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Abstract
This thesis has been written under the supervision of my mentor Prof. Miodrag Matel-

jević, and my co-mentor dr. Vladimir Božin at the University of Belgrade in the aca-
demic year 2012-2013. The topic of this thesis is Complex analysis related with geometric
function theory, more precisely the theory of quasiconformal mappings in the Euclidean
n-dimensional space. For good survey of the field, see F. W. Gehring [20] in the hand-
book of Kühnau [33] which also contains many other surveys on quasiconformal mappings
and related topics. The main source in this dissertation is J. Väisälä [67]. The thesis
is divided into three chapters. Chapter 1 is divided into 5 sections. In this chapter,
we focus on quasiconformal mappings in Rn and discuss various equivalent definitions.
We give The Modulus of family of curves in the first section, geometric definition of
quasiconformal space mappings in second section, analytic definition of quasiconformal
space mappings in third section, equivalence of the definitions in fourth section, and the
Beltrami equation in fifth section. Chapter 2 is divided into 5 sections. We begin by
generalizing the class of Lipα(Ω), 0 < α ≤ 1, and some properties of that class. Chap-
ter 2 is devoted to understanding the properties by introducing the notion of Linearity,
Differentiability, and majorants. A majorant function is a certain generalization of the
power functions tα, this is done in the first section. In the second section we introduc-
ing the notion of moduli of continuity with its Some Properties which gotten from I.M.
Kolodiy, F. Hildebrand paper [39]. In third section we produced harmonic mapping as
preliminary for the fourth section which including subharmonicity of |f |q of harmonic
quasiregular mapping in space. In the last section we introducing estimation of the Pois-
son kernel which were extracted from Krantz paper [42]. Chapter 3 is divided into 3
sections. This chapter is include the main result in this dissertation. In this chapter we
prove that ωu(δ) ≤ Cωf (δ), where u : Ω→ Rn is the harmonic extension of a continuous
map f : ∂Ω→ Rn, if u is a K-quasiregular map and Ω is bounded in Rn with C2 bound-
ary. Here C is a constant depending only on n, ωf and K and ωh denotes the modulus
of continuity of h. We also prove a version of this result for Λω-extension domains with
c-uniformly perfect boundary and quasiconformal mappings, and we state some results
regarding HQC self maps of the quadrant Q = {z : z = x+ iy, x, y > 0}.

Scientific field (naučna oblast): Mathematics (matematika)
Narrow scientific field (uža naučna oblast): Complex Analysis (kompleksna analiza)
UDC: 517.984+517.54(043.3)
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Chapter 1

Quasiconformal Space Mappings

1.1 The Modulus of family of curves

1.1.1 The Geometry of Curves

This section devoted to some preliminary material in this thesis which is basic for the
sequel. Here we will explore the notion of curves.

Definition 1. A curve in the complex plane is defined by a complex valued continuous
function γ(t) on an interval [α, β], where γ(t) = x(t) + iy(t), α ≤ t ≤ β. The functions
x(t), y(t) are real valued continuous functions of t. The complex valued function of the
real variable t, is called a parametrization of γ.

The curve is said to be closed if γ(α) = γ(β), and called simple if it is not self-intersecting:
if γ(t1) = γ(t2) only if t1 = t2 or t1, t2 ∈ {α, β}.

Definition 2. A simple closed curve is called Jordan curve.

A simple closed curve is said to be positively oriented if the region interior to the curve
is to the left of the curve while it is being traversed from t = α to t = β.

Theorem 1. (Jordan curve theorem). Suppose γ is a Jordan closed curve in C.
Then there exists two disjoint domains Ω1 and Ω2 satisfying:
1. C− γ = Ω1 ∪ Ω2,
2. exactly one of Ω1 and Ω2 is a bounded set, and
3. ∂Ω1 = ∂Ω2 = γ.

Definition 3. A curve γ(t) :[α, β]→ R is called a C1 (or continuously differentiable) if
γ′(t) exists on (α, β) is continuous, and has a continuous extension to [α, β].

Consider a partition of [a, b] such that a = t0 ≤ t1 ≤ ... ≤ tn = b. We denote the length
of γ : [a, b]→ Rn by `(γ) such that

`(γ) = sup
( n∑
i=1

|γ(xi)− γ(xi−1)|
)
.

Hence, 0 ≤ `(γ) ≤ ∞ for all γ ⊂ Rn. Clearly `(γ) = 0 if and only if γ is a constant
curve.

Definition 4. We say the curve γ is rectifiable if l(γ) < ∞, and a curve γ is locally
rectifiable if all of its closed subcurves are rectifiable

1
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If ρ(z) ≡ 1 almost everywhere in Ω, then the 1-length of any rectifiable γ ∈ Ω coincides
with its Euclidian length. In the non-rectifiable case nevertheless, the integral exists and
the definition is valid.

Theorem 2. If γ : [a, b]→ Rn is a rectifiable parametrization curve, then there exists a
unique parametrization curve γ0 : [0, c]→ Rn that satisfies the following properties:
1. γ is obtained from γ0 by an increasing change of parameter;
2. `(γ0 |[0,t]) = t for 0 ≤ t ≤ c, i.e., sγ0(t) = t.
Where `(γ) is the length of γ. Moreover, c = `(γ) and γ = γ0 ◦ sγ.

proof. Take γ0 to be a curve that satisfies conditions 1 and 2. Then γ = γ0 ◦ h where
h : [a, b] → [0, c] is increasing. Now if a ≤ t ≤ b, Lemma 1 implies that `(γ |[0,t]) =
`(γ0 |[0,h(t)]) = h(t). Therefore, h = sγ and so γ0 is unique. Now, if sγ(t1) = sγ(t2), then

γ |[t1,t2] is constant. Therefore there exists a well-defined mapping γ0 : [0, `(γ)] → Rn

such that γ = γ0 ◦ sγ . �

Definition 5. Let γ be a curve in Ω. The integral

lρ(γ) =

∫
γ
ρ(z)|dz|

is said to be the ρ-length of γ.

Definition 6. (Smooth curve). A curve γ(t) is said to be smooth if the function γ(t)
has a continuous derivative on its interval [α, β], and nonzero on its interval.

If γ is a smooth curve, then γ has a nonzero tangent vector at each point z(t), which it
given by z′(t). thus a smooth curve has no corners or cups.

Definition 7. (Jordan Domain). We say that a bounded set Ω ⊂ Rn is a Jordan
domain if its boundary ∂Ω is homeomorphic to ∂Bn.

A Jordan domain need not be homeomorphic to Bn, if n ≥ 3. The interior of a Jordan
curve in complex plane is a domain called a Jordan domain. A Jordan domains are
simply connected.

1.1.2 Möbius transformation

I get this paragraph from Matti Vuorinen book [68]. For x ∈ Rn and r > 0 let

Bn(x, r) = {z ∈ Rn : |x− z| < r}
Sn−1(x, r) = {z ∈ Rn : |x− z| = r}

denote the ball and sphere, respectively, centered at x with radius r. The abbreviations
Bn(r) = Bn(0, r), Sn−1(r) = Sn−1(0, r), Bn = Bn(1), Sn−1 = Sn−1(1) will be used
frequently. For t ∈ R and a ∈ Rn\{0} we denote

P(a, t) = {x ∈ R : x.a = t} ∪ {∞}.

Then P (a, t) is a hyperplane in Rn = Rn∪{∞} perpendicular to the vector a, at distance
t
|a| from the origin.

Definition 8. (homeomorphism map). A map f : Ω → Ω′ is called a homeomor-
phism if:
1- f is bijection, and
2- f and its inverse mapping f−1 : Ω′ → Ω are both continuous.
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Theorem 3. Every one-to-one and continuous mapping of an open set of the plane onto
a plane set is a homeomorphism.

Definition 9. (Sense-preserving homeomorphisms.). Let Ω and Ω′ be domains in
Rn. We call a C1-homeomorphism f : Ω→ Ω′ sense-preserving (orientation-preserving)
if Jf (x) > 0 for all x ∈ Ω\{∞, f−1(∞)} . If Jf (x) < 0 for all x ∈ Ω\{∞, f−1(∞)} then
we call f sense-reversing (orientation-reversing).

Theorem 4. For any simple closed curve in the plane, there is a homeomorphism of
the plane which takes that curve into the standard circle.

Definition 10. Let Ω, Ω′ be domains in Rn. A homeomorphism f : Ω → Ω′ is called
conformal if f is in C1(Ω), Jf (x) 6= 0 for all x ∈ Ω, and |f ′(x)h| = |f ′(x)||h| for all x ∈ Ω
and h ∈ Rn. If Ω, Ω′ are domains in Rn, a homeomorphism f : Ω → Ω′ is conformal if
its restriction to Ω\{∞, f1(∞)} is conformal.

Example 1. Some basic examples of conformal mappings are the following elementary
transformations.
(1) A reflection in P(a, t):

f1(x) = x− 2(x.a− t) a

|a|2
, f1(∞) =∞.

(2) An inversion (reflection) in Sn−1(a, r):

f2(x) = a+ r2 (x− a)

|x− a|2
, f2(a) =∞, f2(∞) = a.

(3) A translation f3(x) = x+ a, a ∈ Rn, f3(∞) =∞.
(4) A stretching by a factor k > 0 : f4(x) = kx, f4(∞) =∞.
(5) An orthogonal mapping, i.e. a linear map f5 with

|f5(x)| = |x|, f5(∞) =∞.

Definition 11. (Möbius transformation)
A homeomorphism f : Rn → Rn is called a Möbius transformation if f = g1 ◦ g2 ◦ ...◦ gp,
where each gj is one of the elementary transformations in example (1 (1)-(5)) and p is
a positive integer. Equivalently f is a Möbius transformation if f = h1 ◦ h2 ◦ ... ◦ hm
where each hj is a reflection in a sphere or in a hyperplane and m is a positive integer.

It follows from the inverse function theorem and the chain rule that the set of all con-
formal mappings of Rn is a group.

Theorem 5. Each Möbius transformation f : Rn → Rn is a homeomorphism.

1.1.3 Admissible metric

We need to introduce the notion of admissible metric. Every γ ∈ Γ shall be a locally
rectifiable.

Definition 12. (Admissible metric): Let Γ be a family of curves in Rn. A metric ρ
is called an admissible metric if it satisfies the following conditions:
i. ρ : Rn → R ∪ {∞} is a Borel measurable function,
ii. ρ ≥ 0 and
iii.
∫
γ ρds ≥ 1
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for each locally rectifiable curve γ ∈ Γ. By F (Γ) we will mean the family of admissible
functions.

Example 2. Let Γ be a curve family, suppose that γ contained in a Borel set Ω ⊂ Rn

for all γ ∈ Γ, and l(γ) ≥ r > 0 for all γ ∈ Γ, where γ is locally rectifiable. Define
f : Rn → Rn by

ρ∗(x) =

{
1
r if x ∈ Ω
0 x /∈ Ω

Then ρ∗(x) is admissible. Since∫
γ
ρds =

1

r
l(γ) ≥ 1

r
.r = 1

1.1.4 Definition of the Modulus of family of curves

Definition 13. Let Γ be a family of curves in Rn. Denote m the n-dimensional Lebesgue
measure in Rn. The modulus ( or conformal modulus) of Γ defined by

M(Γ) = inf
ρ∈F (Γ)

∫
Rn

ρndm.

where the infimum is taken over all metrics ρ in F (Γ).

Remark 1. Note in particular that the modulus of the collection of all non-locally rec-
tifiable curves is zero.

If F (Γ) = ∅, since ρ(x) =∞ belongs to F (Γ). Then M(Γ) =∞. Clearly 0 ≤M(Γ) ≤ ∞.

Remark 2. Observe that, if Γ1 ⊂ Γ2 then M(Γ1) ≤M(Γ2).

1.1.5 Properties of the Modulus

The basic properties of the modulus we take it from Väissälä’s book( [65]Ch 1).

Theorem 6. M(Γ) is an outer measure in the space of all curve families in Rn. That
is,
1. M(∅) = 0
2. If Γ1 ⊂ Γ2 in Rn, then M(Γ1) ≤M(Γ2), and

3.If Γ =
∞⋃
n=1

Γn, then

M(Γ) ≤
∞∑
n=1

M(Γn) (1.1)

proof. 1. Since the zero function belongs to F (∅), M(∅) = 0 .
2. If Γ1 ⊂ Γ2 Then F (Γ2) ⊂ F (Γ1), if the infimum is taken on both sides. Thus
M(Γ1) ≤M(Γ2).
3. We note that (2.9) always holds if the right hand side is infinite. If it is finite, then
given ε > 0, we can for every n choose a function ρn admissible for Γn such that∫

ρnndm ≤M(Γn) + 2−nε.
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The function ρ =
(∑

ρPn

)1/P
is admissible for Γ. Consequently, we have

M(Γ) ≤
∫
ρndm =

∞∑
n=1

∫
ρPn dm ≤

∞∑
n=1

M(Γn) + ε,

and hence (2.9) �

Theorem 7. F (Γ) = ∅ if and only if Γ contains a constant curve.

Lemma 1. M(Γ) = 0 if and only if there exist a Borel function 0 ≤ ρ0 ∈ L2(Ω), such
that ∫

γ
ρ0ds =∞ and

∫
Rn

ρn0dm <∞

for every locally rectifiable γ ∈ Γ.

proof. If there exists a function ρ with the above properties then all the functions
ρ0/n, n = 1, 2, ..., admissible for Γ and we have

M(Γ) ≤ lim
n→∞

1

n2

∫
γ
ρn0dm = 0.

Conversely, if M(Γ) = 0 then there exists a sequence ρl, ρ2, ... of functions which are
admissible for Γ, and satisfy∫

Rn
ρpndm < 4−n, n = 1, 2, ...

