
UNIVERSITY OF NOVI SAD
FACULTY OF SCIENCES

DEPARTMENT OF MATHEMATICS
AND INFORMATICS

mr Sanja Lončar
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Abstract

Algorithmic trading is an automated process of order execution on elec-
tronic stock markets. It can be applied to a broad range of financial in-
struments, and it is characterized by a significant investors’ control over
the execution of his/her orders, with the principal goal of finding the right
balance between costs and risk of not (fully) executing an order. As the
measurement of execution performance gives information whether best exe-
cution is achieved, a significant number of different benchmarks is used in
practice. The most frequently used are price benchmarks, where some of
them are determined before trading (Pre-trade benchmarks), some during
the trading day (Intraday benchmarks), and some are determined after the
trade (Post-trade benchmarks). The two most dominant are VWAP and Ar-
rival Price, which is along with other pre-trade price benchmarks known as
the Implementation Shortfall (IS).

We introduce Negative Selection as a posteriori measure of the execution
algorithm performance. It is based on the concept of Optimal Placement,
which represents the ideal order that could be executed in a given time win-
dow, where the notion of ideal means that it is an order with the best execu-
tion price considering market conditions during the time window. Negative
Selection is defined as a difference between vectors of optimal and executed
orders, with vectors defined as a quantity of shares at specified price positions
in the order book. It is equal to zero when the order is optimally executed;
negative if the order is not (completely) filled, and positive if the order is
executed but at an unfavorable price.

Negative Selection is based on the idea to offer a new, alternative per-
formance measure, which will enable us to find the optimal trajectories and
construct optimal execution of an order.

The first chapter of the thesis includes a list of notation and an overview
of definitions and theorems that will be used further in the thesis. Chapters
2 and 3 follow with a theoretical overview of concepts related to market mi-
crostructure, basic information regarding benchmarks, and theoretical back-
ground of algorithmic trading. Original results are presented in chapters 4
and 5. Chapter 4 includes a construction of optimal placement, definition
and properties of Negative Selection. The results regarding the properties
of a Negative Selection are given in [35]. Chapter 5 contains the theoretical
background for stochastic optimization, a model of the optimal execution
formulated as a stochastic optimization problem with regard to Negative Se-
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lection, as well as original work on nonmonotone line search method [31],
while numerical results are in the last, 6th chapter.
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Apstrakt

Algoritamsko trgovanje je automatizovani proces izvršavanja naloga na
elektronskim berzama. Može se primeniti na širok spektar finansijskih in-
strumenata kojima se trguje na berzi i karakterǐse ga značajna kontrola in-
vestitora nad izvršavanjem njegovih naloga, pri čemu se teži nalaženju pravog
balansa izmed̄u troška i rizika u vezi sa izvršenjem naloga. S ozirom da se
merenjem performasi izvršenja naloga odred̄uje da li je postignuto najbolje
izvršenje, u praksi postoji značajan broj različitih pokazatelja. Najčešće su
to pokazatelji cena, neki od njih se odred̄uju pre trgovanja (eng. Pre-trade),
neki u toku trgovanja (eng. Intraday), a neki nakon trgovanja (eng. Post-
trade). Dva najdominantnija pokazatelja cena su VWAP i Arrival Price koji
je zajedno sa ostalim ”pre-trade” pokazateljima cena poznat kao Implemen-
tation shortfall (IS).

Pojam negative selekcije se uvodi kao ”post-trade” mera performansi al-
goritama izvršenja, polazeći od pojma optimalnog naloga, koji predstavlja
idealni nalog koji se mogao izvršiti u datom vremenskom intervalu, pri čemu
se pod pojmom ”idealni” podrazumeva nalog kojim se postiže najbolja cena
u tržǐsnim uslovima koji su vladali u toku tog vremenskog intervala. Nega-
tivna selekcija se definǐse kao razlika vektora optimalnog i izvršenog naloga,
pri čemu su vektori naloga definisani kao količine akcija na odgovarajućim
pozicijama cena knjige naloga. Ona je jednaka nuli kada je nalog optimalno
izvršen; negativna, ako nalog nije (u potpunosti) izvršen, a pozitivna ako je
nalog izvršen, ali po nepovoljnoj ceni.

Uvod̄enje mere negativne selekcije zasnovano je na ideji da se ponudi
nova, alternativna, mera performansi i da se u odnosu na nju nad̄e optimalna
trajektorija i konstruǐse optimalno izvršenje naloga.

U prvom poglavlju teze dati su lista notacija kao i pregled definicija i teo-
rema neophodnih za izlaganje materije. Poglavlja 2 i 3 bave se teorijskim pre-
gledom pojmova i literature u vezi sa mikrostrukturom tržista, pokazateljima
trgovanja i algoritamskim trgovanjem. Originalni rezultati su predstavljeni u
4. i 5. poglavlju. Poglavlje 4 sadrži konstrukciju optimalnog naloga, defini-
ciju i osobine negativne selekcije. Teorijski i paraktični rezultati u vezi sa
osobinama negativna selekcije dati su u [35]. Poglavlje 5 sadrži teorijske os-
nove stohastičke optimizacije, definiciju modela za optimalno izvršenje, kao
i originalni rad u vezi sa metodom nemonotonog linijskog pretraživanja [31],
dok 6. poglavlje sadži empirijske rezultate.
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Chapter 1

Introduction

Algorithmic Trading is the ubiquitous way of trading at electronic stock
exchanges. The advantage of such a trading is a significant control over the
execution. It is a system of rules based on knowledge of trading, quantitative
analysis, and programming with the primary concern to decide where and
how to trade.

The idea is to find the right balance between risk and cost i.e. to solve
trader’s dilemma [27] which describes a tradeoff between market impact and
timing risk. To solve this and make an optimal execution we must decide
whether to trade aggressively or passively in the prevailing market conditions.
For this purpose, there is a wide variety of orders, some even behave like
algorithms, but most common are market and limit orders. In essence, they
have opposed behavior regarding the aggressive and passive trading. Market
orders are perceived as aggressive, while limit orders are viewed as passive.
However, one must bear in mind that limit orders with price limit at the best
bid for buying (or best ask for selling) order are also regarded as aggressive.
The only thing that protects execution from unfavorable price, in the case
when market order ”walks the book,” is the inbuilt price limit. The market
order guarantees execution, it has a minimal timing risk but can produce
large market impact. On the contrary, the limit order does not guarantee
that order will be filled. Therefore, the significant timing risk is included,
while the market impact is minimal because of the price limit of the order.

A performance measurement plays a great role in trading and execution,
and for this purpose, there is a significant number of different benchmarks.
Price benchmarks are the most frequently used in practice and are usually
categorized by the time when they are determined, so there are pre-trade,
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intraday, and post-trade benchmarks. The two most dominant benchmarks
are VWAP, and Arrival Price, which is along with other pre-trade price
benchmarks known as the Implementation Shortfall (IS).

VWAP - the intraday benchmark was introduced in 1988 by Berkowitz,
Logue, and Noser [7], as the alternative to Open-High-Low-Close benchmark
in measuring market impact cost. It owes its popularity to the simplicity of
its calculation, intuitiveness and the fact that it gives a realistic portray of
market conditions [3, 10, 20, 21, 38, 41]. Cook [10] emphasizes two major
drawbacks of the VWAP benchmark: the first one is that it could be gamed,
and the other one is that it discourages investors to give an extra effort to
achieve the best execution. Instead, they execute order throughout the day,
to avoid slippage to benchmark. Freyre-Sanders, Guobuzaite, and Byrne [14]
suggest that VWAP good benchmark only for trades which will make a small
market impact.

Implementation Shortfall (IS) was introduced by Perold [44] and it uses
the pre-trade benchmark arrival price as a proxy for the decision price in IS
concept. The advantage od using the pre-trade benchmark is that it cannot
be gamed, but it does not always give proper information of market con-
ditions. Implementation Shortfall, as a difference between the performance
of the theoretical and real portfolio, is regarded as one of the most reliable
trading cost measurement. But as Cook states [10] having a low value of
IS does not mean that execution was good, neither a high value of IS is an
indicator of bad execution.

With all this in mind, the idea of this research was to introduce Negative
Selection, as a new, alternative performance measure. We start with the
notion of Optimal Placement, which represents the ideal order that could be
executed in a given time window, where the notion of ideal means that this
an order with the best execution price considering market conditions during
the time window. Negative Selection is defined as the difference between
vectors of optimal and executed orders, with vectors defined as quantities
of shares at specified price positions in the order book. It is equal to zero
when the order is optimally executed; negative if the order is not filled, and
positive if the order is executed but at the unfavorable price.

The term ”Negative Selection” is used by some authors as ”Adverse Se-
lection.” Saraiya and Mittal [48] describes Adverse selection (Negative Selec-
tion) ”an interaction between an uninformed trader and an informed trader”
in Dark pools, where for uninformed trader exist the possibility of filling
his/her order at an unfavorable price. In the same context, Self [50] states
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”Negative Selection can be described as only ever receiving an execution
when it would have been better not to trade.” However, here, the term is
related to execution process and the execution algorithm’s performance with
regard to price movements. If the price comes in our direction, one does not
want to be filled too early. Therefore it is better to be more passive and try
to execute at a more favorable price, which means the order being ”selected”
will have sub-optimal execution.

The thesis is organized as follows. In Chapter 1 is given a list of notation
and an overview of definitions and theorems. Chapters 2 and 3 follow with
a theoretical overview of concepts related to market microstructure, basic
information regarding benchmarks, and theoretical background of algorith-
mic trading. Original results are presented in chapters 4 and 5. Chapter
4 includes a construction of optimal placement, definition and properties of
Negative Selection. The results regarding the properties of a Negative Se-
lection are given in [35]. Chapter 5 contains the theoretical background for
stochastic optimization, a model of the optimal execution formulated as a
stochastic optimization problem with regard to Negative Selection, as well
as original work on nonmonotone line search method [31]. Chapter 6 con-
tains numerical results, obtained using simulator developed in Matlab and
MySQL.
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1.1 List of Notations

N Negative Selection value for simple order

N (S) Negative Selection vector for complex order S

x = [x1, . . . , xn]T real n-dimensional (column) vector

A = [aij]m×n an m × n matrix with elements aij, i = 1, . . . ,m, j =
1, . . . , n

U(c) an upper triangular matrix with diagonal and all above
elements equal to c

L(c) a lower triangular matrix with diagonal and all lower
elements equal to c

1m×n an n×m matrix with all elements equal to 1 i.e. aij = 1,
i = 1, . . . ,m, j = 1, . . . , n

0m×n an n×m matrix with all elements equal to 0 i.e. aij = 0,
i = 1, . . . ,m, j = 1, . . . , n

E the identity matrix

det(A) determinant of a matrix A

rank(A) rank of a matrix A

E(X) mathematical expectation of a random variable X

D(X), σ2(X) variance of a random variable X

σ(X) standard deviation of a random variable X

|| ||1 l1 norm

|| ||2 l2 norm

∇f(x) gradient of a function f(x)

∇2f(x) Hessian of a function f(x)
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1.2 List of Abbreviations

BB Black Box

bps Basis Points

i.i.d. independently and identically distributed

IS Implementation Shortfall

NS Negative Selection

VWAP Volume Weighted Average Price

w.p.1 with probability 1
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1.3 Background Material

1.3.1 Linear Algebra and Analysis

For x = [x1, . . . , xn]T we define the following vector norms.

Definition 1.3.1. (1-norm or Sum-norm)

||x||1 =
n∑
i=1

|xi|

Definition 1.3.2. (2-norm or Eucledean norm)

||x||2 =

√√√√ n∑
i=1

|xi|2

Definition 1.3.3. (∞ -norm or Sup-norm)

||x||∞ = max
1≤i≤n

|xi|

Definition 1.3.4. (Matrix norm) Let || || be real-valued function on Rn×n,
i.e. || || : Rn×n → R, with following properties:

◦ ||A|| ≥ 0, for all A ∈ Rn×n and

||A|| = 0 if and only if A = 0.

◦ ||αA|| = |α|||A||, for all A ∈ Rn×n and α ∈ IR.

◦ ||A+B|| ≤ ||A||+ ||B||, for all A,B ∈ Rn×n.

◦ ||AB|| ≤ ||A||||B||, for all A,B ∈ Rn×n.

Definition 1.3.5. Matrix norm || || defined on Rn×n is induced by (or
subordinate to) vector norm || ||v on Rn if and only if

||A|| = sup
x 6=0

||Ax||v
||x||v

These matrix norms are called operators or natural norms.
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The following matrix norms are induced by 1-norm, 2-norm and ∞ -norm,
respectively.

Definition 1.3.6. (1-norm or Maximum absolute column sum norm)

||A||1 = max
1≤j≤n

m∑
i=1

|xij|.

Definition 1.3.7. (2-norm or Eucledean-norm)

||A||2 =
√
ρ(ATA),

where ρ(A) is spectral radius of A, i.e. if λi i = 1, . . . , n are eigenvalues of
matrix A, then

ρ(A) = max
i≤i≤n

|λi|.

Definition 1.3.8. (∞ -norm or Maximum absolute row sum norm)

||A||∞ = max
1≤i≤m

n∑
j=1

|xij|.

Let S ⊂ IRp. The set of functions f : S → IRq which are continuous on S
is denoted by C(S), and for k ∈ IN , and Ck(S) denotes set of functions that
have continuous kth derivatives.

Definition 1.3.9. Let S ⊂ IRp. The function f : S → IRq is Lipschitz
continuous on the set S if there exists constant L such that for every x, y ∈ S

||f(x)− f(y)|| ≤ L||x− y||
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1.3.2 Probability Theory

Let Ω be the non-empty set of all logically possible outcomes of an experi-
ment. Elements of the set Ω are called the elementary events or states and
are denoted by ω.

Any subset of Ω is called random event or just event. The set Ω is called
sure event, and empty set ∅ is impossible event. For any event A, we define
its complement A = Ω \ A.

Definition 1.3.10. Let F = {A|A ⊆ Ω} be a collection of subsets of Ω, for
which the following three properties hold:

(1) Ω ∈ F

(2) A ∈ F =⇒ A ∈ F

(3) {Ai}i∈N ⊆ F =⇒
∞⋃
i=1

Ai ∈ F .

Then F is called σ-algebra (σ-field) on Ω.

Definition 1.3.11. Let Ω be a set of the elementary events and F σ-algebra
on Ω. A map P : F 7→ [0, 1] such that the following conditions are satisfied

(1) P (Ω) = 1,

(2) {Ai}i∈N ⊆ F , Ai ∩ Aj = ∅, i, j ∈ N, i 6= j =⇒ P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai),

is called probability on the space (Ω,F), and triple (Ω,F , P ) is called the
probability space.

Theorem 1.3.1. Properties of probability

(1) P (∅)=0.

(2) If A1, . . . , An ∈ F and Ai ∩ Aj = ∅, i, j = 1, . . . , n, i 6= j, then

P (
n⋃
i=1

Ai) =
n∑
i=1

P (Ai).

(3) For A ∈ F , P (A) = 1− P (A).
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(4) For A1, . . . , An ∈ F ,

P (
n⋃
i=1

Ai) =
n∑
i=1

P (Ai)−
n∑

i,j=1
i<j

P (Ai ∩ Aj) + · · ·+ (−1)n−1P (
n⋂
i=1

Ai).

Definition 1.3.12. Let (Ω,F , P ) be the probability space and an event A ∈ F
such that P (A) > 0. A map P (·|A) : F → IR defined in the following way

P (B|A) =
P (A ∩B)

(A)
,

is called conditional probability. P (B|A) is the conditional probability of B
given A.

Definition 1.3.13. Let (Ω,F , P ) be the probability space. Two events A,B ∈
F are called independent if and only if

P (A ∩B) = P (A) · P (B).

Definition 1.3.14. Let (Ω,F , P ) be the probability space. An arbitrary col-
lection of events Ai ∈ F , i ∈ I are called independent if and only if for each
finite set of distinct indices i1, i2, . . . , ik ∈ I holds

P (Ai1 ∩ Ai2 ∩ ... ∩ Aik) = P (Ai1) · P (Ai2) · ... · P (Aik).

Let us consider topological space (R, τ). The smallest σ-algebra generated
by τ is called Borel σ-algebra on R and it is denoted by B, i.e.

B =
⋂
B̃∈π

B̃,

where π is collection of σ-algebras, such that τ ⊆ B̃. Elements of Borel
σ-algebra are called Borel sets.

Definition 1.3.15. Let (Ω,F , P ) be the probability space and B Borel σ-
algebra on R. A map X : Ω → R is called random variable if for every
B ∈ B holds

X−1(B) = {ω|X(ω) ∈ B} ∈ F .

Then, we say that X is F-measurable.
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Theorem 1.3.2. For a probability space (Ω,F , P ) and random variable X,
triple (R,B, PX), where

PX(B) = P (X−1(B)), B ∈ B

is probability space, which is called the probability space induced by random
variable X.

Definition 1.3.16. For random variable X on the probability space (Ω,F , P )
the cumulative distribution function (CDF) of X, denoted by FX is defined
as:

FX(x) = PX((−∞, x)) = P ({ω|X(ω) < x}) = P (X < x).

Theorem 1.3.3. Let (Ω,F , P ) be the probability space and X random vari-
able. The cumulative distribution function of X has the following properties:

(1) FX is left-continuous nondecreasing function.

(2) lim
x→−∞

FX(x) = 0.

(3) lim
x→+∞

FX(x) = 1.

Definition 1.3.17. Let (Ω,F , P ) be the probability space and B Borel σ-
algebra on R. Random variable X is said to be discrete if and only if there
exists finite or countably infinite set RX ⊂ R such that P (X ∈ RX) = 1.
If RX = {x1, x2, . . . , xk, . . . } then

∀B ∈ B P (X ∈ B) =
∑
xk∈B

P (X = xk).

Probability distribution function (PDF) for discrete random variable X is
given by

X :

(
x1 x2 . . . xk . . .
p1 p2 . . . pk . . .

)
(1.1)

where pk = P (X = xk).

Definition 1.3.18. Let (Ω,F , P ) be the probability space and B Borel σ-
algebra on R. Random variable X is said to be absolutely continuous if and
only if there is an integrable nonnegative function ϕX such that

∀B ∈ B P (X ∈ B) =

∫
B

ϕX(x)dx.
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ϕX is called density function of X. The cumulative distribution function is
then defined by

FX = P (X < x) =

∫ x

−∞
ϕX(s)ds.

For absolutely continuous random variable X and every interval (a, b] ⊂ R
there holds

PX((a, b]) = P (a < X ≤ b) =

∫ b

a

ϕX(s)ds = FX(b)− FX(a).

Density function ϕX is piecewise continuous and for an arbitrary point x,
such that ϕX is continuous in x, holds

ϕX(x) =
dFX(x)

dx

and for every Borel set B holds∫
B

dFX(s) =

∫
B

ϕX(s)ds.

Independence of random variables will be defined using definition of in-
dependent events:

Definition 1.3.19. An arbitrary collection of random variables X1, X2, . . . Xn

are called independent if and only if the events X−1
1 (S1), X−1

2 (S2), . . . X−1
n (Sn)

are independent for each Si ∈ B, i = 1, 2, . . . , n

Definition 1.3.20. Let X be a discrete random variable with probability
distribution function given by (1.1). Mathematical expectation of X, denoted
by E(X) is defined by

E(X) =
∞∑
k=1

xkpk.

It exists if and only if
∞∑
k=1

|xk|pk <∞.

Definition 1.3.21. Let X be an absolutely continuous random variable with
density function ϕ. Mathematical expectation of X, denoted by E(X) is de-
fined by

E(X) =

∫ ∞
−∞

xϕ(x)dx.
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It exists if and only if

∫ ∞
−∞
|x|ϕ(x)dx <∞.

Theorem 1.3.4. Properties of mathematical expectation

(1) |E(X)| ≤ E(|X|).

(2) E(c) = c where c=const.

(3) E(αX + βY ) = αE(X) + βE(Y ), where α, β ∈ R.

(4) E(X − E(X)) = 0.

(5) If for each ω ∈ Ω, X(ω) ≥ 0 then E(X) ≥ 0.

(6) If for each ω ∈ Ω, X(ω) ≥ Y (ω) then E(X) ≥ E(Y ).

(7) If X and Y are two independent random variables such that E(X) <∞
and E(Y ) <∞ then

E(X · Y ) = E(X) · E(Y ).

Theorem 1.3.5. (Fundamental theorem of mathematical expectation)
Let X be a random variable and f : R→ R Borel function, then the following
holds

E(f(X)) =

∫ ∞
−∞

f(x)dFX(x)

Definition 1.3.22. Variance of random variable X, denoted by D(X) or σ2
X ,

is defined as

σ2
X = D(X) = E((X − E(X))2) = E(X2)− E(X)2.

Theorem 1.3.6. Properties of variance

(1) D(X) ≥ 0.

(2) D(X) = 0 if and only if X = const almost surely.

(3) D(αX) = α2D(X), where α ∈ R.

(4) D(X + α) = D(X), where α ∈ R.
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(5) If X and Y are two independent random variables such that

D(X) <∞ and D(Y ) <∞

then
D(X + Y ) = D(X) + D(Y ).

Definition 1.3.23. Standard deviation of random variable X is defined as

σX =
√
D(X).

Definition 1.3.24. Let X and Y be two random variables. If there exist
E(X), and E(Y ), then the covariance of two random variables X and Y ,
denoted by cov(X, Y ) or σX,Y is defined as

σX,Y = cov(X, Y ) = E((X − E(X) · (Y − E(Y )) = E(XY )− E(X) · E(Y ).

Definition 1.3.25. A sequence of random variables {Xn}n∈IN converge in

probability to random variable X (denoted by Xn
P→ X), if for every ε > 0

lim
n→∞

P (|Xn −X| ≥ ε) = 0.

