

UNIVERZITET U NOVOM SADU

FAKULTET TEHNIČKIH NAUKA U
NOVOM SADU

mr Jelena Ivetić

INTERSECTION TYPES AND RESOURCE CONTROL
IN THE INTUITIONISTIC SEQUENT LAMBDA

CALCULUS

TIPOVI SA PRESEKOM I KONTROLA RESURSA U
INTUICIONISTIČKOM SEKVENTNOM LAMBDA

RAČUNU

- DOKTORSKA DISERTACIJA -

 Mentor:

 Prof. dr Silvia Gilezan

Novi Sad, 2013

УНИВЕРЗИТЕТ У НОВОМ САДУ  ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА

21000 НОВИ САД, Трг Доситеја Обрадовића 6

КЉУЧНА ДОКУМЕНТАЦИЈСКА ИНФОРМАЦИЈА

Редни број, РБР:

Идентификациони број, ИБР:

Тип документације, ТД: Монографска публикација

Тип записа, ТЗ: Tекстуални штампани материјал

Врста рада, ВР: Докторска дисертација

Аутор, АУ: мр Јелена Иветић

Ментор, МН: Проф. др Силвиа Гилезан

Наслов рада, НР: Типови са пресеком и контрола ресурса у интуиционистичком
секвентном ламбда рачуну

Језик публикације, ЈП: Енглески

Језик извода, ЈИ: Српски, Енглески

Земља публиковања, ЗП: Република Србија

Уже географско подручје, УГП: Војводина

Година, ГО: 2013

Издавач, ИЗ: Ауторски репринт

Место и адреса, МА: ФТН, Трг Доситеја Обрадовића 6, Нови Сад

Физички опис рада, ФО:
(поглавља/страна/ цитата/табела/слика/графика/прилога)

7/170/75/0/48/0/0

Научна област, НО: Примењена математика

Научна дисциплина, НД: Логика у рачунарству

Предметна одредница/Кључне речи, ПО: Ламбда рачун, секвентни рачун, типови са пресеком, контрола ресурса

УДК

Чува се, ЧУ: Библиотека Факултета техничких наука у Новом Саду

Важна напомена, ВН:

Извод, ИЗ: Ова дисертација се бави рачунским интерпретацијама
интуиционистичког секвентног рачуна са имплицитним и експлицитним
структурним правилима, са фокусом на типске системе са пресеком.
Оригинални резултати тезе су груписани у три целине. У првом делу су
типови са пресеком уведени у lambda Gentzen рачун. Други део
представља проширење lambda Gentzen рачуна на формални рачун са
контролом ресурса, тј. са експлицитним операторима контракције и
слабљења, као и одговарајући типски систем са пресеком који
карактерише јаку нормализацију у уведеном рачуну. У трећем делу оба
рачуна су интегрисана у заједнички оквир увођењем структуре resource
control cube.

 Датум прихватања теме, ДП: 29.11.2012.

Датум одбране, ДО: 09.10.2013.

Чланови комисије, КО: Председник: др Joванка Пантовић, редовни професор

 Члан: др Pierre Lescanne, редовни професор

 Члан: др José Espírito Santo, редовни професор Потпис ментора

 Члан: др Silvia Likavec, доцент

 Члан, ментор: др Силвиа Гилезан, редовни професор

Образац Q2.НА.06-05- Издање 1

UNIVERSITY OF NOVI SAD  FACULTY OF TECHNICAL SCIENCES

21000 NOVI SAD, Trg Dositeja Obradovića 6

KEY WORDS DOCUMENTATION

Accession number, ANO:

Identification number, INO:

Document type, DT: Monographic publication

Type of record, TR: Textual printed material

Contents code, CC: PhD thesis

Author, AU: Jelena Ivetić, M.Sc.

Mentor, MN: Prof Silvia Gilezan, Ph.D

Title, TI:
Intesection types and resource control in the intuitionistic sequent lambda
calculus

Language of text, LT: English

Language of abstract, LA: Serbian, English

Country of publication, CP: Republic of Serbia

Locality of publication, LP: Province of Vojvodina

Publication year, PY: 2013.

Publisher, PB: Author’s reprint

Publication place, PP: Faculty of Technical Sciences, Trg Dositeja Obradovića 6, Novi Sad

Physical description, PD:
(chapters/pages/ref./tables/pictures/graphs/appendixes)

7/170/75/0/48/0/0

Scientific field, SF: Applied mathematics

Scientific discipline, SD: Logic in computer science

Subject/Key words, S/KW: Lambda calculus, sequent calculus, intersection types, resource control

UC

Holding data, HD: The Library of Faculty of Technical Sciences, Novi Sad, Serbia

Note, N:

Abstract, AB: This thesis studies computational interpretations of the intuitionistic sequent
calculus with implicit and explicit structural rules, with focus on the systems
with intersection types. The contributions of the thesis are grouped into three
parts. In the first part intersection types are introduced into the lambda
Gentzen calculus. The second part presents an extension of the lambda
Gentzen calculus to a term calculus with resource control, i.e. with explicit
operators for contraction and weakening, and apropriate intersection type
assignment system which characterises strong normalisation in the proposed
calculus. In the third part both previously studied calculi are integrated into
one framework by introducing the notion of the resource control cube.

Accepted by the Scientific Board on, ASB: November 29
th

, 2012.

Defended on, DE: October 9
th

, 2013.

Defended Board, DB: President: Jovanka Pantović, Ph.D, full professor

 Member: Pierre Lescanne, Ph.D, full professor

 Member: José Espírito Santo, Ph.D, full professor Menthor's sign

 Member: Silvia Likavec, Ph.D, ass. professor

 Member, Mentor: Silvia Gilezan, Ph.D, full professor

Obrazac Q2.НА.06-05- Izdanje 1

I dedicate this to my loving grandmother Majka,

from whom I inherited affinity to mathematics,

and hopefully persistence and a need

to continuously improve myself.

Acknowledgements

First and foremost, I want to thank my mentor, professor Silvia Ghilezan, who
introduced me to wonders of the world of logics, and unselfishly shared her knowl-
edge and experience with me. Silvia, thank you for all your time, patience, ideas,
advices and support. Your influence to my professional and personal development
greatly exceeds the regular role of a supervisor.

Next, I want to thank professors Pierre Lescanne, José Espírito Santo, Silvia
Likavec and Dragiša Žunić for giving me the opportunity to cooperate with them
and learn from them. I hope that our collaboration will continue.

Further, I’m grateful to my defence committee members: professor Jovanka
Pantović, professor Silvia Likavec, professor Pierre Lescanne and professor José
Espírito Santo, for their interest, time, careful reading and valuable comments.
I’m particularly grateful to Silvia for her help with language-related part of the
dissertation.

I thank my dear colleagues from the Chair for Mathematics and the Depart-
ment for Fundamental Disciplines for the great atmosphere and the best working
environment. My efforts to complete the thesis were mostly motivated by my wish
to stay part of the team.

Finally, I would like to thank my family, for all their love and encouragement,
and for providing me the continuous support throughout all these years.
Marko, Damjane, Kalina, Naco, Dedika, Biso, Nešo, Ildi, Ana, Rico - hvala vam!

Rezime

Pravila zaključivanja su bila poznata, a pojedina čak i formalno opisana, još u
antička vremena. Najstariji poznati dokument koji se bavi ovom problematikom je
Organon, zbirka Aristotelovih zapisa o logici.

Proučavanje logike kao matematičke discipline datira iz druge polovine de-
vetnaestog veka, kada je Gottlob Frege uveo osnovne koncepte savremene logike,
proširujući i razvijajući ideje do kojih je došao Gottfried Leibniz. Logika je doživela
intenzivan razvoj početkom dvadesetog veka, a najznačajniji logičari tog vremena
su bili Gerhard Gentzen, David Hilbert, Bertrand Russel i posebno Kurt Gödel,
čije su teoreme o nekompletnosti ukazale na ograničenja formalnih aritmetičkih
sistema. Tokom tod perioda su uvedena tri osnovna formalna sistema za dokazi-
vanje: Hilbertov aksiomatski sistem i dva Gentzenova sistema - prirodna dedukcija
i sekventni račun.

Dvadesetih godina dvadesetog veka nastaju prvi rezultati iz oblasti teorijskog
računarstva, koje se od tada razvija istovremeno sa logikom. Interakcija izmed̄u
ove dve naučne discipline se odvijala na više nivoa, stvarajući pozitivnu spregu koja
je značajno doprinela razvoju obe. U to vreme nastaju različiti formalni računi, kao
posledica težnje matematičara tog vremena da formalizuju celokupnu matematiku
(što se kasnije ispostavilo nemogućim, što je i dokazao Gödel). Tokom ovog peri-
oda se pojavio kombinatorni račun čiji su autori Moses Schönfinkel i Haskell Curry.
Ubrzo potom usledio je i λ-račun, koji je uveo Alonso Church u [10]. Church je
1940. godine uveo i osnovne tipove u λ-račun [11], čime je nastao sistem koji je
kasnije postao osnovni formalizam na kome su zasnovani funkcionalni programski
jezici, počevši od jezika Algol 60, čiji je autor Peter Landin [50].

Korespondenciju izmed̄u logike i λ-računa je prvi uočio Curry 1934. godine,
kada je pokazao da postoji izomorfizam izmed̄u skupa formula dokazivih u imp-
likativnom fragmentu intuicionističke logike i tipova koji se u osnovnom tipskom
sistemu mogu dodeliti zatvorenim termima. Ovu korespondenciju je 1969. godine
proširio Howard. Prema Curry-Howardovoj korespondenciji, koja je zvanično ob-
javljena tek 1980. godine u [40], prirodna dedukcija za intuicionističku logiku i λ-
račun sa osnovnim tipovima su višestruko odgovarajući sistemi, u smislu da dokazi

i

ii

formula odgovaraju specifikaciji programa, dok pojednostavljenja dokaza odgo-
varaju izvršavanju programa. Ova paradigma je još više naglasila značaj logike za
razvoj i formalno utemeljenje računarstva, time što je ukazala na to da je teorija
dokaza jedno od glavnih orud̄a u analizi programa.

Prirodno, pojavio se interes i za proširivanjem Curry-Howardove korespon-
dencije tj. za stvaranjem računskih interpretacija drugih logičkih sistema dokazi-
vanja. Dok je veza izmed̄u kombinatornog računa i Hilbertovog aksiomatskog sis-
tema bila veoma očigledna, situacija je bila znatno drugačija kada je Gentzenov
sekventni račun u pitanju. Naime, već je sam Gentzen dokazao da su sistemi
prirodne dedukcije i sekventnog računa ekvipotentni, u smislu da je svaki prirodno
deduktivni dokaz moguće prevesti u sekventni dokaz, kao i obrnuto. Zucker [74]
i Pottinger [56] su pokazali da su i procesi pojednostavljivanja dokaza u dva sis-
tema odgovarajući, tačnije da je normalizacija u prirodnoj dedukciji homomorfna
slika eliminacije pravila sečenja u sekventnom računu. Stoga je postalo jasno da
je moguće proširiti Curry-Howardovu korespondenciju na sekventni račun i neku
varijantu λ-računa, nasuprot prethodno zastupljenim mišljenjima1.

Med̄utim, budući da se sekventni račun i λ-račun strukturno značajno razlikuju,
modifikacija je trebala da bude realizovana i na dubljem, sintaksnom nivou, a ne
samo površinski, na nivou pravila tipiziranja. Prvi formalni račun kojim je us-
postavljena korespondencija sa intuicionističkim sekventnim računom je bio λ̄-
račun, koji je konstruisao Hugo Herbelin 1995. godine u [38]. U ovom radu,
uspostavljena je korespondencija izmed̄u tipiziranih terma λ̄-računa i sistema LJT ,
jedne restrikcije intuicionističkog sekventnog računa.

Prateći ideje na kojima je zasnovan λ̄-račun, konstruisano je nekoliko drugih
formalnih računa odgovarajućih sekventnom računu, u kojima je korespondencija
proširena na potpuni intuicionistički sekventni račun LJ. Med̄u ovim računima se
ističe λGtz-račun, koji je predložio José Espírito Santo [27] 2006. godine. Os-
novna karakteristika sintakse λGtz-računa je postojanje dve kategorije, terma t i
konteksta k, čija je interakcija prisutna u aplikaciji, koja je oblika tk i koja se u
ovom računu naziva sečenje (cut). Sa stanovišta operacijske semantike, karakter-
išu ga četiri redukcijska pravila usmerena ka eliminaciji sečenja, tj. smanjivanju
termskog dela aplikacije. Značaj λGtz-računa leži u činjenici da njegov osnovni tip-
ski sistem u potpunosti odgovara intuicionističkom sekventnom računu, u smislu
da su tipizirani izrazi λGtz-računa u jedan-na-jedan korespondenciji sa sekventnim
dokazima (uključujući i one koji sadrže pravilo sečenja).

1"...sekventni račun nema Curry-Howardov izomorfizam, zbog mnoštva načina zapisivanja istog
dokaza. To nas sprečava da ga koristimo kao λ-račun sa tipovima, iako se u dubini nazire neka
struktura te vrste..." Jean-Yves Girard, [37]

iii

Osnovni predmet istraživanja sprovedenog u ovoj disertaciji su upravo računske
interpretacije intuicionističkog sekventnog računa. Početnu tačku istraživanja stoga
predstavlja λGtz-calculus, kao elegantan i jednostavan sistem koji u potpunosti
obuhvata računski sadržaj punog Gentzenovog sistema za implikativni fragment
intuicionističke logike. Početni deo istraživanja je bio usmeren ka λGtz-računu sa
tipovima. Uveden je novi tipski sistem, čiji je osnovni cilj bio da obuhvati skup
onih λGtz-izraza čije su sve redukcije konačne. Drugim rečima, cilj je bio napraviti
sistem u kome su skupovi tipiziranih izraza i izraza sa svojstvom jake normalizacije
ekvivalentni. Sa tim ciljem, u λGtz-račun su uvedeni tipovi sa presekom.

Tipovi sa presekom su prvi put uvedeni u λ-račun kasnih sedamdesetih godina.
Nezavisno su ih razmatrali Coppo i Dezani [13], Sallé [63] i Pottinger [57]. Os-
novna ideja uvod̄enja operatora preseka u sintaksu tipova je da se dozvoli mogućnost
da neki term ima više od jednog tipa, i da mu se u tom slučaju može dodeliti i novi
tip, koji predstavlja presek tih tipova. Ta jednostavna i prirodna ideja je pomogla da
se uspešno prevazid̄u pojedina ograničenja osnovnog tipskog sistema. Pre svega,
novi tipski sistem je omogućio karakterizaciju svih terma sa osobinom jake nor-
malizacije, za razliku od osnovnog tipskog sistema, koji ne može da okarakteriše
čak ni skup normalnih formi, koji predstavlja strogi podskup skupa jako normali-
zovanih izraza.

Najpoznatiji, i prvi semantički kompletan tipski sistem sa presekom su pred-
ložili Barendregt, Coppo i Dezani [6]. U njihovom tipskom sistemu, tipovi se
grade od tipskih promenljivih i konstante ω (koja predstavlja univerzalni tip) po-
moću konstruktora → i ∩, a osim toga njegov sastavni deo čini i relacija poretka
na tipovima≤. Osim prvobitne namene u karakterizaciji jake normalizacije, tipovi
sa presekom su se pokazali i kao veoma moćno orud̄e u proučavanju bihejvioralnih
osobina različitih sistema, preciznije u analizi i sintezi λ-modela. Takod̄e, našli su
i primenu u programiranju, na primer u statičkoj analizi funkcionalnih programa.

Tipski sistem sa presekom za λGtz-račun koji je predložen u ovoj disertaciji se
razlikuje od standardnih tipskih sistema sa presekom po načinu na koji se tretira
operator preseka. U standardnim tipskim sistemima sa presekom, postoje posebna
pravila za uvod̄enje (i, u slučaju prirodno deduktivnih sistema, eliminaciju) opera-
tora→ koja korespondiraju pravilima za implikaciju u logičkim sistemima dokazi-
vanja, i postoje posebna pravila za uvod̄enje i eliminaciju preseka, koja nemaju
svoje logičke pandane. Zbog toga ovi sistemi nemaju sintaksnu direktnost - os-
obinu po kojoj svakom pravilu za grad̄enje terma odgovara tačno jedno pravilo za
dodelu tipova.

Nasuprot tome, u našem sistemu λGtz∩, prikazanom na Slici 4.5, presek je
ugrad̄en u već postojeća pravila osnovnog tipskog sistema λGtz → (Slika 4.4),
čime je očuvan prvobitni broj pravila za dodelu tipova, i samim tim, sintaksna
usmerenost sistema. Posledica sintaksne usmerenosti je jednoznačna i trivijalno

iv

dokaziva Lema o generisanju 4.16, koja potom u značajnoj meri olakšava dokaze
tvrd̄enja vezanih za ovaj sistem.

Druga razlika predloženog tipskog sistema u odnosu na standardni sistem iz [6]
je odsustvo univerzalnog tipa ω. Dokazano je da u predloženom sistemu λGtz∩
važi da λGtz-izraz ima tip ako i samo ako ima osobinu jake normalizacije (direktna
posledica Teorema 4.41 i 4.47), čime je ispunjen osnovni cilj prvog dela ovog is-
traživanja.

Cilj druge faze istraživanja je bio proširiti λGtz-račun kako bi se dobio novi for-
malni račun kojim bi bila uspostavljena Curry-Howardova korespondencija sa dru-
gom verzijom intuicionističkog sekventnog računa. Reč je o sekventnom računu
sa eksplicitnim strukturnim pravilima, koji je takod̄e uveo Gentzen [29].

Naime, dok logička pravila sekventnog računa uvode logičke veznike (u našem
slučaju samo implikaciju) sa leve ili sa desne strane sekventa, strukturna prav-
ila (kontrakcija, slabljenje i zamena) vrše transformacije direktno na sekventima,
a ne na pojedinim formulama u okviru sekvenata. U slučaju intuicionističkog
sekventnog računa, ove transformacije se vrše samo sa leve strane sekvenata, i po-
drazumevaju brisanje duplikata formule koja se javlja više puta (kontrakcija), do-
davanje proizvoljne formule koja ne utiče na zaključak tj. formulu sa desne strane
(slabljenje) i permutaciju redosleda kojim su navedene formule sa leve strane (za-
mena). Prva dva strukturna pravila stoga vrše kvantitativnu transformaciju sekventa,
te se mogu posmatrati i proučavati odvojeno od pravila zamene. U formalnom
računu, ova dva pravila su u vezi sa eksplicitnim upravljanjem brojem raspoloživih
promenljivih, zato što kontrakcija odgovara dupliranju promenljive, dok slabljenje
odgovara brisanju promenljive. Zbog toga se za računski ekvivalent eksplicitnim
strukturnim pravilima u logici koristi termin kontrola resursa, gde se pod resursima
podrazumevaju gradivni sastojci terma, tj. promenljive.

Potreba za kontrolom upotrebe i broja promenljivih u λ-termu se javlja još u
λI-računu, koji je predložio Church u [12]. U ovom računu, za razliku od stan-
dardnog λ-računa (koji je Church označavao sa λK), promenljiva koja je vezana
operatorom λ-apstrakcije bi trebalo da se bar jednom pojavi unutar terma. Stoga,
prazna lambda apstrakcija nije prihvatljiva u ovom računu: da bi postojao term
λx.M promenljiva x mora da se javi u termu M. Ali, u slučaju da se x ne koristi u
M, moguće je primeniti slabljenje (tzv. brisanje) koristeći izraz x⊙M, koji jasno
implicira da je x dodata termu M, tj. da samo M ne sadrži promenljivu x.

Nalik tome, promenljiva ne bi trebalo da se u termu pojavljuje više od jedanput.
Ukoliko, med̄utim, ipak želimo dva pojavljivanja neke promenljive, potrebno je da
je eksplicitno dupliramo. To je moguće uraditi korišćenjem operatora kontrakcije
(tzv. dupliranja) x <x1

x2
M, koji implicira da se promenljive x1 i x2 mogu smatrati

jednakim u termu M, te da će obe biti ubuduće označavane sa x. Prateći ove ideje,

v

van Oostrom je predložio proširenje λ-računa [72], dok su Kesner i Lengrand [45]
na sličan način proširili λx-račun sa eksplicitnom supstitucijom.

Naše proširenje λGtz-računa je bilo inspirisano radom Kesner i Lengranda na
λlxr-računu [45], kao i delom Lescannea i Žunića koji su uveli eksplicitnu kontrolu
resursa u formalni račun u okruženju klasičnog sekventnog računa [52]. Kao rezul-
tat, nastao je λGtz

r -račun, koji uvodi kontrolu resursa u intuicionističko sekventno
okruženje.

Dve bitne razlike izmed̄u λlxr-računa i λGtz
r -računa su u odgovarajućem logičkom

okruženju i u tretmanu supstitucije. Dok λlxr-račun sa osnovnim tipovima odgo-
vara intuicionističkom fragmentu mreža dokaza u linearnoj logici, λGtz

r -račun di-
rektno proširuje λGtz-račun, te stoga odgovara intuicionističkom sekventnom računu
sa eksplicitnim strukturnim pravilima kontrakcije i slabljenja. Drugo, za razliku od
eksplicitne supstitucije u λlxr-računu, supstitucija je u λGtz

r -računu implicitna, tj.
izvršava se kao meta-operator. Razlog za ovakav izbor leži u činjenici da je cilj
proširenja bilo omogućavanje isključivo eksplicitne kontrole kvantitativnih trans-
formacija promenljivih u termu tj. kontrole resursa, a supstitucija ne spada u tu
kategoriju.

Kao što je već sugerisano, λGtz
r -račun predstavlja proširenje λGtz-računa ek-

splicitnim operatorima koji vrše dupliranje i brisanje promenljivih u obe sintaksne
kategorije λGtz-izraza - u termima t i u kontekstima k. Stoga je sintaksa ovog
računa obogaćena novim konstruktima x <x1

x2
t, x <x1

x2
k, x⊙ t i x⊙ k. Karakteris-

tično za račune sa kontrolom resursa je da izraze računa ne čine svi mogući kon-
strukti dobijeni kombinovanjem promenljivih i operatora, već je potrebno izdvo-
jiti podskup “pravilnih” izraza. U prisustvu eksplicitne kontrakcije i slabljenja,
izraz se smatra pravilnim ako se svaka slobodna promenljiva javlja tačno jednom, i
ako svaki vezujući operator vezuje neku slobodnu promenljivu. Dakle, λGtz-termi
poput λx.y i x(x :: ẑ.z) ne postoje u λGtz

r -računu. Iako na prvi pogled deluje kao
da ovi dodatni zahtevi predstavljaju restrikciju u pravom smislu i da postoje λGtz-
izrazi koji se ne mogu predstaviti u λGtz

r -računu, to nije tačno. Svaki λGtz-izraz
može preslikati u odgovarajući λGtz

r -izraz, korišćenjem operatora slabljenja i kon-
trakcije. Na primer, λGtz-termu λx.y odgovara λGtz

r -term λx.x⊙ y, dok λGtz-termu
x(x :: ẑ.z) odgovara λGtz

r -term x <x1
x2

x2(x1 :: ẑ.z).
Kompleksna sintaksa je uslovila i znatno složenija pravila računanja sa λGtz

r -
izrazima, koja se razlikuju od pravila za λGtz-račun po novim redukcijama koje
regulišu ponašanje operatora za kontrolu resursa (Slika 5.2), složenijim meta op-
eratorima supstitucije (Slika 5.4) i spajanja konteksta (Slika 5.3), kao i uvod̄enjem
ekvivalencija (Slika 5.5). Nove redukcije su sistematizovane u tri grupe: (γ) re-
dukcije pomeraju kontrakciju što je moguće dublje u izraz, (ω) redukcije pomeraju
slabljenje u suprotnom smeru, ka površini izraza, a (γω) redukcije definišu dva

vi

moguća načina interakcije različitih operatora za kontrolu resursa. Ovako postavl-
jena pravila redukcije su standardna za račune sa kontrolom resursa, i motivisana
optimizacijom računanja, koja nalaže da se kontrakcija vrši što ranije, a slabljenje
što kasnije u toku procesa izračunavanja izraza.

Kao i u slučaju λGtz-računa, u funkciji ispunjenja sledećeg cilja, a to je karak-
terizacija jake normalizacije u λGtz

r -računu, u ovaj račun su uvedeni tipovi sa pre-
sekom. Predloženi sistem λGtz

r ∩ je prikazan na Slici 5.8.
Operator preseka se nameće kao prirodno rešenje za tipiziranje računa sa ek-

splicitnom kontrakcijom. To je stoga što je tada omogućeno tipiziranje izraza u
kome dve kontrahovane promenljive imaju različite tipove, za razliku od osnovnog
tipskog sistema gde se zahteva da one imaju isti tip. Na primer, posmatrajmo term
x <x1

x2
t. Neka je promenljivoj x1 dodeljen tip α a promenljivoj x2 tip β, tada će

promenljivoj x koja je nastala kontrakcijom x1 i x2 biti dodeljen tip α∩β. Budući
da je naš presek idempotentan, u slučaju da obe promenljive imaju isti tip, i kon-
trahovana promenljiva će imati taj tip. Zato je ovaj tipski sistem pravo proširenje
osnovnog tipskog sistema, što u slučaju neidempotentnog preseka ne važi.

Sa druge strane, slabljenjem se u izraz uvodi nova promenljiva, koja nema
poseban značaj pri izračunavanju tog izraza. Zbog toga se takvim promenljivama
dodeljuje posebna tipska konstanta,⊤, da bi naznačila irelevantnost te promenljive.
Ova konstanta je neutralni element za presek, tako da će prilikom kontrakcije, u
slučaju da je jedna od kontrahovanih promenljivih uvedena slabljenjem, rezultujuća
promenljiva naslediti tip tj. ulogu one druge promenljive.

Svim ostalim promenljivama se u sistemu λGtz
r ∩ dodeljuju striktni tipovi, posebna

vrsta tipova sa presekom u kojima je glavni veznik strelica, a presek se javlja samo
sa njene leve strane. Ovo je regulisano formulacijom aksiome. Takod̄e, tipska
pravila su tako formulisana da su i svim λGtz

r -izrazima dodeljeni isključivo striktni
tipovi.

Dakle, jedna od najvažnijih osobina predloženog tipskog sistema je da on ra-
zlikuje tri vrste promenljivih u izrazu na osnovu njihove uloge, i dodeljuje im
različite vrste tipova. Ovo svojstvo značajno povećava ekspresivnost sistema, i
čini ga pogodnim kandidatom za potencijalnu implementaciju. Osim toga, sistem
λGtz
r ∩ se razlikuje od sistema λGtz∩ i po načinu zadavanja baza, budući da rad sa

eksplicitnim pravilima za kontrolu resursa zahteva multiplikativni stil zadavanja
pravila sa dve premise. Uprkos povećanju kompleksnosti sistema, lepe osobine
koje su odlikovale sistem λGtz∩, poput sintaksne usmerenosti, su u ovom sistemu
očuvane. Takod̄e, dokazano je da sistem λGtz

r ∩ ispunjava osnovnu svrhu sa kojom
je konstruisan, tj. da je u njemu moguće dodeliti tip tačno onim λGtz

r -izrazima koji
imaju svojstvo jake normalizacije (Teorema 5.70), čime su ispunjeni ciljevi druge
faze istraživanja.

vii

Koliko nam je na osnovu dostupne literature poznato, ovo je prvi rad koji kom-
binuje idempotentan presek i formalne račune sa kontrolom resursa. Drugačiji
pristup, motivisan prvenstveno razvojem procesnih računa, je primenio Boudol
u [9]. Umesto uvod̄enja eksplicitnih operatora za kontrolu resursa, Boudol je
predložio nedeterministički račun sa uopštenim pojmom aplikacije. U njegovom
radu, termi se apliciraju na strukture zvane torba (bag), koje sadrže promenljive sa
dodeljenim mnogostrukostima, tj. vrednostima koje ukazuju na maksimalni broj
mogućih korišćenja te promenljive. Mnogostrukost 1 tako odgovara eksplicitnim
strukturnim pravilima, a mnogostrukost ∞ odgovara implicitnim strukturnim prav-
ilima. U ovakav račun su uvedeni neidompotentni2 tipovi sa presekom od strane
Pagani i Ronchi della Rocca [55], koji su korišćeni za karakterizaciju solvabilnih
terma, a to su oni termi koji mogu da intereaguju sa okruženjem.

Cilj trećeg i poslednjeg dela istraživanja je bilo povezati i uopštiti prethodno
proučene račune i tipske sisteme. Ovaj cilj je ispunjen uvod̄enjem kocke sa kon-
trolom resursa (resource control cube), strukture koja se sastoji od osam formalnih
računa, med̄u kojima su i λGtz i λGtz

r . Formalni računi koji formiraju kocku sa
kontrolom resursa se med̄usobno razlikuju po logičkoj osnovi (prirodna dedukcija
ili sekventni račun) i po tretmanu svakog od dva operatora za kontrolu resursa (im-
plicitan ili eksplicitan). Računi sa zajedničkom logičkom osnovom čine tzv. bazu
kocke, tako da razlikujemo sekventnu (LJ-bazu) i prirodno deduktivnu (ND-bazu).
U okviru svake baze, posmatramo četiri računa, označena sa λR (odnosno λGtz

R),
gde R ⊆ {c,w} i c označava prisustvo eksplicitne kontrakcije, dok w označava
prisustvo eksplicitnog slabljenja. Ukoliko neki operator za kontrolu resursa nije
eksplicitno naveden u imenu računa, podrazumeva se da je u tom računu implici-
tan.

Računi koji su predmet proučavanja ove disertacije, λGtz i λGtz
r , su na taj način

povezani u celinu, budući da predstavljaju dva temena LJ-baze. λGtz-račun je sada
obeležen sa λGtz

/0 , čime je naglašeno da su u ovom računu strukturna pravila implic-
itna. Sa druge strane, λGtz

r -račun je obeležen sa λGtz
cw , zato što su u ovom računu

i kontrakcija i slabljenje eksplicitni. Preostala temena sekventnog dela kocke čine
dva nova računa sa parcijalnom kontrolom resursa, λGtz

c i λGtz
w , u kojima se jedno

strukturno pravilo tretira eksplicitno, a drugo implicitno. Proučavanje ovih računa,
koji su iteresantni prvenstveno sa aspekta računskih interpretacija substrukturalnih
logika, izlazi van okvira ove disertacje.

Druga, ND-baza kocke sa kontrolom resursa se sastoji od četiri odgovarajuća
prirodno deduktivna formalna računa koje su predložili Kesner i Renaud u [46].
Kesner i Renaud su uveli sličnu strukturu, prizmoid resursa, sistem od osam for-

2kod kojih ne važi da je α∩α = α

viii

malnih računa dobijenih kombinovanjem eksplicitnog i implicitnog tretmana sup-
stitucije, kontrakcije i slabljenja. Oni su na taj način uopštili λlxr-račun, koji se
sa sva tri eksplicitna operatora nalazi na vrhu njihovog prizmoida, dok je na-
suprot njemu standardni λ-račun na dnu. Iako je prizmoid resursa predstavljao
osnovni motiv za uvod̄enje kocke sa kontrolom resursa, fokus je u našem istraži-
vanju pomeren ka sekventnim formalnim računima, i isključivo ka operatorima za
kontrolu resursa, te je zbog toga supstitucija u celoj kocki implicitna.

Takod̄e, tipski sistemi sa presekom koji su uvedeni u kocku na uniforman
način za svaku bazu, predstavljaju originalan rezultat, obzirom da su u prizmoid
resursa bili uvedeni samo osnovni tipski sistemi. Sistemi λR ∩ i λGtz

R ∩, prikazani
Slikama 6.14 i 6.16 su zadržali sintaksnu usmerenost sistema λGtz

r ∩ na kom su
zasnovani, i svi dodeljuju striktne tipove. Sličnosti i razlike med̄u sistemima,
koje su posledica različitog tretmana operatora za kontrolu resursa, su ilustrovane
primerom tipiziranja sličnog terma u svakom od osam temena kocke sa kontrolom
resursa.

Ovim je kompletirano i završeno istraživanje realizovano okviru ove disertacije,
koja je posvećena tipovima sa presekom i kontroli resursa u intuicionističkom
sekventnom formalnom računu.

ix

Struktura disertacije

Disertacija je podeljena u 7 glava.

Prve tri glave su preglednog karaktera.

Glava 1 predstavlja uvod u problematiku obrad̄enu tezom.

U Glavi 2 je prikazan Gentzenov sekventni račun za implikatvni fragment in-
tuicionističke logike, i to oba sistema čije su računske interpretacije predmet ovog
istraživanja - sa implicitnim (sistem G3) i sa eksplicitnim (sistem G1) strukturnim
pravilima.

Glava 3 sadrži kratak pregled osnova četiri intuicionistička formalna računa
čiji je uticaj na razvoj računa proučavanih u originalnom delu disertacije bio od
najvećeg značaja: λ-račun, λ̄-račun, λlxr-račun i λr-račun. Svakom od ovih računa
posvećeno je po jedno poglavlje ove glave.

Neizbežna polazna tačka za svako istraživanje u oblasti računskih interpretacija
logike je svakako standardni Churchov λ-račun. Budući da je naš interes u ovom
radu bio usmeren ka tipovima sa presekom i sekventnom računu, iz obilja rezul-
tata vezanih za λ-račun su odabrana i prikazana dva tipska sistema - sistem D sa
tipovima sa presekom, čiji je autor Krivine [49] i jedan od prvih pokušaja prib-
ližavanja λ-računa seventnom računu, sistem λLJ, koji su predložili Barendregt i
Gilezan [7].

Naredni prikazani formalni račun, koji je narelevantniji za razvoj računskih
interpretacija intuicionističkog sekventnog računa, je Herbelinov λ̄-račun, uveden
u [38]. Ovo je prvi intuicionistički formalni račun kojim je obuhvaćena suština
sekventnog stila računanja, te je zbog toga poslužio kao inspiracija za sve ostale
intuicionističke sekventne formalne račune, pa i za λGtz-račun.

U delu istraživanja koje se bavi eksplicitnim tretmanom računske interpretacije
strukturnih pravila, time što u terme uvodi operatore za kontrolu resursa, tj. za
dupliranje i brisanje promenljivih, osnovnu inspiraciju je pradstavljao λlxr-račun
koji su Kesner i Lengrand uveli u radu [45], u kome je konstruisan račun sa ek-
splicitnom supstitucijom, kontrakcijom i slabljenjem, i ispitane najbitnije osobine
osnovnog tipskog sistema za ovaj račun.

Konačno, pojedini tehnički rezultati vezani za jaku normalizaciju sistema λGtz
r ∩

(Poglavlje 5.3) se oslanjaju na analogne rezultate dokazane za λr∩ - λr-račun
sa tipovima sa presekom. Za razliku od prethodna tri prikazana računa koji su
prethodili λGtz

r -računu i uticali na njegovo zasnivanje, ovaj račun je nastao kasnije,
kao pomoćni sistem čija je osnovna svrha bila da se kreira jednostavnije okruženje

x

sa kontrolom resursa i tipovi- ma sa presekom, u koje bi potom sistem λGtz
r ∩ bio

preveden. Sintaksa i operacijska semantika ovog sistema predstavljaju varijantu
λcw-računa, jednog od konstitutivnih računa Kesner and Renaudovog Prizmoida
resursa [46, 47], dok je tipski sistem sa striktnim tipovima uveden u radu Gilezan
et al. [32].

Centralni deo ove disertacije, koji sadrži originalne rezultate, predstavljaju
Glave 4, 5 i 6.

Glava 4 je u celosti posvećena λGtz-računu.
Poglavlje 4.1 prikazuje λGtz-račun bez tipova: sintaksu, slobodne promenljive

i operacijsku semantiku, uključujući pravila redukcije i dva meta-operato-ra ovog
računa. Završava se primerima izračunavanja, i napomenom o odsustvu konfluent-
nosti.

Tipovi, kako osnovni tako i sa presekom, su uvedeni u λGtz-račun u Poglavlju
4.2. Najpre je definisana sintaksa osnovnih tipova, i dve vrste izraza za dodelu
tipova, što je karakteristika tipskih sistema za sekventne formalne račune. Posebna
pažnja je usmerena ka vezi izmed̄u pravila tipskog sistema i pravila LJ sekventnog
računa, te je objašnjena Curry-Howard korespondencija izmed̄u sistema λGtz→ i
LJ. Zatim je dat primer dodele tipova, i pojašnjena je motivacija za uvod̄enje tipova
sa presekom.

Tipski sistem sa presekom λGtz∩ predstavlja prvi originalni doprinos ove dis-
ertacije. Definisana je sintaksa tipova sa presekom, potom relacije poretka i ekviva-
lencije na skupu tipova. Pravila tipskog sistema su uvedena (Slika 4.5), i dokazane
su osnovne osobine predloženog tipskog sistema: tvrd̄enje o pravilu uvod̄enja pre-
seka sa leve strane (Tvrd̄enje 4.17), tvrd̄enja o proširenju baze (Tvrd̄enje 4.19)
i o preseku baza (Tvrd̄enje 4.21), leme o ponašanju meta-operatora supstitucije
(Lema 4.22) i spajanja konteksta (Lema 4.23), i konačno teorema o očuvanju tipa
prilikom redukcije tipiziranog λGtz-izraza (Subject reduction teorema 4.24). Zatim
je naveden primer dodele tipa termu u sistemu λGtz∩. Na kraju poglavlja, kon-
strukcija sistema λGtz∩ je dodatno motivisana i objašnjena pomoću analize dva
neuspešna pokušaja uvod̄enja tipova sa presekom u λGtz-račun.

Najvažnija osobina koju tipski sistemi sa presekom treba da zadovoljavaju,
Karakterizacija jake normalizacije, je za sistem λGtz∩ dokazana u Poglavlju 4.3.
Prvo je pokazano da svi izrazi kojima se može dodeliti tip u sistemu λGtz∩ imaju
i osobinu jake normalizacije, tj. da su im sve redukcije konačne (Teorema 4.41).
Dokaz ove teoreme koristi utapanje λGtz-izraza u λ-terme za koje je dokazano da
očuvava tipove (Tvrd̄enje 4.35), i poznati rezultat o jakoj normalizaciji λ-terma
koji imaju tip u sistemu sa presekom D (Teorema 3.7). Potom je dokazan drugi
smer tvrd̄enja, da svi λGtz-izrazi koji imaju osobinu jake normalizacije imaju i

xi

tip u sistemu λGtz∩ (Teorema 4.47). Dokaz koristi dva pomoćna tvrd̄enja: (i)
λGtz normalne forme imaju tip (Tvrd̄enje 4.42); (ii) proces ekspanzije3 λGtz-izraza
očuvava tip, ukoliko se podrazumeva da se ekspanzija odigrava na površini terma
(Tvrd̄enje 4.46). Konačno, potpuna karakterizacija jako normalizovanih λGtz-izraza
u sistemu λGtz∩ je direktna posledica upravo dokazanih Teorema 4.41 i 4.47.

Poslednje poglavlje ove glave, Poglavlje 4.4, usmerava pažnju nazad ka λGtz-
računu bez tipova, i ispravljanju već utvrd̄ene nepoželjne osobine ovog računa,
odsustva konfluentnosti (tzv. Church-Rosserove osobine). Predloženi način za
postizanje konfluentnosti se bazira na restrikciji jednog od dva pravila redukcije
koja formiraju kritični par redukcija, koji je izvor ne-konfluentnosti. Na taj način
su dobijena dva striktna pod-računa, pod nazivom λGtz

V i λGtz
L . Na kraju je formalno

dokazano da dobijeni računi zaista zadovoljavaju Church-Rosserovu osobinu ko-
rišćenjem modifikacije Takahashijeve tehnike paralelnih redukcija koju je pred-
ložila Likavec.

Originalni doprinosi predstavljeni u Glavi 4 su ostvareni u saradnji sa José Es-
pírito Santom, Silviom Gilezan i Silviom Likavec, i objavljeni u radovima [24, 31,
41, 42, 25].

U Glavi 5, osnovni predmet proučavanja je λGtz
r -račun (resource control lambda

Gentzen calculus), intuicionistički sekventni formalni račun sa kontrolom resursa,
tj. sa eksplicitnom kontrakcijom (dupliranjem) i slabljenjem (brisanjem) promenljivih.

U Poglavlju 5.1 je uveden λGtz
r -račun bez tipova. Prvo su definisani pre-izrazi

λGtz
r -računa, tako što je sintaksa λGtz

V -računa proširena operatorima koji vrše kon-
trakciju i slabljenje promenljivih u termima i kontekstima. Potom je iz skupa pre-
izraza izdvojen podskup koji sadrži λGtz

r -izraze, putem inferentnih pravila sadržanih
u Slici 5.1. Ovaj skup sadrži samo “pravilne” pre-izraze (u prisustvu eksplicitne
kontrakcije i slabljenja, izraz se smatra pravilnim ako se svaka slobodna promenljiva
javlja tačno jednom, i ako svaki vezujući operator vezuje neku slobodnu promenljivu).
Pokazano je da ovi dodatni zahtevi ne predstavljaju restrikciju u pravom smislu,
budući da se svaki λGtz-izraz može preslikati u odgovarajući λGtz

r -izraz.
Nakon što su definisani izrazi, uvedena je i operacijska semantika. Pravila raču-

nanja uključuju četiri grupe pravila redukcije, zatim pravila ekvivalencije, kao i
proširene definicije dva meta-operatora iz λGtz-računa. Uveden je i pojam paralelne
supstitucije, koji je omogućen jasnom distribucijom slobodnih promenljivih u λGtz

r -
izrazu. Na kraju ovog poglavlja, dokazano je da su slobodne promenljive očuvane
prilikom izračunavanja, tj. tokom redukcija i ekvivalencija (Tvrd̄enje 5.12).

Poglavlje 5.2 je posvećeno λGtz
r -računu sa osnovnim tipovima. Tipski sistem

λGtz
r → je dobijen prirodnim proširenjem sistema λGtz→ sa četiri nova pravila koja

3Ekspanzija je proces obrnutog smera od redukcije.

xii

dodeljuju tipove novo-uvedenim sintaksnim konstruktima. Pravila sistema λGtz
r →

(Slika 5.6) su prezentovana u multiplikativnom stilu, za razliku od aditivnog stila
zastupljenog u sistemu λGtz→, što je u skladu sa prelaskom sa implicitna na ek-
splicitna strukturna pravila. Formulisana su osnovna svojstva predloženog sistema,
i dokazana je jaka normalizacija sistema λGtz

r → (Teorema 5.42). Dokaz ove teo-
reme se zasniva na interpretaciji λGtz

r -računa u λlxr-račun sa osnovnim tipovima,
za koji su Kesner i Lengrand dokazali jaku normalizaciju.

U Poglavlju 5.3, pažnja je usmerena ka tipovima sa presekom u okruženju
sa kontrolom resursa. Uvedena je posebna forma tipova sa presekom, tzv. strik-
tni tipovi, koji će biti dodeljeni λGtz

r -izrazima, kao i posebna tipska konstanta ⊤
(neutralni element za presek) koja će biti dodeljena isključivo onim promenlji-
vama koje su uvedene slabljenjem. Predloženi tipski sistem sa presekom λGtz

r ∩,
prikazan Slikom 5.8, je sintaksno usmeren, prezentovan u multiplikativnom stilu,
i dodeljuje isključivo striktne tipove λGtz

r -izrazima. Poseban značaj ovog sistema
leži u činjenici da se na osnovu vrste tipa dodeljenog promenljivoj može prepoz-
nati koju od tri uloge ta promenljiva vrši u izrazu. Dokazana su i osnovna tvrd̄enja
vezana za ovaj sistem: korespondencija domena (Tvrd̄enje 5.45), lema o gener-
isanju (Lema 5.46), leme o tipiziranju zamene i spojenih konteksta (Leme 5.47 i
5.48) i konačno očuvanje tipa prilikom izračunavanja (Tvrd̄enje 5.50).

Najvažniji rezultat u vezi sistema λGtz
r ∩ - teorema o karakterizaciji jake nor-

malizacije u λGtz
r -računu sa tipskim sistemom λGtz

r ∩ (Teorema 5.70) je dokazana
u nastavku ovog poglavlja. Dokaz smera tvrd̄enja da svi termi sa tipom imaju svo-
jstvo jake normalizacije je zasnovan na interpretaciji λGtz

r -računa u λr-račun, za
koji je dokazano da zadovoljava jaku normalizaciju u tipskom sistemu sa presekom
(Teorema 3.12). Obrnuti smer tvrd̄enja, u kome se tvrdi da jaka normalizacija im-
plicira tipiziranost u sistemu λGtz

r ∩, je dokazan prateći postupak analogan dokazu
ekvivalentnog tvrd̄enja u λGtz-računu.

Formalni račun sa kontrolom resursa predstavljen u Glavi 5 i njegovi tipski sis-
temi, sa osnovnim i striktnim tipovima, uključujući i sve dokazane osobine, pred-
stavljaju originalan doprinos ove disertacije. Oni su nastali u saradnji sa Pierreom
Lescanneom, Silviom Gilezan, Silviom Likavec i Dragišom Žunićem, i objavljeni
su u radovima [35, 32].

U Glavi 6 su generalizovani formalni računi i tipski sistemi uvedeni u prethodne
dve glave. Predložena je kocka sa kontrolom resursa (resource control cube),
struktura koja se sastoji od osam intuicionističkih formalnih računa sa implicitnim
ili eksplicitnim strukturnim pravilima, i sa prirodnom dedukcijom ili sekventnim
računom kao logičkom osnovom. Dve strane ove strukture zasnovane na različitim
logikama predstavljaju ND-bazu i LJ-bazu kocke.

xiii

U Poglavlju 6.1 je predstavljena kocka bez tipova - njena sintaksa i operaci-
jska semantika. Na početku su definisani pre-termi ND-baze (odnosno pre-izrazi,
u slučaju LJ-baze) i slobodne promenljive, da bi potom inferentnim pravilima bili
definisani termi, odnosno izrazi. Zatim je uvedena operacijska semantika: prav-
ila redukcije, ekvivalencije i definicije meta-operatora. Na kraju, preciziranjem
logičke osnove i elemenata skupa R specificirano je svih osam računa sadržanih u
kocki sa kontrolom resursa.

Poglavlje 6.2 sumira tipske sisteme sa osnovnim tipovima, koji su već uvedeni
za većinu računa kocke (tačnije, za sve osim dva nova računa LJ baze sa parcijal-
nom kontrolom resursa - λGtz

c -račun i λGtz
w -račun). Tipski sistemi za svaku bazu

kocke, λR → i λGtz
R →, su prikazani na uniforman način.

U Poglavlju 6.3, su u kocku uvedeni tipski sistemi sa presekom, λR ∩ i λGtz
R ∩.

Ovi sistemi su zasnovani na sistemu λGtz
r ∩, uvedenom u delu 5.2.2 ove disertacije,

koji je ugrad̄en u kocku pod nazivom λGtz
cw ∩. Svi sistemi su sintaksno usmereni, i

svi dodeljuju striktne tipove. Poglavlje se završava primerima tipiziranja u svakom
od osam tipskih sistema sa presekom.

Sva tri poglavlja ove glave su podeljena u dve celine - jednu koja predstavlja
prirodno deduktivnu stranu kocke, i drugu koja se bavi kockinom sekventnom stra-
nom.

Konačno, Glava 7 je poslednja i zaključna glava ove disertacije. U njoj su
rezimirani originalni rezultati izneti u prethodnim glavama, i diskutovane kako
mogućnosti primene ovih rezultata, tako i mogući nastavci istraživanja u oblasti
obuhvaćenoj ovim istraživanjem.

xiv

xv

Abstract

The subject of the research presented in this thesis is computational interpre-
tations of the intuitionistic sequent calculus with implicit and explicit structural
rules, with focus on the systems with intersection types.

The contributions of the thesis are grouped into three parts.
The first part introduces intersection types into the λGtz-calculus, a calculus

that captures the computational content of intuitionistic sequent calculus with im-
plicit structural rules. The proposed type assignment system, denoted λGtz∩, dif-
fers from the standard type systems with intersection types in the management
of the introduced intersection operator. The intersection is here integrated into
already existing rules of the simply typed system, hence the number of type as-
signment rules remains unchanged, resulting in the real syntax directness of the
system which made the most of the related propositions easier to prove. The main
result of this part is the proof that the system λGtz∩ characterises the set of strongly
normalising λGtz-expressions.

The second part represents an extension of the λGtz-calculus to a term calculus
with resource control, denoted λGtz

r , which computationally corresponds to the in-
tuitionistic sequent calculus with explicit structural rules. The main novelty with
respect to the λGtz-calculus are operators that perform duplication and erasure of
variables, and correspond to the structural rules of contraction and weakening, re-
spectively. In order to characterise all strongly normalising λGtz

r -expressions, the
intersection types were introduced. Intersection naturally works together with con-
traction, because it enables the contraction of two variables typed with, say types
α and β, into one variable typed with both α and β, i.e. α∩β. On the other hand,
since weakening introduces a new variable, which is not significant for the rest of
the computation, a specific type constant is assigned to that variable to mark its
irrelevance. Therefore, in the system λGtz

r ∩, we distinguish three types of variables
according to their role in an expression and each one receives a particular kind of
type. Desired properties of the system λGtz

r ∩ are proved.

xvi

The third and final part of the research was unification and generalisation of
the previously obtained results. This goal was achieved by introducing the re-
source control cube, a system consisting of eight formal calculi. The calculi of the
resource control cube differ in logical framework (natural deduction/sequent cal-
culus) and in the treatment of resource control (implicit/explicit). In that way, both
calculi studied in this thesis - λGtz and λGtz

r were integrated into one framework, as
well as their versions with intersection types.

Contents

1 Introduction 1

2 Sequent calculus 11

3 Related term calculi 15
3.1 The λ-calculus . 16
3.2 The λ̄-calculus . 20
3.3 The λlxr-calculus . 24
3.4 The λr-calculus . 28

4 λGtz-calculus 33
4.1 Type-free λGtz-calculus . 33
4.2 Typed λGtz-calculus . 38

4.2.1 Simply typed λGtz-calculus 38
4.2.2 Intersection types for the λGtz-calculus 41
4.2.3 The systems leading to λGtz∩ 49

4.3 Characterisation of SN in the λGtz-calculus 53
4.3.1 Typeability⇒ SN . 53
4.3.2 SN⇒ Typeability . 59

4.4 Regaining confluence in the λGtz-calculus 65
4.4.1 Two confluent sub-calculi 66
4.4.2 The proof of confluence 66

5 λGtz
r -calculus 75

5.1 Type-free λGtz
r -calculus . 76

5.1.1 Syntax . 76
5.1.2 Operational semantics 81

5.2 Simply typed λGtz
r -calculus . 88

5.2.1 The system λGtz
r → . 88

xvii

xviii CONTENTS

5.2.2 Typeability⇒ SN in λGtz
r → 91

5.3 Intersection types for the λGtz
r -calculus 109

5.3.1 The system λGtz
r ∩ . 109

5.3.2 Typeability⇒ SN in λGtz
r ∩ 116

5.3.3 SN⇒ Typeability in λGtz
r ∩ 127

6 The resource control cube 133
6.1 Type-free resource control cube 134

6.1.1 Resource control lambda calculi λR 134
6.1.2 Resource control sequent lambda calculi λGtz

R 139
6.2 Simple types for resource control cube 145

6.2.1 Simply typed λR -calculi 146
6.2.2 Simply typed λGtz

R -calculi 146
6.3 Intersection types for resource control cube 148

6.3.1 Intersection types for λR 150
6.3.2 Intersection types for λGtz

R 151

7 Conclusion 157

Bibliography 161

List of Figures 169

Chapter 1

Introduction

Rules of reasoning were known and some of them even formally described since
ancient times. The earliest known document on the subject was the Organon, a
collection of Aristotle’s works on logic. Logic as a mathematical discipline dates
back to the second half of the nineteenth century when Gottlob Frege introduced
the basic concepts of modern logic, extending and developing the ideas of Gottfried
Leibniz. Logic experienced its intensive development in the early twentieth cen-
tury, and some of the most significant logicians of that time were Gerhard Gentzen,
David Hilbert, Bertrand Russel and especially Kurt Gödel, whose incompleteness
theorems showed the limitations of formal arithmetical systems. During that pe-
riod three fundamental formal logical proof systems were introduced - Hilbert’s
axiomatic system and two Gentzen’s systems, namely natural deduction and se-
quent calculus.

The third decade of the twentieth century was the starting point for the de-
velopment of theoretical computer science, which since then continued to develop
simultaneously with logic and interact with it on many levels. Various formal cal-
culi were proposed, following the efforts of the mathematicians of that time di-
rected towards formalisation of mathematics (which turned out to be unsuccessful,
as proved by Gödel). During that period, combinatorial calculus created by Moses
Schönfinkel and Haskell Curry appeared, followed by Alonso Church’s λ-calculus,
introduced in [10]. In 1940 Church introduced simple types to λ-calculus [11], and
this system has later become the main formalism underlying functional program-
ming, starting from Peter Landin’s work on Algol 60 [50].

The correspondence between logic and λ-calculus was initially observed by
Curry in 1934, who showed that there is an isomorphism between the provable
formulae of intuitionistic implicational logic and the type expressions assignable to
closed terms. The correspondence was extended by Howard in 1969. According to

1

2 CHAPTER 1. INTRODUCTION

the Curry-Howard correspondence, eventually published in [40], natural deduction
for intuitionistic logic and λ-calculus with simple types are mutually exchangeable
systems, meaning that proofs of formulae correspond to the program specifications,
while proof simplifications correspond to the program executions. This paradigm,
the core of computation, even strengthened the importance of logic in computer
science, since proof theory became one of the main tools for program analysis.

