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Abstract

The conventional way to design and operate the processes in chemical engineering is to
determine the optimal steady-state design and to operate as close as possible to that
steady-state. Nevertheless, many investigations have proven that periodic operations,
when one or more inputs are periodically modulated, can result with better process
performances, especially for chemical reactors.

The origin of improvement of the reactor performance lies in fact that for nonlinear
systems, the periodic modulation of one or more inputs will cause the outputs to change
periodically, as well, with the mean value which is, in general, different from their

steady-state values.

In this work, we propose and implement the nonlinear frequency response (NFR)
method for fast and easy evaluation of possible reactor improvements throughout
periodic modulations. The NFR method is a relatively new method, mathematically
based on Volterra series, generalized Fourier transform and the concept of higher-order

frequency response functions (FRFs).

The change of the reactor performances caused by periodic operations can be evaluated
from the DC (non-periodic) component of the frequency response of the reactor, if it is a
weakly nonlinear system. The DC component can be calculated exactly as a sum of an
indefinite series, with members which are proportional to the asymmetrical even order
FRFs. Nevertheless, based on the NFR method, the DC component can be estimated
only from the first, dominant term of this series, which is proportional to the
asymmetrical second order frequency response function Gy(w,-w). In that way, for
analysis of possible improvements of forced periodically operated chemical reactors, it
is enough to derive and analyze asymmetrical second order FRFs Ga(w,-w). For this

reason, the NFR method is essentially approximate.



In this work, the nonlinear frequency response method is applied for evaluation of
possible improvements (increase of the reactant conversion or product yield) through
periodic modulation of one (single input modulation) and simultaneous modulation of
two inputs, when a homogeneous, simple, irreversible nth order reaction takes place in

an isothermal, non-isothermal or adiabatic continuously stirred tank reactor (CSTR).

The NFR method is tested on several numerical examples and the results are compared
with the results calculated by numerical integration, which as considered as exact. Good
agreements between the results of the NFR method and results of numerical integration
are obtained, except for highly nonlinear systems around the resonant frequency, when

high forcing amplitudes are used.

It is concluded that, whether and to which extend is possible to achieve the
improvements of the reactor performance through periodic operations, can be evaluated
by the nonlinear frequency response method. The influence of the forcing parameters
(frequency, amplitudes and phase shift of the input modulations) on the possible

improvement can also be determined by the nonlinear frequency response method.

Keywords: Nonlinear frequency response method, Higher order frequency response
functions, Volterra series, Periodically operated chemical reactors, Single input
modulation, Two-input modulation, Forcing parameters, Isothermal CSTR, Non-
isothermal CSTR, Adiabatic CSTR

Scientific area: Chemistry and Chemical Technology



Naslov doktorske disertacije:

PERIODICNE OPERACIJE HEMIJSKIH REAKTORA-EVALUACIJA |
ANALIZA PRIMENOM METODE NELINEARNOG FREKVENTNOG
ODZIVA

Rezime

Uobic¢ajen nacin projektovanja procesa u hemijskom inZenjerstvu podrazumeva
odredivanje optimalnog stacionog stanja i upravljanje procesom na nacin Koji
odezbeduje da se uslovi odrzavaju §to je moguce blize tom optimalnom stacionarnom
stanju. Ipak, mnoga istazivanja su pokazala da se performanse procesa, pogotovo

hemijskih reaktora, mogu poboljsati ukoliko se jedan ili vise ulaza periodi¢no menja.

Poboljsanje performansi hemijskih reaktora pri periodicnom rezimu rada je posledica
nelinearnosti sistema. Kod nelinearnih sistema, kada se periodi¢éno menja jedan ili vise
ulaza, izlazi iz sistema se takode periodi¢no menjaju, a njihova srednja vrednost se, u

opStem slucaju, razlikuje od stacionarnih vrednosti.

Methoda nelinearnog frekventnog odziva (NFO) je u ovom radu predlozena i
primenjena za brzo i lako odredivanje moguéeg poboljsanja performansi reaktora
primenom periodi¢nog rezima rada. Metoda NFO je relativno nova metoda i ona je
matematicki bazirana na Voltera redovima, generalizovanoj Furijeovoj transformaciji i

na konceptu frekventnih prenosnih funkcija (FPF) viseg reda.

Uticaj periodi¢nih operacija na performanse reaktora se moze odrediti preko DC
komponente (neperiodicnog c¢lana) frekventnog odziva nelinearnog sistema. DC
komponenta se moze tacno prikazati beskona¢nim redom ¢iji su ¢lanovi proporcionalni
asimetricnim FPF parnih redova. Medjutim, u predlozenoj metodi NFO DC
komponenta se procenjuje samo na osnovu svog dominantnog c¢lana koji je
proporcionalan asimetri¢noj FPF drugog reda G(w,-w), tako da je za analizu moguceg
poboljsanja performansi reaktora pri periodicnom rezimu rada dovoljno izvesti i

analizirati samo ovu funkciju. Zbog toga je metoda NFO po svojoj sustini priblizna.

U ovom radu, metoda NFO je primenjena za procenu moguceg pobolj$anja (povecenja

konverzije reaktanta ili prinosa proizvoda) pri periodi¢noj promeni jednog ili dva ulaza



izotermnih, neizotermnih ili adijabatskih proto¢nih reaktora sa idealnim mesanjem

(PRIM) sa homogenom, jednostavnom, nepovratnom reakcijom n-tog reda.

Methoda nelinearnog frekventnog odziva je primenjena na nekoliko numeric¢kih
primera, a dobijeni rezultati su uporedeni sa rezultatima koji su izraCunati primenom
numericke integracije, koji se smatraju za ta¢ne. Postignuto je dobro slaganje izmedu
rezultata koji su dobijeni primenom metode NFO i rezultata numeric¢ke integracije, osim
u slucajevima izrazito nelinearnih sistema u okolini rezonantne frekvencije, kada su

koris¢ene jako velike amplitude.

Zakljuceno je da odredivanje da li je, i u kojoj meri, moguce posti¢i poboljsanje
performansi hemijskih reaktora primenom periodi¢nih operacija moguce primenom
metode nelinearnog frekventnog odziva. Primenom ove metode se takode moze odrediti
uticaj parametara periodi¢nih operacija (frekvencija, amplitude i fazne razlike ulaznih
promenljivih) na moguée poboljsanje i usvojiti opseg ovih parametara koji treba

koristiti za uspesne periodicne procese.

Klju¢ne re¢i: Metoda nelinearnog frekventnog odziva, Frekventne prenosne funkcije
viseg reda, Volterra redovi, Periodi¢ne operacije hemijskih reaktora, Periodi¢na
promena jednog ulaza, Periodi¢na promena dva ulaza, Parametri periodi¢ne promene,
Izotermni PRIM, Neizotermni PRIM, Adijabatski PRIM

Naucna oblast: Hemija i hemijska tehnologija
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| Introduction

1.1 Periodic processes

The periodically operated processes are a class of processes which are, in general, non-
stationary. The periodically operated processes can be divided into two major classes,
deliberate periodic processes and inherent periodic processes. The deliberate periodic
processes can operate either under steady-state conditions or under periodic forcing of
one or more inputs. The deliberate periodic processes are caused by forced periodic
modulation of one or more inputs and their implementation is justified and imposed
only if they lead to improvement of the system performance (Petkovska and Seidel-
Morgenstern, 2012). On the other hand, the nature of the inherent periodic processes is
periodic and they cannot operate under steady-state conditions. Examples of inherent
periodic processes are all processes which include adsorption, because the sorbent
should be regenerated or replaced after a certain time. Separation reactors are also
inherently periodic (Silveston and Hudgins, 2012).

In this work, the investigation of periodic processes is limited to the deliberate periodic
processes.

The conventional way of designing processes in chemical engineering is to determine
the optimum steady-state. Control systems are then designed in a way to compensate for
any fluctuation of the inputs and to make that the system operates as close as possible to
the optimum steady-state. In this way, the controlled system is forced to have a
relatively constant output which corresponds to the desired optimum steady-state
conditions (Douglas, 1967).

Nevertheless, many theoretical and experimental investigations of periodic processes in
chemical engineering, especially reactors, in the last 50 years, showed that periodic
operation in some cases can be superior to the optimal steady-state design and that one
way to achieve process intensification is to operate the process in a periodic way, in
order to obtain better average performance compared to the optimal steady-state
operation (Douglas and Rippin 1966; Douglas 1967; Horn and Lin 1967; Bailey and
Horn 1971; Renken 1972; Bailey 1973; Watanabe et al. 1981; Schadlich et al. 1983;
Silveston 1987; Sterman 1990a, 1990b, 1991; Silveston 1998).

Forced periodic operations can be applied to a wide variety of plant units.



The source of the possible improvement through forced periodic operation lies in the
process nonlinearity. Nevertheless, the improvement is obtained only in some cases,
while in some others the periodic operation can be unfavourable, depending on the
system nonlinearity. In general, for forced periodically operated nonlinear system, the
average value of the output is different from the steady-state value and as a result, the
system performance can be improved or deteriorated (Douglas and Rippin, 1966).

The magnitude of the difference between the average value of the output of interest and
its steady-state value depends on the degree of system nonlinearity. This difference is
small for mild nonlinearities, but for highly nonlinear systems or those which exhibit
resonance, it might be significant (Douglas, 1967).

Considering that most chemical processes are nonlinear in nature, the nonlinear
behaviour offers the opportunity to improve the time-averaged performance, such as
conversion, selectivity, yield and production rates of chemical processes by unsteady-
state periodic operations (Chen et al., 1994). Both the experiments and the numerical
simulation studies confirmed that it is often advantageous to exploit the nonlinear
behaviour of chemical reactors and operate in a dynamic regime by forced periodic
cycling of one or more inputs (Sterman and Ydstie, 1991).

There are many ways of operating a system periodically. It is possible to periodically
modulate one or more input variables with different forcing parameters i.e. frequency,
wave shape, amplitudes and phase differences. It is this richness of different forcing
strategies that makes it possible to find at least one mode that will achieve the chosen
objectives (for reactor systems: increased conversion, improved selectivity, increased
catalyst activity etc). On the other hand, this very richness presents a challenge how to
decide which forcing strategy to use and how to find it efficiently (Silveston at al.,
1995).

The investigations of Parulekar (Parulekar, 2003) have shown that the higher the
number of inputs subject to periodic forcing, the better the process (reactor)
performance could be achieved and that an increase in the number of modulated inputs
would lead to broadening of the regions in the operating parameter space where forced
periodic operations are superior to the corresponding optimal steady state operations.

As concluded by Sterman ans Ydstie, multi-input periodic modulation can lead to
improvement of the steady-state performance even when single-input modulation have a
negligible or detrimental effect on the system performance i.e. significant improvements



can be obtained using multi-input perturbations even when single-input perturbations
produce little or no effect (Sterman and Ydstie, 1990b).

Previous investigations showed that the benefit of the interaction between two inputs
can be realized only if the forcing frequencies for the two inputs are equal as well as the
fact that difference between synchronized inputs is an important variable. The phase
difference is the dominant parameter of the influence of the periodic operations and its
appropriate choice may result in significant modifications in the behaviour of a system
under forced periodic operation (Parulekar, 2003).

Periodic operations of chemical reactors attract attention of researches with various
goals where some of them are, improvement of heterogeneous catalyzed reactors (Barto
et al., 1994; Matros, 1996), improvement of a continuous fermentation processes (Ruan
and Chen, 1996; Nguang and Chen, 1998), modulation as a stabilizing factor for
exothermic CSTRs (Cinar et al., 1987) or even for kinetic study in order to determine
the reaction order and both parameters in Arrhenius equation (activation energy and pre-
exponential parameter) (Jaree and Nuammaneerat, 2010).