Then ρ =
∑
ρn is a Borel function, and

∫
γ
ρpdm =

∫
γ

( ∞∑
n=1

2−n/22n/2ρn

)p
dm ≤

≤
∫
γ

∞∑
n=1

2−n/2
∞∑
n=1

2n/2ρpndm =

=
∞∑
n=1

2n/2
∫
γ
ρpndm <

∞∑
n=1

2−n/2 = 1

Since each ρn is admissible for Γ, we have further∫
γ
ρdm =

∞∑
n=1

∫
γ
ρndm =∞

for every locally rectifiable γ ∈ Γ, and the lemma is proved. �

Theorem 8. Let c > 0 and define f : Rn → Rn by f(x) = cx. Denote the image of a
curve family Γ ∈ Rn under f by cΓ. Then

M(cΓ) = cn−pM(Γ)
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Proof. f(x) = cx implies that |f ′(x)| = c. Then, |Jf (x)| = cn for all x ∈ Rn. It suffices
to show

cn−pMp(Γ) ≤M(cΓ) or M(Γ) ≤ cp−nM(cΓ).

Let ρ̂ ∈ F (cΓ) and define ρ(x) = cρ̂(f(x)). Hence,

1 ≤
∫
f◦γ

ρ̂ds ≤
∫
γ

(ρ̂ ◦ f).|f ′(x)|ds =

∫
γ

(ρ̂ ◦ f).cds =

∫
γ

ρds.

This implies that ρ ∈ F (Γ), and so

M(Γ) ≤
∫
Rn

ρpdm =

∫
Rn

cp(ρ̂ ◦ f)pdm

= cp−n
∫
Rn

cn(ρ̂ ◦ f)pdm

= cp−n
∫
Rn

(ρ̂ ◦ f)p|Jf (x)|dm = cp−n
∫
Rn

ρ̂pdm.

Now by taking the infimum over all ρ ∈ F (Γ), we obtain:

M(cΓ) = cn−pM(Γ)

1.1.6 Modulus in conformal mappings

Let Ω ⊂ Rn, and f : Ω → Rn be a continuous function. Suppose that Γ is a family of
curves in Ω Then Γ′ = {f ◦ γ : γ ∈ Γ} is a family of curves in f(Ω). Γ′ is called the
image of Γ under f .

Theorem 9. Let Ω,Ω′ are domains in Rn, and if f : Ω → Ω′ is conformal, then
M(Γ) = M(Γ′) , for all Γ ⊂ Ω .

Proof. Let ρ′ ∈ F (Γ′) and define ρ′(f(x)) · |f ′(x)|. We have ρ ∈ F (Γ), since for all locally
rectifiable γ ∈ Γ ∫

γ

ρds =

∫
γ

ρ′(f(x)) · |f ′(x)|ds

=

∫
f◦γ

ρ′(x)ds ≥ 1.

Now since ρ ∈ F (Γ), this leads us to

M(Γ) ≤
∫
Ω

ρdm
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=

∫
Ω

(ρ′(f(x)) · |f ′(x)|)ndm

=

∫
Ω

ρ′(f(x))n · |f ′(x)|ndm since f is conformal

=

∫
Ω

(ρ′(f(x)) · Jf (x)dm

=

∫
Ω′

(ρ′(f(x)) ≤
∫
Rn

ρ′ndm.

Now taking the infimum, we obtain M(Γ) ≤M(Γ′).
We recall that f−1 is conformal if f is conformal. Hence M(Γ′) ≤M(Γ) and so,

M(Γ) = M(Γ′)

1.2 Geometric Definition Of Quasiconformal space Map-
pings.

1.2.1 The dilatations

1.2.1.1 The dilatation of homeomorphism

Let Ω,Ω′ are domains in Rn, let Γ be a curve family in Ω, and Γ′ = {f ◦ γ : γ ∈ Γ} the
image of family Γ under f . We define

KI(f) = sup
M(Γ′)

M(Γ)
and KO(f) = inf

M(Γ)

M(Γ′)
.

Where the suprema are taken over all γ ⊂ Γ such that M(Γ) and M(Γ′) are not both
0 or ∞. We say KI(f) is the inner dilatation of f , KO(f) is the outer dilatation of f ,
and K(f) = max{KO(f),KI(f)} is the maximal dilatation of f .
It follows from the definitions that the dilatations are positive numbers, possibly infinite,
and we note that KI ≥ 1 or KO ≥ 1, hence K ≥ 1.

Theorem 10. ([[58]][Theorem 3.1.2])
Let f : Ω→ Ω′ be a homeomorphism. The following properties hold for all x ∈ Ω:
1. KI(f

−1) = KO(f). 2. KO(f−1) = KI(f). 3. K(f−1) = K(f).
4. KI(f◦g) ≤ KI(f)KI(g). 5. KO(f◦g) ≤ KO(f)KO(g). 6. K(f◦g) ≤ K(f)K(g).

proof. Let Γ be a family of curves in Ω. By the definition of Γ′, the results are clear if
any of the dilatations are infinite. Hence, we will assume KO and KI to be finite. Recall
f : Ω→ Ω′,Γ ⊂ Ω, and Γ′ = fΩ ⊂ Ω′. To show Relation (1) we note

M(Γ′)

M(Γ)
=

M(Γ′)

M(f−1Γ′)
≤ KO(f−1)
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and by taking the supremum over all Γ we obtain KI(f) ≤ KO(f−1).
To show Relation (2) we note

M(Γ)

M(Γ′)
=
M(f−1Γ′)

M(Γ′)
≤ KI(f

−1)

and by taking the supremum over all Γ we obtain KO(f) ≤ KI(f
−1).

Relation (3) follows from Relations (1) and (2). Now we want to prove relation (4) we
see that:

M(Γ′)

M(Γ)
=
M((f ◦ g)Γ)

M(Γ)
=
M((f ◦ g)Γ)

M(gΓ)
.
M(gΓ)

M(Γ)
≤ KI(f).KI(g).

Taking the supremum over all Γ gives us Relation (4). Relation (5) follows in a similar
fashion. Relations (4) and (5) together gives us

KI(f ◦ g) ≤ KI(f) max{KI(g),KO(g)}.

hence, KI(f ◦ g) ≤ KI(f)K(g). Similarly, KO(f ◦ g) ≤ KO(f)K(g). Therefore

KI(f ◦ g) ≤ K(f)K(g)

KO(f ◦ g) ≤ K(f)K(g)

and so, K(f ◦ g) ≤ K(f)K(g). �

1.2.1.2 The dilatation of Linear Mapping

Let A : Rn → Rn be a linear bijection, we define the following quantities:

HI(A) =
|detA|
`(A)n

, HO(A) =
|A|n

|detA|
, H(A) =

|A|
`(A)

where `(A) = min
||x||=1

|Ax|, We say the quantities HI , HO, and H are the inner, outer, and

linear dilatations of A, respectively. Obviously, all three dilatations are > 1.

Let f : Ω → Ω′ be a homeomorphism, we say that f is a diffeomorphism, if f and f−1

are both belong to C1. Equivalently, a diffeomorphism is a C1-homeomorphism whose
jacobian Jf (x) 6= 0. If f is a diffeomorphism, then

HI(f
′(x)) =

|Jf (x)|
`(f ′(x))n

, HO(f ′(x)) =
|f ′(x)|n

|Jf (x)|

In geometric sense, H(A) measures the eccentricity of the ellipsoid E(A) while HI(A)
and HO(A) relate the volume of E(Bn) to the volumes of the inscribed and circumscribed
balls centered about E(A). H(A) is the ratio of the greatest and the smallest semiaxis
of E(A).

Theorem 11. ([[58]][Theorem 3.1.5]) If A : Rn → Rn is a linear bijection, then

1.HO(A) ≤ HI(A)n−1, 2.HI(A) ≤ HO(A)n−1, 3.H(A)n = HI(A) ·HO(A),

4.H(A) ≤ min{HI(A), HO(A)} ≤ H(A)n/2 ≤ max{HI(A), HO(A)} ≤ H(A)n−1.
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proof. Let a1 ≥ a2 ≥ ... ≥ an be the semi-axis of E(A). We want to prove 1, we know
an−1
n ≤ a2...an. From this we get:

an−2
n ≤a2...an−1

(an−2
n )n ≤(a2...an−1)n

an(an
2−2n
n )an−1

1 ≤an(a2...an−1)nan−1
1

an
2−2n+1
n · an−1

1 ≤(a1...an−1)n−1(a2...an)

(an−1
n )n−1 · an−1

1 ≤(a1...an−1)n−1(a2...an)

an−1
1

a2...an
≤(a1...an−1)n−1

(an−1
n )n−1

HO(A) ≤HI(A)n−1.

Now, we need prove 2 We have a1...an−1 ≤ an−1
1 . From this we obtain:

an−1
1 ≥a1...an−1

an−2
1 ≥a2...an−1

(an−2
1 )n = an

2−2n
1 ≥(a2...an−1)n

an−1
n · an2−2n

1 · a1 ≥an−1
n (a2...an−1)na1

an
2−2n+1

1 an−1
n = an−1

n · (an−1
1 )n−1 ≥an−1

n (a2...an−1)na1

(an−1
1 )n−1 · an−1

n ≥(a1...an−1)(a2...an)n−1

(
an−1

1

a2...an
)n−1 ≥a1...an−1

an−1
n

HI(A) ≤HO(A)n−1.

We prove 3

H(A)n = (
a1

an
)n =

an1
ann

=
an1
ann
· a2...an−1

a2...an−1

=
an−1

1

an−1
n
· a1...an−1

a2...an

=
a2...an

an−1
n

· a
n−1
1

a2...an
= HI(A)HO(A)

To prove 4 we will introduce in parts:
• H(A) ≤ HO(A).
We have

a1...an−1 ≤an−1
1

a1...an−1 · an ≤an−1
1 · an

a1

an
· an ≤

an−1
1

a2...an−1

H(A) ≤HO(A)
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• H(A) ≤ HI(A).
We have

an−1
n ≤a2...an

a1 · an−1
n ≤a1...an = (a1...an−1) · an
a1

an
≤a1...an−1

an−1
n

H(A) ≤HI(A)

And so, we conclude that H(A) ≤ min{HO(A), HI(A)}.

Next, we want to prove that max{HO(A), HI(A)} ≤ H(A)n−1.
• HO(A) ≤ H(A)n−1.

an−1
n ≤a2...an

an−1
1 an−1

n ≤an−1
1 a2...an

an−1
1

a2...an
≤a

n−1
1

an−1
n

HO(A) ≤H(A)n−1

• HI(A) ≤ H(A)n−1.

a1...an−1 ≤an−1
1

a1...an−1

an−1
n

≤a
n−1
1

an−1
n

HI(A) ≤H(A)n−1

We conclude max{HO(A), HI(A)} ≤ H(A)n−1. From part 3, we can get

min{HO(A), HI(A)}2 ≤ H(A)n ≤ max{HO(A), HI(A)}2.

�

1.2.1.3 Geometric Definition Of Quasiconformal space Mappings.

Definition 14. If K(f) = K < ∞, we say that f is K-quasiconformal. The map f is
K-quasiconformal in geometric sense if and only if

1

K
M(Γ) ≤M(Γ′) ≤ KM(Γ)

for every curve family Γ in Ω. f is quasiconformal if K(f) <∞.

From theorem (10) we get the following corollary

Corollary 1. If f is K1-quasiconformal and g is K2-quasiconformal,, then f−1 is K1-
quasiconformal, and h = f ◦ g is K1K2-quasiconformal.

1.2.1.4 Examples.

1. Let a 6= 0 be a real number, and let f(x) = |x|a−1x. We can extend f to a homeomor-
phism f : Rn → Rn by defining f(0) = 0, f(∞) =∞ for a > 0 and f(0) =∞, f(∞) = 0
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for a < 0. Then f is quasiconformal with

KI(f) = |a|, KO(f) = |a|n−1 if |a| ≥ 1,

KI(f) = |a|1−n, KO(f) = |a|−1 if |a| ≤ 1.

2. Let (r, φ, z) be the cylindrical coordinates of a point x ∈ Rn, i.e. r ≥ 0, 0 ≤ φ ≤
2π, z ∈ Rn−2, and 

x1 = r cosφ,
x2 = r sinφ,
xj = zj−2 for 3 ≤ j ≤ n

The domain Ωα, defined by 0 < φ < α, is called a wedge of angle α, α ∈ (0, 2π). Let
0 < α ≤ β < 2π. The folding f : Ωα → Ωβ, defined by

f(r, φ, z) = (r, βφ/α, z),

is quasiconformal with KI(f) = β/α,KO(f) = (β/α)n−1.

1.3 Analytic Definition of Quasiconformal Space Mappings

1.3.1 Partial derivatives

Suppose that A is an open set in Rn and that f : A → Rn is a mapping. If the ith
partial derivative of f exists at a point x ∈ A, we denote it by ∂if(x). That is

∂if(x) = lim
t→0

f(x+ tei)− f(x)

t

If f is differentiable at x, then all partial derivatives exist, and ∂if(x) = f ′(x)ei.

1.3.2 ACL-Property

Definition 15. (Absolutely continuous functions on an interval.) The function
f : (a, b)→ Rm is absolutely continuous on the interval (a, b) if for all ε > 0 there exist
δ > 0 such that

n∑
i=1

||f(bi)− f(ai)|| < ε,

then for every finite sequence of non-intersecting intervals ai ≤ x ≤ bi, i = 1, ..., n
contained in (a, b), such that

n∑
i=1

||bi − ai|| < δ

Remark 3. ([Equivalent definition]). The following conditions for a real-valued func-
tion f on a compact interval [a, b] are equivalent
(1) f is absolutely continuous;
(2) f has a derivative f ′ almost everywhere, the derivative is Lebesgue integrable, and
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f(x) = f(a) +

x∫
a

f ′(t)dt

for all x on [a, b];
(3) there exists a Lebesgue integrable function g on [a, b] such that

f(x) = f(a) +

x∫
a

g(t)dt

for all x on [a, b].

Let Q = {x ∈ Rn : xi ∈ [ai, bi]} be a closed n-interval, if f : Q → Rm is con-
tinuous, for almost any (c1, c2, ..., cn) ∈ Q, and fi : [ai, bi] → Rm, where fi(x) =
f(c1, c2, ..., ci−1, x, ci+1, ..., cn), i = 1, 2, ..., n, are absolutely continuous.

