HETEROGENO INTEGRISANI PASIVNI INDUKTIVNI SENZORI

doktorska disertacija

Kandidat: M.Sc. Milica Kisić
Mentor: Prof. dr Mirjana Damnjanović

Novi Sad, 2016
<table>
<thead>
<tr>
<th>Редни број, РБР:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Идентификациони број, ИБР:</td>
<td></td>
</tr>
<tr>
<td>Тип документације, ТД:</td>
<td>Монографска публикација</td>
</tr>
<tr>
<td>Тип записа, ТЗ:</td>
<td>Текстуални штампани материјал</td>
</tr>
<tr>
<td>Врста рада, ВР:</td>
<td>Докторска дисертација</td>
</tr>
<tr>
<td>Аутор, АУ:</td>
<td>Милица Кисић</td>
</tr>
<tr>
<td>Ментор, МН:</td>
<td>Др Мирјана Дамњановић, редовни професор</td>
</tr>
<tr>
<td>Наслов рада, НР:</td>
<td>Хетерогено интегрисани пасивни индуктивни сензори</td>
</tr>
<tr>
<td>Језик публикације, ЈП:</td>
<td>Српски</td>
</tr>
<tr>
<td>Језик извода, ЈИ:</td>
<td>Српски</td>
</tr>
<tr>
<td>Земља публиковања, ЗП:</td>
<td>Република Србија</td>
</tr>
<tr>
<td>Уже географско подручје, УГП:</td>
<td>Аутономна Покрајина Војводина</td>
</tr>
<tr>
<td>Година, ГО:</td>
<td>2016</td>
</tr>
<tr>
<td>Издавач, ИЗ:</td>
<td>Ауторски репринт</td>
</tr>
<tr>
<td>Место и адреса, МА:</td>
<td>Факултет техничких наука, Трг Доситеја Обрадовића 6, 21000 Нови Сад</td>
</tr>
<tr>
<td>Физички опис рада, ФО:</td>
<td>9/125/96/11/112/0/0</td>
</tr>
<tr>
<td>Научна област, НО:</td>
<td>Електротехничко и рачунарско инжењерство</td>
</tr>
<tr>
<td>Научна дисциплина, НД:</td>
<td>Микроелектроника</td>
</tr>
<tr>
<td>Предметна одредница/Кучне речи, ПО:</td>
<td>хетерогена интеграција, сензор силе, сензор притиска, сензор помјераја, бежично мјерење</td>
</tr>
<tr>
<td>УДК</td>
<td></td>
</tr>
<tr>
<td>Чува се, ЧУ:</td>
<td>Библиотека Факултета техничких наука, Универзитет у Новом Саду</td>
</tr>
<tr>
<td>Важна напомена, ВН:</td>
<td></td>
</tr>
</tbody>
</table>
У дисертацији је приказано теоријско и практично истраживање које се односи на пројектовање, фабрикацију и карактеризацију хетерогеном интегрисаних индуктивних сензора за мјерење силе, притиска и помјераја. Циљ истраживања докторске дисертације је комбиновање различитих технологија израде и материјала, како би се пројектовали сензори који ће бити конкурентни актуелним решењима, и који би се могли користити за конкретне примјене. У оквиру истраживања, хетерогеном интеграцијом су комбиноване предности технологије штампаних плоча (Printed Circuit Board – PCB), флексибилне технологије и технологије нискотемпературне заједно-печене керамике (Low Temperature Co-fired Ceramics – LTCC). Развијена су три прототила сензора за мјерење силе, притиска и помјераја коришћењем структура са индуктором и феритом у његовој близини. Мјерење реализованих прототипова сензора врши се бежично помоћу спрегнутог антенског намотаја. На основу почетних резултата испитивања, сензори су модификовани у циљу побољшања и оптимизовања перформанси. Пројектовани сензори омогућавају бежично мјерење, јефтини су, компактни и једностави. На основу теоријске анализе, симулација, експериметналних мјерења, установљена је исправност рада и примјенљивост реализованих сензора.

Датум прихватања теме, ДП: 22. октобар 2015. године

Датум одбране, ДО:

Чланови комисије, КО:

Председник:	др Љиљана Живанов, редовни професор
Члан:	др Александар Менићанин, виши научни сарадник
Члан:	др Милољуб Љуковић, научни саветник
Члан:	др Јелена Радић, доцент
Члан:	др Мирјана Дамњановић, редовни професор

Образац Q2.НА.06-05- Изнађе 1
<table>
<thead>
<tr>
<th>Accession number, ANO:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification number, INO:</td>
<td></td>
</tr>
<tr>
<td>Document type, DT:</td>
<td>Monographic publication</td>
</tr>
<tr>
<td>Type of record, TR:</td>
<td>Textual printed material</td>
</tr>
<tr>
<td>Contents code, CC:</td>
<td>Doctoral thesis</td>
</tr>
<tr>
<td>Author, AU:</td>
<td>Milica Kisić</td>
</tr>
<tr>
<td>Mentor, MN:</td>
<td>Ph.D. Mirjana Damnjanović, full professor</td>
</tr>
<tr>
<td>Title, TI:</td>
<td>Heterogenous integrated passive inductive sensors</td>
</tr>
<tr>
<td>Language of text, LT:</td>
<td>Serbian</td>
</tr>
<tr>
<td>Language of abstract, LA:</td>
<td>Serbian / English</td>
</tr>
<tr>
<td>Country of publication, CP:</td>
<td>Republic of Serbia</td>
</tr>
<tr>
<td>Locality of publication, LP:</td>
<td>Autonomous Province of Vojvodina</td>
</tr>
<tr>
<td>Publication year, PY:</td>
<td>2016</td>
</tr>
<tr>
<td>Publisher, PB:</td>
<td>Author's reprint</td>
</tr>
<tr>
<td>Publication place, PP:</td>
<td>Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000 Novi Sad</td>
</tr>
<tr>
<td>Physical description, PD:</td>
<td>9/125/96/11/112/0/0</td>
</tr>
<tr>
<td>Scientific field, SF:</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td>Scientific discipline, SD:</td>
<td>Microelectronics</td>
</tr>
<tr>
<td>Subject/Key words, S/KW:</td>
<td>heterogenous integration, force sensor, pressure sensor, displacement sensor, wireless measurement</td>
</tr>
<tr>
<td>Holding data, HD:</td>
<td>Library of the Faculty of Technical Sciences, University of Novi Sad</td>
</tr>
<tr>
<td>Note, N:</td>
<td></td>
</tr>
</tbody>
</table>
Abstract, AB:

In doctoral thesis theoretical and practical investigation on design, fabrication and characterisation of heterogenous integrated inductive sensors for measuring force, pressure and displacement are shown. The aim of the thesis is to investigate the usage of different technologies and materials in order to design sensors which will be competitive to actual solutions and usable for specific applications. Using heterogenous integration, advantages of Printed Circuit Board technology (PCB), flexible and Low Temperature Co-fired Ceramics (LTCC) technologies are used. Three sensor prototypes for measuring force, pressure and displacement are developed using inductor and ferrite in its near proximity. Measurements of the realised sensor prototypes are wirelessly done using an external surrounding coil as an antenna. Based on the initial measuring results, sensors are redesigned in order to improve and optimize their performance. Projected sensors are low-cost, compact, simple, and enable wireless measurement. The proper operation and applicability of realized sensors are confirmed using theoretical analysis, simulation and experimental testing with presented results.

Accepted by the Scientific Board on: 22nd October 2015

Defended on: 7th November 2015

Defended Board, DB:

President: Ljiljana Živanov, PhD, full professor

Member: Aleksandar Meničanin, PhD, research associate professor

Member: Milojub Luković, PhD, research professor

Member: Jelena Radić, PhD, assistant professor

Member, Mentor: Mirjana Damnjanović, PhD, full professor

Menthor’s sign
<table>
<thead>
<tr>
<th>Kapiteli</th>
<th>Stranice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Uvod</td>
<td>1-6</td>
</tr>
<tr>
<td>1.1 Problem istraživanja</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Predmet istraživanja</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Cilj istraživanja</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Naučni doprinos</td>
<td>6</td>
</tr>
<tr>
<td>1.5 Organizacija disertacije</td>
<td>7</td>
</tr>
<tr>
<td>2. Mjerni sistemi i senzori</td>
<td>9</td>
</tr>
<tr>
<td>2.1 Bežični sistemi</td>
<td>10</td>
</tr>
<tr>
<td>2.1.1 Pasivni senzorski sistemi</td>
<td>11</td>
</tr>
<tr>
<td>2.2 Razvijena rješenja i njihove mogućnosti</td>
<td>11</td>
</tr>
<tr>
<td>2.2.1 Senzori sile</td>
<td>12</td>
</tr>
<tr>
<td>2.2.2 Senzori pritiska</td>
<td>23</td>
</tr>
<tr>
<td>2.2.3 Senzori pomjeraja</td>
<td>29</td>
</tr>
<tr>
<td>3. Struktura induktora-ferit za senzorske primjene</td>
<td>35</td>
</tr>
<tr>
<td>3.1 Dizajni induktora</td>
<td>36</td>
</tr>
<tr>
<td>3.1.1 Dizajn induktora oblika meandar</td>
<td>36</td>
</tr>
<tr>
<td>3.1.2 Dizajn induktora spiralnog oblika</td>
<td>37</td>
</tr>
<tr>
<td>3.2 Modelovanje sistema</td>
<td>38</td>
</tr>
<tr>
<td>3.2.1 Modelovanje induktora</td>
<td>39</td>
</tr>
<tr>
<td>3.2.2 Modelovanje induktora u prisustvu magnetskog materijala</td>
<td>41</td>
</tr>
<tr>
<td>3.2.3 Modelovanje sistema antena i senzor</td>
<td>44</td>
</tr>
<tr>
<td>3.2.4 Rezultati mjerenja senzorske strukture ferit - induktor oblika meandar</td>
<td>50</td>
</tr>
<tr>
<td>3.2.5 Rezultati mjerenja sistema: ferit-spiralni induktor-antena</td>
<td>54</td>
</tr>
<tr>
<td>3.3 Poređenje karakteristika induktora oblika meandar i spiralnog oblika</td>
<td>58</td>
</tr>
<tr>
<td>4. Heterogeno integrirani induktivni senzor sile</td>
<td>60</td>
</tr>
<tr>
<td>4.1 Dizajn senzora</td>
<td>60</td>
</tr>
<tr>
<td>4.2 Princip rada</td>
<td>63</td>
</tr>
<tr>
<td>4.3 Eksperimentalni rezultati i diskusija</td>
<td>64</td>
</tr>
<tr>
<td>5. Heterogeno integrirani induktivni senzor pritiska</td>
<td>70</td>
</tr>
<tr>
<td>5.1 Membrane</td>
<td>70</td>
</tr>
<tr>
<td>Kapitelni broj</td>
<td>Kapitelnim naslovom</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>5.2</td>
<td>Držač sa komorom za ispitivanje senzora pritiska</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Opis držača sa komorom za ispitivanje senzora pritiska</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Ispitivanje funkcionalnosti držača</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Način primjene držača senzora sa komorom</td>
</tr>
<tr>
<td>5.3</td>
<td>Fabrikovani senzor pritiska sa poliimidnom membranom</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Dizajn senzora pritiska</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Eksperimentalni rezultati i diskusija</td>
</tr>
<tr>
<td>5.4</td>
<td>Uticaj dizajna induktora</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Dizajni induktora</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Eksperimentalni rezultati i diskusija</td>
</tr>
<tr>
<td>6</td>
<td>Heterogeno integrisani induktivni senzor pomjeraja</td>
</tr>
<tr>
<td>6.1</td>
<td>Dizajn senzora pomjeraja sa poliimidnom membranom</td>
</tr>
<tr>
<td>6.2</td>
<td>Eksperimentalni rezultati i diskusija</td>
</tr>
<tr>
<td>6.3</td>
<td>Tangencijalni senzor pomjeraja</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Dizajn i princip rada senzora</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Mjerna postavka i rezultati mjerenja</td>
</tr>
<tr>
<td>7</td>
<td>Diskusija</td>
</tr>
<tr>
<td>8</td>
<td>Zaključak</td>
</tr>
<tr>
<td></td>
<td>Literatura</td>
</tr>
</tbody>
</table>
Spisak objavljenih naučnih radova

Publikacije u međunarodnim časopisima (M22)

Rad u časopisu međunarodnog značaja verifikovan posebnom odlukom (M24)

Saopštenja sa međunarodnih skupova štampana u celini (M33)

Pilsen, Czech Republic, pp. 506-509. (ISSN: 2161-2064, doi: 10.1109/ISSE.2016.7563250)

Saopštenje sa međunarodnog skupa štampano u izvodu (M34)

Prototip, nova metoda, softver, standardizovan ili atestiran instrument (M85)

Spisak slika

Slika 1.1 Oblasti primjene senzora .. 2
Slika 2.1 Osnovni elementi tipičnog mjernog sistema 9
Slika 2.2 Pasivni bežični senzorski sistem ... 11
Slika 2.3 Uopšteni dizajn mjerne trake ... 12
Slika 2.4 a) Konfiguracija Vitstonovog mosta sa mjernim tramakama, b) eksperimentalna postavka za testiranje sistema za praćenje stanja objekata korišćenjem pasivnih RFID tagova sa mjernim tramakama ... 13
Slika 2.5 Aktivni piezoelektrični senzor ... 14
Slika 2.6 Piezoelektrični disk rezonator koji se koristi kao senzor sile............. 14
Slika 2.7 a) Senzor sile sa oprugama i LVDT i b) senzor sile koji u svojoj strukturi uključuje senzor pritiska ... 15
Slika 2.8 a) Fleksibilni kapacitivni senzor sile i b) češljasti kondenzatori C1-C4 16
Slika 2.9 a) Fabrikovan fleksibilni senzor povezan na PCB, b) fleksibilni senzor, c) fleksibilni senzor postavljen na olovku za mjerenje pritiska na koži ruke 16
Slika 2.10 Princip rada senzora sile bez za biomehaničke primjene i fotografija fabrikovanog senzora sile montiranog na PCB-u .. 17
Slika 2.11 a) Princip rada jednog elementa matrice i slika fabrikovanog niza od 8x8 elemenata senzora na fleksibilnom PCB-u ... 17
Slika 2.12 a) Dvo-elementni rezonantni senzor sile .. 18
Slika 2.13 Struktura rezonantnog piezoelektričnog senzora sile: 1. PZT diskovi, 2. čelična dijafragma, 3. aluminijumski prstenovi, 4. aluminijumska cijev 19
Slika 2.14 Geometrijska struktura senzora i način primjenjivanja sile 19
Slika 2.15 Struktura senzora sile/dodira i prikaz principa rada senzora 20
Slika 2.16 Fotografije realizovanog prototipa senzora za primjene u robotici 21
Slika 2.17 Bežični magnetostriktivni senzor za primjenu u osteosintezi 21
Slika 2.18 Izrađeni rezonantni magnetostriktivni sensor 21
Slika 2.19 Šematski prikaz senzora sa tri induktora za praćenje sile u stopalu, mehanizam rada senzora ... 22
Slika 2.20 Fotografije a) realizovanog prototipa senzora i b) patika sa ugrađenim prototipom senzora ... 23
Slika 2.21 a) Dizajn Fabry-Perot senzora pritiska i b) izgled fabrikovanog FISOc FOP-M senzora pritiska .. 23
Slika 2.22 a) Savijanje na centru ravne i valovite dijafragme istih veličina pri djelovanju pritiska i b) razdvojeni dijelovi kapacitivnog senzora sa mijehovima.. 24
Slika 2.23 Poprečni presjek senzora i slika fabrikovanog senzora 25
Slika 2.24 Dio fabrikacionog procesa pri izradi senzora 25
Slika 2.25 Mjerni sistem za testiranje senzora pritiska ... 26
Slika 2.26 Mehanizam rada kapacitivnog senzora pritiska za kontaktna sočiva 26
Slika 2.27 Dizajn i fabrikovani senzor za mjerenje očnog pritiska 26
Slika 2.28 a) Poprečni presjek biorazgradivog senzora pritiska i b) mjerna postavka za testiranje senzora sa šematskim prikazom ... 28
Slika 2.29 Slojevi fleksibilnih supstrata od koji se sensor sastoji i fotografija fabrikovanog niza senzora .. 28
Slika 2.30 Osnovni princip rada promjenjljivog reluktansnog senzora pritiska 29
Slika 2.31 Pogled sa strane i odozgo na strukturu senzora i realizovani prototip senzora ... 30
Slika 2.32 Model kola LVDT senzora .. 30
Slika 2.33 a) Elektromagnetski senzor pomjeraja sa vrtložnim strujama, b) senzor sa zaštićenim prednjim dijelom i c) nezaštićenim dijelom .. 31
Slika 2.34 Transverzalni induktivni senzor blizine .. 32
Slika 2.35 Šematski prikaz: a) induktora sa feritom i vazdušnim jezgrom, b) senzora postavljenog na pomično kljunasto mjerilo ... 33
Slika 2.36 Senzor pomjeraja sa dva namotaja .. 33
Slika 2.37 Pozicije elemenata senzora instaliranih u robotskoj nozi 34
Slika 3.1 Struktura induktor- feritna pločica: a) 3D, b) pogled odozgo i c) poprečni presjek ... 35
Slika 3.2 Induktor oblika meandar: a) dizajn i b) fabrikovan induktor sa dodatim kontaktima .. 37
Slika 3.4 Ekvivalentna šema rezonantnog LC kola ... 39
Slika 3.5 Frekvenčijska zavisnost induktivnosti induktora ... 41
Slika 3.6 Kružna spirala u blizini magnetskog materijala .. 42
Slika 3.7 Kružna spirala modelovana pomoću koncentričnih strujnih kontura 42
Slika 3.8 Magnetski supstrat zamjenjen sa strujnim likovima 42
Slika 3.9 Ekvivalentno kolo sistema koje se sastoji od bežičnog pasivnog senzora i spoljašnje antene povezane na mjerni uređaj .. 45
Slika 3.10 Modeli i moduo impedanse, |Z|: a) antene bez senzora, b) sistema sa serijskim rezonantnim kolom senzora ... 47
Slika 3.11 Zavisnost faze impedanse: a) antene i b) sistema kada je rezonantna frekvencija senzora manja u odnosu na rezonantnu frekvenciju antene 48
Slika 3.12 Karakteristike faze impedanse sa dvije različite rezonantne frekvencije ... 50
Slika 4.9 Linearna aproksimacija zavisnosti rezonantne frekvencije sistema f_r u zavisnosti od sile F i dobijena na osnovu izmjerenih vrijednosti ...68
Slika 5.1 a) Ravna membrana bez djelovana pritiska i b) savijena membrana pri djelovanju pritiska p ...71
Slika 5.2 a) Geometrija opterećene membrane i b) njeno savijanje pri djelovanju pritiska...71
Slika 5.3 Prikaz držača sa komorom, a) 3D prikaz držača sa komorom, b) 3D i 2D prikazi (odozgo i sa sa stane) gornjeg (donjeg) dijela sa obilježenim dimenzijama (u mm) i c) 3D i 2D prikazi (odozgo i sa strane) središnjeg dijela sa obilježenim dimenzijama (u mm) ...75
Slika 5.4 Postavka za testiranje držača senzora pod vodom ..77
Slika 5.5 Mjerna postavka za testiranje senzora pritiska ...78
Slika 5.6 Rasklopljeni dijelovi držača sa postavljenim o-ring gumicama i spojnicama na izlazima kanala: a) gornji dio, b) središnji dio i c) donji dio ...79
Slika 5.7 Držač sa postavljenim senzorom: a) pogled sa strane, b) pogled odozgo i c) postavljeni i otvoreni gornji dio ...80
Slika 5.8 Spojeni dijelovi držača sa ubačenim senzorom ...81
Slika 5.9 Razdvojeni 3D prikaz senzora pritiska ..82
Slika 5.10 Poprečni presjek senzora ..82
Slika 5.11 Zavisnost savijanja membrane pri djelovanju pritiska za tri različite debljine membrane (25, 50, 75 i 125 μm) ...84
Slika 5.12 Funkcionalni dijagram principa rada sistema za mjerenje pritiska85
Slika 5.13 Simulirana induktivnost induktora za različita rastojanja induktora i feritnog diska ..85
Slika 5.14 Postavka korišćena za testiranje funkcionalnosti realizovanog senzora ...86
Slika 5.15 Mjerna postavka i upakovan senzor moniran i fiksiran u komori držača ...87
Slika 5.16 Promjena faze impedanse antene i sistema ...87
Slika 5.17 Frekvencijska zavisnost promjene faze impedanse za nekoliko primjenjenih pritiska (u bar) ...88
Slika 5.18 Zavisnost rezonantne frekvencije od pritiska ...88
Slika 5.19 Dizajn induktora: a) I i b) II ..89
Slika 5.20 Poprečni presjek modela senzora I i II ...90
Slika 5.21 Promjene induktivnosti induktora II za različita rastojanja induktora i feritnog diska ..90
Slika 5.22 Simulirane normalizovane promjene induktivnosti senzora I i senzora II.91
Slika 5.23 Zavisnosti faze impedansi sistema (antena i senzori I i II)91
Slika 5.24 Izmjerena faza impedanse u funkciji frekvencije za nekoliko primjenjenih pritisaka, za sistem II (sa induktorom II, N = 30) ... 92
Slika 5.25 Izmjerena zavisnost rezonantne frekvencije od pritiska sistema II (sa induktorom II, N=30) .. 93
Slika 6.1 Poprečni presjek modela senzora sa različitim poluprečnicima feritnog diska. .. 95
Slika 6.2 Simulirane promjene induktivnosti za različite poluprečnike ferinog diska i rastojanja između feritnog diska i induktora .. 96
Slika 6.3 Normalizovane induktivnosti za različite dimenzije feritnog diska 97
Slika 6.4 a) Savijanje membrane senzora postavljanjem vrha pozicionera MTS na membranu, b) postavka za bežično mjerenje pomjeraja i c) fotografija sistema povezanog na analizator impedanse za testiranje senzora pomjeraja 98
Slika 6.5 Izmjerena faza impedanse antene i sistema sa feritnim diskovima različitih dimenzija ... 99
Slika 6.6 Bežično izmjerene promjene faze impedanse sistema I (sa manjim feritnim diskom) za pomjeraje membrane od 0 µm do 1200 µm u koracima od 200 µm 99
Slika 6.7 Bežično izmjerene promjene faze impedanse sistema II (sa većim feritnim diskom) za pomjeraje membrane od 0 µm do 1200 µm u koracima od 200 µm .. 100
Slika 6.8 Karakteristika rezonantne frekvencije sistema I, sa manjim feritnim diskom .. 101
Slika 6.9 Karakteristika rezonantne frekvencije sistema II, sa većim feritnim diskom,... ... 101
Slika 6.10 Induktivni tangencijalni senzor: a) pogled odozgo i b) poprečni presjek 103
Slika 6.11 Mjerna postavka sa postavljenim sistemom, MTS-om i analizatorom impedanse .. 103
Slika 6.12 Bežično izmjerene faze impedance sistema za nekoliko tangencijalnih pomjeranja: a) u smjeru suprotnom od x-osu i b) u smjeru x-ose104
Slika 6.13 Karakteristika rezonantne frekvencije u odnosu na pomjeranje u: suprotnom smjeru x osi i b) u smjeru x osi ... 105
Slika 6.14 Izmjerena rezonantna frekvencija u zavisnosti od tangencijalnog pomjeranja u cijelom mjerom opsegu .. 105
Slika 7.1 Osjetljivost sistema sa induktorima sa različitog broja namotaja109
Slika 7.2 Poređenje osjetljivosti sistema I (sa manjim feritnim diskom) i sistema II (sa većim feritnim diskom) ... 112
Spisak tabela

