e]))]

175 = o121 L poltPALT | Fest)-8 | o0 Q)X | el Fegiome)]

| kehe | e [ue((2)(Z | Q] | free((X).X)-g0))]

J

k=1

| k-he | e [Ut«()-(Z] ellQET] frerl(X)-X)).g0))]

10 — [P,] | pr P et (0)-75 | 2 [ue((2)-(Z | e[| QL]

It(7+4m+s) _

It(8+4m+s)

It(9+4m+s) _

It(10+4m+s) _

It(11+4m+s)

| fren((X). >> O | welFi-gegene Rl | ke
P, |pr 1 Get)70 | pp [FeGedeneF | edlQ))

| free((X)-X0)-ge] | e-he

= t[(P,] | TTpoltPO) 1 700072 | p[G7deme e | edllQ))
)

k=1
| (%) X)-ge] | b
- _ J
H1P,) 1 TL2ollPOI 1 Tot)7 | a7 e | (Q | o) | b
1P,] | TT 2ol P Tt) 2 | eme B Q] | e

= t[(P,] | T poltPO) 1 60077 | oy (e R 11QI] | T

Chapter 5. Encoding Dynamic Compensation Processes into Adaptable Processes with
Subjective Update 180

J
1) = T P 1 72 | pp e e QLT | Ko
k=1

) - pr P | pp[Fe QD] | kehae
k=1

14+4m+s pr Pk | pp D] I }Tt

The following definition formalizes all possible forms for the process oY (QFDp[hu.QPDp,], Q).)-

Also, due to the simplicity of writing for the process oY (F), [P),1,(Q).), we will use the
(9)

abbreviation Oy in all places where we do not violate the rationing of the content.

Definition 5.4.5. Let P,@Q be well-formed compensable processes. Given a name u, paths

p,p, and ¢ > 1, we define the intermediate processes oY (F),[ha{P),],(Q).) depending on

n = 01(pup, (F), [hulP),)), m = tep(F[P]) and s = S(FIP]):

1. if n=0then pe{1,...,15};

O = w[(F), [hu (P 1] | - (extraius, g o) | My [0 G OO-X |l G ku]))])
|)l T TulY)) | v [wa(2).(Z] eallQRT | Fureu(X).X)-g0))]
= u[(F), [AP} | |- (u((0)- (ulY] | chu, V)
| OUEd® (P Py 1L (P ¥), () 7 >)>>
| [0 (GO (X | o G k)] | u(V) Y] | To(V) o)
| vu[wl((2)(Z | eallQR] | fu-eul((X)-X). gu>>>]
0P = u[(F), [hu (Pl]| | 7 (ul(V). (u[Y] | h(u,)
| outd® (pu.ps Pps D1 (Pu,p, Y), M- Ju- (1)) 100)))
| M pp [Vu (X)) (X | ol fu-Tu-du-ru k])N]) | Taou
| vu[ual((2)-(Z | eullQR] | Fureu(X)X))-g0))]
O = u|(F), [hudP),)] | uf(¥).(ulY] | h(u,Y)
| 0utd®(Pu,p Pps 01 (Pup, Y), M-t (1))
| [0l (X)-(X | o Gruema B)] | e T
| vu[ual((2)(Z | eallQRT 1 Freul(X).X))-gu)]
O = w[lF), [Py 1] 1 o | 7 Tt | 0 [0l (). (X |t Fr G o))
| bu | v [0 ((2)(Z | Q] | fieal((X)-X) 00}
O = ul(F), [hud P] | | Tl | 2[00 G -(X | [FacFa e Tu))] | Ko
| v [ual((2)(Z | eullQR] | Freul(X).X))-gu)]
0 = w[lF), [hu{P)y 1] 1 | a7 | 2y [(2)-(Z | €all Q) | freal((X)-X).9))
| aFo G Fl] | B
O = u|(F)[hud Py | | ha | G700 | P [FuGi-dima o | eallQ)l]
| feeall(X0)-X)-0u] | kucha

181 5.4. Translating Cp into S

A1 B | Fal(t) 05 | p (G T
| eall Q) | nl((X)-X)-] | ua
o)) 1 | G ul(E) P | pp (G-
]
]

0 = u[F}, [hu.(P) u/-?uwailgu] | Ku-Frg
O = w[lF), [Pl | | P | Tl 730 | Lma B | (@ H hu

O = w[lF) (A d Pl | | B | wl(t)-7ia | pp[naa | QL] | B

O = h, | 7 |pp[nu-k7u| QL] | ku-hu

Q)
QR | ku-hu
|

2. otherwise, if n > 0 then (P), , = [] pe,[(F).] | Sand pe{1,..., 154+ n+4m}.
k=1

oW = u[mp[hu.<ppp,] | ru-(extral(t, pup, b))
| mu-pp [0u((X)-(X | wul fu-Gu- 1w Fu])])
]

| U<<(Y)-U Y] | Ta(Y)-ha) | va [ua((2)(Z | eullQ)2]
OfpHimts-n) u[mp[hmw | TLpesltPLI] | v (exeraon .)
i=1

| mu.pp [UU«(X)(| o fu G- K])>>]) | TP
| vuua((2)-(Z | eallQ2] | fu-eul((X)-X)-gu))]

O+ m+s=1) = u[(F), [, {P),] | Hpu,p[<1%’>51] | extral(u, pu,, pp)

| vu[ua{((2).(2 | eal|Q)2] | fu- 6u<<() X)-g))]

ot — uf|F), H PupllPILI] |l | D (X0, X).

J

pr Xi] | H | Juud(E)))

o[(O CX | o ura Fa] |
ol D)2 @l Q) | Fuen((X)) 00))

Otam+s) _ u[| hy | pr Pi).] | g (1) T

p

| mapp [va ((X).(X | uu[fu Gu-Ju-nu-ku]))]
| kP | vu[un (2)(ZleuN P fusea((X)-X)).9u))]

O™ +) — u[(F),[hudP),] | B |pr P | Tt

| Po[vu{(X).(X | uu[fu-guﬂu-nu-kun»]

Chapter 5. Encoding Dynamic Compensation Processes into Adaptable Processes with
Subjective Update 182

J
OlfHimts) — u[m,,[hu«Pbp,ﬂ b | TT Pl | Fuul(t)-7

O t) — u[mp[hwpbp,ﬂ | | T pollPEL) | ()7
k=1

| P [FaGadurau | €allQ) | fuew (X)X)00 | houra
OFAm+) — u[(F), [Py]| | B | [l | Foei)

k=1
| Py [Fa-urFou | eallQ2] | eul((X)-XN).gu] | Fu-lra

OL+4m+) — u|(F), kPl | | TT poltPi) | Fuut) o
k=1
| Do [T riuFou [QR] gu] | FuFru
OO+ 5) — (), [k Pl)] | | T pollPEL] | Tl
k=1

| pplde-neFe | Q] | kufrw

O — (B [Pl | | TT 2ol P |) 7o | e |IQI] | B
k=1
J
0G24+ — o | T wolPLL] | 75 | pp [1{Q2] | KT
k=1

J
01813+4m+5) = hu | pr[<PI::D5] | 1 pp [E | QQD?] | Kuhy
k=1

J
O™ = hy | [T ol BEI 1 1 2 [1QE] | P
k=1

15+4m+8) H Pp Pk | Do NQ>2\]

The following definition formalizes all possible forms for the process

Ué”(dHD?NP)g"p],QRD;\,(QD;‘). Due to the simplicity of writing for the process
S(T)(QHDMP&F,],QRD;\,(QD?), we will use the abbreviation U{" in all places where we do

not violate the rationing of the content.

Definition 5.4.6. Let P,Q, R be well-formed compensable processes. Given a name s, a path
p, and r > 1, we define the intermediate processes Us@ as in the following:

U = s[[HIMIPR,)] | 7 (extrads, pap. py)
| s [0 (X)X | s [Fogions kD)) | QY)s[Y] | To(¥).B5)
| s [es ()G ((2)(Z | s[RI
| foees§(X)-X0)-00))-(ForesfO]) | e5lTQI2) | foves §(3)-X)-g:]

183 5.4. Translating Cp into S

U = 5| [HIIPI,)| | 7o (extrals, by, pp)
| [06((X)-(X | us[Fogorks D)) | sCY)s[YT] To(Y))
| vs [Fu(2).(Z | es[RR(VEp)]
| £ () X)-g0)) | Foesl0] | Fresl(X).X)-g4]
U = s[[HRPL,)] | 7o (extrals, by py)
| mapp[va(((X >.<X|us[fsgs I Ts@O0)-sIT L To(Y))

| vs [Gs. <<()(Z | es[(RA{QE Y]
| foes(((X)-X)).g5)) | €5[0] | es((X).X)).gs]

Ul = s|[H]) [[[P]]A] 1o (extrals, po.)
| 2 [0s(()-(X | ws[Fogo ksDD]) | 5 5[Y] | Ta(Y
|05 [ul(2)Z | e REVEAN | foresl((X)-X).90))-(FeeeslO]) | 9]
U = s |[HIIPD,)| | 7o (extrals, by, pp)
|y [06(()-(X | s [Fogorks D)) |5 (Y)5[Y]] To(Y))
| vs [wl{(2)-(Z | e[RRIV | Fucesl((20)-X)-g5))]

For the proof of operational correspondence we need the following statement:

S—
> ‘
w

N~

Lemma 5.4.3. If P and @) are well-formed compensable processes such that P = () then
(P} = Q)

Proof. The proof is by induction on the derivation P = @, and perform the case analysis on the
last rule applied. In all cases the proof follows directly. |

We now state our operational correspondence result:

Theorem 5.4.4 (Operational Correspondence for <D;‘) Let P be a well-formed process in C,.
(1) If P — P’ then (P)} —* (P)} where for

a) P=FE|[C[a.P] | D[a.P]] and P’ = E[C[P,] | D[P]] it follows k =1,
b) P = E[C[t[P1,Q]] | D[t.P:]] and P = E[Clextry(P1) | (Q)] | D[P2]] it follows k = 15 +
S(Pl) =+ 4tSA(P1),

c) P = Clu[F[u.P],Q]] and P’ = Clextry(F[P1]) | (Q)] it follows k = 15 + S(F[P1]) +
4tsp(F[P1]),

d) P = C[s[H[inst|\Y.R].P1],Q]] and P' = C[s[H[P1],R{%}}]] it follows k = 5,
for some contexts C|e], D[e], E[e], F'[e], H[e] processes Pi,Q, P>, R and names t, u, s.
(2) If (P D —™ R with n > 0 then there is P’ such that P —* P’ and R —* <P’D§‘.

