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Rezime

Ovaj rad bavi se komparativnom analizom različitih pristupa rasplinutim
(fazi) algebarskim strukturama i odnosom tih struktura sa odgovarajućim
klasičnim algebrama. Posebna pažnja posvećena je pored̄enju postojećih
pristupa ovom problemu sa novim tehnikama i pojmovima nedavno razvi-
jenim na Univerzitetu u Novom Sadu. U okviru ove analize, proučavana su i
proširenja kao i redukti algebarskih struktura u kontekstu rasplinutih algebri.
Brojne važne konkretne algebarske strukture istraživane su u ovom kontek-
stu, a neke nove uvedene su i ispitane. Bavili smo se detaljnim istraživanjima
Ω-grupa, sa stanovǐsta kongruencija, normalnih podgrupa i veze sa klasičnim
grupama. Nove strukture koje su u radu uvedene u posebnom delu, istražene
su sa aspekta svojstava i med̄usobne ekvivalentnosti. To su Ω-Bulove alge-
bre, kao i odgovarajuće mreže i Bulovi prsteni. Uspostavljena je uzajamna
ekvivalentnost tih struktura analogno odnosima u klasičnoj algebri.

U osnovi naše konstrukcije su mrežno vrednosne algebarske strukture
definisane na klasičnim algebrama koje ne zadovoljavaju nužno identitete
ispunjene na odgovarajućim klasičnim strukturama (Bulove algebre, prsteni,
grupe itd.), već su to samo algebre istog tipa. Klasična jednakost zamenjena
je posebnom kompatibilnom rasplinutom (mrežno-vrednosnom) relacijom ek-
vivalencije.

Na navedeni način i u cilju koji je u osnovi teze (pored̄enja sa postojećim
pristupima u ovoj naučnoj oblasti) proučavane su (već definisane) Ω-grupe. U
našim istraživanju uvedene su odgovarajuće normalne podgrupe. Uspostav-
ljena je i istražena njihova veza sa Ω-kongruencijama. Normalna podgrupa
Ω-grupe definisana je kao posebna klasa Ω-kongruencije. Jedan od rezultata
u ovom delu je da su količničke grupe definisane pomoću nivoa Ω-jednakosti
klasične normalne podgrupe odgovarajućih količničkih podgrupa polazne Ω-
grupe. I u ovom slučaju osnovna struktura na kojoj je definisana Ω-grupa je
grupoid, ne nužno grupa. Opisane su osobine najmanje normalne podgrupe
u terminima Ω-kongruencija, a date su i neke konstrukcije Ω-kongruencija.
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Rezultati koji su izloženi u nastavku povezuju različite pristupe nekim
mrežno-vrednosnim strukturama. Ω-Bulova algebra je uvedena na strukturi
sa dve binarne, unarnom i dve nularne operacije, ali za koju se ne zahteva
ispunjenost klasičnih aksioma. Identiteti za Bulove algebre važe kao mrežno-
teoretske formule u odnosu na mrežno-vrednosnu jednakost. Klasične Bulove
algebre ih zadovoljavaju, ali obratno ne važi: iz tih formula ne slede stan-
dardne aksiome za Bulove algebre. Na analogan način uveden je i Ω-Bulov
prsten. Glavna svojstva ovih struktura su opisana. Osnovna osobina je da se
klasične Bulove algebre odnosno Bulovi prsteni javljaju kao količničke struk-
ture na nivoima Ω-jednakosti. Veza ove strukture sa Ω-Bulovom mrežom je
pokazana.

Kao ilustracija ovih istraživanja, u radu je navedeno vǐse primera.
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Abstract

In this work a comparative analysis of several approaches to fuzzy algebraic
structures and comparison of previous approaches to the recent one developed
at University of Novi Sad has been done. Special attention is paid to reducts
and expansions of algebraic structures in fuzzy settings. Besides mentioning
all the relevant algebras and properties developed in this setting, particular
new algebras and properties are developed and investigated.

Some new structures, in particular Omega Boolean algebras, Omega
Boolean lattices and Omega Boolean rings are developed in the framework
of omega structures. Equivalences among these structures are elaborated
in details. Transfers from Omega groupoids to Omega groups and back are
demonstrated. Moreover, normal subgroups are introduced in a particular
way. Their connections to congruences are elaborated in this settings. Sub-
groups, congruences and normal subgroups are investigated for Ω-groups.
These are lattice-valued algebraic structures, defined on crisp algebras which
are not necessarily groups, and in which the classical equality is replaced by
a lattice-valued one. A normal Ω-subgroup is defined as a particular class in
an Ω-congruence. Our main result is that the quotient groups over cuts of a
normal Ω-subgroup of an Ω-group G, are classical normal subgroups of the
corresponding quotient groups over G. We also describe the minimal normal
Ω-subgroup of an Ω-group, and some other constructions related to Ω-valued
congruences.

Further results that are obtained are theorems that connect various ap-
proaches of fuzzy algebraic structures. A special notion of a generalized
lattice valued Boolean algebra is introduced. The universe of this structure
is an algebra with two binary, an unary and two nullary operations (as usual),
but which is not a crisp Boolean algebra in general. A main element in our
approach is a fuzzy equivalence relation such that the Boolean algebras iden-
tities are approximately satisfied related to the considered fuzzy equivalence.
Main properties of the new introduced notions are proved, and a connection
with the notion of a structure of a generalized fuzzy lattice is provided.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

Fuzzy set theory is first introduced by Zadeh in [145] where the intention
was to generalize the usual notion of a set by its characteristic function and
in this way also to generalize the classical logic to a suitable type of multi-
valued logic. Instead of a dual principle membership- non-membership of
an element to a set, a notion of the membership function is introduced.
Values of the membership function are reals from the unit interval, [0, 1] and
this function was sometimes denoted by µA. Therefore, if A is a set, then a
fuzzy set is A together with a function µA : A→ [0, 1], showing the grade of
the membership of any element from A to the fuzzy set.

Professor Lotfi Zadeh, the pioneer of fuzzy mathematics died during
preparation of the final version of this thesis on 6. September 2017 in the
age of 96.

Goguen, 1967 was first to introduce lattice valued fuzzy sets replacing
the unit interval with a lattice and Brown in [23] introduced Boolean valued
fuzzy sets replacing the unit interval with a Boolean lattice. Later also were
introduced more general variants of the notion of fuzzy set, where member-
ship functions were taking values in partially ordered set or most general
in a relational system. Sanchez was first to study fuzzy relations and their
composition in [115], as a special type of fuzzy sets. A fuzzy relation from a
set A to a set B is defined as a fuzzy set from Cartesian product A×B into
[0,1] interval or a complete lattice L. After this first definition, the study of
basic types of fuzzy relations was firstly done also by Zadeh, [144], where he
defined fuzzy equivalence and fuzzy ordering relations. After that a lot of pa-
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pers were published on fuzzy order, e.g., [8, 51, 67, 81]. In [51], Fan defined
a fuzzy poset (X,R), where R is a reflexive, antisymmetric and transitive
fuzzy relation over set X. Another type of fuzzy poset (called L-ordered
set) was originally introduced by Bělohlávek, [6], whose intention was to to
fuzzify the fundamental theorem of concept lattices.

Following these concepts, first investigations of fuzzy algebraic structures
started at seventhes years of last century by A. Rosenfeld, [109]. In these
first investigations, fuzzy algebraic structures were connected to mappings
from standard algebraic structures to [0,1] real interval. Later, lattice co-
domains were taken, but still these generalized algebras were considered to
be mappings from classical algebraic structures (papers [2, 4, 11, 12, 23, 39,
58, 33, 34, 45, 60, 67, 117, 123, 124, 121, 126]). Many important aspects of
fuzzy algebraic structures, and among them in particular of fuzzy semigroups
and fuzzy groups have been developed (this is presented in details in two
monographs, first about the fuzzy group theory by J.N. Mordeson, K.R.
Bhutani, and A. Rosenfeld [93], second about the fuzzy semigroup theory by
J.N. Mordeson, D.S. Malik and N. Kuroki, [94], and the third about the fuzzy
commutative algebras by J.N. Mordeson and D.S. Malik, [95]). After that,
still classical structures were taken as elements of fuzzy structures, but the
classical equality has been replaced by a particular fuzzy equality relation
(this approach is presented in details in a paper by R. Belohlavek and V.
Vychodil, [10], and also in the monograph by R. Belohlavek [8].

Another approach is the one of so called vague structures introduced
by Demirci. The vague groups are introduced and developed in [40]. In
this approach the group operation is introduced as a kind of fuzzy ternary
relation and the validity of the classical results have been demonstrated in
this setting. This approach is further developed in series of papers [40, 41,
42, 44]. Finally, the approach we would accept and develop in this thesis in
the one introduced most recently in papers [28, 25, 122]. These structures
are called L-E-fuzzy structures or in some papers Ω-structures. Here, the
starting point in generalizing some structures is an algebraic structure of the
same signature, which need not satisfy given identities. A main feature of
this approach is a special lattice valued equality relation (satisfying weak
reflexivity). Identities are satisfied up to the given fuzzy equality relation.
This approach is developed partially for groups, semigroups and lattices in
papers [28],[25],[122]. Our task here is to pay special attention to reducts
and expansions of algebraic structures and connections of algebras and its
reducts, algebras and their expansions.

The notion of lattice valued fuzzy lattice is introduced for the first time by
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Tepavčević and Trajkovski, [136], where the equivalence of two approaches:
fuzzification of the membership of the carrier and fuzzification of the order-
ing relation in a (classical) lattice is proved. In the Ph.D. thesis [49] and in
a series of papers, [47, 122, 48] Ω-lattices are introduced using the approach
of an Ω-algebra, both as algebraic and as order structures. In this approach,
Ω-poset is an Ω-set equipped with an Ω-valued order, which is antisymmet-
ric with respect to the corresponding Ω-valued equality. Moreover, notions
of pseudo-infimum and pseudo-supremum are introduced, and using these
notions a definition of an Ω-lattice as an ordering structure is developed.

Our notion of an Ω-valued Boolean algebra is based on this approach,
i.e., we proved that as in the classical case, an Ω-Boolean algebra is just an
extension of the Ω-lattice as an algebraic structure. Namely, in this part
first we introduce the notion of an Ω-valued Boolean algebra, where Ω is
a complete lattice of membership values. Here also a lattice-valued fuzzy
equality has an important role to replace the classical equality. The main
reason why we use a complete lattice lattice (and not e.g., a Heyting algebra)
as a co-domain is that it enables the framework of cut sets,[78], which allows
main algebraic and set-theoretic properties to be generalized from classical
structures to lattice-valued ones. This approach is used for dealing with
algebraic topics in many papers (see e.g., [45], then also [125, 131]). A
complete lattice is sometimes replaced by a complete residuated lattice, [8].

For defining an Ω-Boolean algebra, we use a classical algebra with two
binary, one unary operations and two constants, but we do not assume that
classical identities for Boolean algebras are satisfied in the usual way. Instead,
these identities hold as lattice theoretic formulas including a fuzzy equality.
From these we deduce properties of the new structure (idempotency of binary
operations, absorption laws, properties of constants) which enable us to prove
that an Ω-valued Boolean algebra is also an Ω-lattice (the notion of Ω-lattice
is introduced in [122] and further investigated in [47]).

The approach of Ω-Boolean algebra differs from all the previous ones,
because the underlying algebra here is not a crisp Boolean algebra in general,
it is only an algebra of the same type. E.g., the universe of finite Ω-Boolean
algebras might have a number of elements different than 2n (as in classical
Boolean algebras).

Moving on, we introduce a concept of a normal subgroup in the frame-
work of Ω-groups, introduced in [9]. Ω is a complete lattice, hence we deal
with lattice-valued structures. In this case, the underlying algebra is not nec-
essarily a group, and the classical equality is replaced by a lattice-valued one.
Therefore algebraic (group) identities hold as particular lattice-valued formu-
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las. In this part, first we recall particular basic references for fuzzy groups
and related structures, not pretending to present an extensive list of such
references. Chronologically, fuzzy groups and related notions (semigroups,
rings etc.), were introduced early within the fuzzy era (e.g., Rosenfeld [109]
and Das [39], then also Mordeson and Malik [95]). Since then, fuzzy groups
remain among the most studied fuzzy structures (e.g., Malik, Mordeson and
Kuroki [94], Mordeson, Bhutani, and Rosenfeld [93] and [127]). Investigations
of notions from general algebra followed these first studies (see e.g., Di Nola,
Gerla [45] and [125, 131]). The universe of an algebra was fuzzified, while the
operations remained crisp. The set of truth values was either the unit inter-
val, or a complete, sometimes residuated lattice; generalized co-domains were
also used (lattice ordered monoids, Li and Pedrycz, [82], posets or relational
systems, [131]). An analysis of different co-domain lattices in the framework
of fuzzy topology is presented by Höhle and Šostak in [68]. The notion of a
fuzzy equality was introduced by Höhle, [64], and then used by many others.
Using sheaf theory,[54], in [65], Höhle was dealing with Ω-valued sets and
equalities (Ω being a complete Heyting algebra), representing many fields of
fuzzy set theory in this framework. Demirci (see e.g., [40, 44]) introduced
the new approach to fuzzy structures. He considered particular algebraic
structures equipped with fuzzy equality relations and fuzzy operations. In
this framework he developed detailed studies of fuzzy groups (vague groups,
smooth subgroups) and related topics. Bělohlávek (papers [10, 9], [5] with
Vychodil, the books [8, 10], the second with Vychodil) introduced and inves-
tigated algebras with fuzzy equalities. These are defined as classical algebras
in which the crisp equality is replaced by a fuzzy one being compatible with
the fundamental operations of the algebra. Bělohlávek develops and inves-
tigates main fuzzified universal algebraic topics. Some aspects of universal
algebra in a fuzzy framework were also investigated by Kuraoki and Suzuki,
[79].

In our work, we develop a concept of normal subgroups in Ω-valued set-
tings and we have proven a natural connection with Ω- valued congruences.

1.2 Preliminaries

1.2.1 Order, lattices

The lattice will be the basic structure in this work (see e.g., [14]) and it will
be considered in two ways, as an algebraic structure (L,∧,∨) where both op-
erations are binary and satisfy commutativity, associativity and absorptivity
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and as a special poset (L,≤) in which every two elements have a supremum
(denoted by ∨) and an infimum (denoted by ∧). The lattice is complete if

every subset M of L has the infimum and the supremum, denoted by
∧

M

and
∨

M , respectively. A complete lattice (L,∧,∨) will be a starting notion

in this work and it will be denoted by L, the top element of the lattice L
denoted by 1 and the bottom element by 0. Every finite lattice is a complete
lattice, since supremum and infimum are defined for every subset ( finite in
this case). This follows from the existence of the supremum and infimum of
each two element set. In general we will not request this lattice to satisfy
any particular lattice properties like distributivity or modularity.

If L is a lattice, and L1 a nonempty subset of L, then L1 is a sublattice
of L if it is closed under both operations: if x, y ∈ L1, then x ∧ y ∈ L1 and
x ∨ y ∈ L1.

Some special sublattices are ideals and filters, [14]:

Ideal I is a subset of L closed under ∧, satisfying: for all x ∈ I, if y ≤ x,
then y ∈ I.

Filter F is the dual notion: it is a subset of L closed under ∨, satisfying:
for all x ∈ I, if x ≤ y, then y ∈ I.

↑p = {x ∈ L | p ≤ x} is a special type of filter, called the principal filter.

The dual notion is denoted by ↓p and called the principal ideal.

1.2.2 Algebras, identities, congruences

This part contains some basic facts from Universal algebra, see e.g., [30].

In Universal algebra a language L, also called a type, is a set F of func-
tional symbols with a set of non-negative integers associated to these symbols,
called arities.

An algebra in the language L is a pair A = (A,FA), A being a nonempty
set and FA a set of operations on A.

Every operation in FA which is n-ary, corresponds to an n-ary symbol in
the language.

A subalgebra of A is an algebra in the same language, defined on a subset
of A and which is closed under the operations in F .

Terms in a language are regular expressions constructed by the variables
and operational symbols. A term t(x1, . . . , xn) in the language of an alge-
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bra A and the corresponding term-operation An → A are often (also here)
denoted in the same way.

If t1 and t2 are terms in a given language, then an identity in the same
language is a formula t1 ≈ t2.

An identity t1(x1, . . . , xn) ≈ t2(x1, . . . , xn) hold on an algebraA = (A,FA),
if for all a1, . . . , an ∈ A, the equality t1(a1, . . . , an) = t2(a1, . . . , an) is satis-
fied. A congruence relation on an algebra A is an equivalence relation ρ on
A which is compatible with all fundamental operations.

Compatibility means that

xiρyi, i = 1, . . . , n implies f(x1, . . . , xn)ρf(y1, . . . , yn).

For a congruence relation ρ on A and for a ∈ A, the congruence class of
a, [a]ρ, is defined by [a]ρ := {x ∈ A | (a, x) ∈ ρ}; the quotient algebra A/ρ is
A/ρ := (A/ρ, FA/ρ), where A/ρ = {[a]ρ | a ∈ A}, and the operations in FA/ρ

are defined in a natural way by representatives.

Next, let φ and θ be congruences on an algebra A, and θ ⊆ φ. Then, the
relation

φ/θ := {([a]θ, [b]θ) | (a, b) ∈ φ}

is a congruence on A/θ.

Theorem 1.2.1. [30] [Second Isomorphism Theorem] If φ and θ are congru-
ences on an algebra A and θ ⊆ φ, then φ/θ is a congruence on A/θ.

Let A be an algebra, θ a congruence on A and B ⊆ A. Let

Bθ := {x ∈ A | B ∩ [a]θ 6= ∅},

and Bθ the subalgebra of A generated by Bθ. We denote

θ�Bθ := θ ∩B2

(the restriction of θ to B). Now, the universe of Bθ is Bθ and θ�Bθ is a
congruence on B.

Theorem 1.2.2. [30] [Third Isomorphism Theorem] If B is a subalgebra of
A and θ a congruence on A, then

B/θ�B ∼= Bθ/θ�Bθ .

The following version of the Axiom of Choice is used in some parts of this
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text:

(AC) For a collection X of nonempty subsets of a set M , there exists a
function f : X →M , such that for every A ∈ X , f(A) ∈ A.

1.2.3 Fuzzy sets

All fuzzy sets in this work will be lattice valued (fuzzy) sets µ : A → L,
where L is a complete lattice. Here all lattice valued sets will be identified
with the function µ in a similar way as subsets are sometimes identified with
their characteristic function.

They will be sometimes called lattice valued sets, L-valued fuzzy sets, or
L-valued sets. Later A can be equipped with operational structure or with
a lattice valued equivalence relation. In case when we consider a set or an
algebra together with a lattice valued equality (weak equivalence), then we
call such a structure Ω-valued set.

Since [0,1] interval is also a complete lattice, the lattice valued approach
also contains the original Zadeh’s approach.

Namely, we can consider a mapping µ : A→ [0, 1] as an L-valued set and
in the same time it is a fuzzy set in the Zadeh sense, where the value of the
function µ for some element a ∈ A, µ(a) is a grade of membership of element
a to the (fuzzy) set.

In example, let A = {a, b, c}, then a fuzzy set µ can be defined by µ(a) =
1, µ(b) = 0 and µ(c) = 0.7. Grade of membership of element a to the fuzzy
set is 1, which means that a ”totally” belong to the fuzzy set. Grade of
membership of b to the fuzzy set is 0, which means that b ”totally” does not
belong to the fuzzy set. µ(c) = 0.7 means that c belongs to the fuzzy set to
an extent of 0.7.

