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Abstract
This thesis has been written under the supervision of my mentor, Prof. dr. Miloš
Arsenović at the University of Belgrade academic, and my co-mentor dr. Vladimir
Božin in year 2013. The thesis consists of three chapters. In the first chapter we start
from definition of harmonic functions (by mean value property) and give some of their
properties. This leads to a brief discussion of homogeneous harmonic polynomials, and
we also introduce subharmonic functions and subharmonic behaviour, which we need
later. In the second chapter we present a simple derivation of the explicit formula for the
harmonic Bergman reproducing kernel on the ball in euclidean space and give a proof that
the harmonic Bergman projection is Lp bounded, for 1 < p <∞, we furthermore discuss
duality results. We then extend some of our previous discussion to the weighted Bergman
spaces. In the last chapter, we investigate the Bergman space for harmonic functions bp,
0 < p < ∞ on Rn\Zn. In the planar case we prove that bp 6= {0} for all 0 < p < ∞.
Finally we prove the main result of this thesis bq ⊂ bp for n/(k + 1) ≤ q < p < n/k,
(k = 1, 2, ...). This chapter is based mainly on the published paper [44]. M. Arsenović,
D. Kečkić,[5] gave analogous results for analytic functions in the planar case. In the
plane the logarithmic function log |x|, plays a central role because it makes a difference
between analytic and harmonic case, but in the space the function |x|2−n, n > 2 hints at
the contrast between harmonic function in the plane and in higher dimensions.
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Matematički fakultet,

Univerzitet u Beogradu

redovni profesor dr Miodrag Mateljević, akademik
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Chapter 1

Harmonic functions and
subharmonic functions in space

1.1 Harmonic functions in space

1.1.1 Introduction

Harmonic functions are important functions in complex analysis, partial differential
equations, electromagnetics, fluids, etc. Over the years many methods have been dis-
covered to prove the existence of a solution of the Dirichlet problem for Laplace equation.
Quote collection of proofs is based on representations of the Green’s function in terms
of the Bergman kernel function or some equivalent linear operator.

Throughout this thesis n ≥ 2 denotes a positive integer and Rn denote n-dimensional
Euclidean space so that R1 is the line, R2 is the plane, etc.
Let Ω be an open nonempty subset of Rn, where n is a fixed. If Ω is open and connected,
then Ω is called a domain. A real valued function u on an open set Ω ⊆ Rn is called
harmonic on Ω if u is twice continuously differentiable function on Ω (that is, all first and

second partial derivatives of u exist and are continuous on Ω), and ∆u :≡
∑n

i=1
∂2u
∂x2i

= 0

on Ω. The operator ∆ is called the Laplace operator or Laplacian, and the equation
∆u ≡ 0 is called Laplace’s equation. We shall derive some further important facts about
harmonic functions, including the Poisson kernel for the unit ball in Rn where n ≥ 2.
We denote the Euclidean open ball in Rn of center a ∈ Rn and radius r > 0 by B(a, r) :=
{x ∈ Rn : |x − a| < r} (which we will sometimes write Bn(a, r) to emphasize that
its dimension is n), its closure is the closed ball B(a, r), the corresponding sphere by
S(a, r) ≡ ∂B(a, r) = {ξ ∈ Rn : |ξ−a| = r}, the unit ball B(0, 1) by B, and its boundary
(unit sphere) by S ≡ ∂B.

1.1.2 Mean value property

Let ωn denotes volume of the unit ball in Rn which define by

ωn =

{
πn/2

(n/2)! if n is even
2(n+1)/2π(n−1)/2

1.3.5...n if n is odd.

And let ω∗n−1 denotes the (unnormalized) surface area of the unite sphere in Rn define by
ω∗n−1 = nωn. Then the volume measure of the ball B(a, r) in Rn is V (Bn(a, r)) = rnωn,
and the surface area of the sphere S(a, r) in Rn is Area(Sn−1(a, r)) = rn−1nωn.

1
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Definition 1. (Mean values). Let u be a Borel function on B(a, r) which is bounded
above or below, the mean value of u over the sphere is :

1

Area(S(a, r))

∫
S(a,r)

u(ξ)ds(ξ),

and over the ball is

1

V (B(a, r))

∫
B(a,r)

u(x)dV (x).

where ds denotes surface-area measure, dV = dVn = dx1...dxn denotes Lebesgue volume
measure on Rn.

The first expression gives u as an average over the boundary of the ball, and the second
as an average over the ball.

Now we may write the mean value properties in the following equivalent ways:
A continuous real valued function u in a domain Ω ⊂ Rn has mean value property over
spheres, if

u(a) =
1

nωn

∫
S

u(a+ rξ)ds(ξ) :=

∫
S

u(a+ rξ)dσ(ξ),

for every ball B(a, r) ⊂ Ω, where σ denotes the normalized surface-area measure on S
(so that σ(S) = 1).
And u has the mean value property for balls, if

u(a) =
1

ωn

∫
B

u(a+ rx)dV (x), (1.1)

for every ball B(a, r) ⊂ Ω. In particular (when n=2):

u(a) =
1

2π

2π∫
0

u(a+ reiθ)dθ.

for every disk D(a, r) ⊂ Ω ⊂ R2.

It will be convenient to use polar coordinates to integrate functions over balls.

Lemma 1. ([4], [41] Polar coordinates formula for integration on Rn). For a
Borel measurable, integrable function f on Rn, we have

∫
Rn

fdV = nωn

∞∫
0

rn−1

∫
S

f(rξ)dσ(ξ)dr.
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Choosing f to be the characteristic function of B, we have

d

dr

∫
B(0,r)

f(x)dV (x) =

∫
rS

fds = nrn−1ωn

∫
S

f(rξ)dσ(ξ).

Integrating with respect to r we obtain the polar coordinates formula for integration on
ball ∫

B(0,ρ)

f(x)dV (x) = nωn

ρ∫
0

rn−1

∫
S

f(rξ)dσ(ξ)dr. (1.2)

More generally

∫
B(a,ρ)

f(x)dV (x) =

ρ∫
0

∫
S

f(a+ rξ)rn−1ds(ξ)dr.

1.1.3 Harmonic functions

Suppose that u has continuous second order derivatives on a domain Ω ⊂ Rn. Recall
that a function u : Ω → R is harmonic on Ω if and only if ∆u = 0 in Ω. We can also
consider complex valued harmonic functions f = u + iv : Ω → C, we say that such
function f is harmonic if both u = Ref and v = Imf are harmonic functions in Ω.
Since the definition of harmonicity involves taking second order partial derivatives, we
must of course impose smoothness conditions on such a function f .

It is an important fact that the Mean value properties are equivalent to harmonicity of
real harmonic functions

Definition 2. (Harmonic function). Let Ω be an open subset of Rn and u ∈ C(Ω,R).
u is harmonic on Ω if and only if u satisfies the mean value equality

u(a) =
1

V (B(a, r))

∫
B(a,r)

u(x)dV (x); (1.3)

for all B(a, r) ⊂ Ω .

Or equivalently

u(a) =
1

Area(S(a, r))

∫
S(a,r)

u(x)ds(x); (1.4)

for all B(a, r) ⊂ Ω. In fact, if u is harmonic on Ω and B(a, r) ⊂ Ω, then

u(a) =
1

V (B(a, r))

∫
B(a,r)

u(x)dV (x) =

=
n

rn.Area(S(B(a, r))

r∫
0

∫
S(a,ρ)

u(ξ)ρn−1ds(ξ)dρ.
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Which implies

rnu(a) = n

r∫
0

1

Area(S(B(a, r))

∫
S(a,ρ)

ρn−1u(ξ)ds(ξ)dρ.

Taking derivatives with respect to r on both sides it follows that

nrn−1u(a) =
nrn−1

Area(S(B(a, r))

∫
S(a,r)

u(ξ)ds(ξ).

Hence

u(a) =
1

Area(S(a, r))

∫
S(a,r)

u(ξ)ds(ξ).

This means u(a) equals the average of u over the sphere S(a, r).

Example 1. Let u(x) =

{
|x|2−n if n > 2
log |x| if n = 2

Then u is harmonic in Rn\{0}

The function u(x) = |x|2−n, n > 2 is called the fundamental solution of the Laplacian(or
the potential Kernel, or Newtonian potential), and the function log |x| plays the same
role when n = 2 that |x|2−n plays when n > 2. Notice that log |x| → ∞ as x → ∞;
but log |x|2−n → 0 as x→∞, note also that log |x| is neither bounded above nor below,
but |x|2−n is always positive. This fact hints at the contrast between harmonic function
theory in the plane and in higher dimensions .

Note that sums and scalar multiples of harmonic functions are harmonic, but in general
multiples of harmonic functions need not be harmonic. In fact if u and v are real-valued
harmonic functions then u.v is harmonic function if and only if ∇u.∇v ≡ 0. Also note
that every partial derivative of a harmonic function is harmonic. So every harmonic
function has continuous partial derivatives of all orders.

1.1.4 Green’s identity

Green’s Identity form an important tool in the analysis of Laplace equation. It is derived
from divergence theorem. we start from the divergence theorem now.

Let w = (w1, ..., wn) be a vector field in Rn, we define the divergence of w by
∑n

m=1Dmwm,
and denotes by divw. Let u be function, we define gradient of u by (D1u, ...,Dnu) = ∇u.
Suppose ν denotes unit outward normal vector, then the directional derivative in the
direction ν is Dν := ∂/∂ν such that Dνu = ∇u.ν.

Theorem 1. ([25] Divergence theorem in Rn -Greens Theorem). Let Ω be a
bounded domain with C1 boundary ∂Ω in Rn. Then for any vector field w ∈ C1(Ω) we
have ∫

Ω

div(w)dV =

∫
∂Ω

w.νds

where ν the unit outward normal vector to ∂Ω, ds is the area element in ∂Ω .
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Theorem 2. (Greens identity [3]). Let Ω be a bounded subset of Rn with smooth
boundary ∂Ω. Let u and v are C2-functions on a neighborhood of Ω . Then∫

Ω

(u∆v − v∆u)dV =

∫
∂Ω

(uDνv − vDνu)ds

Proof. Apply Greens theorem with w = u∇v − v∇u and compute.

Corollary 1. Suppose Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω. Let
u ∈ C2(Ω), Then ∫

Ω

∆udV =

∫
∂Ω

Dνuds. (1.5)

Corollary 2. Suppose u ∈ C2(Ω). Then u is harmonic on Ω if and only if∫
S(a,r)

Dνuds = 0

for every closed ball B(a, r) ⊂ Ω.

1.1.5 Maximum/Minimum Principle

If u is harmonic in the region Ω, then it does not have a weak relative maximum or
minimum in Ω. A special yet important case of the above maximum/minimum principle
is obtained when considering bounded regions. The maximum principle says if u is a
real-valued harmonic function on Ω and u ≤ M at the boundary of Ω, then u ≤ M on
Ω.

Theorem 3. (Weak maximum and minimum Principles). If u is harmonic
function on a bounded domain Ω ⊂ Rn and continuous on Ω. Then its extreme values
must occur on the boundary

min
Ω

= min
∂Ω

u, max
Ω

u = max
∂Ω

u

Proof. Let a ∈ Ω such that u(a) ≥ u(x) for all x ∈ Ω. Choose B(a, r) ⊂ Ω. By volume
mean value property we get

u(a) =

∫
B(a,r)

u(x)dV (x);

here V is normalised (so V (B(a, r) = 1). Which implies∫
B(a,r)

(u(a)− u(x))dV (x) = 0.

But u(a) is maximum, then we have∫
B(a,r)

(u(a)− u(x))dV (x) ≥ 0,
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and hence must vanish, consequently u(x) = u(a) on B(a, r). So we have shown that

A = {x ∈ Ω : u(x) = sup
Ω
u},

is open. But it is also closed because u is continuous. Since Ω is connected, then A = φ
or A = Ω. Hence sup

Ω
u is achieved on the boundary ∂Ω.

Corollary 3. If u, v are harmonic in the bounded domain Ω, which are continuous on
Ω and agree on the boundary ∂Ω, then u(x) = v(x) for all x ∈ Ω .

1.1.6 The Poisson Kernel

The (extended) Poisson kernel will play a major role when we study Bergman space.

Lemma 2. ([20]) If x, y ∈ Rn, x 6= 0, and |y| = 1, then

|x− y| = ||x|−1x− |x|y|

Recall that, if u be harmonic on an open set containing B, then by the mean-value
property (1.4) , we have

u(0) =

∫
S

u(ξ)dσ(ξ)

Now we need to show that for any x ∈ B, u(x) is a weighted average of u over S. In
other words, we will show there exists a function namely P on B × S such that

u(x) =

∫
S

u(ξ)P (x, ξ)dσ(ξ).

For n > 2, suppose that u is harmonic on B ⊂ Rn. Fix x ∈ B\{0}, choose 0 <
r < 1 − |x|, and let Ω = {y ∈ Rn : r < |y − x| < 1}. Put v(y) = |y − x|2−n, and
w(y) = |x|2−n|y − x/|x|2|2−n. Since w is harmonic on B, and w = v on S. Thus from
Greens identity Theorem 2 (with u,w), we obtain∫

S

uDνwds =

∫
S

wDνuds =

∫
S

vDνuds.

Since v is harmonic on Rn\{x}, and ∇v(y) = (2 − n)|y − x|−n(y − x), consequently
Dνv = (2− n)r1−n on S(x, r), then by Greens identity∫

S

(uDνv − uDνw)ds =

∫
S

(uDνv − vDνu)ds

=

∫
S(x,r)

(uDνv − vDνu)ds

= (2− n)r1−n
∫

S(x,r)

uds = (2− n)nV (B)u(x)



SHKHEAM 7

Hence

u(x) =
1

2− n

∫
S

u.(Dνv −Dνw)dσ.

Setting

P (x, ξ) =
Dνv −Dνw

2− n

we obtain the required formula:

u(x) =

∫
S

u(ξ)P (x, ξ)dσ(ξ) (1.6)

By calculation of Dν , we get the formula

P (x, ξ) =
1− |x|2

|x− ξ|n
, (1.7)

for (x, ξ) ∈ B × S. This function is called the Poisson kernel for the ball B.

Now for n = 2, suppose that u is a real-valued harmonic on the closed unit disk D ⊂ R2,
then there exists a function f analytic in D, such that Ref = u. therefore u can be
represented in the form

u(rξ) =

∞∑
m=−∞

amr
|m|ξm,

with 0 ≤ r ≤ 1, and |ξ| = 1. Taking r = 1, and then integrate over the unit circle, we
get

ak =

∫
S

u(ξ)ξ−kdσ(ξ)

For any point x ∈ D, we can write x as x = rη with 0 ≤ r < 1 and |η| = 1. Then

u(rη) =
∞∑

m=−∞

(∫
S

u(ξ)ξ−mdσ(ξ)

)
r|m|ηm

=

∫
S

u(ξ)

( ∞∑
m=−∞

r|m|ηmξ−m
)
dσ(ξ)

We conclude that

u(x) =

∫
S

u(ξ)
1− r2

|rη − ξ|2
dσ(ξ)
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Setting

P (x, ξ) =
1− |x|2

|x− ξ|2
.

This function is called the Poisson kernel for the disk D. We obtain the required formula:

u(x) =

∫
S

u(ξ)P (x, ξ)dσ(ξ).

Remark 1. For ξ ∈ S, we can write the Poisson kernel for the unit ball Bn in form

P (x, ξ) =
1− |x|2

(1− 2x.ξ + |x|2)n/2
. (1.8)

For x ∈ B(a, r) and ξ ∈ S(a, r), the Poisson kernel for the ball Bn(a, r) in Rn is defined
by

P (x, ξ) =
r2 − |x− a|2

rnωn|x− ξ|n
. (1.9)

1.1.6.1 Some properties of the Poisson kernel

Proposition 1. The Poisson kernel P for the ball B(a, r) has the following properties:
(i)- The Poisson kernel P is a positive function in B(a, r).
(ii)-

∫
S(a,r)

P (x, ξ)dσ(ξ) = 1 for all x ∈ B(a, r).

(iii)- for every η ∈ S and every ε > 0∫
|ξ−η|>ε

P (x, ξ)dσ(ξ)→ 0 as x→ η,

from within B (here P is the Poisson kernel for the unit ball B).

Proof. Part (i) is clear from definition of P . part (ii) follows formula (1.6) with u ≡ 1.
To prove (iii), fix η ∈ S and ε > 0. Consider x with |x− η| < ε/2. Thus for |ξ − η| > ε
and |x− ξ| > ε/2, we have P (x, ξ) ≤ (nωn)−1(2/ε)n(1− |x|2). Hence∫
|ξ−η|>ε

P (x, ξ)dσ(ξ) ≤ (nωn)−1(2/ε)n(1− |x|2)σ(S)→ 0 as x→ η.

Lemma 3. The Poisson kernel P is a harmonic function of x in B(a, r).

Proposition 2. ([4]Proposition 1.18) Suppose ξ ∈ S. Then the Poisson kernel P (x, ξ)
for the unit ball B is harmonic on Rn\{ξ}.
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1.1.6.2 Extended Poisson kernel

We extend the domain of Poisson kernel P to a function on B ×B by setting P (x, y) =
P (x/|x|, |x|y), for x, y ∈ B we get

P (x, y) =
1− |x|2|y|2

(1− 2x.y + |x|2|y|2)n/2
for x, y ∈ B. (1.10)

This function is called the extended Poisson kernel.