Tabela 3-1 Geometrijski parametri induktora oblika meandar .. 37
Tabela 3-2 Geometrijski parametri induktora spiralnog oblika .. 38
Tabela 4-1 Geometrijski parametri induktora .. 61
Tabela 4-2 Geometrijski parametri elastomera ... 62
Tabela 4-3 Geometrijski parametri feritne pločice ... 62
Tabela 5-1 Geometrijski parametri induktora .. 82
Tabela 6-1 Geometrijski parametri induktora .. 94
Tabela 6-2 Geometrijski parametri induktora .. 102
Tabela 6-3 Geometrijski parametri feritne pločice ... 102
Tabela 7-1 Karakteristike nekih od prethodno objavljenih rezontnih senzora sile 107
Tabela 7-2 Karakteristike različitih rezontnih senzora pritiska u prethodno publikovanim radovima .. 110
Spisak skraćenica

<table>
<thead>
<tr>
<th>Skraćenica</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB</td>
<td>tehnologija štampanih ploča (eng. Printed Circuit Board)</td>
</tr>
<tr>
<td>LTCC</td>
<td>tehnologija nisko-temperатурне zajedno pečene keramike (eng. Low Temperature Co-fired Technology)</td>
</tr>
<tr>
<td>DETF</td>
<td>struktura (eng. Double Ended Tuning Fork)</td>
</tr>
<tr>
<td>MTS</td>
<td>precizni pozicioner (eng. Manual Translation Stage)</td>
</tr>
<tr>
<td>LVDT</td>
<td>linearni promjenljivi diferencijalni transformator (eng. Linear Variable Differential transformer)</td>
</tr>
<tr>
<td>HTCC</td>
<td>tehnologija visokotemperатурне zajedno pečene keramike (eng. High Temperature Co-Fired Ceramic)</td>
</tr>
<tr>
<td>RFID</td>
<td>identifikacija putem radio frekvencije (eng. Radio Frequency Identification)</td>
</tr>
<tr>
<td>PLL</td>
<td>fazno zatvorena petlja (eng. Phase Locked Loop)</td>
</tr>
</tbody>
</table>
Spisak korišćenih oznaka

<table>
<thead>
<tr>
<th>Oznaka</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_r</td>
<td>rezonantna frekvencija</td>
</tr>
<tr>
<td>L_i</td>
<td>induktivnost inductora</td>
</tr>
<tr>
<td>R_i</td>
<td>otpornost inductora</td>
</tr>
<tr>
<td>C_i</td>
<td>parazitna kapacitivost inductora</td>
</tr>
<tr>
<td>Z_i</td>
<td>impedansa inductora</td>
</tr>
<tr>
<td>Z_R</td>
<td>impedansa otpornika</td>
</tr>
<tr>
<td>Z_C</td>
<td>impedansa kondensatora</td>
</tr>
<tr>
<td>B</td>
<td>propusni opseg RLC kola</td>
</tr>
<tr>
<td>Z_{LC}</td>
<td>impedansa serijskog rezonantnog kola</td>
</tr>
<tr>
<td>j</td>
<td>imaginarna jedinica</td>
</tr>
<tr>
<td>ω</td>
<td>kružna frekvencija</td>
</tr>
<tr>
<td>f</td>
<td>frekvencija</td>
</tr>
<tr>
<td>μ</td>
<td>permeabilnost</td>
</tr>
<tr>
<td>N</td>
<td>broj zavojaka</td>
</tr>
<tr>
<td>I</td>
<td>struja</td>
</tr>
<tr>
<td>z_0</td>
<td>normalno rastojanje između inductora i magnetskog materijala</td>
</tr>
<tr>
<td>n</td>
<td>broj elementarnih segmenata inductora</td>
</tr>
<tr>
<td>L_i</td>
<td>samoinduktivnosti elementarnih provodnika</td>
</tr>
<tr>
<td>L_{ij}</td>
<td>međusobna induktivnost između elementarnih provodnika</td>
</tr>
<tr>
<td>M</td>
<td>međusobna induktivnost</td>
</tr>
<tr>
<td>Z_A</td>
<td>kompleksna impedansa antene</td>
</tr>
<tr>
<td>Z_A'</td>
<td>dodatni kompleksni član impedanse</td>
</tr>
<tr>
<td>Z_M</td>
<td>impedansa koja se mjeri na krajevima antene</td>
</tr>
</tbody>
</table>
k koečijent sprege između induktora
f_1 rezonantna frekvencija antene
f_r rezonantna frekvencija sistema
$|Δφ_dip|$ promjene faze impedanse na rezonantnoj frekvenciji senzora
d rastojanje između induktora i ferita
d_{out} dužina najdužih segmenata
w širina provodne linije
s rastojanje između susjednih segmenata
F sila
y maksimalno savijanje u centru membrane
r radijalna udaljenost kružne ravne membrane
p pritisak
h debljina membrane
E Jangov moduo
v Poasonov koečijent
a poluprečnik membrane
b poluprečnik opterećenja
A_p koečijent
B_p koečijent nelinearnog izraza
x pomjeranje pozicionera
l_i dužina induktora
w_i širina induktora
l_f dužina feritne ploče
w_f širina feritne ploče
1. Uvod

Prva dekada XXI vijeka je obilježena kao „Dekada senzora“. Značajnim povećanjem primjene senzora tokom prethodnih godina, senzori su se našli na pragu revolucije, slično onoj koju su imali mikročipunari 1980-ih godina. Senzori i mjerni sistemi su sve više prisutni i imaju važnu ulogu u najrazličitijim granama djelatnosti, u praćenju, nadzoru i kontroli različitih veličina. Senzori se zajedno sa odgovarajućim kolima koriste za mjerenje različitih veličina koje predstavljaju pobudu za senzor. Mjerena veličina se pretvara u odgovarajući električni signal (napon, struja, otpornost,...), oblik pogodan za prikaz i memorisanje. Senzori se mogu koristiti za mjerenje:

- mehaničkih veličina, kao što su pomjeraj, istezanje, pritisak, sila/moment, težina;
- kinematičkih veličina, kao što su linearno i ugao ubrzanje, brzina, protok;
- vremenskih veličina, kao što su vremenski period i frekvencija;
- hemijsko-bioloških veličina, kao što su vлага, količina jona vodonika, hemijski elementi, koncentracija soli;
- i drugih.

Senzori se mogu koristiti za različite mjerne i upravljačke primjene i ključni su elementi istraživanja i razvoja u raznim djelatnostima. Senzori i mjerni sistemi mogu biti ugrađeni u automobile, avione, mobilne telefone, industrijska postrojenja, čak i ubačeni u ljudska tijela. Bez upotrebe senzora ne bi bilo ni automatizacije. Na slici 1.1 su prikazane samo neke od mnogobrojnih primjena senzora. Savremena visoko-sfisticirana proizvodnja i montaža zahtijevaju preciznu ugradnju, kontrolu brzine i pokreta. Senzori su uvedeni u industriju kao dodatno poboljšanje efikasnosti i povećanje kvaliteta proizvodnje.

Osnovna komponenta koja ima ključnu ulogu u savremenom tehnološkom svijetu i skoro svim mehatroničkim sistemima je senzor čija je funkcija da obezbjedi mehanizam za prikupljanje različitih vrsta informacija o određenim procesima. Senzori se mogu koristiti prije, u toku i poslije procesnih operacija. Savreni inteligentni sistemi koriste senzore za nadgledanje određenih situacija nastalih pri promjenama u okruženju i za njihovu kontrolu i ispravke. Senzori se ugrađuju u različite mjerne sisteme i efikasnim dostavljenjem informacija o detektovanju i rezultatima mjerenja mogu obezbjediti ogromne koristi društvu.
Potencijalna korist uključuje očuvanje prirodnih resursa, poboljšanje proizvodnje, povećano reagovanje u vanrednim situacijama i poboljšanu bezbjednost.

Slika 1.1 Oblasti primjene senzora

1.1 Problem istraživanja

U ovoj doktorskoj disertaciji realizovani su heterogeno integrirani induktivni senzori za mjerenje sile, pritiska i pomjeraja sa bežičnim principom prikupljanja podataka sa senzora. U početnoj fazi izrade doktorske disertacije proučena je naučna i stručna literatura, kao i trenutno stanje u svijetu razvijenih senzora i njihovih mogućnosti. Analizirana su industrijska rješenja, publikovani radovi i prethodno razvijeni senzori kako bi se realizovali senzori koji imaju bolje karakteristike.

U ovoj doktorskoj disertaciji razvijeni su senzori sa bežičnim principom mjerenja jer postoje određena ograničenja u korišćenju i postavljanju senzora na različitim mjernim mjestima. Upotrebu senzora u velikoj mjeri ograničavaju snopovi žica i fiber-optičkih „repova”. Dugi snopovi žica predstavljaju značajnu infrastrukturu i dugoročne troškove održavanja, ograničavajući broj senzora koji se mogu koristiti i stoga, smanjenje kvaliteta pribavljenih podataka. Do danas, predstavljen je svega nekoliko tipova senzora sile sa bežičnim mjerenjem. Ovakvi senzori se realizuju kao induktivno-kapacitivna rezonantna
kola, sa induktorom i jednom elektrodom kondenzatora u jednom sloju, i drugom elektrodom kondenzatora u drugom sloju. Za realizaciju ovakvih senzora sile potrebno je više provodnih slojeva i dodatne vije za povezivanje induktora i kondenzatora, zbog čega je proces fabrikacije složen [1, 2].

Rezonantni senzor sile sa kompleksnim elektronskim kolima i kolima za očitavanje je predstavljen u [14]. Predstavljeni senzor je baziran na kompozitima metala i jonskih polimera, a sistem omogućava mjerenje sile u opsegu mN. Kristal kvarca se može koristiti za realizaciju senzora sile, jer ima dobre mehaničke i električne osobine (tj. faktor dobrote) [15]. Glavni nedostatak kvarca je njegova mala elastičnost, zbog koje ovi senzori ne mogu da rade u sredinama sa ekstremnim uslovima. Pored toga, ovaj tip senzora je kompleksan i skup za proizvodnju, i ne može se dobro prilagoditi za mjerenje kompresionih sila.

U ovoj doktorskoj disertaciji je nakon realizacije senzora pritiska izrađen držač sa komorom za testiranje senzora jer je veliki problem testirati senzor jednako kao u realnim uslovima. Testiranje i ispitivanje performansi senzora, kao i greške koje mogu nastati prilikom njihovog mjerenja, uveliko zavise od mjerne postavke i okoline gdje se izvodi mjerenje. Neprilagođeni uslovi mjerenja mogu da doprinesu pogrešnim rezultatima pri testiranju senzora i da utiču na njihovu tačnosti. Zbog toga je prilikom mjerenja potrebno obezbijediti ponovljive uslove mjerenja, kao i u realnim uslovima, što je omogućeno realizacijom držača.

Poliimidna folija je, pored realizacije senzora pritiska, korišćena i za fabrikaciju rezonantnog senzora pomjeraja čime je postignut jednostavan proces fabrikacije senzora u poredenju sa drugim senzorima pomjeraja (induktivnim, kapacitivnim, senzorima na bazi vrtložnih struja, optičkim, senzorima na bazi Holovog efekta, potenciometarskim, magnetnostriktivnim detektorima, [26-31]). Senzori pomjeraja bazirani na induktivnom principu rada su pogodni za normalne i bočne pomjeraje zbog planarne strukture i jednostavnije konstrukcije. Međutim, razvijeni senzori imaju relativno kompaktnu strukturu jer sadrže dva induktora: jedan stacionarni induktor i drugi pokretljivi induktor ili induktivno-kapacitivna rezonantna kola [32-34].

1.2 Predmet istraživanja

U ovoj doktorskoj disertaciji predmet istraživanja je projektovanje, fabrikacija i karakterizacija senzora za mjerenje mehaničkih veličina: sile, pritiska i pomjeraja. Princip rada predloženih senzora se zasniva na mjerenju navedenih parametara električnim putem, odnosno, mehaničke veličine se transformišu u električnu veličinu. Razmotreni su pasivni senzori koji u poredenju sa aktivnim senzorima ne zahtjevaju spoljašnje napajanje za svoj
rad. Pored toga, predmet istraživanja je mogućnost realizacije senzora sa beskontaktnim i bežičnim načinom mjerenja.

Sve većim razvojem nauke i tehnologije izrade, značajno su povošteni zahtjevi koje senzori moraju da ispunjavaju. Uslijed raznovrsnosti, prednosti i nedostataka različitih tehnologija i materijala, razvoj heterogene integracije različitih tipova komponenti je pravi izazov. U ovoj doktorskoj disertaciji ispitani su heterogeno integrirani pasivni induktivni senzori.

1.3 Cilj istraživanja

Cilj istraživanja ove doktorske disertacije je da se ispita korišćenje kombinacije različitih tehnologija fabrikacije, komponenti i njihovih dobrih električnih i mehaničkih svojstava za realizaciju senzora, a nakon toga izrada prototipova senzora (sile, pritiska i pomjeraja) i poboljšanje i optimizovanje njihovih performansi.

Jedan od ciljeva ove doktorske disertacije je realizacija jednostavnih senzora dobrih performansi za mjerenje sile, pritiska i pomjeraja.

Senzor sile bi trebao da bude kompaktan, realizovan integracijom elastičnog materijala (elastomera) u strukturu koja se sastoji od induktora i feritne pločice.

Nakon fabrikacije senzora je neophodno omogućiti testiranje realizovanih senzora, kako bi se skratio razvojni ciklus, omogućilo prilagodljivo testiranje senzora različitih struktura i da bi se dobili tačni i objektivni podaci za procjenu performansi senzora u različitim uslovima rada.
U sljedećoj fazi je potrebno mjeriti električna svojstva, odnosno odgovarajuće električne veličine za svaki od izrađenih senzora, a nakon toga izvršiti analizu dobijenih rezultata. Simulacijom projektovanih senzora potrebno je provjeriti usaglašenost teorijske analize i dobijenih eksperimentalnih rezultata.

Cilj ove doktorske disertacije je da predloženi senzori imaju što bolje karakteristike, odnosno što bolju linearnost, osjetljivost i mjerni opseg koji se može jednostavno podešavati. Zbog toga, cilj doktorske disertacije je da se ispita moguća optimizacija predloženih struktura senzora u cilju poboljšanja njihovih performansi.

Poslije uspješne fabrikacije i testiranja senzora, potrebno je ispitati teorijske i praktične mogućnosti primjene razvijenih senzora.

1.4 Naučni doprinos

U ovoj doktorskoj disertaciji su projektovani i fabrikovani pasivni bežični senzori. Bežični sistemi mogu značajno eliminisati nedostatke aktivnih, kontaktnih senzora, smanjiti cijenu izrade i omogućiti jednostavniju instalaciju, bez upotrebe konektora i dugih žica. Bežični sistemi se sastoje od senzora postavljenih u sredinama od interesa za vršenje lokalnih mjerenja i antene za bežični prijem informacija, obradu i prezentovanje rezultata. Kako ovi sistemi nemaju fizičke konekcije između komponenti za detekciju i opreme za procesuiranje signala, precizni su, tačni, odlični za nadgledanje i veoma raznovrsni u pogledu primjene senzora. U ovoj doktorskoj disertaciji su realizovani bežični senzori sile, pritiska i pomjeraja.

Kombinacijom različitih komponenti i njihovih dobrih električnih i mehaničkih svojstava, realizovan je kompaktan i jeftin senzor sile. Razvijeni senzor ima jednostavnu strukturu sa smanjenom kompleksnošću u porеđenju sa drugim publikovanim senzorima. Senzor je lak za proizvodnju sa jednostavnim i jeftinim procesom fabrikacije, jednostavnom integracijom i mogućnošću direktna modifikacije strukture. Predloženi senzor je imun na oštećenja i parazitne elemente, stoga i greške mjerenja, čak i pri velikim silama jer ne iziskuje drugi metalni sloj ili duge metalne linije. Mehaničke karakteristike predloženog senzora sile su ispitane i dobijeni rezultati mjerenja su pokazali efektivnost senzora sa velikom osjetljivošću.

Korišćenjem paralelno postavljenog induktora i feritne pločice projektovan je senzor za mjerenje tangencijalnog pomjeraja. Realizovani senzor ima jednostavnu strukturu, jeftin
proces izrade, a pri tome postignuta je velika osjetljivost i dobra linearnost izlazne karakteristike senzora.

Poliimidna folija je ispitana kao membrana za realizaciju senzora za mjerenje pritiska i pomjeraja. Veliki broj prethodno realizovanih senzora su MEMS senzori fabrikovani korišćenjem različitih membrana i brojnih koraka i procesa izrade. Korišćenjem fleksibilnih supstrata u ovoj doktorskoj disertaciji realizovani su senzori i mjerni sistemi sa dobrim performansama, dobrom mehaničkom fleksibilnošću i robusnošću. Korišćenjem poliimidne folije kao membrane senzora, brojni koraci fabrikacije i procesa pakovanja su izostavljeni, a karakteristike senzora su u velikoj mjeri definisane karakteristikama folije. Na taj način doprinosi se uštedi novca, jednostavnosti razvoja, direktnoj integraciji i modifikaciji geometrije senzora. Proces fabrikacije senzora je postignut bez skupe, specijalizovane opreme.

Kako bi se omogućilo testiranje fabrikovanih senzora pritiska, realizovana je mjerna postavka sa držačem senzora sa komorom koja omogućava testiranje realizovanih senzora i obezbjeđuje uslove za kontinuirano mjerenje u laboratorijskim uslovima. Mjerna postavka omogućava da se na brz i jednostavan način testira, a zatim optimizuje senzor, čime štedi vrijeme potrebno za ispitivanje ispravnosti rada senzora u stvarnim situacijama.

1.5 Organizacija disertacije

Disertacija je organizovana na sljedeći način:

U 1. poglavlju su data uvodna razmatranja, definisani su predmet, problem i cilj istraživanja.

U poglavlju 2 je dat pregled različitih senzora i metoda za mjerenje sile, pritiska i pomjeraja. Prikazano je stanje u oblasti, kao i mogućnosti i ograničenja o kojima treba voditi računa pri konkretnim primjenama senzora u stvarnom svetu i industrijskim primjenama.

U poglavlju 3 je predstavljen model strukture induktor-magnetski materijal, koja se koristila kao osnovna struktura za realizaciju senzora. Ispitani su različiti oblici induktora, kako bi se predložila struktura koja ima bolje performanse i koja omogućava najjednostavniji način obrade signala. Nakon toga, prikazan je princip bežičnog mjerenja senzora i električni model sistema (senzor-antena). Dato je projektovanje i fabrikacija induktora različitih oblika (meandar i kvadratna spirala). Prikazan je uticaj blizine magnetskog materijala na
induktivnost i rezonantnu frekvenciju induktora. Na osnovu rezultata mjerenja dobijenih u ovom poglavlju, predložen je dizajn induktora koji će se koristiti za realizaciju senzora.

Projektovanje induktivnog senzora za detektovanje sile normalne na površinu senzora je predstavljeno u poglavlju 4. U ovom poglavlju je prikazano projektovanje, postupak fabrikacije i testiranje pasivnog senzora sile. Osjetljivost senzora na djelovanje sile je postignuta ubacivanjem elastičnog materijala u strukturu induktor-ferit. Promjene sile su detektovane bežičnim mjerenjem minimalne vrijednosti faze impedanse (odnosno mjerenjem rezonantne frekvencije) sistema senzor-antena. Eksperimentalni rezultati su potvrdili teorijsku analizu, kao i elektromagnetske simulacije. Testiranjem senzora određena je karakteristika senzora i upoređena je sa sličnim senzorima koji su dostupni u literaturi.

U poglavlju 5 prikazana je fabrikacija senzora pritiska sa fleksibilnom membranom. Ovaj pasivni bežični senzor zasniva svoj rad na korišćenju poliimidne folije. Kako bi se izvršila karakterizacija fabrikovanog senzora, razvijen je robustan držač sa komorom za testiranje. Senzor pritiska je dobijen heterogenom integracijom, i kombinuje PCB i LTCC dijelove sa poliimidnom folijom. Ispitani su različiti oblici induktora, kako bi se predložio dizajn koji može obezbijediti poboljšane performanse senzora.

U poglavlju 6 je analizirana mogućnost primjene poliimidne folije kao membrane u senzorima (uredajima) za mjerenje pomjeraja. Ispitane su i upoređene performanse heterogeno integrisanih senzora sa različitim dimenzijama feritnih pločica. Modifikacijom realizovanog senzora, projektovan je i ispitan senzor za mjerenje tangencijalnog pomjeraja duž jedne ose.

U poglavlju 7 prikazana je diskusija. Analizirana su predložena rješenja. Navedene su prednosti, radni opsezi, linearnost, kao i ograničenja projektovanih senzora.

U poglavlju 8 je dat je opšti zaključak disertacije i prijedlozi za dalja istraživanja.

U poslednjem poglavlju je navedena literatura koja se koristila u ovoj doktorskoj disertaciji.
2. Mjerni sistemi i senzori

Sistemi i senzori za mjerenje različitih veličina sve više dobijaju na značaju s obzirom na zahtjeve za detektovanjem i kontrolu parametara u industrijskim procesima, ali i u svakodnevnoj djelatnosti i oblastima široke potrošnje. Na slici 2.1 su prikazane tipične komponente jednog mjernog sistema. Ulazni i osnovni elementi mjernog sistema su senzori koji detektuju promjene parametara okoline, a zatim prikupljene informacije konvertuju u odgovarajući oblik koji se obrađuje u mjernom sistemu. Tačnost, osjetljivost i preciznost cijelog sistema se kontroliše preko pojedinačnih senzora. Izbor senzora zavisi od:

- promjenljivih koje se mjere,
- preciznosti i osjetljivosti potrebne za mjerenje,
- dinamičkog opsega,
- nivoa automatizacije,
- kompleksnosti kontrolnog sistema i zahtjeva modelovanja i
cijene, veličine, upotrebe i lakoće održavanja.

Slika 2.1 Osnovni elementi tipičnog mjernog sistema

Senzori integrirani u različite mjerne sisteme, uređaje i okolinu, zajedno sa efikasnim dostavljanjem informacija detektovanja, mogu obezbijediti ogromne koristi društvu. Međutim, neka ograničenja u širokoj upotrebi sistema i senzora i dalje ostaju.

Jedan tip mjernih sistema koristi povezivanje pomoću kablova. Ovo dovodi do visoke cijene instalacija i održavanja. Setovi dugih žica i fiber optičkih „repova” podliježu
lomovima i kvarovima. Snopovi dugačkih žica predstavljaju značajne instalacione i dugoročne troškove održavanja, ograničavajući broj senzora koji se mogu rasporediti i stoga, smanjuju ukupan kvalitet podataka.

Drugi tip mjernih sistema su bežični sistemi koji mogu eliminisati ove nedostatke, smanjiti troškove, olakšati instalaciju i eliminisati potrebu za kablovima i konektorima. U ovoj doktorskoj disertaciji su realizovani bežični mjerni sistemi, pa će u narednom poglavlju biti prikazane njihove najvažnije karakteristike.

2.1 Bežični sistemi

Dobar bežični senzor je umrežen, može se postaviti na različitim mjernim mjestima, troši veoma malo energije, omogućava brzo prikupljanje podataka, pouzdan je i precizan tokom dužeg perioda. Pored toga, jeftin je i ne zahtjeva održavanje. Bežične senzorske mreže omogućavaju primjene koje su teško izvodljive ili čak nemoguće klasičnim povezivanjem. Pored toga što mogu da budu skupe, dugačke žice mogu da budu ograničavajuće, naročito kada se radi o pokretnim dijelovima sistema. Korišćenje bežičnih senzora omogućava laku instalaciju senzorskih sistema i pristup mjestima koja su teško dostupna ili nepristupačna ukoliko se koriste kablovi. Kako se nove mreže realizuju i sistemi male potrošnje kontinualno razvijaju, upotreba bežičnih senzorskih mreža se sve više rasprostire. Dodatno, usvajanje bežičnog senzorskog rješenja nudi niz drugih prednosti, kao što su kontinualnost detektovanja i odziva, prenosivost i kompaktnost. Bežični sistemi konstantno postaju sve jeftiniji i pouzdaniji u odnosu na sisteme u kojima se povezivanje vrši žicama, što ih čini boljim izborom u sve više i više primjena.