In order to illustrate a lattice valued case which is not a fuzzy set in
the classical sense, let L = ({p, q, r, s},≤) be a lattice on Figure 1, where
p ≤ q ≤ s and p ≤ r ≤ s and q and r are incomparable. Then, an L-valued
set can be defined by µ(a) = p, µ(b) = q and µ(c) = r. Here p, q and r are
also called grades of membership, although they are not real numbers.

7
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Figure 1: Lattice L

For a lattice valued set µ : A→ L, the set of images is denoted as usual
by µ(A)

µ(A) := {p ∈ L : µ(x) = p, for some x ∈ X}.

In the previous example, µ(A) = {p, q, r}.

Let L be a complete lattice and µ : A → L and ν : A → L two lattice
valued fuzzy sets (denoted by µ and ν).

Then, the notion of inclusion between fuzzy sets is defined componentwise

µ ⊆ ν if and only if µ(x) ≤ ν(x),∀x ∈ A. (1.1)

Similarly, the notion of equality of two fuzzy sets is defined by

µ = ν if and only if µ(x) = ν(x),∀x ∈ A. (1.2)

The union (join) denoted by ∨ and the intersection (meet) denoted by ∧
of two fuzzy sets, are also introduced componentwise:

(µ ∨ ν)(x) = µ(x) ∨ ν(x) for all x ∈ A

(µ ∧ ν)(x) = µ(x) ∧ ν(x) for all x ∈ A.

In this way two lattice valued fuzzy sets µ∨ν : A→ L and µ∧ν : A→ L
are obtained.

The support of a fuzzy set µ : A → L is the subset of A defined by
supp(A) = {x ∈ A | µ(x) > 0}.
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1.2.4 Cut sets and properties

Now a notion of cut sets (cuts) will be introduced.

Let µ : A → L be a lattice valued fuzzy set and let p ∈ L. A cut set
(p-cut) is the following subset of A:

µp = {x ∈ A | µ(x) ≥ p}.

If p = 0, then the 0-cut is obtained and for each fuzzy set µ, µ0 = A.

The family of all cuts of a lattice valued set is denoted by µL:

µL = {µp | p ∈ L}.

A cut is a very important concept in our approach, since many properties
of lattice valued structures are satisfied if and only if they are appropriately
(in the crisp settings) satisfied on cuts.

Here are some propositions that characterize cuts and the family µL.

Firstly, every p-cut of µ is the inverse image of the principal filter of the
lattice L induced by p,

µp = µ−1(↑p),

where
↑p = {q ∈ L | p ≤ q}.

The next proposition shows how one can calculate the values of lattice
valued set from the cuts:

Proposition 1.2.3. [134] Let µ : X → L be a lattice-valued set on X. Then
for all x ∈ X it holds that,

µ(x) =
∨
{p ∈ L : x ∈ µp}

The following proposition directly follows from the definition of cuts:

Proposition 1.2.4. [134] Let µ : X → L be a lattice-valued set on X. For
p, q ∈ L, if p ≤ q then µp ⊇ µq.

The converse of proposition (1.2.4) does not hold in general and the next
proposition gives conditions under which the converse of proposition (1.2.4)
is satisfied.
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Proposition 1.2.5. [123] Let µ : X → L be a lattice-valued set on X. Then

1. for p ∈ L and a ∈ X, p ≤ µ(a) if and only if µp ⊇ µµ(a).

2. for a, b ∈ X, µ(a) 6= µ(b) if and only if µµ(a) 6= µµ(b).

The following proposition gives some further properties of cuts. Namely,
the family of cuts is closed under intersections and has the top element, hence
it is a complete lattice under inclusion.

Proposition 1.2.6. [134] Let µ : X → L be an L-valued set on X. Then,

1. if L1 ⊆ L, then
⋂
{µp | p ∈ L1} = µ∨

{µp|p∈L1}.

2.
⋃
{µp | p ∈ L} = X .

3. ∀ x ∈ X,
⋂
{µp | x ∈ µp} ∈ µL.

As a consequence it is obtained that the collection of cuts forms a (com-
plete) lattice under set inclusion, where µ0 is the top and µ1 is the bottom
element of this lattice:

Theorem 1.2.7. Let µ : X → L be an L-valued set on X. Then the
collection µL = {µP : p ∈ L} of all cuts of µ forms a complete lattice under
inclusion.

Moreover, in a following representation theorem it is stated that for every
complete lattice there exists a lattice-valued set such that the collection of
cut sets of this lattice-valued set under set inclusion is a complete lattice
anti-isomorphic with the given lattice.

Theorem 1.2.8. (Representation Theorem)[134] Let X 6= ∅ and F a col-
lection of subsets of X closed under arbitrary intersections. Let (L,6) be a
lattice dual to (F ,⊆) and let µ : X → L be defined by,

µ(x) :=
⋂
{p ∈ F : x ∈ p}.

Then µ is a lattice valued set on X, and each p ∈ F is equal to the corre-
sponding cut µp.
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In the next part it is shown that starting from a lattice-valued set, a
partition on lattice L is induced in a natural way.

Let µ : X → L be an L-valued set on X. Now a relation ≈ on L is
introduced as follows, [123]:

for p, q ∈ L,
p ≈ q if and only if µp = µq.

≈ is an equivalence relation on L and for any p ∈ L, the corresponding
equivalence class is:

[p]≈ := {q ∈ L : p ≈ q}.
The set of all ≈-classes is denoted by L/≈
In the following proposition some characterizations of the above equiva-

lence relation and equivalence classes are given.

Proposition 1.2.9. ( [134]) Let µ : X → L be an L-valued set on X and
p, q ∈ L, then

p ≈ q if and only if ↑p ∩ µ(X) = ↑q ∩ µ(X).

Proposition 1.2.10. [123] Let µ : X → L be an L-valued set on X, and let
X1 ⊆ X. If for all x ∈ X1, p = µ(x), then p is the top element of the ≈-class
to which it belongs.

The ordering relation ≤ on L can be extended in a natural way to an
ordering on the set of ≈-classes L/≈ by:

[p]≈ ≤ [q]≈ if and only if ↑q ∩ µ(X) ⊆ ↑p ∩ µ(X).

The ordering relation ≤ on classes is well defined and there is an anti-
isomorphism among the poset of classes and the collection of cuts of µ ordered
by the set inclusion, as follows:

Proposition 1.2.11. [123] Let µ : X → L be an L-valued set on X, then;

[p]≈ ≤ [q]≈ if and only if µp ⊇ µq.

For the lattice (L/≈,≤) the supremum of each ≈-class [p]≈ denoted by∨
[p]≈ exists and defined by∨

[p]≈ :=
∨
{q ∈ L : q ∈ [p]≈}.
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Now, a convenient collection of subsets of the co-domain lattice L is
introduced:

Let L be a lattice, X 6= ∅ and µ : X → L a lattice valued set, then an
ordered set is defined as follows:

Lµ := ({↑p ∩ µ(X) : p ∈ L},⊆).

It can be seen from the definition that Lµ consists of particular collections
of images of µ in L and it is ordered by set inclusion.

Proposition 1.2.12. [123] For an L-valued set µ the lattice Lµ is isomorphic
to the lattice µL of cuts under the mapping f(µp) = ↑p ∩ µ(X).

1.2.5 Lattice valued relations

A lattice valued (binary) relation R on a set A is a lattice valued set on the
direct product A× A:

R : A× A→ L.

Some special properties of lattice-valued relations are introduced as fol-
lows:

� R is reflexive if for all x ∈ A, R(x, x) = 1,

� R is strict (weakly reflexive): If for all x, y ∈ A, R(x, x) ≥ R(x, y)
and R(x, x) ≥ R(y, x),

� R is symmetric if for all x, y ∈ A, R(x, y) = R(y, x),

� R is transitive if for all x, y, z ∈ A, R(x, y) ∧R(y, z)) ≤ R(x, z).

� R is antisymmetric if for all x, y ∈ A, R(x, y)∧R(y, x) = 0, for x 6= y.

As usual, a lattice valued relation which is reflexive, symmetric and tran-
sitive is called a lattice valued equivalence or a lattice valued similarity rela-
tion.

A reflexive and transitive lattice valued relation R is called a lattice valued
preorder, and the pair (A,R) is called a lattice valued-preordered set. A
lattice valued preorder which is also antisymmetric is called a lattice valued
order and the pair (A,R) is a lattice valued ordered set.
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Since a lattice valued relation is a lattice valued set on a square of sets,
also cuts of L-valued relations can be considered and all properties of cuts
defined above are also valid.

In the next proposition it is stated that all properties of lattice valued
relations are cutworthy (i.e., properties of the lattice valued structure are
valid if and only if the related properties of cuts are also valid):

Proposition 1.2.13. [124] Let R : A× A→ L be a lattice valued relation.

R is a reflexive lattice valued relation if and only if all the cut relations
Rp for all p ∈ L are reflexive relations on A.

R is a symmetric lattice valued relation if and only if all the cut relations
Rp for all p ∈ L are symmetric relations on A.

R is an anti-symmetric lattice valued relation if and only if all the cut
relations Rp for all p ∈ L are anti-symmetric relations on A.

R is a transitive lattice valued relation if and only if all the cut relations
Rp for all p ∈ L are transitive relations on A.

As a consequence the following corollary is obtained:

Proposition 1.2.14. [124] Let R : A× A→ L be a lattice valued relation.

R is a lattice valued equivalence relation of and only if all the cut relations
Rp for p ∈ L are equivalence relations on A.

R is a lattice valued preorder of and only if all the cut relations Rp for
p ∈ L are preorders on A.

R is a lattice valued order of and only if all the cut relations Rp for p ∈ L
are orders on A.

Now an important connection of an L-valued set with an L-valued relation
will be introduced in the sequel.

Let µ be an L-valued set on A and R an L-valued relation on A. Then,
R is an L-valued relation on µ if for every x, y ∈ A

R(x, y) ≤ µ(x) ∧ µ(y). (1.3)

This condition is a generalization of the following ordinary relational prop-
erty: If ρ is a binary relation on a subset Y of A, then from xρy it follows
that x, y ∈ Y .
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If such a kind of connection of a lattice valued set and a lattice valued
relation exists, and the lattice-valued relation is reflexive, then µ(x) = 1 for
every x ∈ A. Therefore, the reflexivity is not satisfied in a non-trivial case,
when µ is not a constant function. Hence, in such case, when µ is an arbitrary
function, the maximum value that R(x, x) should take is µ(x).

Therefore, in this framework and throughout this work, we say that an
L-valued relation R on an L-valued set µ is reflexive if for all x, y ∈ A

R(x, x) = µ(x). (1.4)

This notion of reflexivity as stated above is known from ([53]) and other
papers.

The following lemma is true.

Lemma 1.2.15. If R : A2 → L is reflexive on µ : A → L, then for all
x, y ∈ A

R(x, x) ≥ R(x, y) and R(x, x) ≥ R(y, x).

1.2.6 Lattice valued algebras

The notion that will be introduced next, is the notion of the lattice valued
algebra (subalgebra). This notion have been elaborated in many papers (see
e.g. book [72]). Starting notion is an algebra A = (A,F), where A is a
nonempty set and F is a set of operations on A. A lattice valued subalgebra
is a special lattice valued set on A, introduced in the sequel.

Definition 1.2.16. Let A = (A,F) be an algebra. Then a lattice valued
subset µ : A→ L is a lattice valued subalgebra of A if

1. µ(e) = 1 for every nullary operation in F

2. for every n-ary operation fA ∈ F for n 6= 0 and for every a1, ..., an ∈ A,

µ(a1) ∧ ... ∧ µ(an) ≤ µ(fA(a1, ..., an))

Next it is stated that the notion of lattice valued algebra is cutworthy,
see [125].

Theorem 1.2.17. Let A be an algebra and µ : A → L be a lattice valued
set. Then µ is a lattice valued subalgebra of A if and only if for every p ∈ L
p-cut µp is a subalgebra of A.
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Having the notions of lattice valued equivalence relations and lattice val-
ued algebras, a notion of a lattice valued congruence is introduced, [125].

Let A = (A,F ) be an algebra and R : A2 → L be a lattice valued
equivalence relation on A. Then R is said to be a lattice valued congruence
on A if for a1, ..., an, b1, ..., bn ∈ A and for each operation symbol f ∈ F

R(a1, b1) ∧ ... ∧R(an, bn) ≤ R(fA(a1, ..., an), fA(b1, ..., bn)).

Obviously, lattice valued congruence relations are lattice valued equiva-
lence relations that preserve algebraic structures.

Again the notion of lattice valued congruences are cutworthy, [125]:

Theorem 1.2.18. Let A = (A,F ) be an algebra and R : A2 → L a lattice
valued relation. Then R is a lattice valued congruence on A if and only if
for each p ∈ L the cut relation Rp is a classical congruence relation on A.

1.2.7 Residuated lattices

Here the definition and some basic properties of residuated lattices is intro-
duced. They will not be used as co-domains of the structures we investigate
here, but we introduce them here in order to compare different approaches to
fuzzy algebraic structures (e.g., with the approaches developed in [5, 8, 10]).

Here it is the definition of a residuated lattice, which is a special extension
of a lattice.

Residuated lattice is an algebra with four binary and two nullary opera-
tions

L = (L,∧,∨,⊗,→, 0, 1)

such that

(i) (L,∧,∨) is a lattice,

(ii) 0 is the bottom element of the lattice and 1 is the top element,

(iii) (L,⊗, 1) is a commutative monoid, i.e., ⊗ is associative and commuta-
tive operation with neutral element 1, i.e., x⊗ 1 = x for all x ∈ L.

(iv) x 6 y → z if and only if x ⊗ y 6 z for all x, y, z ∈ L (6 is a lattice
order).
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A residuated lattice is complete if (L,∧,∨, 0, 1) is a complete lattice.

Operations ⊗ and→ are associated since each of them can be determined
by the other.

Residuate lattice satisfying

x⊗ y = x ∧ y

is called Heyting algebra.

Here are basic properties of a residuated lattice:

1. x⊗ (x→ y) 6 y, y 6 x→ (x⊗ y), x 6 (x→ y)→ y

2. x 6 y if and only if x→ y = 1

3. x→ x = 1, x→ 1 = 1, 0→ x = 1

4. 1→ x = x

5. x⊗ 0 = 0

6. x⊗ y 6 x, x 6 y → x

7. x⊗ y 6 x ∧ y

8. (x⊗ y)→ z = x→ (y → z)

9. (x→ y)⊗ (y → z) 6 (x→ z)
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Chapter 2

Comparative analysis of
different approaches of lattice
valued algebraic structures

Throughout the history of fuzzy sets there were several approaches to fuzzy
algebraic structures. First definitions of fuzzy algebras were introduced at
the beginning of fuzzy era. The underlying structures of these algebras were
ordinary algebras of the same type which satisfy same crisp identities. The
first ones were mappings from the universe of the algebra to [0,1] interval and
then, when lattice valued structures were introduced, there were mappings
to a complete lattice.

In these first definitions the approach was cutworthy, i.e., all the cuts
satisfied the corresponding crisp identities.

This means that for a fuzzy group all the cuts were classical groups, for
a fuzzy ring all the cuts were classical rings, for a fuzzy lattice all the cuts
were classical lattices.

This first approach to fuzzy algebras (lattice valued algebras) is already
presented in part Lattice valued algebras in chapter Introduction and
preliminaries. All types of algebraic and relational structures are devel-
oped following this approach, and several hundreds of papers and books are
published developing all aspects of this approach. In books [93, 94, 95] the
results on fuzzy groups, fuzzy semigroups and fuzzy commutative algebras
from many papers in the topics are systematically presented.

A version of this definition that is not cutworthy is introduced in con-
text of residuated lattices (i.e., the codomain of the function is a residuated
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lattice).

Let A = (A,F ), be an algebra and L = (L,∧,∨,⊗,→, 0, 1) a complete
residuated lattice. In the following definition, using the approach from [5, 8,
10], instead of the lattice infimum, the operation ⊗ in the residuated lattice is
used, since it replaces the logical conjunction in this context. In the following

definition
n⊗
i=1

µ(xi) is the notation for a successive application of operation

⊗, since ⊗ is an associative operation.

Then, a lattice valued set µ : A → L. is a lattice valued subalgebra of
algebra A if for all operations f ∈ F and all x1, ..., xn ∈ A,

µ(f(x1, ..., xn)) >
n⊗
i=1

µ(xi).

and every nullary operation c ∈ F , µ(c) = 1, where 1 is the top element in
L.

2.1 Algebras with fuzzy equality

An alternative approach that will also be mentioned here is developed by
Belohlavek and his coworkers and presented in series of his papers and books,
[6, 5, 7, 8, 9, 10].

In this approach the fuzzy equality is a fuzzy equivalence relation R :
A2 → L satisfying:

from R(x, y) = 1 it follows that x = y.

An algebra with fuzzy a equality is introduced in the sequel.

First a definition of the type in this context would be introduced.

A type is an ordered triple (E,F, σ), where E 6∈ F and σ is a mapping

σ : F ∪ {E} → N0

where σ(E) = 2. Every f ∈ F is a functional symbol, E is a relational symbol
that corresponds to the fuzzy equality. Mapping σ denotes arity σ(f) of each
functional symbol f ∈ F . Sometimes instead of (E,F, σ) only F is used if
no ambiguity could arise.

An algebra with a fuzzy equality of the type (E,F, σ) is an ordered triple
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M = (M,EM , FM) such that (M,FM) is an algebra of the type (F, σ) and
EM is a fuzzy equality on M such that each fM ∈ FM is compatible with
EM [6, 5, 7, 8, 9, 10].

An algebra with a fuzzy equality is often called shortly an L-algebra [8].

In the context above, for a, b ∈ M , EM(a, b) is called the degree of simi-
larity between a and b.

If L = {0, 1} is a two element residuated lattice, then the ordinary al-
gebras are obtained, so the notion of L-algebras is a generalization of the
notion of classical algebras.

In comparison to the approach accepted in this thesis, that will be de-
veloped in detail in the next parts, the difference is that in Belohlavek’s
approach algebras satisfy usual identities and only the equality is fuzzy. So,
the underlying algebras satisfy ordinary identities. In related fuzzy algebras
the identities are satisfied to some extent (they are more or less satisfied with
respect to the order in L).

In our approach also a lattice valued (fuzzy) equality is used, however,
the underlying crisp algebras do not satisfy the corresponding classical iden-
tities in the usual way. According to the definition, these identities hold by
fulfilling particular lattice theoretic formulas. Therefore, there is no grade of
satisfiability of identities as in Belohlavek’s approach. They are simply satis-
fied or not, depending whether the corresponding lattice-theoretic formulas
hold.

In the next part we present basics of our approach. This approach is
introduced in several papers and PhD thesis, mostly at University of Novi
Sad (with co-workers) [47, 119, 25, 26, 27, 28, 122, 49].

2.2 Ω-valued functions, Ω-valued relations and

Ω-sets

In the sequel the membership values lattice will be denoted by (Ω,6), instead
of L, as before. The reason is partially historical, since our approach is
partially based on the theory of Ω-sets introduced by Fourmann and Scott in
1979 in category theory. Therefore, sometimes the term Ω-valued function
will be used instead of a lattice valued set, and also a short notation Ω-set
will be used.

So, this is a lattice valued set, and the definition will be repeated here.
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An Ω-valued function µ on a nonempty set A, is a function µ : A → Ω,
where (Ω,6) is a complete lattice. This notion can be identified with the
one of a fuzzy set with the lattice-codomain, or a lattice valued set on A.