Remark 2. For all (x, y) ∈ Rn × Rn, we have

P (x, y) =
1− |x|2|y|2

(1− 2x.y + |x|2|y|2)n/2

provided the denominator above is not zero.

1.1.6.3 Some properties of the extended Poisson kernel

1-The extended Poisson kernel P (x, y) is a symmetric function on B ×B.
2-P (x, y) = P (|x|y, x|x|)
3-For x fixed, the function P (x, y) is harmonic. In particular, for any fixed x ∈ B the
function F : y → P (x, y) is harmonic on B.

1.1.7 Dirichlet problem

Let Ω be a bounded domain in Rn(n ≥ 2), let u be a continuous real-valued function
on its boundary ∂Ω. The classical Dirichlet problem consists in the determination of a
harmonic function u on Ω which can be continuously extended into ∂Ω by u. Thus the
Dirichlet problem is a boundary value problem for Laplace’s equation.

Suppose that v is a given continuous function on the boundary ∂Ω of a domain Ω ⊂ Rn.
The Dirichlet problem is to extend v (which is only defined on the boundary ∂Ω of Ω) to
a function u defined inside the domain Ω such that (i)∆u = 0 in Ω (i.e. u is harmonic)
and (ii)u = v on ∂Ω (more precisely for all y ∈ ∂Ω we want u(x)→ v(y) as x→ y where
x ∈ Ω). The Poisson kernel plays a key role in Dirichlet problem .

The Dirichlet problem can always be solved on domains with smooth boundaries, like
the ball (or disk ). Now we introduce a famous problem:

1.1.7.1 Dirichlet problem for the ball

Let v be integrable in the sphere S(a, r) with respect to the surface measure ds, we
define the Poisson integral of v in B(a, r), denoted P [v](x), to be the function given by

P [v](x) =

∫
S(a,r)

P (x, ξ)v(ξ)dS(ξ),

for all x ∈ B(a, r), where P (x, ξ) is the Poisson kernel for the ball B(a, r).
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Now we can state the Dirichlet problem on the unit ball: suppose that v is a continuous
function on S. Then the Dirichlet problem on the unit ball B is given by :{

∆u = 0 in B
u = v on S

and the solution of the above problem in B is given in the fowling theorem :

Theorem 4. (Dirichlet problem for the ball ([9] Theorem 1.2.6)). Suppose v is
continuous on S, Define u on B by

u(x) =

{
P [v](x) if x ∈ B
v(x) if x ∈ S.

Then u is continuous on B, harmonic on B, and u |S= v where u |S denote the restric-
tion of the function u to the boundary S. The function u is said to solve the Dirichlet
Problem with boundary data v.

Proof. For x ∈ B, set u(x) = (nωn)−1
∫
S

|x − ξ|−n(1 − |x|2)v(ξ)dσ(ξ). For x ∈ B, all

derivatives (of first or higher order) of |x−ξ|−n(1−|x|2) with respect to x are continuous
functions of ξ on S, and for each derivative, the family of all such functions, as x ranges
over a compact subset of B, is uniformly bounded. So we may differentiate under
the integral and use Lemma 3 to conclude v is harmonic on B. To prove that u is
continuous on B, fix η ∈ S and let ε > 0. Choose δ > 0 such that |v(ξ) − v(η)| < ε
whenever |ξ − η| ≤ δ, ξ ∈ S. Then for x ∈ B, we have

|u(x)− u(η)| = |u(x)− v(η)|

=

∣∣∣∣ ∫
S

P (x, ξ)v(ξ)dσ(ξ)−
∫
S

P (x, ξ)v(η)dσ(ξ)

∣∣∣∣
≤
∫
S

P (x, ξ)|v(ξ)− v(η)|dσ(ξ)

=

∫
S∩{ξ:|ξ−η|≤δ}

P (x, ξ)|v(ξ)− v(η)|dσ(ξ)+

+

∫
S∩{ξ:|ξ−η|>δ}

P (x, ξ)|v(ξ)− v(η)|dσ(ξ)

≤ ε
∫
S

P (x, ξ)dσ(ξ) + 2‖v‖∞
∫

S∩{ξ:|ξ−η|>δ}

P (x, ξ)dσ(ξ),

where ‖v‖∞ denotes the supremum of of |v| on S. Choose a neighborhood E of η thus
by Proposition 1(iii) with x ∈ E, we have∫

S∩{ξ:|ξ−η|>δ}

P (x, ξ)dσ(ξ) <
ε

2‖v‖∞
.

Hence |u(x)− u(η)| < 2ε whenever x ∈ E, this shows that u is continuous at η.

Corollary 4. Suppose u is continuous on B and harmonic on B. Then u = P [u |S ].
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Theorem 5. ([9] Theorem 1.2.8) Suppose u is continuous on a domain Ω. if for each
a ∈ Ω, there is a sequence of positive numbers rm → 0 (which may depend on a) such
that

u(a) =
1

area(S(a, rm))

∫
S(a,rm)

u(ξ)ds(ξ)

for each m, then u is harmonic on Ω.

Proof. Without loss of generality, we can assume that u is real valued. Pick a ∈ Ω,
r > 0 such that B(a, r) ⊆ Ω. Let v = P [u |S(a,r)]. We need to show that u = v

on B(a, r). Suppose that v − u is positive at some point of B(a, r). Let E = {x ∈
B(a, r) : (v − u)(x) = sup{(v − u)(y) : y ∈ B(a, r)}}. Since v − u is continuous,
E 6= φ. Since E is compact, we may choose x0 ∈ E with |x0 − a| a maximum, that is,
|x0 − a| = max{|x− a| : x ∈ E}. Then x0 ∈ B(a, r) since v − u = 0 on S(a, r) and the
supposition that v − u is positive at some point of B(a, r). So there exists an r0 > 0
(r0 = rm for some m) such that B(x0, r0) ⊆ B(a, r) and so that

u(x0) =
1

area(S(x0, r0))

∫
S(x0,r0)

u(ξ)ds(ξ).

Since v is harmonic, such an inequality also holds for v, hence

(v − u)(x0) =
1

area(S(x0, r0))

∫
S(x,r0)

(u− v)(ξ)ds(ξ) (1.11)

But (v − u)(x0) = max{(v − u)(ξ) : ξ ∈ S(a, r)} and by choice of x0, there exists points
η ∈ S(x0, r0) at which (v− u)(η) < max{(v− u)(ξ) : ξ ∈ S(a, r)}. So the equality above
(1.11) is not possible. Thus, v− u cannot be positive in B(a, r), reasoning similarly one
concludes it cannot be negative either. So v = u on B(a, r), that is, u is harmonic on a
neighborhood of a. Since a is arbitrary. Hence u is harmonic throughout Ω.

1.1.8 Interior derivative estimates for harmonic functions

Recall, that harmonic functions are C∞. By using the mean value formula, we can
obtain good estimates for the derivatives of harmonic function. We start from definition
for multi-index. A multi-index α ∈ Nn is an n-tuple of nonnegative integers (α1, ..., αn),
with |α| = α1 + α2 + ...αn, and α! = α1!α2!...αn! . If β = (β1, ..., βn) ∈ Rn, and
x = (x1, ..., xn) ∈ Rn, then we define α+β = (α1+β1, ..., αn+βn), and xα = xα1

1 xα2
2 ...xαnn .

Let Dj denote the partial derivative with respect to the jth coordinate variable, then

the partial differentiation operator Dα is defined to be Dα1
1 ...Dαn

n := ∂|α|

∂x
α1
1 ...∂xαnn

, (D0
j

denotes the identity operator).

Recall, that if u is a continuous on B and harmonic on B, then

u(x) =

∫
S

u(ξ)P (x, ξ)dσ(ξ)
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for every x ∈ B, where P (x, ξ) is the Poisson kernel for the ball B. Moreover, for every
multi-index α the formula

Dαu(x) =

∫
S

u(ξ)DαP (x, ξ)dσ(ξ) (1.12)

holds, whenever x ∈ B.

1.1.8.1 Interior derivative estimates

Lemma 4. ([27]Lemma 1.10) If u is continuous function on B(a, r) ⊂ Rn, and har-
monic on B(a, r), then

|Du(a)| ≤ n

r
max
B(a,r)

|u|.

Proof. Since the gradient of harmonic function is also harmonic, then by the mean value
of Du (1.3), and divergence theorems 1 we have

Du(a) =
1

rnωn

∫
B(a,r)

Dudx =
1

rnωn

∫
∂B(a,r)

uνds.

Hence

|Du(a)| ≤ 1

rnωn
. max
∂B(a,r)

|u|.rn−1nωn ≤
n

r
max
B(a,r)

|u|.

Corollary 5. If u is harmonic function on Ω ⊂ Rn, then

|Du(x)| ≤ n

dist(x, ∂Ω)
sup

Ω
|u| (1.13)

for all x ∈ Ω.

Proof. For each x ∈ Ω, apply the lemma above with r = dist(x, ∂Ω).

1.1.8.2 Cauchy’s estimates for harmonic function

The Cauchy’s estimates for analytic function stated as follows: if f is analytic function
and bounded by M on a disk D(a, r) ⊂ C, then

|f (m)(a)| ≤ m!

rm
M.

The next theorem gives comparable results for harmonic functions defined on a ball in
Rn.

Theorem 6. (Cauchy’s Estimates for harmonic function [4]). For every multi-
index α there exists a positive constant Cα such that

|Dαu(a)| ≤ Cα

r|α|
M (1.14)

for all functions u harmonic and bounded by M on B(a, r).
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Proof. We can assume that a = 0. If u is harmonic and bounded by M on B, then by
(1.12) we have

|Dαu(0)| =
∣∣∣∣ ∫
S

u(ξ)DαP (0, ξ)dσ(ξ)

∣∣∣∣ ≤
≤M

∫
S

|DαP (0, ξ)|dσ(ξ) = CαM,

where Cα =
∫
S

|DαP (0, ξ)|dσ(ξ).

If u is harmonic and bounded by M on B(0, r), then applying the result in the previous
paragraph to the r-dilate ur shows that

|Dαu(0)| ≤ Cα

r|α|
M.

Replacing r by r − ε and letting ε decrease to 0, we obtain the same conclusion if u is
harmonic on the open ball B(0, r) and bounded by M there.

Corollary 6. Let α be a multi-indexLet, and let u a harmonic bounded function on Ω.
Then there exists a constant C such that

|Dαu(x)| ≤ C

dist(x, ∂Ω)|α|

for all x ∈ Ω .

Theorem 7. ([25] Theorem 2.10). Suppose that Ω is a subset of Rn, and let K be any
compact subset of Ω. If u is harmonic function on Ω, Then for any multi-index α we
have

sup
K
|Dαu| ≤

(
n|α|

dist(K, ∂Ω)

)|α|
sup

Ω
|u|

Proof. By successive application of the estimate Corollary 1.13 in equally spaced nested
balls we obtain an estimate for higher order derivatives:

1.1.9 Some properties of harmonic function

We have observed, amongst other properties, that the mean value property and the
maximum principle play very important roles in the theory of harmonic functions. Many
of the general properties of harmonic functions on Rn are more easily proved by using the
mean-value property of harmonic functions than by using the definition of harmonicity
directly. Properties such as the mean-value theorem, the maximum modulus principle
and the infinite-differentiability of two-variable harmonic functions are also true in the
n dimensional case.
Many basic properties of harmonic functions follow from Green’s identity (which we
will need mainly in the special case when Ω is a ball). The mean-value theorem which
characterises harmonic functions is in turn a consequence of an n-dimensional version
of Greens theorem that plays a similar role in n dimensions to Cauchys theorem in the
two dimensional case.

Theorem 8. ([46] Theorem7) If f = u + iv is analytic in a domain Ω ⊂ C, then each
of the functions u and v is harmonic in Ω
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In this case the imaginary part of a analytic function f is called a harmonic conjugate
of the real part of f .

Theorem 9. ([4] Theorem 1.28) If u is harmonic on a domain Ω ⊆ Rn, then u is real
analytic in Ω.

Suppose that Ω is simple connected domain and let u be harmonic on Ω. Then there is
an analytic function f on Ω with Ref = u. This means that for such a function u there
exists a harmonic function v defined on Ω such that f = u + iv is analytic on Ω. Now
we can prove next theorem.

Theorem 10. ([7] Theorem 4.31). If f = u + iv is harmonic in a simply-connected
domain Ω, then f = g + h, where g and h are analytic.

Proof. Since u and v are real harmonic functions on a simply-connected domain, then
the discussion before the statement of this theorem shows that there exists analytic
functions f1 and f2 such that u = Ref1 and v = Imf2. Hence,

f = u+ iv = Ref1 + iImf2 =
f1 + f1

2
+ i

f2 − f2

2i
=
f1 + f2

2
+
f1 − f2

2
= g + h

Example 2. The harmonic function f(x, y) = x+ x2−y2
2 + iy(1− x) in the unit disck D

can also be written in the form

f(x, y) = x+ iy +
x2 − y2

2
− ixy = x+ iy +

(
x2 − y2

2
+ ixy

)
Theorem 11. Let Ω,Ω′ ⊂ C. Suppose f : Ω→ Ω′ is an analytic function and u : Ω′ → R
is a harmonic function. Then the function h := u ◦ f is harmonic on Ω.

Proof. Take z ∈ Ω and let z′ = f(z). By continuity of f , there exist open disks B ⊂
Ω, B′ ⊂ Ω′, around z, z′ respectively such that f(B) ⊂ B′. Choose a conjugate v to u in
B′ so that g = u+ iv is analytic on B′. But then g ◦ f is analytic at z so u ◦ f := h is
harmonic at z.

Theorem 12. (Liouville’s Theorem). If u is harmonic on Rn and bounded from
above or below then u is a constant function on Rn .

Theorem 13. (Identity principle-harmonic version). Let u, v be harmonic on a
domain Ω ⊂ Rn. If u = v on an open, non-empty set E ⊂ Ω, then u = v throughout Ω.

Proof. Assume that h = u − v. Let x ∈ E, then Dαh(x) = 0 for all multi-indices α.
This means that all derivatives vanish identically as well on E. Define A1 = {x ∈ Ω :
Dαh(x) = 0; ∀α} and A2 = Ω\A1. If y ∈ A2 then Dαh(y) 6= 0 for some multi-index α
and by continuity of all derivatives of h there is also an open neighborhood of y where
Dαh(x) 6= 0, hence A2 is open. If y ∈ A1, then by using a Taylor expansion of h around y
that h = 0 in some neighborhood of y, thus A1 is open. Since A1∩A2 = φ, A1∪A1 = Ω,
and Ω is connected, thus either A1 = φ or A2 = φ. But h = 0 on E, we have A1 6= φ,
and hence h = 0 on Ω As desired.

Corollary 7. (Identity principle-harmonic version, n = 2). Let u be harmonic
on a domain Ω ⊂ C. If u = 0 on an open, non-empty set E ⊂ Ω, then u = 0 throughout
Ω.
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Theorem 14. (Closure under uniform limits)([4]Theorem 1.23). Suppose that
um is a sequence of harmonic functions on an open subset Ω ⊂ Rn such that um converges
uniformly to a function u on each compact subsets of Ω . Then u is harmonic on Ω.
Moreover, for every multi-index α , Dαum converges uniformly to Dαu on each compact
subsets of Ω.

Proof. First assume that B ⊂ Ω. Then for every x ∈ B and every m, we have

um(x) =

∫
S

um(ξ)P (x, ξ)dσ(ξ).

Because um uniformly to a function u on B, so (after take the limit of both sides), we
obtain

u(x) =

∫
S

u(ξ)P (x, ξ)dσ(ξ)

for all x ∈ B, and hence u is harmonic on B. Let α be a multi-index, then fore every
x ∈ B, we get

Dαum(x) =

∫
S

um(ξ)DαP (x, ξ)dσ(ξ),

which converges to ∫
S

u(ξ)DαP (x, ξ)dσ(ξ).

By the argument used before this theorem the last integral equals to Dαu(x). Suppose K
is a compact subset of B, then DαP is uniformly bounded on K×S, and the convergence
of Dαum to Dαu is uniform on K.
Now If B(a, r) ⊂ Ω, we can use the same argument to prove that u is harmonic on
B(a, r), and Dαum converges uniformly to Dαu on any compact subset of B(a, r), which
completes the proof.