Definition 1.3.26. A sequence of random variables {Xn}n∈IN converge al-
most surely (or with probability one) to random variable X (denoted by Xn

a.s.→
X), if

P ( lim
n→∞

Xn = X) = 1.

Definition 1.3.27. A sequence of random variables {Xn}n∈IN converge in

mean-square to random variable X (denoted by Xn
L2

→ X), if

E(X2
n) <∞, n ∈ IN and lim

n→∞
E((Xn −X)2) = 0.

Let {Xn}n∈IN be sequence of independent random variables in probability
space (Ω,F , P ). Let Xn be the sample mean of the first n terms of the
sequence,

Xn =
1

n

n∑
i=1

Xn.

We consider a sequence {Xn−E(Xn)}n∈IN and state a set of conditions that
are sufficient to guarantee its convergence to zero. For the convergence is in
probability, we have Weak Laws of Large Numbers, and for the almost sure
convergence, Strong Laws of Large Numbers.
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Theorem 1.3.7. If there exists a constant C such that for all n ∈ IN ,
D(Xn) ≤ C then for a sequence {Xn − E(Xn)}n∈IN holds a Weak Law of
Large Numbers, i.e.

Xn − E(Xn)
P→ 0, n→∞

Theorem 1.3.8. If is the sequence {Xn}n∈IN of independently and identically
distributed random variables with finite mathematical expectation E(Xn) =
µ < ∞, then then for a sequence {Xn − E(Xn)}n∈IN holds a Weak Law of
Large Numbers.
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1.3.3 Constrained Optimization

In general, optimization problem can be written as

min
x∈Rp

f(x)

s.t. hi(x) = 0, i ∈ E
hi(x) ≥ 0, i ∈ I,

(1.2)

where E , I are sets of indices, x ∈ IRp, f : IRp → IR, hi : IRp → IR, i ∈ E ∪I.
x is the vector of variables, f = f(x) is the objective function, and the
functions hi = hi(x), i ∈ E are equality constraints, and hi = hi(x), i ∈ I
are inequality constraints.

We consider only minimization problem because maximization of a func-
tion f subject to some constraints is equivalent to minimization of the func-
tion −f under the same conditions.

The distinction between optimization problems can be made regarding
whether the problem has constraints or not, or according to properties (lin-
ear, nonlinear, convex, stochastic, etc.) of the objective function f and
constraints hi. In the former case, we differ constrained and unconstrained
optimization. And in the latter case, there are nonlinear optimization prob-
lems, convex optimization, etc. One extensively used class of these problems,
where all constraints and objective function are linear, is linear programming
problem.

We begin with convexity - one of fundamental concepts in optimization.
The term convex is used both to sets and functions.

Definition 1.3.28. A set S ∈ Rp is a convex set if the straight line segment
connecting any two points in S lies entirely inside S.

(∀ x, y ∈ S) (∀ α ∈ [0, 1]) (αx+ (1− α)y ∈ S)

Definition 1.3.29. A function f is a convex function if its domain S is
a convex set and for any two points x and y in domain, the graph of f lies
below the strait line connecting (x, f(x)) and (y, f(y)) in the space Rp+1.

(∀ x, y ∈ S) (∀ α ∈ [0, 1])
(
f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

)
A function f is said to be concave if the function −f is convex.
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To introduce basic concepts regarding constraint optimization, we define
feasible set S, consisting of all points that satisfy constraints in (1.2):

S = {x| hi(x) = 0, i ∈ E ; hi(x) ≥ 0, i ∈ I}.

Now, problem (1.2) can be rewritten as:

min
x∈S

f(x) (1.3)

Definition 1.3.30. A vector x∗ is a local solution of problem (1.3) if x∗ ∈ S
and there is a neighborhood N of x∗ such that

f(x) ≥ f(x∗) for x ∈ N ∩ S.

Definition 1.3.31. A vector x∗ is a strict (strong) local solution of problem
(1.3) if x∗ ∈ S and there is a neighborhood N of x∗ such that

f(x) > f(x∗) for x ∈ N ∩ S with x 6= x∗.

Inequality constraint hi(x) is said to be active at x ∈ S if hi(x) = 0, and
inactive if hi(x) > 0.

FIRST ORDER OPTIMALITY CONDITIONS

For the constrained optimization problem (1.2) the Lagrangian L : IRp×
IR|E|+|I| is defined as

L(x, λ) = f(x)−
∑
i∈E∪I

λihi(x). (1.4)

At any feasible x we define active set A(x), as the union of indices of all
equality and active inequality constraints.

A(x) = E ∪ {i ∈ I| hi(x) = 0}. (1.5)

Definition 1.3.32. Given the point x∗ and an active set A(x∗) defined by
(1.5), we say that the linear independence constraint qualification (LICQ)
holds if the set of active constraint gradients {∇hi(x∗), i ∈ A(x∗)} is linearly
independent.
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Theorem 1.3.9. (First-Order Necessary Conditions)
Suppose that x∗ is a local solution of (1.2)and that LICQ holds at x∗. Then
there is a Lagrange multiplier vector λ∗, with comonents λ∗i , i ∈ E ∪ I, such
that the following conditions are satisfied at (x∗, λ∗)

∇xL(x∗, λ∗) = 0, (1.6)

hi(x
∗) = 0, for all i ∈ E (1.7)

hi(x
∗) ≥ 0, for all i ∈ I (1.8)

λ∗i ≥ 0, for all i ∈ I (1.9)

λ∗ihi(x
∗) = 0, for all i ∈ E ∪ I (1.10)

The conditions (1.6-1.10) are called Karush-Kuhn-Tucker condition, or
shortly KKT conditions.

For each inactive inequality constraint hi at x∗, i /∈ A(x∗) holds hi(x
∗) >

0. The complementary conditions (1.10) then imply that λi = 0 for all
i /∈ A(x∗), which allows us to rewrite (1.6) as:

∇xL(x∗, λ∗) = f(x)−
∑

i∈A(x∗)

λ∗i∇hi(x∗) = 0. (1.11)

Definition 1.3.33. (Strict Complementarity)
Given a local solution x∗ of (1.2) and a vector λ∗ satisfying (1.6-1.10) we
say that the strict complementarity condition holds if exactly one of λ∗i and
hi(x

∗) is zero for each index i ∈ I. In other words, we have that

λ∗i > 0, i ∈ I ∩ A(x∗).

Now, we define the tangent cone F1 to the feasible set at x∗, when con-
straint the qualifications are satisfied.

Definition 1.3.34. Given a point x∗ and active constraint A(x∗) defined by
(1.5) the set F1 is defined by

F1 = {αw|α > 0, wT∇hi(x∗) = 0 ∀i ∈ E , wT∇hi(x∗) ≥ 0 ∀i ∈ A(x∗) ∩ I}
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SECOND ORDER OPTIMALITY CONDITIONS

The first-order conditions i.e. the KKT conditions, give information
about first derivatives of f , active constraints and their relationship at x∗.
And the second-order conditions deal with the Lagrangian function in the
directions w ∈ F1 for which wT∇f(x∗) = 0.

To continue with the second-order conditions we will assume that the
objective function f , and constraints hi, i ∈ E ∪ I are twice continuously
differentiable on S ⊂ IRp, i.e. f, hi ∈ C2(S), i ∈ E ∪ I.

Now, for a given Lagrange multiplier λ∗ satisfying the KKT conditions,
we are able to define a subset of F1, denoted by F2(λ∗) in following way:

F2(λ∗) = {w ∈ F1|wT∇hi(x∗) = 0, all i ∈ A(x∗) ∩ I with λ∗i > 0}. (1.12)

Equivalently, w ∈ F2(λ∗) if and only if the following three conditions are
satisfied:

wT∇hi(x∗) = 0, for all i ∈ E ,
wT∇hi(x∗) = 0, for all i ∈ A(x∗) ∩ I with λ∗i > 0,

wT∇hi(x∗)w ≥ 0, for all i ∈ A(x∗) ∩ I with λ∗i = 0.

(1.13)

The following theorem gives us the necessary condition using the second
derivative:

Theorem 1.3.10. (Second-Order Necessary Conditions )
Suppose that x∗ is a local solution of (1.2) and that the LICQ condition
is satisfied. Let λ∗ be the Lagrange multiplier vector such that the KKT
conditions are satisfied, and let F2(λ∗) be defined as (1.12). Then

wT∇2
xxL(x∗, λ∗)w ≥ 0 for all w ∈ F2(λ∗). (1.14)

Contrary to the necessary conditions, where we assumed that x∗ is a local
solution, and then were able to infer what are properties of the objective
function f and constraints hi, now we impose conditions on f and hi to
ensure that x∗ is a local solution.

Theorem 1.3.11. (Second-Order Sufficient Conditions )
Suppose that for some feasible point x∗ ∈ Rn there is Lagrange multiplier
vector λ∗ such that KKT conditions are satisfied. Suppose also that

wT∇2
xxL(x∗, λ∗)w > 0 for all w ∈ F2(λ∗), w 6= 0. (1.15)

Then x∗ is a strict local solution for (1.2).
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RATES OF CONVERGENCE

Rate of convergence is an important measure of performance of an op-
timization algorithm. We now define different types of convergence for a
sequence {xk}∞k=0, where xk ∈ Rn and limk→∞ x

k = x∗. We say that conver-
gence is:

Q-linear if there is constant r ∈ (0, 1) such that

||xk+1 − x∗||
||xk − x∗||

≤ r,

for all k sufficiently large. The quantity r is called the asymptotic rate
of convergence.

Q-superlinear if the following holds

lim
k→∞

||xk+1 − x∗||
||xk − x∗||

= 0.

Q-quadratic if
||xk+1 − x∗||
||xk − x∗||2

≤M,

for all k sufficiently large, where M <∞ is a positive constant.

R-linear if there is a sequence of nonnegative scalars {νk}∞k=0, such that

||xk − x∗|| ≤ νk, for all k

and {νk} converges Q-linearly to zero.

R-superlinear if there is a sequence of nonnegative scalars {νk}∞k=0, such
that

||xk − x∗|| ≤ νk, for all k

and {νk} converges Q-superlinearly to zero.

R-quadratic if there is a sequence of nonnegative scalars {νk}∞k=0, such that

||xk − x∗|| ≤ νk, for all k

and {νk} converges Q-quadratically to zero.
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1.3.4 Linear Programming

Linear programming problems are optimization problems such that all con-
straints and objective function are linear. We now define terminology asso-
ciated with linear programming.

Definition 1.3.35. General form of linear programming problem (LPG) is
a special case of optimization problem (1.2), where objective function f(x),
equality and inequality constraints are linear functions. It is defined as:

min f(x) = cTx

s.t. Ax = b

Cx ≥ d

xj ≥ 0, j ∈ P, P ⊆ {1, 2, . . . , n}

(1.16)

where x = [x1, x2, . . . , xn]T ∈ IRn, A ∈ Rm×n, C ∈ Rp×n, c ∈ Rn, b ∈ Rm,
d ∈ Rp.

Definition 1.3.36. The linear programming problem has the standard form
(LPS) if it is defined in following way:

min f(x) = cTx

s.t. Ax = b

x ≥ 0

(1.17)

where x = [x1, x2, . . . , xn]T ∈ IRn, A ∈ Rm×n, b ∈ Rm and c ∈ Rn.

Before defining basic solution, we first define the feasible set of the LPS
problem (1.17):

US = {x|x ∈ Rn, Ax = b, x ≥ 0} (1.18)

Definition 1.3.37. We consider an LPS problem, where rank(A) = r = m.
A feasible solution x∗ ∈ US is basic (feasible) solution of problem (1.17) if
there exist r-linearly independent columns of matrix A Aij , j = 1, . . . , r of a
matrix A such that {i1, . . . , ir} ⊂ {1, 2, . . . , n} and

r∑
j=1

xijAij = b,
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where

Ak =


a1 k

a2 k
...
ar k


The components x∗i1 , . . . , x

∗
ir of vector x∗ are called basic variables, the other

components are called nonbasic and are equal to zero.

Definition 1.3.38. If one or more of the basic variables has value zero,
that solution is said to be a degenerate basic solution. Otherwise, it is called
non-degenerate basic solution.

Definition 1.3.39. The column vectors Ai1 , Ai2 , . . . , Air , are basic vectors
for basic feasible solution x∗. The matrix B = [Ai1 , Ai2 , . . . , Air ] is a basic
matrix for basic feasible solution x∗.

Definition 1.3.40. A linear programming problem (1.17) is said to be de-
generate (singular) if it has at least one degenerate basic solution. Otherwise,
it is non-degenerate (regular) linear problem.

Definition 1.3.41. Let S be a convex set. The point x ∈ S is an extreme
point (vertex) of the set S if it cannot be expressed in the form

x = αy + (1− α)z,

where 0 < α < 1, y, z ∈ S and y, z 6= x.

Definition 1.3.42. Closed bounded convex set with a finite number of ex-
treme points is called convex polyhedron.

Theorem 1.3.12. (Representation of convex polyhedron)
Let K be convex polyhedron with extreme points v1, v2, . . . , vk. For an arbi-
trary x ∈ K holds

x =
k∑
i=1

αivi

where
k∑
i=1

αi = 1, αi ≥ 0, i = 1, . . . , k ,

i.e. convex polyhedron is convex combination of its extreme points.
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Theorem 1.3.13. The LPG problem (1.16) has no solution if the feasible
set S is empty, or the objective function is unbounded on non-empty feasible
set, i.e. there exists a sequence {xk} ⊂ S such that

lim
k→∞

f(xk) = −∞.

Otherwise, the problem has a solution and then can occur exactly one of the
following two cases:

(1) The problem has a unique solution, that is an extreme point of S.

(2) The problem has an infinite number of solutions, which are convex com-
bination of extreme points, which are solutions of the problem.

Theorem 1.3.14. A point x is an extreme point of the set US defined as
(1.18) if and only if it is a basic feasible solution of the LPS problem (1.17).

To introduce term reduced cost, we consider the LPS problem (1.17) with
rank(A) = r = m and the feasible set US defined as (1.18) without degen-
erate extreme points. Let x be an extreme point with base Ai1 , Ai2 , . . . , Air .
Without loss of generality we assume that first r columns of a matrix A are
basic vectors, hence it can be written in form

A = [B N ],

where B is a basic matrix, and N is a nonbasic matrix. Now, the extreme
point x can be written as

x =

[
xB
xN

]
,

where xB is the vector of basic variables and xN the vector of nonbasic
variables.

From the previous notation, it is obvious that xB = B−1b and for each
feasible point y ∈ US, using the notation as for x (yB the vector of basic
variables, yN the vector of nonbasic variables ) holds

yB = xB −B−1NyN .

Now, the objective function has the following value in y:
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f(y) = cTy

= cTByB + cTNyN

= cTBxB − (cTBB
−1N − cTN)yN

= f(x)− (cTBB
−1N − cTN)yN .

Here, cB and cN are coefficients of basic and nonbasic variables in c, re-
spectively. With the matrix N written in form N = [Ar+1, . . . , An] and the
previous result, there holds

f(y) = f(x)−
n∑

i=r+1

(
cTBB

−1Ai − (cN)i
)
(yN)i = f(x)−

n∑
i=r+1

∆i(yN)i

The coefficients ∆i are called reduced costs of extreme point x. It can be
proved that, if there exists j ∈ {1, . . . n} such that ∆j > 0, then the extreme
point x is not solution of the LPS problem.
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Chapter 2

Market Microstructure

Market microstructure has a vital importance for finance practitioners, as it is
one of the fields of financial research with rapid growth in recent twenty years.
Stoll [53] writes: ”[It] deals with the purest form of financial intermediation
- the trading of financial asset, such as a stock or bond.”

The term ”market microstructure” was introduced by Mark Garman [16]
in 1976 where he describes ”the ’temporal microstructure’ or moment-to-
moment trading activities in asset market.” O’Hara [42] defines it as ”the
study of process and outcomes of exchanging assets under explicit trading
rules,” while Madhavan [36] gives the following definition: ”Studies of market
microstructure analyze the process by which investors’ latent demands are
translated into executed trades.”

Market microstructure theory consists of three key areas [21]:

◦ Market structure and design,

◦ Trading mechanism research,

◦ Transition cost measurement and analysis.

By many academic studies, market structure and design have a significant
influence on quality and speed of price discovery, liquidity as well as, on the
total cost of trading. On the other hand, the focus of trading mechanism
research area is mainly in price formation, price discovery, and trade execu-
tion. The area of transaction cost measurement and analysis covers usage
of spreads and benchmarks as cost measurement and analysis of other cost
components like volatility risk, market impact, opportunity cost, etc. Some
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of the key features of market microstructure will be described in the following
sections.

2.1 Types of Markets

Financial markets are venues that accommodate requirements for both in-
vestors and issuers of financial instruments. One of the key characteristics of
market structure and design is a market type, which could influence overall
transaction cost, and consequently, the profitability of a trade. Markets are
usually classified by their mechanism and frequency of trading.

2.1.1 Trading mechanism

By trading mechanism, markets can be separated into three groups:

◦ quote-driven (dealer market),

◦ order-driven (auction market),

◦ hybrid or mix of previous two.

In an entirely quote-driven market, investors cannot transact directly
with each other but only with a dealer, who quotes ask and bid prices at
which he/she is willing to buy and sell particular quantity. In an order-
driven market investors trade without dealer intermediation, and it allows
equal participation of all the investors which is actualized through placing
and matching their orders in order book by specific rules.

The difference between quote-driven and order-driven markets manifests
through levels of visibility in terms of orders and bid and ask prices. In quote-
driven market one can see only market maker’s two-way quote (to buy given
quantity at ask price, or to sell at bid price), which guarantees execution at
that price, for set size (see Table 2.1):

Bid size Bid price Ask price Ask size

1000 101.0 101.5 2500

Table 2.1: Example of market maker’s two-way quote. (Primer dvosmernih
kotacija)
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This way market maker is the one who provides liquidity to the market
and takes on the risk of a less favorable position, but in return, the difference
in bid and sell price enables him/her to earn a profit.

A significant advantage of the order-driven market is its transparency,
because of visibility of prices and corresponding order sizes of both buyers
and sellers, which are organized and displayed in an order book. The other
benefit is that they provide visible liquidity and more options for placing an
order (at any given price and size). The drawback of this market is that the
execution of an order is not guaranteed.

Markets that combine properties of order-driven and quote-driven mar-
kets are called hybrid markets, an example of such market is NASDAQ [21].

2.1.2 Trading frequency

By frequency of trading, markets can be also separated in three groups:

◦ Continuous trading,

◦ Periodic trading,

◦ Request-driven trading.

In continuous trading, orders can be traded at any point in time and are
executed as soon as they are received. Periodic, or scheduled trading or call
auctions are organized at specified times in the day. Request-driven trading
involves requesting a quote from a market maker.

Continuous trading is preferable if one needs an immediacy of execution,
but the drawback is possible price volatility. Periodic trading is often used
for less liquid assets (when continuous trading cannot be sustained). Also, it
can have an effect on reducing price volatility.

Some markets made the transition from periodic to continuous trading
and some use combination of the two. The trend is ”continuous trading
based on hybrid mechanisms, often with additional call auctions to help
start and/or close the market.” [21].

2.2 Order Book

In a pure order-driven market, which is the majority of the world’s financial
markets, order book has a central role in the trading process. Roşu [46]
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gives examples of pure order-driven markets: Euronext, Hong Kong, Tokyo,
Toronto, and different ECN (Island, Instinet). He also lists examples of
hybrid exchanges like NYSE, Nasdaq, and London Stock Exchange.

Hasbrouck [19], states that consolidated limit order book (CLOB) is used
in most Asian and European markets.

The term CLOB is used when all trading for a security takes place in a
single order book. The same acronym is used for the term centralized limit
order book, and both represent the same thing. CLOB is also referred to as
a double-sided auction.

The order is a building block of an order book, and it represents a trade
instruction. For a given financial instrument, an order is determined by its

◦ direction (buy or sell),

◦ price,

◦ size and

◦ time when it is submitted.

Nowadays the most prevalent priority mechanism is price-time also known
as FIFO (first in first out). This means that price priority is primary, and
orders with better price are given a higher priority. Secondary priority is
based on time of order submission. Consequently, previously listed properties
allow explicit determining order priority in a limit order book.

There is also pro-rata priority mechanism, but it is commonly used in
futures markets.

Before specifying some properties of limit order book (LOB), we continue
with its definition:

Connor, Goldberg, and Korajczyk [9] define it in the following way: ”The
menu of outstanding limit orders is called the limit order book.” While
Narang [41] gives a definition with additional intuitive insight into its mech-
anism:

”The collection of all available bids and offers (all of which are
passive orders) for a given security is known as the limit order
book, which can be thought of as a queue of limit orders to buy
and sell.”
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For a given limit order book, both price and size of an order depend
directly on tick size and lot size, collectively referred to as resolution param-
eters.

The tick size of a limit order book is the smallest permissible price incre-
ment. The consequence of mandatory tick size is a discrete set of prices and
its direct effect on bid-ask spread. Harris [18] noted, since tick size is a cost
of getting priority, with a too small tick size, one can cheaply step in front
of a queue, just by slightly improving his order price, a phenomenon often
called ”pennying.” In this case, time priority becomes meaningless.

The lot size is the smallest quantity of the financial instrument that can
be traded within the limit order book. All submitted orders must have a
size that is multiple of a lot size. A lot size can vary from one to hundred,
or even thousand and more shares. Because of the practice to break large
market orders in smaller blocks, a lot size directly influences traders execution
strategy.

The depth of a limit order book at a specified price is the total number of
shares of all the active orders at that price. It is often expressed as multiple
of lot size and usually influenced by tick size. Larger tick size gives incentive
for providing liquidity.

The best bid price at the time t denoted by b(t) is the highest price of all
buy orders at the time t.

The best ask price at the time t denoted by a(t) is the lowest price of all
sell orders at the time t.

The mid price at the time t denoted by m(t) is arithmetic mean of best
ask and best bid price at time t:

m(t) =
a(t) + b(t)

2
.