An Ω-valued function µ on A is said to be nonempty, if µ(x) > 0 for some
x ∈ A.

A notion of the cut set is already introduced and will be used in the
sequel.

Here it is again a definition of lattice valued relations and a bit different
terminology in the Ω-valued setting.

An Ω-valued (binary) relation ρ on A is an Ω-valued function on A2, i.e.,
it is a mapping ρ : A2 → Ω.

ρ is symmetric if ρ(x, y) = ρ(y, x) for all x, y ∈ A; (2.1)

ρ is transitive if ρ(x, y) > ρ(x, z) ∧ ρ(z, y) for all x, y, z ∈ A. (2.2)

We say that a symmetric and transitive relation ρ on A is an Ω-valued
equality on A.

An Ω-valued equality ρ on a set A fulfills the strictness property, see [65]:

ρ(x, y) 6 ρ(x, x) ∧ ρ(y, y). (2.3)

Similarly as in [65], an Ω-valued equality ρ on A is separated, if it satisfies
the property

ρ(x, y) = ρ(x, x) implies x = y. (2.4)

Next, the above notions are briefly connected with Ω-valued relations on
Ω-valued sets.

Let µ : A → Ω be an Ω-valued function on A and let ρ : A2 → Ω be an
Ω-valued relation on A. If for all x, y ∈ A, ρ satisfies

ρ(x, y) 6 µ(x) ∧ µ(y), (2.5)

then ρ is an Ω-valued relation on µ (see e.g., [65]).

An Ω-valued relation ρ on µ : A→ Ω is said to be reflexive on µ if

ρ(x, x) = µ(x) for every x ∈ A. (2.6)
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A reflexive Ω-valued relation on µ is strict on A, in the sense of (2.3),
since ρ(x, y) 6 µ(x) ∧ µ(y).

A symmetric and transitive Ω-valued relation ρ on A, which is reflexive
on µ : A→ Ω is an Ω-valued equality on µ. In addition, if ρ is separated on
A, then it is called a separated Ω-valued equality on µ.

A lattice-valued subalgebra of an algebra A = (A,F ), here is called an
Ω-valued subalgebra of A.

Ω-valued subalgebra of A is a function µ : A→ Ω which is not constantly
equal to 0, and fulfilling: For any operation f from F with arity greater than
0, f : An → A, n ∈ N, and for all a1, . . . , an ∈ A,

n∧
i=1

µ(ai) 6 µ(f(a1, . . . , an)), (2.7)

and for a nullary operation c ∈ F, µ(c) = 1. (2.8)

The next proposition states that an analogous property is valid not only
for all the operations from F , but also for all the term operations.

Proposition 2.2.1. [28, 25]Let µ : A→ Ω be an Ω-valued subalgebra of an
algebra A and let t(x1, . . . , xn) be a term in the language of A. If a1, . . . , an ∈
A, then the following holds:

n∧
i=1

µ(ai) 6 µ(tA(a1, . . . , an)), (2.9)

where tA is the corresponding term operation. �

An Ω-valued relation R : A2 → Ω on an algebra A = (A,F ) is compatible
with the operations in F if the following two conditions holds: for every n-ary
operation f ∈ F ,
for all a1, . . . , an, b1, . . . , bn ∈ A, and for every constant (nullary operation)
c ∈ F

n∧
i=1

R(ai, bi) 6 R(f(a1, . . . , an), f(b1, . . . , bn)); (2.10)

R(c, c) = 1. (2.11)

An Ω-set, as defined in [54], is a pair (A,E), where A is a nonempty set,
and E is a symmetric and transitive Ω-valued relation on A.
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In many cases a crucial requirement would be that an Ω-set fulfills the
separation property, 2.4, but this would always be pointed out in the text.

For an Ω-set (A,E), by µ the Ω-valued function on A, defined by

µ(x) := E(x, x), (2.12)

will be denoted.

In this context, µ is determined by E. Clearly, by the strictness property,
E is an Ω-valued relation on µ, namely, it is an Ω-valued equality on µ.
Hence, in an Ω-set (A,E), E is an Ω-valued equality.

The following lemma states that the notion of an Ω-valued equality is
cutworthy.

Lemma 2.2.2. [28] If (A,E) is an Ω-set and p ∈ Ω, then the cut Ep is an
equivalence relation on the corresponding cut µp of µ.

Here the cut Ep is an equivalence relation on µp, but if Ep is considered as
a relation on A, it is a weak equivalence relation (i.e., symmetric, transitive
and weakly reflexive).

2.3 Ω-algebra

Next a notion of a lattice-valued algebra with a lattice valued equality is
introduced.

Let A = (A,F ) be an algebra and E : A2 → Ω an Ω-valued equality on
A, which is compatible with the operations in F . Then we say that (A, E)
is an Ω-algebra. Algebra A is the underlying algebra of (A, E).

Now some cut properties of Ω-algebras are presented. These have been
proved in [28], in the framework of groups.

Proposition 2.3.1. Let (A, E) be an Ω-algebra. Then the following hold:

(i ) The function µ : A → Ω determined by Ω (µ(x) = E(x, x) for all
x ∈ A), is an Ω-valued subalgebra of A.

(ii ) For every p ∈ Ω, the cut µp of µ is a subalgebra of A, and

(iii ) For every p ∈ Ω, the cut Ep of E is a congruence relation on µp.

There is the clear difference between two similar notions: an Ω-valued
subalgebra µ of an algebra A, and an Ω-algebra (A, E). An Ω-valued subal-
gebra µ of an algebra A is a function compatible with the operations on A
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in the sense of (2.9), and an Ω-algebra (A, E) is a pair (A, E), consisting of
an algebra A and an Ω-equality E. Relationship among these two is given
in the above Proposition 2.3.1.

This proposition states that the notions of a subalgebra and a congruence
are cutworthy also it this context.

2.4 Identities

In this part, a notion of satisfaction of identities on Ω-algebras will be defined
according to the approach in [119].

Let and u(x1, . . . , xn) ≈ v(x1, . . . , xn) (briefly u ≈ v) be an identity in the
type of an Ω-algebra (A, E). It is assumed, as usual, that variables appearing
in terms u and v are from x1, . . . , xn Then, (A, E) satisfies identity u ≈ v
(i.e., this identity holds on (A, E)) if the following condition is fulfilled:

n∧
i=1

µ(ai) 6 E(u(a1, . . . , an), v(a1, . . . , an)), (2.13)

for all a1, . . . , an ∈ A.

If Ω-algebra (A, E) satisfies an identity, then this identity need not hold
on A. On the other hand, if the supporting algebra fulfills an identity then
also the corresponding Ω-algebra does.

Proposition 2.4.1. [28] If an identity u ≈ v holds on an algebra A, then it
also holds on an Ω-algebra (A, E).

The fact that an Ω- algebra (A, E) fulfils an identity u ≈ v, does not
imply that this identity holds on A. However, if E is a separated Ω-valued
equality, then the following converse property is valid.

An idempotent identity in the language of an algebra A is a formula
t(x) ≈ x, where t(x) is a term in the language of A, depending on a single
variable x.

Proposition 2.4.2. Let (A, E) be an Ω-algebra, where E is separated. Then
(A, E) satisfies an idempotent identity t(x) ≈ x if and only if the same
identity holds on A.

Lemma 2.4.3. [25]Let (A, E) be an Ω-algebra and u, v terms in the language
of A.
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(i) If (A, E) satisfies the identity u ≈ v, then every Ω-algebra (A, F )
with E 6 F satisfies the same identity.

(ii) If (A, Ei), i ∈ I is a family of Ω-algebras all of which satisfy satisfies

the identity u ≈ v, then also the Ω-algebra (A,
∧
i∈I

Ei) satisfies the same

identity.

In the papers [27, 26] various aspects of Ω-algebras in general have been
investigated, the results about homomorphisms, subalgebras and direct prod-
ucts of Ω-algebras and also the results on Ω-varieties. This is not a topic of
this work, but in the next Chapter known results about particular types of Ω-
algebras, like semigroups, quasigroups, groups and lattices will be presented.
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Chapter 3

Results on various Ω-algebras -
reducts and extensions

In this chapter several Ω-algebraic structures are elaborated. Some of them
are reducts of other algebras and some are extensions. Also, some of the
Ω-algebras introduced in the Chapter 4 are extensions of Ω-algebras in this
chapter (e.g., Ω-Boolean algebras are an extension of Ω-lattices presented
here.)

Our procedure is as follows. For introducing a particular Ω-algebra, we
start with a classical basic structure of the same type. Then we add particular
properties formulated in the lattice valued context. The first case are Ω-
groupoids, for which a basic structure is an algebra with a binary operation.
Then we develop extensions which are Ω-quasigroups, Ω-semigroups and Ω-
groups. In the analogue way we introduce and investigate Ω- lattices, starting
with an algebra with two binary operations. In Chapter 4 we start with an
algebra with two binary, one unary operation and two constants and then
develop Ω-Boolean algebras as an extension of Ω- lattices.

3.1 Ω-groupoid

Let G = (G, ·) be a groupoid (i.e., an algebra with a single binary operation),
Ω a complete lattice and E : G2 → Ω a lattice valued equality on G. Let
µ : G→ Ω be defined by µ(x) = E(x, x). Here, E is a lattice valued relation
on µ.

Then Ḡ = (G, E) is an Ω-groupoid. Usually Ω is considered to be fixed,
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so it is not mentioned in the structure.

Now some identities on Ω-groupoids are introduced, as above. This part
is adapted from [25].

As above, an identity u ≈ v holds on an Ω-groupoid G = (G, E), if the
formula (2.13) is satisfied.

In this part it is assumed that E is separated and under this condition, it
is shown that some identities with one variable hold also on the corresponding
crisp groupoid G in the classical way.

Theorem 3.1.1. [25]Let G = (G, ·) be a groupoid, Ḡ = (G, E) an Ω-
groupoid, and t(x) a term depending on a variable x only. Then the valued
identity t(x) ≈ x holds on Ḡ if and only if holds on G.

The proof of this proposition follows by the separation property [25].

In the following part, some usual groupoid identities in this context will
be mentioned, [25].

An element x0 ∈ G is idempotent in an Ω-groupoid Ḡ = (G, E) if E(x0 ·
x0, x0) > µ(x0) is satisfied.

An Ω-groupoid is idempotent if every element in G is idempotent in this
Ω-groupoid.

Corollary 3.1.2. An element x ∈ G is idempotent in an Ω-groupoid Ḡ if
and only if x is idempotent in G (i.e., if x2 = x).

An Ω-groupoid Ḡ = (G, E) is idempotent if and only if the groupoid
G = (G, ·) is idempotent.

In an Ω-groupoid Ḡ = (G, E), an element e ∈ G is a neutral element,
i.e., a unit in Ḡ if for all x ∈ G

E(x · e, x) > µ(x) and E(e · x, x) > µ(x).

Similarly as for an idempotent element, the following characterization of
a unit in an Ω-groupoid holds.

Theorem 3.1.3. [25]An element e ∈ G is a unit in an Ω-groupoid Ḡ if and
only if e is a unit in G.

The unit element is a constant, but there is no nullary operations in the
language of the groupoid. So, adding it in the language would be an extension
of this lattice valued algebra.
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Corollary 3.1.4. [25] If a neutral element exists in an Ω-groupoid, then it
is unique and idempotent.

The absorptive element is given by the following definition from [25].

Let G = (G, ·) be a groupoid, and Ḡ = (G, E) an Ω-groupoid. An element
a ∈ G is said to be absorptive in Ḡ if for all x ∈ G the following hold:

E(x · a, a) > µ(x) and E(a · x, a) > µ(x).

An absorptive element in an Ω-groupoid is idempotent, and the following
property is valid.

Theorem 3.1.5. [25]If a1 and a2 are two absorptive elements in an Ω-
groupoid Ḡ = (G, E), then the following holds:

E(a1, a2) = µ(a1) ∧ µ(a2).

Then some further properties are introduced.

An Ω-groupoid Ḡ = (G, E) is commutative if the corresponding identity
x · y ≈ y · x hold, i.e., if for all x, y ∈ G,

µ(x) ∧ µ(y) 6 E(x · y, y · x). (3.1)

3.2 Ω-semigroup

Now the Ω-semigroup can be introduced in the following manner, see [25].

Let S = (S, ·) be a groupoid and S̄ = (S, E) an Ω-groupoid.

Then S̄ is an Ω-semigroup if the corresponding identity x·(y ·z) ≈ (x·y)·z
holds, i.e., if for all x, y, z ∈ S

µ(x) ∧ µ(y) ∧ µ(z) 6 Eµ(x · (y · z), (x · y) · z)). (3.2)

As for other structures, an Ω-semigroup is defined on a crisp groupoid
which need not be a semigroup.

An idempotent, commutative Ω-semigroup is called an Ω-semilattice.

An Ω-semilattice can be naturally ordered under some conditions, and
this aspect will be elaborated in the sequel.
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An Ω-lattice will be defined as an extension of an Ω-semilattice.

Let Ḡ = (G, E) be an Ω-groupoid.

A strongly compatible relation will be introduced in order to cover some
further aspects of these structures.

A lattice valued relation E : A2 → L on Ḡ is said to be strongly com-
patible with the operation · on G [25], if the following formulas hold: for all
x, y, z ∈ G

E(x, y) 6 E(x · z, y · z) and E(x, y) 6 E(z · x, z · y). (3.3)

A strong compatibility together with some other properties, imply com-
patibility in the sense of (2.10), as it is stated in the following proposition:

Proposition 3.2.1. [25] A strongly compatible, symmetric and transitive
lattice valued relation ρ on Ḡ fulfills the following: For a1, a2, b1, b2 ∈ G

ρ(a1, b1) ∧ ρ(a2, b2) 6 ρ(a1 · a2, b1 · b2).

Further on, the strongly compatible lattice-valued equalities will be used.

An identity u ≈ v is said to be strongly satisfied on an Ω-groupoid Ḡ if

(a) it holds on Ḡ (i.e., if formula (2.13) is satisfied), and

(b) for a, b, a1, . . . , an ∈ G and for the term-operations uA and vA on Ḡ
corresponding to terms u and v respectively,

E(a, uA(a1, . . . , an)) ∧ E(vA(a1, . . . , an), b) 6 E(a, b). (3.4)

In example of associativity, it strongly holds on Ḡ if (3.2) is satisfied and
for all a, b, x, y, z ∈ G

E(a, x · (y · z)) ∧ E((x · y) · z, b) 6 E(a, b). (3.5)

Clearly, if an identity t1 ≈ t2 holds on G, then it strongly holds on Ḡ.

Here we just recall the notion of the order on an Ω-groupoid Ḡ.

For an Ω-relation R : G2 → Ω on µ : G → Ω the antisymmetry with
respect to an Ω-valued equality E is defined as follows ([25]):

R is antisymmetric with respect to E if for all x, y ∈ G,

R(x, y) ∧R(y, x) 6 E(x, y). (3.6)
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Reflexivity and transitivity of an Ω-valued relation R on an Ω-valued set
µ are defined before.

A reflexive, antisymmetric with respect to E and transitive Ω-valued
relation R on µ is an Ω-valued order on µ, with respect to E.

In the following theorem, the natural Ω-valued ordering relation is defined
on an Ω-semilattice.

Theorem 3.2.2. [25] Let S̄ = (S, E) be an Ω-semilattice on which asso-
ciativity is strongly satisfied, and let E be strongly compatible. Let also
R : S2 → L be an Ω-valued relation on S, defined by

R(x, y) := E(x, x · y). (3.7)

Then R is an Ω-valued order on S̄ with respect to the Ω-valued equality E.

Further we mention cancellable and regular Ω-semigroups, that are gen-
eralizations of Ω-groups (which will be defined in the sequel).

Let S̄ = (S, E) be an Ω-semigroup. S̄ is cancellable [25] if

E(y, z) > E(x · y, x · z) and E(y, z) > E(y · x, z · x),

for all x, y, z ∈ S.
The following proposition is proved in [25].

Proposition 3.2.3. An Ω-semigroup S̄ in which E is strongly compatible
is cancellable if and only if for all x, y, z ∈ S

E(y, z) = E(x · y, x · z) and E(y, z) = E(y · x, z · x). (3.8)

�

Next, an Ω-semigroup S̄ = (S, µ, Eµ) is regular [25] if for every a ∈ S
there is x ∈ S such that

µ(a) 6 µ(x) and µ(a) 6 E((a · x) · a, a). (3.9)

By associativity it can be checked that a regular Ω-semigroup fulfills also
condition

µ(a) 6 E(a · (x · a), a). (3.10)
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3.3 Ω-quasigroup

In the following part a notion of Ω-quasigroups developed in paper [73] will
be presented. (Ω,6) is a complete lattice.

The starting notion is again an Ω- groupoid, so the Ω-quasigroups are a
special type of an Ω- groupoid.

Let (Q, E) be an Ω groupoid, where Q = (Q, ·).
First, solutions of some equations will be defined.

If (Q, E) be an Ω-groupoid, then the formulas a · x = b and y · a = b,
where a, b ∈ Q, and x, y are variables, are called linear equations over (Q, E).

An equation a · x = b is said to be solvable over (Q, E) [73] if there is
c ∈ Q such that

µ(a) ∧ µ(b) 6 µ(c) ∧ E(a · c, b). (3.11)

Similarly, an equation y · a = b is solvable over (Q, E) if there is d ∈ Q
such that

µ(a) ∧ µ(b) 6 µ(d) ∧ E(d · a, b). (3.12)

Elements c and d in 3.11 and 3.12 are called solutions of equations a·x = b
and y · a = b, respectively in (Q, E) [73].

If c and d are solutions of a · x = b and y · a = b, respectively in (Q, E),
then for every p ∈ Ω satisfying p 6 µ(a) ∧ µ(b),

p 6 µ(c) ∧ E(a · c, b), (3.13)

and
p 6 µ(d) ∧ E(d · a, b). (3.14)

Now the notion of unique solvability will be elaborated.

The above equations is E-uniquely solvable over (Q, E) [73] if the follow-
ing hold:

If c is a solution of the equation a · x = b over (Q, E) and c1 ∈ Q fulfills
E(a · c1, b) > p for some p 6 µ(a) ∧ µ(b), then

E(c, c1) > p. (3.15)

Also, if d is a solution of the equation y ·a = b over (Q, E) and d1 ∈ Q fulfills
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E(d1 · a, b) > p for some p 6 µ(a) ∧ µ(b), then

E(d, d1) > p. (3.16)

If c1 and d1 are other solutions of equations a · x = b and y · a = b,
respectively, then conditions (3.15) and (3.16) hold.

This means that an E-uniquely solvable equation may have several solu-
tions. This sounds as a contradiction, but in the context of Ω-structures it
is natural, since these solutions are equal up to the Ω-equality E.

More precisely, the following proposition is valid.

Theorem 3.3.1. [73]Let (Q, E) be an L-groupoid. If equations a ·x = b and
y · a = b, are E-uniquely solvable over (Q, E) for all a, b ∈ Q, then for every
p ∈ L the quotient groupoid µp/Ep is a quasigroup.

The definition of Ω-quasigroup will be stated in the sequel, [73].

An Ω-groupoid (Q, E) is an Ω-quasigroup, if all equations of the form
a · x = b and y · a = b are E-uniquely solvable over (Q, E).

The converse of Theorem 3.3.1 also holds, as follows.

Theorem 3.3.2. [73]Let (Q, E) be an Ω-groupoid. If for all a, b ∈ Q and
for every p 6 µ(a) ∧ µ(b) the quotient groupoid µp/Ep is a quasigroup, then
(Q, E) is an Ω-quasigroup.