1.1.10 The Classical Harnack inequality

Nonnegative harmonic functions satisfy an important inequality which restates the max-
imum principle in strong terms, call Harnack’s inequality. It tells us that a positive
harmonic functions cannot oscillate too much on a compact subset of connected set.
We begin with Harnack’s inequality for the ball:

Theorem 15. (Harnack’s Inequality for ball) ([14] Theorem 1.1). Let u be a
nonnegative harmonic function on an open set Ω ⊂ Rn. Let B(a, r) ⊂ B(a,R) ⊂ Ω.
Then for all x ∈ B(a, r) we have

Rn−2(R− r)
(R+ r)n−1

u(a) ≤ u(x) ≤ Rn−2(R+ r)

(R− r)n−1
u(a).
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Proof. . Set ρ = |x − a|, and choose r′ with r < r′ < R. Since u is continuous on
B(a, r′), the Poisson formula for harmonic function can be applied, yielding

u(x) =
r′

2 − ρ2

nωnR0

∫
S(a,r′)

u(y)|x− y|−ndσ(y), (1.15)

where dσ denotes the surface measure on S(a, r′)

r′
2 − ρ2

(r′ + ρ)n
≤ r′

2 − ρ2

|x− y|n
≤ r′

2 − ρ2

(r′ − ρ)n
(1.16)

combining (1.15)-(1.16), and using the mean value of harmonic function we have

r′
n−2

(r′ − ρ)

(r′ + ρ)n−1
u(a) ≤ u(x) ≤ r′

n−2
(r′ + ρ)

(r′ − ρ)n−1
u(a).

Letting r′ → R and realizing that the bounds are monotone in ρ which complete the
proof.

Corollary 8. (Harnack’s Inequality for ball). If u is a positive harmonic function
on B(a, r) ⊂ Rn. Then

rn−2(r − |x− a|)
(r + |x− a|)n−1

u(a) ≤ u(x) ≤ rn−2(r + |x− a|)
(r − |x− a|)n−1

u(a),

for |x− a| < r.

1.1.10.1 Harnack’s Inequality for Ω

Let Ω be any domain(connected open set) and x, y be points of Ω, then there exists a
constant C∗ = C∗(x, y) such that u(x) ≤ C∗u(y) for every positive function u harmonic
on Ω. In fact such an inequality holds uniformly on compact sets, although the constant
will blow up if we hold x fixed and let y approach the boundary. If x, y ∈ K, where K
is a compact subset of Ω, then there is a constant C = C(Ω,K) <∞ may depend upon
Ω and K, but that C is independent of x, y, and u such that C∗ ≤ C.

Theorem 16. (Harnack’s Inequality for Ω). Let Ω be connected and that K is a
compact subset of Ω. Then there is a constant C ∈ (1,∞) such that

1

C
≤ u(x)

u(y)
≤ C

for all points x, y ∈ K and all positive harmonic functions u on Ω.

1.1.10.2 Harnack’s Principle

Harnack’s Inequality leads to an important convergence theorem for harmonic functions
known as Harnack’s Principle which: An increasing sequence of harmonic functions ei-
ther tends to infinity or converges to a harmonic function (in either case the convergence
is uniform on compact sets). Consider a monotone sequence of continuous functions on
Ω . The pointwise limit of such a sequence need not behave well it could be infinite
at some points and finite at other points. Even if it is finite everywhere, there is no
reason to expect that our sequence converges uniformly on every compact subset of Ω.
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Harnack’s Principle shows that none of this bad behavior can occur for a monotone
sequence of harmonic functions.

Theorem 17. (Harnack’s Principle [4]). Suppose Ω is connected and um is a
pointwise increasing sequence of harmonic functions on Ω. Then either um converges
uniformly on compact subsets of Ω to a function harmonic on Ω or um(x) → ∞ for
every x ∈ Ω.

Proof. Suppose first that um ≥ 0. Let u(x) = lim
m→∞

um for each x ∈ Ω. If u(x) = ∞
for some x ∈ Ω . Let y ∈ Ω, then by Harnack’s Inequality with the compact set
K = {x, y} there exist a constant C ∈ (1,∞) such that um(x) ≤ Cum(y) for all m.
Because um(x) → ∞, we also have um(y) → ∞, and hence u(y) = ∞, which implies
that u(x) =∞ for all x ∈ Ω and that convergence is uniform on compact sets.
If u(x) < ∞ for all x ∈ Ω, we assume that K ⊂ Ω is compact. Fix y ∈ K. Then
by Harnack’s Inequality there exist a constant C ∈ (1,∞) such that um(x) − uk(x) ≤
C(um(y)− uk(y)) for all x ∈ K, whenever m > k. This implies um is uniformly Cauchy
on K and hence uniformly convergence on K. By Theorem 14 the limit function u is
harmonic on Ω. That finishes the proof in the case um ≥ 0. In general, let vm = um−u1.
Then vm is an increasing sequence of non-negative harmonic functions, so we have either
vm →∞ uniformly on compact sets, in which case um →∞ as well, or vm converges to
a harmonic function v uniformly on compact sets, in which case um → v + u1.

1.1.11 Homogeneous harmonic polynomials

Suppose that m is nonnegative integer, and α denotes multi-index. A polynomial p of
the form

p(x) =
∑
|α|=m

cαx
α

is said to be homogeneous of degree m. Equivalently, a polynomial p is homogeneous of
degree m if for every λ ∈ R and every x ∈ Rn, we have

p(λx) = λmp(x).

Theorem 18. ([4]Theorem 1.31) Suppose u is a harmonic function on Ω and a ∈ Ω.
Then there exist harmonic homogeneous polynomials pm of degree m such that

u(x) =

∞∑
m=0

pm(x− a) (1.17)

for all x near a, the series converging absolutely and uniformly near a.

Proof. We may assume u is harmonic near 0, then by Theorem 9 u is real analytic, and
it has a homogenous expansion converging to u in a neighborhood of 0.

u(x) =
∞∑
m=0

pm(x)
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where

pm(x) =
∑
|α|=m

Dαu(0)

α!
xα

for x near 0. Since u is harmonic near 0, thus

∆u(x) =
∞∑
m=0

∆pm(x) = 0

for x near 0. Since ∆pm is homogeneous of degree m − 2 for m ≥ 2, and ∆pm = 0 for
m < 2, then by uniqueness of homogeneous expansions , we have ∆pm = 0 for every m,
that is meaning pm is harmonic for every m, and hence we can represent the harmonic
function u near 0 as an infinite sum of homogeneous harmonic polynomials. Translating
this local result from 0 to the point a ∈ Ω, we obtain the desired expansion.

The expression (1.17) is called a homogeneous expansions of the function u at the point
a ∈ Rn.

Suppose that Hm(Rn) denoted the space of all complex-valued homogeneous harmonic
polynomials of degree m in Rn. The next corollary states any function harmonic on the
ball may be expressed uniquely as a sum of homogeneous harmonic polynomials.

Corollary 9. : Suppose u is a harmonic function on B(a, r). Then there exist pm ∈
Hm(Rn) such that

u(x) =

∞∑
m=0

pm(x− a) (1.18)

for all x ∈ B(a, r), the series converging absolutely and uniformly on compact subsets of
B(a, r).

1.2 Subharmonic functions in space

1.2.1 Introduction.

In mathematics, subharmonic functions are important classes of functions used exten-
sively in partial differential equations, complex analysis and potential theory.
A fundamental example of subharmonic function is given by the Newton kernel (the

elementary solution of the usual Laplace operator ∆ =
∑ ∂2

∂x2i
in Rn), which is actually

harmonic on Rn\{0}.
Intuitively, subharmonic functions are related to harmonic function as follows. If the
values of a subharmonic function are no larger than the values of a harmonic function
on the boundary of a ball, then the values of the subharmonic function are no larger
than the values of the harmonic function also inside the ball. Subharmonic functions
are of a particular importance in complex analysis, where they are intimately connected
to holomorphic functions.

Before we can define subharmonic functions we need to recall upper semi-continuous
function.
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Definition 3. (Upper semi-continuous function ). Let Ω ⊂ Rn, a function u :
Ω→ [−∞,+∞) is said to be upper semicontinuous at a point a ∈ Ω if for any number
C > u(a) there exists a number δ = δ(a,C) such that u(x) < C whenever |x − a| < δ
and x ∈ Ω. A function u is said to be semicontinuous on the set Ω if it is upper
semicontinuous at each point of Ω

An equivalent definition for u to be upper semicontinuous on Ω is to require the sets
{x ∈ Ω : u(x) < C} be open in Ω for every C ∈ R . Another equivalent definition for
upper semicontinuous lim

x→a
supu(x) ≤ u(a) for all a ∈ Ω.

Remark 3. Note that upper semi-continuous functions are allowed to take value −∞.

Clearly if f, g are upper semicontinuous functions, and C is a non-negative constant,
then all the functions Cf, f+g,max{f, g}, and min{f, g} are also upper semicontinuous.
Upper semi-continuity implies local boundedness from above.

Theorem 19. Let f be upper semi-continuous. Then f is bounded above on compact
sets and attains its upper bound in every compact set.

1.2.2 Definition for subharmonic

Definition 4. (Subharmonic). Let Ω be an open subset of Rn, and u : Ω→ R∪{−∞}
be an upper semi-continuous function. We say that u is subharmonic function on Ω if u
satisfy the following mean value inequality:

u(a) ≤ 1

Area(S(a, r))

∫
S(a,r)

u(ξ)ds(ξ), (1.19)

for all B(a, r) ⊂ Ω .

An equivalent definition is obtained using property:

u(a) ≤ 1

V (B(a, r))

∫
B(a,r)

u(x)dV (x), (1.20)

for all B(a, r) ⊂ Ω .

Remark 4. Note that from the definition the subharmonic functions are allowed to take
value −∞, for an important example the function log |z − a|. Also note that from the
definition follows that every harmonic function is subharmonic.

Example 3. Let u(x) =

{
−|x|2−n if n > 2
log |x| if n = 2

, u(0) = −∞ .

Then u is subharmonic in Rn

Example 4. Suppose that f is analytic on a domain Ω in C. Then ln |f | is subharmonic
on Ω. Since ln |f | is upper semi-continuous, so one only needs to verify the local sub-
mean property. Let z ∈ Ω. If f(z) 6= 0, then ln |f | is harmonic near z and from the
mean value property of harmonic functions we obtain

f(z) =
1

2π

2π∫
0

u(z + ρeiθ)dθ; 0 ≤ r < ρ;



SHKHEAM 20

for some ρ > 0. If f(z) = 0 then ln |f | = −∞ and hence the following inequality is
satisfies anyway

f(z) ≤ 1

2π

2π∫
0

u(z + ρeiθ)dθ 0 ≤ r < ρ.

Notice that, in general, |f | will not be harmonic when f is harmonic. For example, take
f(z) = zk, k ∈ N.

Theorem 20. Let u ∈ C2(Ω). If ∆u ≥ 0, then

u(a) ≤ 1

Area(S(a, r))

∫
S(a,r)

u(ξ)ds(ξ),

for every B(a, r) ⊂ Ω.

Proof. Note that the outward normal ν at ξ ∈ S(a, r) is η = ξ−a
|ξ−a| . Then∫

S(a,r)

Dνu(ξ)ds(ξ) = rn−1 d

dr

∫
|η|=1

u(a+ rη)dη

= rn−1 d

dr

(
r1−n

∫
S(a,r)

u(ξ)ds(ξ)

)

= rn−1nωn
d

dr

∫
S(a,r)

u(ξ)dσ(ξ).

By Corollary 1, we have

rn−1nωn
d

dr

∫
S(a,r)

u(ξ)dσ(ξ) =

∫
B(a,r)

∆u(x)dV (x) ≥ 0.

Thus, the mean value
∫
S(a,r) u(ξ)dσ(ξ) is increasing. Since u is continuous, we have

lim
r→0

∫
S(a,r) u(ξ)dσ(ξ) = u(a). This proves the theorem.

Corollary 10. Let u ∈ C2(Ω). If ∆u ≥ 0, then

u(a) ≤ 1

V (B(a, r))

∫
B(a,r)

u(x)dV (x),

for every B(a, r) ⊂ Ω.

1.2.3 Some properties of subharmonic function

The subharmonic functions are a much more flexible tool than holomorphic, or even
harmonic functions. An immediate consequence of the sub-mean value property is the
maximum principle for subharmonic functions. There is no minimum principle for sub-
harmonic functions, in other words subharmonic functions do not satisfy the minimum
principle, for example u(x) = |x|2 is subharmonic function on Rn which attains it’s
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minimum at x = 0, but it is not harmonic .

1- If u is subharmonic on Ω, then Cu is subharmonic in Ω for any constant C ≥ 0.
2- If the functions u1(x), ..., um(x) are subharmonic in a domain Ω ⊂ Rn, then the func-

tions
m∑
i=1

ui, and max
1≤i≤m

ui(x) are also subharmonic in Ω .

3- The limit of a uniformly convergent sequence of subharmonic functions is subhar-
monic function.
4- The limit of a monotone decreasing sequence of subharmonic function is subharmonic
function.

Theorem 21. (Weak maximum Principle for subharmonic functions). If u is
subharmonic function on a bounded domain Ω ⊂ Rn, and continuous on Ω. then

max
Ω

u = max
∂Ω

u

Proof. If this is not so, there exists x0 ∈ Ω such that u(x0) > max
x∈∂Ω

u(x). Since Ω is

bounded there exists ε > 0 such that u + ε|x|2 also has its maximum in Ω. If this
is not so, there exists a sequence, {εn} of positive numbers converging to zero and
a point xεn ∈ ∂Ω such that u(xεn) + εn|xεn |2 ≥ u(x) + εn|x|2 for all x ∈ Ω. Then
using compactness of ∂Ω, there exists a subsequence, still denoted by εn such that
xεn → x1 ∈ ∂Ω and so, taking the limit, we obtain u(x1) ≥ u(x) for all x ∈ Ω, contrary
to what was assumed about x0.
Now let x1 be the point in Ω at which u(x) + ε|x|2 achieves its maximum. Therefore,
we must have 2nε ≤ 2nε+ ∆u(x1) ≤ 0 a contradiction. This proves the theorem.

Lemma 5. . Let Ω,Ω′ be domains in C. If f : Ω → Ω′ is analytic, one-one and
g : Ω′ → R is subharmonic. Then the function g ◦ f is subharmonic.

The next proposition will allow us to identify many subharmonic functions which are
only continuous, not C2, so that ∇u ≥ 0 criterion is not applicable. But if u is not of
class C2, then u is subharmonic if and only if it is the limit of a decreasing sequence of
subharmonic functions of class C2.

Also there are discontinuous subharmonic functions, for example: u(z) =
∞∑
k=1

2−k log |z−

2−k| is subharmonic in the entire plane and is discontinuous at zero.

Proposition 3. Suppose that Ω ⊂ C, and u : Ω→ R be continuous function. If

u(x) ≤ 1

2π

2π∫
0

u(x+ reiθ)dθ, (1.21)

for every disk D(x, r) ⊂ Ω, then u is subharmonic. Conversely, if a continuous function
u : Ω→ R is subharmonic, then the inequality above (1.21) holds for D(x, r) ⊂ Ω.

1.2.4 Subharmonic behavior of |u|p, 0 < p < 1

The importance of subharmonic functions for spaces of analytic and harmonic functions
lies in the fact that if f is analytic (resp.harmonic), then |f |p is subharmonic for every
p > 0 (resp. p > 1).
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Definition 5. (Subharmonic behaviour). An upper semicontinuous function u on
a domain Ω ⊂ Rn is said to be have subharmonic behaviour, if there exists a constant
C = Cn,Ω , depending only on n and Ω, such that

u(x) ≤ C

rn

∫
B(x,r)

u(y)dy (1.22)

for all x ∈ Ω and r > 0 such that B(x, r) ⊂ Ω.

Clearly every subharmonic function u has subharmonic behaviour. Furthermore if u ≥ 0
has subharmonic behaviour, then up also has subharmonic behaviour for all p ∈ (0,∞).
We can use the subharmonicity of |u|p, where u is harmonic to prove the harmonic
Bergman space is complete for 0 < p <∞.

Let u is harmonic function on a domain Ω in Euclidean space Rn, and suppose that
p > 0. If p ≥ 1, then the function |u|p is subharmonic on Ω, and therefore has the
sub-mean value property over balls

|u(a)|p ≤ 1

V (B(a, r))

∫
B(a,r)

|u(x)|pdx,

where B(a, r) ⊂ Ω. If 0 < p < 1, then the function |u|p need not be subharmonic, but it
behaves like subharmonic function. This fact was established by Hardy and Littlewood
[26] for n = 2 and generalized by Fefferman and Stein [[22], Section 9, Lemma 2] for
n > 2 . This ” subharmonic behaviour ” of |u|p is given by

Theorem 22. [26], [22]. Let 0 < p < ∞. Then there exists a positive constant Cn,p
such that

|u(a)|p ≤ Cn,p
1

V (B(a, r))

∫
B(a,r)

|u(x)|pdx (1.23)

for every real harmonic function u in B(a, r) ⊂ Rn.