It is also necessary to point out that periodic operations are more complex and more
costly to develop and only significant improvements of certain objectives, compared to
the classical steady-state operations, will justify their application (Markovic et al.,
2008).

1.1.1. Process improvements through periodic operation — Short literature review

Theoretical and experimental investigation of possible improvement of forced
periodically operated reactors in comparison to the optimal steady-state has been a
research topic of many investigation groups world-wide for over fifty years.

Many investigators concluded that the periodic operations can be superior than the
steady-state operation, for homogeneous continuous stirred tank reactors (Renken, 1972;
Douglas, 1972; Lee and Bailey, 1979; Lee et al., 1980; Farhadpour and Gibilaro, 1981,
Watanabe et al., 1981; Schadlich et al., 1983; Sterman and Ydstie 1990a, 1990b, 1991,
Suman 2004; Sidhu, 2007) as well as for heterogeneous catalytic reactors (Thullie et al.,
1986; Barto et al., 1994; Matros, 1994; Silveston et al., 1995; Silveston, 1998;
Reshetnkov et al., 2003; Silveston and Hudgins, 2004a, 2004b; Zahn et al., 2009;
Reshetnikov, 2010).



In the late sixties of the previous century, Douglas with his co-authors (Douglas and
Rippin, 1966; Douglas, 1967; Ritter and Douglas, 1970; Douglas, 1972) theoretically
investigated the periodic operations of chemical reactors, with a focus on isothermal and
non-isothermal CSTRs, and concluded that, in some cases, the reactor performance was
improved by unsteady state operations.

Renken (Renken, 1972) investigated theoretically the influence of forced periodic
modulation of inlet concentration of the reactant on the reactor performance when
irreversible consecutive-competing reaction occurred in a CSTR and concluded that
both yield and selectivity of the intermediate product can be improved in this way.
Afterwards, Lee and Bailey (Lee at al. 1980; Lee and Bailey, 1980) investigated, both
theoretically and experimentally, the forced periodically operated CSTR with a
homogeneous liquid phase consecutive-competitive reaction (saponification of diethyl
adipate). Both theoretical and experimental investigations showed that significant
increase of intermediate product yield was obtained by forced cycling of the feed
composition and insignificant improvement by forced periodic cycling of the
temperature in the jacket (Lee at al., 1980). Farhadpour and Gibilaro (Farhadpour and
Gibilaro, 1981) investigated development of the optimal modes of periodic operations
of CSTRs with a consecutive-competitive reaction.

A review of theoretical investigations of periodic operation of chemical reactors was
given by Bailey (Bailey, 1973), in which it was recommended that more experiments
must be done in order to prove the improvements which were predicted by surprisingly
plenty theoretical studies.

Later on, an extensive review of experimental investigations of periodic operations of
chemical reactors were given in (Silveston, 1987) where it was pointed out that most of
the investigations of the periodically operated chemical reactors in the decades 1970-
1980 were focused on the periodic modulation of the reactant compositions, usually in a
square wave form. All experimental studies described in (Silveston, 1987) showed that
increase in catalytic activity was obtained by periodic operations. Then, updated
reviews of both theoretical and experimental investigations of periodically operated
catalytic reactors were given in (Silveston et al., 1995 and Silveston 1998).

Sterman and Ydstie (Sterman and Ydstie 1990a, 1990b, 1991) theoretically analyzed the
periodically operated CSTRs with square-wave input modulations, both for single and
multi-input modulations for parallel, reversible, consecutive and consecutive-



competitive reactions. They defined the conditions which need to be satisfied in order to
achieve improvement.

In (Silveston and Hudgins, 2004a), the use of total pressure modulation of catalytic
reactions with mass transfer limited rates has been analyzed in detail, in order to
increase the mass transfer rates and thus enhance the mass transfer in porous catalytic
particles. The same authors pointed out that the temperature modulation might have
significant influence on the reactor performance through increase of the reaction rate,
and therefore significant improvement could be expected as a result of temperature
modulations (Silveston and Hudgins, 2004b).

Investigation of forced periodic operations of a cascade of adiabatic fixed-bed reactors
with catalytic total oxidation showed that higher conversion and better utilization of the
catalytic beds was obtained with this mode of operation (Zahn et al., 2009).

A comprehensive up-to-day review of periodic operations of chemical reactors can be
found in a book edited by Silveston and Hudgins (Silveston and Hudgins, 2012).

While numerous theoretical and experimental investigations have been carried out to
demonstrate the ability of performance improvements via forced periodical operations,
practical industrial applications of periodic operation were rarely found in the past.
Nevertheless, considering serious increasing requirements of resource and energy
conservation, it is expected that the economic importance of the periodic operation of
chemical processes will be much increased. It is therefore highly desirable to investigate
the dynamic behaviour and the performance of the periodic operation of chemical
processes (Petkovska and Seidel-Morgenstern, 2012).

1.1.2. Methods for evaluation of periodic operations — Short literature review

Evaluating the effects of the forced periodic operation of chemical processes on the
process performance can be carried out by experimental studies. However, the
experimental approach is rather time consuming and costly considering that forcing
parameters and forcing strategy which should be used are completely unknown. It is
therefore of economic importance to carry out theoretical studies alternatively for
assessing the effects of periodic operations of chemical processes and then selecting the
optimal forcing inputs before any experimental study (Chen et al., 1994).

Previously, three major approaches for theoretical analysis of forced periodic operations
were suggested. First, it was the Hamilton-Jacobi approach based on the maximum



principle or relaxed steady state analysis (Bailey and Horn, 1971; Bailey, 1973), the
application which is limited on high forcing frequencies. The second approach, the
frequency-domain approach using the second-variation methods (Watanabe et al., 1981)
which was suitable for low and intermediate forcing frequencies. The third approach,
the m-criterion, provided the sufficient condition for performance improvement around
the optimal steady-state for a broad forcing frequency range (Sterman and Ydstie,
1990a, 1990b, 1991).

Nevertheless, the previously suggested theoretical methods for evaluation of possible
performance enhancement through periodic operations have not been widely applied,
owing to the complexity of their application and some uncertainty about their reliability.
Therefore, there is still a need for developing a simple and reliable general method
which would enable to evaluate quantitatively the possibility of process improvements
through periodic operations, quickly and in early development stages (Petkovska and
Morgenstern, 2012).

A general theoretical method for analysis of forced periodically operated chemical
reactor, which will give the answers on the following questions:

e whether the reactor performance can be improved by periodic input modulation
or not;

e which conditions needs to be satisfied in order to achieve the improvement,
(determining the forcing strategy i.e. defining the forcing input(s), forcing
amplitude(s), forcing frequency and phase difference for two-input modulation
which should be used in order to achieve satisfactory improvement),

e what would be the magnitude of the possible enhancements

will be presented in this work. This method is based on the analysis of the frequency
response of nonlinear systems and it is named the Nonlinear Frequency Response
(NFR) method.

1.2. Frequency response of weakly nonlinear systems and the concept of
higher order frequency response functions

Frequency response (FR) is a quasi-stationary response of a stable system to a periodic
(sinusoidal or co-sinusoidal) input modulation around the steady-state, which is
achieved when the transient response becomes negligible (theoretically for infinite time)
(Douglas, 1972).



FR of a linear system is a periodic function of the same shape and frequency as the
input modulation but with different amplitude and a phase shift. The mean value of this
periodic function is equal to its steady-state value. Frequency response function (FRF)
of a linear system is defined by the amplitude ratio and the phase difference of the
output and input in the quasi-stationary state (Douglas, 1972).

1.2.1. Single input modulation

For a stable linear system with a single input x(t) and a single output y(t), the dynamic
response to an arbitrary input x(t) can be defined using a convolution integral:

y(©) = j " g@(t - D
(L1)

where g(t) is the so-called impulse-response function of the system, or its kernel
(Douglas, 1972).

By applying Fourier transform to the function g(t), where z represents time, the
frequency response function of a linear system is obtained

G(w) = ]mg(r)e_j“” dr
(1.2)

The FRF of a linear system is directly related to the amplitude and phase of the quasi-
stationary response to a single harmonic input (Douglas, 1972):

x(t) = Acos(wt) = t > 00: y(t) = A|G(w)|cos(wt + arg(G(w)))
(1.3)

The quasi-stationary response of a nonlinear system to a periodic (sinusoidal or co-
sinusoidal) input around a steady-state represents the nonlinear frequency response
(NFR). Frequency response of the nonlinear system is a complex periodic function and
it cannot be represented by a single frequency response function as it was the case for
the linear systems (Weiner and Spina, 1980). For weakly nonlinear systems, the
nonlinear frequency response, in addition to the basic harmonic, which has the same
frequency as the input modulation, also contains a non-periodic (DC) component and an
infinite number of higher harmonics (Douglas, 1972; Weiner and Spina, 1980;
Petkovska and Seidel-Morgenstern 2012).



One of the most convenient tools for mathematical analysis of the NFR is the concept of
higher order frequency response functions (FRFs) (Weiner and Spina, 1980) which is
based on Volterra series and the generalized Fourier transform (Petkovska and Seidel-
Morgenstern, 2012). We refer to the method based on this concept “the Nonlinear
Frequency Response (NFR) method.”

The response of a weakly nonlinear system, for which the system nonlinearity has a
polynomial form or can be expanded into a Taylor series, can be represented in the form
of a Volterra series (Volterra, 1959):

YO =%+ ) a(0)
n=1

(1.4)
The subscript s will be used to denote the steady-state values.
The nth element of the Volterra series is defined as:
vy, (t) = f f In (T4, e, T)x(t — T1) o x(t — T,)d7Tq o dT,

(1.5)

where gn(t1,...Tn) IS the nth order Volterra kernel or generalized impulse response
function of order n (Volterra, 1959).

The first element of the Volterra series, y;(t) corresponds to the linearized model, while
ya(t), y3(1),... are the correction functions of the first, second, third...order. The Volterra
series of infinite length is necessary to represent exactly a weakly nonlinear system,
nevertheless, for practical applications series of finite lengths can be used (Volterra,
1959; Petkovska and Seidel-Morgenstern, 2012).

By applying multidimensional Fourier transform on the function gn(zs,...,7n), the nth
order generalized FRF is obtained (Weiner and Spina, 1980):
G, (w1, ..., wy) =f f G (T4, o, Tl @1TIE RO g,

(1.6)

which is directly related to the nth element of the output in its quasi-steady periodic
state, presented in the Volterra series form (Eq. 1.5) (Petkovska and Markovi¢, 2006).



In this way, the nonlinear model G of a weakly nonlinear system with polynomial

nonlinearities can be replaced by an infinite sequence of frequency response functions

(FRFs) of different orders which are directly related to the DC component and different

harmonics of the response (Weiner and Spina, 1980), as it is presented in Figure 1.

X(t) y(®)

1.

G = G1(w), Gy (wy, w3), G3(wy, Wy, W3), ...