Proof. As in all previously presented encodings, in the following we consider completeness and
soundness (Parts (1) and (2)) separately.

(1) Part (1) — Completeness: The proof proceeds by induction on the derivation of P — P’.
We consider three base cases, corresponding to cases a), b) and c¢) of Proposition 2.2.3
(Page 18). In all cases, we use Lemma 5.4.3, Definition 5.4.2 and Lemma 3.2.9 (Page 47)
that applies also for 4)2

Chapter 5. Encoding Dynamic Compensation Processes into Adaptable Processes with

Subjective Update

184

a) This case concerns an input-output synchronization on a name a € N.

Therefore, we

observe that P = F[C[a.P1] | D]a.P]] and P’ = E[C[P1] | D|P]], and we have that
derivation corresponds to the derivation presented in (3.30). Therefore, the thesis holds

with k& = 1.

b) This case concerns a synchronization due to an external error notification for a transaction
scope. We consider P = E[C[t[P1,Q]] | D[t.P2]], with n = pb,(P1), m = tsa(Py) and

s =8(P), and P’ =

(PR = (ECRPLQ) | DE-P]
= (BR[(c1P, Q1) | {DE-P)]
— (B [lChtPLQIT | (D)1 Pl]
= (BRC) [P,] 1 7e- (4. (t1Y] | eh(t, ¥)
| 0utd® (pr,p, Pps 0L(ptp, V), 7.5t ((1)) 727)))
| ma.pp s (X)(X|Ut[ftgt ne.k))]) [E((Y).t Ti(Y).

— (Bl bz[
—amban () :40b2[[f(3+4’”“ V(P QD) D) [Pal]|
— I ER ORI (PR Q) D [l el |
— (P[0 [lextra(P) | (@] 1 DR [P]]
= (B |(Clextra(P1) | (@)1)) | (DIP:]})]
<
<

Therefore, we can conclude that (P)

€

P (P . (Q1), where p € {1,..., 15+ 4m + n}, is as in Definition 5.4.4.

c¢) This case concerns a synchronization due to an internal error notification (i.e., the error

comes from the default activity of transaction). Here we have P = C[t[F[u.P;],Q)]], with
m =tsy(P1), s = S(P1) and P’ = Clextra(F[P1]) | (Q)]. Then we have
the following derivation:

n = pby (F[P1]),

(P2

=
=1
=
| m
|

C
C
C

[ulF[u.Py], Qm)‘
2MlulFa.Pi,Q1)]
?[(Flu.P, >] | ru.(extral(u, pup, pp))

)
)

u-Pp [vu<<()- (X | walfu-Gunuku]))]) | wul(YV)ulY]] T

vu[ua(2).(2 | eullQR] | fu-eul((X).X).0u))])
—{CR[OD(F), [hud PN IQI)]
—yHram s (o Of srimtsn) (PN lhad PN Q)]
—n 2 (o (o am) Fb B P (QD)]
= (O [fextra(F[P]))) Ipp[< QL]
{

C

extry(F Pl]) | <Q>J>§

—

—k (P for k = 15 + 4m + s.

E[Clextra(P1) | (Q)] | D[P:]]. We have the following derivation:

hi >>

Process

(Y)-Fou)

185 5.4. Translating Cp into S

= <Pl>g‘

Process O£Q)(<Fbi7p[hu.4P1D;‘,], [Q]:), where ¢ € {1,...,15 + 4m + n}, is as in Defini-

tion 5.4.5. The role of function ch(u, -) is central. Indeed, ch(u, <FD3,,; [hy{Py D;\,]) provides
the input h, which is necessary to achieve operational correspondence.

The order and number of reduction steps can be explained as in Case b) above. We can
then conclude that [P]. —* [P']. where k = 15 4 4m + s.

d) We have that P = C[s[H[inst|\Y.R|.P1],Q]] and P’ = C[s[H[P1],R{?}}]]. We will use

Definition 5.2.6 for process U" (4H>2WNP1D;\W/}, (Q)2) where r € {1,...,5} and have the
following:

(P = (C[s|H[inst | \Y.R|.P,],Q]])

[

= (CP[s[(H)} flinst Y. R].P]

| 7. (extral(s, psy,pp)) | mspy [Us((X)-(X | us[fs-Ts-ns-ks)))])]
|s<<<Y> [Y]|7;() B | vs[us((2).(Z] esllQR] | foesll(X).X)-g0)))]
CP2[s|iH us[es«m@.us«()(Z | esllRY]
| fores((X). X090 (FeesoD] 1 (R},]
| 75 (extral(s, ps s o) | mspp [0s((X)-(X | us[fs-gs-nsks))])]
|s<<< s[Y]IT(> h) | vs[us(2)-(Z | es[|QRT | foes((X)-X)).g5))]]
CR UM (EY, (P 1,(Q))]
CRUP(HY;, Plb 1.Q12)
< [s[H[Pﬂ,R{Q/Y}HD
Therefore, k = 5.

(2) Part (2) — Soundness: For the proof of soundness we use auxiliary results presented
in Paragraph 3.2.3.2.3 by use of encoding of aborting semantics instead of encoding of dis-
carding semantics. Also the proof use Definition 5.4.4, Definition 5.4.5, and Definition 5.4.6.
Therefore, the proof of soundness follows the explanation presented in Roadmap 3.2.3.2.5.
Also, the proof uses the same derivation that is presented in the proof of soundness for
translation Cp into S (cf. Item 2 — Soundness).

Brief summary of the chapter:
In this chapter, we introduced all preliminaries for encodings C* into A and informally acquaint
the reader with the basic intuition of the encodings. Also, the main result is the valid encodings of
calculus for compensable processes with dynamic update into the calculus of adaptable processes
with the subjective update (encodings C3, Ca, and Cp into S).

Encodings C3, Cp, and Cp into O, which is analyzed in the next chapter, follow and mimic
the basic intuition of the encoding presented in this chapter. Therefore, we believe that it will
be easier for the reader to follow and understand the results from the upcoming chapter.

Chapter 5. Encoding Dynamic Compensation Processes into Adaptable Processes with
Subjective Update 186

CHAPTER 6

Encoding Dynamic Compensation Processes
into Adaptable Processes with Objective
Update

In this chapter, we developed translations of compensable processes with dynamic compensa-
tions, denoted C*, under discarding, preserving, and aborting semantics into adaptable processes
with objective mobility. In the following is given a brief structure of the chapter:

Section 6.1 presents the translation of C) into ©. Then the formal definition of the encoding
follows. We prove that the encoding satisfies compositionality, name invariance and op-
erational correspondence (completeness and soundness). Also, in this section we discuss a
efficiency criterion. The encoding C3 into S provides tighter operational correspondences
result. Therefore, we prove that the encoding C3 into S is better suited than the encoding
C3 into O.

Section 6.2 presents the translation of C3 into . Also, we present the formal definition
of the encoding. We prove that the encoding satisfies name invariance and operational
correspondence (completeness and soundness). The encoding C3 into S provides tighter
operational correspondences result. Therefore, we prove that the encoding CIS\ into S is
better suited than the encoding Cp into O.

Section 6.3 presents the translation of Cp into O. Also, we present the formal definition of
the encoding and prove that it satisfies compositionality, name invariance and operational
correspondence (completeness and soundness). The encoding Cp into S provides tighter
operational correspondences result. Therefore, we prove that the encoding Cg\ into S is
better suited than the encoding Cp into O.

6.1 Translating C; into O

The translation C into O, denoted [[-]};J\O, extends the key ideas of the encoding [-]5 (cf. Sec-
tion 4.1).

Remark 6.1.1. The translation requires sets of reserved names and therefore we need to revised
Definition 3.1.2 as in the following:

(i) the set of reserved location names N is unchanged,

(i) the set of reserved synchronization names is extended with name z, such that:
/\/;r = {he, My, ky, Ug, Vey €25 Gy [y 20 | T € M}

187

Chapter 6. Encoding Dynamic Compensation Processes into Adaptable Processes with
Objective Update 188

[P = po[[P]2°]
[HIP,QIL = t[IPI] | t(extra{t, pup pp} | mipy[wnlFrgiki]])
| v [u{(2)-(Z | ex[Q]2°] | fr-ee{ (X)X }ve{(X).X}.91)}]
[inst|AY.R].P] = u[eef (V). (Grve{ (X). (v [ue{(2)-(Z | e[[R]2]
| fred (X).X Lo (X).X Y90 D]} (Fe-edO))] | [P]
[t.P]) = t.he.[P])°

Figure 6.1: Translating C into O.

We use the function for determining the number of locations as in Remark 5.2.2. Also, we
use process outd® as defined for [-]§ (cf. (4.1)).
We need the following additional auxiliary process:

Definition 6.1.1 (Update Prefix for Extraction). Let ¢, [;, and Iy be names. We write
extrd{t,ly,l2} to stand for the following (subjective) update prefix:

extrd{t,l1,lo} = t{(Y). (t[Y] | ch(t,Y) | outd®(l1,l2,n1(,Y), My ket {1}.e))} (6.1)

The intuition for the process extrd{t,l;,lo} is the same as in the translation of C3 into S

(cf. Definition 5.2.1).
Using well-formed compesable processes (cf. Section 5.1.1), the translation of C3 into S

extends Definition 3.2.3 (see Page 39) as follows:

Definition 6.1.2 (Translating C) into S). Let p be a path. We define the translation of
compensable processes with dynamic recovery into (subjective) adaptable processes as a tuple

(L1}, ¢p1y) where:
(a) The renaming policy
{z} if x € N

90[[.1]3@) = .
{557 hI)mZ’7kx7ux7vxvexangfx52$} U {pp SN S P} if z € M.