As in the classical case, the Ω-quasigroup is defined as a particular type
of Ω-groupoids (i.e., the underlying algebra has one binary operation).

In the following, a notion of a lattice valued quasigroup is introduced in
another way, starting with the underlying algebra with three binary opera-
tions.

Here the definition of Ω-equasigroup is given, and later it will be stated
that it is equivalent with the notion of Ω-quasigroup. Let Q = (Q, ·, \, /) be
an algebra in the language with three binary operations, Ω a complete lattice
and E : Q2 → Ω an Ω-valued compatible equality over Q. Then, (Q, E) is
an Ω-equasigroup, if the following identities hold.

Q1 : y = x · (x\y);

Q2 : y = x\(x · y);

Q3 : y = (y/x) · x;

Q4 : y = (y · x)/x.
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This means that the following formulas should be satisfied:

QE1 : µ(x) ∧ µ(y) 6 E(y, x · (x\y));

QE2 : µ(x) ∧ µ(y) 6 E(y, x\(x · y));

QE3 : µ(x) ∧ µ(y) 6 E(y, (y/x) · x);

QE4 : µ(x) ∧ µ(y) 6 E(y, (y · x)/x).

The following theorem gives connection with the cut sets.

Theorem 3.3.3. [73] An Ω-algebra ((Q, ·, \, /), E) is an Ω-equasigroup, if
and only if for every p ∈ L, the quotient structure µp/Ep is a classical equasi-
group.

The following corollary follows directly from the fact that an Ω-quasigroup
is a reduct of an Ω-equasigroup.

Corollary 3.3.4. If ((Q, ·, \, /), E) is an Ω-equasigroup, then ((Q, ·), E) is
an Ω-quasigroup.

The opposite claim concerning extension can be defined by the Axiom of
Choice (AC).

Usually in case of extensions of Ω-algebras, the new operations are defined
using the Axiom of Choice.

In this case also by AC new operations will be defined.

Let ((Q, ·), E) be an Ω-groupoid which is an Ω-quasigroup. For every
p ∈ L, the quotient groupoid (µp/Ep, ·) is considered, which is a quasigroup.
Now the operation · is defined by [a]Ep · [b]Ep = [a · b]Ep , a, b ∈ µp.

By Theorem 3.3.3, the structure (µp/Ep, · , \ , / ) is an equasigroup, where
the operations \ and / are the usual ones:

[a]Ep\ [b]Ep = [c]Ep if and only if [a]Ep · [c]Ep = [b]Ep , and

[b]Ep/ [a]Ep = [d]Ep if and only if [d]Ep · [a]Ep = [b]Ep .

Now, binary operations \ and / over Q can be defined as follows by AC [73]:

For every pair a, b ∈ Q, a\ b = c, where c is an element chosen by AC
from [a]Ep\ [b]Ep in the quasigroup µp/Ep, where p = µ(a) ∧ µ(b).

Similarly, b/ a = d, where d is chosen by the AC from [b]Ep/ [a]Ep in
µp/Ep, for p = µ(a) ∧ µ(b).

If ((Q, ·), E) is an Ω-groupoid which is an Ω-quasigroup then the opera-
tions \ and / over Q are well defined.
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Lemma 3.3.5. [73] Let ((Q, ·), E) be an Ω-groupoid which is an Ω-quasigroup.
Then for every q ∈ L and for all a, b ∈ µq, in the quasigroup (µq/Eq, · , \ , / ),
[a\b]Eq = [a]Eq\[b]Eq , and [a/b]Eq = [a]Eq/[b]Eq , is satisfied, where the opera-
tions \ and / on the left hand sides are the ones defined on Q by the Axiom
of Choice.

Now, the opposite theorem is stated.

Theorem 3.3.6. Let ((Q, ·), E) be an Ω-groupoid which is an Ω-quasigroup.
Then the structure ((Q, · , \ , / ), E) is an Ω-equasigroup, where the binary
operations \ and / over Q are defined by the Axiom of Choice as above.

3.4 Ω- groups

Next task is to introduce Ω-groups as extensions of Ω-groupoids. The results
in this section are from [28], while the original results concerning Ω- groups
are presented in Chapter 4.

We deal here with Ω-algebras G = (G, E), where G = (G, · ,−1 , e) is an
algebra with a binary operation · , a unary operation −1 and a constant e,
and E : G2 → Ω is an Ω-valued equality on G.

The fact that µ is a fuzzy (Ω-valued) subalgebra of G, for all x, y ∈ G,
insures that formulas (3.26) are satisfied.

Same as for other structures, G is not a (classical) group in general. Hence,
formulas (3.26) here do not mean that µ is a fuzzy subgroup of G, since G is
not a group.

Let
G = (G, E)

be an Ω- algebra in which G = (G, · ,−1 , e) is an algebra with a binary
operation ( · ), unary operation (−1) and a constant (e). Then G is an Ω-
group [28] if it satisfies the classical identities for groups

x · (y · z) ≈ (x · y) · z;

x · e ≈ x, e · x ≈ x;

x · x−1 ≈ e, x−1 · x ≈ e.

This means that for all x, y, z from G,
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(i) E(x · (y · z), (x · y) · z) > µ(x) ∧ µ(y) ∧ µ(z),

(ii) E(x · e, x) > µ(x) and E(e · x, x) > µ(x),

(iii) E(x · x−1, e) > µ(x) and E(x−1 · x, e) > µ(x).

As introduced above, an element e is the unit in G, and x−1 is the inverse
of element x in G.

Algebra G = (G, · ,−1 , e) is called the underlying algebra of Ω-group G.

According to the definitions presented in Preliminaries, the fact that the
Ω-valued set µ determined by E is a fuzzy subalgebra of G means that for
all x, y ∈ G

µ(x · y) > µ(x) ∧ µ(y),

µ(x−1) > µ(x),

µ(e) = 1.

Analogously to the classical algebra, an Ω- group can be defined by a
simplified system of axioms.

Namely, as above let G ′ = (G ′, E) be an Ω- algebra, in which G ′ =
(G, · ,′ , e′) is an algebra with a binary operation ( · ), unary operation (′) and
a constant (e′), and let E : G2 → Ω be an Ω-valued equality on G.

The following two theorems are proved in [28].

Theorem 3.4.1. Let G ′ = (G ′, E) be an Ω- algebra described above, fulfilling
the following:

(i′) E(x · (y · z), (x · y) · z) > µ(x) ∧ µ(y) ∧ µ(z),

(ii′) E(x · e′, x) > µ(x),

(iii′) E(x · x′, e′) > µ(x),

for all x, y, z from G. Then, G ′ is an Ω-group.

As expected, if the basic groupoid is a classical group, then also the
corresponding Ω-groupoid is an Ω-group.

Theorem 3.4.2. Let G = (G, · ,−1 , e) be a group, and E an Ω-valued equal-
ity on G. Then, G = (G, E) is an Ω-group.
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3.4.1 Separated Ω-groups

If the separation property for E is also valid, the additional properties are
obtained. They are presented in the sequel and proved in [28].

Proposition 3.4.3. Let G = (G, E) be a separated Ω- group. Then x · e =
e · x = x.

As introduced above for groupoids, x ∈ G is an idempotent element of
an Ω- group G = (G, E) if

E(x · x, x) > µ(x). (3.17)

When the separation property is assumed, additional statements are valid.

Proposition 3.4.4. An element x ∈ G of a separated Ω- group G is idem-
potent if and only if x is idempotent in G (i.e., if x2 = x).

Moreover, using the separation property, the property that idempotent
element is unique is obtained.

Proposition 3.4.5. The unit e of a separated Ω-group G is a unique idem-
potent element in G.

In separated Ω-groups the operation −1 is a classical involution, as for-
mulated in the following proposition.

Proposition 3.4.6. Let G = (G, E) be a separated Ω group. Then (x−1)−1 =
x for every x ∈ G.

Also the following corollary can be obtained.

Corollary 3.4.7. If G = (G, E) is a separated Ω-group, then µ(x) = µ(x−1),
for all x ∈ G.

Next a particular way some identities are satisfied in case of separated
Ω-groups are given.

Proposition 3.4.8. Let G = (G, E) be a separated Ω-group. Let t(x) be a
term containing a variable x only. Then the identity

t(x) ≈ x

holds on G if and only this identity holds on G.
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In a special case, the following consequence is obtained.

Corollary 3.4.9. Let G = (G, E) be a separated Ω group. Then the algebra
G satisfies identity (x · x−1) · x ≈ x.

For the separated Ω-groups, cancellability holds in the same manner as
in the classical case.

Theorem 3.4.10. [28] A separated Ω-group G = (G, E) is cancellative.

The cancellativity of a separated Ω group does not imply that the under-
lying algebra is cancellative, analogously as for other properties.

In the next theorem we discuss a known identity that is valid for classical
groups.

Theorem 3.4.11. [28] Let G = (G, E) be a separated Ω-group. Then

a) E((xy)−1, y−1x−1) > µ(x) ∧ µ(y)

b) E((x1 · · · xn)−1, x−1
n · · ·x−1

1 ) >
n∧
i=1

µ(xi)

for all x, y, x1, ..., xn ∈ G.

3.4.2 Ω-subgroups

Here a notion of Ω-subgroups is introduced as in [28] and this notion is used to
construct and investigate a new concept of Ω- normal subgroups in Chapter
4.

If ν : G→ Ω is a nonempty Ω-valued subset of an Ω-valued set µ : G→ Ω,
R an Ω-valued relation on µ, and S : G2 → Ω an Ω-valued relation on G,
then, S is a restriction of R to ν if

S(x, y) = R(x, y) ∧ ν(x) ∧ ν(y). (3.18)

If A is a nonempty set, (A,E) an Ω- set on A and E1 the restriction of E
to a nonempty lattice valued subset µ1 of µ (where µ is determined by E),
then (A,E1) is also an Ω-set on A.

This is true also for Ω-algebras:
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Proposition 3.4.12. If (A, E) is an Ω-valued algebra on an algebra A =
(A,F ) and µ1 is an Ω-valued subset of µ and a subalgebra of A, then also
(A, E1) is an Ω-valued algebra on A, where E1 is the restriction of E to µ1 .

Now Ω-subgroups are defined.

If G = (G, E) and G1 = (G, E1) are Ω-groups over the same algebra
G = (G, · ,−1 , e), then G1 is an Ω- subgroup of Ω-group G, if E1 is a restriction
of E to the Ω-valued subalgebra µ1 of G, determined by E1.

Theorem 3.4.13. [28]Let G = (G, E) be an Ω-group and E1 : G2 → L an
Ω-valued relation on G, satisfying the formula:

E1(x, y) = E(x, y) ∧ E1(x, x) ∧ E1(y, y). (3.19)

Then the structure G1 = (G, E1) is an Ω-subgroup of the Ω-group G if and
only if it satisfies:

E1(x, x) ∧ E1(y, y) 6 E1(x · y, x · y), (3.20)

E1(x, x) 6 E1(x−1, x−1), (3.21)

E1(e, e) = 1. (3.22)

Analogously as in the classical group theory the following corollary is
true.

Corollary 3.4.14. Let G = (G, E) be an Ω- group, µ1 : G→ L a nonempty
Ω-valued subset of µ, and E1 the restriction of E to µ1. Then the structure
G1 = (G, E1) is an Ω-subgroup of G if and only if it is an Ω-algebra.

The intersection of a family of Ω-subgroups of an Ω-group is, under par-
ticular conditions, also an Ω-subgroup, which is formulated in the following
theorem.

Theorem 3.4.15. Let {Gi = (G, Ei) | i ∈ I} be a nonempty family of
Ω-subgroups of an Ω-group G = (G, E), where G = (G, · ,−1 , e) is a given

algebra. Further, let δ =
⋂
i∈I

µi and let Eδ be the restriction of E to δ. Then

the structure Gδ = (G, Eδ), is an Ω-subgroup of the Ω-group G.

3.4.3 Cut properties of Ω-groups

As for other structures, investigating cut properties of Ω-groups it can be
noted that the cuts of the Ω-valued subalgebra µ (determined by E) are not
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subgroups of G in general (which is essentially a consequence of the fact that
G is not always a group). However, their quotient structures with respect
to the corresponding cuts of the Ω-valued equality E are groups, as already
stated for algebras in general.

Let G = (G, E) be an Ω-algebra. By known properties of lattice valued
structures, for every p ∈ L, the cut µp of the Ω-valued subalgebra µ (µ(x) =
E(x, x)) of G is a subalgebra of G. Further, the cut relation Ep of E is a
congruence relation on µp.

For the sake of completeness of the material, this is the formulation of
the related theorem for groups:

Theorem 3.4.16. [28]Let G = (G, E) be an Ω-algebra. Then, G is an Ω-
group if and only if for every p ∈ L the quotient structure µp/Ep is a group.

3.5 Ω-lattice

In this section results on Ω-lattices are presented. As in classical case, Ω-
lattices are introduced as ordered structures and also as Ω-algebras and equiv-
alences of two approaches are defined. Moreover, complete Ω-lattices are also
introduced. Majority of notions and results are from [47] and [49].

3.5.1 An Ω-lattice as an ordered structure

Let A be a nonempty set and let E be an Ω-valued equality A.

As already mentioned, an Ω-valued relation R : A2 → Ω on A is E-
antisymmetric, if

R(x, y) ∧R(y, x) = E(x, y), for all x, y ∈ A. (3.23)

Let (A,E) be an Ω-set. An Ω-valued relation R : A2 → Ω on A is
an Ω-valued order on (A,E), if it fulfills the strictness property (2.3), it is
E-antisymmetric, and it is transitive

An ordered triple (A,E,R) is an Ω-poset, if (A,E) is an Ω-set, and R :
A2 → Ω is an Ω-valued order on (A,E).

By (3.23), R(x, x) = E(x, x), for every x ∈M .

As before (2.12), by µ the Ω-valued function on M , defined by µ(x) =
E(x, x) is denoted.
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Both E and R are reflexive relations on µ, in the sense of (1.4), i.e.,
µ(x) = E(x, x) = E(x, x).

As already stated in Lemma 2.2.2, every cut Ep of E is an equivalence
relation on the cut µp of µ. As usual, by [x]Ep the equivalence class of x ∈ µp
is denoted. µp/Ep is the corresponding quotient set: for p ∈ Ω

[x]Ep := {y ∈ µp | xEpy}, x ∈ µp; µp/Ep := {[x]Ep | x ∈ µp}.

As in classical case, the ordering relation on the set of equivalence classes
is obtained, which is stated in the next proposition.

Proposition 3.5.1. [47] Let (M,E,R) be an Ω-poset. Then for every p ∈ Ω,
the binary relation ≤p on µp/Ep, defined by

[x]Ep ≤p [y]Ep if and only if (x, y) ∈ Rp (3.24)

is an ordering relation.

In the following part the notions of a pseudo-infimum and a pseudo-
supremum are introduced, see [47]:

Let (M,E,R) be an Ω-poset and a, b ∈M .

An element c ∈M is a pseudo-infimum of a and b, if the following holds:
(i) µ(a)∧µ(b) 6 R(c, a)∧R(c, b) , and for every p 6 µ(a)∧µ(b), for every x ∈
µp, p 6 R(x, a) ∧R(x, b) =⇒ p 6 R(x, c).

An element d ∈ M is a pseudo-supremum of a, b ∈ M , if the following
holds:
(ii) µ(a)∧µ(b) 6 R(a, d)∧R(b, d) , and for every p 6 µ(a)∧µ(b), for every x ∈
µp, p 6 R(a, x) ∧R(b, x) =⇒ p 6 R(d, x).

A pseudo-infimum (supremum) of a and b belongs to µp for every p 6
µ(a) ∧ µ(b).

A pseudo-infimum and a pseudo-supremum for given a, b ∈ M , if they
exist, are not unique in general.

If more pseudo-infima (suprema) of two elements a, b exist, they belong
to the same equivalence class in µp/Ep, for p 6 µ(a) ∧ µ(b), which is proved
in the following proposition.

Proposition 3.5.2. [47] Let (M,E,R) be an Ω-poset and a, b, c, c1, d, d1 ∈
M .
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If c is a pseudo-infimum of a and b, then

µ(a) ∧ µ(b) 6 E(c, c1) if and only if c1 is also a pseudo-infimum of a and b.

Analogously, if d is a pseudo-supremum of a and b, then

µ(a) ∧ µ(b) 6 E(d, d1) if and only if d1 is also a pseudo-supremum of a and b.

Since for p 6 q, every equivalence class of µq/Eq is contained in a class
of µp/Ep, pseudo-infima (suprema) of two elements a, b, if they exist, belong
to the same equivalence class in µp/Ep, for p 6 µ(a) ∧ µ(b).

By the above definition, in case E is a separated equality on M , for
p = µ(a), a is the unique pseudo-infimum (supremum) of one element a ∈M
(i.e., for a and b with a = b).

This follows from the fact that for every a ∈M , the class [a]Eµ(a) consists
of the single element a.

An Ω-poset (M,E,R) is an Ω-lattice as an ordered structure [47], if for
every a, b ∈M there exist a pseudo-infimum and a pseudo-supremum.

In the following, infimum and supremum of elements a and b in an ordered
set if they exist, will be denoted by inf(a, b) and sup(a, b), respectively.

The following theorem gives necessary and sufficient condition that an
Ω-poset is an Ω-lattice as an ordered structure.

Theorem 3.5.3. [47] Let (M,E,R) be an Ω-poset. Then (M,E,R) is an
Ω-lattice as an ordered structure if and only if for every q ∈ Ω, the poset
(µq/Eq, ≤q ) is a lattice, where the relation ≤q on the quotient set µq/Eq is
defined by (3.24) and the following holds: for all a, b ∈M , and p = µ(a)∧µ(b),

inf([a]Ep , [b]Ep) ⊆ inf([a]Eq , [b]Eq), sup([a]Ep , [b]Ep) ⊆ sup([a]Eq , [b]Eq) (3.25)

for every q, q 6 p

According to Theorem 3.5.3, if E is a separated equality and if µ1 6= ∅,
then (µ1, R1) is a lattice. In this case E1 is a diagonal relation and the
congruence classes are one-element sets. Then also R1 is an order on µ1 and
the posets (µ1, R1) and (µ1/E1,≤1) are order isomorphic. Since (µ1/E1,≤1)
is a lattice by Theorem 3.5.3, (µ1, R1) is also a lattice.

In case for p ∈ Ω equivalence classes under Ep are all one-element sets,
then (µp, Rp) is a lattice.
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3.5.2 An Ω-lattice as an Ω-algebra

In this section the notion of an Ω-lattice as an Ω-algebra is developed, ac-
cording to the definition in section 2.3. This algebraic approach was first
introduced in [122], and further developed in [47]. In the same paper re-
sults are adapted to the wider framework of both algebraic and relational
approach.

In the manner of Ω-algebraic structures that is exploited here, in order
to define a lattice as an Ω-algebra, the starting notion is a bi-groupoid, a
classical algebra with two binary operations. Some particular examples of
bi-groupoids are lattices, bi-semilattices and rings.

Let M = (M,u,t) be a bi-groupoid, as an algebra with two binary
operations and let E : M2 → Ω be an Ω-valued equality on M such that
(M,E) is an Ω-set.

Then (M, E) is an Ω-bi-groupoid, if E satisfies the following: for all
x, y, z, t ∈M ,

E(x, y) ∧ E(z, t) 6 E(x u z, y u t) and E(x, y) ∧ E(z, t) 6 E(x t z, y t t).

As above, this property means that E is compatible with operations u and
t.