The bid-ask spread at the time t denoted by s(t) is a difference between
best ask and best bid price at time t:

s(t) = a(t)− b(t).

The proportional bid-ask spread at the time t is defined in the following
way:

a(t)− b(t)
m(t)

.

It is relative measure of spread and usually it is given in basis points (bps).
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Liquidity plays a great role in trading, and it represents a cost of con-
verting financial instrument to cash and vice versa. The notion was first
introduced by Demsetz [11] using term ”immediacy.” Zubulake and Lee [58]
define it as ”the amount of a security that is available on the bid/buy and
offer/sell of a market, as well as the depth of both buyers and sellers.”

2.3 Order Types

Each market allows different order types, and the two most important ones
are market and limit orders.

Market orders are instructions to trade a given size immediately at the
best available market price. They are liquidity takers and are exposed to the
risk of unfavorable execution price.

Limit orders are instructions to trade given size at the specified price
or better. They provide liquidity and are exposed to the risk of not being
executed.

It is worth noting that there is another order type, which is, in essence,
a hybrid of market and limit order, and it is called Marketable Limit Order.
Kissell and Glantz [26] explain:

”This order will either be executed in the market at the specified
price or better, or be cancelled if there are no existing orders at
that price or better in the market.”

A trader can apply additional conditions to order, to achieve better con-
trol of execution, these are fill instructions, duration instructions, etc. Con-
ditions regarding fill instructions include:

◦ Immediate-or-cancel: is an order for which the part that cannot be
immediately executed at given price will be cancelled, i.e. order can be
partially filled.

◦ Fill or kill: is a limit order that must be completely filled immediately
or is automatically cancelled.

◦ All-or-none: is a limit order that must be completely filled, but not
immediately, and expires at the end of the day.



2.4 Aggressive and Passive Trading 45

◦ Minimum-volume: is an order with the condition that some specified
quantity must be filled. For example at Euronext, a minimum-volume
order will be cancelled if it cannot fill the required minimum quantity.

◦ Must-be-filled: is an order which must be completely filled. Johnson
[21] notes that ” [they] are generally associated with trading to fulfill
expiring futures or option contracts.”

Order’s ”lifetime” lasts from its submission to limit order book until it is
cancelled or completely filled. Duration instructions specify additional condi-
tions to alter its lifetime, for example, ”Day Order” or ”good for day” (GFD)
represent order that will be cancelled at the end of the day. Other instruc-
tions of this type include: ”good ’til date” (GTD), ”good after time/date”
(GAT), etc.

Many exchanges support and create new types of orders, which are actu-
ally a combination of market and a limit orders. Besides hybrid orders, these
are [21]:

◦ Conditional orders (stop-loss orders, trailing stop orders, contingent
orders, tick sensitive orders)

◦ Hidden and iceberg orders

◦ Discretional orders (not-held, pegged orders)

◦ Routed orders (pass-through orders)

Some of them are even behaving like algorithms, and are collectively
referred as dynamic order types, the examples are stop orders and pegging
orders.

2.4 Aggressive and Passive Trading

To achieve the best execution, which by Kissell and Glantz [26] depends on
price, size, and time factors, a trader must find a balance between passive
and aggressive trading illustrated by Figure 2.1. He/she must solve trader’s
dilemma formulated by Kissell [27] in the following way:

”Trading too aggressive will lead to higher impact cost but trad-
ing too passively will lead to higher risk and may result in even
more costly trades.”
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Figure 2.1: Trade-off between market impact and timing risk. (Odnos izmed̄u
tržnog impakta i vremenskog rizika)

Narang [41] notes that a difference between passive and aggressive trading
is reflected in ”how immediately a trader wants to do a trade.” With that in
mind, it can be said that there is a trade-off between cost and risk: aggressive
trading style leads to a higher cost and a lower risk, while passive trading style
is associated with a lower cost and a higher risk. In general, using market
orders is considered aggressive, and using limit orders passive trading.

Using market orders guarantees fast execution, but with the price that
cannot be controlled. For example, if a size of market buy order does not
exceed quantity at best ask, the order will be completely filled at this price.
On the other hand, if order’s size exceeds quantity at best ask, then it will
”walk the book” and take available liquidity until it is filled. With a market
order, there is always a cost of crossing the spread.
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Figure 2.2: Aggressive and passive limit orders in the limit order book. Agre-
sivni i pasivni limit nalozi u knjizi naloga

Limit orders are opposite of market orders. They have an inbuilt price
limit but do not guarantee execution. However, using limit orders can also
be aggressive: for example placing an order at the best bid or best ask price
(also known as joining) or even adding it to limit order book, so that it will
create a new best bid or best ask (known as improving). Orders submitted
at price levels that are far lower than best bid (or higher than best ask ) are
considered passive.

Figure 2.2 illustrates aggressive and passive orders, both on buy and sell
side. White and light gray rectangles represent aggressive limit orders that
are improving and joining, respectively. Passive limit orders in the limit
order book are in black and dark gray color.

A style of execution depends on many factors, Narang [41] explains that
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momentum strategies are prone to aggressive style, while mean reversion
strategies tend to be passive. But, the deciding factor is a signal strength.

There is psychological research in the field of behavioral finance. Mad-
havan [36] states that ”traders tend to overestimate the precision of their
information.” Further, some traders tend to overreact, while the other over-
react to new information, which leads to a different understanding of signal
strength.

2.5 Transaction costs

As the transaction cost are included in each trade, they play a major role
in trading. In 1988 Perold introduced the measure of total transaction cost,
called Implementation Shortfall. In his paper [44], he proposes to run a theo-
retical (paper) portfolio alongside the real one and calculate implementation
shortfall as the difference between the performance of the theoretical and real
portfolio. Further, he separates the two basic components of Implementation
Shortfall:

◦ Execution cost - represents the cost of transacting like taxes and com-
missions, and also include market impact

◦ Opportunity cost - represents ”the cost of not transacting” i.e. measures
performance of theoretical orders that were not executed in reality.

Narang [41] emphasizes the importance of estimation of transaction costs.
He explains that with underestimation of transaction costs trader makes ”too
many trades that have insufficient benefit,” and with overestimation, the
trader makes fewer trades ”which usually results in holding positions too
long.” Therefore, proper estimation of transaction cost is crucial for overall
trading performance. Pre-trade and post-trade analysis enables identification
and modeling of transaction costs and therefore taking appropriate action for
reducing the overall costs.

Almgren et al [4] classifies costs into two main categories: direct and
indirect costs. Other authors, like Kendall [22] and Johnson [21] use different
terminology for the same classification, they differentiate explicit and implicit
costs.

Explicit or direct costs can be easily measured and usually account for a
small part of the total cost. They are fees, commission, and taxes.
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Implicit or indirect costs are costs which are not directly observable and
therefore difficult to measure. They make up the largest part of the total
costs. Cook [10] notes ”As these costs are highly variable, they offer a greater
potential for cost management.” Implicit costs are the spread cost, delay cost,
market impact, price trend, timing risk, opportunity cost, etc.

SPREAD COST

Spread cost is a difference between best ask and best bid price, it is
variable and easily measured at any point of time. Kissel and Glantz [26]
point that ”Spreads represent a round-trip cost of transacting; however, this
is only true for small orders.” The high spread cost is characteristic for less
liquid financial instruments, and aggressive trading style. The spread cost
for trading Q shares with n executions of size Qi at time ti is defined as

n∑
i=1

Qi ·
s(ti)

2
,

where s(t) is bid-ask spread at time t.

DELAY COST

Delay cost is defined by Wagner and Glass [54] as ”the change in a stocks
price that occurs once the manager makes a decision to buy or sell a stock,
but before releasing it to a specific broker.” It is mathematically expressed
as

Q · (P0 − Pd),

where Pd and P0 are mid prices at the time of manager’s decision, and at the
time when the order (of the size Q) is released to the broker, respectively.
The delay cost is more present at volatile financial instruments, and also
when the price is trending in the opposite direction from our order.

MARKET IMPACT

Market impact, notes Johnson [21], ”represent price change caused by
specific trade or order.” Kissell and Glantz [26] give the following definition:

”It is the difference between the stock’s price trajectory with the
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order and what the price trajectory would have been had the
order not been submitted to the market.”
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                       Price trajectory with and without the order                        

Market
Impact
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                                         f(t)

                                             g(t)

Figure 2.3: Illustration of Market Impact for buying order in rising market.
Ilustracija tržisnog impakta kupovnog naloga pri rastućem trendu cene.

The authors further give mathematical expression of market impact at
time t as

κ(t) = f(t)− g(t)

where function f describes price trajectory of the stock with the order, and
g describes price trajectory of the stock without the order being released to
market.

Figure 2.3 illustrates the total cost as the difference between price when
the order was released f(t0) and price of execution f(te) i.e. f(te) − f(t0)
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and the market impact cost that is f(te) − g(te). Also, Kissel [24] states
that market impact is a consequence of the liquidity demands or the infor-
mation contained in the order, like its size, urgency of trading or leakage of
information. The last especially concerns asset managers regarding execu-
tion algorithm information leakage to trading predators, Sofianos and Xiang
in their article ”Do Algorithmic Executions Leak Information?” [43] present
their results on the matter.

It is obvious that accurate measurement and estimate of market impact
is difficult, one approximate for market impact for trading Q shares with n
executions of size Qi and price Pi at time ti [21] is

n∑
i=1

Qi · (Pi − a(ti)), for buy order;

n∑
i=1

Qi · (Pi − b(ti)), for sell order.

Here, a(t) and b(t) represent best ask and best bid at time t, respectively.
It consists of two components: temporary and permanent market impact.

Generally, the temporary impact is a consequence of demanding liquidity and
the information content of the order is a cause for permanent impact.

PRICE TREND

Price trend also known as price appreciation, drift, momentum, volatility
cost or short-term alpha. Kissell [24] describes it as ”the cost (savings)
associated with buying stock in a rising (falling) market or selling (buying)
stock in a falling (rising) market.” He further explains that this is not directly
observable cost, and depends on price trend and implementation strategy.

The price trend cost for trading Q shares with the price trend function
P̃ (t) and n executions of size Qi at time ti is defined as

n∑
i=1

Qi · (P̃ (ti)−m(t0)),

where m(t0) is a mid price at time t0 when the order was received by a broker.
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TIMING RISK

Timing risk of an asset describes the volatility of its price and liquidity.
Kissell and Glantz [26] define

”Timing risk is the associated uncertainty in trading cost esti-
mates due to price volatility and liquidity risk. Price volatility
affects the price appreciation estimate, and liquidity risk affects
the market impact estimate.”

With the assumption of independence of volume and price movement,
Kissell and Glantz [26] compute price volatility σ(µ(xk)) and liquidity risk
σ(κ(xk)) separately, and formulate timing risk of strategy xk as

<(Φ) =
√
σ2(µ(xk)) + σ2(κ(xk))

Johnson [21] gives a way for measuring timing risk as

n∑
i=1

Qi · (m(ti)− P̃ (ti)),

where P̃ (t) is the price trend function and there are n executions of size Qi

and mid price m(ti) at time ti.

OPPORTUNITY COST

Opportunity cost is defined by Kissell [25] as ”a measure of the forgone
profit or avoided loss of not being able to transact the entire order.” It is
defined as

(Q−
∑

Qi) · (Pn − P0),

where P0 is an arrival price and Pn price at the end of a period. The opportu-
nity cost is present as a consequence of price movement in adverse direction
or insufficient liquidity. High opportunity cost is a sign of passive trading.



Chapter 3

Benchmarks and Algorithmic
Trading

Each transaction includes costs, and their correct quantification has a crucial
role in formulation of investment strategy. Madhavan [37] describes invest-
ment process as a cycle (Figure 3.1) consisting of development of invest-
ment strategy and its implementation, which is realized through the follow-
ing stages: portfolio formation, pre-trade analysis, execution and post-trade
analysis.

Investment

Strategy

Portfolio

Formulation

Pre trade

Analysis
Execution

Post trade

Analysis

Figure 3.1: Investment cycle. Source: Madhavan [37]. Investicioni ciklus.
Izvor: [37]
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Pre-trade analysis focuses on (historical) data, which Baker and Filbeck
[5] classify into two groups: ”fundamentals of security” and ”trade-related
factors” that are:

◦ Prices - ranges (day’s high and low), trends, momentum, market prices,
last traded price etc.

◦ Liquidity - average daily volume (ADV), volume profile, trading stabil-
ity which can be quantified using coefficient of variation (see [25])

CV =
σ(ADV )

ADV

◦ Risk - volatility, beta, risk exposure.

◦ Cost estimates - explicit costs, and components of implicit costs like
market impact, timing risk, opportunity cost etc.

The post-trade analysis measures transaction costs and execution per-
formance. Its main purpose is an improvement of future performance. The
key part in the identification of sources of under- and over-performance is
a choice of proper benchmark, which is used for comparison with average
execution price of a trade.

Essentially, measuring performance for an individual asset, as perfor-
mance in units of money, is described in (3.1)∑

QjPj −QPb (3.1)

where Qj is amount of shares executed in period j at price Pj and Q is total
amount to execute, and Pb is benchmark price. In this case, negative perfor-
mance is more favorable than positive. Also performance can be expressed
in units of money per share (3.2), which is average price of execution (Pavg )∑

QjPj −QPb∑
Qj

(3.2)

or in basis points (3.3)
Pavg − Pb

Pb
· 104. (3.3)

Cook [10] insists on following properties of benchmark: it should be
weighted average for any order that cannot be completed in one trade. Fur-
ther, it should be transparent and achievable. Finally, it should not be
influenced by trader’s own trading nor susceptible to gaming.
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3.1 Types of Benchmark

The most common way in classifying price benchmarks is based on the time
when they are determined (See [5, 13, 21, 22]), in this case, we distinguish
between pre-trade, intraday, and post-trade benchmarks. The hybrid bench-
marks are a combination of some already known benchmarks. And there are
also non-price benchmarks, like relative performance measure (RPM) pro-
posed by Kissel and Glantz [26].

3.1.1 Pre-Trade benchmarks

Pre-Trade benchmarks are also known as implementation shortfall [22] bench-
marks. They are easy to determine and immediately available, but they do
not always reflect market conditions. The advantages of pre-trade bench-
marks are that they cannot be influenced by trader’s own trading and they
could be applied to any order size. They are:

◦ Previous close represents closing price of the asset on the previous day.

◦ Opening price is the opening price for the same day.

◦ Decision price is in close relationship with Perold’s implementation
shortfall [44], as Baker and Filbeck [5] note, ”it is the price at which
the choice to invest was actually made.”

◦ Arrival price represent price at time when order could be traded.

First two benchmarks are directly observable, while the latter two are not
publicly available and often not recorded by investors, which leads to inac-
curacy in the measurement of transaction costs.

3.1.2 Intraday benchmarks

Intraday benchmarks are also known as average, or across-day benchmarks,
They try to give the more accurate picture of prevailing market conditions,
unlike pre- and post-trade benchmarks, they are recalculated during the trad-
ing day. Kendal [22] notes that ”[they] are composed of prices that occur
during a trading session”.
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◦ Open-High-Low-Close (OHLC) is average of four prices: open, high,
low and close, and as a consequence of its definition (3.4), in case of
extreme values of those four prices, value of this benchmark can be
distorted. Cook [10] emphasize that ”[OHCL] is the most arbitrary
of this class of benchmarks, an as such, most difficult to consistently
achieve”

OHCL =
Popen + Phigh + Plow + Pclose

4
(3.4)

◦ Time Weighted Average Price (TWAP) is average of all trade prices
for a given period of time. If ni is frequency of trades at price Pi, then
its definition is qiven with (3.5). Drawback of TWAP is obvious in case
of large number of small trades with extreme prices.

TWAP =

∑
niPi∑
ni

(3.5)

◦ Volume Weighted Average Price (VWAP) defined as (3.6),where Vi is a
number of shares transacted at price Pi during the trading day. It gives
more accurate information about intraday market conditions. With
VWAP, small trades with extreme prices do not have crucial influence
on benchmark, but the trades with the largest volume.

VWAP =

∑
ViPi∑
Vi

(3.6)

◦ Participation Weighted Average Price (PWAP), as Gomes and Wael-
broeck [17] explain, ”[is] calculated as VWAP for time period starting
an order arrival until the time that is required to complete the order at
selected participation rate”. Cook [10] claims that participation rate
”lies in the 10% range”, while many traders assert 20-25%.

3.1.3 Post-Trade benchmarks

Post-Trade benchmarks are determined at the end of a trade, or at the end
of a trading day. As markets are usually more active at the end of the day,
the closing price may not be a good representative of conditions during the
day. Additionally, post-trade benchmark could give incorrect information of
execution performance, for example: if the order was filled during some part
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of a day, unfavorable price trend would make execution look good. Madhavan
[38] states that this benchmark supports trading at the close, which can lead
to significant hidden costs.

The two most common post-trade benchmarks are:

◦ Close is closing price for the day.

◦ Future close is closing price for the next day.

3.1.4 Hybrid benchmarks

Hybrids of pre-, intra- and post-trade benchmarks are also used in practise.
Kissel and Glantz [26] gave an example of composite 30-40-30 benchmark,
computed in following way:

30%Popen + 40%OHLC + 30%Pclose

where OHCL is calculated with different weights for each price:

OHCL =
40%Popen + 10%Phigh + 10%Plow + 40%Pclose

4

3.1.5 Relative Performance Measure

Kissel and Glantz [26] proposed relative performance measure (RPM) as an
alternative to price benchmarks. In the essence of this performance metric
is measuring the percentage of all market activity, that traded less favorable
then execution price. It is computed for market volume and number of trades
in following way

RPMvolume =

N∑
i=1

d=1,P<Pavg

Q(i, P, d) +
N∑
i=1

d=−1,P>Pavg

Q(i, P, d)

Q

RPMtrades =
Nbuy(P < Pavg) +Nsell(P > Pavg)

N
,

where Q denotes the total market volume, N is the total number of trades,
Pavg is an execution price and Q(i, P, d) represents quantity traded at ith
trade at a price P with a direction d which takes value 1 for buy, and −1
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for sell orders. Furthermore, Nbuy(P < Pavg) is a number of buy trades for
which P < Pavg, and Nsell(P > Pavg) is a number of buy trades for which
P > Pavg.

Authors, additionally proposed qualitative representation for average RPM,
which is calculated as

RPM =
RPMtrades +RPMvolume

2
,

in the form of qualitative label, defined as follows:

Qualitative label =



Excellent 80% < RPM ≤ 100%

Good 60% < RPM ≤ 80%

Average 40% ≤ RPM ≤ 60%

Fair 20% ≤ RPM < 40%

Poor 0% ≤ RPM < 20%

3.2 Volume Weighted Average Price

Berkowitz, Logue and Noser [7] introduced Volume Weighted Average Price
(VWAP) in 1988, as the alternative to OHCL in measuring market impact
cost. The idea behind it was to provide better, unbiased estimates of market
impact. For an individual asset, it is defined by (3.6).

The VWAP benchmark owes its popularity to simplicity of its calculation,
intuitiveness and the fact that it gives a good indication of market behavior
during given time interval.

Freyre-Sanders, Guobuzaite and Byrne [14] suggest that VWAP is ”best
used for smaller trades that have little or no impact on existing market
prices.” Because in the case of a large order or illiquid financial instrument,
there is a chance for influencing the benchmark. The authors explain addi-
tional limitations of VWAP benchmark: first, it does not take into account
difficulty of a trade and second, in given period of time for which VWAP
is calculated might be included prices that have no significance for analyzed
trade.

As Kissell, Glantz and Malamut [26] noted, VWAP does not allow bench-
mark comparison between different assets, or between different days for the
same asset. For example, let us have benchmark comparison of two assets
during two different days, as depicted in Table 3.1.
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Asset X Asset Y

Day 1 20 bps 40 bps
Day 2 50 bps 40 bps

Table 3.1: Example of benchmark comparison for different assets and days.
Primer pored̄enja pokazatelja za različite finansijske instrumente i dane.

By just looking at the data for Day 1 we could draw the conclusion that
X performed better than Y, but the smaller difference for X could be the
consequence of order size or market conditions. And again, looking at same
asset at different days, we cannot conclude that X was better at Day 1, nor
the Y had the same performance on these two days. Even with the same
order size, market condition during Day 1 and Day 2 might be completely
different.

Johnson [21] notes that even order of size over 30% of ADV influences
the benchmark. Kissell, Glantz, and Malamut [26] explain that this situation
illustrates the case when the difference between average price and benchmark
does not give proper information about the quality of a trade.

3.3 Arrival Price and Implementation Short-

fall

Arrival price benchmark is, as Almgren [3] defines it, ”the quoted market
price in effect at the time the order was released to the trading desk.” It is
in close relationship with total cost measure Implementation shortfall (IS)
introduced by Perold [44] in 1988. With VWAP, it is one of the most popular
benchmarks used in practice.

Kissel [25] suggests that this arrival price is the benchmark of choice for
managers, whose decisions for buying and selling are based on company’s
long-term growth expectations. Further, he adds

”[It] is also an appropriate benchmark price for situations where
a market event triggers the portfolio manager or trader to release
an order to the market.”

For the reason that it is a pre-trade benchmark it is not susceptible to
gaming, but as such, it does not always give true information of market
conditions.
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Figure 3.2: Comparison of returns between theoretical and real portfolio.
Pored̄enje prinosa teorijskog i realnog portfolia

It is often used as a decision price in Perold’s [44] Implementation short-
fall. In his paper, he recommends parallel running of a theoretical (also
known as paper or ideal) and a real portfolio, and Implementation Shortfall
then represents the difference between the performance of the theoretical and
real portfolio (Figure 3.2), which can be mathematically expressed as (3.7).
All calculation of theoretical portfolio performance is done using mid price,
which enables measurement of spread cost included in real portfolio costs.