Naturally, the problem of extending the Curry-Howard correspondence and
creating the computational interpretations of other logical systems appeared. While
the correspondence between combinators and axiomatic system was obvious, the
situation with the sequent calculus was rather different. Already Gentzen proved
that the systems of natural deduction and sequent calculus are equipotent, mean-
ing that any proof written in the style of natural deduction can be translated into
the proof written in the sequent calculus style and vice versa. Zucker [74] and
Pottinger [56] showed that the proof simplifications in the two systems, namely
normalisation in natural deduction and cut-elimination in sequent calculus are cor-
responding, more precisely that the former is a homomorphic image of the latter.
Therefore, it became clear that the Curry-Howard correspondence could be ex-
tended to the sequent calculus and a variant of λ-calculus, contrary to the previous
views on the topic1.

However, since the sequent calculus and λ-calculus significantly differ in struc-
ture, modifications had to be done on the syntactic level, not only in the form of
changed typing rules. The first formal calculus that in the sense of Curry-Howard
corresponded to the intuitionistic sequent calculus was λ̄-calculus, proposed by
Hugo Herbelin in 1995 [38]. In this paper, the isomorphism was obtained between
the set of terms of λ̄-calculus and the set of proofs of the restricted sequent system
LJT . Following the λ̄-calculus, several other formal calculi based on the sequent
calculus were proposed. One of them is λGtz-calculus, designed by José Espírito
Santo in 2007 [27]. The significance of the λGtz-calculus lies in the fact that its
simply typed system corresponds to the full (non-restricted) intuitionistic sequent
calculus LJ.

The main subject of research of this thesis are exactly computational interpre-
tations of the intuitionistic sequent calculus. The starting point of the research
was Espírito Santo’s λGtz-calculus, as a neat and simple system that fully captures
computational content of full Gentzen’s LJ system. The focus of this initial part of
the research was on the typed λGtz-calculus. A new type assignment system was

1"...the sequent calculus has no Curry-Howard isomorphism, because of the multitude of ways of
writing the same proof. This prevents us from using it as a typed λ-calculus, although we glimpse
some deep structure of this kind..." Jean-Yves Girard, [37]

3

developed in order to capture the set of terminating λGtz-expressions by means of
typeability. For that purpose, the intersection type operator was introduced.

Intersection types were introduced to λ-calculus in the late seventies, indepen-
dently by Coppo and Dezani [13], Sallé [63] and Pottinger [57]. The basic idea
is that a term could have more than one type assigned to it, and that in that case
an intersection of these types is also a type assigned to the term. That simple and
natural idea turned to be successful in overcoming some limitations of the simple
type discipline. Particularly, it enabled the characterisation of all strongly normal-
ising λ-terms, while simple types failed even in characterisation of normal forms.
The most well-known and first semantically complete type assignment system with
intersection types was proposed by Barendregt, Coppo and Dezani [6]. Its types
were built from type variables and the constant ω (representing universal type) by
means of constructors→ and ∩, and it contained a pre-order relation ≤ on types.
Intersection types turned out to be a powerful tool for studying the behavioural
properties of various systems, more precisely for the analysis and the synthesis of
λ-models. They also found application in programming, for example in static anal-
ysis of functional programs. More recently, program synthesis finds its theoretical
foundations in inhabitation.

The intersection type assignment system for the λGtz-calculus proposed in this
thesis differs from the standard type systems with intersection types in the manage-
ment of the introduced intersection operator. In our system λGtz∩, intersection is
integrated into already existing rules of the simply typed system λGtz→, hence the
number of type assignment rules remains unchanged, resulting in the real syntax
directness of the system, which made the most of the related propositions easier to
prove. The other difference with respect to the system from [6] is the lack of the
universal type ω. We proved that the proposed system λGtz∩ characterises the set
of strongly normalising λGtz-expressions, thus accomplishing the goal set for this
part of the research.

The second step was to extend the λGtz-calculus to a term calculus that would
correspond in the Curry-Howard way to another version of the sequent calculus,
also proposed by Gentzen [29], namely the sequent calculus with explicit structural
rules.

While the logical rules of the sequent calculus introduce the logical connec-
tives to the right hand side (respectively left hand side) of the sequents, structural
rules on the other hand (namely contraction, weakening and exchange), operate
directly on sequents. In the intuitionistic sequent calculus, they produce changes
only on the left hand side of the sequents, where they perform erasure of the multi-
ple occurrences of the same formula (contraction), addition of an arbitrary formula
irrelevant for the conclusion (weakening) and permutation of the order of the for-

4 CHAPTER 1. INTRODUCTION

mulas (exchange). In a formal calculus, the first two rules are related to the control
of available resources (i.e. term variables), since contraction corresponds to the
duplication of a variable, whereas weakening corresponds to the erasure.

The need to control the use of variables in a λ-term can be traced back to λI-
calculus, proposed by Church in [12]. In this calculus, contrary to the standard
λ-calculus (Church denoted it by λK) the variables bound by λ-abstraction should
occur in the body of the abstraction at least once. Therefore, a void lambda ab-
straction is not acceptable, so in order to have λx.M the variable x has to occur in
M. But if x is not used in M, one can perform an erasure (a.k.a weakening) by
using the expression x⊙M, which implies that the term M does not contain the
variable x. Similarly, a variable should not occur twice. If nevertheless, we want
to have two positions for the same variable, we have to explicitly duplicate it. This
could be done by using the operator x <x1

x2
M, called duplication (a.k.a contraction)

which creates two fresh variables x1 and x2. Following these ideas, van Oostrom
proposed to extend the λ-calculus [72], and Kesner and Lengrand [45] proposed to
extend the λx-calculus with operators that control the use of variables (resources).

Our work was inspired by Kesner and Lengrand’s work on the λlxr-calculus
[45], as well as by Lescanne and Žunić’s work on the calculi with explicit re-
source control in the classical setting [52]. The result is the λGtz

r -calculus, which
introduces resource control into the intuitionistic sequent setting. This calculus
represents an extension of the λGtz-calculus with explicit operators for performing
duplication and erasure on both syntactic categories of λGtz-expressions, namely
terms and contexts. The two main differences between the λlxr-calculus and the
λGtz
r -calculus are in the corresponding logical framework and in the treatment of

substitution. The simply typed version of the λlxr-calculus corresponds to the in-
tuitionistic fragment of Linear Logic proof-nets, while the λGtz

r -calculus directly
extends the λGtz-calculus, hence it corresponds to the intuitionistic sequent calcu-
lus with explicit structural rules. The substitution in the λGtz

r -calculus is performed
implicitly, i.e. as a meta-operator, since the goal of the extension was to enable the
explicit resource control.

Just as in the case of the λGtz-calculus, in order to fulfill our next goal, namely
the characterisation of all strongly normalising λGtz

r -expressions, we introduced
intersection types to the λGtz

r -calculus. Intersection naturally works together with
contraction, because it enables the contraction of two variables typed with, say
types α and β, into one variable typed with both α and β, i.e. α∩β. Our intersection
is idempotent, so if both contracted variables are of the same type, the resulting
variable is of that type, as well. On the other hand, since weakening introduces
a new variable, which is not significant for the rest of the computation, a specific
type constant is assigned to that variable to mark its irrelevance. Therefore, in

5

typed λGtz
r -calculus, we distinguish three types of variables according to their role

in an expression. The novelty of the proposed system with respect to the λGtz-
calculus with intersection types is the treatment of bases, since resource-awareness
demands context-splitting style of the rules. However, nice properties of the system
λGtz∩, like syntax-directness, are preserved.

To the best of our knowledge, this is the first work that combines idempo-
tent intersection types and resource aware λ-calculi. A different approach to the
λ-calculus with resource control was investigated by Boudol in [9]. Instead of
introducing the explicit resource operators, Boudol proposed a non-deterministic
calculus with a generalised notion of application. In his work, a function is ap-
plied to a bag, a structure that contains variables and their multiplicities, i.e. values
representing the maximum possible number of the variable usage. This approach
was motivated mostly by the development of process calculi. Non-idempotent in-
tersection types were introduced to this calculus by Pagani and Ronchi della Rocca
in [55], and used for the characterisation of solvable terms, the ones that can inter-
act with an environment.

The third and final part of the research was unification and generalisation of
all the obtained results. This goal was achieved by introducing the resource con-
trol cube, a system consisting of eight formal calculi. The calculi of the resource
control cube differ in logical framework (natural deduction/sequent calculus) and
in the treatment of resource control (implicit/explicit). In that way, both calculi
studied in this thesis - λGtz and λGtz

r are integrated into one framework, since they
represent two vertices of the so-called “LJ base” of the cube. Remaining vertices of
the sequent base are two new calculi with partial resource control, meaning that one
of the resource control operators (contraction or weakening) is explicit, while the
other one is implicit. The other base of the resource control cube, the so-called “ND
base”, consists of four natural deduction counterpart calculi, proposed by Kesner
and Renaud in [46]. Kesner and Renaud introduced the prismoid of resources, a
system of eight calculi obtained by combining explicit/implicit treatment of substi-
tution, contraction and weakening, thus generalising the λlxr-calculus. Although
their work on prismoid of resources was the major motivation for creating the re-
source control cube, the focus of the later system is moved to the sequent-style
calculi, and exactly on the control of duplication and erasure of resources, leaving
the substitution implicit. Moreover, the intersection type assignment system, given
in a uniform way for each basis, is a novel result for all eight calculi of the cube,
since only simple types were introduced to the prismoid of resources. This com-
pletes and concludes the description of the research on the subject of the thesis -
intersection types and resource control in the intuitionistic sequent formal calculi.

6 CHAPTER 1. INTRODUCTION

Structure of the thesis
The thesis is divided into seven chapters.

The first three chapters are introductory: Chapter 1 is an introduction, Chap-
ter 2 revisits Gentzen’s sequent calculus systems for the implicative fragment of
intuitionistic logic, whereas the most relevant term calculi for the main part of the
thesis are briefly revisited in Chapter 3.

The central part of the thesis, containing its contributions, is presented in Chap-
ters 4, 5 and 6.

Chapter 4 is devoted to the λGtz-calculus.
Section 4.1 presents the untyped λGtz: its syntax, free variables and operational
semantics, including reduction rules and meta-operators. It ends with two examples
of computation in the λGtz-calculus where the lack of confluence is showed and
discussed.

Types, both simple and intersection, are introduced to the λGtz-calculus in Sec-
tion 4.2. Arrow types are defined and two kinds of type assignments are given.
Particular focus is on the connection of simple types with the rules of LJ sequent
calculus. The Curry-Howard correspondence between λGtz → and LJ is estab-
lished. The section ends with an example of a typing and the motivation for the in-
troduction of intersection types. The intersection type assignment system λGtz∩ is
the first original contribution of the thesis. Intersection types are defined, followed
by the definitions of a pre-order and equivalence relations on the set of types. The
rules of the system λGtz∩ are introduced and some basic properties of the system
proved: an admissible rule for the left intersection introduction, basis expansion,
bases intersection, generation lemma, substitution lemma, append lemma and fi-
nally preservation of types under reductions (Subject reduction). An example of
typing with the rules of the system λGtz∩ is given. The system λGtz∩ is further
motivated and explained by means of an analysis of two unsuccessful attempts of
introducing intersection types into the λGtz-calculus.

The most important feature of the intersection type systems, i.e. the character-
isation of strong normalisation, is proved for the system λGtz∩ in Section 4.3. We
prove that all expressions typeable in the system λGtz∩ are strongly normalising
with respect to the reduction rules of λGtz-calculus. The proof relies on the embed-
ding of λGtz-expressions into λ-terms which preserves types and the result of strong
normalisation for λ-terms typeable with the intersection system D. The proof that
all strongly normalisable λGtz-expressions are typeable in the λGtz∩ uses two aux-
iliary propositions: (i) normal forms are typeable; (ii) types are preserved during
expansion (provided that the expansion happened on the surface of an expression,
what we call “head expansion” or “expansion at the root position”).

7

The last section of this chapter, Section 4.4, brings attention back to the un-
typed λGtz-calculus and proposes a way to fix the problem of non-confluence, by
restricting one of the two reduction rules forming the critical pair. In that way, two
sub-calculi are obtained, namely λGtz

V and λGtz
L and the proof of the Church-Rosser

property which uses Likavec’s modification of Takahashi’s parallel reductions tech-
nique is given.

The contributions presented in the Chapter 4 are obtained in collaboration
with José Espírito Santo, Silvia Ghilezan and Silvia Likavec, and are published
in [24, 31, 41, 42, 25].

The main subject of Chapter 5 is the λGtz
r -calculus, an intuitionistic sequent

term calculus with contraction (duplication) and weakening (erasure) operators.
Section 5.1 introduces untyped λGtz

r -calculus. Pre-expressions of the λGtz
r -calculus

are defined by extending the syntax of the λGtz
V -calculus with explicit operators that

perform contraction and weakening in both terms and contexts. λGtz
r -expressions

are defined by the inference rules, as a subset of well-formed pre-expressions (we
say that a pre-expression is well-formed if in every sub-expression every free vari-
able occurs exactly once, and every binder binds exactly one occurrence of a free
variable). The operational semantics is then introduced, including four groups of
reduction rules, equivalencies, and extended notions of two meta-operators from
λGtz-calculus. A notion of parallel substitution is also defined, which is enabled by
the clear distribution of free variables in a λGtz

r -expression. At the end of this sec-
tion, we prove that equivalencies and reductions preserve the set of free variables
of an expression.

Section 5.2 is devoted to the simply typed λGtz
r -calculus. The system λGtz

r → is
obtained by extending the system λGtz→ with four new rules for assigning types
to the newly introduced resource operators. The rules of the λGtz

r → are presented
in the context-splitting (multiplicative) style, unlike the context-sharing (additive)
style of λGtz→, due to the explicit structural rules. Some basic features of the pro-
posed system, such as domain correspondence, subject reduction and equivalence,
are stated, and the strong normalisation of the system λGtz

r → is proved. The proof
is based on the interpretation of the λGtz

r -calculus into the λlxr-calculus of Kesner
and Lengrand, which is proved to be strongly normalising.

In Section 5.3 we turn our attention to intersection types for resource control
sequent calculus. We define a restricted form of intersection types, namely strict
types, that will be assigned to λGtz

r -expressions, and a specific type constant ⊤
(neutral element for intersection) which will be used to type variables introduced
by the weakening operator. We propose λGtz

r ∩, syntax-directed and presented in
context-splitting style system that assigns strict types to λGtz

r -expressions. We give

8 CHAPTER 1. INTRODUCTION

a detailed analysis of the type assignment rules, with particular attention to three
different roles of variables in λGtz

r -calculus and their corresponding types. We
prove some basic features of the system λGtz

r ∩: domain correspondence, genera-
tion lemma, substitution and append lemma for typing meta-operators and finally
preservation of types during computation.

The most important result regarding the system λGtz
r ∩ - a theorem stating that

a λGtz
r -term is strongly normalising if and only if it is typeable in the system λGtz

r ∩
is further proved. First, we prove that all typeable terms are terminating. The proof
is based on an interpretation of the λGtz

r -calculus into the λr-calculus (which is
proved to be strongly normalising if typeable with intersection types). Then, we
prove the opposite direction of the SN characterisation theorem, i.e. we show that
all strongly normalising terms are typeable in the system λGtz

r ∩. Here, we follow
the procedure already used for accomplishing the same task in the λGtz-calculus.

The calculus presented in Chapter 5 and corresponding type systems, both with
simple and intersection types, including all its properties, represent the original
results of the thesis. Contributions are the result of the joint work with Pierre
Lescanne, Silvia Ghilezan, Silvia Likavec and Dragiša Žunić and are published
in [35, 32].

In Chapter 6, we generalise the systems proposed in the previous two chapters,
by proposing the resource control cube, a system consisting of eight intuitionistic
lambda calculi with either implicit or explicit control of resources and either nat-
ural deduction or sequent calculus. Two sides with different underlying logics are
referred to as ND-base and LJ-base of the cube. Within each base, we consider
four λR (respectively λGtz

R), where R ⊆ {c,w} and c denotes explicit contraction
whereas w denotes explicit weakening. The operator which is not denoted by index
in the name of the calculi is assumed to be implicit in it.

In Section 6.1 we present the untyped cube - its syntax and operational se-
mantics. We start by defining the notions of pre-terms (pre-expressions) and free
variables, followed by definition of terms (expressions). We move then to the op-
erational semantics: reduction and equivalence rules and the definition of implicit
substitution. Finally, by instantiating the set R we specify each of the eight calculi
of the cube.

Section 6.2 revisits and summarizes basic type assignment systems with simple
types, that are already known for the most of the calculi of the resource control
cube (for all but the new calculi λGtz

c and λGtz
w). Systems of each base, λR → and

λGtz
R →, are presented in the uniform way.

In Section 6.3, we introduce intersection type assignment systems, λR ∩ and
λGtz

R ∩. These systems are based on the system λGtz
r ∩, introduced in Subsection

9

5.2.2, which is incorporated here as the system λGtz
cw ∩. All systems are syntax-

directed and assign strict types to resource control expressions. We conclude this
section with examples of type assignments in all eight systems with intersection
types.

All three sections of this chapter are divided into two subsections - one dealing
with the natural deduction part of the resource control cube, and other dealing with
the cube’s sequent side.

Finally, in Chapter 7 we recapitulate the work done in the previous chapters
with the emphasize on the thesis’ contributions, discuss possible fields of applica-
tion as well as possible directions for future work and conclude.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Sequent calculus

The sequent calculus has been introduced by Gerhard Gentzen [29] as a formalism
more suitable for the proof search than natural deduction. Gentzen introduced the
sequent calculi for both intuitionistic and classical logic, denoted by LJ and LK,
respectively. We will now recall some basic concepts of the sequent calculus LJ,
the system for intuitionistic logic.

The central notion in the sequent calculus is that of a sequent. A sequent in LK
is a formal expression of the form

Γ ⊢ ∆

where Γ and ∆ are the sets (or multisets or lists) of formulae, called contexts. The
formulae on the left hand side of the turnstyle are called antecedents and the ones
on the right-hand side of the turnstyle are called succedents. The LJ system is the
restriction of the LK, in that succedent can be only one formula. The intuitionistic
sequents are therefore written in the form

A1,A2, ...,An ⊢ B, n≥ 0

where Ai, i ∈ {1,2, ...,n} and B are logical formulae. The formulae in the general
case belong to the first-order predicate logic, but we will here focus only on the im-
plicative fragment of the propositional intuitionistic logic. Therefore, the formulae
are made of atomic formulae p belonging to a denumerable set of letters and the
binary implication operator→:

A,B ::= p | A→ B.

Inference rules consist of sequents forming premises (above the horizontal line)
and a conclusion (below the line). There can be zero, one, or two premises and

11

12 CHAPTER 2. SEQUENT CALCULUS

there is always a single conclusion. There are three kinds of inference rules: log-
ical, structural and a cut-rule. Logical rules introduce logical connectives and
quantifiers to formulae, structural rules perform context transformation and the
cut-rule is a particular rule that makes proofs simpler. We also distinguish left
and right rules, depending on the side they act on in the concluding sequent. An
example of a logical inference rule is arrow introduction on the right:

Γ,A ⊢ B
Γ ⊢ A→ B

(R→)

It has a single premise and a single conclusion. It introduces the formula A→ B
on the right-hand side of the conclusion, and this formula is called the principal
formula of that inference rule. Formulae that are shown explicitly in the premise,
namely A and B, are called active formulae and they are involved in forming the
principal formula. The other formulae in the context are called side formulae.

It is possible to define many variants of Gentzen sequent systems. The basic
Gentzen systems for classical and intuitionistic logic denoted as G1, G2 and G3 are
formalized in Kleene [48] and later revisited in Troelstra and Schwichtenberg [69].
Briefly, the essential difference between G1 and G3 is the presence/absence of
the explicit structural rules. The distinguishing point in the case of G2 is the use
of the so-called mix-rule instead of the more common cut-rule. There are also
sequent systems in which some structural rules are forbidden. They define various
substructural logics, which are out of the scope of this thesis.

Originally, Gentzen presented a two-sided variant with explicitly given struc-
tural rules, namely weakening, contraction and exchange. The explicit exchange
rule requires the contexts to be treated as lists. Structural rules can be also treated
implicitly (or hidden) by reformulating the other rules in the system and changing
the treatment of contexts. For example, if we wish to hide the exchange rule while
keeping other structural rules explicit, then the contexts should be treated as mul-
tisets. And if we treat contexts as sets, all structural rules become implicit in the
obtained system.

We will present the implicative fragments of intuitionistic sequent systems G1
and G3, since they represent the logical framework of the formal calculi elaborated
in this thesis.

Figure 2.1 presents the system G1. Symbols A,B,C are used to denote formu-
lae and Γ,Γ′ denote contexts, which are in this case lists of formulae. Structural
rules of weakening, contraction and exchange are explicitly given. All structural
rules act only on the left-hand side of the sequents, due to the intuitionistic setting
(while the classical system also contains right-hand side counterparts of the struc-
tural rules). The axiom (Ax) does not involve a premise. Inference rules with two

13

A ⊢ A
(Ax)

Γ,A ⊢ B
Γ ⊢ A→ B

(R→)

Γ ⊢ A Γ′,B ⊢C
Γ,Γ′,A→ B ⊢C

(L→)

Γ ⊢ A Γ′,A ⊢ B
Γ,Γ′ ⊢ B

(Cut)

Γ ⊢ B
Γ,A ⊢ B

(Weakening)

Γ,A,A ⊢ B
Γ,A ⊢ B

(Contraction)

Γ,A,B,Γ′ ⊢C
Γ,B,A,Γ′ ⊢C

(Exchange)

Figure 2.1: System G1

premises are given in the context-splitting (i.e. multiplicative) style, where Γ,Γ′
represents a concatenated list made of the lists Γ and Γ′.

In the rest of the thesis, when speaking about the sequent calculus with ex-
plicit structural rules, we will use the modification of the system G1, in which the
(Exchange) rule is incorporated into other inference rules by treating the contexts
as multisets of formulae, instead of as lists of formulae. In that setting, Γ,Γ′ will
represent the multi-union of contexts Γ and Γ′.

Figure 2.2 presents the sequent system G3, obtained from G1 by absorbing all
structural rules into the remaining rules. Structural rules are hidden in the form
of the logical rules and cut-rule, and thus performed automatically, without the
possibility to control them. In this system, contexts are treated as finite sets of
formulae. Inference rules with two premises are given in the context-sharing (i.e.
additive) style. The definition of the axiom rule involves a context, thus allowing
arbitrary formulae to be introduced at that level, i.e. weakening rule is hidden in
the form of the axiom. In the rest of the thesis, when speaking about the sequent
calculus with implicit structural rules, we will use the G3 system.

14 CHAPTER 2. SEQUENT CALCULUS

Γ,A ⊢ A
(Ax)

Γ,A ⊢ B
Γ ⊢ A→ B

(R→)

Γ ⊢ A Γ,B ⊢C
Γ,A→ B ⊢C

(L→)

Γ ⊢ A Γ,A ⊢ B
Γ ⊢ B

(Cut)

Figure 2.2: System G3

Gentzen proved that the sequent calculus satisfies the cut-elimination theorem,
which states that any sequent provable using the cut-rule, can be proved without the
use of this rule. The cut-elimination theorem, also known as Hauptsatz, is the cen-
tral result establishing the significance of the sequent calculus1. Moreover, the cut-
free proofs in the sequent calculus satisfy the subformula property: the premises of
the inference rules contain only subformulas of their respective conclusions.

Due to the cut-elimination theorem, the modification of the G3 system without
(Cut) rule is also valid, and usually denoted by LJc f .

Γ,A ⊢ A
(Ax)

Γ,A ⊢ B
Γ ⊢ A→ B

(R→)

Γ ⊢ A Γ,B ⊢C
Γ,A→ B ⊢C

(L→)

Figure 2.3: System LJc f

1A short and simple proof of Gentzen’s Hauptsatz theorem, obtained via a variant of the simply
typed λ-calculus, is given by Barendregt and Ghilezan in [7].

Chapter 3

Related term calculi

In this chapter, we briefly recall basic notions of four intuitionistic term calculi
that are the most relevant for the calculi investigated in this thesis: λ-calculus,
λ̄-calculus, λlxr-calculus and λr-calculus.

The inevitable starting point for any research in the area of computational in-
terpretations of logics is of course the λ-calculus. Since our interest is directed
towards intersection types and sequent calculus, we present two type assignment
systems for the λ-calculus - the system D, proposed by Krivine in [49] and the
system λLJ, proposed by Barendregt and Ghilezan in [7].

The following calculus, probably of the greatest relevance for the development
of computational interpretations of LJ, is Herbelin’s λ̄-calculus, proposed in [38],
the first intuitionistic term calculus that caught the essence of the sequent-style
computation, and therefore served as an inspiration for the design of all other intu-
itionistic sequent term calculi, the λGtz-calculus being one of them.

In the part of the research that explicitly treats operators of duplication and era-
sure of variables (the so-called resource control) our work was mostly inspired by
the λlxr-calculus of Kesner and Lengrand [45], where a simply typed calculus with
explicit substitution, weakening and contraction was proposed and its properties
investigated.

Finally, some technical results regarding the strong normalisation of the sys-
tem λGtz

r ∩ (Section 5.3) rely on the analogous results obtained for λr∩ - the λr-
calculus with intersection types. This system, proposed by Ghilezan et al. in [32],
was initially proposed as an auxiliary system with the goal of creating a simpler
resource control setting in which λGtz

r ∩ could be translated.

This chapter is divided into four sections, each of them briefly recalling one of
the previously mentioned calculi.

15

16 CHAPTER 3. RELATED TERM CALCULI

3.1 The λ-calculus

The abstract syntax of the λ-calculus is given by:

Terms M ::= x |λx.M |MM

A λ-term, denoted by M,N,P,M1, ..., is either a variable from a denumerable
set of term variables T = {x,y,z, ...,x1, ...x′, ...}, an abstraction λx.M, or an appli-
cation MN. The set of all λ-terms is denoted by Λ.

In the term λx.M the variable x is bound. The scope of the binder extends to the
right as much as possible. Free variables of a term are the ones that are not bound
in the term. We denote the set of free variables of a term M by Fv(M).

Definition 3.1 The set of free variables of a term M is inductively defined as fol-
lows:

Fv(x) = {x}
Fv(λx.M) = Fv(M)\{x};
Fv(MN) = Fv(M)∪Fv(N).

Definition 3.2 The substitution of a term for a free variable in a λ-term is induc-
tively defined as follows:

x[N/x] = N;
y[N/x] = y;
(MP)[N/x] = M[N/x]P[N/x];
(λx.M)[N/x] = λx.M;
(λy.M)[N/x] = λy.(M[N/x]), if y /∈ Fv(N);
(λy.M)[N/x] = (λy′.M[y′/y])[N/x], if y ∈ Fv(N), and y′ /∈ Fv(N).

When writing λ-terms, we assume the following associativity conventions:

λx1x2...xn.M = λx1.(λx2.(...(λxn.M)...));

M1M2M3...Mn = (...((M1M2)M3)...Mn)

We also assume that a variable cannot be both free and bound in the same term,
the so called Barendregt’s convention, and thus, when necessary, we perform the
renaming of bound variables which is known as α-conversion:

λx.M ↔α λy.M[y/x] if y /∈ Fv(M).

The basic computational step in the λ-calculus is β-reduction:

(λx.M)N →β M[N/x]

3.1. THE λ-CALCULUS 17

Definition 3.3 (i) A term of the form (λx.M)N is called a β-redex, and the term
of the form M[N/x] is its contractum.

(ii) A term is in β-normal form if it does not have a β-redex as a subterm.

(iii) A λ-term M is strongly normalising, if all reduction sequences starting from
M terminate. The set of all strongly normalising λ-terms is denoted by SN .

The characterisation of the set SN was one of the key problems of theoretical
computer science, because only computing with strongly normalising terms would
ensure the termination of a program. A solution to this problem was found in the
lambda calculus with intersection types.

The system D

The lambda calculus with simple types was introduced already by Church [11]. It is
known that if a λ-term is typeable with simple types, then it is strongly normalising,
but the converse of this statement turned to be false. As the matter of fact, there are
already normal forms that cannot be typed in the simply typed lambda calculus. A
typical example is the term λx.xx.

Thus, the solution to the problem of describing the set of strongly normalising
lambda terms by means of typeability was found in a type system capable of as-
signing types to more terms than the system with simple types could. The system,
sometimes referred to as Torino system, was proposed independently by Coppo
and Dezani [13], Sallé [63] and Pottinger [57]. The basic idea is that a term could
have more than one type assigned to it, and in that case an intersection of these
types is also a type assigned to the term. That simple and natural idea turned out to
be successful in overcoming some limitations of the simple type discipline.

Here we present only one among many versions of type systems for the lambda
calculi with intersection types, chosen because of its usage in Section 4.2.2.

Definition 3.4 The syntax of types in the system D is defined as follows:

α ::= p | α→ α | α∩α

where p ranges over a denumerable set of type atoms.

Types are denoted by α,β,γ,α1, ...
1

1We understand that this choice of names could cause clashes with reduction rule names, but we
assume that the right meaning will always be clear from the context.

18 CHAPTER 3. RELATED TERM CALCULI

Definition 3.5

(i) A basic type assignment is an expression of the form x : α, where x is a term
variable and α is a type.

(ii) A basis (or a context) Γ is a set {x1 : α1, . . . ,xn : αn} of basic type assign-
ments, where all term variables are different.

(iii) A domain of the basis Γ is the set Dom(Γ) = {x1, . . . ,xn}.

(iv) A basis extension Γ,x : α denotes the set Γ∪{x : α}, where x ̸∈ Dom(Γ).

(v) A type assignment is an expression Γ ⊢M : α, denoting that a type α can be
assigned to a term M in a context Γ.

The type assignment system for the λ-calculus with intersection types, named
D , is presented in Figure 3.1. It is obtained from the system with simple types by
adding the rules for introduction (∩I) and elimination (∩E) of intersection.

Γ,x : α ⊢ x : α (Ax)

Γ,x : α ⊢M : β
Γ ⊢ λx.M : α→ β

(→ I)
Γ ⊢M : α→ β Γ ⊢ N : α

Γ ⊢MN : β
(→ E)

Γ ⊢M : α Γ ⊢M : β
Γ ⊢M : α∩β

(∩I) Γ ⊢M : α1∩α2

Γ ⊢M : α1
(∩E)

Figure 3.1: System D: intersection types for the λ-calculus

The intersection introduced here is assumed to be commutative, associative and
idempotent. Therefore, the rule (∩E) can be applied as follows:

If Γ ⊢M : α1∩α2...∩αn, then Γ ⊢M : αi, for any i ∈ {1, ...,n}.

Lemma 3.6 The following two rules are admissible in the system D:

Γ ⊢M : α Γ⊆ Γ′

Γ′ ⊢M : α
(Weak)

Γ ⊢ N : α Γ,x : α ⊢M : β
Γ ⊢M[N/x] : β

(Subst)

The most important property of the system D is formulated in the following
proposition, and proved in [60, 49, 30].

Theorem 3.7 ([60]) A λ-term M is typeable in the system D if and only if M ∈ SN .

3.1. THE λ-CALCULUS 19

The system λLJ

The very first attempts of connecting a term calculus and the system LJ consisted
of keeping the original syntax and reduction rules of the λ-calculus and expressing
the sequent nature of the term calculus by modifying only the type assignment
rules. This approach was used by Barendregt and Ghilezan [7]. In their paper, they
offered a simple, short and elegant proof of the Gentzen’s Hauptsatz theorem.

Type assignment rules of the system λLJ are given in Figure 3.2.

Γ,x : α ⊢ x : α (Ax)

Γ ⊢ N : α Γ,x : β ⊢M : γ
Γ,y : α→ β ⊢M[yN/x] : γ

(→le f t)

Γ,x : α ⊢M : β
Γ ⊢ λx.M : α→ β

(→right)

Γ ⊢ N : α Γ,x : α ⊢M : β
Γ ⊢M[N/x] : β

(cut)

Figure 3.2: λLJ: simply typed λ-calculus

The subsystem of the λLJ from which the rule (cut) is excluded is denoted by
λLJc f .

Although the construction of the typing rules of the λLJ-calculus was done in
complete accordance with Gentzen’s sequent calculus, this calculus does not ex-
hibit the Curry-Howard correspondence with the system LJ. The underlying prob-
lem will be illustrated by the following example.

Example 3.8 ([7]) Consider the term λx.yz. The type γ→ β can be assigned to it
in the context z : α, y : α→ β. In the standard (= natural deduction style) simple
type assignment system this type can be derived in the following way:

(Ax)
x : γ, y : α→ β, z : α ⊢ y : α→ β

(Ax)
x : γ, y : α→ β, z : α ⊢ z : α

(→ E)
x : γ, y : α→ β, z : α ⊢ yz : β

(→ I)
y : α→ β, z : α ⊢ λx.yz : γ→ β.

while in the system λLJc f we can do the same assignment in two different ways:

20 CHAPTER 3. RELATED TERM CALCULI

I way:

(Ax)
x : γ, z : α ⊢ z : α

(Ax)
x : γ, z : α, u : β ⊢ u : β

(→le f t)
x : γ, z : α, y : α→ β ⊢ yz : β

(→right)
y : α→ β, z : α ⊢ λx.yz : γ→ β.

II way:

(Ax)
z : α ⊢ z : α

(Ax)
x : γ, z : α, u : β ⊢ u : β

(→right)
z : α, u : β ⊢ λx.u : γ→ β

(→le f t)
y : α→ β, z : α ⊢ λx.yz : γ→ β.

These two derivations correspond to two ways of building the term

u 7→ yz 7→ λx.yz,
u 7→ λx.u 7→ λx.yz.

From the previous example we can observe that the correspondence is not one-
to-one, since more derivations correspond to one λ-term.

3.2 The λ̄-calculus

The first solution to the problem presented in the previous subsection was proposed
by Hugo Herbelin, in his 1995 paper [38]. He solved the problem by considering
the restricted sequent calculus LJT , whose cut-free fragment LJT c f is in one-to-
one correspondence with normal forms of the λ-calculus. The construction of the
system was inspired by the sequent system LKT , proposed for the classical logic
by Danos, Joinet and Schellinx in [15]. The key point of these restricted systems
is the introduction of the so-called stoup - a special place on the left-hand side of
the sequent, that may contain a formula. If the stoup is filled in, the formula in
it is selected, meaning that it behaves differently than the others. Therefore, we
distinguish two sorts of sequents in LJT :

• sequents with empty stoup - (Γ; ⊢ A);

• sequents with filled stoup - (Γ;B ⊢ A).

The rules of LJT system are presented in Figure 3.3. This system contains
explicit rule for contraction and two cut-rules, which differ in the position of the
cut formula. If the cut formula is in the stoup, we use H-cut (head-cut), and if

3.2. THE λ̄-CALCULUS 21

the cut formula is outside the stoup, M-cut (mid-cut) is used. In the cut-rules, the
symbol Π in the stoup denotes that the stoup could be both empty or filled. The
first four rules constitute the cut-free fragment of the system, called LJT c f .

Γ;A ⊢ A
(axiom)

Γ,A;A ⊢ B
Γ,A; ⊢ B

(cont)

Γ; ⊢ A Γ;B ⊢C
Γ;A→ B ⊢C

(→le f t)
Γ,A; ⊢ B

Γ; ⊢ A→ B
(→right)

Γ;Π ⊢ A Γ;A ⊢ B
Γ;Π ⊢ B

(H− cut)
Γ; ⊢ A Γ,A;Π ⊢ B

Γ;Π ⊢ B
(M− cut)

Figure 3.3: The sequent system LJT

The type assignment system λLJT c f that corresponds to the system LJT c f is
presented in Figure 3.4.

Γ;x : α ⊢ x : α (axiom)
Γ,x : α;x : α ⊢M : β

Γ,x : α; ⊢M : β
(cont)

Γ; ⊢ N : α Γ;x : β ⊢M : γ
Γ;y : α→ β ⊢M[yN/x] : γ

(→le f t)
Γ,x : α; ⊢M : β

Γ; ⊢ λx.M : α→ β
(→right)

Figure 3.4: λLJT c f

This system is in one-to-one correspondence with normal forms of the λ-calculus,
which will be illustrated by following example.

Example 3.9 In the system λLJT c f the only possible way of typing the λ-term
λx.yz in the context Γ = {x : γ,y : α→ β,z : α} is the following:

(axiom)
x : γ,y : α→ β,z : α;z : α ⊢ z : α

(cont)
x : γ,y : α→ β,z : α; ⊢ z : α

(axiom)
x : γ,y : α→ β,z : α;u : β ⊢ u : β

(→le f t)
x : γ,y : α→ β,z : α;y : α→ β ⊢ yz : β

(cont)
x : γ,y : α→ β,z : α; ⊢ yz : β

(→right)
y : α→ β,z : α; ⊢ λx.yz : γ→ β.

22 CHAPTER 3. RELATED TERM CALCULI

Notice that yz appeared in the (→le f t) rule as the result of the substitution u[yz/u].

The other type derivation from Example 3.8 is no longer possible, because one
cannot apply the rule (→right) unless the stoup is empty, and when empty, the stoup
can be refilled only by using the axiom, which, on the other hand, cannot be applied
at that point. Therefore, (→le f t) cannot follow after (→right) and the problem of
many-to-one correspondence that existed in the λLJ calculus is fixed. There is a
unique and clear way to build a term - one first has to build the applicative part of
a term, and then to add abstractions.

However, there is another cause of mismatch between the λ-calculus and the
sequent calculus, which appears in the presence of the cut-rule. Computationally,
cut can be interpreted as substitution operator (as already seen in Figure 3.2), thus
Herbelin chose to consider λ-calculus with explicit substitution, introduced in [8].
The explicit substitution is denoted by M⟨x = N⟩, read as “replace all free occur-
rences of x in M by N”2, and propagated in the term by reductions.

In the λ-calculus (either with implicit or explicit substitution) applications are
left associated while building of the applicative part is done in the opposite direc-
tion. This mismatch becomes even more transparent during the process of com-
putation. According to the third level of Curry-Howard correspondence, a proof
simplification in logic is supposed to correspond to the term reduction in calcu-
lus. Applied to this case, cut-elimination should correspond to explicit substitution
propagation. But as will be illustrated by the following example, this does not
hold. In the following example, simple types are assigned to the λ-terms with ex-
plicit substitution using a system obtained from the system λLJT c f , by replacing
implicit substitution by explicit one in the rule (→le f t) and adding the following
cut-rule:

Γ; ⊢ N : α Γ,x : α;Π ⊢M : β
Γ;Π ⊢M⟨x = N⟩ : β

(M− cut)

Example 3.10 ([38]) The following two proofs represent two consequent steps of
the cut-elimination, therefore, they should assign the same type to two terms (the
first one before and the second one after the substitution propagation).
The abbreviation γ≡ α2→ ...→ αn→ β is used.
Proof I:

Γ; ⊢ N : α

Γ,x : α; ⊢M1 : α1 Γ,x : α;z : γ ⊢ (zM2...Mn) : β
(→le f t)

Γ,x : α;y : α1→ γ ⊢ (yM1M2...Mn) : β
(M− cut)

Γ;y : α1→ γ ⊢ (yM1M2...Mn)⟨x = N⟩ : β,

2Of course, one has to make sure that the free variables in N do not get bound in M after substi-
tution, which is easily regulated using the Barendregt’s convention.

3.2. THE λ̄-CALCULUS 23

Proof II:

Γ; ⊢ N : α Γ,x : α; ⊢M1 : α1
(M− cut)

Γ; ⊢M1⟨x = N⟩ : α1

Γ; ⊢ N : α Γ,x : α;z : γ ⊢ (zM2...Mn) : β
(M− cut)

Γ;z : γ ⊢ (zM2...Mn)⟨x = N⟩ : β
(→le f t)

Γ;y : α1→ γ ⊢ (yM1⟨x = N⟩M2...Mn)⟨x = N⟩ : β.

The resulting term in the second proof is not what we expect to obtain by substi-
tution propagation. Instead, we would like to obtain (yM1...Mn−1)⟨x = N⟩Mn⟨x =
N⟩). Therefore, the processes of cut-elimination and substitution propagation are
not harmonized.

Herbelin fixed this mismatch by introducing a new structure - a list of argu-
ments, which exhibits right associativity. In this way, he obtained a calculus in
which the applicative expression is no longer of the form ((yM1)...Mn), but of the
form y[M1; ...;Mn] which is in accordance with the sequent calculus derivations.

As a result of implementing these ideas, the first formal calculus corresponding
to some intuitionistic sequent calculus is proposed, which showed that it is possi-
ble to extend the Curry-Howard paradigm also to the third formal logical system,
besides Hilbert’s axiomatic system and natural deduction.

The syntax of the λ̄-calculus is given by:

(Terms) t ::= xl |λx.t | tl | t⟨x = t⟩
(Lists) l ::= [] | t :: l | l@l | l⟨x = t⟩

where [] denotes an empty list, t :: l denotes adding a new term into a list and l@l′

denotes concatenation of two lists into one.
Terms are denoted by t,u,v...3 and lists are denoted by l, l′, ... The complex

syntax requires a more complex operational semantics. The reduction rules of the
λ̄ calculus are presented in Figure 3.5.

Reductions eliminate explicit substitution and explicit concatenation, thus nor-
mal forms of the λ̄ calculus are of the form:

tn f ::= xln f |λx.tn f

ln f ::= [] | tn f :: ln f .

Type assignment rules of the simply typed λ̄-calculus, that provide one-to-one
correspondence with the sequent calculus LJT are given in Figure 3.6.

The expression (.l), appearing in rules (Cont), (→L), (CH1), (CH2) and (CM2)
is called an applicative context. It contains a notation dot that saves a place for

3In the rest of the thesis, we will use small letters to denote expressions of the sequent term calculi
and capital letters to denote terms of the natural deduction term calculi.

24 CHAPTER 3. RELATED TERM CALCULI

(βcons) (λx.u)(v :: l) → u⟨x = v⟩l
(βnil) (λx.u)[] → λx.u
(Cvar) (tl)l′ → t(l@l′)
(Ccons) (t :: l)@l′ → t :: (l@l′)
(Cnil) []@l → l
(Syes) (xl)⟨x = v⟩ → vl⟨x = v⟩
(Sno) (yl)⟨x = v⟩ → yl⟨x = v⟩
(Sλ) (λy.u)⟨x = v⟩ → λy.(u⟨x = v⟩)
(Snil) []⟨x = v⟩ → []

(Scons) (u :: l)⟨x = v⟩ → u⟨x = v⟩ :: l⟨x = v⟩.

Figure 3.5: Reduction rules of the λ̄-calculus

eventual term plugging. Formula . : α is called a hole declaration. One can observe
that there are two kinds of sequents according to the content of the stoup: sequents
with empty stoup are used for typing terms, while sequents containing hole decla-
rations are used for typing applicative contexts. The strong normalisation of simply
typed λ̄-calculus is proved in [38].

The λ̄-calculus has been the first extension of the λ-calculus that obtained one-
to-one correspondence with some intuitionistic sequent calculus, therefore it was
an inspiration for other sequent-style lambda calculi, including the λGtz-calculus,
that will be presented in details in Chapter 4.

3.3 The λlxr-calculus

The λlxr-calculus, proposed by Kesner and Lengrand in [45] is an intuitionistic
term calculus with explicit operators for substitution, contraction and weakening.
It was designed to provide a correspondence with the intuitionistic fragment of
linear logic proof-nets, a formalism that gives an insight into the geometry of proof
transformations. More precisely, both the syntax and operational semantics of λlxr
were extracted from the proof-nets’ rules.

The main motivation for introducing operators for controlling duplication and
erasure of terms, besides obtaining a computational interpretation of the MELL 4

proof-nets, was to enable more efficient control of the explicit substitution propa-
gation. For example, if we want to explicitly perform the substitution M⟨x = N⟩,
it is very convenient to have a mechanism that indicates whether x appears free in

4MELL is an abbreviation for the multiplicative exponential fragment of linear logic.

3.3. THE λLXR-CALCULUS 25

(Ax)
Γ; . : α ⊢ (.[]) : α

Γ,x : α; . : α ⊢ (.l) : β
(Cont)

Γ,x : α;⊢ xl : β

Γ,x : α;⊢ t : β
(→R)

Γ;⊢ λx.t : α→ β

Γ;⊢ t : α Γ; . : β ⊢ (.l) : γ
(→L)

Γ; . : α→ β ⊢ (.(t :: l)) : γ

Γ;⊢ t : α Γ; . : α ⊢ (.l) : β
(CH1)

Γ;⊢ tl : β

Γ; . : γ ⊢ (.l) : α Γ; . : α ⊢ (.l′) : β
(CH2)

Γ; . : γ ⊢ (.l@l′) : β

Γ;⊢ t : α Γ,x : α;⊢ u : β
(CM1)

Γ;⊢ u⟨x = t⟩ : β

Γ;⊢ t : α Γ,x : α; . : γ ⊢ (.l) : β
(CM2)

Γ; . : γ ⊢ (.l⟨x = t⟩) : β

Figure 3.6: Simply typed λ̄-calculus

M, or in some subterm of M. Exactly that information is captured by the explicit
weakening (i.e. erasure) operator - an expression Wx(M) denotes that M is weak-
ened by a variable x, meaning that x has not already appeared free in M. So, in an
expression like (Wx(M))⟨x=N⟩, we know that we can stop propagating the substi-
tution into M, and thus the efficiency of the explicit substitution execution has been
significantly improved. Although this connection between explicit weakening and
substitution was already investigated by David and Guillaume and incorporated
into the design of their calculus with labels λws [16], Kesner and Lengrand also
added explicit control of contraction (i.e. duplication) and thus obtained a sound
and complete correspondence with proof-nets.

The abstract syntax of the λlxr-calculus is the following:

Terms t ::= x |λx.t | tt | t⟨x = t⟩ |Wx(t) |C y|z
x (t)

where x ranges over a denumerable set of term variables. Two new constructs are
a weakening Wx(t), which introduces a free variable x, and a contraction C

y|z
x (t),

26 CHAPTER 3. RELATED TERM CALCULI

which binds variables y and z and introduces a free variable x. Terms are denoted
by t,u,v, ...

The notion of linearity of terms is assumed, meaning that only terms satisfying
the following two conditions are considered:

• in every subterm, every variable has at most one free occurrence;

• every binder does bind a free occurrence of a variable.

Formally, linear terms are introduced by a system of inference rules, and it is
showed that each non-linear term can be translated into a linear one.

As a consequence of already mentioned goal (full correspondence with the
MELL proof-nets) the operational semantics consists of two segments:

• reduction relations;

• congruence equations.

Reduction rules for the λlxr-calculus are presented in Figure 3.7. They are di-
vided into three groups: B-reduction, system x and system r. B is the standard
β-reduction with explicit substitution, the system x is in charge of the substitu-
tion propagation, whereas the system r treats the interaction of newly introduced
operators of contraction and weakening with the other term constructors. The op-
erators of weakening and contraction are moving in opposite directions, which are
imported from the proof-nets simplifications: the weakenings are pulled out to the
top level while the contractions are propagated into a term. When two of them
meet, they can either cross or merge. A notation R in the rule Merge denotes a
meta operator of capture-free variable renaming. Free variables Fv(t) are formally
defined in [45].

It is proved that the reduction rules preserve the set of free variables and lin-
earity constraint, and that the system enjoys confluence and the preservation of
β-reduction.

A congruence relation is defined on terms, denoted by ≡. It is the smallest
reflexive, symmetric, transitive and context-closed relation induced by the rules
given in Figure 3.8. It is proved that each congruence rule induces a congruence
class containing finitely many terms. Preservation properties (of free variables and
of linearity of terms) are also proved.

The simple types are introduced into the λlxr-calculus. The simply typed λlxr-
calculus is defined by rules for assigning simple types to λlxr-terms that are given
in Figure 3.9.

The properties concerning the typed λlxr-calculus are: subject reduction and
subject equivalence, preservation of strong normalisation and strong normalisation.

3.3. THE λLXR-CALCULUS 27

B (λx.t)u −→ t⟨x = u⟩

System x
Abs (λy.t)⟨x = u⟩ −→ λy.(t⟨x = u⟩)
App1 (tv)⟨x = u⟩ −→ t⟨x = u⟩v x ∈ Fv(t)
App2 (tv)⟨x = u⟩ −→ tv⟨x = u⟩ x ∈ Fv(u)
Var x⟨x = u⟩ −→ u
Weak1 Wx(t)⟨x = u⟩ −→ WFv(u)(t)
Weak2 Wy(t)⟨x = u⟩ −→ Wy(t⟨x = u⟩) x ̸= y
Cont C y,z

x (t)⟨x = u⟩ −→ C Ψ,ϒ
Fv(u)(t⟨y = u1⟩⟨z = u2⟩)

where Ψ,ϒ are fresh, u1 = R
Fv(u)

Ψ , u2 = R
Fv(u)

ϒ
Comp t⟨y = v⟩⟨x = u⟩ −→ t⟨y = v⟨x = u⟩⟩ x ∈ Fv(v)

System r
WAbs λx.Wy(t) −→ Wy(λx.t) x ̸= y
WApp1 Wy(u)v −→ Wy(uv)
WApp2 uWy(v) −→ Wy(uv)
WSubs t⟨x = Wy(u)⟩ −→ Wy(t⟨x = u⟩)
Merge C y,z

w (Wy(t)) −→ R z
w(t)

Cross C y,z
w (Wx(t)) −→ Wx(C

y,z
w (t)) x ̸= y, x ̸= z

CAbs C y,z
w (λx.t) −→ λx.C y,z

w (t)
CApp1 C y,z

w (tu) −→ C y,z
w (t)u y,z ∈ Fv(t)

CApp2 C y,z
w (tu) −→ t C y,z

w (u) y,z ∈ Fv(u)
CSubs C y,z

w (t⟨x = u⟩) −→ t⟨x = C y,z
w (u)⟩ y,z ∈ Fv(u)

Figure 3.7: Reduction rules for the λlxr-calculus

C x,v
w ((C y,z

x (t))) ≡ C x,y
w (C z,v

x (t))
C y,z

x (t) ≡ C z,y
x (t)

C y′,z′
x′ (C y,z

x (t)) ≡ C y,z
x (C y′,z′

x′ (t)) if x ̸= y′,z′ and x′ ̸= y,z
Wx(Wy(t)) ≡ Wy(Wx(t))
t⟨x = u⟩⟨y = v⟩ ≡ t⟨y = v⟩⟨x = u⟩ if y /∈ Fv(u) and x /∈ Fv(v)
C y,z

w (t)⟨x = u⟩ ≡ C y,z
w (t⟨x = u⟩) if x ̸= w and y,z /∈ Fv(t)

Figure 3.8: Congruence equations for the λlxr-calculus

28 CHAPTER 3. RELATED TERM CALCULI

x : α ⊢ x : α (Axiom)
Γ,x : β ⊢ t : α Γ′ ⊢ v : β

Γ,Γ′ ⊢ t⟨x = v⟩ : α
(Subs)

Γ,x : α ⊢ t : β
Γ ⊢ λx.t : α→ β

(Lambda)
Γ ⊢ t : α→ β Γ′ ⊢ v : α

Γ,Γ′ ⊢ tv : β
(App)

Γ,x : α,y : α ⊢ t : β

Γ,z : α ⊢ C
x|y
z (t) : β

(Cont) Γ ⊢ t : β
Γ,x : α ⊢Wx(t) : β

(Weak)

Figure 3.9: Simply typed λlxr-calculus

The proof of strong normalisation relies on the translation of simply typed λlxr-
terms into MELL proof-nets, which are known to be strongly normalising.

Theorem 3.11 ([45], Strong normalisation) The relation →λlxr is strongly nor-
malising on the set of typed λlxr-terms.

3.4 The λr-calculus

Finally, we briefly present the λr-calculus, an extension of the standard λ-calculus
with explicit weakening and contraction and implicit substitution. The λr calculus
with intersection types was initially proposed by Ghilezan et al. in [32] as an
auxiliary system in which λGtz

r ∩ (the subject of Chapter 5) could be translated
in order to prove the strong normalisation. The λr-calculus is simpler than both
the λlxr-calculus (due to the implicit rather than explicit substitution) and the λGtz

r -
calculus (because it is constructed in a natural deduction style instead of the sequent
calculus one). It operationally corresponds to the λcw-calculus, one of the calculi
of the Kesner and Renaud’s Prismoid of resources [46, 47]. Together with λ, λGtz,
λGtz
r and four other calculi, it constitutes a structure called Resource control cube,

presented in Chapter 6.
This section contains a brief presentation of the system λr∩, resource control

lambda calculus with intersection types, as well as the properties of the system
relevant for the content of Chapter 5. Motivation, detailed explanations and exam-
ples for most of the features of the system coincide with its sequent counterpart
λGtz
r ∩, so they are included in Chapter 5 and therefore omitted here. Propositions

are stated here without proofs, which are given in [33].

3.4. THE λr-CALCULUS 29

Untyped λr

The abstract syntax of λr pre-terms is the following:

Pre-terms t ::= x |λx.t | tt |x⊙ t |x <x1
x2

t

where x ranges over a denumerable set of term variables, λx.t and tt are standard
lambda abstraction and application, x⊙t is a weakening and x<x1

x2
t is a contraction.

The list of free variables of a pre-term t, denoted by Fv[t], is defined as follows
(where l,m denotes appending two lists and l \ x denotes removing all occurrences
of an element x from a list):

Fv[x] = x;
Fv[λx.t] = Fv[t]\ x;
Fv[tu] = Fv[t],Fv[u];
Fv[x⊙ t] = x,Fv[t];
Fv[x <x1

x2
t] = x,((Fv[t]\ x1)\ x2).

The set of free variables of a pre-term t, denoted by Fv(t), is extracted out of the
list Fv[t], by un-ordering the list and by removing the multiple occurrences of each
variable, if any. The set of bound variables of a pre-term t, denoted by Bv(t),
contains all variables that exist in t, but are not free in it.