A 4

Figure 1.1 Block diagram of a weakly nonlinear system

If the input of the nonlinear system is defined as a periodic function of the general form:

N
x(t) = Z A el @rt
k=1

the nth element of the Volterra series (Eq. 1.5) is (Volterra, 1959)

N N N
yn(t) = Z Z Z AklAkZ ...AknGn(a)kl,a)kz, ...a)kn)ej(“’k1+“’kz+"'+wkn)t
k1=1kz=1 ky=1

(1.7)

(1.8)

For an input which is defined as a single harmonic periodic function with forcing

amplitude A and forcing frequency w:

A A
x(t) = x, + Acos(wt) = x; + Eejwt n Ee_wt

the first, second and third elements of the VVolterra series are:

A jwt A —jwt
J’1(t):Ee] 61((0)"‘59] G (~w)

A\ A\ A\:
y,(t) = (E) et Gy (w, w) + 2 (E) e’G,(w, —w) + (E) e 0t G, (—w, —w)

(1.9)

(1.10)

(1.11)

v



A’ A
y3(t) = (5) et G3(w, w, w) + 3(5) e/t G3(w, w, —w)
A A° L
+3 (E) e 79 G (w, —w, —w) + (E) e I Gy (—w, —w, —w)
(112)

Then, the response of the weakly nonlinear system is:

A A _ A
Y(O) = ¥, + 5 G1(@) + 57 61 (~0) + (3) e Gy(w,0)

2 2

A 0 A —2jwt
+2 (E) e’ Gy(w, —w) + (E) e Gy (—w, —w)
A\® A\°
+ (E) et G (w, w, ) + 3 (E) e/t G5 (w, w, —w)
3 3

4 —jwt A —3jwt
+3 (E) e/ G3(w, —w, —w) + (E) e G (~w,~w,—w) + -
(1.13)

By collecting the terms of the same frequency, it can be easily shown that the response
of a weakly nonlinear system to a single harmonics input is obtained as a sum of the
basic harmonic, which has the same frequency as the input, a DC (non-periodic) term
and an infinite number of higher harmonics (Petkovska and Seidel-Morgenstern, 2012),
as follows

y@&)=ys+ypc+yi+tyut+yu+ -

= v, + ypc + B cos(wt + @;) + By cos(Rwt + @) + By cos(3wt + @) + -+
(1.14)

where subscript DC denotes the DC component, and 1, I1, 111 the first, second and third
harmonics. By, By, By, are the amplitudes of the corresponding output harmonics and ¢,
on, on are the phase shifts of the corresponding output harmonic in relation to the input
function.

The DC component of the output is obtained by collecting the non-periodic terms (the
terms with €°) from the Volterra series and can be expressed as the following infinite
series (Weiner and Spina, 1980):

2 4

A A
Ypc =2 (E) Gy(w,—w) + 6 (E) Gi(w,w,—w,—w) + -

(1.15)
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where Gy(w,-w) represents the asymmetrical second order frequency response function
(ASO FRF) and G4(w,w,-w,-») the asymmetrical fourth order FRF.

After collecting the terms of frequency w (the terms with ' and e?*"), the first
harmonic of output is obtained

y; = B; cos(wt + ¢@;)

= {(g) Gi(w)+3 (;)3 G3(w, w,—w) + ---}ej“’t

* {(1;) Gl (_w) +3 (g)z G3 (w, —w, —a)) + ... } e Jjwt
(1.16)

The second harmonic of the output can be obtained by collecting the terms of frequency
2 (the terms with e¥*’ and ")

yi = By cosQwt + @)
4

= {<§>2 Gy(w, ) + 4 (g) Gy(w, w, w, —w) + --~}e2j“’t

+ {(%)2 G,(—w,—w) + 4 (g>4 Gi(w,—w,—w, —w) + - } o2t
(1.17)

After collecting the terms with frequency 3w (the terms with e¥' and e¥*), the third
harmonic of output is:

Yir = By cos(Bwt + ¢yyp)

3 5

A A .
= {(E) Gy (w,w,w)+5 (E) Gs(w, w, w, w, —w) + -~-}e3f‘*’t

A\3 A5
+ {(E) G3(—w,—w,—w) +5 (E) Gs(w, w, —w, —w, —w)

+ vee } e_3jwt

(1.18)

etc.

For weakly nonlinear systems, the contributions of the higher harmonics of the output
decrease with increasing their order, as well as the contributions of the frequency

11



response functions of higher order. Thus, the dominant term of the DC component is
defined by the asymmetrical second order FRF Gz(w,-w), the dominant term of the first
harmonics by the first order FRF G;(w), the dominant term of the second harmonics by
the symmetrical second order FRF G,(w,w), the dominant term of the third harmonics
by the third order FRF G3(w,w,»), and so on, (Petkovska and Seidel-Morgenstern,
2012).

The DC component of the output is responsible for the time-average performance of
periodic process (Markovi¢ et al. 2008). As in this work the NFR method is used for
investigation of the average performance of periodically operated chemical reactors,
only the DC component and the asymmetrical second order FRF Gy(w,-w), which
corresponds to its dominant term, are of interest.

The DC component of the output, for a weakly nonlinear system, can be approximately
calculated just from the asymmetrical second order FRF Gy(w,-)

2

A
Ypc = 2 (E) Gy (w, —w)

(1.19)

Therefore, in order to evaluate the performance of periodically operated chemical
reactors for single input modulation, it would be enough to derive and analyze only the
ASO FRF Gy(w,-m).

1.2.2. Multi-input modulation

A dynamic model of a weakly nonlinear system with multiple modulated inputs needs
to be represented by several sets of FRFs. How many series of FRFs is needed for
describing the system depends on the number of modulated inputs and outputs which
are of interest.

For example, a block diagram representing a nonlinear system with two modulated
inputs (x(t), z(t)) and one output (y(t)) is presented in Figure 1.2. For this case, in order
to define the complete model, it is necessary to define three sets of FRFs: two of them
relating the output to each of the inputs and one set of cross-functions relating the
output to both inputs. This third set contains only functions of the second and higher
orders (Petkovska and Seidel-Morgenstern, 2012).
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Figure 1.2 Block diagram of a weakly nonlinear system with two inputs and one output

The following notations are used in Figure 1.2: G, ,» and G,, ,» are the nth order FRFs
corresponding to the individual inputs x(t) and z(t), respectively, while G, ,m ,n—m is the
nth order cross-function, with order m regarding input x(t) and n-m, regarding input z(t).

For a system which is represented in Figure 1.2, the output is a sum of the contributions
of the inputs x(t) and z(t) separately (via the Gx and G, functions), and the contribution
corresponding to the cross-effect of both inputs (via the Gy, functions). Each of these
contributions can be presented as Volterra series (Petkovska and Markovié, 2006):

y(t) = Yx (t) +y, (t) + Vyz (t) = z Yxn (t) + Z Yzn (t) + z Yxzn (t)
n=1 n=1 n=1

(1.20)

If the inputs x(t) and z(t) are defined as general periodic functions in the following way:

N
x(t) = Z A el rt
k=1
(1.21)

N
() = Z B eluit
k=1

(1.22)

The nth elements of the Volterra series corresponding to the single inputs yx, and y,n
can be presented in an analogous way as in Eq. (1.8) and the nth element corresponding
to the cross effect of both inputs is (Petkovska and Markovié, 2006; Petkovska and
Seidel-Morgenstern, 2013):
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X Gn,xmz”_m (wkl' ey (l)km, ukm+1, ,ukn)

x ) (g g+ H @ Fieyy o T FUE, )t

(1.23)

If the two inputs, x(t) and z(t), are periodically modulated co-sinusoidally, with different
frequencies (w and u), forcing amplitudes Ax and Az, respectively, and with a phase
difference (¢) between them:

x(t) = x; + Aycos(wt) (1.24)
z(t) =z, + Azcos(ut + @) (1.25)

the cross-term of the output is obtained in the following form (Nikoli¢ Pauni¢ and
Petkovska, 2013):

AN (AN o
1 = (22 (42) (00 10y 0,0 &1 000, )

+e el @ WG, (0, —u)+e/? e @WG,  (~w, u))

AN (AN,
+ (796) (7) (eJQO e/ (2w+u)t63,xxz (w; w, U)

+e e Rt (—0,—w,—u)

+e v elComtG, (w0, —u) + e/ e GO WG, (—w, w, u))

Ax AZ : 2jo ,j(w+2u)t
+ > )\ (e e Gy 2z (@, U, u)
+e P e @G, (—w,—u,—u)

+e v/ 0T2WG,  (w,—u, —u) + e2P e TG, (—w,u, u))

(1.26)

The DC component of the output, which is responsible for the time-average behaviour is
also given as a sum of contributions of the modulations of inputs x(t) and z(t) separately
and the cross-effect of both inputs:

Ypc = Ypcx T Ypcz + YDCxz (1.27)
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The second order approximations of the DC components corresponding to the
individual inputs x(t) and z(t), are defined in the analogous way as in Eq. (1.19)

2
x

A
Ypcx = 2 (7) G2 xx (w, —w)

(1.28)

A2
A
Ypc,z = 2 (7) G222 (u, —u)

(1.29)

On the other hand, it is obvious from equation (1.26) that the cross-term will contribute
to the DC component only if one frequency is an integer multiple of the other, because
only in that case some of the terms in equation (1.26) become time invariant. However,
the largest contribution of the cross-effect is defined by the second order terms, which
contribute to the DC component only if the input frequencies are equal (U=®). From that
we can conclude that the interaction of the two modulated inputs gives highest
contribution to the DC component, and consequently best results regarding process
improvement, when the two inputs are modulated with equal frequencies. This
conclusion is in accordance with the results of Parulekar, who systematically analyzed
the potential improvement of periodic operated systems with multiple input
modulations, using the generalized n-criterion (Parulekar, 2003).

For the case of equal input frequencies, the DC component which corresponds to cross-
effect of both inputs is:

Ax\ (42 —Jjo o
yDC,JCZ = (7) (7) (e J GZ,xz ((1), —(1)) + e/ GZ,xz (—(1.), w)) +
(1.30)
Taking into account only the second order terms and using the fact that
Gy, (—w, w) = conj (Gz,xz (w, —w)), equation (1.30) can be rewritten in the following
way:
Ax\ (Az :
VpCxz = 2 (7) (7) (COS((p) Re (GZ,xz ((1), —(1))) + Sln((p)lm(GZ,xz ((‘)' _w))>
(1.31)

If we introduce the cross ASO term, which is a function of both frequency and phase
difference between the two inputs:
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632, 9) = (c05(9) Re (63 (@, ~)) + sip) (G111 (0, ~))
(1.32)

the second order approximation of the DC component of the cross-effect can be written
in the following way:

A\ (AN ..
YDC,xZ ~ 2 (7) (7) Gz,xz (w' (P)
(1.33)

It is important to notice that the cross-effect of the modulation of two synchronized
inputs strongly depends on the phase difference between them. As the matter of fact, the
cross term can always be made negative, or positive, whatever is desirable, by a proper
choice of the phase difference ¢. Furthermore, it is possible to determine the optimal
phase difference, for which the first derivative of the cross second order term 9Gj; ,,/

do is equal to zero, and consequently, the DC cross-term has a minimum:

Im(GZ,xz ((U: _(‘))
Re(GZ,xz (0), —0)) "

Qopt = arctang(
(1.34)

or a maximum:

Im (G, (, —w)>

Qopt = arctang (Re(Gz » (a), —a))

(1.35)

This optimal phase difference is in principle a function of the forcing frequency w.
Nevertheless, by finding the partial first derivative 0G; ,, /0w and equating it to zero, it
is also possible to find a condition from which the optimal frequency for which G; .,

has a minimum or a maximum, can be calculated:

JdRe (szxz (w, —w))
Jw

daim | Gy ., (0, —
+Im(G2,xz(w,—w)) m( 2es (0 w))=0

dw
(1.36)

Re (GZ,xz (w, —w))

Finally, when two inputs are modulated with equal frequencies, the DC component can
be approximately calculated using the single input and cross ASO FRFs, the forcing
amplitudes of the input modulations Ax and A, and the phase difference ¢, using the
following expression:
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Ax 2 AZ 2 Ax AZ *
Ypc = 2 (7) Gy xx (w,—w) + 2 (7) G222 (w,—w) +2 (7) (7) G2 xz (w, 9)

(1.37)

In order to determine whether the periodic operation of a system with two modulated
inputs is superior to the optimal steady-state operation, it is necessary to derive all three
asymmetrical second order FRFs (Ga(w,-®), Gz z(w,-w) and Gy (w,-w)) and to
calculate the DC component for chosen forcing parameters (frequency, amplitudes and
phase difference). It is important to notice that the optimal frequency for which 63 ,.,
has a minimum or a maximum (defined by equations (1.34) and (1.35)) can, in
principle, be different from the optimal frequency which would minimize the total ypc,
because equations (1.34) and (1.35) correspond only to the contribution of the cross-
effect.