Now, we define absolutely continuously on lines.

Definition 16. (ACL on an interval): A function f |Q is called ACL (absolutely con-
tinuous on lines) if f |Q is continuous and f |Q is absolutely continuous on almost every
line segment in Q parallel to the coordinate axes.

Definition 17. (ACL): Let Ω be a domain, Q ⊂ Ω. A function f : Ω→ Rm, is ACL if
for every n-interval Q ⊂ Ω , the function f |Q is ACL.

Remark 4. A complex valued function f is ACL in Ω if its real and imaginary parts
are ACL in Ω.

Definition 18. Let Ω,Ω′ are a domains in Rn, and f : Ω → Ω′ be a homeomorphism,
we say that f is ACL if f |Ω\{∞,f−1(∞)} is ACL.

Definition 19. (ACLp):Let f : Ω→ Rm, is ACL for every closed n-interval Q, we say
that f is in ACLp or in ACLp(Ω), If p ≥ 1, and such a function has partial derivatives
Dif(x) a.e. in Ω, these partial derivatives of f are locally Lp-integrable, and they are
Borel functions.

1.3.3 Analytic definition of quasiconformal space mapping

Definition 20. :
A homeomorphism f : Ω→ Rn, n ≥ 2, of a domain Ω in Rn is called quasiconformal in
analytic sense if f is satisfying the following conditions
1. f is ACLn, and
2. f is differentiable a.e., and
3. there exists a constant K, 1 ≤ K <∞ such that

|f ′(x)|n ≤ K|Jf (x)|, |f ′(x)| = max
|h|=1

|f ′(x)h|

a.e. in Ω, where f ′(x) is the formal derivative.

The smallest K ≥ 1 for which this inequality is true is called the outer dilatation of f
and denoted by KO(f). If f is quasiconformal, then the smallest K ≥ 1 for which the
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inequality

|Jf (x)| ≤ Kl(f ′(x))n, l(f ′(x)) = min
|h|=1

|f ′(x)h|

holds a.e. in Ω is called the inner dilatation of f and denoted by KI(f). The maximal
dilatation of f is the number K(f) = max{KI(f),KO(f)}. If K(f) ≤ K, f is said to
be K-quasiconformal. It is well-known that

KO(f) ≤ Kn−1
I (f), KI(f) ≤ Kn−1

O (f) (1.2)

1.4 Equivalence of the Definitions

Now we are ready to formulate the theorem satisfying that Geometric definition of
quasiconformal mappings is equivalent to analytic definition of it, and prove that result.

Theorem 12. Let f : Ω ⊂ Rn → Ω′ be a homeomorphism. For all Γ ⊂ Ω the following
are equivalent:
1. 1

KM(Γ) ≤M(Γ′) ≤ KM(Γ)
2. f is ACLn, almost every where differentiable, and

1

K
|f ′(x)|n ≤ |Jf (x)| ≤ K.l(f ′(x))n. (1.3)

1.5 The Beltrami Equation

There is another approach to the theory of planar quasiconformal mappings. Directly
from the analytic definition we see that there is a measurable function µ : Ω → C,
Ω ⊂ C, where C be the complex plane, such that

fz = µ(z)fz (1.4)

where

fz =
1

2
(fx + ify), and fz =

1

2
(fx − ify).

are formal derivatives of f with respect to z and z, z = x + iy, while fx and fy are
partial derivatives of f with respect to x and y, respectively.
In the real variables x, y, u, and v, (1.4) can be written in the form of the system{

vy = αux + βuy
−vx = βux + γuy

where α, β, and γ are given measurable functions in x and y. The complex dilatation µ
of f is in the unit ball of L∞ when f is quasiconformal. Indeed,

||µ||∞ =
K − 1

K + 1
< 1.

Equation (1.4) is called the complex Beltrami equation, and the function µf = fz/fz is
called the Beltrami coefficients of f or the complex dilatation of f .

Example 3. Suppose f(z) = az+ bz is an orientation preserving linear map of C, with
|a| > |b|. Then a little geometric calculation will show that µf (z) = b/a, and f maps
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the unite circle to an ellipse and the ratio of the major and minor axes of this ellipse is

K =
|a|+ |b|
|a| − |b|

=
1 + |µf |
1− |µf |

Example 4. Let f(z) = −z log |z|2, where |z| ≤ r = e−2. Then f : D(0, r) → D(0, 4r)
is a homeomorphism and

fz = −z
z
, fz = −1− log |z|2, µf (z) =

z

z(1 + log |z|2)
.

Thus f is quasiconformal with a continuous Beltrami coefficient, and yet f is not C1.

1.5.1 Chain rule for Beltrami coefficients

Lemma 2. ([[53]][Lemma 9.4]) If µf is Beltrami coefficients for fz = µ(z)fz and µh is
Beltrami coefficients for hz = µ(z)hz, then,

µh◦f (z) =
µf (z) + µh ◦ f(z).∂f(z)

∂f(z)

1 + µh ◦ f(z).µf (z).∂f(z)

∂f(z)

µh◦f−1(z) =
µh(z)− µf (z)

1− µh(z).µf (z)
.
∂f(z)

∂f(z)

Corollary 2. Let f : Ω1 → Ω2, g : Ω1 → Ω3, and h : g : Ω2 → Ω4 be quasiconformal
maps. Then,
1- We have that µf = µg almost everywhere if and only if f ◦ g−1 is conformal;
2- If h is conformal, then µh◦f = µf almost everywhere;

3- If f is conformal, then µh◦f = (µh ◦ f)f
′

f ′ almost everywhere.

1.5.2 Classification of Beltrami equations

We say that µ is bounded in Ω if ||µ||∞ < 1, and that µ is locally bounded in Ω if µ |A
is bounded whenever A is a relatively compact subdomain of Ω. The Beltrami equation
is divided into three cases according to the nature of µ(z) in Ω:
1. The classical case if ||µ||∞ < 1,
2. The degenerated case if |µ| < 1 almost everywhere and ||µ||∞ = 1.
3. The alternating case if |µ| < 1 almost everywhere in a part of Ω and 1/|µ| < 1 almost
everywhere in the remaining part of Ω.

1.5.3 Solution the Beltrami equation

By writing h : Ω → C, we assume that Ω is a domain in C, which is an open and
connected set and that h is continuous. A function h : Ω→ C is a solution of (1.4), if h
is ACL in Ω, and its ordinary partial derivatives, which exist a.e. in Ω, satisfy (1) a.e.
in Ω.
A solution h : Ω → C of (1.4) which is a homeomorphism of Ω into C is called µ-
homeomorphism or µ-conformal mapping. In the above cases (1) and (2), a solution
h : Ω → C of (1.4) will be called elementary if h is open and discreet, meaning that h
maps every open set onto an open set and that the preimage of every point in Ω consists
of isolated points. Let h : Ω→ C be an elementary solution. The complex dilatation of
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h is defined by

µh(z) = µ(z) = hz(z)/hz(z),

if hz(z) 6= 0 and by µ(z) = 0 if hz(z) = 0. For such a mapping, the dilatation is

Kh(z) = Kµ(z) =
1 + |µ|
1− |µ|

.

Note that Kh < ∞ a.e. if and only if |µ| < 1 a.e. If h ∈ ACL, then h has partial
derivatives hx and hy a.e. and, thus, by the well-known Gehring-Lehto theorem every
ACL homeomorphism h : Ω → C is totally differentiable a.e.. For a sense-preserving
ACL homeomorphism h : Ω→ C, the Jacobian Jh(z) = |hz|2−|hz|2 is nonnegative a.e.,
and since ||µ||∞ < 1, h is quasiconformal.

1.5.3.1 Principal Solutions

Definition 21. A quasiconformal homeomorphism f : C→ C is said to be normalized
at 0, 1, ∞ if

f(0) = 0, f(1) = 1, and f(∞) =∞

With µ as above, we will call the solutions to the Beltrami equation (1.4) normalized by
the condition f(z) = z + o(1) near ∞ the principal solutions.

Theorem 13. (([7], Theorem [5.3.2]) Let |µ(z)| ≤ k < 1 for almost every z ∈ C. Then
there is a solution f : C→ C to the Beltrami equation

fz(z) = µ(z)fz(z) for almost every z ∈ C (1.5)

which is a K-quasiconformal homeomorphism normalized by the three conditions

f(0) = 0, f(1) = 1, and f(∞) =∞

Furthermore, the normalized solution of f is unique.

Lemma 3. ([7], lemma [5.3.5.]): Suppose we have a sequence of Beltrami coefficients
{µn}n∈N such that

||µn||L∞(C) ≤ k < 1, for all n ∈ N

and such that the pointwise limit

µ(z) := lim
n→∞

µn(z)

exists almost everywhere. Let fn be the normalized solutions to

fz = µn(z)fz, n ∈ N

Then the limit f(z) = lim
n→∞

fn(z) exists, the convergence is uniform on compact subsets

of C and f solves the limiting Beltrami equation,

fz = µ(z)fz,

almost everywhere.
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Theorem 14. (Stoilow Factorization): Let f : Ω → Ω′ be a homeomorphic solution to
the Beltrami equation

fz = µ(z)fz (1.6)

with |µ(z)| ≤ k < 1 almost everywhere in Ω. Suppose g is any other solution to (1.6) on
Ω. Then there exists a holomorphic function Φ : Ω′ → C such that

g(z) = Φ(f(z)), z ∈ Ω

Corollary 3. If µ is measurable with |µ(z)| ≤ k < 1 at almost every z ∈ C, then the
normalized solution to the Beltrami equation fz = µ(z)fz is unique.

proof. If f1 and f2 are normalized solutions to the same Beltrami equation, then
Stoilow factorization implies f1 = φ ◦ f2, where φ is holomorphic in C. Since f1 and f2

are homeomorphisms, φ : C→ C is conformal and by similarities of Conformal mappings
in the plane. Since φ fixes 0, 1 and ∞, φ is the identity. �

Theorem 15. ([48], Existence Theorem p. 194) If Ω is an arbitrary domain and µ an
arbitrary measurable function in Ω with

sup
z∈Ω
|µ(z)| < 1,

then there exists a quasiconformal map f of Ω with µf = µ almost everywhere in Ω.



Chapter 2

Lipschitz Spaces

2.1 Lipschitz Spaces

2.1.1 Definition of Lipschitz Spaces

Definition 22. Let Ω ⊂ Rn, and 0 < α ≤ 1. A function f : Ω→ Cn or (Rn). is said to
belong to the Lipschitz space Lipα if there is a constant L > 0 such that

|f(x)− f(y)| ≤ L(||x− y||α) (2.1)

for all x; y ∈ Ω. L, and α are called respectively Lipschitz constant and exponent (of f
on Ω).

For 0 < α ≤ 1, let Lipα(Ω) denote the Lipα functions defined on Ω. Note that ||x|| =√
x2

1 + ...+ x2
n.

Example 5. Set Ω = [a, b], and f(x) = x. Then

|f(x1)− f(x2)| = ||x1 − x2|| (2.2)

That implies that f ∈ Lip1([a, b]).

A function is Lipschitz if it is in Lip1.

2.1.2 Some Properties of Lipschitz Spaces

2.1.2.1 Linearity

Theorem 16. Lipα(Ω) is a linear space.

Proof. If f(x) ∈ Lipα(Ω), and λ ∈ R or C is constant, then, there is a constant L > 0
such that

|f(x)− f(y)| ≤ L||x− y||α,

hence

|λf(x1)− λf(x2)| =|λ(f(x1)− f(x2))|
= |λ||f(x1)− f(x2)|
≤ |λ|L||x− y||α

17
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and therefore λf(x) ∈ Lipα(Ω).
If f, g ∈ Lipα(Ω), then

|f(x)− f(y)| ≤ Lf ||x− y||α,

and

|g(x)− g(y)| = Lg||x− y||α

Then (f + g) ∈ Lipα(Ω) becomes of,

|(f + g)(x)− (f + g)(y)| =|f(x) + g(x)− f(y)− g(y)|
= |f(x)− f(y) + g(x)− g(y)|
≤ |f(x)− f(y)|+ |g(x)− g(y)|
≤ Lf ||x− y||α + Lg||x− y||α

= (Lf + Lg)||x− y||α

2.1.2.2 Differentiability

Let Ω ⊂ Rn is open, we say that f : Ω→ Rm is differentiable at a ∈ Ω if there exists a
linear map L : Rn → Rm such that

lim
x→a

|f(x)− f(a)− L(x− a)|
|x− a|

= 0.

If such a linear map L exists, it is unique, called the derivative of f at a, and denoted
by Df(a). We also note that f = (f1, ..., fm) is differentiable at a if and only if each of
the coordinate functions fi are differentiable at a.

Theorem 17. (Lebesgue).
Let f : (a, b)→ R be Lipschitz. Then f is differentiable at almost every point in (a, b).