In the following proposition, some basic properties of the above notions
are given.

Proposition 3.5.4. [47] If E is a compatible Ω-valued equality on a bi-
groupoidM = (M,u,t), and µ : M → Ω is defined by µ(x) = E(x, x), then
the following hold:

(i) For all x, y ∈M ,

µ(x) ∧ µ(y) 6 µ(x u y) and µ(x) ∧ µ(y) 6 µ(x t y). (3.26)

(ii) For every p ∈ Ω, the cut µp of µ is a sub-bi-groupoid of M.

In the sequel the notion of an Ω-lattice as an Ω-algebra will be introduced
as in [122, 47].

An Ω-algebra (M, E) is an Ω-lattice as an Ω-algebra (Ω-lattice as an
algebra), if it satisfies lattice identities:

`1 : x u y ≈ y u x
`2 : x t y ≈ y t x

(commutativity)

41



`3 : x u (y u z) ≈ (x u y) u z
`4 : x t (y t z) ≈ (x t y) t z

(associativity)

`5 : (x u y) t x ≈ x
`6 : (x t y) u x ≈ x.

(absorption)

As above, let the mapping µ : M → Ω be defined by µ(x) = E(x, x).

As defined in the subsection 2.4, the satisfiability of the identities above
is equivalent to the following conditions:

For all x, y, z ∈M , the following formulas are satisfied, where

L1 : µ(x) ∧ µ(y) 6 E(x u y, y u x) (3.27)

L2 : µ(x) ∧ µ(y) 6 E(x t y, y t x) (3.28)

L3 : µ(x) ∧ µ(y) ∧ µ(z) 6 E((x u y) u z, x u (y u z)) (3.29)

L4 : µ(x) ∧ µ(y) ∧ µ(z) 6 E((x t y) t z, x t (y t z)) (3.30)

L5 : µ(x) ∧ µ(y) 6 E((x u y) t x, x) (3.31)

L6 : µ(x) ∧ µ(y) 6 E((x t y) u x, x). (3.32)

As consequences of the definition of Ω-lattices as algebras some additional
properties are valid, which is formulated in the following propositions.

Lemma 3.5.5. [122] An Ω-lattice (M, E) fulfills the following special ab-
sorption identities:

(y u x) t x ≈ x and (y t x) u x ≈ x.

Proposition 3.5.6. [122] In an Ω-lattice (M, E) as an algebra, the idem-
potent identities

x t x ≈ x and x u x ≈ x

are valid.

Under the condition that the separation property is valid, the following

42



property is valid.

Proposition 3.5.7. [122] Let (M, E) be an Ω-lattice, in which E is a sep-
arated Ω-valued equality. Then the idempotent law x u x ≈ x is valid in
(M, E) if and only if the operation u is idempotent in the bi-groupoid
M = (M,u,t), and analogously x t x ≈ x holds in (M, E) if and only
if t is idempotent in M.

Similarly as for other structures, if a bi-groupoidM is a classical lattice,
and E is an Ω-valued compatible equality onM, then (M, E) is an Ω-lattice,
as formulated in the following proposition.

Proposition 3.5.8. [122] IfM = (M,u,t) is a lattice and E is a compatible
Ω-valued equality on M, then (M, E) is an Ω-lattice.

The following theorems gives the properties of cuts of Ω-lattices.

Theorem 3.5.9. [122] Let M = (M,u,t) be a bi-groupoid, and let E be
an Ω-valued compatible equality onM. Then, (M, E) is an Ω-lattice if and
only if for every p ∈ Ω, the quotient structure µp/Ep is a lattice.

Proposition 3.5.10. [47] Let (M, E) be an Ω-lattice and p, q ∈ Ω, with
p 6 q. Then, the mapping f : µq/Eq → µp/Ep, defined by f([x]Eq) = [x]Ep
is a lattice homomorphism.

3.5.3 Equivalence of two approaches

As in the classical case, two introduced approaches the Ω-lattice as an or-
dered structure and the Ω-lattice as an algebra are equivalent which will be
demonstrated in this section.

In the first part of this section it is stated that an Ω-lattice as an ordered
structure is an Ω-lattice as an algebra, using the Axiom of Choice to construct
the binary operations on the related algebraic structure.

Therefore the Axiom of Choice (AC) will be assumed throughout this
section.

Let (M,E,R) be an Ω-lattice as an ordered structure. Two binary oper-
ations, u and t on M are defined as follows:

for every pair a, b of elements from M , au b is an arbitrary, fixed pseudo-
infimum of a and b, and a t b is an arbitrary, fixed pseudo-supremum of a
and b.
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The operations u and t on M are well defined by Axiom of Choice. An
element is chosen among all pseudo-infima (suprema) of a and b and then
this element is fixed. By the definition of an Ω-lattice, for any a, b ∈ M , a
pseudo-infimum and a pseudo-supremum exist.

If E is a separated Ω-valued equality, for every a ∈M ,

au a = a and at a = a, so the operation is defined uniquely in this case.

Since two binary operations are defined in this way, the structure M =
(M,u,t) is a bi-groupoid.

By the following proposition µ is an Ω-sub-bigroupoid of M.

Proposition 3.5.11. [47] Let (M,E,R) be an Ω-lattice, µ : M → Ω defined
by (2.12) (µ(x) = E(x, x)) and M = (M,u,t) a bi-groupoid, as defined
above. Then, for all x, y ∈M

µ(x) ∧ µ(y) 6 µ(x u y) and µ(x) ∧ µ(y) 6 µ(x t y). (3.33)

Starting point here is an Ω-lattice (M,E,R) as an ordered structure, in
which, by Theorem 3.5.3, for all p ∈ Ω, the quotient structure (µp/Ep,≤p) is
a lattice, where ≤p is defined by (3.24) and (3.25).

For x, y ∈ µp, the infimum and supremum of [x]Ep and [y]Ep are denoted
by [x]Ep up [y]Ep and [x]Ep tp [y]Ep , respectively.

Lemma 3.5.12. [47] Let (M,E,R) be an Ω-lattice as an ordered structure,
and p ∈ Ω. Then for all x, y ∈ µp, in the lattice (µp/Ep,≤p) it holds:

[x]Ep up [y]Ep = [x u y]Ep and [x]Ep tp [y]Ep = [x t y]Ep ,

where u and t are the operations on M introduced by the Axiom of Choice.

Since µ : M → Ω defined by µ(x) = E(x, x)) is an Ω-sub-bigroupoid of
(M,u,t), for every p ∈ Ω, µp is a (classical) sub-bigroupoid of (M,u,t).
The following proposition follows by this fact.

Proposition 3.5.13. [47] Let (M,E,R) be an Ω-lattice as an ordered struc-
ture, and u, t the corresponding binary operations on M introduced as
above. Then, E is compatible with u and t.

Finally, the operations u and t satisfy lattice-theoretic identities `1, . . . , `6,
hence the formulas L1, . . . , L6 hold as formulated in the following proposi-
tion.
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Proposition 3.5.14. [47] Let (M,E,R) be an Ω-lattice as an ordered struc-
ture, and u, t the corresponding binary operations on M , introduced as
above. Then, the formulas L1 – L6 are satisfied.

Theorem 3.5.15. [47]If (M,E,R) is an Ω-lattice as an ordered structure,
andM = (M,u,t) the bi-groupoid in which operations u, t are introduced
as above, then (M, E) is an Ω-lattice as an algebra.

A property of Ω-lattices as ordered structures, analogous to the well
known fact about lattices: x ≤ y if and only if x ∧ y = x is also valid:

Proposition 3.5.16. [47] If (M,E,R) is an Ω-lattice as an ordered structure,
then for all x, y ∈M ,

µ(x) ∧ µ(y) ∧ E(x u y, x) = R(x, y).

In the following part the opposite inclusion is demonstrated: the Ω-lattice
as an algebra is the Ω-lattice as an ordered structure.

Now the starting point is an Ω-lattice as an algebra. First step is to
introduce an Ω-valued order on an Ω-lattice (as an algebra).

Theorem 3.5.17. [47] Let M = (M,u,t) be a bi-groupoid and (M, E)
an Ω-lattice as an algebra, where E is a separated Ω-valued equality on M.
Then the Ω-valued relation R : M2 → Ω, defined by

R(x, y) := µ(x) ∧ µ(y) ∧ E(x u y, x) (3.34)

is an Ω-valued order on M .

Moreover the relation R on an Ω-lattice determines the order on the cut-
lattices:

Proposition 3.5.18. [47] Let M = (M,u,t) be a bi-groupoid, (M, E) an
Ω-lattice as an algebra, and R : M2 → Ω an Ω-valued relation on M defined
by 3.34. For every p ∈ Ω, for all x, y ∈ µp and [x]Ep , [y]Ep ∈ µp/Ep,

[x]Ep ≤p [y]Ep if and only if xRpy.

Finally, in the next theorem it is stated that an Ω-lattice as an algebra is
an Ω-lattice as an ordered structure.

Theorem 3.5.19. Let M = (M,u,t) be a bi-groupoid, (M, E) an Ω-
lattice as an algebra in which E is separated. Let R : M2 → Ω be an
Ω-valued relation on M defined by R(x, y) := µ(x) ∧ µ(y) ∧ E(x u y, x).
Then, (M,E,R) is an Ω-lattice as an ordered structure.
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3.6 Complete Ω-Lattices

In this section, the notion of complete Ω- lattices is introduced and some
special notions as in the ordinary theory of lattices and ordered sets are
investigated.

As defined in Preliminaries, complete lattices are partially ordered sets
in which all subsets have a supremum and an infimum. Complete Ω-Lattices
are developed as a special type of Ω-Lattices, [48].

In order to develop notions of the supremum and the infimum in this
context, notions of upper bounds and lower bounds are introduced and their
basic properties are given.

Let (M,E,R) be an Ω-poset and A ⊆M . An element u ∈M is an upper
bound of A (under R), if for every a ∈ A∧

(µ(x) | x ∈ A) ≤ R(a, u).

An element v ∈M is a lower bound of A, if for every a ∈ A∧
(µ(x) | x ∈ A) ≤ R(v, a).

An element u ∈M is an upper bound of A ⊆M , if

(∀a)(a ∈ A ⇒ (
∧

(µ(x) | x ∈ A) ≤ R(a, u))). (3.35)

v is a lower bound of A, if

(∀a)(a ∈ A ⇒ (
∧

(µ(x) | x ∈ A) ≤ R(v, a))). (3.36)

Proposition 3.6.1. [48] If u is an upper bound of A ⊆ M in an Ω-poset
(M,E,R), then ∧

(R(x, u) | x ∈ A) =
∧

(µ(x) | x ∈ A).

Similarly, if v is a lower bound of A ⊆M in an Ω-poset (M,E,R), then∧
(R(v, x) | x ∈ A) =

∧
(µ(x) | x ∈ A).

Next the definitions of a pseudo-supremum and a pseudo-infimum and
the properties of these notions, [48] are introduced.
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Let (M,E,R) be an Ω-poset and A ⊆ M . Then an element u ∈ M is a

pseudo-supremum of A, if for every p ∈ Ω, such that p ≤
∧

(µ(x) | x ∈ A),

the following hold:

(i) u is an upper bound of A and

(ii) if there is u1 ∈ M such that p ≤ R(a, u1) for every a ∈ A, then
p ≤ R(u, u1).

Dually, an element v ∈M is a pseudo-infimum of A, if for every p ∈ Ω, such

that p ≤
∧

(µ(x) | x ∈ A), the following hold:

(j) v is a lower bound of A and

(jj) if there is v1 ∈ M such that p ≤ R(v1, a) for every a ∈ A, then
p ≤ R(v1, v).

Proposition 3.6.2. [48] Let (M,E,R) be an Ω-poset, let A ⊆ M and let
u ∈M be a pseudo-supremum (pseudo-infimum) of A ⊆M . Then v ∈M is

also a pseudo-supremum (pseudo-infimum) of A ⊆M , if and only if
∧

(µ(x) |
x ∈ A) ≤ E(u, v).

The pseudo-supremum and pseudo-infimum are not unique in general.
However, they are unique up to the equivalence class: two pseudo-suprema

u, v of A belong to the same equivalence class µp/Ep for every p ≤
∧

(µ(x) |
x ∈ A).

In the following, the pseudo-top and bottom elements for subsets of M
in an Ω-poset (M,E,R) are introduced and some of their properties are
presented, [48].

A pseudo-top of A, A ⊆M , is an element t ∈ A such that for every y ∈ A∧
(µ(x) | x ∈ A) ≤ R(y, t).

Dually, a pseudo-bottom of A, A ⊆ M , is an element b ∈ A, such that for
every y ∈ A ∧

(µ(x) | x ∈ A) ≤ R(b, y).

In particular, if A = M , then the above elements t and b are said to
be a pseudo-top and a pseudo-bottom, respectively, of the whole Ω-poset
(M,E,R).
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Proposition 3.6.3. [48] Let (M,E,R) be an Ω-poset.

An element t ∈M is a pseudo-top of A ⊆M if and only if∧
(µ(x) | x ∈ A) =

∧
(R(x, t) | x ∈ A).

An element b ∈M is a pseudo-bottom of A ⊆M if and only if∧
(µ(x) | x ∈ A) =

∧
(R(b, x) | x ∈ A).

Proposition 3.6.4. [48]If t is a pseudo-top element of a subset A in an
Ω-poset (M,E,R), then t1 ∈ A is a pseudo-top element of A if and only if

E(t, t1) ≥
∧

(µ(x) | x ∈ A).

Analogously, if b is a pseudo-bottom element of A ⊆ M , then an element
b1 ∈ A is a pseudo-bottom element of A if and only if

E(b, b1) ≥
∧

(µ(x) | x ∈ A).

Corollary 3.6.5. [48] If t is a pseudo-top element of an Ω-poset (M,E,R),

then for every p ≤
∧

(µ(x) | x ∈M), the class [t]Ep is the top element of the

poset (µp/Ep,≤p).
Dually, if b is a pseudo-bottom element of (M,E,R), then for every p ≤∧

x∈M

µ(x), the class [b]Ep is the bottom element of the poset (µp/Ep,≤p).

Similarly as for the pseudo-supremum and pseudo-infimum, pseudo-top
and pseudo-bottom elements in an Ω− poset are not unique in general, but
they belong to the same equivalence class of a cut of E.

Proposition 3.6.6. [48] A pseudo top of a subset A of an Ω-poset (M,E,R),
if it exists, is a pseudo-supremum of A.

Dually, a pseudo bottom of A is a pseudo-infimum of A.

Regarding to the pseudo-suprema (infima) of the empty subset of M , for
an omega poset (M,E,R), the situation is analogous as for suprema and
infima of the empty set in the classical lattice. According to formulas (3.35)
and (3.36), every element u ∈M is an upper (lower) bound of the empty set,
as a subset of M .
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A consequence is that in an Ω-poset (M,E,R) a pseudo-infimum of the
empty subset exists if and only if this Ω-poset possesses a pseudo-top element.
In this case every pseudo-top element is a pseudo-infimum of the empty set.

Dually, a pseudo-supremum of the empty subset exists in an Ω-poset if
and only if it possesses a pseudo-bottom element, and every pseudo-bottom
element is a pseudo-supremum of the empty set.

Let (M,E,R) be a finite Ω-poset, and A ⊆M then a1 ∈ A is a maximal
element of A if ∧

(µ(a) | a ∈ A) 6≤ R(a1, b) (3.37)

for every b ∈ A, such that b 6= a1. Dually, a0 ∈ A is a minimal element of A
if ∧

(µ(a) | a ∈ A) 6≤ R(b, a0)

for every b ∈ A, such that b 6= a0.

A definition of complete Ω-lattice is given in the sequel.

An Ω-poset (M,E,R) is called a complete Ω-lattice if for every A ⊆ M
a pseudo-supremum and a pseudo-infimum of A exist.

Since a pseudo-supremum (infimum) is required also for the empty subset
of M , thus:

Proposition 3.6.7. A complete Ω-lattice possesses a pseudo-top and a
pseudo bottom element.

As naturally expected, quotient cut-posets of a complete Ω-lattice are
complete lattices, and the classes represented by pseudo-suprema (infima)
are classical suprema (infima) in these lattices. This is formulated in the
next theorems.

Theorem 3.6.8. [48] Let (M,E,R) be a complete Ω-lattice. Then, for
every p ∈ Ω, the poset (µp/Ep, ≤p ) is a complete lattice. In addition, for
A ⊆M , if c is a pseudo-infimum of A in (M,E,R), then [c]p is the infimum of
{[a]p | a ∈ A} in the lattice (µp/Ep, ≤p ), for every p ∈ Ω, such that A ⊆ µp.
Analogously, if d is a pseudo-supremum of A, then [d]p is the supremum of
{[a]p | a ∈ A} in (µp/Ep, ≤p ).

Theorem 3.6.9. [48] Let (M,E,R) be an Ω-poset. Then it is a complete
Ω-lattice if and only if for every q ∈ Ω, the poset (µq/Eq, ≤q ) is a complete

lattice, and the following holds: for all A ⊆ M , for p =
∧

(µ(a) | a ∈ A),
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and q ≤ p, we have

inf{[a]Ep | a ∈ A} ⊆ inf{[a]Eq | a ∈ A}, (3.38)

and sup{[a]Ep | a ∈ A} ⊆ sup{[a]Eq | a ∈ A}, (3.39)

where the infima (suprema) are considered in the corresponding posets (µq/Eq
,≤q) and (µp/Ep,≤p).

The next theorem gives necessary and sufficient conditions under which
an Ω-poset is a complete Ω-lattice.

Theorem 3.6.10. [48] An Ω-poset (M,E,R) is a complete Ω-lattice, if and
only if the following conditions are fulfilled:

(i) a pseudo-infimum exists for every A ⊆M ;

(ii) every cut µp, p ∈ Ω, possesses a pseudo-top element;

(iii) for all A ⊆M ,

p =
∧

(µ(a) | a ∈ A),

and q ≤ p, if
sup{[a]Ep | a ∈ A}

and
sup{[a]Eq | a ∈ A}

exist in the posets (µq/Eq,≤q) and (µp/Ep,≤p) respectively, then

sup{[a]Ep | a ∈ A} ⊆ sup{[a]Eq | a ∈ A}.

The next theorem is a kind of a representation theorem for complete
Ω-lattices.

In the following the diagonal sub-relation of a binary relation f is denoted
by ∆(f):

∆(f) := {x ∈M | (x, x) ∈ f}. (3.40)

Theorem 3.6.11. [48] Let M 6= ∅, and let F ⊆ P(M2) be a closure system
over M2 such that each f ∈ F is transitive and strict. Then the following
hold.

(a) There is a complete lattice Ω and a mapping R : M2 −→ Ω such
that F is a collection of cuts of R and (M,E,R) is an Ω-poset, where E :
M2 −→ Ω is defined by E(x, y) = R(x, y) ∧R(y, x).
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(b) (M,E,R) is a complete Ω-lattice, if in addition, for every f ∈ F and
for every A ⊆ ∆(f) there is an infimum and a supremum in the relational
structure (∆(f), f), and for g ∈ F , such that f ⊆ g, the following hold:

if c is an infimum of A in ∆(f), then c is an infimum of A in ∆(g)

if c is a supremum of A in ∆(f), then c is a supremum of A in ∆(g).
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Chapter 4

New results about particular
Omega algebraic structures

In this chapter new results about particular algebraic structures will be pre-
sented. This chapter consists of original results.

In section 4.1 a concept of normal Ω-subgroups will be developed and a
connection with lattice valued congruences will be presented.