Proof. Of course Cn,p = 1 for p ≥ 1, so we assume 0 < p < 1. We can assume a = 0 and
r = 1.

u(x) =
ε2 − |x|2

nωnε

∫
Sε

u(y)

|x− y|n
dσ(y),

for x ∈ Bε = B(0, ε), 0 < ε < 1. Hence

|u(x)| ≤ ε2 − ρ2

nωnε

∫
Sε

|u(y)|
(ε− ρ)n

dσ(y) =
ε+ ρ

nωnε(ε− ρ)n−1

∫
Sε

|u(y)|dσ,

for 0 ≤ |x| = ρ < ε < 1. Hence

M∞(ρ) ≤ (1 +
ρ

ε
)

M1(ε)

(1− ρ
ε )n−1

≤ 2(1− ρ

ε
)1−nM1(ε), 0 < ρ < ε < 1 (1.24)

M1(t) ≤M1−p
∞ (t)Mp

p (t), 0 < t < 1 (1.25)
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where Mp(ρ) =

(
1

nωnρn−1

∫
Sρ

|u|pdσ
)1/p

, M∞(ρ) = sup
Sρ

|u|

it suffices to obtain :|u(0)| ≤ Cp,n under normalization condition

1∫
0

ρn−1Mp
p (ρ)dρ ≤ 1. (1.26)

Using (1.25) and (1.24) we get, for 0 < t < ε < 1:

M1(t) ≤Mp
p (t)M1−p

∞ (t) ≤Mp
p (t)M1−p

1 (ε)21−p(1− t
ε)

(1−p)(1−n),

so

logM1(t) ≤ p logMp(t) + (1− p) logM1(ε) + (1− p) log 2 + (1− p)(1− n) log(1− t
ε).

We get ε = ta for some 0 < a < 1 (then t < ε) and obtain

logM1(t) ≤ p logMp(t) + (1− p) logM1(ta) + (1− p) log 2 + (1− p)(1− n) log(1− t1−a),

hence

1∫
1/2

logM1(t)
dt

t
≤ (1− p) log2 2 + (1− p)(1− n)

1∫
1/2

log(1− t1−a)dt
t

+p

1∫
1/2

logMp(t)
dt

t
+ (1− p)

1∫
1/2

logM1(ta)
dt

t

= C(p, n, a) + p

1∫
1/2

logMp(t)
dt

t
+

1− p
a

1∫
(1/2)a

logM1(ρ)
dρ

ρ
.

Now we choose a = 1 − p2. If M1(2−a) ≤ 1 then we have |u(a)| ≤ 1. So we assume
M1(2−a) > 1.
From the above estimates we obtain

p

1 + p

1∫
1/2

logM1(t)
dt

t
≤ C(p, n) +

1∫
1/2

logMp
p (t)

dt

t

≤ C(p, n) +

1∫
1/2

Mp
p (t)

dt

t

≤ C(p, n) + 2n
1∫

1/2

tn−1Mp
p (t)dt
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and we get

1∫
1/2

logM1(t)
dt

t
≤ K(u, p).

Since M1(t) is increasing in 0 ≤ t < 1 we get M1(y2) ≤ C(u, p), so

|u(0)| ≤M1(y2) ≤ C(u, p).

As desired.

Remark 5. :
(i) This proof shows that it is true also for complex valued u.
(ii) More generally the theorem remains true if |u| is replaced by an arbitrary nonnegative
subharmonic function on Ω.
(iii)When 0 < p < 1 the volume mean

1

V (B(a, r))

∫
B(a,r)

|u(x)|pdx

in the theorem 22 can not be replaced by the spherical mean

1

Area(S(a, r))

∫
S(a,r)

|u(ξ)|pdσ(ξ).

Corollary 11. Suppose that 0 < p <∞. Then there exists a constant C = Cp depending
only on p such that

|u(0)|p ≤ Cp
∫
D

|u|pds

for every harmonic function u on unit disc D. When p ≥ 1, the inequality holds with
Cp = 1.

Remark 6. More generally this inequality remains valid if we assume that u ≥ 0 is an
arbitrary subharmonic function in D.

1.3 Analytic definition of planar quasiconformal mapping

Definition 6. (Sense-preserving homeomorphisms). A homeomorphism f : Ω →
Ω′ is called sense-preserving if f preserves the orientation of the boundary of every
Jordan domain D such that D ⊂ Ω.

Definition 7. (regular mapping). A map f : Ω→ Ω′ is called regular at the point z
if z lies in the interior of Ω , f is differentiable at z, and Jf (z) 6= 0.

Lemma 6. If a homeomorphism f : Ω→ Ω′ possesses a regular point z where Jf (z) > 0
then f is sense-preserving. Conversely, the Jacobian of a sense preserving homeomor-
phism is positive at every regular point.
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Definition 8. (The directional derivative). Let f be regular throughout Ω and the
partial derivatives fx and fy are continuous in Ω. Then the directional derivative of f
at z in the direction of θ is

∂θf(z) = lim
r→0

f(z + reiθ)− f(z)

reiθ
= e−iθ(fx(z) cos θ + fy(z) sin θ)

exists at every point z ∈ Ω.

Definition 9. (Dilatation quotient). Let f be regular at z ∈ Ω. If f has directional
derivative at z, then the dilatation quotient D, is

D(z) =
max
α
|∂αf(z)|

min
α
|∂αf(z)|

,

is bounded in every compact subset of Ω.

Definition 10. (Absolutely continuous functions on an interval). The function
f : (a, b)→ Rm is absolutely continuous on the interval (a, b) if for all ε > 0 there exist
δ > 0 such that

n∑
i=1

||f(bi)− f(ai)|| < ε,

then for every finite sequence of non-intersecting intervals ai ≤ x ≤ bi, i = 1, ..., n
contained in (a, b), such that

n∑
i=1

|bi − ai| < δ

Remark 7. (Equivalent definition). The following conditions for a real-valued function
f on a compact interval [a, b] are equivalent
(1) f is absolutely continuous;
(2) f has a derivative f ′ almost everywhere, the derivative is Lebesgue integrable, and

f(x) = f(a) +

x∫
a

f ′(t)dt ∀x ∈ [a, b].

(3) there exists a Lebesgue integrable function g on [a, b] such that

f(x) = f(a) +

x∫
a

g(t)dt ∀x ∈ [a, b].

Now before define ACL, we consider a closed 2-interval I = {z ≡ x + iy ∈ C : x ∈
[a, b], y ∈ [c, d]} with a function f : I → Rm, continuous, for almost any (c1, c2) ∈ I.
Let g : [a, b] → Rm, and h : [c, d] → Rm where g(x) = f(x, c2), h(x) = f(c1, x), are
absolutely continuous.

Definition 11. (ACL on an interval). A function f |I is called absolutely continuous
on lines (ACL) if f |I is continuous and it is absolutely continuous on almost every line
segment in I parallel to the coordinate axes.
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Definition 12. (ACL): Let Ω ⊂ C be a domain, I ⊂ Ω. A function f : Ω → Rm, is
ACL if for every 2-interval I ⊂ Ω, the function f |I is ACL.

Remark 8. A complex valued function f ≡ u + iv is ACL in Ω ⊂ C if u, v are both
ACL in Ω.

Definition 13. (Analytic definition). Let Ω, Ω′ are subsets of C. A sense-preserving
homeomorphism f : Ω → Ω′ is called K-quasiconformal mapping of the domain Ω if
satisfy the following two conditions:
1. f is absolutely continuous on lines in Ω.
2. The dilatation condition

|fz(z)|+ |fz(z)|
|fz(z)| − |fz(z)|

≤ K (1.27)

holds almost everywhere in Ω.

A map is quasiconformal if it is K-quasiconformal for some K.

Remark 9. Let f be regular at z ∈ Ω and let fz(z) = 1
2 [fx(z) − ify(z)] and fz(z) =

1
2 [fx(z) + ify(z)], be the complex derivatives. Then the directional derivative of f at z
in the direction of θ can be expressed in terms of the complex derivatives as

∂θf(z0) = fz(z0) + fz(z0)e−2iθ,

and for the Jacobian we get

J(z0) = |fz(z0)|2 − |fz(z0)|2.

Since f is sense-preserving, J(z) ≥ 0, and so |fz(z)| ≥ |fz(z)|. Therefore

max
θ
|∂θf(z)| = |fz(z)|+ |fz(z)|, min

θ
|∂θf(z)| = |fz(z)| − |fz(z)|.



Chapter 2

Harmonic Bergman space and
reproducing kernels

Introduction.
A norm on a (complex) linear(vector) space X is a function ‖.‖ : X → R satisfying the
following conditions:
(i)‖f‖ ≥ 0 for all f ∈ X (nonnegative),
(ii)‖f‖ = 0 if and only if f = 0, where f ∈ X (strictly positive),
(iii)‖λf‖ = |λ|‖f‖ for every f ∈ X and scalar λ ∈ C (homogeneity),
(iv)‖f + g‖ ≤ ‖f‖+ ‖g‖ for every f, g ∈ X (triangle inequality).
The couple (X, ‖.‖) is called normed space.

The function ‖.‖ which satisfying the properties: (i), (ii), and (iii) of a norm, and satisfy
‖f + g‖ ≤ C(‖f‖+ ‖g‖) (C-triangle inequality) where C(≥ 1) is a constant independent
of f, g ∈ X is called a quasi-norm on X, and the couple (X, ‖.‖) is called quasi-normed
space.

2.1 Lp spaces for 0 < p <∞ .

One of the most important examples of a function space is the space of measurable
functions whose absolute values are pth power integrable where 1 ≤ p <∞.

Definition 14. (Lp space). Suppose that 1 ≤ p < ∞. Let Ω be a measurable subset
of Rn, and µ is a Borel measure. then the space Lp(Ω) is the set of Lebesgue measurable
function f : Ω→ R (or C) whose pth power is Lebesgue integrable ie:∫

Ω
|f(x)|pdµ(x) < +∞; (2.1)

with the norm

‖f‖Lp(Ω) := ‖f‖p =

(∫
Ω
|f(x)|pdµ(x)

)1/p

. (2.2)

When p = 1 the space L1(Ω) consists of all integrable functions on Ω.

A function f , measurable on Ω is said to be essentially bounded on Ω if there exists a
constant C such that |f(x)| ≤ C almost everywhere in Ω. The greatest lower bound of

27
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C is called the essential supremum of |f | on Ω and is denoted by ess sup
x∈Ω
|f(x)|.

ess sup
Ω
|f | := inf{k : µ{x ∈ Ω : f(x) > k} = 0} (2.3)

When p = ∞, we denote by L∞(Ω) the space of all functions essentially bounded
Lebesgue measurable on Ω with the essential supremum as the norm. Hence

‖f‖∞ = ess sup
Ω
|f | (2.4)

is a norm on L∞(Ω).

Now when p ∈ (0, 1) the functional is not norm, but satisfies ‖f+g‖p ≤ Cp(‖f‖p+‖g‖p)
(with Cp = 21/p−1). In fact it is a quasi-norm.

2.1.0.1 Some properties for the space Lp : p > 0

1)‖f‖p ≥ 0 for any measurable f .
2)‖f‖p = 0 if and only if f = 0 a.e in Ω.
3)‖λf‖p = |λ|.‖f‖p for any λ is a scalar.

We call the positive real numbers 1 < p, q <∞ a pair of conjugate exponents if 1
p+ 1

q = 1.
We naturally regard 1, ∞ as a pair of conjugate exponents.

Theorem 23. (Holder’s inequality). Let p ∈ [1,∞] and q be its conjugate expo-
nents.Then for any f ∈ Lp(Ω) and any g ∈ Lq(Ω), we have fg ∈ L1(Ω) and∫

Ω

|fg|dµ ≤
(∫

Ω

|f |pdµ
)1/p(∫

Ω

|g|qdµ
)1/q

(2.5)

or equivalently

‖fg‖L1(Ω) ≤ ‖f‖LP (Ω)‖g‖Lq(Ω)

Moreover, equality holds only if there exists a constant C such that

|f(x)|p = C|g(x)|q for a.e.x ∈ Ω.

Proof. . The inequality is obviously true if p = 1 or ∞, or ‖f‖Lp(Ω) = 0. For p ∈ (1,∞)
and ‖f‖Lp(Ω) 6= 0, we use the following inequality

ab ≤ εap

p + ε1−qbq

q , ε > 0, q is a conjugate of p ∈ (1,∞) ,with a = |f | ,b = |g|, we obtain

∫
Ω

|fg|dµ ≤
ε‖f‖pLp(Ω)

p
+
ε1−q‖g‖qLq(Ω)

q
;

for all ε > 0. Choice ε = ‖g‖Lq(Ω)/‖f‖
p−1
Lp(Ω).



SHKHEAM 29

Corollary 12. (Schwarz inequality). When p = q = 2 the inequality∫
Ω

|fg|dµ ≤
(∫

Ω

|f |2dµ
)1/2(∫

Ω

|g|2dµ
)1/2

is known as the Schwarz inequality .

Theorem 24. (Minkowski inequality [41]). Let f, g ∈ Lp(Ω), for some p ∈ [1,∞].
Then f + g ∈ Lp(Ω) and

‖f + g‖Lp(Ω) ≤ ‖f‖LP (Ω) + ‖g‖Lp(Ω)

Moreover, equality holds only if there exists a constant C such that

f(x) = Cg(x) for a.e.x ∈ Ω. Or g(x) = Cf(x) for a.e.x ∈ Ω.

Proof. The inequality is obviously true for p = 1 and p = ∞. For p ∈ (1,∞), we
applying Holder inequality, we obtain

‖f + g‖pLp(Ω) ≤
∫
Ω

|f + g|p−1|f |dµ+

∫
Ω

|f + g|p−1|g|dµ

≤
(∫

Ω

|f + g|(p−1)q

)1/q

(‖f‖Lp(Ω) + ‖g‖Lp(Ω))

=

(∫
Ω

|f + g|p
)1−1/p

(‖f‖Lp(Ω) + ‖g‖Lp(Ω)).

2.2 Hilbert space

Inner product space. We define ‖x‖ = 〈x, x〉1/2. An inner product on a complex
vector space X is a function, 〈., .〉 : X × X → C, such that: 〈x, x〉 ≥ 0 with equality
〈x, x〉 = 0 if and only if x = 0, 〈λx+ µy, z〉 = λ 〈x, z〉+ µ 〈y, z〉 i.e. x→ 〈x, z〉 is linear,
〈x, y〉 = 〈y, x〉. The couple (X, 〈., .〉) is called an inner product space.

Lemma 7. (Parallelogram Law). Let (X, 〈., .〉) be an inner product space, then

‖f + g‖2 + ‖f − g‖2 = 2‖f‖2 + 2‖g‖2

for all f, g ∈ X.

Theorem 25. :(Schwarz Inequality [12]). Let (X, 〈., .〉) be an inner product space,
then

| 〈f, g〉 | ≤ ‖f‖‖g‖

for all f, g ∈ X, and equality holds if and only if f, g are linearly dependent.

Definition 15. (Hilbert space). A Hilbert space is an inner product space (H, 〈., .〉)
such that the induced Hilbertian norm is complete.
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For example the spaces L2(Ω) with inner product

〈f, g〉 =

∫
Ω

f.gdµ

are Hilbert spaces.

Suppose that H is a Hilbert space, then for every bounded linear operator T : H → H
we have ‖T‖ = sup{〈Tx, y〉 : ‖x‖ ≤ 1, ‖y‖ ≤ 1}. A dual space of a normed linear space
(X, ‖.‖) is set (namely X∗) of all continuous linear functions T : X → C(orR). The dual
norm is a function ‖.‖∗ : X∗ → R defined by ‖T‖∗ := sup{|T (u)|/‖u‖ : u ∈ X\{0}}.

Theorem 26. (Riesz Theorem). Let H∗ be the dual space of a Hilbert space H.
Then the function defined by T (x) = 〈., x〉 ∀x ∈ H is an element of H∗. Every element
of H∗ can be written uniquely in this form. The map T : H → H∗ is a conjugate linear
isometric isomorphism.

Theorem 27. (The Riesz-Fréchet theorem)[17]. Let H be a Hilbert space. Let T
be a continuous linear function T : H → C. Then there exists a unique vector v in H
such that T (u) = 〈v, u〉 for all u in H.

Proof. : Define F : H → C by

F (w) :=
1

2
‖w‖2 −ReT (w).

The functional T is Lipschitz because it is continuous. So there exists a constant C such
that |T (w)| ≤ C‖w‖. It follows that F (w) ≥ 1

2‖w‖
2 − C‖w‖. If we set ρ := ‖w‖, and

differentiate F (ρ) we find that the minimum of F occurs when ‖w‖ = C, and hence
when T (w) = ‖w‖2. So F (w) ≥ −1

2C
2. Thus F (w) is bounded from below. Assume

that a be the infimum of the F (w). Let wm be a sequence in H such that F (wm) → a
as m→∞. By the parallelogram identity and the linearity of T , we have

‖wm − wk‖2 = 2‖wm‖2 − ‖wm + wk‖2 + 2‖wk‖2 = 4F (wm)− 8F (
wm + wk

2
) + 4F (wk).

Hence

‖wm − wk‖2 ≤ 4(F (wm) + F (wk))− 8a.

The right hand side tends to zero, so wm is Cauchy sequence and hence has a limit v by
the completeness of H. Since F is continuous, F (v) = a, so F assumes its minimum.
For any vector u ∈ H and any real number t > 0, we have F (v) ≤ F (v + tu). By a long
computation we get

0 ≤ Re 〈v, u〉 −ReT (u) +
1

2
t‖u‖2.