Theorem 18. (Rademacher’s theorem).
Let Ω ⊂ Rn be open, and let f : Ω→ Rn be Lipschitz. Then f is differentiable at almost
every point in Ω.

proof. We may assume for simplicity and without loss of generality that f : Rn → Rn
is Lipschitz. The proof splits into three parts.
Step 1. The one-dimensional result is used to conclude that the partial derivatives
( ∂f∂xi ) of f exists almost everywhere. This gives us a candidate for the total derivative,
namely the (almost everywhere defined) formal gradient

∇f(x) := (
∂f

∂x1
, ...,

∂f

∂xn
). (2.3)

Next, it is shown that all directional derivatives exist almost everywhere, and can be
given in terms of the gradient. Finally, by using the fact that there are only countably
many directions in Rn, the total derivative is shown to exist; it is only in this last step
that the Lipschitz condition is seriously used.
We will now carry out these steps. The first claim is a direct consequence of Lebesgue



ABAOUB Lipschitz Spaces and Quasiconformal Mappings 19

Theorem. Indeed, for every x, v ∈ Rn, the function

fx,v(t) := f(x+ tv), t ∈ R

is Lipschitz as a function of one real variable, and hence differentiable at almost every
t ∈ R. Keeping now v ∈ Rn fixed, we conclude from Fubini theorem and the preceding
remark that

Dvf(x) := lim
t→0

f(x+ tv)− f(x)

t
(2.4)

exists for almost every x ∈ Rn. (To be precise here, in order to use Fubini theorem,
one has to first show that the set of those points x for which the limit in (2.4) exists is
measurable.) In particular, as

Deif(x) :=
∂f

∂xi

for each i = 1, ..., n, where ei is the ith standard basis vector in Rn, the formal gradient
∇f(x) as given above in (2.3) exists at almost every x ∈ Rn.
Step 2., we show that for every v ∈ Rn

Dvf(x) := v.∇f(x), (2.5)

for almost every x ∈ Rn. To do so, fix v = (v1, ..., vn) ∈ Rn. Then fix a test function
η ∈ C∞0 (Rn). We have that∫

Rn

η(x)Dvf(x)dx =

∫
Rn

η(x) lim
t→0

f(x+ tv)− f(x)

t

= lim
t→0

∫
Rn

η(x)
f(x+ tv)− f(x)

t

= lim
t→0

∫
Rn

−f(x)
η(x)− η(x− tv)

t
dx

= −
∫
Rn

f(x) lim
t→0

η(x)− η(x− tv)

t
dx

= −
∫
Rn

f(x)Dvη(x)dx

= −
n∑
i=1

vi

∫
Rn

f(x)
∂η

∂xi
(x)dx

=

n∑
i=1

vi

∫
Rn

η(x)
∂f

∂xi
(x)dx

=

∫
Rn

v · ∇f(x)η(x)dx

Because η was arbitrary, equality (2.5) holds for almost every x ∈ Rn.
Step 3., We want to prove the original claim. To this end, fix a countable dense set of
directions in Rn; that is, fix a countable dense set of vectors (vi) in ∂Bn. By the first
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two steps, we infer that there is a set A ⊂ Rn such that |Rn\A| = 0 and that

Dvif(a) = vi.∇f(a) (2.6)

for every vi and for every a ∈ A, where we also understand that both sides of (2.6)
exist (the gradient ∇f(a) is still understood formally as in (2.8)). Now fix a ∈ A. For
v ∈ ∂Bn and t ∈ R, t 6= 0, set

D(v, t) :=
f(a+ tv)− f(a)

t
− v.∇f(x)

To prove the differentiability of f at a, we need to show that D(v, t) → 0 as t → 0
independently of v. To do this, fix ε > 0. Then choose an ε-dense set of vectors
v1, ..., vN from the chosen dense collection of directions; i.e., for each v ∈ ∂Bn we have
that |v − vi| < ε for some i ∈ {1, ..., N}. We then find that

|D(v, t)−D(vi, t)| ≤
∣∣∣f(a+ tv)− f(a+ tvi)

t

∣∣∣+ |(v − vi).∇f(a)|

≤ C.||(v − vi)|| ≤ C.ε

where C is a constant independent of v, this constant depends only on ||∇f(a)|| and the
Lipschitz constant, by the Lipschitz assumption. Because lim

t→0
D(vi, t) = 0 for each vi,

we can choose δ > 0 such that

D(vi, t) ≤ ε

for |t| < δ, for each i = 1, ..., N . By combining the preceding inequalities, we obtain
that

|D(v, t)| ≤ C.ε

whenever |t| < δ, where C is independent of v, as required. This completes the proof of
Rademachers theorem. �

2.1.2.3 Majorants

Definition 23. Let ω : [0,∞) → [0,∞) be a continuous function, we say that ω is a
majorant function if

ω(0) = 0, ω is increasing, and ω(t)/t is decreasing. (2.7)

For a majorant function ω we define Lipschitz space functions analogously to Definition
(22) as follows

Definition 24. Let ω be a majorant, and given a subset Ω of Cn or Rn. A function
f : Ω→ Rm is said to belong to Lipschitz space Λω(Ω) if there is a constant L = L(f) =
L(f ; Ω) such that

|f(x)− f(y)| ≤ Lω(|x− y|), (2.8)

for all x, y ∈ Ω.
The set of functions satisfying (2.8) is denoted by Λω(Ω, L), hence Λω(Ω) =

⋃
L≥0

Λω(Ω, L)
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Lemma 4. If ω is convex and there are C, δ > 0 such that

|f(x)− f(y)| ≤ C.ω(|x− y|), (2.9)

for all x, y ∈ Ω with |x− y| < δ, then f ∈ Λω(Ω)

Proof. Let k be an integer such that Ω is covered by k balls of radius δ/3 centered at
points in Ω. Let x0; y0 ∈ Ω such that |x0 − y0| ≥ δ. Then, there is x1, ..., xk ∈ Ω such
that

|xj − xj+1| < δ, j = 0, 1, ..., k

where xk+1 = y0. So,

|f(x0)− f(y0)| ≤
k∑
j=0

|f(xj)− f(xj+1)| ≤ (k + 1)C.ω(δ)

≤ (k + 1)C.ω(|x0 − y0|).

Definition 25. A majorant function ω is called regular if there is C > 0, for all δ > 0
sufficiently small,

δ∫
0

ω(t)

t
dt+ δ

∞∫
δ

ω(t)

t2
dt ≤ C.ω(δ). (2.10)

Example 6.

ω(t) =


0 if t = 0
−tα ln t if 0 < t ≤ 1

e
e−α if t > 1

e

If 0 < α < 1, then ω(t) is a majorant function. And a regular majorant because

δ∫
0

ω(t)

t
dt =

δ∫
0

−tα−1 ln tdt = −δ
α ln δ

α
+
δα

α2
≤ C(−δα ln δ).

δ

∞∫
δ

ω(t)

t2
dt =δ

1/e∫
δ

−tα−2 ln tdt+ δ

∞∫
1/e

e−α

t2
dt

=
−δα ln δ

1− α
+ δ
( e1−α

(1− α)2
− e1−α

1− α
+ e1−α

)
− δα

(1− α)2

≤ C(−δα ln δ).

Hence,

δ∫
0

ω(t)

t
dt+ δ

∞∫
δ

ω(t)

t2
dt ≤ C.(−δα ln δ).
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Definition 26. A majorant ω is called fast if there is C > 0, such that

δ∫
0

ω(t)

t
dt ≤ C.ω(δ), (2.11)

and it is called slow if there is C > 0 such that

δ

∞∫
δ

ω(t)

t2
dt ≤ C.ω(δ). (2.12)

Remark 5. Notes that a majorant ω is called regular if and only if it is both fast and
slow.

Definition 27. We say Ω is a Λω-extension domain if each pair of points x, y ∈ Ω can
be joined by a rectifiable curve γ ⊂ Ω satisfying∫

γ

ω(d(z, ∂Ω))

d(z, ∂Ω)
≤ Cω(|x− y|), (2.13)

where d(z, ∂Ω) = inf{||z − w|| : w ∈ ∂Ω}.
Yet another piece of notation will be needed. Given two sets Ω1 and Ω2 (in Cn or Rn),
we writeΛω(Ω1,Ω2) for the class of those continuous functions f on Ω1, Ω2 which satisfy
(2.9), with some C; whenever x ∈ Ω1 and y ∈ Ω2.

Theorem 19. ([16], Theorem [1]): Let ω be a fast majorant, and let Ω be a Λω-extension
domain in Cn: For a holomorphic function f on Ω, the following are equivalent:
1. f ∈ Λω(Ω),
2. |f | ∈ Λω(Ω),
3. |f | ∈ Λω(Ω, ∂Ω).
Where Λω(Ω) is the Lipschitz space associated with a majorant ω, and Λω(Ω, ∂Ω) = {f :
Ω→ C ( R,Rn,Cn) : |f(x)− f(y)| ≤ Cω(|x− y|) for x ∈ Ω, and y ∈ ∂Ω}

proof. We want to prove that (3) implies (1), fix a point z ∈ Ω and consider the function
h, defined on the unit ball by

h(w) = f(z + d(z)w)/Mz, w ∈ Bn,

where

d(z) := d(z, ∂Ω) and Mz := sup{|f(ξ)| : ||ξ − z|| < d(z)}.

Hence

h(0) = f(z)/Mz, ∇h(0) =
d(z)

Mz
∇f(z).

Since h is holomorphic in Bn and takes values in D, we have

|∇h(0)| ≤ 1− |h(0)|2 ≤ 2(1− |h(0)|). (2.14)

we deduce from 2.14 that

d(z)|∇f(z)| ≤ 2(Mz − |f(z)|). (2.15)
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Now if ξ ∈ ∂Ω is a point with |ξ − z| = d(z), then

|f(w)| − |f(z)| ≤||f(w)| − |f(ξ)||+ ||f(ξ)| − |f(z)||
≤ Cω(2d(z)) + Cω(d(z)) ≤ 3Cω(d(z)), (2.16)

using condition 3, and the fact that ω(2t) ≤ 2ω(t). Taking the supremum over w ∈
B(z, dz)), we get

Mz − |f(z)| ≤ const.ω(d(z)), (2.17)

and substituting into 2.15 gives

|∇f(z)| ≤ const.
ω(d(z))

d(z)
, z ∈ Ω. (2.18)

Finally, given two points x, y ∈ Ω, let us join them by a curve γ ⊂ Ω satisfying (2.13).
Integrating (2.18) along h, we obtain

|f(x)− f(y)| ≤
∫
γ

|∇f(z)|ds(z) ≤ const.

∫
γ

ω(d(z))

d(z)
ds(z). (2.19)

A combination of (2.19) and (2.13) yields

|f(x)− f(y)| ≤ const.ω(|x− y|),

and we arrive at (1). �
We fix some notation. At the risk of abusing terminology, we say increasing to mean
non-decreasing and a . b to mean a ≤ Cb for some constant C > 0.

Lemma 5. Let u be a harmonic function on a smoothly bounded domain Ω in Rn. If
u ∈ Λω(Ω), then

|∇u(x)| . ω(δ(x))

δ(x)
, x ∈ Ω.

where δ(x) is the Euclidean distance of x to bΩ.

Proof. Fix x0 ∈ Ω. Let ε > 0 such that B(x0, ε) ⊂⊂ Ω. Now, by the Poisson integral
formula, for x ∈ B(x0, ε)

∇u(x) =
1

ωn−1ε

∫
|ξ|=ε

u(x0 + ξ)∇x
(ε2 − |x− x0|2

|x− x0 − ξ|n
)
dσ(ξ)

=
1

ωn−1ε

∫
|ξ|=ε

(u(x0 + ξ)− u(x0))∇x
(ε2 − |x− x0|2

|x− x0 − ξ|n
)
dσ(ξ).

Calculating ∇x inside the integral, setting x = x0, and estimating we get

|∇u(x)| ≤ n

ε
sup
|ξ|=ε
|u(x0 + ξ)− u(x0)| . ω(ε)

ε
.



ABAOUB Lipschitz Spaces and Quasiconformal Mappings 24

Now, let ε = δ(x0)/2 to obtain

|∇u(x)| .
ω( δ(x0)

2 )

δ(x0)
≤ ω(δ(x0))

δ(x0)
(since ω is increasing).

2.2 Moduli of continuity

Measuring the smoothness of a function by differentiability is too crude for many pur-
poses in approximation. More subtle measurements are provided by the moduli of con-
tinuity and the moduli of smoothness. The main idea of modulus of continuity ( present
already in the notion of derivative) is to measure the difference between the function and
its translate. Since there are many ways to measure the size of a function, we can have
many different moduli of continuity. In this chapter we will only consider the following
modulus.

Definition 28. Let Ω ⊂ Rn be any compact set, and let f(x), be any continuous
function on Ω, x = (x1, x2, ..., xn) ∈ Ω. The function

ωf (δ) = sup
|x−y|≤δ
x,y∈Ω

|f(x)− f(y)|, 0 ≤ δ ≤ daim Ω. (2.20)

is called the modulus of continuity of f(x).

Clearly, ωf (δ) is non-decreasing, and a constant for δ ≥ diamΩ, if Ω is bounded. The
function ω is continuous at δ = 0 if and only if f is uniformly continuous on Ω.

2.2.1 Some properties of modulus Of continuity

In this section we formulate and prove some lemmas and theorems that characterize the
main properties of such modulus, and we get this part from IM Kolodiy, F. Hildebrand
paper [39].

Lemma 6. If 0 < δ1 ≤ δ2, then ω(δ1, f) ≤ ω(δ2, f)

Lemma 7. f(x) is uniformly continuous on Ω if and only if

lim
δ→0

ω(δ, f) = ω(0) = 0

2.2.1.1 The continuity of the functions ωf (δ)

Lemma 8. For any continuous function f(x) on a compact set Ω, the function ωf (δ)
is continuous from the right.

Proof. The function φ(x, y) ≡ |f(x)−f(y)| is continuous with respect to the combination
of the variables (x, y) on the compact set {(x, y) ∈ Ω×Ω, |x− y| ≤ δ}, and so there are
points xδ, and yδ such that |xδ − yδ| ≤ δ and

ω(δ, f) = sup
|x−y|≤δ
x,y∈Ω

φ(x, y) = φ(xδ, yδ) = |f(xδ)− f(yδ)|,
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Consider the sequence {δn}, δn > δ, converging to δ. For each δn there exists a pair of
points (xδn , yδn) such that

|xδn − yδn | ≤ δn, ω(δn, f) = |f(xδn)− f(yδn)|.

Since (xδn , yδn) ∈ Ω × Ω, there is a subsequence (xδn′ , yδn′ ), such that xδn′ → x and
yδn′ → y. Thus |x− y| ≤ δ. But the function

φ(x, y) ≡ |f(x)− f(y)|

is continuous on Ω× Ω, and so

lim
δn′→δ
δn′>δ

|f(xδn′ )− f(yδn′ )| = |f(x)− f(y)|.

Hence

ω(δ, f) ≥ |f(x)− f(y)| = lim
δn′→δ
δn′>δ

|f(xδn′ )− f(yδn′ )| = lim
δn′→δ
δn′>δ

ω(δn′ , f) = ω(δ + 0, f),

and so

ω(δ, f) ≥ ω(δ + 0, f).