(b) The translation [[-]];\D : C3 — O is as in Figure 6.1 and as a homomorphism for other
operators.
6.1.1 Translation Correctness

We now establish that the translation [-] ;‘0 is a valid encoding. To this end, we address the three
criteria in Definition 2.3.5: compositionality, name invariance, and operational correspondence.
Other criteria are left as a research topic for future work.

6.1.1.1 Structural Criteria

We prove the two criteria, compositionality and name invariance.

189 6.1. Translating C3 into O

6.1.1.1.1 Compositionality

As previously stated, the compositionality criterion states that a composite term’s translation
must be defined in terms of its subterms’ translations. To mediate between these translations
of subterms, we define a context for each process operator, which depends on free names of the
subterms:

Definition 6.1.3 (Compositional context for C3). For all process operator from Cp, instead
transaction we define a compositional context in O as in Definition 5.2.3. For transaction and
compensation update compositional contexts are as follows:

Cplor, o2 = t[on]] | t.(exera{t, prp,pp} | ey [w{ (X).(X | wilfr-gi) }])
|0t [ud(2)-(2 | exlloal] | freel (X)X }.90)}]
Cinst.plo1, 02) = e e (V). @Guid (2).(Z | exllo] | frerd (X)X }.g) D} (FrerlO])] | o2
Cy[e1] = [o1]
Using this definition, we may now state the following result.

Theorem 6.1.2 (Compositionality for [[]]f,‘) Let p be an arbitrary path. For every process
operator in C and for all well-formed compensable processes P and @ it holds that:

(P = Cy, [IPR"] FP,QIY: = Cup, [IP1 Q1] [P1QIY = C) [P [QL)]

[a.P]ye = Co [[P]y°] [E-Plpe = Cs [[P])°] [(va)P)]3° = Cuay [[P])°]
[@.P]e = Ca [[Pl)] ['7.P]) = Ci [[P])°]
Y1) = Cy [[Y])°] [inst|AY.R|.P]} = Cinss o[[R]2°, [P[7)

Proof. The proof proceeds in the same direction as the proof of Theorem 5.2.3. [

6.1.1.1.2 Name invariance

We now state name invariance, by relying on the renaming policy in Definition 6.1.2 (a).

Theorem 6.1.3 (Name invariance for [[]]20) For every well-formed compensable process P and
valid substitution o : N, = AN, there is a ¢’ : Ny — N, such that:

(i) for every x € Ne: ¢ppo (o(z)) ={0'(y) 1y € Prpe (x)}, and

a(p)

(i) [o(P)L,, = o' (IPLY)-

Proof. The proof proceeds in the same direction as the proof of Theorem 5.2.4. |

6.1.1.2 Semantic Criteria

In this subsection we prove that translation C{,\ into O satisfied operational correspondence
(completeness and soundness).

6.1.1.2.1 Operational Correspondence

For the proof of operational correspondence we need the following statement:

Lemma 6.1.4. If P and @ are well-formed compensable processes such that P = () then
[Pl = [Q],°-

Chapter 6. Encoding Dynamic Compensation Processes into Adaptable Processes with
Objective Update 190

Proof. The proof is by induction on the derivation P = @), and perform the case analysis on the
last rule applied. In all cases the proof follows directly. |

Operational correspondence for translation of dynamic compensable processes with discard-
ing semantics into adaptable processes with objective update is given in the following theorem:

Theorem 6.1.5 (Operational Correspondence for [[]]20) Let P be a well-formed process in Cy.
We have:

1. If P "= P’ then [P]}e —F [P']2> where either

a) P=E[C[a.P] | D[a.P]] and P' = E[C[P1] | D[P]] it follows k =1,

b) P = E[C[t[P1,Q]] | D[t.P]] and P’ = E[Clextry(Py) | (Q)] | D[P]] it follows k = 11 +
pby(P1) + Za(P1) or

¢) P = Clu[F[a.P1],Q]] and P’ = Clextrp(F[P1]) | (Q)] it follows k = 11 + pby(F[Py]) +
Za(F[P1]),

d) P = C[s[H[inst|\Y.R]|.P],Q]] and P’ = C[s[H[P\],R{%}}]] it follows k = 6,
for some contexts Cle|, D[e|, E]e|, F'[e], H[o], processes P;,Q, P>, R, and name t, u, s.

2. If [P]2> —™ R with n > 0 then there is P’ such that P —* P’ and R —* [P']}e.

Proof. The proof proceeds in the same direction as the proof of Theorem 5.2.12. |

6.1.2 Comparing Subjective vs Objective update

In this subsection, we provide a theorem which states that subjective updates are better suited
to encode compensation handling with dynamic compensation and discarding semantics than
objective updates.

The following statement is a corollary of Theorem 6.1.5.

Corollary 6.1.6. Let P be a well-formed process in C*. If P — P’ and [P]}e —* [P']2°
then:

b) if P = E[C[t|[P,Q]] | DIE.Bs]] and P’ = E[Clextry(P1) | (Q)] | DIPy]] then k > 114pby(P1)+
Za(P1),

¢) if P = C[uF[@.P1),Q]] and P’ = Clextrp(F[P1]) | (Q)] then & > 11+ pby(F[P]) + Za(F[P1)),

for some contexts C[e]|, D[e|, E]e], F[e], processes P, @), P, and names t, u.

Theorem 6.1.7. The encoding [-]) : C — S is as or more efficient than [-])° : Cg — O.

Proof. The proof proceeds similarly to the proof for Theorem 4.1.13 by using: Theorem 5.2.12,
theorem 6.1.5, Proposition 2.2.3, and Corollary 6.1.6. |

6.2 Translating C2 into O

In this section the translation C2 into O, denoted (]~[)2° is presented. This translation relies on

the idea and principles of encoding of Cp into O (cf. Section 4.2) and encoding of Cp into S (cf.
Section 5.3).

Remark 6.2.1. We require sets of reserved names and need to revise Definition 3.1.2 as in the
following:

191 6.2. Translating Cp into O

(i) the set of reserved location names N is unchanged and,

(ii) the set of reserved synchronization names is extended such that
Nsr = {ham My Ky Uy Vey €0, Gy fas Juy Ty 22 | € -/V;f}

Accordingly, the function that counts the number of protected blocks is as in Figure 3.4,
while the function that counts the number of transactions is as in Definition 5.3.1.

Below we give a formal definition of the translation Cp into @. We instruct the reader that
this translation relies directly on the ideas that are presented in Section 5.3.

6.2.1 Translation Correctness

For process extrp we will use process outp®(t, P, 11,11, 12,15, n,m). Initially, for the definition of
outp®(t, P, 11,11, 12,15, n,m) we introduce the following auxiliary processes:

n

outpl(t,l1,11,n) = L {(X1,..., Xn).2e{(Z (Hl'l | | g ke {1} 5e rt> }}.z0];
Outpg(t,tl, - ,tm,lg,lé,m) = lQ{(}fl, - ,Ym).

z2{(%). (Tt- (H (BIEWa,)] | - é{(X).X}-m-htk)> Iw.kt.t{T}-ﬁ>}}-zt[O];

k=1
outpg(t t1,... tm,ll,li,lg,lé,n,m) = ll{(Xl, - ,Xn)lg{(}/l, .. ,Ym)

z2{(Z (Hlll J | re. <H (1€ (Y, t)] Ijtk-l'z{(X)X}-?“tk-iltk)) |W~]%-t{T}~ﬁ>}}}-Zt[O]
k=1

The auxiliary process outp®(t, P, 11,1}, 12,15,n,m) where top(lg, P) = {t1,...,tm} (cf. Defini-
tion 3.3.3) for m > 0 is now defined as follows:

ke t{1T}.Je.m ifn,m=20
outp(t,ly,lh,n ifn>0,m=0
Outps(taP> llvl,17l27l,27n7m) = pl(b) (62)
outp$(t,t1, ..., tm,l2,l5,m) ifn=0,m>0
outpl(t,t1, ... tm, 11,1, 12,5, n,m) ifn,m>0

This process is similar to the process (4.4). The difference is in the process that is placed in
the objective update on the name z;. In (6.2) there is additional name m;.

Definition 6.2.1 (Update Prefix for Extraction). Let ¢, l1,1],l2, and I} be names nd P is
an adaptable process. We write extrp{t, P,l1,1},12,15} to stand for the following (subjective)
update prefix:

extrp{t, P11, 11,12, 1} = t{(Y).t[Y] | ch(t,Y)

6.3
| outp®(t, P,11,11,12,15,01(l1,Y),nl(ls,Y))} (6:3)

The intuition for the process extrp{t, P,l1,1},l2,1}} in preserving semantics with dynamic
recovery is the same as in static recovery (cf. Definition 4.2.1).
Based on the above modifications, the encoding of processes with dynamic compensations is
given with the following definition:

Definition 6.2.2 (Translating C3 into ©). Let p be a path. We define the translation of
compensable processes with preserving semantics into (subjective) adaptable processes as a
tuple ()7, (P(].D)\,,) where:

P

Chapter 6. Encoding Dynamic Compensation Processes into Adaptable Processes with
Objective Update 192

(P = (P
[ELP,QI = B t[(PI] | . (exten{t, (PN pt,ps D Beps Bo} | mie-pp sl Fr-gichel])
|0 [uwd(2)-(Z | el | fied (X)X bd (X).X g}
| Ge-Bo{(X). X }7.hy

linst[AY.R].P)) = u, [et{(Y).@.ut{(X).ut[ut{(Z).(z | ec[(R)]

| ft-et{(X)-X}-vt{(X)-X}-gt)})]}}-(ﬁet[O])} | (P2,

q%.PD;o = f.ht.QP[);}O

Figure 6.2: Translating Cp into O.