Iako bežične senzorske mreže imaju veliki komercijalni potencijal, problem napajanja senzorskih čvorova ometa njihov razvoj. Korišćenje baterija za bežične senzore daje ograničenu energiju za obavljanje zahtjevnih zadataka i povećanje radnog vijeka, pa postizanje optimalnih izvora ostaje izazov [56]. Mali kapaciteti baterija uzrokuju kvarove čvorova, prekide rada mreže i ovaj tip bežičnih senzorskih mreža zahtjeva redovno održavanje i zamjenu baterija. Ovo smanjuje pouzdanost bežičnih senzorskih mreža i povećava troškove. Takođe, zamjena baterija doprinosi većem zagađenju životne sredine [57].

Bežični senzorski sistemi se u zavisnosti od toga da li je potrebno aktivno kolo da bi senzor proizveo izlazni signal i da bi se podaci prenijeli mogu podijeliti na dvije grupe: aktivne i pasivne.

2.1.1 Pasivni senzorski sistemi

Pasivni (ili samogenerišući) senzorski sistemi se obično sastoje od dva dijela: senzora (sa samo pasivnim elementima) i čitača koji može da analizira odziv senzora (slika 2.2). Glavne prednosti ovih vrsta sistema su jednostavnost pasivnog senzora i to što nisu potrebna dodatna elektronska kola i baterija. Pasivni senzori ne koriste dodatni izvor energije i direktno generišu električni signal kao odgovor na spoljašnji pobudni signal, bez potrebe za spoljašnjim naponima ili strujama. Koriste se u slučajevima kada je veoma teško ili čak nemoguće promijeniti ili dopuniti baterije u senzorskim mrežama. Pasivni senzori imaju ograničenu funkcionalnost u poređenju sa aktivnim, ali su generalno jeftiniji, jednostavniji za implementaciju i duže traju.

![Slika 2.2 Pasivni bežični senzorski sistem](image.png)

2.2 Razvijena rješenja i njihove mogućnosti

U sljedećim odeljcima će biti prikazani različiti senzori za mjerenje sile, pritiska i pomjeraja, kao i njihove primjene. Bežični senzori svoj rad baziraju na principu promjenljivog LC kola. Ostali senzori imaju složenije strukture, principe rada i mehanizme detektovanja u odnosu na senzore realizovane u ovoj doktorskoj disertaciji.
2.2.1 Senzori sile

Sila je jedna od najznačajnijih fizičkih veličina, čije je praktično korišćenje određivalo u velikoj mjeri tokove razvoja civilizacije. Mjerenje sile je zastupljeno skoro u svim oblastima ljudske djelatnosti: u nauci, sportu, privredi, medicini, građevinarstvu, automobilskoj industriji, petrohemiji i industriji, itd. Sistemi za mjerenje sile su široko korišćeni u različitim granama industrije i to u svim fazama industrijskih procesa: u istraživanju i razvoju, tokom proizvodnog procesa, instalacije, testiranja i upotrebe proizvoda.

Senzori sile mogu da se koriste za mjerenje pozicije i pokreta objekata, nedestruktivnu procjenu deformacije, poravnjanja i kalibriranja pozicioniranja, kao i za mjerenje drugih fizičkih veličina. Mjerenjem sile i odgovarajućim konvertovanjem (relacijama) mogu se detektovati pritisak, ubrzanje, naprezanje, pomjeraj ili dodir (ubrzanje koje se ispoljava uslijed djelovanja sile na masu, pritisak uslijed djelovanja sile na poznatoj površini, efekti koje sila stvara na različitim materijalima (mijenja indeks prelamanja svjetlosti)). Kad god se mjeri pritisak, to zahtjeva djelovanje sile.

Mjerni trake se koriste za precizno mjerenje statičke težine, opterećenja ili sile. Uopšteni dizajn mjerni trake je prikazan na slici 2.3. Princip rada mjernih traka se bazira na promjeni dužine, a time i otpornosti, pri djelovanju sile na podlogu na koju se mjerna traka postavlja. Zbog toga, mjerna traka se projektuje tako da ima što veću dužinu u odnosu na poprečni presjek kako bi se postigla što veća osjetljivost.

Slika 2.3 Uopšteni dizajn mjerni trake, [58]
Mjerne trake se obično koriste u konfiguraciji u obliku Vitstonovog mosta (slika 2.4), koja omogućava kompenzacijsku temperaturnih efekata, kao i eliminisanje signala prouzrokovanih neželjenim spoljašnjim silama.

Slika 2.4 a) Konfiguracija Vitstonovog mosta sa mjernimtrakama, b) eksperimentalna postavka za testiranje sistema za praćenje stanja objekata korišćenjem pasivnih RFID tagova sa mjernimtrakama, [58]

Doktorska disertacija
Milica Kisić

Slika 2.5 Aktivni piezoelektrični senzor, [25]

Drugi dizajn piezoelektričnog senzora sile je baziran na efektu promjene mehaničke rezonancije piezoelektričnog kristala pri djelovanju sile. Osnovna ideja rada senzora je ta što određeni rezovi (eng. cuts) kvarcnog kristala, kada se koriste kao rezonatori u elektronskim oscillatorima, pomjeraju rezonantnu frekvenciju pri mehaničkom opterećenju. Pomjeraj frekvencije uzrokovani spoljašnjom silom je uslijedio nelinearnih efekata u kristalu. Na slici 2.6 je prikazan piezoelektrični rezonator kao senzor sile koji se koristi kod pretvarača pritiska dobrih performansi [59].

Slika 2.6 Piezoelektrični disk rezonator koji se koristi kao senzor sile, [59]

Kod senzora sile koji sadrže kristalne rezonatore se javljaju određeni problemi. Sa jedne strane, moraju da imaju što veći faktor kvaliteta, što podrazumijeva da bi senzor trebao da bude izolovan od okruženja i ako je moguće da radi u vakuumu. Sa druge strane, primjena sile ili pritiska zahtjeva relativno krute strukture i značajne efekte opterećenja na vibrirajući kristal, što smanjuje njegov faktor kvaliteta (faktor dobrote). Ovi nedostaci mogu da budu djelomično rješeni korištenjem složenijih struktura senzora.

Mnogi senzori sile su kompleksni, jer je potrebno nekoliko među stepena za konvertovanje sile u električni izlazni signal. Na primjer, senzor sile može se fabrikovati pomoću pretvarača sile u pomjeraj i senzora pozicije (pomjeraja).
Senzor prikazan na slici 2.7a se sastoji od opruge i linearnog promjenljivog diferencijalnog transformatora (Linear variable differential transformer, LVDT) kao senzora pomjeraja. Linearnim pomjeranjem opruge, LVDT senzor proizvodi napon, koji je proporcionalan primjenjenoj sili. Sličan senzor se može izraditi sa drugim tipovima opruga i senzora pritiska, kao što je jedan prikazan na slici 2.7b. Senzor pritiska se kombinuje sa mjehom (eng. bellows) ispunjenim fluidom, koji se izlaže djelovanju sile. Fluidom-ispunjeni mjehovi funkcionisu kao konvertori (pretvarači) sile u pritisak raspodjelom lokalizovane sile na svojim ulazima preko osjetljive membrane senzora pritiska.

Veoma često se koriste kapacitivni senzori sile. Fleksibilni kapacitivni senzor sa češljastim elektrodama za mjerenje sile u sva tri pravca je prikazan u [36]. Pri djelovanju normalnih, ali i bočnih sila mijenja se kapacitivnost senzora. Senzor je izrađen korišćenjem tri fleksibilna polimera (poliimida, parilena i polidmetilsiloksana). Na slici 2.8 je šematski prikazan dizajn kapacitivnog senzora sile. Metalne elektrode su ugrađene u tri sloja polimera, formirajući četiri kondenzatora sa zajedničkom gornjom elektrodom. Pri djelovanju normalne sile na senzor, elastični dielektrik se sabija, smanjujući rastojanje između elektroda uslijed čega se kapacitivnost sva četiri kondenzatora povećava. Kada se primjene bočne sile, elastični dielektrik se deformiše u istom pravcu u kome djeluje sila, a gornje češljaste elektrode se pomjeraju u odnosu na paralelnu donju elektrodu. Pomjeranjem gornje elektrode mijenja se oblast preklapanja između elektroda i stoga, mijenja se vrijednost kapacitivnosti. Dizajn češljastih elektroda je diferencijalan, tako da se pri uniaksijsijalnoj bočnoj sili, kapacitivnost jednog kondenzatora povećava, dok drugog opada. Kapacitivnost ostala dva ortogonalna kondenzatora pri tome ostaje nepromijenjena. Jedna od primjena realizovanog senzora je za mjerenje sila na koži ruke (slika 2.9). Rezultati mjerenja senzora su pokazali dobru linearnost u opsegu mjerenja sila 0-14 N za tro-osno opterećenje.
Slika 2.8 a) Fleksibilni kapacitivni senzor sile i b) češljasti kondenzatori C1-C4, [36]

Slika 2.9 a) Fabrikovan fleksibilni senzor povezan na PCB, b) fleksibilni senzor, c) fleksibilni senzor postavljen na olovku za mjerenje pritiska na koži ruke, [36]

Senzor sile za biomehaničke primjene je prikazan u [9]. Cilj realizacije ovakvog senzora je integracija u rukavicu kojom se može detektovati mehanička interakcija između ljudske ruke i okoline. Predstavljeni senzor mjeri normalnu silu i dva upravna momenta. Kao elastični materijal u senzoru koristi se monokristalni silicijum. Princip rada senzora je prikazan na slici 2.10a. Opterećenje se primjenjuje na površini senzora. Senzor se sastoji iz dva povezana dijela. Gornji dio senzora sadrži tanke silicijumske stubiće preko kojih se prenosi opterećenje kojim se djeluje na površinu senzora. Uslijed opterećenja, stubići se sabijaju i mijenjaju svoju visinu. Sila kojom se djeluje na senzor se mjeri promjenom kapacitivnosti između površina elektroda koje ne naliježu jedna na drugu (slika 2.10a). Na slici 2.10b je prikazan fabrikovani senzor i fotografija senzora montiranog na PCB-u. Maksimalan opseg mjerenja sile je 50 N.
Kapacitivna polimerna matrica za mjerenje normalnih i bočnih sila može da bude izrađena pomoću *micromachining* tehnologije i fleksibilnog PCB-a [10]. Svaki element matrice sadrži četiri kapacitivne ćelije, a svaka kapacitivna ćelija ima dvije odvojene elektrode i zajedničku lebdeću elektrodu. Odvojene elektrode su realizovane na fleksibilnom PCB-u, a lebdeća elektroda je realizovana na polidimetilsiloksanu. Za detektovanje bočnih sila se koristi isupućenje na sredini svakog elementa. Na slici 2.11a je prikazan princip rada jednog elementa matrice. Kada se normalna sila primjeni na isupućenje, vazdušni procjep između elektroda se smanji i kapacitivnost ćelija raste. Takođe, kada se bočna sila primjeni na isupućenje, vazdušni procjep na lijevoj strani raste, dok vazdušni procjep na desnoj strani opada, kao što se može vidjeti na slici. Normalna sila se može detektovati preko ukupnog porasta kapacitivnosti ćelija. Bočna sila se može izmjeriti preko razlike promjena kapacitivnosti između susjednih ćelija. Na slici 2.11b je prikazana slika fabrikovanog niza senzora. Realizovani senzori su malih dimenzija (8 x 8 mm²), debljine membrane 0,5 mm, 1 mm i 1,5 mm, uz maksimalan opseg mjerenja sile od oko 505 mN.
U [1] je opisan bežični pasivni dvo-elementni senzor baziran na **induktivno-kapacitivnom kolu** koji omogućava istovremeno praćenje sile na dvije površine. Senzor se sastoji od planarnog spiralnog induktora povezanog na dva kondenzatora formirajući na taj način rezonantno kolo sa dvije rezonantne frekvencije. Kada se opterećenje primjeni na jednu ili obje strane paralelnih ploča kondenzatora, rastojanje između ploča kondenzatora se mijenja, a samim tim i rezonantne frekvencije LC kola. Testiranje senzora je pokazalo da primjena opterećenja na jedan kondenzator dovodi do većeg pomjeranja jednog rezonantnog vrha, a manjeg pomjeranja drugog. Na slici 2.12 su prikazani senzori fabrikovani u PCB tehnologiji sa formirana dva paralelna pločasta kondenzatora. Između pločastih bakarnih elektroda kondenzatora je silikonska pjena. Nakon realizacije kondenzatora, elektrode su povezane sa spiralnim induktorom, a razvijeni senzori su testirani korišćenjem jednog namotaja kao antene povezane na mjerni instrument-analizator mreže. Senzor je testiran za mjerenje sile do 100 N, a dobijena je osjetljivost od 0,065 MHz/N.

Slika 2.12 a) Dvo-elementni rezonantni senzor sile, [2]

Dizajn i performanse **rezonantnog piezoelektričnog** senzora sile su predstavljeni u [13]. Dizajn senzora se zasniva na metalnoj površi i piezoelektričnim (PZT) diskovima koji pobuđuju i detektuju vibracije strukture. Dizajn predstavljenog senzora sile je blizak senzorima pritiska baziranim na kružnim membranama. Osnovni dio senzora je tanka kružna čelična ploča, pričvršćena između dva aluminumska prstena koja čini osnovu za piezoelektrične diskove na obje strane. Jedan disk pobuđuje strukturu na prvoj rezonantnoj frekvenciji, dok drugi detektuje rezultujuće vibracije. Struktura senzora je ilustrovana na slici 2.13. Prvi PZT disk se pobuđuje naizmjeničnim naponom pomoću frekvencijskog generatora kako bi se pokrenula vibracija strukture na prvoj rezonantnoj frekvenciji. Sila koja se mjeri se primjenjuje na dijafragmu preko aluminumske cijevi čija je osa ista kao i osa dijafragme. Cijev je fiksirana na kružnoj ravni sa provodnom pastom. Kada se sila primjeni na vrh cijevi,
rezonantna frekvencija senzora se mijenja. Razlika faze između pobudnog signala na prvom disku i signala koji se detektuje na drugom PZT disku omogućava određivanje vrijednosti rezonantne frekvencije i primjenjenu silu. Detektovanje promjene frekvencije u odzivu senzora su omogućene sa osjetljivošću od 6,63 Hz/N, a pri čemu senzor omogućava mjerenje sile u opsegu do 17,7 N.

Slika 2.13 Struktura rezonantnog piezoelektričnog senzora sile: 1. PZT diskovi, 2. čelična dijafrica, 3. aluminijumski prstenovi, 4. aluminijumska cijev, [13]

Princip rada rezonantnog senzora sile predstavljenog u [60] se sastoji od mjerenja rezonantne frekvencije vibrirajućih greda (nosača) koja zavisi od sile primjenjene na nosače. U radu je predložena DETF (eng. *double ended tuning fork*) struktura, koja sadrži direktno ugrađene piezoelektrične elemente u metalnu kružnu ravan. Sila koja se mjeri se primjenjuje na ravan korišćenjem cijevi. Za mjerenje promjene frekvencije, korišćeno je elektronsko kolo sa PLL (eng. *Phase-Locked Loop*) i logičkim kolima. Senzor sile je osjetljiv na kompresije sile. Sila koja se mjeri se primjenjuje na određene elemente koji je transformišu u zateznu silu na nosače DETF. Senzor se sastoji od cilindra male visine postavljenog na tankoj kružnoj ravni u kojoj je direktno realizovan DETF (slika 2.14). Mjerenjem sile do 30 N dobijena je osjetljivost od 10,5 Hz/N.

Slika 2.14 Geometrijska struktura senzora i način primjenjivanja sile, [60]
Promjene sile koja se primjenjuje na cijevi utiče direktno na rezontantne frekvencije nosača DETF. Dva piezoelektrična elementa su postavljena na oba nosača. Jedan se koristi za pobudu, a drugi za prijem mehaničkih oscilacija DETF. Stoga, prvi piezoelektrični element uzrokuje vibracije strukture na određenoj frekvenciji. Mjerenje razlike faze između pobudnog signala na prvom piezoelektričnom elementu i detektujućeg signala na drugom piezoelektričnom elementu omogućava mjerenje razlike rezontantnih frekvencija DETF strukture i sile koja se primjenjuje na senzor.

Slika 2.15 Struktura senzora sile/dodira i prikaz principa rada senzora, [4]
Liječenje preloma kostiju može se pratiti mjerenjem savijanja pločice za osteosintezu. Za ovu primjenu, razvijen je bežični magnetnostriktivni senzor prikazan na slici 2.17 [61].

Planarni pravougaoni namotaj na vrhu magnetnostriktivnog sloja zajedno sa dodatnim kondenzatorom formiraju senzor kao električno rezonantno kolo. Mjerenje senzora je izvršeno bežičnim putem korišćenjem induktivne sprege senzora i antene pomoću analizatora mreže i pojačavača sa odvojenim namotajima za pobuđivanje i detekciju. Kao osjetljivi sloj se koristi magnetoelastični materijal, odnosno Galfenol (legura Fe$_{83}$Ga$_{17}$). Fabrikovan magnetoelastični senzor je prikazan na slici 2.18.

Slika 2.16 Fotografije realizovanog prototipa senzora za primjene u robotici, [4]

Slika 2.17 Bežični magnetnostriktivni senzor za primjenu u osteosintezi, [61]

Slika 2.18 Izrađeni rezonantni magnetnostriktivni sensor, [61]
Rezonantna frekvencija oscilatornog kola senzora je mjerena u zavisnosti od sile i savijanja senzora. Magnetska svojstva galfenola se mijenjaju uslijed deformacija materijala preko savijanja, odnosno mijenja se permeabilnost kada se primjeni mehaničko opterećenje i deformacija materijala. Zahvaljujući tome, mjerenja deformacija i sile su omogućeni kada se magentostraktivni materijal koristi za realizaciju senzora pri čemu promjene permeabilnosti dovode do promjena induktivnosti i stoga do promjene rezonantne frekvencije senzora. Testirani senzor je pokazao linearnu zavisnost promjene rezonantne frekvencije sa primjenom sile do 6 N, uz ukupnu promjenu frekvencije od 6 kHz.

Induktivni senzor sile za istovremeno mjerenje normalne i bočnih sila u stopalu pri hodu je prikazan u [62]. Senzor mjeri normalne i bočne sile preko promjena induktivnosti tri planarna induktora. Tri rezonantne frekvencije se dobijaju pomoću signala sa tri senzora, što omogućava istovremeno mjerenje sile u sva tri pravca (normalne sile i bočnih sila u ravni) na stopalo korišćenjem samo jednog seta mjerenja. Na slici 2.19 je prikazan koncept tro-osnog senzora sile, odnosno senzor sa tri spiralna induktora postavljena na kvadratnom supstratu, četiri gumena dijela fiksirana na četiri ugla supstrata i čeličnom pločom na vrhu gumenih dijelova. Prvi induktor je postavljen u centru supstrata. Preostala dva induktora su pozicionirana na centrima dvije susjedne ivice supstrata. Promjena induktivnosti induktora zavisi od vertikalne udaljenosti između induktora i čelične ploče, kao i njihove međusobne zapremine preklapanja. Svaki induktor senzora je paralelno povezan sa spoljašnjim kondenzatorom, kako bi se formiralo paralelno rezonantno kolo. Predstavljeni senzor sile je ugrađen u cipelu pacijenta, slika 2.20. Mjerenje sila u vremenskom domenu u stopalu osobe sa dijabetesom može obezbijediti korisne informacije doktorima za liječenje oboljenja stopala. Kako bi olakšali postavku mjerenja fabrikovan je prototip senzora na supstratu spoljašnjih dimenzija 76,2 mm x 76,2 mm, debljine 3 mm (odziv senzora dimenzija 25,4 mm x 25,4 mm bi bio isti). Rezultati mjerenja su pokazali da je sa razvijenim prototipom moguće mjeriti normalne sile od 0 N do 800 N i bočne sile od 0 do 130 N.

![Slika 2.19 Šematski prikaz senzora sa tri induktora za praćenje sile u stopalu, mehanizam rada senzora, [62]](attachment:Image.png)
Slika 2.20 Fotografije a) realizованог prototipa senzora i b) patika sa ugrađenim prototipom senzora, [62]

2.2.2 Senzori pritiska

Mjerenje pritiska i precizno određivanje njegovih promjena je veoma važno i potrebno u skoro svim poljima inženjerstva. Senzori pritiska se koriste u širokom opsegu industrijskih primjena (industrijski kontrolni procesi, automobilski i građevinsko industrija, praćenje parametara životne sredine, biomedicinski sustavi, hidraulični sustavi, mikrofoni, introvertni krvni pritisak, itd) [16, 37, 42, 63–68].

Fabry-Perot (FP) rezonatori se mogu koristiti za različite primjene, na primjer, za mjerenje pritiska, ali i temperature [69–71]. Ova vrsta senzora detektuje promjene dužine optičke putanje izazvane ili promjenom indeksa prelamanja ili promjenom fizičke dužine rezonatora. Dizajn senzora pritiska sa Fabry-Perot rezonatorom kod koga se pritisak primjenjuje na gornju membranu senzora je prikazan na slici 2.21a. Minijaturalni senzor pritiska proizvođača FISO Technologies je prikazan na slici 2.21b.

Slika 2.21 a) Dizajn Fabry-Perot senzora pritiska i b) izgled fabrikovanog FISOe FOP-M senzora pritiska
Za izradu senzora pritiska, najčešće se koriste deformabilni ili osjetljivi elementi koji podliježu strukturnim promjenama pri istezanju koje nastaje pri djelovanju pritiska. Ti elementi su membrane, burdon cijevi (eng. burdon tubes), različite dijafragme (C oblika, uvrnute, spiralne, valovite (eng. corrugated)) [72], i druge komponente čiji se oblik mijenja pri djelovanju pritiska.

kondenzatora i nepromjenljivog induktora, a pobuđuje se i očitava pomoću antene. Kada se pritisak primjeni na membranu, rastojanje između elektroda se smanji, pri čemu se kapacitivnost poveća. Poprečni presjek senzora koji se sastoji od četiri HTCC trake je prikazan na slici 2.23. Induktor je projektovan u obliku kvadratne spirale tip i postavljen je na najvišem, četvrtom sloju. Pločasti kondenzator čine kvadratne elektrode. Jedna elektroda kondenzatora je postavljena na gornjoj površini prvog sloja, a druga elektroda na gornjoj površini četvrtog sloja. Sloj između ploča elektroda je ispunjen vazduhom. Električne veze između elektroda kondenzatora i induktora su ostvarene pomoću vija. HTCC trake kao slojevi sa elektrodama kondenzatora čine membranu senzora koja reaguje na promjenu pritiska. Senzor je fabrikovan u HTCC tehnologiji sa više od 10 koraka koji uključuju sječenje traka, bušenje rupa, sito štampu, laminaciju, pečenje,... Dio fabrikacionog procesa je prikazan na slici 2.24. Razvijena komora za testiranje senzora povezanog na analizator impedanse je prikazana na slici 2.25. Fabrikovani senzor se može koristiti u opsegu pritisaka do 3 bara, pri čemu je dobijena osjetljivost od 860 Hz/bar.