The procedure for derivation of higher order FRFs is standard and can be found in
(Petkovska, 2001; Petkovska, 2006; Petkovska and Do, 1998; Petkovska and Markovic,
2006). The derivation process is recurrent, meaning that the first order FRFs have to be
derived first, than the second order FRFs, etc. For our current application, we limit our
derivations and analysis to the first order and the asymmetrical second order FRFs.
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Il Nonlinear frequency response for fast estimation of the
time-average performance of periodically operated chemical
reactors

In this Chapter, it will be explained how the NFR method can be used in order to
estimate the time-average performance of periodically operated chemical reactors, when
one or more inputs are modulated.

As illustration, in Figure 2.1, a reactor subjected to a periodical modulation of one or
more inputs is schematically presented. The difference between steady-state and
periodic operation of a chemical reactor for a simple reaction mechanism A—vpP is
presented in this figure, for a case when the mean outlet concentration of the reactant is
lower than its steady-state value, which, on the other hand, corresponds to the higher
mean outlet concentration of the product.

REACTANT

<
<
<

MODULATION OF SIMPLE REACTION A—P

ONE OR MORE INPUTS
’\ REACTOR — Time

PRODUCT

Time

Figure 2.1 Illustration of periodic reactor operation

Cas IS the outlet concentration of the reactant when the process is performed in a steady-
state operation. If one or more inputs of the nonlinear reactor is modulated periodically
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around its steady-state value, the mean value of the outlet concentration ca™ during
periodic operation can be different from the steady-state outlet concentration of the
reactant cas, i.e. the difference, Acy = ¢j* — ¢4 Can be negative, zero, or positive

depending on the type of nonlinearity.

The mean outlet concentration of the product (ce™), can also be different from its
steady-state value (cps) and the difference of the outlet product concentration subjected
to the periodic modulation of one or more inputs, is defined in an analogous way

Acp = cp' — cpg.

The change of the reactor performance subjected to periodic modulation can be
followed throughout the outlet concentration of the reactant or outlet concentration of
the product and in this Chapter both approaches will be explained.

Evaluation of the time-average behavior for cases when the flow-rate is modulated and
the case when inlet concentration and flow-rate are simultaneously modulated will be
analyzed separately. We are analyzing forced periodically operated CSTRs with
constant volume, meaning that, if one of the modulated inputs is flow-rate, the outlet
flow-rate will also periodically change in the same way as the inlet. Thus, in these cases
the improvement can’t be measured only by the outlet concentrations of the reactant and
product and the molar flow-rates of the reactant or product should be considered. The
method for evaluation of possible improvement when flow-rate is modulated will be
also given in this Chapter.

For application of the NFR method, it is convenient to use dimensionless inputs and
outputs, so further on we will mainly operate with the dimensionless variables which are
defined as relative deviation from the steady-state values.

The dimensionless inputs X and Z are defined as the relative deviations from the
previously established steady-state

P x(t) — x;
xS
(2.1)
z(t) — z,
= ”
(2.2)
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The dimensionless time (z) and dimensionless forcing frequency (w) are defined as

follows
ottt
Tress  V/ER
(2.3)
%4
W= WiTres,s = Wy Fs
(2.4)

where 7.5 s=V/Fs is a residence time in the steady-state (t denotes time, V volume of the
reactor, F flow-rate, wy dimensional frequency and the subscript s steady-state value).

The dimensionless outlet concentrations of the reactant and product, as well as the
dimensionless flow-rate are defined as

C. = C4q (t) - CA,s
4 CA,S
(2.5)
_ Cp (t) - CP,s
F Cps
(2.6)
_F@O)-F
K
(2.7)

respectively.

2.1. Forced periodically operated reactor without flow-rate modulation

For the case when flow-rate is not one of the modulated inputs, and it is constant, for
Acy < 0, the periodic operation can be considered as favorable, as it corresponds to
lower outlet concentration of the reactant and therefore to higher conversion, in
comparison to the steady-state operation (Markovi¢ and al. 2008).

On the other hand, if Acp>0 the periodic operation is considered to be favorable since it
means that the mean outlet concentration of product (cs™) which corresponds to periodic
operation is higher than it is for the steady-state operation, i.e. the product yield
increased.

The decrease or increase of the outlet reactant and product concentrations as a
consequence of periodic operation, in comparison to the steady-state operation, which
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indicates the influence of periodic modulation of one or more inputs on the reactor
performance, can be easily estimated by the NFR method. The difference Ac, is equal to
the DC component of the outlet concentration of the reactant A (capc) and the
difference Acp is equal to the DC component of the outlet concentration of the product
P (cppc). Thus, just by estimating the DC components of the outlet concentrations the
performance of the periodically operated chemical reactor can be estimated.

2.1.1. DC components of the outlet concentrations

Single input modulation

As stated previously, the difference between the time-average response of outlet
concentration of the reactant for a periodically operated reactor and its steady-state
value (Acy) is equal to the DC component of the outlet concentration of the reactant
(Petkovska et al., 2010).

ACA = Clln - CA,S = CA,DC (28)

On the other hand, if one input, e.g. X, is periodically modulated in a cosine way around
its steady-state value (x;), with forcing amplitude Ax, and forcing frequency wqg

x(t) = x,(1 + Axcos(wyt)) (2.9)

the DC component of the outlet concentration of the reactant (capc) is approximately
proportional to the asymmetrical second order FRF Gaz xx(w,-w) which correlates the
outlet concentration of the reactant with the modulated input, and has been defined in
(Eq. (1.19)) (Petkovska et al, 2010)

Ax\*

Capc = 2 (7) Ga2xxCa,s

(2.10)
The periodic modulation of input x can be written in dimensionless form, as follows
X (1) = Aycos(wt) (2.11)

Accordingly, the dimensionless DC component of the outlet concentration of the
reactant (Capc) is defined as the relative deviation of the outlet concentration of the
reactant owning to periodic modulation of the chosen input:
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_ C/rln — Cpps
CA,DC -
A,s

(2.12)

which on the other hand, according to the NFR method can be approximately calculated
as
Ax\°

Capc = 2 (7) Gaz,xx (w, —w)

(2.13)

In an analogous way, the dimensionless DC component of the outlet concentration of
the product (Cppc) is proportional to the asymmetrical second order FRF Gp, xx(w,-o)
which correlates the dimensionless outlet concentration of product with modulated input

X(z).
2

Ay
Cppc = 2 (7) Gpo xx (0, —w)
(2.14)
where the dimensionless DC component Cp pc is defined as:
Cgl —Cps
Cppc = ———=
P,DC CP,s
(2.15)

Therefore, in order to evaluate the possible improvement of the reactor when only one
input (X(z)) is periodically modulated, two sets of FRFs can be defined:

e Set of FRFs which correlate the outlet concentration of the reactant with the
modulated input X(z) (Gaix(®), Gaz xx(w,-w),...);

e Set of FRFs which correlate the outlet concentration of the product with the
modulated input X(z) (Gp1 x(®), Gpz xx(®,-®),...).
Simultaneous modulation of two inputs

Simultaneous modulation of two inputs, X(z) and Z(z), with same forcing frequency w,
forcing amplitudes Ax and Az, respectively and a phase difference ¢ between the inputs:

X (1) = Aycos(wt) (2.16)
Z(t) = Azcos(wt + @) (2.17)
is analyzed.
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In order to evaluate the possible improvement of the reactor performance with
simultaneous modulations of the two inputs X(z) and Z(z), in addition to the above
defined sets of FRF for single input modulation of input X(z) it is necessary to define
two sets of FRFs which correspond to the modulated input Z(z):

e Set of FRFs which correlate the outlet concentration of the reactant with the
modulated input Z(z) (Ga1z(®), Gaz zz(®,-w),...);

e Set of FRFs which correlate the outlet concentration of the product with the
modulated input Z(‘L’) (Gplyz(a)), sz,zz(a),-w),...);

and two sets of cross-asymmetrical second order FRFs:

e Set of cross FRFs which correlate the outlet concentration of the reactant with
both modulated inputs X(z) and Z(z), (Gaz2 xz(®,-®), Gz xz(-w,w),...);

e Set of cross FRFs which correlate the outlet concentration of the product with
both modulated inputs X(z) and Z(z), (Gp2 xz(®,-®), Gp2 xz(-w,w),...).

If two inputs of the chemical reactor are periodically modulated in a cosine way around
their steady-state values as defined with (Egs. (2.16) and (2.17)), the dimensionless DC
component of the outlet concentration of the reactant (Capc), based on equation (1.37),
will be:

Ay Ap\°

A A
Capc = 2 (7) Gaz xx (w,—w) + 2 (7) Ga2,77 (w,—w) + 2 (7)() (72) GZZ,XZ (o, w)
(2.18)

where the cross ASO term G, xz(¢,®) is a function of phase difference and the cross
ASO FRF Gaz xz(w,-o) and defined in the following way

Gizxz (@, w) = cos(@) Re(Gyz xz (w, —w)) + sin(@)Im(Gaz xz (0, —w))
2.19)

Gazxx(w,-w) is the ASO FRF which correlates the outlet dimensionless concentration of
the reactant to the dimensionless modulated input X(z), Gazzz(w,-w) the ASO FRF
which correlates the outlet concentration of the reactant to the modulated input Z(z) and
Gazxz(w,-o) the cross ASO FRF which correlates the outlet dimensionless
concentration of the reactant to both dimensionless modulated inputs X(z) and Z(z).

In an analogous way, the dimensionless DC component of outlet concentration of the
product (Cp pc) is also given with (Eq. (1.37))
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Ay\? AN\*

A A
Cppc = 2 (7) Gpaxx (W, —w) + 2 (7) Gpyzz(w, —w) + 2 (7)() (72) Gpaxz (@, w)
(2.20)

where the cross ASO term G p, xz(¢,®) is a function of phase difference and the cross
ASO FRF Gpy xz(w,-w), as follows:

Gpaxz (@, w) = cos(@) Re(Gpy xz (w, —w)) + sin(@)Im(Gpy xz (w, —w))
(2.21)

Gpa.xx(w,-w) is the ASO FRF which correlates the dimensionless outlet concentration of
the product to the modulated input X(z), Gp2zz(w,-w) the ASO FRF which correlates the
dimensionless outlet concentration of product to the modulated input Z(z) and Gp, xz(w,-
w) the cross ASO FRF which correlates the dimensionless outlet concentration of the
product to both modulated dimensionless inputs X(z) and Z(z).

2.1.2. Conversion of the reactant and yield of the product

The reactor performance subjected to periodic input modulation can be evaluated by the
conversion of the reactant or the product yield and from their relative changes in
comparison to the steady-state values.