Now, using the notion of free variables, we can extract the set of λr-terms
(denoted by Λr) out of the set of λr pre-terms. The definition of λr-terms is
given in Figure 3.10. Terms will from now on be denoted by M,N,P,

x ∈ Λr

t ∈ Λr x ∈ Fv(t)
λx.t ∈ Λr

t ∈ Λr u ∈ Λr Fv(t)∩Fv(u) = /0
tu ∈ Λr

t ∈ Λr x /∈ Fv(t)
x⊙ t ∈ Λr

t ∈ Λr x1 ̸= x2 x1,x2 ∈ Fv(t) x /∈ Fv(t)\{x1,x2}
x <x1

x2
t ∈ Λr

Figure 3.10: λr-terms

The operational semantics of the λr-calculus consists of reduction rules given
in Figure 3.11 and equivalencies given in Figure 3.12. Like in the case of the λlxr-

30 CHAPTER 3. RELATED TERM CALCULI

calculus, computation is directed toward propagation of contraction and extraction
of weakening.

(β) (λx.M)N → M[N/x]

(γ1) x <x1
x2
(λy.M) → λy.x <x1

x2
M

(γ2) x <x1
x2
(MN) → (x <x1

x2
M)N, if x1,x2 /∈ Fv(N)

(γ3) x <x1
x2
(MN) → M(x <x1

x2
N), if x1,x2 /∈ Fv(M)

(ω1) λx.(y⊙M) → y⊙ (λx.M), x ̸= y
(ω2) (x⊙M)N → x⊙ (MN)
(ω3) M(x⊙N) → x⊙ (MN)

(γω1) x <x1
x2
(y⊙M) → y⊙ (x <x1

x2
M), y ̸= x1,x2

(γω2) x <x1
x2
(x1⊙M) → M[x/x2]

Figure 3.11: Reduction rules of the λr-calculus

(ε1) x⊙ (y⊙M) ≡ y⊙ (x⊙M)
(ε2) x <x1

x2
M ≡ x <x2

x1
M

(ε3) x <y
z (y <u

v M) ≡ x <y
u (y <z

v M)
(ε4) x <x1

x2
(y <y1

y2 M) ≡ y <y1
y2 (x <

x1
x2

M), x ̸= y1,y2, y ̸= x1,x2

Figure 3.12: Equivalences in the λr-calculus

The inductive definition of the meta operator [/], representing the implicit
substitution of free variables, is given by:

x[N/x] , N
(λy.M)[N/x] , λy.M[N/x], x ̸= y
(MP)[N/x] , M[N/x]P, x ̸∈ Fv(P)
(MP)[N/x] , MP[N/x], x ̸∈ Fv(M)

(y⊙M)[N/x] , y⊙M[N/x], x ̸= y
(x⊙M)[N/x] , Fv(N)⊙M

(y <y1
y2 M)[N/x] , y <y1

y2 M[N/x], x ̸= y
(x <x1

x2
M)[N/x] , Fv[N]<

Fv[N1]
Fv[N2]

M[N1/x1][N2/x2]

By inspecting reductions, equivalencies and substitution definition, one can

3.4. THE λr-CALCULUS 31

observe that an interface preservation of λr-terms is satisfied during computa-
tion, meaning that the the set of free variables does not change (contrary to the
λ-calculus). For that reason, the λr-calculus is said to be a resource aware calcu-
lus.

The system λr∩

In order to obtain a type assignment system flexible enough to capture all strongly
normalising λr-terms, intersection types were introduced into the λr-calculus. As
already said, this system was developed after the intersection type assignment sys-
tem for the λGtz

r -calculus, thus all essential ideas were borrowed from the system
λGtz
r ∩ and are explained in Chapter 5. Here, we provide the reader only with a

minimal content inevitable for stating necessary propositions. Observe that simple
types can be assigned to the λr-terms as in Figure 3.9, without the rule (Subs).

In the system λr∩, presented in Figure 3.13, we assign strict types to λr-
terms. The syntax of strict types and all corresponding notions are defined in Sub-
section 5.3.1.

x : σ ⊢ x : σ (Ax)
Γ,x : α ⊢M : σ

Γ ⊢ λx.M : α→ σ
(→I)

Γ ⊢M : ∩n
i τi→ σ ∆0 ⊢ N : τ0 ∆1 ⊢ N : τ1 ... ∆n ⊢ N : τn

Γ,∆⊤0 ⊓∆1⊓ ...⊓∆n ⊢MN : σ
(→E)

Γ,x : α,y : β ⊢M : σ
Γ,z : α∩β ⊢ z <x

y M : σ
(Cont) Γ ⊢M : σ

Γ,x :⊤ ⊢ x⊙M : σ (Weak)

Figure 3.13: λr∩: λr-calculus with intersection types

Strong normalisation for the presented system is proved in [33], by using an
adaptation of the reducibility method.

Proposition 3.12 ([33], Typeability⇒ SN in λr∩) If Γ⊢M : σ, then M is strongly
normalising, i.e. M ∈ SN .

The following proposition claims the other direction, i.e. the characterisation
of strong normalisation. The proof relies on typeability of normal forms and head
subject expansion.

32 CHAPTER 3. RELATED TERM CALCULI

Proposition 3.13 ([33], SN⇒ Typeability in λr∩) All strongly normalising λr-
terms are typeable in the λr∩ system.

As an immediate consequence of the previous two propositions, one obtains
the characterisation theorem.

Theorem 3.14 ([33]) In the λr-calculus, a term M is strongly normalising if and
only if it is typeable in λr∩.

Apart from the four presented calculi, there are other term calculi that also
involve some kind of resource control. In the classical setting, Lescanne and Žunić
expanded the classical sequent X -calculus of van Bakel et al. [71] and proposed the
∗X -calculus, a calculus that computationally corresponds to the classical sequent
calculus with the explicit structural rules of weakening and contraction [52, 75].
Due to the classical nature of this calculus, its syntax contains both left and right
eraser and duplicator operators. The notation for the resource operators used in the
rest of this thesis (x⊙M for contraction and x <y

z M for contraction), is taken from
the ∗X -calculus.

A different approach to the resource aware lambda calculus, motivated mostly
by the development of the process calculi, was investigated by Boudol in [9]. In-
stead of extending the syntax of the λ-calculus with explicit resource operators,
Boudol proposed a non-deterministic calculus with a generalised notion of appli-
cation. In his work, a function is applied to a structure called a bag, having the form
(Nm1

1 |...|N
mk
k) in which Ni, i = 1, ...,k are resources and mi ∈ N∪{∞}, i = 1, ...,k

are multiplicities, representing the maximum possible number of the resource us-
age. In this framework, the usual application is written as MN∞. A variant of this
calculus was typed with non-idempotent intersection types by Pagani and Ronchi
della Rocca in [55].

Chapter 4

λGtz-calculus

Following Herbelin’s ideas from [38] and trying to generalise his results to the
full sequent calculus, José Espírito Santo and Luis Pinto first proposed the lambda
calculus with generalised multiary application λJm. Later, a modified term calcu-
lus named the λGtz-calculus (pronounced lambda Gentzen calculus) was proposed
by Espírito Santo in [27]. Its simply-typed version provides, in the context of the
implicative intuitionistic logic, the Curry-Howard correspondence for the full se-
quent calculus. This was an improvement with respect to the λ̄-calculus, where
the correspondence was obtained between simply typed λ̄-terms and the restricted
sequent calculus LJT . The main difference between the two calculi, on the syntac-
tical level, is the generalised form of the list from the λ̄-calculus, called a context
in λGtz. Using λGtz notation, lists are of the form t1 :: t2 :: ... :: tn :: x̂.x (corre-
sponding to t1 :: t2 :: ... :: tn :: [] in λ̄), whereas the contexts have more general form
t1 :: t2 :: ... :: tn :: x̂.t. This modification, consequently, enabled a construction of a
syntax directed type assignment system, in which all cut rules are merged into one.

This chapter is entirely devoted to the λGtz-calculus. Section 4.1 and Sub-
section 4.2.1 revisit Espirito Santo’s results on the untyped and the simply typed
λGtz-calculus, while the results involving intersection type systems and the charac-
terisation of strong normalisation represent the original contribution of the thesis.
These results are developed by José Espírito Santo, Silvia Ghilezan, Silvia Likavec
and myself, and are published in [24, 31, 41, 42, 25].

4.1 Type-free λGtz-calculus

We start by presenting the syntax of the λGtz-calculus, its operational semantics,
and some properties of the untyped version of this calculus.

33

34 CHAPTER 4. λGTZ-CALCULUS

The abstract syntax of the λGtz-calculus is given by:

Terms t ::= x |λx.t | tk
Contexts k ::= x̂.t | t :: k

The main characteristic of the λGtz-calculus is the existence of two syntactic cat-
egories - terms and contexts. A term is either a variable from a denumerable set
of term variables T = {x,y,z, ...,x1, ...x′, ...}, an abstraction λx.t, or an application
tk, usually called a cut. A context is either a selection x̂.t or a context constructor
(linear left introduction) t :: k (the operator :: is read cons). Terms and contexts
are together referred to as expressions. We use the notation t,u,v, t1.. for the terms,
k,k′, ... for the contexts and e,e′, ... for the expressions.

As pointed out in [28], computationally, the contexts represent a prescription
of what to do next with an expression which is plugged into it. A selection x̂.t
means “substitute for x in t" whereas a cons t :: k means “apply to t and proceed
according to k".

If one uses the usual analogy with the function theory, contexts could be un-
derstood as lists of arguments. They are constructed from a term by selecting a
variable in the term (which corresponds to choosing an active formula in Gentzen’s
sequent calculus). A new element could be added to the list using concatenation,
performed via the cons operator. There are no context variables - the trivial context
is x̂.x, which corresponds to an empty list [].

Notice that a cut tk represents a plugging of a term t into a context k, which
is a key difference with respect to the ordinary λ-calculus application tt. We dis-
tinguish two interpretations of a cut, according to the form of the context k. If k
is a selection, cut represents an explicit substitution t(x̂.v). If k is a cons, cut rep-
resents a multiary generalised application t(u1 :: · · · :: um :: x̂.v), for some m ≥ 1.
In the last case, if m = 1, the cut is reduced to a notion of generalised applica-
tion t(u :: x̂.v) introduced in [44]; whereas if v = x, we get a multiary application
t(u1 :: · · · :: um :: []) (usually written as t[u1; · · · ;um]) introduced in [21]. Finally, if
both m = 1 and v = x, the cut is reduced to the form of an ordinary application.

In expressions λx.t and x̂.t, the variable x is bound. The scope of the binders
extends to the right as much as possible. For example, we write x̂.tu instead of
x̂.(tu). Free variables are the ones that are neither bound by abstraction nor by
selection operator. Barendregt’s convention, stating that the bound variables in an
expression should be denoted differently from the free ones, applies in both cases.
We denote the free variables of an expression e by Fv(e).

Definition 4.1 The set of free variables of an expression e is inductively defined as
follows:

4.1. TYPE-FREE λGTZ-CALCULUS 35

Fv(x) = {x};
Fv(λx.t) = Fv(t)\{x};
Fv(tk) = Fv(t)∪Fv(k);
Fv(x̂.t) = Fv(t)\{x};
Fv(t :: k) = Fv(t)∪Fv(k).

The computation with the λGtz-expressions is carried out by the reduction rules
of the λGtz-calculus, presented in Figure 4.1.

(β) (λx.t)(u :: k) → ux̂.tk
(π) (tk)k′ → t(k@k′)
(σ) tx̂.v → v[t/x]
(µ) x̂.xk → k, if x /∈ k

Figure 4.1: Reduction rules of the λGtz-calculus

Reduction rules are executed via two meta-operators, namely the substitution [/]
and the append @. [/] denotes the regular implicit substitution defined in Fig-
ure 4.2. In what follows, we use a relation symbol , to denote an equality by
definition. The meta-operator @, called append, is used for joining two contexts.
It is defined by the rules presented in Figure 4.3.

x[u/x] , u
y[u/x] , y

(λy.t)[u/x] , λy.t[u/x]
(tk)[u/x] , t[u/x]k[u/x]
(ŷ.t)[u/x] , ŷ.t[u/x]

(t :: k)[u/x] , t[u/x] :: k[u/x]

Figure 4.2: Substitution in the λGtz-calculus

(t :: k)@k′ , t :: (k@k′);
(x̂.t)@k′ , x̂.tk′.

Figure 4.3: Meta-operator @ in the λGtz-calculus

The rule (β) generates a substitution but it is the rule (σ) that executes it, on
the meta-level. The rule (π) simplifies the head of a cut (t is the head of tk). The
rule µ (whose origin can be found in [66]) has a structural character and it either

36 CHAPTER 4. λGTZ-CALCULUS

performs a trivial substitution in the reduction t(x̂.xk)→ tk, or it minimizes the use
of the generality feature in the reduction t(u1 · · ·um :: x̂.xk)→ t(u1 · · ·um :: k).

As already mentioned, the substitution in the λGtz-calculus is defined via a
meta-operator, i.e. it is not part of the syntax, hence the λGtz-calculus does not
belong to the group of calculi with explicit substitution. However, this calculus
supports the possibility of delayed substitutions (due to the definition of the β-
reduction), which is one of the main properties of the explicit substitution calculi.

The rules (β), (π) and (σ) aim at eliminating all cuts but those of the triv-
ial1 form y(u1 :: · · ·um :: x̂.v) (for some m ≥ 1). In that way, reductions in the
λGtz-calculus correspond to the cut-elimination process in the sequent calculus,
providing one level of the Curry-Howard correspondence.

The set of βπσ-normal forms is given by the following abstract syntax:

(Terms) tn f = x | λx.tn f | x(tn f :: kn f)
(Contexts) kn f = x̂.tn f | tn f :: kn f .

Now we illustrate the operational semantics of λGtz with the following exam-
ples.

Example 4.2 Let us consider the term t ≡ (λx.y)(y(ẑ.z) :: x̂.λy.x). To avoid the
clash of free and bound variables, before the computation we apply Barendregt’s
convention and rename bound occurrences of the variables x and y yielding t ≡
(λx.y)(y(ẑ.z) :: x̂′.λy′.x′). Now, we can reduce t as follows:
first way:

t →β (yẑ.z)x̂.(yx̂′.λy′.x′)
→π y ((ẑ.z)@x̂.(yx̂′.λy′.x′))
, yẑ.(zx̂.(yx̂′.λy′.x′)
→σ yẑ. yx̂′.(λy′.x′)[z/x]
, yẑ.(yx̂′.λy′.x′)
→σ yẑ. (λy′.x′)[y/x′]
, yẑ.λy′.y
→σ (λy′.y)[y/z]
, λy′.y.

Second way:

1A cut is called trivial if its head is a variable.

4.1. TYPE-FREE λGTZ-CALCULUS 37

t →β (yẑ.z)x̂.(yx̂′.λy′.x′)
→σ (yx̂′.λy′.x′)[yẑ.z/x]
, yx̂′.λy′.x′

→σ (λy′.x′)[y/x′]
, λy′.y.

Although in the previous example both ways of reducing led to the same nor-
mal form, the λGtz-calculus is not confluent. The reason is a critical pair that
exists between reductions π and σ 2. Thus, the problem analogous to the “call-by-
name/call-by-value dilemma" of Curien-Herbelin’s λ̄µµ̃-calculus [14] exists also in
the λGtz-calculus, and will be illustrated by the following example.

Example 4.3 Let t0 ≡ (tk)(x̂.v). This term is both a π-redex and a σ-redex. Con-
tracting it as a π-redex (the call-by-value option) we get t1 ≡ t(k@(x̂.v)). Con-
tracting it as a σ redex (the call-by-name option) we get t2 ≡ v[tk/x]. In a number
of cases, these two terms cannot be reduced to the same normal form.
Consider, for example, this particular case: t = z, v = y, and k = u :: (ŵ.w), where
z and y are variables, y ̸= x, and u is a normal form. Then
the call-by-value option:

t0 ≡ (z(u :: ŵ.w))(x̂.y)
→π z((u :: ŵ.w)@(x̂.y))
, z(u :: (ŵ.w@(x̂.y)))
, z(u :: (ŵ.w(x̂.y)))
→µ z(u :: x̂.y).

the call-by-name option:

t0 ≡ (z(u :: ŵ.w))(x̂.y)
→σ y[z(u :: ŵ.w)/x]
, y.

Obviously, obtained normal forms differ.

However, the confluence can be regained by quite simple modifications on the
syntax and the operational semantics. Two confluent λGtz sub-calculi will be pre-
sented in the Section 4.4.

2Non-confluent expressions are those λGtz-expressions in which both π and σ reductions can be
performed at the same time.

38 CHAPTER 4. λGTZ-CALCULUS

4.2 Typed λGtz-calculus

4.2.1 Simply typed λGtz-calculus

The basic type assignment system for the λGtz-calculus is the one with simple
types, introduced by Espírito Santo in [27] and denoted by λGtz→.

Definition 4.4 The syntax of simple types is defined as follows:

α ::= p | α→ α

where p ranges over a denumerable set of type atoms.

Types will be denoted by α,β,γ,α1, ... and the set of all simple types will be de-
noted by T→.

Definition 4.5

(i) A basic type assignment is an expression of the form x : α, where x is a term
variable and α is a type.

(ii) A basis Γ is a set {x1 : α1, . . . ,xn : αn} of basic type assignments, where all
term variables are different.

(iii) A domain of the basis Γ is the set Dom(Γ) = {x1, . . . ,xn}.

(iv) A basis extension Γ,x : α denotes the set Γ∪{x : α}, where x ̸∈ Dom(Γ).

(v) There are two kinds of type assignments:

- Γ ⊢ t : α - a type assignment for terms;

- Γ;β ⊢ k : α - a type assignment for contexts.

Like in Herbelin’s λ̄-calculus, the system λGtz → contains the special place
between the symbols ; and ⊢ on the left-hand side of the sequents in the type
assignments for contexts. This place is called the stoup and it contains a selected
formula with which we continue the computation.

Definition 4.6 The type assignment system λGtz→ is given by the rules presented
in Figure 4.4.

4.2. TYPED λGTZ-CALCULUS 39

Γ,x : α ⊢ x : α (Ax)

Γ,x : α ⊢ t : β
Γ ⊢ λx.t : α→ β

(→R)
Γ ⊢ t : α Γ;β ⊢ k : γ
Γ;α→ β ⊢ t :: k : γ

(→L)

Γ ⊢ t : α Γ;α ⊢ k : β
Γ ⊢ tk : β

(Cut)
Γ,x : α ⊢ t : β
Γ;α ⊢ x̂.t : β

(Sel)

Figure 4.4: λGtz→: the simply typed λGtz-calculus

The system λGtz → consists of five type-assignment rules (one for each kind
of λGtz-expression) given in the context-sharing style. There are two rules for
typing contexts, namely (Sel) and (→L), that contain the stoup and three rules for
typing terms, namely (Ax), (→R) and (Cut). Apart from the stoup, it is clear that
the system λGtz → represents exactly the sequent calculus system with implicit
structural rules (system G3), decorated with λGtz-expressions. Thus, the formulae-
as-types side of the Curry-Howard correspondence between the simply-typed λGtz-
calculus and sequent calculus LJ is satisfied.

The system λGtz→ satisfies the following properties, stated here without proofs3.

Proposition 4.7 (Generation lemma for λGtz→)

(i) Γ ⊢ x : α iff x : α ∈ Γ.

(ii) Γ ⊢ λx.t : α iff α≡ β→ γ and Γ,x : β ⊢ t : γ.

(iii) Γ;α ⊢ x̂.t : β iff Γ,x : α ⊢ t : β.

(iv) Γ ⊢ tk : α iff there is a type β such that Γ ⊢ t : β, and Γ;β ⊢ k : α.

(v) Γ;α ⊢ t :: k : β iff α≡ γ→ δ, , Γ ⊢ t : γ and Γ;δ ⊢ k : β.

Proposition 4.8 (Substitution lemma for λGtz→)

(i) If Γ,x : α ⊢ t : β and Γ ⊢ u : α, then Γ ⊢ t[u/x] : β.

(ii) If Γ,x : α;γ ⊢ k : β and Γ ⊢ u : α, then Γ;C ⊢ k[u/x] : β.

3The corresponding properties of the system with intersection types, which is the focus of this
research, will be elaborated in the following subsection in details, hence we preferred to avoid un-
necessary repetition in this subsection.

40 CHAPTER 4. λGTZ-CALCULUS

Proposition 4.9 (Append lemma for λGtz→) If Γ;γ⊢ k : β and Γ;β ⊢ k′ : α, then
Γ;γ ⊢ k@k′ : α.

Theorem 4.10 (Subject reduction for λGtz→)

(i) If Γ ⊢ t : α and t→ t ′, then Γ ⊢ t ′ : α.

(ii) If Γ;β ⊢ k : α and k→ k′, then Γ;β ⊢ k′ : α.

The preservation of type under reductions (i.e. subject reduction) shows which
proof transformation of the sequent calculus corresponds to each reduction rule
of the λGtz-calculus. The rule (β) corresponds to the key-step in cut-elimination,
whereas the rules (σ) and (π) correspond to right and left permutation of cuts, re-
spectively. The rule (µ) undoes the sequence of two inference steps consisting of
deselecting the stoup formula, without contraction, and, immediately after, select-
ing the same formula. In that way, we can see that the simplification (i.e. reduction)
of a term corresponds to the simplification (i.e. cut-elimination) of its type deriva-
tion, which is exactly the third level of Curry-Howard correspondence.

Espírito Santo proved strong normalisation for the system λGtz→ in [27], by
translating it into λ-calculus with “delayed” substitutions [26]. But, as in the case
of the simply typed λ-calculus, the basic type assignment system λGtz → cannot
characterise all strongly normalising λGtz-terms. For example, the term λx.x(x ::
ŷ.y) (which corresponds to the term λx.xx in the λ-calculus) is a λGtz normal form,
yet it does not have a type in λGtz→.

Example 4.11 In the λ-calculus, the term λxy.xy is typed with (α→ β)→ (α→ β).
The corresponding term in the λGtz-calculus is λx.λy.x(y :: ẑ.z), and here we give
its typing in the system λGtz→:

(Ax)
x : α→ β,y : α ⊢ x : α→ β

(Ax)
x : α→ β,y : α ⊢ y : α

(Ax)
x : α→ β,z : β ⊢ z : β

(Sel)
x : α→ β;β ⊢ ẑ.z : β

(→L)
x : α→ β,y : α;α→ β ⊢ y :: ẑ.z : β

(Cut)
x : α→ β,y : α ⊢ x(y :: ẑ.z) : β

(→R)
x : α→ β ⊢ λy.x(y :: ẑ.z) : α→ β

(→R)
⊢ λx.λy.x(y :: ẑ.z) : (α→ β)→ (α→ β)

In the previous example, we have seen the very simple way to translate a λ-
term into corresponding λGtz-term. This translation is, however, valid only for the
set of normal forms. The general mapping from the λ-calculus to the λGtz-calculus
will be defined later.

4.2. TYPED λGTZ-CALCULUS 41

4.2.2 Intersection types for the λGtz-calculus

The intersection types were introduced into the λGtz-calculus by Espírito Santo,
Ghilezan and Ivetić in [24] in order to obtain a type assignment system in which
all strongly normalising terms would be typeable. The detailed account on this
system is given in [25].

Definition 4.12 The syntax of intersection types is defined as follows:

α ::= p | α→ α | α∩α

where p ranges over a denumerable set of type atoms.

Types will be denoted by α,β,γ,α1, ... and the set of all intersection types will be
denoted by T∩.

As usual, the set T∩ is partitioned into equivalence classes induced by the fol-
lowing equivalence relation.

Definition 4.13

(i) Pre-order ≤ over the set of types is the smallest relation that satisfies the
following rules:

1. α≤ α;

2. α∩β≤ α and α∩β≤ β;

3. (α→ β)∩ (α→ γ)≤ α→ (β∩ γ);
4. α≤ β and β≤ γ implies α≤ γ;

5. α≤ β and α≤ γ implies α≤ β∩ γ4;

6. α′ ≤ α and β≤ β′ implies α→ β≤ α′→ β′.

(ii) Two types are equivalent, α∼ β , if and only if α≤ β and β≤ α.

In the rest of this chapter, we will consider types modulo the introduced equiva-
lence relation. We will assume that ∩ operator has the priority over the→ operator,
therefore α→ β∩ γ stands for α→ (β∩ γ). Also, the abbreviation

∩n
i αi ≡ α1∩ ... ∩αn for some n≥ 1

will be used throughout the chapter.
The following equivalencies follow from the Definition 4.13, therefore they

will be used in the rest of this chapter without explicit mentioning.
4It is possible to replace this rule with the following two rules: 5.1 α ≤ α∩α; 5.2 α′ ≤ α and

β′ ≤ β implies α′∩β′ ≤ α∩β.

42 CHAPTER 4. λGTZ-CALCULUS

Lemma 4.14

(i) (α→ β)∩ (α→ γ)∼ α→ β∩ γ;

(ii) ∩n
i (α→ βi)∼ α→∩n

i βi;

(iii) α∩α∼ α;

(iv) α∩β∼ β∩α;

(v) (α∩β)∩ γ∼ α∩ (β∩ γ).

Proof:

(i) The direction (α→ β)∩ (α→ γ) ≤ α→ β∩ γ holds directly from the rule
3 of Definition 4.13. We prove that α→ β∩ γ ≤ (α→ β)∩ (α→ γ). From
α ≤ α (rule 1 of Definition 4.13) and β∩ γ ≤ β (rule 2 of Definition 4.13),
applying rule 6 of Definition 4.13, we have α→ β∩γ≤α→ β. Analogously,
α→ β∩ γ≤ α→ γ holds since α≤ α and β∩ γ≤ γ. Now, from α→ β∩ γ≤
α→ β and α→ β∩ γ≤ α→ γ we get α→ β∩ γ≤ (α→ β)∩ (α→ γ) using
the rule 5 of Definition 4.13.

(ii) The proof goes by induction on i, with the previous case (i) of this proof
being the base case for i = 2.

(iii) The direction α∩α≤α follows from rule 2 of Definition 4.13. The direction
α≤α∩α follows from rule 5 of Definition 4.13, applied to α≤α and α≤α.

(iv) Both inequalities follow from rules 2 and 5 of Definition 4.13, one time
starting from α∩β≤ β and α∩β≤α, and another time starting from β∩α≤
α and β∩α≤ β.

(v) By applying rules 2, 4 and 5 of Definition 4.13. �

Definitions of a type assignment, a basis and related notions are analogous to
the ones from Definition 4.5 and therefore omitted.

Definition 4.15 The type assignment system λGtz∩ is given by the rules presented
in Figure 4.5.

It is easy to observe that the system λGtz∩ is an extension of the system λGtz→,
given in Figure 4.4. The latter can be obtained from the former by taking a restric-
tion n = 1 in the rules (Ax), (→L) and (Cut).

4.2. TYPED λGTZ-CALCULUS 43

Γ,x : α1∩·· ·∩αn ⊢ x : α1
(Ax)

Γ,x : α ⊢ t : β
Γ ⊢ λx.t : α→ β

(→R)
Γ ⊢ t : α1 · · · Γ ⊢ t : αn Γ;β ⊢ k : γ

Γ;∩n
i αi→ β ⊢ t :: k : γ

(→L)

Γ,x : α ⊢ v : β
Γ;α ⊢ x̂.v : β

(Sel)
Γ ⊢ t : α1 · · · Γ ⊢ t : αn Γ;∩n

i αi ⊢ k : β
Γ ⊢ tk : β

(Cut)

Figure 4.5: λGtz∩: intersection types for the λGtz-calculus

Notice that in the system λGtz∩ there are no separate rules for the intersec-
tion introduction and for intersection elimination, contrary to the usual way of
introducing intersection types in the λ-calculus, proposed by Coppo and Dezani-
Ciancaglini in [13]. Also, the typing rule for ≤ is not included in our system.
The management of intersection is built into the other rules, where necessary, and
thus the proposed type assignment system exhibits the important feature of syntax-
directness.

Also, notice that due to Lemma 4.14 where commutativity and associativity of
intersection are proved, we can also use the weaker form of the axiom rule:

Γ,x : ∩n
i αi ⊢ x : α j

(Ax)
, j ∈ {1, ...,n}.

The following proposition, called Generation lemma, explains the way of un-
folding the type assignment derivations. It represents one of the crucial technical
lemmas, since it is used in the proofs of most of the other propositions. In the
case of the system λGtz∩, this lemma trivially holds due to the fact that the system
is syntax-directed, meaning that there is exactly one type assignment rule corre-
sponding to each sort of λGtz-expression.

Proposition 4.16 (Generation lemma for λGtz∩)

(i) Γ ⊢ x : α iff x : ∩n
i αi ∈ Γ and α≡ α j, for some j ≤ n.

(ii) Γ ⊢ λx.t : α iff α≡ β→ γ and Γ,x : β ⊢ t : γ.

(iii) Γ;α ⊢ x̂.t : β iff Γ,x : α ⊢ t : β.

(iv) Γ⊢ tk : α iff there is a type β≡∩n
i βi such that Γ⊢ t : βi, for all i∈ {1, . . . ,n},

and Γ;∩n
i βi ⊢ k : α.

44 CHAPTER 4. λGTZ-CALCULUS

(v) Γ;α ⊢ t :: k : β iff α ≡ ∩n
i γi → δ, Γ;δ ⊢ k : β, and Γ ⊢ t : γi for all i ∈

{1, . . . ,n}.

Proof: The proof is straightforward since all the rules are syntax-directed. �

The left introduction of intersection is an admissible rule in this system, which
is the subject of the following proposition.

Proposition 4.17 (Admissible rule - (∩L))

(i) If Γ,x : α j ⊢ t : β, for some j ≤ n, then Γ,x : ∩n
i αi ⊢ t : β.

(ii) If Γ,x : α j;γ ⊢ k : β, for some j ≤ n, then Γ,x : ∩n
i αi;γ ⊢ k : β.

Proof: By simultaneous induction on the structure of terms and contexts.

• Case t ≡ x. Let Γ,x : α j ⊢ x : β, then from the rule (Ax) we conclude that
α j = ∩m

l β jl, l ∈ L = {1, . . . ,m} and β ≡ β jl0 for some l0 ∈ L. Then ∩n
i αi =

∩n
i (∩m

l βil), l ∈ L, i∈ {1, . . . ,n} so applying the rule (Ax) we get Γ,x :∩n
i αi ⊢

x : β.

• Case t ≡ y. This case is trivially satisfied because the type of one variable
does not affect the type of the other one.

• Case t ≡ λy.t ′. Let Γ,x : α j ⊢ λy.t ′ : β. Then by Generation lemma 4.16(ii)
β ≡ γ→ δ and Γ,x : α j,y : γ ⊢ t ′ : δ. Applying the IH on t ′ we get Γ,x :
∩n

i αi,y : γ ⊢ t ′ : δ, and conclude with Γ,x : ∩n
i αi ⊢ λy.t ′ : β using the rule

(→R).

• Case k ≡ ŷ.t ′. Let Γ,x : α j;δ ⊢ ŷ.t ′ : β. This derivation could only be gen-
erated from Γ,x : α j,y : δ ⊢ t ′ : β, according to Generation lemma 4.16(iii).
Applying the IH on t ′ we get Γ,x : ∩n

i αi,y : δ ⊢ t ′ : β, and then by the rule
(Sel) we get Γ,x : ∩n

i αi;δ ⊢ ŷ.t ′ : β.

• Case t ≡ t ′k. Let Γ,x : α j ⊢ t ′k : β. Then, according to Generation lemma 4.16
(iv), there is a type ∩m

l γl such that Γ,x : α j ⊢ t ′ : γl , for all l ∈ {1, . . . ,m} and
Γ,x : α j;∩m

l γl ⊢ k : β. Applying the IH on both t ′ and k we get Γ,x : ∩n
i αi ⊢

t ′ : γl for all l ∈ {1, . . . ,m} and Γ,x : ∩n
i αi;∩m

l γl ⊢ k : β, and then by the rule
(Cut) we get Γ,x : ∩n

i αi ⊢ t ′k : β.

• Case k ≡ t ′ :: k′. Let Γ,x : α j;∩m
l γl → δ ⊢ t ′ :: k′ : β. According to Genera-

tion lemma 4.16(v), the corresponding premises are Γ,x : α j ⊢ t ′ : γl , for all
l ∈ {1, . . . ,m} and Γ,x : α j;δ ⊢ k′ : β. Applying the IH on both t ′ and k′ we

4.2. TYPED λGTZ-CALCULUS 45

get Γ,x : ∩n
i αi ⊢ t ′ : γl for all l ∈ {1, . . . ,m}, and Γ,x : ∩n

i αi;δ ⊢ k′ : β, and
then by the rule (→L) we get Γ,x : ∩n

i αi;∩m
l γl → δ ⊢ t ′ :: k′ : β. �

The type assignment system λGtz∩ satisfies the following standard properties.

Lemma 4.18

(i) If Γ ⊢ t : α, then Fv(t)⊆ Dom(Γ).

(ii) If Γ;β ⊢ k : α, then Fv(k)⊆ Dom(Γ).

Proof: By case analysis on the type assignment rules. Free variables are introduced
only by the rule (Ax). In the rules (→R) and (Sel) declaration x : A is removed from
the basis, which corresponds to the binding of x by abstraction or selection opera-
tor. In the remaining two rules neither the size of the basis nor the number of free
variables changes. �

Proposition 4.19 (Basis expansion)

(i) Γ ⊢ t : α ⇔ Γ,x : β ⊢ t : α and x /∈ Fv(t).

(ii) Γ;γ ⊢ k : α ⇔ Γ,x : β;γ ⊢ k : α and x /∈ Fv(k).

Proof: The proof follows from the definition of a basis and Lemma 4.18. �

Definition 4.20 (Bases intersection)

Γ1∩Γ2 = {x : α | x : α ∈ Γ1 & x /∈ Dom(Γ2)}
∪ {x : α | x : α ∈ Γ2 & x /∈ Dom(Γ1)}
∪ {x : α∩β | x : α ∈ Γ1 & x : β ∈ Γ2}.

Proposition 4.21 (Bases intersection)

(i) Γ1 ⊢ t : α ⇒ Γ1∩Γ2 ⊢ t : A.

(ii) Γ1;β ⊢ k : α ⇒ Γ1∩Γ2;β ⊢ k : A.

Proof: By induction on the number of elements in Dom(Γ2), using Proposition 4.19
and Proposition 4.17. �

As already stated, the substitution and the append are two meta-operators of
the λGtz-calculus. The following two lemmas, namely Substitution lemma and
Append lemma, explain the behaviour of these meta-operators in the presence of
intersection types.

46 CHAPTER 4. λGTZ-CALCULUS

Lemma 4.22 (Substitution lemma for λGtz∩)

(i) If Γ,x : ∩n
i αi ⊢ t : β and Γ ⊢ u : α j, for all j ∈ {1, . . . ,n}, then Γ ⊢ t[u/x] : β.

(ii) If Γ,x : ∩n
i αi;γ ⊢ k : β and Γ ⊢ u : α j, for all j ∈ {1, . . . ,n}, then Γ;γ ⊢

k[u/x] : β.

Proof: (i) and (ii) are proved by simultaneous induction on the structure of t
and k.

• t is a variable:

– t ≡ x:
From Γ,x : ∩n

i αi ⊢ x : β, using Generation lemma 4.16(i) we derive
β≡α j, for some j ∈ {1, . . . ,n}. Since x[u/x], u the proof is contained
in the second premise.

– t ≡ y:
From Γ,x : ∩n

i αi ⊢ y : β and Proposition 4.19 we derive that Γ ⊢ y : β.
Since y[u/x], y the proof is complete.

• t ≡ λy.v:
From Γ,x :∩n

i αi ⊢ λy.v : β, using Generation lemma 4.16(ii) we get β≡ γ→ δ
and Γ,x : ∩n

i αi,y : γ ⊢ v : δ. Applying the induction hypothesis to v we get
Γ,y : γ⊢ v[u/x] : δ. Since (λy.v)[u/x], λy.v[u/x], the proof is complete using
the rule (→R).

• t ≡ vk:
From Γ,x : ∩n

i αi ⊢ vk : β, using Generation lemma 4.16(iv), we derive that
there exists a type ∩m

j γ j, j = 1, ...,m, m ≥ 1, such that Γ,x : ∩n
i αi ⊢ v :

γ j,∀ j ∈ {1, . . . ,m} and Γ,x : ∩n
i αi;∩m

j γ j ⊢ k : β. Applying the induction hy-
pothesis to v and k we get:

Γ ⊢ v[u/x] : γ1 · · · Γ ⊢ v[u/x] : γm Γ;∩m
j γ j ⊢ k[u/x] : β

(Cut)
Γ ⊢ v[u/x]k[u/x] : β

This is exactly what we need since (vk)[u/x], v[u/x]k[u/x].

• k ≡ ŷ.v:
From Γ,x : ∩n

i αi;γ ⊢ ŷ.v : β, using Generation lemma 4.16(iii), we get Γ,x :
∩n

i αi,y : γ ⊢ v : β. Applying the induction hypothesis to v we get

Γ,y : γ ⊢ v[u/x] : β
(Sel)

Γ;γ ⊢ ŷ.v[u/x] : β

This ends the proof since (ŷ.v)[u/x], ŷ.v[u/x].

4.2. TYPED λGTZ-CALCULUS 47

• k ≡ t :: k′:
From Γ,x : ∩n

i αi;γ ⊢ t :: k′ : β , using Generation lemma 4.16(v), we derive
γ≡∩m

j δ j→ ε, Γ,x : ∩n
i αi;ε ⊢ k′ : β , and Γ,x : ∩n

i αi ⊢ t : δ j,∀ j ∈ {1, . . . ,m}.
Applying the induction hypothesis to t and k′ we get

Γ ⊢ t[u/x] : δ1 · · · Γ ⊢ t[u/x] : δm Γ;ε ⊢ k′[u/x] : β
(→L)

Γ;∩m
j δ j→ ε ⊢ t[u/x] :: k′[u/x] : β

Since ∩m
j δ j → ε ≡ γ and (t :: k′)[u/x] , t[u/x] :: k′[u/x], the proof is com-

plete. �

Lemma 4.23 (Append lemma for λGtz∩) If for all i∈ {1, . . . ,n}, Γ;γ ⊢ k : βi and
Γ;∩n

i βi ⊢ k′ : α, then Γ;γ ⊢ k@k′ : α.

Proof: By induction on the structure of k.

• k ≡ x̂.v:
From Γ;γ ⊢ x̂.v : βi,∀i ∈ {1, . . . ,n}, using Generation lemma 4.16(iii) it fol-
lows that Γ,x : γ ⊢ v : βi,∀i ∈ {1, . . . ,n}. Without losing generality we can
assume that x /∈ Fv(k′) (if the variable x was free in k′ we would have to
rename it in k where it is bound; then we would not have the variable x, but
some other variable). According to Proposition 4.19 we can extend the basis
in the second premise to Γ,x : γ;∩n

i βi ⊢ k′ : α. Then,

Γ,x : γ ⊢ v : β1 · · · Γ,x : γ ⊢ v : βn Γ,x : γ;∩n
i βi ⊢ k′ : α

(Cut)
Γ,x : γ ⊢ vk′ : α

(Sel)
Γ;γ ⊢ x̂.vk′ : α

Since (x̂.v)@k′ , x̂.vk′, the proof is complete.

• k ≡ v :: k′′:
From Γ;C ⊢ v :: k′′ : βi,∀i ∈ {1, . . . ,n}, using Generation lemma 4.16(v), it
follows that γ≡∩m

j δ j→ ε, Γ;ε ⊢ k′′ : βi,∀i ∈ {1, . . . ,n}, and Γ ⊢ v : δ j,∀ j ∈
{1, . . . ,m}. Applying the induction hypothesis to k′′ and k′ we get Γ;ε ⊢
k′′@k′ : α. Now we can build the following derivation:

Γ ⊢ v : δ1 · · · Γ ⊢ v : δm Γ;ε ⊢ k′′@k′ : α
(→L)

Γ;∩m
j δ j→ ε ⊢ v :: (k′′@k′) : α.

Since ∩m
j δ j→ ε≡ γ and (v :: k′′)@k′, v :: (k′′@k′), the proof is complete. �

48 CHAPTER 4. λGTZ-CALCULUS

Now, we can prove that the type of a λGtz-expression in the system λGtz∩ does
not change during reduction.

Theorem 4.24 (Subject Reduction for λGtz∩)

(i) If Γ ⊢ t : α and t→ t ′, then Γ ⊢ t ′ : α.

(ii) If Γ;β ⊢ k : α and k→ k′, then Γ;β ⊢ k′ : α.

Proof: Both cases are proved simultaneously by induction on the last applied
reduction. We distinguish four cases:

• Case (β):
Suppose that Γ ⊢ (λx.t)(u :: k) : α. We need to show that Γ ⊢ u(x̂.tk) : α.
From Γ ⊢ (λx.t)(u :: k) : α , using Generation lemma 4.16(iv), it follows that
there exists a type ∩n

i βi such that Γ ⊢ λx.t : βi,∀i ∈ {1, . . . ,n} and Γ;∩n
i βi ⊢

u :: k : α. Using Lemma 4.14 and Generation lemma 4.16(v) for the second
premise we deduce that ∩n

i βi ≡ ∩n
i (∩m

j γ j → δi) ∼ ∩m
j γ j → ∩n

i δi, Γ;∩n
i δi ⊢

k : α, and Γ ⊢ u : γ j,∀ j ∈ {1, . . . ,m}. On the other hand, from Γ ⊢ λx.t :
∩m

j γ j → δi,∀i ∈ {1, . . . ,n}, using Generation lemma 4.16(ii), it follows that
Γ,x : ∩m

j γ j ⊢ t : δi,∀i ∈ {1, . . . ,n}. From here we conclude that x /∈ Dom(Γ).
Now we can write a type derivation for the term u(x̂.tk):

Γ ⊢ u : γ1 · · · Γ ⊢ u : γm

Γ,x : ∩m
j γ j ⊢ t : δ1 · · · Γ,x : ∩m

j γ j ⊢ t : δn Γ,x : ∩m
j γ j;∩n

i δi ⊢ k : α
(Cut)

Γ,x : ∩m
j γ j ⊢ tk : α

(Sel)
Γ;∩m

j γ j ⊢ x̂.tk : α
(Cut)

Γ ⊢ u(x̂.tk) : α.

• Case (π):
Suppose that Γ ⊢ (tk)k′ : α. We have to show that Γ ⊢ t(k@k′) : α.
From Γ ⊢ (tk)k′ : α, using Generation lemma 4.16(iv), it follows that there
exists a type ∩n

i βi such that Γ ⊢ tk : βi, for all i ∈ {1, . . . ,n} and Γ;∩n
i βi ⊢ k′ :

α. Next, using Generation lemma 4.16(iv) for the first premise we conclude
that for each i ∈ {1, . . . ,n} there exists a type ∩m

j γ j such that Γ ⊢ t : γ j, for
all j ∈ {1, . . . ,m} and Γ;∩m

j γ j ⊢ k : βi, for all i ∈ {1, . . . ,n}. From Γ;∩m
j γ j ⊢

k : βi, for all i ∈ {1, . . . ,n} and Γ;∩n
i βi ⊢ k′ : α, applying Proposition 4.23 we

get Γ;∩m
j γ j ⊢ k@k′ : α. So we can conclude the following:

Γ ⊢ t : γ1 · · ·Γ ⊢ t : γm Γ;∩m
j γ j ⊢ k@k′ : α

(Cut)
Γ ⊢ t(k@k′) : α

4.2. TYPED λGTZ-CALCULUS 49

• Case (σ):
Suppose that Γ ⊢ t(x̂.v) : α. We have to show that Γ ⊢ v[t/x] : α.
From Γ ⊢ t(x̂.v) : α , using Generation lemma 4.16(iv), it follows that there
exists a type ∩n

i βi such that Γ ⊢ t : βi, for all i∈ {1, . . . ,n} and Γ;∩n
i βi ⊢ x̂.v :

α. Next, using Generation lemma 4.16(iii) for the second premise we derive
that Γ,x : ∩n

i βi ⊢ v : α. Now we can apply Substitution lemma 4.22 and get
Γ ⊢ v[t/x] : α.

• Case (µ):
Suppose that Γ;β ⊢ x̂.xk : α. We have to show that Γ;β ⊢ k : α. Using Gen-
eration lemma 4.16(iii) it follows that Γ,x : β ⊢ xk : α. Next, using Genera-
tion lemma 4.16(iv) there exists a type ∩n

i γi such that Γ,x : β ⊢ x : γi, for all
i ∈ {1, . . . ,n} and Γ,x : β;∩n

i γi ⊢ k : α. From the first sequent, using Gener-
ation lemma 4.16(i), it follows that β ∼ ∩n

i γi. Since x /∈ Fv(k), the proof is
complete using Proposition 4.19. �

Example 4.25 In the λ-calculus, the term λx.xx has the type (α∩ (α→ β))→ β.
The corresponding term in the λGtz-calculus is λx.x(x :: ŷ.y). Although being a nor-
mal form this term is not typeable in the simply typed λGtz-calculus. It is typeable
in λGtz∩ in the following way:

(Ax)
x : α∩ (α→ β) ⊢ x : α→ β

(Ax)
x : α∩ (α→ β) ⊢ x : α

(Ax)
x : α∩ (α→ β),y : β ⊢ y : β

(Sel)
x : α∩ (α→ β);β ⊢ ŷ.y : β

(→L)
x : α∩ (α→ β);α→ β ⊢ x :: ŷ.y : β

(Cut)
x : α∩ (α→ β) ⊢ x(x :: ŷ.y) : β

(→R).
⊢ λx.x(x :: ŷ.y) : (α∩ (α→ β))→ β

4.2.3 The systems leading to λGtz∩

The construction of the appropriate intersection type assignment system for the
λGtz-calculus was not a straightforward process. Two unsuccessful (but useful)
attempts, presented in the following subsections, led to the system λGtz∩.

First attempt: Intuitive system λGtz∩I

Our first (and the most natural) attempt consisted of simply adding standard typing
rules for intersection operator to the existing Espírito Santo’s basic type assignment
system λGtz→ following the characteristic symmetry of the sequent calculus.

50 CHAPTER 4. λGTZ-CALCULUS

The type assignment system λGtz∩I is given in Figure 4.6.

Γ,x : α ⊢ x : α (Ax)

Γ,x : α ⊢ t : β
Γ ⊢ λx.t : α→ β

(→R)
Γ ⊢ t : α Γ;β ⊢ k : γ
Γ;α→ β ⊢ t :: k : γ

(→L)

Γ ⊢ t : α Γ;α ⊢ k : β
Γ ⊢ tk : β

(Cut)
Γ,x : α ⊢ t : β
Γ;α ⊢ x̂.t : β

(Sel)

Γ ⊢ t : α Γ ⊢ t : β
Γ ⊢ t : α∩β

(∩R)
Γ,x : α1 ⊢ t : β

Γ,x : α1∩α2 ⊢ t : β
(∩L)

Γ ⊢ t : α, α≤ β
Γ ⊢ t : β

(≤R)

Figure 4.6: First attempt: intuitive system λGtz∩I

Basis expansion and Bases intersection lemmas can be easily proved for the
proposed system, where bases intersection is defined as usual.

The following rules are admissible in λGtz∩I.

Proposition 4.26 (≤ rules)

(i) If Γ,x : α ⊢ t : γ and β≤ α , then Γ,x : β ⊢ t : γ.
If Γ,x : α;γ ⊢ k : δ and β≤ α , then Γ,x : β;γ ⊢ k : δ.

(ii) If Γ;γ ⊢ k : α and α≤ β , then Γ;γ ⊢ k : β.

Proposition 4.27 (∩ rules)

(i) If Γ ⊢ t : α1∩α2 , then Γ ⊢ t : αi , for each i ∈ {1,2}.

(ii) If Γ;α1 ⊢ x̂.t : β , then Γ;α1∩α2 ⊢ x̂.t : β.

(iii) If Γ;γ ⊢ k : α and Γ;γ ⊢ k : β , then Γ;γ ⊢ k : α∩β.

This system has two problems. The first one is that the second statement from
Proposition 4.27 holds only for the selection, while it is not possible to prove a
similar statement for the context of the form k ≡ t :: k1 (since type changes are not

4.2. TYPED λGTZ-CALCULUS 51

allowed in the stoup in any of the typing rules). The second one is that in the pres-
ence of (∩R) rule all terms could have intersection types. These problems make it
impossible to formulate the Generation lemma which would enable us to “reverse”
the rules of the type assignment system and which is usually necessary for prov-
ing the Subject reduction and Subject expansion properties. Hence, the main tool
for further proofs was missing and forced us to search for a new intersection type
assignment system for the λGtz-calculus.

Second attempt: Restrictive system λGtz∩R

Having realized that the above presented system is inappropriate, mainly because
it allows too much due to the overly permissive typing rules, we turned to a more
restrictive approach and designed a system inspired by the type assignment system
for classical sequent λµµ̃-calculus proposed by Dougherty et al. in [19]. In this
system pre-order ≤ on types is completely omitted, as well as RHS introduction
of intersection, which turned out to be the problematic rule in the previous sys-
tem λGtz∩I (indeed only LHS intersection introduction is important in the system,
whereas RHS intersection introduction was only added for symmetry reasons). To
regain the broken symmetry of the system, we replaced LHS intersection intro-
duction with upgraded rules (Ax) and (→L), in which intersection is implicitly
introduced. This system assigns types to the same set of terms as the previous one,
but it is more restrictive since the set of types that can be assigned to a certain term
is smaller. For example, in the previous system the type of the abstraction could
be both α∩β and α→ β, whereas in this one it can only be α→ β. The system,
denoted by λGtz∩R, is given in Figure 4.7, where ∩αi abbreviates ∩n

i=1αi, for some
n≥ 1.

Γ,x : ∩n
i αi ⊢ x : α j

(Ax)

Γ,x : α ⊢ t : β
Γ ⊢ λx.t : α→ β

(→R)
Γ ⊢ t : α1 · · ·Γ ⊢ t : αn Γ;β ⊢ k : γ

Γ;∩n
i αi→ β ⊢ t :: k : γ

(→L)

Γ ⊢ t : α Γ;α ⊢ k : β
Γ ⊢ tk : β

(Cut)
Γ,x : α ⊢ t : β
Γ;α ⊢ x̂.t : β

(Sel)

Figure 4.7: Second attempt: restrictive system λGtz∩R

Basis expansion and Bases intersection lemmas hold for this system as well and
the rule (∩L) from the previous system is now admissible. Since there is exactly

52 CHAPTER 4. λGTZ-CALCULUS

one rule for deriving each sequent the system is syntax-directed so it is trivial to
formulate and prove the following Generation lemma.

Proposition 4.28 (Generation lemma for λGtz∩R)

(i) Γ ⊢ x : α iff x : α∩α1...∩αn ∈ Γ for some n≥ 0.

(ii) Γ ⊢ λx.t : α iff α≡ β→ γ and Γ,x : β ⊢ t : γ.

(iii) Γ;α ⊢ x̂.t : β iff Γ,x : α ⊢ t : β.

(iv) Γ ⊢ tk : α iff there exists a type β such that Γ ⊢ t : β and Γ;β ⊢ k : α.

(v) Γ;α ⊢ t :: k : β iff α ≡ ∩n
i γi → δ and Γ;δ ⊢ k : β and Γ ⊢ t : γi, for all

i ∈ {1, ...,n}.

The basic properties we wanted to prove were Subject reduction and Subject
expansion. We proved Substitution lemma, analogous to the one from λ-calculus
and the following Append lemma.

Lemma 4.29 (Append lemma for λGtz∩R) If Γ;γ ⊢ k : β and Γ;β ⊢ k′ : α , then
Γ;γ ⊢ k@k′ : α.

However, when trying to prove Subject reduction for λGtz∩R, we were stuck
already with the first reduction rule (β). Supposing that Γ ⊢ (λx.t)(u :: k) : α, we
wanted to prove that Γ ⊢ ux̂.tk : α. From Γ ⊢ (λx.t)(u :: k) : α and using Generation
lemma 4.28 (iv) it follows that there exists a type β such that Γ ⊢ λx.t : β and
Γ;β ⊢ u :: k : α. From the last sequent, using Generation lemma 4.28 (v) it follows
that β = ∩n

i γi→ δ, Γ;δ ⊢ k : α and Γ ⊢ u : γi for all i ∈ {1, ...,n}. From Γ ⊢ λx.t : β ,
using Generation lemma 4.28 (ii) it follows that Γ,x : ∩n

i γi ⊢ t : δ. Now we had to
assign a type to term ux̂.tk:

Γ ⊢ u : γ1 · · ·Γ ⊢ u : γn

Γ,x : ∩n
i γi ⊢ t : δ Γ,x : ∩n

i γi;δ ⊢ k : α
(Cut)

Γ,x : ∩n
i γi ⊢ tk : α

(Sel)
Γ;∩n

i γi ⊢ x̂.tk : α
(Cut)

???

The last (Cut) rule is impossible to apply, since the types γi and ∩γi do not match.
There are two solutions to this problem: we can either change the (β) reduction

rule or we can again change the type system. The first solution can be achieved by
replacing the (β) reduction rule with a larger computational step - (β+σ) reduction
rule as follows:

(λx.t)(u :: k) →β t[u/x]k.

4.3. CHARACTERISATION OF SN IN THE λGTZ-CALCULUS 53

With this reduction rule, it is possible to prove Subject reduction for the rules
(β),(σ) and (π) without changing the type system. The (µ) reduction is of a differ-
ent nature and for this reduction it is possible to prove the following proposition.

Proposition 4.30 If Γ;∩n
i βi ⊢ x̂.xk : α, then Γ;β j ⊢ k : α, for some j ∈ {1, ...,n}.

But such a modification implies losing the possibility to delay substitution and
the call-by-value computational side of λGtz. Also, Subject expansion property
(needed for characterisation of strong normalisation) does not hold.