![Slika 2.23 Poprečni presjek senzora i slika fabrikovanog senzora, [23]](image1)

![Slika 2.24 Dio fabrikacionog procesa pri izradi senzora, [23]](image2)

Promjenljivi element senzora kontaktnog sočiva je kondenzator koji može da detektuje ugao savijanja. Prva elektroda je fabrikovana u mekoj silikonskoj gumi na unutrašnjoj strani, dok su induktor i referentna elektroda fabrikovani u čvršćoj spoljašnjoj strani sočiva (slika 2.26). Osjetljivi kondenzator je električno povezan sa induktorom fiksne geometrije. Zahvaljujući razvijenom senzoru mjerene su promjene zakrivljenosti koje se mogu javiti u ljudskom oku pri promjeni očnog pritiska. Senzor je fabrikovan pomoću medicinskog tečnog silikona (NuSil MED-6033, Liquid silicone elastomer, NuSil Technology LLC, Carpinteria, CA,
Bežični RF MEMS senzor pritiska napravljen od potpuno biorazgradivih materijala je predstavljen u [40], slika 2.28. Opisani biorazgradivi senzori sadrže različite fleksibilne materijale za detektovanje pritiska, dielektrične materijale za izolaciju i provodne materijale za formiranje električnih elemenata. Cink/gvožđe slojevi su korišćeni kao provodni slojevi senzora, a kao dielektrični i strukturalni materijali biorazgradivi polimeri poli-L-lactide i polycaprolactone. Cink ima dobre električne karakteristike, biorazgradiv je i osnovni je element u protirošnji ljudskog tijela. Međutim, razgradnja čistog cinka u biološkom okruženju je prilično spora. Kako bi se prevazišla ova ograničenja, mala količina gvožđa je dodata cinku koji stimulše i ubrzava koroziju cinka. Da bi se izbjegli kontakti bioragradivih materijala sa jakim hemikalijama ili rastvaračima koji se najčešće koriste u MEMS fabrikaciji koriste se graviranje, višeslojno savijanje i laminacija sa tradicionalnim tehnologijama fabrikacije. Fabrikovani bežični senzor je testiran u vazduhu, sa povećanim salinitetom kako bi se odredila osjetljivost senzora pri djelovanju spoljašnjeg pritiska. Predstavljeni senzor se sastoji od promenljivog kondenzatora, koga čine dvije elektrode sa šupljinom između, povezanog sa induktorom. Promjena LC rezontantne frekvencije se mjeri bežično (putem antene). Kao kućište i ravan osjetljiva na djelovanje pritiska se koristi PLLA poly(L-lactide) zbog dobrih mehaničkih karakteristika, a polycaprolactone (PCL) za povezivanje i kao zaptivni materijal. Realizovani senzor pritiska može da bude pogodan za kratkoročnu medicinsku implantaciju jer je biorazgradiv i ne mora da se naknadno uklanja. Osjetljivost od 390 Hz/bar je postignuta u opsegu pritiska od 0-0,2 bara u vazduhu.
Slika 2.28 a) Poprečni presjek biorazgradivog senzora pritiska i b) mjerna postavka za testiranje senzora sa šematskim prikazom, [40]

Senzor pritiska i dodira baziran na organskim materijalima je predstavljen u [39]. Predstavljen senzor je kapacitivnog tipa sa dvije fleksibilne elektrode. Razdvojeni prikaz senzora je prikazan na slici 2.29a. Niz senzora pritiska se sastoji od tri fleksibilna sloja kao što se na slici može vidjeti. Bakarne elektrode se nalaze na spoljašnjim površinama gornjeg i donjeg sloja Kapton filma. Formiranje bakarnih struktura je postignuto fotolitografijom i hemijskim nagrizanjem. Između gornjeg i donjeg fleksibilnog sloja se nalazi međusloj Kapton filma, koji određuje šupljinu kondenzatora. Za povezivanje fleksibilnih slojeva nanose se dodatni vezivni slojevi između slojeva Kapton filma. Struktura kondenzatora i fotografija fabrikovanog senzora su prikazani na slikama 2.29b i 2.29c. Promjena spoljašnjeg pritiska dovodi do deformacije šupljine, što se detektuje preko promjene kapacitivnosti čije karakteristike su određene karakteristikama korišćenog fleksibilnog supstrata.

Slika 2.29 Slojevi fleksibilnih supstrata od koji se sensor sastoji i fotografija fabrikovanog niza senzora, [39]
Pored detektovanja pritiska, predstavljeni senzor je korišćen kao taktilni senzor za mjerenje lataralnog pomjeranja pri kome se šupljina deformiše, odnosno, za mjerenje pomjeranja pokretnog objekta. Vrh pokretnog objekta je u direktnom kontaktu sa površinom jedne elektrode, a druga elektroda je fiksnirana na određenom nivou. Pri pomjeranju vrha pokretnog objekta, šupljina između elektroda se deformiše i kapacitivnost senzora se mijenja. Prikazane su dvije strukture senzora sa prečnicima elektroda od 2 mm i 4 mm, a testiranje je izvršeno za mjerenje pritiska do 400 mbar, odnosno pomjeraja do 450 µm.

Promjenljivi reluktansni senzor pritiska (eng. *variable-reluctance pressure (VRP) sensor*) koristi magnetsku dijafragmu za modulaciju magnetske otpornosti diferencijalnog transformera. Sklop E jezgro i induktora proizvodi magnetski fluks čije linije prolaze kroz jezgro, vazdušni procjep i dijafragmu. Permeablnost E jezgra magnetskog materijala trebalo bi da bude reda veličine 1000 [71]. Magnetska otpornost vazdušnog procjepa je mnogo veća u odnosu na otpornost jezgra, a procjep određuje induktivnost struktura jezgro-induktor. Kada se dijafragma savija, vazdušni procjep se povećava ili smanjuje u zavisnosti od smjera savijanja, što dovodi do promjene induktivnosti. U strukturi senzora pritiska, magnetska dijafragma je postavljena između dvije polovine magnetskog kola (slika 2.30).

Slika 2.30 Osnovni princip rada promjenljivog reluktansnog senzora pritiska, [71]

2.2.3 Senzori pomjeraja

Mjerenje pomjeraja fizičkih objekata je od suštinskog značaja za mnoge primjene: kod procesa povratne sprege, za procjene koeficijenta korisnog dejstva i performansi, za kontrolu saobraćaja, u robotici, kod sigurnosnih sistema, itd. Pod pomjerajem se podrazumjeva prelazak sa jedne pozicije na drugu. Mjerenjem pomjeraj mogu se izmjeriti druge veličine (kao što su položaj, pritisak, sila, brzina i druge), zbog čega su senzori pomjeraja jedni od najšire korišćenih senzora.

Slika 2.31 Pogled sa strane i odozgo na strukturu senzora i realizovani prototip senzora, [73]

Pored navedene kapacitivne metode, pomjeraj se može detektovati pomoću metode elektromagnetske indukcije. Magnetska sprega između dva namotaja (primara i sekundara) se može mijenjati i zatim konvertovati u promjenu napona (slika 2.32).

Slika 2.32 Model kola LVDT senzora

Na slici 2.33 su prikazane dvije konfiguracije *senzora na bazi vrtložnih struja*: sa i bez zaštite, koji se koriste za detektovanje pomjeraja i blizine. Senzor sa zaštitom ima metalni oklop oko feritnog jezgra i namotaja. To fokusira i usmjerava elektromagnetsko polje na prednju stranu senzora. Ovo omogućava da se senzor instalira i čak ugrađuje u metalnu strukturu bez uticaja na opseg detektovanja. Senzor bez zaštite može da vrši detektovanje i na svojim stranama, kao i sa prednje strane. Kao rezultat, opseg detektovanja nezaštićenog senzora je obično nešto veći u odnosu na zaštićen senzor istog prečnika, međutim, kako bi ispravno radio, nezaštićeni senzor zahtjeva nemetalne okolne objekte.

Slika 2.33 a) Elektromagnetski senzor pomjeraja sa vrtložnim strujama, b) senzor sa zaštićenim prednjim dijelom i c) nezaštićenim dijelom

Elektromagnetski uređaj koji se može koristiti za merenje pozicije i pomjeraja je *transverzalni induktivni senzor blizine* (eng. *transverse inductive proximity sensor*). Ovaj senzor je koristan za detektovanje relativno malih pomjeraja feromagnetskih materijala. Senzor mjeri rastojanje induktora do objekta koji mijenja magnetsko polje u namotaju. Induktivnost namotaja se mjeri spoljašnjim elektronskim kolom (slika 2.34).
Pri kretanju senzora u blizini feromagnetskog objekta, njegovo magnetsko polje se mijenja, mijenjajući induktivnost namotaja. Prednost senzora je ta što je beskontaktni uređaj čija je interakcija sa objektom samo preko magnetskog polja.

Tangencijalni senzor pomjeraja se može koristiti kao osnovni dio instrumenta za mjerenje zakrivljenosti u cjevovodima u različitim industrijskim postrojenjima [74]. Mjerenjem prečnika cijevi na različitim pozicijama može se odrediti zakrivljenost iste. Za ovu primjenu realizovan je uređaj za mjerenje pozicije korišćenjem **induktivnog senzora**. Predstavljeni senzor se sastoji od spiralnog induktora prilagođenog obliku cijevi i feritnog jezgra. Induktor predstavlja dio oscilatornog LC kola. Promjena pozicije senzora tokom mjerenja prečnika cijevi, uzorkuje manje promjene induktivnosti koje direktno utiču na rad rezonantnog kola. Feritno jezgro se pomjera unutar kružnog induktora. Promjenom pozicije odnosno pomjeraja feritnog jezgra mijenja se induktivnost induktora, što uzrokuje promjene frekvencije oscilatora, odnosno rezonantna frekvencija je funkcija pozicije. Fabrikovani uređaj za mjerenje zakrivljenosti cijevi je montiran na pomično kljunasto mjerilo kako bi se realizovani uređaj testirao (slika 2.35). Sa realizovanim dizajnom senzora, opseg mjerenja pomjeraja je oko 25 mm. U opsegu do 10 mm dobijena je osjetljivost od oko 850 Hz/mm, nakon čega se u opsegu od 10 do 25 mm polako smanjuje.
Induktivni senzor pomjeraja u obliku meandra je predstavljen u radu [33]. Može se koristiti za mjerenje malih pomjeraja u ravni (manjih od 0,5 mm). Mjerenje pomjeraja u dva pravca se može izvršiti korišćenjem dva senzorska elementa, od kojih svaki ima par induktora oblika meandar (slika 2.36). U svakom paru, jedan od induktora je fiksiran, pri čemu se induktivnost mjeri između njegovih krajeva, dok je drugi induktor kratkospojen. Ako se jedan induktor pomjeri u ravni u odnosu na drugi, sprega između induktora se mijenja, kao i induktivnost induktora koja se mjeri, a koja služi kao mjera pomjeraja. Kako bi se postigla bolja linearost senzora, longitudinalni procjepi su mogu ubaciti u sredinu svakog provodnog segmenta fiksiranog induktora. Za realizaciju senzora korišćena je tehnologija štampanih ploča (PCB).

Slika 2.35 Šematski prikaz: a) induktora sa feritom i vazdušnim jezgrom, b) senzora postavljenog na pomično kljunasto mjerilo, [74]

Slika 2.36 Senzor pomjeraja sa dva namotaja, [33]
Predstavljeni sensor se može postaviti na stopalu robota u cilju mjerenja sile pri kontaktu sa tlom [8]. Par induktora oblika meandar mjeri pomjeraje proporcionalne normalnim i tangencijalnim komponentama prilikom reakcije noge robota sa tlom. Implementacija predstavljenog senzora na stopalo robota sa pozicijom senzorskih elemenata su prikazani na slici 2.37.

Slika 2.37 Pozicije elemenata senzora instaliranih u robotskoj nozi, [8]
3. Struktura induktor-ferit za senzorske primjene

U ovom poglavlju je opisano projektovanje i modelovanje strukture sastavljene od induktora i pločice od magnetskog materijala. Predložena su dva oblika induktora, čiji će geometrijski parametri biti opisani. Izvršena je analiza i upoređene su karakteristike strukture u zavisnosti od geometrijskih parametara induktora kako bi se predložile strukture koje imaju optimalne karakteristike.

Na slici 3.1 je prikazana struktura senzora sastavljena od induktora i pločice od magnetskog materijala (ferita). Induktor oblika meandra je prikazan na slici, ali u praktičnim primjenama bilo koji oblik induktora se može koristiti. Ovaj oblik je izabran zbog jednostavnosti, jer se može realizovati u jednom provodnom sloju. Korišćena je komercijalno dostupna pločica ferita (Epcos, B66289P0000X187, [75]), dimenzija 38 x 25 x 3 mm³, permeabilnosti 1450. Prisustvo ferita će uzrokovati promjenu vrijednosti induktivnosti pri promjeni međusobnog položaja induktora i feritne pločice.

Slika 3.1 Struktura induktor-feritna pločica: a) 3D, b) pogled odozgo i c) poprečni presjek
Na električne osobine induktora mogu da utiču dvije grupe parametara:

- tehnološki parametri i
- geometrijski parametri.

Tehnološki parametri (kao što su debljina supstrata, minimalna širina i rastojanje između provodnih slojeva, debljina provodnih slojeva,...) zavise od procesa fabrikacije i na njih ne možemo da utičemo.

Geometrijski parametri su značajani faktori u određivanju električnih parametara induktora. Za razliku od tehnoloških parametara, geometrijske parametre induktora možemo da mijenjamo u cilju optimizacije i poboljšanja njegovih performansi. Kako bi se ispitao uticaj magnetskog polja i omogućilo bežično mjerenje, ispitana su dva dizajna induktora opisana u narednom odeljku.

3.1 Dizajni induktora

Projektovane su dvije strukture induktora, i to oblika:

- meandar i
- spiralnog oblika.

Oba oblika induktora su dobri za integraciju i primjenu u senzorima, jer imaju samo jedan provodan sloj i jednostavan proces izrade. Za fabrikaciju induktora korišćena je tehnologija štampanih ploča sa jednim metalnim slojem. Induktori su projektovani tako da su im spoljašnje dimenzije, širina provodnih linija, kao i broj namotaja isti. Na taj način, induktori se mogu lako uporediti i na osnovu toga može se predložiti dizajn induktora koji ima bolje karakteristike i koji će se koristiti za realizaciju senzora. U narednim odeljcima su prikazane odlike (geometrijske dimenzije) obje strukture induktora.

3.1.1 Dizajn induktora oblika meandar

Induktor je oblika meandra (slika 3.2). Kao magnetski materijal korišćena je komercijalno dostupna feritna pločica dimenzija $38 \times 25 \times 3 \text{ mm}^3$. Kako bi površina preklapanja između feritne pločice i induktora bila što veća, a induktor imao jednostavan, kvadratni oblik, induktor je projektovan tako da su mu spoljašnje dimenzije $25 \times 25 \text{ mm}^2$. Geometrijski parametri induktora oblika meandar su prikazani u tabeli 3-1.
Tabela 3-1 Geometrijski parametri induktora oblika meandar

<table>
<thead>
<tr>
<th>Oblik induktora</th>
<th>Meandar</th>
</tr>
</thead>
<tbody>
<tr>
<td>spoljaшnje dimenzije induktora</td>
<td>25 x 25 mm²</td>
</tr>
<tr>
<td>dužina najdužih segmenata, d_{out}</td>
<td>25 mm</td>
</tr>
<tr>
<td>širina provodne linije, w</td>
<td>200 µm</td>
</tr>
<tr>
<td>rastojanje između susjednih segmenata, s</td>
<td>981 µm</td>
</tr>
<tr>
<td>debljina provodnih linija, t</td>
<td>33 µm</td>
</tr>
<tr>
<td>broj zavojaka, N</td>
<td>22</td>
</tr>
</tbody>
</table>

Slika 3.2 Induktor oblika meandar: a) dizajn i b) fabrikovan induktor sa dodatim kontaktima

3.1.2 Dizajn induktora spiralnog oblika

Pored induktora oblika meandar, ispitani su i spiralni oblici kako bi se predložio dizajn kojim se mogu postići dobre performanse i primjena u senzorima. Zbog jednostavnosti dizajna, spiralni oblici su jedan od najčešće korišćenih oblika induktora. Na slici 3.3 su prikazani dizajn i fabrikovan induktor spiralnog oblika. Induktor je projektovao u obliku kvadratne spirale, čiji su geometrijski parametri dati u tabeli 3-2.
Tabela 3-2 Geometrijski parametri induktora spiralnog oblika

<table>
<thead>
<tr>
<th>Oblik induktora</th>
<th>Spiralni</th>
</tr>
</thead>
<tbody>
<tr>
<td>spoljašnje dimenzije induktora</td>
<td>25 x 25 mm²</td>
</tr>
<tr>
<td>dužina spoljašnjih segmenata, d_{out}</td>
<td>25 mm</td>
</tr>
<tr>
<td>širina provodne linije, w</td>
<td>200 µm</td>
</tr>
<tr>
<td>rastojanje između susjednih segmenata, s</td>
<td>200 µm</td>
</tr>
<tr>
<td>debljina provodnih linija, t</td>
<td>33 µm</td>
</tr>
<tr>
<td>broj zavojaka, N</td>
<td>22</td>
</tr>
</tbody>
</table>

Da bi se lakše uporedile odlike predloženih induktora, kvadratni spiralni induktor ima iste spoljašnje dimenzije, 25 x 25 mm², istu širinu provodnih linija 200 µm i isti broj zavojaka, $N = 22$, kao i induktor oblika meandar. Razmak između provodnih linija je raspoređen ravnomjerno i određen tako da se rasporedi isti broj zavojaka unutar fiksne površine, kao kod prethodne strukture.

3.2 Modelovanje sistema

Projektovani i fabrikovani mjerni sistemi u ovoj doktorskoj disertaciji se sastoje od senzora i antene kojom se vrši bežično mjerenje. Senzor čine induktor i magnetski materijal (feritna pločica) koja se nalazi u njegovoj blizini. U naradnim odeljcima će biti modelovani dijelovi mjernih sistema, odnosno induktor, uticaj magnetskog materijala na induktivnost induktora i sistem antena-senzor.
3.2.1 Modelovanje induktora

Induktore možemo da modelujemo kao paralelno ili serijski povezana rezonantna LC kolo, koje se može karakterisati sa dvije dodatne veličine, karakterističnom (ili rezonantnom) frekvencijom, \(f_r \), i propusnim opsegom, \(B \), [76]. Karakteristična frekvencija LC kola se ne mijenja sa promjenom konfiguracije kola, dok se propusni opseg mijenja. Izbor konfiguracije kola zavisi od primjene. U našim senzorima koristi se promjena induktivnosti koja utiče na promjenu rezonantne frekvencije i propusnog opsega serijskog rezonantnog kola, tako da ćemo induktore koji su korišćeni u ovom radu modelovati kao serijsko rezonantno LC kolo prikazano na slici 3.4.

Pored induktivnosti \(L \), realni dio ima gubitke (modelovane kao otpornost, označena sa \(R \)) i parazitnu kapacitivost, označenu sa \(C \).

![Slika 3.4 Ekvivalentna šema rezonantnog LC kola](image)

Ekvivalentne impedanse svakog elementa kola, tačnije, impedanse induktora \(Z_L \), otpornika \(Z_R \) i kondensatora \(Z_C \) su

\[
Z_L = j\omega L, \quad (3.1)
\]

\[
Z_R = R, \quad (3.2)
\]

\[
Z_C = \frac{1}{j\omega C}. \quad (3.3)
\]

Impedansa serijskog rezonantnog kola, \(Z_{LC}(\omega) \) je

\[
Z_{LC}(\omega) = Z_L(\omega) + Z_C(\omega) + Z_L(\omega), \quad (3.4)
\]

\[
Z_{LC}(\omega) = j\omega L + \frac{1}{j\omega C} + R, \quad (3.5)
\]
\[Z_{LC}(\omega) = R_l + j(\omega L_l - \frac{1}{\omega C_l}) , \quad (3.6) \]

gde je \(j \) imaginarna jedinica, \(\omega \) kružna frekvencija definisana sa \(\omega = 2\pi f \), a \(f \) frekvencija kola.

Imaginarni dio jednačine (3.6) je

\[\text{Im}\{Z_{LC}(\omega)\} = \omega L_l - \frac{1}{\omega C_l} . \quad (3.7) \]

Rezonantna frekvencija LC kola se određuje iz uslova da je \(\text{Im}\{Z_{LC}(\omega)\} = 0 \) tako da je

\[\text{Im}\{Z_{LC}(\omega)\} = \omega L_l - \frac{1}{\omega C_l} = 0 , \quad (3.8) \]

\[\omega L_l = \frac{1}{\omega C_l} , \quad (3.9) \]

\[\omega^2 = \frac{1}{L_l C_l} , \quad (3.10) \]

\[\omega = \sqrt{\frac{1}{L_l C_l}} . \quad (3.11) \]

Iz jednačine (3.11) se dobija da je rezonantna frekvencija LC kola

\[2\pi f_r = \sqrt{\frac{1}{L_l C_l}} , \quad (3.12) \]

\[f_r = \frac{1}{2\pi \sqrt{L_l C_l}} . \quad (3.13) \]

Kao što se iz jednačine (3.13) može videti, induktivnost induktora \(L_l \) je jedan od dva osnovna člana koja određuju rezonantnu frekvenciju. Stoga, promjena induktivnosti može dovesti do promjene rezonantne frekvencije, \(f_r \).

Na slici 3.5 je prikazana tipična kriva frekvencijske zavisnosti induktivnosti induktora (koja je dobijena mjerenjem induktivnosti induktora oblika meandar i biće prikazana kasnije u radu na slici 3.16b). Sa slike vidimo da se induktor ponaša kao rezonantno kolo.
Induktivnost induktora na rezonantnoj frekvenciji dostiže vrijednost 0 i nakon toga iznad rezonantne frekvencije ima negativnu vrijednost.

\[
\text{Slika 3.5 Frekvencijska zavisnost induktivnosti induktora}
\]

3.2.2 Modelovanje induktora u prisustvu magnetskog materijala

Do sada je u literaturi posmatran uticaj različitih supstrata na karakteristike planarnih induktora. Ispitivani su dvodimenzionalni induktori na tankom filmu permaloja [77], dok su u [78] proučavani dvodimenzionalni kružni spiralni induktori sa vazdušnim jezgrom. Pokazano je da se vrijednost induktivnosti za ovakve strukture može dobiti veoma precizno modelovanjem spirale kao seta koncentričnih strujnih putanja. Isto princip se može iskoristiti ukoliko se posmatra magnetski supstrat permeabilnosti \(\mu \). Analitički rezultati su pokazali da se dobija značajno poboljšanje induktivnosti planarnog induktora na magnetskom supstratu, a teorijski rezultati su pokazali da su u dobrom slaganju sa eksperimentalnim. Za ovakvo modelovanje se pokazalo da je u dobrom slaganju u slučaju vazdušnog jezgra [77], ali i u slučaju spirale na magnetskom supstratu, sa razlikom između eksperimentalnih i teorijskih rezultata manjom od 10 \%, [79].

Prisustvo magnetskog materijala u blizini induktora povećava vrijednost njegove induktivnosti. Posmatrjamo kružnu spiralu, iako se slična promjena induktivnosti može očekivati i kod drugih planarnih geometrijskih oblika, kao što su kvadratne spirale. Induktor spiralnog oblika na magnetskom materijalu, permeabilnosti \(\mu > 1 \), sa \(N \) zavojaka (slika 3.6), može se modelovati pomoću koncentričnih strujnih kontura. U prvom koraku, spiralni induktor se predstavlja pomoću seta \(N \) prstenova kroz koje protiče struja \(I \), postavljenih
paralelno sa površinom magnetskog supstrata, kao što je prikazano na slici 3.7. U drugom koraku, uticaj magnetskog supstrata se predstavlja korišćenjem metode strujnih likova [78, 80] (slika 3.8). Ako je normalno rastojanje između induktora i magnetskog materijala z_0, tada se odgovarajući setovi strujnih kontura nalaze na rastojanju $2z_0$, kao što je prikazano na slici 3.8. Što je veća permeabilnost, dva seta provodnika se nalaze na manjem rastojanju, čime se ekvivalentna induktivnost induktora povećava do dvostrukih vrijednosti (za $\mu \to \infty$).