IS = Rtheoretical −Rreal (3.7)

With Q representing a total number of shares intended to trade, and∑
Qi representing executed shares, unexecuted part is given by Q −

∑
Qi,
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which makes possible expressing IS by (3.8), i.e. as a sum of execution and
opportunity cost, respectively.∑

QiPi −
∑

QiPd + (Q−
∑

Qi) · (Pn − Pd) (3.8)

Here Pd is a decision price and Pn price at the end of a period.
Wagner and Glass [54] introduced delay cost (3.9) as ”the change in a

stock’s price that occurs once the manager makes a decision to buy or sell a
stock, but before releasing it to a specific broker.”

Q(P0 − Pd) (3.9)

Authors showed that the delay costs are part of transaction cost, and their
result was included in Expanded implementation shortfall (3.10) formulated
by Kissell and Glantz [26], where P0 is arrival price.

Q(P0 − Pd) +
∑

QiPi −
∑

QiP0 + (Q−
∑

Qi) · (Pn − P0) (3.10)

Even with the fact that IS is regarded as the most reliable measure of total
transaction cost, it cannot be used as a measure of the quality of trader’s
performance. Minimization of IS is a trader’s objective, but as Cook [10]
explains ”low shortfall number does not necessarily indicate a good result,
nor a large shortfall number a poor result.”

3.4 Algorithmic Trading

Algorithmic trading refers to the algorithmic order execution. Narang [41]
defines it as ”the use of computer software to manage and work an investors
buy and sell orders in electronic markets.” As the vast majority of financial
instruments can be traded electronically, it is clear that algorithmic trading
has become the crucial tool for the electronic trading. The term is sometimes
used for quantitative and black-box trading, but as Schmidt [49] states, algo-
rithmic trading only ”focuses on making decisions where and how to trade.”
Smart order routing deals with the question ”where to trade” in markets
that have multiple liquidity pools. We here describe algorithms that give an
answer to question ”how to trade?”.

The idea behind algorithmic trading is to formulate and use mathematical
models, that react to changes in a market environment, to achieve specified



62 Benchmarks and Algorithmic Trading

goals for the execution while minimizing execution costs. The goals in most
cases are meeting the benchmark or minimizing the total transaction costs.
One of the classifications of execution algorithms is based on previously men-
tioned goals. Therefore we distinguish two major groups of algorithms:

◦ Benchmark-driven

◦ Cost-driven

Johnson [21] gives classification based on their underlying mechanism, he
differs the following types of algorithms:

◦ Impact-driven

◦ Cost-driven

◦ Opportunistic

Moreover, he further explains their fundamental goals: the first group
tries to minimize total market impact, the second aims to reduce total trans-
action costs, while the last group is made of dynamic algorithms designed to
utilize favorable market conditions.

3.4.1 Benchmark-driven algorithms

Benchmark-driven algorithms aim to minimize slippage to chosen benchmark.
Besides the fact that all the execution algorithms try to minimize costs re-
lated to the completion of a buy or sell order, these group of algorithms,
Schmidt [49] explains ”are based on some simple measures of market dynam-
ics rather than on explicit optimization protocols.” The most widely known
algorithms from this group are Time Weighted Average Price (TWAP), Vol-
ume Weighted Average Price (VWAP) and Percent of Volume (POV).

All three of previously mentioned algorithms rely on the mechanism of
splitting large orders into smaller parts, also known as child orders or atomic
orders, with the intent to minimize overall market impact. With this aspect,
they are also classified as impact-driven algorithms.

TWAP algorithm has a goal of meeting the TWAP benchmark, defined
by (3.5), which is an average trade price for a time period when the order
is submitted until it is completely filled. The most simple TWAP algorithm
for a given order size Q that will trade over time period T minutes splits a
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large order into for example n parts, therefore we have n child orders each

with size
Q

n
, trading in so called waves every ∆t =

T

n
minutes. It is obvious

that this slicing of an order does not take into account market volume and
price.

The drawback of this algorithm is predictability, so there is a risk of
information leakage. One of the possible solutions for the problem is to
randomize size of each child order and even to randomize trading waves.

VWAP algorithm is one of the most famous execution algorithms. It
aims to minimize slippage to VWAP benchmark, defined by (3.6). Here
trader specifies the time intervals, and then the algorithm splits the order
into child orders with size proportional to period trading order. It is evident
that one cannot know the future volume profile, so algorithm relies on his-
torical, or combination of historical and real-time data. Kissell and Glantz
[26] suggest VWAP execution strategy: First, they divide given trading day
into n intervals, with volume weighted average price P i and volume traded
in that interval Ṽi, then VWAP can be rewritten as

VWAP =
n∑
i=1

Ṽi∑n
j=1 Ṽj

P i.

They state that strategy y for creating child orders minimizes the expected
difference from the VWAP benchmark, if yi are equal to previously defined
weights.

POV algorithm is based on the idea to trade predetermined percent of
volume p, known as participation rate. So the child order with size qk in time
interval k with the total trading volume Qk is calculated so that the following
holds

p =
qk

Qk + qk
,

So, then we have

qk =
p

1− p
Qk.

With this approach algorithm, child orders have a lower market impact.
Leshik [33] explains that this strategy gives certain cover, especially for large
orders, by ”hiding” the order from the rest of the market. The biggest
problems with POV algorithm are that it does not guarantee completion of
an order, applicability on trades with illiquid asset and predictability.
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3.4.2 Cost-driven algorithms

Cost-driven algorithms are also called Implementation Shortfall algorithms,
and their goal is to minimize total transaction costs. All of them try to
reduce cost by finding a balance between timing risk and market impact.

Implementation shortfall algorithm is, in essence, same as arrival price
algorithm. Both are based on Perold’s [44] implementation shortfall, but as
Glantz and Kissell [25] note, they differ in ”real-time adaptation tactics”. In
most cases, arrival price benchmark is used as decision price. The objective
of the implementation shortfall algorithm is to achieve average execution
price which minimizes the Implementation Shortfall.

Adaptive Shortfall is an Implementation Shortfall algorithm with the ad-
ditional property of dynamical adaptation to market conditions.

Market on close relay on post-trade benchmark close. The idea behind
this algorithm is to find an optimal start time for trading, so that, it is not
too early, nor too late because in the first case the order is exposed to timing
risk and in the second, to market impact.



Chapter 4

Negative Selection

In Automated Order Execution, a computer program based on some trad-
ing strategy creates and submits orders with the primary goal, to achieve
benchmark specified by a client. There are many different approaches for
measuring execution performance, and each of them with some advantages
and some flaws, as it is truly difficult to define one standard performance
measure that would fulfill all the requirements for a valid benchmark.

The two most popular benchmarks VWAP and Implementation Shortfall
(IS) represent the standard in the financial industry and are the subject of
many academic studies [8, 10, 14, 32]. The majority of Benchmark-driven
algorithms are developed to minimize slippage to these two benchmarks. As
already mentioned, some problems accompany measuring slippage on VWAP
and IS. They manifest in the loss of objectiveness and giving actual infor-
mation of toughness of market conditions. In the case of VWAP, by its
definition, trading with a large order or illiquid financial instrument can sig-
nificantly distort the slippage. On the other hand, IS, with Arrival Price
as the reference price, cannot be influenced by our own trading, but it is
insensitive to market conditions and does not capture the nature of absolute
slippage. Let us consider an example of executing a buy limit order placed at
the best bid. In both cases, in rising and falling market, VWAP will decrease
with the size of a large order even for the suboptimal execution. With IS,
there is a different situation, in rising market, it will be high, which reflects
the market conditions. But in falling market it will be constant representing
the difference between the best bid price and Arrival Price, i.e. it does not
indicate that we got filled too early, and could have done better in these
market conditions. Therefore there is a need for an absolute performance
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measure. The performance measure, which we introduce here, has an objec-
tive to provide an alternative way of measuring the performance of execution
algorithms. It takes a posteriori view of market conditions, which allows
us to determine what would have been the optimal order placement if we
knew in advance the complete market information during the trading win-
dow. Then, the difference between the optimal trading position and actual
execution represents the performance measure, which takes into account all
traded quantities with considered time window.

Optimal placement for a given quantity Q and time window [0, T ] is
defined as a solution of the Linear Programming problem, where unknowns
are quantities at specified price levels, which add up to Q and would achieve
the best price under prevailing market conditions during [0, T ].

Negative Selection (NS) of an order is the distance between the vector
of Optimal Placement and actual order. The measure differentiate between
filled and unfilled orders because unfilled orders have negative and filled or-
ders have nonnegative NS. It is also capable of showing the toughness of
market conditions during the given time window. For example, buy order at
bid1 will have positive NS in falling market, because the order is filled at an
unfavorable price, while in rising market it could be optimal with zero NS or
negative because the order was not (completely) filled.

We continue with notation and assumptions necessary for the definition
of Negative Selection.

4.1 Notation and Assumptions

To define Negative Selection, we first assume that we have to buy Q shares
either by placing a market order or taking a passive position at some of the
bid levels. For the opposite case, selling Q shares, the definition is completely
symmetric. We consider a market governed by the limit order book implying
that the orders are placed in queues by price and arrival time priority. Next,
let us assume that the buy order of the size Q has to be executed within the
time window [0, T ]. At t = 0 the following information is available.

◦ The price vector
P = [P0, ..., Pk]

T ,

where P0 is market price (the best ask price at t = 0), and P1, ..., Pk
are bid prices at corresponding bid levels. Clearly, Pk < Pk−1 < . . . <
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P1 < P0.

◦ Volume ahead
V = [V0, ..., Vk]

T ,

represents the sizes of the existing orders in the corresponding bid
queues at t = 0. We will assume that V0 = 0, so a market order with
price P0 is immediately traded.

◦ The gain coefficients are defined as

G = [g0, ..., gk]
T , where gj =

P0 − Pj
P0

for j = 0, . . . , k. (4.1)

Clearly, 0 = g0 < g1 < ... < gk.

We consider a simple order determined by its quantity Q placed at the
end of the existing queue, at some of the available bid levels or as a market
order. We are assuming that the quantity Q is small enough so that it can be
traded as a simple order. For technical reasons, such order will be represented
by order vector

Q = [Q0, ..., Qk]
T . (4.2)

If the simple order of quantity Q is placed at some price level Pm, m =
0, . . . , k, then the components Qj, j = 0, . . . , k of its order vector Q are
defined in the following way:

Qj =

{
Q, j = m;
0, j 6= m.

(4.3)

At the end of the time window [0, T ] the following information is available.

◦ The traded quantity at each price level during the time window (0, T ]
is represented by

T = [T0, ..., Tk]
T .

We assume that T0 ≥ Q, i.e. there is enough liquidity at the price level
P0, so that the market order can be filled at P0.

◦ Available quantity

A = [A0, ..., Ak]
T , Aj = max{Tj − Vj, 0}.
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The assumption T0 ≥ Q guaranties that of indices

IL = {j|Aj > 0, j = 0, . . . , k} (4.4)

is a nonempty set and we denote l = max IL. We also define set of indices
IH with cumulative sums of available quantity exceeds Q

IH = {j|
l∑
i=j

Ai ≥ Q, j = 0, . . . , l}s (4.5)

Again, the assumption T0 ≥ Q guaranties that IH is a nonempty set with
its maximal element h = max IH . The price Ph is the lowest price level that
allows for the order to be completely filled with respect to price-time priority.

4.2 Optimal Placement

The optimal placement can be defined at the time t = T , that is, only when
the complete information about market conditions in considered time window
is available. It represents an ideal order placed at time t = 0 that would be
executed and achieve the best (the lowest buy) price during [0, T ]. If we
denote optimal placement as a vector

O = [O0, ..., Ok]
T ,

where O0 represents quantity at market, and Oi is quantity placed at corre-
sponding bid price Pi, i = 1, . . . , k. Since the objective is to buy Q shares at
the lowest possible price, the optimal placement is a solution of the following
Linear Programming Problem.

min
O0,...,Ok

k∑
i=0

PiOi (4.6)

s.t.

k∑
i=0

Oi = Q (4.7)

l∑
i=j

Oi ≤
l∑
i=j

Ai, j = 1, . . . , k (4.8)

Oj ≥ 0, j = 0, . . . , k. (4.9)
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The objective of achieving the lowest average execution price for buying
Q shares 1

Q

∑k
i=0 PiOi, is described trough the objective function (4.6) and

first constraint (4.7). The objective function (4.6) represents the total cost
for buying Q shares, and the first constraint (4.7) that we want to buy
Q shares. The second constraint (4.8) specifies that we can buy only the
available quantities at each price levels with respect to the execution price-
queue priority in the order book, i.e. it cannot be stated simply as Oi ≤ Ai.
The following toy example shows that filling the available quantities from
below does not yield the smallest price for the total order of Q shares. Let us
consider data shown in Table 4.1 and order with Q = 100 shares is submitted
to order book at bid2, i.e. at price P2 = 98. If the constraint is just Oi ≤ Ai,
then the optimal placement would be 40 shares at market price (P0 = 100)
and 60 shares at bid3 (P3 = 97) which yields average execution price of
98.2. On the other hand, by using constraint (4.8) price-time priority is
incorporated which leads to optimal placement with just 5 shares at market
price (P0 = 100), 95 shares at bid2 (P2 = 98) and average execution price
98.1.

level P V T
0 100 0 100
1 99 200 200
2 98 80 80
3 97 35 95

Table 4.1: Snapshot of data in a given time window that is necessary to
determine an optimal placement. Prikaz podataka u vremenskom intervalu
neophodnih za odred̄ivanje optimalnog naloga.

For the purpose of displaying Mangasarian’s results [39] on uniqueness of
solution in linear programming, which will be used to prove the uniqueness
of optimal placement, we consider the problem of the following form:

min
x

cTx

s.t. Ax = b

Cx ≥ d

(4.10)

where A ∈ Rm×n, C ∈ Rp×n, x, c ∈ Rn, b ∈ Rm, d ∈ Rp.
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Theorem 4.2.1. [39] A solution x∗ of the linear programming problem (4.10)
is unique if and only if it remains a solution to all the linear programs ob-
tained from (4.10) by arbitrary but sufficiently small perturbation of its cost
vector c, or equivalently for each q ∈ Rn there exist a positive real number ε
such that x∗ remains a solution of the perturbed linear program (4.11)

min
x

(c+ εq)Tx

s.t. Ax = b

Cx ≥ d.

(4.11)

Theorem 4.2.2. The vector O with components Oj, j = 0, . . . , k defined by

Oj = 0, j = 0, . . . , h− 1 (4.12)

Oj = Q−
l∑

i=h+1

Ai, j = h (4.13)

Oj = Aj, j = h+ 1, . . . , l (4.14)

Oj = 0, j = l + 1, . . . , k, (4.15)

is the unique solution of (4.6)-(4.9).

Proof. As there is no liquidity at levels l + 1, . . . , k, i.e., Aj = 0 for j =
l + 1, . . . k and because of constrains (4.8)-(4.9) it is clear that all feasible
solutions satisfy Oj = 0 for j = l + 1, . . . k, thus (4.15) holds. So, instead of
the problem (4.6)-(4.9) the following problem will be considered

min
O0,...,Ol

l∑
i=0

PiOi (4.16)

s.t.
l∑

i=0

Oi = Q (4.17)

l∑
i=j

Oi ≤
l∑
i=j

Ai, j = 1, . . . , l (4.18)

Oj ≥ 0, j = 0, . . . , l (4.19)

In order to solve the problem(4.16)-(4.19), inequality constraints (4.18) will
be transformed into equality constraints, by adding nonnegative variable dj
to left side of each inequality in (4.18), i.e. we consider LPS problem (4.20)



4.2 Optimal Placement 71

min
O0,...,Ol

l∑
i=0

PiOi

s.t.

l∑
i=0

Oi = Q

l∑
i=j

Oi = dj +
l∑
i=j

Ai, j = 1, . . . , l

Oj ≥ 0, j = 0, . . . , l

dj ≥ 0, j = 1, . . . , l

(4.20)

or in the short form:

min
x

cTx

s.t. Mx = b

x ≥ 0

(4.21)

where c = [c0, ..., c2l]
T , x = [x0, ..., x2l]

T and b = [b0, ..., bl]
T are defined by

cj =

{
Pj, j = 0, . . . , l

0, j = l + 1, . . . , 2l

xj =

{
Oj, j = 0, . . . , l

dj−l, j = l + 1, . . . , 2l

bj =


Q, j = 0
l∑
i=j

Ai, j = 1, . . . , l

and matrix

M =

[
1 11×l 01×l
0l×1 U(1)l×l El×l

]
.

Here, U(c) is an upper triangular matrix with diagonal and all above elements
equal to c, 0 is a matrix with all zero elements, and 1 is a matrix with all
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elements equals to 1, E is an identity matrix. The following vector is a basic
solution of problem (4.21)

v = [0, 0, . . . , 0, Q−
l∑

j=h+1

Aj, Ah+1, . . . , Al−1, Al,

(
l∑

j=1

Aj)−Q, . . . , (
l∑

j=h−1

Aj)−Q, (
l∑

j=h

Aj)−Q, 0, . . . , 0, 0]T , (4.22)

with a basis matrix

B =

 1 11×(l−h) 01×h
1h×1 1h×(l−h) Eh×h
0(l−h)×1 U(1)(l−h)×(l−h) 0(l−h)×h


and a non-basis matrix

N =

 U(1)h×h 0h×(l−h)

01×h 01×(l−h)

0(l−h)×h E(l−h)×(l−h)

 .
As inverse of B is

B−1 =

 1 01×h [−1,01×(l−h−1)]
0(l−h)×1 0(l−h)×h U(1)−1

(l−h)×(l−h)

−1h×1 Eh×h 0h×(l−h)


and

B−1N =

 11×h [−1,01×(l−h−1)]
0(l−h)×h U(1)−1

(l−h)×(l−h)

L(−1)h×h 0h×(l−h)

 ,
where L(c) is a lower triangular matrix with diagonal and all lower elements
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equal to c, the Simplex table for the basic solution v

O0 O1 . . . Oh−1 dh+1 dh+2 . . . dl vB

Oh 1 1 . . . 1 −1 0 . . . 0 Q−
l∑

j=h+1

Aj

Oh+1 0 0 . . . 0 1 −1 . . . 0 Ah+1

Oh+2 0 0 . . . 0 0 1 . . . 0 Ah+2
...

...
... . . .

...
...

... . . .
...

...
Ol−1 0 0 . . . 0 0 0 . . . −1 Al−1

Ol 0 0 . . . 0 0 0 . . . 1 Al

d1 −1 0 . . . 0 0 0 . . . 0 (
l∑

j=1

Aj)−Q

d2 −1 −1 . . . 0 0 0 . . . 0 (
l∑

j=2

Aj)−Q

...
...

... . . .
...

...
... . . .

...
...

dh −1 −1 . . . −1 0 0 . . . 0 (
l∑

j=h

Aj)−Q

∆O0 ∆O1 . . . ∆Oh−1
∆dh+1

∆dh+2
. . . ∆dl

All the reduced costs are negative: ∆Oj = Ph − Pj < 0, j = 0, . . . , h− 1
and ∆dj = Pj − Pj−1 < 0, j = h + 1, . . . , l. Now it could be concluded that
a basic solution v is optimal solution of problem (4.21). Further, the vector

[0, 0, . . . , 0, Q−
l∑

h+1

Aj, Ah+1, . . . , Al−1, Al]
T

is optimal solution of (4.16)-(4.19) and optimal solution of (4.6)-(4.9) is in-
deed given by (4.12)-(4.15).
Uniqueness will be proved using Theorem 4.2.1. Let q ∈ Rl+h+1 be an arbi-
trary vector, and we will show that there is positive number ε > 0 such that
vector v, defined in (4.22), remains a solution of perturbed problem

min
x

(c+ εq)Tx

s.t. Mx = b

x ≥ 0.

(4.23)
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The vector v is a basic solution of the problem (4.23), and reduced costs for
the perturbed problem are

∆Oj = Ph + εqh − (Pj + εqj) = Ph − Pj + ε(qh − qj), j = 0, . . . , h− 1

∆dj = (Pj + εqj)− (Pj−1 + εqj−1) = (Pj−Pj−1)+ ε(qj−qj−1), j = h+1, . . . , l.

By choosing ε as minimum of set

{ Pj − Ph
2(qh − qj)

|qh > qj, j = 0, . . . , h−1}∪{ Pj−1 − Pj
2(qj − qj−1)

|qj > qj−1, j = h+1, . . . , l}

we get

∆Oj <
1

2
(Ph − Pj) < 0, j = 0, . . . , h− 1

∆dj =<
1

2
(Pj − Pj−1) < 0, j = h+ 1, . . . , l.

This means that v is an optimal solution of (4.23).

4.3 Negative Selection

Definition 4.3.1. For an order with the size Q at the price level Pm and
execution time window [0, T ], Negative Selection is defined as

N = (O −Q)TG, (4.24)

where O is the optimal placement vector, Q is the order vector and G is the
vector of gain coefficients defined by (4.1).

We continue with properties of Negative Selection that make it a well
defined performance measure.

Lemma 4.3.1. Negative Selection of optimally placed order is zero.

Proof. If the order is optimally placed then O = Q, therefore

N = (O −Q)TG = (O −O)TG = 0.
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Lemma 4.3.2. Negative Selection of filled order is nonnegative.

Proof. If the order is filled at a level m then m ∈ IH and m ≤ h holds.
Furthermore,

N = (O −Q)TG =
k∑
i=0

Oigi −Qgm ≥ Q(gh − gm) ≥ 0.

Lemma 4.3.3. Negative Selection of (partially) unfilled order is negative.

Proof. If the order is unfilled at level m it is clear that m ≥ l. Suppose that
holds m < l this means that Pm > Pl and as Al > 0 it is clear that there was
some trading at level l. For the price to go down to Pl, all orders placed at
higher price levels would be filled, which means that our order at Pm would
be filled, and this contradicts the assumption of being unfilled.