On the other hand the monotonicity of ω(δ, f), implies that

ω(δ + 0, f) ≥ ω(δ, f).

Combining the last two inequalities, we obtain

ω(δ + 0, f) = ω(δ, f).

Theorem 20. For any function f(x) continuous on a compact and convex set Ω, the
function ω(δ, f) is continuous from the left if and only if Ω satisfies the following condi-
tion A:
For any δ ≥ 0, x, y ∈ Ω, x 6= y, there are points x′, y′ ∈ Ω such that

|x′ − x| ≤ δ, |y′ − y| ≤ δ,

and

|x′ − y′| ≤ |x− y|.

proof. Necessity.
Let Ω be a compact in Rn that for any continuous f(x), x ∈ Ω, the function ω(δ, f)
is continuous from the left. We show that Ω satisfies condition A. Assume the con-
trary, ie, that the condition A, not satisfied. Then we construct a continuous function
f0(x), x ∈ Ω, for which ω(δ, f0) is discontinuous from the left at some point δ0, that is a
contradiction.
Indeed, the failure of a condition means that: There is δ0 > 0 and there exist x0, y0 ∈
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Ω, x0 6= y0, that for any x′, y′ ∈ Ω such that |x′ − x0| < δ0, |y′ − y0| < δ0 we have

|x′ − y′| ≥ |x0 − y0|

Consider the function

f0(x) =


1− |x−x0|δ0

, if x ∈ K(x0) = {x : x ∈ Ω, |x− x0| < δ0}
−(1− |x−y0|δ0

) if x ∈ K(y0) = {x : x ∈ Ω, |x− y0| < δ0}
0 if x ∈ Ω \ (K(x0) ∪K(y0))

For this function

ω(δ, f0) =


≤ δ

δ0
, if 0 ≤ δ < δ0,

≤ 1 if δ0 ≤ δ < |x0 − y0|
= 2 if |x0 − y0| ≤ δ < diamΩ

Clearly, with ω(δ, f0) is discontinuous on the left at the point δ0 = |x0 − y0|.
Sufficiency.
Let the compact Ω satisfies Condition A and let f(x) any continuous function on Ω. We
will prove that ω(δ, f) is continuous on the left. Since f(x) is uniformly continuous on the
compact Ω, then for any ε > 0, there exists δ > 0 such that for |x−x′| ≤ δ, |y−y′| ≤ δ

|f(x)− f(x′)| ≤ ε

2
, |f(y)− f(y′)| ≤ ε

2
.

By assumption A, for δ > 0 and for any x, y ∈ Ω, x 6= y, |x−y| ≤ δ, (where δ - any number
in the interval (0, diamΩ], there are points x′, y′ ∈ Ω such that |x− x′| ≤ δ, |y − y′| ≤ δ
and and the inequality

|x′ − y′| ≤ |x− y| ≤ δ.

then

|f(x)− f(y)| ≤ |f(x)− f(x′)|+ |f(x′)− f(y′)|+
+ |f(x′)− f(y)| ≤ ε+ sup

|x′−y′|≤δ
x′,y′∈Ω

|f(x′)− f(y′)| =

= ε+ sup
t<δ

sup
|x′−y′|≤t
x′,y′∈Ω

|f(x′)− f(y′)| = ε+ sup
t<δ

ω(t, f) =

= ε+ lim
t→δ
t<δ

ω(t, f) = ε+ ω(δ − 0, f).

Hence,

ω(δ − 0, f) ≤ ω(δ, f) ≤ ε+ ω(δ − 0, f)

and, by the arbitrariness of ε > 0 About

ω(δ − 0, f) = ω(δ, f).

Theorem (20) is proved. �

Corollary 4. For any continuous function f(x) on a compact set Ω, ω(δ, f) is contin-
uous if and only if Ω satisfies condition A.
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2.2.1.2 Subadditivity of function ω(δ, f)

Theorem 21. A compact set Ω is convex if only if for any continuous function f(x) on
Ω the function ω(δ, f) is semiaddiitive, i.e.,

ω(δ1 + δ2) ≤ ω(δ1) + ω(δ2), δ1, δ2 ∈ Ω

proof. Sufficiency.
Let Ω be convex and compact. We prove that for any continuous function f(x), x ∈ Ω,
the function ω(δ, f) is subadditive. Let x and y be any two points in Ω such that
|x− y| ≤ δ1 + δ2 where δ1 and δ2 - any non-negative number. On the segment joining x
and y, we take a point z ∈ Ω such that

|x− z| ≤ δ1, |y − z| ≤ δ2. since Ω is convex, z ∈ Ω

Obviously,

|f(x)− f(y)| ≤ |f(x)− f(z)|+ |f(z)− f(y)| ≤
≤ sup
|x−z|≤δ1
x,z∈Ω

|f(x)− f(z)|+ sup
|y−z|≤δ2
y,z∈Ω

|f(z)− f(y)| =

= ω(δ1, f) + ω(δ2, f),

therefore,

ω(δ1 + δ2) ≤ ω(δ1) + ω(δ2), δ1, δ2 ∈ Ω.

Necessity.
Suppose that for any continuous function f(x) on the compact set Ω the function ω(δ, f)
is subadditive. We need to prove that the to Ω convex. Assume the contrary, i.e. that
Ω is not convex. Then we construct a continuous function f0(x), x ∈ Ω, for which the
function of ω(δ, f0) is not a semi-additive. Thus, suppose that Ω is a compact convex.
Then there is x0, y0 ∈ Ω such that the line segment joining these points belongs entirely
to Ω. Consequently, there are non-negative numbers δ1 and δ2 such that |x0 − y0| =
δ1 + δ2, and the point z = (δ2x0 + δ1y0)(δ1 + δ2) does not belongs to Ω. Obviously, there
is a ε > 0, such that K1 ∪K2 = ∅, where

K1 = {x : x ∈ Ω, |x− 0| < δ1 + ε}
K2 = {x : x ∈ Ω, |x− y0| < δ2 + ε}.

Consider the function

f0(x) =


h1 · (1− |x−0|

δ1+ε if x ∈ K1,

−h2 · (1− |x−0|
δ2+ε if x ∈ K2,

0 if x ∈ Ω\K1 ∩K2

where for a given δ1 and δ2 are positive numbers h1 and h2 are related by

h1(δ1 + ε)−1 = h2(δ2 + ε)−1
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It is clear that

ω(δ1 + δ2, f0) = h1 + h2,

ω(δ1, f0) ≤ δ1
h1

δ1 + ε
,

ω(δ2, f0) ≤ δ2
h2

δ2 + ε

Consequently, the

ω(δ1, f0) + omega(δ2, f0) ≤δ1
h1

δ1 + ε
+ δ2

h2

δ2 + ε

< (δ1 + ε)
h1

δ1 + ε
+ (δ2 + ε)

h2

δ2 + ε

= h1 + h2 = ω(δ1 + δ2, f0).

So we have constructed a continuous function f0(x) and pointed such numbers δ1 and
δ2 that

ω(δ1 + δ2, f0) > ω(δ1, f0) + ω(δ2, f0)

Theorem (21) is proved �

Lemma 9. If λ > 0, then

ω(λδ, f) ≤ (1 + λ)ω(δ, f).

proof. Let n be integer such that n ≤ λ < n+1, then ω(λδ, f) ≤ ω((n+1)δ, f). Suppose
|x1−x2| < (n+ 1)δ and x1 < x2. We divide [x1, x2] into n+ 1 equal parts each of length
(x1 − x2)/(n+ 1) by means of the points

zi = x1 + i(x2 − x1)/(n+ 1), i = 0, 1, ..., n+ 1.

Then

|f(x1)− f(x2)| = |
n∑
i=0

[f(zi−1 − f(zi)]| ≤
n∑
i=0

|f(zi−1 − f(zi)| ≤ (n+ 1)ω(δ, f).

Thus, ω((n+ 1)δ, f) ≤ (n+ 1)ω(δ, f).
But n+ 1 ≤ λ+ 1, and the lemma is proved. �

2.3 Harmonic mapping

The subject of harmonic maps is vast and has found many applications, and it would
require a very long book to cover all aspects, even superficially. We first consider rele-
vant aspects of harmonic functions on Euclidean space

A real valued function f on an open set Ω ⊆ Rn is called harmonic on Ω if f ∈ C2 on Ω
(that is, all first and second partial derivatives of f exist and are continuous on Ω ), and

∆f :≡
n∑
i=1

∂2f

∂x2
i

=
∂2f

∂x2
1

+ ...+
∂2f

∂x2
n

= 0, (x1, ..., xn) ∈ Ω
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The operator ∆ is called the Laplace operator or Laplacian. We say that a function f
defined on a set (not necessarily open) A ⊂ Rn is harmonic on A if f can be extended to
a function harmonic on an open set containing A. A one-to-one mapping f = (f1, ..., fn)
is a harmonic mapping if the all coordinate functions are harmonic. Thus areal-valued
harmonic function is a harmonic mapping of a domain Ω ⊆ Rn if and only if it is univa-
lent (or one-to-one) in Ω.

We denote the Euclidean open ball in Rn of center a ∈ Rn and radius r > 0 by B(a, r) :=
{x ∈ Rn : |x − a| < r} (which we will sometimes write Bn(a, r) to emphasize that its
dimension is n), the corresponding sphere by S(a, r) ≡ ∂B(a, r), the unit ball B(0, 1)
by B, and its boundary (unit sphere) by ∂B ≡ S.

2.3.1 Mean value property

Let ωn denotes volume of the unit ball in Rn which define by

ωn =

{
πn/2

(n/2)! if n is even
2(n+1)/2π(n−1)/2

1.3.5...n if n is odd.

And let ω∗n−1 denotes the (unnormalized) surface area of the unite sphere in Rn define by
ω∗n−1 = nωn. Then the volume measure of the ball B(a, r) in Rn is V (Bn(a, r)) = rnωn,
and the surface area of the sphere S(a, r) in Rn is Area(Sn−1(a, r)) = rn−1nωn.

Definition 29. (Mean values). Let f be a Borel function on B(a, r) which is bounded
above or below, the mean value of f over the sphere is :

1

Area(S(a, r))

∫
S(a,r)

f(ξ)ds(ξ),

and over the ball is

1

V (B(a, r))

∫
B(a,r)

f(x)dV (x).

where ds denotes surface-area measure, dV = dVn = dx1...dxn denotes Lebesgue volume
measure on Rn.

The first expression gives f as an average over the boundary of the ball, and the second
as an average over the ball.

Now we may write the mean value properties in the following equivalent ways:
A continuous real valued function f in a domain Ω ⊂ Rn has mean value property over
spheres, if

f(a) =
1

nωn

∫
S

f(a+ rξ)ds(ξ) :=

∫
S

f(a+ rξ)dσ(ξ),

for every ball B(a, r) ⊂ Ω, where σ denotes the normalized surface-area measure on S
(so that σ(S) = 1).
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And f has the mean value property for balls, if

f(a) =
1

ωn

∫
B

f(a+ rx)dV (x), (2.21)

for every ball B(a, r) ⊂ Ω. In particular (when n=2):

f(a) =
1

2π

2π∫
0

f(a+ reiθ)dθ.

for every disk D(a, r) ⊂ Ω ⊂ R2.
It is an important fact that the Mean value properties are equivalent to harmonicity of
real harmonic functions

Definition 30. (Harmonic function). Let Ω be an open subset of Rn and f ∈
C(Ω,R). f is harmonic on Ω if and only if f satisfies the mean value equality

f(a) =
1

V (B(a, r))

∫
B(a,r)

f(x)dV (x); (2.22)

for all B(a, r) ⊂ Ω .

Or equivalently

f(a) =
1

Area(S(a, r))

∫
S(a,r)

f(x)ds(x); (2.23)

for all B(a, r) ⊂ Ω. In fact, if f is harmonic on Ω and B(a, r) ⊂ Ω, then

f(a) =
1

V (B(a, r))

∫
B(a,r)

f(x)dV (x) =

=
n

rn.Area(S(B(a, r))

r∫
0

∫
S(a,ρ)

f(ξ)ρn−1ds(ξ)dρ.

Which implies

rnf(a) = n

r∫
0

1

Area(S(B(a, r))

∫
S(a,ρ)

ρn−1f(ξ)ds(ξ)dρ.

Taking derivatives with respect to r on both sides it follows that

nrn−1f(a) =
nrn−1

Area(S(B(a, r))

∫
S(a,r)

f(ξ)ds(ξ).

Hence

f(a) =
1

Area(S(a, r))

∫
S(a,r)

f(ξ)ds(ξ).
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This means f(a) equals the average of f over the sphere S(a, r).

Theorem 22. ([66] Theorem7) If f = u+ iv is analytic in a domain Ω ⊂ C, then each
of the functions u and v is harmonic in Ω

In this case the imaginary part of a analytic function f is called a harmonic conjugate
of the real part of f .

Theorem 23. ([4] Theorem 1.28) If u is harmonic on a domain Ω ⊆ Rn, then u is real
analytic in Ω.

Suppose that Ω is simple connected domain and let u be harmonic on Ω. Then there is
an analytic function f on Ω with Ref = u. This means that for such a function u there
exists a harmonic function v defined on Ω such that f = u + iv is analytic on Ω. Now
we can prove next theorem.

Theorem 24. ([10] Theorem 4.31). If f = u + iv is harmonic in a simply-connected
domain Ω, then f = g + h, where g and h are analytic.

proof. Since u and v are real harmonic functions on a simply-connected domain, then
the discussion before the statement of this theorem shows that there exists analytic
functions f1 and f2 such that u = Ref1 and v = Imf2. Hence,

f = u+ iv = Ref1 + iImf2 =
f1 + f1

2
+ i

f2 − f2

2i
=
f1 + f2

2
+
f1 − f2

2
= g + h

�

2.3.2 Subharmonic Function

subharmonic functions are related to harmonic function as follows. If the values of
a subharmonic function are no larger than the values of a harmonic function on the
boundary of a ball, then the values of the subharmonic function are no larger than
the values of the harmonic function also inside the ball. Subharmonic functions are of
a particular importance in complex analysis, where they are intimately connected to
holomorphic functions.