Slika 3.6 Kružna spirala u blizini magnetskog materijala

Slika 3.7 Kružna spirala modelovana pomoću koncentričnih strujnih kontura

Slika 3.8 Magnetski supstrat zamijenjen sa strujnim likovima
Induktivnost ovakve složene strukture može se izračunati podjelom provodnih segmenata induktora na konačan broj provodnika [81], pri čemu su samoinduktivnost i međusobna induktivnost određene korišćenjem koncepta parcijalne induktivnosti [82, 83]. Kod ove metode složena struktura se podijeli na prave provodnike (segmente), a induktivnost se dobija superpozicijom parcijalnih samoinduktivnosti i međusobnih induktivnosti segmenata. Ukoliko su dimenzije poprečnih presjeka provodnika male u odnosu na rastojanje između provodnih segmenata, tada se poprečni presjek provodnih segmenata zanemaruje, a rastojanje između provodnika je jednako rastojanju između osa provodnika. Kada se dimenzije poprečnih presjeka provodnika ne mogu zanemariti u odnosu na njihovo međusobno rastojanje, izračunavanje induktivnosti je složenije i unosi veću grešku u proračunu.

Ako induktor podjelimo na \(n \) elementarnih segmenata, ukupna induktivnost podjeljenog induktora je suma svih parcijalnih samoinduktivnosti elementarnih provodnika \(L_i \) i suma svih međusobnih induktivnosti između elementarnih provodnika \(L_{ij} \)

\[
L = \sum_{i=1}^{n} L_i + \sum_{i=1}^{n} \sum_{j=1}^{n} L_{ij} ,
\]

(3.14)

gdje je \(i \neq j \).

Jedan induktor u blizini drugog uticaće na promjenu njegove induktivnosti putem induktivne sprege, što se modeluje preko međusobne induktivnosti između induktora. Ukupna međusobna induktivnost između induktora i lika predstavlja sumu parcijalnih međusobnih induktivnosti između svaka dva elementarna provodnika induktora \((n_1) \) i njegove slike \((n_2) \)

\[
M = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} L_{ij} .
\]

(3.15)

Postavljanjem magnetskog materijala (feritne pločice) u blizini induktora i njihovim međusobnim približavanjem, smanjuje se rastojanje između induktora i njegovog lika, a vrijednost induktivnost induktora se povećava do najviše 2 puta.
3.2.3 Modelovanje sistema antena i senzor

Mjerenje promjene induktivnosti i rezonantne frekvencije senzora vrši se pomoću spoljašnjeg namotaja-antene. Ako je samo antena povezana na mjerni uređaj, mjerena kompleksna impedansa je

\[Z_A(\omega) = R_A + j\omega L_A, \]

(3.16) gdje je \(R_A \) serijska otpornost, \(L_A \) induktivnost antene i \(\omega \) (rad/s) kružna frekvencija ulaznog AC generatora signala sa mjernog uređaja. Kao što se u jednačini (3.16) može vidjeti, u modelu antene se ne koristi kondenzator. U sistemima realizovanim u ovoj doktorskoj disertaciji, rezonantne frekvencije antena su dosta veće u odnosu na fabrikovane senzore, što je posljedica male parazitne kapacitivnosti, zbog čega se koristi pojednostavljenje modelovanje antene preko otpornosti i induktivnosti. Sličan postupak modelovanja je primjenjen i u [76].

Faza impedanse antene je

\[\varphi = \arctg \frac{\text{Im}[Z_A(\omega)]}{\text{Re}[Z_A(\omega)]}, \]

(3.17) i

\[\varphi = \arctg \frac{\omega L_A}{R_A}. \]

(3.18)

Naizmjenični AC signal prolazi kroz namotaj antene i generiše magnetsko polje u njoj okolini. Ukoliko se senzor postavi u blizini antene, magnetsko polje indukuje struju i pad napona u senzoru. Mjerni uređaj generiše signal na antenu, a istovremeno, mjerni uređaj mjeri odgovarajući odziv i promjenu impedanse sistema. Na slici 3.9 je šematski prikaz pasivnog bežičnog mjernog sistema koji se sastoji od spoljašnje antene povezane na mjerni uređaj i senzora promjenljive induktivnosti. Bežična komunikacija između antene i senzora vrši se pomoću elektromagnetske indukcije između namotaja.
Slika 3.9 Evivalentno kolo sistema koje se sastoji od bežičnog pasivnog senzora i spoljašnje antene povezane na mjerni uređaj

Kada se senzor nađe u blizini antene, dodatni kompleksni član impedanse, Z_A', uslijed inductivne sprege, se dodaje na impedansu antene (slika 3.9),

$$Z_A'(\omega) = \frac{(\omega M)^2}{Z_{LC}} = \frac{(\omega M)^2}{R_I + j(\omega L_I - \frac{1}{\omega C_I})}. \quad (3.19)$$

Međusobna inductivnost M se može izračunati kao

$$M = \pm k \sqrt{L_A L_I}, \quad (3.20)$$

gdje je k, ($0 < k < 1$), koeficijent sprege između induktora. Dodatni član impedanse je tada

$$Z_A'(\omega) = \frac{k^2 \omega^2 L_A L_I}{R_I + j(\omega L_I - \frac{1}{\omega C_I})}. \quad (3.21)$$

Impedansa mjernog sistema sa antenom, odnosno impedansa koja se mjeri na krajevima antene između priključaka 1 i 2 na mjernom uređaju uz prisustvo senzora je

$$Z_M = R_A + j\omega L_A + Z_A', \quad (3.22)$$
Koeficijent sprege opisuje međusobnu induktivnost između induktora antene i senzora. Kada bi antena i senzor bili istih dimenzija, iste induktivnosti, precizno poravnati po osama i na minimalnoj udaljenosti, koeficijent sprege bi bio maksimalan, $k = 1$. Međutim, koeficijent sprege značajno zavisi od geometrijskog oblika induktora, radnih uslova, međusobne udaljenosti i drugih faktora, pa je zbog toga manji od 1. U slučaju kada se senzor nalazi u okolini antene (kada udaljenost između induktora može biti aproksimiran beskonačnom vrijednošću), koeficijent sprege je $k = 0$, a jednačina (3.23) se svodi na jednačinu (3.16).

Iz jednačine (3.23) vidimo da je impedansa sistema (spoljašnje antene i senzora) na rezonantnoj frekvenciji senzora (kada je imaginarni dio impedanse senzora nula)

$$Z_M(\omega) = R_A + j\omega L_A + \frac{k^2\omega^2L_AL_I}{R_I + j(\omega L_I - \frac{1}{\omega C_I})}. \quad (3.23)$$

Faza impedanse sistema (spoljašnje antene i senzora) na rezonantnoj frekvenciji senzora je

$$\varphi = \arctg \frac{\text{Im}\{Z_M(\omega_0)\}}{\text{Re}\{Z_M(\omega_0)\}}, \quad (3.25)$$

$$\varphi = \arctg \frac{\omega_0 L_A}{R_A + \frac{k^2\omega_0^2L_AL_I}{R_I}}. \quad (3.26)$$

Antena će detektovati promjenu rezonantne frekvencije induktivnog senzora. Modeli i impedanse antene bez senzora, kao i sistema sa serijskim rezonantnim kolom induktivnog senzora u blizini antene su prikazani na slici 3.10. Promjena induktivnosti senzora će dovesti do promjene rezonantne frekvencije sistema, f_r.

$$Z_M(\omega) = R_A + j\omega L_A + \frac{k^2\omega^2L_AL_I}{R_I + j(\omega L_I - \frac{1}{\omega C_I})}. \quad (3.23)$$
Slika 3.10 Modeli i moduo impedanse, $|Z|$: a) antene bez senzora, b) sistema sa serijskim rezonantnim kolom senzora

Faza impedance antene bez i u prisustvu senzora je prikazana na slici 3.11. Rezonantna frekvencija antene, f_1, se određuje preko promjene faze impedance sa 90° na -90° i obratno. Na slici 3.11a je prikazana frekvencijska zavisnost faze impedance antene koja će biti korišćena za mjerenje senzora i biće prikazana na slici 3.20. Na rezonantnoj frekvenciji antene, f_1, fazni ugao ima vrijednost 0°. Na slici 3.11b je, zajedno sa fazom impedance antene, prikazana i kriva faze sistema (koja je dobijena mjerenjem sistema realizovanog u ovoj disertaciji i biće prikazana na slici 3.20). Minimalna vrijednost faze impedance je na rezonantnoj frekvenciji sistema, f_r.
Slika 3.11 Zavisnost faze impedanse: a) antene i b) sistema kada je rezontantna frekvencija senzora manja u odnosu na rezontantnu frekvenciju antene

Postoje dva moguća slučaja međusobne sprege između antene i senzora:

- da je rezontantna frekvencija sistema manja ili
- da je rezontantna frekvencija sistema veća

u odnosu na rezontantnu frekvenciju antene. Ukoliko je rezontantna frekvencija antene veća u odnosu na rezontantnu frekvenciju sistema, \(f_i > f_r \), rezontantna frekvencija senzora se javlja ispod rezontantne frekvencije antene, i obratno, kada je \(f_i \) manja u odnosu na \(f_r \), \(f_i < f_r \), rezontantna frekvencija sistema je veća i postavljena iznad rezontantne frekvencije same.
antene. U slučaju kada su rezonantne frekvencije antene i sistema iste, \(f_i = f_r \), ne postoje nagle promjene i ekstremne vrijednosti u karakteristikama faze i rezonantna frekvencija sistema se ne može odrediti. Stoga, pri projektovanju sistema, potrebno je koristiti antenu i senzor koji imaju dovoljno različite vrijednosti rezonantnih frekvencija. U ovoj doktorskoj disertaciji projektovani induktori imaju 15 i više namotaja. Kako bi se postigla manja induktivnost antene, a na taj način i dovoljno različita i veća rezonantna frekvencija antene u odnosu na induktore, kao antena korišćena su do tri namotaja.

Promjena faze impedance na rezonantnoj frekvenciji \(|\Delta \varphi_{dip}| \) je razlika faze impedance između nespregnute antene (same antene, \(M = 0 \)) i spregnute antene tj. sistema (antene i senzor, \(M \) je konačno)

\[
|\Delta \varphi_{dip}| = |\angle (R_A + j\omega_0 L_A) - \angle Z_M (\omega_0)|,
\]

\[
|\Delta \varphi_{dip}| = \arctg \frac{\omega_0 L_A}{R_A} - \arctg \frac{\omega_0 L_A}{R_A + \omega_0^2 M^2}.
\]

Faza impedance antene do rezonantne frekvencije je oko 90\(^\circ\), tako da možemo da zanemarimo vrijednost parazitne otpornosti antene, \(R_A \). Promjena faze impedance se tada može izraziti kao

\[
|\Delta \varphi_{dip}| = \arctg \frac{\omega_0 L_A}{R_A} - \arctg \frac{\omega_0 L_A}{\omega_0^2 M^2 R_j}, \quad (3.29)
\]

\[
|\Delta \varphi_{dip}| = \arctg \frac{\omega_0 L_A}{R_A + \omega_0^2 M^2} - \omega_0 L_A R_j, \quad (3.30)
\]

\[
|\Delta \varphi_{dip}| = \arctg \frac{\omega_0^2 L_A M^2 - \omega_0 L_A L_j R_A}{R_A \omega_0^2 M^2 + \omega_0^2 L_A^2 R_j}, \quad (3.31)
\]

\[
|\Delta \varphi_{dip}| = \arctg \frac{\omega_0^2 L_A M^2}{\omega_0^2 L_A^2 R_j}, \quad (3.32)
\]
\[|\Delta \varphi_{\text{dip}}| = \text{arctg} \frac{\omega_0 M^2}{L_A R_I}, \]
(3.33)

\[|\Delta \varphi_{\text{dip}}| = \text{arctg} \frac{\omega_0 M^2}{L_A R_I}, \]
(3.34)

\[|\Delta \varphi_{\text{dip}}| = \text{arctg} \frac{\omega_0 k^2 L_I}{R_I}. \]
(3.35)

Na slici 3.12 su prikazane frekvenčijske zavisnosti faze impedanse sa dvije različite vrijednosti rezonantnih frekvencija.

Slika 3.12 Karakteristike faze impedanse sa dvije različite rezonantne frekvencije

3.2.4 Rezultati mjerenja senzorske strukture ferit - induktor oblika meandar

Slika 3.13 Šematski prikaz mjerne postavke i precizno podešavanje rastojanja između induktora oblika meandar i feritne pločice
Mjerna postavka za mjerenje induktivnosti induktora za različita rastojanja u odnosu na feritnu pločicu je prikazana na slici 3.13. U ovoj mjernoj postavci pokretni dio je feritna pločica, međutim, u praktičnim primjenama induktor se takođe može koristiti kao pokretni dio. Induktor je postavljen i fiksiran na držaču. Precizni pozicioner (eng. Manual Translation Stage, MTS) se koristi za određivanje i podešavanje tačnog rastojanja između induktora i feritne pločice. Feritna pločica je postavljena i fiksirana na pozicioneru - MTS tako da se njena udaljenost u odnosu na induktor može precizno podešavati i mijenjati. Promjena rastojanja između induktora i feritne pločice je mjerena u opsegu do 2 mm sa povećanjem rastojanja u koracima od 100 µm. Mjerenje je izvršeno korišćenjem analizatora impedanse (Impedance Analyzer HP4191A) u opsegu od 1-110 MHz.

Kod induktora oblika meandar segmenti provodnih linija su paralelni i kroz njih teče struja u suprotnim smjerovima (slika 3.14). Na taj način, polje će se generisati u ravnim induktorima, jer parovi susjednih provodnih segmenata poništavaju polja generisana od neposrednih susjednih provodnika (kao što je prikazano u [84]), što će onemogućiti detektovanje induktora pomoću antene i bežično mjerenje.

Izmjerena induktivnost induktora bez prisustva feritne pločice je 0,64 µH. Kao antena korišćena su dva spiralna namotaja. Mjerena je faza impedanse, sa koje je određena rezonantna frekvencija same antene, 92 MHz (slika 3.15). Nakon toga, induktor oblika meandar je postavljen u blizini antene. Kao što se sa slike može vidjeti, postavljanjem induktora oblika meandar, faza impedanse se nije promijenila, što znači da se induktor oblika meandar ne može bežično detektovati pomoću antene. Iz tog razloga, mjerena je induktivnosti induktora oblika meandar povezivanjem induktora na mjerni instrument. Na slici 3.16 su prikazane dobijene karakteristike induktivnosti induktora oblika meandar. Sa
grafika prikazanih na slikama 3.16 i 3.17 se može vidjeti da se pri smanjenju rastojanja između induktora i feritne pločice, \(d\), (sa početnog rastojanja 2000 µm na 0 µm) povećava induktivnost induktora, odnosno smanjuje rezonantna frekvencija. Dobijena karakteristika se može podijeliti na tri linearna segmenta sa osjetljivostima od \(S_I\)

\[
S_I = \frac{\Delta f_r}{\Delta d} = 0,02 \text{ MHz/µm } u \text{ opsegu } 0-300 \text{ µm}, \quad (3.36)
\]

\[
S_{II} = \frac{\Delta f_r}{\Delta d} = 0,043 \text{ MHz/µm } u \text{ opsegu } 300-1000 \text{ µm} \quad (3.37)
\]

\[
S_{III} = \frac{\Delta f_r}{\Delta d} = 0,001 \text{ MHz/µm } u \text{ opsegu } 1000-2000 \text{ µm} \quad (3.38)
\]

\[S_{II} = \frac{\Delta f_r}{\Delta d} = 0,043 \text{ MHz/µm } u \text{ opsegu } 300-1000 \text{ µm} \]

\[S_{III} = \frac{\Delta f_r}{\Delta d} = 0,001 \text{ MHz/µm } u \text{ opsegu } 1000-2000 \text{ µm} \]

\[S_{III} = \frac{\Delta f_r}{\Delta d} = 0,001 \text{ MHz/µm } u \text{ opsegu } 1000-2000 \text{ µm} \]

Slika 3.15 Frekvencijska zavisnost faze antene, i sistema antene i induktora oblika meandar
Slika 3.16 Promjena induktivnosti za različita rastojanja, d (μm), induktora i feritne pločice: a) u frekvencijskom opsegu od 2 do 10 MHz i b) u frekvencijskom opsegu od 70 do 115 MHz
Slika 3.17 Frekvencijska zavisnost rezonantne frekvencije induktora oblika meandar i feritne pločice u odnosu na rastojanje

3.2.5 Rezultati mjerenja sistema: ferit-spiralni induktor-antena

Slika 3.18 Šematski prikaz mjerne postavke za precizno podešavanje rastojanja između spiralnog induktora i feritne pločice

Mjerna postavka za ispitivanje uticaja feritne pločice na induktivnost induktora spiralnog oblika je prikazana na slici 3.18. Pokretni dio je feritna pločica, dok je induktor fiksiran na držaču. Pozicioner MTS je korišćen za podešavanje rastojanja, d, između induktora i feritne pločice. Kao i kod induktora oblika meandar, ispitan je uticaj feritne pločice za rastojanja do 2 mm sa koracima od 100 µm.

54
Korišćenjem Vileorove metode [92] izračunata je induktivnost induktora i iznosi 9,67 µH. Za mjerenje induktivnosti induktora spiralnog oblika potrebno je napraviti izvod iz središnjeg dijela induktora. Samim tim, onemogućilo bi se mjerenje induktivnosti i rezonantne frekvencije u slučaju malih rastojanja između induktora i feritne pločice (reda µm) i kada feritna pločica naliježe na induktor.

Kod induktora spiralnog oblika, struja segmenata paralelnih provodnih linija je istog smijera (slika 3.19). Uslijed zbira polja pojedinačnih namotaja, magnetsko polje induktora spiralnog oblika je znatno veće u odnosu na induktor oblika meandar (kao što je prikazano u [84]), što će omogućiti bežično mjerenje.

\[Slika\ 3.19\ Spiralni\ kvadratni\ induktor:\ dizajn\ i\ poprečni\ presjek \]

Spoljašnji induktor – antena je povezana na analizator impedanse (Impedance Analyzer HP4191A), a mjerenje je izvršeno u opsegu od 1-115 MHz. Na slici 3.20 su prikazane promjene faze antene, antene i induktora i sistema (induktor, feritna pločica na induktoru i antena). Dobijeni rezultati mjerenja su potvrdili da se prisustvo spiralnog induktora može bežično detektovati pomoću spoljašnjeg induktora – antene (tačkasti grafik). Rezonantna frekvencija antene je 86 MHz, antene i induktora 48 MHz, dok je feritna pločica postavljena na induktoru (\(d = 0 \text{ µm}\)) uticala na smanjenje rezonantne frekvencije na 19,8 MHz.
Slika 3.20 Frekvencijska zavisnost faze antene, antene i induktora i sistema (induktor, feritna pločica na induktoru \(d = 0 \mu m \) i antena)

Frekvencijska zavisnost modula i faze impedanse sistema (induktor, feritna pločica na induktoru i antena) su prikazani na slici 3.21.

Slika 3.21 Frekvencijska zavisnost: a) modula impedanse i b) faze impedanse sistema (spiralnog induktora, feritne pločice i antene)
Rezonantna frekvencija sistema je određena preko minimalne vrijednosti faze impedanse. Promjena faze impedanse sistema za promjene rastojanja induktora i feritne pločice do 2 mm, sa koracima od 100 µm je prikazana na slici 3.22. Karakteristika zavisnosti rezonantne frekvencije sistema u odnosu na rastojanje između spiralnog induktora i feritne pločice je prikazana na slici 3.23. Približavanjem feritne pločice induktoru, odnosno smanjenjem njihovog međusobnog rastojanja, induktivnost induktora se povećava, što dovodi do smanjenja rezonantne frekvencije sa počene vrijednosti. Kao i kod induktora oblika meandra, dobijena karakteristika je podijeljena na tri linearna segmenta u istim opsezima promjene rastojanja kako bi se karakteristike mogle međusobno porediti. Dobijene su osjetljivosti S_I

\[S_I = \frac{\Delta f_r}{\Delta d} = 0,024 \text{ MHz/µm} \quad \text{u opsegu 0-300 µm}, \quad (3.39) \]

\[S_{II} = \frac{\Delta f_r}{\Delta d} = 0,099 \text{ MHz/µm} \quad \text{u opsegu 300-1000 µm}, \quad (3.40) \]

\[S_{III} = \frac{\Delta f_r}{\Delta d} = 0,0047 \text{ MHz/µm} \quad \text{u opsegu 1000-2000 µm}, \quad (3.41) \]

Slika 3.22 Frekvencijska zavisnost faze impedanse sistema za promjene rastojanja induktora i feritne pločice do 2 mm, sa koracima od 100 µm
3.3 Poređenje karakteristika induktora oblika meandar i spiralnog oblika

Dobijene performanse prethodno ispitanih tipova induktora su međusobno upoređene. Kako bismo uporedili performanse induktora oblika meandar i kvadratne spirale, normalizovane karakteristike rezontantne frekvencije u odnosu na svoje početne vrijednosti za oba tipa induktora su prikazane zajedno na slici 3.24.
Kvadratni spiralni i induktor oblika meandar imaju iste spoljašnje dimenzije tj. istu površinu, isti broj namotaja, istu širinu provodnih linija, ali rezultati mjerenja promjene rezonantne frekvencije pokazuju veliku razliku. Iz jednačina (3.36)-(3.41) se može vidjeti da je korišćenjem induktora spiralnog oblika postignuta bolja osjetljivost u drugom i trećem segmentu karakteristike promjene rezonantne frekvencije. U prvom segmentu linearnih krivih (do 300 μm) postignuta je ista osjetljivost. Sistem sa spiralnim induktorom ima izlaznu karakteristiku bolje linearnosti, čime će biti omogućena fabrikacija senzora boljih karakteritika.

Dizajn induktora kvadratnog spiralnog oblika ima važnu prednost u poređenju sa induktorom oblika meandar, a to je što omogućava bežično detektovanje pomoću antene. Induktivnost induktora spiralnog oblika bez djelovanja feritne pločice je 9,67 μH, a induktora oblika meandar 0,64 μH pri istim spoljašnjim dimenzijama induktora. Induktivnost projektovanog induktora spiralnog oblika je oko 15 puta veća u odnosu na induktivnost induktora oblika meandar. Takođe, jednostavnija izrada i integracija induktora spiralnog oblika, bez potrebe za lemljenjem, kontaktima i dugim žicama, čini ovaj dizajn induktora pogodnim za praktične primjene, pa će shodno tome biti korišćeni za realizaciju jednostavnih planarnih senzora sa induktivnim radnim principom.
4. Heterogeno integrisani induktivni senzor sile

Kao što je opisano u Poglavlju 3, magnetski materijali utiču na promjenu induktivnosti induktora kada se nalaze u njihovoj blizini. Približavanjem induktora i magnetske pločice vrijednost induktivnosti se povećava. Stoga, strukture koje se sastoje od induktora i magnetske pločice u njegovoj blizini mogu da budu pogodni i iskorišćeni za senzorske primjene. Ovakvi senzori se mogu projektovati i koristiti za mjerenje fizičkih veličina kao što su pomjeraj, pritisak i sila.

Na osnovu struktura induktor-feritna pločica opisanih u prethodnom poglavlju, projektovan je i fabrikovan heterogeno integrirani bežični senzor za mjerenje sile normalne na površinu senzora. U ovom poglavlju su dati dizajn, princip rada i eksperimentalni rezultati predloženog senzora sile koji se sastoji od induktora, feritne pločice i elastomera osjetljivog na silu.

4.1 Dizajn senzora

Predloženi senzor sile se sastoji od:

- induktora, kao osnovnog dijela,
- komercijalno dostupnog elastomera i
- feritne pločice.