If the order is unfilled at level m it is clear that m ≥ l, because if m < l
holds, this means that Pm > Pl and as Al > 0 it is clear that there was some
trading at level l. For the price to go down to Pl, all orders placed at higher
price levels would be filled, which means that our order at Pm would be filled,
and this contradicts the assumption of being unfilled.

N = (O −Q)TG <
k∑
i=0

Oigl −Qgm = Q(gl − gm) ≤ 0.

Lemma 4.3.4. Consider two orders with the same size Q placed at two price
levels Pm and Pm+1 with Pm > Pm+1. If Nm and Nm+1 are their Negative
Selections respectively then Nm > Nm+1.

Proof. Order vectors of orders of size Q at prices Pm and Pm+1, are denoted
by Qm and Qm+1, respectively. For quantity Q exists an optimal placement
(O), then

Nm −Nm+1 = (O −Qm)TG − (O −Qm+1)TG = Q(gm+1 − gm) > 0.
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Lemma 4.3.5. Consider two different order of the sizes Q1 > Q2 placed
at the same price level Pm. If NQ1 and NQ2 are their Negative Selections,
respectively, then we have two cases:

(i) If the larger order is filled then NQ1 ≥ NQ2.

(ii) If the larger order is unfilled then NQ1 < NQ2.

Proof. Because of the optimal placement definition both orders ”share” same
starting point from the lowest price level Pl where available quantity is pos-
itive. i.e. both orders have the same set IL defined in (4.4), with maximal
element l. For both order sizes Q1 and Q2, we define sets IH1 and IH2 using
definition (4.5), respectively. Let h1 = max(IH1), and h2 = max(IH2). It is
quite clear, because of difference in sizes and optimal placement definition,
that h2 ≥ h1.

The order vector for the order of size Q1 is denoted by Q1 and its optimal
placement is given by

OQ1 = [O1
0, ..., O

1
k]
T .

Similarly, we denote the order vector for the order of size Q2, by Q2 and its
optimal placement by

OQ2 = [O2
0, ..., O

2
k]
T .

Because of optimal placement definition O1
i = O2

i , i = h2 + 1, . . . , l

Q1 −Q2 =

h2−1∑
i=h1

O1
i +O1

h2
−O2

h2

(i) If both orders are filled that means that m ≤ h1 ≤ h2 ≤ l. We will
consider two cases:

(i.1.) If Al ≥ Q1 and m = l, then it holds m = h1 = h2 = l

NQ1 −NQ2 = (OQ1 −Q1)TG − (OQ2 −Q2)TG = 0.
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(i.2.) If Al < Q1 then m ≤ h1 < h2 = l or m ≤ h1 ≤ h2 < l

NQ1 −NQ2 =

h2−1∑
i=h1

O1
i gi + (O1

h2
−O2

h2
)gh2 − (Q1 −Q2)gm

>

h2−1∑
i=h1

O1
i gh1 + (O1

h2
−O2

h2
)gh1 − (Q1 −Q2)gm

= (Q1 −Q2)(gh1 − gm) ≥ 0

(ii) If order with size Q1 is unfilled, then there are two possibilities:
(ii.1.) Order with size Q2 is filled, then

NQ2 ≥ 0 > NQ1 .

(ii.2.) Order with size Q2 is unfilled ( m ≥ l )

NQ1 −NQ2 =

h2−1∑
i=h1

O1
i gi + (O1

h2
−O2

h2
)gh2 − (Q1 −Q2)gm

<

h2−1∑
i=h1

O1
i gl + (O1

h2
−O2

h2
)gl − (Q1 −Q2)gm

= (Q1 −Q2)(gl − gm) ≤ 0

4.4 Negative Selection of a Complex Order

With every order one is faced with the dilemma whether to trade aggressively
or passively. Aggressive trading guarantees that buy order will be filled in
rising market, but in falling market it will cause unnecessary costs. On the
other hand placing buy order passively will be beneficial in falling market,
but in rising market, a passive buy order will be (partially) unfilled. One
way to get the best of both trading behaviors while trying to adapt to future
market conditions and therefore achieve maximum profit is to split the order
into multiple price levels. Thus, we construct a complex order, which can
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be regarded as trading strategy for splitting an order for buying Q shares,
denoted by

S = [Q0, ..., Qk]
T , (4.25)

where Qi, i = 0, . . . , k represent a nonnegative quantity placed at a price
level Pi, whereby

∑k
i=0Qi = Q is satisfied. Each quantity Qi in (4.25) has

its corresponding order vector Qi defined in (4.2). Therefore, we are in
position to calculate its Negative Selection, which we denote by Ni. Thus,
the Negative Selection for the complex order (4.25) is defined in the following
way

N (S) = [N0, ...,Nk]T . (4.26)

Unlike the case when determining the optimal placement of a simple or-
der, there is an inevitable interaction between optimal placements for orders
in the strategy, so the following algorithm will be used for determination of
Negative Selection for orders in strategy. When determining starting level
for the algorithm, denoted by s, we distinguish two cases:

1) Ql ≤ Al Order at level l is filled, orders at levels l+1, . . . , k are completely
unfilled, then s = l.

2) Ql > Al Order at level l is partially filled with quantity is Al (Al is positive
number by definition), and orders at levels l + 1, . . . , k are completely
unfilled, then s = l − 1.

To cover both cases in algorithm let us define vector α = [α0, . . . , αk]
T

αi =

{
As+1, i = s+ 1

0, i 6= s+ 1

Remark 4.4.1. The purpose of a vector α is to ”make a reservation” of a
quantity for the order that is partially filled.

Algorithm 1 consist of two phases, in the first phase, is calculated Negative
Selection for all filed orders. It starts at level s and finishes at 0. In the second
phase, we determine Negative Selection for unfilled orders, going from s+1 to
k. The idea behind the algorithm is to take into account all our positions in
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strategy, that way it constructs the optimal placement Oi taking into account
the corresponding available quantity Ai.

Algorithm 1: StrategyNegSel(S,A, s, α)

comment: Filled orders

As := A− α
Os := OptimalPlacement(As, Qs)
Ns := Os −Qs

for i := s− 1 to 0

do


Ai := Ai+1 −Oi+1

Oi := OptimalPlacement(Ai, Qi)
Ni := Oi −Qi

comment: Unfilled orders

As+1 := A0 −O0 + α
Os+1 := OptimalPlacement(As+1, Qs+1)
Ns+1 := Os+1 −Qs+1

for i := s+ 2 to k

do


Ai := Ai−1 −Oi−1

Oi := OptimalPlacement(Ai, Qi)
Ni := Oi −Qi

return (N (S))

Remark 4.4.2. When Qi = 0, its optimal placement is by definition zero
vector.

The Algoritam is well defined, in sense that sum of all optimal placement
vectors Oi, i = 0, 1, . . . , k is an optimal placement vector for overall quantity
Q. First we will prove the statement for just two orders.

Lemma 4.4.1. Let A = [A0, A1, . . . , Al, 0, . . . , 0]T be available quantity. For
two orders with size Q1 and Q2, following equality is satisfied

OQ1 +OQ2 = OQ1+Q2 . (4.27)
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Where OQ1 and OQ2 are optimal placements obtained by Algorithm 1, and
OQ1+Q2 is optimal placement for quantity Q1 +Q2.

Proof. To be able to use Algorithm 1, two orders will be represented in the
form of strategy S, in which all orders have zero quantity except orders at
levels k1 and k2, where they have quantities Q1 and Q2, respectively. Be-
cause of time priority in order execution and the fact that available quantity
is determined for moment t = 0, a case where both orders are put at same
price level will be regarded as impossible. Now, without loss of generality, it
could be assumed that k1 < k2. We consider three cases.

1) Both orders are filled: It is evident that when both orders are filled
s = l, and α is zero vector. Then As = A, and because of Remark 4.4.2,
Ak2 = A. For the quantity Q2 we define set IH2 using (4.5). and denote its
maximal element by h2. Then by Theorem 4.2.2

OQ2 = [0, . . . , 0, Q2 −
l∑

j=h2+1

Aj, Ah2+1, . . . , Al, 0, . . . , 0]T

Ak2−1 = Ak2 −OQ2 .

Again Remark 4.4.2 gives Ak1 = Ak2−1 so

Ak1 = [A0, A1, . . . , (
l∑

j=h2

Aj)−Q2, 0, . . . , 0]T .

Now, we can define IH1 and optimal placement for Q1.

IH1 = {j|(
l∑

i=h2

Ai)−Q2 +

h2−1∑
i=j

Ai ≥ Q1, j = 0, . . . , h2}.

IH1 could be rewritten as

IH1 = {j|
l∑
i=j

Ai ≥ Q2 +Q1, j = 0, . . . , h2}

h1 = max(IH1)
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OQ1 = [0, . . . , 0,

Q1 +Q2 −
l∑

j=h1+1

Aj, Ah1+1, . . . ,

Ah2−1, (
l∑

j=h2

Aj)−Q2, 0, . . . , 0]T

Sum of optimal placements of these orders is

OQ2 +OQ1 =

= [0, . . . , 0, Q2 −
l∑

j=h2+1

Aj, Ah2+1, . . . , Al, 0, . . . , 0]T+

+ [0, . . . , 0, Q1 +Q2 −
l∑

j=h1+1

Aj,

Ah1+1, . . . , Ah2−1, (
l∑

j=h2

Aj)−Q2, 0, . . . , 0]T

= [0, . . . , 0, Q1 +Q2 −
l∑

j=h1+1

Aj, Ah1+1, . . . , Al, 0, . . . , 0]T .

Now, optimal placement for order with size Q1 + Q2 is defined by Theo-
rem 4.2.2

OQ1+Q2 = [0, . . . , 0, Q1 +Q2 −
l∑

j=h+1

Aj, Ah1+1, . . . , Al, 0, . . . , 0]T ,

where h is maximum element of set IH defined for Q2 + Q1 using (4.5). To
prove (4.27), it has to be proved that h = h1 holds. The fact IH1 ⊆ IH gives
h1 ≤ h.

As
l∑

j=h

Aj ≥ Q2 + Q1 > Q1 holds, then h ∈ IH1 , which leads to h1 ≥ h.

This means that h1 = h, and (4.27) is true for this case.
2) One order is filled, and the other one is (partially) unfilled:

Here we distinguish two cases, the first, when order is partially unfilled, and
the second case when it is completely unfilled.
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(2.1) Unfilled order is partially unfilled: s = l−1 then As = A−α,
and because of Remark (4.4.2)

Ak1 = [A0, A1, . . . , Al−1, 0, . . . , 0]

IH1 = {j|
l−1∑
i=j

Aj ≥ Q1, j = 0, . . . , l − 1}

h1 = max(IH1)

OQ1 = [0, . . . , 0, Q1 −
l−1∑

j=h1+1

Aj, Ah1+1, . . . , Al−1, 0, . . . , 0]T

Ak1−1 = Ak1 −OQ1

As order with quantity Q2 is partially filled it is clear that k2 = l = s + 1
then available quantity is

As+1 = A0 − 0 + α

= [A0, A1, . . . , Ah1−1,
l−1∑
j=h1

Aj −Q1, 0 . . . , 0, Al, 0, . . . , 0]

Also, because of being partially filled, it means Q2 > Al, so none of indices

j = h1 + 1, . . . , l are in the set for which is satisfied
l∑
i=j

Ai ≥ Q2, so

IH2 = {j|Al +
l−1∑
i=h1

Ai −Q1 +

h1−1∑
i=j

Ai ≥ Q2, j = 0, . . . , h1}

= {j|
l∑
i=j

Ai ≥ Q2 +Q1, j = 0, . . . , h1}.

If h2 is maximum element of IH2 , then optimal placement is

OQ1 = [0, . . . , 0, Q1 +Q2 −
l∑

h2+1

Aj, . . . , Ah1−1,

l−1∑
j=h1

Aj −Q1, 0, . . . , 0, Al, 0 . . . , 0]T
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Now,

OQ1 +OQ2 = [0, . . . , 0, Q1 +Q2 −
l∑

h2+1

Aj, Ah2+1 . . . , Al, 0 . . . , 0]T

Similarly to previous case it could be proved that

h2 = max{j|
l∑
i=j

Ai ≥ Q2 +Q1, j = 0, . . . , l}

which means OQ1 +OQ2 = OQ1+Q2 .
(2.2) Unfilled order is completely unfilled: Then is s = l and avail-

able quantity is
Ak1 = [A0, A1, . . . , Al, 0, . . . , 0]

Now optimal placement for quantity Q1 and available quantity for order with
quantity Q2 could be defined

IH1 = {j|
l∑
i=j

Ai ≥ Q1, j = 0, . . . , l}

h1 = max(IH1)

OQ1 = [0, . . . , 0, Q1 −
l∑

j=h1+1

Aj, Ah1+1, . . . , Al, 0, . . . , 0]T

Ak1−1 = [A0, . . . , Ah1−1,
l∑

j=h1

Aj −Q1, 0, . . . , 0]T

And then optimal placement for Q2 could be defined

IH2 = {j|
l∑
i=j

Ai ≥ Q2 +Q1, j = 0, . . . , h1}

h2 = max(IH2)

OQ2 = [0, . . . , 0, Q1 +Q2 −
l∑

j=h2+1

Aj, . . . , Ah1−1,

l∑
j=h1

Aj −Q1, 0 . . . , 0]T
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Like in previous case because

h2 = max{j|
l∑
i=j

Ai ≥ Q2 +Q1, j = 0, . . . , h1}

and (4.27) holds.
3) Both orders are unfilled: In both cases s = l and s = l − 1,

As = A− α

because all orders at levels j ≤ s are with quantity zero A0 = As then

As+1 = (A− α) + α = A

Then, simply by following proof for case where one order is filled, and other
is completely unfilled, one gets (4.27).

Corollary 4.4.1. Let OQ be optimal placement for quantity Q, and available
quantity A. If Oi is optimal placements for orders Qi, i = 0, . . . , k in (4.25)
obtained by Algorithm 1, then

k∑
i=0

Oi = OQ. (4.28)

Proof. The proof consist of successive application of result (4.27), starting
from index s following the path like in Algorithm 1.



Chapter 5

Stochastic Optimization

Many optimization problems that arise in fields such as finance, engineering,
medicine, machine learning involve uncertainty as part of objective func-
tion, constraints or both. It can manifest itself trough noisy measurement,
i.e. it consists of an ideal part (exact value) and error. In some cases, the
decision depends on one or more parameters whose values are unknown at
the moment of the decision but will be known in the future. For example,
in Markowitz model investor wants to invest his capital in some number of
stocks, he has to make a decision about weights of each stock in his portfolio
to maximize overall return and minimize risk, while his decision depends on
random returns.

The uncertainty and its formalization bring difficulty, both in modeling
and optimization of the problem under consideration, and as a result, there
is a vast number of approaches to formulating and solving optimization prob-
lems involving uncertainty. The stochastic optimization problem is usually
formulated as

min
x∈Θ

f(x) := E(g(x, ω)) (5.1)

where Θ is nonempty subset of IRp and g(x, ω) is a function of decision
variable x, and random vector ω with support Ω ⊂ IRd and probability
distribution P . The mathematical expectation E is defined with respect to
ω in the probability space (Ω,F , P ).

An example of such method is the problem (5.2), where we have to decide
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what would be the optimal execution with respect to the Negative Selection.

min
Q0,...,Qk

E(||N (S)||1)

subject to
k∑
j=0

Qj = Q

Qj ≥ 0, j = 0, . . . , k.

(5.2)

Where S and N (S) are defined by (4.25) and (4.26) respectively. Given the
fact that for single order NS represents the distance from optimal placement,
the idea is to consider norm-1 of NS vector N (S) and to make it as small as
possible for a given quantity of shares Q.

Clearly, it is stochastic value, as we face the uncertainty of the quality
of order execution under prevalent market conditions, i.e. the uncertainty
of the achieved execution price for both, market and limit orders, as well as
the uncertainty of execution of a limit order. It is indubitably difficult to
analytically formulate the relation between market conditions and resulting
Negative Selection values. Instead, we deal with large amounts of data as
the input for the simulator to run, and obtained simulations enable us to
analyze our model and perform the optimization. In problem (5.2) we con-
sider constrained optimization, as we impose the constraint that the sum of
decision variables must be equal to a given quantity, and their value must
also be nonnegative.

It is clear that the function f(x), defined in (5.1), does not include uncer-
tainty, as it is a mathematical expectation over random variable ω. However,
application of methods for deterministic problems can be difficult, as the
analytical form of the function f is seldom available, and consequently, eval-
uation of gradient is often intractable.

Here, we consider two approaches for solving stochastic optimization
problems of the form (5.1): Stochastic Approximation (SA) and Sample Av-
erage Approximation (SAA). SA is a very developed field with an abundance
of literature covering theory and applications. It allows noisy inputs, but the
efficiency of classical methods depends on the choice of the gain sequence.
On the other hand, SAA is very general, does not require convexity of the
objective function. It often needs a large sample of data, which can be com-
putationally expensive.



5.1 Stochastic Approximation 87

5.1 Stochastic Approximation

Stochastic Approximation (SA) was introduced 1951 by Robbins and Monro
[45] for solving root-finding problems with noisy measurements. Afterward,
gradient-free version of the algorithm (5.4) was formulated by Kiefer and Wol-
fowitz [23]. Robbins-Monro (RM) and Kiefer-Wolfowitz (KW) algorithms
address the one-dimensional unconstrained case and are often regarded as
classical methods, as they are the foundation for the development of SA. In
case of solving ∇f = 0, RM algorithm is defined as

xk+1 = xk − ak∇̂f(xk). (5.3)

The nonnegative scalar ak is the step size, which is also called gain, stochastic
gradient ∇̂f(xk) is an estimate of the gradient ∇f(xk). Clearly, the formu-
lation of the algorithm is inspired by steepest descent in deterministic opti-
mization and is also called stochastic gradient descent. The KW algorithm
uses finite difference as an estimate for stochastic gradient

xk+1 = xk − ak
g(xk + ck, ωk)− g(xk + ck, ωk)

2ck
. (5.4)

Under certain conditions (see [15]), RM converges in mean square to its
solution, while KW converges in probability. A practical performance of
both classical methods depends on the choice of sequences {ak} and {ck}.
Sacks [47] proved that under appropriate assumptions, RM algorithm con-

verges asymptotically at a rate of O(k−
1
2 ). In his book [6], Banks suggests

ak = a
k
, ck = c

k1/6
, for all k and some positive scalars a and c. Then, under

certain conditions, KW algorithm (5.4) converges asymptotically at a rate

of O(k−
1
3 ). When one-sided finite difference is an estimate for stochastic

gradient, algorithm can reach asymptotic rate of convergence of O(k−
1
4 ).

Now we consider root finding problem h(x) = 0 for a function h : IRp →
IRp, whereby in each iteration k only noisy measurements hk(x) of h(x) are
available, i.e.

hk(x) = h(x) + εk(x). (5.5)

Then the SA algorithm is defined by

xk+1 = ΠΘ(xk − akhk(xk)), (5.6)

where ΠΘ(x) denotes projection of x into the feasible region Θ and it is
required only in the framework for constrained optimization. The following
theorem states its convergence property.
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Theorem 5.1.1. [52] Consider the unconstrained algorithm 5.6. Suppose
that x∗ is a unique solution of h(x) = 0 and that the following conditions
hold

1. {ak} is a sequence of positive constants such that
∑∞

k=1 ak = ∞ and∑∞
k=1 a

2
k <∞.

2. For some symmetric, positive definite matrix B and every 0 < η < 1

inf
η<||x−x∗||<1/η

(x− x∗)TB∇f(x) > 0.

3. E(εk(x)) = 0 for all x and k

4. ||h(x)||2 + E(||εk(x)||2) ≤ c(1 + ||x||2) for all x and k and some c > 0.

Then limk→∞xk → x∗ w.p.1.

The first condition, i.e. restriction on gain sequence ak, regulates the
speed of step size convergence to zero. Obviously, condition

∑∞
k=1 a

2
k < ∞

ensures ak → 0, while
∑∞

k=1 ak slows down its convergence, preventing the
algorithm to converge to early with poor estimate of x∗. In practice, ak has
the following form

ak =
a

(k + A)α
, (5.7)

where a > 0, A ≥ 0 and α ∈ (0.5, 1].
In second condition, common choice for matrix B is an identity matrix.

The third condition implies that hk(x) is unbiased estimator of h(x) Because,
the following holds

E(||hk(x)||2) = ||h(x)||2 + E(||εk(x)||2),

then we see that the fourth condition puts a bound on growth of E(||hk(x)||2).
Many realistic optimization problems come in the form of ”Black Box”,

in which case analytic form of the function is unavailable, and also the gra-
dient cannot be obtained. We consider objective function f(x), and its noisy
measurement

f̂(x) = f(x) + ξ(x).

In this case, like in KW algorithm, derivatives are approximated using
evaluations of the objective function. The FDSA algorithm is defined by
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(5.6), where hk(xk) represents the finite difference approximation of gradient.
Here, there are two possibilities for finite difference approximation. The first
is two-sided (central) FD approximation where jth component of hk(xk) is

f̂(xk + ckej)− f̂(xk − ckej)
2ck

(5.8)

where ej denotes the jth coordinate vector in Rp. The second possibility
is one-sided finite difference approximation, where jth component of hk(xk)
is defined as

f̂(xk + ckej)− f̂(xk)

ck
. (5.9)

In first case there is 2p evaluation of the objective function, while in
second p+ 1, but as we can see in case of classical methods in first case there
is a better convergence rate. Like in previous case practical performance
depends on the choice of sequences {ak} and {ck}, so in the following result
on convergence of FDSA, there are restrictions placed on gain sequences.

Theorem 5.1.2. [52] Consider the unconstrained algorithm (5.6) with stochas-
tic gradient defined by (5.8). Suppose that the following conditions hold

1. Let {ak} and {ck} be positive tuning sequences satisfying the conditions

ck → 0,
∞∑
k=1

ak =∞,
∞∑
k=1

akck <∞,
∞∑
k=1

a2
kc
−2
k <∞.