Hence, in order to obtain type assignment system which characterises all strongly
normalising terms, we had to change the type assignment system again. For more
details about the system λGtz∩R see [31].

The appropriate type assignment system, presented in Subsection 4.2.2, in
which Subject reduction and Subject expansion at the root position hold for the
original reductions of the λGtz-calculus, was introduced in Espírito Santo et al. [24].
In order to assign the same type to β-redex (λx.t)(u :: k) and its contractum ux̂.tk
(as required by Subject reduction) we needed to implicitly introduce intersection
in the (Cut) rule. The necessity for certain equivalencies among types showed up,
so we returned ≤ relation. But ≤ relation is not explicitly introduced into typing
rules, its only role is in defining equivalence, so that the equivalent types can be
interchangeable in derivations. The important role belongs to the following equiv-
alence: ∩n

i (α→ βi) ∼ α→∩n
i βi.

With this system we finally succeeded in characterising strong normalisation
in the λGtz-calculus, which will be elaborated in the following section.

4.3 Characterisation of SN in the λGtz-calculus

4.3.1 Typeability⇒ SN

In this subsection, we will prove that all expressions typeable in the λGtz∩ system
satisfy the strong normalisation. The basic idea of the proof is to establish a con-
nection between the λGtz-calculus with intersection types and the typed λ-calculus
with intersection types via an appropriate mapping that preserves types, and then
to use the strong normalisation result from [60] for λ-terms typeable in the system
D, presented in Section 3.1.

The target calculus for the embedding is the λ-calculus enriched with two more
reduction rules besides the regular (β) reduction. These two reductions, namely
(π1) and (π2), are called permutations:

(π1) (λx.M)NP → (λx.MP)N
(π2) M((λx.P)N) → (λx.MP)N,

54 CHAPTER 4. λGTZ-CALCULUS

We will also use the notation π = π1∪π2.
Espírito Santo proved in [26, 22] that these new reductions do not essentially

change the calculus, more precisely they do not change the set of the strongly
normalising λ-terms. The proof partly relies on Regnier’s result from [59] since
the permutation (π1) is actually proposed by Regnier under the name σ.

Proposition 4.31 ([26]) π-reduction is terminating (finite) in λ-calculus.

Proposition 4.32 ([22]) If λ-term M is β-SN, then it is also βπ-SN.

Now we define a mapping ⌊ ⌋ from the λGtz-calculus to the λ-calculus. We
use Λ to denote the set of λ-terms, ΛGtz for the set of λGtz-terms and ΛGtz

C for the
set of λGtz-contexts. In order to make a clear distinction between λGtz-terms and
λ-terms, we denote the latter ones with the capital letters M,N, ...

Definition 4.33 Mapping ⌊ ⌋ : ΛGtz → Λ is defined together with the auxiliary
mapping ⌊ ⌋k : ΛGtz

C → (Λ → Λ) in the following way:

⌊x⌋ = x
⌊λx.t⌋ = λx.⌊t⌋
⌊tk⌋ = ⌊k⌋k(⌊t⌋)

⌊x̂.t⌋k(M) = (λx.⌊t⌋)M
⌊t :: k⌋k(M) = ⌊k⌋k(M⌊t⌋)

Example 4.34 Let t ≡ x(y :: z :: û.u). Then

⌊t⌋ = ⌊x(y :: z :: û.u)⌋
= ⌊y :: z :: û.u⌋k(x)
= ⌊z :: û.u⌋k(xy)
= ⌊û.u⌋k(xyz)
= (λu.u)(xyz).

The following proposition shows that the introduced mapping preserves the
type of a term. The plain notation Γ ⊢ t : α will be used for type assignments in the
system λGtz∩, while Γ ⊢D M : α will be used for type assignments in the system
D .

Proposition 4.35

(i) If Γ ⊢ t : α, then Γ ⊢D ⌊t⌋ : α.

(ii) If Γ;α ⊢ k : β and Γ ⊢D M : α, then Γ ⊢D ⌊k⌋k(M) : β.

4.3. CHARACTERISATION OF SN IN THE λGTZ-CALCULUS 55

Proof: By simultaneous induction on derivations of Γ ⊢ t : α and Γ;α ⊢ k : β. We
distinguish the following cases according to the last typing rule applied:

• Case (Ax) is obtained by the corresponding (Ax) rule in D together with the
rule (∩E), applied a number of times.

• Case (→ R) is easy, because D has the corresponding typing rule.

• Case (Cut). Derivation ends with

Γ ⊢ t : α1 · · ·Γ ⊢ t : αn Γ;∩n
i αi ⊢ k : β

Γ ⊢ tk : β
(Cut).

By applying the IH to the first premise, we have Γ ⊢D ⌊t⌋ : αi, for all i ∈
{1, ...,n}. By repeated application of (∩I), we get Γ ⊢D ⌊t⌋ : ∩n

i αi. Now we
can apply the IH to the second premise, yielding Γ ⊢D ⌊k⌋k(⌊t⌋) : B. This is
what we want, since ⌊k⌋k(⌊t⌋) = ⌊tk⌋.

• Case (Sel). Derivation ends with

Γ,x : α ⊢ t : β
Γ;α ⊢ x̂.t : β

(Sel).

By the IH, we have that Γ,x : α ⊢D ⌊t⌋ : β. Let M ∈ Λ and let Γ ⊢D M : α.
Then in D we have

Γ,x : α ⊢D ⌊t⌋ : β
Γ ⊢D λx.⌊t⌋ : α→ β

(→ I)
Γ ⊢D M : α

Γ ⊢D (λx.⌊t⌋)M : β
(→ E).

This is what we want, since ⌊x̂.t⌋k(M) = (λx.⌊t⌋)M.

• Case (→ L). Derivation ends with

Γ ⊢ t : α1 · · ·Γ ⊢ t : αn Γ;β ⊢ k : γ
Γ;∩n

i αi→ β ⊢ t :: k : γ
(→ L).

By the IH we have Γ ⊢D ⌊t⌋ : αi, for all i ∈ {1, ...,n}. Therefore, by repeated
application of (∩I), we get Γ ⊢D ⌊t⌋ : ∩n

i αi. Now, take some M ∈ Λ such
that Γ ⊢D M : ∩n

i αi→ β. Then in D we have

56 CHAPTER 4. λGTZ-CALCULUS

Γ ⊢D M : ∩n
i αi→ β Γ ⊢D ⌊t⌋ : ∩n

i αi

Γ ⊢D M⌊t⌋ : β
(→ E).

Now, from Γ;β⊢ k : γ and Γ⊢D M⌊t⌋ : β, by the IH we get Γ⊢D ⌊k⌋k(M⌊t⌋) :
γ. This completes the proof, since ⌊k⌋k(M⌊t⌋) = ⌊t :: k⌋k(M). �

The next step towards the proof of the termination of the system λGtz∩ is to
prove that the reductions of the λGtz-calculus could be simulated by the reductions
of the target calculus, namely β, π1 and π2 reductions. In order to do so, we need
some auxiliary propositions. We use the notation→ for the reductions in the λGtz-
calculus, and the notation →λ for the reductions of the λ-calculus enriched with
permutation reductions.

Lemma 4.36 ⌊k⌋k((λx.P)N)→λ (λx.⌊k⌋k(P))N.

Proof: By induction on the structure of the context k.

• Base case k ≡ ŷ.t.

⌊k⌋k((λx.P)N)≡ ⌊ŷ.t⌋k((λx.P)N) = (λy.⌊t⌋)((λx.P)N)→π2

(λx.(λy.⌊t⌋)P)N = (λx.⌊ŷ.t⌋k(P))N ≡ (λx.⌊k⌋k(P))N.

• Case k ≡ t :: k′.

⌊k⌋k((λx.P)N)≡ ⌊t :: k′⌋k((λx.P)N) = ⌊k′⌋k((λx.P)N⌊t⌋)→π1

⌊k′⌋k((λx.P⌊t⌋)N)→IH (λx.⌊k′⌋k(P⌊t⌋))N = (λx.⌊t :: k′⌋k(P))N ≡
(λx.⌊k⌋k(P))N.�

In the following lemma, ⌊k′⌋k ◦⌊k⌋k denotes the composition of two functions.

Lemma 4.37 If M ∈ Λ and k,k′ ∈ ΛGtz
C , then ⌊k′⌋k ◦⌊k⌋k(M)→λ ⌊k@k′⌋k(M).

Proof: By induction on the structure of the context k.

• Base case k ≡ ŷ.t.

⌊k′⌋k ◦⌊k⌋k(M)≡ ⌊k′⌋k(⌊ŷ.t⌋k(M)) = ⌊k′⌋k((λy.⌊t⌋)M).

On the other hand

⌊k@k′⌋k(M)≡ ⌊ŷ.t@k′⌋k(M) = ⌊ŷ.tk′⌋k(M) = (λy.⌊tk′⌋)M =
(λy.⌊k′⌋k(⌊t⌋))M.

4.3. CHARACTERISATION OF SN IN THE λGTZ-CALCULUS 57

Now, the proposition holds by lemma 4.36.

• Case k ≡ t :: k′′.

⌊k′⌋k ◦⌊k⌋k(M)≡ ⌊k′⌋k(⌊t :: k′′⌋k(M)) = ⌊k′⌋k(⌊k′′⌋k(M⌊t⌋)→IH

⌊k′′@k′⌋k(M⌊t⌋)= ⌊t :: k′′@k′⌋k(M)= ⌊(t :: k′′)@k′⌋k(M)≡⌊k@k′⌋k(M).�

Lemma 4.38

a) ⌊t[v/x]⌋= ⌊t⌋[⌊v⌋/x].

b) ⌊k[v/x]⌋k(M) = ⌊k⌋k[⌊v⌋/x](M).

Proof: By mutual induction on the structure of t and k, using the definition of the
substitution.�

Lemma 4.39 If x /∈ Fv(k), then (⌊k⌋k(M))[N/x] = ⌊k⌋k(M[N/x]).

Proof: By induction on the structure of the context k.

• Base case k ≡ ŷ.t, where x /∈ Fv(t) and x ̸= y.

(⌊k⌋k(M))[N/x]≡ (⌊ŷ.t⌋k(M))[N/x] = ((λy.⌊t⌋)M)[N/x] =
(λy.⌊t⌋)M[N/x] = ⌊ŷ.t⌋k(M[N/x])≡ ⌊k⌋k(M[N/x]).

• Case k ≡ t :: k′, where x /∈ Fv(t)∪Fv(k′).

(⌊k⌋k(M))[N/x]≡ (⌊t :: k′⌋k(M))[N/x] = (⌊k′⌋k(M⌊t⌋))[N/x] =IH

⌊k′⌋k((M⌊t⌋)[N/x]) = ⌊k′⌋k((M[N/x]⌊t⌋)) = ⌊t :: k′⌋k(M[N/x])≡
⌊k⌋k(M[N/x]).�

Now, we can prove the proposition stating that λGtz reductions can be simulated
by λ-reductions.

Proposition 4.40 (Simulation of reductions)

(i) If a term t→ t ′, then ⌊t⌋ →λ ⌊t ′⌋.

(ii) If a context k→ k′, then ⌊k⌋k(M)→λ ⌊k′⌋k(M), for any M ∈ Λ.

Proof: By case analysis on the applied reduction. Without losing generality, we
prove the statement only for the outermost reductions.

58 CHAPTER 4. λGTZ-CALCULUS

(β) t ≡ (λx.v)(u :: k)→ u(x̂.vk)≡ t ′.

On the one hand we have

⌊t⌋ ≡ ⌊(λx.v)(u :: k)⌋= ⌊u :: k⌋k(⌊λx.v⌋) = ⌊k⌋k((λx.⌊v⌋)⌊u⌋)

On the other hand,

⌊t ′⌋ ≡ ⌊u(x̂.vk)⌋= ⌊x̂.vk⌋k(⌊u⌋) = (λx.⌊vk⌋)⌊u⌋= (λx.⌊k⌋k(⌊v⌋))⌊u⌋.

Thus ⌊t⌋ →λ ⌊t ′⌋ by Lemma 4.36.

(π) t ≡ (uk)k′→ u(k@k′)≡ t ′.

On the one hand we have

⌊t⌋ ≡ ⌊(uk)k′⌋= ⌊k′⌋k(⌊uk⌋) = ⌊k′⌋k(⌊k⌋k(⌊u⌋))

On the other hand,

⌊t ′⌋ ≡ ⌊u(k@k′)⌋= ⌊k@k′⌋k(⌊u⌋).

Applying Lemma 4.37 we get that ⌊t⌋ →λ ⌊t ′⌋.

(σ) t ≡ u(x̂.v)→ v[u/x]≡ t ′.

On the one hand we have

⌊t⌋ ≡ ⌊u(x̂.v)⌋= ⌊x̂.v⌋k(⌊u⌋) = (λx.⌊v⌋)⌊u⌋.

On the other hand, applying Lemma 4.38, we have that

⌊t ′⌋ ≡ ⌊v[u/x]⌋= ⌊v⌋[⌊u⌋/x].

Therefore, t→λ t ′ by (β) reduction in the λ-calculus.

(µ) x̂.xk→ k.

This reduction reduces context to context, so for an arbitrary M ∈ Λ:

⌊x̂.xk⌋k(M) = (λx.⌊xk⌋)M = (λx.⌊k⌋k(x))M.

Now, this reduces by (β) reduction to (⌊k⌋k(x))[M/x] in λ. Since we know
that x /∈ Fv(k), which is a side condition for the (µ) reduction, we can ap-
ply Lemma 4.39 and get (⌊k⌋k(x))[M/x] = ⌊k⌋k(x[M/x]) = ⌊k⌋k(M). Thus
⌊x̂.xk⌋k(M)→λ ⌊k⌋k(M) by (β) reduction followed by Lemma 4.39. �

Theorem 4.41 (Typeability⇒ SN in λGtz∩) If a λGtz-term t is typeable in the
system λGtz∩, then t is SN.

4.3. CHARACTERISATION OF SN IN THE λGTZ-CALCULUS 59

Proof: Suppose that t is typeable in λGtz∩, but not SN. By Proposition 4.35, ⌊t⌋ is
typeable in D . By Proposition 4.40, each λGtz-reduction of an infinite chain start-
ing with t can be simulated by a λ-reduction, meaning that there exists an infinite
chain of reductions starting with ⌊t⌋. Since ⌊t⌋ is typeable, this is in contradiction
with the SN of the system D (Propositions 3.7 and 4.32). Thus, t must be SN. �

4.3.2 SN⇒ Typeability

In order to prove that all strongly normalising λGtz-expressions are typeable, we
start with proving the typeability of normal forms. Since in the λGtz-calculus β,
π and σ reductions eliminate cuts, βπσ-normal forms are those expression that do
not contain any application, i.e. cut, but the trivial one. The set of these normal
forms can be described in the following way:

(Terms) tn f = x | λx.tn f | x(tn f :: kn f)
(Contexts) kn f = x̂.tn f | tn f :: kn f

Notice that the previous taxonomy of normal forms does not exactly correspond
to the set of βπσµ-normal forms. For example, x̂.x(tn f :: kn f) belongs to the set
of βπσ-normal forms, but can be reduced by the reduction µ to kn f , if x /∈ kn f .
However, since the set of βπσµ-normal forms is a subset of the set of βπσ-normal
forms, we can prove the following proposition.

Proposition 4.42 βπσ-normal forms of the λGtz-calculus are typeable in the λGtz∩
system. Hence so are βπσµ-normal forms.

Proof: By simultaneous induction on the structure of βπσ-normal terms and con-
texts.

• Basic case: Every variable is typeable.

• λx.tn f is typeable.
By the IH, tn f is typeable, so Γ ⊢ tn f : β. We examine two cases:

Case 1. If x : α ∈ Γ, then Γ = Γ′,x : α and we can assign the following type to
λx.tn f :

Γ′,x : α ⊢ tn f : β
(→R)

Γ′ ⊢ λx.tn f : α→ β.

60 CHAPTER 4. λGTZ-CALCULUS

Case 2. If x : α /∈ Γ, then by Proposition 4.19 we get Γ,x : α ⊢ tn f : β thus
concluding

Γ,x : α ⊢ tn f : β
(→R)

Γ ⊢ λx.tn f : α→ β.

• x̂.tn f is typeable.
Proof is similar to the previous one.

• tn f :: kn f is typeable.
By the IH tn f and kn f are typeable, i.e. Γ1 ⊢ tn f : α and Γ2;β ⊢ kn f : γ. Then,
by Proposition 4.21 we get Γ1 ∩Γ2 ⊢ tn f : α and Γ1 ∩Γ2;β ⊢ kn f : γ, so we
assign the following type to tn f :: kn f :

Γ1∩Γ2 ⊢ tn f : α Γ1∩Γ2;β ⊢ kn f : γ
(→L)

Γ1∩Γ2;α→ β ⊢ tn f :: kn f : γ.

• x(tn f :: kn f) is typeable.
By the IH and the previous case, the context tn f :: kn f is typeable, i.e. Γ;α→
β ⊢ tn f :: kn f : γ. We examine three cases:

Case 1. If x : α→ β ∈ Γ, then:

(Ax)
Γ ⊢ x : α→ β Γ;α→ β ⊢ tn f :: kn f : γ

(Cut)
Γ ⊢ x(tn f :: kn f) : γ.

Case 2. If x : δ ∈ Γ, then Γ = Γ′,x : δ and we can expand the basis of x : α→
β ⊢ x : α→ β to Γ′,x : δ∩ (α→ β) ⊢ x : α→ β using Propositions 4.17
and 4.19. Also, by Proposition 4.17, we have Γ′,x : δ∩ (α→ β);α→
β ⊢ tn f :: kn f : γ. Now, the corresponding type assignment is:

Γ′,x : δ∩ (α→ β) ⊢ x : α→ β Γ′,x : δ∩ (α→ β);α→ β ⊢ tn f :: kn f : γ
(Cut)

Γ′,x : δ∩ (α→ β) ⊢ x(tn f :: kn f) : γ.

Case 3. If x /∈ Dom(Γ), by Proposition 4.19 we get Γ,x : α→ β;α→ β ⊢ tn f ::
kn f : γ from Γ;α→ β ⊢ tn f :: kn f : γ, and then conclude:

(Ax)
Γ,x : α→ β ⊢ x : α→ β Γ,x : α→ β;α→ β ⊢ tn f :: kn f : γ

(Cut)
Γ,x : α→ β ⊢ x(tn f :: kn f) : γ.

4.3. CHARACTERISATION OF SN IN THE λGTZ-CALCULUS 61

�

The next goal is to prove that the type of a λGtz-expression does not change
during the expansion - a process reverse to reduction. In order to achieve that goal,
we first treat the cases of particular expansions.

Lemma 4.43 (β-expansion for λGtz∩) If Γ ⊢ u(x̂.tk) : α and x ̸∈ Fv(u)∪Fv(k),
then Γ ⊢ (λx.t)(u :: k) : α.

Proof: Γ ⊢ u(x̂.tk) : α implies, by Generation lemma 4.16(iv), that there is a type
β≡∩n

i βi, such that Γ ⊢ u : βi, for all i ∈ {1, ...,n} and Γ;∩n
i βi ⊢ x̂.(tk) : α. Further,

this implies, by Generation lemma 4.16(iii), that Γ,x : ∩n
i βi ⊢ tk : α so applying

again Generation lemma 4.16(iv) we obtain that there is a type γ≡ ∩m
j γ j such that

Γ,x :∩n
i βi ⊢ t : γ j for all j ∈ {1, ...,m} and Γ,x :∩n

i βi;∩m
j γ j ⊢ k : α. By assumption,

the variable x is not free in k, so using Proposition 4.19 we can write the previous
sequent as Γ;∩m

j γ j ⊢ k : α. Now, because of the equivalence ∩m
j (∩n

i βi → γ j) ∼
∩n

i βi→∩m
j γ j, we have5:

Γ,x : ∩n
i βi ⊢ t : γ j, ∀ j

(→R)
Γ ⊢ λx.t : ∩n

i βi→ γ j, ∀ j

Γ ⊢ u : βi, ∀i Γ;∩m
j γ j ⊢ k : α

(→L)
Γ;∩n

i βi→∩m
j γ j ⊢ u :: k : α

(Cut)
Γ ⊢ (λx.t)(u :: k) : α.

�

The following two lemmas treat the expansions containing the meta-operators
of the λGtz-calculus.

Lemma 4.44 (Inverse substitution lemma for λGtz∩)

(i) Let Γ ⊢ v[t/x] : α, and let t be typeable. Then there is a basis Γ′ and a type
β≡ ∩n

i βi, such that Γ′,x : ∩n
i βi ⊢ v : α and Γ′ ⊢ t : βi, for all i ∈ {1, ...,n}.

(ii) Let Γ;γ ⊢ k[t/x] : α, and let t be typeable. Then there is a basis Γ′ and a type
β≡ ∩n

i βi, such that Γ′,x : ∩n
i βi;γ ⊢ k : α and Γ′ ⊢ t : βi, for all i ∈ {1, ...,n}.

Proof: By simultaneous induction on the structure of the term v and the context k.

• The base cases:
5We are aware that the usage of quantifiers is not completely correct in the type derivations, but

due to the lack of space we were forced to choose a compact form over the completely correct one.

62 CHAPTER 4. λGTZ-CALCULUS

– v≡ x.
Then v[t/x] = x[t/x] , t. From the first premise we have Γ ⊢ t : α,
whereas from the assumption that t is typeable we have Γ∗ ⊢ t : γ. Since
x /∈Fv(t), by the Proposition 4.19 it follows that x /∈Γ and x /∈Γ∗. Now,
for Γ′≡Γ∩Γ∗ and β=α∩γ by (Ax) we have Γ′,x : α∩γ⊢ x : α, and by
the bases intersection (Proposition 4.21) we get Γ′ ⊢ t : α and Γ′ ⊢ t : γ.

– v≡ y.
Then v[t/x] = y[t/x], y, therefore Γ ⊢ y : α. From the assumption that
t is typeable we have Γ∗ ⊢ t : β. Since x /∈ Fv(t), x /∈ Γ∗ and x /∈ Γ.
Now, for Γ′ ≡ Γ∩Γ∗ and by the Propositions 4.19 and 4.21 we have
Γ′,x : β ⊢ y : α and Γ′ ⊢ t : β.

• v≡ λy.v′.
v[t/x] = (λy.v′)[t/x] , λy.v′[t/x]. From Γ ⊢ λy.v′[t/x] : α, by Generation
lemma 4.16(ii) it follows that α ≡ γ→ δ and Γ,y : γ ⊢ v′[t/x] : δ. Applying
the IH to v′ we conclude that there exist Γ′ and∩m

j β j such that Γ′,x :∩m
j β j,y :

γ ⊢ v′ : δ and Γ,y : γ ⊢ t : β j for all j ∈ {1, ...,m}. Now, we conclude:

Γ′,x : ∩m
j β j,y : γ ⊢ v′ : δ

(→R).
Γ′,x : ∩m

j β j ⊢ λy.v′ : γ→ δ

• k ≡ ŷ.t ′.
Then k[t/x] = (ŷ.t ′)[t/x] , ŷ.t ′[t/x]. From Γ;γ ⊢ ŷ.t ′[t/x] : α, by Generation
lemma 4.16(iii) it follows that Γ,y : γ ⊢ t ′[t/x] : α. Applying the IH to t ′

we obtain Γ′ and ∩n
i βi such that Γ′,x : ∩n

i βi ⊢ t ′ : A and Γ′ ⊢ t : βi, for all
i ∈ {1, ...,n}. Since y /∈ Fv(t), y /∈ Γ′, by the Proposition 4.19 we get:

Γ′,x : ∩n
i βi,y : γ ⊢ t ′ : α

(Sel)
Γ′,x : ∩n

i βi;γ ⊢ ŷ.t ′ : α.

• v≡ t ′k.
Then v[t/x] = (t ′k)[t/x], (t ′[t/x])(k[t/x]). From the premise
Γ ⊢ (t ′[t/x])(k[t/x]) : α and by Generation lemma 4.16(iv) we have that there
is a type ∩n

i γi such that Γ ⊢ t ′[t/x] : γi for all i ∈ {1, ...,n}, and Γ;∩n
i γi ⊢

k[t/x] : α. Applying the IH to t ′ we conclude that there exist Γ1 and ∩m
j β′j

such that Γ1 ⊢ t : β′j for all j ∈ {1, ...,m} and Γ1,x : ∩m
j B′j ⊢ t ′ : γi for all i ∈

{1, ...,n}. Further, applying the IH to k we conclude that there exist Γ2 and
∩p

k β′′k such that Γ2 ⊢ t : β′′k for all k ∈ {1, ..., p}, and Γ2,x : ∩p
k β′′k ;∩n

i γi ⊢ k : α.
Now, for Γ′ ≡ Γ1∩Γ2 and ∩q

l βl ≡ (∩m
j β′j)∩ (∩

p
k β′′k) we have that Γ′ ⊢ t : βl

4.3. CHARACTERISATION OF SN IN THE λGTZ-CALCULUS 63

for all l ∈ {1, ...,q}, and

Γ′,x : ∩q
l βl ⊢ t ′ : γ1 · · ·Γ′,x : ∩q

l βl ⊢ t ′ : γn Γ1,x : ∩q
l βl;∩n

i γi ⊢ k : α
(Cut)

Γ′,x : ∩q
l βl ⊢ t ′k : α,

using the Propositions 4.19 and 4.17.

• k ≡ t ′ :: k′.
Then k[t/x] , (t ′[t/x]) :: (k′[t/x]), hence from Γ;γ ⊢ t ′[t/x] :: k′[t/x] : α, by
Generation lemma 4.16(v), it follows that γ ≡ ∩n

i δi → ε , Γ ⊢ t ′[t/x] : δi,
for all i ∈ {1, ...,n} and Γ;ε ⊢ k′[t/x] : α. Applying the IH to both sequents
we conclude that there exist Γ′, Γ′′, ∩m

j β′j and ∩p
k β′′k such that Γ′ ⊢ t : β′j

for all j ∈ {1, ...,m}, Γ′,x : ∩m
j β′j ⊢ t ′ : δ , Γ′′ ⊢ t : β′′k for all k ∈ {1, ..., p},

and Γ′′,x : ∩p
k β′′k ;ε ⊢ k′ : α. For Γ1 ≡ Γ′∩Γ′′ and ∩q

l βl ≡ ∩m
j β′j ∩ (∩

p
k β′′k) we

conclude that Γ1 ⊢ t : βl for all l ∈ {1, ...,q} and

Γ1,x : ∩q
l βl ⊢ t ′ : δ1 · · ·Γ1,x : ∩q

l βl ⊢ t ′ : δn Γ1,x : ∩q
l βl;ε ⊢ k′ : α

(→L)
Γ1,x : ∩q

l βl;∩n
i δi→ ε ⊢ t ′ :: k′ : α

which completes the proof since ∩n
i δi→ ε≡ γ. �

Lemma 4.45 (Inverse append lemma for λGtz∩) If Γ;β ⊢ k@k′ : α then there is
a type γ≡ ∩n

i γi such that Γ;β ⊢ k : γi for all i ∈ {1, ...,n} , and Γ;∩n
i γi ⊢ k′ : α.

Proof: By induction on the structure of k.

• Basic case: k ≡ x̂.v.
In this case k@k′ = (x̂.v)@k′ = x̂.vk′. From Γ;β ⊢ x̂.vk′ : α, by Gener-
ation lemma 4.16(iii), we have that Γ,x : β ⊢ vk′ : α. Then, by Genera-
tion lemma 4.16(iv), there is a type γ ≡ ∩n

i γi such that Γ,x : β ⊢ v : γi, for
all i ∈ {1, ...,n}, and Γ,x : β;∩n

i γi ⊢ k′ : α. From the first sequent we get
Γ;β ⊢ x̂.v : γi, for all i ∈ {1, ...,n}. From the second one, considering that x
is not free in k′, we get Γ;∩n

i γi ⊢ k′ : α.

• k ≡ u :: k′′.
In this case, k@k′=(u :: k′′)@k′= u :: (k′′@k′). From Γ;β⊢ u :: (k′′@k′) : α,
by Generation lemma 4.16(v), β≡∩n

i γi→ δ, Γ;δ ⊢ k′′@k′ : α and Γ ⊢ u : γi,
for all i ∈ {1, ...,n}. From the first sequent, by the IH, we get some ε≡∩m

j ε j

64 CHAPTER 4. λGTZ-CALCULUS

such that Γ;δ ⊢ k′′ : ε j, for all j ∈ {1, ...,m}, and Γ;∩m
j ε j ⊢ k′ : α. Finally,

for each j ∈ {1, ...,m}, we have

Γ ⊢ u : γ1 · · ·Γ ⊢ u : γn Γ;δ ⊢ k′′ : ε j
(→L)

Γ;∩n
i γi→ δ(≡ β) ⊢ u :: k′′ : ε j

so the proof is completed. �

Proposition 4.46 (Subject expansion at head position for λGtz∩) Let t → t ′, and
let t be the contracted redex. If t ′ is typeable in λGtz∩, then t is typeable in λGtz∩.

Proof: We examine four different cases, according to the last applied reduction.

• (β) : Directly follows from Lemma 4.43.

• (σ) : We show that typeability of t ′ ≡ v[u/x] leads to typeability of t ≡ ux̂.v.
Assume that Γ ⊢ v[u/x] : α. By Lemma 4.44 there exist Γ′ and β≡∩n

i βi such
that Γ′ ⊢ u : βi, for all i ∈ {1, ...,n} and Γ′,x : ∩n

i βi ⊢ v : α. Now

Γ′ ⊢ u : β1 · · ·Γ′ ⊢ u : βn

Γ′,x : ∩n
i βi ⊢ v : α

(Sel)
Γ′;∩n

i βi ⊢ x̂.v : α
(Cut)

Γ′ ⊢ ux̂.v : α.

• (π) : We show that typeability of t(k@k′) implies typeability of (tk)k′. From
Γ ⊢ t(k@k′) : α, by Generation lemma 4.16(iv) we have that there exists
β≡∩n

i βi such that Γ ⊢ t : βi, for all i ∈ {1, ...,n}, and Γ;∩n
i βi ⊢ k@k′ : α. By

applying Lemma 4.45 to the previous sequent,
we get Γ;∩n

i βi ⊢ k : γ j, for all j ∈ {1, ...,m}, and Γ;∩m
j γ j ⊢ k′ : α, for some

type γ≡ ∩m
j γ j. Now, for each j ∈ {1, ...,m}, we have

Γ ⊢ t : β1 · · ·Γ ⊢ t : βn Γ;∩n
i βi ⊢ k : γ j

(Cut)
Γ ⊢ tk : γ j

So Γ ⊢ tk : γ j, for all j ∈ {1, ...,m}. We obtain Γ ⊢ (tk)k′ : α with one more
application of (Cut) rule.

• (µ) : It should be shown that typeability of k implies typeability of x̂.xk.
Assume Γ;β ⊢ k : α. Since x /∈ k we can suppose that x /∈ Dom(Γ), and by
using Proposition 4.19 write Γ,x : β;β ⊢ k : α. Now

Γ,x : β ⊢ x : β Γ,x : β;β ⊢ k : α
(Cut)

Γ,x : β ⊢ xk : α
(Sel)

Γ;β ⊢ x̂.xk : α.

4.4. REGAINING CONFLUENCE IN THE λGTZ-CALCULUS 65

�

Theorem 4.47 (SN⇒ typeability) All strongly normalising λGtz-expressions are
typeable in the system λGtz∩.

Proof: The proof is by induction on the length of the longest reduction path out of
a strongly normalising expression e, with a subinduction on the size of e.

If e is a βσπµ-normal form, then it is typeable by Proposition 4.42.
If e is itself a redex, let e′ be the expression obtained by contracting the redex

e. Therefore e′ is strongly normalising and by the IH it is typeable. Then e is
typeable, by Proposition 4.46.

Next suppose that e is not itself a redex nor a normal form. Then e is of one
of the following forms: λx.u, x(u :: k), u :: k, or x̂.u (in each case with u or k not
βπσ-normal). Each of the above u and k is strongly normalising, hence typeable
by the IH, as the subexpressions of e. It is easy then to build the typing of e, as in
the proof of Proposition 4.42. �

Finally, we can give a full characterisation of strong normalisation in the λGtz-
calculus.

Corollary 4.48 A λGtz-term is strongly normalising if and only if it is typeable in
λGtz∩.

Proof: By Theorems 4.41 and 4.47. �

4.4 Regaining confluence in the λGtz-calculus

In spite of many desirable features, the λGtz-calculus is not confluent, i.e. does
not satisfy Church-Rosser property, meaning that the choice of the computational
strategy can transform a term into different normal forms. As already stated in
Section 4.1, where the problem is illustrated by Example 4.3, the source of non-
confluence is the presence of a critical pair of reductions, namely π and σ.

In this section, we propose two calculi derived from the λGtz-calculus that do
enjoy the confluence property. The goal is to eliminate the critical pair, and we
achieve it by restricting some reduction rules of the λGtz-calculus. These restric-
tions are made by modifications of the syntax. We also prove that the proposed
calculi are confluent using the modification of the parallel reductions technique.

66 CHAPTER 4. λGTZ-CALCULUS

4.4.1 Two confluent sub-calculi

We start by looking back at Example 4.3. If we forbid the σ reduction to be per-
formed on the term (tk)(x̂.v), we would obtain a "call-by-value" sub-calculus, de-
noted by λGtz

V . The abstract syntax of the λGtz
V -calculus is the following:

Values T ::= x |λx.t
Terms t ::= T | tk
Contexts k ::= x̂.t | t :: k

So, as in [14], we introduce values as a new syntactic category. Reduction rules of
the λGtz

V -calculus are β, π, µ of the λGtz-calculus and

(σV) T (x̂.v) → v[T/x].

This reduction system is forcing us to reduce the head of the cut to the value before
substituting it instead of x in v, which is exactly the essence of the call-by-value
computational strategy.

On the other hand, if we forbid π reduction to be performed on the term
(tk)(x̂.v), we would obtain another confluent sub-calculus, denoted by λGtz

L . The
abstract syntax of the λGtz

L -calculus is the following:

Terms t ::= x |λx.t | tk
Lists l ::= x̂.x | t :: l
Contexts k ::= l | x̂.t

Here, we have to introduce the syntactic category of lists, that are a subset of the
set of contexts and whose form is t1 :: t2 :: ... :: tk :: x̂.x. The trivial selection, x̂.x,
actually represents an empty list [], so by applying this convention we can write
the above list in the form [t1, t2, ..., tk]. Reduction rules of the λGtz

L -calculus are β,
σ, µ of the λGtz-calculus and

(πL) (tk)l → t(k@l).

In this reduction system, only the term of the form (tk)(x̂.x) is at the same time a
σ-redex and a (πL)-redex, but applying each of these two reductions leads to the
same result, namely tk, so the confluence is not broken.

4.4.2 The proof of confluence

After the elimination of the critical pair, we obtained two λGtz-subcalculi, namely
the λGtz

V -calculus and the λGtz
L -calculus. We will now prove the confluence of the

λGtz
V -calculus, whereas the proof of confluence for the λGtz

L -calculus will be skipped
because it is analogous.

4.4. REGAINING CONFLUENCE IN THE λGTZ-CALCULUS 67

Definition 4.49 (Confluence, Church-Rosser property) A reduction R is said to
be confluent if its reflexive and transitive closure �R satisfies the so-called dia-
mond property, i.e. if for all terms t, t1, t2 the following holds:

if t1 � t � t2, then there exists t ′ such that t1 � t ′� t2.

The technique we use for proving this property is the parallel reductions technique,
developed by Takahashi in [68] and adapted by Likavec in [53] for proving the
Church-Rosser property of the λµµ̃ sub-calculi. This approach is based on simul-
taneous reduction of all existing redexes in a term. In the sequel, → will denote
the union of all four λGtz

V reductions and→→ will denote its reflexive and transitive
closure.

First, we need to introduce the notion of parallel reductions for λGtz
V -calculus,

denoted by⇒ and defined inductively as follows:

Definition 4.50 (Parallel reductions for λGtz
V -calculus)

x⇒x (g1)
t⇒ t ′

λx.t⇒λx.t ′
(g2)

t⇒ t ′, k⇒k′

tk⇒ t ′k′
(g3)

t⇒ t ′

x̂.t⇒ x̂.t ′
(g4)

t⇒ t ′, k⇒k′

t :: k⇒ t ′ :: k′
(g5)

t⇒ t ′, u⇒u′, k⇒k′

(λx.t)(u :: k)⇒u′x̂.(t ′k′)
(g6)

T⇒T ′, t⇒ t ′

T (x̂.t)⇒ t ′[T ′/x]
(g7)

t⇒ t ′, k⇒k′, k1⇒k′1
(tk)k1⇒ t ′(k′@k′1)

(g8) k⇒k′

x̂.xk⇒k′
(g9)

Lemma 4.51 (Reflexivity) For every expression e, e⇒e.

Proof: By induction on the structure of e. The basic case is covered by the rule
(g1) from definition 4.50. In all other cases, we apply the IH on subexpressions of
e and rules (g2) - (g5). �

Lemma 4.52 (Substitution) If x ̸= y and x ̸∈ Fv(v2), then

e[v1/x][v2/y] = e[v2/y][(v1[v2/y])/x].

Proof: By induction on the structure of e. The basic case is when e is a variable.
There are three possibilities:

68 CHAPTER 4. λGTZ-CALCULUS

• e≡ x.
Then, x[v1/x][v2/y] = v1[v2/y] and x[v2/y][(v1[v2/y])/x]
= x[(v1[v2/y])/x] = v1[v2/y].

• e≡ y.
Then, y[v1/x][v2/y] = y[v2/y] = v2 and y[v2/y][(v1[v2/y])/x]
= v2[(v1[v2/y])/x] = v2, because x ̸∈ Fv(v2).

• e≡ z, such that z ̸= x and z ̸= y.
Then both sides are equal to z.

In all other cases, we apply the IH to the subexpressions of e. �

Now, we give the definition of holes.

Definition 4.53 (Holes)

Ht ::= [] | λx.Ht | tHc |Htk
Hc ::= x̂.Ht | t :: Hc |Ht :: k

We will write H instead of Ht ∪Hc. H [e] denotes filling the hole in C with an
expression e. Now, we can prove the following statement, in which we will also
use h,h′, ... to denote expressions.

Lemma 4.54

(i) If e→ e′, then e⇒e′.

(ii) If e⇒e′, then e→→e′.

(iii) If e⇒e′ and h⇒h′, then e[h/x]⇒e′[h′/x].

Proof:

(i) By induction on the kind of a hole in a redex. If e→ e′, then e = H [h],
e′ = H [h′] and h→ h′.

• The basic case is H ≡ [].
There are four possible cases of reductions in h→ h′.

- β-reduction - then h≡ (λx.t)(u :: k) and h′≡ u(x̂.tk). By Lemma 4.51
t⇒ t, u⇒u and k⇒k, so from the rule (g6) of Definition 4.50
h⇒h′, hence e⇒e′.

4.4. REGAINING CONFLUENCE IN THE λGTZ-CALCULUS 69

- σ-reduction - then h ≡ T x̂.v and h′ ≡ v[T/x]. By Lemma 4.51
T⇒T and v⇒v, so from the rule (g7) we have that h⇒h′.

- π-reduction - then h ≡ (tk)k′ and h′ ≡ tk@k′. By Lemma 4.51
t⇒ t, k⇒k and k′⇒k′, so from the rule (g8) h⇒h′.

- µ-reduction - then h ≡ x̂.xk and h′ ≡ k. By Lemma 4.51 k⇒k, so
from the rule (g9) h⇒h′.

• H ≡ λx.H ′.
Then e≡ λx.H ′[h] and e′≡ λx.H ′[h′]. By the IH we have H ′[h]⇒H ′[h′],
so from the rule (g2) of Definition 4.50 we get e⇒e′.

• H ≡ t H ′.
Then e≡ t H ′[h] and e′ ≡ t H ′[h′]. By the IH we have H ′[h]⇒H ′[h′],
from Lemma 4.51 we have t⇒ t so from the rule (g3) of Definition 4.50
we get e⇒e′.
The proof is similar for the remaining hole kinds.

(ii) By induction on the definition of the parallel reduction. We show several
cases, the others are proved similarly.

• Basic case is e≡ x⇒x≡ e′.
In that case, e≡ x→→x≡ e′ is trivially satisfied.

• e≡ tk⇒ t ′k′ ≡ e′.
This is the direct consequence of the premises t⇒ t ′ and k⇒k′. By the
IH, t→→ t ′ and k→→k′, hence

e≡ tk→→ t ′k′ ≡ e′.

• e≡ (λx.t)(u :: k)⇒u′(x̂.t ′k′)≡ e′.
This is the direct consequence of the premises t⇒ t ′, u⇒u′ and k⇒k′.
By the IH, t→→ t ′, u→→u′ and k→→k′, hence

e≡ (λx.t)(u :: k)→ u(x̂.tk)→→u′(x̂.t ′k′)≡ e′.

(iii) By induction on the definition of the parallel reduction.

• The first basic case is e≡ x⇒x≡ e′.
Then e[h/x] ≡ x[h/x] = h⇒h′ = x[h/x′] ≡ e′[h/x′], which is given in
assumptions.

70 CHAPTER 4. λGTZ-CALCULUS

• The second basic case is e≡ y⇒y≡ e′, y ̸= x.
Then e[h/x]≡ y[h/x] = y⇒y = y[h/x′]≡ e′[h/x′], by rule (g1) of Def-
inition 4.50.

• e≡ λy.t⇒λy.t ′ ≡ e′.
This follows from the premise t⇒ t ′, so by applying the IH we get
t[h/x]⇒ t ′[h′/x]. From this, by the rule (g2) and the substitution defi-
nition we obtain

e[h/x]≡ λy.t[h/x]⇒λy.t ′[h/x′]≡ e′[h/x′].

• e≡ tk⇒ t ′k′ ≡ e′.
Premises of this statement are t⇒ t ′ and k⇒k′. Applying the IH to
both of them we get t[h/x]⇒ t ′[h/x′] and k[h/x]⇒k′[h/x′]. Now we
derive

e[h/x] ≡ (tk)[h/x] = t[h/x]k[h/x]
⇒ t ′[h/x′]k′[h/x′] = (t ′k′)[h/x′]
≡ e′[h/x′],

using the substitution definition and the rule (g3) of Definition 4.50.

• e≡ ŷ.t⇒ ŷ.t ′ ≡ e′.
The direct premise of the statement is t⇒ t ′, so applying the IH to it we
get t[h/x]⇒ t ′[h/x′]. From this, by the rule (g4) and the substitution
definition it follows that

e[h/x]≡ ŷ.t[h/x]⇒ ŷ.t ′[h′/x]≡ e′[h′/x].

• e≡ t :: k⇒ t ′ :: k′ ≡ e′.
The statement follows from the premises t⇒ t ′ and k⇒k′. By applying
the IH to both of them we get t[h/x]⇒ t ′[h′/x] and k[h/x]⇒k′[h′/x],
yielding

e[h/x] ≡ (t :: k)[h/x]
= t[h/x] :: k[h/x]
⇒ t ′[h′/x] :: k′[h′/x]
= (t ′ :: k′)[h′/x]
≡ e′[h′/x],

by the substitution definition and the rule (g5) of Definition 4.50.

• e≡ (λy.t)(u :: k)⇒u′ŷ.(t ′k′)≡ e′.
Direct premises of this statement are t⇒ t ′, u⇒u′ and k⇒k′. From the

4.4. REGAINING CONFLUENCE IN THE λGTZ-CALCULUS 71

IH we have t[h/x]⇒ t ′[h′/x], u[h/x]⇒u′[h′/x] and k[h/x]⇒k′[h′/x].
Now,

e[h/x] ≡ ((λy.t)(u :: k))[h/x]
= (λy.t)[h/x](u[h/x] :: k[h/x])
⇒ u′[h′/x]ŷ.(t ′[h′/x]k′[h′/x])
≡ e′[h′/x],

using the rule (g6) of Definition 4.50.

• e≡ T ŷ.u⇒u′[T ′/y]≡ e′.
This is the consequence of the premises t⇒ t ′ and u⇒u′. From the IH
we get t[h/x]⇒ t ′[h′/x] and u[h/x]⇒u′[h′/x], so applying Lemma 4.52
we derive

e[h/x] ≡ (T ŷ.u)[h/x]
= T [h/x]ŷ.u[h/x]
⇒ u′[h′/x][(T ′[h′/x])/y]
= u′[T ′/y][h′/x]
≡ e′[h′/x],

using the rule (g7) of Definition 4.50.

• e≡ (tk)k1⇒ t ′(k′@k′1)≡ e′.
The statement follows from the premises t⇒ t ′, k⇒k′ and k1⇒k′1.
From the IH we get t[h/x]⇒ t ′[h′/x], k[h/x]⇒k′[h′/x] and k1[h/x]⇒k′1[h

′/x].
Now, by using the rule (g8) of Definition 4.50, we conclude

e[h/x] ≡ ((tk)k1)[h/x]
= (t[h/x]k[h/x])k1[h/x]
⇒ t ′[h′/x](k′[h′/x]@k′1[h

′/x])
≡ e′[h′/x].

• e≡ x̂.xk⇒k′ ≡ e′.
The statement follows from the premise k⇒k′. From the IH we get
k[x := h]⇒k′[x := h′], and then by using the rule (g9) of Definition 4.50
we conclude

e[h/x] ≡ (x̂.xk)[h/x]
= x̂.xk[h/x]
⇒ k′[h′/x]
≡ e′[h′/x],

so the proof is done.�

The expression e∗, introduced in the following definition, is obtained from e by
simultaneously reducing all existing redexes of e.

72 CHAPTER 4. λGTZ-CALCULUS

Definition 4.55 Let e be an expression. The expression e∗ is inductively defined as
follows:

(∗1) x∗ ≡ x

(∗2) (λx.t)∗ ≡ λx.t∗

(∗3) (x̂.t)∗ ≡ x̂.t∗

(∗4) (t :: k)∗ ≡ t∗ :: k∗

(∗5) (tk)∗ ≡ t∗k∗ if tk ̸= (λx.v)(u :: k1) and tk ̸= T (x̂.v) and tk ̸= (uk1)k2

(∗6) ((λx.t)(u :: k))∗ ≡ u∗(x̂.t∗k∗)

(∗7) (T (x̂.v))∗ ≡ v∗[T ∗/x]

(∗8) ((tk)k1)
∗ ≡ t∗(k∗@k∗1).

Theorem 4.56 (Star-property of⇒) If e⇒e′, then e′⇒e∗.

Proof: By induction of the structure of e. We are proving several cases, the re-
maining cases are similar.

• e≡ x.
e can be only reduced in parallel to itself i.e. e′ ≡ x. On the other hand,
e∗ ≡ x.

• e≡ x̂.t.
Then e′ ≡ x̂.t ′ for some t ′ such that t⇒ t ′. From the IH, we get t ′⇒ t∗,
yielding e′ ≡ x̂.t ′⇒ x̂.t∗ ≡ e∗.

• e≡ tk and e ̸= (λx.v)(u :: k) and e ̸= T (x̂.v) and e ̸= (uk1)k2.
In that case, applying (g7) we get e⇒ t ′k′ for some t ′ and k′ such that t⇒ t ′

and k⇒k′. From the IH, t ′⇒ t∗ and k′⇒k∗, so we have e′ ≡ t ′k′⇒ t∗k∗ ≡ e∗.

• e≡ (λx.t)(u :: k).
Now there are two options for the structure of e′, because e can be reduced
in parallel by rules (g3) and (g6).

1. e′ ≡ (λx.t ′)(u′ :: k′) for some t ′, u′ and k′ such that t⇒ t ′, u⇒u′ and
k⇒k′. By applying the IH to each of the three subexpressions, we get
t ′⇒ t∗, u′⇒u∗ and k′⇒k∗. Finally, from (∗6) we get e′ ≡ (λx.t ′)(u′ ::
k′)⇒u∗x̂.t∗k∗ ≡ e∗.

4.4. REGAINING CONFLUENCE IN THE λGTZ-CALCULUS 73

2. e′ = u′x̂.t ′k′ for some t ′, u′ and k′ such that t⇒ t ′, u⇒u′ and k⇒k′.
By applying the IH to each of the three subexpressions, we again get
t ′⇒ t∗, u′⇒u∗ and k′⇒k∗. The statement now follows from rules (∗3)
and (∗5).

• G≡ T x̂.v.
Also in this case there are two options for the structure of e′, because e can
be reduced in parallel by rules (g3) and (g7).

1. e′ ≡ T ′x̂.v′ for some T ′ and v′ such that T⇒T ′ and v⇒v′. From the IH
on both subexpressions we get T ′⇒T ∗ and v′⇒v∗. Finally, by using
(∗7) we get e′ ≡ T ′x̂.v′⇒v∗[T ∗/x]≡ e∗.

2. e′ = v′[T ′/x] for some T ′ and v′ such that T⇒T ′ and v⇒v′. From
the IH on both subexpressions we get T ′⇒T ∗ and v′⇒v∗. Proposi-
tion 4.54 yields e′ ≡ v′[T ′/x]⇒v∗[T ∗/x]≡ e∗.�

Now, it is easy to prove the diamond-property for⇒.

Theorem 4.57 (Diamond-property for⇒)
If e1⇐e⇒e2, then e1⇒e′⇐e2 for some e′.

Finally, as a consequence of Theorem 4.57, we obtain the confluence of the
λGtz

V -calculus.

Theorem 4.58 (Confluence of the λGtz
V -calculus)

If e1←←e→→e2 then e1→→e′←←e2 for some e′.

If the definitions of the parallel reductions and e∗ are changed in accordance
to the syntax and reduction rules of the λGtz

L -calculus, the proof of confluence of
the other λGtz sub-calculus is analogous to the one for λGtz

V . In order to avoid
repetition, here we present only the two notions that differ significantly.

Definition 4.59 (Parallel reductions for the λGtz
L -calculus)

x⇒x (g1)
t⇒ t ′

λx.t⇒λx.t ′
(g2)

t⇒ t ′, k⇒k′

tk⇒ t ′k′
(g3)

t⇒ t ′

x̂.t⇒ x̂.t ′
(g4)

t⇒ t ′, k⇒k′

t :: k⇒ t ′ :: k′
(g5)

74 CHAPTER 4. λGTZ-CALCULUS

t⇒ t ′, u⇒u′, k⇒k′

(λx.t)(u :: k)⇒u′x̂.(t ′k′)
(g6)

u⇒u′, t⇒ t ′

u(x̂.t)⇒ t ′[u′/x]
(g7)

t⇒ t ′, k⇒k′, l⇒ l′

(tk)l⇒ t ′(k′@l′)
(g8) k⇒k′

x̂.xk⇒k′
(g9)

Definition 4.60 Let e be an expression. The expression e∗ for the λGtz
L -calculus is

inductively defined as follows:

(∗1) x∗ ≡ x

(∗2) (λx.t)∗ ≡ λx.t∗

(∗3) (x̂.t)∗ ≡ x̂.t∗

(∗4) (t :: k)∗ ≡ t∗ :: k∗

(∗5) (tk)∗ ≡ t∗k∗ if tk ̸= (λx.v)(u :: k1) and tk ̸= t1(x̂.v) and tk ̸= (uk)l

(∗6) ((λx.t)(u :: k))∗ ≡ u∗(x̂.t∗k∗)

(∗7) (t(x̂.v))∗ ≡ v∗[t∗/x]

(∗8) ((tk)l)∗ ≡ t∗(k∗@l∗).

Chapter 5

λGtz
r -calculus

In this chapter we present the λGtz
r -calculus (pronounced resource control lambda

Gentzen), which provides the Curry-Howard correspondence for the implicative
fragment of intuitionistic logic formulated in Gentzen’s sequent calculus with ex-
plicit structural rules of weakening and contraction. It is obtained by extending the
λGtz-calculus of Espírito Santo [27], presented in the previous chapter.

The design of the λGtz
r -calculus has been motivated by Kesner and Lendgrand’s

λlxr-calculus [45], an intuitionistic calculus featuring linearity and explicit opera-
tors for substitution, erasure and duplication in the natural deduction setting. This
calculus was designed to provide a correspondence with multiplicative exponential
fragment of linear logic, whereas the λGtz

r -calculus brings the correspondence to
the intuitionistic sequent calculus with explicit structural rules. The λlxr-calculus
introduces new terms in a way that keeps the good underlying properties of its
predecessor λx [8, 62], a calculus with explicit substitution, such as strong normal-
isation, confluence and subject reduction. Moreover, it has a sound and complete
correspondence with intuitionistic proof net model, and the computation preserves
the set of free variables and the linearity of terms.

In order to obtain a sequent counterpart of the λlxr-calculus, we extended the
λGtz-calculus with explicit expressions for erasure and duplication, which on the
logical side correspond to the explicit structural rules of weakening and contrac-
tion, respectively. This means that the important computational features such as
erasure and duplication are explicitly controlled, rather than being hidden in the
form of other reduction rules.

One natural consequence is the decomposition of reduction steps into more
atomic ones, which reveals the details of computation that are usually left implicit.
Since erasing and duplicating (sub)terms essentially changes the structure of a pro-
gram, it is important to see how this mechanism really works and to be able to

75

76 CHAPTER 5. λGTZ
r -CALCULUS

control this part of computation, and to eventually propose a way of optimization
of the computation process in terms of the required resources. The other conse-
quence is the change of the notion of an expression. In the presence of explicit
resource control operators, the only well-formed expressions are the ones in which
every binder binds exactly one occurrence of a free variable, and therefore only
such expressions are in our focus1. However, this is not a restriction in compari-
son with ordinary lambda terms, since all lambda terms can be represented in the
resource control calculus.