Izgled senzora, kao i pogled odozgo na gornje i donje dijelove senzora su prikazani na slici 4.1.
Induktor je projektovan u tehnologiji štampanih ploča sa jednim metalnim slojem na FR4 supstratu, u obliku kvadratne spirale. Geometrijski parametri induktora su dati u tabeli 4.1.

Tabela 4-1 Geometrijski parametri induktora

<table>
<thead>
<tr>
<th>Induktor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>spoljašnje dimenzije induktora</td>
<td>15 x 15 mm²</td>
</tr>
<tr>
<td>dužina spoljašnjih segmenata, d_{out}</td>
<td>15 mm</td>
</tr>
<tr>
<td>širina provodne linije, w</td>
<td>150 µm</td>
</tr>
<tr>
<td>rastojanje između susjednih segmenata, s</td>
<td>150 µm</td>
</tr>
<tr>
<td>debljina provodnih linija, t</td>
<td>33 µm</td>
</tr>
<tr>
<td>broj zavojaka, N</td>
<td>20</td>
</tr>
</tbody>
</table>

Induktor je projektovan tako da ima dovoljnu površinu i broj namotaja kako bi se mogao bežično mjeriti pomoću antene, a pri tome ima manje dimenzije, koje su uporedive sa
prethodno realizovanim senzorima sile. Širina i razmak provodnih linija su ograničene tehnologijom izrade.

Mjerenje je izvršeno korišćenjem antene kao što je prikazano na slici 4.2.

\[\text{Slika 4.2 Poprečni presjek senzora i antene}\]

Korišćen je komercijalno dostupan elastomer. Prizmatični elastomeri sa dimenzijama datim u tabeli 4.2 su postavljeni i poravnati duž četiri ivice induktora, kao što je prikazano na slici 4.1b. Za izradu senzora može se koristiti bilo koji elastičan element, kao što su na primjer opruge. Čvrstoća, dizajn i geometrijske dimenzije elastičnog elementa definisu osjetljivost i mjerni opseg senzora. Promjenom ovih parametara, senzor se može prilagoditi željenim, specifičnim potrebama i primjenama.

\[\text{Tabela 4-2 Geometrijski parametri elastomera}\]

<table>
<thead>
<tr>
<th>Elastomer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>debljina</td>
<td>2 mm</td>
</tr>
<tr>
<td>širina</td>
<td>2,5 mm</td>
</tr>
<tr>
<td>dužina</td>
<td>10 mm</td>
</tr>
</tbody>
</table>

Dimenzije komercijalno dostupne feritne pločice B66289P0000X187 [75] su date u tabeli 4.3.

\[\text{Tabela 4-3 Geometrijski parametri feritne pločice}\]

<table>
<thead>
<tr>
<th>Feritna pločica</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>dužina</td>
<td>16,5 mm</td>
</tr>
<tr>
<td>širina</td>
<td>15,5 mm</td>
</tr>
<tr>
<td>debljina</td>
<td>3,8 mm</td>
</tr>
</tbody>
</table>
Induktor i feritna pločica su postavljeni u zaštitno kućište (od čvrste plastike) kako bi se povezali svi dijelovi i obezbjedio uniforman raspored sile preko površine senzora.

4.2 Princip rada

Funkcionalni dijagram principa rada sistema je prikazan na slici 4.3.

![Funkcionalni dijagram principa rada sistema za mjerenje sile](image)

Slika 4.3 Funkcionalni dijagram principa rada sistema za mjerenje sile

Poprečni presjek senzora i princip rada su prikazani na slici 4.4. Kada se djeluje silom normalnom na senzor, elastomer se sabija, odnosno, rastojanje između induktora i feritne pločice se smanjuje (slika 4.4b). Srazmjerno primjenjenoj sili F, smanjiće se rastojanje između induktora i feritne pločice, d, a time će se povećati induktivnost senzora, što se pomoću antene detektuje kao smanjenje rezonantne frekvencije sistema.
Slika 4.4 Poprečni presjek senzora: a) bez primjene sile i b) pri djelovanju normalne sile

Korišćenjem Vilerove metode [92] može se izračunati induktivnost kvadratnog spiralnog induktora. Za induktor sa navedenim geometrijskim parametrima izračunata induktivnost je

\[L_s = 3,90 \, \mu \text{H} \, . \]

(4.1)

4.3 Eksperimentalni rezultati i diskusija

Prethodno opisani senzor sile je fabrikovan, a nakon toga eksperimentalno testiran kako bi se ispitala njegova funkcionalnost. Na samom početku je ispitana promjena debljine elastomera pri djelovanju sile do maksimalnih 75 N korišćenjem digitalnog pomičnog kljunastog mjerila. Nakon toga je opisanom bežičnom metodom izvršeno mjerenje promjene rezonantne frekvencije sistema korišćenjem analizatora impedanse HP4191A. U nastavku su prikazani dobijeni rezultati mjerenja.

Na slici 4.5 su prikazane promjena debljine elastomera pri djelovanju normalne sile i izmjerene i simulirane induktivnosti pri različitim rastojanjima induktora i feritne pločice. Pri djelovanju sile na senzor, dolazi do sabijanja elastomera i smanjenja njegove debljine. Nakon toga dolazi do promjene induktivnosti induktora, što se pomoću antene detektuje promjenom rezonantne frekvencije sistema (senzor-antena).

Da bismo vidjeli kako se induktivnost induktora mijenja promjenom rastojanja između induktora i feritne pločice, d, korišćen je 3D elektromagnetski simulator CST (Microwave Studio Suite, Computer Simulation Technology [91]). Simulirane i direktno
mjerene promjene induktivnosti (izmjerene korišćenjem LCZ metra HP 4277A) su prikazane na slici 4.5b. Postoji odstupanje između simuliranih i mjerenih rezultata jer u modelu simulatora nisu korišćene dodatne žice (sa induktivnošću približno 2×180 nH) koje su korišćene za povezivanje induktora i LCZ metra. Induktivnost induktora je reda veličine μH, tako da je uticaj induktivnosti žice na ukupnu induktivnost mala. Dužina žica povezanih na induktor se ne mijenja i njihova induktivnost je konstantna u mjernoj postavci. Za rad senzora bitna je promjena induktivnosti pri djelovanju sile, pa su greške i odstupanja koje žice unose mala.

Postavka za bežično mjerenje sistema povezanog na analizator impedanse i računar, kao i fotografija postavke su prikazani na slikama 4.6 i 4.7, respektivno. Mjerna postavka se sastoji od, za potrebe eksperimenta napravljenog, aplikatora sile, računara sa softverom za kontrolu, digitalnog kontrolnog sistema i analizatora impedanse HP4191A. Aplikator sile se sastoji od čvrstog okvira, linearnog električnog aktuatora sa povratnom spregom, opruge, držača aktuatora i referentne mjerne ćelije CZL6180-10 kg. Mjerna ćelija je dio aplikatora sile kojom se kontroliše sila kojom se djeluje na senzor i postavljena je na donjem dijelu okvira. Preko računara se zadaje sila kojom se treba djelovati na senzor. Pomoću mjernih ćelija se mjeri i očitava vrijednost sile kojom se djeluje na senzor. Kada se dostigne zadata vrijednost sile aplikator se zaustavlja. Na vrhu okvira je linearni električni aktuator (Firgelli Automation’s FA PO 20 12 8") na čijem dnu je postavljena opruga povezana sa držačem aktuatora i referentne vrijednosti za primjenu sile. Cijeli sistem se kontroliše digitalnim elektronskim kontrolnim sistemom koji omogućava preciznu kontrolu primjenjene sile na senzor. Softver za kontrolu se pokreće na računaru i omogućava praćenje mjerenih sile i postavljanje nove referentne vrijednosti za primjenu sile do 98 N. Definisana i primjenjena sila su konstantne i ne mijenjaju se tokom jednog ciklusa mjerenja. Kontrolisani aplikator sile je centriran i fiksiran iznad gornje površine senzora. Oko senzora je postavljena antena koja je povezana na analizator impedanse.
Slika 4.6 Postavke za bežično mjerjenje sistema povezanog na analizator impedanse i računar

Slika 4.7 Fotografija mjerne postavke i senzora fiksiranog u centru antene

Kako bi se bežično mjerila rezontantna frekvencija senzora, rezonantna frekvencija antene mora da bude dovoljno različita od rezonantne frekvencije senzora. Rezonantna frekvencija senzora bez primjene sile iznosi 97 MHz. Iz tog razloga se kao antena koriste dva kvadratna spiralna namotaja rezonantne frekvencije 122 MHz, što je dovoljno veliki razmak. Promjena faze impedanse sistema antena-senzor u zavisnosti od primjenjene sile je prikazana na slici 4.8.
Slika 4.8 Bežično izmjerena promjena faze impedanse sistema za različite vrijednosti primjenjene sile

Rezonantna frekvencija sistema se određuje preko minimalne vrijednosti faze. Karakteristika promjene rezonatne frekvencije pri primjeni sile je dobijena pomoću lineарne aproksimacije i eksperimentalnih vrijednosti zajedno sa disipacijom za četiri ciklusa mjerenja sile (povećanje i smanjenje sile) i prikazana je na slici 4.9. Kao što se može vidjeti, vrijednost rezonantne frekvencije f_r sistema opada povećanjem sile F.

Izmjerena karakteristika senzora pokazuje da on ima veliku osjetljivost:

$$ S = \frac{\Delta f_r}{\Delta F} = 311 \text{kHz/N} \ . \quad (4.2) $$

Slika 4.9 Linearna aproksimacija zavisnosti rezonantne frekvencije sistema f_r u zavisnosti od sile F i karakteristika dobijena na osnovu izmjerenih vrijednosti
Kao što je prikazano na slici 4.9 može se vidjeti da predloženi senzor i opisana tehnika mogu da budu primjenjeni za jednostavno i precizno bežično mjerenje sile. Dobijena osjetljivost senzora je značajno veća u poređenju sa osjetljivosti drugih senzora koji su opisani u literaturi, kao na primjer: rezonantnog LC senzora izrađenog u LTCC tehnologiji [2], 32,3 kHz/N, rezonantnog senzora sa induktorom i dva kondenzatora izrađena u PCB tehnologiji [1], 89 kHz/N, rezonantnog piezoelektričnog senzora sile [13] 0,00663 kHz/N, rezonantnog senzora sile sa kompozitima metala i jonskim polimerima [14], 1,17 kHz/N, DETF strukture sa elektronskim kolom sa PLL i logičkim kolima [60], 0,0105 kHz/N i bežičnog magnetostriktivnog senzora [61], 1 kHz/N.
5. Heterogeno integrisani induktivni senzor pritiska

U okviru istraživanja u ovoj doktorskoj disertaciji fabrikovan je i ispitan dizajn pasivnog induktivnog senzora pritiska sa robunom membranom od poliimidne folije. Kako bi se testirao fabrikovani senzor pritiska, izrađen je držač senzora sa komorom. Prikazano je projektovanje i mjerenje električnih karakteristika senzora. Senzor pritiska je fabrikovan u heterogenom procesu integracije tradicionalnih tehnologija, PCB i LTCC, i pomoću poliimidne folije. Analiziran je uticaj geometrije induktora na električne karakteristike senzora pritiska. Predložene su dvije strukture senzora sa induktorima koji imaju različit broj namotaja, a poređenje dobijenih rezultata biće prikazano u narednom poglavlju.

5.1 Membrane

Membrane su najjednostavnija mehanička struktura koja se koristi kao element osjetljiv na pritisak. Zbog toga se koriste kao osnovni sastavni element u senzorima pritiska. Mogu biti izrađene od silicijuma, oksida, nitrida, stakla, polimera ili metala. Njihova debljina je obično u opsegu od 0,5 do 500 µm. Membrane koje su tanje (od 0,5 µm) je jako teško proizvesti i najčešće nisu dovoljno jake da izdrže veća opterećenja.

Membrane se u zavisnosti od maksimalnog savijanja u odnosu na njenu debljnu dijele na:

- **tanke** (kod kojih je maksimalno savijanje veće u odnosu na debljinu) i
- **debele** (kod kojih je maksimalno savijanje mnogo manje u odnosu na debljinu).

Krutost membrane na dejstvo sile se može zanemariti ako je debljina membrane mnogo manja u odnosu na njen poluprečnik (najmanje 200 puta manja). Kada se pritisak primjeni na membranu, ona se sferno savija sa maksimalnim savijanjem u centru, y, u funkciji primjenjenog pritiska (slika 5.1).
Slika 5.1 a) Ravna membrana bez djelovana pritiska i b) savijena membrana pri
djelovanju pritiska p

Savijanje membrane u zavisnosti od primenjenog pritiska nije linearna funkcija. Kako bi se do bile što bolje karakteristike senzora sa membranom, razvijeni su različiti oblici membrana sa boljom linearnošću [86]. Jedna od njih je tzv. opterećena (eng. bossed) membrana. To je ravna membrana sa debljim centralnim dijelom koji povećava krutost u tom dijelu (slika 5.2a). Centralni dio kao opterećenje, utiče na ponašanje membrane pri djelovanju pritiska. Opterećenje učvršćava membranu u centru tako da se može pretpostaviti da se samo prstenasti dio membrane koji nije obuhvaćen opterećenjem isteže kada se pritisak primjeni na membranu (slika 5.2b).

Slika 5.2 a) Geometrija opterećene membrane i b) njeno savijanje pri djelovanju
pritiska
Pritisak primjenjen na jednu (ili obje) stranu(e) membrane uzrokuje njeno savijanje. Opseg pritiska koji se djeluje na membranu zavisi od njenih dimenzija (površine i debljine), geometrije, kao i materijala od koga je napravljena. Pri djelovanju uniformnog pritiska p savijanje membrane y na radijalnoj udaljenosti r od centra membrane je [16]

$$
y = \frac{3(1-\nu^2)p}{16Eh^3}(a^2 - r^2)^2,
$$
gdje je h debljina membrane, E je vrijednost Jangovog modula, ν je vrijednost Poasonovog koeficijenta membrane i a je poluprečnik membrane. Maksimalno savijanje se javlja u centru membrane (za $r = 0$).

Veličina opterećenja ima fundamentalan uticaj na način savijanja opterećene membrane pri djelovanju pritiska. Opterećenje treba da bude minimalno šest puta deblje u odnosu na debljinu membrane, kao što opisano u [16]. Odnos poluprečnika opterećenja, b, i poluprečnika membrane, a, trebalo bi da bude veći od 0,15 kako bi opterećenje imalo efekta. Karaktetristična jednačina opterećene membrane pri djelovanju pritiska je data jednačinom (5.2) gdje je A_p koeficijent dat izrazom 5.3 i B_p koeficijent nelinearnog izraza dat jednačinom (5.4)

$$
p = \frac{Eh^3}{A_p a^4} y + B_p \frac{Eh^3}{a^4} y^3,
$$

$$
A_p = \frac{3(1-\nu^2)}{16}\left(1 - \frac{b^4}{a^4} - 4\frac{b^2}{a^2}\log\frac{b}{a}\right),
$$

$$
B_p = \frac{7 - \nu\left(1 + \frac{b^4}{a^4} + \frac{b^6}{a^4}\right)}{3}\left(1 + \frac{b^2}{a^2}\right)\frac{b^2}{1 + \nu\frac{b^2}{a^2}}.
$$

Maksimalno istezanje se javlja na spoljašnjoj ivici gdje je membrana pričvršćena i na unutrašnjem obodu gdje opterećenje počinje, dok je maksimalno savijanje na centru membrane.

5.2 Držač sa komorom za ispitivanje senzora pritiska

U ovom poglavlju će biti prikazan držač koji je razvijen kako bi se izvršila fabrikacija fabrikovanih senzora pritiska.
5.2.1 Opis držača sa komorom za ispitivanje senzora pritiska

Na slici 5.3 je dat prikaz držača sa komorom. 3D prikaz držača sa razdvojenim dijelovima je prikazan na slici 5.3a. Gornji i donji dijelovi su isti pa je gornji dio prikazan kao transparentan kako bi se svi dijelovi jasno vidjeli. Na slici 5.3b i 5.3c su prikazani gornji (donji) i središnji dijelovi držača sa obilježenim dimenzijama (u mm). Držač se sastoji od tri nezavisne dijela: dva simetrična dijela pomoću kojih se dovodi pritisak i središnjeg dijela sa komorom u koji se smiješta senzor koji se testira.

Unutar gornjeg i donjeg dijela držača nalazi se kanal za dovod vazduha pod željenim pritiskom, na čijem kraju je napravljen dublji kružni otvor u cilju postizanja uniformnog rasporeda pritiska. Ukoliko se ne koriste oba kanala, postoji mogućnost da se jedan kanal zatvori pomoću spojnica i na taj način omogući testiranje senzora sa samo jednom membranom na svojim krajevima.

![Diagram držača sa komorom](a)
b)
Slika 5.3 Prikaz držača sa komorom, a) 3D prikaz držača sa komorom, b) 3D i 2D prikazi (odozgo i sa stane) gornjeg (donjeg) dijela sa obilježenim dimenzijama (u mm) i c) 3D i 2D prikazi (odozgo i sa strane) središnjeg dijela sa obilježenim dimenzijama (u mm)
Dijelovi držača su modularnог tipa. Držač se može lako sklопiti, montirati i demontirati. Spajanje sva tri dijela držača je ostvareno postavljanjem vijaka u otvore spajanih dijelova. Vijci su, zbog opterećenja i rasporeda sile pritezanja u odnosu na osu držača, postavljeni koncentrično u krug. Za dobro zaptivanje odvojenih dijelova držača koriste se dvije o-ring gumice. Veća o-ring gumica ima prečnik dijagonale otvora središnjeg dela kako bi se omogućilo testiranje cijelog senzora pod pritiskom. Ukoliko pritisak deluje samo na membranu, koristi se i druga zaptivna o-ring gumica koja obuhvata samo otvor kroz koji se primjenjuje pritisak. Središnji dio sa senzorom ima sekundarnu ulogu, ne učestvuje u prenošenju opterećenja i spajanja dijelova na strukturu senzora, a onemogućava pomjeranje senzora.

Dijelovi držača su obrađeni na strugu prema odgovarajućim mjerama. Držač je dosta robustan, izrađen od poliamida PA6 i većih je gabarita iz razloga primjene većih radnih opsega senzora. Princip korišćenja držača čine sljedeće faze:

- postavljanje senzora u središnji dio,
- povezivanje i stezanje dijelova držača,
- eventualno zatvaranje kanala na koji se ne dovodi pritisak i
- povezivanje kanala na koji se dovodi pritisak sa izvorom pritiska.

Glavne karakteristike ovog držača su:

- kompaktnost, robusnost i čvrstoća konstrukcije,
- mogućnost testiranja senzora različitih struktura i tehnologija izrade,
- lako postavljanje senzora uz jednostavno povezivanje sa periferijama (mjernim instrumentima, računarom...),
- mogućnost uspostavljanja većih radnih režima sa velikom tačnošću i pouzdanošću i
- mogućnost testiranja dvije različite aktivne membrane u isto vrijeme.
5.2.2 Ispitivanje funkcionalnosti držača

Slika 5.4 Postavka za testiranje držača senzora pod vodom

5.2.3 Način primjene držača senzora sa komorom

Da bi se ispitala osjetljivost fabrikovanog senzora, senzor je postavljen u komoru držača. Pritisak se obezbjeđivao preko spoljašnjeg izvora vazduha, kompresora, kao što je prikazano na slici 5.5. Testirana je primjena pritiska na jednu membranu pa se u kanal iznad membrane dovodio vazduh iz kompresora. Podešavanjem izlaznog pritiska iz kompresora na manometru, postignut je stabilan pritisak u komori. Nakon primjene jedne vrijednosti pritiska i izvršenog mjerenja za odgovarajući pritisak, izlaz iz kompresora je mijenjan povećanjem ili smanjenjem pritiska na manometru, čime je pritisak na membrani promijenjen i izvršena su odgovarajuća mjerenja.

Postavka za testiranje senzora i mjerenje odgovarajućih parametara senzora pri različitim pritiscima djelovanja je prikazana na slici 5.5. Sistem za mjerenje se sastoji od:

1. prototipa držača sa komorom,

2. analizatora impedanse (Impedance Analyzer HP 4191A) za mjerenje impedanse sistema,
3. izvora pritiska (kompresora) sa regulacijom,

4. računara sa softverom za podešavanja mjerenja i čuvanja podataka.

Slika 5.6 Rasklopljeni dijelovi držača sa postavljenim o-ring gumicama i spojnicama na izlazima kanala: a) gornji dio, b) središnji dio i c) donji dio
Slika 5.7 Držač sa postavljenim senzorom:

a) pogled sa strane, b) pogled odozgo i c) postavljeni i otvoreni gornji dio
Na slici 5.7 su prikazani rasklopljeni dijelovi držača sa postavljenim o-ring gumicama i spojnicama na izlazima kanala. Unutar komore držača postavlja se senzor. Na slici 5.8 je prikazan komplementan držač sa spojenim dijelovima i ubačenim senzorom.

5.3 Fabrikovani senzor pritiska sa poliimidnom membranom

U ovom poglavlju će biti prikazan dizajn fabrikovanog senzora pritiska sa poliimidnom membranom.

5.3.1 Dizajn senzora pritiska

Realizovani senzor pritiska se sastoji od induktora, feritnog diska, odstojnika i poliimidne folije, kao membrane osjetljive na promjene pritiska. 3D prikaz modela senzora sa razdvojenim dijelovima i poprečni presjek senzora su predstavljeni na slikama 5.9 i 5.10, respektivno. Crteži nisu u razmjeri kako bi bili vidljivi svi dijelovi senzora. Debljine membrane i provodnih slojeva (reda µm) su prikazane većim, jer su oko 1000 puta manje u odnosu na debljinu supstrata, debljinu feritnog diska i rastojanje između induktora i feritnog diska (reda mm).

Izrada je imala dvije faze: fabrikaciju komponenti i proces pakovanja. Osnovna komponenta senzora je induktor, koji takođe omogućava magnetsko sprezanje senzora sa spoljašnjim induktorom-antenom. Induktor je fabrikovan korišćenjem standardne PCB tehnologije i projektovan je u obliku kvadratne spirale, čiji su geometrijski parametri dati u tabeli 5.1.
Tabela 5-1 Geometrijski parametri induktora

<table>
<thead>
<tr>
<th>Induktor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>dužina dužih segmenata, d_{out}</td>
<td>20 mm</td>
</tr>
<tr>
<td>širina provodne linije, w</td>
<td>150 µm</td>
</tr>
<tr>
<td>rastojanje između susjednih segmenata, s</td>
<td>150 µm</td>
</tr>
<tr>
<td>debljina provodnih linija, t</td>
<td>33 µm</td>
</tr>
<tr>
<td>broj zavojaka, N</td>
<td>15</td>
</tr>
</tbody>
</table>

Zbog jednostavnosti, odstojnik je realizovan od supstrata induktora FR4 debljine 1,55 mm sa izbušenom rupom poluprečnika 16 mm u centru.

Korišćeni feritni materijal se sastoji od 12 slojeva LTCC feritnih traka (ESL 40012) debljine 0,66 mm sinterovanih na 1100 °C kako bi se postigla najveća permeabilnost [87].
Jednačina savijanja opterećene membrane pri djelovanju pritiska je data izrazom (5.2). Dostupne debljine membrana su 25, 50, 75 i 125 µm [88]. Poliimidne membrane imaju vrijednost Jangovog modula $E = 2,5$ GPa i vrijednost Poasonovog koeficijenta $\nu = 0,34$.

Poliimidni supstrat pokazuje elastično-plastično ponašanje i može da izdrži velika istezanja prije pucanja. Ima moduo elastičnosti za oko 70 puta manji u odnosu na silicijumske i metalne folije [89, 90]. Savijanje membrane pri djelovanju pritiska je obrnuto proporcionalno vrijednosti Jangovog modula, kao što se može vidjeti iz jednačine (5.2), tako da korišćena folija ima bolje osobine u odnosu na silicijumske i metalne folije. Za korišćenu poliimidnu foliju, značajno manje opterećenje je potrebno za isto savijanje u poređenju sa drugim membranama.