2. There is a unique minimum x∗ such that for every η > 0,

inf
‖|x−x∗||>η

||h(x)|| > 0 and inf
‖|x−x∗||>η

||f(x)− f(x∗)|| > 0

3. For all i and k, E(ξk(xk + ckei) − ξk(xk − ckei)|Ik) = 0 w.p.1 and
E((ξk(xk ± ckei))

2|Ik) ≤ C w.p.1 for some C > that independent of
k and i, where Ik = {x0, . . . , xk} contains information on previous
iterations.

4. The Hessian matrix ∇2f(x) exists for all x and it is uniformly bounded
in norm for all x ∈ IRp

Then limk→∞xk → x∗ w.p.1.
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For the proper practical performance of algorithm the two sequences {ak}
and {ck} need some tuning, this is usually done on a small scale version of
the full problem. Spall suggests [52]

ak =
a

(k + 1 + A)α
, ck =

c

(k + 1)γ
, (5.10)

with α = 0.602 and γ = 0.101. One way of tuning the sequences is trough
trail and error. However, sometimes one can apply ”semiautomatic” method
for choosing the a, A, c, α and γ, that is in full details described in [52].
Proper choice of gain sequences is essential because if ak is too small rela-
tive to a gradient, iterations slowly progress towards to optimum. On the
other hand, large ak relative to a gradient may cause iterations to extremely
oscillate without approaching to optimum. One approach to reduce the sen-
sitivity is introduction of an adaptive step-size rule. For example Kestens’s
rule allows step size to decrease only if there is a directional change in itera-
tions.

Many researchers have worked on the enhancement of classical methods.
We already mentioned Kesten’s rule, and there is also Averaging Iterates
variation of SA. The idea behind Averaging Iterates lies in choosing the
biggest step size ak so that iterates oscillate around optimum. Then instead
of taking the last iteration xN as output, optimum is estimated by taking
average of all N iteration,i.e. 1

N

∑N
k=1 xk. Another variation is called ”sliding

window”, which takes the average over last m iterates.

Other variations of SA are Varying Bonds, Simultaneous perturbation
stochastic approximation (SPSA), for the comprehensive overview of varia-
tion of classical algorithms and new advances, see [6, 15].

5.2 Sample Average Approximation

Sample Average Approximation for solving the problem (5.1) can be outlined
in the following way. First, we choose a random sample ω1, ω2, . . . , ωN that is
independently and identically distributed (i.i.d.) with the same distribution
as ω, then consider the following estimation of the problem (5.1).

min
x∈Θ

fN(x) :=
1

N

N∑
i=1

g(x, ωi). (5.11)



5.2 Sample Average Approximation 91

Clearly, for a fixed sample fN(·) is a deterministic, and we are in a position
to apply deterministic optimization methods to solve the problem (5.11). At
the end we take the optimizer of (5.11), denoted by x∗N to be estimator of
the solution of (5.1).

Now, we approach to SAA more formally. We will assume that the ob-
jective function f(x) of problem (5.1) is well defined and finite valued for all
x ∈ Θ ω1, ω2, . . . , ωN that is independently and identically distributed (i.i.d.)
with the same distribution as ω.

As fN depends on random sample ω1, ω2, . . . , ωN , it is a random func-
tion.As the sample is i.i.d., by the Strong Law of Large Numbers (SLLN) for
every x ∈ Θ

lim
N→∞

fN(x) = f(x) w.p.1.

As this is pointwise convergence, we continue with definition of uniform
convergence w.p.1., we say that fN converges to f w.p.1 uniformly on S if

lim
N→∞

sup
x∈Θ
|fN(x)− f(x)|.

Before stating the condition for uniform uniform convergence w.p.1., we
need the following: We say that g(x, ω) is dominated by integrable function,
if there exists a nonnegative measurable function H(ω), such that E(H(ω)) <
∞ and P (g(x, ω) ≤ H(ω)) = 1.

Theorem 5.2.1. [51] Let S be nonempty compact subset of IRp, and suppose
that

i) for any x ∈ S the function g(·, ω) is continuous at x for almost every ω

ii) the sample ω1, . . . , ωN is i.i.d., and

iii) g(x, ω), x ∈ S is dominated by integrable function.

Then f(x) = E(g(x, ω)) is finite valued and continuous on S, and fN con-
verges to f w.p.1 uniformly on S.

Let X∗ and X∗N be sets of optimal solution for original optimization prob-
lem (5.1), and sample average approximation (SAA) (5.11), respectively i.e.

f ∗ = f(x∗) = min
x∈Θ

f(x),∀ x∗ ∈ X∗

f ∗N = fN(x∗N) = min
x∈Θ

fN(x),∀ x∗N ∈ X∗N
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Theorem 5.2.2. [51] Suppose that fN(x) converges to f(x) w.p.1, as N →
∞, uniformly on Θ. Then f ∗N converges to f ∗ w.p.1 as N →∞.

Before stating the theorem on convergence results, we need a definition
of the deviation between two sets A,B ⊂ IRn we denote by

Dev(A,B) = sup
x∈A

d(x,B),

the deviation of set A from set B, whereby d(x,B) denotes the Euclidean
distance of point x, form set B,i.e. d(x,B) = infx′∈B ||x− x′||.

Theorem 5.2.3. [51] Suppose that there exists a compact set S ⊂ IRp such
that ∅ 6= X∗ ⊂ S and the following holds:

i) the function f is finite valued and continuous on S,

ii) fN(x) converges to f(x) w.p.1, as N →∞ uniformly in x ∈ S,

iii) for N large enough the set X∗N 6= ∅ and X∗N ⊂ S.

Then f ∗N → f ∗ and Dev(X∗N , X
∗)→ 0 w.p.1 as N →∞.

Dev(X∗N , X
∗) → 0 w.p.1, guarantees that the distance of the optimal

solution x∗N of SAA problem (5.11) from set of solutions of original problem
converges to zero w.p.1, i.e. d(x∗N , X

∗) → 0, w.p.1. In special case, when
X∗ = {x∗}, the sequence x∗N converges to solution w.p.1 as N →∞.

If the function g(x, ω) is convex for any ω ∈ Ω then f(x) in original
problem (5.1) is convex, and also fN , are convex functions. This property
with theory of epiconvergence, leads to relaxation of Theorem 5.2.3 in [51].

We now consider case when set of constraints is finite, and for some ε ≥ 0
we define sets of ε-optimal solutions

Xε = {x ∈ Ω|f(x) ≤ f ∗ + ε}

Xε
N = {x ∈ Ω|fN(x) ≤ f ∗N + ε}

of original (5.1) and SAA (5.11) problem, respectively. Clearly, for ε = 0,
Xε and Xε

N coincide with X∗ and X∗N , respectively.
It can be shown that for all ε ≥ 0, P (Xε

N ⊂ Xε) → 1, as N → ∞ [28],
which basically means that for large enough N , ε-optimal solution of SAA is
ε-optimal solution of the original problem.



5.2 Sample Average Approximation 93

To state the next theorem, we need the following definitions. For some
random variable with mean µ = E(Y ), its moment-generating function is
M(t) = E(etY ), and conjugate function I(z) = supt∈IR{tz−Λ(t)} of logarith-
mic moment-generating function Λ(t) = logM(t) , is called (large deviation
(LD)) rate function of Y .

Let us also, consider the mapping u : Ω \Xε → Ω such that

f(u(x)) ≤ f − ε∗,∀x ∈ Ω \Xε,

for some ε∗ ≥ ε, and LD rate function of g(u(x), ω) − g(x, ω) denoted by
Ix(·).

Assumption A1. For every x ∈ Ω \ Xε, the moment generating function
of the random variable Y (x, ω) = F (u(x), ω) − F (x, ω) is finite valued in a
neighborhood of t=0.

Theorem 5.2.4. [51] Let ε and δ be nonegative numbers such that δ ≤.
Then

1− P (Xδ
N ⊂ Xε) ≤ |X|e−Nγ(δ,ε),

where
γ(δ, ε) = min

x∈Ω\Xε
Ix(−δ).

Moreover, if δ < ε∗ and Assumption A1, holds, then γ(δ, ε) > 0.

The lower bound for Ix(−δ) is

Ix(−δ) ≥
(ε∗ − δ)2

2σ2
x

,

where σ2
x = V ar(Y (x, ω)).

Theorem 5.2.5. [51] Suppose that there is a constant σ > 0 such that for
any x ∈ Ω \ Xε the momentum-generating function Mx(t) of the random
variable Y (x, ω)− E(Y (x, ω)) satisfies

Mx(t) ≤ eσ
2t2/2.

Then for ε > 0, 0 ≤ δ < ε, and α ∈ (0, 1) and for the sample size

N ≥ 2σ2

ε− δ2
ln(
|Ω|
α

)

it follows that
P (Xδ

N ⊂ Xε) ≥ 1− α.
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Lower bound of N gives us information of the problem complexity, as
we can see that it linearly depends on variance and that even exponential
increase in size |Ω|, produces the linear increase of N . However, it is regarded
as ”conservative for practical estimates” [28], as it can lead to computational
inefficiency.

In essence, the sample size, represents a tradeoff between precision and
cost, as large sample size provides better approximation but causes higher
computation costs and vice versa. In general, a large sample size is needed to
obtain estimates of reasonable accuracy. This fact causes considerable com-
putational effort in solving (5.1) as the computation of the objective function,
as well as its derivatives, becomes very costly. The general approach is to
consider a sequence of approximations (5.11) with an increasing sample size,
i.e., with a different sample size in each iteration and lower the cost of the
overall optimization procedure. The dominant way of sample size scheduling
is an increasing sample size sequence that results in smaller computational
costs than working with a large sample from the beginning. There are main
approaches in the sample size scheduling - a predetermined sample size sched-
ule, for example, [56] or an adaptive sample size schedule, [30, 55, 57]. An
overview of different sample size scheduling is presented in [29].

Next, we preset results from original work from Krejić and Lončar [31],
a nonmonotone line search method for solving unconstrained optimization
problems using SAA is presented, the convergence is obtained in the sense
of zero upper density.

5.3 Nonmonotone Line Search Method

The problem that we consider is an unconstrained problem of the form

min
x∈IRp

f(x), (5.12)

where the objective function f is given as

f(x) = E(g(x, ω)). (5.13)

The mathematical expectation E is defined with respect to ω in the proba-
bility space (Ω,F , P ). It is assumed that the function g : IRp × Ω → IR is
known analytically. However, the analytical form of the function f is seldom
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available and needs to be estimated in some way, and for this purpose, we
use the Sample Average Approximation defined as

G(x,w) =
1

n

n∑
j=1

g(x, ωj), (5.14)

where ω = {w1, . . . , wn} is random sample of size n.
A tradeoff between precision and cost is represented by the sample size n

because large samples cause higher computation costs but also provide more
precision, while smaller samples reduce costs at the expense of approximation
quality. There are many different ways of choosing the sequence {n(i)} of
sample sizes at each iteration, but the prevailing way of sample size schedul-
ing is an increasing sample size sequence, and in this way taking advantage
of having smaller computational costs at the beginning, when the iterations
are not close to the solution. Two main approaches can be distinguished in
the sample size scheduling - a predetermined sample size schedule [56] or an
adaptive sample size schedule [30, 55, 57].

The monotone line search method for (5.12)-(5.13) with a predetermined
sample size sequence is defined and considered for problems of type (5.12)
in [56]. The method is based on a decrease determined by the Armijo rule
in each iteration, for the approximate objective function defined with the
current sample in the iteration, with search direction determined as an ap-
proximate negative gradient. The method converges with zero upper density.

Here we consider the nonmonotone line search rule due to Li, Fukushima
[34] which is applied in many papers, for deterministic and stochastic prob-
lems, for example, see [1, 30].

The main contribution of the following result is a generalization of the
results presented in [56] in the following sense. We define a nonmonotone
line search strategy that allows us to take an arbitrary search direction,
which needs to approach the negative gradient only in the limit and prove
the convergence of the proposed algorithm in terms of zero upper density,
as in [56]. We also present a set of initial testing results that confirm the
theoretical results and provide empirical evidence for the proposed algorithm.

Preliminaries

First, we give outline of the results of Wardy [56] that will allow us to propose
a nonmonotone line search method and prove its convergence. We start with
the definition of upper density convergence.
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Definition 5.3.1. [56] Let K be a set of integers. The upper density of K,
denoted by ud(K) is the quantity

ud(K) = lim sup
i→∞

|K ∩ [1, i]|
i

, (5.15)

where |S| denotes cardinality of set S, and for integers i and j, j ≥ i

[i, j] := {i, i+ 1, . . . , j}.

The convergence in upper density in formulated in terms of optimality
functions. The function θ : IRp → IR+ is an optimality function if θ(x) = 0
if and only if x satisfies the optimality conditions.

Definition 5.3.2. [56] An algorithm which generates sequences x1, x2, . . . in
Rp is said to converge with zero upper density (ud) on compact sets if with
probability 1, if {xi} is a bounded sequence, then there exists a set of integers
J, such that ud(J) = 0 and θ(xi) →

i 6∈J
0.

We will prove that the nonmonotone line search method we propose here
converges in upper density as in [56]. To do that, we need to assume the
following.

Assumption A2. [56]

If xi → x, xi ∈ IRp, i = 1, 2, 3, .. then θ(x) = 0 if and only if θ(xi)→ 0.
(5.16)

The optimality function we consider is the norm of the gradient of the
objective function i.e.

θ(x) = ||∇f(x)||

and thus the assumption above is satisfied.
An algorithm which generates sequence {xi}i∈IN , converges with zero up-

per density on a compact set if the sequence is bounded and there exists w.p.1
a set J with ud(J) = 0, such that the any accumulation point of subsequence
{xi}i∈IN\J satisfies the optimality conditions.

Let us now recall the notation needed for formulation of conditions for
convergence with zero upper density on compact sets, [56]. For every compact
set Γ ⊂ IRp, r ≥ 0, s ≥ 0 and integer i, the following events are defined:
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◦ Ei(Γ, r) is the event that xi ∈ Γ and θ(xi) ≥ r.

◦ Gi(Γ, s) is the event that xi ∈ Γ and f(xi+1)− f(xi) ≥ −s.

◦ Hi(Γ, s) is the event that xi ∈ Γ and f(xi+1)− f(xi) ≥ s.

Here, Fi is the σ-algebra generated by all the information leading to the
construction of xi.

The following two conditions together constitute a sufficient condition for
the convergence in zero upper density if f is continuous function and the iter-
ations are generated by a line search with a random sample of predetermined
size at each iteration. Let Ci be an arbitrary event from Fi.

Condition 1. [56] For every compact set Γ ⊂ IRp and r > 0, there exists
s > 0 such that, for every ε > 0, there exists an integer I such that for every
i ≥ I and event Ci ∈ Fi

P (Gi(Γ, s)|Ei(Γ, r), Ci) < ε (5.17)

Condition 2. [56] For every compact set Γ ⊂ IRp, s > 0 and ε > 0, there
exists an integer I such that for every i ≥ I and event Ci ∈ Fi

P (Hi(Γ, s)|Ci) < ε (5.18)

We consider the prototype algorithm proposed in [56]. For integer se-
quence n(i) determined a priori, the algorithm has the following structure:

Algorithm Prototype. Data, x0 ∈ IRp.

Step 0. Set i = 0.

Step 1. Randomly draw n(i) sample points ωi := {ωi,1, ωi,2, . . . , ωi,n(i)} ∈ Ω.

Step 2. Use ωi to compute an approximation to f(xi), compute a descent
direction hi, and the next point xi+1.

Step 3. Set i = i+ 1 and go to Step 1.

Theorem 5.3.1. [56] If the Conditions 1 - 2 are satisfied and if f is con-
tinuous, then the Algorithm Prototype converges with zero upper density on
compact sets.
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The following two assumptions characterise the problem we consider more
closely.

Assumption A3. The objective function f has the form (5.13), and g(·, ω) ∈
C2 (IRp).

Assumption A4. For every compact set Γ ⊂ IRp, there exists K > 0 such
that, for every x ∈ Γ and ω ∈ Ω,

|g(x, ω)|+ ||∂g
∂x

(x, ω)T ||+ ||∂
2g

∂x2
(x, ω)|| ≤ K, (5.19)

where || · || denotes vector norm, or induced matrix norm, depending on
context.

The consequence of A4 is that f is continuously differentiable and ∇f is
Lipschitz continuous on compact sets, so

∇f(x) = E

(
∂g

∂x
(x, ω)T

)
. (5.20)

This fact justifies the choice of ||∇f(x)|| as the optimality function i.e. θ(x) =
||∇f(x)||. Clearly, the condition (5.16) holds.

The Nonmonotone Line Search Method

The modification that we introduce in the algorithm presented in [56] is that
we use a general search direction satisfying (5.23), and nonmonotone Armijo
rule, instead of monotone Armijo-type line search with a negative gradient as
the search direction. The nonmonotonicity is defined by a sequence {εi}i∈IN
such that

εi > 0,
∞∑
i=0

εi <∞. (5.21)

Algorithm 2. Input: x0 ∈ IRp, {n(i)}i∈IN , {εi}i∈IN , α ∈ (0, 1), β ∈ (0, 1)

Step 0. Set i = 0.

Step 1. Randomly draw n(i) sample points ωi := {ωi,1, ωi,2, . . . , ωi,n(i)} ∈ Ω.

Step 2. Choose a search direction hi.
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Step 3. Set k(i) to be the smallest integer k satisfying

G(xi − βkhi, ωi)−G(xi, ω
i) ≤ −αβk||hi||2 + εi. (5.22)

Set xi+1 = xi − βk(i)hi, i = i+ 1 and go to Step 1.

In Step 3 our goal is to find the step size that satisfies the nonmonotone
Armijo condition, i.e. find the appropriate k(i) that satisfies (5.22). Notice
that Algorithm 2 is well defined for an arbitrary search direction as εi > 0
so for any hi there exists k(i) large enough such that (5.22) holds and Step
3 finishes with a finite k(i).

Theorem 5.3.2. Assume that A3-A4 hold. If the search directions hi in
Step 2 of Algorithm are chosen such that

lim
i→∞

||∇G(xi, ω
i)− hi||

εi
= 0, (5.23)

where G(xi, ω
i) :=

1

n(i)

n(i)∑
j=1

g(xi, ωi,j) and ∇G(xi, ω
i) :=

∂G

∂x
(xi, ω

i)T , then

Algorithm 2 converges with zero upper density on compact sets to a stationary
point of (5.12).

Proof. To prove the statement we need to show that Conditions 1 and 2 hold.
Then the statement follows by Theorem 5.3.1. Let Γ ⊂ IRp be a compact
set. First, we show that the sequence ||hi|| is bounded from above. Due to
(5.23), there exists a constant K0 such that ||hi −∇G(xi, ω

i)|| ≤ K0. Also,
(5.19) guaranties that there exists K1 > 0 such that ||∇G(xi, ω

i)|| ≤ K1. So,
for M = 2 max{K0, K1}, we have

||hi|| ≤ ||hi −∇G(xi, ω
i)||+ ||∇G(xi, ω

i)|| ≤M. (5.24)

Therefore, ||hi|| is bounded from above. Let us prove now that

lim
i→∞

|hTi hi −∇G(xi, ω
i)Thi|

εi
= 0. (5.25)

Given that

0 < |hTi hi −∇G(xi, ω
i)Thi| ≤ ||hi −∇G(xi, ω

i)|| · ||hi|| (5.26)
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and that ‖hi‖ is bounded, the limit (5.23) implies that (5.25) holds.
Let us now prove that for an arbitrary compact set Γ ⊂ IR there exists

an integer k such that for every xi ∈ Γ we have . Let xi ∈ Γ and λ ≥ 0. By
the Mean value theorem we have

G(xi − λhi, ωi)−G(xi, ω
i) = −λ∂G

∂x
(xi, ω

i)hi

+ λ2

∫ 1

0

(1− s)〈∂
2G

∂x2
(xi − sλhi, ωi)hi, hi〉ds

(5.27)

By (5.25), there exists an integer i0 such that for every i ≥ i0

− λ∂G
∂x

(xi, ω
i)hi ≤ −λ||hi||2 + εi. (5.28)

By CauchySchwarz’s inequality, continuity of ∂2G
∂x2

(·, ωi) and boundness of
||hi|| we obtain

|λ2

∫ 1

0

(1− s)〈∂
2G

∂x2
(xi − sλhi, ωi)hi, hi〉ds| ≤ λ2K||hi||2 (5.29)

Now, (5.27)-(5.29) implies

G(xi − λhi, ωi)−G(xi, ω
i) ≤ −λ(1− λK)||hi||2 + εi (5.30)

Substituting λ = βk in the above inequality, we get that (5.22) is satisfied if

βk ≤ (1 − α)/K holds, i.e for all k ≥ log((1−α)/K)
log(β)

. Therefore, there exists k

such that k(i) ≤ k.
Let us consider Condition 1. Let Γ ⊂ IRp be a compact set. Take r > 0

and s = 1
2
αβkr2 and ε > 0. We can choose δ ∈ (0, r) such that

αβk(r − δ)2 ≥ s.

As
∑∞

i=0 εi < ∞, there exists an integer i1 such that for every i ≥ i1 we
have εi ≤ δ.

Let A(i) be the event: xi ∈ Γ, and

||∇f(xi)−∇G(xi, ω
i)|| < δ

2
, |f(xi)−G(xi, ω

i)| < δ

2
, |f(xi+1)−G(xi+1, ω

i)| < δ

2
.
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By the Weak Law of Large Numbers there exists an integer i2 such that
for every i ≥ i2

P (A(i)|Ci, xi ∈ Γ) ≥ 1− ε.