Definition 31. (Upper semi-continuous function ): Let Ω ⊂ Rn, a function u :
Ω→ [−∞,+∞) is said to be upper semicontinuous at a point a ∈ Ω if for any number
C > u(a) there exists a number δ = δ(a,C) such that u(x) < C whenever |x − a| < δ
and x ∈ Ω. A function u is said to be semicontinuous on the set Ω if it is upper
semicontinuous at each point of Ω

An equivalent definition for u to be upper semicontinuous on Ω is to require the sets
{x ∈ Ω : u(x) < C} be open in Ω for every C ∈ R . Another equivalent definition for
upper semicontinuous u(a) ≥ lim

x→a
supu(x) for all a ∈ Ω.

Remark 6. : Note that upper semi-continuous functions are allowed to take value −∞.

Definition 32. Let Ω be an open subset of Rn, and u : Ω → R ∪ {−∞} be an upper
semi-continuous function. We say that u is subharmonic function on Ω if u satisfy the
following mean value inequality:

u(a) ≤ 1

Area(S(a, r))

∫
S(a,r)

u(x)dσ(x), (2.24)

for all B(a, r) ⊂ Ω .
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An equivalent definition is obtained using property:

u(a) ≤ 1

V ol(B(a, r))

∫
B(a,r)

u(x)dV (x), (2.25)

for all B(a, r) ⊂ Ω.

Remark 7. Note that from the definition the subharmonic functions are allowed to take
value −∞, for an important example the function log |z − a|.

Example 7. Every harmonic function is subharmonic

2.3.3 Simple properties of subharmonic function

The subharmonic functions are a much more flexible tool than holomorphic, or even
harmonic functions. An immediate consequence of the sub-mean value property is the
maximum principle for subharmonic functions. There is no minimum principle for sub-
harmonic functions, in other words subharmonic functions do not satisfy the minimum
principle, for example u(x) = |x|2 is subharmonic function on Rn, but it is not harmonic
.
1-If u is subharmonic on Ω, then Cu is subharmonic in Ω for any constant C ≥ 0
2- If the functions u1(x), ..., um(x) are subharmonic in a domain Ω ⊂ Rn, then the func-

tions
m∑
i=1

ui, and max
1≤i≤m

ui(x) are also subharmonic in Ω

3-the limit of a uniformly convergent sequence of subharmonic functions is subharmonic
function
4- the limit of a monotone decreasing sequence of subharmonic function is subharmonic
function

Proposition 1. Assume Ω is domain and u ∈ C2(Ω). Then u is subharmonic in Ω if
and only if ∆u(z) ≥ 0, z ∈ Ω

2.3.4 Poisson integral formula

: The Poisson integral formula shows that if f(x) is harmonic in a ball B(a, r) and
continuous in the closed ball B(a, r), then its value at any interior point is completely
determined by its values on the boundary ∂B(a, r). Thus the Poisson integral is mean-
ingful for every (bounded piecewise) continuous function U(eiθ) on the circle (or even
for Lebesgue integrable functions).

Definition 33. (Poisson integral): Let f be integrable in the sphere S(a, r) =
∂B(a, r) with respect to the surface measure dS and define

P [f ](x) =

∫
S(a,r)

P (x, y)v(y)dS(y),

for all x ∈ B(a, r).
This is called the Poisson integral formula of f on S(a, r) .

The Poisson integral formula of the real continuous function f on the boundary ∂D :=
{eiθ : 0 ≤ θ < 2π} of the unit disk is
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P [f ](z) =
1

2π

2π∫
0

P (ρ, θ − t)f(t)dt (0 ≤ ρ < 1, 0 ≤ θ < π).

where

P (ρ, θ − t) =
1− ρ2

1− 2ρ cos(θ − t) + ρ2
(z = ρeiθ, 0 ≤ ρ < 1).

Lemma 10. : If f(z) is harmonic in the unit disc D and continuous in the closed unit
disc D, then f(z) satisfies the Poisson integral formula:

f(z) =
1

2π

2π∫
0

f(eiθ).Pρ(t− θ)dθ :=
1

2π

2π∫
0

f(ei(t−θ)).Pρ(θ)dθ (z = ρeiθ, 0 ≤ ρ < 1).

2.4 Subharmonicity of |f |q of harmonic quasiregular map-
ping in space

We denote the Euclidean norm in Rn by ||.||, and let Ω ⊂ Rn be a region. Let f(x) =
(f1(x), ..., fn(x)) : Ω→ Rn with formal differential matrix

Df(x) =
{∂fj(x)

∂xi

}n
i,j=1

is K-quasiregular, and we set

||Du|| =

(
n∑

i,j=1

∣∣∣∣∣∂fj(x)

∂xi

∣∣∣∣∣
)1/2

If f = (f1, ..., fn) is a harmonic mapping defined in Ω, then the function |f |p for p ≥ 1
is subharmonic in Ω and therefore has the sub-mean-value property over balls. If p < 1,
then |f |p need not be subharmonic but, by a result of Hardy-Littlewood and others,
there exists a constant K = K(n; p) < 1 such that

|f(x)|p ≤ Kf−n
∫

Br(x)

|f |pdm

whenever Br(x) ⊂ Ω.

Proposition 2. ([6, Ch. VII 3, p.217]). Let u = (u1, ..., un) : Ω → Rn, be harmonic,
let Ω0 = Ω\u−1(0), let q ∈ R. Then for x ∈ Ω0

∆|u|q = q
[
|u|q−2

n∑
k=1

|∇uk|2 + (q − 2)|u|q−4
n∑
k=1

(
u �

∂u

∂xk

)]
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Proof. Write v := |u|q = (u2
1 + ...+ u2

n)p, for p := q/2. A direct computation gives

vx1 =p(u2
1 + ...+ u2

n)p−1(2u1u1x1 + ...+ 2ununx1)

= q(u2
1 + ...+ u2

n)p−1(u1u1x1 + ...+ ununx1)

and further

vx1x1 =q{2(p− 1)(u2
1 + ...+ u2

n)p−2(u1u1x1 + ...+ ununx1)2+

+ (u2
1 + ...+ u2

n)p−1.[u1u1x1x1 + (u1u1x1)2 + ...+ ununx1x1 + (ununx1)2]}.

Therefore

∆v =vx1x1 + ...+ vxnxn

= q{|u|q−2
[
(u1∆u1 + ...+ un∆un) +

( n∑
k=1

u2
1xk

+ ...

+

n∑
k=1

u2
nxk

)]
+ (q − 2)|u|q−4

n∑
k=1

( n∑
j=1

uju
2
jxk

)
}

= q{|u|q−2
( n∑
k=1

u2
1xk

+ ...+
n∑
k=1

u2
nxk

)
+ (q − 2)|u|q−4

n∑
k=1

( n∑
j=1

uj .
∂uj
∂xk

)2
}

= q|u|q−4
{
|u|2

n∑
j=1

( n∑
k=1

uju
2
jxk

)
+ (q − 2)

n∑
k=1

( n∑
j=1

uj .
∂uj
∂xk

)2}
q|u|q−4

{
|u|2

n∑
j=1

|∇uj |2 + (q − 2)

n∑
k=1

( n∑
j=1

uj �
∂uj
∂xk

)2}

Theorem 25. ([6][Theorem 2.1])
If f : Ω → Rn, be a K-quasiregular harmonic mapping in Ω ⊂ Rn, then |f |q is subhar-
monic for some 0 < q = q(K,n) < 1.

proof. Fix such a map f : Ω → Rn, and set Ω0 = Ω − f−1(0). |f |q is subharmonic at
each point x ∈ f−1(0) for any q > 0. Hence we have to prove that ∆(|f |q) ≥ 0 on Ω0 for
some q = q(n,K) < 1. Since f is quasiregular, the set Z = {x ∈ Ω0 : detDu(x) = 0}
has measure zero (see [? ]), it is also closed since f is smooth. In particular Ω1 = Ω0−Z
is dense in Ω0 and thus it suffices to prove that ∆|u|q ≥ 0 on Ω1. From Proposition 3,
we obtain

∆|f |q = q

[
|f |q−2||Df ||2 + (q − 2)|f |q−4

∣∣∣∣∣
n∑
j=1

fj∇fj

∣∣∣∣∣
2]

So we need 0 < q = q(K,n) < 1. such that

|f |2 · ||Df ||2 + (q − 2)

∣∣∣∣∣
n∑
j=1

fj∇fj

∣∣∣∣∣
2

≥ 0
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on Ω1 or, equivalently, we need a constant C = C(K,n) < 1 such that∣∣∣∣∣
n∑
j=1

fj(x)∇fj(x)

∣∣∣∣∣
2

≤ C|f(x)|2||Df(x)||2

for all x ∈ Ω1. After normalization, we see that it suffices to find a constants C =
C(K,n) < 1 such that

sup
|z|=1

∣∣∣∣∣
n∑
j=1

zj∇fj(x)

∣∣∣∣∣ ≤ C||Df(x)||

At each point x ∈ Ω1 the matrix Du(x) is K-quasiconformal and its transpose Du(x)t is
also K-quasiconformal. Here we identify matrices with corresponding linear maps. To
finish the proof we need the following lemma.

Lemma 11. Let a matrix A = (aij) ∈ GL(Rn) be K-quasiconformal, for each K ≥ 1
and n ≥ 2 there is a constant C = C(K,n) < 1 such that

sup
|x|=1

∣∣∣∣∣
n∑
j=1

xjAej

∣∣∣∣∣ ≤ C(
n∑

i,j=1

a2
ij

)1/2

proof. It is suffices to prove lemma for normalized matrices :
n∑

i,j=1
a2
ij = 1. So, we set

GLK(n) =

{
A =

(
aij

)n
i,j=1

: A is K-quasiconformal,
n∑

i,j=1

a2
ij = 1

}

This set of matrices is compact and the function

φ(A) = sup
|x|=1

∣∣∣∣∣
n∑
j=1

xjAej

∣∣∣∣∣
is continuous on the space of all n× n matrices, hence it attains its maximum at A0 ∈
GLK(n) on the compact GLK(n). Set φ(A0) = C. Assume C = 1. Clearly C ≤ 1.

Then sup
|x|=1

∣∣∣ n∑
j=1

xjA0ej

∣∣∣ = 1, and this supremum is attained at z ∈ Sn−1.

1 =
∣∣∣ n∑
j=1

zjA0ej

∣∣∣ ≤ n∑
j=1

∣∣∣zjA0ej

∣∣∣ ≤ ( n∑
j=1

z2
j

)1/2

·

(
n∑
j=1

∣∣∣A0ej

∣∣∣2)1/2

= 1.

Hence, all the above inequalities are in fact equalities and therefor the vectors zjA0ej , 1 ≤
j ≤ n are collinear. But this leads to a contradiction with invertibility of A0. Thus,
C < 1 and our lemma is proved. This ends the proof of theorem (25). �

2.5 Estimation of the Poisson Kernel

I get this part from Krantz papers [41], and [42].
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We want to estimate the size of the Poisson kernel PΩ(x, t) = P (x, t) of Ω. Let Ω ⊂ Rn
be a connected open set, x ∈ Ω and t ∈ ∂Ω. It is often possible to calculate PΩ explicitly.
For example,
? The Poisson kernel of the disc D ⊆ R2 is

PD(x, t) =
1

2π
.
1− |x|2

|x− t|2
.

? The Poisson kernel for the upper halfplane H = {(x1, x2) ∈ R2 : x2 > 0} is given by

PH(x, t) =
1

π
.

x2

(x1 − t)2 + x2
2

.

? The Poisson kernel for the unit ball B ⊆ Rn is given by

PB(x, t) =
Γ(n/2)

2πn/2
.
1− |x|2

|x− t|n
.

Where Γ is the classical gamma function
? The Poisson kernel for the upper halfspace Hn+1 ≡ {x = (x1, ..., x

n+1) ∈ Rn+1 :
xn+1 > 0} (with x = (x1, ..., xn+1) = (x′, xn+1)) is given by

Pn+1
H (x, t) = cn

xn+1

(|x′ − t|2 + x2
n+1)[n+1]/2

.

Where

cn =
Γ([n+ 1]/2)

π[n+1]/2
.

Here we need to have size estimates for the Poisson kernel on a fairly general domain
(say a bounded domain with C2 boundary). The standard asymptotic is

PΩ(x, t) � δ(x)

|x− y|n
. (2.26)

Where δ(x)δΩ(x) is the distance from x ∈ Ω to ∂Ω.
Now, let Ω ⊂ Rn be a bounded domain with C2 boundary. This means that there is a
C2, real-valued function ρ such that

Ω = {x ∈ Rn : ρ(x) < 0}

and ∇ρ = 0 on ∂Ω. Thus ∂Ω is a regularly imbedded C2 hypersurface in Rn.

Theorem 26. Let Ω ⊂ Rn be a bounded domain with C2 boundary. Let PΩ : Ω× ∂Ω→
R+ be the Poisson kernel for Ω. Then there are constants C1, C2 > 0 such that

C1
δ(x)

|x− y|n
≤ PΩ(x, y) ≤ C2

δ(x)

|x− y|n
. (2.27)

proof. For convenience, we write

P (x, t) � δ(x)

|x− y|n
.
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instead of (2.27). If K ⊂ Ω is a compact set, then the estimate we desire is trivial for
x ∈ K and y ∈ ∂Ω. For then |x − y| ≥ c > 0, δ(x) is bounded above, and we get a
universal bound above and below on δ(x)/|x − y|n. A similar comment applies if x is
near the boundary and y is far from x. So we may concentrate our attention on x near
the boundary and y near x.
Now fix a point P ∈ ∂Ω and a point P0 ∈ Ω such that the segment P0P is normal to the
boundary at P . We shall dilate coordinates with center P0. We assume that P0 is close
to ∂Ω - within a tubular neighborhood of the boundary-and we set ε = dist(P0, P ). We
assume that coordinates have been rotated and centered so that
1. The point P is the origin (0, 0, ..., 0),

2. The normal direction
−−→
PP0 is the positive xn-direction.

We write x = (x1, ..., xn), x ∈ Rn. We set P0 = (P 1
0 , ..., P

n
0 ). With the normalization of

coordinates, in fact P0 = (P 1
0 , P

2
0 , ..., P

n
0 ) = (0, ..., 0,+ε). Now define

Φε(x) = (
x1

ε
,
x2

ε
, ...,

xn
ε

)

Clearly, that the mapping Φε sends the point P0 to (1, 0, ..., 0). The first thing to prove

lim
ε→0+

Φε(Ω) = Hn

To see this, we first check that if the defining function ρ, expanded about the point P ,
is given by

ρ(x) =

n∑
i=1

a1
ixi +

n∑
i,k=1

a2
ikxixk + ... = xn +

n∑
i,k=1

a2
ikxixk.