Since this is true for arbitrary t > 0, we have ReT (u) ≤ Re 〈v, u〉 for all u. The same
argument applied to −u shows that −ReT (u) ≤ −Re 〈v, u〉. Hence ReT (u) = Re 〈v, u〉.
The above reasoning applied to −iu shows that ReT (u) = Re 〈v, u〉. We conclude that
T (u) = 〈v, u〉.
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2.2.1 Orthogonal projection on a closed subspace of a Hilbert space

Let (X, 〈., .〉) be an inner product space, we say f, g ∈ X are orthogonal and write f ⊥ g
iff 〈f, g〉 = 0. More generally we say f ∈ X is orthogonal to a set E ⊂ X and write
f ⊥ E iff 〈f, g〉 = 0 for all g ∈ E. We denote the set of all elements in X which orthog-
onal to the set E ⊂ X by E⊥ = {f ∈ X : f ⊥ E} . We also say that a set E ⊂ X is
orthogonal if f ⊥ g for all f, g ∈ E with f 6= g.
We say that E ⊂ X orthonormal if it is orthogonal and satisfies ‖f‖ = 1 for all f ∈ E.

Every Hilbert space has an orthonormal basis.

Theorem 28. ([31].Theorem 2.6.) Suppose H is a Hilbert space with reproducing kernel
RΩ and that {em}∞m=1 is an orthonormal basis for H. Then

RΩ(x, y) =
∞∑
m=1

em(x)em(y)

Lemma 8. : Let X be an inner product space and E be a subset of X. Then E⊥ is a
closed linear subspace of X.

In fact E⊥ = ∩f∈EKer(〈., f〉), where Ker(〈., f〉) := {g ∈ X : 〈g, f〉 = 0} is a closed
subspace of X.

Definition 16. (Projection operators). Let X be a vector space. A map T : X → X
is a projection operator if it is linear and satisfies T 2 = T .

Note that for any element f in X can be written as sum a + b, where a ∈ ImT and
b ∈ Ker(T ).

Now suppose that X = H be a Hilbert space and Y be a closed subspace(linear) of H.
The orthogonal projection of H onto Y is the function T : H → H such that for any
x ∈ H, there is a unique point (namely T (x)) in Y closest to x such that x − T (x) is
orthogonal to Y .

Definition 17. (Adjoint). Let T : X → X be a bounded operator. The adjoint of T ,
denote T ∗, is the unique operator T ∗ : X → X such that 〈Tx, y〉 = 〈x, T ∗y〉. A bounded
operator T : X → X is self - adjoint if T ∗ = T . It is normal operator if it commutes
with its adjoint T ∗, that is TT ∗ = T ∗T .

Proposition 4. ([12]Proposition 14.13). Let H be a Hilbert space and Y ⊂ H be a
closed subspace. Then the orthogonal projection T : H → H satisfies:
(i). T is linear.
(ii). T is projection.
(iii). T is self-adjoint.
(iv). Ker(T ) = Y ⊥.

Proof. To prove (i). Let x, y ∈ H and α ∈ C, then Tx+ αTy ∈ Y and
Tx+αTy− (x+αy) = [Tx− x+α(Ty− y)] ∈ Y ⊥. Thus Tx+αTy = T (x+αy) which
means T is linear.
To prove (iii). Let x, y ∈ H. Since x− Tx and y − Ty are in Y ⊥. Then
〈Tx, y〉 = 〈Tx, Ty + y − Ty〉 = 〈Tx, Ty〉 = 〈Tx+ (x− Tx), T y〉 = 〈x, Ty〉.
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The following corollary shows that for each element y ∈ Y can be written uniquely as a
sum a+ b with a ∈ Im(T ) and b ∈ Ker(T ). More precisely a = T (y) and b = y − T (y).
The point T (y) is the point in Y closest to y.

Corollary 13. Let Y be a closed subspace of a Hilbert space H. Then for any y ∈ Y
there is a unique a ∈ Y and b ∈ Y ⊥ such that y = a+ b.

Proof. Let x ∈ X and let y = T (x), then x−y ∈ Y ⊥ and hence x = y+(x−y) ∈ Y +Y ⊥.

Note that for any x ∈ H we have |x|2 = |Tx|2 + |x− Tx|2 which implies, in particular,
that T is a bounded linear map.

Proposition 5. Let H be a Hilbert space and T : H → H be a linear map (not nec-
essarily bounded) such that there exists T ∗ : H → H with 〈Tx, y〉 = 〈x, T ∗y〉 for all
x, y ∈ H. Then T is bounded . Conversely, Let H,H ′ be Hilbert spaces and T : H → H ′

be a bounded operator. Then there exists a unique bounded operator T ∗ : H ′ → H such
that 〈Tx, y〉H′ = 〈x, T ∗y〉H for all x ∈ H and all y ∈ H ′

2.2.2 Characterization of orthogonal projections

Recall, that if Y is a closed subspace of a complex Hilbert space H, then there is a
bounded linear operator T : H → H such that T (H) = Y with T 2 = T and T ∗ = T .
Conversely if T : H → H is any bounded linear operator for which T 2 = T then the
following are equivalent: (i) T is normal, (ii) T is self-adjoint, (iii) T is an orthogonal
projection onto a closed subspace.

Lemma 9. Suppose H be a complex vector space with a Hermitian inner-product 〈., .〉.
Let T : H → H be a bounded linear operator. Then
(i) If 〈Tx, x〉 = 0 for all x ∈ H then T = 0.
(ii) the operator T is normal iff |Tx| = |T ∗x|. In particular, if T is normal then
Ker(T ) = Ker(T ∗).

Now the following proposition gives a characterization of orthogonal projections:

Proposition 6. Let T : H → H be a bounded linear map on the complex Hilbert space
H such that T 2 = T . Then the following are equivalent:
(i) T is self-adjoint
(ii) T is normal
(iii) x− Tx is orthogonal to Tx for all x ∈ H.
If these conditions hold then T is the orthogonal projection onto its image (closed sub-
space).

2.3 Banach space

A Banach space is a normed linear space that is a complete metric space with respect
to the metric d derived form its norm d(x, y) = ‖x− y‖. For example finite-dimensional
linear space Rn(or Cn) is a Banach space with respect to the Euclidean norm. Another
important example: the spaces Lp(Ω) are Banach spaces for 1 ≤ p ≤ ∞, but when
0 < p < 1 the space Lp is not Banach.
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Definition 18. (bounded linear operator on Banach space). Let X and Y be
Banach spaces and let T : X → Y be a linear operator defined on X. T is called bounded
if there exists C ≤ ∞ such that ‖Tx‖Y ≤ C‖x‖X for all x ∈ X. If T is bounded, define

‖T‖ = sup
x 6=0

‖Tx‖
‖x‖

.

The number ‖T‖ is called the operator norm of T . Clearly, if ‖Tx‖ ≤ C for every
x ∈ X with ‖x‖ = 1, then ‖T‖ ≤ C. Moreover, the family of bounded linear operators
is a linear space with respect to the addition and multiplication of operators by scalars.
From the definition of the norm ‖T‖, it follows that ‖Tx‖ ≤ ‖T‖.‖x‖ for every x ∈ X.
Any bijection (one-one and onto) bounded linear mapping between two Banach spaces
has a bounded inverse.

Lemma 10. A linear functional is continuous if and only if it is continuous at the
origin.

Proposition 7. A linear functional T on a Banach space is continuous, if and only if
it is bounded. ie ‖T‖ = sup{‖Tx‖ : ‖x‖ ≤ 1} < +∞.

Proof. Let T denotes the linear functional and let X be a Banach space. First suppose
that T : X → R is continuous, then for f ∈ X, and ε = 1 there exists δ > 0 such that
|T (f)| ≤ 1 whenever ‖f‖ ≤ δ. Let g ∈ X\{0}, then ‖δg/‖g‖‖ = δ, which implies that
|T (δg/‖g‖)| ≤ 1 and hence |T (g)| ≤ ‖g‖/δ. Conversely, if T is bounded it is clearly
continuous at the origin, hence continuous.

Theorem 29. (Banach-Steinhaus/uniform boundedness theorem). Let Tα :
X → Y be a continuous linear map from a Banach space X to a normed space Y for
each α in an index set A. Then either there is a uniform bound M <∞ so that |Tα| ≤M
for all α ∈ A, or there is x ∈ X such that sup

α∈A
|Tα(x)| = +∞.

Theorem 30. (Open mapping theorem). Let X,Y be Banach spaces and T : X → Y
be a bounded linear operator. If T is a surjective map, then T is an open mapping, ie
T (E) is open in Y for all open subsets E ⊂ X.

Corollary 14. Let X,Y be Banach spaces and T : X → Y be a bounded linear operator.
If T is a a bijective, then the inverse map, T−1, is bounded linear operator.

Theorem 31. (Closed graph theorem). Let X,Y be Banach spaces. A linear map
T : X → Y is continuous iff T is closed.

Proof. Suppose T is continuous. Let Γ := {(x, y) : T (x) = y}. If (xn, Txn) → (x, y) ∈
X × Y as n → ∞ then Txn → Tx = y which implies (x, y) = (x, Tx) ∈ Γ(T ). Hence
Γ(T ) ⊂ X × Y is closed.
Conversely suppose T is closed. Let Γ(x) = (x, Tx). Since the product of Banach spaces
is a Banach space, thus the space X × Y with norm | 〈u, v〉 | = |u|.|v| is a Banach. And
since Γ is a closed subspace of X × Y , it is a Banach space itself with the restriction of
this norm. The projection F : X×Y → X is a continuous linear map and the restriction
G |Γ(T ): Γ(T ) → X is continuous bijection and hence by the open mapping Theorem

30 G |−1
Γ(T ) is bounded. Therefore T = F ◦ G |−1

Γ(T ) is bounded and expresses T as a
composite of continuous functions. The proof is completed.

Let Y be a vector subspace of X and let T : Y → Z a linear map to another vector
space Z. A linear map T ′ : X → Z is an extension of T to X when the restriction T ′ |Y
of T ′ to Y is T .
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Theorem 32. (Hahn-Banach theorem). Let X be a normed vector space with scalars
R (or C), and let Y be a subspace. If T be a continuous linear functional on Y , then
there is an extension T ′ of T to X such that ‖T ′‖ = ‖T‖.

2.3.0.1 Quasi-Banach space

A vector space X equipped with a quasi-norm (resp. p-norm) is called a quasi-Banach
(resp. p-Banach) space if it is complete (with resect to the invariant metric d). The
most important class of quasi-Banach spaces which are not already Banach space is the
class of Lp(Ω) spaces for 0 < p < 1 with the usual quasi-norm.

Let X,Y be quasi-Banach spaces and let T : X → Y be a linear. As in the Banach
space case, T is called bounded or continuous if ‖T‖ = sup{‖Tx‖ : ‖x‖ ≤ 1} <∞.

2.4 Bergman space bp(Ω),Ω ⊂ Rn

The Bergman spaces of harmonic functions bp(Ω) are named in honor of Stefan Bergman
(1895-1977), who studied analogous spaces of holomorphic functions belonging to Lp

with respect to volume measure [6], with emphasis on the case p = 2.

Suppose that p denotes a number satisfying 1 ≤ p < ∞. The Bergman space bp(Ω) is
the set of all harmonic functions u on Ω that are pth power integrable with respect to
volume measure .ie:

‖u‖bp(Ω) :=

(∫
Ω
|u|pdV

)1/p

< +∞, (2.6)

where dV denotes the usual n-dimensional Lebesgue measure on Ω

Several properties of Bergman spaces of harmonic functions on the unit ball in Rn are
analogous to the Bergman spaces of analytic functions on the unit ball in Cn.
When p = 2 the Bergman space B2(Ω) is a Hilbert space which played a fundamental
role in much of his work [Bergman 1970].

The following proposition shows that the point evaluation is continuous on bp(Ω).

Proposition 8. ([4] Proposition 8.1) Suppose that 0 < p < ∞ and x ∈ Ω. Then there
exists a positive constant C such that

|u(x)| ≤ C

d(x, ∂Ω)n/pω
1/p
n

‖u‖bp(Ω)

for every u ∈ bp(Ω), where d denotes Euclidean distance. Moreover when 0 < p < 1, the
constant C > 1, when p ≥ 1, the constant C = 1.

Proof. For 0 < p < 1, recall subharmonic behavior of |u|p see Theorem 22, there exists
a constant Cp,n > 1 such that

|u(x)|p ≤ Cn,p
rnωn

∫
B(x,r)

|u(y)|pdy
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for every harmonic function u in B(x, r) ⊂ Rn.
For each x ∈ Ω, apply this theorem with r = d(x, ∂Ω), we get

|u(x)|p ≤ Cn,p
d(x, ∂Ω)nωn

∫
B(x,r)

|u(y)|pdy.

Taking pth roots to both sides we obtain the required inequality.

For p ≥ 1, suppose that x ∈ Ω and let r be a positive number with r < d(x, ∂Ω), then
by the volume version of the mean-value property (1.3) to u on the ball B(x, r) we have

u(x) =
1

rnωn

∫
B(x,r)

u(y)dV (y).

Taking the absolute values to both sides, and then applying Jensen’s inequality we get

|u(x)|p ≤ 1

rnωn

∫
B(x,r)

|u|pdV ≤ 1

rnωn
‖u‖pbp(Ω).

Taking pth roots, and letting the limit as r → d(x, ∂Ω), we get

|u(x)| ≤ 1

d(x, ∂Ω)n/pω
1/p
n

‖u‖bp(Ω).

Corollary 15. For every multi-index α there exists a constant Cα such that

|Dαu(x)| ≤ Cα

d(x, ∂Ω)|α|+n/p
‖u‖bp

for all x ∈ Ω and every u ∈ bp(Ω).

Corollary 16. For each fixed x ∈ Ω the functional

Tx : u→ u(x), u ∈ b2(Ω)

is a continuous linear functional on b2(Ω).

Proposition 9. The Bergman space bp(Ω) is a closed subspace of Lp(Ω)

Proof. Suppose um is a sequence in bp(Ω) which converges to a function u in Lp(Ω). Let
K be compact subset of Ω. By Proposition 8, there exists constant C <∞ such that

|um(x)− uj(x)| ≤ C‖um − uj‖bp

for all x ∈ K and all m.j. Since um is a Cauchy sequence in bp(Ω), thus the inequality
above implies that um is a Cauchy sequence in C(K) and therefore the sequence um
converges uniformly on K. Hence by Theorem 14 the sequence um converges uniformly
on compact subsets of Ω to a function v harmonic on Ω. Because um → u in Lp(Ω),
then there exists subsequence of um converges to u pointwise almost everywhere on Ω.
We conclude that u = v a.e on Ω and hence u ∈ bp(Ω) which completes the proof.
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Corollary 17. The Bergman space bp(Ω) is a Banach space for p ≥ 1.

Note: it can be proved that bp(B) is a quasi-Banach space for 0 < p < 1.

2.4.1 Harmonic Bergman kernel

Certainly the Bergman kernel construction was one of the great ideas of modern complex
function theory. It not only gives rise to a useful and important canonical reproducing
kernel, but also to the Bergman metric. The Bergman kernel deals with integration over
the solid region.

The Bergman kernel has, in the past fifty years, become an important tool in the complex
analysis of both one and several complex variables (see: [29] [18] [32]). Its reproducing
properties, its bi-holomorphic invariance, and its relationship to the Bergman metric
are all of fundamental importance. This it is important to obtain concrete information
about the Bergman kernel. An explicit formula for the harmonic Bergman reproducing
kernel has only been determined recently; see [4]. The name for Bergman kernel function
of Ω (in the next theorem 33) comes from Stephan Bergman (1895-1987) who introduced
its study in 1922; [6]]

Now we give a simple derivation for such a formula.

2.4.1.1 Reproducing Bergman kernel of Ω

When p = 2, the Proposition 9 shows that the Bergman space b2(Ω) is a Hilbert space
with inner product

〈u, v〉 =

∫
Ω

uvdV

for u, v ∈ L2(Ω). Let Ω be a bounded domain, and let x be any fixed point in Ω . Define
the linear functional T by

T (u) = u(x), u ∈ b2(Ω).

Then the Proposition 8 implies that T is bounded on the Hilbert space b2(Ω). Therefore,
by the Fréchet-Riesz theorem 27 there is a unique function
RΩ(x, .) ∈ b2(Ω) such that

u(x) = 〈u,RΩ(x, .)〉 :=

∫
Ω

u(y)RΩ(x, y)dV (y) (2.7)

for every u ∈ b2(Ω). The function RΩ as a function on Ω × Ω is called the (harmonic)
Bergman kernel function of Ω (or the reproducing kernel of Ω). Now we have the
following theorem :

Theorem 33. (Reproducing kernel). Let Ω be a bounded domain of finite connec-
tivity, and let x be any fixed point in Ω. Then, the Hilbert space b2(Ω) has a unique
reproducing kernel RΩ(x, .) such that

〈u,RΩ(x, .)〉 = u(x), ∀u ∈ b2(Ω)
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Proposition 10. ([4].Proposition 8.4) The reproducing kernel of RΩ has the following
properties:
(i) RΩ is real valued.
(ii) If (um) is an orthonormal basis of b2(Ω), then

RΩ(x, y) =
∞∑
m=1

um(x)um(y)

for all x, y ∈ Ω
(iii) RΩ is a symmetric function on Ω
(iv) ‖RΩ(x, .)‖b2 =

√
RΩ(x, x) for all x ∈ Ω

Proof. To prove (i), suppose that u ∈ b2(Ω) is real valued and x ∈ Ω. Then

Imu(x) = Im

∫
Ω

u(y)RΩ(x, y)dV (y) = −
∫
Ω

u(y)ImRΩ(x, y)dV (y).