In section 4.2 notions of an Ω-Boolean algebra, an Ω-Boolean lattice and
an Ω-rings and their connectivities will be presented as well as a possible
application of Ω-Boolean algebras.

4.1 Normal Ω-Subgroups

In this part the notion of normal Ω-subgroups are introduced as a special
instance of Ω-subgroups. The results in this section are published in paper
[16].

The starting point in this section is the notion of an Ω-group. Since there
will be more fuzzy equalities in this part, one for an Ω-group and others
that determine Ω-subgroups, they will be denoted by notations Eµ or Eν

pointed at the related functions µ and ν, respectively. This notation will
be used although µ is determined by the Eµ, as its diagonal: µ : G → Ω,
with µ(x) = Eµ(x, x). So, in the beginning, µ and Eµ are fixed. An Ω-
valued equality Eν in the case of Ω-subgroups is uniquely determined by ν,
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as presented in Chapter 3:

Eν(x, y) = Eµ(x, y) ∧ ν(x) ∧ ν(y).

So Eν and ν are determined by each other: ν(x) = Eν(x, x).

Let G = (G, Eµ) be an Ω-group.

In order to introduce normal Ω-subgroups, first we deal with particular
cut properties of Ω-subgroups. Let G = (G, Eµ) be an Ω-group. Observe
that by Theorem 3.4.16, for every p ∈ Ω, the quotient structure µp/E

µ
p is a

classical group, where µp is a p-cut of µ : G→ Ω, with µ(x) = Eµ(x, x), and
Eµ
p is the corresponding cut of Eµ. Here Eµ and µ are fixed.

Theorem 4.1.1. Let G = (G, Eµ) be an Ω-group and N = (G, Eν) an
Ω-subgroup of G. Then, for every p ∈ Ω, the group νp/E

ν
p is, up to an

isomorphism, a subgroup of the group µp/E
µ
p .

Proof. Consider the quotient groups νp/E
ν
p and µp/E

µ
p , for p ∈ Ω. Observe

that νp is a subalgebra of the algebra µp, and that Eµ
p is a restriction of Eµ

p to
νp, in the sense of the starting algebras with a binary, a unary and a nullary
operation.

Now, Eν
p is a congruence on νp, and Eµ

p is a congruence on µp. Besides,
Eν
p is a restriction of Eµ

p to νp. Let

νE
µ
p

p = {a ∈ µp | νp ∩ [a]Eµp 6= ∅}.

In other words, νE
µ
p

p is a union of classes of the congruence Eµ
p having

nonempty intersection with νp.

It is clear that νE
µ
p

p is a subalgebra of µp, and that the restriction of νE
µ
p

p

to νE
µ
p

p , Eµ
p �ν

Eµp
p , is a congruence on νE

µ
p

p .

By the Third isomorphism theorem, we have that

νp/E
ν
p
∼= νE

µ
p

p /(Eµ
p �ν

Eµp
p ).

Since νp/E
ν
p is a group, we also have that the quotient structure on the

righthand side, νE
µ
p

p /(Eµ
p �ν

Eµp
p ) is a group. In addition, νE

µ
p

p /(Eµ
p �ν

Eµp
p ) is a

subset of µp/E
µ
p , since the former consists of some equivalence classes of

µp/E
µ
p . Finally, νE

µ
p

p /(Eµ
p �ν

Eµp
p ) is a group, hence it is a subgroup of µp/E

µ
p .

Let G = (G, Eµ) be an Ω-group and µ is the mapping from G to Ω, defined
by µ(x) = Eµ(x, x), as before.
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Now the definition of a congruence of the Ω-group is introduced as a
special case of the congruence of an Ω-algebra.

An Ω- valued congruence on G is an Ω-valued relation Θ : G2 → Ω
on G, which is µ-reflexive, symmetric, transitive and compatible with the
operations in G, and which also for all x, y ∈ G fulfills Θ(x, y) ≥ Eµ(x, y).

Observe that µ-reflexivity of Θ means that for every x ∈ G, Θ(x, x) =
Eµ(x, x).

Let Θ be a congruence on a given Ω-group G = (G, Eµ). Define ν : G→ Ω
by

ν(x) := Θ(e, x), (4.1)

where e is a constant, neutral element in G. Next, let Eν : G2 → Ω be defined
by

Eν(x, y) := Eµ(x, y) ∧ ν(x) ∧ ν(y). (4.2)

Proposition 4.1.2. If G = (G, Eµ) is an Ω-group, then N = (G, Eν) is an
Ω-subgroup of G.

Proof. We prove that necessary and sufficient conditions given in Theorem
3.4.13 are fulfilled.

First, condition (3.19) is fulfilled:

Eν(x, y) = Eν(y, x) := Eµ(x, y) ∧ Eν(x, x) ∧ Eν(y, y),

by the definition of Eν , since Eν(x, x) = Eµ(x, x) ∧ Θ(e, x) = Θ(e, x), and
similarly for Eν(y, y).

Further, by compatibility of Θ,

Eν(x, x) ∧ Eν(y, y) = Θ(e, x) ∧Θ(e, y) ≤ Θ(e, x · y) = Eν(x · y, x · y),

and (3.20) holds. Analogously, conditions (3.21) and (3.22) are satisfied.

Therefore, by Theorem 3.4.13, N is an Ω-subgroup of G.

Remark 4.1.3. Observe that in the case of crisp, classical groups, 4.1 gives
a characteristic function of a normal subgroup.

The above considerations motivates the following definition.

Let G = (G, Eµ) be an Ω-group and N = (G, Eν) an Ω-subgroup of G.
Then, N is a normal Ω-subgroup of G, if there is an Ω-valued congruence Θ
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on G, such that for all x, y ∈ G,

Eν(x, y) = Eµ(x, y) ∧Θ(e, x) ∧Θ(e, y). (4.3)

The following result is the main argument for the definition of a normal
Ω-subgroup.

Theorem 4.1.4. An Ω-subgroup N = (G, Eν) of an Ω-group G = (G, Eµ) is
a normal Ω-subgroup of G, if and only if for every p ∈ Ω, νp/E

ν
p is a normal

subgroup of the group µp/E
µ
p .

Proof. Let N be a normal Ω-subgroup of the Ω-group G. Then, by the
definition, there is an Ω-valued congruence Θ on G, such that for all x, y ∈ G,
θ(x, y) ≥ Eµ(x, y) and

Eν(x, y) = Eµ(x, y) ∧Θ(e, x) ∧Θ(e, y).

Now, for p ∈ Ω, the cut Θp is considered, which is, clearly, a congruence
on the subalgebra µp of the underlying algebra G, since for every x ∈ G,
Θ(x, x) = Eµ(x, x), and Eµ

p ⊆ Θp.

From the above, it follows that all the conditions of the Second isomor-
phism theorem are fulfilled. Therefore, the relation Θp/E

µ
p , defined by

([x]Eµp , [y]Eµp ) ∈ Θp/E
µ
p if and only if (x, y) ∈ Θp, (4.4)

is a congruence on µp/E
µ
p (it is well defined since Θp is a congruence by the

assumption).

In the above formula,

(x, y) ∈ Θp if and only if Θ(x, y) ≥ p.

Further, by the Second isomorphism theorem,

µp/E
µ
p /Θp/E

µ
p
∼= µp/Θp.

Now, µp/E
µ
p is a group, Θp/E

µ
p is a congruence on this group, hence µp/Θp

is a group.

Next, by the definition, for every x ∈ G, ν(x) = Θ(e, x), hence for p ∈ Ω,
x ∈ νp if and only if Θ(e, x) ≥ p.

By Theorem 4.1.1, νp/E
ν
p is, up to an isomorphism, a subgroup of µp/E

µ
p .

By the definition, νp/E
ν
p consists exactly of some equivalence classes of µp/E

µ
p ,
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so it is indeed a subgroup of µp/E
µ
p .

Now we show that νp/E
ν
p is a normal subgroup of µp/E

µ
p . In other words,

we prove that νp/E
ν
p is a class of a congruence on µp/E

µ
p , containing the

neutral element.

Indeed, we have already noted that Θp/E
µ
p is a congruence on µp/E

µ
p and

now we see that the class of this congruence containing the neutral element
is exactly νp/E

ν
p .

Conversely, suppose that

N = (G, Eν)

is an Ω-subgroup of an Ω-group

G = (G, Eµ).

By assumption, for every p ∈ Ω, νp/E
ν
p is a normal subgroup of the group

µp/E
µ
p which means that elements in νp/E

ν
p are exactly some classes of µp/E

µ
p .

Now, for every p ∈ Ω, we define a relation θp on µp/E
µ
p by

[x]Eµp θp[y]Eµp if and only if [x]Eµp · [y]−1
Eµp
∈ νp/Eν

p .

Since νp/E
ν
p is a normal subgroup, θp is a congruence on µp/E

µ
p .

[x]Eµp · [y]−1
Eµp
∈ νp/Eν

p

is equivalent with
[x · y]Eµp ∈ νp/E

ν
p ,

which is further equivalent with

x · y−1 ∈ νp,

which is equivalent with
ν(x · y−1) ≥ p.

Now we consider a family of congruences {θi | i ∈ I ⊂ Ω}. Since

[x]Eµi θi[y]Eµi

is equivalent with
ν(x · y−1) ≥ i,
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we have that
[x]Eµi θi[y]Eµi

for every i ∈ I is equivalent with

ν(x · y−1) ≥
∨
i∈I

i,

this is further equivalent with

[x]Eµi θ
∨
i∈I i

[y]Eµi .

Hence, we have that the family of congruences

{θi | i ∈ Ω}

is a closure system, since ⋂
i∈I

θi = θ∨
i∈I i

.

Now, a relation θ is defined:

Θ : G2 → Ω by Θ(x, y) =
∨
{p | ([x]Eµp , [y]Eµp ) ∈ θp}.

Note that if (x, y) does not belong to any θp for p ∈ Ω, then Θ(x, y) = 0 by
the definition of the supremum of ∅ in the complete lattice Ω.

Now, it is straightforward to prove that Θ is a symmetric, transitive and
compatible Ω-valued relation on G. It is also µ-reflexive: for x ∈ G

Θ(x, x) =
∨
{p | ([x]Eµp , [y]Eµp ) ∈ θp} =

∨
{p | x ∈ µp} = µ(x) = Eµ(x, x),

since µ(x) is one of the values over which the supremum is taken.

Finally, we prove that for all x, y ∈ G,

Eµ(x, y) ≤ Θ(x, y)

. Let Eµ(x, y) = p. Then (x, y) ∈ Ep and hence

[x]eµp = [y]eµp .

Since θp is a congruence on µp/E
µ
p , it is obvious that we have

([x]eµp , [y]eµp ) ∈ θp.
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By the definition of Θ, we get Θ(x, y) ≥ p.

Hence Θ is an Ω-valued congruence on G, and by the construction

Θ(x, e) = ν(x) = Eν(x, x).

By the definition (4.3), N is a normal Ω-subgroup of G.

Corollary 4.1.5. If G = (G, Eµ) is a commutative Ω-group, then all Ω-
subgroups of G are normal.

Proof. Indeed, commutativity of an Ω-group is hereditary for quotient sub-
groups on cuts. Therefore, if G is commutative, then every quotient structure
µp/Ep, p ∈ Ω is an Abelian group. All subgroups of these are normal, hence
by Theorem 4.1.4, all Ω-subgroups of G are normal.

Example 4.1.6. The structure (G, Eµ), where G = (G, ·, −1, e) with a
binary operation · on G = {e, a, b, c, d, f, g, h, i, j} is given in Table 4.1;
unary operation −1 is the identity function, and neutral element is e. The
lattice Ω is given by the diagram in Figure 2. The Ω-valued equality Eµ is
presented in Table 4.2.

· e a b c d f g h i j
e e a b c d f g h i j
a a e b c d f g h i j
b b b e e g f h d i j
c c c e e h g d f i j
d d f g h e e c b i j
f f d g h e e b c i j
g g g d f b c e e i j
h h h f d c b e e i j
i i a b c d f g h e e
j j a b c d f g h e e

Table 4.1: Binary operation on G
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Figure 2: Lattice Ω

Eµ e a b c d f g h i j
e 1 r 0 0 0 0 0 0 0 0
a r r 0 0 0 0 0 0 0 0
b 0 0 r r 0 0 0 0 0 0
c 0 0 r r 0 0 0 0 0 0
d 0 0 0 0 r r 0 0 0 0
f 0 0 0 0 r r 0 0 0 0
g 0 0 0 0 0 0 r r 0 0
h 0 0 0 0 0 0 r r 0 0
i 0 0 0 0 0 0 0 0 q q
j 0 0 0 0 0 0 0 0 q q

Table 4.2: Ω-valued equality on G

The function µ : G→ Ω is determined by Eµ: µ(x) = Eµ(x, x).

x e a b c d f g h i j
µ(x) 1 r r r r r r r q q

Table 4.3: compatible Ω-function µ

(G, Eµ) is an Ω-group. Quotient cut-subgroups are:

µr/E
µ
r = {{e, a}, {b, c}, {d, f}, {g, h} and µq/E

µ
q = {{i, j}}.

An Ω-valued congruence Θ on (G, Eµ) is given in Table 4.5.

By the definition we have ν(x) = Θ(e, x):

x e a b c d f g h i j
ν(x) 1 r r r 0 0 0 0 0 0

Table 4.4: compatible Ω-function ν
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Therefore, ν1 = {e}, and νr = {e, a, b, c} and the remaining cut νq is the
empty set.

Consequently, νr/E
ν
r = {{e, a}, {b, c}} is a normal subgroup of µr/E

µ
r ,

and this is the only nonempty and non-trivial cut structure.

Θ e a b c d f g h i j
e 1 r r r 0 0 0 0 0 0
a r r r r 0 0 0 0 0 0
b r r r r 0 0 0 0 0 0
c r r r r 0 0 0 0 0 0
d 0 0 0 0 r r r r 0 0
f 0 0 0 0 r r r r 0 0
g 0 0 0 0 r r r r 0 0
h 0 0 0 0 r r r r 0 0
i 0 0 0 0 0 0 0 0 q q
j 0 0 0 0 0 0 0 0 q q

Table 4.5: Ω-valued congruence on G

By
Eν(x, y) = Eµ(x, y) ∧Θ(e, x) ∧Θ(e, y),

Eν is constructed and presented in Table 4.6.

Eν e a b c d f g h i j
e 1 r 0 0 0 0 0 0 0 0
a r r 0 0 0 0 0 0 0 0
b 0 0 r r 0 0 0 0 0 0
c 0 0 r r 0 0 0 0 0 0
d 0 0 0 0 0 0 0 0 0 0
f 0 0 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 0 0 0
h 0 0 0 0 0 0 0 0 0 0
i 0 0 0 0 0 0 0 0 0 0
j 0 0 0 0 0 0 0 0 0 0

Table 4.6: Ω-valued equality determining Ω-subgroup

By Theorem 4.1.4, the structure (G, Eν) is a normal Ω-subgroup of the
Ω-group (G, Eµ).
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Continuing with the general properties of normal Ω-subgroups, we use the
fact that Eµ is also an Ω-valued congruence on G. Therefore, we examine a
particular case when Θ = Eµ.

Theorem 4.1.7. Let G = (G, Eµ) be an Ω-group, and Eε : G2 → Ω defined
by

Eε(x, y) = Eµ(e, x) ∧ Eµ(e, y), (4.5)

with ε : G→ Ω, ε(x) := Eε(x, x). Then, E = (G, Eε) is the smallest normal
Ω-subgroup of G.

Proof. By (4.3), Eε is an Ω-congruence on G:

Eε(x, y) = Eµ(e, x) ∧ Eµ(e, y) = Eµ(x, y) ∧ Eµ(e, x) ∧ Eµ(e, y),

since by symmetry and transitivity of Eµ

Eµ(e, x) ∧ Eµ(e, y) ≤ Eµ(x, y).

Therefore, E is a normal Ω-subgroup of G. We prove that it is the smallest
one. Namely, let N = (G, Eν) be an arbitrary normal Ω-subgroup of G; we
show that (G, Eε) is an Ω-subgroup of N . Indeed, Eε is a restriction of Eν

to ε, where ε(x) = Eµ(e, x), and Eν(x, y) = Eµ(x, y) ∧ Θ(e, x) ∧ Θ(e, y), for
an Ω-congruence Θ on G, Eµ(x, y) ≤ Θ(x, y). So, we have

Eε(x, y) = Eµ(x, y) ∧ Eµ(e, x) ∧ Eµ(e, y) =

Eµ(x, y) ∧ Eµ(e, x) ∧ Eµ(e, y) ∧Θ(e, x) ∧Θ(e, y) =

Eν(x, y) ∧ Eµ(e, x) ∧ Eµ(e, y) = Eν(x, y) ∧ ε(x) ∧ ε(y),

and Eε is a restriction of Eν to ε. By Proposition 3.4.12, E is an Ω-subgroup
of an arbitrary normal Ω-subgroup N of G, hence it is the smallest one.

The following is an explicit description of E in terms of cut relations.

Corollary 4.1.8. Let E = (G, Eε) be the subgroup of an Ω-group G =
(G, Eµ), with Eε being defined by (4.5). Then, for every p ∈ Ω, the cut Eε

p

is the diagonal relation (equality) on the quotient group µp/E
µ
p .

Proof. By (4.4), the relation Eε
p/E

µ
p , defined by

([x]Eµp , [y]Eµp ) ∈ Eε
p/E

µ
p if and only if (x, y) ∈ Eε

p,

61



is a congruence on µp/E
µ
p . By the definition of Eε and by transitivity of Eµ

we have

(x, y) ∈ Eε
p if and only if Eε(x, y) ≥ p

which implies Eµ(x, y) ≥ Eµ(e, x) ∧ Eµ(e, y) ≥ p.

Obviously, this is equivalent with [x]Eµp = [y]Eµp , hence Eε
p is a classical

equality on µp/E
µ
p .

Next we prove that a separated Ω-valued congruence on an Ω-group,
acting as an Ω-valued equality, generates an Ω-group itself. Recall that an
Ω-valued congruence Θ on an Ω-group (G, Eµ) is an Ω-valued equivalence on
G, compatible with the group operations and satisfying Θ(x, y) ≥ Eµ(x, y).
It is separated if it fulfills

Θ(x, y) = Θ(x, x) implies x = y. (4.6)

Theorem 4.1.9. Let Θ : G2 → Ω be an Ω-valued separated congruence on
an Ω- group (G, Eµ). Then (G,Θ) is an Ω-group as well. In addition, for
every p ∈ Ω, the mapping f : µp/E

µ
p → µp/Θp, defined by f([x]Eµp ) = [x]Θp

is a classical surjective group homomorphism.

Proof. It is obvious that (G,Θ) is an Ω-algebra. We prove that the group
identities are fulfilled. This follows by the fact that for every x ∈ G, µ(x) =
Θ(x, x). Hence, e.g., for Ω-associativity of the binary operation on G, we
have

µ(x) ∧ µ(y) ∧ µ(z) ≤ Eµ(x · (y · z), (x · y) · z) ≤ Θ(x · (y · z), (x · y) · z),

similarly with other group identities.