The structure of this chapter mimics the structure of the previous one - we
first propose the untyped calculus, then introduce a type assignment system with
simple types, and finally add the intersection type operator, in order to obtain the
characterisation of strongly normalising λGtz

r - terms. The entire chapter represents
original contribution of the thesis, and was developed by Pierre Lescanne, Silvia
Ghilezan, Silvia Likavec, Dragiša Žunić and myself, and published in [35, 32, 33].

5.1 Type-free λGtz
r -calculus

The resource control lambda Gentzen calculus λGtz
r is derived from the λGtz-calculus

(more precisely from its confluent sub-calculus λGtz
V presented in Section 4.4) by

adding the explicit operators for erasure and duplication to both terms and contexts.
On the other hand, it can be seen as a sequent counterpart of the λlxr-calculus in
which the substitution is treated as a meta-operator, i.e. implicitly. The first vari-
ant of this calculus was proposed in [35]2. In accordance with its corresponding
structural rule in the sequent calculus, the operator which performs duplication will
from now on be called contraction, whereas the erasure operator will be referred
to as weakening. This practise has been already established in the λGtz-calculus,
where the application operator was called cut.

5.1.1 Syntax

First of all, we introduce the syntactic category of pre-expressions. The abstract
syntax of λGtz

r pre-expressions is the following:

Pre-values F ::= x |λx. f |x⊙ f |x <x1
x2

f
Pre-terms f ::= F | f c
Pre-contexts c ::= x̂. f | f :: c |x⊙ c |x <x1

x2
c

where x ranges over a denumerable set of term variables.
1Corresponding notion in λlxr-calculus is the notion of “linear terms".
2Where it was named linear lambda Gentzen calculus and denoted by ℓλGtz

5.1. TYPE-FREE λGTZ
r -CALCULUS 77

A pre-value can be a variable, an abstraction, a weakening or a contraction;
a pre-term is either a value or a cut (an application). A pre-context is one of the
following: a selection, a context constructor (usually called “cons"), a weakening
on pre-context or a contraction on a pre-context. Pre-terms and pre-contexts are
together referred to as the pre-expressions and will be ranged over by E. Pre-
contexts x⊙c and x <x1

x2
c behave exactly as the corresponding pre-terms x⊙ f and

x <x1
x2

f in the untyped calculus, so they will mostly not be treated separately.

Definition 5.1

(i) The list of free variables of a pre-expression E, denoted by Fv[E], is de-
fined as follows (where l,m denotes the list obtained by the concatenation
of the two lists l and m and l \ x denotes the list obtained by removing all
occurrences of an element x from the list l):

Fv[x] = x;
Fv[λx. f] = Fv[f]\ x;
Fv[f c] = Fv[f],Fv[c];
Fv[x̂. f] = Fv[f]\ x;
Fv[f :: c] = Fv[f],Fv[c];
Fv[x⊙E] = x,Fv[E];
Fv[x <x1

x2
E] = x,((Fv[E]\ x1)\ x2).

(ii) The set of free variables of a pre-expression E, denoted by Fv(E), is ex-
tracted out of the list Fv[E], by un-ordering the list and removing multiple
occurrences of each variable, if any.

(iii) The set of bound variables of a pre-expression E, denoted by Bv(E), contains
all variables that exist in E, but are not free in it.

Example 5.2 Let E ≡ z⊙u <x1
x2

x(z :: x2 :: x1 :: ŷ.y). Then:

Fv[E] = z,u,x,z
Fv(E) = {x,u,z}
Bv(E) = {x1,x2,y}.

In x <x1
x2

E, the contraction binds the variables x1 and x2 in E and introduces a
free variable x. The operator x⊙E also introduces a free variable x. In order to
avoid parentheses, we let the scope of all binders extend to the right as much as
possible.

One may wonder why do we define both lists and sets of free variables. The
notion of a list Fv[E] is used in the definition of implicit substitution in the case

78 CHAPTER 5. λGTZ
r -CALCULUS

of contraction (see Figure 5.4) where the order of variables needs to be controlled,
whereas in all other situations, where the order of free variables is irrelevant, it is
more convenient to work with sets. The following lemma provides the direct way
for constructing Fv(E), based on the structure of a pre-expression E.

Lemma 5.3 The set Fv(E) can be constructed as follows:

Fv(x) = x;
Fv(λx. f) = Fv(f)\{x};
Fv(f c) = Fv(f)∪Fv(c);
Fv(x̂. f) = Fv(f)\{x};
Fv(f :: c) = Fv(f)∪Fv(c);
Fv(x⊙E) = {x}∪Fv(E);
Fv(x <x1

x2
E) = {x}∪ (Fv(E)\{x1,x2}).

Proof: The proof follows directly from items (i) and (ii) of Definition 5.1. �

Now, using the notion of the set of free variables, we are able to extract the set
of λGtz

r -expressions (namely values, terms and contexts) out of the set of λGtz
r pre-

expressions. The set of λGtz
r -expressions ΛGtz

r = VGtz
r ∪TGtz

r ∪CGtz
r , where VGtz

r
denotes the set of λGtz

r -values, TGtz
r denotes the set of λGtz

r -terms and CGtz
r denotes

the set of λGtz
r -contexts.

Definition 5.4 The set of λGtz
r -expressions denoted by ΛGtz

r , is a subset of the set
of pre-expressions, defined in Figure 5.1.

In the rest of the chapter, we will use the following notation:

• T,T ′,T1... for values;

• t,u,v... for terms;

• k,k′,k1... for contexts and

• e,e′,e1... for expressions.

Informally, we say that an expression is a pre-expression in which in every sub-
expression every free variable occurs exactly once, and every binder binds (exactly
one occurrence of) a free variable. When restricted to terms, this notion corre-
sponds to the notion of linear terms in [45]. In that sense, only linear expressions
are in the focus of our investigation. These conditions will be assumed throughout
this chapter without explicit mentioning.

However, this assumption is not a restriction, since every λGtz-expression has
a corresponding λGtz

r -expression.

5.1. TYPE-FREE λGTZ
r -CALCULUS 79

x ∈ VGtz
r

f ∈ TGtz
r x ∈ Fv(f)

λx. f ∈ VGtz
r

f ∈ TGtz
r c ∈ CGtz

r Fv(f)∩Fv(c) = /0

f c ∈ TGtz
r

F ∈ VGtz
r

F ∈ TGtz
r

f ∈ TGtz
r x ∈ Fv(f)

x̂. f ∈ CGtz
r

f ∈ TGtz
r c ∈ CGtz

r Fv(f)∩Fv(c) = /0

f :: c ∈ CGtz
r

f ∈ TGtz
r x /∈ Fv(f)

x⊙ f ∈ VGtz
r

c ∈ CGtz
r x /∈ Fv(c)

x⊙ c ∈ CGtz
r

f ∈ TGtz
r x1 ̸= x2 x1,x2 ∈ Fv(f) x /∈ Fv(f)\{x1,x2}

x <x1
x2

f ∈ VGtz
r

c ∈ CGtz
r x1 ̸= x2 x1,x2 ∈ Fv(c) x /∈ Fv(c)\{x1,x2}

x <x1
x2

c ∈ CGtz
r

Figure 5.1: ΛGtz
r : λGtz

r -expressions

80 CHAPTER 5. λGTZ
r -CALCULUS

Definition 5.5 Mapping []rc : ΛGtz → ΛGtz
r is defined in the following way:

[x]rc = x

[λx.t]rc =

{
λx.[t]rc, x ∈ Fv(t)
λx.x⊙ [t]rc, x /∈ Fv(t)

[x̂.t]rc =

{
x̂.[t]rc, x ∈ Fv(t)
x̂.x⊙ [t]rc, x /∈ Fv(t)

[tk]rc =

{
[t]rc[k]rc, Fv(t)∩Fv(k) = /0
x <x1

x2
[t[x1/x]k[x2/x]]rc, x ∈ Fv(t)∩Fv(k)

[t :: k]rc =

{
[t]rc :: [k]rc, Fv(t)∩Fv(k) = /0
x <x1

x2
[t[x1/x] :: k[x2/x]]rc, x ∈ Fv(t)∩Fv(k)

Proposition 5.6

(i) If t ∈ ΛGtz, then [t]rc ∈ TGtz
r .

(ii) If k ∈ ΛGtz
C , then [k]rc ∈ CGtz

r .

Proof:By mutual induction on the structure of t and k, using definition of λGtz
r -

expressions, given in Figure 5.1. �
The correspondence between λGtz-expressions and λGtz

r -expressions is illus-
trated by the following example.

Example 5.7 Pre-expressions E1≡ λx.y, E2≡ x̂.y and E3≡ λx.x(x :: ŷ.y) are λGtz-
expressions, but are not λGtz

r -expressions. The reason is the presence of void ab-
straction or selection in E1 and E2, and two occurrences of free variable x in the
sub-expression of E3. On the other hand, λx.x⊙y, x̂.x⊙y and λx.x <x1

x2
x1(x2 :: ŷ.y)

are their corresponding λGtz
r -expressions.

The previous example illustrates the role of the introduced operators of weak-
ening and contraction in controlling the resources.

The role of the weakening (erasure) operator in the expression x⊙e is to denote
that the variable x does not occur in e. So we have to explicitly add it in order
to perform the lambda abstraction or the selection of that variable, because void
abstractions or selections are not allowed in the resource aware calculi. The origins
of this approach can be traced back to Church’s λI-calculus.

Similarly, the role of the contraction (duplication) operator is to control multi-
ple occurrences of a variable in an expression. In the resource aware calculi, each
variable represents a resource entity and therefore should not occur twice in an
expression. If nevertheless, we want to have two positions for the same variable,
we have to duplicate it explicitly, using fresh names. This is done by using the

5.1. TYPE-FREE λGTZ
r -CALCULUS 81

operator x <x1
x2

e which creates two fresh variables x1 and x2 and denotes that the
two variables have the same role in the expression e.

In the sequel, we will use the following notation:

• X⊙ e stands for x1⊙ ... xn⊙ e;

• X <Y
Z e stands for x1 <

y1
z1 ... xn <

yn
zn e;

where X , Y and Z are lists of the size n, consisting of all distinct variables x1, ...,xn,
y1, ...,yn, z1, ...,zn. If n = 0, i.e., if X , Y and Z are empty lists, then X ⊙ e = X <Y

Z
e = e. Note that due to the equivalence relation defined in Figure 5.5, we can use
these notations also for sets of variables of the same size.

Alpha-conversion is the (standard) congruence generated by renaming of bound
variables. For example, w⊙λx.x <y

z y :: z :: û.u≡α w⊙λx′.x′ <y′
z′ y′ :: z′ :: û.′u′. All

the operations defined along this chapter are considered modulo alpha-conversion
so that in particular capture of variables is not possible.

Using α-conversion, in what follows we consider Barendregt’s convention [3]
for variables: in the same expression a variable cannot be both free and bound,
therefore bound variables should be renamed using fresh names. This applies to
all three binders of the λGtz

r -calculus: λx.t and x̂.t, which bind x in t, and x <x1
x2

e
which binds x1 and x2 in e.

5.1.2 Operational semantics

The starting point for the reduction system of the λGtz
r -calculus is the reduction

system of the λGtz
V -calculus, defined in Subsection 4.4.1, thus the computation over

the set of λGtz
r -expressions reflects the cut-elimination process. But the presence

of explicit weakening and contraction requires an additional number of reduction
rules to discipline these new operators. Four groups of reductions in the λGtz

r -
calculus are given in Figure 5.2.

Reductions are naturally divided into four groups. The first group consists of
β, π, σ and µ reductions from the λGtz

V -calculus. New reductions are added to deal
with explicit contraction (γ reductions) and weakening (ω reductions). These rules
perform:

• propagation of contraction into an expression (γ-reductions);

• extraction of weakening out of an expression (ω-reductions).

This discipline allows us to optimize the computation by delaying the duplica-
tion of terms on the one hand, and by performing the erasure of terms as soon as

82 CHAPTER 5. λGTZ
r -CALCULUS

(β) (λx.t)(u :: k) → u(x̂.tk)
(σ) T (x̂.v) → v[T/x]
(π) (tk)k′ → t(k@k′)
(µ) x̂.xk → k

(γ1) x <x1
x2
(λy.t) → λy.x <x1

x2
t

(γ2) x <x1
x2
(tk) → (x <x1

x2
t)k, if x1,x2 /∈ Fv(k)

(γ3) x <x1
x2
(tk) → t(x <x1

x2
k), if x1,x2 /∈ Fv(t)

(γ4) x <x1
x2
(ŷ.t) → ŷ.(x <x1

x2
t)

(γ5) x <x1
x2
(t :: k) → (x <x1

x2
t) :: k, if x1,x2 /∈ Fv(k)

(γ6) x <x1
x2
(t :: k) → t :: (x <x1

x2
k), if x1,x2 /∈ Fv(t)

(ω1) λx.(y⊙ t) → y⊙ (λx.t), x ̸= y
(ω2) (x⊙ t)k → x⊙ (tk)
(ω3) t(x⊙ k) → x⊙ (tk)
(ω4) x̂.(y⊙ t) → y⊙ (x̂.t), x ̸= y
(ω5) (x⊙ t) :: k → x⊙ (t :: k)
(ω6) t :: (x⊙ k) → x⊙ (t :: k)

(γω1) x <x1
x2
(y⊙ e) → y⊙ (x <x1

x2
e) x1 ̸= y ̸= x2

(γω2) x <x1
x2
(x1⊙ e) → e[x/x2]

Figure 5.2: Reduction rules of the λGtz
r -calculus

possible on the other. Finally, the two rules in the γω group explain the interac-
tion between explicit resource operators that are of different nature. Since none of
these rules are performed on cuts, they can be considered as auxiliary (second class
citizens) reductions.

As in the λGtz-calculus, reductions (π) and (σ) are executed via meta-operators.
The meta-operator for appending two contexts, k@k′, from the rule (π) is now de-
fined by the rules presented in Figure 5.3. This definition represents an extension
of the definition from Figure 4.3 with the cases covering new context operators,
namely weakening on contexts and contraction on contexts.

(x̂.t)@k′ , x̂.tk′;
(t :: k)@k′ , t :: (k@k′);
(x⊙ k)@k′ , x⊙ (k@k′);
(x <x1

x2
k)@k′ , x <x1

x2
(k@k′).

Figure 5.3: Meta-operator @ in the λGtz
r -calculus

5.1. TYPE-FREE λGTZ
r -CALCULUS 83

The inductive definition of the meta operator [/], representing the implicit
substitution of free variables, is given in Figure 5.4. There are several specific
features of the substitution in the λGtz

r -calculus that need to be emphasized.
First, the substitution is introduced in the (σ) reduction: T (x̂.v)→ v[T/x]. This

means that we always substitute a value T for a variable, therefore this calculus
supports the call-by-value computational strategy.

Second, since each bound variable actually appears in the λGtz
r -expression, we

know that in v[T/x] it holds x ∈ Fv(v) (because it is obtained from T (x̂.v)), there-
fore void substitutions are not possible here and the usual basic case y[T/x] , y
does not need to be defined.

Third, in order to obtain well-formed expression as the result of substitution
e[T/x], Fv(e)∩Fv(T) = /0 must hold in this definition. Moreover, notice that e
must contain exactly one occurrence of the free variable x, therefore we can assume
that x /∈ Fv(T).

Finally, notice the interaction of resource operators and the substitution. In the
case (x⊙ e)[T/x] i.e. if we substitute T for a free variable introduced by weaken-
ing, the structure of T will be erased and only its free variables will be left in the
resulting expression, thus the result of the substitution is Fv(T)⊙ e. This behavior
corresponds to the computational meaning of weakening as the erasure, and at the
same time enables the feature known as the “preservation of interface".

On the other hand, if we substitute T for a free variable introduced by contrac-
tion (case (x <x1

x2
e)[T/x]) the T would have to appear twice in e - once substituted

for x1 and other time for x2. But then, free variables of T would appear twice in the
resulting expression, which contradicts the definition of the λGtz

r -expression. The
way to solve this problem is to make two copies of T (namely T1 and T2) using fresh
names, then substitute each copy for one of the contracted variables, and eventu-
ally perform several contractions on all pairs of the corresponding free variables of
T1 and T2, contained in the lists Fv[T1] and Fv[T2]. Thus, the resulting expression
is Fv[T] <Fv[T1]

Fv[T2]
(e[T1/x1])[T2/x2]. As showed by Lemma 5.8, this expression can

be alternatively written as Fv[T] <Fv[T1]
Fv[T2]

e[T1/x1,T2/x2], using a notion of paral-
lel substitution. Again, this is in accordance with the computational meaning of
contraction as the duplication.

Lemma 5.8 (Permutability of substitution in the contraction) If e∈ΛGtz
r , x1,x2 ∈

Fv(e) and
(Fv(e)\{x1})∩Fv(T1) = (Fv(e)\{x2})∩Fv(T2) = Fv(T1)∩Fv(T2) = /0, then:

(e[T2/x2])[T1/x1] = (e[T1/x1])[T2/x2].

Proof: The proof is straightforward by induction on the structure of the expression

84 CHAPTER 5. λGTZ
r -CALCULUS

x[T/x] , T
(λy.t)[T/x] , λy.t[T/x], x ̸= y
(tk)[T/x] , t[T/x]k, x ̸∈ Fv(k)
(tk)[T/x] , tk[T/x], x ̸∈ Fv(t)
(ŷ.t)[T/x] , ŷ.t[T/x], x ̸= y

(t :: k)[T/x] , t[T/x] :: k, x /∈ Fv(k)
(t :: k)[T/x] , t :: k[T/x], x /∈ Fv(t)
(y⊙ e)[T/x] , y⊙ e[T/x], x ̸= y
(x⊙ e)[T/x] , Fv(T)⊙ e

(y <y1
y2 e)[T/x] , y <y1

y2 e[T/x], x ̸= y
(x <x1

x2
e)[T/x] , Fv[T]<Fv[T1]

Fv[T2]
e[T1/x1,T2/x2]

Figure 5.4: Substitution in the λGtz
r -calculus

e that contains free variables x1 and x2. �

Definition 5.9 (Parallel substitution) The substitution that satisfies all conditions
of Lemma 5.8 is called parallel substitution and denoted by e[T1/x1,T2/x2].

Notice that the parallel substitution is defined only in the presence of very
strict conditions. Under these conditions, the notion of substitution is reduced
to a significantly simpler notion of “simultaneous replacement" of two variables
(that appear exactly once in e) by two terms (that share no free variables with the
environment), without any further interaction.

Example 5.10 Let us consider the substitution in the expression (x <x1
x2

e)[T/x]
where e = x1 :: x2 :: û.u and T = λy.y⊙ z. In this case, Fv(T) = z, T1 = λy.y⊙ z1,
T2 = λy.y⊙ z2, Fv(T1) = z1 and Fv(T2) = z2. Thus:

(x <x1
x2

x1 :: x2 :: û.u)[λy.y⊙ z/x] , (z <z1
z2

x1 :: x2 :: û.u)[λy.y⊙ z1/x1,λy.y⊙ z2/x2]

, z <z1
z2

λy.y⊙ z1 :: λy.y⊙ z2 :: û.u.

Therefore, as expected, the value T is duplicated during the substitution execution.

Example 5.11 Now, let us consider the substitution in the slightly modified expres-
sion (x <x1

x2
e)[T/x], where e = x1⊙ x2 and T = λy.y⊙ z. Now:

(x <x1
x2

x1⊙ x2)[λy.y⊙ z/x] , (z <z1
z2

x1⊙ x2)[λy.y⊙ z1/x1,λy.y⊙ z2/x2]

, z <z1
z2

z1⊙λy.y⊙ z2.

5.1. TYPE-FREE λGTZ
r -CALCULUS 85

(ε1) x⊙ (y⊙ e) ≡ y⊙ (x⊙ e)
(ε2) x <x1

x2
e ≡ x <x2

x1
e

(ε3) x <y
z (y <u

v e) ≡ x <y
u (y <z

v e)
(ε4) x <x1

x2
(y <y1

y2 e) ≡ y <y1
y2 (x <

x1
x2

e), x ̸= y1,y2, y ̸= x1,x2

Figure 5.5: Equivalences in the λGtz
r -calculus

In this case, T was not duplicated, because one of the contracted variables, namely
x1, was introduced by weakening, therefore the duplicated value T2 was erased, and
only its free variable z2 was kept, in order to preserve interface of the expression.
One can also observe that in this example, the reduction (γω2) could have been
applied before the substitution execution, yielding:

(x <x1
x2

x1⊙ x2)[λy.y⊙ z/x] →γω2 (x1⊙ x2)[x/x2][λy.y⊙ z/x]
, (x1⊙ x)[λy.y⊙ z/x]
, x1⊙λy.y⊙ z.

Besides reductions, operational semantics of the λGtz
r -calculus contains also

the congruence relation defined by the equivalencies given in Figure 5.5.
Notice that because we work only with the λGtz

r -expressions, i.e. well-formed
expressions, no variable is lost during the computation, which is stated by the fol-
lowing proposition.

Proposition 5.12 (Preservation of free variables)

(i) Fv(e[T/x]) = (Fv(e)\{x})∪Fv(T).

(ii) Fv(k@k′) = Fv(k)∪Fv(k′).

(iii) If e→ e′, then Fv(e) = Fv(e′).

(iv) If e≡ e′, then Fv(e) = Fv(e′).

Proof: The proof of (i) is by induction on the structure of e and uses Lemma 5.3.
We show the base case and the resource control related cases.

• Base case e≡ x. Then Fv(e) = {x}, and

Fv(x[T/x]), Fv(T) = ({x}\{x})∪Fv(T).

• Case e≡ y⊙ e′, where y ̸= x. Then Fv(e) = {y}∪Fv(e′), hence

86 CHAPTER 5. λGTZ
r -CALCULUS

Fv(e[T/x]) ≡ Fv((y⊙ e′)[T/x])
, Fv(y⊙ e′[T/x])
=IH {y}∪ (Fv(e′)\{x})∪Fv(T)
= (Fv(e)\{x})∪Fv(T).

• Case e≡ x⊙ e′. Then Fv(e′) = Fv(e)\{x}, hence

Fv(e[T/x]) ≡ Fv((x⊙ e′)[T/x])
, Fv(Fv(T)⊙ e′)
= Fv(e′)∪Fv(T)
= (Fv(e)\{x})∪Fv(T).

• Case e≡ y <y1
y2 e′, where y ̸= x. Then Fv(e) = {y}∪ (Fv(e′)\{y1,y2}, hence

Fv(e[T/x]) ≡ Fv((y <y1
y2 e′)[T/x])

, Fv(y <y1
y2 e′[T/x])

=IH {y}∪ (Fv(e′)\{x,y1,y2})∪Fv(T)
= (Fv(e)\{x})∪Fv(T).

• Case e≡ x <x1
x2

e′. Then Fv(e) = {x}∪Fv(e′)\{x1,x2}, hence

Fv(e[T/x]) ≡ Fv((x <x1
x2

e′)[T/x])
, Fv(Fv[T]<Fv[T1]

Fv[T2]
e′[T1/x1,T2/x2])

, Fv(Fv[T]<Fv[T1]
Fv[T2]

(e′[T1/x1])[T2/x2])

= Fv(T)∪Fv((e′[T1/x1])[T2/x2])\ (Fv(T1)∪Fv(T2))
=IH Fv(T)∪ (Fv(e′[T1/x1])\{x2} ∪ Fv(T2))\ (Fv(T1)∪Fv(T2))
=IH Fv(T)∪ (Fv(e′)\{x1,x2} ∪ Fv(T1)∪Fv(T2))\ (Fv(T1)∪Fv(T2))
= Fv(T)∪ (Fv(e′)\{x1,x2})
= (Fv(e)\{x})∪Fv(T).

The proof of (ii) is on the structure of the context k, also using Lemma 5.3.

• Base case k ≡ x̂.t. Then Fv(k) = Fv(t)\{x} and x /∈ Fv(k′), hence

Fv(k@k′) ≡ Fv((x̂.t)@k′)
, Fv(x̂.tk′)
= (Fv(t)∪Fv(k′))\{x}
= Fv(k)∪Fv(k′).

5.1. TYPE-FREE λGTZ
r -CALCULUS 87

• Case k ≡ x <x1
x2

k′′. Then Fv(k) = {x} ∪ Fv(k′′) \ {x1,x2} and x,x1,x2 /∈
Fv(k′), hence

Fv(k@k′) ≡ Fv((x <x1
x2

k′′)@k′)
, Fv(x <x1

x2
k′′@k′)

= {x}∪Fv(k′′@k′)\{x1,x2}
=IH {x}∪ (Fv(k′′)∪Fv(k′))\{x1,x2}
= Fv(k)∪Fv(k′).

• The remaining two cases are similar.

The proofs of (iii) and (iv) are straightforward by case analysis on the reduction
and equivalence rules, using (i) in the case of σ-reduction and (ii) in the case of
π-reduction. �

We conclude the presentation of the untyped λGtz
r -calculus with an example of

computation.

Example 5.13 Let us recall the λGtz-term t ≡ (λx.y)(y(ẑ.z) :: û.λy′.u) from the
Example 4.2. Using Definition 5.5, we obtain its corresponding λGtz

r -term:

t ≡ y <y1
y2
(λx.x⊙ y1)(y2(ẑ.z) :: û.(λy′.y′⊙u)).

One possible way to reduce t to its normal form is:

t ≡ y <y1
y2 (λx.x⊙ y1)(y2(ẑ.z) :: û.(λy′.y′⊙u))

→σ y <y1
y2 (λx.x⊙ y1)(z[y2/z] :: û.(λy′.y′⊙u))

, y <y1
y2 (λx.x⊙ y1)(y2 :: û.(λy′.y′⊙u))

→β y <y1
y2 y2(x̂.(x⊙ y1)(û.(λy′.y′⊙u)))

→σ y <y1
y2 ((x⊙ y1)(û.(λy′.y′⊙u))[y2/x])

, y <y1
y2 (y2⊙ y1)(û.(λy′.y′⊙u))

→γ2 (y <y1
y2 y2⊙ y1)(û.(λy′.y′⊙u))

≡ε2 (y <y2
y1 y2⊙ y1)(û.(λy′.y′⊙u))

→γω2 y1[y/y1](û.(λy′.y′⊙u))
, y(û.(λy′.y′⊙u))
→σ (λy′.y′⊙u)[y/u]
, λy′.y′⊙ y.

Notice that the resulting λGtz
r -term λy′.y′⊙ y corresponds exactly to the λGtz-term

λy′.y, which was the result of the computation in the Example 4.2. Therefore,
two calculi are roughly speaking doing the same job, except for the fact that the
computation steps are significantly smaller in λGtz

r , hence the insight in the process
of computation is more complete with the explicit resource control.

88 CHAPTER 5. λGTZ
r -CALCULUS

5.2 Simply typed λGtz
r -calculus

5.2.1 The system λGtz
r →

The type assignment system that assigns simple types to λGtz
r -expressions, denoted

by λGtz
r →, is derived from the system λGtz→. Therefore, the definitions of types

and related basic notions coincide with definitions 4.4 and 4.5. With respect to the
λGtz→, the system λGtz

r → has four new rules, namely (Weakt), (Contt), (Weakk)
and (Contk), for assigning types to the expressions containing explicit operators of
weakening and contraction.

This system is constructed in a way that only (well-formed) expressions can
receive a type, hence the typing rules with two premises, namely (→L) and (Cut),
are presented in a context-splitting, i.e. multiplicative rather than a context-sharing,
i.e. additive style. In these rules, it is assumed that bases Γ and Γ′ are disjoint sets
of the basic type assignments, and Γ,Γ′ represents their disjoint union.

The formulation of the (Ax) rule is also modified, since it does not include a
basis Γ on the left-hand side of the sequent. This modification is in accordance
with the Gentzen’s sequent system LJ with explicit structural rules, and implies
that all declared variables must actually appear in the expression.

The four newly introduced rules, the ones assigning arrow types to expressions
with explicit operators for duplication and erasure on the surface position, are pro-
posed in a natural way. This means that the two rules without the stoup correspond
to the structural rules for contraction and weakening of the Gentzen’s system G1
(presented in Figure 2.1) whereas the two rules with the stoup are their counter-
parts for assigning types to corresponding λGtz

r -contexts. Therefore, in these rules,
types on the right hand sides of the turnstyle stay unchanged, while the bases are
modified. In (Contt) and (Contk) rules, the two declarations of contracted variables
are replaced by one declaration of a fresh variable. Notice that the types of all three
variables coincide. On the other hand, in the rules (Weakt) and (Weakk) bases are
enriched with a declaration of a fresh variable, whose type is arbitrary.

The type assignment system λGtz
r → is given in Figure 5.6.

The proposed system λGtz
r → satisfies the following basic features, which will

be stated here without proofs, since their proofs are analogous (and in most of the
cases simpler) than the proofs of the corresponding features of the system with
intersection types λGtz

r ∩ which will be presented in details in the remaining sub-
sections of this chapter.

Proposition 5.14 (Domain correspondence for λGtz
r →)

(i) If Γ ⊢ t : α, then Dom(Γ) = Fv(t).

5.2. SIMPLY TYPED λGTZ
r -CALCULUS 89

x : α ⊢ x : α (Ax)

Γ,x : α ⊢ t : β
Γ ⊢ λx.t : α→ β

(→R)
Γ ⊢ t : α Γ′;β ⊢ k : γ
Γ,Γ′;α→ β ⊢ t :: k : γ

(→L)

Γ ⊢ t : α Γ′;α ⊢ k : β
Γ,Γ′ ⊢ tk : β

(Cut)
Γ,x : α ⊢ t : β
Γ;α ⊢ x̂.t : β

(Sel)

Γ,x : α,y : α ⊢ t : β
Γ,z : α ⊢ z <x

y t : β
(Contt)

Γ ⊢ t : β
Γ,x : α ⊢ x⊙ t : β

(Weakt)

Γ,x : α,y : α;γ ⊢ k : β
Γ,z : α;γ ⊢ z <x

y k : β
(Contk)

Γ;γ ⊢ k : β
Γ,x : α;γ ⊢ x⊙ k : β

(Weakk)

Figure 5.6: λGtz
r →: simply typed λGtz

r -calculus

(ii) If Γ;α ⊢ k : β, then Dom(Γ) = Fv(k).

Proof: By case analysis on the applied type assignment rule.�

Proposition 5.15 (Generation lemma for λGtz
r →)

(i) Γ ⊢ λx.t : γ iff γ≡ α→ β and Γ,x : α ⊢ t : β.

(ii) Γ;δ ⊢ t :: k : γ iff Γ = Γ′,Γ′′ and δ ≡ α→ β and Γ′;β ⊢ k : γ and
Γ′′ ⊢ t : α.

(iii) Γ ⊢ tk : β iff Γ = Γ′,Γ′′ and there is a type α such that Γ′ ⊢ t : α and
Γ′′;α ⊢ k : β.

(iv) Γ;α ⊢ x̂.t : β iff Γ,x : α ⊢ t : β.

(v) Γ,z : α ⊢ z <x
y t : β iff Γ,x : α,y : α ⊢ t : β.

(vi) Γ,x : α ⊢ x⊙ t : β iff Γ ⊢ t : β.

(vii) Γ,z : α;γ ⊢ z <x
y k : β iff Γ,x : α,y : α;γ ⊢ k : β.

(viii) Γ,x : α;γ ⊢ x⊙ k : β iff Γ;γ ⊢ k : β.

90 CHAPTER 5. λGTZ
r -CALCULUS

Proof: The proof is straightforward because the type assignment system is syntax-
directed, and relies on Proposition 5.14. �

Proposition 5.16 (Substitution lemma for λGtz
r →)

(i) If Γ,x : β ⊢ t : α and ∆ ⊢ T : β, then Γ,∆ ⊢ t[T/x] : α.

(ii) If Γ,x : β;γ ⊢ k : α and ∆ ⊢ T : β, then Γ,∆;γ ⊢ k[T/x] : α.

Proof: By mutual induction on the structure of terms and contexts. �

Proposition 5.17 (Append lemma for λGtz
r →) If Γ;γ ⊢ k : β and ∆;β ⊢ k′ : α,

then Γ,∆;γ ⊢ k@k′ : α.

Proof: By induction on the structure of the context k. �

Proposition 5.18 (Subject equivalence for λGtz
r →)

(i) If Γ ⊢ t : α and t ≡ t ′, then Γ ⊢ t ′ : α.

(ii) If Γ;α ⊢ k : β and k ≡ k′, then Γ;α ⊢ k′ : β.

Proof: By case analysis on the performed equivalence rule. �

Proposition 5.19 (Subject reduction for λGtz
r →)

(i) If Γ ⊢ t : α and t→ t ′, then Γ ⊢ t ′ : α.

(ii) If Γ;α ⊢ k : β and k→ k′, then Γ;α ⊢ k′ : β.

Proof: By case analysis on the performed reduction rule. �

5.2. SIMPLY TYPED λGTZ
r -CALCULUS 91

(σ1) T (x̂.x) → T
(σ2) T (x̂.λy.v) → λy.(T (x̂.v))
(σ3) T (x̂.uk) → (T x̂.u)k, if x ∈ Fv(u)
(σ4) T (x̂.x⊙u) → Fv(T)⊙u
(σ5) T (x̂.x <x1

x2
u) → Fv(T)<Fv(T1)

Fv(T2)
T1(x̂1.T2(x̂2.u))

Figure 5.7: The group of σ-reductions in the variant of the λGtz
r -calculus

5.2.2 Typeability⇒ SN in λGtz
r →

In this subsection, we prove that all λGtz
r -expressions typeable in the system λGtz

r →
are terminating, which is the feature known as strong normalisation. The termina-
tion is proved by showing that the reduction relation on the set of the typeable
λGtz
r -expressions is included in a particular well-founded relation, which we define

as the lexicographic product of five well-founded component relations.
The first of them is based on the mapping of the λGtz

r -expressions into the terms
of the λlxr-calculus, presented in Subsection 3.3. We show that the introduced map-
ping preserves types (Proposition 5.21), and that all reductions and equivalencies
of the λGtz

r -calculus can be simulated by the operational semantics of the λlxr-
calculus (Theorem 5.27). The other four well founded orderings are based on the
introduced measures (Definitions 5.29, 5.30, 5.31 and 5.33), designed to decrease
the size of the particular λGtz

r -expressions during the computation. This subsection
contains the results from [35].

Since the proof of strong normalisation relies on the embedding of the λGtz
r -

expressions into the λlxr-terms, here we use a variant of the λGtz
r -calculus in which

the meta-operator of implicit substitution is omitted, and the substitution is incor-
porated directly into reduction rules. Instead of the definition of implicit substi-
tution (Figure 5.4), the reduction σ from Figure 5.2 is now split into a family of
reductions, namely σ1−σ5, presented in Figure 5.7. This alternative approach was
used in order to bring the λGtz

r -calculus closer to the λlxr-calculus.

In what follows, we use the notation TGtz
r for the set of λGtz

r -terms, CGtz
r for

the set of λGtz
r -contexts and Λlxr for the set of λlxr-terms. We also use indexed

notations ⊢lxr,→lxr and ≡lxr for type assignment, reductions and equivalencies in
the λlxr-calculus, whereas the plain notations denote the same objects in the λGtz

r -
calculus. More details about the λlxr-calculus can be found in Section 3.3.

Definition 5.20 The mapping ⌊ ⌋ : TGtz
r → Λlxr is defined together with the aux-

92 CHAPTER 5. λGTZ
r -CALCULUS

iliary mapping ⌊ ⌋k : CGtz
r → (Λlxr → Λlxr) in the following way:

⌊x⌋ = x
⌊λx.t⌋ = λx.⌊t⌋
⌊x⊙ t⌋ = Wx(⌊t⌋)
⌊x <y

z t⌋ = C
y|z
x (⌊t⌋)

⌊tk⌋ = ⌊k⌋k(⌊t⌋)

⌊x̂.t⌋k(M) = ⌊t⌋⟨x = M⟩
⌊t :: k⌋k(M) = ⌊k⌋k(M⌊t⌋)
⌊x⊙ k⌋k(M) = Wx(⌊k⌋k(M))

⌊x <y
z k⌋k(M) = C

y|z
x (⌊k⌋k(M))

Now, we prove that the introduced mapping preserves types. In the sequel, the
notation ΛΓ⊢lxrA stands for the set {M |M ∈ Λlxr & Γ ⊢lxr M : A}.

Proposition 5.21 (Type preservation of ⌊ ⌋)

(i) If Γ ⊢ t : α, then Γ ⊢lxr ⌊t⌋ : α.

(ii) If Γ;α ⊢ k : β, then ⌊k⌋k : ΛΓ′⊢lxrα→ ΛΓ,Γ′⊢lxrβ, for some Γ′.

Proof: The proposition is proved by simultaneous induction on derivations. We
distinguish cases according to the last typing rule used.

• Cases (Ax), (→R), (Weakt) and (Contt) are easy, because the type assign-
ment system of λlxr has exactly the same rules.

• Case (Sel): the derivation ends with the rule

Γ,x : α ⊢ t : β
Γ;α ⊢ x̂.t : β

(Sel)

By IH we have that Γ,x : α ⊢lxr ⌊t⌋ : β. For any M ∈Λlxr such that Γ′ ⊢lxr M :
α, for some Γ′, we have

Γ,x : α ⊢lxr ⌊t⌋ : β Γ′ ⊢lxr M : α
Γ,Γ′ ⊢lxr ⌊t⌋⟨x = M⟩ : β

(Subs)

Since ⌊t⌋⟨x=M⟩= ⌊x̂.t⌋k(M), we conclude that ⌊x̂.t⌋k : ΛΓ′⊢lxrα→ΛΓ,Γ′⊢lxrβ.

5.2. SIMPLY TYPED λGTZ
r -CALCULUS 93

• Case (→L): the derivation ends with the rule

Γ ⊢ t : α Γ′;β ⊢ k : γ
Γ,Γ′;α→ β ⊢ t :: k : γ

(→L)

By IH we have that Γ ⊢lxr ⌊t⌋ : α. For any M ∈Λlxr such that Γ′′ ⊢lxr M : α→
β, we have

Γ′′ ⊢lxr M : α→ β Γ ⊢lxr ⌊t⌋ : α
Γ,Γ′′ ⊢lxr M⌊t⌋ : β

(App)

From the right-hand side premise in the (→L) rule, by IH, we get that ⌊k⌋k
is the function with the scope ⌊k⌋k : ΛΓ′′′⊢lxrβ→ ΛΓ′′′,Γ′⊢lxrγ, for some Γ′′′. For
Γ′′′ ≡ Γ,Γ′′ and by taking M⌊t⌋ as the argument of the function ⌊k⌋k, we
get Γ,Γ′,Γ′′ ⊢lxr ⌊k⌋k(M⌊t⌋) : γ. Since ⌊k⌋k(M⌊t⌋) = ⌊t :: k⌋k(M), we have
that Γ,Γ′,Γ′′ ⊢lxr ⌊t :: k⌋k(M) : γ. This holds for any M of the appropriate
type, yielding ⌊t :: k⌋k : ΛΓ′′⊢lxrα→β→ ΛΓ,Γ′,Γ′′⊢lxrγ, which is exactly what we
wanted to prove.

• Case (Cut): the derivation ends with the rule

Γ ⊢ t : α Γ′;α ⊢ k : β
Γ,Γ′ ⊢ tk : β

(Cut)

By IH we have that Γ ⊢lxr ⌊t⌋ : α and ⌊k⌋k : ΛΓ′′⊢lxrα → ΛΓ′,Γ′′⊢lxrβ for some
Γ′′. Hence, for any M ∈ Λlxr such that Γ′′ ⊢lxr M : α, it holds that Γ′,Γ′′ ⊢lxr
⌊k⌋k(M) : β. By taking M ≡ ⌊t⌋ and Γ′′ ≡ Γ, we get Γ,Γ′ ⊢lxr ⌊k⌋k(⌊t⌋) : β.
But ⌊k⌋k(⌊t⌋) = ⌊tk⌋, so the proof is done.

• Case (Weakk): the derivation ends with the rule

Γ;γ ⊢ k : β
Γ,x : α;γ ⊢ x⊙ k : β

(Weakk)

By IH we have that ⌊k⌋k is the function with the scope ⌊k⌋k : ΛΓ′⊢lxrγ →
ΛΓ,Γ′⊢lxrβ for some Γ′, meaning that for each M ∈ Λlxr such that Γ′ ⊢lxr M : γ
it holds that Γ,Γ′ ⊢lxr ⌊k⌋k(M) : β. Now, we can apply (Weak) rule:

Γ,Γ′ ⊢ ⌊k⌋k(M) : β
Γ,Γ′,x : α ⊢Wx(⌊k⌋k(M)) : β

(Weak)

Since Wx(⌊k⌋k(M)) = ⌊x⊙ k⌋k(M), this means that ⌊x⊙ k⌋k : ΛΓ′⊢lxrγ →
ΛΓ,Γ′,x:A⊢lxrβ, which is exactly what we wanted to prove.

94 CHAPTER 5. λGTZ
r -CALCULUS

• Case (Contk): the derivation ends with the rule

Γ,x : α,y : α;γ ⊢ k : β
Γ,z : α;γ ⊢ z <x

y k : β
(Contk)

By IH we have that ⌊k⌋k is the function with the scope ⌊k⌋k : ΛΓ′⊢lxrγ →
ΛΓ,x:α,y:α,Γ′⊢lxrβ for some Γ′, meaning that for each M ∈ Λlxr such that Γ′ ⊢lxr
M : γ it holds that Γ,x : α,y : α,Γ′ ⊢lxr ⌊k⌋k(M) : β. Now, we can apply (Cont)
rule:

Γ,x : α,y : α,Γ′ ⊢ ⌊k⌋k(M) : β

Γ,z : α,Γ′ ⊢ C
x|y
z (⌊k⌋k(M)) : β

(Cont)

but C
x|y
z (⌊k⌋k(M)) = ⌊z <x

y k⌋k(M), so ⌊z <x
y k⌋k is the function with scope

⌊z <x
y k⌋k : ΛΓ′⊢lxrγ→ ΛΓ,Γ′,z:α⊢lxrβ, which completes the proof. �

For the given encoding ⌊ ⌋, we will now show that each of the λGtz
r reduction

or equivalence steps can be simulated by λlxr reductions or equivalences. In order
to do so, we first prove the following lemmas.

Lemma 5.22 If M→lxr M′, then ⌊k⌋k(M)→lxr ⌊k⌋k(M′).

Proof: By induction on the structure of k.

• Basic case: k ≡ x̂.t.
M→lxr M′ implies t⟨x = M⟩→lxr t⟨x = M′⟩. Since ⌊x̂.t⌋k(M) = ⌊t⌋⟨x = M⟩,
the statement is proved.

• Case: k ≡ t :: k′.
⌊t :: k′⌋k(M) = ⌊k′⌋k(M⌊t⌋), hence the proof is done by using IH on k′ and
the fact that reductions in λlxr are context closed.

• Cases k ≡ x⊙ k′ and k ≡ x <x1
x2

k′ are analogous. �

Since the given mapping encodes λGtz
r -contexts into functions, it is natural to

show that k@k′ is interpreted as the composition of the corresponding encodings
of k′ and k, respectively.

Lemma 5.23 If M ∈ Λlxr and k,k′ ∈ CGtz
r , then ⌊k@k′⌋k(M) = ⌊k′⌋k ◦⌊k⌋k(M).

Proof: By induction on the structure of k.

5.2. SIMPLY TYPED λGTZ
r -CALCULUS 95

• Basic case: k ≡ x̂.t.
By definitions of @ and ⌊ ⌋ we have

⌊x̂.t@k′⌋k(M), ⌊x̂.(tk′)⌋k(M) = ⌊tk′⌋⟨x = M⟩= ⌊k′⌋k(⌊t⌋⟨x = M⟩) =

⌊k′⌋k(⌊x̂.t⌋k(M)) = ⌊k′⌋k ◦⌊x̂.t⌋k(M) = ⌊k′⌋k ◦⌊k⌋k(M).

• Case: k ≡ t :: k′′.

⌊(t :: k′′)@k′⌋k(M), ⌊t :: (k′′@k′)⌋k(M) = ⌊k′′@k′⌋k(M⌊t⌋) =IH

= ⌊k′⌋k ◦⌊k′′⌋k(M⌊t⌋) = ⌊k′⌋k ◦⌊t :: k′′⌋k(M) = ⌊k′⌋k ◦⌊k⌋k(M).

• Case: k ≡ x⊙ k′′.

⌊(x⊙ k′′)@k′⌋k(M), ⌊x⊙ (k′′@k′)⌋k(M) = Wx(⌊(k′′@k′)⌋k(M)) =IH

= Wx(⌊(⌊k′⌋k ◦⌊k′′⌋k)⌋k(M)) = ⌊k′⌋k ◦⌊x⊙ k′′⌋k(M) = ⌊k′⌋k ◦⌊k⌋k(M).

• Case k ≡ x <x1
x2

k′ is analogous. �

The proofs of the following two lemmas, stating propagation of contraction and
extraction of weakening for the encoded λGtz

r -contexts, follow the same pattern,
thus they are presented without the proofs.

Lemma 5.24 If x,y /∈ k, then C
x|y
z ((⌊k⌋k(M)))→lxr ⌊k⌋k(C

x|y
z (M)).

Proof: By induction on the structure of k. �

Lemma 5.25 ⌊k⌋k(Wx(M))→lxr Wx(⌊k⌋k(M)).

Proof: By induction on the structure of k. �

The remaining technical proposition explains the interaction of an encoded
λGtz
r -context and the explicit substitution in the target calculus.

Lemma 5.26 If x /∈ k, then (⌊k⌋k(M))⟨x = N⟩ →lxr ⌊k⌋k(M⟨x = N⟩).

Proof: By induction on the structure of k.

96 CHAPTER 5. λGTZ
r -CALCULUS

• Basic case: k ≡ ŷ.t.

(⌊ŷ.t⌋k(M))⟨x = N⟩= (⌊t⌋⟨y = M⟩)⟨x = N⟩.

x /∈ k implies x∈M, hence x /∈ Fv(t)\{y} so we can apply (comp) reduction
in λlxr:

(⌊t⌋⟨y = M⟩)⟨x = N⟩ →comp t⟨y = M⟨x = N⟩⟩= ⌊ŷ.t⌋k(M⟨x = N⟩).

• Case: k ≡ t :: k′′.

(⌊t :: k′⌋k(M))⟨x = N⟩= (⌊k′⌋k(M⌊t⌋))⟨x = N⟩

which by IH on k′ followed by the reduction rule (App1) (which we can
apply since x /∈ k implies x ∈M) yields

⌊k′⌋k((M⌊t⌋)⟨x=N⟩)→App1 ⌊k′⌋k((M⟨x=N⟩)⌊t⌋)= ⌊t :: k′⌋k(M⟨x=N⟩).�

Now we can prove one of the central propositions for the proof of strong nor-
malization, stating that the reduction and equivalence rules of λGtz

r -calculus can be
simulated by the reduction and equivalence rules of Kesner and Lengrand’s λlxr-
calculus, given in Figures 3.7 and 3.8.

In the following proposition, we use � to denote the reflexive and transitive
closure of a reduction relation→.

Theorem 5.27 (Simulation of operational semantics)

(i) If a λGtz
r -term M→M′, then ⌊M⌋�lxr ⌊M′⌋.

(ii) If a λGtz
r -context K→ K′, then ⌊K⌋k(M)�lxr ⌊K′⌋k(M), for any M ∈ Λlxr.

Proof: Without losing generality, we prove the statement only for the outermost
reductions.

(β) (λx.t)(u :: k)→ u(x̂.tk).

On the one hand we have
⌊M⌋= ⌊(λx.t)(u :: k)⌋= ⌊u :: k⌋k(⌊λx.t⌋) = ⌊k⌋k((λx.⌊t⌋)⌊u⌋).
On the other hand,
⌊M′⌋= ⌊u(x̂.tk)⌋= ⌊x̂.tk⌋k(⌊u⌋) = ⌊tk⌋⟨x = ⌊u⌋⟩=
(⌊k⌋k(⌊t⌋))⟨x = ⌊u⌋⟩= ⌊k⌋k(⌊t⌋⟨x = ⌊u⌋⟩).
The last equality follows from the definition of terms, since we know that
x ∈ t. So, ⌊M⌋�lxr ⌊M′⌋ by Lemma 5.22 and reduction (B).

5.2. SIMPLY TYPED λGTZ
r -CALCULUS 97

(π) (tk)k′→ t(k@k′).

⌊M⌋= ⌊(tk)k′⌋= ⌊k′⌋k(⌊tk⌋) = ⌊k′⌋k(⌊k⌋k(⌊t⌋)).
⌊M′⌋= ⌊t(k@k′)⌋= ⌊k@k′⌋k(⌊t⌋).
Applying Lemma 5.23 we get that ⌊M⌋= ⌊M′⌋ in λlxr.

(µ) x̂.xk→ k.

This reduction reduces context to context, so we have:

⌊x̂.xk⌋k(M) = ⌊xk⌋⟨x = M⟩= (⌊k⌋k(x))⟨x = M⟩= ⌊k⌋k(M).

The last equality holds due to the definition of λGtz
r -expressions, because we

know that x /∈ Fv(k).

(σ1) T (x̂.x)→ T .

On the one hand we have
⌊M⌋= ⌊T (x̂.x)⌋= ⌊x̂.x⌋k(⌊T⌋) = ⌊x⌋⟨x = ⌊T⌋⟩= ⌊T⌋.
On the other hand, ⌊M′⌋= ⌊T⌋, so ⌊M⌋= ⌊M′⌋ in λlxr.

(σ2) T (x̂.λy.v)→ λy.(T (x̂.v)).

On the one hand we have

⌊M⌋= ⌊T (x̂.λy.v)⌋= ⌊x̂.λy.v⌋k(⌊T⌋) = ⌊λy.v⌋⟨x = ⌊T⌋⟩=
(λy.⌊v⌋)⟨x = ⌊T⌋⟩.
On the other hand,

⌊M′⌋= ⌊λy.(T (x̂.v))⌋= λy.⌊x̂.v⌋k(⌊T⌋) = λy.⌊v⌋⟨x = ⌊T⌋⟩.
So ⌊M⌋ →lxr ⌊M′⌋ by the rule (Abs) in λlxr.

(σ3) T (x̂.uk)→ (T (x̂.u))k, if x ∈ u.

On the one hand,
⌊M⌋= ⌊T (x̂.uk)⌋= ⌊x̂.uk⌋k(⌊T⌋) = ⌊uk⌋⟨x := ⌊T⌋⟩= (⌊k⌋k(⌊u⌋))⟨x := T ⟩.
On the other hand,
⌊M′⌋= ⌊(T (x̂.u))k⌋= ⌊k⌋k(⌊T (x̂.u)⌋) = ⌊k⌋k(⌊x̂.u⌋k(⌊T⌋)) =
⌊k⌋k(⌊u⌋⟨x := ⌊T⌋⟩).
⌊M⌋ →lxr ⌊M′⌋ by Lemma 5.26.

(σ4) T (x̂.x⊙ t)→ Fv(T)⊙ t.

On the one hand
⌊M⌋= ⌊T (x̂.x⊙ t)⌋= ⌊x̂.x⊙ t⌋k(⌊T⌋) = ⌊x⊙ t⌋⟨x := ⌊T⌋⟩=

98 CHAPTER 5. λGTZ
r -CALCULUS

Wx⌊t⌋⟨x := ⌊T⌋⟩= WFv(T)(⌊t⌋).
On the other hand,

⌊M′⌋= ⌊Fv(T)⊙ t⌋= WFv(T)(⌊t⌋).
So ⌊M⌋ →lxr ⌊M′⌋ by the rule (Weak1) in λlxr.

(σ5) T (x̂.x <x1
x2

u)→ Fv(T)<Fv(T1)
Fv(T2)

T1(x̂1.T2(x̂2.u)).

On the one hand

⌊M⌋ = ⌊T (x̂.x <x1
x2

u)⌋
= ⌊x̂.x <x1

x2
u⌋k(⌊T⌋)

= ⌊x <x1
x2

u⌋⟨x := ⌊T⌋⟩
= C

x1|x2
x (⌊u⌋)⟨x := ⌊T⌋⟩

Cont−−→ C
Fv(T1)|Fv(T2)
Fv(T) (⌊u⌋)⟨x1 := ⌊T1⌋⟩⟨x2 := ⌊T2⌋⟩

≡Ps C
Fv(T1)|Fv(T2)
Fv(T) (⌊u⌋)⟨x2 := ⌊T2⌋⟩⟨x1 := ⌊T1⌋⟩, when x1,x2 ∈ u.

On the other hand,

⌊M′⌋ = ⌊Fv(T)<Fv(T1)
Fv(T2)

T1(x̂1.T2(x̂2.u))⌋
= C

Fv(T1)|Fv(T2)
Fv(T) (⌊T1(x̂1.T2(x̂2.u))⌋)

= C
Fv(T1)|Fv(T2)
Fv(T) (⌊x̂1.T2(x̂2.u))⌋k)(⌊T1⌋)

= C
Fv(T1)|Fv(T2)
Fv(T) (⌊T2(x̂2.u))⌋)⟨x1 := ⌊T1⌋⟩

= C
Fv(T1)|Fv(T2)
Fv(T) (⌊u⌋)⟨x2 := ⌊T2⌋⟩⟨x1 := ⌊T1⌋⟩.

(γ1) x <x1
x2
(λy.t)→ λy.x <x1

x2
t.

⌊M⌋= ⌊x <x1
x2
(λy.t)⌋= C

x1|x2
x ((λy.⌊t⌋)).

⌊M′⌋= ⌊λy.x <x1
x2

t⌋= λy.C x1|x2
x (⌊t⌋),

hence ⌊M⌋ →lxr ⌊M′⌋ by the rule (Cabs) in λlxr.

(γ2) x <x1
x2
(tk)→ (x <x1

x2
t)k, if x1,x2 ∈ t.

⌊M⌋= ⌊x <x1
x2
(tk)⌋= C

x1|x2
x (⌊k⌋k(⌊t⌋)).