(a) The renaming policy o)y : Nz = P(N,) is defined with

() {z} if x € N
AT) =

{x,hw,rnx,kx,uw,vm,ex,gx,j},jx,rm,zx}LJ{pp,ﬁ% SN S P} if z € V;
(6.4)

(b) The translation (]-[);\0 : Cp — O is as in Figure 6.2 and as a homomorphism for other
operators.

6.2.1.1 Structural Criteria

We prove that translation Cp ito O satisfies name invariance (cf. Definition 2.3.5). Analysis of
compositionality is left for future research work.

6.2.1.1.1 Name invariance

We now state name invariance, by relying on the renaming policy in Definition 5.3.3 (a).

Theorem 6.2.2 (Name invariance for (][)20) For every well-formed compensable process P and
valid substitution o : N, — A, there is a ¢’ : N, — N, such that:

(i) for every x € N : Pt (o(z))={d'(y):y € Pl ()}, and

a(p)

(i) (o(P)),) = o'((P)"):

Proof. The proof follows the idea presented in the proof of Theorem 5.2.4. |

6.2.1.2 Semantic Criteria

In this subsection we prove that translation C2 into O satisfies operational correspondence.

6.2.1.2.1 Operational Correspondence

For the proof of operational correspondence we need the following statement:

Lemma 6.2.3. If P and @ are well-formed compensable processes such that P = () then
(P)ye = (QDy°-

193 6.3. Translating Cp into O

Proof. The proof is by induction on the derivation P = @, and perform the case analysis on the
last rule applied. In all cases the proof follows directly. |

Operational correspondence for the translation of dynamic compensable processes into adapt-
able processes with objective update, is given in the following theorems:

Theorem 6.2.4 (Operational Correspondence for QI);‘O) Let P be a well-formed process in Cp.
(1) If P — P’ then (P)2> —* (P’)2 where for

a) P = F[C[a.P\] | D]a.P]] and P’ = E[C[P,] | D[P]] it follows k = 1,

b) P = E[C[t|P1,Q]] | D[t.P%]] and P’ = E[Clextrp(P1) | (Q)] | D[P.]] it follows k = 14 +
Pbp(P1) + tse(P1) + Zp(F1),

¢) P = Clu[F[u.P],Q]] and P' = Clextrs(F[P]) | (Q)] it follows k = 14 + pby(F[P1]) +
tsp(F[P1]) + Zp(F[P1)),

d) P = C[s[H[inst|\Y.R|.P],Q]] and P’ = C[s[H[P],R{%}}]] it follows k = 6,
for some contexts C[e], D[e], E|e], F'[o], H[o], processes Pi,Q, P>, R, and name t, u, s.

(2) If (P)2e —™ R with n > 0 then there is P’ such that P —* P’ and R —* (P’)2e.

Proof. The proof uses the same ideas as Theorem 5.3.3. |

6.2.2 Comparing Subjective vs Objective update

In this subsection, we provide a theorem which states that subjective updates are better suited
to encode compensation handling with dynamic compensation and preserving semantics than
objective updates.

The following statement is a corollary of Theorem 6.2.4.

Corollary 6.2.5. Let P be a well-formed process in C*. If P — P’ and (P))> —F (P')2°
then:

b) if P = E[C[[P,Q]] | D[E.P]] and P’ = E[Clextrs(P1) | (Q)] | D[P.]] then k > 14+pby(P1)+
tsp(P1) + Zp(P1),

c) if P = Cu[F[u.P1],Q]] and P' = Clextrp(F[P1]) | (Q)] then k > 14 + pbp(F[P1]) +
tsp(F[P1]) + Zp(F[P1]),

for some contexts C[e], D[e], E[e], F[o], processes P;, Q, P> and names ¢, u.

Theorem 6.2.6. The encoding (][)2 : Cp — S is as or more efficient than (]‘D;“’ :Cp — 0.

Proof. The proof proceeds in a similar manner to that employed in Theorem 4.2.6 by using:
Theorem 5.3.3, Theorem 6.2.4, Proposition 2.2.3, and Corollary 6.2.5. |

6.3 Translating C; into O

The translation Cp into O, denoted 4)2‘ This translation relies on the idea and principles of
encoding Cp into O (cf. Section 4.3). We also require sets of reserved names as in Remark 5.2.1
and we use function for determining the number of locations as in Remark 5.2.2. We will use
process outd® as defined for [[]]z We need some additional auxiliary processes.

Chapter 6. Encoding Dynamic Compensation Processes into Adaptable Processes with
Objective Update 194

(P = po[1PR"]
HP.QIN = t[(Ps] | re-(extralt, pup pp} | DIQLT | mu.py [l Fr i e-me Rl
| L)Y | To(Y) e}
| ve[u{ (2).(Z | &llQ] | Froeed (X)X Lun{ (X).X }.90))]
linst[\Y.R].P}? = u [et{(Y).@.vt{(X).(vt [w{(2).(Z | el R))
| feeel (X)X }ord (X).X}g) DIV} (Freslo]) | (PR,
[£.P))° =Eh(P))

Figure 6.3: Translating Cp into O.

Definition 6.3.1 (Update Prefix for Extraction). Let ¢, I3, and Iy be names. We write
extra{t,ly,l2} to stand for the following (subjective) update prefix:

extra{t,li,lo} = t{(Y). (¢[Y] | ch(t,Y) | outd®(l1,l2,n1(l,Y), mz.je-t{1}. 7)) } (6.5)

The intuition for the process extra{t,l;,ls} is the same as in the translation of Cy into &
with static recovery (cf. Section 3.4.0.1 and Section 3.4.1). Using well-formed compensable
processes, the translation of Cp into O is as follows:

Definition 6.3.2 (Translating Cp into O). Let p be a path. We define the translation of
compensable processes with dynamic recovery into (subjective) adaptable processes as a tuple

(<'D207 @wio) where:

(a) The renaming policy

() = {z} if x € N
Plppe) = . .)
{«757 haymg, kg, e, Uz, Ve, €25 Ga, fI7jZ‘7n$7ZCIZ} U {pp S p} ifzre M

(b) The translation M;‘O : Cp — O is as in Figure 6.3 and as a homomorphism for other

operators.

6.3.1 Translation Correctness

We now establish that the translation <-D2“ is a valid encoding. To this end, we address the three
criteria in Definition 2.3.5: compositionality, name invariance, and operational correspondence.
The other criteria are left as a research topic for future work.

6.3.1.1 Structural Criteria

We prove the two criteria, compositionality and name invariance which are introduced in Defi-
nition 2.3.5.

195 6.3. Translating Cp into O

6.3.1.1.1 Compositionality

As we described in the previous encodings, to mediate between translations of subterms, we
define a context for each process operator, which again depends on free names of the subterms:

Definition 6.3.3 (Compositional context for C3). For all process operator from Cp, instead
transaction we define a compositional context in @ as in Definition 3.2.4. For transaction and
compensation update compositional contexts are as follows:

Cil,),plo1, 02 = t[['lﬂ | re. (extralt, prp, pp} | 1000y [0e{ (X)-(X | we[fe-Ge-Ge-ne-Ke])}])
| tt{(Y)t[Y] | Te(Y) i} | o [wed (2)-(Z | ex[[oa]] | fr-er{(X).X}.0)}]
Cinst p[®1, 2] =uy [et{(Y)-(%Ut{(Z)-(Z | ec[[o1] | ft-et{(X)-X}-gt)})}-(ﬁet[()])} | [o2]
Cy[o1] = [o4]

Using this definition, we may now state the following result:

Theorem 6.3.1 (Compositionality for <D;\°) Let p be an arbitrary path. For every process
operator in Cp and for all well-formed compensable processes P and @ it holds that:

(P = Co, [IPR] P.QIY —ctm[< Q] P1Qp = [IP Q)]

P o |PE7]]

Pl =Ca [IP)] (& D = C;. 1P}y (va)P))ye = Cuay [(PI)°]
@p)y =Ca |P)e] i PVO Cir. (P}]

P =Cy [41/)20] [inst| AY.R).P) = Cines o[|[RI, (P)2]

Proof. Follows directly from the definition of contexts (cf. Definition 5.4.3) and from the defi-
nition of 4->2“’ : Cp — O (cf. Figure 6.3). [|

6.3.1.1.2 Name invariance

We now state name invariance, by relying on the renaming policy in Definition 6.3.2 (a).

Theorem 6.3.2 (Name invariance for 4)2‘") For every well-formed compensable process P and
valid substitution o : N, — A there is a ¢’ : N, — N, such that:

(i) for every z € N : Pryo (o(x)) ={d'(y):y € Pppe o (2)}, and

a(p)

(i) (o(P)s,) = o' ((PL)).

Proof. The proof proceeds in the same direction as the proof of Theorem 5.2.4. |

6.3.1.2 Semantic Criteria - Operational Correspondence

The analysis of operational correspondence follows the same ideas as in the translations C}' into
S (cf. Subsection 5.4.1.2). Therefore, we use Definition 3.4.5, Remark 3.4.4 and Definition 3.4.6.
Also, we need the following lemma:

Lemma 6.3.3. If P and @) are well-formed compensable processes such that P = () then
(Pl = Q.

Proof. The proof is by induction on the derivation P = @), and perform the case analysis on the
last rule applied. In all cases the proof follows directly. |

Chapter 6. Encoding Dynamic Compensation Processes into Adaptable Processes with
Objective Update 196

We now state our operational correspondence result:

)‘O). Let P be a well-formed process in Cy.