Next, let f : µp/E
µ
p → µp/Θp, be such that f([x]Eµp ) = [x]Θp . Then, for

x, y ∈ µp,

f([x · y]Eµp ) = [x · y]Θp = [x]Θp · [y]Θp = f([x]Eµp ) · f([y]Eµp ),

hence f is a homomorphism. Analogously, one can check that f is compatible
with the unary operation −1, and that f([e]Eµp ) = [e]Θp . It is surjective, since
every class [x]Θp is the image of [x]Eµp under f .
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4.2 Omega Boolean algebras, Omega Boolean

lattices and Omega Boolean rings

This section contains part of the original results of this thesis. Notions of
Ω-Boolean algebras, Ω-Boolean lattices and Ω-Boolean rings are introduced
and investigated. These notions illustrate the main aspects of our work
showing that it is possible to make transfers in an equivalent way from one
Ω-algebraic structure to another, similarly as in classical algebras. First
Ω-Boolean algebras are introduced, proving main properties and finally a
consequence that an Ω-valued Boolean algebra is also an Ω-valued lattice is
obtained, as expected (i.e., Ω-valued Boolean lattice is investigated).

An example of an Ω-Boolean algebra, defined on a structure which is not
a crisp Boolean algebra is also given. At the end the corresponding Ω-valued
order is introduced. As for other algebras, a property of Ω-algebras which
explains the relationship of the new structure with classical Boolean algebras,
i.e., the factor algebras on cuts, over the corresponding cuts of the Ω-valued
equivalence, are classical Boolean algebras is proved.

4.2.1 Omega Boolean algebras, Omega Boolean lat-
tices

In this part we start with B = (B,u,t,′ , O, I), an algebraic structure with
two binary, one unary and two nullary operations (constants). This is the
algebra of the same type as the classical Boolean algebra. Here Ω is again a
complete lattice with the top and the bottom element 1 and 0 respectively.

Let µ : B → Ω be a lattice valued substructure of this structure, i.e., a
mapping satisfying for every x, y ∈ B:

µ(x) ∧ µ(y) ≤ µ(x u y), µ(x) ∧ µ(y) ≤ µ(x t y),

µ(x) ≤ µ(x′), µ(O) = 1, µ(I) = 1.

The following auxiliary statement (an easy consequence of the definition)
is used in the sequel.

Lemma 4.2.1. µ(x) ≤ µ(x uO).

Proof. µ(x) = µ(x) ∧ µ(0) ≤ µ(x u 0).

Further, let E be an Ω-valued equality on µ (as above, this means that
E(x, y) ≤ µ(x) ∧ µ(y)), compatible with all the operations of this structure.
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In other words, E is reflexive on µ (E(x, x) = µ(x)), symmetric and transitive
Ω-valued relation, compatible with all the operations on B:

E(x, y) ∧ E(z, t) ≤ E(x u z, y u t),

E(x, y) ∧ E(z, t) ≤ E(x t z, y t t)

and
E(x, y) ≤ E(x′, y′).

An ordered pair (B, E) is an Ω-valued Boolean algebra if the following axioms
are satisfied for all x, y, z ∈ B:

b1 : x u y ≈ y u x
b2 : x t y ≈ y t x

(commutativity)

b3 : x u (y t z) ≈ (x u y) t (x u z)
b4 : x t (y u z) ≈ (x t y) u (x t z)

(distributivity)

b5 : x tO ≈ x
b6 : x u I ≈ x

(properties of constants)

b7 : x u I ≈ x
b8 : x u x′ ≈ O

(properties of unary operation)

b9 : O 6= I.

In the framework of Ω-structures, this means that the following lattice
theoretic formulas hold:

µ(x) ∧ µ(y) ≤ E(x u y, y u x) (4.7)

µ(x) ∧ µ(y) ≤ E(x t y, y t x) (4.8)

µ(x) ∧ µ(y) ∧ µ(z) ≤ E(x u (y t z), (x u y) t (x u z)) (4.9)

µ(x) ∧ µ(y) ∧ µ(z) ≤ E(x t (y u z), (x t y) u (x t z)) (4.10)

µ(x) ≤ E(x tO, x) (4.11)

µ(x) ≤ E(x u I, x) (4.12)

µ(x) ≤ E(x u x′, O) (4.13)
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µ(x) ≤ E(x t x′, I) (4.14)

E(O, I) < 1. (4.15)

In this notation, we consider an Ω-Boolean algebra as an ordered pair
(B, E), where B is an algebraic structure with two binary, one unary and
two nullary operations, as defined above, and E is an Ω-valued equivalence
compatible with these operations. The Ω-valued algebraic structure µ : B →
Ω is implicitly contained in this notation, since it is uniquely defined by E:
µ(x) = E(x, x). By the compatibility condition, it is easy to check that µ is
indeed a lattice valued substructure of algebra B.

Remark 4.2.2. From formulas 4.11 and 4.12, and by E(xtO, x) ≤ E(x, x) =
µ(x), it follows that

µ(x) = E(x tO, x).

Similarly,
µ(x) = E(x u I, x).

In case E is a separated Ω-valued equality, then xtO = x and xu I = x
is obtained. This means that the underlying algebra in this case should have
neutral elements for t and u.

In the following, an example of an Ω-valued Boolean algebra is given, the
co-domain of which is a complete lattice Ω, presented in Figure 3.

Example 4.2.3. Let B = {a, b, c, I, O} be the universe of an algebra with
two binary, one unary and two nullary operations. Let O and I be nullary
operations. Binary operations u and t are given in Table 4.7 and Table
4.8 and an unary operation ′ is given in Table 4.9. It is straightforward
to check that the structure (B,t,u,′ , O, I) is not a Boolean algebra (e.g.,
distributivity laws are not satisfied).

u a b c I O
a a O O a O
b O b O b O
c O O c c O
I a b c I O
O O O O O O

Table 4.7: Binary operation u
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t a b c I O
a a I I I a
b I b I I b
c I I c I c
I I I I I I
O a b c I O

Table 4.8: Binary operation t

′ a b c I O
b a a O I

Table 4.9: Unary operation

c
c c

c

c

�
�
� @

@
@
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@
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p q

r

0
Lattice Ω.

Figure 3.

Let µ : B → Ω be an Ω-valued subalgebra of B, given by:

µ(x) =

(
a b c I O
p p 0 1 1

)
.

Finally, in Table 4.10, an Ω-valued equality E on µ is given:

E a b c I O
a p r 0 r r
b r p 0 r r
c 0 0 0 0 0
1 r r 0 1 r
0 r r 0 r 1

Table 4.10: Lattice valued equality
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Formulas 4.7-4.15 for Ω-Boolean algebras are satisfied, which means that
the pair (B,E) is an Ω-Boolean algebra. �

Remark 4.2.4. Since the formulas corresponding to axioms are dual in the
sense that they appear in the dual pairs w.r.t. u and t, also O and I, the
principle of duality is satisfied. This means that for every statement which
is true in the language of algebra (B,u,t,′ , O, I), the dual statement is also
true. The dual statement is obtained exchanging each occurrence of u with
t and vice versa and exchanging each occurrence of O with I and vice versa.

In the following some properties of Ω-Boolean algebras are proved.

In the next proposition it is proved that Ω-Boolean algebras can naturally
be obtained from classical Boolean algebras.

Proposition 4.2.5. Let B = (B,u,t,′ , O, I) be a Boolean algebra, Ω a
complete lattice and let µ : B → Ω be a lattice-valued algebra. If E is an
arbitrary Ω-valued equality on µ, then, (B, E) is an Ω-Boolean algebra.

Proof. Since the identities of Boolean algebras are valid in (B,u,t,′ , O, I),
then also all Axioms b1.-b9. are valid. Indeed, in order to check (1),
from x u y = y u x, we have that E(x u y, y u x) = µ(x u y). Hence,
µ(x)∧ µ(y) ≤ µ(xu y) = E(xu y, y u x). In the same way all the axioms are
checked. �

Hence, Ω-Boolean algebras can be obtained if the basic structure is a clas-
sical Boolean algebra. This proves that the new notion is logically deduced
from the analogue crisp structure. Still, nontrivial Ω-Boolean algebras are
those in which the underlying structure is not a classical Boolean algebra.

Next some properties of the constants O and I in an Ω-Boolean algebra,
in connections to the binary operations are proved.

Lemma 4.2.6. Let B = (B,u,t,′ , O, I) be an algebraic structure, Ω a
complete lattice, µ : B → Ω a lattice valued algebra on B, E an Ω-valued
equality on µ and (B, E) an Ω-Boolean algebra. Then, the identity

x uO ≈ O

holds on (B, E).

Proof. By formula (2.13), we have to prove that

µ(x) ≤ E(x uO,O).
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µ(x) = µ(x)∧µ(O) ≤ µ(xuO) ≤ E(xuO, (xuO)tO), by Lemma 4.2.1
and by formula 4.11 for Ω-valued Boolean algebras.

µ(x) ≤ µ(x) ∧ µ(x uO) ≤ E(x uO, x uO) ∧E(O, x u x′) ≤ E((x uO) t
O, (x uO) t (x u x′)), by formula 4.13 for Ω-Boolean algebras.

µ(x) ≤ µ(x)∧µ(x′)∧µ(O) ≤ E((xuO)t(xux′), xu(Otx′)), by formula
4.9 for Ω-Boolean algebras.

µ(x) ≤ µ(x) ∧ µ(x′) ∧ µ(O) ≤ E(x, x) ∧ E(O t x′, x′ t O) ≤ E(x u (O t
x′), x u (x′ tO)), by formula 4.8 for Ω-Boolean algebras.

µ(x) ≤ µ(x) ∧ µ(x′) ≤ E(x, x) ∧ E(x′ t O, x′) ≤ E(x u (x′ t O), x u x′),
by formula 4.11 for Ω-Boolean algebras.

µ(x) ≤ E(x u x′, O) by formula 4.13 for Ω-Boolean algebras.

Now, using the transitivity of relation E,

µ(x) ≤ E(xuO, (xuO)tO)∧E((xuO)tO, (xuO)t (xux′))∧E((xu
O) t (x u x′), x u (O t x′)) ∧ E(O t x′, x′ t O) ≤ E(x u (O t x′), x u (x′ t
O)) ∧ E(x u (x′ tO), x u x′) ∧ E(x u x′, O) ≤ E(x uO,O). �

The next corollary follows by the duality principle.

Corollary 4.2.7. Let B = (B,u,t,′ , O, I) be an algebraic structure, Ω a
complete lattice, µ : B → Ω a lattice valued algebra on B, E an arbitrary
Ω-valued equality on µ and (B, E) an Ω-Boolean algebra. Then, the identity

x t I ≈ I

holds on (B, E).

Proposition 4.2.8. In an Ω-valued Boolean algebra (B, E), the absorptive
law is valid:

x u (x t y) ≈ x.

Proof. µ(x)∧ µ(y) ≤ E(x, xtO)∧E(xt y, xt y) ≤ E(xu (xt y), (xt
O) u (x t y)), by the compatibility and formula 4.11.

µ(x) ∧ µ(y) ≤ µ(x) ∧ µ(y) ∧ µ(O) ≤ E((x tO) u (x t y), x t (O u y)), by
formula 4.10.

µ(x) ∧ µ(y) ≤ E(x, x) ∧ E(O u y,O) ≤ E(x t (O u y), x tO),

µ(x) ∧ µ(y) ≤ µ(x) ≤ E(x tO, x), by formula 4.11.

Using the transitivity of relation E,

µ(x) ∧ µ(y) ≤ E(x u (x t y), (x tO) u (x t y)) ∧E((x tO) u (x t y), x t
(O u y)) ∧ E(x t (O u y), x tO) ∧ E(x tO, x) ≤ E(x u (x t y), x). �
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By the duality principle, we have the following corollary:

Corollary 4.2.9. In an Ω-valued Boolean algebra (B,E), the absorptive law
is valid:

x t (x u y) ≈ x

�

Using the similar technique, and the absorptive laws, the following prop-
erties are obtained.

Proposition 4.2.10. In an Ω-valued Boolean algebra (B,E), the idempo-
tent laws are valid:

x u x ≈ x.

x t x ≈ x.

Remark 4.2.11. From the previous proposition, µ(x) = E(x u x, x) and
µ(x) = E(x t x, x). In case when E is a separated Ω-valued equality, by
Proposition 2.4.2 it follows that

x u x = x and x t x = x,

i.e., both binary operations are idempotent in the underlying algebra.

Proposition 4.2.12. In an Ω-valued Boolean algebra (B,E), the associative
law is valid:

x u (y u z) ≈ (x u y) u z.

Proof. By the absorptive law:

µ(x) ∧ µ(y) ∧ µ(z) ≤ E((x u (y u z)) t x, x).

Further, by

µ(x) ∧ µ(y) ∧ µ(z) ≤ E(((x u y) u z) t x, ((x u y) t x) u (z t x)),

µ(x) ∧ µ(y) ∧ µ(z) ≤ E(((x u y) t x) u (z t x), x u (z t x)) and

µ(x) ∧ µ(y) ∧ µ(z) ≤ E(x u (z t x), x),

and the transitivity:

µ(x) ∧ µ(y) ∧ µ(z) ≤ E(((x u y) u z) t x, x).

Hence:

µ(x) ∧ µ(y) ∧ µ(z) ≤ E(((x u (y u z)) t x, ((x u y) u z) t x)).

By similar techniques:

µ(x) ∧ µ(y) ∧ µ(z) ≤ E((x u (y u z)) t x′, (y u z) t x′) and

µ(x) ∧ µ(y) ∧ µ(z) ≤ E(((x u y) u z) t x′, (y u z) t x′), and finally,

µ(x) ∧ µ(y) ∧ µ(z) ≤ E(((x u (y u z)) t x′, ((x u y) u z) t x′)).
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Hence, by the compatibility:

µ(x) ∧ µ(y) ∧ µ(z) ≤
E(((xu(yuz))tx, ((xuy)uz)tx))∧E(((xu(yuz))tx′, ((xuy)uz)tx′)) ≤
E(((xu(yuz))tx)∧((xu(yuz))tx′), (((xuy)uz)tx)∧(((xuy)uz)tx′)).
Thus,

µ(x) ∧ µ(y) ∧ µ(z) ≤
E(((xu(yuz))tx)u((xu(yuz))tx′), (((xuy)uz)tx)u(((xuy)uz)tx′))

(AAA)

Further:

µ(x) ∧ µ(y) ∧ µ(z) ≤ E(((x u y) u z), ((x u y) u z) tO),

µ(x) ∧ µ(y) ∧ µ(z) ≤ E(((x u y) u z) tO, ((x u y) u z) t (x u x′)),
µ(x)∧ µ(y)∧ µ(z) ≤ E(((xu y)u z)t (xu x′), (((xu y)u z)t x)u (((xu

y) u z) t x′)),
hence

µ(x)∧µ(y)∧µ(z) ≤ E(((xuy)uz), (((xuy)uz)tx)u(((xuy)uz)tx′)).
Similarly:

µ(x)∧µ(y)∧µ(z) ≤ E(xu (yu z), ((xu (yu z))tx)u ((xu (yu z))tx′)).
Finally, by the last two formulas, and by (AAA):

µ(x) ∧ µ(y) ∧ µ(z) ≤ E(((x u y) u z), (x u (y u z))). �

By the duality principle, the dual proposition is also valid.

Proposition 4.2.13. In an Ω-valued Boolean algebra (B,E), the associative
law is valid:

x t (y t z) ≈ (x t y) t z.

Now the result which shows that an Ω-valued Boolean algebra is also an
Ω-valued lattice is formulated.

Theorem 4.2.14. Let (B,u,t,′ , O, I) be an algebraic structure as above, Ω
a complete lattice, µ : B → Ω a lattice valued algebra on B, E an Ω-valued
equivalence compatible with the operations on (B,u,t,′ , O, I) and (B,E)
an Ω-valued Boolean algebra. Then (M,E) is an Ω-valued lattice, where
M = (B,u,t) is a bi-groupoid which is a reduct of the starting structure.

Proof. By the definition of an Ω-valued Boolean algebra, M = (B,u,t)
is a bi-groupoid, such that µ : B → Ω is a lattice valued algebra on M which
is a reduct of B, and E is an Ω-valued equality relation on µ, compatible
with the two binary operations u and t. (M,E) is an Ω-valued lattice, since
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the lattice axioms are satisfied, as follows: (3.27) and (3.28) (commutative
laws) are satisfied by the definition of an Ω-valued Boolean algebra, (3.29)
and (3.30) (associative laws) are satisfied by Propositions 4.2.12 and 4.2.13
and finally, (3.31) and (3.32) (absorptive laws) are satisfied by Proposition
4.2.8 and Corollary 4.2.9. �

In this part cutworthy properties of introduced structures are mentioned.

These are analogous to the ones already defined for lattices, so they are
just formulated here without proofs.

Firstly, if (B,u,t,′ , O, I) is an algebraic structure and µ : B → Ω a
lattice valued algebra on µ, then for every p ∈ Ω, µp are subalgebras of
(B,u,t,′ , O, I). Moreover, if E : B2 → Ω is an Ω-valued equality on µ, then
all the cut relations Ep, are congruences on µp for p ∈ Ω.

Therefore, we can consider factor algebras µp/Ep for every p ∈ Ω. Obvi-
ously, those algebras are of the same type as the algebraic structure
(B,u,t,′ , O, I).

Hence, the following theorem is valid.

Theorem 4.2.15. Let B = (B,u,t,′ , O, I) be an algebraic structure with
two binary operations, one unary and two constants, and Ω a complete lattice.
Let also µ : B → Ω be a lattice valued algebra on B, E an Ω-valued equality
on µ. Then, (B, E) is an Ω-Boolean algebra if and only if for every p ∈ Ω,
the quotient structure µp/Ep is a (classical) Boolean algebra.

Since every Ω-Boolean algebra is an Ω-lattice, as a consequence of the
results from paper [47], an Ω-valued ordering relation, in case when E is a
separated Ω-valued equality is introduced as follows.

Let (B, E) be an Ω-Boolean algebra with (B,u,t,′ , O, I) being an alge-
braic structure as above, and µ(x) = E(x, x). Then an Ω-valued relation is
defined:

R : B2 → Ω by R(x, y) := µ(x) ∧ µ(y) ∧ E(x u y, x).

Relation R is an Ω-valued order on (B, E), as proved in the following
proposition.

Proposition 4.2.16. Let (B, E) be an Ω-Boolean algebra, with (B,u,t,′ , O, I)
being an algebraic structure with two binary, one unary and two nullary oper-
ations and E a separated Ω-valued equality on B. Then an Ω-valued relation
R : B2 → Ω, defined by R(x, y) := µ(x) ∧ µ(y) ∧ E(x u y, x) is an Ω-valued
order on (B, E).

Proof. The proof follows from the analogous results for Ω-lattices, by
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Theorem 4.2.14 and the fact that the Ω-valued relation R is defined using
only the binary operation u. �

4.2.2 Omega Boolean rings

In this part the definitions of Ω-rings and Ω-Boolean rings are introduced
and its connection with Ω-Boolean algebras are proved.

Let
R = (R, E)

be an Ω-algebra in which R = (R,+, ·, −1, e) is an algebra with two binary
operations (+ and · ), one unary operation (−1) and a constant (e), and

µ : R→ Ω, such that µ(x) = E(x, x).

Then R is an Ω-ring if it satisfies the known ring identities:

x+ (y + z) ≈ (x+ y) + z

x+ e ≈ x, e+ x ≈ x

x+ x−1 ≈ e, x−1 + x ≈ e.

x+ y ≈ y + x

x · (y · z) ≈ (x · y) · z
x · (y + z) ≈ (x · y) + (x · z) and

(y + z) · x ≈ (y · x) + (z · x).

By formula (2.13), the above identities hold if the following lattice-theoretic
formulas are satisfied.

By (2.8), µ(e) = 1.