Choose u = ImRΩ(x, .), we get∫
Ω

(ImRΩ(x, y))2dV (y) = 0,

which implies ImRΩ = 0.
To prove (ii), suppose um is any orthonormal basis of b2(Ω), By standard Hilbert space
theory 28,

RΩ(x, y) =
∞∑
m=1

〈RΩ(x, .), um〉um =
∞∑
m=1

um(x)um(x)

for each x ∈ Ω, where the infinite sums converge in norm in b2(Ω). Since point evaluation
is a continuous linear functional on b2(Ω), the equation above shows that the conclusion
of (ii) holds.
To prove (iii), using (ii), we obtain RΩ(x, y) = RΩ(y, x), and using (i), we obtain
RΩ(x, y) = RΩ(x, y) for all x, y ∈ Ω.
To prove (iv), let x ∈ Ω. Then

‖RΩ(x, .)‖2b2(Ω) = 〈RΩ(x, .), RΩ(x, .)〉 =

= RΩ(x, x).

2.4.1.2 Bergman kernel for the ball

In this subsection we will derive an explicit formula for the harmonic Bergman repro-
ducing kernel R on the ball B in Euclidean space. We will not make use of so-called
zonal and spherical harmonics used in [4] to calculate the Bergman kernel R, but instead
use Green’s identity to relate R to the extended Poisson kernel P [3].
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Let u, v be harmonic functions on B, and fix y ∈ B = B(0, 1). Assume that
w(x) = (|x|2 − 1)v(x), then the function

∆w(x) = ∆(|x|2)v(x) + 2∇|x|2.∇v(x) + |x|2∆v(x) = 2nv(x) + 4x.∇v(x) (2.8)

is harmonic on B.

∇w(x) = 2xv(x) + (|x|2 − 1)∇v(x).

So that

Dνw(x) = ∇w(x).x/|x| = 2v(x)|x|+ (|x|2 − 1)Dνv(x).

Clearly Dνw(x) = 2v(x) on S ≡ ∂B(0, 1), w = 0 on S, and ∆u = 0 on B. Thus from
Greens identity (with u,w), we obtain

∫
B

u∆wdV =

∫
S

uDνwds = 2

∫
S

uvds = 2nωn

∫
S

uvdσ

For x ∈ B,, choose v(x) = P (x, y), where P (x, y) is extended Poisson kernel (1.10).
Hence ∫

B

u∆wdV = 2nωn

∫
S

u(ξ)P (ξ, y)dσ(ξ) = 2nωnu(y).

We conclude that the harmonic function ∆w/(2nV (B)) is the reproducing kernel at y.
using (2.8) we obtain the following formula for the Bergman kernel

RB(x, y) =
1

nωn

(
nP (x, y) + 2x.∇xP (x, y))

)
Now by elementary calculation, we can formulate the following theorem

Theorem 34. [3]. Let x, y ∈ B. Then

RB(x, y) =
(n− 4)|x|4|y|4 + (8x.y − 2n− 4)|x|2|y|2 + n

nωn(1− 2x.y + |x|2|y|2)1+n/2

where x.y denotes the Euclidean inner product in Rn

Corollary 18. Let x, y ∈ B. Then

|RB(x, y)| ≤ 4

ωn(1− 2x.y + |x|2|y|2)n/2

Proof. By elementary calculation, we can write RB in the form

RB(x, y) =
1

nωn(1− 2x.y + |x|2|y|2)n/2

(
n(1− |x|2|y|2)2

1− 2x.y + |x|2|y|2
− 4|x|2|y|2

)
.

By Cauchy-Schwarz (x.y ≤ |x||y|), we get

(1− |x||y|)2 = 1− 2|x||y|+ |x|2|y|2 ≤ 1− 2x.y + |x|2|y|2,
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thus

(1− |x|2|y|2)2 = (1 + |x||y|)2(1− |x||y|)2 ≤ 4(1− 2x.y + |x|2|y|2).

And hence, we get the result.

2.4.2 Harmonic Bergman projection

As in the analytic case, there is a reproducing kernel and associated projection. Duality
results follow once we know that the projection is Lp-bounded. Coifman and Rochberg
[10] used deep results from harmonic analysis to establish Lp-boundedness of the har-
monic Bergman projection.

Let Q denote the orthogonal projection of L2(B) onto b2(B). If f ∈ L2(B) and x ∈ B,
then Q[f ](x) = 〈Qf,Rx〉 = 〈f,Rx〉 and we have the following formula:

Q[f ](x) =

∫
B

R(x, y)f(y)dV (y). (2.9)

For fixed x ∈ B the function R(x, .) is bounded, so that we can use the formula above
for Q[f ] to extend the domain of Q to Lp(B), where 1 < p <∞.

The following theorem 35 shows that the harmonic Bergman projection is Lp-bounded
for 1 < p < ∞. The proof of this theorem 35 is similar to Forelli and Rudin’s proof of
Lp-boundedness of the analytic Bergman projection [21], [40], but as in Axler’s argu-
ment [1] in the context of the analytic Bergman spaces on the unit disk, we will avoid
the use of the binomial theorem, the gamma function and Stirling’s formula.

Before prove the following theorem we introduce the following lemma:

Lemma 11. Let q be the conjugate index of p ∈ (1,∞). Then there exists a positive
function h and a constant C such that∫

B

hq(x)|R(x, y)|dV (x) ≤ Chq(y) (2.10)

for all y ∈ B, and ∫
B

hp(y)|R(x, y)|dV (y) ≤ Chp(x) (2.11)

for all x ∈ B.

Proof. We claim that the function h(x) = (1−|x|2)−1/(pq) works, that is, satisfies (2.10)
and (2.11) . By symmetry in p and q, it will suffice to find a constant Cp for which∫

B

(1− |x|2)−1/p|R(x, y)|dV (y) ≤ Cp(1− |y|2)−1/p (2.12)
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for all y ∈ B.
Fix y ∈ B\{0}. For 0 < r < 1 and ξ ∈ S it follows from Corollary 18 that

|R(rξ, y)| ≤ 4

ωn(1− ry.ξ + r2|y|2)n/2
=

4

ωn|ξ − ry|n
.

By (1.2) and Proposition 1 (ii), we have

∫
B

|R(x, y)|
(1− |x|2)1/p

dV (x) = nωn

1∫
0

rn−1(1− r2)−1/p

∫
S

|R(rξ, y)|dσ(ξ)dr

≤ 4n

1∫
0

rn−1(1− r2)−1/p

∫
S

1

|ξ − ry|n
dσ(ξ)dr

≤ 2n

1∫
0

2r(1− r2)−1/p 1

1− r2|y|2
dr

= 2n

1∫
0

(1− t)−1/p(1− t|y|2)−1dt.

Now

|y|2∫
0

(1− t)−1/p(1− t|y|2)−1dt ≤
|y|2∫
0

(1− t)−1−1/pdt ≤ p(1− |y|2)−1/p

and hence

1∫
|y|2

(1− t)−1/p(1− t|y|2)−1dt ≤ (1− |y|2)−1

1∫
|y|2

(1− t)−1/pdt

= (1− |y|2)−1q(1− |y|2)1−1/p

= q(1− |y|2)−1/p

Addition yields

1∫
0

(1− t)−1/p(1− t|y|2)−1dt ≤ (p+ q)(1− |y|2)−1/p.

Hence (2.12) is proved with Cp = 2n(p+ q). The proof is completed.

The Fubini’s theorem to reverse the order of integration says: if f ≥ 0 then∫
Ω

(∫
Ω′

f(x, y)dµ′(y)

)
dµ(x) =

∫
Ω′

(∫
Ω

f(x, y)dµ(x)

)
dµ′(y). (2.13)

Theorem 35. [3]. If 1 < p <∞. Then Q maps Lp(B) boundedly onto bp(B).
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Proof. Let f be given function in space Lp(B, dV ), applying Holder’s inequality (2.5)
and Lemma above 11 we have

|Q[f ](y)| ≤
∫
B

|f(x)|
h(x)

h(x)|R(x, y)|dV (x)

≤
(∫
B

|f(x)|p

hp(x)
|R(x, y)|dV (x)

)1/p(∫
B

hq(x)|R(x, y)|dV (x)

)1/q

≤ C1/qh(y)

(∫
B

|f(x)|p

hp(x)
|R(x, y)|dV (x)

)1/p

Thus, applying Fubini’s theorem (2.13), and using Lemma above 11 we obtain∫
B

|Q[f ](y)|dV (y) ≤ Cp/q
∫
B

hp(y)

(∫
B

|f(x)|p

hp(x)
|R(x, y)|dV (x)

)
dV (y)

= Cp/q
∫
B

|f(x)|p

hp(x)

(∫
B

hp(y)|R(x, y)|dV (y)

)
dV (x)

≤ Cp/q
∫
B

|f(x)|p

hp(x)

(
Chp(x)

)
dV (x)

= Cp
∫
B

|f(x)|pdV (x).

From the above estimates and the observation that Cp = Cq we conclude the proof of
the Lp-boundedness of Q. In fact, we obtain the following bound on the norm of Q:
‖Q‖ ≤ 2np2/(p− 1) as an operator from Lp(B) onto bp(B).

Remark 10. Theorem above does not hold for p = 1 or p =∞.

Corollary 19. Let q denotes the conjugate index of p ∈ (1,∞). Then the spaces bp(B)
and bq(B) are dual to each other.

Proof. It follows from of the Lp-boundedness of the Bergman projection: if u ∈ bp(B), v ∈
bq(B), then the function T defined by T (u) = 〈u, v〉 defines a bounded linear func-
tional on bp(B), and every bounded linear functional on bp(B) is of the form above.
In fact if we assume that T ∈ bp(B), then by the Hahn-Banach theorem 32 , T ex-
tends to a bounded linear functional T ′ on Lp(B). There exists a g0 ∈ Lq(B) such that
T ′(f) = 〈f, g0〉 for all f ∈ Lp(B). In particular, if u ∈ bp(B), then T (u) = 〈u, g0〉.
Note that v = Q[g0] ∈ Q(Lq(B)) = bq(B). Using Fubini’s theorem (2.13) it can then be
shown that 〈u, v〉 = 〈u, g0〉, and we have T (u) = 〈u, v〉, for all u ∈ bp(B).

2.5 Weighted Bergman spaces bpβ(B), β > −1

There has been a great deal of work done in recent years on weighted Bergman spaces
on the unit ball Bn. Bergman spaces with standard weights on the unit ball have been
studied by numerous authors in recent years.

Assume that −1 < β < ∞ is a given real number and suppose n ≥ 2 is a fixed inte-
ger number. A weighted Lebesgue spaces on B denotes by Lpβ(B) is the space of all
measurable functions u in B with norm weight
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‖u‖p,β =

(∫
B
|u(x)|p(1− |x|2)βdV (x)

)1/p

< +∞, 0 < p <∞ (2.14)

where dV (x) is the Lebesgue measure. A weighted harmonic Bergman space bpβ(B) is

the space of all harmonic functions h(B) in Lpβ(B).

In the following we always assume β > −1.
The following proposition shows that the point evaluation is continuous on bpβ(B).

Proposition 11. ([37] Proposition 2) For any function u ∈ bpβ(B), 1 ≤ p <∞ and any
point x ∈ B, we have

|u(x)| ≤ 2n/p

(1− |x|)(n−1)/p

(
nωn

1∫
(1+|x|)/2

rn−1(1− r2)βdr

)−1/p

‖u‖p,β. (2.15)

Proof. For x ∈ B, ξ ∈ S, we obtain

P (x, ξ) :=
1− |x|2

|ξ − x|n
≤ 1 + |x|

(1− |x|)n−1
≤ 2

(1− |x|)n−1
. (2.16)

Let x ∈ B and |x| ≤ r′ ≤ 1. Using the subharmonicity of the function |u(r′x)|p in the
neighborhood of the ball B and (2.16), we get

|u(r′x)|p ≤
∫
S

|u(r′ξ)|pP (x, ξ)dσ(ξ)

≤ 2

(1− |x|)n−1

∫
S

|u(r′ξ)|pdσ(ξ). (2.17)

Let x = rξ, where r = |x|, ξ ∈ S. The integral means M(r′) =
∫
S |u(r′ξ)|pdσ(ξ) is

nondecreasing in r′, so by using the expression of the volume element in polar coordinates
dV (x) = nωnr

n−1drdσ(ξ) (see (1.2)) , we get

nωn

1∫
r′

rn−1(1− r2)βdr

∫
S

|u(r′ξ)|pdσ(ξ) ≤

≤ nωn

1∫
r′

∫
S

|u(rξ)|prn−1(1− r2)βdrdσ(ξ)

=

∫
r′<|x|<1

|u(x)|p(1− |x|2)βdV (x)

≤ ‖u‖pp,β. (2.18)

By (2.17) and (2.18), we have
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|u(r′x)|p ≤ 2

(1− |x|)n−1

(
nωn

1∫
r′

rn−1(1− r2)βdr

)−1

‖u‖pp,β.

Changing r′x by x, we obtain

|u(x)| ≤ 21/p

(r′ − |x|)(n−1)/p

(
nωn

1∫
r′

rn−1(1− r2)βdr

)−1/p

‖u‖p,β.

Choose r′ = (1 + |x|)/2 we obtain the desired estimate.

Corollary 20. For any multi-index α there is a constant C = C(α) such that

|Dαu(x)| ≤ C

(1− |x|)|α|+(n−1)/p

( 1∫
(3+|x|)/4

tn−1nωn(1− t2)βdt

)−1/p

‖u‖p,β. (2.19)

Proof. Apply, the Cauchy inequalities 1.14 for the ball B(x) = {y : |y−x| < (1−|x|)/2},
we get

|Dαu(x)| ≤ Cα

(1− |x|)|α|
M(x), (2.20)

where M(x) = max
y∈B(x)

u(y). By Proposition 11, for any y ∈ B(x)

|u(y)| ≤ 2n/p

(1− |y|)(n−1)/p

( 1∫
(1+|y|)/2

tn−1nωn(1− t2)βdt

)−1/p

‖u‖p,β. (2.21)

Besides, the inequalities 1 − |y| ≥ (1 − |x|)/2 and (1 + |y|)/2 ≤ (3 + |x|)/4 obviously
follow from y ∈ B(x), and taking the maximum over all y ∈ B(x) we get

M(x) ≤ 2(2n−1)/p

(1− |x|)(n−1)/p

( 1∫
(3+|x|)/4

tn−1nωn(1− t2)βdt

)−1/p

‖u‖p,β. (2.22)

Hence from (2.20) and the last inequalities we obtain the desired result.

Proposition 12. The weighted Bergman space bpβ(B) is closed subset of Lpβ(B) for all
1 ≤ p <∞.

Proof. Suppose um is a sequence of functions in bpβ(B) such that ‖um − u‖p,β → 0 as

m → ∞, where u ∈ Lpβ(B). Let K be a compact subset of B. Then by Proposition 11
there is a constant C = C(K, p, β) such that

max
x∈K
|u(x)| ≤ C‖u‖p,β

for any u ∈ bpβ(B). Hence |um(x) − uk(x)| ≤ C‖um − uk‖p,β for any x ∈ K and

m, k. The sequence um is fundamental in bpβ(B), and hence um converges uniformly on
compact subsets of B to a function harmonic on B namely v. Moreover um → u in
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Lpβ(B). Therefore, by Riesz theorem 26 there exists a subsequence of um converging
to u pointwise almost everywhere in B. Thus, u = v almost everywhere in B, and
u ∈ bpβ(B).

Corollary 21. The weighted Bergman space bpβ(B) is a Banach space for all 1 ≤ p <∞.

Note: it can be proved that bpβ(B) is a quasi-Banach space for 0 < p < 1. Also, all of

the above results can be extended to bpβ(Ω) spaces, where Ω ⊂ Rn.

2.5.1 Reproducing kernel Rβ for the ball

When p = 2, the Proposition 12 shows that the weighted Bergman space b2β(B) is a

Hilbert space with the inner product in the space L2
β(B) given by the expression

〈u, v〉 =

∫
B

uv.(1− |x|2)βdV (x).

For any fixed point x ∈ B, the Proposition 11 implies that the point evaluation functional
u→ u(x) is a bounded linear functional on the Hilbert space b2β(B), so (it follows from

the Riesz Theorem 26) that there exists a unique function Rβ(x, .) ∈ b2β(B) such that
u(x) = 〈u,Rβ(x, .)〉. As in the Proposition (10)(i) the function Rβ is real valued, and
hence

u(x) =

∫
B

u(y)Rβ(x, y)(1− |y|2)βdV (y) (2.23)

for every u ∈ b2β(B). The function Rβ(x, y) as a function on B × B is called the repro-

ducing kernel of b2β(B).