Prema jednačini (5.2) poluprečnik feritnog diska kao centralnog opterećenja mora da bude bar 15 % poluprečnika membrane da bi imao uticaj na savijanje membrane pri djelovanju pritiska. U našem senzoru poluprečnik korišćenog feritnog diska je 5,8 mm, a poluprečnik membrane 16 mm. Poluprečnik feritnog diska kao opterećenja iznosi 36,25 % od poluprečnika membrane, tako da se korišćeni feritni disk ponaša kao centralno opterećenje u realizovanom senzoru.

Savijanje membrane pri djelovanju pritiska zavisi od debljine membrane. Korišćenjem jednačine (5.2) je dobijena zavisnost savijanja membrana različitih debljina pri djelovanju pritiska (slika 5.11). Osnovni parametar senzora je opseg pritiska koji se može mjeriti. Sa grafika se može vidjeti da izborom debljine membrane možemo da utičemo na maksimalni opseg pritiska koji se može mjeriti. Ukoliko je potreban veći opseg pritiska potrebno je koristiti deblju membranu. Kako bi se postigao veći opseg mjerenog pritiska, izabrana je poliimidna folija debljine 125 µm koja je postavljena na površinu sa vukuum pumpom kako bi se zategla, a nakon toga zalijepila na odstojnik.
Prema geometrijskim parametrima, inductivnost induktora je proračunata korišćenjem Vilerove metode [92] i iznosi

\[L_0 = 5,90 \, \mu H. \] \hspace{1cm} (5.5)

Smanjenje rastojanja između induktora i feritnog diska dovodi do povećanja inductivnosti i opadanja rezonantne frekvencije senzora. Funkcionalni dijagram principa rada sistema za mjerenje pritiska je prikazan na slici 5.12. Simulacije promjene inductivnosti za različite udaljenosti feritnog diska od induktora su urađene korišćenjem elektromagnetskog simulatora CST [91]. Simulirane promjene inductivnosti za različita rastojanja feritnog diska od induktora su predstavljene na slici 5.13. Kao što se i očekivalo, približavanje feritnog diska induktoru dovodi do ukupnog povećanja inductivnosti od 0,39 µH pri promjeni rastojanja od 1,55 mm.
5.3.2 Eksperimentalni rezultati i diskusija

Model i fotografija mjerne postavke su prikazani na slikama 5.14 i 5.15, respektivno. Mjerna postavka se sastoji od senzora u centru antene postavljene u komori držača sa kanalom i otvorom za dovod pritiska postavljenim tačno iznad membrane senzora. Kompresor se koristi kao stabilan izvor pritiska. Antena je povezana na analizator impedanse.
HP4191A i mjeri se promjena faze impedanse sistema (antena-senzor) do 150 MHz. Kako bi se mjerila rezonantna frekvencija senzora, rezonantna frekvencija antene bi trebala da bude dovoljno udaljena od rezonantne frekvencije senzora. Kao antena se koristi jedan spiralni namotaj, sa rezonantnom frekvencijom od 150 MHz, što je dovoljno daleko od izmjerene rezonantne frekvencije senzora 61,1 MHz u početnom položaju bez djelovanja pritiska (slika 5.16).

Rezultati mjerenja faze za sistem za nekoliko različitih vrijednosti pritiska su prikazani na slici 5.17. Rezonantna frekvencija je mjerena za promjene pritiska do 1,25 bar i kao što se može vidjeti na grafiku njena vrijednost opada sa porastom pritiska. Nakon tih vrijednosti pritiska, membrana sa zaljepljenim feritnim diskom dira induktor. Karakteristika rezonantne frekvencije je prikazana na slici 5.18. Dobijena karakteristika se može podijeliti na dva linearna segmenta, I i II, sa osjetljivošću

\[
S_I = \frac{\Delta f_r}{\Delta d} = \frac{0.4 \text{ MHz}}{0.25 \text{ bara}} = 1.65 \text{ MHz/bar u opsegu od 0 - 0.25 bara i} \quad (5.6)
\]

\[
S_{II} = \frac{\Delta f_r}{\Delta p} = \frac{0.5 \text{ MHz}}{1 \text{ bar}} = 0.5 \text{ MHz/bar u opsegu od 0.25 - 1,25 bara} \quad (5.7)
\]

Za prvu tačku mjerenja pritiska od 0,25 bara folija se maksimalno ispravlja i zateže, uz veće savijanje, samim tim i osjetljivost senzora. Za pritiske veće od 0,25 bara, folija počinje da se isteže, manje je savijanje, pa i osjetljivost senzora.

Slika 5.14 Postavka korišćena za testiranje funkcionalnosti realizovanog senzora
Slika 5.15 Mjerna postavka i upakovan senzor moniran i fiksiran u komori držača

Slika 5.16 Promjena faze impedanse antene i sistema
Slika 5.17 Frekvencijska zavisnost promjene faze impedance za nekoliko primjenjenih pritisaka (u bar)

Slika 5.18 Zavisnost rezonantne frekvencije od pritiska

5.4 Uticaj dizajna induktora

Kako bi se poboljšale performanse senzora pritiska, predložen je metod za povećanje osjetljivosti senzora i određivanje optimalnog dizajna induktora u njegovoj strukturi. Strukture senzora pritiska sa induktorima sa različitim brojevima namotaja su ispitane, fabrikovane i testirane u cilju optimizacije senzora, što je prikazano u narednom odeljku.
5.4.1 Dizajni induktora

Dva senzora sa različitim brojem zavojaka induktora oblika kvadratne spirale su analizirana. Spoljašnje dimenzije oba induktora su iste, 20 \times 20 \text{mm}, a iste su i dimenzije provodnih linija, širina \(w = 150 \ \mu\text{m} \), međusobni razmak, \(s = 150 \ \mu\text{m} \), i debljina, \(t = 33 \ \mu\text{m} \). Fabrikovani spiralni induktori su prikazani na slici 5.19:

- induktor I, sa \(N = 15 \) zavojaka i
- induktor II, sa \(N = 30 \) zavojaka.

Kao odstojnik korišćen je FR4 debljine 1,55 mm sa izbušenim otvorom u centru poluprečnika 16 mm.

Ferit je fabrikovan u LTCC tehnologiji na temperaturi 1100 °C, kako bi se postigla maksimalna dobijena permeabilnost [87]. Ferit u obliku diska, poluprečnika 5,8 mm i debljine 0,66 mm, je zalijepljen na membranu.

Kao membrana senzora osjetljiva na pritisak koristi se poliimidna folija [88], debljine 125 \(\mu\text{m} \), vrijednosti Jangovog modula 3 GPa i vrijednosti Poasonovog koeficijenta 0,34, koja je zalijepljena na odstojnik.

![Slika 5.19 Dizajn induktora: a) I i b) II](image.png)

Izračunate induktivnosti induktora prema geometrijskim parametrima i Vilerovoj metodi (Wheller's method) [92] su

- \(L = 5,90 \ \mu\text{H} \) za induktor I i
- \(L = 9,30 \ \mu\text{H} \) za induktor II.
Da bi se ispitalo kako dizajn induktora utiče na performanse senzora, korišćen je softver CST, [91]. Modeli poprečnih presjeka senzora I (induktor I, odstojnik i feritni disk) i senzora II (induktor II, odstojnik i feritni disk) su prikazani na slici 5.20. Simulirane promjene induktivnosti senzora II pri promjeni rastojanja između feritnog diska i induktora su prikazane na slici 5.21. Kako bi se uporedile promjene induktivnosti induktora, normalizovane induktivnosti senzora I i II su prikazane na slici 5.22.

Broj namotaja induktora II je veći, pa je površina preklapanja između induktora i feritnog diska veća, a samim tim je i induktivnost senzora i njegova promjena veća, $\Delta L = 0,95 \, \mu H$, u poređenju sa induktivnošću i promjenom senzora tip I, $\Delta L = 0,39 \, \mu H$.

Slika 5.20 Poprečni presjek modela senzora I i II

Slika 5.21 Promjene induktivnosti induktora II za različita rastojanja induktora i feritnog diska
5.4.2 Eksperimentalni rezultati i diskusija

Izmjerene faze impedanse u funkciji od frekvencije za antenu i sisteme I i II bez djelovanja spoljašnjeg pritiska su prikazane na slici 5.23. Rezonantna frekvencija sistema I (antena i senzor I) je 61,1 MHz, a za sistem II (antena i senzor II) je 52,6 MHz, što je posljedica činjenice da induktor II ima veći broj namotaja, samim tim veću induktivnost i manju rezonantnu frekvenciju.

U cilju omogućavanja mjerenja, antena je projektovana kao kvadratni spiralni namotaj sa rezonantnom frekvencijom od oko 150 MHz, koja je dovoljno veća od rezonantnih frekvencija sistema.
Izmjerena faza za sistem II za nekoliko primjenjenih pritisaka je prikazana na slici 5.24. Povećanjem pritiska, rastojanje između feritnog diska i induktora se smanjuje, induktivnost se povećava i minimalna vrijednost faze impedanske se pomjera ka nižim frekvencijama.

Rezonantna frekvencija sistema II u funkciji primjenjenog pritiska je prikazana na slici 5.25. Kao i kod sistema I, karakteristika se može podijeliti na dva linearna segmenta. Izmjerena osjetljivost sistema II je oko 2,4 puta veća u odnosu na sistem I u oba segmenta:

\[S_f(II) = \frac{\Delta f_r}{\Delta d} = \frac{1 \text{ MHz}}{0.25 \text{ bara}} = 4 \text{ MHz/bar}, \text{ u opsegu od } 0 - 0.25 \text{ bara i } \]

\[S_f(II) = \frac{\Delta f_r}{\Delta p} = \frac{1.2 \text{ MHz}}{1 \text{ bar}} = 1.2 \text{ MHz/bar}, \text{ u opsegu od } 0.25 - 1.25 \text{ bara}. \] (5.8)

(5.9)

Slika 5.24 Izmjerena faza impedanse u funkciji frekvencije za nekoliko primjenjenih pritisaka, za sistem II (sa induktorom II, N = 30)
Slika 5.25 Izmjerena zavisnost rezonantne frekvencije od pritiska sistema II (sa induktorom II, N=30)
6. Heterogeno integrirani induktivni senzor pomjeraja

U prethodnom poglavlju prikazani su pasivni senzori pritiska sa poliimidnom membranom. U ovom poglavlju, poliimidna folija je ispitana kao potencijalna membrana za realizaciju senzora pomjeraja. Djvice varijante senzora sa dva feritna diska različitih dimenzija su projektovane i testirane, kako bi se ispitao i uporedio uticaj feritnog diska na performanse senzora.

Prethodno realizovani i opisani heterogeno integrirani induktivni senzori su projektovani tako da se mogu koristiti za mjerenje tangencijalnih pomjeraja. Predstavljene strukture induktora i feritnog diska u njegovoj blizini su modifikovane i realizovan je senzor pomjeraja za mjerenje tangencijalnog pomjeraja. Prezentovani senzor se sastoji od jednog induktora i feritne pločice pokretnjive duž jedne ose u odnosu na induktor.

6.1 Dizajn senzora pomjeraja sa poliimidnom membranom

Heterogeno integrirani senzor pomjeraja se sastoji od induktora, feritnog diska, prilagodljivog odstojnika i fleksibilne membrane.

Za izradu induktora se koristila PCB tehnologija. Induktor je kvadratnog spiralnog tipa, čiji su geometrijski parametri dati u tabeli 6.1.

Tabela 6-1 Geometrijski parametri induktora

<table>
<thead>
<tr>
<th>Induktor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>rastojanje između najdužih segmenata, d_{out}</td>
<td>19 mm</td>
</tr>
<tr>
<td>širina provodne linije, w</td>
<td>150 µm</td>
</tr>
<tr>
<td>rastojanje između susjednih segmenata, s</td>
<td>150 µm</td>
</tr>
<tr>
<td>debljina provodnih linija, t</td>
<td>33 µm</td>
</tr>
<tr>
<td>broj zavojaka, N</td>
<td>25</td>
</tr>
</tbody>
</table>

Kao membrana korišćena je poliimidna folija debljine 125 µm i vrijednosti Jangovog modula 3 GPa [88].

Ispitan je uticaj dva feritna diska (slika 6.1): poluprečnika, $r = 6$ mm i poluprečnika, $r = 9,5$ mm.
Feritni diskovi se sastoje od po 12 slojeva LTCC feritne trake (ESL 40012, debljine od oko 70 µm u nepečenom stanju) sinterovane na 1100 °C kako bi se postigla najveća permeabilnost [87]. Debljina feritnog diska nakon sinterovanja je, \(t = 0,66 \) mm. Nekoliko FR4 ploča različitih debljina (ukupne debljine 2,6 mm i sa izbušenim otvorom poluprečnika 16 mm u centru) su korišćene kao odstojnik kako bi se postiglo rastojanje od 1,2 mm između ferita i induktora (jer je debljina membrane, feritnog diska i ljepila 1,4 mm).

\[
L = 7,80 \, \mu H. \tag{6.1}
\]

Kao što je pokazano u prethodnom poglavlju, planarna magnetska struktura u blizkoj okolini induktora dovodi do povećanja vrijednosti induktivnosti. Kako bi se ispitalo na koji način dimenzije feritnog diska utiču na promjenu induktivnosti induktora senzora, simulacija induktivnosti za različite dimenzije feritnog diska i rastojanja od induktora je izvršena korišćenjem softvera CST, [91]. Simulirane induktivnosti induktora za različite poluprečnike feritnog diska (\(r = 6 \) mm i \(r = 9,5 \) mm) i rastojanja između induktora i feritnog diska su prikazane na slici 6.2. Normalizovane vrijednost induktivnosti u odnosu na maksimalnu vrijednost induktivnosti su zajedno prikazane na slici 6.3. Feritni disk nije postavljen preko cijele površine induktora zato što su dimenzije feritnih diskova ograničene tehnologijom fabrikacije i mogućnostima izrade feritnih diskova. Kao što se sa grafika može vidjeti, promjena induktivnosti induktora sa većim feritnim diskom je oko 2,4 puta veća u odnosu na promjenu sa manjim feritnim diskom. Manji feritni disk ima poluprečnik 6 mm, tako da je površina preklapanja sa induktorom \(36 \cdot \pi \, \text{mm}^2 \). Poluprečnik većeg feritnog diska je 9,5 mm,

\[\text{Slika 6.1 Poprečni presjek modela senzora sa različitim poluprečnicima feritnog diska} \]
tako da je površina preklapanja sa induktorom 90,5·π mm². Površina preklapanja između induktora i feritnog diska većeg poluprečnika je veća, pa je veća i promjena induktivnosti.

\[
t_{0} = 7.99303E-6 + 2.59653E-8 \\
A = 9.9067E-7 + 2.4315E-8 \\
R_0 = -9.02075E-4 + 3.8705E-5 \\
R\text{-Square(COD)} = 0.99983 \\
\text{Adj. R-Square} = 0.99975
\]

\[\text{Induktivnost (\mu H)}\]

\[\text{Rastojanje (\mu m)}\]

\[\text{manji feritni disk, } r = 6 \text{ mm}\]

\[\text{simulacija}\]

\[\text{fitovana kriva}\]

\[\text{Slika 6.2 Simulirane promjene induktivnosti za različite poluprečnike feritnog diska i rastojanja između feritnog diska i induktora}\]

\[\text{b)}\]
6.2 Eksperimentalni rezultati i diskusija

Postavka za testiranje i mjerenje senzora pomjeraja je prikazana na slici 6.4. Fabrikovani senzori su fiksirani, a antena je postavljena oko senzora. Pozicioner MTS je postavljen tačno iznad membrane senzora kako bi se precizno kontrolisalo savijanje poliimidne membrane direktnim postavljanjem vrha pozicionera na senzor. Pomjeranje pozicionera za vrijednost x, uzorkovaće savijanje membrane za istu vrijednost (slika 6.4a). Antena je povezana na analizator impedanse HP4191A, a mjerene su promjene faze impedanse sistema (senzor-antena), a preko nje i rezonantna frekvencija.

Slika 6.3 Normalizovane induktivnosti za različite dimenzije feritnog diska

![Diagram sa normalizovanim induktivnostima za diferencijalni feritni disk](image-url)
Izmjerena promjena faze impedanse antene i sistema u početnom položaju, bez pomjeranja membrane, za dva feritna diska različitih dimenzija je prikazana na slici 6.5. Senzor sa manjim feritnim diskom ima manju vrijednost induktivnosti, pa je rezonantna frekvencija sistema I (induktor senzora, manji feritni disk \(r = 6 \text{ mm}, \) antena), \(f_{\text{rez1}} = 71,70 \text{ MHz})\), veća u poređenju sa rezonantom frekvencijom sistema II (induktor senzora, veći feritni disk \(r = 9,5 \text{ mm}, \) antena), \(f_{\text{rez2}} = 64,70 \text{ MHz})\). Kao antena korišćen je kvadratični spiralni
namotaj sa rezonatnom frekvencijom od 145 MHz, što je dovoljno veće od izmjerenih rezonantnih frekvencija oba sistema.

![Diagram](image1)

Slika 6.5 Izmjerena faza impedanse antene i sistema sa feritnim diskovima različitih dimenzija

![Diagram](image2)

Slika 6.6 Bežično izmjerene promjene faze impedanse sistema I (sa manjim feritnim diskom) za pomjeraje membrane od 0 µm do 1200 µm u koracima od 200 µm
Slika 6.7 Bežično izmjerene promjene faze impedance sistema II (sa većim feritnim diskom) za pomjeraje membrane od 0 µm do 1200 µm u koracima od 200 µm

Rezultati mjerenja za dva ispitana sistema su prikazani na slikama 6.6-6.9. Rezonantne frekvencije sistema su određene preko minimalnih vrijednosti faze impedance pri pomjerajima do 1200 µm sa koracima od 200 µm. Za veće pomjeranje, feritni disk je bliži induktoru senzora, uzrokuje porast induktivnosti i samim tim smanjenje rezonantne frekvencije sistema. U mjerenom opsegu pomjeraja, ukupna promjena rezonantne frekvencije sistema I (sa manjim feritnim diskom) je 3,5 MHz tako da je osjetljivost sistema

\[S = \frac{\Delta f_r}{\Delta d} = \frac{3.5 \text{ MHz}}{1200 \text{ µm}} = 0.00292 \text{ MHz/µH} = 2.92 \text{ kHz/µH}. \quad (6.2) \]

Za sistem II, ukupna promjena rezonantne frekvencije u istom opsegu mjerenja pomjeraja do 1200 µm je tri puta veća i iznosi 10,5 MHz. Dobijena osjetljivost sistema II je veća i iznosi

\[S = \frac{\Delta f_r}{\Delta d} = \frac{10.5 \text{ MHz}}{1200 \text{ µm}} = 0.00875 \text{ MHz/µm} = 8.75 \text{ kHz/µH}. \quad (6.3) \]

Na osnovu dobijenih rezultata mjerenja i izračunate osjetljivosti, možemo da zaključimo da povećanje površine preklapanja između induktora i feritnog diska dovodi do veće promjene induktivnosti i stoga, većeg smanjenja rezonantne frekvencije sistema, odnosno veće osjetljivosti (u razvijenom prototipu senzora oko 3 puta).
6.3 Tangencijalni senzor pomjeraja

U ovom poglavlju će biti prikazan dizajn i princip rada senzora za mjerenje tangencijalnog pomjeraja duž jedne ose.

6.3.1 Dizajn i princip rada senzora

Slika 6.10 ilustruje dizajn induktivnog senzora pomjeraja i princip rada senzora. Induktor je fabrikovan u PCB tehnologiji i projektovan kao pravougaoni spiralni tip geomatrijskih parametara datih u tabeli 6.2.
Tabela 6-2 Geometrijski parametri induktora

<table>
<thead>
<tr>
<th>Induktor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>dužina, (l_i)</td>
<td>17,5 mm</td>
</tr>
<tr>
<td>širina, (w_i)</td>
<td>9,5 mm</td>
</tr>
<tr>
<td>razmak između provodnika, (s)</td>
<td>0,15 mm</td>
</tr>
<tr>
<td>broj zavojaka, (N)</td>
<td>7</td>
</tr>
<tr>
<td>širina provodnih linija, (w)</td>
<td>0,25 mm</td>
</tr>
<tr>
<td>debljina provodnih linija, (t)</td>
<td>0,033 mm</td>
</tr>
</tbody>
</table>

Komercijalno dostupna feritna pločica (Epcos, B66289P0000X187) [75], geometrijskih parametara datih u tabeli 6.3, je pozicionirana na centru spoljašne ivice induktora duž \(x \)-ose. Feritna pločica se pomjera u odnosu na fiksiran, nepomični induktor duž \(x \)-ose. Kako bi se postiglo precizno pomjeranje feritne pločice duž jedne ose, korišćen je pozicioner MTS. Pomjeranjem feritne pločice duž \(x \)-ose mijenja se površina preklapanja između induktora i feritne pločice, samim tim se mijenja i induktivnost induktora, kao i rezonantna frekvencija sistema antena-senzor. Promjena rezonantne frekvencije sistema se koristi kao mjera tangencijalnog pomjeranja. Senzor je projektovan na taj način da je širina feritne pločice duž \(y \)-ose, \(w_f = 16 \) mm, veća u odnosu na širinu induktora, \(w_i = 9,5 \) mm, kako bi se održala ista površina preklapanja duž \(y \)-ose. Vertikalno rastojanje između induktora i feritne pločice je 1,6 mm. Performanse senzora mogu da budu poboljšane smanjujući vertikalno rastojanje između induktora i feritne pločice, ali se međusobno rastojanje odabralo na osnovu praktičnih primjena senzora. Dužina unutrašnjeg otvora projektovanog induktora je 12,2 mm što određuje maksimalni mjerni opseg senzora, kako bi se uvijek obuhvatio isti broj segmenata i postigla što linearnija karakteristika senzora.

Tabela 6-3 Geometrijski parametri feritne pločice

<table>
<thead>
<tr>
<th>Feritna pločica</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>dužina, (l_f)</td>
<td>15 mm</td>
</tr>
<tr>
<td>širina, (w_f)</td>
<td>16 mm</td>
</tr>
<tr>
<td>debljina</td>
<td>3 mm</td>
</tr>
</tbody>
</table>
6.3.2 Mjerna postavka i rezultati mjerenja

Testiranje senzora je izvršeno korišćenjem mjerne postavke prikazane na slici 6.11.
Oko senzora je postavljen spoljašnji namotaj-antena kako bi se izvršilo bežično mjerenje. Pokretna feritna pločica je postavljena u plastično kućište kako bi se omogućilo njegovo pomjeranje iznad induktora uz fiksno vertikalno rastojanje (duž z-ose). Plastično kućište sa feritnom pločicom je postavljeno iznad induktora i monirano na MTS. Referentna (nulla) tačka je položaj u kome je feritna pločica postavljena tačno iznad centra spoljašnje ivice induktora duž x-ose. Prototip sistema (antena-senzor) je testiran povezivanjem krajeva antene na analizator impedanse HP4194A, a mjerenje je izvršeno do 250 MHz. Kao antena je korišćen jedan spiralni namotaj rezonantne frekvencije 246 MHz. Feritna pločica je pomjerana u oba smijera duž x-ose sa korakom od 1 mm.