⌊M′⌋= ⌊(x <x1
x2

t)k⌋= ⌊k⌋k(C
x1|x2
x (⌊t⌋).

Since x1,x2 /∈ k, we apply Lemma 5.59 and conclude that ⌊M⌋ →lxr ⌊M′⌋ in
λlxr.

5.2. SIMPLY TYPED λGTZ
r -CALCULUS 99

(γ3) x <x1
x2
(tk)→ t(x <x1

x2
k), if x1,x2 ∈ k.

⌊M⌋= ⌊x <x1
x2
(tk)⌋= C

x1|x2
x (⌊k⌋k(⌊t⌋)).

⌊M′⌋= ⌊t(x <x1
x2

k)⌋= ⌊x <x1
x2

k⌋k(⌊t⌋) = C
x1|x2
x (⌊k⌋k(⌊t⌋)),

so ⌊M⌋= ⌊M′⌋ in λlxr.

(γ4) x <x1
x2
(ŷ.t)→ ŷ.(x <x1

x2
t).

⌊K⌋k(M) = ⌊x <x1
x2
(ŷ.t)⌋k(M) = C

x1|x2
x ((ŷ.t)(M)) = C

x1|x2
x (⌊t⌋⟨y = M⟩).

On the other hand,
⌊K′⌋k(M) = ⌊ŷ.(x <x1

x2
t)⌋k(M) = x <x1

x2
t⟨y = M⟩= C

x1|x2
x (⌊t⌋)⟨y = M⟩.

In λlxr ⌊K⌋k(M)≡ ⌊K′⌋k(M) by equality (≡Pcs).

(γ5) x <x1
x2
(t :: k)→ (x <x1

x2
t) :: k, if x1,x2 ∈ t.

⌊K⌋k(M)= ⌊x<x1
x2
(t :: k)⌋k(M)=C

x1|x2
x ((⌊t :: k⌋k(M)))=C

x1|x2
x ((⌊k⌋k(M⌊t⌋))).

⌊K′⌋k(M) = ⌊(x <x1
x2

t) :: k⌋k(M) = ⌊k⌋k(MC
x1|x2
x (⌊t⌋).

x1,x2 ∈ t implies x1,x2 ∈ M⌊t⌋ so we can apply Lemma 5.59, followed by
the reduction (CApp2) and conclude

C
x1|x2
x ((⌊k⌋k(M⌊t⌋)))→lxr ⌊k⌋k(C

x1|x2
x ((M⌊t⌋)))→lxr ⌊k⌋k(MC

x1|x2
x (⌊t⌋).

(γ6) x <x1
x2
(t :: k)→ t :: (x <x1

x2
k), if x1,x2 ∈ k.

⌊K⌋k(M)= ⌊x<x1
x2
(t :: k)⌋k(M)=C

x1|x2
x (⌊t :: k⌋k(M))=C

x1|x2
x (⌊k⌋k(M⌊t⌋)).

On the other hand,
⌊K′⌋k(M) = ⌊t :: (x<x1

x2
k)⌋k(M) = ⌊x<x1

x2
k)⌋k(M⌊t⌋) = C

x1|x2
x (⌊k⌋k(M⌊t⌋)).

So ⌊K⌋k(M) = ⌊K′⌋k(M) in λlxr.

(γω1) x <x1
x2
(y⊙ e)→ y⊙ (x <x1

x2
e).

In both cases, e≡ t and e≡ k, we get that ⌊M⌋→lxr ⌊M′⌋, i.e. ⌊K⌋k(M)→lxr

⌊K′⌋k(M), by the rule (Cross).

(γω2) x <x1
x2
(x1⊙ e)→ e{x2 := x}.

In both cases, e≡ t and e≡ k, we get that ⌊M⌋→lxr ⌊M′⌋, i.e. ⌊K⌋k(M)→lxr

⌊K′⌋k(M), by the rule (Merge).

We used the fact that ⌊t{x := y}⌋=R x
y ⌊t⌋ and ⌊k{x := y}⌋k(M)=R x

y (⌊k⌋k(M)).

100 CHAPTER 5. λGTZ
r -CALCULUS

(ω1) λx.(y⊙ t)→ y⊙ (λx.t), x ̸= y.

⌊M⌋= ⌊λx.(y⊙ t)⌋= λx.Wy(⌊t⌋).
⌊M′⌋= ⌊y⊙ (λx.t)⌋= Wy(λx.⌊t⌋).
So ⌊M⌋ →lxr ⌊M′⌋ by the rule (WAbs) in λlxr.

(ω2) (y⊙ t)k→ y⊙ (tk).

⌊M⌋= ⌊(y⊙ t)k⌋= ⌊k⌋k(Wy(⌊t⌋)).
⌊M′⌋= ⌊y⊙ (tk)⌋= Wy(⌊k⌋k(⌊t⌋)).
So ⌊M⌋ →lxr ⌊M′⌋ by Lemma 5.59.

(ω3) t(y⊙ k)→ y⊙ (tk).

⌊M⌋= ⌊t(y⊙ k)⌋= ⌊y⊙ k⌋k(⌊t⌋) = Wy(⌊k⌋k(⌊t⌋)).
⌊M′⌋= ⌊y⊙ (tk)⌋= Wy(⌊k⌋k(⌊t⌋)).
So ⌊M⌋= ⌊M′⌋ in λlxr.

(ω4) x̂.(y⊙ t)→ y⊙ (x̂.t), x ̸= y.

⌊K⌋k(M) = ⌊x̂.(y⊙ t)⌋k(M) = ⌊y⊙ t⌋⟨x = M⟩= Wy(⌊t⌋)⟨x = M⟩.
⌊K′⌋k(M) = ⌊y⊙ (x̂.t)⌋k(M) = Wy(⌊x̂.t⌋k(M)) = Wy(⌊t⌋⟨x = M⟩).
So ⌊K⌋k(M)→lxr ⌊K′⌋k(M) by the rule (Weak2) in λlxr.

(ω5) (x⊙ t) :: k→ x⊙ (t :: k).

⌊K⌋k(M) = ⌊(x⊙ t) :: k⌋k(M) = ⌊k⌋k(M⌊x⊙ t⌋) = ⌊k⌋k(MWx(⌊t⌋)).
⌊K′⌋k(M) = ⌊x⊙ (t :: k)⌋k(M) = Wx(⌊t :: k⌋k(M)) = Wx(⌊k⌋k(M⌊t⌋)).
Applying the rule (WApp2) of the λlxr-calculus followed by Lemma 5.59
we get that

⌊K⌋k(M)�lxr ⌊K′⌋k(M) in λlxr.

(ω6) t :: (x⊙ k)→ x⊙ (t :: k)

⌊K⌋k(M)= ⌊t :: (x⊙t)⌋k(M)= ⌊x⊙k⌋k(M⌊t⌋)=Wx(⌊k⌋k(M⌊t⌋))= ⌊K′⌋k(M).
�

From the previous proposition, we see that there are two groups of reduction
rules, with respect to their interpretation in the λlxr-calculus.

The first group consists of 15 λGtz
r -reductions that are interpreted as reductions

in λlxr:

5.2. SIMPLY TYPED λGTZ
r -CALCULUS 101

β, µ, σ2, σ3, σ4, σ5, γ1, γ2, γ5, γω1, γω2, ω1, ω2, ω4 and ω5.

The second group consists of 8 λGtz
r -reductions that are interpreted as equivalencies

or identities in λlxr:

π, µ, σ1, γ3, γ4, γ6, ω3 and ω6.

That leads to the conclusion that it is possible to introduce an ordering relation
based on the given mapping which will not increase the size of the λGtz

r reduct.
However, in order to find an ordering that strictly decreases the size of all λGtz

r
reducts, we introduce the following norms on the set ΛGtz

r of λGtz
r -expressions.

These norms are specially designed to show that the 8 λGtz
r -reductions of the second

group are terminating.

Definition 5.28 The size of a λGtz
r -expression is the function S : ΛGtz

r →N, defined
as follows:

S(x) = 1
S(λx.t) = 1+S(t)
S(x⊙ t) = 1+S(t)

S(x <y
z t) = 1+S(t)

S(tk) = S(t)+S(k)
S(x̂.t) = 1+S(t)

S(t :: k) = S(t)+S(k)
S(x⊙ k) = 1+S(k)

S(x <y
z k) = 1+S(k)

The main purpose of the following measure is to decrease during reduction
steps that perform a contraction propagation.

Definition 5.29 The function || ||C : ΛGtz
r → N0, is defined as follows:

||x||C = 0
||λx.t||C = ||t||C
||x⊙ t||C = ||t||C
||x <y

z t||C = ||t||C +S(t)
||tk||C = ||t||C + ||k||C
||x̂.t||C = ||t||C
||t :: k||C = ||t||C + ||k||C
||x⊙ k||C = ||k||C
||x <y

z k||C = ||k||C +S(k)

The next norm is designed with the purpose of decreasing during the computa-
tional steps that perform an extraction of weakening.

102 CHAPTER 5. λGTZ
r -CALCULUS

Definition 5.30 The function || ||W : ΛGtz
r → N0, is defined as follows:

||x||W = 1
||λx.t||W = 1+ ||t||W
||x⊙ t||W = 0
||x <y

z t||W = 1+ ||t||W
||tk||W = 1+ ||t||W + ||k||W
||x̂.t||W = 1+ ||t||W
||t :: k||W = 1+ ||t||W + ||k||W
||x⊙ k||W = 0
||x <y

z k||W = 1+ ||k||W

Finally, a measure called “P-norm” is specially designed to witness the reduced
size of a term participating in the application in the π-reduction. This norm needs
an auxiliary norm, “A-norm”, proposed in the following definition.

Definition 5.31 The function || ||A : ΛGtz
r → N0, is defined as follows:

||x||A = 0
||λx.t||A = ||t||A
||x⊙ t||A = ||t||A
||x <y

z t||A = ||t||A
||tk||A = 1+ ||t||A + ||k||A
||x̂.t||A = ||t||A
||t :: k||A = ||t||A + ||k||A
||x⊙ k||A = ||k||A
||x <y

z k||A = ||k||A

Definition 5.32 The function || ||P : ΛGtz
r → N, is defined as follows:

||x||P = 1
||λx.t||P = ||t||P
||x⊙ t||P = ||t||P
||x <y

z t||P = ||t||P
||tk||P = ||t||P + ||k||P + ||t||A
||x̂.t||P = ||t||P
||t :: k||P = ||t||P + ||k||P
||x⊙ k||P = ||k||P
||x <y

z k||P = ||k||P

5.2. SIMPLY TYPED λGTZ
r -CALCULUS 103

Lemma 5.34 examines the behaviour of the @ operator with respect to some
of the introduced norms 3. The item (iii) uses a notion of a kernel of a context, set
up by the following definition.

Definition 5.33 A term ker(k), representing the kernel of a context k, is inductively
defined on the structure of k.

ker(x̂.t) = t
ker(t :: k) = ker(k)
ker(x⊙ k) = ker(k)

ker(x <y
z k) = ker(k)

Lemma 5.34

(i) S(k@k′) = S(k)+S(k′);

(ii) ||k@k′||A = 1+ ||k||A + ||k′||A;

(iii) ||k@k′||P = ||k||P + ||k′||P + ||ker(k)||A.

Proof: By induction on the structure of k, with the base case k ≡ x̂.t.

(i) Let us prove S(k@k′) = S(k)+S(k′).

– For the base case k ≡ x̂.t, S(k) = 1+S(t), so the following holds

S((x̂.t)@k′), S(x̂.tk′) = 1+S(t)+S(k′) = S(k)+S(k′).

– For k ≡ t :: k′′, S(k) = S(t)+S(k′′), and we have that

S((t :: k′′)@k′)= S(t)+S(k′′@k′)=IH S(t)+S(k′′)+S(k′)= S(k)+S(k′).

– For k ≡ x⊙ k′′, S(k) = 1+S(k′′), and we have that

S((x⊙k′′)@k′) = 1+S(k′′@k′) =IH 1+S(k′′)+S(k′) = S(k)+S(k′).

– The remaining case k ≡ x <y
z k′′ is analogous.

(ii) Let us prove ||k@k′||A = 1+ ||k||A + ||k′||A.

– For the base case k ≡ x̂.t, ||k||A = ||t||A, so the following holds

||(x̂.t)@k′||A , ||x̂.tk′||A = 1+ ||t||A + ||k′||A = 1+ ||k||A + ||k′||A.
3One may notice that the lemma does not treat the cases of w-norm and c-norm. However, these

cases are not necessary for the proof of termination.

104 CHAPTER 5. λGTZ
r -CALCULUS

– For the case k ≡ t :: k′′, ||k||A = ||t||A + ||k′′||A, and we have that

||(t :: k′′)@k′||A = ||t||A+||k′′@k′||A =IH ||t||A+1+||k′′||A+||k′||A = 1+||k||A+||k′||A.

– For the case k ≡ x⊙ k′′, ||k||A = ||k′′||A, and we have that

||(x⊙k′′)@k′||A = ||k′′@k′||A =IH 1+ ||k′′||A + ||k′||A = 1+ ||k||A + ||k′||A.

– The remaining case k ≡ x <y
z k′′ is analogous.

(iii) Let us prove ||k@k′||P = ||k||P + ||k′||P + ||ker(k)||A.

– For the base case k≡ x̂.t, ||k||P = ||t||P and ker(k) = t, thus the following
holds

||(x̂.t)@k′||P , ||x̂.tk′||P = ||t||P+||k′||P+||t||A = ||k||P+||k′||P+||ker(k)||A.

– For the case k ≡ t :: k′′, ||k||P = ||t||P + ||k′′||P and ker(k) = ker(k′′), so
we have that

||(t :: k′′)@k′||P = ||t||P + ||k′′@k′||P =IH
||t||P + ||k′′||P + ||k′||P + ||ker(k′′)||A =

||k||P + ||k′||P + ||ker(k)||A.

– For the case k≡ x⊙k′′, ||k||P = ||k′′||P and ker(k) = ker(k′′), so we have
that

||(x⊙ k′′)@k′||P = ||k′′@k′||P =IH ||k′′||P + ||k′||P + ||ker(k′′)||A =
||k||P + ||k′||P + ||ker(k)||A.

– The case k ≡ x <y
z k′′ is analogous, hence the proof is done. �

The following four lemmas treat each of the introduced norms, and show how
they change during the computational steps, with respect only to the eight reduc-
tions that are simulated by equalities in the λlxr-calculus. Since the reductions in
the λGtz

r -calculus are closed under any contexts, we will argue only the case of the
outermost reductions, without losing generality.

Lemma 5.35 For all λGtz
r expressions:

(i) For r ∈ {µ,σ1}: if e →r e′, then S(e)> S(e′).

(ii) For r ∈ {π,γ3,γ4,γ6,ω3,ω6}: if e →r e′, then S(e) = S(e′).

Proof:

5.2. SIMPLY TYPED λGTZ
r -CALCULUS 105

(i) – In the case of µ-reduction, it is sufficient to show that S(x̂.xk)−S(k)>
0.
Indeed, S(x̂.xk)−S(k) = (1+S(x)+S(k))−S(k) = 2.

–] In the case of σ1-reduction, it is sufficient to show that S(T (x̂.x))−
S(T)> 0.
Indeed, S(T (x̂.x))−S(T) = S(T)+(1+S(x))−S(T) = 2.

(ii) – If e →π e′, it is sufficient to show that S((tk)k′) = S(t(k@k′)), which
is true, since both sizes are equal to S(t)+S(k)+S(k′).

– If e →γ3 e′, it is sufficient to show that S(x <x1
x2
(tk)) = S(t(x <x1

x2
k)),

which is true, since both sizes are equal to 1+S(t)+S(k).

– If e →γ4 e′, it is sufficient to show that S(x <x1
x2
(ŷ.t)) = S(ŷ.(x <x1

x2

t))which is true, since both sizes are equal to 2+S(t).

– If e →γ6 e′, it is sufficient to show that S(x <x1
x2
(t :: k)) = S(t :: (x <x1

x2

k)), which is true, since both sizes are equal to 1+S(t)+S(k).

– If e→ω3 e′, it is sufficient to show that S(t(x⊙k))= S(x⊙(tk)), which
is true, since both sizes are equal to 1+S(t)+S(k).

– If e →ω6 e′, it is sufficient to show that S(t :: (x⊙ k)) = S(x⊙ (t :: k)),
which is true, since both sizes are equal to 1+S(t)+S(k). �

Lemma 5.36 For all λGtz
r expressions:

(i) If e →π e′, then ||e||P > ||e′||P.

(ii) For r ∈ {γ3,γ4,γ6,ω3,ω6}: if e →r e′, then ||e||P = ||e′||P.

Proof:

(i) If e →π e′, it is sufficient to show that ||(tk)k′||P−||t(k@k′)||P > 0.
From Lemma 5.34, we have that

||t(k@k′)||P = ||t||P + ||k||P + ||k′||P + ||t||A + ||ker(k)||A.

Then,

||(tk)k′||P−||t(k@k′)||P =
||t||P + ||k||P + ||k′||P + ||tk||A + ||t||A− (||t||P + ||k||P + ||k′||P + ||t||A +

||ker(k)||A) =
||tk||A−||ker(k)||A = 1+ ||t||A + ||k||A−||ker(k)||A ≥(∗) 1+ ||t||A > 0.

106 CHAPTER 5. λGTZ
r -CALCULUS

The inequality (*) holds because ||k||A ≥ ||ker(k)||A, which can be very easily
proved by inspecting the cases according to the structure of the context k.

(ii) – If e →γ3 e′, it is sufficient to show that ||x <x1
x2
(tk)||P = ||t(x <x1

x2
k)||P,

which is true, since both sizes are equal to ||t||P + ||k||P + ||t||A.

– If e →γ4 e′, it is sufficient to show that ||x <x1
x2
(ŷ.t)||P = ||ŷ.(x <x1

x2
t)||P

which is true, since both sizes are equal to ||t||P.

– If e →γ6 e′, it is sufficient to show that ||x <x1
x2
(t :: k)||P = ||t :: (x <x1

x2

k)||P, which is true, since both sizes are equal to ||t||P + ||k||P.

– If e →ω3 e′, it is sufficient to show that ||t(x⊙ k)||P = ||x⊙ (tk)||P,
which is true, since both sizes are equal to ||t||P + ||k||P + ||t||A.

– If e →ω6 e′, it is sufficient to show that ||t :: (x⊙k)||P = ||x⊙ (t :: k)||P,
which is true, since both sizes are equal to ||t||P + ||k||P. �

Lemma 5.37 For all λGtz
r expressions:

(i) For r ∈ {ω3,ω6}: if e →r e′, then ||e||W > ||e′||W .

(ii) For r ∈ {γ3,γ4,γ6}: if e →r e′, then ||e||W = ||e′||W .

Proof:

(i) – In the case of ω3-reduction, it is sufficient to show that
||t(x⊙ k)||W −||x⊙ (tk)||W > 0.
||t(x⊙ k)||W −||x⊙ (tk)||W = (1+ ||t||W +0)−0 > 0.

– In the case of ω6-reduction, it is sufficient to show that
||t :: (x⊙ k)||W −||x⊙ (t :: k)||W > 0.
||t :: (x⊙ k)||W −||x⊙ (t :: k)||W = (1+ ||t||W +0)−0 > 0.

(ii) – If e →γ3 e′, it is sufficient to show that ||x <x1
x2
(tk)||W = ||t(x <x1

x2
k)||W ,

which is true, since both sizes are equal to 2+ ||t||W + ||k||W .

– If e →γ4 e′, it is sufficient to show that ||x <x1
x2
(ŷ.t)||W = ||ŷ.(x <x1

x2
t)||W

which is true, since both sizes are equal to 2+ ||t||W .

– If e →γ6 e′, it is sufficient to show that ||x <x1
x2
(t :: k)||W = ||t :: (x <x1

x2

k)||W , which is true, since both sizes are equal to 2+ ||t||W + ||k||W . �

Lemma 5.38 For all λGtz
r expressions, if r ∈ {γ3,γ4,γ6} and e →r e′, then ||e||C >

||e′||C.

Proof:

5.2. SIMPLY TYPED λGTZ
r -CALCULUS 107

- In the case of γ3-reduction, it is sufficient to show that
||x <x1

x2
(tk)||C−||t(x <x1

x2
k)||C > 0.

||x <x1
x2
(tk)||C−||t(x <x1

x2
k)||C = (||tk||C +S(tk))− (||t||C + ||k||C +S(k)) =

(||t||C + ||k||C +S(t)+S(k))− (||t||C + ||k||C +S(k)) = S(t)> 0, by definition
of S .

- In the case of γ4-reduction, it is sufficient to show that
||x <x1

x2
(ŷ.t)||C−||ŷ.(x <x1

x2
t)||C > 0.

||x <x1
x2
(ŷ.t)||C−||ŷ.(x <x1

x2
t)||C = (||ŷ.t||C +S(ŷ.t))− (||t||C +S(t)) =

(||t||C +1+S(t))− (||t||C +S(t)) = 1.

- In the case of γ6-reduction, it is sufficient to show that
||x <x1

x2
(t :: k)||C−||t :: (x <x1

x2
k)||C > 0.

||x <x1
x2
(t :: k)||C−||t :: (x <x1

x2
k)||C = (||t :: k||C +S(t :: k))− (||t||C + ||k||C +

S(k)) =
(||t||C + ||k||C +S(t)+S(k))− (||t||C + ||k||C +S(k)) = S(t)> 0. �

Now, we can define the following orderings based on the previously introduced
mapping and norms. Notice that these relations are defined only on the set of
simply typed λGtz

r expressions.

Definition 5.39 We define the following strict orders and equivalencies on the set
of typed λGtz

r expressions:

i) t >lxr t ′ iff ⌊t⌋ →+
lxr ⌊t ′⌋;

t =lxr t ′ iff ⌊t⌋ ≡ ⌊t ′⌋;
k >lxr k′ iff ⌊k⌋k(M)→+

lxr ⌊k′⌋(M) for every λlxr-term M ;
k =lxr k′ iff ⌊k⌋k(M)≡ ⌊k′⌋k(M) for every λlxr-term M;

ii) e >s e′ iff S(e)> S(e′);
e =s e′ iff S(e) = S(e′);

iii) e >c e′ iff ||e||C > ||e′||C;
e =c e′ iff ||e||C = ||e′||C;

iv) e >w e′ iff ||e||W > ||e′||W ;
e =w e′ iff ||e||W = ||e′||W ;

v) e >p e′ iff ||e||P > ||e′||P;
e =p e′ iff ||e||P = ||e′||P.

108 CHAPTER 5. λGTZ
r -CALCULUS

A lexicographic product of the two orders >1 and >2 is usually defined as
follows [2]:

a >1 ×lex >2 b ⇔ a >1 b or a =1 b and a >2 b.

Definition 5.40 We define the relation≫ on the set of typed λGtz
r -expressions as a

lexicographic product:

≫=>lxr ×lex >s ×lex >p ×lex >w ×lex >c .

The following proposition proves that the reduction relation on the set of typed
λGtz
r -expressions is included in the given lexicographic product≫.

Proposition 5.41 For each typed λGtz
r expression e: if e→ e′, then e≫ e′.

Proof: The proof is by the case analysis on the kind of reduction and the structure
of≫.

- If e→ e′ by β, µ, σ2, σ3, σ4, σ5, γ1, γ2, γ5, γω1, γω2, ω1, ω2, ω4 or ω5
reduction, then e >lxr e′ by Proposition 5.27.

- If e → e′ by µ or σ1, then e =lxr e′ by Proposition 5.27 and e >s e′ by
Lemma 5.35.

- If e→ e′ by π, then e =lxr e′ by Proposition 5.27, e =s e′ by Lemma 5.35,
and e >p e′ by Lemma 5.36.

- If e→ e′ by ω3 or ω6, then e=lxr e′ by Proposition 5.27, e=s e′ by Lemma 5.35,
e =p e′ by Lemma 5.36 and e >w e′ by Lemma 5.37.

- Finally, If e→ e′ by γ3, γ4 or γ6, then e =lxr e′ by Proposition 5.27, e =s e′ by
Lemma 5.35, e =p e′ by Lemma 5.36, e =w e′ by Lemma 5.37 and e >c e′

by Lemma 5.38. �

For proving the SN property, we use the notion of well-founded relation. It is
said that the relation R is well-founded on the class X , if and only if every non-
empty subset of X has a minimal element with respect to R. Therefore, strong
normalisation can be seen as well-foundedness of the reduction relation on the set
of typeable λGtz

r -expressions.

Theorem 5.42 (Strong normalisation) If λGtz
r -expression is typeable in the sys-

tem λGtz
r →, then it is strongly normalising.

5.3. INTERSECTION TYPES FOR THE λGTZ
r -CALCULUS 109

Proof: In order to prove the SN property, we prove that the reduction relation is
well-founded on the set of typed λGtz

r -expressions.
The relation >lxr is based on the interpretation into the λlxr-calculus. Since by
Proposition 5.21 the typeability is preserved by the interpretation, and the simply-
typed λlxr-calculus is proved to be SN in [45] (hence reduction →lxr is well-
founded on the set of typed λlxr-terms), we conclude that >lxr is well-founded
itself.
Similarly, the relations >s, >c, >w and >p are well-founded, because they are all
based on the interpretation into the well-founded relation > on the set of natural
numbers N.
Now, the relation≫ is well-founded, because it is the lexicographic product of the
well-founded components.
Finally, the reduction relation on the set of typed λGtz

r -expressions is well-founded
because it is by Proposition 5.41 included in the other well-founded relation, namely
≫. �

Simply-typed λGtz
r -calculus extends Curry-Howard correspondence to the in-

tuitionistic sequent calculus with explicit structural rules of weakening and con-
traction. However, as expected, simple types are too narrow class if one wants to
type all strongly normalising λGtz

r -expressions, hence the next logical step was to
introduce intersection types into the λGtz

r -calculus.

5.3 Intersection types for the λGtz
r -calculus

5.3.1 The system λGtz
r ∩

Our main goal in this section is to propose a type assignment system for the λGtz
r -

calculus that would characterise the set of strongly normalising expressions by
means of typeability. For that purpose, we introduce an intersection type assign-
ment system λGtz

r ∩. This system assigns a restricted form of intersection types,
namely strict types, to λGtz

r -expressions. Strict types were proposed by van Bakel
in [70] and already used by Espírito Santo et al. in [25] for an alternative charac-
terisation of strong normalisation in the λGtz-calculus.

The syntax of types is defined as follows:

Strict types σ ::= p | α→ σ
Types α ::= ∩n

i σi

where p ranges over a denumerable set of type atoms, and the notation ∩n
i σi stands

for σ1∩ . . .∩σn, n≥ 0.

110 CHAPTER 5. λGTZ
r -CALCULUS

Particularly, if n = 0, then ∩0
i σi represents the neutral element for the intersec-

tion operator, denoted by ⊤.
We use the following notation to distinguish different kinds of types:

α,β,γ... denote types,
σ,τ,ρ,υ... denote strict types,
⊤ denotes a particular type-constant,
Types denotes the set of all types.

We assume that the intersection operator is idempotent, commutative and asso-
ciative. We also assume that intersection has the priority over the arrow operator.
Hence,

∩n
i τi→ σ = (∩n

i τi)→ σ.

Now, we define the following basic notions.

Definition 5.43

(i) A basic type assignment is an expression of the form x : α, where x is a term
variable and α is a type.

(ii) A basis Γ is a set {x1 : α1, . . . ,xn : αn} of basic type assignments, where all
term variables are different.

(iii) The domain of the basis Γ is the set of all term variables declared in Γ:

Dom(Γ) = {x1, . . . ,xn}.

(iv) A basis extension Γ,x : α denotes the set Γ∪{x : α}, where we assume that
x ̸∈ Dom(Γ).

(v) A bases intersection is defined as:

Γ⊓∆ = {x : α∩β | x : α ∈ Γ & x : β ∈ ∆ & Dom(Γ) = Dom(∆)}.

(vi) Γ⊤ = {x :⊤ | x ∈ Dom(Γ)}.

In what follows we assume that the bases intersection has the priority over the
basis extension, i.e.

Γ,∆1⊓ . . .⊓∆n = Γ,(∆1⊓ . . .⊓∆n).

It is easy to show the following properties of the bases intersection operator.

Lemma 5.44 For arbitrary bases Γ and ∆ such that Dom(Γ) = Dom(∆)

5.3. INTERSECTION TYPES FOR THE λGTZ
r -CALCULUS 111

(i) Γ⊤⊓∆ = ∆;

(ii) (Γ,x : α)⊓ (∆,x : α) = Γ⊓∆,x : α.

Proof:
(i) Let Γ = {x1 : α1, . . . ,xn : αn} and ∆ = {x1 : β1, . . . ,xn : βn}. Then:
Γ⊤⊓∆ = {x1 :⊤, . . . ,xn :⊤}⊓{x1 : β1, . . . ,xn : βn}=
{x1 :⊤∩β1, . . . ,xn :⊤∩βn}= {x1 : β1, . . . ,xn : βn}= ∆.
(ii) The statement follows directly from the definition of the bases intersection and
the fact that the intersection operator is idempotent. �

Therefore, Γ⊤ can be considered the neutral element for the bases intersection.

The type assignment system λGtz
r ∩ is given in Figure 5.8. Due to the sequent

style of the λGtz
r -calculus, we again distinguish two sorts of type assignments:

• Γ ⊢ t : σ for typing a term and

• Γ;β ⊢ k : σ, a type assignment with a stoup, for typing a context.

The λGtz
r ∩ system is also syntax-directed, i.e. the intersection is incorporated

into already existing rules of the simply-typed system. In the style of sequent cal-
culus, the left intersection introduction is managed by the contraction rules (Contt)
and (Contk), whereas the right intersection introduction is performed by the cut rule
(Cut) and the left arrow introduction rule (→L). In these two rules it is assumed
that the bases Γ1, . . . ,Γn can be intersected, i.e.

Dom(Γ1) = . . .= Dom(Γn).

Notice that in the syntax of the λGtz
r -calculus there are three kinds of variables

according to the way they are introduced, namely as a placeholder, as a result of
a contraction or as a result of a weakening. In the type assignment system λGtz

r ∩,
each kind of variable receives a specific type. Variables as placeholders have a
strict type, variables resulting from a contraction have an intersection type, whereas
variables resulting from a weakening have the ⊤ type.

Moreover, notice that intersection types occur only in four inference rules. In
the rules (Contt) and (Contk) the intersection type is created, and that is the only
situation where this happens. This is justified by the fact that it corresponds to the
duplication of a variable. In other words, the control of the duplication of variables
entails the control of the introduction of intersections in building the type of the
term (or the context) in question. In the rules (→L) and (Cut) the intersection
appears on the left hand side of the turnstyle, more precisely in the stoup. This
corresponds to the usage of the intersection type after it has been created by the

112 CHAPTER 5. λGTZ
r -CALCULUS

x : σ ⊢ x : σ (Ax)

Γ,x : α ⊢ t : σ
Γ ⊢ λx.t : α→ σ

(→R)
Γ,x : α ⊢ t : σ
Γ;α ⊢ x̂.t : σ

(Sel)

Γ0 ⊢ t : σ0 ... Γn ⊢ t : σn ∆;∩m
j τ j ⊢ k : ρ

Γ⊤0 ⊓Γ1⊓ ...⊓Γn,∆;∩m
j (∩n

i σi→ τ j) ⊢ t :: k : ρ
(→L)

Γ0 ⊢ t : σ0 ... Γn ⊢ t : σn ∆;∩n
i σi ⊢ k : τ

Γ⊤0 ⊓Γ1⊓ ...⊓Γn,∆ ⊢ tk : τ
(Cut)

Γ,x : α,y : β ⊢ t : σ
Γ,z : α∩β ⊢ z <x

y t : σ
(Contt) Γ ⊢ t : σ

Γ,x :⊤ ⊢ x⊙ t : σ (Weakt)

Γ,x : α,y : β;γ ⊢ k : σ
Γ,z : α∩β;γ ⊢ z <x

y k : σ
(Contk)

Γ;γ ⊢ k : σ
Γ,x :⊤;γ ⊢ x⊙ k : σ (Weakk)

Figure 5.8: λGtz
r ∩: the λGtz

r -calculus with intersection types

rules (Contt) or (Contk), if n> 0, or by some of the rules (Weakt) or (Weakk), if n=
0. In terms of the corresponding expressions, this means that a variable introduced
by contraction or selection can be selected, and then used for the continuation of
the expression construction.

In the rules (→L) and (Cut), the role of the basis Γ0 should be noticed. It is
needed only when n = 0 to ensure that t has a type, i.e. that t is strongly normal-
ising. Then, in the conclusion of the rule, the types of the free variables of t can
be forgotten, hence all the free variables of t receive the type ⊤. All free variables
of a typeable term must occur in the environment in which the term is typeable(see
Lemma 5.45), therefore “useless” variables occur with the type ⊤. If n is not 0,
then Γ0 can be any of the other environments Γ1, ...,Γn and the type σ0 of t will
be the associated type σ1, ...,σn. Further, since Γ⊤ is a neutral element for ⊓, Γ⊤
disappears in the conclusion of the rule 4. For an additional explanation of this
phenomenon consult the Example 6.8 from Chapter 6.

In the rules (Weakt) and (Weakk) the choice of the type for x is ⊤, since this
corresponds to a variable which does not occur anywhere inside the expression.

4In the corresponding ND calculus the similar rule resembles the rules (drop) and/or (K− cut)
in [51] and was used to present the two cases, n = 0 and n ̸= 0 in a uniform way.

5.3. INTERSECTION TYPES FOR THE λGTZ
r -CALCULUS 113

The remaining rules, namely (Ax), (→R) and (Sel) are the same as in the simply
typed λGtz-calculus. Notice however that the type of the variable in (Ax) is a strict
type.

Proposition 5.45 (Domain Correspondence for λGtz
r ∩)

(i) Let Γ ⊢ t : σ be a typing judgment. Then x ∈ Dom(Γ) if and only if x ∈ Fv(t).

(ii) Let Γ;α ⊢ k : σ be a typing judgment. Then x ∈ Dom(Γ) if and only if x ∈
Fv(k).

Proof: Both items are proved together, by case analysis on the type assignment
rules.
The rules of Figure 5.8 belong to the following three categories.

1. The rules that introduce a variable, namely (Ax), (Contt), (Weakt), (Contk)
and (Weakk). In all these rules it is easy to notice that the variable is intro-
duced in the environment if and only it is introduced in the expression as a
free variable.

2. The rules that remove variables, namely (→R), (Sel), (Contt) and (Contk).
In all these rules it is easy to notice that the variables are removed from the
environment if and only if they are removed from the expression as a free
variable, i.e. if they become bound.

3. The rules that do not introduce nor remove a variable; namely (→L) and
(Cut), are straightforward. �

The Generation lemma induced by the proposed system is the following:

Lemma 5.46 (Generation lemma for λGtz
r ∩)

(i) Γ⊢ λx.t : τ iff there exist α and σ such that τ≡α→σ and Γ,x : α⊢ t : σ.

(ii) Γ;γ⊢ t :: k : ρ iff Γ=Γ′0
⊤⊓Γ′1⊓ ...⊓Γ′n,∆, γ≡∩m

j (∩n
i σi→ τ j), ∆;∩m

j τ j ⊢
k : ρ and Γ′l ⊢ t : σl for all l ∈ {0, . . . ,n}.

(iii) Γ⊢ tk : σ iff Γ=Γ′0
⊤⊓Γ′1⊓ ...⊓Γ′n,∆, and there exist τ j, j = 0, . . . ,n such

that for all j ∈ {0, . . . ,n} the following holds: Γ′j ⊢ t : τ j, and ∆;∩n
i τi ⊢ k : σ.

(iv) Γ;α ⊢ x̂.t : σ iff Γ,x : α ⊢ t : σ.

(v) Γ ⊢ z <x
y t : σ iff there exist Γ′,α,β such that Γ = Γ′,z : α∩β and

Γ′,x : α,y : β ⊢ t : σ.

114 CHAPTER 5. λGTZ
r -CALCULUS

(vi) Γ ⊢ x⊙ t : σ iff Γ = Γ′,x :⊤ and Γ′ ⊢ t : σ.

(vii) Γ;γ ⊢ z <x
y k : σ iff there exist Γ′,α,β such that Γ = Γ′,z : α∩β and

Γ′,x : α,y : β;γ ⊢ k : σ.

(viii) Γ;γ ⊢ x⊙ k : σ iff Γ = Γ′,x :⊤ and Γ′;γ ⊢ k : σ.

Proof: The proof is straightforward since all the rules are syntax-directed, and re-
lies on Proposition 5.45. �

The following two lemmas regulate the typings of the two meta-operators of
λGtz
r .

Lemma 5.47 (Substitution lemma for λGtz
r ∩)

(i) If Γ,x : ∩n
i τi ⊢ t : σ and for all j = 0, . . . ,n, ∆ j ⊢ T : τ j, then

Γ,∆⊤0 ⊓∆1⊓ ...⊓∆n ⊢ t[T/x] : σ.

(ii) If Γ,x : ∩n
i τi;α ⊢ k : σ and for all j = 0, . . . ,n, ∆ j ⊢ T : τ j, then

Γ,∆⊤0 ⊓∆1⊓ ...⊓∆n;α ⊢ k[T/x] : σ.

Proof: By mutual induction on the structure of terms and contexts. We only show
the base case and some cases related to the resource operators.

• Base case t ≡ x. By the axiom x : τ ⊢ x : τ where τ = ∩1
i τi, i.e. n = 1, hence

the second assumption is ∆ ⊢ T : τ which proves the case since T , x[T/x].

• k ≡ x⊙ k′. Now we assume Γ,x : ∩0
i τi;α ⊢ x⊙ k′ : σ and ∆ j ⊢ T : τ j for

all j ∈ {0, . . . ,0}. In other words Γ,x : ⊤;α ⊢ x⊙ k′ : σ and ∆0 ⊢ T : τ0,
i.e. T is typeable. By Generation lemma 5.46(viii) we get Γ;α ⊢ k′ : σ.
Since Dom(∆0) = Fv(T) by applying the (Weakk) rule multiple times we
get Γ,∆⊤0 ;α ⊢ Fv(T)⊙ k′ ⊢ σ which is exactly what we aimed to prove.

• t ≡ x <x1
x2

u. We assume that Γ,x : ∩n
i τi ⊢ x <x1

x2
u : σ and ∆ j ⊢ T : τ j for all

j ∈ {0, . . . ,n}. From Γ,x : ∩n
i τi ⊢ x <x1

x2
u : σ, by Generation lemma 5.46(v)

we get that ∩n
i τi = ∩m

i=1τi ∩∩n
i=m+1τi for some m < n and Γ,x1 : ∩m

i τi,x2 :
∩n

i=m+1τi ⊢ u : σ. From the other assumption ∆ j ⊢ T : τ j for all j ∈ {0, . . . ,n},
by renaming the variables in ∆ j, i.e. by renaming all free variables of T , we
get two different sets of sequents: ∆′j ⊢ T1 : τ j and ∆′′j ⊢ T2 : τ j. By ap-

plying the IH twice, we get Γ,∆′⊤0 ⊓∆′1 ⊓ . . .⊓∆′m,∆′′
⊤
0 ⊓∆′′m+1 ⊓ . . .⊓∆′′n ⊢

(u[T1/x1])[T2/x2] : σ. Now, we apply the definition of the parallel substitu-
tion, and perform contraction on all pairs of the corresponding, i.e. obtained

5.3. INTERSECTION TYPES FOR THE λGTZ
r -CALCULUS 115

by the renaming of the same variable, elements of ∆′l and ∆′′k by introducing
again the original names of the free variables of T from ∆ j and finally get
what we need:

Γ,∆⊤0 ⊓∆1⊓ . . .⊓∆n ⊢ Fv(T)<Fv(T1)
Fv(T2)

u[T1/x1,T2/x2] : σ.�

Proposition 5.48 (Append lemma) If Γ j;α ⊢ k : τ j for all j = 0, . . . ,n, and
∆;∩n

i τi ⊢ k′ : σ, then Γ⊤0 ⊓Γ1⊓ . . .⊓Γn,∆;α ⊢ k@k′ : σ.

Proof: By induction on the structure of the context k.

• Base case k ≡ x̂.t. From Γ j;α ⊢ x̂.t : τ j for all j = 0, . . . ,n, by Generation
lemma 5.46(iv) we get Γ j,x : α ⊢ t : τ j for all j = 0, . . . ,n. Now

Γ0,x : α ⊢ t : τ0 ... Γn,x : α ⊢ t : τn ∆;∩n
i τi ⊢ k′ : σ

(Cut)
Γ⊤0 ⊓Γ1⊓ ...⊓Γn,∆,x : α ⊢ tk′ : σ

(Sel)
Γ⊤0 ⊓Γ1⊓ ...⊓Γn,∆;α ⊢ x̂.tk′ : σ

which is exactly what we want since k@k′ = (x̂.t)@k′ = x̂.tk′.

• Case k ≡ x⊙ k′′. From Γ j;α ⊢ x⊙ k′′ : τ j for all j = 0, . . . ,n, by Generation
lemma 5.46(viii) we get that Γ j = Γ′j,x : ⊤ and Γ′j;α ⊢ k′′ : τ j , for all j =
0, . . . ,n. Applying the IH to k′′ yields

Γ′⊤0 ⊓Γ′1⊓ ...⊓Γ′n,∆;α ⊢ k′′@k′ : σ
(Weakk)

Γ⊤0 ⊓Γ1⊓ ...⊓Γn,∆;α ⊢ x⊙ (k′′@k′) : σ

which is exactly what we want since k@k′ = (x⊙k′′)@k′ = x⊙(k′′@k′), and
since Γ′⊤0 ⊓Γ′1⊓ ...⊓Γ′n,x :⊤= Γ1⊓ ...⊓Γn.

• Cases k ≡ t :: k′′ and k ≡ x <x1
x2

k′′ are similar. �

Now we can prove that the type of a λGtz
r -expression is preserved along reduc-

tion and equivalence.

Proposition 5.49 (Subject equivalence for λGtz
r ∩)

116 CHAPTER 5. λGTZ
r -CALCULUS

(i) For every λGtz
r -term t: if Γ ⊢ t : σ and t ≡ t ′, then Γ ⊢ t ′ : σ.

(ii) For every λGtz
r -context k: if Γ;α ⊢ k : σ and k ≡ k′, then Γ;α ⊢ k′ : σ.

Proof: By case analysis on the applied equivalence. One can see that the typing
derivations for equivalent expressions differ only in the order of applied type as-
signment rules for the resource operators, and all these rules do not change the
type of an expression. Moreover, since the equivalencies preserve free variables
(Proposition 5.12) and the set of free variables corresponds to the domain of the
basis (Proposition 5.45), the left hand sides of the sequents are also equal. �

Proposition 5.50 (Subject reduction for λGtz
r ∩)

(i) For every λGtz
r -term t: if Γ ⊢ t : σ and t→ t ′, then Γ ⊢ t ′ : σ.

(ii) For every λGtz
r -context k: if Γ;α ⊢ k : σ and k→ k′, then Γ;α ⊢ k′ : σ.

Proof: By case analysis on the applied reduction, using Lemmas 5.47 and 5.48 for
(σ) and (π) rule, respectively. �

5.3.2 Typeability⇒ SN in λGtz
r ∩

In this subsection, we prove the strong normalisation property of the λGtz
r -calculus

with intersection types. The structure of the proof is analogous to the one already
presented in Subsection 5.2.2 for proving the same property of the simply typed
λGtz
r -calculus. The key difference is that in this case, the target calculus of the

mapping is a variant of the λr-calculus, presented in Subsection 3.4, a formal
calculus obtained by extending the standard λ-calculus with explicit operators for
erasure and duplication of terms. Thus, the λr-calculus can be seen as natural
deduction counterpart of λGtz

r .
In order to prove that if a λGtz

r -expression is typeable in the system λGtz
r ∩, then

it is strongly normalising, we will show that the reduction on the set of the typeable
λGtz
r -expressions is included in a particular well-founded relation. This relation is

defined as the lexicographic product of three well-founded component relations.
The first one is based on the mapping of λGtz

r -expressions into λr-terms. We show
that this mapping preserves types and that all λGtz

r -reductions can be simulated by
the reductions or by an equality and each λGtz

r -equivalence can be simulated by an
λr-equivalence. The other two well-founded orders are based on the introduction

5.3. INTERSECTION TYPES FOR THE λGTZ
r -CALCULUS 117

of quantities designed to decrease a global measure associated to specific λGtz
r -

expressions during the computation.
First, as in Subsection 4.3.1, we enrich the operational semantics of the λr-

calculus, given in Figure 3.11, with the permutation reduction rule π = π1 ∪ π2,
where π1 and π2 are defined as follows:

(π1) (λx.M)NP → (λx.MP)N
(π2) M((λx.P)N) → (λx.MP)N.

Due to the explicit control of the duplication and the erasure of variables in the
λr-calculus, we know that there is exactly one occurrence of each bound variable
in the λr-term. More precisely, in (λx.M)NP, we know that x ∈ Fv(M), therefore
x /∈ Fv(P). Having that, if we apply the (β)-reduction to both π1-redex (λx.M)NP
and π1-contractum (λx.MP)N, we obtain the same term:

(λx.M)NP →β M[N/x]P
(λx.MP)N →β (MP)[N/x] , M[N/x]P.

Similarly, in M((λx.P)N) we know that x ∈ Fv(P), therefore x /∈ Fv(M). Having
that, if we apply (β)-reduction to both π2-redex M((λx.P)N) and π2-contractum
(λx.MP)N, we obtain the same term:

M((λx.P)N) →β MP[N/x]
(λx.MP)N →β (MP)[N/x] , MP[N/x].

To conclude, (π) reductions in the λr-calculus produce β-equivalent terms and
they cannot create a new β-redex.

Now, we can prove that adding (π) reductions do not change the set of the
strongly normalising λr-terms. In the following proposition, we use R to denote
the union of all resource control λr reductions and equivalencies: R = γ∪ω∪
γω∪ ε.

Proposition 5.51 If λr-term M is β∪R -SN, then it is also β∪R ∪π-SN.

Proof: Suppose that there exists a λr-term M that is β∪R -SN, but is not β∪R ∪
π-SN. R ∪π-reduction is terminating in the λr-calculus, the proof combines the
termination of R -reductions, proved in [45], and the termination of π-reductions,
proved in [26]. This means that there is an infinite number of (β)-reductions start-
ing from M. As seen from the previous discussion, (π)-reductions cannot produce
new β-redexes, meaning that there was an infinite number of (β)-reductions start-
ing from M in the system without (π) reductions, i.e. in the system β∪R . But this
is in contradiction with the assumption that M is β∪R -SN. Thus, all β∪R -SN

118 CHAPTER 5. λGTZ
r -CALCULUS

λr-terms are also β∪R ∪π-SN. �

Next, we define a mapping that translates λGtz
r -terms into λr-terms, and λGtz

r -
contexts into a function that takes an arbitrary λr-term and creates a β-redex in-
volving that term.

Definition 5.52 The mapping ⌊ ⌋ : TGtz
r → Λr is defined together with the auxil-

iary mapping ⌊ ⌋k : CGtz
r → (Λr → Λr) in the following way:

⌊x⌋ = x ⌊x̂.t⌋k(M) = (λx.⌊t⌋)M
⌊λx.t⌋ = λx.⌊t⌋ ⌊t :: k⌋k(M) = ⌊k⌋k(M⌊t⌋)
⌊x⊙ t⌋ = x⊙⌊t⌋ ⌊x⊙ k⌋k(M) = x⊙⌊k⌋k(M)
⌊x <y

z t⌋ = x <y
z ⌊t⌋ ⌊x <y

z k⌋k(M) = x <y
z ⌊k⌋k(M)

⌊tk⌋ = ⌊k⌋k(⌊t⌋)

In the previous definition, M is an arbitrary λr-term such that ⌊k⌋k(M) is the λr-
term. Therefore, the condition Fv(k)∩Fv(M) = /0 must hold.

Next, we prove some basic features of the introduced mapping, namely preser-
vation of the free variables and interpretation of substitution. We use the same
notation for the free variables in both calculi, but the subject is always clear from
the context. Moreover, the free variable definition for the terms of the two calculi
coincide. The same applies to the notation of the implicit substitution.

Lemma 5.53

(i) Fv(⌊t⌋) = Fv(t), for t ∈ TGtz
r .

(ii) Fv(⌊k⌋k(M)) = Fv(k)∪Fv(M), for k ∈ CGtz
r and M ∈ Λr.

Proof: By mutual induction on the structure of λGtz
r -terms and λGtz

r -contexts.

• Basic case t ≡ x is trivial, since ⌊x⌋= x.

• Cases t ≡ λx.t, t ≡ x⊙ t and t ≡ x <y
z t are easy, because the corresponding

interpretations are the λr-terms of the same structure.

• Case k ≡ x̂.t:

Fv(⌊k⌋k(M)) = Fv(⌊x̂.t⌋k(M)) = Fv((λx.⌊t⌋)M) = Fv(⌊t⌋)\{x}∪Fv(M)
=IH Fv(t)\{x}∪Fv(M) = Fv(x̂.t)∪Fv(M) = Fv(k)∪Fv(M).

• Case k ≡ t :: k′:

5.3. INTERSECTION TYPES FOR THE λGTZ
r -CALCULUS 119

Fv(⌊k⌋k(M)) = Fv(⌊t :: k′⌋k(M)) = Fv(⌊k′⌋k(M⌊t⌋)) =IH

Fv(k′)∪Fv(M⌊t⌋))
=IH Fv(k′)∪Fv(M)∪Fv(t) = Fv(t :: k′)∪Fv(M) = Fv(k)∪Fv(M).

• Case k ≡ x⊙ k′:

Fv(⌊k⌋k(M)) = Fv(⌊x⊙ k′⌋k(M)) = Fv(x⊙⌊k′⌋k(M)) =
{x}∪Fv(⌊k′⌋k(M))

=IH {x}∪Fv(k′)∪Fv(M) = Fv(x⊙ k′)∪Fv(M) = Fv(k)∪Fv(M).

• Case t ≡ uk:

Fv(⌊t⌋) = Fv(⌊uk⌋) = Fv(⌊k⌋k(⌊u⌋) =IH Fv(k)∪Fv(⌊u⌋)
=IH Fv(k)∪Fv(u) = Fv(t).

• The remaining case k ≡ x <y
z k′ is similar. �

Lemma 5.54

(i) ⌊v[t/x]⌋= ⌊v⌋[⌊t⌋/x], for v, t ∈ TGtz
r .

(ii) ⌊k[t/x]⌋k(M) = ⌊k⌋k[⌊t⌋/x](M), for t ∈ TGtz
r , k ∈ CGtz

r and M ∈ Λr.

Proof: By mutual induction on the structure of λGtz
r terms and contexts. Notice that

in the case of the substitution on contexts, we can write ⌊k⌋k[⌊t⌋/x](M) instead of
(⌊k⌋k(M))[⌊t⌋/x] because we know that k and M cannot share free variables, there-
fore x /∈ Fv(M). �

Now, we prove that the mappings ⌊ ⌋ and ⌊ ⌋k preserve types. In the sequel,
the notation Λr(Γ′⊢λrα) stands for {M | M ∈ Λr & Γ′ ⊢λr M : α}.

Proposition 5.55 (Type preservation by ⌊ ⌋)

(i) If Γ ⊢ t : σ, then Γ ⊢λr ⌊t⌋ : σ.

(ii) If Γ;∩n
i τi ⊢ k : σ, then ⌊k⌋k : Λr(∆ j⊢λr τ j)→ Λr(Γ,∆⊢λrσ), for all j ∈ {0, . . . ,n}

and for some ∆ = ∆⊤0 ⊓∆1⊓ ...⊓∆n.

Proof: The proposition is proved by simultaneous induction on derivations. We
distinguish cases according to the last typing rule used.

• Cases (Ax), (→R), (Weakt) and (Contt) are easy, because the intersection
type assignment system of λr has exactly the same rules.

120 CHAPTER 5. λGTZ
r -CALCULUS

• Case (Sel): the derivation ends with the rule

Γ,x : α ⊢ t : σ
Γ;α ⊢ x̂.t : σ

(Sel)

By the IH we have that Γ,x : α ⊢λr ⌊t⌋ : σ, where α =∩n
i τi. For any M ∈Λr

such that ∆ j ⊢λr M : τ j, for all j ∈ {0, . . . ,n}, we have

Γ,x : ∩n
i τi ⊢λr ⌊t⌋ : σ

(→I)
Γ ⊢λr λx.⌊t⌋ : ∩n

i τi→ σ ∆0 ⊢λr M : τ0 . . . ∆n ⊢λr M : τn
(→E)

Γ,∆⊤0 ⊓∆1⊓ . . .⊓∆n ⊢λr (λx.⌊t⌋)M : σ

Since (λx.⌊t⌋)M = ⌊x̂.t⌋k(M), we conclude that

⌊x̂.t⌋k : Λr(∆ j⊢λr τ j)→ Λr(Γ,∆⊤0 ⊓∆1⊓...⊓∆n⊢λrσ)

.