Then

ρε(s) ≡
1

ε
·

[
ρ ◦ Φ−1

ε (s)

]

=
1

ε
·

[
− εsn +

n∑
i,k=1

a2
ikxixk + ...

]

= −sn + ε ·

[
n∑

i,k=1

a2
ikxixk + ...

]

Clearly, as ε→ 0, the transferred defining function ρε tends to the linear defining func-
tion ρ0(s) ≡ −sn. In other words, the domains Φε(Ω) ≡ Ωε converge (in an appropriate
sense) to the standard halfspace. This last information is useful because we know the
Poisson kernel for a halfspace.

Now we may take advantage of the facts accrued by setting Ωε = Φε(Ω), letting dσ be
(n − 1)-dimensional area measure on ∂Ω, dσε to be (n − 1)-dimensional area measure
on ∂Ωε, and taking f to be a function that is continuous on Ωε and harmonic on Ωε.
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Further, we let x ∈ Ω and set s = Φε(x). Then we calculate that

f(s) = f(Φε(x)) =

∫
∂Ωε

PΩε(Φε(x), t)f(t)dσε(t)

=

∫
∂Ω

PΩε(Φε(x),Φε(τ))f(Φε(τ))detJΦε(τ)dσ(τ).

It is crucial to note here that the integral is over an (n − 1)-dimensional hypersurface,
and hence the Jacobian determinant is that of an (n− 1)× (n− 1) matrix. Now let us
write

f ◦ Φε(x) =

∫
∂Ω

PΩ(x, τ)[f ◦ Φε(τ)]dσ(τ) =

∫
∂Ω

Kε(x, τ)[f ◦ Φε(τ)]dσ(τ)

Since this identity holds true for any choice of continuous f on the boundary of Ωε (with
unique harmonic extension to Ωε), we may conclude that

PΩ(x, τ) = Kε(x, τ).

The identity (2.27) is the key to our result, for we know asymptotically what Kε looks
like. In particular, we know (see [[40]], Section [1.3]) on any smoothly bounded domain
H that the Poisson kernel is a normal derivative of the Greens function:

PH(x, y) =
∂

∂ν
GH(x, y).

Now with P, P0 fixed as before, let W be a small, smoothly bounded, topologically trivial
domain with these properties:
i. W ⊆ Ω,
ii. P0 ∈W , P ∈ ∂W ,
iii. ∂W ∩ ∂Ω is a relative neighborhood of P in ∂Ω.
Now the key observation at this point is that, when ε > 0 is small, then the Poisson
kernel for Φε(W ) at interior points of the line segment Φε(PP0) is very near to the
Poisson kernel of the upper half space Hn at those same points.
As a result, we may calculate the Poisson kernel on Ω by instead calculating the kernel
on W . In turn, it then suffices to calculate the kernel on Hn. Thus we see that, for x
on the interior of the line segment PP0

Kε(x, τ) =ε−(n−1).PΩε(Φε(x),Φε(τ))

≈ ε−(n−1) Φε(x)n

(|Φ′ε(x)− Φε(τ)|2 + [Φε(x)n/ε]2)n/2

= ε−(n−1).
xn/ε

(|x′/ε− τ/ε|2 + [xn/ε]2)n/2

=
xn

(|x′ − τ |2 + [xn]2)n/2

Unraveling the notation, we find that we have proved the approximation (2.27). �



Chapter 3

Moduli of continuity of harmonic
quasiregular mappings on
bounded domains

Let Ω ⊂ Rn be a domain (connected, non-empty, open set). Harmonic quasiregular
(briefly, hqr) mappings in the plane were studied first by O. Martio in [56], for a review
of this subject and further results see [49] and references cited there. Moduli of continuity
of harmonic quasiregular mappings in Bn were studied by several authors, see [45], [38],
[8]. In this paper, our main goal is to extended one of the main results from [6] to more
general domains in Rn. In fact the following theorem was proved in [6].

Theorem 27. [[6], Theorem A] If u : Bn → Rn is a continuous map which is K-
quasiregular map and harmonic in Bn, then ωu(δ) ≤ Cωf (δ) for δ > 0, where f = u |Sn−1

and C is a constant depending only on K, ωf and n.

We use two methods to extend this result. The first method is to use the following
theorem from [6].

Theorem 28. [[6], Theorem B] There is a constant q = q(K,n) ∈ (0, 1) such that |u|q
is subharmonic in Ω ⊂ Rn whenever u : Ω→ Rn is a K- quasiregular harmonic map.

The above theorem combined with Poisson integral representation gives Theorem 27.
The main point is that a similar argument can be carried out without using explicit
formula for the Poisson kernel. In fact suitable estimates are sufficient, and these rely
on pointwise estimates for the Poisson kernel which are available in the case of bounded
domain Ω ⊂ Rn with C2 boundary, see [41],[42]. We prove a version of Theorem 27 for
domains Ω with C2 boundary, see Theorem 29 below.
The second method is essentially based on a capacity estimate of O. Martio and R.
Näkki [50]. Let us introduce needed terminology and notation.
Throughout this paper Ω ⊂ Rn is bounded domain, δ(x) = dist(x,Ωc) and Bx =
B(x, δ(x)/2) for x ∈ Ω. If Ω has C2 boundary, then PΩ denotes the Poisson kernel
for Ω.
Given a subset E of Cn or Rn; a function f : E → C (or, more generally, a mapping
f from E into Cm or Rm) is said to belong to the Lipschitz space Λω(E) if there is a
constant L = L(f) = L(f ;E) such that

|f(x)− f(y)| ≤ Lω(|x− y|) (3.1)

for all x, y ∈ E, or equivalently, ωf (|x − y|) ≤ Lω(|x − y|) for x, y ∈ E. Here ω :
[0,+∞) → [0,+∞) is a majorant in the sense of Hinkkanen, see [28], which means ω

39
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is non-decreasing and ω(2t) ≤ 2ω(t). In that case we also say that f is ω-Lipschitz
function. We remark that ω need not be continuous, that we may have ω(0) > 0 and
that ω(At) ≤ Aω(t) for all t ≥ 0 and A ≥ 1. The most important special case is
ωα(t) = tα, 0 < α ≤ 1, when we get classical concept of Lipschitz or Hölder continuity.
There has been much work on Lipschitz-type properties of quasiconformal mappings.
This topic was treated, among many other papers, in [19].
Following [22] and [47], we say that a function f belongs to the local Lipschitz space
loc Λω(Ω, L) if (3.1) holds, with a fixed L ≥ 0, whenever x ∈ Ω and y ∈ Bx. We
set loc Λω(Ω) = ∪L≥0 loc Λω(Ω, L). If ω(t) = tα, 0 < α ≤ 1, we use notation Λα(Ω),
loc Λω(Ω) and loc Λα(Ω, L).
A domain Ω is a Λω-extension domain if Λω(Ω) = loc Λω(Ω).
A compact set E in Rn is called c-uniformly perfect, 0 < c < 1, if E contains at least two
points and if for each x ∈ E and 0 < r < diam(E), the spherical ring B(x; r) \B(x; cr)
meets E.
If V is a subset of Rn and u : V → Rm, we define

oscV u = sup{|u(x)− u(y)| : x, y ∈ V } .

For Ω ⊂ Rn let OC1(Ω) denote the class of all f ∈ C1(Ω,Rn) such that

δ(x)|f ′(x)| ≤ C oscBxf, x ∈ Ω (3.2)

We denote by OC2(Ω) the class of all f ∈ C2(Ω,Rn) such that for some constant C we
have

sup
Bx

δ2(x)|∆f(x)| ≤ C oscBxf, x ∈ Ω. (3.3)

It was observed in [54] that OC2(Ω) ⊂ OC1(Ω). Note that every harmonic mapping
f : Ω→ Rn is in OC2(Ω).
We also show that under some conditions a function f ∈ OC2(Ω) is ω-Lipschitz function
on Ω if and only if it satisfies Hardy-Littlewood (C,ω)- property:

δ(x)|f ′(x)| ≤ Cω(δ(x)), x ∈ Ω.

Relying on this characterization and a result from [9] (Lemma (13) below) we also prove
a version of Theorem 27 for Λω-extension domain with c-uniformly perfect boundary
and quasiconformal mappings, where ω is a majorant.
Finally, we give a simple proof of K. M. Dyakonov’s result on relation between moduli
of continuity of |f | and f , see [19].
We follow the usual convention, letter C denotes a constant that can change its value
from one occurrence to the next.

3.1 Auxiliary results

Let Ω ⊂ Rn be a bounded domain with C2 boundary. Clearly, an explicit formula for
the Poisson kernel is available only in special cases, like the ball. The following technical
lemma is used in the next section when we consider smoothly bounded domains.

Lemma 12. Assume Ω has C1 boundary. Then there is a constant C depending only
on Ω, such that

area
(
∂Ω ∩ B(z0, r)

)
≤ Crn−1 (3.4)

for all r > 0 and all z0 ∈ ∂Ω .



ABAOUB Lipschitz Spaces and Quasiconformal Mappings 41

Proof. We have a local parametrization of ∂Ω :

x1 = x1(u1, u2, ..., un−1)
x2 = x2(u1, u2, ..., un−1)
...
xn = xn(u1, u2, ..., un−1)

i.e. x = x(u), x = (x1, x2, ..., xn), where xj ∈ C1(U), U ⊂ Rn−1.

Since ∂Ω is compact, it suffices to prove the estimate (3.4) for z0 ∈ x(K), where K ⊂ U
is compact.
Now fix a compact K ⊂ U . We have

area
(
x(S)

)
=

∫
S

√
gdu

where g = det(gij)
n−1
i,j=1, gij =

n∑
m=1

∂xm
∂ui

∂xm
∂uj

.

Note that gij ∈ C(U), so
√
g is a strictly positive continuous function on U . Therefore

0 < c ≤ √g ≤ C < +∞ on K. Let u1, u2 ∈ K and z1 = x(u1), z2 = x(u2). Since
x = x(u) is a parametrization, we have

|z1 − z2| � |u1 − u2| . (3.5)

Setting z0 = x(u0) and using (3.5), we see that there is a constant M such that

area
(
∂Ω ∩ B(z0, r)

)
≤ area

(
x
(
B(u0,Mr)

))
=

∫
B(u0,Mr)

√
gdu

≤ C
∫
B(u0,Mr)

du ≤ C Voln−1

(
B(u0,Mr)

)
= C(Mr)n−1

= Crn−1. �

3.2 The case of C2 boundary

In this section we follow the first method described in the introduction and obtain the
following generalization of Theorem 27.

Theorem 29. Let Ω ⊂ Rn be a bounded domain with C2 boundary, and assume u :
Ω→ Rn is a continuous map which is K- quasiregular and harmonic in Ω, then ωu(δ) ≤
Cωf (δ) for δ > 0, where f = u |∂Ω and C is a constant depending only on K, ωf and n.

Proof. The proof is similar to the proof in [6], but with additional technical difficulties
due to the lack of an explicit formula for PΩ. Instead we rely on Lemma 12 and crucial
estimates (2.27), using a dyadic decomposition of ∂Ω.
Let us recall some properties of ωf :

ωf (δ1 + δ2) ≤ C
(
ωf (δ1) + ωf (δ2)

)
, ωf (λδ) ≤ Cλωf (δ)

valid for δ, δ1, δ2 > 0 and λ ≥ 1. First, fix an exponent q = q(K,n) < 1 from Theorem
28. Fix w ∈ ∂Ω and z ∈ Ω. Then ϕ(ξ) = |u(w)− u(ξ)|q is subharmonic in Ω and
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therefore we have

ϕ(z) ≤
∫
∂Ω
PΩ(z, ξ)ϕ(ξ)dσ(ξ).

But, for ξ ∈ ∂Ω we have

ϕ(ξ) = |u(w)− u(ξ)|q ≤ ωf (|w − ξ|)q

≤ ωf (|w − z|+ |z − ξ|)q

≤ C[ωf (|w − z|)q + ωf (|z − ξ|)q],

and integration against Poisson kernel gives

ϕ(z) ≤ C
[
ωf (|w − z|)q +

∫
∂Ω
PΩ(z, ξ)ωf (|z − ξ|)qdσ(ξ)

]
.

Let z0 ∈ ∂Ω be the closest point on the boundary to z ∈ Ω . Then

|z − ξ| � δ(z) + |z0 − ξ|

for ξ ∈ ∂Ω. Therefore

ωf (|z − ξ|) ≤ Cωf
(
δ(z) + |z0 − ξ|

)
≤ C δ(z) + |z0 − ξ|

δ(z)
ωf
(
δ(z)

)
.

By Theorem 26 we get

ϕ(z) ≤ Cωf (|w − z|)q + C

∫
∂Ω

(δ(z))1−q
(
δ(z) + |z0 − ξ|

)q
|z − ξ|n

dσ(ξ).ωf
(
δ(z)

)q
.