With I = max{i0, i1, i2}, for all i ≥ I, if A(i) is satisfied and ||∇f(xi)|| ≥
r then

||∇f(xi)− hi)|| = ||∇f(xi)−G(xi, ω
i) +G(xi, ω

i)− hi||

≤ ||∇f(xi)−G(xi, ω
i)||+ ||G(xi, ω

i)− hi|| ≤
δ

2
+
δ

2
= δ,

and

||hi|| = ||∇f(xi)− (∇f(xi)− hi)| ≥
∣∣||∇f(xi)|| − ||(∇f(xi)− hi)||

∣∣
≥ ||∇f(xi)|| − ||(∇f(xi)− hi)|| ≥ r − δ.

Then the following holds

f(xi+1)− f(xi) = f(xi+1)−G(xi+1, ω
i)

−
(
f(xi)−G(xi, ω

i)
)

+G(xi+1, ω
i)−G(xi, ω

i)

≤ δ − αβk||hi||2 + εi ≤ 2δ − αβk(r − δ)2 ≤ −s.

The above inequalities imply that under Ei(Γ, r) and Ci, A(i) implies
Gi(Γ, s). Therefore, Gi(Γ, s) implies A(i) consequently conditional probabil-
ity of Gi(Γ, s) is less or equal than conditional probability of A(i). As

P (A(i)|Ci, xi ∈ Γ) ≤ ε

we conclude that
P (Gi(Γ, s)|Ei(Γ, r), Ci) < ε

i.e., Condition 1 is fulfilled.
To prove Condition 2 we consider again a compact set Γ ⊂ IR, s > 0 and

ε > 0. As
∑∞

i=0 εi <∞, we can take an integer i0 such that for every i ≥ i0
there holds

εi ≤
s

3
.

As f is Lipschitz continuous on Γ and (5.24) holds, for xi+1 = xi − βk(i)hi
there exist constants L > 0, and M > 0 such that

|f(xi+1)− f(xi)| ≤ LMβk(i).
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Thus, there exists an integer k, such that if k(i) ≥ k, then

f(xi+1)− f(xi) ≤ s. (5.31)

Now, we consider the case k(i) ≤ k. Let B(i) be the event

xi ∈ Γ, k(i) ≤ k, |f(xi)−G(xi, ω
i)| < s

3
, |f(xi+1)−G(xi+1, ω

i)| < s

3
.

If the event B(i) is realized, then

f(xi+1)− f(xi) = f(xi+1)−G(xi+1, ω
i)

−
(
f(xi)−G(xi, ω

i)
)

+G(xi+1, ω
i)−G(xi, ω

i)

≤ 2s

3
− αβk(i)||hi||2 + εi ≤ s.

Again, by the Weak law of large number, there exists an integer i1, such that
for all i ≥ i1

P (B(i), k(i) ≤ k|Ci, xi ∈ Γ) ≥ 1− ε.

Taking I = max{i0, i1}, we have that for all i ≥ I and Ci ∈ Fi

P (B(i), k(i) ≤ k|Ci, xi ∈ Γ) ≤ ε. (5.32)

Now, (5.32), (5.31) and (5.18) imply that Condition 2 is fulfilled. As Condi-
tions 1 - 2 are satisfied, the statement follows by Theorem 2.1 in [56].

Numerical Results

The numerical result that we present here confirm theoretical results and
demonstrate efficiency of the proposed approach. We consider the following
four test examples, defined as

g(x, ω) = φ(ωx), ω : N (1, σ2),

where φ : IRp → IR. The testing is done for two variance levels σ2 = 0.1 and
σ2 = 1, using test functions φ taken from [2] and [40]:

AP Aluffi-Pentini’s Problem, p = 2

g(x, ω) = 0.25(ωx1)4 − 0.5(ωx1)2 + 0.1(ωx1) + 0.5(ωx2)2.
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EXP Exponential Problem p = 10

g(x, ω) = exp(−0.5
10∑
i=1

(ωxi)
2).

SAL Salomon Problem p = 10

g(x, ω) = 1− cos(2π||ωx||) + 0.1||ωx||, where ||ωx|| =

√√√√ 10∑
i=1

(ωxi)2.

SPH Sphere function or first function of De Jongs p = 10

g(x, ω) =
10∑
i=1

(ωxi)
2.

Theoretical results are obtained for the case n → ∞. However, practical
implementation is possible only with finite sample size. Let nmax denote
the maximal sample size allowed and we fixed nmax = 100 for the first two
problems, nmax = 1300 for the third problem and nmax = 200 for the last
problem. The choice of nmax is highly non-trivial but we will not discuss it
here as our aim is only to illustrate the potential advantages of nonmonotone
line search rule.

The algorithm is implemented and tested against classical Armijo mono-
tone line search rule (εi = 0 in Algorithm 2) for two search directions, the
first one being the negative gradient while the second direction is the finite
difference approximation of the negative gradient∇ξG(xi, ω

i), defined in [52].
The jth component is defined as

G(xi + ξej, ω
i)−G(xi − ξej, ωi)

2ξ
,

where ej denotes the jth coordinate vector in Rp and ξ = 10−4. The sequence
{εi} is defined as εi = 2−i, i = 1, 2, . . . . Therefore, we have implemented four
different methods.

◦ NM1 Nonmonotone line search with the negative gradient search direc-
tion, hi = ∇G(xi, ω

i)
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◦ NM2 Nonmonotone line search with the finite difference approximation
of the negative gradient. hi = ∇ξG(xi, ω

i)

◦ M1 Monotone (Armijo) line search with the the negative gradient search
direction, hi = ∇G(xi, ω

i)

◦ M2 Monotone (Armijo) line search with the finite difference approxi-
mation of the negative gradient. hi = ∇ξG(xi, ω

i)

The sample size in each iteration is defined as

n(i+ 1) = min{d1.1n(i)e, nmax},

with the initial value n(0) = 3 and a new sample of the size n(i) is generated
in ith iteration. The algorithmic parameters are the same for all problems,
the starting point is x0 = 10 · [1, 1, . . . , 1]T , α = 10−4 and backtracking is
performed with β = 0.5. Maximal allowed number of of backtracking steps
is 5. The stopping criteria is satisfied in xi if the norm of the gradient or its
approximation is smaller than 10−2 and n(i) = nmax. The number of function
evaluations is used as the algorithm performance measure. Thus, for NM1
and M1, each gradient calculation is counted as p function evaluation, while
for NM2 and M2 we used the two-sided approximation of gradient, so each
gradient calculation is counted as 2p function evaluation. The method is
stopped if the maximal allowed number of function evaluation is exhausted,
with the maximal number set to 107.

In the testing process, we generated 5 independent samples for each vari-
ance levels and all problems are tested using the same collection of samples.

The results are presented at Figure 5.1, using the performance profile
graph [12], where the cost function tp,m is defined as the number of function
evaluations for solving problem p with method m, and performance profile
for set of test problems Sp and set of methods Sm is

ρ(τ) =
1

np
|{p ∈ Sp|rp,m ≤ τ}|,

where np is number of test problems and

rp,m =
tp,m

min{tp,m|m ∈ Sm}
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is performance ratio. The graph demonstrate that the nonmonotone line
search outperforms the classical Armijo line search at the considered test
collection for both search directions. As expected, negative gradient per-
forms better than the finite difference approximation of the negative gradient
but nevertheless works reasonable well, which is an important property for
problems where the function is calculated using a black box and the exact
gradient of g is not available.
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Figure 5.1: Performance profile for methods M1, NM1, M2, NM2 and two
variance levels 0.1 and 1.



Chapter 6

Empirical results

In this chapter, we demonstrate properties of Negative Selection and test
the execution model using real trade data four stocks from London Stock
Exchange and Euronext, specifically Vodafone Group (VOD.L), AstraZeneca
(AZN.L), Barclays PLC (BARC.L), and Sanofi SA (SASY.PA), which will
be denoted by VOD, AZN, BARC and SASY.

Negative Selection satisfies important properties of any performance mea-
sure. It can distinguish between filled and partially filled orders clearly. It
makes a distinction between orders filled at the different price level as well
as orders of various sizes at the same price level. Furthermore, it possesses a
continuity, in the sense that small shifts in the order size or price should yield
negligible changes in the performance measure. Moreover, probably the most
important feature is that it is capable of reflecting the toughness of market
condition at a particular time window and thus providing means for objec-
tive judgment of the quality of execution. Thus, the additional potential of
NS lies in its possibility of application in the process of testing a trading
strategy on relevant historical data i.e. backtesting. To demonstrate this
feature, we consider a simple example, in which we compare the behavior of
NS, VWAP and IS benchmarks in both falling and rising markets. We place
an order at bid1 until filled or the time of 10 minutes expires. If the order
is not completely filled within 10 minutes, the residual is filled by crossing
the spread at the end of given time window. We tested a sequence of orders
with increasing sizes, from 0 to 35% of average traded quantity in the se-
lected time window. The 10 minutes windows are chosen randomly, and the
relevant trajectories for AZN are shown at Figure 6.1 and Figure 6.2. The
price trajectories are shown at the left-hand side while the right-hand side
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shows the slippages with respect to all three benchmarks at both Figures.
The horizontal axis shows the traded amount in thousands. The average
traded quantity for AZN is 50000 shares in 10 minutes, so the simulations
are performed for orders of size 1 to 17500 shares with the step size of 500
shares.
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Figure 6.1: VWAP, Arrival Price and Negative Selection for falling market

Figure 6.1 shows the case of falling market. The slippage to VWAP is
positive and decreasing with the increase of order quantity. Being positive
gives the right information of our execution, but the reduction of slippage
provides false information. The decreasing slippage implies that the execu-
tion strategy is good, although it is quite clear that in the failing market one
should have placed orders at lower price levels. This decrease in the slippage
is a consequence of the already mentioned VWAP flaw - the slippage is de-
clining due to the impact of large traded quantity. With IS, the situation is
different: the slippage is negative and constant. Its value is the difference
of Arrival Price and the bid1 price at the beginning of the time window.
Here, the negative sign of slippage gives false information on the execution
performance as a consequence of insensitivity of Arrival Price to the market
conditions in the trading time window.

The rising market is shown in Figure 6.2. In this case, an order placed
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Figure 6.2: VWAP, Arrival Price and Negative Selection for rising market

at bid1 can be thought of as being passive. If the order is not filled, it will
result in crossing the spread at the end of the time window and paying a
higher price. The slippage to VWAP is positive because the order is filled at
a price higher than the benchmark. However, again, we see the decrease in
the slippage with the increase of the order size, giving the false impression
that the execution strategy is improving with the order size. The slippage to
Arrival Price is high and positive. It is constant while there is enough liquid-
ity at t = T , but when the order size increases enough - above the quantity
available at ask1, the order starts to ”walk the book, ” and the slippage to
Arrival Price starts to rise. Whereas, NS is negative and increasing with the
order size. Thus the information we get is correct - the execution strategy
should have been more aggressive.

6.1 Data and Simulations

For the propose of demonstrating NS properties, and also testing the ex-
ecution model, we developed a simulator in MATLAB and MySQL, while
optimization is done using MATLAB function fmincon. The simulator is
built in such way that mimics real-time trading functionality with additional
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support for statistical analysis of all inputs and outputs of trading simula-
tions with the possibility to keep track of open position i.e. all positions are
closed with the opposite operation (buy/sell). Its functionality is based on
level-2 tick data provided by Reuters, which gives a view at order book and
its dynamics during trading hours. The data consist of 5 levels of depth,
with information about:

◦ date and time of event taking place

◦ bid and ask prices for all five levels

◦ volume at each bid and ask level

◦ number of orders at bid and ask levels

◦ trade data: indicator, price, size and time of a trade.

We consider real trade tick data for VOD, AZN, BARC and SASY from
the beginning of January to the end of August 2006. For every day during this
period, the simulator used trading data from 8:15 to 16:25. With statistical
properties of the whole sample of data, shown in Table 6.1 we can classify
VOD as a super-liquid, and AZN, BARC, and SASY as liquid stocks.

Stock
Average
Spread
[bps]

Average
Daily

Volume

Standard
deviation
of Price

Average
Daily

Trades

VOD 21.65 189,321,705.10 6.01 3373.19

AZN 6.42 3,951,778.23 226.39 3278.09

BARC 10.36 14,843,907.84 30.14 3086.18

SASY 8.60 1,923,534.09 2.51 2482.29

Table 6.1: Properties of stock data. Svojstva podataka o finansijskim instru-
mentima

To be able to simulate trading, we consider a sequence of orders generated
by Black Box (BB) trading strategy with inventory. It is a momentum strat-
egy generating signals using a mathematical model with constant parameters
selected as follows:
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◦ execution time window width T = 10 minutes,

◦ cancel threshold of 45bps,

◦ approximate average volume traded in 10-minutes window.

The tested order sizes vary from 1% and 5% of average traded volume in
the time windowwhich is approximately 40, 000 to 200, 000 shares for Voda-
fone, 500 to 2, 500 shares for AstraZeneca, 3, 000 to 15, 000 for Barclays PLC,
420 to 2, 100 shares for Sanofi SA, respectively.

The cancel threshold coupled with time window width create a criterion
for canceling the order. An active order is canceled if either time expires, i.e.
during that time there was not enough liquidity to be completely filled or the
cancellation threshold is reached, i.e. price moves in an adverse direction.
Therefore, the order is either (completely) filled or (partially) unfilled. In the
former case, we define the fill time (Tfill) as the time elapsed from submission
until filling the order, in the latter, the cancel time (Tcancel) as the time
elapsed from submission until canceling the order. Clearly, both Tcancel and
Tfill are bounded above by execution time window width.

In addition to the Black Box trading strategy, we also consider the so-
called Default strategy which is formulated as the alternation of buy and sell
signal every 10 minute. When producing signals, it does not take into account
the actual market conditions. However, like BB, it obeys rules regarding
the possible cancellation of an order. As the quality of signals, regarding
profitability, is quite random, the purpose of Default strategy is to give us
the baseline for market conditions during the observed period. The Default
Strategy, in fact, reflects the toughness of the market as it landscapes the
data.

The properties of Default and Black Box are presented in Table 6.2. The
dollar sign represents monetary units, i.e., British Pound for Vodafone, As-
traZeneca and Barclays PLC, and Euro for Sanofi SA and bid/ask1 denotes
that buy order was placed at bid1, and sell order at the ask1 price level.
Analogously, we introduce notation bid/ask2 and bid/ask3. Clearly, the BB
strategy has short-term alpha and can generate profit. The Default strategy
is evidently losing money.
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6.2 Review of Negative Selection Properties

Tables 6.3 - 6.6 contain the simulation results for all four stocks and all
BB strategies using the whole data set. We tested two order sizes 1% and
5% of average traded quantity in 10 minutes intervals, across all five bid/ask
positions. Here, bid/ask1 denotes placing an order at the price level bid1 for
a buy signal, and at ask1 for a sell signal. Price levels bid/ask2, bid/ask3,
... bid/ask5 are analogously defined. The mean values across the whole
data set, for each stock are, are given in Tables 6.3 - 6.6. It is evident that
theoretical properties stated in Lemma 4.3.4 and Lemma 4.3.5 are empirically
confirmed. For fixed order size, comparison of NS across different price levels
shows that the more passive the placement of the order is, the more negative
is the value of NS. When comparing NS by size, for two orders placed at
the same price level, we see that when the larger order is filled, then the
NS of smaller order is lower than NS of the larger order, which captures
market impact caused by larger order. Furthermore, when the larger order
is unfilled, then its value of NS is always more negative than the value of
NS for the smaller order. When there is not enough liquidity for the larger
order to be completely filled, but for the smaller is enough to be executed,
NS of the smaller order is positive and negative for the larger order, this is
illustrated in Table 6.5 for BB3 trading strategy. Tables 6.3 - 6.6 depict
additional feature of NS: the mean values of NS vary considerably between
all considered stocks, which also captures the behavior of the particular stock
in prevailing market conditions. For example, VOD is the most liquid stock
with the widest spread (21.65bps) in this data sample - trading takes place
at bid1 and ask1 for an extended period followed by a shift in price to the
next price level or a few price levels above / below and repeats the bid/ask
bouncing. Unlike VOD, AZN is the least liquid stock with the smallest
spread (6.42bps). AZN price tends to trade in a narrow price channel e.g.
going from bid1 to bid3 and then bounce back and repeated the process, with
a different price trajectory. This behavior justifies the fact that VOD has the
best performance, regarding profits and NS, at bid/ask1 and for AZN we see
the same at level bid/ask2. BARC exhibits similar behavior as VOD, while
SASY is more like AZN.

More detailed results, which also include mean values of Tfill and Tcancel
for the first three bid/ask levels are given in Table 6.7 and Table 6.8 for 5%
and 1% of average traded quantity in 10 minutes intervals, respectively.

Figures 6.3 - 6.6 illustrate in more detail Lemma 4.3.4 for all four
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stocks and all BB trading strategies. NS is calculated without an actual
trading mechanism, but for each signal is considered order with fixed size.
Figures depict orders of 5% of the average traded quantity placed at bid/ask1,
bid/ask2,..., bid/ask5 for some random sample of triggers. Apparently, the
measure shows the sensitivity to changes in price levels. Furthermore, passive
behavior is always accompanied with more negative values of NS if the price
went in an adverse direction for considered window. On the other hand,
aggressive trading, when the price went in our direction, is ”punished” with
high positive values of NS.

Figures 6.7 - 6.10 portray relationship between order sizes fixed price
levels, described in Lemma 4.3.5. Again, we used all four stocks and all BB
trading strategies. We tested two order sizes 1% and 5% of average traded
quantity in 10 minutes intervals at bid/ask1 position for some random sample
of triggers. In cases when the larger order is filled, then NS of larger order
dominates over NS value of smaller, in this way incorporating the impact
caused by our trading. We interpret this information as being ”punished”
for aggressive trading a large order when passive behavior would get a more
favorable price, i.e. overall costs are greater for suboptimal large order than
of a suboptimal smaller order. When the larger order is unfilled, NS value
of smaller dominates NS value of larger. In this situation, there are two
scenarios for the smaller order. The first scenario, when there is enough
liquidity for smaller order to be filled, which is characterized by nonnegative
NS value of smaller and negative of the larger order. The second, when the
smaller order is also (partially) unfilled, in this situation both orders have
negative NS, but for the larger order, it is more negative. Clearly, for both
order sizes the strategy was too passive, but for the larger order, there is an
additional cost for passiveness, as filling the larger order, when the price is
going away from us, requires more aggressive behavior.

Figures 6.11 - 6.14 represent the relative distribution of Negative Se-
lection for all four stocks and all BB trading strategies. The scatter plot of
Cancel and fill time and NS for the same sequence of orders is depicted on
Figures 6.15 - 6.18. Cancel time corresponds to points with negative NS,
while fill time is on the nonnegative side of the axis, which is a consequence
of Lemma 4.3.1- Lemma 4.3.3, because filled orders have nonnegative NS,
while unfilled orders have negative NS. The grouping of cancel time data at
the 10th minute is caused by the limitation of execution time window width
to T = 10 minutes.
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Ticker: VOD

Q BB1 BB2

Mean
Negative
Selection
for order
with 100%
at

bid/ask1
1% 5.73 -28.56
5% 17.00 -152.12

bid/ask2
1% -79.98 -113.86
5% -409.92 -579.29

bid/ask3
1% -164.15 -197.90
5% -831.74 -998.74

bid/ask4
1% -248.26 -282.01
5% -1251.97 -1420.06

bid/ask5
1% -332.61 -366.11
5% -1673.73 -1840.51

Table 6.3: VOD: Comparison of Negative Selection by order size. VOD:
Pored̄enje negativne selekcije po veličini naloga.

Ticker: AZN

Q BB1 BB2 BB3

Mean
Negative
Selection
for order
with 100%
at

bid/ask1
1% 0.23 0.26 0.36
5% 0.96 1.12 1.53

bid/ask2
1% 0.02 0.05 0.13
5% -0.10 0.06 0.40

bid/ask3
1% -0.21 -0.19 -0.13
5% -1.25 -1.15 -0.88

bid/ask4
1% -0.48 -0.46 -0.43
5% -2.57 -2.49 -2.36

bid/ask5
1% -0.81 -0.80 -0.78
5% -4.23 -4.16 -4.13

Table 6.4: AZN: Comparison of Negative Selection by order size. AZN:
Pored̄enje negativne selekcije po veličini naloga.
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Ticker: BARC

Q BB1 BB2 BB3

Mean
Negative
Selection
for order
with 100%
at

bid/ask1
1% 0.52 0.38 1.30
5% 1.02 -0.16 4.62

bid/ask2
1% -1.90 -2.15 -1.15
5% -11.12 -12.75 -7.74

bid/ask3
1% -4.49 -4.73 -3.77
5% -24.11 -25.67 -20.72

bid/ask4
1% -7.20 -7.37 -6.51
5% -37.61 -38.84 -34.51

bid/ask5
1% -10.02 -10.16 -9.31
5% -51.76 -52.79 -48.54

Table 6.5: BARC: Comparison of Negative Selection by order size. BARC:
Pored̄enje negativne selekcije po veličini naloga.

Ticker: SASY

Q BB1 BB2 BB3

Mean
Negative
Selection
for order
with 100%
at

bid/ask1
1% 0.25 0.30 0.55
5% 1.07 1.34 2.47

bid/ask2
1% -0.04 0.02 0.26
5% -0.38 -0.10 1.03

bid/ask3
1% -0.34 -0.28 -0.05
5% -1.85 -1.55 -0.51

bid/ask4
1% -0.64 -0.58 -0.36
5% -3.35 -3.05 -2.01

bid/ask5
1% -0.94 -0.89 -0.69
5% -4.87 -4.61 -3.66

Table 6.6: SASY: Comparison of Negative Selection by order size. SASY:
Pored̄enje negativne selekcije po veličini naloga.
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Figure 6.3: VOD: Comparison of Negative Selection by price level. VOD:
Pored̄enje negativne selekcije po nivoima cena.
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Figure 6.5: BARC: Comparison of Negative Selection by price level. BARC:
Pored̄enje negativne selekcije po nivoima cena.
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Figure 6.6: SASY: Comparison of Negative Selection by price level. SASY:
Pored̄enje negativne selekcije po nivoima cena.
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bid/ask1. AZN: Pored̄enje negativne selekcije po nivoima cena.