• Case (→L): the derivation ends with the rule

Γ0 ⊢ t : σ0 ... Γn ⊢ t : σn ∆;∩m
j τ j ⊢ k : ρ

Γ,∆;∩m
j (∩n

i σi→ τ j) ⊢ t :: k : ρ
(→L)

for Γ = Γ⊤0 ⊓ Γ1 ⊓ . . .⊓ Γn. By the IH we have that Γl ⊢λr ⌊t⌋ : σl , for
l ∈ {0, . . . ,n}. For any M ∈Λr such that Γ′j ⊢Λr M :∩n

i σi→ τ j, j = 1, . . . ,m
we have

Γ′j ⊢λr M : ∩n
i σi→ τ j Γ0 ⊢λr ⌊t⌋ : σ0 . . . Γn ⊢λr ⌊t⌋ : σn

Γ⊤0 ⊓Γ1⊓ . . .⊓Γn,Γ′j ⊢λr M⌊t⌋ : τ j
(→E)

From the right-hand side premise in the (→L) rule, by the IH, we get that
⌊k⌋k is the function with the scope ⌊k⌋k : Λr(Γ′′′j ⊢λr τ j)→ Λr(Γ′′′,Γ′′⊢λr ρ), for

some Γ′′′ = Γ′′′0
⊤⊓Γ′′′1 ⊓ ...⊓Γ′′′n . For Γ′′′ ≡ Γ,Γ′ and by taking M⌊t⌋ as the

argument of the function ⌊k⌋k, we get Γ,∆,Γ′ ⊢λr ⌊k⌋k(M⌊t⌋) : ρ. Since
⌊k⌋k(M⌊t⌋) = ⌊t :: k⌋k(M), we have that Γ,∆,Γ′ ⊢λr ⌊t :: k⌋k(M) : ρ. This
holds for any M of the appropriate type, yielding
⌊t :: k⌋k : Λr(Γ′⊢λr∩

n
i σi→τ j)→ Λr(Γ,∆,Γ′⊢λr ρ), which is exactly what we need.

5.3. INTERSECTION TYPES FOR THE λGTZ
r -CALCULUS 121

• Case (Cut): the derivation ends with the rule

Γ0 ⊢ t : τ0 . . .Γn ⊢ t : τn ∆;∩τn
i ⊢ k : σ

Γ⊤0 ⊓Γ1⊓ . . .⊓Γn,∆ ⊢ tk : σ
(Cut)

By the IH we have that Γ j ⊢λr ⌊t⌋ : τ j and ⌊k⌋k : Λr(Γ′j⊢λr τ j)→ Λr(Γ′,∆⊢λrσ)

for all j = 0, . . . ,n and for Γ′ = Γ⊤0 ⊓Γ′1⊓ . . .⊓Γ′n. Hence, for any M ∈ Λr
such that Γ′j ⊢λr M : τ j, Γ′,∆ ⊢λr ⌊k⌋k(M) : σ holds. By taking M ≡ ⌊t⌋ and
Γ′ ≡ Γ, we get Γ,∆ ⊢λr ⌊k⌋k(⌊t⌋) : σ. But ⌊k⌋k(⌊t⌋) = ⌊tk⌋, so the proof is
done.

• Case (Weakk): the derivation ends with the rule

Γ;β ⊢ k : σ
Γ,x :⊤;β ⊢ x⊙ k : σ

(Weakk)

where β = ∩n
jτ j. By the IH we have that ⌊k⌋k is the function with the scope

⌊k⌋k : Λr(Γ′j⊢λr τ j)→Λr(Γ,Γ′0
⊤⊓Γ′1⊓...⊓Γ′n⊢λrσ), meaning that for each M ∈Λr such

that Γ′j ⊢λr M : τ j for all j ∈ {0, . . . ,n} Γ′0
⊤⊓Γ′1⊓ . . .⊓Γ′n,Γ⊢λr ⌊k⌋k(M) : σ

holds. Now, we can apply (Weak) rule:

Γ,Γ′0
⊤⊓Γ′1⊓ . . .⊓Γ′n ⊢ ⌊k⌋k(M) : σ

Γ,Γ′0
⊤⊓Γ′1⊓ . . .⊓Γ′n,x :⊤ ⊢ x⊙⌊k⌋k(M) : σ

(Weak)

Since x⊙⌊k⌋k(M) = ⌊x⊙ k⌋k(M), this means that ⌊x⊙ k⌋k : Λr(Γ′j⊢λr τ j)→
Λr(Γ,Γ′0

⊤⊓Γ′1⊓...⊓Γ′n ,x:⊤⊢λrσ), which is exactly what we wanted to get.

• Case (Contk): similar to the case (Weakk), relying on the rule (Cont) in the
λr-calculus. �

For the given encoding ⌊ ⌋, we show that each λGtz
r -reduction step can be

simulated by some λr-reduction or by an equality. In order to do so, we prove the
following lemmas. The notation →λr stands for the union of all λr-reductions,
including (π1) and (π2).

Lemma 5.56 If M→λr M′, then ⌊k⌋k(M)→λr ⌊k⌋k(M′).

Proof: By induction on the structure of k.

• Basic case: k ≡ x̂.t.
M→λr M′ implies (λx.⌊t⌋)M→λr (λx.⌊t⌋)M′. Since ⌊x̂.t⌋k(M)= (λx.⌊t⌋)M,
the statement is proved.

122 CHAPTER 5. λGTZ
r -CALCULUS

• Case: k ≡ t :: k′.
M→λr M′ implies M⌊t⌋→λr M′⌊t⌋. By the IH ⌊k′⌋k(M⌊t⌋)→λr ⌊k′⌋k(M′⌊t⌋).
⌊t :: k′⌋k(M) = ⌊k′⌋k(M⌊t⌋), hence the proof is done.

• Cases k ≡ x⊙ k′ and k ≡ x <x1
x2

k′ are analogous. �

Lemma 5.57 ⌊k⌋k((λx.P)N)→λr (λx.⌊k⌋k(P))N.

Proof: By induction on the structure of k, analogous to the proof of Lemma 4.36.�

Lemma 5.58 If M ∈ Λr and k,k′ ∈ CGtz
r , then ⌊k′⌋k ◦⌊k⌋k(M)→λr ⌊k@k′⌋k(M).

Proof: By induction on the structure of k, analogous to the proof of Lemma 4.37.�

Lemma 5.59

(i) If x /∈ Fv(k), then (⌊k⌋k(M))[N/x] = ⌊k⌋k(M[N/x]).

(ii) If x,y /∈ Fv(k), then z <x
y (⌊k⌋k(M))→λr ⌊k⌋k(z <x

y M).

(iii) ⌊k⌋k(x⊙M)→λr x⊙⌊k⌋k(M).

Proof:

(i) By induction on the structure of k.

– Basic case: k ≡ ŷ.t, where x /∈ Fv(t).

(⌊k⌋k(M))[N/x] = (⌊ŷ.t⌋k(M))[N/x]
= ((λy.⌊t⌋)M)[N/x]
, (λy.⌊t⌋)(M[N/x])
= ⌊ŷ.t⌋k(M[N/x])
= ⌊k⌋k(M[N/x]).

– Case: k ≡ t :: k′, where x /∈ Fv(t)∪Fv(k′).

(⌊k⌋k(M))[N/x] = (⌊t :: k′⌋k(M))[N/x]
= (⌊k′⌋k(M⌊t⌋))[N/x]
=IH ⌊k′⌋k((M⌊t⌋)[N/x])
, ⌊k′⌋k((M[N/x]⌊t⌋))
= ⌊t :: k′⌋k(M[N/x])
= ⌊k⌋k(M[N/x]).

5.3. INTERSECTION TYPES FOR THE λGTZ
r -CALCULUS 123

– Case: k ≡ y <z
w k′, where x /∈ Fv(k′).

(⌊k⌋k(M))[N/x] = (⌊y <z
w k′⌋k(M))[N/x]

= (y <z
w ⌊k′⌋k(M))[N/x]

, y <z
w (⌊k′⌋k(M))[N/x]

=IH y <z
w ⌊k′⌋k(M[N/x])

= ⌊y <z
w k′⌋k(M[N/x])

= ⌊k⌋k(M[N/x]).

– Case: k ≡ y⊙ k′, where x /∈ Fv(k′) is similar.

(ii) By induction on the structure of k.

– Basic case: k ≡ ŵ.t, where x,y /∈ Fv(t).

z <x
y (⌊k⌋k(M)) = z <x

y (⌊ŵ.t⌋k(M))

= z <x
y ((λw.⌊t⌋)M)

→λr (λw.⌊t⌋)z <x
y M

= ⌊ŵ.t⌋k(z <x
y M)

= ⌊k⌋k(z <x
y M).

– Case: k ≡ t :: k′, where x,y /∈ Fv(t)∪Fv(k′).

z <x
y (⌊k⌋k(M)) = z <x

y (⌊t :: k′⌋k(M))

= z <x
y (⌊k′⌋k(M⌊t⌋))

→IH ⌊k′⌋k(z <x
y (M⌊t⌋))

→λr ⌊k′⌋k((z <x
y M)⌊t⌋)

= ⌊t :: k′⌋k(z <x
y M)

= ⌊k⌋k(z <x
y M).

(iii) By easy induction on the structure of k, since we know that x /∈ Fv(k), be-
cause otherwise the result of the mapping ⌊k⌋k(x⊙M) would not be the
λr-term. �

Now we can prove that the reduction rules of the λGtz
r -calculus can be sim-

ulated by the reduction rules or an equality in the λr-calculus. Moreover, the
equivalences of the λGtz

r -calculus are preserved in the λr-calculus.

Theorem 5.60 (Simulation of λGtz
r -reduction by λr-reduction)

(i) If a term t→λGtz
r

t ′, then ⌊t⌋ →λr ⌊t ′⌋.

(ii) If a context k→λGtz
r

k′ by (γ6) or (ω6) reduction, then ⌊k⌋k(M) ≡ ⌊k′⌋k(M),

for any M ∈ Λλr .

124 CHAPTER 5. λGTZ
r -CALCULUS

(iii) If a context k→λGtz
r

k′ by a reduction different from (γ6) or (ω6), then ⌊k⌋k(M)→λr

⌊k′⌋k(M), for any M ∈ Λr.

(iv) If t ≡λGtz
r

t ′, then ⌊t⌋ ≡λr ⌊t ′⌋, and if k≡λGtz
r

k′, then ⌊k⌋k(M)≡λr ⌊k′⌋k(M),
for any M ∈ Λr.

Proof: Without losing generality, we prove the statement only for the outermost
reductions. We will use the notation→ instead of→λGtz

r
since it is clear from the

context where the reductions happen.

(β) (λx.v)(u :: k)→ u(x̂.vk).

On the one hand we have

⌊t⌋= ⌊(λx.v)(u :: k)⌋= ⌊u :: k⌋k(⌊λx.v⌋) = ⌊k⌋k((λx.⌊v⌋)⌊u⌋)
On the other hand,

⌊t ′⌋= ⌊u(x̂.vk)⌋= ⌊x̂.vk⌋k(⌊u⌋) = (λx.⌊vk⌋)⌊u⌋= (λx.⌊k⌋k(⌊v⌋))⌊u⌋.
So, ⌊t⌋ →λr ⌊t ′⌋ by Lemma 5.57.

(σ) T (x̂.v)→ v[T/x]

⌊t⌋= ⌊T (x̂.v)⌋= ⌊x̂.v⌋k(⌊T⌋) = (λx.⌊v⌋)⌊T⌋
On the other hand, by Lemma 5.54 ⌊t ′⌋= ⌊v[T/x]⌋= ⌊v⌋[⌊T⌋/x].

Thus ⌊t⌋ →λr ⌊t ′⌋ by (β)-reduction together with Lemma 5.54.

(π) (vk)k′→ v(k@k′)

⌊t⌋= ⌊(vk)k′⌋= ⌊k′⌋k(⌊vk⌋) = ⌊k′⌋k(⌊k⌋k(⌊v⌋))
⌊t ′⌋= ⌊v(k@k′)⌋= ⌊k@k′⌋k(⌊v⌋).
Applying Lemma 5.58 we get that ⌊t⌋ →λr ⌊t ′⌋.

(µ) x̂.xk→ k.

This reduction reduces a context to a context, so we have:

⌊k⌋k(M) = ⌊x̂.xk′′⌋k(M) = (λx.⌊xk′′⌋)M = (λx.⌊k′′⌋k(x))M and ⌊k′⌋k(M) =
⌊k′′⌋k(M).

Now, (λx.⌊k′′⌋k(x))M reduces by (β)-reduction to (⌊k′′⌋k(x))[M/x]. Since
we know that x /∈ k′′, which is a side condition for the (µ) reduction, we can
apply Lemma 5.59 and get (⌊k′′⌋k(x))[M/x] = ⌊k′′⌋k(x[M/x]) = ⌊k′′⌋k(M).
So ⌊k⌋k(M)→ ⌊k′⌋k(M) by (β)-reduction followed by Lemma 5.59.

(γ1) ⌊x <x1
x2
(λy.t)⌋ →λr ⌊λy.x <x1

x2
t⌋ by the rule (γ1) in λr.

5.3. INTERSECTION TYPES FOR THE λGTZ
r -CALCULUS 125

(γ2) ⌊x <x1
x2
(tk)⌋ →λr ⌊(x <x1

x2
t)k⌋ by the rule (γ2) in λr.

(γ3) ⌊x <x1
x2
(tk)⌋ →λr ⌊t(x <x1

x2
k)⌋ by the rule (γ3) in λr.

(γ4) x <x1
x2
(ŷ.t)→ ŷ.(x <x1

x2
t)

⌊k⌋k(M) = (x <x1
x2

λy.⌊t⌋)M.

On the other hand,
⌊k′⌋k(M) = (λy.x <x1

x2
⌊t⌋)M.

So ⌊k⌋k(M)→λr ⌊k′⌋k(M) by (γ1)-reduction.

(γ5) x <x1
x2
(t :: k′′)→ (x <x1

x2
t) :: k′′, if x1,x2 ∈ Fv(t)

⌊k⌋k(M) = x <x1
x2
(⌊k′′⌋k(M⌊t⌋)).

⌊k′⌋k(M) = ⌊k′′⌋k(M(x <x1
x2
⌊t⌋)).

x1,x2 ∈ Fv(t) implies that x1,x2 ∈ Fv(M⌊t⌋) so we can apply Lemma 5.59
followed by reduction (γ3) and conclude that ⌊k⌋k(M)→λr ⌊k′⌋k(M).

(γ6) x <x1
x2
(t :: k′′)→ t :: (x <x1

x2
k′′), if x1,x2 ∈ Fv(k′′)

⌊k⌋k(M) = ⌊x <x1
x2
(t :: k′′)⌋k(M) = x <x1

x2
⌊k′′⌋k(M⌊t⌋).

On the other hand,
⌊k′⌋k(M) = ⌊t :: (x <x1

x2
k′′)⌋k(M) = x <x1

x2
⌊k′′⌋k(M⌊t⌋).

So ⌊k⌋k(M)≡ ⌊k′⌋k(M).

(γω1) x <x1
x2
(y⊙ e)→ y⊙ (x <x1

x2
e)

There is the corresponding (γω1) rule in λr.

(γω2) x <x1
x2
(x1⊙ e)→ e[x/x2]

There is the corresponding (γω2) rule in λr.

(ω1) ⌊λx.(y⊙ t)⌋ →λr ⌊y⊙ (λx.t)⌋ by the rule (ω1) in λr.

(ω2) ⌊(x⊙ t)k⌋ →λr ⌊x⊙ (tk)⌋ by the rule (ω2) in λr.

(ω3) ⌊(x⊙ t)k⌋ →λr ⌊x⊙ (tk)⌋ by the rule (ω3) in λr.

(ω4) x̂.(y⊙ t)→ y⊙ (x̂.t), x ̸= y

⌊k⌋k(M) = ⌊x̂.(y⊙ t)⌋k(M) = (λx.y⊙⌊t⌋)M.

⌊k′⌋k(M) = ⌊y⊙ (x̂.t)⌋k(M) = (y⊙λx.⌊t⌋)M.

So ⌊k⌋k(M)→λr ⌊k′⌋k(M) by the rule (ω1) in λr.

126 CHAPTER 5. λGTZ
r -CALCULUS

(ω5) (x⊙ t) :: k′′→ x⊙ (t :: k′′)

⌊k⌋k(M) = ⌊(x⊙ t) :: k′′⌋k(M) = ⌊k′′⌋k(M⌊x⊙ t⌋) = ⌊k′′⌋k(Mx⊙⌊t⌋).

⌊k′⌋k(M) = ⌊x⊙ (t :: k′′)⌋k(M) = x⊙⌊t :: k′′⌋k(M) = x⊙⌊k′′⌋k(M⌊t⌋).

Applying the rule (ω3) from the λr-calculus and Lemma 5.59 we get that

⌊k⌋k(M)�λr ⌊k′⌋k(M).

(ω6) t :: (x⊙ k′′)→ x⊙ (t :: k′′)

⌊k⌋k(M)= ⌊t :: (x⊙k′′)⌋k(M)= ⌊x⊙k′′⌋k(M⌊t⌋)= x⊙⌊k′′⌋k(M⌊t⌋)= ⌊k′⌋k(M).
So ⌊k⌋k(M)≡ ⌊k′⌋k(M).

(ε1− ε4) are trivial, because there exist corresponding equivalence rules in the λr-
calculus. �

We see that most of the λGtz
r -reductions, more precisely all except (γ6) and (ω6)

reductions, are interpreted by the λr-reductions. Since the set of equivalences of
the two calculi coincide, they are trivially preserved. As in the case of simply-
typed λGtz

r calculus, in order to prove that there is no infinite sequence of λGtz
r -

reductions one has to prove that there cannot exist an infinite sequence of λGtz
r -

reductions which are all interpreted as equalities. For that purpose, we will use
special measures proposed in Section 5.2.2, namely || ||C (Definition 5.29) and || ||W
(Definition 5.30).

Lemma 5.61 For all e,e′ ∈ ΛGtz
r :

(i) If e →ω6 e′, then ||e||W > ||e′||W .

(ii) If e →γ6 e′, then ||e||W = ||e′||W .

(iii) If e ≡λGtz
r

e′, then ||e||W = ||e′||W .

Proof: Included in the proof of Lemma 5.37. �

Lemma 5.62

(i) For all e,e′ ∈ ΛGtz
r : if e →γ6 e′, then ||e||C > ||e′||C.

(ii) If e ≡λGtz
r

e′, then ||e||C = ||e′||C.

5.3. INTERSECTION TYPES FOR THE λGTZ
r -CALCULUS 127

Proof: Included in the proof of Lemma 5.38. �

Now, we define a lexicographic product based on the orders defined in Defini-
tion 5.39.

Definition 5.63 We define the relation≫ on ΛGtz
r as the lexicographic product:

≫ = >λr ×lex >w ×lex >c .

The following propositions proves that the reduction relation on the set of typed
λGtz
r -expressions is included in the given lexicographic product≫.

Proposition 5.64 For each e ∈ ΛGtz
r : if e→ e′, then e≫ e′.

Proof: The proof is by case analysis on the kind of reduction and the structure of
≫.
If e→ e′ by β, σ, π, µ, γ1, γ2, γ3, γ4 γ5, γω1, γω2, ω1, ω2, ω3 ω4 or ω5 reduction,
then e >λr e′ by Proposition 5.60.
If e→ e′ by ω6, then e =λr e′ by Proposition 5.60 and e >w e′ by Lemma 5.61.
Finally, if e→ e′ by γ6, then e =λr e′ by Proposition 5.60, e =w e′ by Lemma 5.61
and e >c e′ by Lemma 5.62.�

Finally, we can prove the desired feature of the λGtz
r -calculus with intersection

types.

Theorem 5.65 (Strong normalisation of λGtz
r) If a λGtz

r -expression is typeable in
the system λGtz

r ∩, then it is SN.

Proof: The reduction → is well-founded on λGtz
r ∩ as it is included (Propo-

sition 5.64) in the relation≫ which is well-founded as the lexicographic product
of the well-founded relations >λr , >w and >c. Relation >λr is based on the in-
terpretation ⌊ ⌋ : TGtz

r → Λr. By Proposition 5.55 typeability is preserved by the
interpretation ⌊ ⌋ and →λr is SN, i.e. well-founded, on Λr∩ (Propositions 3.13
and 5.51), hence >λr is well-founded on λGtz

r ∩. Similarly, >c and >w are well-
founded, as they are based on interpretations into the well-founded relation > on
the set N of natural numbers. �

5.3.3 SN⇒ Typeability in λGtz
r ∩

The next step toward the complete characterisation of the strongly normalising
λGtz
r -expressions is to prove that if a λGtz

r -expression is SN, then it is typeable in

128 CHAPTER 5. λGTZ
r -CALCULUS

the system λGtz
r ∩. Like in the case of the λGtz-calculus (Section 4.3.2) we proceed

in two steps:

1) we show that all λGtz
r -normal forms are typeable; and

2) we prove that typeability is preserved by head subject expansion.

In order to observe the structure of the λGtz
r -normal forms, let us revisit the

λGtz
r -reductions, presented in Figure 5.2. The computation is directed towards:

• cut elimination;

• contraction propagation;

• weakening extraction;

and each of these three processes produces its own normal forms.
Cut elimination is performed by original λGtz-reductions, namely β, σ and π,

thus the corresponding normal forms are expressions of the form

x, λx.tn f , x(tn f :: kn f), tn f :: kn f , x̂.tn f ,

i.e. λGtz-normal forms.
Contraction propagation is performed by the group of γ-reductions, and the

corresponding normal forms are expressions of the form

x <y
z y(tn f :: kn f), z ∈ Fv(kn f) and x <y

z tn f :: kn f , y ∈ Fv(tn f),z ∈ Fv(kn f),

i.e. contractions over expressions consisting of two parts, where each one contains
exactly one of two contracted variables, and which cannot further interact.

Weakening extraction is performed by the group of ω-reductions, and the cor-
responding normal forms are expressions of the form

x⊙ en f , λx.x⊙ tn f , x̂..x⊙ tn f ,

i.e. expressions in which weakenings are either pushed out to the surface or blocked
by binding (abstraction or selection).

Therefore, the λGtz
r -normal forms are the subset of the set E of λGtz

r -expressions
given by the following abstract syntax:

tn f ::= x |λx.tn f |λx.x⊙ tn f |x(tn f :: kn f) |x <y
z y(tn f :: kn f)

kn f ::= x̂.tn f | x̂.x⊙ tn f | tn f :: kn f |x <y
z (tn f :: kn f), y ∈ Fv(tn f),z ∈ Fv(kn f)

wn f ::= x⊙ en f

en f ::= tn f |kn f |wn f .

5.3. INTERSECTION TYPES FOR THE λGTZ
r -CALCULUS 129

Notice that E is not exactly the set of λGtz
r -normal forms since there exist ex-

pressions that belong to E but are not normal forms (such as the context x̂.x(tn f ::
kn f) which can be reduced by µ-reduction), yet it contains all normal forms, thus it
is sufficient to prove the following proposition.

Proposition 5.66 If a λGtz
r -expression en f ∈ E, then en f is typeable in the system

λGtz
r ∩. Therefore, all λGtz

r -normal forms are typeable in the system λGtz
r ∩.

Proof: The proof goes by induction on the structure of en f . All cases are straight-
forward, because we know that en f are well-formed, and that domain correspon-
dence holds (Lemma 5.45). �

The following two lemmas explain the behavior of the meta operators [/] and @
during the expansion.

Lemma 5.67 (Inverse substitution lemma for λGtz
r) (i) Let Γ⊢ t[T/x] : σ and

T typeable, i.e. ∆ j ⊢ T : τ j, for j ∈ {0, ...,n} and n ≥ 0. Then Γ′,x : ∩n
i τi ⊢

t : σ, where Γ = Γ′,∆⊤0 ⊓∆1⊓ . . .⊓∆n.

(ii) Let Γ;γ ⊢ k[T/x] : σ and T typeable, i.e. ∆ j ⊢ T : τ j, for j ∈ {0, ...,n} and
n≥ 0. Then Γ′,x : ∩n

i τi;γ ⊢ k : σ, where Γ = Γ′,∆⊤0 ⊓∆1⊓ . . .⊓∆n.

Proof: By mutual induction on the structure of the term t and the context k. We
will only show the base case and some resource related cases.

• Base case t ≡ x. Then t[T/x]≡ x[T/x] , T , thus the assumption yields Γ ⊢
T : σ and ∆ j ⊢ T : τ j, for all j ∈ {0, ...,n}. Therefore Γ = ∆⊤0 ⊓∆1⊓ . . .⊓∆n,
Γ′ = /0, σ≡ τ j0 , for some j0 ∈ {0, ...,n} and x : ∩n

i τi ⊢ t : σ, by the axiom.

• Case t ≡ x⊙u. Then t[T/x]≡ (x⊙u)[T/x],Fv(T)⊙u, thus the assumption
yields Γ ⊢ Fv(T)⊙u : σ and ∆ j ⊢ T : τ j, for all j ∈ {0, ...,n}. Let Fv(T) =
{y1, ...,ym} = Dom(∆ j). By Generation lemma 5.46(vi) we get that Γ =
Γ′,y1 : ⊤, ...,ym : ⊤ and Γ′ ⊢ u : σ. Therefore, for n = 0 we get what we
need: Γ = Γ′,∆⊤0 and Γ′,x : ∩0

i τi ⊢ x⊙ u : σ. The last statement is correct
since ∩0

i τi =⊤.

• Case t ≡ y⊙u. Then t[T/x]≡ (y⊙u)[T/x], y⊙u[T/x], thus the assumption
yields Γ ⊢ y⊙u[T/x] : σ and ∆ j ⊢ T : τ j, for all j ∈ {0, ...,n}. By Generation
lemma 5.46(vi) we get that Γ = Γ′,y : ⊤ and Γ′ ⊢ u[T/x] : σ. Now, by the
IH we get that Γ′ = Γ′′,∆⊤0 ⊓∆1⊓ . . .⊓∆n and Γ′′,x : ∩n

i τi ⊢ u : σ. Therefore,
Γ′′,y : ⊤,x : ∩n

i τi ⊢ y⊙ u : σ and Γ = Γ′′,y : ⊤,∆⊤0 ⊓∆1 ⊓ . . .⊓∆n, which is
exactly what we needed to prove.

130 CHAPTER 5. λGTZ
r -CALCULUS

• Case t ≡ x <x1
x2

u. Then

t[T/x] ≡ (x <x1
x2

u)[T/x] , Fv(T) <Fv(T1)
Fv(T2)

(u[T1/x1])[T2/x2]. The assump-

tions are in this case Γ ⊢ Fv(T)<Fv(T1)
Fv(T2)

(u[T1/x1])[T2/x2] : σ and ∆ j ⊢ T : τ j,

for all j ∈ {0, ...,n}. Since T1 and T2 are obtained by renaming free vari-
ables of T , we can also assume that ∆′j ⊢ T1 : τ j, and ∆′′j ⊢ T2 : τ j, for all
j ∈ {0, ...,n}. Let Fv(T) = {y1, ...,ym}= Dom(∆ j), Fv(T1) = {y′1, ...,y′m}=
Dom(∆′j) and Fv(T2) = {y′′1, ...,y′′m}= Dom(∆′′j). By m applications of Gen-
eration lemma 5.46(v) we get that Γ = Γ′,y1 : α1 ∩β1, ...,ym : αm ∩βm and
Γ′,y′1 : α1, ...,y′m : αm,y′′1 : β1, ...,y′′m : βm ⊢ (u[T1/x1])[T2/x2] : σ. Since T1, T2
and u by construction have disjoint sets of free variables, by two applications
of the IH we obtain Γ′,x1 : ∩n

i τi,x2 : ∩n
i τi ⊢ u : σ. Finally, due to the fact that

intersection is idempotent we obtain Γ′,x : ∩n
i τi ⊢ x <x1

x2
u : σ. �

Lemma 5.68 (Inverse append lemma for λGtz
r) If Γ;α ⊢ k@k′ : σ, then there

are ∆ j and τ j, j = 0, . . . ,n such that ∆ j;α ⊢ k : τ j and Γ′;∩n
i τi ⊢ k′ : σ, where

Γ = Γ′,∆⊤0 ⊓∆1⊓ . . .⊓∆n.

Proof:The proof goes by the induction on the structure of the context k.

• Base case k≡ x̂.t. In this case x̂.t@k′, x̂.tk′, thus by assumption Γ;α⊢ x̂.tk′ :
σ. By Generation lemma 5.46(iv) we get Γ,x : α ⊢ tk′ : σ. By Generation
lemma 5.46(iii) we get that Γ,x : α = Γ′,∆′⊤0 ⊓∆′1 ⊓ . . .⊓∆′n, Γ′;∩n

i τi ⊢ k′ :
σ and ∆′j ⊢ t : τ j for j = 0, . . . ,n. Now, since x̂.t implies that x ∈ Fv(t)
and because of the domain correspondence (Lemma 5.45), we have that for
all j = 0, . . . ,n it holds ∆′j = ∆ j,x : α. Finally, from ∆ j,x : α ⊢ t : τ j by
(Sel) we get ∆ j;α ⊢ x̂.t : τ j, which is exactly what we wanted. Moreover,
from Γ,x : α = Γ′,(∆0,x : α)⊤⊓ (∆1,x : α)⊓ . . .⊓ (∆n,x : α) we get that Γ =
Γ′,∆⊤0 ⊓∆1⊓ . . .⊓∆n as required.

• Case k≡ x⊙k′′. In this case (x⊙k′′)@k′ , x⊙ (k′′@k′), thus by assumption
Γ;α⊢ x⊙(k′′@k′) : σ. By Generation lemma 5.46(viii) we get Γ=Γ′′,⊤ and
Γ′′;α ⊢ k′′@k′ : σ. Now by induction hypothesis Γ′′ = Γ′,∆⊤0 ⊓∆1⊓ . . .⊓∆n,
∆ j;α ⊢ k′′ : τ j for j = 0, . . . ,n and Γ′;∩n

i τi ⊢ k′ : σ. Applying (Weakk) rule
on ∆ j;α ⊢ k′′ : τ j for j = 0, . . . ,n, we get ∆ j,x :⊤;α ⊢ x⊙ k′′ : τ j.

• Cases k ≡ x <y
z k′′ and k ≡ t :: k′′ are similar. �

Now we prove that the type of a term is preserved during the expansion.

Proposition 5.69 (Head subject expansion for λGtz
r)

5.3. INTERSECTION TYPES FOR THE λGTZ
r -CALCULUS 131

(i) For every λGtz
r -term t: if t → t ′, t is contracted redex and Γ ⊢ t ′ : σ , then

Γ ⊢ t : σ.

(ii) For every λGtz
r -context k: if k→ k′, k is contracted redex and Γ;α ⊢ k′ : σ ,

then Γ;α ⊢ k : σ.

Proof: The proof goes by the case study according to the applied reduction.

• Case (β). We should show that if Γ ⊢ u(x̂.tk) : σ, then Γ ⊢ (λx.t)(u :: k) :
σ. From Γ ⊢ u(x̂.tk) : σ by Generation lemma 5.46(iii) we have that Γ =
Γ′,∆⊤0 ⊓∆1 ⊓ . . .⊓∆n, that ∆0 ⊢ u : τ0,∆1 ⊢ u : τ1,...,∆n ⊢ u : τn (⋆) and that
Γ′;∩n

i τi ⊢ x̂.tk : σ. Next, by Generation lemma 5.46(iv) it holds that Γ′,x :
∩n

i τi ⊢ tk : σ. Next, by another application of Generation lemma 5.46(iii)
(knowing that x ∈ Fv(t)) we get that Γ′ = Γ′′,∆′⊤0 ⊓∆′1⊓ . . .⊓∆′m and ∆′0,x :
∩n

i τi ⊢ t : ρ0, ∆′1,x : ∩n
i τi ⊢ t : ρ1, ..., ∆′m,x : ∩n

i τi ⊢ t : ρm (⋆⋆) and finally
Γ′′;∩m

j ρ j ⊢ x̂.k : σ (⋆⋆⋆).
Now, from (⋆) and (⋆⋆⋆) applying (→L) rule, we get

Γ′′,∆⊤0 ⊓∆1⊓ . . .⊓∆n;∩m
j (∩n

i τi→ ρ j) ⊢ u :: k : σ (•).

On the other hand, applying (→R) rule to each one of (⋆⋆) we get

∆′0 ⊢ λx.t : ∩n
i τi→ ρ0, , ..., ∆′m ⊢ λx.t : ∩n

i τi→ ρm (••).

Finally, from (•) and (••) by the rule (Cut) we get

Γ′′,∆⊤0 ⊓∆1⊓ . . .⊓∆n,∆
′⊤
0 ⊓∆′1⊓ . . .⊓∆′m ⊢ (λx.t)(u :: k) : σ

which is exactly what we want since Γ = Γ′′,∆⊤0 ⊓∆1 ⊓ . . .⊓∆n,∆
′⊤
0 ⊓∆′1 ⊓

. . .⊓∆′m.

• Case (σ) is the direct consequence of Proposition 5.67.

• Case (π) is the direct consequence of Proposition 5.68.

• Case (µ) is easy, because we know that x /∈ Fv(k).

• Case (γ1). We should show that the typeability of t ′ ≡ λy.x <x1
x2

u leads to the
typeability of t ≡ x <x1

x2
λy.u.

Assume that Γ ⊢ λy.x <x1
x2

u : σ. By Generation lemma 5.46(i) we have that
σ ≡ α→ τ and Γ,y : α ⊢ x <x1

x2
u : τ. Further, by Generation lemma 5.46(v)

we get that Γ,y : α = Γ′,y : α,x : β∩ γ and Γ′,y : α,x1 : β,x2 : γ ⊢ u : τ. Now:

Γ′,y : α,x1 : β,x2 : γ ⊢ u : τ
(→R)

Γ′,x1 : β,x2 : γ ⊢ λy.u : α→ τ
(Cont).

Γ′,x : β∩ γ ⊢ x <x1
x2

λy.u : α→ τ

132 CHAPTER 5. λGTZ
r -CALCULUS

This is what we want since Γ = Γ′,x : β∩ γ and σ≡ α→ τ.

• The cases concerning other (γ),(ω) and (γω) reductions are similar, consid-
ering that weakening and contraction type assignment rules do not change
the type of the consequence, and that Preservation of free variables (Propo-
sition 5.12) and Domain correspondence (Proposition 5.45) hold in this sys-
tem. �

Theorem 5.70 (SN⇒ typeability) All strongly normalising λGtz
r expressions are

typeable in the λGtz
r ∩ system.

Proof: The proof is by induction over the length of the longest reduction path out
of a strongly normalising expressions e, with a subinduction on the size of e.

• If e is a normal form, then e is typeable by Proposition 5.66.

• If e is itself a redex, let e′ be the expression obtained by contracting the
redex e. Then e′ is also strongly normalising, hence by the IH it is typeable.
Then e is typeable, by Proposition 5.69. Notice that, if e≡ (λx.t)(u :: k)→β
u(x̂.tk) ≡ e′, then, by the IH, u is typeable, since the length of the longest
reduction path out of u is smaller than that of e, and the size of u is smaller
than the size of e.

• Next, suppose that e is not itself a redex nor a normal form. Then e is of one
of the following forms: λx.u, uk, λx.x⊙u, x⊙u, or x<x1

x2
uk, x1 ∈Fv(u), x2 ∈

Fv(k), x̂..u, u :: k, x̂.x⊙ u, x⊙ k, or x <x1
x2

u :: k, x1 ∈ Fv(u), x2 ∈ Fv(k)
(where some subexpression is not the normal form). All subexpressions of
e are typeable by IH. It is easy to build the typing for e in all these cases,
having in mind that e is an expression (i.e. it is well-formed). �

Finally, we are able to give a characterisation of strong normalisation in the
λGtz
r -calculus.

Theorem 5.71 In the λGtz
r -calculus, the term t is strongly normalising if and only

if it is typeable in the system λGtz
r ∩.

Proof: Immediate consequence of Theorems 5.65 and 5.70. �

Chapter 6

The resource control cube

In this chapter we generalise the results proposed in the previous two chapters, by
introducing the notion of resource control cube. This structure consists of two sys-
tems, namely λR and λGtz

R , which can be seen as two opposite sides of a cube .
Both systems consist of four calculi with either implicit or explicit treatment of the
resource control. The difference between the two systems is in the corresponding
proof systems of intuitionistic logic - the λR system corresponds to natural deduc-
tion with either implicit or explicit structural rules of weakening and contraction,
while the λGtz

R system does the same job in the sequent calculus setting. Therefore,
we call the λR system the ND-base of the cube, and the λGtz

R system the LJ-base
of the cube. In the ND-base of the cube we consider four calculi, namely λ /0, λc,
λw and λcw. The λ /0-calculus is actually regular λ-calculus, in which both resource
operators are treated implicitly. The λc-calculus treats contraction (duplication)
explicitly and weakening (erasure) implicitly; in the λw-calculus weakening is ex-
plicit whereas contraction is implicit and finally in the λcw-calculus both contrac-
tion and weakening are explicit. These four calculi very closely correspond to the
implicit base of the Kesner and Renaud’s Prismoid of Resources from [46], with
certain differences in operational semantics caused by the substitution definition.

In the LJ-base of the cube we consider the four sequent style counterparts of
the λR -calculi, namely λGtz

/0 , λGtz
c , λGtz

w and λGtz
cw . The λGtz

/0 -calculus is actually
the λGtz-calculus, whereas the λGtz

cw -calculus corresponds to the λGtz
r -calculus, pre-

sented in Chapter 5.
For all the calculi of the resource control cube, we use a notation along the lines

of Žunić’s work from [75] and close to van Oostrom’s notation introduced in [72].
It is slightly modified w.r.t. [46] in order to emphasize the correspondence between
these calculi and their sequent counterparts. Note that in [46] the main focus is
on the treatment of substitution (thus the authors distinguish the implicit and the

133

134 CHAPTER 6. THE RESOURCE CONTROL CUBE

explicit base of the Prismoid of resources), whereas in the work proposed here we
distinguish the ND and the LJ base of the Resource control cube, emphasizing
differences in underlying logical proof systems.

The structure of this chapter is as follows. In Section 6.1 we present the un-
typed cube - its syntax and operational semantics. We start by defining the notions
of pre-terms and free-variables, followed by the definition of terms. We move then
to the operational semantics: reduction and equivalence rules and the definition
of implicit substitution. Finally, by instantiating the set R we specify each of the
eight calculi of the cube.

Section 6.2 revisits and summarizes basic type assignment systems with simple
types, that are already known for the most of the calculi of the resource control cube
(for all but the new calculi λGtz

c and λGtz
w). Type systems of each base, λR → and

λGtz
R →, are presented in a uniform way.

In Section 6.3, we introduce intersection type assignment systems, λR ∩ and
λGtz

R ∩. These systems are based on the system λGtz
r ∩, introduced in Subsection

5.2.2, which is incorporated here as the system λGtz
cw ∩. All systems are syntax-

directed and assign strict types to resource control expressions. Some basic prop-
erties like Generation lemma, Substitution lemma, Append lemma1, Subject reduc-
tion, Subject equivalence are claimed.

All sections of this chapter are divided into two subsections - one dealing with
the ND-base of the resource control cube, and other dealing with the cube’s sequent
side.

This chapter represents original contribution of the thesis. It was developed by
Pierre Lescanne, Silvia Ghilezan, Silvia Likavec and myself, and published in [34].

6.1 Type-free resource control cube

6.1.1 Resource control lambda calculi λR

In this section, we present the syntax and the operational semantics of four cal-
culi obtained by adding explicit contraction and/or weakening operator to the λ-
calculus. We denote these four calculi by λR , where R ⊆ {c,w} and c, w denote
explicit operators of contraction and weakening, respectively. The operator which
is not in the index of the calculi is assumed to be implicit in them. Thus, for in-
stance λw denotes a calculus with explicit weakening and implicit contraction.

For the convenience of the reader and to avoid repetition, we present all the
calculi in a uniform way. This implies that some constructions or features are
part of one calculus and not of the others. When a feature occurs in a calculus

1only for the sequent systems

6.1. TYPE-FREE RESOURCE CONTROL CUBE 135

associated with the operator r ∈ R and is ignored elsewhere, we put this feature
between brackets indexed by the symbol r. For instance, if we write [x ∈ Fv(f)]w,
this means that the condition x∈ Fv(f) appears only in the calculus which contains
explicit weakening, as seen from the index w.

In order to define the terms of the four λR -calculi, we first introduce the notion
of pre-terms. A pre-term can be a variable, an abstraction, an application, a con-
traction or a weakening. The abstract syntax of the λR pre-terms is given by the
following:

Pre-terms f ::= x |λx. f | f f |x <x1
x2

f |x⊙ f

where x ranges over a denumerable set of term variables.

Definition 6.1

(i) The list of free variables of a pre-term f , denoted by Fv[f], is defined as
follows (list operators are given in Definition 5.1):

Fv[x] = x;
Fv[λx. f] = Fv[f]\ x;

Fv[f g] = Fv[f],Fv[g];
Fv[x⊙ f] = x,Fv[f];

Fv[x <x1
x2

f] =
{

Fv[f], {x1,x2}∩Fv[f] = /0
x,((Fv[f]\ x1)\ x2), {x1,x2}∩Fv[f] ̸= /0

(ii) The set of free variables of a pre-term f , denoted by Fv(f), is extracted out
of the list Fv[f], by un-ordering the list and removing multiple occurrences
of each variable, if any.

(iii) The set of bound variables of a pre-term f , denoted by Bv(f), contains all
variables that exist in f , but are not free in it.

The only difference with respect to Definition 5.1 is in the contraction case.
Here we distinguish two possibilities in the case of x <x1

x2
f - the duplication binds

the variables x1 and x2 in f and introduces a fresh variable x if at least one of x1,x2
is free in f ; otherwise no new free variable is introduced. This difference plays
an important role in the case of λc calculus, where due to the implicit weakening
terms with void contractions exist, and it is important to forbid introduction of a
“real" free variable obtained by contracting two “fake" variables. For example, in
the term x <x1

x2
x1 we want x to be free, while in x <x1

x2
y we do not want that.

The sets of λR -terms, denoted by ΛR , are subsets of the set of pre-terms and are
defined by the inference rules given in Figure 6.1. In the reminder of this section,
we will use M,N,P,Q... to denote λR -terms.

136 CHAPTER 6. THE RESOURCE CONTROL CUBE

We also use the abbreviation X ⊙M for x1⊙ ... xn⊙M and X <Y
Z M for x1 <

y1
z1

... xn <
yn
zn M, where X , Y and Z are lists of size n, consisting of all distinct variables

x1, ...,xn,y1, ...,yn,z1, ...,zn. If n = 0, i.e., if X is an empty list, then X⊙M = X <Y
Z

M = M. Note that due to the equivalence relation defined in Figure 6.4, we can use
these notations also for sets of variables of the same size.

Some inference rules that define λR -terms (Figure 6.1) include conditions writ-
ten in square parentheses, thus working in one way if some resource operator is
explicit, and in another way if it is implicit. For example, if the weakening is ex-
plicit, i.e. w ∈ R , in the rules for building abstraction and contraction the bindings
λx. f and x <x1

x2
g can be constructed only if x is free in f and x1 and x2 are free in g.

Similarly, in the application rule, two subterms must not share free variables only
in the presence of explicit contraction, i.e. if c ∈ R . In that way, Figure 6.1 defines
terms of all four calculi of ND-base of the cube.

x ∈ ΛR

f ∈ ΛR [x ∈ Fv(f)]w
λx. f ∈ ΛR

f ∈ ΛR g ∈ ΛR [Fv(f)∩Fv(g) = /0]c
f g ∈ ΛR

f ∈ ΛR x /∈ Fv(f)
x⊙ f ∈ ΛR

(w ∈ R)

f ∈ ΛR x1 ̸= x2 x /∈ Fv(f)\{x1,x2} [x1,x2 ∈ Fv(f)]w
x <x1

x2
f ∈ ΛR

(c ∈ R)

Figure 6.1: λR -terms

Example 6.2 Pre-terms λx.y and y <y1
y2 x are λR -terms only if weakening is im-

plicit (i.e. w /∈ R). Similarly, pre-terms λx.xx and x⊙λy.yy are λR -terms only if
contraction is implicit (i.e. c /∈ R).

All the operations defined along this chapter are considered modulo alpha-
conversion, the congruence generated by renaming of bound variables.

Using alpha-conversion, in what follows we consider Barendregt’s conven-
tion [3] for variables: in the same context a variable cannot be both free and bound.
This applies to binders like λx.M which binds x in M, x <x1

x2
M which binds x1 and

6.1. TYPE-FREE RESOURCE CONTROL CUBE 137

x2 in M, and also to the implicit substitution M[N/x] which can be seen as a binder
for x in M.

Implicit substitution M[N/x] is defined in Figure 6.2. In this definition, in case
c ∈ R , the following condition must be satisfied:

Fv(M)∩Fv(N) = /0,

otherwise the substitution result would not be a (well-formed) λR -term. In the
same definition, terms N1 and N2 are obtained from N by renaming all free variables
in N by distinct fresh variables, and M[N1/x1,N2/x2] denotes parallel substitution.
Note that the terms N1 and N2 do not have any free variables in common hence, it
is not a problem to perform the substitution in parallel.

x[N/x] , N
y[N/x] , y, x ̸= y

(λy.M)[N/x] , λy.M[N/x], x ̸= y
(MP)[N/x] , M[N/x]P[N/x]

(y⊙M)[N/x] , {y}\Fv(N)⊙M[N/x], x ̸= y
(x⊙M)[N/x] , Fv(N)\Fv(M)⊙M

(y <y1
y2 M)[N/x] , y <y1

y2 M[N/x], x ̸= y
(x <x1

x2
M)[N/x] , Fv(N)<

Fv(N1)
Fv(N2)

M[N1/x1,N2/x2]

Figure 6.2: Substitution in λR -calculi

The operational semantics for the four calculi that form the “natural deduction
base” of the resource control cube are given in Figures 6.3 and 6.4. Reduction rules
of λR -calculi are given in Figure 6.3, whereas equivalences are given in Figure 6.4.
Reduction rules specific for each calculus are given in Figure 6.5.

As in the case of the λGtz
r -calculus, reductions are divided into four groups:

• (β) reduction is the main computational step;

• (γ) reductions perform propagation of contraction into the term;

• (ω) reductions extract weakening out of the term;

• (γω) reductions explain the interaction between the two different resource
operators.

138 CHAPTER 6. THE RESOURCE CONTROL CUBE

(β) (λx.M)N → M[N/x]

(γ0) x <x1
x2

y → y y ̸= x1,x2

(γ ′0) x <x1
x2

x1 → x
(γ1) x <x1

x2
(λy.M) → λy.x <x1

x2
M

(γ2) x <x1
x2
(MN) → (x <x1

x2
M)N, if x1,x2 /∈ Fv(N)

(γ3) x <x1
x2
(MN) → M(x <x1

x2
N), if x1,x2 /∈ Fv(M)

(ω1) λx.(y⊙M) → y⊙ (λx.M), x ̸= y
(ω2) (x⊙M)N → {x}\Fv(N)⊙ (MN)
(ω3) M(x⊙N) → {x}\Fv(M)⊙ (MN)

(γω1) x <x1
x2
(y⊙M) → y⊙ (x <x1

x2
M), y ̸= x1,x2

(γω2) x <x1
x2
(x1⊙M) → M[x/x2]

Figure 6.3: Reduction rules of λR -calculi

(ε1) x⊙ (y⊙M) ≡ y⊙ (x⊙M)
(ε2) x <x1

x2
M ≡ x <x2

x1
M

(ε3) x <y
z (y <u

v M) ≡ x <y
u (y <z

v M)
(ε4) x <x1

x2
(y <y1

y2 M) ≡ y <y1
y2 (x <

x1
x2

M), x ̸= y1,y2, y ̸= x1,x2

Figure 6.4: Equivalences in λR -calculi

λR -calculi reduction rules equivalences
λ /0 β
λc β, γ0, γ ′0 , γ1,γ2,γ3 ε2,ε3,ε4

λw β, ω1,ω2,ω3 ε1

λcw β, γ1,γ2,γ3, ω1,ω2,ω3, γω1, γω2 ε1,ε2,ε3,ε4

Figure 6.5: ND base of the resource control cube

6.1. TYPE-FREE RESOURCE CONTROL CUBE 139

The group of (γ) reductions exists only in the two calculi that contain explicit
contraction (i.e., if c∈R). Similarly, (ω) reductions belong only to the two calculi
containing explicit weakening (i.e., if w ∈R). Finally, the rules in (γω) group exist
only if R = {c,w}.

Particularly, the rules (γ0) and (γ ′0) exist only if R = {c} and their role is to
erase meaningless contractions. These two rules together correspond to the CGc
rule in [46].

Notice the asymmetry between the reduction rules of the calculi λc and λw,
namely in λw there is no counterpart of the (γ0) and (γ ′0) reductions of λc. The
reason can be tracked back to the definition of λR -terms in Figure 6.1, where the
definition of the weakening operator x⊙ f does not depend on the presence of the
explicit contraction. Alternatively, it would be possible to define weakening with
the condition [x /∈Fv(f)]c instead of unrestricted x /∈Fv(f). In that case, terms like
x⊙ x⊙M would exist, and the reduction (ω0) : x⊙M→M, if x ∈ Fv(M) would
erase this redundant weakening. The typing rule for this weakening would require
multiset treatment of the bases Γ, which is out of the scope of this thesis.

6.1.2 Resource control sequent lambda calculi λGtz
R

In this subsection we present the syntax and the operational semantics of the four
sequent calculi with explicit or implicit resource control, denoted by λGtz

R , where
R ⊆ {c,w} and c, w denote explicit contraction and weakening, respectively.
These four calculi are sequent counterparts of the four resource control calculi
λR presented above, and represent extensions of Espírito Santo’s λGtz-calculus.

The abstract syntax of the λGtz
R pre-expressions is the following:

Pre-terms f ::= x |λx. f | f c |x <x1
x2

f |x⊙ f
Pre-contexts c ::= x̂. f | f :: c |x⊙ c |x <x1

x2
c

where x,x1, . . . ,y, . . . range over a denumerable set of term variables.
A pre-term can be a variable, an abstraction, an application (cut), a contraction

or a weakening, whereas a pre-context is one of the following: a selection, a con-
text constructor, a weakening on a pre-context or a contraction on a pre-context.
Pre-terms and pre-contexts are together referred to as pre-expressions and will be
ranged over by E. Pre-contexts x⊙ c and x <x1

x2
c behave exactly like the corre-

sponding pre-terms x⊙ f and x <x1
x2

f in the untyped calculi, so they will mostly
not be treated separately.

Definition 6.3

140 CHAPTER 6. THE RESOURCE CONTROL CUBE

(i) The list of free variables of a pre-expression E, denoted by Fv[E], is defined
as follows (list operators are defined as in Definition 5.1):

Fv[x] = x;
Fv[λx. f] = Fv[f]\ x;
Fv[f c] = Fv[f],Fv[c];

Fv[x̂. f] = Fv[f]\ x;
Fv[f :: c] = Fv[f],Fv[c];

Fv[x⊙E] = x,Fv[E];

Fv[x <x1
x2

E] =
{

Fv[E], {x1,x2}∩Fv[E] = /0
x,((Fv[E]\ x1)\ x2), {x1,x2}∩Fv[E] ̸= /0

(ii) The set of free variables of a pre-expression E, denoted by Fv(E), is ex-
tracted out of the list Fv[E], by un-ordering the list and removing multiple
occurrences of each variable, if any.

(iii) The set of bound variables of a pre-expression E, denoted by Bv(E), contains
all the variables that exist in E, but are not free in it.

The sets of λGtz
R -expressions ΛGtz

R = TGtz
R ∪KGtz

R (where TGtz
R are the sets of

λGtz
R -terms and KGtz

R are the sets of λGtz
R -contexts) are the subsets of the set of

pre-expressions, defined by the inference rules given in Figure 6.6. We denote
λGtz

R -terms by t,u,v..., λGtz
R -contexts by k,k′, ... and λGtz

R -expressions by e,e′.
Analogously to the definition of λR -terms given in Figure 6.1, Figure 6.6 de-

fines terms and contexts of all four calculi of the LJ-base of the cube. This is
achieved by presenting some inference rules that define λGtz

R -expressions together
with conditions depending on the explicit/implicit treatment of the resource op-
erators. For example, if the weakening is explicit, i.e. w ∈ R , in the rules for
building abstraction, selection and contraction the bindings λx. f , ŷ.g and x <x1

x2
h

can be constructed only if x is free in f , y is free in g, and x1 and x2 are free in h.
Similarly, in the application and cons rule, two subexpressions must not share free
variables only in the presence of explicit contraction, i.e. if c ∈ R .

Example 6.4
λx.x(y :: ẑ.z) belongs to all four sets of terms ΛGtz

/0 , ΛGtz
c , ΛGtz

w and ΛGtz
cw ;

-- λx.w(y :: ẑ.z) belongs only to ΛGtz
/0 and ΛGtz

c ;

- λx.x(x :: ẑ.z) belongs only to ΛGtz
/0 and ΛGtz

w ;

- λx.y(y :: ẑ.z) belongs only to ΛGtz
/0 ;

6.1. TYPE-FREE RESOURCE CONTROL CUBE 141

x ∈ TGtz
R

f ∈ TGtz
R [x ∈ Fv(f)]w

λx. f ∈ TGtz
R

f ∈ TGtz
R c ∈ KGtz

R [Fv(f)∩Fv(c) = /0]c
f c ∈ TGtz

R

f ∈ TGtz
R [x ∈ Fv(f)]w

x̂. f ∈ KGtz
R

f ∈ TGtz
R c ∈ KGtz

R [Fv(f)∩Fv(c) = /0]c
f :: c ∈ KGtz

R

f ∈ TGtz
R x /∈ Fv(f)

x⊙ f ∈ TGtz
R

(w ∈ R)
c ∈ KGtz

R x /∈ Fv(c)

x⊙ c ∈ KGtz
R

(w ∈ R)

f ∈ TGtz
R x1 ̸= x2 x /∈ Fv(f)\{x1,x2} [x1,x2 ∈ Fv(f)]w

x <x1
x2

f ∈ TGtz
R

(c ∈ R)

c ∈ KGtz
R x1 ̸= x2 x /∈ Fv(c)\{x1,x2} [x1,x2 ∈ Fv(c)]w

x <x1
x2

c ∈ KGtz
R

(c ∈ R)

Figure 6.6: λGtz
R -expressions

142 CHAPTER 6. THE RESOURCE CONTROL CUBE

- λx.x⊙ y(y :: ẑ.z) belongs only to ΛGtz
w ;

- λx.y <y1
y2 y1(y2 :: ẑ.z) belongs only to ΛGtz

c ;

- λx.x⊙ y <y1
y2 y1(y2 :: ẑ.z) belongs only to ΛGtz

cw .