Next we prove that the integral appearing above is bounded as a function of z ∈ Ω. Set
δ(z) = δ. Since |z − ξ| ≥ C

(
δ(z) + |z0 − ξ|

)
we get∫

∂Ω
(δ(z))1−q

(
δ(z) + |z0 − ξ|

)q
|z − ξ|n

dσ(ξ) ≤ Cδ1−q
∫
∂Ω

(
δ + |z0 − ξ|

)q−n
dσ(ξ).

Now, we use the following decomposition of ∂Ω : ∂Ω =
∞⋃
k=0

Mk where

Mk = {ξ ∈ ∂Ω : 2k−1δ ≤ d(ξ, z0) < 2kδ}, k ≥ 1,

and

M0 = {ξ ∈ ∂Ω : d(ξ, z0) < δ}.

Using Lemma 12 we obtain:∫
∂Ω

(δ(z))1−q
(
δ(z) + |z0 − ξ|

)q
|z − ξ|n

dσ(ξ) ≤ Cδ1−q
∞∑
k=0

∫
Mk

(
δ + |z0 − ξ|

)q−n
dσ(ξ)

≤ Cδ1−q
∞∑
k=0

∫
Mk

(2kδ)q−ndσ(ξ)
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≤ C
∞∑
k=0

2k(q−n)δ1−narea (Mk)

≤ C
∞∑
k=0

2k(q−n)δ1−n(2kδ)n−1

≤ C
∞∑
k=0

2k(q−1) < +∞.

Note that here we used q ∈ (0, 1). Hence we get

ϕ(z) ≤ C[ωf (|w − z|)q + ωf (δ(z))q] ≤ Cωf (|w − z|)q,

and therefore we proved

|u(w)− u(z)| ≤ Cωf (|w − z|) for w ∈ ∂Ω, z ∈ Ω.

In view of Lemma A.1. from [13] this estimate suffices to complete the proof. �.
If we assume that f is quasiconformal, then we can significantly relax the C2-assumption
on the boundary, see Theorem 30 below.

3.3 The case of uniformly perfect boundary

In this section we work with much more general domains, but here we consider only
quasiconformal harmonic (or more general OC2) mappings.

Proposition 3. Let f ∈ C1(Ω,Rn) and let ω be a continuous majorant such that ω∗(t) =
ω(t)/t is non-increasing for t > 0. Assume f satisfies the following property:

δ(x)|f ′(x)| ≤ Cω(δ(x)), x ∈ Ω, (HL(ω,C))

which we call Hardy-Littlewood (C,ω)-property. Then

f ∈ loc Λω(L; Ω), (loc Λω).

If in addition f is harmonic in Ω or, more generally, f ∈ OC2(Ω), then (HL(ω,C)) is
equivalent with (loc Λω).

Proof. Let us prove that (HL(ω,C)) implies (loc Λω). If y ∈ Bx, then

|f(y)− f(x)| ≤
∫

[x,y]
|f ′(z)|ds(z) ≤ |y − x| max

z∈[x,y]
|f ′(z)|

≤ C|y − x| max
z∈[x,y]

ω(δ(z))

δ(z)
.

Now, for every z ∈ [x, y] ⊂ Bx we have |x − y| ≤ δ(x)/2 ≤ δ(z), and since ω? is
non-increasing we get ω(δ(z))/δ(z) ≤ ω(|x − y|)/|x − y|. This, combined with the
above estimate, gives |f(y) − f(x)| ≤ Cω(|y − x|). Next we assume f : Ω → Rn is a
harmonic mapping in loc Λω(Ω, L). We set Mx(r) = max{|f(y)| : |y−x| = r} for x ∈ Ω,
0 ≤ r < δ(x). Since f is harmonic we have r|f ′(x)| ≤ CnMx(r) and f ∈ loc Λω(Ω, L)
implies Mx(r) ≤ Lω(r). Therefore r|f ′(x)| ≤ CnLω(r) for 0 < r < δ(x). Letting
r → δ(x) we deduce (HL(ω,C)) with C = CnL. Now we give a proof for the more
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general case of f ∈ OC2(Ω). We assume f ∈ loc Λω(L,Ω). Let us choose x ∈ Ω. Since
diamBx = δ(x), we have

sup
Bx

δ2(y)|∆f(y)| ≤ oscBxf ≤ Lω(δ(x)).

Since δ(y) � δ(x) for y ∈ Bx the above estimate gives

|∆f(y)| ≤ CLω(δ(x))

δ2(x)
, y ∈ Bx.

Next we use gradient estimates for Poisson equation in the ball Bx, see Theorem 3.9
from [? ] and obtain

|f ′(x)| ≤ C
[

1

δ(x)
sup
∂Bx

|f |+ δ(x) sup
Bx

|∆f |
]
.

Since both f ′ and ∆f do not change if we replace f with f − f(x) we see that

|f ′(x)| ≤ C
[

1

δ(x)
osc∂Bx |f |+ δ(x) sup

Bx

|∆f |
]

≤ CLω(δ(x))

δ(x)

Note that a similar argument appeared in [? ], it was used to prove inclusion OC2(Ω) ⊂
OC1(Ω).

An immediate consequence of the above proposition is the following corollary.

Corollary 5. Let ω be a continuous majorant such that ω?(t) = ω(t)/t is non-increasing
for t > 0 and let Ω ⊂ Rn be a domain which has Λω-extension property. Then an OC2

mapping (in particular a harmonic mapping) f : Ω → Rn belongs to Λω(Ω) if and only
if it has Hardy-Littlewood (C,ω) property.

Remark 8. If the mapping f in the Proposition 3 and Corollary 5 extends continuously
to Ω, then the assumption of continuity of ω can be omitted.

Theorem 4 can be restated: Let Ω ⊂ Rn be a bounded domain with C2 boundary.
Assume u : Ω → Rn is a continuous map which is K- quasiregular map and harmonic
in Ω, and f ∈ Λω(∂Ω;L) where f = u |∂Ω Then

u ∈ Λω(Ω;CL), C = C(K,ωf , n,Ω). (3.6)

If Ω is a Λω-extension domain, then (3.6) is equivalent to Hardy-Littlewood (ω,C1)-
property: δ(x)|f ′(x)| ≤ C1ω(δ(x)) for all x ∈ Ω. Special cases of this result, for the disk
and unit ball and holomorphic functions are well know as Privalov theorem. Hardy-
Littlewood theorem is concerned by characterization of Lipschitz spaces in terms of
growth of derivative.
The following result is contained in Theorem 3.2 from [9].

Lemma 13. Let the boundary of a bounded domain Ω in Rn be c-uniformly perfect. If
f is a continuous mapping of Ω into Rn which is quasiconformal in Ω and if

|f(x)− f(y)| ≤ ω(|x− y|) (3.7)
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for all x, y ∈ ∂Ω and for some majorant ω, then

|f(x)− f(y)| ≤ Cω(|x− y|) (3.8)

for all y ∈ ∂Ω and x ∈ Ω, where C depends only on c, n,K(f) and diam(Ω).

Using Lemma 13 we prove the following generalization of Theorem 27.

Theorem 30. Let the boundary of a bounded domain Ω in Rn be c-uniformly perfect.
Assume f is a continuous mapping of Ω into Rn which is quasiconformal in Ω and

|f(x)− f(y)| ≤ ω(|x− y|), x, y ∈ ∂Ω (3.9)

for some majorant ω. Assume one of the following two conditions is satisfied.

a) f is harmonic in Ω.

b) f ∈ OC2(Ω), ω(t)/t is non increasing for t > 0 and Ω is an Λω-extension domain.

Then the following estimate holds:

|f(x)− f(y)| ≤ Cω(|x− y|), x, y ∈ Ω. (3.10)

Proof. Let us assume f is harmonic. By Lemma 2, estimate (3.10) holds for all x ∈ ∂Ω
and all y ∈ Ω. Using Lemma A. 1. from [13] we deduce that the same estimate is valid
for all x, y ∈ Ω. Now we consider condition b). Fix a point x ∈ Ω. Choose a point
ξ ∈ ∂Ω such that |x − ξ| = δ(x) and set f0(z) = f(z) − f(ξ), z ∈ Ω. We employ again
gradient estimates for the Poisson equation, as in the proof of Proposition 3. Since
f ′ = f ′0 and ∆f = ∆f0 we obtain

|f ′(x)| ≤ Cn
[

1

δ(x)
sup
∂Bx

|f0|+ δ(x) sup
Bx

|∆f |
]
. (3.11)

However, since Bx ⊂ B(ξ, 3δ(x)/2), Lemma 2 gives

sup
∂Bx

|f0(z)| ≤ sup
∂Bx

|f(z)− f(ξ)| ≤ Cω(3δ(x)/2) ≤ Cω(δ(x)).

Also, OC2 condition gives supBx |∆f | ≤ Cδ−2(x). These estimates, combined with
(3.11) give |f ′(x)| ≤ Cω(δ(x))/δ(x). Hence we proved that f has Hardy-Littlewood
(C,ω) property. Now the result follows from Corollary 5.

3.3.1 Dyakonov’s result

Now we give a simple proof of a Dyakonov’s result from [19] which relates moduli of
continuity of f and |f | in the special case of quasiconformal f . Our proof is based on
distortion property of quasiconformal mappings (see [21], p.383, [65], p.63):

B(f(x), c∗δ∗(x)) ⊂ f(Bx) ⊂ B(f(x), C∗δ∗(x)), x ∈ Ω (3.12)

for a K-quasiconformal mapping f : Ω→ f(Ω) = Ω′, where δ∗(x) = dist(f(x), ∂Ω′).

Theorem 31. Suppose f : Ω → f(Ω) = Ω′ is quasiconformal in domain Ω ⊂ Rn. Let
0 < α ≤ 1. If |f | ∈ loc Λα(Ω, L), then f ∈ loc Λα(Ω, CL).
If, in addition, Ω is a Λα-extension domain, then f ∈ Λα(Ω).

Proof. Let us choose x ∈ Ω and set R(x) = c∗δ∗(x). We first prove the following:

∃ x1, x2 ∈ Bx : |f(x1)| − |f(x2)| ≥ R(x). (3.13)
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Let l be the line passing through 0 and f(x), it intersects the sphere ∂B(f(x), R(x)) at
points y1 and y2. By the first inclusion in (3.12) these two points lie in f(Bx), hence
xk = f−1(yk) ∈ Bx, k = 1, 2. We consider two cases:
a) If 0 /∈ B(f(x), R(x)) and |y2| ≥ |y1|, then |y2| − |y1| = 2R(x).
b) If 0 ∈ B(f(x), R(x)), then for example 0 ∈ [y1, f(x)] and if we choose x1 = x, we find
|y2| − |f(x)| = R(x) and this yields (3.13). Now we obtain, using (3.13), that

c∗δ∗(x) = R(x) ≤ |f(x1)| − |f(x2)| ≤ L|x1 − x2|α ≤ Lδ(x)α.

Using the second inclusion in (3.12) we obtain

|f(z1)− f(z2)| ≤ 2C∗δ∗(x) ≤ 2
C∗
c∗
Lδ(x)α,

and this completes the proof.

Hence, as an immediate corollary we get K.M. Dyakonov results for quasiconformal
mappings:
Theorem Dy Suppose Ω is a Λα-extension domain, 0 < α ≤ 1, and f is a K-
quasiconformal mapping of Ω onto f(Ω) ⊂ Rn. The following two conditions are equiv-
alent:
a) f ∈ Λα(Ω),
b) |f | ∈ Λα(Ω).
If, in addition, Ω is a uniform domain and if α ≤ K1/(1−n), then these conditions are
equivalent to
c) |f | ∈ loc Λα(Ω).

3.4 Harmonic quasiconformal maps of quadrant

In this section we relate some results regarding HQC self maps of the quadrant Q = {z :
z = x+ iy, x, y > 0}. These results are from [2].
Let Π+ = {z : z = x + iy, x > 0}. The following theorem can be proven considering
norm of the directional derivative of f :

Theorem 32. Suppose f : Ω → f(Ω) = Ω′ is quasiconformal harmonic in domain
Ω ⊂ C. Suppose that f(z) = Re G(z) + iIm H(z) where G and H are holomorphic, and
g(z) = G′(z), h(z) = H ′(z).
Then g(z) = ϕ(z)h(z) where ϕ is holomorphic and ϕ(Ω) is relatively compact subset of
Π+.

This result can be used to characterize HQC self maps of Q. Namely, the following
result holds true:

Theorem 33. The necessary and sufficient condition that f : Q→ Q is quasiconformal
harmonic homeomorphism of Q̄ to Q̄ is given as follows.
Suppose that f(z) = Re G(z) + iIm H(z) where G and H are holomorphic, and g(z) =
G′(z), h(z) = H ′(z).
Then the conditons are:
1) g(z) = ϕ(z)h(z) where ϕ is holomorphic and ϕ(Ω) is relatively compact subset of Π+.
2) g and h map Q into Π̄+,
3) g is real on imaginary axis, while h is real on real axis.
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[8] M. Arsenović, V. Kojić, M. Mateljević, On Lipschitz continuity of harmonic
quasiregular maps on the unit ball in Rn, Ann. Acad. Sci. Fenn. 33, 315-318 (2008).

[9] M. Arsenovic, V. Manojlovic and R. Näkki, Boundary Modulus Of Continuity And
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[33] R. Kühnau, Geometric Function Theory, Handbook Of Complex Analysis, V I and
II, Elsever, 2005.

[34] D. Kalaj, Lipschitz spaces and harmonic mappings, Ann. Acad. Sci. Fenn. 34, 475-
485, (2009).

[35] D. Kalaj, A priori estimate of gradient of a solution to certain differential inequality
and quasiconformal mappings ,Journal d’Analyse Mathmatique (ISSN:0021-7670),
Volume 118, Issue 5, Feb. 2012, Page(s) 23 pages [11406]

[36] Kiwon Kim, Hardy-Littlewood property with the inner length metric, Commun. Ko-
rean Math. Soc. 19 (2004), No. 1, pp. 53-62
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prerade, ako se navede ime autora na način odredjen od strane autora ili davaoca
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dela.

4. Autorstvo - nekomercijalno - deliti pod istim uslovima. Dozvoljavate umnožavanje,
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