Theorem 6.3.4 (Operational Correspondence for <-Dp

(1) If P — P’ then (P)}* —* (P")>> where for

a) P=E[C[a.P)] | D][a.P]] and P’ = E[C|P1] | D[P]] it follows k = 1,

b) P = E[C[t|P1,Q]] | D[t.P2]] and P’ = E[Clextry(P1) | (Q)] | D[] it follows k = 15 +
S(P1) +4tsa(P1) + Za(P1),

¢) P = Clu[F[u.P],Q]] and P’ = Clextry(F[P1]) | (Q)] it follows k = 15 + S(F[P1]) +
4tsy(F[P1]) + Zo(F[P1)),

d) P = C[s[H[inst|\Y.R].P1],Q]] and P' = C[s[H[P1],R{?}}]] it follows k = 6,
for some contexts C|e], D[e], E[e], F'[e], H[e] processes Pi,Q, Py, R and names t, u, s.
(2) Tt (P)} —™ R with n > 0 then there is P’ such that P —* P' and R —* (P).

Proof. The proof follows idea presented in Theorem 3.4.6 and Theorem 5.4.4. |

6.3.2 Comparing Subjective vs Objective update

In this subsection, we provide a theorem which states that subjective updates are better suited
to encode compensation handling with dynamic compensation and aborting semantics than
objective updates.

The following statement is a corollary of Theorem 6.2.4.

Corollary 6.3.5. Let P be a well-formed process in C*. If P — P’ and (P)}* —* (P')>* then:

b) if P = E[C[t[P1,Q]] | D[E.P]] and P’ = E[Clextra(P1) | (Q)] | D[Ps]] then k > 154pb,(P1)+
4tSA(P1) + Za(Pl),

¢) if P = Cu[F[u.P1],Q]] and P' = Clextra(F[P1]) | (Q)] then k > 15 4 pb,(F[P1]) +
dtsy(F[P1]) + Za(F[P1)),

for some contexts C[e]|, D[e], E]e|, F[e], processes Pi,), P» and names ¢, u.

Theorem 6.3.6. The encoding <D; : Cp — S is as or more efficient than M/})‘O :Cp — O.

Proof. The proof proceeds similarly to the proof for Theorem 4.3.6 by using: Theorem 5.4.4,
Theorem 6.3.4, Proposition 2.2.3, and Corollary 6.3.5. |

Brief summary of the chapter:
In this chapter, we have two main results: (i) we presented the encodings of calculi for compens-
able processes into the calculi of adaptable processes with the objective update (encodings CS‘,
Cp, Cp into O); (ii) we exploit the correctness properties of encodings to distinguish between
subjective and objective updates in calculi for concurrency. We again analyzed the efficiency
criterion of the encoding. We concluded that subjective updates induce tighter operational cor-
respondences. Therefore, we can formally declare that subjective updates are more suited to
encode compensation handling than objective updates.

In the next chapter, we conclude the dissertation by providing a review of the work presented
in the thesis and some insight for future work.

197 6.3. Translating Cp into O

CHAPTER 7

Conclusions and Perspectives

Finally, we conclude by providing a review of the work presented in the thesis and other research
conducted by the candidate during her PhD studies. Also, this chapter suggests future research
subjects that may be of interest to the reader.

7.1 Concluding Remarks

The quest for programming abstractions that suit emerging computational settings is a multi-
faceted issue. Rather than creating new languages from the ground up, one option is to build
on existing languages for mobile, autonomic, and service-oriented computing.

In this thesis, we have developed connections between programming abstractions for com-
pensation handling (typical of models for services and long-running transactions) and run-time
adaptation. Specifically, we compared from the point of view of relative expressiveness two re-
lated and yet fundamentally different process models: the calculus of compensable processes [29]
and the calculus of adaptable processes [7].

We provide a unified, comprehensive presentation of twelve processes translations between
the calculus of compensation handling (with static and dynamic compensations under discarding,
preserving, and aborting semantics) into the calculus of adaptable processe swith subjective and
objective mobility.

We have proved that encodings satisfied all or some well-established criteria [22]. Precisely,
we prove that translations of Cp into & and O are valid encodings — they satisfy compositional-
ity, name invariance, operational correspondence, divergence reflection and success sensitiveness
properties that bear witness to the robustness of translations. For translation of C3, Cy, C;' into
S and O we prove that they satisfy: compositionality, name invariance and operational corre-
spondence. We establish that translations of Cp and Cp into S and O satisfy name invariance and
operational correspondence, the analysis of the other criteria are left for future work. The encod-
ings not only constitute a non-trivial application of two sensible forms of mobility for adaptable
processes, but they also shed light on the intricate semantics of compensable processes.

We exploit our twelve translations to clearly distinguish between subjective and objective
updates in calculi for concurrency. Therefore, we compared our encodings from the point of view
of efficiency. Efficiency is a new comparison criterion, defied in abstract terms, considering the
number of reduction steps that a target language requires to mimic the behavior of a source
language. In this sense, subjective mobility allows us to encode compensable processes more
efficiently than objective mobility. The efficiency gains induced by subjective mobility depend on
the number of compensation actions in the source process. In the thesis, to formalize encodings,
we developed the class of well-formed compensable processes, for which error notifications are
crucial. Precisely, this class of processes disallows certain non-deterministic interactions that
involve nested transactions and error notifications.

198

199 7.2. Future work

Interestingly, the work presented in the thesis uncovers an interesting dichotomy: should
one appeal to objective or subjective updates? A subjective update would appear more “au-
tonomous” than an objective update because it is determined by a located process itself, not
by its environment. Still, we believe that the choice between objective and subjective updates
is largely dependent on the application at hand: it is easy to imagine real-world scenarios of
dynamic reconfiguration where each form of the update is more appropriate. Hence, a general
specification language should probably include both objective and subjective updates.

During the candidate’s PhD studies, in addition to the research work presented in the thesis,
she has been also involved in research in the field of distributed computing particularly in edge
computing as a service (micro clouds). Briefly, the results in [53] show how geodistributed edge
nodes can be dynamically organized into micro data centers to cover any arbitrary area and
increase capacity, availability, and reliability.

7.2 Future work

We intend further study the relationship between subjective and objective updates in future
research work. An initial ingsight is the following: subjective updates can represent objective
updates, at least in an ad-hoc manner. Consider process S = C1 [I[P] | R1] | C2[I{(X).Q}.Rz],
which, as we have seen, reduces to Cy [Q{P/X} | Rl] | Co [Rg]. Now consider S’, a process
similar to S but with subjective update prefixes:

§' = C1[I[P] | h{(X).X) | Ra] | C2[I{(X)-L[QI)-Re]

In S’, we assume that name [; does not occur in P, Q, Ry, and Ry. Using two reductions, S’
emulates the movement induced by the reduction step originated in S:

§'— 1[0 [L{(X0)-X) | Ra] | Ca[nQEP/XY).Re)
— C1[Q{F/X} | R1] | C2[0 | Ry

That is, the update prefix {1 {((X).X)) serves as an “anchor” to bring the reconfigured process
Q{F/X} back to its original context C|e].

Similarly, we can represent subjective updates using objective prefixes. Consider process
L = Ci[I[P]| R1] | C2[1{(X).Q)).Rz], which reduces to C1[0 | R1] | C2[Q{F/X} | Rz]. Now
consider process L':

L' = G I[P | B | Co[H{(X).1{(Y).Q}.0}. Ry | 1 0]

As in process S’, in L' we assume that name [y is fresh; also, we assume that P and @ do
not contain free occurrences of variable Y. Process L’ uses two reduction steps to mimic the
reduction step originated in L:

L' — G {(Y).Q{P/X}}.0 | Ri] | Ca[Rz | 11]0]
— C1[0| R1] | C2[Ry | Q{F/X}]

Here, we use location [1[0] to bring the reconfigured process Q{£/X} back to its original context
Csle].

Crucially, these examples show that the ability of emulating a certain style of process mobility
(subjective or objective) comes at the price of additional reduction steps, which could entail
inefficient encodings. This observation reinforces our claim that a specification language should
natively support both forms of update.

We addressed the encodability of compensable processes into adaptable processes. We also
plan to consider the reverse direction, i.e., encodings of adaptable processes into compensable
processes. We conjecture that there is no encoding of adaptable processes into a language with

Chapter 7. Conclusions and Perspectives 200

static compensations: compensation updates inst|[AX.Q|.P seem essential to model an update
prefix I{(X).Q}.P — the semantics of both constructs induces process substitutions. Even if we
consider a language with dynamic compensations, an encoding of adaptable processes is far from
obvious. This claim is based on the fact that the semantics of compensation updates dynamically
modifies the behavior of the compensation activity, the inactive part of a transaction. As a part
of future work, it will be interesting to see how these (non) encodability claims can be formalized.

201 7.2. Future work

Bibliography

1]

2]

[10]

[11]

[12]

[13]

[14]

M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.
Information and Computation, 148(1):1 — 70, 1999.

S. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. G. Ford, Y. Goland,
A. Guzar, N. Kartha, C. K. Liu, R. Khalaf, D. Konig, M. Marin, V. Mehta, S. Thatte,

D. Rijn, P. Yendluri, and A. Yiu. Web services business process execution language version
2.0 (oasis standard). 2007.

J. Baeten. A brief history of process algebra. Theoretical Computer Science, 335(2):131
—146, 2005. Process Algebra.

J. A. Bergstra and J. W. Klop. Fixed point semantics in process algebras. 1982.

L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for long-running transactions. In Proc.
of FMOODS 2003, volume 2884 of LNCS, pages 124-138. Springer, 2003.

D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM, 30(2):323~
342, Apr. 1983.

M. Bravetti, C. D. Giusto, J. A. Pérez, and G. Zavattaro. Adaptable processes. Logical
Methods in Computer Science, 8(4), 2012.

M. Bravetti and G. Zavattaro. On the expressive power of process interruption and com-
pensation. Mathematical Structures in Computer Science, 19(3):565-599, 2009.