The conversion of the reactant in the steady-state

. = Cai,s — Cas
s Cai,s
(2.22)
and the yield of the product in the steady-state
1c
YP,s = Ls
Vp Cai,s
(2.23)

are equal (Xas=Ypys).

The conversion of the reactant and yield of the product for periodically operated
chemical reactors, for constant flow-rate, can be defined as follows

X ()™ =t s
Ao = —
po (ca)™ Cai,s

(2.24)
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1 cp 1 cpt

Vp (Ca)™  VpCaig

YP,po =
(2.25)

In should be noticed that the mean inlet concentration is equal to steady-state inlet
concentration, i.e. (cs;)™ = cays.

The reactant conversion for a periodically operated chemical reactor can be written as a
function of the dimensionless DC component of the reactant (Capc) and the conversion
of the reactant in the steady-state

Xapo = X4,s — Capc(1 —2xy5) (2.26)

while the yield of product can be expressed as a function of dimensionless DC
component of product (Cp pc) and the yield of the product in the steady-state:

Yppo = Yps(1+ Cppc) (2.27)

The relative changes of the reactant conversion and product yield can be expressed in
the following way:

X - X 1—x
AxA _ A,Pt;CA A,s _ _ - A,s CA,DC
S S
(2.28)
Y, —-Y
AYp = % = Cppc
S
(2.29)

From these equations (2.26-2.29), it can be concluded that from the dimensionless DC
components of the outlet concentrations of the reactant (Capc) or product (Cppc), the
reactant conversion or product yield for periodic operation and their relative changes
can be easily evaluated.

2.1.3. Identifying possible process improvements by sign analysis of the ASO FRFs
Single input modulation

The improvement of the reactor performance will be achieved if the DC component of
outlet reactant concentration is negative (Capc<0) or the DC component of the product
outlet concentration is positive (Cp pc>0).
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Based on this and equations ((2.13) and (2.14)), it can be concluded that for single input
modulation, the sign of the corresponding ASO FRF will define the sign of the DC
component of the outlet concentration which is of interest. Thus, in order to analyze the
influence of the periodic operation on the performance of the reactor, it is enough to
derive and evaluate only the corresponding ASO FRF, Gazxx(®,-®) or Gpaxx(w,-w)
(Petkovska and Seidel-Morgenstern, 2012).

It can been concluded, that for Gaz xx(w,-@)<0 or Gp, xx(w,-®)>0, the periodic operation
IS superior to the steady-state operation for Gaoxx(w,-w)=0 or Gpyxx(w,-@)=0 the
periodic operation has no influence on the reactor performance, and for Gaz xx(@,-®)>0
or Gpa xx(w,-w)<0 the periodic operation is inferior to the steady-state operation.

Simultaneous modulation of two-inputs

For simultaneous modulation of two-inputs, in order to conclude whether improvement
of the reactor performance will be achieved (Capc<0 or Cppc>0), the situation is more
complex in comparison to single input modulation.

In this case, the dimensionless DC components of outlet concentrations depend on the
ASO FRFs which correlate the outlet concentration with the two separate modulated
inputs and the cross effect of both modulated inputs (Egs. (2.18) and (2.20)).

Nevertheless, it is always possible to achieve that the cross ASO terms G a2 xz(¢,®) and
G paxz(p,®) which correspond to the DC components originating from the cross-effect
of both inputs have desirable signs, by appropriate choice of the phase difference (Egs.
(2.19) and (2.21)).

Considering that it is desirable that the cross ASO terms G a;xz(¢,®) is negative, in
Table 2.1, the recommended phase differences which ensure the negative sign of this
cross ASO term is given, depending on the signs of the real and imaginary parts of the
cross ASO FRF Gaz xz(w,-w).
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Table 2.1 The range of the phase difference which assures negative sign of the cross
ASO term G*Az,xz((p,a))

Re(Gazxz(w,-w)) | Im(Gazxz(w,-®)) | Range of ¢ (rad)
positive positive -n<p<-m/2
positive negative nl2<p<rm
negative positive -7l2<p<0
negative negative 0<p<xl2
positive zero 72<p<aV-n<p<-z/2

zero positive -r<p<0
negative zero -rt/2<p<ml2
zero negative O0<g<=m

On the other hand, it is desirable the cross ASO term G p, xz(¢,w) be positive, and the
recommended phase differences which should be used in order to obtain this goal are

given in Table 2.2, depending on the signs of the real and imaginary parts of the cross
ASO FRF szyxz(a),-a)).
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Table 2.2 The range of the phase difference which assures positive sign of the cross
term G*pzyxz(qo,a))

Re(Gpz xz(w,-w)) | IM(Gpzxz(w,-w)) | Range of ¢ (rad)
positive positive 0<p<nl2
positive negative -7l2<p<0
negative positive nl2<p<rm
negative negative -n<p<-m/2
positive zero -rt/2<p<ml2

zero positive O0<p<=m
negative zero 7l2<@p<nV-n<p<-7ml2
zero negative -<p<0

Furthermore, it is possible to obtain the optimal phase difference, which will always
give the minimal possible value of the cross ASO term G s xz(¢,®), (from Eq. (1.34)):

Im(Gyyxz (w, —w)> .
Re(Gyzx7 (0w, —w)

Qopt a(@) = arctang(

(2.30)

or which will always give the maximal possible value of the cross ASO term
G paxz(9,)

Im(Gpy xz (w, —w))

= t
Popt p (w) = arctang (RG(GPZ,XZ (w, —w)

(2.31)

Thus, the value of the optimal phase difference gopa(w) will always be in the
recommended range of the phase difference given in the Table 2.1, and optimal phase
difference goptp(w) in the recommended range of the phase difference given in the Table
2.2.

If the ASO FRFs corresponding to the separate inputs X(z) and Z(z), Gaz xx(®,-@) and
Gazzz(w,-w), are both negative, as the cross ASO term G a2 xz(p,@) can always be made
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negative by appropriate choice of the phase difference, it is obvious that simultaneous
modulation of both inputs will result with even higher improvement in comparison to
the separate modulations of these inputs. On the other hand if one or both of these FRFs
are positive, than only evaluation of the overall DC component of the outlet
concentration of the reactant given with equation (2.18), can clarify the overall effect of
the periodic operation on the reactor performance.

In an analogous way, if the ASO FRFs Gp, xx(®,-®) and Gp, zz(m,-®) are positive, the
simultaneous modulation of both inputs will lead to even higher improvement, while if
one or both of these ASO FRF are negative, the overall DC component of the outlet
concentration of the product (Eg. (2.20)) needs to be evaluated.

2.2. Forced periodically operated reactor with flow-rate modulation

For the case when flow-rate is input which is modulated, besides the outlet
concentrations of the reactant and the product (Figure 2.1) the outlet flow-rate will also
be a periodical function. Thus, the DC components of the outlet concentrations are not
enough for evaluation of possible improvement of the reactor.

In order to estimate the improvement we should compare the mean outlet molar flow-
rate of the reactant ((Fc4)™) owing to periodic operation to the outlet molar flow-rate of
the reactant in steady-state (Ficss). In the case when flow-rate is periodically

modulated, the difference which is given with the following expression:
A(Fcy) = (Fcg)™ — Ficps (2.32)

is an indicator of the possible reactor improvement. If the change of the outlet molar
flow-rate of the reactant is negative, i.e. A(Fcy) < 0, the improvement is achieved.

In an analogous way, the change of the mean outlet molar flow-rate of the product, as a
result of periodic modulation of the flow-rate, in comparison to the outlet steady-state
molar flow-rate of the product, can be defined as follows:

A(Fcp) = (Fep)™ — Ficp (2.33)

If the change of the outlet molar flow-rate of the product is positive, i.e. A(Fcp) > 0,
the periodic modulation of the flow-rate will lead to improvement of the reactor
performance.
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Considering all presented above, the outputs of interest in the case when the flow-rate is
modulated is molar flow-rate of the reactant or the product, which will be marked as Na
and Np, respectively.

The dimensionless outlet molar flow-rate of the reactant can be defined as the relative
deviation from its steady-state value:

_ F(®)cq(t) — Fseys
F;CA,S

A
(2.34)

In a similar way the dimensionless outlet molar flow-rate of the product is defined as:

_ F(t)cp(t) — Fscps
FSCP,S

P

(2.35)

2.2.1. DC components of the outlet molar flow-rates

The dimensionless DC components of outlet molar flow-rate of the reactant and product
are defined as follows:

Fc,)™ — E.c
NA,DC :( A) stA,s

FS‘CA,S
(2.36)
v _ (Fep)" — Fep,
P,DC Focp
(2.37)

Based on the NFR method, the dimensionless DC components of outlet molar flow-
rates of the reactant and product can be approximately estimated from the corresponding
ASO FRFs

2

Ap
Nypc = 2 (7) Hps pr(w, —w)
(2.38)
Ap\?
Nppc = 2 (7) Hpz pr(w, —w)
(2.39)
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where the ASO FRF Haz rr(w,-w) correlates the outlet molar flow-rate of the reactant to
modulated flow-rate and the ASO FRF Hp; rr(w,-w) correlates the outlet molar flow-
rate of the product to the modulated flow-rate. These H ASO FRFs can be determined
from the G ASO FRFs corresponding to the outlet concentrations, which will be
explained in the following text.

2.2.2. Derivation of the H-FRFs from the G-FRFs

When the flow-rate is the input which is periodically modulated in a cosine way with
forcing frequency wqy and forcing frequency Ag, around previously established steady-
state flow-rate (Fs)

F(t) = F,(1 + Ar cos(wg4t)) (2.40)

and if the dimensionless flow-rate is defined with Eq (2.7), in the dimensionless form:

AF i AF .
d(7) = Ap cos(wt) = 731“” + 78_]“”

(2.41)

The dimensionless outlet concentrations of the reactant and product expressed in the
Volterra series forms are, respectively
Ar Ar\®

. A .
Cy(r) = 79]m Garp(w) + 7F€_W Garp(—w) + -+ 2 (7) Gz rr(w, —w) + -+

(2.42)

AF jw T AF —jwt AF ’
Cp(7) = 731 Gpyr(w) + 5 € SO Gpy p(—w) + -+ + 2 (7) Gpzrr(@, —w) + -

(2.43)
where Gair(w) is first order FRF which correlates the outlet concentration of the
reactant with modulated flow-rate and Ga1 r(-w) is its conjugate, while Gp1 g(w) is first

order FRF which correlates the outlet concentration of the product with the modulated
flow-rate and Gpy r(-w) is its conjugate.

On the other hand, after introducing the dimensionless flow-rate and outlet reactant
concentration into the definition of the dimensionless outlet molar flow-rate of the
reactant Na, it can be presented as a function of the dimensionless flow-rate (®) and the
dimensionless outlet concentration of the reactant (Ca):

Ny =D+ + PGy (2.44)
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and, in an analogous way, the dimensionless outlet molar flow-rate of the product is a
function of the dimensionless flow-rate (®) and the dimensionless outlet concentration
of the product (Cp):

The dimensionless DC components of the outlet molar flow-rates of the reactant and
product are then:

Napc = Capc + (PCy) (2.46)
Nppc = Cppc + (PCp) (2.47)
and finally,
Nppc = 2 (AZ—F)Z (GAZ,FF (0, —w) + %(GALF (w) + GAl,F(_w))>

(2.48)
Nppc = 2 (AZ—F)Z <GP2,FF((U: —w) +%(GP1,F((U) + GP1,F(—(U))>

(2.49)

The ASO FRF Hazrr(w,-w) can be determined from the first order FRF Ga; r(w) and
the ASO FRF GAQYFF(C(),-CO)

1
HAz,FF(w. —w) = GAZ,FF((U' -w) + E(GALF((‘)) + GA1,F(—CU))
(2.50)

In the same way the ASO FRF Hp; rr(@,-@) can be obtained from the first order FRF
Gplyp(w) and the ASO FRF Gp2,|:|:(a),-a)).