Recall, Hm(Rn) is the space of all complex-valued homogeneous harmonic polynomials
of degree m in Rn. By homogeneity, a u ∈ Hm is determined by its restriction to S. The
restrictions of functions from Hm(Rn) on the sphere S are called spherical harmonics of
degree m, and we denoted by Hm(S).

The spacesHm are finite-dimensional. Hence eachHm is a closed subspace of L2 and thus
a Hilbert space with respect to the inner product of L2. For m 6= k, Hm is orthogonal
to Hk in b2β with respect to the inner product of L2

β. Then the evaluation functional
at each point η ∈ S is a bounded linear functional on Hm. Thus Hm is a reproducing
kernel Hilbert space . Now by the Riesz representation theorem of Hilbert space theory
27 there exists a unique function (namely) Zm(ξ, .) ∈ Hm(S) such that

pm(ξ) =

∫
S

pm(η)Zm(ξ, η)dη, pm ∈ Hm. (2.24)

In other words, Zm is the reproducing kernel of Hm, it is called the zonal harmonic of
degree m. It is real-valued (when m = 0, Z0 ≡ 1) and symmetric (in its two variables)
on B, consequently, Zm is harmonic in either of its variables since it lies in Hm. So
Zm(ξ, .) ∈ Hm(S). By homogeneity zonal harmonics can be extended to functions on
B ×B as Zm(x, y) = rmρmZm(ξ, η), where x = rξ, y = ρη ∈ B, and ξ, η ∈ S.
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We are going to use the dilatation. For a number λ > 0 and u a function on Ω,
we defined a λ-dilatation of u, denoted uλ, is the function uλ(x) = u(λx) defined for
x ∈ 1

λΩ := { 1
λy : y ∈ Ω}. For any function u in bpβ(B) , we have

‖uλ − u‖p,β → 0 as λ→ 1− 0. (2.25)

This means the continuity of λ-dilatation in bβ(B). By using this fact (2.25) and Corol-
lary 18, we can state the following lemma

Lemma 12. Harmonic polynomials are dense in bpβ(B).

Theorem 36. ([37] Theorem 1.) If x, y ∈ B. Then

Rβ(x, y) =
2

nωn

∞∑
m=0

Γ(n2 +m+ β + 1)

Γ(n2 +m)Γ(β + 1)
Zm(x, y), (2.26)

where the zonal harmonics Zm are harmonically extended on Rn × Rn. Moreover the
series on the right-hand side of (2.26) converges absolutely and uniformly on the set
{(x, y) ∈ R2n : |x||y| ≤ ε, 0 < ε < 1}. In particular the series in (2.26) converges
absolutely and uniformly on K ×B, where K is any compact subset of B.

Proof. Let x = rξ, y = ρη, where ξ, η ∈ S. We consider that the zonal harmonics
Zk(x, y) is homogeneous by both variables, we obtain

|Zk(x, y)| = rkρk|Zk(ξ, η)| ≤ rkρkdimk, (2.27)

where dimk is the dimension of Hk(S). The desired convergence follows from (2.27) in
view of the estimate dimk ≤ Ckn−2 and Stirling’s formula (?). Assume F (x, y) denotes
the right-hand side of (2.26), then F (x, .) is a bounded harmonic function on B for each
x ∈ B. In particular, F (x, y) ∈ b2β(B) for each x ∈ B. Fix x ∈ B. Since the zonal
harmonics are reproducing kernels for the space Hm(Rn). Thus for, we have

u(x) =

∫
S

u(ξ)Zm(x, ξ)dσ(ξ), u ∈ Hm(Rn) (2.28)

for each x ∈ Rn. We derive the analogue of (2.28) for integration over B with respect to
the measure (1− |x|2)βdV . For every u ∈ Hm(Rn) we have

∫
B

u(y)Zm(x, y)(1− |x|2)βdV = nωn

1∫
0

rn−1(1− r2)β
∫
S

u(rξ)Zm(x, rξ)dσ(ξ)dr

= nωn

1∫
0

rn−1+2m(1− r2)β
∫
S

u(ξ)Zm(x, ξ)dσ(ξ)dr

=
nωn

2
u(x)

1∫
0

t
n
2

+m−1(1− t)βdt

=
nωn

2

Γ(n2 +m)Γ(α+ 1)

Γ(n2 +m+ α+ 1)
u(x)
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for every x ∈ Rn. Taking into account the orthogonality in b2β(B) of homogeneous
harmonic polynomials of different degrees, we receive that u(x) = 〈u, F (x, .)〉 whenever u
is harmonic polynomial. Because point evaluation is continuous in b2β due to Proposition

11 and the lemma 12, we have u(x) = 〈u, F (x, .)〉 for all u ∈ b2β(B). Hence F is the
reproducing kernel.

From above Theorem 36, we conclude the series on the right-hand side of (2.26) converges
absolutely on B × B, and uniformly if one variable lives in a compact subset of B.
Therefore the kernel Rβ is symmetric in his variables and harmonic as a function of
each.

2.5.2 Weighted Bergman Projection

The integral representation (2.23) is true for all 1 ≤ p < ∞. i.e. for any fixed point
x ∈ B, we have

u(x) =

∫
B

u(y)Rβ(x, y)(1− |y|2)βdV (y). (2.29)

where u ∈ bpβ(B), 1 ≤ p <∞. In fact if pk ∈ Hm(S), then by using (2.26) we get

∫
B

pk(y)Rβ(x, y)dVβ(y) =

=
∞∑
m=0

2Γ(n2 +m+ β + 1)

nωnΓ(n2 +m)Γ(β + 1)

∫
B

pk(y)Zm(x, y)dVβ(y), (2.30)

where dVβ(y) = (1 − |y|2)βdV (y). Put x = rξ, y = ρη, where ξ, η ∈ S, then the
expression of the volume element in polar coordinates is dV (y) = ρn−1nωndρdσ(η).
Thus by homogeneity of the functions pk(y) and Zm(x, y) we have

∫
B

pk(y)Zm(x, y)dVβ(y) =

∫
B

ρkpk(η)rmρmZm(ξ, η)(1− ρ2)βρn−1nωndρdσ(η)

= rm
1∫

0

ρk+m+n−1(1− ρ2)βnωndρ

∫
S

pk(η)Zm(ξ, η)dσ(η).

The last integral vanishes for m 6= k by orthogonality and is equal to pk(ξ) for m = k
in accordance to (2.24) . Hence
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∫
B

pk(y)Zk(x, y)dVβ(y) = rkpk(ξ)

1∫
0

ρ2k+n−1(1− ρ2)βnωndρ

= pk(x)
nωn

2

1∫
0

tn/2+k−1(1− t)βdt

=
nωnΓ(n2 + k)Γ(β + 1)

2Γ(n2 + k + β + 1)
pk(x). (2.31)

By (2.30) and (2.31), we obtain

∫
B

pk(y)Rβ(x, y)dVβ(y) = pk(x). (2.32)

Suppose uλ(x) = u(λx) with 0 < λ < 1. By the uniform convergence of the expansion
u(λx) =

∑
pk(λx) in B and by (2.32), we have

uλ(x) =

∞∑
k=0

λkpk(x) =

∞∑
k=0

λk
∫
B

pk(y)Rβ(x, y)dVβ(y)

=

∫
B

( ∞∑
k=0

λkpk(y)

)
Rβ(x, y)dVβ(y)

=

∫
B

( ∞∑
k=0

pk(λy)

)
Rβ(x, y)dVβ(y)

=

∫
B

uλ(y)Rβ(x, y)(1− |y|2)βdV (y)

By using the fact (2.25) for u ∈ bpβ(B), the passage λ→ 0 we get the formula (2.29).

The right-hand side integral of (2.29) defines the orthogonal projection of L2
β(B) onto

its subspace b2β(B) which implies that the following theorem

Theorem 37. The operator

Qβ[u](x) =

∫
B

u(y)Rβ(x, y)(1− |y|2)βdV (y), u ∈ L2
β(B), x ∈ B (2.33)

is the orthogonal projection of L2
β(B) onto b2β(B).

Proof. As L2
β(B) = b2β(B) ⊕ (b2β(B))⊥, any u ∈ L2

β(B) can be written in the form

u = v + w, where v ∈ b2β(B) and w ∈ (b2β(B))⊥. Hence Qβ[u] = Qβ[v] + Qβ[w], where
Qβ[v] = v by formula (2.29) and

Qβ[w](x) =

∫
B

w(y)Rβ(x, y)(1− |y|2)βdV (y) = 〈w,Rβ(x, .)〉 = 0 (2.34)
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since due to Theorem 36 for a fixed x ∈ B the function Rβ(x, y) is harmonic in y on a
domain containing B, and w is orthogonal to b2β(B), Thus Qβ[u] = v. Hence Qβ is the

orthogonal projector L2
β(B)→ b2β(B).



Chapter 3

Harmonic Bergman spaces on the
complement of a lattice

In this chapter we present results from [44] which extend previously obtained results
from [5]. We begin with some preliminary results.

3.1 Classification of singularities of harmonic function

3.1.1 Laurent series expansion of harmonic function on annular region
in Rn

Suppose that 0 < r < R < ∞, K = Br ⊂ C, and Ω = BR ⊂ C. Assume f is analytic
on the annulus Ω\K, and let

∑∞
−∞ aiz

i be the Laurent expansion of f on Ω\K. Setting

g(z) =
∑∞

0 aiz
i and h(z) =

∑−1
−∞ aiz

i, we see that f = g + h on Ω\K, that g, and h
extend to be analytic on Ω, and (C∪{∞})\K, respectively. The Laurent series expansion
therefore gives us a decomposition for analytic functions. The decomposition theorem
is the analogous result for harmonic functions.

Theorem 38. (Decomposition theorem of harmonic function). Let Ω ⊂ Rn,
and let K be a compact subset of Ω. If u is harmonic function on Ω\K, then u has a
unique decomposition of the form

u = v + w

where v is a harmonic function on Ω and w is a harmonic function on Rn\K satisfying

lim
x→∞

w(x) =

{
C log |x| when n = 2
0 when n > 2

for some constant C.

By Theorem 38 we obtain an analogous Laurent series expansion development for har-
monic functions on annular domain in Rn.

Before we prove next theorem we introduce Kelvin transform and its properties. Let
u be a given function defined on a set Ω ⊂ Rn\{0}. For such set Ω, we defined
Ω∗ = {x∗ : x ∈ Ω}, where x∗ = x|x|−2, x 6= ∞. Then the function K[u] on Ω∗ de-
fine by K[u](x) = |x|n−2u(x∗), n > 2 is called the Kelvin transform of u. When n = 2
the Kelvin transform of u is defined by K[u](x) = u(x∗).
The Kelvin transform K is its own inverse, ie K[K[u]] = u for every function u defined on
Ω ⊂ Rn\{0}, the Kelvin transform K is linear, the Kelvin transform preserves uniform

49
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convergence on compact sets, the Kelvin transform of every harmonic function is har-
monic, if pm is homogeneous polynomial on Rn of degree m, then K[pm] = |x|2−n−2mpm.

Theorem 39. (Laurent series theorem of harmonic function in R2 [4]). As-
sume that A is an annular region in R2. If u is harmonic function on A, then there
exist unique homogeneous harmonic polynomials pm and qm of degree m such that

u(x) =

∞∑
m=0

pm(x) + q0 log |x|+
∞∑
m=1

qm(x)

|x|2m

on A . The convergence is absolute and uniform on compact subsets of A .

Proof. Let A =: {x ∈ R2 : r < |x| < R}, with 0 ≤ r < ∞ and 0 < R ≤ ∞. By the
decomposition theorem u has unique written in the form u = v+w, where v is harmonic
on RB and w is harmonic on (R2 ∪{∞})\rB. Since v is harmonic on the ball RB, then
by Corollary 9 u has a unique homogeneous expansion of the form

v(x) =
∞∑
m=0

pm(x) (3.1)

on RB, where pm are homogeneous harmonic polynomials of degree m, and this series
converges absolutely and uniformly on compact subsets of A. Since w is harmonic, then
The Kelvin transform of K[w] is harmonic on the ball r−1B, and hence then by Corollary
(9) there are homogeneous harmonic polynomials qm of degree m such that

K[w](x) =

∞∑
m=0

qm(x)

on r−1B. Taking the Kelvin transform to both sides of this equation, and then applying
properties of the Kelvin transform we get

w(x) = q0 log |x|+
∞∑
m=1

qm(x)

|x|2m
(3.2)

on R2\rB, and this series converges absolutely and uniformly on compact subsets of
A. Now by combining the series expansions (3.1) and (3.2) we obtain that the desired
Laurent series unique expansion for u on A, and this expansion converges absolutely
and uniformly on compact subsets of A.

Corollary 22. Assume that Ω ⊂ R2, and a ∈ Ω. If u is harmonic function on Ω\{a},
then there exist unique homogeneous harmonic polynomials pm and qm of degree m such
that

u(x) =
∞∑
m=0

pm(x− a) + q0 log |x− a|+
∞∑
m=1

qm(x− a)

|x− a|2m
(3.3)

for x in a deleted neighborhood of a.

Since the Theorem 38 takes a different form in case n > 2, thus the Laurent series
expansion for harmonic function in that case takes another form which is given by the
next theorem.
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Theorem 40. (Laurent series theorem of harmonic function in Rn, n > 2).
Assume that A is an annular region in Rn, n > 2. If u is harmonic function on A, then
there exist unique homogeneous harmonic polynomials pm and qm of degree m such that

u(x) =
∞∑
m=0

pm(x) +
∞∑
m=0

qm(x)

|x|2m+n−2

on A. The convergence is absolute and uniform on compact subsets of A.

Corollary 23. Assume that Ω ⊂ Rn, n > 2, and a ∈ Ω . If u is harmonic function on
Ω\{a}, then there exist unique homogeneous harmonic polynomials pm and qm of degree
m such that

u(x) =
∞∑
m=0

pm(x− a) +
∞∑
m=0

qm(x− a)

|x− a|2m+n−2
(3.4)

for x in a deleted neighborhood of a.

The above expression (3.4) is called Laurent series expansion of u at a, and the function

w(x) :=

∞∑
m=0

qm(x− a)

|x− a|2m+n−2
(3.5)

is called the principal part of Laurent series of u at a. Also (see (3.3)) the principal part
of Laurent series of u at a ∈ R2 is

w(x) := q0 log |x− a|+
∞∑
m=1

qm(x− a)

|x− a|2m
(3.6)

3.1.2 Isolated singularities of harmonic functions in Ω ⊂ Rn

A set Ω ⊂ Rn∪{∞} is open if it is an open subset of Rn or Ω = {∞}∪(Rn\K), where K
is a compact subset of Rn. We call a point a ∈ Ω an isolated singularity of any function
u defined on Ω\{a}. When u is harmonic on Ω\{a}, the isolated singularity a is said to
be removable if u has a harmonic extension to Ω.

We say that u has a removable singularity at a if each term in the principal part (3.5)
is zero; u has a pole at a if the principal part is a finite sum of nonzero terms; u has
an essential singularity at a if the principal part has infinitely many nonzero terms. If
a ∈ Rn, n > 2 is a pole of u, then we say that the pole a of order k + n− 2 if there is a
largest positive integer k such that qk 6= 0. We call a pole of order n− 2 a fundamental
pole (because the principal part is then a multiple of the fundamental solution). when
n = 2, we say that the pole a ∈ R2 has order k if qk 6= 0,we say that u has a fundamental
pole at a if the principal part is a nonzero multiple of log |x| .

Theorem 41. ([4]Theorem 10.5.) If u is harmonic with an isolated singularity at
a ∈ Rn, n > 2, then u has
(i)a removable singularity at a if and only if

lim
x→a
|x− a|n−2|u(x)| = 0;
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(ii)a pole at a of order k + n− 2 if and only if

0 < lim
x→a

sup |x− a|k+n−2|u(x)| <∞,

(iii)an essential singularity at a if and only if

lim
x→a

sup |x− a|N |u(x)| =∞,

for every positive integer N .

Proof. To prove (ii), first suppose that u has a pole at a of order k + n− 2. since qm is
homogeneous for every m, then we have

lim
x→a

sup |x− a|k+n−2|u(x)| = sup
S
|qm|.

But 0 < sup
S
|qm| < ∞ which completes the proof one direction of (ii). Conversely,

suppose 0 < lim
x→a

sup |x− a|k+n−2|u(x)| <∞, then for small r > 0 and ξ ∈ S, we get

|w(a+ rξ)| =
∣∣∣∣ ∞∑
m=0

r2−n−2mqm(rξ)

∣∣∣∣ ≤ r2−n−kC,

where C < ∞ is a constant. Let j be an integer with j > k, then by the orthogonality
of spherical harmonics of different degree we have

r4−2n−2j

∫
S

|qj(ξ)|2dσ(ξ) ≤
∞∑
m=0

r4−2n−2m

∫
S

|qm(ξ)|2dσ(ξ)

=

∫
S

|w(a+ rξ)|2dσ(ξ) ≤ r4−2n−2kC2.

Letting r → 0, we get
∫
S |qj |

2dσ = 0, which implies that qj = 0. Thus u has a pole at a
of order at most k + n − 2. Since limx→a sup |x − a|k+n−2|u(x)| > 0, then the order of
the pole is at least k + n− 2.