R. Bruni, C. Ferreira, and A. Kersten Kauer. First-order dynamic logic for compensable
processes. In M. Sirjani, editor, Coordination Models and Languages, pages 104-121, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

M. J. Butler, C. Ferreira, and M. Y. Ng. Precise modelling of compensating business
transactions and its application to BPEL. J. Univers. Comput. Sci., 11(5):712-743, 2005.

L. Caires, C. Ferreira, and H. T. Vieira. A process calculus analysis of compensations. In
Proc. of TGC 2008, volume 5474 of LNCS, pages 87-103. Springer, 2009.

L. Cardelli and A. D. Gordon. Mobile ambients. Theor. Comput. Sci., 240(1):177-213,
2000.

G. Castagna, J. Vitek, and F. Z. Nardelli. The seal calculus. Inf. Comput., 201(1):1-54,
2005.

J. Dedeié, J. Pantovi¢, and J. A. Pérez. Efficient compensation handling via subjective

updates. In Proceedings of the Symposium on Applied Computing, SAC *17, pages 51-58,
Marrakesh, Morocco, 2017. ACM.

202

203

Bibliography

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

J. Dedeié¢, J. Pantovié, and J. A. Pérez. On primitives for compensation handling as adapt-
able processes. Journal of Logical and Algebraic Methods in Programming, page 100675,
2021.

J. Dedeié, J. Pantovii¢, and J. A. Pérez. On compensation primitives as adaptable processes.
In EXPRESS/SOS 2015, volume 190 of EPTCS, pages 16-30, 2015.

C. Ferreira, I. Lanese, A. Ravara, H. T. Vieira, and G. Zavattaro. Advanced mechanisms
for service combination and transactions. In Results of SENSORIA, volume 6582 of LNCS,
pages 302-325. Springer, 2011.

W. Fokkink. Introduction to Process Algebra. Springer Publishing Company, Incorporated,
1st edition, 2010.

C. Fournet and G. Gonthier. The reflexive cham and the join-calculus. In Proceedings of
the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’96, pages 372-385, New York, NY, USA, 1996. Association for Computing Machin-
ery.

C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Inheritance in the join calculus. The
Journal of Logic and Algebraic Programming, 57(1):23 — 69, 2003.

Y. Fu and H. Lu. On the expressiveness of interaction. Theoretical Computer Science,
411(11):1387 — 1451, 2010.

D. Gorla. Towards a unified approach to encodability and separation results for process
calculi. Inf. Comput., 208(9):1031-1053, 2010.

M. Hennessy. A Distributed Pi-Calculus. Cambridge University Press, USA, 2007.

M. Hennessy and J. Riely. Resource access control in systems of mobile agents. Information
and Computation, 173(1):82 ~120, 2002.

T. Hildebrandt, J. C. Godskesen, and M. Bundgaard. Bisimulation congruences for homer—a
calculus of higher order mobile embedded resources. Technical Report TR-2004-52, 2004.

C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666—677, Aug.
1978.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for
structured communication-based programming. In C. Hankin, editor, Programming Lan-
guages and Systems, pages 122-138, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

I. Lanese, C. Vaz, and C. Ferreira. On the expressive power of primitives for compensation
handling. In Proc. of ESOP 2010, volume 6012 of LNCS, pages 366-386. Springer, 2010.

I. Lanese and G. Zavattaro. Decidability results for dynamic installation of compensation
handlers. In COORDINATION 2013, volume 7890 of LNCYS, pages 136—-150. Springer, 2013.

C. Laneve and G. Zavattaro. Foundations of web transactions. In Proc. of FOSSACS 2005,
volume 3441 of LNCS, pages 282-298. Springer, 2005.

R. Milner. Communication and concurrency. PHI Series in computer science. Prentice Hall,
1989.

Bibliography 204

[33]

[34]

[35]

[36]

[37]

[41]

[42]

[43]

[44]

[45]

[46]
[47]
[48]

[49]

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, 1. Inf. Comput.,
100(1):1-40, 1992.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, ii. Information and
Computation, 100(1):41 — 77, 1992.

U. Nestmann. On Determinacy and Nondeterminacy in Concurrent Programming. Doctoral
thesis, Universitdt Erlangen-Niirnberg, 1996.

U. Nestmann. What is a "good" encoding of guarded choice? Information and Computation,
156(1-2):287-319, 2000.

U. Nestmann. Welcome to the jungle: A subjective guide to mobile process calculi. In
Proceedings of the 17th International Conference on Concurrency Theory, CONCUR’06,
pages 52-63, Berlin, Heidelberg, 2006. Springer-Verlag.

R. D. Nicola. A gentle introduction to process algebras. IMT — Institute for Advanced
Studies Lucca, 2013.

C. Palamidessi. Comparing the expressive power of the synchronous and asynchronous
pi-calculi. Mathematical Structures in Computer Science, 13(5):685-719, 2003.

J. Parrow. FExpressiveness of process algebras. FElectronic Notes in Theoretical Computer
Science, 209:173 — 186, 2008. Proceedings of the LIX Colloquium on Emerging Trends in
Concurrency Theory (LIX 2006).

J. Parrow and B. Victor. The fusion calculus: expressiveness and symmetry in mobile pro-
cesses. In Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science
(Cat. No.98CB36226), pages 176185, 1998.

J. A. Pérez. Higher-Order Concurrency: FExpressiveness and Decidability Results. Doctoral
thesis, University of Bologna, Department of Computer Science, 2010.

K. Peters. Translational expressiveness: comparing process calculi using encodings. Doctoral
thesis, Technische Universitdt Berlin, Fakultdt IV - Elektrotechnik und Informatik, Berlin,
2012.

K. Peters. Comparing process calculi using encodings. In J. A. Pérez and J. Rot, editors,
Proceedings Combined 26th International Workshop on Ezpressiveness in Concurrency and
16th Workshop on Structural Operational Semantics, EXPRESS/SOS 2019, Amsterdam,
The Netherlands, 26th August 2019, volume 300 of EPTCS, pages 19-38, 2019.

K. Peters and R. J. van Glabbeek. Analysing and comparing encodability criteria. In
S. Crafa and D. Gebler, editors, Proceedings of the Combined 22nd International Workshop
on Ezpressiveness in Concurrency and 12th Workshop on Structural Operational Semantics,
EXPRESS/SOS 2015, Madrid, Spain, 31st August 2015, volume 190 of EPTCS, pages 46—
60, 2015.

C. A. Petri. Kommunikation mit Automaten. Doctoral thesis, Universitat Hamburg, 1962.
C. Priami. Stochastic pi-calculus. The Computer Journal, 38(7):578-589, 1995.

L. Proki¢. Formal modeling and analysis of resource usage and sharing in distributed software
systems. Doctoral thesis, Faculty of Technical Sciences, University of Novi Sad, 2019.

I. Proki¢ and H. T. Vieira. The cy-calculus: A model for confidential name passing. Journal
of Logical and Algebraic Methods in Programming, 119:100622, 2021.

205

Bibliography

[50]

[51]

[52]

W. Reisig. Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case Stud-
tes. Springer Publishing Company, Incorporated, 2013.

D. Sangiorgi. FEzpressing Mobility in Process Algebras: First-Order and Higher Order
Paradigms. PhD thesis, University of Edinburgh, 1992.

A. Schmitt and J. Stefani. The kell calculus: A family of higher-order distributed process
calculi. In C. Priami and P. Quaglia, editors, Global Computing, IST/FET International
Workshop, GC 2004, Rovereto, Italy, March 9-12, 2004, Revised Selected Papers, volume
3267 of Lecture Notes in Computer Science, pages 146-178. Springer, 2004.

M. Simi¢, 1. Proki¢, J. Dedei¢, G. Sladi¢, and B. Milosavljevi¢. Towards edge computing
as a service: Dynamic formation of the micro data-centers. IEEE Access, 9:114468-114484,
2021.

C. Vaz and C. Ferreira. On the analysis of compensation correctness. J. Log. Algebr.
Program., 81(5):585-605, 2012.

M. G. Vigliotti, I. Phillips, and C. Palamidessi. Tutorial on separation results in process
calculi via leader election problems. Theoretical Computer Science, 388(1):267 — 289, 2007.

N. Yoshida. Minimality and separation results on asynchronous mobile processes - repre-
sentability theorems by concurrent combinators. Theoretical Computer Science, 274(1):231
—276, 2002. 9th International Conference on Concurrency Theory 1998.

Osaj Obpazay u4uHu cacmasHu 0eo OOKmMOpcKe oucepmayuje, O0OHOCHO
O00KMOPCKO2 YMemHU4Ko2 npojekma xoju ce opaunu na Ynusepszumemy y Hoeom
Caoy. llonywen Obpazay ykopuuumu uza mekcma OOKMoOpcKe oucepmayuje,
0OHOCHO OOKMOPCKO2 YMEMHUUKO2 NPOjeKma.