1
Hpy pr(w, —w) = Gpy pp(w, —w) + > (GPLF((U) + GP1,F(—(U))

(2.51)
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2.2.3. Conversion of the reactant and yield of the product

The reactant conversion and the product yield, for forced periodically operated reactor
with flow-rate modulation, can be defined in the following way:

_ (Feas)” = (Fe)™ _ Fcps = (Fe)™

X =
Ao (FCAi’S)m ES‘CAl',S
(2.52)
_ i (Fep)™ _ l(FCP)m
PP Ty, (FcAi,s)m vp Fscpis
(2.53)

In this case, the reactant conversion can be expressed as a function of dimensionless DC
component of the molar flow rate of the reactant (Napc) and the product yield as a
function of dimensionless DC component of molar flow-rate of the product (Np pc)

Xa,po = X4,s — Nypc(1— x4,) (2.54)
Yppo = Yps(1+ Nppc) (2.55)

The relative changes of the reactant conversion and the product yield caused by forced
periodic modulation of the flow-rate are:

Xa,po — XA,s 1_xAs
Ax, = — — = — ~N
XA Xas Xas A,DC
(2.56)
—-Y,
AYp = L fs - NP,DC
YP,s

(2.57)

From these equations it can be concluded that, for the case when flow-rate is
periodically modulated, the reactant conversion or the product yield and their relative
changes can be evaluated from the dimensionless DC components of the outlet molar
flow-rate of the reactant (Na pc) or product (Np pc).

2.2.4. Identifying possible process improvements by sign analysis of the ASO FRFs

For the case when the flow-rate is periodically modulated, the improvement of the
reactor performance, i.e. the increase of the reactant conversion or the product yield will
be achieved if the dimensionless DC component of outlet molar flow-rate of the reactant
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is negative (Napc<0) or the dimensionless DC component of outlet molar flow-rate of
the product is positive (Np pc>0).

Thus, the signs of the ASO FRFs Haz rr(w,-@) and Hp, re(w,-w) will define the signs of
the dimensionless DC components of outlet molar flow-rates, which indicate if the
improvement is possible. The improvement will be possible if the ASO FRF Haz rr(®,-
w) is negative or if the ASO FRF Hp; rr(w,-w) is positive.

It is important to point out that, all above expressions and conclusions for single input
modulation of flow-rate are also valid for the case when flow-rate is simultaneously
modulated with another input, except with the inlet concentration. The analysis of
simultaneous modulation of inlet concentration and flow-rate is given in the following
Section.

2.3. Forced periodically operated reactors with simultaneous modulation of
inlet concentration and flow-rate

For forced periodically operated reactor when inlet concentration and flow-rate are
periodically modulated, in order to evaluate the possible improvement it is necessary to
determine the DC components of the outlet molar flow-rates of reactant or product, as
well as the inlet molar flow-rate of the reactant.

The outlet molar flow-rates of the reactant and the product are defined in the same way
as for single modulation of flow-rate (Egs. (2.44) and (2.45)) and the inlet molar flow-
rate of the reactant is also a periodic function.

The dimensionless inlet molar flow-rate of the reactant is defined as the relative
deviation of the inlet molar flow-rate from its steady-state value

_ F(@)cai(®) — Fecais
FSCAL’,S

Al
(2.58)

The dimensionless inlet molar flow-rate can be expressed as a function of the
dimensionless flow-rate (®) and dimensionless inlet concentration (Ca;)

NAi = CD + CAi + CDCAi (259)

If the inlet concentration and flow-rate are modulated in a cosine way with forcing
amplitudes Ac and Ar with phase difference ¢ between them, the mean value of the inlet
molar flow-rate of the reactant is
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™ =2(5) () cosit)

(2.60)
and it depends on the forcing amplitudes and phase difference between modulated
inputs (¢).

2.3.1. DC components of the outlet molar flow-rates

Based on the NFR method, considering that two-inputs are periodically modulated, the
dimensionless DC components of outlet molar flow-rate of the reactant and product can
be written as

2 2

Ac Ap Ac\ (AF\ ..
Nppc = 2 (7) Gazcc (w,—w) + 2 (7) Hy pr (0, —w) + 2 (7) (7) HAZ,CF((P’ w)
(2.61)
Ao\’ Ap\
Nppc =~ 2 (7) Gpycc(w,—w) + 2 (7) Hp pr(w, —w)
Ac\ (AF\ ..
+2 <7) (7) Hpy cr(@, w)
(2.62)

where the H'a, cr(p,0) is the cross ASO term which correlates the outlet molar flow-
rate of the reactant with both modulated inputs:

Hj, cr (@, w) = cos(@) Re(Hyz cr(w, —w)) + sin(@) Im(Hyp cp(w, —w))
(2.63)

and Hpo.ce(p,0) is the cross ASO term which correlates the outlet molar flow-rate of
the product with both modulated inputs

Hp cr(@, w) = cos(@) Re(Hpy cp(w, —w)) + sin(@) Im(Hp; cr(w, —w))
(2.64)

2.3.2. Derivation of the H-FRFs from the G-FRFs

When the inlet concentration and flow-rate are periodically modulated in a cosine way
with forcing frequency wy and forcing amplitudes Ac and Ar respectively, with phase
difference ¢, around previously established steady-state (defined with cais and Fs), as
follows:
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Cai (t) = cpis(1 + A¢ cos(wgt)) (2.65)
F(t) = F,(1 + Ap cos(wgt + @)) (2.66)

the input modulations can be written in the dimensionless form

Ac Ac .
Cy (1) = A cos(wT) = TCejw‘r n TCe_ij

(2.67)
AF i AF .
QD(T) = AF COS((UT + (p) = 731 (wT+9) + 76 j(wt+p)
(2.68)

The dimensionless outlet concentrations of the reactant and product expressed in the
Volterra series form are, respectively

AC 0T AC —jwt
Ca(1) = —¢ Gprc(w) + - €’ Garc(—w) + -
AC 2 AF jot AF —jwt
+2 (7) Gaz,cc(w, —w)+.. e Garr(w) + > ¢ Garp(—w)
AF 2 AC AF —ij
+ 42 (7) Gazrr(w,—w) + -+ 5 5 1 Gpz,cr (0, —w)
AcAr
+ 55 €Y Grer(—0,w) + -
2 2 ’
(2.69)
AC 0T AC —jwt
Cp(7) = —e Gp1,c(w) + €’ Gprc(—w) + -
AC 2 AF iwT AF —jwt
+ 2 <7) GPZ,CC ((A), —a))+. . 7 e’ GPLF((U) + 7 e™’ GPl,F(_w)
AF 2 AC AF —j
42 (7) Gro (@, —w) + -+ —-—- e Gpy (0, —w)
AcAr
+ > el Gpycr(—w, w) + -+

(2.70)

From (Egs.(2.67)-(2.70)) and expression for dimensionless DC component of outlet
molar flow-rate of the reactant (Egs. (2.61)), the following expression for evaluating the
cross ASO FRF Haz cr(w,-w) from the cross ASO FRF Gaz cr(w,-w) and the first order
FRF Ga1c(w) is derived

Hyo cr (0, —w) = G cr (@, —0) + Gyp c(w) (2.71)
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In the some way, the cross ASO FRF Hp, cr(w,-w) can be derived from the cross ASO
FRF Gpz cr(w,-w) and the first order FRF Gpy c(w)

Hp cr(w, —w) = Gpy cp(w, —w) + Gpy c(w) (2.72)

2.3.3. Conversion of the reactant and yield of the product

The reactant conversion and the product yield for the case when inlet concentration and
flow-rate in the reactor are simultaneously modulated, are defined as follows

_ (Fep)™ — (Fey))™

Kaipo = (Feg)™
(2.73)
_ 1 (FCp)m
Ppo =y (Feg)™
(2.74)

After incorporating the dimensionless DC components of the outlet molar flow-rates of
the reactant and product as well as the expression for the mean inlet molar flow-rate of
the reactant, the reactant conversion and product yield can be presented in following

way
L (1 + NA,DC)
Xapo =1 (1—x45) (1 49 (Az_c> (‘%F) COS(‘P))
(2.75)
_ (1 + NP,DC)
YP,po Yp s (1 ) (A?C) (AZ_F) COS(§0)>
(2.76)

The relative changes of the reactant conversion and the product yield caused by
simultaneous modulation of inlet concentration and flow-rate are:

Xppo — Xas _ _ 1— x4 (NA'DC —2 (ATC) (ATF) COS(@)
e (2 (E)E)esto)

AXA =

(2.77)
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AY, = Yppo = Yps _ (NP,DC -2 (ATC) (ATF) COS((p))
P Yps (1 + 2 (ATC) (ATF) cos(<p))

(2.78)

2.3.4. Estimating possible improvements

The estimation of the possible improvement for the case when inlet concentration and
flow-rate are simultaneously modulated is not possible throughout the sign analysis of
the individual ASO and the cross ASO FRFs and the outlet DC component of the molar
flow-rates of the reactant or the product, concerning that the inlet molar flow-rate also
depends on the forcing parameters (forcing amplitudes and phase difference), (Eq.
(2.74)):

1
(1 +2 (AZ—C) (ATF) cos((p))
Ap\?

A 2
X (1 + 2 (7C) Hpy cc(w, —w) + 2 (—) Hpy (0, —w)

Yppo =Yps

2

A A
+ 2 (76) (7F> (cos(¢) Re(Hpy cr(w, —w)) + sin(p) Im(Hpy cr (o, —w))))

(2.79)

Nevertheless, it is possible to derive the optimal phase difference, for defined forcing
amplitudes (Ac, Ar), which should be used in order to maximize the reactant conversion
or product yield, by deriving the first derivative of product yield and equating it to zero:

aYP,po ((UIAC'AF) -0
do

(2.80)

which gives:
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aYP,po (w,Ac, Ar)
do

(’”)( )

Ac\? Ap\?
+(1+2 (7) Gpocc(w —w) +2 (7) Hpp (0, —w)

— Re (sz‘cp(w, —w))) sin(p) + 2 (%) (%) Im(HPz,CF(w, —w))

(2.81)

In order to define the solution of the optimal phase difference which maximizes the
product yield for defined forcing amplitudes analytically, Eq. (2.81) can be reduced to
following trigonometric equation

asin(¢) + bcos(p) = c (2.82)

with parameters which are defined as

2

Ac)’ Ap
a=1+2 <7) GPz,cc(w» ~w) + 2 (7) sz,FF(w» ~w) — Re (HPZ,CF (, —w))

(2.83)
b = Im(Hp;,cr(w, —w))
(2.84)
Ac\ (A
c=-2 (7(:) ( 2F> Im(sz CF((U (L)))
(2.85)

The analytical solution for optimal phase difference for defined forcing amplitudes is
then obtained as:

aim>

Popt (w, Ac, AF) = arctan <2 "

(2.86)
This solution can be also determined numerically from equations (2.79) and (2.81).

On the other hand, in order to evaluate the maximal value of the product yield, it is
possible to estimate the optimal forcing amplitudes (Ac opt(®), Ar opt()) and the optimal
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phase difference (popt(e,Ac,opt,Ar,opt)) cOrresponding to them by solving numerically the
equation (2.79) and finding the values of the forcing parameters when the product yield
IS maximized.