µ(x) ∧ µ(y) ∧ µ(z) 6 E(x+ (y + z), (x+ y) + z); (4.16)

µ(x) 6 E(x+ e, x), µ(x) 6 E(e+ x, x); (4.17)

µ(x) ∧ µ(x−1) 6 E(x · x−1, e), µ(x) ∧ µ(x−1) 6 E(x−1 · x, e). (4.18)

µ(x) ∧ µ(y) 6 E(x · y, y · x); (4.19)

µ(x) ∧ µ(y) ∧ µ(z) 6 E(x · (y · z), (x · y) · z); (4.20)
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µ(x) ∧ µ(y) ∧ µ(z) 6 E(x · (y + z), (x · y) + (x · z)); (4.21)

µ(x) ∧ µ(y) ∧ µ(z) 6 E((y + z) · x, (y · x) + (z · x)). (4.22)

Ω-ring R = (R, E) is an Ω-Boolean ring if the following is satisfied:

x · x ≈ x,

or as a lattice theoretic formula:

µ(x) 6 E(x · x, x). (4.23)

By the properties of weak reflexivity, from the definition directly follows:

µ(x) = E(x, x) = E(x · x, x).

If E is separated, it will follow that the idempotent identity x · x = x in
algebra R is always true.

Let
R = (R, E)

be an Ω-ring in which R = (R,+, ·, −1, e). Then, this ring is commutative if
the following identity is true:

x · y ≈ y · x, or if a lattice theoretic formula:

µ(x) ∧ µ(y) 6 E(x · y, y · x)

holds.

An Ω- ring with the identity in another language (with two nullary oper-
ations) is introduced as follows:

R = (R,+, ·, −1, e, 1) is an Ω-ring with identity if R = (R,+, ·, −1, e) is
Ω-ring and the following is satisfied:

x · 1 ≈ x, 1 · x ≈ x

or equivalently,

µ(x) 6 E(x · e, x), µ(x) 6 E(e · x, x).

The proposition about the cuts is formulated in the sequel.

Proposition 4.2.17. If R = (R,+, ·, −1, e, 1) is a commutative Ω-ring with
identity, then for all p ∈ Ω, the factor algebras (Rp/Ep,+, ·, −1, e, 1) are
commutative rings with identity. �
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In order to define the corresponding Ω-Boolean algebra, the following
operations on R are introduced.

x t y := x+ (y + x · y) and x′ := x+ 1.

The first operation is binary and the second one is unary.

Now, the algebraic structure: (R,∨, ·, ′, e, 1) is considered.

Lemma 4.2.18. Let R = ((R,+, ·, −1, e, 1), E) be a Ω-Boolean ring with
the identity 1. Then the lattice valued equality relation E is compatible with
the operations

x t y := x+ (y + x · y) and x′ := x+ 1

defined on R.

Proof. By the compatibility of E with the operations + and ·, it follows
that:

E(x, y) ∧ E(z, t) ≤ E(x+ z, y + t) and E(x, y) ∧ E(z, t) ≤ E(x · z, y · t).
Hence,

E(x, y) ∧ E(z, t) ≤ E(x, y) ∧ E(z, t) ∧ E(x · z, y · t) ≤

E(x, y) ∧ E(y + x · z, t+ y · t) ≤

E(x+ (y + x · z), y + (t+ y · t)),

i.e., the compatibility with t is proved.

Further, E(x, y) ≤ E(x, y) ∧ E(1, 1) ≤ E(x+ 1, y + 1) = E(x′, y′). �

The next theorem gives a connection between an Ω-Boolean ring with
identity and an Ω-Boolean algebra.

Theorem 4.2.19. If ((R,+, ·, −1, e, 1), E) is a commutative Ω-Boolean ring
with identity and the operations are defined by x t y := x + (y + x · y) and
x′ := x+ 1 then ((R,t, ·, ′, e, 1), E) is an Ω-Boolean algebra.

Proof. ((R,+, ·, −1, e, 1), E) is an Ω-algebra, since we proved that E is
compatible with the operations. By Proposition 4.2.17 for every p, µp/Ep are
Boolean rings in the language of rings, and by the definition of operations ∨
and ′, it is also a Boolean algebra in the language of the Boolean algebra (by
the well known classical result). Hence, ((R,+, ·, −1, e, 1), E) is an Ω-Boolean
algebra. �

Now to see that from an Ω-Boolean algebra we can construct an Ω-
Boolean ring, we start from an Ω-Boolean algebra (B, E), with (B,u,t,′ , O, I)
being an algebraic structure with two binary, one unary and two nullary op-
erations.
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Another binary operation on B is defined by x+ y := (x u y′) t (x′ u y).

Also an unary operation is defined by: −x := x.

E is compatible with those two operations and the following theorem,
which follows directly from the known classical results using factor algebras
Bp/Ep for all p ∈ Ω is formulated.

Theorem 4.2.20. Let (B, E) be an Ω-Boolean algebra, with B = (B,u,t,′ , O, I).
Then, ((R,+,t, −, O, I), E) is an Ω-Boolean ring where the operations are
defined by x+ y := (x u y′) t (x′ u y) and −x := x.

4.3 Application to Boolean n-tuples

An important application of this research is connected to Ω-Boolean algebras
in which the basic structure is a collection of n-tuples over the two-element
set {0, 1}. In other words, the concentration will be mostly on Ω-Boolean
algebras (B, E), where

B = (B,u,t, ,̄ O, I), B ⊆ {0, 1}n, (4.24)

while the operations u, t, and ¯ are arbitrary (two binary and a unary one,
respectively) and O = (0, 0, . . . , 0), I = (1, 1, . . . , 1).

As usual, by µ the function µ : B → Ω is denoted, such that for every
n-tuple x ∈ B,

µ(x) = E(x, x).

These finite sequences of zeros and ones are codewords in the digital
technology and the above structure is usually complete (consisting of the
whole set {0, 1}n), moreover it is a classical Boolean algebra. However, in
reality noise and errors have an impact to the operations, and the Boolean
structure may be corrupted to some extent; in addition, some tuples might
be missing. The above Ω-Boolean algebra with suitable operations and with
an Ω-valued equality could be a model of such a modified structure.

Let us denote the classical Boolean algebra of all n-tuples of 0 and 1 as
follows:

Bn2 = ({0, 1}n,min,max, ′, 0, 1),

where, as usual, operations are defined componentwise:
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for (a1, . . . , an), (b1, . . . , bn) ∈ {0, 1}n,

min((a1, . . . , an), (b1, . . . , bn)) = (min(a1, b1), . . . ,min(an, bn));

max((a1, . . . , an), (b1, . . . , bn)) = (max(a1, b1), . . . ,max(an, bn));

(a1, . . . , an)′ = (a
′

1, . . . , a
′

n).

Clearly,

min 1 0
1 1 0
0 0 0

,
max 1 0

1 1 1
0 1 0

and

′

1 0
0 1

.

An Ω-Boolean algebra is standard if it is of the form (Bn2 , H), H :
({0, 1}n)2 → Ω being an Ω-valued equality.

In other words, a standard Ω-Boolean algebra is the classical Boolean
algebra of all n-tuples from {0, 1}n, equipped with an Ω-valued equality.

In the sequel, we deal with Ω-Boolean algebras of the type (4.24), namely
those in which B ⊆ {0, 1}n, for some natural number n.

Such an Ω-Boolean algebra ((B,u,t, ,̄ O, I), E), B ⊆ {0, 1}n is called
regular, if there is a standard Ω-Boolean algebra (Bn2 , H), such that the
following hold:

(i) The Ω-valued equality E : B2 → Ω is a restriction of the Ω-valued
equality H, i.e., E = H|B.

(ii) For all n-tuples x, y ∈ B,

(a) E(x, x) 6 E(x′, x);

(b) E(x, x) ∧ E(y, y) 6 E(x u y,min(x, y));

(c) E(x, x) ∧ E(y, y) 6 E(x t y,max(x, y)).

In a regular Ω-Boolean algebra, for the underlying structure
(B,u,t, ,̄ O, I) it is not required to be a Boolean algebra, while in a standard
one this structure is the Boolean algebra Bn2 of all binary n-tuples.

Theorem 4.3.1. For a regular Ω-Boolean algebra the following holds:

(i) For every p ∈ Ω, Ep ⊆ Θ, where Ep = E−1(↑p) is the p-cut of the
Ω-valued equality E, and Θ is a congruence on a Boolean subalgebra M of
{0, 1}n.

(ii) For every p ∈ Ω, the map [a]Ep 7→ [a]Θ is an isomorphism of the quo-
tient Boolean algebra µp/Ep onto the Boolean algebra M/Θ, with notation
as in (i).
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Sketch of the proof. (i) By the definition of a standard Ω-Boolean
algebra, every cut of such a structure is a classical Boolean algebra. Further,
by (a), (b) and (c), application of operations in a regular Ω-Boolean algebra
gives elements such that on every cut Ep to which they belong, they are
in the same class with the corresponding elements of the standard Boolean
algebra. Since the Ω- equality E is a restriction of the Ω-equality H on the
standard algebra, for every Ep, there is a congruence Θ on the subalgebra of
the standard algebra, such that Ep ⊆ Θ.

(ii) By the definition of a regular algebra, there is a bijective homo-
morphism among the corresponding classes of the regular and the standard
algebra. �

(a1, . . . , an)

(a1, . . . , an)

u

u

(b1, . . . , bn)

(b1, . . . , bn)

=

=

(c1, . . . , cn)

(c1, . . . , cn)

E

. . . . . . . . .. . . . . . . . .

. . . . . . . . .

Boolean algebra µp/Ep

INPUT:

w /

�

-

W ?

Figure 4.

Example 4.3.2. Ω is a four-element chain:

Ω = {0, q, p, 1}, 0 < q < p < 1.

((B,u,t,′ , 0, 1), E) is a regular Ω-Boolean algebra, where

B = {000, 100, 010, 001, 110, 011, 111}
and operations u and t are those from B3

2 except:

100 ∨ 001 = 111 and 010′ = 111,

E 000 100 010 001 110 011 111
000 1 q p q q q q
100 q q q q q q q
010 p q p q q q q
001 q q q q q q q
110 q q q q q q q
011 q q q q q q q
111 q q q q q q 1

.
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Table 4.11

Now the cuts are:

µ1 = {000, 111}.
µp = {000, 010, 111}.
µq = µ0 = B.

E1 000 111
000 1 0
111 0 1

Table 4.12
Ep 000 010 111
000 1 1 0
010 1 1 0
111 0 0 1

Table 4.13

E0 = Eq = B2.

The corresponding standard Ω-Boolean algebra is (B3
2,Θ), where for a, b ∈

{0, 1}3

Θ =


E(a, b) if a, b ∈ B
p if (a, b) ∈ {(101, 111), (101, 101), (111, 101)}
q else

.

Then, E = Θ|B.
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Chapter 5

Conclusion

This work, as presented above, is devoted to particular generalizations of clas-
sical algebraic and order-theoretic structures, to several classes of Ω-algebras
and Ω-lattices. Concerning classical structures, we deal with groupoids,
quasigroups, semigroups and groups, and in connection with order, we ana-
lyze complete lattices, Boolean algebras and Boolean rings.

It is well known that the mentioned structures can be approached in
several equivalent ways, depending on the language in which these structures
are defined. Quasigroups and groups are particular groupoids, and each of
these structures can be defined as algebras in special languages fulfilling
appropriate identities. Ordered structures like different classes of lattices are
equivalently defined by operations and identities.

Generalizations that we use here originate in the fuzzy set theory, with the
co-domain structure being a complete lattice without additional operations.
Further generalizations replace the classical equality by the lattice-valued one
and the order by the suitable lattice-valued relation.

Our research was concentrated to different approaches dealing with these
generalizations.

As one of our main contributions, we have introduced, described and
analyzed Ω-Boolean algebras. Then we have shown their equivalence with
Ω-Boolean lattices, analogously to the classical case. To complete this rela-
tionship, we have introduced Ω-Boolean rings, comparing it with Ω-Boolean
algebras, as it is the case in the classical ordering theory. In this way we
have shown that these Ω-structures can be analyzed in both, order-theoretic
and algebraic setting.

In the framework of Ω-groupoids, we have discussed different approaches
to Ω-quasigroups and groups. Our main results in this part is introduction
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and detailed description of normal Ω-subgroups. In turned out that in spite of
different approaches to groups and Ω-groups, normal Ω-subgroups as defined
here keep all (analogue) properties of normal subgroups as in the crisp case.

Let us mention our plans for the future work in this field. Our compara-
tive analysis of different approaches to essentially same structures in Ω-valued
setting is mostly leaded by the advantages obtained by the use of the com-
plete lattice as the membership values structure. As indicated throughout
the text, this co-domain enables classical structures and their properties to
appear as quotient structures over cut relations of Ω-equality. On the other
hand, logic behind fuzzy objects and topics in fuzzy and other graded frame-
works should be algebraically presented by the membership valued structure.
Complete lattices are not suitable for such logics, unless extended by addi-
tional operations, in which case we deal with different kinds of residuated
lattices and algebras. But then we lose these classical crisp properties over
cut structures and investigations should be performed by different techniques
than those applied here.

From the mentioned reasons connected to logic, our future task would
be investigations and comparative analysis of Ω-structures, with Ω being a
particular residuated lattice.
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[66] U. Höhle, Fuzzy Sets and Sheaves Part II:: Sheaf-Theoretic Foundations
of Fuzzy Set Theory with Applications to Algebra and Topology Fuzzy
Sets and Systems, 158 , 1175-1212, (2007).

85
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[120] B. Šešelja and A. Tepavčević, Fuzzifying Closure Systems and Fuzzy
Lattices, Proceedings of the 11th International Conference on Rough
Sets, Fuzzy Sets, Data Mining and Granular Computing, 111 - 118,
(2007).
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[123] B. Šešelja, and A. Tepavčević, Completion of Ordered Structures by
Cuts of Fuzzy Sets, an Overview, Fuzzy Sets and Systems, 136, 1-19,
(2003).
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Vrsta rada
(dipl. mag. dokt) VR

Doktorska disertacija

Ime i prezime autora AU Omalkhear Salem Almabruk Bleblou
Mentor (titula, ime,
prezime,zvanje) MN
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V.n. VN
Izvod: IZ Ovaj rad bavi se komparativnom analizom različitih pristupa ras-

plinutim (fazi) algebarskim strukturama i odnosom tih struktura sa
odgovarajućim klasičnim algebrama. Posebna pažnja posvećena je
pored̄enju postojećih pristupa ovom problemu sa novim tehnikama
i pojmovima nedavno razvijenim na Univerzitetu u Novom Sadu.
U okviru ove analize, proučavana su i proširenja kao i redukti al-
gebarskih struktura u kontekstu rasplinutih algebri. Brojne važne
konkretne algebarske strukture istraživane su u ovom kontekstu,
a neke nove uvedene su i ispitane. Balvili smo se detaljnim is-
traživanjima Ω-grupa, sa stanovǐsta kongruencija, normalnih pod-
grupa i veze sa klasičnim grupama. Nove strukture koje su u
radu uvedene u posebnom delu, istražene su sa aspekta svojstava
i med̄usobne ekvivalentnosti. To su Ω-Bulove algebre, kao i odgo-
varajuće mreže i Bulovi prsteni. Uspostavljena je uzajamna ekvi-
valentnost tih struktura analogno odnosima u klasičnoj algebri.
U osnovi naše konstrukcije su mrežno vrednosne algebarske struk-
ture definisane na klasičnim algebrama koje ne zadovoljavaju
nužno identitete ispunjene na odgovarajućim klasičnim struktu-
rama (Bulove algebre, prsteni, grupe itd.), već su to samo algebre
istog tipa. Klasična jednakost zamenjena je posebnom kompatibil-
nom rasplinutom (mrežno-vrednosnom) relacijom ekvivalencije.
Na navedeni način i u cilju koji je u osnovi teze (pored̄enja sa
postojećim pristupima u ovoj naučnoj oblasti) proučavane su (već
definisane) Ω-grupe. U našim istraživanju uvedene su odgovarajuće
normalne podgrupe. Uspostavljena je i istražena njihova veza sa
Ω-kongruencijama. Normalna podgrupa Ω-grupe definisana je kao
posebna klasa Ω-kongruencije. Jedan od rezultata u ovom delu je da
su količničke grupe definisane pomoću nivoa Ω-jednakosti klasične
normalne podgrupe odgovarajućih količničkih podgrupa polazne Ω-
grupe. I u ovom slučaju osnovna struktura na kojoj je definisana
Ω-grupa je grupoid, ne nužno grupa. Opisane su osobine najmanje
normalne podgrupe u terminima Ω-kongruencija, a date su ineke
konstrukcije Ω-kongruencija.
Rezultati koji su izloženi u nastavku povezuju različite pristupe
nekim mrežno-vrednosnim strukturama. Ω-Bulova algebra je uve-
dena na strukturi sa dve binarne, unarnom i dve nularne operacije,
ali za koju se ne zahteva ispunjenost klasičnih aksioma. Identiteti
za Bulove algebre važe kao mrežno-teoretske formule u odnosu na
mrežno-vrednosnu jednakost. Klasične Bulove algebre ih zadovol-
javaju, ali obratno ne važi: iz tih formula ne slede standardne ak-
siome za Bulove algebre. Na analogan način uveden je i Ω-Bulov
prsten. Glavna svojstva ovih struktura su opisana. Osnovna os-
obina je da se klasiňe Bulove algebre odnosno Bulovi prsteni javl-
jaju kao količničke strukture na nivoima Ω-jeenakosti. Veza ove
strukture sa Ω-Bulovom mrežom je pokazana.
Kao ilustracija ovih istraživanja, u radu je navedeno vǐse primera.
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Članovi komisije
(ime i prezime / titula / zvanje
/ naziv organizacije / status) KO
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Note: N
Abstract: AB In this work a comparative analysis of several approaches to

fuzzy algebraic structures and comparison of previous ap-
proaches to the recent one developed at University of Novi
Sad has been done. Special attention is paid to reducts and
expansions of algebraic structures in fuzzy settings. Besides
mentioning all the relevant algebras and properties developed
in this setting, particular new algebras and properties are de-
veloped and investigated.
Some new structures, in particular Omega Boolean algebras,
Omega Boolean lattices and Omega Boolean rings are de-
veloped in the framework of omega structures. Equivalences
among these structures are elaborated in details. Transfers
from Omega groupoids to Omega groups and back are demon-
strated. Moreover, normal subgroups are introduced in a
particular way. Their connections to congruences are elab-
orated in this settings. Subgroups, congruences and normal
subgroups are investigated for Ω-groups. These are lattice-
valued algebraic structures, defined on crisp algebras which
are not necessarily groups, and in which the classical equality
is replaced by a lattice-valued one. A normal Ω-subgroup is
defined as a particular class in an Ω-congruence. Our main
result is that the quotient groups over cuts of a normal Ω-
subgroup of an Ω-group G, are classical normal subgroups
of the corresponding quotient groups over G. We also de-
scribe the minimal normal Ω-subgroup of an Ω-group, and
some other constructions related to Ω-valued congruences.
Further results that are obtained are theorems that connect
various approaches of fuzzy algebraic structures. A special
notion of a generalized lattice valued Boolean algebra is in-
troduced. The universe of this structure is an algebra with two
binary, an unary and two nullary operations (as usual), but
which is not a crisp Boolean algebra in general. A main ele-
ment in our approach is a fuzzy equivalence relation such that
the Boolean algebras identities are approximately satisfied re-
lated to the considered fuzzy equivalence. Main properties of
the new introduced notions are proved, and a connection with
the notion of a structure of a generalized fuzzy lattice is pro-
vided.
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full professor PMF u Novom Sadu - member

4. dr Miroslav Ćirić,
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