[Inan TperMana nojaraka

Ha3uB npojexkTa/ucrpaxuBama

PenaTvBHA €KCIPECHBHOCT MPOLECHUX padyHa KOjU MOCeayjy MOryhHOCT ajganTanuje U JUHAMHUYKOT
aXypupama ToKkoM m3BpiraBama/ Relative Expressiveness of Process Calculi with Dynamic Update and

Runtime Adaptation

Ha3uB nHCTHTYIMje/MHCTUTYIMja Y OKBHPY KOjHX ce CIIPOBOIH MCTPAKMBamhe

a) dakynTeT TeXHUYKHX Hayka, YHuBepauteT y HoBom Cany

0) BepHy/M MHCTUTYT 32 MaTeMaTHKY, padyyHapcKe HayKe W BEIITAYKy MHTCIUICHIIM]Y, Y HUBEP3UTET Y
I'ponunreny, Xonanmauja

Ha3uB nporpama y OKBHpPY KOI' ce peajiu3yje HCTPaKuBambe

MartemaTrKa y TEXHHIIUA — JOKTOPCKA JTUCepTaIyja

1. Onuc mogaraka

1.1 Bpcra ctyaumje

Yxpamxo onucamu mun cmyouje y oxeupy xoje ce nooayu npuxkynsajy
JlokTopcka qucepranmja

1.2 Bpcre momaraka

a) KBaHTUTATUBHH

0) KBAJIUTATUBHU

1.3. Haunn npukymbama nojaTaxka

a) aHKeTe, YITUTHUIH, TECTOBU

0) KIMHUYKE IPOLIEHE, MEIUIIMHCKU 3aIIMCH, EIIEKTPOHCKH 3/[PaBCTBEHU 3aIllUCU

B) TCHOTHUIIOBU: HABECTH BPCTY

I‘) AIMUHUCTPATUBHU MMOJAIN: HABECTU BPCTY

) Y30pIIM TKUBA: HABECTU BPCTY

1) caumim, dpororpaduje: HaBeCTH BPCTY

e) TCKCT, HABECTU BPCTY AKTYeJIHA JIUTEPATYPA V 00J1aCTH HCTPAKHBAHA

K) MaIla, HaBeCTH BPCTY

Hanuonanuu nopran oTBopeHe Hayke — Open.ac.rs

3) OCTaJIO: OIUCATH

1.3 ®opmar nogaTaka, ynorpedspeHe cKkaje, KOJIHIuHA [T0/1aTaka
1.3.1 Ynorpe6speHu copTBep U popMar gaToTeKe:

a) Excel ¢ajn, naroreka

b) SPSS ¢ajn, naroreka

c) PDF o¢ajn, natoteka

d) Texkcr dajin, naToTexa

e) JPG ¢ajn, narorexa

f) Ocrano, naroreka

1.3.2. Bpoj 3anmca (kox KBaHTUTATHBHUX MOJaTaKa)

a) Opoj BapujadbIu

0) Opoj Mepema (McUTaHWKa, TIPOIIeHA, CHUIMAaKa U CII.)

1.3.3. IloHOBJBEHA MEPERHA
a) na
0) He

YKONHKO je 0roBOp /a, OJrOBOPUTH Ha cieneha murama:

a) BPEMEHCKH pa3Mak M3Mejy OHOBJEEHUX Mepa je

0) BapujalJie KOje Ce BHIIE ITyTa MEPE OJHOCE Ce Ha

B) HOBE Bep3uje (ajioBa Koju caJpie MOHOB/EHA MEPEHA CY MIMEHOBaHE Kao
Hamomene:

Ha nu popmamu u cogpmeep omozyhasajy oemerve u 0y20poyHy 8aiudOHOCH nooamaxa?

a) /Jla
6) He

Axo je 002060p He, 0Opaznoxcumu

2. [Ipukymbame noaaTaka

2.1 Metogponoruja 3a NpuKyIJbamke/TeHEpUCake oJaTaKa

2.1.1. Y okBHpY KOT UCTPAXUBAYKOT HAI[PTA CY MOJAIM TPUKYTJHEHN?

a) CKCIIEPUMEHT, HABECTHU THUII

0) KOpenarroHO UCTPAKUBAKE, HABECTH TUIT

HaronasHu moptan oTBOpeHe Hayke — Open.ac.rs

I_I) aHaJIn3a TCKCTa, HaBCCTHU THUII

1) OCTaJI0, HABECTH 1T

2.1.2 Hagecmu 8pcme MepHUX UHCMPYMEHAMA Ul CManoapoe nodamaxka cneyupuunux 3a oopehery
HAay4Hy OUCYUNIUHY (aKo nocmoje).

2.2 Kpanurer noaaraka u CTaHIapaAu
2.2.1. Tperman HegocTajyhux nojgaraka
a) Jla mu matpuma cagpxu Henocrajyhe mogarke? la He

AKO je oAroBop /1a, OATOBOPUTH Ha ciieficha nurama:

a) Konukwu je 6poj Hemoctajyhux monaraka?
0) Jla 1 ce KOPHCHUKY MaTpHIIC TIpernopy4yje 3aMeHa HepocTajyhux nogaraka? Jla He
B) AKo je 0IrOBOp J1a, HABECTH CYTeCTHje 3a TPETMaH 3aMeHe HeJocTajyhux mojaTaka

2.2.2. Ha xoju HauWH je KOHTPOJIHMCAH KBAIUTET rojaraka? Onucatu

2.2.3. Ha koju HauuH je U3BPIICHA KOHTPOJIAa YHOCA ToJjaTaKa y MaTpuIry?

3. TpermaH mojgaraka u npateha joKkymMeHTanuja

3.1. TpeTmaH u dyBame NoAaTaKa

3.1.1. llooayu he bumu denonosanu y PEno3umopujym.

3.1.2. URL aopeca

3.1.3. DOI

3.1.4. Jla nu he nodayu bumu y omeopeHom npucmyny?

a) Ha
0) a, anu nocne embapea xoju he mpajamu 0o
8) He

Axo je 002080p He, Hasecmu paznoz

3.1.5. Hooayu Hehe 6umu 0enorosanu y peno3umopujym, auu e oumu yyearu.

Obpasnoogicerve

HaronasHu moptan oTBOpeHe Hayke — Open.ac.rs

3.2 Meranojiany u JOKyMEHTaIMja ojaTaka

3.2.1. Koju crannapn 3a merarnoaatke he Outu mpuMemeH?

3.2.1. HaBectn MeTamnomaTke Ha OCHOBY KOjUX CY MOJAIH JENOHOBAHH Y PEMO3ZHTOPHjYM.

AKo je nompebno, Hasecmu memoode Koje ce Kopucme 3a npey3umarbe no0amaxd, AHaIumuyKe u
npoyedypanne uHpopmayuje, HUxXo80 KOOUparbe, 0emasshe OnUce 8apujadbau, 3anuca umo.

3.3 Crpareruja u cTaHJap/y 3a 4yBame MojaTaKa

3.3.1. Jlo xor nepuoja he moganu OWUTH YyBaHH y PEHIO3ZUTOPUjyMY?

3.3.2. Jla i1 he momaru OutH nenonoanu mox mudpom? Ia He

3.3.3. Jla 1 he mmdpa 6utn noctymHa oapelheHom kpyry ucrpaxkuBada? Jla He

3.3.4. Jla i ce momany MOpajy YKIOHUTH U3 OTBOPEHOT MPHUCTYIIA MOCTIE H3BECHOT BpeMeHa?
Ja He

O0pasnoxkuTH

4. Be30eqHOCT MoAATaKa U 3aIUTUTA OBeP/LUBHX MH(pOPMaLuja

OBgaj oxespak MOPA OuTH NONyHEH ako Bally NMOJaly YKIJbY4yjy JHMYHE MOJATKE KOjU Ce OHOCE Ha
YUECHHKE y UCTpaKUBamy. 3a Apyra HCTpaKuBamba Tpeda Takole pa3MOTPHUTH 3aIUTUTY U CUTYPHOCT
MoJIaTaKa.

4.1 dopmanHu CTaHAAPAHU 32 CUTYPHOCT HH(OpManyja/moaaraka

HcTpaxknBaun Koju CIIPOBOJIE HCIIMTHBAKA C JbYJMMa MOPajy Ja ce MPHUIPKaBajy 3aKOHa O 3aIUTUTH
nogaraka o murocty (https://www.paragraf.rs/propisi/zakon o zastiti podataka o licnosti.html)
O,Z[FOBapajyheI‘ I/IHCTI/ITYLII/IOHaJ'IHOF KOACKCa O aKaAECMCKOM I/IHTerI/ITeTy.

4.1.2. [la 1m je uctpaxkuBame o100peHo o cTpane eTnuke komucuje? la He

Axo je oaroop /la, HaBeCcTH JaTyM W Ha3MB €THYKE KOMHCH]E KOja je 0J00pHiia HCTPAKUBAE

4.1.2. la 1v nojauy ykJby4yjy JUUHE MOJATKe yuecHUKa y ucrpaxusamy? Jla He

Axo je OATOBOp [1a, HABEAUTEC HA KOjI/I Ha4YWH CTC OCUTYpaJIM IMMOBCPJbUBOCT U CUTYPHOCT I/IH(i)OpMaIII/Ija
BC3aHUX 3a UCIIUTAHUKEC:

a) [Tomauy HUCY Y OTBOPEHOM MPHUCTYILY

HaronasHu moptan oTBOpeHe Hayke — Open.ac.rs

0) [omanm cy aHOHUMU3UpaHU

1) Ocrtaio, HaBeCTH ITa

5. JlocTynmHOCT moxaTaka

5.1. Ilooayu he bumu

a) jasno docmynnu

6) 0OCMYNHU CAMO YCKOM KPYEy ucmpaxicusaya y oopehenoj Hayunoj ooiacmu
y) 3ameoperu

Axo cy nooayu docmynHu camo yCKOM Kpyey UCIPadiCueaid, Hagecmu noo KOjum yCioeuma Mo2y 0d ux
Kopucme:

Axo ¢y nooayu 00CmynHu camo YCKOM Kpyay UCHPAd#CUBadd, HAGeCmu Ha KOju HAYUH MO2y
npucmynumu nooayuma:

5.4. Hasecmu nuyenyy noo kojom he npukynmenu nooayu 6umu apxusuparu.

6. Yore u oqroBopHoct

6.1. Hasecmu ume u npesume u mej1 aopecy 61acHuKa (aymopa) nooamaxa

Josana Jleneuh, radenovicj@uns.ac.rs

6.2. Hasecmu ume u npezume u mejn aopecy ocode Koja 00paicasa Mampuyy ¢ no0ayuma

6.3. Hagecmu ume u npesume u mejn aopecy ocobe koja omocyhyje npucmyn nooayuma Opyeum
ucmpaxcueauuma

HaronasHu moptan oTBOpeHe Hayke — Open.ac.rs

PERSONAL INFORMATION

4

ACADEMIC QUALIFICATION

October 2012 - December 2021

October 2010 - November 2011

October 2006 - September 2010

PROFESIONAL
EXPERIENCE
Since 2013
2012-2013
2011 -2012
PUBLICATIONS

2021

2021

2021
2021
2020

2016

2015

ADDITIONAL INFORMATION

June 18,2021
October 3 - 5, 2019

September 21 - 25,2015
September 1 - 4,2015
August 31,2015

February 10 - 14,2014
September 26 - 27,2013

Jovana Dedei¢
9 Mise Dimitrijevi¢a 66A, Novi Sad, 21000, Serbia

radenovicj@uns.ac.rs
http://imft.fin.uns.ac.rs/math/People/JovanaRadenovi%C4%87

A# Female | Date, place, and country of birth:: 23/10/1987, Novi Sad, Serbia

Ph.D. degree in Applied Mathematics from the Faculty of Technical Sciences, University of Novi Sad, Serbia
Advisors:
4+ Prof. Jovanka Pantovi¢ (http:/imft.fin.uns.ac.rs/~vanja)
+ Prof. Jorge Andres Pérez Parra (https://www,jperez.nl/)
Area of research: concurrency, semantics of programming languages, process calculi, compensation handling, dynamic
update, expressiveness
Master in mathematics
Applied mathematics study programme
Faculty of Sciences, University of Novi Sad, Department of Mathematics and Informatics
GPA: 9.63/10
Bachelor with honours in mathematics
Mathematics study programme
Faculty of Sciences, University of Novi Sad, Department of Mathematics and Informatics
GPA:9.58/10

Faculty of Technical Sciences, University of Novi Sad,

Teaching assistant within the Department of Fundamentals Sciences

Faculty of Technical Sciences, University of Novi Sad,

Teaching Associate within the Department of Fundamentals Sciences

City Administration for Economy, Novi Sad, Finance Department, Graduate trainee

JOURNAL PAPER

J. Dedeié, J. Pantovi¢, J.A. Pérez: On primitives for compensation handling as adaptable processes. Journal of
Logical and Algebraic Methods in Programming, vol. 121, pp. 100675, 2021, ISSN 2352-2208, doi:
https://doi.org/10.1016/j.jlamp.2021.100675.

M. Simi¢, I. Proki¢, J. Dedei¢, G. Sladi¢ and B. Milosavljevi¢: Towards Edge Computing as a Service: Dynamic Formation of
the Micro Data-Centers, in IEEE Access, vol. 9, pp. 114468-114484, 2021, doi: 10.1109/ACCESS.2021.3104475.
CONFERENCE PAPER

J. Dedei¢, J. Pantovi¢, J.A. Pérez: On primitives for compensation handling as adaptable processes (Oral Communication),
ICE 2021 - 14th Interaction and Concurrency Experience.

B. Celi¢ and J. Dedeié: Synchronous and asynchronous learning in online education, XXVII Skup Trendovi razvoja: “On-line
nastava na univerzitetima", Srbija, 2021

R. Bozi¢, J. Dedeié, S. Mili¢evi¢ i I. Kovacevic: Primena Geogebre u nastavi matematike, XXV1 Skup Trendovi razvoja:
“Inovacije u modernom obrazovanju" , Kopaonik, Srbija, 2020.

J. Dedei¢, J. Pantovi¢, J.A. Pérez: Efficient Compensation Handling via Subjective Updates,

The 32nd ACM Symposium on Applied Computing - SAC'17 (CAS track), ACM Press

April 3-6, 2017, Marrakesh, Morocco

J. Dedei¢, J. Pantovi¢, J.A. Pérez: On Compensation Primitives as Adaptable Processes,

EPTCS 190, 2015, pp. 16-30. Combined 22nd International Workshop on Expressiveness in Concurrency and 12th Workshop
on Structural Operational Semantics, and 12th Workshop on Structural Operational Semantics, EXPRESS/SOS 2015, Madrid,
Spain, 31st August 2015. (DOI: 10.4204/EPTCS.190.2)

CONFERENCES
ICE 2021 - 14th Interaction and Concurrency Experience, virtual event

Congress of Young Mathematicians, Novi Sad, Serbia

Logic and Applications 2015 (LAP 2015), Dubrovnik, Croatia.

26th International Conference on Concurrency Theory (CONCUR 2015), Madrid, Spain.

Combined 22nd International Workshop on Expressiveness in Concurrency and 12th Workshop on Structural Operational
Semantics, and 12th Workshop on Structural Operational Semantics (EXPRESS/SOS 2015), Madrid, Spain
Mathematical Structures of Computation, Lyon, France.

Probabilistic logics and applications, Belgrade, Serbia.

March 18 - 22,2013

June 27 - July 1, 2016
July 21 - 25,2014

June 30 - July 4,2014
July 13 - 25,2013

2011 -2021

2012-2016
2012-2014

April 2018
January - February 2016
September 2017

January 2015

April - May 2014

April 2018
Jun 2016

March 2016
January 2016
September 2015
July 2015

January 2015

84th Annual Meeting of the Interational Association of Applied Mathematics and Mechanics (GAMM 2013), Novi Sad,
Serbia.

SUMMER SCHOOLS

Second International Summer School on Behavioural Types, Limassol, Cyprus

Summer School on the Interactions between Modern Foundations of Mathematics and Contemporary Philosophy, Benedictine
nunnery on Fraueninsel (as island in Chiemsee), Germany.

First International Summer School on Behavioural Types, Lovran, Croatia

European Summer School for Visual Mathematics and Education, Eger, Hungary.

PROJECTS

Representation of logical structure and formal language and their application in computing,

Ministry of Education and Science, Project 10 174026, Serbian National Project.

EU Cost Action IC1201: Behavioural Types for Reliable Large-Scale Software Systems

Tempus IV Project: Visuality & Mathematics: Experiential Education of Mathematics through Visual Arts,

Sciences and Playful Activities (http://vismath.ektf.hw/).

STAYS ABROAD

Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen

Prof. Jorge A. Pérez; 1 week (Erasmus+ International Credit Mobility (ICM))

Johann Bemnoulli Institute for Mathematics and Computer Science, University of Groningen,

The Netherlands, 2016 - 4 weeks, and 2017 - 1 week

Research topic: Typed approaches to compensation handling via sessions and adaptable processes

Supervisor: Prof. Jorge A. Pérez.

Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen

The Netherlands, 3 weeks

Research topic: Expressive power of sessions and adaptable processes

Supervisor: Prof. Jorge A. Pérez

Institute of Art, Science and Education; University of applied arts Vienna, Austria, 4 weeks

Research topic: Applied Design Thinking: Visualizing Mathematical topics through Art and Design

Supervisor: Dr. Ruth Mateus-Berr

SCHOLARSHIPS

Erasmus-+ International Credit Mobility (ICM)

Travel/accommodation grant for participation in Second International Summer School on Behavioural Types, Limassol,
Cyprus. COST Action IC1201 - Behavioural Types for Reliable Large-Scale Software Systems (BETTY).
Travel/accommodation grant for attending BETTY Working Group meeting, Valletta, Malta. COST Action IC1201 -
Behavioural Types for Reliable Large-Scale Software Systems (BETTY).

Grant for Short Term Scientific Mission (STSM), Groningen, The Netherlands. COST Action IC1201 - Behavioural Types for
Reliable Large-Scale Software Systems (BETTY).

Travel/accommodation grant for attending BETTY Working Group meeting, Madrid, Spain. COST Action IC1201 -
Behavioural Types for Reliable Large-Scale Software Systems (BETTY).

Travel/accommodation grant for participation in First International Summer School on Behavioural Types, Lovran, Croatia.
COST Action IC1201 - Behavioural Types for Reliable Large-Scale Software Systems (BETTY).

Grant for Short Term Scientific Mission (STSM), Groningen, The Netherlands. COST Action IC1201 - Behavioural Types for
Reliable Large-Scale Software Systems (BETTY).

	Rezime
	Motivacija
	Doprinosi disertacije
	Publikacije i struktura disertacije

	Abstract
	Introduction
	Motivation
	Contributions
	Publications and Structure

	Preliminaries
	Process Calculi
	The Calculi
	Compensable Processes
	Well-formed Compensable Processes
	Adaptable Processes

	Expressiveness of Concurrent Calculi
	Generalities
	The Notation of Encoding

	Encoding Compensable into Adaptable Processes with Subjective Update
	Preliminaries
	Translating CD into S
	The Translation, Informally
	The Translation, Formally
	Translation Correctness

	Translating CP into S
	The Translation, Informally
	The Translation, Formally
	Translation Correctness

	Translating CA into S
	The Translation, Formally
	Translation Correctness

	Encoding Compensable into Adaptable Processes with Objective Update
	Translating CD into O
	The Translation, Informally
	The Translation, Formally
	Translation Correctness
	Comparing Subjective vs Objective update

	Translating CP into O
	The Translation, Informally
	The Translation, Formally
	Translation Correctness
	Comparing Subjective vs Objective update

	Translating CA into O
	The Translation, Formally
	Translation Correctness
	Comparing Subjective vs Objective update

	 Encoding Dynamic Compensation Processes into Adaptable Processes with Subjective Update
	Compensable Processes with Compensation Update
	Well-formed Compensable Processes

	Translating CD into S
	Translation Correctness

	Translating CP into S
	Translation Correctness

	Translating CA into S
	Translation Correctness

	 Encoding Dynamic Compensation Processes into Adaptable Processes with Objective Update
	Translating CD into O
	Translation Correctness
	Comparing Subjective vs Objective update

	Translating CP into O
	Translation Correctness
	Comparing Subjective vs Objective update

	Translating CA into O
	Translation Correctness
	Comparing Subjective vs Objective update

	Conclusions and Perspectives
	Concluding Remarks
	Future work

	Bibliography