It should be pointed out that optimization of the forcing parameters for simultaneous
modulation of any two inputs can also be done. In the case when inlet concentration and
flow-rate are periodically modulated, the optimal phase difference depends on the
forcing amplitudes, and they have to be optimized together. Nevertheless, for any two
other simulated inputs, the optimal phase difference is independent of the forcing
amplitudes, and their optimization can be done separately.

2.4. Procedure for applying the nonlinear frequency response method for
estimation of the time average performance of periodic processes

The procedure for applying the NFR method for estimating the time average
performance of a periodic process of a chemical reactor is rather standard, and can be
summarized in next steps:

1. Postulating the nonlinear mathematical model of the reactor. The model equations are
the starting point of our analysis. For applying the NFR method, all nonlinear terms in
the model equations need to be represented in the polynomial form (by expanding into
the corresponding Taylor series).

2. Defining the input or inputs that are modulated and the output(s) of interest.

3. Deriving the needed FRFs. How many and which FRFs need to be derived depends
on the choice of the output and the modulated input(s). For our application, it is enough
to derive only the first and the asymmetrical second order FRFs for single input
modulation and additionally the cross ASO FRFs for simultaneous modulation of two
inputs. The derivation procedure is standard and it has been described in detail in
several publications (Markovi¢ et al., 2008; Petkovska et al. 2010; Petkovska and
Seidel-Morgenstern, 2012; Nikoli¢ Pauni¢ and Petkovska, 2013; Nikoli¢ et al., 2014a,
2014b; Nikoli¢ et al., 2015).

4. Analysis of the derived asymmetrical second order FRF(s). The sign analysis of the
ASO FRFs can give a direct answer whether the improvement can be achieved, except
for the case when inlet concentration and flow-rate are simultaneously modulated.
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For single input modulation, the sign of the ASO FRF defines the sign of the DC
component, and, accordingly, gives a direct answer whether the improvement of reactor
performance is obtainable or not.

For periodic operations with two modulated inputs, direct conclusion about the sign of
the DC component and favorability of the periodic operation can be drawn only if both
ASO FRFs corresponding to the single inputs correspond to favorable periodic
operations. In that case, it is always possible to choose the phase difference in such a
way that the cross-effect also contributes to the favorability of the periodic operation. If
the signs of one or both single ASO FRFs imply unfavorable periodic operations, it is
not possible to draw a definite conclusion on the favorability of the periodic operation
when both inputs are modulated simultaneously, only based on their sign. As explained
previously, in that case it is necessary to calculate the overall DC component, in order to
get the answer whether the improvement can be obtained.

5. Defining the forcing parameters which will be used (forcing frequency, forcing
amplitude(s) and phase difference for simultaneous modulation of two inputs). The
forcing parameters can be chosen arbitrary or optimized by determining the parameters
which maximize or minimize the chosen objective function (such as conversion of the
reactant, yield of the product, etc).

6. Approximate calculation of the output DC component of interest and then the reactant
conversion or the product yield for periodic operation. Using the derived ASO FRFs, it
is possible to approximately calculate the DC component of the chosen output, for
defined values of frequency, amplitude(s) and phase difference (for the case of two
modulated inputs), for single input modulation by using the Eq. (1.19) or for
simultaneous modulation of two inputs by using the Eq. (1.37). The reactant conversion
can be calculated by using the equations (2.26, 2.54 or 2.75) and product yield from
equations (2.27, 2.55 or 2.76).

2.5. Conditions which need to be satisfied for implementation of the
nonlinear frequency response method

Implementation of periodic operations has sense only for stable systems, so the NFR
method can only be applied for such systems. For that reasons, in order to investigate
forced periodically operated reactors, it is first necessary to determine the domain of
stability (Petkovska and Seidel-Morgenstern, 2012).

41



The system is stable if finite input changes of the system produce finite changes in the
output. On the other hand, if finite changes of system input produce unlimited changes
of the system output, the system is unstable. By analysis of the characteristic equation of
the system corresponding to the linear model, the domain of the system stability can be
determined (Douglas, 1972).

The necessary and sufficient condition that a linear system is stable is that all roots of
the characteristic equation are negative or have negative real parts. The system is
unstable if there is at least one root of the characteristic equation which is positive or
has a positive real part. If one root of the characteristic equation or its real part is equal
to zero and all the rest are negative or have negative real parts, the system is on the
stability limit (Douglas, 1972).

This stability condition is valid only for linear systems, but this analysis can provide
valuable information for the stability of nonlinear systems, by using the Lyapunov
theorem as follows: If the analysis of the linearized model of a nonlinear system around
the operating point which is defined by steady state values, indicates that the system is
stable, then the nonlinear system is stable around that operating point. If the analysis
shows that the linearized model of the system is unstable then the nonlinear system is
also unstable around the operating point. If the analysis shows that the linearized model
of the system is on the limit of the stability than the conclusions about the stability of
the nonlinear system cannot be made (Douglas, 1972).

The first order FRF corresponds to linear model and the domain of stability can be
determined by the analysis of the characteristic equation which corresponds to the linear
model. If jo in the first order FRF is replaced with the Laplace complex variable s, the
transfer function is obtain. The characteristic equation of the system is obtained by
equating the denominator of the transfer function with zero (Douglas, 1972). In that
way, the conditions which need to be satisfied in order that the investigated nonlinear
system is stable can be set. These conditions are also the conditions which need to be
fulfilled for implementation of the NFR method.

The NFR method can be applied for weakly nonlinear stable systems (Petkovska and
Seidel-Morgenstern, 2012). The NFR method is applicable only for a weakly nonlinear
system, for which the system nonlinearities have polynomial forms or can be expanded
into a Taylor series, since only for such systems the response can be represented in the
form of a Volterra series (Volterra, 1959).
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Additional condition for implementation of the NFR method is that the Volterra series,
given with equation (1.4), converges. Some investigation of Volterra series convergence
can be found in (Xiao et al., 2014; Jing and Lang 2015).

2.6. The advantages of the NFR method

The previous analytical methods related to identification and estimation of improvement
of the periodically operated reactors already explained in Section 1.1.3, have not been
applied widely in practice probably because of the complexity of their application and
insufficient reliability (Petkovska and Seidel-Morgenstern, 2012).

The NFR method is a simple and reliable method for evaluation of the possibility of
improvement of the forced periodically operated reactors which gives a fast answer on
this question. The NFR method can be used as a starting point for further analysis and
optimization (Petkovska and Seidel-Morgenstern, 2012).

The NFR method is supposed to be used as a first step for fast screening of possible
periodic operations, in order to detect processes which should further be investigated
experimentally or by numerical integration. It is meant to replace long and tedious
numerical investigations. The most difficult and time consuming step of the NFR
method is derivation of the needed FRFs, which needs to be performed only once. After
that, all computations associated with the NFR method are reduced to simple algebra.
So, the computational efforts of the NFR method are much less in comparison to the
classical numerical investigations, which demand numerical integration of coupled sets
of nonlinear differential equations (Nikoli¢ et al., 2015).

Furthermore, and what is more important, the NFR method gives a complete overview
of the investigated periodic operation, with defined ranges of the forcing parameters
(input frequency, amplitude(s) and phase differences for cases of multiple modulated
inputs) which should be used in order to obtain a favorable periodic operation. This is
not possible with the classical numerical method, which gives results only for the
defined sets of forcing parameters (frequency, amplitude and phase difference) for
which numerical integrations are performed (Nikoli¢ et al., 2015).

Nevertheless, considering the fact that the output of the non-linear system, given as a
Volterra series is, for practical application, approximated by finite length sum, the use
of the NFR method for estimation of possible process improvement throughout periodic
operation, is approximate (Petkovska and Seidel-Morgenstern, 2012).
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2.7. Applications of the nonlinear frequency response method up to now
2.7.1. Other applications of the nonlinear frequency response method

The concept of the higher frequency response functions has been used in many fields of
engineering to investigate and study systems behavior. The NFR method is mostly used
for evaluating nonlinear frequency response of systems in communication systems in
Electrical Engineering (Lang and Bilings, 2000; Lang et al., 2007; Rugh 1981).

Although a powerful tool for treating weakly nonlinear systems, an in spite of the fact
that most chemical engineering systems are weakly nonlinear, the concept of higher
order FRFs was not widely used in chemical engineering, until recently. Up to now,
several applications of this concept have been introduced.

The NFR method is used for developing new experimental techniques for investigating
equilibria and Kinetics in heterogeneous system, including identification of the kinetic
mechanism, with applications on adsorption (Petkovska 2006; Petkovska and Seidel-
Morgenstern, 2005; Petkovska and Do, 2000; Petkovska, 2005; Brzi¢ and Petkovska,
2012; Brzi¢ and Petkovska, 2013, Petkovska 2014, Brzi¢ and Petkovska 2015a, 2015b)
membrane (Petkovska and Petkovska, 2006; Petkovska et al., 2011) and electrochemical
reaction systems (Bensmann et al., 2010; Pani¢ et al., 2011; Vidakovi¢-Koch et al.,
2011).

Also, the NFR method is used for developing a computational method for direct
calculation of the periodic steady states of inherent periodic processes (Petkovska and
Markovié, 2006).

2.7.2. Application of the nonlinear frequency response method for evaluation of
forced periodically operated chemical reactors

The first applications of the NFR method for evaluation of periodically operated
reactors were for evaluation of the forced periodically operated isothermal CSTR,
isothermal plug flow reactor (PFR) and isothermal dispersed flow tubular reactor
(DFTR) with simple nth order reaction, for single input modulation of inlet
concentration (Markovi¢ et al., 2008) and for evaluation of forced periodically operated
isothermal CSTR with a simple nth order heterogeneous reaction with inlet
concentration modulation (Petkovska et al., 2010).
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In this work, the NFR method is implemented for evaluation of possible improvement
of the forced periodically operated continuous-stirred tank reactors (CSTRS) in which
simple, irreversible, homogeneous nth order chemical reaction A —vpP takes place.

First, the NFR method is used for evaluation of forced periodically operated isothermal
CSTRs for single input modulation of inlet concentration or flow-rate, as well as for
simultaneous modulation of these two inputs (Chapter I11). Part of the results presented
in this work has been published in (Nikoli¢ Pauni¢ and Petkovska, 2013). The results
obtained are tested on two numerical examples and the simulation results are presented.
Numerical example 1SO-1 for isothermal CSTR is taken from the previous publication
(Markovi¢ et al., 2008) and the simulation results are presented for five different
reaction orders. Numerical example 1SO-2 is taken from the literature (Douglas, 1972),
and it represents the optimized industrial reactor. The results obtained by NFR method
are compared with the results of numerical integration of mathematical model, and
agreement between these results is obtained.

Furthermore, the NFR method is implemented for evaluation of possible improvement
of forced periodically operated non-isothermal CSTRs for single input modulations and
simultaneous modulation of two inputs (Chapter V).

For the non-isothermal CSTR, the possible inputs which can be periodically modulated
are: inlet concentration, flow-rate, inlet temperature and temperature of the
cooling/heating fluid. The derivation and analysis of the FRFs for single input
modulation of inlet concentration and flow-rate has been published in (Nikoli¢ et al.,
2014a) and for single input modulation of inlet temperature and temperature of the
cooling/heating fluid in (Nikoli¢ et al., 2014b). The NFR method is also used for the
analysis of simultaneous modulation of inlet concentration and inlet temperature, which
is published in (Nikoli¢ et al., 2015) and simultaneous modulation of inlet concentration
and flow-rate (publication in preparation).