6.2 Review of Negative Selection Properties 123

0 5 10 15 20 25
−40

−20

0

20

40

Trigger

N
eg

at
iv

e 
S

el
ec

tio
n

BARC Black Box 1

 

 

0 5 10 15 20 25
−40

−20

0

20

40

60

Trigger

N
eg

at
iv

e 
S

el
ec

tio
n

BARC Black Box 2

0 5 10 15 20 25
−40

−20

0

20

40

Trigger

N
eg

at
iv

e 
S

el
ec

tio
n

BARC Black Box 3

bid1 for 5% bid1 for 1%

Figure 6.9: BARC: Comparison of Negative Selection by size of an order for
bid/ask1. BARC: Pored̄enje negativne selekcije po nivoima cena.
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Figure 6.10: SASY: Comparison of Negative Selection by size of an order for
bid/ask1. SASY: Pored̄enje negativne selekcije po nivoima cena.
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Figure 6.11: VOD: Relative frequency histogram of Negative Selection. VOD:
Histogram relativne frekvencije Negativen Selekcije.
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Figure 6.12: AZN: Relative frequency histogram of Negative Selection. AZN:
Histogram relativne frekvencije Negativen Selekcije.
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Figure 6.14: SASY: Relative frequency histogram of Negative Selection.
SASY: Histogram relativne frekvencije Negativen Selekcije.
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Figure 6.15: VOD: The scatter plot of Cancel and Fill time and NS. VOD:
Dijagram rasipanja za Cancel i Fill vremena i NS.
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Figure 6.16: AZN: The scatter plot of Cancel and Fill time and NS. AZN:
Dijagram rasipanja za Cancel i Fill vremena i NS.
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Figure 6.17: BARC: The scatter plot of Cancel and Fill time and NS. BARC:
Dijagram rasipanja za Cancel i Fill vremena i NS.
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Figure 6.18: SASY: The scatter plot of Cancel and Fill time and NS. SASY:
Dijagram rasipanja za Cancel i Fill vremena i NS.
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6.3 Review of Optimization Results

In previous section, we started with a simple order for which we defined Neg-
ative Selection 4.24, as the distance between the vector of Optimal Placement
and actual order. When placing an order, one faces the dilemma of either
being aggressive and cross the spread to buy at the prevailing asking price
or take the chance of a better price by placing a more passive limit order.
For example, in a rising market, a passive buy order at Bid1 will remain
unfilled which would lead to chasing the market to get filled, resulting in a
larger slippage than crossing the spread. While in a sideways market, one
is likely to save the spread cost by being passive. In the case of a falling
market, a buyer is considered too aggressive if the entire order is placed at
Bid1 since one would achieve a better average price by having placed it at
an even more passive price level. However, in the latter case, the probability
of fill decreases significantly with more passive orders. Therefore, there is a
need to split the orders into multiple price levels.

To calculate NS of a complex order, we use Algorithm 1. As NS of complex
order is a vector of NS values of corresponding placements at different price
levels, we still have all the information of execution performance for each
level, taking into account our own trading. From practical reason, as we
need sensitivity to small entries, we use norm-1 of NS vector.

By solving optimization problem defined in (5.2), we aim to have execu-
tion as close as possible to optimal. For this purpose, the data was divided in
in-sample consisting of 80% and out-sample containing 20% of overall data.
The optimization was done using in-sample data, then the profitability of
the obtained result was compared to the profitability of 15 strategies across
the out-sample data. We tested two order sizes 1% and 5% of average traded
quantity in 10 minutes, for all four stock and all BB trading strategies.

For VOD.L in the in-sample optimization, the optimal is (0, 100, 0, 0, 0, 0)
i.e. placing 100% of shares at bid/ask1 gives us the minimal expected norm
of NS for all BB trading strategies and both order sizes. Here, 1% and 5%
of average traded quantity in 10 minutes intervals is approximate 40 000 and
2000 000. From Table 6.9 and Table 6.10 we can see that profitability of this
placement is the highest in the out-sample data, again for all BB strategies,
and both order sizes. For BB1 and 1%-size by far the best overall all possible
options for splitting an order, while for 5% size profit for 100% at bid/ask2
is positive but considerably smaller than profit for 100% at bid/ask1.

BARC.L behaves similarly to VOD.L regarding optimization results, i.e.,
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(0, 100, 0, 0, 0, 0) is optimal for both order sizes, 1% and 5% of average traded
quantity in 10 minutes intervals (3000 and 15000 shares, respectively) and
all BB strategies. The difference is that BARC.L allows more passive place-
ments, i.e., bid/ask3, which will not lose money, but the profit is still poor in
comparison with placing everything on bid/ask1 as we can see in Table 6.11
and Table 6.12.

For AZN.L optimization results in in-sample are not in line with profits in
out-sample for BB1 and BB2. Specifically, in the case of BB1 and order size
of 1% of average traded quantity in 10 minutes, i.e. 500 shares, the optimal
solution is (0, 50, 50, 0, 0, 0), but the highest profit is achieved by placing
100% of shares at bid/ask3 level (Table 6.13). For BB2 and same order size,
again the optimal solution is (0, 50, 50, 0, 0, 0), i.e. placing 50% at bid/ask1
and 50% at bid/ask2, but the highest profit is achieved by placing 70% at
bid/ask1 and 30% at bid/ask2. For trading strategy BB3 and order size like
in previous cases, the optimal solution (0, 50, 50, 0, 0, 0) is the most profitable.
When we consider order size 5% of average traded quantity in 10 minutes,
i.e. 2500 shares, Table 6.14 shows profits in out sample and results are as
follows. For BB1 optimal solution is (0, 70, 30, 0, 0, 0), its profit in out-sample
is slightly smaller than the highest profit obtained with 65% at bid/ask1 and
35% at bid/ask2. BB2 has the optimal solution (0, 40, 60, 0, 0, 0), and its
profit is quite smaller than the highest profit achieved with 85% at bid/ask1
and 15% at bid/ask2. Results for BB3 are completely in line with profits in
out-sample, i.e. (0, 40, 60, 0, 0, 0) is the optimal solution, and its profit is the
highest.

In the case of SASY.PA, optimal solution is the same for all BB trading
strategies and both order sizes and it is (0, 0, 100, 0, 0, 0) i.e placing entire
quantity at bid/ask2. Table 6.15 and Table 6.16) show that only case of
discrepancy between optimal solution and out-sample profits is for BB3 and
order size of 420 shares. Here the profit is the highest for even more pas-
sive placement, i.e. 100% at bid/ask3. However, if we compare this with
Table 6.8, we see that for entire data sample the smallest absolute value of
mean (NS) for BB3 is exactly at 100% at bid/ask3.
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(x0, x1, x2, x3, x4, x5) BB1:profit BB2 profit

(100, 0, 0, 0, 0, 0) -2,532,291.72 -1,719,285.29
(0, 100, 0, 0, 0, 0) 110,176.20 549,994.97
(0, 0, 100, 0, 0, 0) -157,021.05 80,740.03
(0, 0, 0, 100, 0, 0) -176,557.21 -124,057.25
(0, 0, 0, 0, 100, 0) -107,293.59 -120,871.65
(0, 0, 0, 0, 0, 100) -82,934.01 -13,714.82
(0, 10, 90, 0, 0, 0) -107,968.99 155,246.77
(0, 90, 10, 0, 0, 0) 92,666.91 534,298.50
(0, 85, 15, 0, 0, 0) 86,071.64 524,548.71
(0, 50, 50, 0, 0, 0) 80,716.03 433,271.12
(0, 60, 40, 0, 0, 0) 75,457.23 463,477.06
(0, 70, 30, 0, 0, 0) 74,956.39 490,830.55
(0, 40, 60, 0, 0, 0) 33,931.69 366,652.51
(0, 65, 35, 0, 0, 0) 74,545.03 477,474.86
(0, 55, 45, 0, 0, 0) 77,556.47 448,769.17

Table 6.9: Total profit in out-sample for 40000 VOD.L shares. Ukupni profit
van uzorka za 40000 VOD.L akcija.

(x0, x1, x2, x3, x4, x5) BB1:profit BB2 profit

(100, 0, 0, 0, 0, 0) -24,207,417.84 -31,239,497.88
(0, 100, 0, 0, 0, 0) 8,461,780.77 6,804,664.53
(0, 0, 100, 0, 0, 0) 839,537.25 944,565.52
(0, 0, 0, 100, 0, 0) -53,014.54 -391,963.48
(0, 0, 0, 0, 100, 0) -836,255.99 -549,903.04
(0, 0, 0, 0, 0, 100) -414,670.03 -64,118.85
(0, 10, 90, 0, 0, 0) 1,531,332.33 1,643,492.52
(0, 90, 10, 0, 0, 0) 7,715,836.43 6,272,520.23
(0, 85, 15, 0, 0, 0) 7,343,022.41 6,014,265.35
(0, 50, 50, 0, 0, 0) 4,572,432.56 4,637,729.58
(0, 60, 40, 0, 0, 0) 5,375,880.30 5,048,748.78
(0, 70, 30, 0, 0, 0) 6,216,059.59 5,429,418.41
(0, 40, 60, 0, 0, 0) 3,746,833.55 3,910,130.43
(0, 65, 35, 0, 0, 0) 5,789,839.83 5,248,665.01
(0, 55, 45, 0, 0, 0) 4,964,342.73 4,847,878.97

Table 6.10: Total profit in out-sample for 200,000 VOD.L shares. Ukupni
profit van uzorka za 200,000 VOD.L akcija.
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(x0, x1, x2, x3, x4, x5) BB1:profit BB2: profit BB3: profit

(100, 0, 0, 0, 0, 0) -114,819.59 -303,638.69 -90,760.22
(0, 100, 0, 0, 0, 0) 385,899.72 431,572.27 528,809.10
(0, 0, 100, 0, 0, 0) 54,988.04 108,387.49 196,735.86
(0, 0, 0, 100, 0, 0) 59,867.76 78,092.47 109,482.47
(0, 0, 0, 0, 100, 0) -638.52 -47,318.91 -9,738.50
(0, 0, 0, 0, 0, 100) -13,692.20 -19,469.16 -21,912.12
(0, 10, 90, 0, 0, 0) 76,044.58 128,456.93 225,262.34
(0, 90, 10, 0, 0, 0) 342,696.21 384,484.96 490,200.79
(0, 85, 15, 0, 0, 0) 320,890.38 361,570.64 470,986.57
(0, 50, 50, 0, 0, 0) 170,116.10 218,759.01 338,250.85
(0, 60, 40, 0, 0, 0) 211,442.69 258,120.61 374,986.83
(0, 70, 30, 0, 0, 0) 254,050.68 297,147.81 412,727.38
(0, 40, 60, 0, 0, 0) 145,898.65 196,397.50 309,560.95
(0, 65, 35, 0, 0, 0) 232,531.96 277,466.12 393,780.84
(0, 55, 45, 0, 0, 0) 190,865.13 238,473.56 356,478.41

Table 6.11: Total profit in out-sample for 3,000 BARC.L shares.Ukupni profit
van uzorka za 3,000 BARC.L akcija.

(x0, x1, x2, x3, x4, x5) BB1:profit BB2: profit BB3: profit

(100, 0, 0, 0, 0, 0) -585,901.98 -1,531,673.10 -464,587.83
(0, 100, 0, 0, 0, 0) 1,365,225.87 1,761,834.88 2,065,003.56
(0, 0, 100, 0, 0, 0) 181,611.83 528,368.95 1,010,274.91
(0, 0, 0, 100, 0, 0) 206,898.32 215,181.44 375,582.43
(0, 0, 0, 0, 100, 0) 59,517.46 -219,920.52 -11,666.05
(0, 0, 0, 0, 0, 100) -85,974.32 -102,570.37 -116,073.02
(0, 10, 90, 0, 0, 0) 310,201.91 639,589.38 1,144,384.90
(0, 90, 10, 0, 0, 0) 1,288,511.05 1,623,324.73 1,981,759.72
(0, 85, 15, 0, 0, 0) 1,241,985.95 1,549,282.20 193,4452.86
(0, 50, 50, 0, 0, 0) 753,657.52 1,005,771.73 1,575,178.44
(0, 60, 40, 0, 0, 0) 928,898.50 1,151,755.66 1,669,452.95
(0, 70, 30, 0, 0, 0) 1,067,419.84 1,304,759.76 1,7782,65.29
(0, 40, 60, 0, 0, 0) 641,011.38 922,782.65 1,486,112.64
(0, 65, 35, 0, 0, 0) 1,004,912.18 1,225,053.47 1,724,479.88
(0, 55, 45, 0, 0, 0) 847,179.12 1,079,047.51 1,615,261.02

Table 6.12: Total profit in out-sample for 15,000 BARC.L shares. Ukupni
profit van uzorka za 15,000 BARC.L akcija.
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(x0, x1, x2, x3, x4, x5) BB1:profit BB2: profit BB3: profit

(100, 0, 0, 0, 0, 0) -186,588.42 -190,744.77 -254,832.96
(0, 100, 0, 0, 0, 0) 143,300.42 50,188.67 74,734.56
(0, 0, 100, 0, 0, 0) 78,540.67 16,176.66 105,230.09
(0, 0, 0, 100, 0, 0) 161,861.71 31,375.71 55,918.88
(0, 0, 0, 0, 100, 0) 53,219.82 42,234.19 70,870.58
(0, 0, 0, 0, 0, 100) 16,989.73 9,972.14 12,251.22
(0, 10, 90, 0, 0, 0) 86,005.87 23,620.34 106,842.27
(0, 90, 10, 0, 0, 0) 139,981.42 53,439.99 80,970.70
(0, 85, 15, 0, 0, 0) 138,144.09 54,280.05 84,338.25
(0, 50, 50, 0, 0, 0) 116,844.56 51,022.03 108,943.55
(0, 60, 40, 0, 0, 0) 124,189.48 52,834.35 102,501.34
(0, 70, 30, 0, 0, 0) 130,727.48 54,647.77 95,526.30
(0, 40, 60, 0, 0, 0) 108,552.00 44,326.50 108,506.67
(0, 65, 35, 0, 0, 0) 127,541.71 53,754.63 99,024.19
(0, 55, 45, 0, 0, 0) 120,682.10 51,976.49 105,826.13

Table 6.13: Total profit in out-sample for 500 AZN.L shares. Ukupni profit
van uzorka za 500 AZN.L akcija.

(x0, x1, x2, x3, x4, x5) BB1:profit BB2: profit BB3: profit

(100, 0, 0, 0, 0, 0) -938,053.97 -957,295.45 -1,278,139.51
(0, 100, 0, 0, 0, 0) 551,574.09 242,032.24 338,915.65
(0, 0, 100, 0, 0, 0) 405,813.97 -32,760.28 411,341.20
(0, 0, 0, 100, 0, 0) 581,127.97 92,333.10 183,953.36
(0, 0, 0, 0, 100, 0) 226,235.27 210,074.82 133,570.87
(0, 0, 0, 0, 0, 100) 69,742.73 47,664.30 -4,346.71
(0, 10, 90, 0, 0, 0) 442,110.05 22,330.39 427,698.67
(0, 90, 10, 0, 0, 0) 575,201.53 259,314.60 332,646.30
(0, 85, 15, 0, 0, 0) 586,164.18 264,871.33 332,082.51
(0, 50, 50, 0, 0, 0) 575,822.56 215,474.38 457,459.46
(0, 60, 40, 0, 0, 0) 595,333.02 240,399.06 411,005.13
(0, 70, 30, 0, 0, 0) 596,216.00 257,920.59 351,925.08
(0, 40, 60, 0, 0, 0) 536,353.72 180,979.45 469,826.25
(0, 65, 35, 0, 0, 0) 601,537.23 249,651.44 386,942.52
(0, 55, 45, 0, 0, 0) 586,567.26 229,232.22 434,127.64

Table 6.14: Total profit in out-sample for 2,500 AZN.L shares.Ukupni profit
van uzorka za 2,500 AZN.L akcija.
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(x0, x1, x2, x3, x4, x5) BB1:profit BB2: profit BB3: profit

(100, 0, 0, 0, 0, 0) -2,334.72 -4,428.36 -2,733.08
(0, 100, 0, 0, 0, 0) 3,485.83 2,020.42 3,101.85
(0, 0, 100, 0, 0, 0) 5,352.82 4,691.98 4,998.70
(0, 0, 0, 100, 0, 0) 2,991.87 4,273.81 5,298.23
(0, 0, 0, 0, 100, 0) 1,929.52 1,718.23 1,325.56
(0, 0, 0, 0, 0, 100) 123.68 639.97 434.98
(0, 10, 90, 0, 0, 0) 5,198.75 4,525.59 4,885.63
(0, 90, 10, 0, 0, 0) 3,716.13 2,398.28 3,452.47
(0, 85, 15, 0, 0, 0) 3,837.68 2,578.73 3,594.56
(0, 50, 50, 0, 0, 0) 4,533.21 3,794.42 4,468.57
(0, 60, 40, 0, 0, 0) 4,407.42 3,453.53 4,247.78
(0, 70, 30, 0, 0, 0) 4,193.22 3,108.55 3,986.58
(0, 40, 60, 0, 0, 0) 4,701.29 3,978.95 4,579.83
(0, 65, 35, 0, 0, 0) 4,308.24 3,281.30 4,119.39
(0, 55, 45, 0, 0, 0) 4,471.08 3,624.11 4,357.39

Table 6.15: Total profit in out-sample for 420 SASY.PA shares. Ukupni
profit van uzorka za 420 SASY.PA akcija.

(x0, x1, x2, x3, x4, x5) BB1:profit BB2: profit BB3: profit

(100, 0, 0, 0, 0, 0) -13,357.61 -25,078.28 -16,246.47
(0, 100, 0, 0, 0, 0) 15,441.77 10,485.07 12,666.99
(0, 0, 100, 0, 0, 0) 22,172.02 18,145.93 22,179.49
(0, 0, 0, 100, 0, 0) 14,229.30 17,577.81 19,904.48
(0, 0, 0, 0, 100, 0) 8,573.98 6,800.46 4,759.27
(0, 0, 0, 0, 0, 100) 489.48 3,187.62 1,983.91
(0, 10, 90, 0, 0, 0) 22,106.79 17,993.59 21,984.56
(0, 90, 10, 0, 0, 0) 16,683.25 11,885.91 14,792.90
(0, 85, 15, 0, 0, 0) 17,288.98 12,575.65 15,666.88
(0, 50, 50, 0, 0, 0) 20,511.35 17,012.81 20,837.66
(0, 60, 40, 0, 0, 0) 19,749.19 15,655.42 19,387.99
(0, 70, 30, 0, 0, 0) 18,935.04 14,355.52 17,979.82
(0, 40, 60, 0, 0, 0) 20,916.60 17,367.42 21,152.75
(0, 65, 35, 0, 0, 0) 19,340.23 14,965.01 18,666.90
(0, 55, 45, 0, 0, 0) 20,139.34 16,375.76 20,105.81

Table 6.16: Total profit in out-sample for 2,100 SASY.PA shares. Ukupni
profit van uzorka za 2,100 SASY.PA akcija.
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and it is characterized by a significant investors’ control over the execution
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algorithm performance. It is based on the concept of Optimal Placement,
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executed but at an unfavorable price.

Negative Selection is based on the idea to offer a new, alternative per-
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Izvod:
Algoritamsko trgovanje je automatizovani proces izvršavanja naloga na elek-
tronskim berzama. Može se primeniti na širok spektar finansijskih instrume-
nata kojima se trguje na berzi i karakterǐse ga značajna kontrola investitora
nad izvršavanjem njegovih naloga, pri čemu se teži nalaženju pravog balansa
izmed̄u troška i rizika u vezi sa izvršenjem naloga. S ozirom da se merenjem
performasi izvršenja naloga odred̄uje da li je postignuto najbolje izvršenje, u
praksi postoji značajan broj različitih pokazatelja. Najčešće su to pokazatelji
cena, neki od njih se odred̄uju pre trgovanja (eng. Pre-trade), neki u toku
trgovanja (eng. Intraday), a neki nakon trgovanja (eng. Post-trade). Dva
najdominantnija pokazatelja cena su VWAP i Arrival Price koji je zajedno sa
ostalim ”pre-trade” pokazateljima cena poznat kao Implementation shortfall
(IS).

Pojam negative selekcije se uvodi kao ”post-trade” mera performansi al-
goritama izvršenja, polazeći od pojma optimalnog naloga, koji predstavlja
idealni nalog koji se mogao izvršiti u datom vremenskom intervalu, pri čemu
se pod pojmom ”idealni” podrazumeva nalog kojim se postiže najbolja cena
u tržǐsnim uslovima koji su vladali u toku tog vremenskog intervala. Nega-
tivna selekcija se definǐse kao razlika vektora optimalnog i izvršenog naloga,
pri čemu su vektori naloga definisani kao količine akcija na odgovarajućim
pozicijama cena knjige naloga. Ona je jednaka nuli kada je nalog optimalno
izvršen; negativna, ako nalog nije (u potpunosti) izvršen, a pozitivna ako je
nalog izvršen, ali po nepovoljnoj ceni.

Uvod̄enje mere negativne selekcije zasnovano je na ideji da se ponudi
nova, alternativna, mera performansi i da se u odnosu na nju nad̄e optimalna
trajektorija i konstruǐse optimalno izvršenje naloga.
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dok 6. poglavlje sadži empirijske rezultate.
IZ
Datum prihvatanja teme od strane NN veća: 25.06.2015.
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Član: dr Nataša Krejić, redovni profesor, Prirodno-matematički fakultet,
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Član: dr Danijela Rajter Ćirić, redovni profesor, Prirodno-matematički fakul-
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