To prove (iii), first suppose that limx→a sup |x−a|N |u(x)| =∞ for every positive integer
N . By (i), and (ii), u can have neither a removable singularity nor a pole at a, and thus
u has an essential singularity at a. Conversely, suppose there is a positive integer N such
that limx→a sup |x− a|N |u(x)| <∞. By the argument used in proving (ii), this implies
that qj = 0 for all sufficiently large j. Thus u does not have an essential singularity at
a.

Theorem 42. If u is harmonic with an isolated singularity at a ∈ R2, then u has
(i)a removable singularity at a if and only if

lim
x→a

|u(x)|
log |x− a|

= 0;

(ii)a fundamental pole at a if and only if

0 < lim
x→a

∣∣∣∣ u(x)

log |x− a|

∣∣∣∣ <∞;
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(iii)a pole at a of order k if and only if

0 < lim
x→a

sup |x− a|k|u(x)| <∞,

(iv)an essential singularity at a if and only if

lim
x→a

sup |x− a|N |u(x)| =∞,

for every positive integer N .

Remark 11. The real-valued harmonic function may have an isolated(non-removable)
singularity; for example, u(x) = |x|2−n, n > 2 has an isolated singularity at 0. But a
real-valued harmonic function cannot have isolated zeros. In fact if u is a real-valued
harmonic function defined on a domain Ω, and u(a) = 0 where a ∈ Ω, then the mean
value property over S(a, r) and continuity of u imply that u must vanish at least once on
S(a, r) whenever B(a, r) ⊆ Ω. consequently, the zeros of real-valued harmonic function
are never isolated. It is also not true that analytic functions of several complex variables
have isolated zeros. For a number of years, these difficulties thwarted efforts to extend
these ideas to higher dimensions.

3.1.3 Harmonic conjugate of harmonic functions in finitely connected
domains Ω ⊂ C

We say that a domain (open connected) Ω ⊂ R2 is finitely connected if R2\Ω has finitely
many bounded components. The domain Ω is simply connected if R2\Ω has no bounded
components. Recall that a real-valued harmonic function on simply connected Ω always
has a harmonic conjugate.

The following theorem shows that a real-valued harmonic function on a finitely connected
domain has a harmonic conjugate provided that some logarithmic terms are subtracted.

Theorem 43. (Logarithmic Conjugation Theorem). Suppose that a domain Ω ⊂
R2 is a finitely connected domain. Let Ωm, m = 1, ..., k be the bounded components of
R2\Ω, and let am ∈ Ωm, for m = 1, ..., k. If u is real valued and harmonic on Ω, then
there exist function f holomorphic on Ω and bm ∈ R, m = 1, ..., k such that

u(z) = Ref(z) +

k∑
m=1

bm log |z − am|

for all z ∈ Ω.

Any function harmonic in an annulus r0 < |z| < r1 can be written in the form

u(z) = a+ b log |z|+
∞∑

m=−∞
(cmz

m + c−mz
m). (3.7)

Theorem 44. (Harmonic Classification Theorem). If u is real valued and har-
monic on the annulus A =: {z ∈ R2 : r0 < |z| < r1}, then u has a series development of
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the form

u(reiθ) = b log r +

∞∑
m=−∞

(cmr
m + c−mr

−m)eimθ.

The series converges absolutely for each reiθ ∈ A and uniformly on compact subsets of
A.

Proof. By the logarithmic conjugation Theorem 43 with Ω = A, Ω1 = {z ∈ R2 : |z| ≤
r0}, and a1 = 0, there is function f holomorphic on A such that

u(z) = b log |z|+Ref(z).

The function f has a Laurent series expansion on A

f(z) =

∞∑
m=−∞

cmz
m,

This series converges absolutely and uniformly on compact subsets of A. Since

Ref(z) =
f(z) + f(z)

2
.

Replacing f with its Laurent series, we obtain

u(z) = b log |z|+
∞∑

m=−∞
cmz

m +

∞∑
m=−∞

cmzm.

Setting z = reiθ we get desired.

3.2 Bergman space bp(Ω), Ω = Rn\Zn

3.2.1 Introduction

In this section we investigate harmonic Bergman spaces bp(Ω), where Ω = Rn\Zn. In
the planar case the analytic Bergman spaces on Ω = C\(Z + iZ), namely Bp(Ω) were
studied in [5].
The presence of the logarithmic factor in Laurent series expansion of harmonic function
in R2 makes a difference between analytic and harmonic case, see for example Proposi-
tion 16 below.

We set, for x ∈ Rn, ‖x‖∞ = max1≤j≤n |xj |. Also, Q(x, l) = {w : ‖w − x‖∞ < l/2}
denotes an open cube centered at x ∈ Rn of side length l > 0 and Q̇(x, l) = Q(x, l)\{x}.

We start from some known facts.

Proposition 13. If f : Rn → C is a harmonic function, not identically equal to zero,
then f 6∈ bp(Rn), p > 0. Moreover:(∫

B(x,R)
|f(y)|pdy

)1/p

≥ Cp,nRn/p|f(x)|, x ∈ Rn. (3.8)



SHKHEAM 55

Proof. Indeed, (3.8) follows from subharmonic behavior of |f |p for 0 < p <∞, see [43].
Therefore (∫

Rn
|f(y)|pdy

)1/p

≥ lim
R→+∞

Cp,n|f(x)|Rn/p = +∞

whenever f(x) 6= 0 for some x ∈ Rn.

It is a standard fact that for f ∈ bp(V ), V ⊂ Rn, 0 < p < +∞ we have

|f(x)| ≤ Cp,n
‖f‖p
rn/p

, where r = d(x, V c). (3.9)

In fact, using (3.8), we get

|f(x)|p ≤ Cn,p
rnωn

∫
B(x,r)

|f |pdm ≤ Cn,pr−n‖f‖pp,

and (3.9) easily follows. Note that the this allows one to conclude that convergence in
bp(V ) implies locally uniform convergence on V .

There is an alternative, but equivalent way to expand u ∈ h(V \ {a}), V ⊂ C, namely
to use analytic and conjugate analytic functions. We assume, for simplicity, that a = 0.
Then we have

u(z) = a0 + b0 log |z|+
∑
n6=0

(cnz
n + dnz

n), 0 < |z| < r. (3.10)

Note that a0 = a0(u), b0 = b0(u), cn = cn(u) and dn = dn(u).

Proposition 14. The functionals a0, b0, cn and dn, n 6= 0, are continuous on the
Frechet space h(V ′), V ′ = V \ {0}.

Proof. Using

b0(u) =
1

2π

∫
Cρ

∂u

∂n
ds, 0 < ρ < dist(0, ∂V ), (3.11)

where Cρ is the circle centered at 0 of radius ρ, we conclude, using continuity of deriva-
tives on the space h(V ′) that b0 is continuous on h(V ′). Now we fix 0 < ρ1 < ρ2 <
dist(0, ∂V ). For any k 6= 0 we have

φk(u) =
1

2πρ1

∫
Cρ1

u(z)z−kds = ck(u) + ρ−2k
1 d−k(u) (3.12)

and

ψk(u) =
1

2πρ2

∫
Cρ2

u(z)zkds = ρ2k
2 ck(u) + d−k(u). (3.13)

Both φk and ψk are continuous on h(V ′), since (3.12) and (3.13) represent a system of
linear equations with determinant 1 − (ρ2/ρ1)k 6= 0 it follows immediately that ck and
dk are continuous. The case of a0 is left to the reader.

3.2.2 Inclusions between bp spaces on Rn\Zn

We start with an auxiliary proposition.
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Proposition 15. Assume f ∈ bp(V ′), where V ′ = V \{a} for some a ∈ V ⊂ Rn. Then

|f(x)| = o(|x− a|−n/p), x→ a. (3.14)

In particular, a is either a removable singularity of f or a pole of order k < n/p. If
n ≥ 3 and p ≥ n

n−2 , then a is a removable singularity.

Proof. Applying (3.9) to V = B(x, |x − a|) one gets (3.14) and that suffices in view of
the above classification of isolated singularities.

Combining the last proposition and Proposition 13 we obtain the following:

Corollary 24. If f ∈ bp(Ω), p ≥ n
n−2 and n ≥ 3, then f is identically zero.

Our first result demonstrates a basic difference between harmonic and analytic Bergman
spaces on Ω in the planar case Bp(Ω) = {0} for p ≥ 2, see [5]. However we have Propo-
sition 16 which shows difference between harmonic and analytic case.

We are going to use Lagrange’s theorem. Let a, b be distinct points in Rn, and we defined
a (closed) segment as S[a, b] = {x(t) = (1 − t)a + tb : 0 ≤ t ≤ 1}. The Lagrange mean
value theorem stated as follows: let u : Ω ⊆ Rn → R be defined and continuous at any
point of S[a, b], and differentiable at any point of S[a, b] with the (possible) exception of
the endpoints a and b. Then there exists a ξ ∈ S[a, b] different from a, b such that

u(b)− u(a) = ∇u(ξ).(b− a). (3.15)

Proposition 16. If n = 2, then bp(Ω) 6= {0} for 0 < p <∞.

Proof. For 0 < p < 2, the analytic Bergman space Bp(Ω) 6= {0}, where Ω = C\(Z + iZ)
see [5]. In fact if P (z), Q(z) are relatively prime polynomials, z ∈ C, and R(z) =
P (z)/Q(z) is a (nontrivial) rational function, then by asymptotic relations R(z) ∼
|z|degP−degQ, |z| → +∞ and R(z) ∼ |z − a|−k, z → a ∈ (Z + iZ), where k is the
order of zero a of Q. Hence we conclude the zeroes of Q belong to the lattice (Z + iZ),
degQ − degP > 2/p and each zero of Q has order k < 2/p which implies that R(z) ∈
Bp(Ω). Finally, using the fact Bp(Ω) ⊂ bp(Ω).

For p = 2, the function u(z) = log |z − 1| − 2 log |z| + log |z + 1| is harmonic in Ω and,
by Lagrange’s theorem 3.15, |u(z)| = O(|z|−2) as z →∞. Therefore u ∈ b2(Ω).

For 2 < p <∞, similarly, u(z) = log |z+ 1|− log |z| is harmonic in Ω and, by Lagrange’s
theorem 3.15, |u(z)| = O(|z|−1). Therefore u ∈ bp(Ω) for 2 < p <∞.

Lemma 13. Let k ∈ N and n/(k + 1) ≤ q < p < n/k. Then there is a constant
C = Cp,q,n such that

‖u‖bp(Q̇(a,1)) ≤ C‖u‖bq(Q̇(a,3/2)) for every u ∈ bq(Q̇(a, 3/2)), a ∈ Zn.

Proof. This lemma states that the restriction operator R : bq(Q̇(a, 3/2)) → bp(Q̇(a, 1))
given by Ru = u|Q̇(a,1) is continuous. Since both spaces bq(Q̇(a, 3/2)) and bp(Q̇(a, 1)) are

complete it suffices, by the closed graph theorem, to prove that R maps bq(Q̇(a, 3/2))
into bp(Q̇(a, 1)). Let u ∈ bq(Q̇(a, 3/2)). Since q ≥ n/(k+ 1) Proposition 15 implies that
the order of pole of u at a is at most k. Therefore, |u(z)|p = O(|a−z|−kp) where kp < n.
Hence |u|p is integrable in a neighborhood of a and that implies u ∈ bp(Q̇(a, 1)).
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The main result of this section is the following result.

Theorem 45. If n/(k + 1) ≤ q < p < n/k (k = 1, 2, . . .), then bq(Ω) ⊂ bp(Ω).

Proof. Set Qω = Q(ω, 1) for ω ∈ Zn. Let u ∈ bq(Ω). The poles of u have orders at most
k hence u(z) = O(|z − ω|−k) as z → ω. Therefore u|Qω ∈ Lp(Qω). Using Lemma 13 we
get

‖u‖pp =

∫
Ω
|u|pdm =

∑
ω∈Γ

∫
Q̇ω

|u|pdm ≤ C
∑
ω∈Γ

(∫
Q̇(ω,3/2)

|u|qdm

)p/q

≤ C

(∑
ω∈Γ

∫
Q̇(ω,3/2)

|u|qdm

)p/q

≤ 4p/qC

(∑
ω∈Γ

∫
Q̇ω

|u|qdm

)p/q
= 4p/qC‖u‖pq

because p/q ≥ 1 and almost every point in C lies in precisely 4 squares Q(ω, 3/2).

We note that the above proof can be used to prove Theorem 1 from [5], in fact it presents
a simplification of the proof given in [5].

3.2.3 Asymptotics at infinity of functions in bp(Ω)

One might conjecture that on the set Ωε = {z ∈ C : d(z,Zn) > ε} we can control the
size of functions f ∈ bp(Ω), for example that we can prove f(z) = O(|z|−2/p), |z| → ∞,
z ∈ Ωε. However, this is never true in general. The following theorem was proved in the
case 0 < p < 2 for analytic Bergman spaces Bp(Ω) in [5], and the same method of proof
works in the present situation. We present this proof for reader’s convenience.

Theorem 46. Implication f ∈ bp(Ω) ⇒ f(z) = O(|z|−α) as |z| → ∞, z ∈ Ωε does not
hold for any 0 < p <∞, α > 0, 0 < ε < 1/

√
2.

Proof. Assume this implication holds for some 0 < p < ∞, α > 0 and 0 < ε < 1/
√

2.
One easily proves that

hε,α = {f ∈ h(Ωε) : ‖f‖ε,α = sup
z∈Ωε

|z|α|f(z)| < +∞}

is a Banach space. The restriction operator R : bp(Ω) → hε,α has closed graph because
convergence in both (quasi)-norms ‖ · ‖p and ‖ · ‖ε,α implies pointwise convergence.
Hence R is bounded, that is ‖f‖ε,α ≤ C‖f‖p for all f ∈ bp(Ω). Let us pick a non-trivial
f ∈ bp(Ω). Then

|f(z0)| = |fn(z0 − n)| ≤ |z0 − n|−α‖fn‖ε,α ≤ C|z0 − n|−α‖fn‖p
= C|z0 − n|−α‖f‖p

for all n ∈ N, z0 ∈ Ωε (fn denotes a function fn(z) = f(z + n)). This gives, as n→∞,
f(z0) = 0, hence f(z) = 0 on Ωε and therefore on Ω as well. Contradiction.

Remark 12. The same proof works for a function φ(|z|) instead of |z|−α, where φ(r)
is strictly positive and limr→+∞ φ(r) = 0.
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France, 2009.

[14] E. DiBenedetto, U. Gianazza, and V. Vespri, Harnack’s Inequality for Degener-
ate and Singular Parabolic Equations , Springer New York, Mathemeticas Subject
classification(2010), 35-XX, 35K67, 35J62.

[15] L. C. Evans, Partial Differential Equations, second edition, 2010 mathematics Sub-
ject Classfication, Primary 35-XX;Secondary 49-XX, 47Hxx, Volume 19, American
Mathematical Society, 1998.

[16] Y.Eidelman, V.Milman , and A.Tsolomitis , Functional Analysis An Introduction,
American Mathematical Society, Editorial Board, Walter Craig, Nikolai Ivanov,
Steven G.Krantz, David Saltman (Chair) 2000 mathematics Subject Classfica-
tion.Primary 46-01,47-01, Secondary 46 Axx,46Bxx,46 Cxx,46 Hxx,47 Axx,47B xx,
volume 66.

[17] W, G. Faris, Real Analysis, Part II, 2004.

[18] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudo convex
domains, Invent. Math. 26(1974), 1-65.

[19] G. B. Folland, Real Analysis-Modern Techniques and Their Applications, Second
Edition, John Wiley and Sons, 1999.

[20] G. B. Folland, Introduction to Partial Differential Equations, second edition, Prince-
ton University Press, 1995.

[21] F. Forelli, and W. Rudin, Projections on spaces of holomorphic functions in balls,
Indiana Univ. Math. J. 24 (1974/75), 593-602.

[22] C. Fefferman, EM. Stein, Hp spaces of Several Variable, Acta Math 129(1972),
137-193.

[23] D. J. H. Garling, D. Gorenstein, T. T. Dieck, and P. Walters, Banach spaces for
analysts, P.Wojtaszczyk, Cambridge Univeristy press, new york, 1991.

[24] J. B.Garnett and D. E.Marshall, Harmonic measure, Cambridge University Press,
2005.

[25] D. Gilbarg, and N. S. Trudinger, Elliptic Partial Differential Equations of Second
Order, Springer, Mathematics Subject Classification (2000): 35Jxx.

[26] G.H Hardy, and J.E.Littlewood, some properties of conjugate functions, J.Reine
Angew. Math. 167(1931) 405-423.

[27] Q.HAN, F.LIN, Elliptic Partial Differential Equations, Second Edition, 2000
Mathematics Subject classification, Primary 35-01,35Jxx. Library of Congress
Cataloging-in-Publication Data. QA377.H3182 2011.

[28] J. K. Hunter, and B. Nachtergaele, Applied Analysis, world Scientific publishing
Co. Pte. Ltd. first published 2001, reprinted 2005.

[29] S.G. Krantz, Function Theory of Several Complex Variables, American Mathemat-
ical Society, Providence, RI,2001.



SHKHEAM 60
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