Na slici 6.12 su prikazane izmjerene faze impedanse sistema za tangencijalna pomjeranja do 5 mm u oba smijera (-x i +x). Rezonantna frekvencija sistema je određena preko minimalne vrijednosti faze impedanse sistema (6.13). Faze impedanse sistema za pomjeraje u suprotnom i u smjeru x-osu su razdvojeno prikazane. Pri nultom položaju, feritna pločica preklapa polovinu površine induktora. Pri pomjeranju feritne pločice u suprotnom smjeru x-osu, površina preklapanja između induktora i feritne pločice se povećava, induktivnost raste i rezonantna frekvencija se smanjuje (slike 6.11a i 6.12a). Pri pomjeranju feritne pločice u smjeru x-osu, površina preklapanja između induktora i feritne pločice se smanjuje, induktivnost opada i rezonantna frekvencija se povećava (slike 6.11b i 6.12b).

Slika 6.12 Bežično izmjerene faze impedanse sistema za nekoliko tangencijalnih pomjeranja: a) u smjeru suprotnom od x-ose i b) u smjeru x-ose
Slika 6.13 Karakteristika rezonantne frekvencije u odnosu na pomjeranje u: suprotnom smjeru x ose i b) u smjeru x ose

Izmjerena rezonantna frekvencija u zavisnosti od tangencijalnog pomjeranja u cijelom mjerom opsegu

Izmjerena karakteristika sistema u mjernom opsegu od 10 mm, zajedno sa krivom linearnog fitovanja, je prikazana na slici 6.14. Dobijena je osjetljivost realizovanog prototipa senzora od

\[S = \frac{\Delta f_r}{\Delta d} = \frac{24.4 \, MHz}{10 \, mm} = 2.44 MHz/mm, \quad (6.4) \]

sa dobrom lienarnošću. Tangencijalni senzor pomjeraja je projektovao tako da se pomjeranjem feritne pločice obuhvata uvijek isti broj segmenata u unutrašnjem otvoru induktora. U [74] je prikazan senzora tangencijalnog pomjeraja sa induktivnim principom rada. Dizajn predstavljenog senzora je drugačiji u odnosu na senzor realizovan u ovoj doktorskoj disertaciji. Senzor se sastoji od namotaja oko cilindrične cijevi unutar koje je pokretno feritno jezgro. Osjetljivost predstavljenog senzora je oko 850 Hz/mm u opsegu mjerenja pomjeraja do 10 mm, što je za oko 2870 puta manje u odnosu na osjetljivost našeg senzora.
7. Diskusija

U ovom poglavlju biće diskutovani projektovanje i dobijeni rezultati mjerenja heterogeno integriranih induktivnih senzora predloženih u ovoj doktorskoj disertaciji.

Na samom početku istraživanja ispitan je uticaj magnetskog materijala (ferita) na promjene električnih parametara induktora. Korišćena je komercijalno dostupna feritna pločica dimenzija, permeabilnosti 1450. Ispitana su dva oblika induktora:

- meandar
- spiralni.

Induktori su realizovani u jednom provodnom sloju u tehnologiji štampanih ploča. Realizovani su tako da su im iste spoljašnje dimenzije, širina provodnih linija, broj zavojaka, kao i debljina provodnih linija. Razmak između susjednih provodnih segmenata je određen tako da im se isti broj zavojaka rasporedi unutar fiksne površine. Izmjereni izlazni karakteristike induktora su upoređene i na osnovu toga izabran je dizajn induktora za realizaciju senzora.

Posmatran je uticaj promjene normalnog rastojanja između induktora i feritne pločice na rezonantnu frekvenciju. Rastojanje je postepeno povećavano do maksimalno 2 mm sa koracima od 100 µm. Povećanjem rastojanja između induktora i feritne pločice smanjuje se induktivnost, odnosno povećava rezonantna frekvencija. Induktor oblika meandar je povezan na mjerni instrument kako bi se izmjerila rezonantna frekvencija pri različitim položajima feritne pločice. Promjena rezonantne frekvencije induktora spiralnog oblika pri različitim položajima feritne pločice je izvršena bežično pomoću spoljašnjeg induktora kao antene. Rezultati mjerenja su pokazali da iako induktori imaju iste spoljašnje dimenzije, imaju različitu osjetljivost u mjerenom opsegu. Korišćenjem induktora spiralnog oblika dobijena je veća osjetljivost u odnosu na induktor oblika meandar.

Na osnovu prethodno dobijenih rezultata i zaključaka da je postignuta veća osjetljivost induktora spiralnog oblika u odnosu na induktor oblika meandar, za dalju realizaciju senzora izabran je induktor spiralnog oblika.

Kako bi se postigla osjetljivost na silu, u strukturu induktor-feritna pločica, ubačena su četiri prizmatična elastomera. Induktor je fabrikovan u tehnologiji štampanih ploča, a korišćeni su komercijalno dostupni elastomeri i feritna pločica. Induktor i feritna pločica su ugrađeni u čvrste, plastične ploče koje su spojene elastomerima na četiri stranice.
Korišćenjem spoljašnjeg induktora kao antene izvšeno je testiranje senzora pri djelovanju sile normalne na površinu senzora u opsegu 0-75 N. Dobijena karakteristika ima veliku osjetljivost od 311 kHz/N i dobru linearnost. U tabeli 7-1 su predstavljene karakteristike nekih od prethodno objavljenih radova sa rezonantnim senzorima sile. Kao što se iz tabele moževidjeti, senzor sile realizovan u ovoj doktorskoj disertaciji ima znatno veću osjetljivost u poređenju sa ostalim senzorima. Predstavljeni senzori imaju složenije strukture sa većim brojem komponenti, a samim tim i složenije procese fabrikacije. Pored toga, realizacijom pasivnog bežičnog senzora u ovoj disertaciji omogućeno je beskontaktno mjerenje i eliminisana je potreba za dugim konektorima i žicama. Sa realizovanim pasivnim senzorom postignuto je jednostavnije i preciznije mjerenje, a ujedno su i smanjeni mogući početni troškovi ugradnje i održavanja sistema. Bežični princip mjerenja se koristi kod drugih složenijih rezonantnih LC kola koja sadrže induktor i elektrodu u jednom sloju i drugu elektrodu u drugom sloju, i na taj način zahtjevaju složeniji proces fabrikacije sa dva provodna sloja, precizne i glatke kontakte i vije koje mogu da deformišu strukturu induktora i doprinesu parazitim elementima koji bi trebali da budu eliminisani.

Tabela 7-1 Karakteristike nekih od prethodno objavljenih rezonantnih senzora sile

<table>
<thead>
<tr>
<th>Struktura senzora i izvor</th>
<th>Mjerni opseg (N)</th>
<th>Osjetljivost (kHz/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>induktor i kondenzator realizovani u PCB tehnologiji, [1]</td>
<td>0-89</td>
<td>89</td>
</tr>
<tr>
<td>induktor i kondenzator realizovani u LTCC tehnologiji, [2]</td>
<td>0-6</td>
<td>32,3</td>
</tr>
<tr>
<td>rezonantni piezoelektrični senzor sa PZT diskovima, čeličnom dijafragmom,</td>
<td>0-17,7</td>
<td>0,00663</td>
</tr>
</tbody>
</table>
U poglavlju 5 je prikazan predloženi senzor pritiska realizovan heterogenom integracijom poliimidne folije kao membrane sa induktorom, odstojnikom i feritnim diskom. Induktor je realizovan u tehnologiji šampanih ploča, a odstojnik (koji predstavlja rastojanje između induktora i feritenog diska od FR4 supstrata debljine 1,55 mm sa izbušenim otvorom poluprečnika 16 mm. Kao feritni materijal korišćeno je 12 slojeva LTCC feritnih traka (ESL 40012) sintetizovano na temperaturi od 1100 °C.

Kako bi se omogućilo testiranje senzora pri djelovanju pritiska realizovan je robustan držač sa komorom. Glavna odlika realizovanog držača sa komorom je njegova jednostavnost primjene, mogućnost testiranja različitih senzora, visok stepen kontrole parametara i dobra ponovljivost uslova mjerenja. Mogućnosti držača su takve da se na njemu mogu testirati i ispitati performanse senzora jednako dobro kao u stvarnom okruženju.

Mjerenje pritiska sa realizovanim senzorom je omogućeno do 1,25 bara. Opseg detektovanog pritiska se može promijeniti na jednostavan način korišćenjem poliimidne folije odgovarajuće debljine. Ako bi trebalo obezbijediti veći mjerni opseg pritiska, trebalo bi da se koriste deblje poliimidne folije, i obratno. Treba primjetiti da su uočena dva opsega mjerenja na karakteristici (slika 5.18) sa dobrom linearnošću (koeficijentom korelacije 0,99). Dobijene osjetljivosti dva segmenta su

- 1,65 MHz/bar u opsegu 0-0,25 bara i
- 0,5 MHz/bar u opsegu 0,25-1,25 bar.

U opsegu mjerenja pritiska do 0,25 bara osjetljivost je veća što se može objasniti time da se folija pri djelovanju pritiska ispravlja i zateže, a samim tim više i savija. Nakon toga, u
drugom opsegu, folija je maksimalno zategnuta, polako počinje da se isteže, manje je savijanje, pa je i osjetljivost smanjena.

Kako bi se poboljšale karakteristike senzora, realizovan je sistem sa integrisanim induktorom II, koji ima istu površinu kao induktor I, 400 mm², isto rastojanje između provodnih linija, istu širinu provodnih linija, istu debljinu provodnih slojeva, ali ima veći faktor popunjenosti, odnosno duplo veći broj zavojaka (N = 30). Rezultati mjerenja su pokazali da sistem II sa većim brojem namotaja induktora ima 2,4 puta veću osjetljivost u poređenju sa sistemom I (slika 7.1)

- 4 MHz/bar u opsegu 0-0,25 bara
- 1,2 MHz/bar u opsegu 0,25-1,25 bara.

Uzrok veće osjetljivosti sistema II sa induktorom sa većim brojem namotaja je veća površina preklapanja između induktora i feritnog diska. Broj zavojaka koji se nalaze u blizini magnetskog materijala je veći, što dovodi do veće promjene induktivnosti, samim tim do veće promjene rezonantne frekvencije sistema, odnosno do veće osjetljivosti senzora pri istim uslovima i u istom opsegu mjerenja pritiska.

![Slika 7.1 Osjetljivost sistema sa induktorima sa različitog broja namotaja](image)

Slika 7.1 Osjetljivost sistema sa induktorima sa različitog broja namotaja

U tabeli 7-2 su prikazane karakteristike različitih senzora pritiska iz prethodno publikovanih radova. Ukoliko uporedimo senzor pritiska predložen u ovoj doktorskoj disertaciji, može se vidjeti da predloženi senzor ima niz prednosti u poređenju sa ostalim. Osim veće osjetljivosti, velika prednost je i znatno jednostavniji dizajn i proces fabrikacije senzora. Realizacija senzora je bazirana na jednostavnom, jeftinom procesu fabrikacije, i ne
zahtjeva skupu i specijalizovanu opremu. Kao membrana senzora je korišćena komercijalno dostupna poliimidna folija, zahvaljujući čemu su izbjegnuti kompleksni procesi fabrikacije za realizaciju membrane. Poliimidne folije pružaju mnoštvo prednosti u realizaciji senzora: jeftine su, tanke, lagane, fleksibilne, prilagodljive, transparentne, rastegljive i proizvode se u većim razmjerama. Korišćena poliimidna folija je stabilna za rad za temperature do 300 °C.

Tabela 7-2 Karakteristike različitih rezonantnih senzora pritiska u prethodno publikovanim radovima

<table>
<thead>
<tr>
<th>Struktura senzora i izvor</th>
<th>Opseg mjerenja (bar)</th>
<th>Osjetljivost (MHz/bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pasivno LC rezonantno kolo koje se sastoje od fleksibilnog kondenzatora i fiksiranog induktora fabrikovanih sito štampom uz niz proizvodnih procesa kao što su laminacija keramičkih membrana, presovanje, siječenje, sinterovanje keramičkih traka (100 µm debela Dupont 951AT keramička traka, Jangovog modula 152 GPa, 0,3 Poasonovog koeficijenta), [20]</td>
<td>0-7</td>
<td>0,141</td>
</tr>
<tr>
<td>induktor i kondenzator realizovani u HTCC tehnologiji koja obuhvata više od 10 proizvodnih procesa za izadu senzora korišćenjem membrane Jangovog modula 380 GPa, Poasonovog koeficijenta 0,24 i debljine 100 µm, [23]</td>
<td>0-3</td>
<td>0,860</td>
</tr>
<tr>
<td>pasivno rezonantno LC kolo realizovano u LTCC tehnologiji korišćenjem laserske micromachining tehnike, metalizaciju, laminaciju i sinterovanje nekoliko LTCC slojeva (LTCC trake, Ceramtec GC, 128 GPa, Poasonovog koeficijenta 0,28, debljine 100 µm) za realizaciju fleksibilnih elektroda kondenzatora, [24]</td>
<td>0-3</td>
<td>0,0256</td>
</tr>
<tr>
<td>promjenljivi kondenzator i induktor sa slojevima Zn/Fe i biorazgradivim polimerima poly-L-lactide i polycaprolactone (poly-L-lactide (PLLA) i Zn/Fe sloj, 3 GPa and 100 GPa, Poasonovih koeficijenata 0,35 i 0,25 debljina 200 i 400 µm, respektivno) uz korišćene tehnike graviranja, višeslojnog savijanja i laminacije, [40]</td>
<td>0-0,2</td>
<td>3,900</td>
</tr>
</tbody>
</table>
kao membrana se koristi silicijumska guma debljine 20 µm, Jangovog modula 1,18 MHz za čiju fabrikaciju se koriste fotolitografija, poliranje, centrifugiranje, sinterovanje i nagrizanje, [22]

LC rezonantno kolo realizovano u HTCC tehnologiji korišćenjem laminaciju, sito štampu, kalandriranje, precizno sječenje i sinterovanje za realizaciju cirkonijum keramičke (PSZ) membrane debljine 125 µm, [93]	-10-0,03	3,470
silicijumska membrana realizovana korišćenjem silicijumske \textit{micromachining} tehnike, [94]	0-3	0,336
olovocirkonat-titanat (PZT) debeloslojni filmovi na prethodno obrađenoj 3D LTCC stukturi sa fleksibilnom membanom (TF 2100/LTCC 38GPa, TF-PZT 47/53 (1450)/LTCC 26GPa, Bulk PZT 47/53 101GPa, LTCC (Du Pont 951) 110GPa korišćenjem LTCC tehnologije uz sito štampu i sinterovanje PZT debelih slojeva, [95]	0-1,30	0,004980
0-0,7	0,000250–0,000290	

U poglavlju 6 su prikazani fabrikovani senzori za mjerenje pomjeraja (iste strukture kao i senzori pritiska) korišćenjem poliimidne folije kao fleksibilne membrane uslijed njene osjetljivosti na spoljašnja opterećenja. Kako bi se ispitao uticaj ferita na karakteristike senzora, realizovane su dvije strukture senzora sa feritnim diskovima različitih dimenzija. Početno rastojanje između induktora i feritnog diska je 1,2 mm što predstavlja i maksimalan mjerni opseg pomjeraja realizovanih senzora.

Iz dobijenih karakteristika rezonatnih frekvencija sistema izračunate osjetljivosti su

- 2,92 kHz/µm za sistem I i
- 8,75 kHz/µm za sistem II.

Na osnovu dobijenih rezultata možemo da zaključimo da povećanje površine preklapanja između induktora i ferita korišćenjem feritnog diska većih dimenzija postiže se i oko 3 puta veća osjetljivost u realizovanom sistemu (slika 7.2).
Slika 7.2 Poređenje osjetljivosti sistema I (sa manjim feritnim diskom) i sistema II (sa većim feritnim diskom)

Prethodno realizovani senzori pomjeraja sa poliimidnom folijom su korišćeni za mjerenje pomjeraja normalnog na površinu senzora. Korišćenjem induktora i paralelno postavljene feritne pločice projektovan je senzor za mjerenje tangencijalnog pomjeraja.

Senzor je realizovan tako da je induktor fiksiran, a feritna pločica pokretljiva u odnosu na induktor. Normalno rastojanje između induktora i feritne pločice je fiksno i iznosi 1,6 mm. Kao što se iz tabela može viditi, širina feritne pločice je veća u odnosu na širinu induktora tako da širina preklapanja ostaje nepromjenjena tokom mjerenja. Kako bi se postigao što linearniji odziv senzora, mjerenje pomjeraja je vršeno u opsegu u kome se obuhvata uvijek isti broj namotaja, odnosno mjerenje pomjeraja se vrši duž unutrašnjeg otvora induktora. Projektovanim senzorom je izvršeno mjerenje pomjeraja do 5 mm sa korakom od 1 mm u oba smjera duž jedne ose, a dobijena karakteristika senzora ima dobru linearnost i veliku osjetljivost od 2,44 MHz/mm. Prezentovani senzor mjeri pomjeraje bez mehaničkog kontakta i može se ugraditi u različite sisteme u kome je potrebno vršiti detektovanje bez mehaničkog kontakta, u primjenama sa dužim radnim vijekom i velikom pouzdanošću.
8. Zaključak

U okviru istraživanja u ovoj doktorskoj disertaciji, ispitana je struktura induktormagnetski materijal, kojom su realizovani heterogeno integrirani senzori. Teorijske osnove i principi rada senzora su potvrđeni simulacijama i eksperimentalnim rezultatima. Ispitan je uticaj položaja feritne pločice koja je postavljena u blizini induktora na njegove osobine, odnosno uticaj promene njihove međusobne udaljenosti na parametre senzora u koje su ugrađeni (induktivnost i rezonantnu frekvenciju). U tehnologiji štampanih ploča fabrikovana su i testirana dva oblika induktora za procjenu i poređenje njihovih performansi: oblik meandar i kvadratni spiralni oblik. Zaključeno je da kvadratni spiralni induktor daje bolje performanse, veću osjetljivost u poređenju sa induktorom oblika meandar, i što je najvažnije, da se može koristiti za bežično mjerenje položaja, korišćenjem spoljašnjeg induktora – antene. Zbog toga, induktor kvadratnog spiralnog oblika je izabran za realizaciju senzora sile, pritiska i pomjeraja.

Integracijom elastičnog materijala sa induktor-ferit strukturuom, realizovan je senzor za mjerenje sile normalne na površinu senzora. Predstavljeni senzor omogućava lako i precizno bežično mjerenje sile uz ekonomičan i jednostavan proces izrade, jednostavnu integraciju i mogućnost modifikacije strukture senzora. Predloženi senzor ima veliku osjetljivost, mali histerezis i dobru linearnost u celom opsegu mjerenja; stoga, nema potrebe za dodatnim kolima za detekciju, obradu signala i poboljšanje linearnosti odziva senzora. Mjerenje sile je izvršeno do 75 N. Dobijena osjetljivost predloženog senzora (311 kHz/N) je značajno veća u poređenju sa osjetljivošću drugih predloženih senzora koji su opisani u literaturi.

Analizirano je ponašanje poliimidne folije kao fleksibilne membrane za realizaciju senzora pritiska i pomeraja. Prototip držača sa komorom je realizovan sa ciljem da se omogući ispitivanje, testiranje i razvoj senzora uz reprodukovanje uslova iz realnih uslova. Razvijena je i odgovarajuća merna metoda.

Dodatno, projektovan je i heterogenim procesom integracije induktivni senzor pritiska. Tradicionalne fabrikacione tehnologije PCB i LTCC su kombinovane sa poliimidnom folijom kako bi se senzor fabrikovao. Korišćenjem poliimidne folije debljine 125 µm omogućeno je mjerenje pritiska do 1,25 bara.

Ispitan je uticaj dizajna induktora na performanse senzora pritiska. Testiranje realizovanih senzora je pokazalo da induktori koji imaju veću površinu i broj namotaja
Pokazuju značajno poboljšanje performansi. Na primjer, sistem sa induktorom sa 30 namotaja ima 2,4 puta veću osjetljivost (1,65 MHz/bar u opsegu 0-0,25 bara i 0,5 MHz/bar u opsegu 0,25-1,25 bara) u poredenju sa sistemom istih spoljašnjih dimenzija (20 × 20 mm²) koji ima induktor sa 15 namotaja (4 MHz/bar u opsegu 0-0,25 bara i 1,2 MHz/bar u opsegu 0,25-1,25 bara).

Korišćenjem iste strukture (PCB induktor, LTCC feritni disk i komercijalno dostupna poliimidna folija), realizovani su pasivni induktivni senzori pomjeraja, u opsegu do 1200 µm. Ispitan je uticaj dva feritna diska različitih dimenzija (poluprečnika 6 mm i 9,5 mm) na performanse senzora. Korišćenjem strukture senzora sa manjim feritnim diskom postignuta je osjetljivost od 2,92 kHz/µm, dok sistem istih spoljašnjih dimenzija (19 × 19 mm²), ali sa većim feritnim diskom, pokazao je da je postignuta oko 3 puta veća osjetljivost (8,75 kHz/µm).

Predložen je i dizajn induktivnog senzora za mjerenje tangencijalnih pomjeraja. Mjerni rezultati prototipa senzora su pokazali da je pomoću razvijenog sistema moguće mjeriti tangencijalno pomjeranje duž jedne ose do ±5 mm, sa osjetljivošću od 2,44 MHz/mm, koja je znatno veća u odnosu na druge publikovane rezultate.

U ovoj doktorskoj disertaciji su predložene nove strukture senzora sile, pritiska i pomjeraja, koje su dobijene kombinovanjem tradicionalnih tehnologija fabrikacije (PCB i LTCC) sa poliimidnim folijama. Projektovani senzori imaju brojne prednosti: omogućavaju bežično mjerenje, jeftini su, kompaktni i jednostavni. Dimenzije heterogeno integriranih senzora su uporedive sa senzorima sličnih namjena koji su opisani u literaturi. Minijaturizacija senzora bi uticala na bežičnu spregu. Smanjenjem veličine induktora smanjila bi se njegova induktivnost i onemogućilo bi se bežično detektovanje pomoću antene. Dizajn realizovanih struktura senzora omogućava primjenu i drugih tehnologija izrade, pored korišćenih PCB i LTCC tehnologija. Razvijeni prototipovi mogu se lako modificovati u cilju primjene drugih materijala (kao što je na primjer polidimetilsiloksan). Primjenom novih materijala i tehnologija izrade otvaraju se nove mogućnosti za realizaciju senzora sa drugačijim karakteristikama i mjernim opsezima.

Budući rad će biti fokusiran na redizajn struktura u cilju poboljšanja osjetljivosti i realizacija strukture senzora pritiska (pomjeraja) sa fleksibilnim induktorom i/ili feritom u cilju mjerenja pritiska (pomjeraja) na obje strane senzora. Optimizacijom lejauta i dizajna senzora sile biće omogućeno mjerenje bočnih sila uz otvaranje novih mogućnosti primjene
Doktorska disertacija
Milica Kisić

senzora, kao što je postavljanje senzora na stopalima. Obrada signala sa senzora može da se izvrši korišćenjem interfejsa predstavljenim u [96]. Ovaj tip mjerenja ne bi bio bežični, ali bi omogućio obradu signala u realnom vremenu. Dizajn senzora tangencijalnog pomjeraja se može izmijeniti tako da se može koristiti za mjerenje duž dvije (tri) ose korišćenjem dva (tri) suprotno diziranana induktora. Prezentovani senzor se može koristiti kao senzor pozicije u farovima vozila za podešavanje visine servo upravljača omogućavajući jednostavno, kompaktno, robustno i pouzdano pozicioniranje farova, što će biti budući rad.

Rezultati koji su direktno proizišli na osnovu istraživanja u okviru rada na doktorskoj disertaciji su objavljeni u međunarodnom časopisu, u saopštenjima sa međunarodnih skupova i u tehničkim rješenjima:

- rad u istaknutom međunarodnom časopisu (M22):

- rad u časopisu međunarodnog značaja verifikovan posebnom odlukom (M24):

- saopštenje sa međunarodnog skupa štampano u celini (M33):

- saopštenje sa međunarodnog skupa štampano u izvodu (M34):

- prototip, nova metoda, softver, standardizovan ili atestiran instrument (M85):

Literatura