The inductive definition of the meta operator of implicit substitution e[t/x], rep-
resenting the substitution of free variables, is given in Figure 6.7. In this definition,
in case c ∈ R , the following condition must be satisfied:

Fv(e)∩Fv(t) = /0,

otherwise the substitution result would not be a (well-formed) λGtz
R -expression.

In the same definition, terms t1 and t2 are obtained from t by renaming all free
variables in t by fresh distinct variables.

x[t/x] , t
y[t/x] , y

(λy.v)[t/x] , λy.v[t/x], x ̸= y
(vk)[t/x] , v[t/x]k[t/x]

(v :: k)[t/x] , v[t/x] :: k[t/x]
(ŷ.v)[t/x] , ŷ.v[t/x]

(y⊙ e)[t/x] , {y}\Fv(t)⊙ e[t/x], x ̸= y
(x⊙ e)[t/x] , Fv(t)\Fv(e)⊙ e

(y <y1
y2 e)[t/x] , y <y1

y2 e[t/x], x ̸= y
(x <x1

x2
e)[t/x] , Fv(t)<Fv(t1)

Fv(t2)
e[t1/x1][t2/x2]

Figure 6.7: Substitution in λGtz
R -calculi

The computation over the set of λGtz
R -expressions reflects the cut-elimination

process, and manages the explicit resource control operators. Four groups of re-
ductions in λGtz

R -calculi are given in Figure 6.8, whereas the equivalences are given
in Figure 6.9. Reduction rules and equivalences specific to each of the four term
calculi forming the LJ base of the resource control cube are given in Figure 6.10.

The first group consists of (β), (π), (σ) and (µ) reductions that exist in all four
λGtz

R -calculi. (β) reduction represents the main computational step. It creates a
substitution, but it is the rule (σ) that executes it. In that sense, substitution can be
controlled (i.e. delayed) although it is implicit. Note that this feature is not present

6.1. TYPE-FREE RESOURCE CONTROL CUBE 143

(β) (λx.t)(u :: k) → u(x̂.tk)
(σ) t(x̂.v) → v[t/x]
(π) (tk)k′ → t(k@k′)
(µ) x̂.xk → k

(γ0) x <x1
x2

y → y y ̸= x1,x2

(γ ′0) x <x1
x2

x1 → x
(γ1) x <x1

x2
(λy.t) → λy.x <x1

x2
t

(γ2) x <x1
x2
(tk) → (x <x1

x2
t)k, if x1,x2 /∈ Fv(k)

(γ3) x <x1
x2
(tk) → t(x <x1

x2
k), if x1,x2 /∈ Fv(t)

(γ4) x <x1
x2
(ŷ.t) → ŷ.(x <x1

x2
t)

(γ5) x <x1
x2
(t :: k) → (x <x1

x2
t) :: k, if x1,x2 /∈ Fv(k)

(γ6) x <x1
x2
(t :: k) → t :: (x <x1

x2
k), if x1,x2 /∈ Fv(t)

(ω1) λx.(y⊙ t) → y⊙ (λx.t), x ̸= y
(ω2) (x⊙ t)k → {x}\Fv(k)⊙ (tk)
(ω3) t(x⊙ k) → {x}\Fv(t)⊙ (tk)
(ω4) x̂.(y⊙ t) → y⊙ (x̂.t), x ̸= y
(ω5) (x⊙ t) :: k → {x}\Fv(k)⊙ (t :: k)
(ω6) t :: (x⊙ k) → {x}\Fv(t)⊙ (t :: k)

(γω1) x <x1
x2
(y⊙ e) → y⊙ (x <x1

x2
e) x1 ̸= y ̸= x2

(γω2) x <x1
x2
(x1⊙ e) → e[x/x2]

Figure 6.8: Reduction rules of λGtz
R -calculi

(ε1) x⊙ (y⊙ e) ≡ y⊙ (x⊙ e)
(ε2) x <x1

x2
e ≡ x <x2

x1
e

(ε3) x <y
z (y <u

v e) ≡ x <y
u (y <z

v e)
(ε4) x <x1

x2
(y <y1

y2 e) ≡ y <y1
y2 (x <

x1
x2

e), x ̸= y1,y2, y ̸= x1,x2

Figure 6.9: Equivalences in λGtz
R -calculi

144 CHAPTER 6. THE RESOURCE CONTROL CUBE

λGtz
R -calculi reduction rules equivalences

λGtz
/0 β, π, σ, µ

λGtz
c β, π, σ, µ, γ0 - γ6 ε2,ε3,ε4

λGtz
w β, π, σ, µ, ω1 - ω6 ε1

λGtz
cw β, π, σ, µ, γ1 - γ6, ω1 - ω6, γω1, γω2 ε1 - ε4

Figure 6.10: LJ base of the resource control cube

in λR -calculi since it is a consequence of the existence of contexts. Combination
of (β)+ (σ) rules corresponds to the traditional (β) reduction in the λ-calculus.
The rule (π) simplifies the head of a cut (t is the head of tk). The rule (µ) erases
the sequence made of a trivial cut (a cut is trivial if its head is a variable) followed
by the selection of the same variable. In that sense, it represents a kind of garbage
collection.

In the (π) rule, the meta-operator @, called append, joins two contexts. The
definition of the append operator completely corresponds to the definition of the
same operator for the λGtz

r -calculus (Figure 5.3) but it is repeated here in Fig-
ure 6.11 for the sake of completeness.

(x̂.t)@k′ , x̂.tk′;
(t :: k)@k′ , t :: (k@k′);
(x⊙ k)@k′ , x⊙ (k@k′);
(x <x1

x2
k)@k′ , x <x1

x2
(k@k′).

Figure 6.11: Meta-operator @ in λGtz
R -calculi

If c ∈ R , the group of (γ) reductions has the additional three reductions (com-
paring to (γ) reductions in λR -calculi) which manage the interaction of contraction
with selection and context construction. Also if w ∈ R , the group of (ω) reduc-
tions has additional three reductions which manage the interaction of weakening
with selection and context construction. Finally, the group of (γω) reductions has
additional two rules which manage the interaction between explicit resource oper-
ators of different nature in contexts.

We have presented the syntax and the reduction rules of the λGtz
R , R ⊆ {c,w},

the family of intuitionistic sequent term calculi. By instantiating R , we obtain the
following particular calculi:

• R = /0 gives us the well-known lambda Gentzen calculus λGtz, proposed by
Espírito Santo [27], whose simply typed version corresponds to the intuition-
istic sequent calculus with the cut and implicit structural rules, according to

6.2. SIMPLE TYPES FOR RESOURCE CONTROL CUBE 145

the Curry-Howard correspondence.

• By letting R = {c,w}, we obtain the resource control lambda Gentzen cal-
culus, λGtz

r , whose call-by-value version was proposed and investigated in
[35]. The simply typed λGtz

r expands the Curry-Howard correspondence to
the intuitionistic sequent calculus with the cut and explicit structural rules of
weakening and contraction.

• Finally, in case R = {c} and R = {w} we get two new calculi, namely λGtz
c

and λGtz
w . These calculi could be related to the substructural logics, as will

be elaborated in the sequel.

6.2 Simple types for resource control cube

In this section we summarize the type assignment systems that assign simple types
to all eight calculi of the resource control cube. Simple types for λGtz-calculus were
introduced by Espírito Santo in [27]. As far as resource control calculi are con-
cerned, simple types were introduced to the λlxr-calculus by Kesner and Lengrand
in [45] and to resource control lambda Gentzen calculus λGtz

r by Ghilezan et al.
in [35]. Introductory notions, joint for all eight type assignment systems are the
following.

Definition 6.5 The syntax of simple types is defined as follows:

α ::= p | α→ α

where p ranges over a denumerable set of type atoms.

Types will be denoted by α,β,γ,α1, ... and the set of all simple types will be de-
noted by T→.

Definition 6.6

(i) A basic type assignment is an expression of the form x : α, where x is a term
variable and α is a simple type.

(ii) A basis Γ is a set {x1 : α1, . . . ,xn : αn} of basic type assignments, where all
term variables are different. Dom(Γ) = {x1, . . . ,xn}.

(iii) A basis extension Γ,x : α denotes the set Γ∪{x : α}, where x ̸∈Dom(Γ). Γ,∆
represents the disjoint union of the two bases.

(iv) Γ∪c ∆ denotes the standard union of the bases, if c /∈ R , and the disjoint
union, if c ∈ R .

146 CHAPTER 6. THE RESOURCE CONTROL CUBE

6.2.1 Simply typed λR -calculi

The type assignment systems λR→ for the ND-base of the resource control cube
are given in Figure 6.12.

w /∈ R
Γ,x : α ⊢R x : α (Axiw)

w ∈ R
x : α ⊢R x : α (Axew)

Γ,x : α ⊢R M : β
Γ ⊢R λx.M : α→ β

(→I)
Γ ⊢R M : α→ β ∆ ⊢R N : β

Γ∪c ∆ ⊢R MN : β
(→E)

Γ,x : α,y : α ⊢R M : β c ∈ R

Γ,z : α ⊢R z <x
y M : β

(Cont)
Γ ⊢R M : β w ∈ R

Γ,x : α ⊢R x⊙M : β
(Weak)

Figure 6.12: λR→: Simply typed λR -calculi

Figure 6.12 includes four simple type assignment systems, each providing
Curry-Howard correspondence with particular intuitionistic natural deduction sys-
tem, with implicit/explicit structural rules of weakening and contraction. These
systems are obtained by instantiating the set R in the turn-style symbol ⊢R .

• The system λ /0→ consists of rules (Axiw), (→I) and (→E), where in (→E)
rule Γ∪c ∆ denotes standard bases union.

• The system λc→ consists of rules (Axiw), (→I), (→E) and (Cont). In this
case Γ∪c ∆ denotes disjoint bases union.

• The system λw→ consists of rules (Axew), (→I), (→E) (with standard bases
union) and (Weak).

• Finally, the system λcw → consists of rules (Axew), (→I), (→E) (with dis-
joint bases union), (Cont) and (Weak).

All systems are syntax directed.

6.2.2 Simply typed λGtz
R -calculi

The type assignment systems λGtz
R → for the LJ-base of the resource control cube

are given in Figure 6.13. In this case, we distinguish two sorts of type assignments:

- Γ ⊢R t : α for typing a λGtz
R -term and

6.2. SIMPLE TYPES FOR RESOURCE CONTROL CUBE 147

- Γ;β ⊢R k : α, a type assignment with a stoup, for typing a λGtz
R -context.

The role of the stoup is the same as in the case of other sequent term calculi pre-
sented in Chapter 4 and Chapter 5 of this thesis.

w /∈ R
Γ,x : α ⊢R x : α (Axiw)

w ∈ R
x : α ⊢R x : α (Axew)

Γ,x : α ⊢R t : β
Γ ⊢R λx.t : α→ β

(→R)
Γ ⊢R t : α ∆;β ⊢R k : γ
Γ∪c ∆;α→ β ⊢R t :: k : γ

(→L)

Γ,x : α ⊢R t : β
Γ;α ⊢R x̂.t : β

(Sel)
Γ ⊢R t : α ∆;α ⊢R k : β

Γ∪c ∆ ⊢R tk : β
(Cut)

Γ,x : α,y : α ⊢R t : β c ∈ R

Γ,z : α ⊢R z <x
y t : β

(Contt)
Γ ⊢R t : β w ∈ R

Γ,x : α ⊢R x⊙ t : β
(Weakt)

Γ,x : α,y : α;B ⊢R k : γ c ∈ R

Γ,z : α;β ⊢R z <x
y k : γ

(Contk)
Γ;β ⊢R k : γ w ∈ R

Γ,x : α;β ⊢R x⊙ k : γ
(Weakk)

Figure 6.13: λGtz
R →: Simply typed λGtz

R -calculi

Particular simple type assignment systems for the four calculi of the LJ base
of the resource control cube are the subsets of the system presented in Figure 6.13.
The choice between two axioms depends on the treatment of weakening in the
particular system, while reading of the bases union Γ∪c ∆ in the rules with two
premises depends on the treatment of contraction. More precisely, the four syntax
directed systems are the following:

• the system λGtz
/0 → consists of rules (Axiw), (→R), (→L), (Sel) and (Cut)

(Γ∪c ∆ denotes the standard bases union in rules (→L) and (Cut));

• the system λGtz
c → consists of rules (Axiw), (→R), (→L), (Sel), (Cut), (Contt)

and (Contk) (in this case Γ∪c ∆ denotes disjoint bases union);

• the system λGtz
w → consists of rules (Axew), (→R), (→L), (Sel), (Cut), (Weakt)

and (Weakk) (bases union is standard);

• finally, the system λGtz
cw → consists of rules (Axew), (→R), (→L), (Sel),

(Cut), (Contt), (Contk), (Weakt) and (Weakk) (bases union is disjoint).

148 CHAPTER 6. THE RESOURCE CONTROL CUBE

Simply typed λGtz
R -calculi correspond to intuitionistic sequent calculus with

implicit/explicit structural rules à la Curry-Howard. Particularly, λGtz
/0 → and λGtz

cw→
calculi correspond to the intuitionistic implicative fragments of Kleene’s systems
G3 and G1 from [48], respectively, except for the fact that the exchange rule is im-
plicit here. The exchange rule could be made explicit by considering the bases as
lists instead of sets. The system λGtz

c → corresponds to the intuitionistic sequent cal-
culus with explicit contraction and implicit weakening, whereas the system λGtz

w →
corresponds to the intuitionistic sequent calculus with explicit weakening and im-
plicit contraction.

Modifications of λR→ and λGtz
R → systems can provide the computational inter-

pretation of substructural logics, different from the usual approach via linear logic.
For instance, if one combines (Axew) axiom and the other rules in w /∈ R modal-
ity, the resulting system would correspond to the logic without weakening, i.e. to
the variant of implicative fragment of relevance logic. In turn, if we use ∪c as a
disjoint union together with the c /∈ R modality of the rest of the system, the cor-
respondence with the variant of the logic without contraction, i.e. the implicative
fragment of affine logic is obtained. These systems, although very interesting from
both theoretical and practical point of view, will not be investigated in this thesis.

Although the systems λR→ and λGtz
R → enjoy the subject reduction and the

strong normalisation, they as expected do not assign types to all strongly normal-
ising expressions. For example, the normal form λx.x <x1

x2
x1x2 is not typeable in

the system λR→. This is the motivation for introducing intersection types to the
resource control cube in the next section.

6.3 Intersection types for resource control cube

In this section we introduce intersection type assignment systems which assign
strict types, a specific subset of intersection types, to λR -terms and λGtz

R -expressions.
The proposed type system scheme integrates the strict type systems already used
in [25] and [32] for the characterisation of strong normalisation in three calculi of
the cube, namely the λGtz-calculus, the λr-calculus and the λGtz

r -calculus. There-
fore, it represents a generalisation of the results presented in Chapter 4 and Chapter
5 of this thesis.

The syntax of types is defined as follows:

Strict Types σ ::= p | α→ σ
Types α ::= ∩n

i σi

6.3. INTERSECTION TYPES FOR RESOURCE CONTROL CUBE 149

where p ranges over a denumerable set of type atoms and ∩n
i σi = σ1∩ ...∩σn, n≥

0. Particularly, ∩0
i σi, abbreviated by ⊤, represents the neutral element for the

intersection.
We denote types by α,β,γ..., strict types by σ,τ,ρ,υ... and the set of all types

by Types. We assume that the intersection operator is idempotent, commutative
and associative, and that it has priority over the arrow operator. Hence, we will
omit parenthesis in expressions like (∩n

i τi)→ σ.
The definitions of a basic type assignment, a basis, a domain of the basis, a

basis extension and the basis Γ⊤ = {x : ⊤ | x ∈ Dom(Γ)} are the same as in Defi-
nition 6.6, except for the fact that the type assignments are of the form

x1 : α1, ...,xn : αn ⊢M : σ

so that only strict types are assigned to terms.
The following operator on bases, denoted by ⊔c, is specific for intersection

type assignment systems, and defined dependently on the explicit/implicit control
of the contraction in the particular calculi of the cube.

Definition 6.7

(i) A union of bases with intersection types is defined in the standard way:

Γ⊔∆ = {x : α | x : α ∈ Γ & x /∈ Dom(∆)}
∪ {x : α | x : α ∈ ∆ & x /∈ Dom(Γ)}
∪ {x : α∩β | x : α ∈ Γ & x : β ∈ ∆}.

(ii) Γ⊔c ∆ is Γ⊔∆, if c /∈ R , otherwise it is the disjoint union Γ,∆.

Notice that in this case, contrary to the definition of bases intersection Γ⊓∆
(Definition 5.43), it is not required that the domains of bases Γ and ∆ coincide in
order to perform bases union Γ⊔∆. However, the operator ⊓ can be considered as
a restriction of the operator ⊔ in the case of equal domains:

Γ⊓∆ = Γ⊔∆|Dom(Γ)=Dom(∆).

As a consequence, the basis Γ⊤ is not the neutral element for the ⊔ operator in
general, but it is irrelevant since it only appears in those systems in which w ∈ R ,
and in those systems the equality of domains holds.

150 CHAPTER 6. THE RESOURCE CONTROL CUBE

6.3.1 Intersection types for λR

The type assignment systems λR ∩ for the natural deduction base of the resource
control cube are given in Figure 6.14. The rules that correspond to each of the four
λR ∩-systems are specified in Figure 6.15.

All four systems are syntax-directed, i.e. the intersection operator is incorpo-
rated into already existing rules of the simply-typed systems, thus one of the most
important nice properties of the systems from Chapters 4 and 5 is preserved in this
generalised setting.

w /∈ R
Γ,x : σ ⊢R x : σ (Axiw)

w ∈ R
x : σ ⊢R x : σ (Axew)

Γ,x : α ⊢R M : σ
Γ ⊢R λx.M : α→ σ

(→I)

Γ ⊢R M : ∩n
i τi→ σ [∆0 ⊢R N : τ0]w ∆1 ⊢R N : τ1 ... ∆n ⊢R N : τn

Γ⊔c ([∆⊤0 ⊔]w∆1⊔ ...⊔∆n) ⊢R MN : σ
(→E)

Γ,x : α,y : β ⊢R M : σ c ∈ R

Γ,z : α∩β ⊢R z <x
y M : σ

(Cont)
Γ ⊢R M : σ w ∈ R

Γ,x :⊤ ⊢R x⊙M : σ (Weak)

Figure 6.14: λR ∩: λR -calculi with intersection types

λR ∩-systems type assignment rules
λ /0∩ (Axiw), (→I), (→E)

λc∩ (Axiw), (→I), (→E), (Cont)
λw∩ (Axew), (→I), (→E), (Weak)
λcw∩ (Axew), (→I), (→E), (Cont), (Weak)

Figure 6.15: Four ND intersection type systems

The role of the assignment ∆0 ⊢R N : σ0 in the rule (→E) is to ensure that N
has a type in case that n = 0. In that case Γ ⊢R M :⊤→ σ, so it appears only in the
systems with explicit control of weakening, as indicated by []w. Since the type ⊤
denotes a “useless” variable (the one introduced by weakening) free variables of N
will also become useless (it will be obvious after β-reduction). In order to satisfy
type preservation during computation, their types are also turned to ⊤ in the basis

6.3. INTERSECTION TYPES FOR RESOURCE CONTROL CUBE 151

∆⊤0 . If n ̸= 0, then ∆0 ⊢R N : σ0 can be any of the already existing assignments
∆i ⊢R N : σi. Moreover, due to the assumed idempotency of intersection, it can be
even forgotten.

Example 6.8 Consider the term (λx.x⊙ y)z in the λcw∩ system 2. This term re-
duces in the following way:

(λx.x⊙ y)z →β (x⊙ y)[z/x] , z⊙ y.

The normal form z⊙ y is typeable in λcw∩ by z : ⊤,y : σ ⊢R z⊙ y : σ. The same
type assignment holds for the term (λx.x⊙ y)z:

(Axew)
y : σ ⊢cw y : σ

(Weak)
x :⊤,y : σ ⊢cw x⊙ y : σ

(→I)
y : σ ⊢cw λx.x⊙ y :⊤→ σ

(Axew)
z : ρ ⊢cw z : ρ

(→E).
y : σ,z :⊤ ⊢cw (λx.x⊙ y)z : σ

In the previous derivation, N ≡ z, ∆0 = {z : ρ} and ∆⊤0 = {z :⊤}.

6.3.2 Intersection types for λGtz
R

The type assignment systems λGtz
R ∩ for the sequent LJ-base of the resource control

cube are given in Figure 6.16. The rules that correspond to each of the four λGtz
R ∩-

systems are given in Figure 6.17.
As in λR ∩, no new rules are added compared to λGtz

R → in order to manage
intersection. Specificity of the rules (→L) and (Cut) comparing them to their in-
stances in the system λGtz

r ∩ (Figure 5.8) is only in the fact that in the case when
w /∈ R domains of the bases Γi do not necessarily coincide. The role of an addi-
tional assignment Γ0 ⊢R t : σ0 in these two rules, in the presence of explicit control
of weakening is already explained in the previous subsection.

Since the role of this chapter was only to show the joint underlying ground
of the calculi presented in the previous chapters and some possibilities of their
joint foundation, we will not go further into details and claim their properties in
this framework. It is possible to prove in the modular way that both ND and LJ
bases of the resource cube, equipped with simple types, satisfy preservation of
types during computation (Subject reduction and Subject equivalence) and that
all typeable terms are terminating (Strong normalisation). For the systems with
intersection types, it is possible to prove even a stronger property, namely that terms

2The other possibility is to consider it in the system λw∩

152 CHAPTER 6. THE RESOURCE CONTROL CUBE

w /∈ R
Γ,x : σ ⊢R x : σ (Axiw)

w ∈ R
x : σ ⊢R x : σ (Axew)

Γ,x : α ⊢R t : σ
Γ ⊢R λx.t : α→ σ

(→R)
Γ,x : α ⊢R t : σ
Γ;α ⊢R x̂.t : σ

(Sel)

[Γ0 ⊢R t : σ0]w Γ1 ⊢R t : σ1 ... Γn ⊢R t : σn ∆;∩m
j τ j ⊢R k : ρ

([Γ⊤0 ⊔]wΓ1⊔ ...⊔Γn)⊔c ∆;∩m
j (∩n

i σi→ τ j) ⊢R t :: k : ρ
(→L)

[Γ0 ⊢R t : σ0]]w Γ1 ⊢R t : σ1 ... Γn ⊢R t : σn ∆;∩n
i σi ⊢R k : τ

([Γ⊤0 ⊔]wΓ1⊔ ...⊔Γn)⊔c ∆ ⊢R tk : τ
(Cut)

Γ,x : α,y : β ⊢R t : σ c ∈ R

Γ,z : α∩β ⊢R z <x
y t : σ

(Contt)
Γ ⊢R t : σ w ∈ R

Γ,x :⊤ ⊢R x⊙ t : σ (Weakt)

Γ,x : α,y : β;γ ⊢R k : σ c ∈ R

Γ,z : α∩β;γ ⊢R z <x
y k : σ

(Contk)
Γ;γ ⊢R k : σ w ∈ R

Γ,x :⊤;γ ⊢R x⊙ k : σ (Weakk)

Figure 6.16: λGtz
R ∩: λGtz

R -calculi with intersection types

λR ∩-systems type assignment rules
λ /0∩ (Axiw), (→R), (→L), (Sel), (Cut)
λc∩ (Axiw), (→R), (→L), (Sel), (Cut), (Contt), (Contk)
λw∩ (Axew), (→R), (→L), (Sel), (Cut), (Weakt), (Weakk)

λcw∩ (Axew), (→R), (→L), (Sel), (Cut), (Contt), (Contk), (Weakt), (Weakk)

Figure 6.17: Four LJ intersection type systems

6.3. INTERSECTION TYPES FOR RESOURCE CONTROL CUBE 153

are terminating if and only if they are typeable with intersection types. However,
the proofs are quite technical because of the uniform approach to both explicit and
implicit treatment of the resource control operators, so one may ask whether it pays
off to investigate the structure together as a whole.

We conclude by giving an example of type assignment of an operationally
equivalent expression in the different calculi of the resource control cube.

Example 6.9 The well-known example of the term typeable only with intersection
types is λx.xx. In the resource control cube, this term exists only in the two calculi
of the ND-base in which the contraction is implicit, while in the other six calculi,
we can find operationally equivalent expressions:

- λx.xx belongs to λ /0 and λw;

- λx.x <x1
x2

x1x2 belongs to λc and λcw;

- λx.x(x :: ŷ.y) belongs to λGtz
/0 and λGtz

w ;

- λx.x <x1
x2

x1(x2 :: ŷ.y) belongs to λGtz
c and λGtz

cw .

All these expressions receive the same strict type (σ→ τ)∩σ→ τ in all eight
calculi of the cube.

• In the λ /0∩ system:

(Axiw)
Γ,x : σ→ τ ⊢ /0 x : σ→ τ

(Axiw)
∆,x : σ ⊢ /0 x : σ

(→E)
Γ⊔∆⊔ x : (σ→ τ)∩σ ⊢ /0 xx : τ

(→I).
Γ⊔∆ ⊢ /0 λx.xx : (σ→ τ)∩σ→ τ

• In the λw∩ system:

(Axew)
x : σ→ τ ⊢w x : σ→ τ

(Axew)
x : σ ⊢w x : σ

(→E)
x : (σ→ τ)∩σ ⊢w xx : τ

(→I).
⊢w λx.xx : (σ→ τ)∩σ→ τ

• In the λc∩ system:

(Axiw)
Γ,x1 : σ→ τ ⊢c x1 : σ→ τ

(Axiw)
∆,x2 : σ ⊢c x2 : σ

(→E)
Γ,∆,x1 : σ→ τ,x2 : σ ⊢c x1x2 : τ

(Cont)
Γ,∆,x : (σ→ τ)∩σ ⊢c x <x1

x2
x1x2 : τ

(→I).
Γ,∆ ⊢c λx.x <x1

x2
x1x2 : (σ→ τ)∩σ→ τ

154 CHAPTER 6. THE RESOURCE CONTROL CUBE

• In the λcw∩ system:

(Axew)
x1 : σ→ τ ⊢cw x1 : σ→ τ

(Axew)
x2 : σ ⊢cw x2 : σ

(→E)
x1 : σ→ τ,x2 : σ ⊢cw x1x2 : τ

(Cont)
x : (σ→ τ)∩σ ⊢cw x <x1

x2
x1x2 : τ

(→I).
⊢cw λx.x <x1

x2
x1x2 : (σ→ τ)∩σ→ τ

• In the λGtz
/0 ∩ system:

(Axiw)
Γ1,x : σ→ τ ⊢ /0 x : σ→ τ

(Axiw)
Γ2,x : σ ⊢ /0 x : σ

(Axiw)
Γ3,y : τ ⊢ /0 y : τ

(Sel)
Γ3;τ ⊢ /0 ŷ.y : τ

(→L)
Γ2⊔Γ3,x : σ;σ→ τ ⊢ /0 x :: ŷ.y : τ

(Cut)
Γ1⊔Γ2⊔Γ3,x : (σ→ τ)∩σ ⊢ /0 x(x :: ŷ.y) : τ

(→R).
Γ1⊔Γ2⊔Γ3 ⊢ /0 λx.x(x :: ŷ.y) : (σ→ τ)∩σ→ τ

• In the λGtz
w ∩ system:

(Axew)
x : σ→ τ ⊢w x : σ→ τ

(Axew)
x : σ ⊢w x : σ

(Axew)
y : τ ⊢w y : τ

(Sel)
;τ ⊢w ŷ.y : τ

(→L)
x : σ;σ→ τ ⊢w x :: ŷ.y : τ

(Cut)
x : (σ→ τ)∩σ ⊢w x(x :: ŷ.y) : τ

(→R).
⊢w λx.x(x :: ŷ.y) : (σ→ τ)∩σ→ τ

• In the λGtz
c ∩ system:

(Axiw)
Γ1,x1 : σ→ τ ⊢c x1 : σ→ τ

(Axiw)
Γ2,x2 : σ ⊢c x2 : σ

(Axiw)
Γ3,y : τ ⊢c y : τ

(Sel)
Γ3;τ ⊢c ŷ.y : τ

(→L)
Γ2,Γ3,x2 : σ;σ→ τ ⊢c x2 :: ŷ.y : τ

(Cut)
Γ1,Γ2,Γ3,x1 : σ→ τ,x2 : σ ⊢c x1(x2 :: ŷ.y) : τ

(Cont)
Γ1,Γ2,Γ3,x : (σ→ τ)∩σ ⊢c x <x1

x2
x1(x2 :: ŷ.y) : τ

(→R).
Γ1,Γ2,Γ3 ⊢c λx.x <x1

x2
x1(x2 :: ŷ.y) : (σ→ τ)∩σ→ τ

6.3. INTERSECTION TYPES FOR RESOURCE CONTROL CUBE 155

• In the λGtz
cw ∩ system:

(Axew)
x1 : σ→ τ ⊢cw x1 : σ→ τ

(Axew)
x2 : σ ⊢cw x2 : σ

(Axew)
y : τ ⊢cw y : τ

(Sel)
;τ ⊢cw ŷ.y : τ

(→L)
x2 : σ;σ→ τ ⊢cw x2 :: ŷ.y : τ

(Cut)
x1 : σ→ τ,x2 : σ ⊢cw x1(x2 :: ŷ.y) : τ

(Cont)
x : (σ→ τ)∩σ ⊢cw x <x1

x2
x1(x2 :: ŷ.y) : τ

(→R).
⊢cw λx.x <x1

x2
x1(x2 :: ŷ.y) : (σ→ τ)∩σ→ τ

156 CHAPTER 6. THE RESOURCE CONTROL CUBE

Chapter 7

Conclusion

This dissertation presents an investigation of the formal calculi that correspond to
two different levels of sequent-style computation in the framework of intuitionis-
tic logic. It started from the λGtz-calculus of Espírito Santo, and developed it by
extending both the syntax and the type assignment system.

The extension of the type assignment system was motivated by the intention to
obtain a system that assigns types exactly to those expressions whose computation
always terminates, i.e. that satisfies the characterisation of strong normalisation.
As already done for the λ-calculus, the desired property was obtained by introduc-
ing intersection types. The novelty of the proposed type system λGtz∩ is its syntax
directness that enabled to prove the characterisation of strong normalisation in a
direct way, without using evaluation strategies.

In the domain of syntax extension, the main motivation was to obtain the con-
trol over quantitative transformations of the term evaluation, i.e. duplication and
erasure of the variables. Following the ideas of the λlxr-calculus of Kesner and
Lengrand, the solution was found in explicit operators for contraction and weak-
ening of variables, called the resource control operators. In comparison with the
λGtz-calculus, the proposed λGtz

r -calculus enables finer-grained computation, thus
providing a mean to control and optimize resource management. The contribution
in this part was in adapting these operators and their computational properties to
the sequent calculus setting. Another contribution was an extension of the Curry-
Howard correspondence to the intuitionistic sequent calculus with explicit struc-
tural rules, since it is evident that the simply typed λGtz

r -calculus represents the
computational interpretation of a variant of the system G1 for LJ.

The two extensions, namely intersection types and the resource control, were
then combined and the system λGtz

r ∩ was proposed. It turned out that the two
concepts worked very well together. Our type assignment system is sensitive to a

157

158 CHAPTER 7. CONCLUSION

role of a variable in the expression; it assigns a strict type to a variable introduced
by the axiom (which serves as a placeholder), an intersection type to a variable
introduced by the contraction (whose role is to denote duplication) and finally, it
assigns a specific type constant to a variable introduced by weakening (the one that
can be erased). Moreover, it is syntax directed and is proved to characterise all
strongly normalising λGtz

r -expressions.
Finally, all calculi were incorporated into a structure called the resource control

cube, consisting of eight intuitionistic term calculi with implicit/explicit resource
management and with natural deduction/sequent calculus logical setting. The λGtz-
calculus and the λGtz

r -calculus, as well as the λ-calculus, represent vertices of the
cube. More precisely, the λGtz-calculus and the λGtz

r -calculus belong to the so-
called LJ-base of the cube, while the λ-calculus belongs to the ND-base. The
four calculi of each base are treated in the uniform way, due to the presentation
parameterized by the set of explicitly controlled resource operations. In that way,
a system with different levels of the resource control is obtained, since one can
impose total, partial or no resource control.

Future work

The investigation presented in this thesis can be broadened and continued in several
directions.

Resource control term calculi, both in the natural deduction and sequent style,
are good candidates to investigate the computational content of some substructural
logics [65], a wide family of logics characterised by the absence of some of the
structural rules. The most well-known substructural logics are the relevant logic
(logic without weakening), the affine logic (without contraction) and particularly,
the linear logic (without both weakening and contraction). The usual approach
to the affine and relevant logic is via linear logic, thus their computational inter-
pretations rely on the linear lambda calculus. Our point of view is that an other
approach, starting from the λGtz

r and λr calculi is also possible and that it could be
useful as a simple and neat logical foundation for the construction of specific rele-
vant and affine programming languages, despite the fact that it could be considered
naive because it only treats implicative fragments of the relevant and affine logics.

This thesis does not contain the research of the semantical properties of the
proposed calculi. Therefore, it would be interesting to continue in that direction,
particularly to investigate the use of intersection types in constructing models for
sequent lambda calculi, since intersection types are known to be powerful means
for building models of lambda calculus, as showed in [18].

The other appealing direction of research would be to compare and relate two
different approaches to the resource control - the one enabled via explicit operators

159

used here and the approach used in [55], where the resources are managed by
introducing applicative structures called bags with multiplicities, and where terms
are equipped with non-idempotent intersection types.

The proposed intersection type assignment systems exhibit the syntax direct-
ness property. More over, in the system with the resource control, a type of an
expression contains detailed information about the structure of that expression, due
to the presence of different kinds of types assigned to variables with different roles.
Those features make the proposed system very convenient for the type reconstruc-
tion. It is expected that the type reconstruction algorithm based on the strict type
assignment in the system with the control of resources would be significantly sim-
pler than other similar procedures.

From a more pragmatic perspective, resources need to be controlled tightly in
different applications. For instance, while working on description of compilers by
rules with binders, Rose [61] noticed that the implementation of substitutions of
linear variables is efficient, whereas substitutions of duplicated variables require
a cumbersome and time consuming mechanism. It is therefore important to pre-
cisely control duplications and to minimize the necessity of duplication of vari-
ables, which coincides with the policy of propagating contraction into the expres-
sion of the λGtz

r -calculus. On the other hand, strong control of erasing (performed
by the explicit weakening operator in λGtz

r) eliminates the need for a garbage col-
lector and prevents memory leaking.

In the domain of object-oriented languages, Mycroft [54] presented resource
aware type-systems for multi-core program efficiency, which represents another
line of application of resource control. The type assignment system proposed in
this thesis, which differs variables according to their role and assigns to them dif-
ferent kinds of types, could find application in this field.

160 CHAPTER 7. CONCLUSION

Bibliography

[1] Amadio, R.M. and Curien, P.L.: Domains and lambda calculi. Cambridge
University Press, Cambridge (1998).

[2] Baader, F. and Nipkow, T.: Term Rewriting and All That. Cambridge Univer-
sity Press, UK, (1998).

[3] Barendregt, H.P.: The Lambda Calculus - Its Syntax and Semantics. North-
Holland, Amsterdam (1984).

[4] Barendregt, H.P.: Lambda calculi with types. In: Abramsky, S., Gab-
bay, D.M., Maibaum, T.S.E. (eds.): Handbook of Logic in Computer Science,
Vol. 2, pages 117–309. Oxford University Press, Oxford (1992).

[5] Barendregt, H.P., Dekkers, W. and Statman, R.: Lambda Calculus With
Types. Cambridge University Press, Cambridge (2013).

[6] Barendregt H.P., Coppo, M. and Dezani, M.: A filter lambda model and the
completeness of type assignment. In: Journal of Symbolic Logic, Vol. 48,
pages 931–940 (1983).

[7] Barendregt, H. and Ghilezan, S.: Lambda terms for natural deduction, se-
quent calculus and cut elimination. In: Journal of Functional Programming,
Vol. 10, pages 121–134. Cambridge University Press (2000).

[8] Bloo, R. and Rose, K.H.: Preservation of strong normalisation in named
lambda calculi with explicit substitution and garbage collection. In: Com-
puter Science in the Netherlands, CSN ’95, pages 62–72 (1995).

[9] Boudol, G.: The lambda-calculus with multiplicities (abstract). In: E. Best,
(ed.), 4th International Conference on Concurrency Theory - CONCUR’93,
Lecture Notes in Computer Science, Vol. 715, pages 1–6. Springer (1993).

[10] Church, A.: A set of postulates for the foundation of logic. Annals of Mathe-
matics, Series 2, Vol. 33, pages 346–366 (1932).

161

162 BIBLIOGRAPHY

[11] Church, A.: A formulation of the simple theory of types. Journal of Symbolic
Logic, Vol. 5, pages 56–68 (1940).

[12] Church, A.: The Calculi of Lambda-Conversion. Princeton University Press,
Princeton (1941).

[13] Coppo, M. and Dezani-Ciancaglini, M.: A new type-assignment for lambda
terms. In: Archiv für Mathematische Logik, Vol. 19, pages 139–156, (1978).

[14] Curien, P.-L. and Herbelin, H.: The duality of computation. In: 5th Interna-
tional Conference on Functional Programming - ICFP’00, pages 233–243.
ACM Press (2000).

[15] Danos, V., Joinet, J-B. and Schellinx, H.: LKQ and LKT: Sequent calculi for
second order logic based upon dual linear decomposition of classical impli-
cation. In: Girard, J-Y., Regnier, L. and Lafont, Y. (eds.):The Workshop on
Linear Logic. Cornell (1993).

[16] David, R. and Guillaume, B.: A calculus with explicit weakening and ex-
plicit substitution. In: Mathematical Structures in Computer Science, Vol. 11,
pages 169-206, (2001).

[17] Dershowitz, N.: Termination of rewriting. In: Journal of Symbolic Computa-
tion, Vol. 3(1/2), pages 69–116, (1987).

[18] Dezani-Ciancaglini, M., Ghilezan, S. and Likavec, S.: Behavioural Inverse
Limit Models. In: Theoretical Computer Science. Vol. 316(1–3), pages 49–
74. Elsevier (2004).

[19] Dougherty, D., Ghilezan, S. and Lescanne, P.: Characterizing strong normal-
ization in the Curien-Herbelin symmetric lambda calculus: extending the
Coppo-Dezani heritage. In: Theoretical Computer Science. Vol. 398, pages
114–128. Elsevier (2008).

[20] Espírito Santo, J. and Pinto, L.: Permutative Conversions in Intuitionis-
tic Multiary Sequent Calculi with Cuts. In:6th International Conference on
Typed Lambda Calculi and Applications -TLCA’03, Lecture Notes in Com-
puter Science, Vol. 2071, pages 286–300. Springer-Verlag (2003).

[21] Espírito Santo, J.: An isomorphism between a fragment of sequent calculus
and an extension of natural deduction. In: 9th International Conference on
Logic for Programming, Artificial Intelligence, and Reasoning - LPAR’02,
Lecture Notes in Artifitial Intelligence, Vol. 2514, pages 354–366. Springer-
Verlag (2002).

BIBLIOGRAPHY 163

[22] Espírito Santo, J.: A note on preservation of strong normalisation in the λ-
calculus. In: Theoretical Computer Science, Vol. 412(11), pages 1027–1032.
Elsevier (2011).

[23] Espírito Santo, J. and Pinto, L.: Confluence and Strong Normalisation of the
Generalised Multiary Lambda Calculus. In: International Workshop on Types
for Proofs and Programs - TYPES’03, Lecture Notes in Computer Science,
Vol. 3085, pages 194–209. Springer-Verlag (2003).

[24] Espírito Santo, J., Ghilezan, S. and Ivetić, J.: Characterising strongly nor-
malising intuitionistic sequent terms. In: - International Workshop on Types
for Proofs and Programs TYPES 2007 (Selected Papers). Lecture Notes in
Computer Science, Vol. 4941, pages 85–99. Springer-Verlag (2007).

[25] Espírito Santo, J., Ivetić, J. and Likavec, S.: Characterising strongly normal-
ising intuitionistic terms. In: Fundamenta informaticae, Vol. 121, pages 87–
124. IOS Press, Nederlands (2012).

[26] Espírito Santo, J.: Delayed substitutions. In: Baader, F.(ed): 18th Interna-
tional Conference on Term Rewriting and Applications - RTA 2007, Lec-
ture Notes in Computer Science, Vol. 4533, pages 169–183. Springer-Verlag
(2007).

[27] Espírito Santo, J.: Completing Herbelin’s programme. In: S. Ronchi Della
Rocca (ed.): 6th International Conference on Typed Lambda Calculi and Ap-
plications - TLCA 2007, Lecture Notes in Computer Science, Vol. 4583,
pages 118–132. Springer-Verlag (2007).

[28] Espírito Santo, J.: The lambda-calculus and the unity of structural proof the-
ory. In: Theory of Computing Systems, Vol. 45, pages 963–994. Springer
(2009).

[29] Gentzen, G.: Unterschungen über das logische Schliessen. In: M.E. Szabo
(ed.): Collected papers of Gerhard Gentzen. North-Holland (1969).

[30] Ghilezan, S.: Strong normalization and typability with intersection types. In:
Notre Dame Journal of Formal Logic, Vol. 37, pages 44–53, (1996).

[31] Ghilezan, S. and Ivetić, J.: Intersection types for λGtz-calculus. In: Pub-
lications de l’Institute Mathematique. Vol. 82, pages 85–92. SANU, Srbija
(2007).

164 BIBLIOGRAPHY

[32] Ghilezan, S., Ivetić, J., Lescanne, P., and Likavec, S.: Intersection types for
the resource control lambda calculi. In: A. Cerone and P. Pihlajasaari, (eds.),
8th International Colloquium on Theoretical Aspects of Computing, ICTAC
’11, Lecture Notes in Computer Science, Vol. 6916, pages 116–134. Springer
(2011).

[33] Ghilezan, S., Ivetić, J., Lescanne, P., and Likavec, S.: A journey through
resource control lambda calculi and explicit substitution using intersection
types. Available at http:// arxiv. org/ abs/ 1306. 2283 (2013).

[34] Ghilezan, S., Ivetić, J., Lescanne, P., and Likavec, S.: Resource control and
strong normalisation. Available at http:// arxiv. org/ abs/ 1112. 3455 (2011).

[35] Ghilezan, S., Ivetić, J., Lescanne, P., and Žunić, D.: Intuitionistic sequent-
style calculus with explicit structural rules. In: 8th International Tbilisi Sym-
posium on Language, Logic and Computation, Lecture Notes in Artificial
Intelligence, Vol. 6618, pages 101–124, Springer (2011).

[36] Ghilezan, S. and Likavec, S.: Computational interpretations of logics. In:
Collection of papers, Mathematical Institute SANU, (special issue Logic in
Computer Science, ed Z. Ognjanovic, invited paper). Vol. 12, pages 159–215.
SANU, Srbija (2009).

[37] Girard, J-Y., Lafont, Y. and Taylor, P.: Proofs and Types. In: Cambridge
Tracts in Theoretical Computer Science, Cambridge University Press (1989).

[38] Herbelin, H.: A lambda calculus structure isomorphic to Gentzen-style se-
quent calculus structure. In: Computer Science Logic, CSL 1994, Vol. 933,
pages 61–75. Springer-Verlag (1995).

[39] Hindley, J.R. and Cardone, F.: History of lambda-calculus and combinatory
logic. In: Handbook of the History of Logic, Volume 5 - Logic from Russell to
Church (edited by D. Gabbay and J. Woods), pages 723–817, Elsevier (2009).

[40] Howard, W.A.: The formulae-as-types notion of construction. In: J.R. Hind-
ley and J.P. Seldin, (eds.) To H.B. Curry, Essays on Combinatory Logic,
Lambda Calculus and Formalism, pages 479–490. Academic Press, London
(1980).

[41] Ivetić, J.: Formalni računi za intuicionističku logiku (Formal calculi for in-
tuitionistic logic). Master thesis, Faculty of technical sciences, University of
Novi Sad (2008).

BIBLIOGRAPHY 165

[42] Ivetić, J.: Regaining confluence in lambda-Gentzen calculus. In: Algebra and
Coalgenbra in Computer Science Young Researcher Workshop -CALCOjnr
2009. Technical report, University of Udine (2009).

[43] Janičić, P.: Matematička logika u računarstvu. Matematički fakultet, Beograd
(2009).

[44] Joachimski, F. and Matthes, R.: Standardization and confluence for a lambda
calculus with generalized applications. In: Bachmair, L. (ed): 11th Inter-
national Conference on Term Rewriting and Applications - RTA 2000, Lec-
ture Notes in Computer Science, Vol. 1833, pages 141–155. Springer-Verlag
(2000).

[45] Kesner, D. and Lengrand, S.: Resource operators for lambda-calculus. In:
Information and Computation, Vol. 205(4):419–473, (2007).

[46] Kesner, D. and Renaud, F.: The prismoid of resources. In: R. Královič and
D. Niwiński, (eds.), 34th International Symposium on Mathematical Founda-
tions of Computer Science - MFCS ’09, Lecture Notes in Computer Science,
Vol. 5734, pages 464–476. Springer (2009).

[47] Kesner, D. and Renaud, F.: A prismoid framework for languages with re-
sources. In: Theoretical Computer Science, Vol. 412(37), pages 4867–4892.
Elsevier (2011).

[48] Kleene, S.C.: Introduction to Metamathematics. North-Holland, Amsterdam
(1952).

[49] Krivine, J.L.: Lambda-calcul: types et modèles. Masson, Paris (1990).

[50] Landin, J. P.: Correspondence between ALGOL 60 and Church’s Lambda-
notation: part I. In: Commun. ACM Vol. 8(2), pages 89-101 (1965).

[51] Lengrand, S., Lescanne, P., Dougherty, D.J., Dezani-Ciancaglini, M. and van
Bakel, S.: Intersection types for explicit substitutions. In: Longo, G. (ed):
Information and Computation, Vol. 189, pages 17–42. Elsevier (2003).

[52] Lescanne, P. and Žunić, D.: Classical proofs’ essence and diagrammatic com-
putation. In: International Conference on Numerical Analysis and Applied
Mathematics - ICNAAM 2011, AIP Conf. Proc., Vol. 1389, pages 792–797
(2011).

[53] Likavec, S.: Metod redukcije u lambda računu sa tipovima sa presekom (Re-
ducibility method in the lambda calculus with intersection types). Master the-
sis. Faculty of Technical Sciences, University of Novi Sad (2005).

166 BIBLIOGRAPHY

[54] Mycroft, A.: Using Kilim’s Isolation Types for Multicore Efficiency. In-
vited talk at: 2nd International Conference on Formal Verification of Object-
Oriented Software - FoVeOOS 2011, (2011).

[55] Pagani, M. and Ronchi Della Rocca, S.: Solvability in resource lambda-
calculus. In: C.-H.L. Ong, (ed.), 13th International Conference on Founda-
tions of Software Science and Computational Structures - FOSSACS 2010,
Lecture Notes in Computer Science, Vol. 6014, pages 358–373. Springer
(2010).

[56] Pottinger, G.: Normalization as Homomorphic Image of Cut-Elimination. In:
Annals of Mathematical Logic Vol. 12, pages 323–357 (1977).

[57] Pottinger, G.: A type assignment for the strongly normalizable λ−terms. In:
Seldin, J.P., Hindley, J.R. (Eds.), To H.B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism, pages 561–577, Academic Press,
London (1980).

[58] Prawitz, D.: Natural deduction: a proof theoretical study (1965).

[59] Regnier, L.: Une équivalence sur les lambda-termes. In: Theoretical Com-
puter Science Vol. 126, pages 281–292. Elsevier (1994).

[60] Ronchi Della Rocca, S.: Principal Type Scheme and Unification for Inter-
section Type Discipline. In: Theoretical Computer Science Vol. 59, pages
181–209. Elsevier (1988).

[61] Rose, K. H.: Implementation Tricks That Make CRSX Tick. In: IFIP 1.6
workshop, Federated Conference on Rewriting, Deduction, and Program-
ming - RDP’11, (2011).

[62] Rose, K. H., Bloo, R and Lang, F.: On Explicit Substitution with Names. In:
Journal of Automated Reasoning Vol. 49(2), pages 275–300, (2012).

[63] Sallé, P.: Une extension de la theorie des types en lambda-calcul. In: Ausiello,
G., Böhm, C. (Eds.) 5th International Conference on Automata, Languages
and Programming, ICALP’78, Lecture Notes in Computer Science, Vol. 62,
pages 398–410. Springer (1978).

[64] Schönfinkel, M.: Uber die Bausteine der mathematischen Logik [1924] (On
the Building Blocks of Mathematical Logic). In: J. van Heijenoort (ed.):
From Frege to Gödel: a source book in mathematical logic, 1879-1931. Har-
vard University Press (1967).

BIBLIOGRAPHY 167

[65] Schroeder-Heister, P. and Došen, K.: Substructural Logics. Oxford University
Press (1993).

[66] Schwichtenberg, H.: Termination of permutative conversions in intuitionistic
Gentzen calculi. In: Theoretical Computer Science Vol. 212, pages 247–260.
Elsevier (1999).

[67] Seldin, J.P. and Hindley, J.R. (eds.): To H.B. Curry: Essays on Combina-
tory Logic, Typed Lambda Calculus and Formalism. Academic Press, Lon-
don (1980).

[68] Takahashi, M.: Parallel reduction in lambda calculus. In: Information and
Computation, Vol. 118, pages 120–127. Academic press (1995).

[69] Troelstra, A. S. and Schwichtenberg, H.: Basic Proof Theory. Cambridge
Tracts in Theoretical Computer Science, Cambridge University Press, Cam-
brige, U.K. (1996).

[70] van Bakel, S.: Complete restrictions of the intersection type discipline. In:
Theoretical Computer Science, Vol. 102, pages 136–163. Elsevier (1992).

[71] van Bakel, S., Lengrand, S. and Lescanne, P.: The Language chi: Circuits,
Computations and Classical Logic. In: 9th Italian Conference on Theoreti-
cal Computer Science - ICTCS 2005, Lecture Notes in Computer Science,
Vol. 3701, pages 81–96. Springer (2005).

[72] van Oostrom, V.: Net-calculus. Course notes,
http://www.phil.uu.nl/ oostrom/oudonderwijs/cmitt/00-01/net.ps
(2001).

[73] Wadler, Ph.: Proofs are Programs: 19th Century Logic and 21st Century
Computing. In: DR. Dobbs Journal (2000).

[74] Zucker, J.: The correspondence between cut-elimination and normalization.
In: Annals of Mathematical Logic, Vol.7, pages 1–112 (1974).

[75] Žunić, D.: Computing with sequents and diagrams in classical logic - calculi
∗X , dX and c⃝X . Phd thesis, École Normale Supérieure de Lyon (2007).

168 BIBLIOGRAPHY

List of Figures

2.1 System G1 . 13
2.2 System G3 . 14
2.3 System LJc f . 14

3.1 System D: intersection types for the λ-calculus 18
3.2 λLJ: simply typed λ-calculus . 19
3.3 The sequent system LJT . 21
3.4 λLJT c f . 21
3.5 Reduction rules of the λ̄-calculus 24
3.6 Simply typed λ̄-calculus . 25
3.7 Reduction rules for the λlxr-calculus 27
3.8 Congruence equations for the λlxr-calculus 27
3.9 Simply typed λlxr-calculus . 28
3.10 λr-terms . 29
3.11 Reduction rules of the λr-calculus 30
3.12 Equivalences in the λr-calculus 30
3.13 λr∩: λr-calculus with intersection types 31

4.1 Reduction rules of the λGtz-calculus 35
4.2 Substitution in the λGtz-calculus 35
4.3 Meta-operator @ in the λGtz-calculus 35
4.4 λGtz→: the simply typed λGtz-calculus 39
4.5 λGtz∩: intersection types for the λGtz-calculus 43
4.6 First attempt: intuitive system λGtz∩I 50
4.7 Second attempt: restrictive system λGtz∩R 51

5.1 ΛGtz
r : λGtz

r -expressions . 79
5.2 Reduction rules of the λGtz

r -calculus 82
5.3 Meta-operator @ in the λGtz

r -calculus 82

169

170 LIST OF FIGURES

5.4 Substitution in the λGtz
r -calculus 84

5.5 Equivalences in the λGtz
r -calculus 85

5.6 λGtz
r →: simply typed λGtz

r -calculus 89
5.7 The group of σ-reductions in the variant of the λGtz

r -calculus . . . 91
5.8 λGtz

r ∩: the λGtz
r -calculus with intersection types 112

6.1 λR -terms . 136
6.2 Substitution in λR -calculi . 137
6.3 Reduction rules of λR -calculi . 138
6.4 Equivalences in λR -calculi . 138
6.5 ND base of the resource control cube 138
6.6 λGtz

R -expressions . 141
6.7 Substitution in λGtz

R -calculi . 142
6.8 Reduction rules of λGtz

R -calculi 143
6.9 Equivalences in λGtz

R -calculi . 143
6.10 LJ base of the resource control cube 144
6.11 Meta-operator @ in λGtz

R -calculi 144
6.12 λR→: Simply typed λR -calculi 146
6.13 λGtz

R →: Simply typed λGtz
R -calculi 147

6.14 λR ∩: λR -calculi with intersection types 150
6.15 Four ND intersection type systems 150
6.16 λGtz

R ∩: λGtz
R -calculi with intersection types 152

6.17 Four LJ intersection type systems 152