The results of the NFR method are tested on numerical examples which are taken from
the literature. Numerical example NONISO-1 (Douglas, 1972) represents the optimized
industrial reactor and Numerical examples NONISO-2(a) (Marlin, 2000) highly
nonlinear oscillatory system with resonant behavior (Nikoli¢ et al., 2015), NONISO-
2(b) nonlinear oscillatory system with weak resonant behavior and NONISO-2(c)
nonlinear non-oscillatory system. The simulation results are presented, as well as the
comparison with the numerical simulation results.
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Finally, an adiabatic CSTR is analyzed as a special case of non-isothermal reactor and

tested on experimental system which will be used for experimental investigation (Max

Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany),

for single input modulation of inlet concentration or flow-rate, as well as for

simultaneous modulation of inlet concentration and flow-rate (Chapter V).

In Table 2.3, a summary of different cases of the forced periodically operated reactors

that will be investigated in this work by the NFR method are given, as well as the

references if the results have already been published. In all investigated cases, a simple

homogeneous chemical reaction A—vpP takes place in the reactor.

Table 2.3 Summary of periodic operations analyzed by the NFR method in this work

Reactor Isothermal/ Number of )
] ) Modulated input(s) Reference
type Non-isothermal inputs
1 Inlet concentration
1 Flow-rate Nikoli¢ Paunié and
CSTR Isothermal _
) Inlet concentration and | Petkovska, 2013
flow-rate
] 1 Inlet concentration Nikoli¢ et al.,
CSTR | Non-isothermal
1 Flow-rate 2014a
1 Inlet temperature o
) Nikoli¢ et al.,
CSTR | Non-isothermal Temperature of the
1 ) ) ) 2014a
cooling/heating fluid
] Inlet concentration and o
CSTR | Non-isothermal 2 ) Nikoli¢ et al., 2015
inlet temperature
) Inlet concentration and Publication in
CSTR | Non-isothermal 2 .
flow-rate preparation
1 Inlet concentration
1 Flow-rate
] ) 1 Inlet temperature S
Adiabatic non- : Publication in
CSTR ) Inlet concentration and .
isothermal 2 _ preparation
inlet temperature
) Inlet concentration and

flow-rate
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111 Application of nonlinear frequency response method for
evaluation of periodically operated isothermal CSTRs

3.1. Forced periodic operations of isothermal CSTRs

In this Chapter, the NFR method is applied for evaluation of possible improvement for
forced periodic operation of isothermal CSTRs with simple, irreversible homogeneous
nth order chemical reaction.

For isothermal CSTRs, it is possible to periodically modulate two inputs, inlet
concentration and flow-rate. These two inputs can be modulated separately (single input
modulation) or simultaneously (two input modulation). Part of the analysis presented in
this Chapter has been published in (Nikoli¢ Pauni¢ and Petkovska, 2013).

3.2. Mathematical model

The NFR method is used to analyze the performance of a forced periodically operated
CSTR in which isothermal, liquid homogeneous, irreversible, simple nth order reaction
A—vpP takes place, for which the reaction rate is defined with the following law:

r =kcy (3.1)
where cp is the reactant concentration, k the reaction rate constant and n the reaction

order.

In our analysis, we assume that the volume of the reactor is constant (V=const) although
the flow-rate is periodically modulated, meaning that the flow-rate of the feed stream is
equal with the outlet flow-rate of the reaction stream at any time, i.e., Fi(t)=F(t). In this
way the residence time changes periodically.

The mathematical model of this reactor system is given by the material balance of the
reactant and the product in a form of a two nonlinear first order ODEs:

dey(t)
V——= F(t)cy; (t) — F(t)ca(t) — key (O)V
(3.2)
v dcc’i’t(t) = —F(t)cp(t) + vpkel (O)V
(3.3)
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where: t is time, cathe outlet concentration of the reactant, cp the outlet concentration of
the product, caithe inlet concentration of the reactant, F the volumetric flow-rate of the
reaction stream and vp the stoichiometric coefficient of the product P.

The periodic modulation is performed around a previously established steady-state. The
initial steady state is obtained by writing equations (3.1) and (3.2) for steady-state
conditions and can be written in the following form:

“is _14q
Ca,s
(3.4)
s — o
=Vp
Cas
(3.5)
where an auxiliary dimensionless parameter o has been introduced
=k n—-1__
a Cas FS
(3.6)

Subscript s is used to denote the steady-state values.

It should be noticed that the auxiliary parameter « corresponds to dimensionless
Damkohler number which relate the reaction rate to transport phenomena rate occurring
in the system, which is widely used in reaction engineering (Fogler, 2005).

For analysis in the frequency domain, it is convenient to transform the model equations
into dimensionless forms, by introducing dimensionless variables, as explained
previously, as their relative deviations from their steady-state values. The definitions of
the dimensionless variables and definition of dimensionless frequency (w) which will be
used in the frequency domain for analysis of isothermal CSTR are given in Table 3.1.
wq denotes the dimensional frequency.
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Table 3.1 Definitions of dimensionless variables for isothermal CSTR

] Cai — Cais
Inlet concentration of the reactant Cai = o
Ai,s
) Cqp —Cyps
Outlet concentration of the reactant Cy = c
A,s
. Cp ~Cps
Outlet concentration of the product Cp = p
P,s
F—F
Flow-rate o =
E
Ti t
ime T=
V/E
%4
Frequency W= wq
E

After replacing the dimensional variables (caj, ca, Cp, F, t) in the dimensional
mathematical model of the isothermal CSTR (Egs. (3.1) and (3.2)) with the
dimensionless variables (Cai, Ca, Cp, ®@, 7) and incorporating the auxiliary parameter «
(Eq. (3.6)), the dimensionless mathematical model of the isothermal CSTR is obtained
in the following form:

%A =(1+a)(@+1D)(Chi+1)— (@+1)(C+1) —a(l+C)"

(3.7)
ddi: = —(@+ D+ 1)+ (1+CH"

(3.8)

In order to apply the NFR method, it is necessary that all nonlinearities in the model
equations are in the polynomial form. Therefore, the nonlinear term (1+C,)" is
expanded in the Taylor series around the steady-state point (only the first and the second
order terms are shown):

1
(1+CH"=1+nC, + En(n —1)C? + -

(3.9)
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The terms F(t)cai(t), F(t)ca(t) (in Eg. (3.2)) and F(t)ce(t) (in Eqg. (3.3)) are also
nonlinear, and their expansion in Taylor series is given in Appendix A.1, and previously
incorporated in (Eq. (3.7) and (3.8)).

By incorporating the Taylor series expansion of the nonlinear term (1+Ca)" in equations
(3.7) and (3.8), the model equations are transformed into the following form:

dc 1
d—: = (1+ @)®Cy + (1+OCy +a® = 6, — (1 +na)Cy = 5nln = Da,’ + -
(3.10)
dCp 1 ,
—=—->b + TlCA - Cp - CDCP +—n(n - 1)CA + .-
dt 2
(3.11)

The resulting dimensionless model equations for the isothermal CSTR with
simultaneous modulation of the inlet concentration and flow-rate (equations (3.10) and
(3.11)) can be reduced to the case of single input modulation of inlet concentration or
flow-rate.

When only the inlet concentration is periodically modulated, the dimensionless flow-
rate is equal to zero (®=0). The resulting dimensionless equations are:

ac 1
d_rA =1+ a)Cy — (1 +na)Cy — En(n —DaCy® + -
(3.12)
dc 1
d_rP =nCy — Cp + En(n —1)C % + -
(3.13)

For single input modulation of flow-rate, the dimensionless inlet concentration is
equated to zero (Cai=0), and the dimensionless mathematical model of the isothermal
CSTR is reduced to equations:

dcC 1
d—TA = a® — &C; — (1 +na)Cy —5n(n - DaCy? + -
(3.14)
dCp 1 ,
—=—d+nC—Cp —PCp+=n(n—1)C4" + -
dt 2
(3.15)
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Considering that a representative dimensionless nonlinear model of the isothermal
CSTR is postulated with these equations for each case of forced periodic operation
(single or two-input modulation), the stability of the isothermal CSTR is the next step
which should be considering in the procedure for application of the NFR method, which
will be done in the following Section.

3.3. Stability analysis

The linearized model of isothermal CSTRs is obtained when the nonlinear terms in the
dimensional model of the isothermal CSTRs (Egs. (3.2) and (3.3)) are expanded in the
Taylor series around the steady-state point and approximated with the first order term.

The linearized dimensionless mathematical model of CSTRs is given with the following

equations:
dCy
I = 1+ a)Cy + a® — (1 +na)Cy
(3.16)
dCp
F =—-b+ nCA - Cp
(3.17)

After implementing the Laplace transformation on the mathematical model
corresponding to the linear model, the transfer functions are obtained. The characteristic
equation of the isothermal CSTR is obtained by equating the denominator of obtained
transfer function with zero:

A+s)A+na+s)=0 (3.18)
The roots of the characteristic equations (poles) are p; = —1 and p, = —(1 + na).

The stability condition for the isothermal CSTR is that the pole p; is negative (since the
pole p; is always negative). After introducing an auxiliary stability parameter By, the
stability condition for the isothermal CSTR can be written as follows:

By =1+na>0 (3.19)

Thus, the isothermal CSTR will be stable if the stability parameter By is positive, i.e. if

n>-1/a.
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3.4. Definition of the frequency response functions

The isothermal CSTR, for single input modulation, represents a system with one input
and two outputs, the outlet concentration of the reactor and the outlet concentration of
the product. For simultaneous modulation of the two inputs, the isothermal CSTR
represents a nonlinear system with two inputs and two outputs.

Therefore, in order to describe the behavior of the isothermal CSTR when only the inlet
concentration is periodically modulated, two sets of FRFs are defined:

e Set of FRFs which correlate the outlet concentration of the reactant with the
modulated inlet concentration (Gay.c(®), Gaz.cc(w,-w),...)

e Set of FRFs which correlate the outlet concentration of the product with the
modulated inlet concentration (Gp1 c(®), Gpz.cc(w,-w),...)

For the case when only the flow-rate is periodically modulated, two sets of FRFs are
defined:

e Set of FRFs which correlate the outlet concentration of the reactant with the
modulated flow-rate (Ga1 r(®), Gaz.rr(®,-m),...)

e Set of FRFs which correlate the outlet concentration of the product with the
modulated flow-rate rate (Gp1 r(w), Gpz rr(w,-w),...)

Nevertheless, the H ASO FRFs which correlate the outlet molar flow-rates of the
reactant Haz rr(w,-w) and product Hpp pr(w,-w) to the modulated flow-rate should be
derived from the G FRFs (Egs. (2.48) and (2.49)) as it has been explained in detail in
the previous Chapter.

In order to describe the behavior of the isothermal CSTR with simultaneous
modulations of the inlet concentration and flow-rate, in addition to the above defined
sets of FRF for single input modulation, it is necessary to define:

e Set of cross FRFs which correlate the outlet concentration of the reactant with
the inlet concentration and the flow-rate, which are simultaneous modulated

(Gazcr(w,-w), Gaz cr(-w,m),...)

e Set of cross FRFs which correlate the outlet concentration of the product with
the inlet concentration and the flow-rate, which are simultaneous modulated

(Gpz,cr(w,-w), Gpacr(-0,0),...).
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The H cross ASO FRFs which correlate the outlet molar flow-rates of the reactant
Hazcr(w,-w) and the product Hp; cr(w,-@) to both modulated inputs, inlet concentration
and flow-rate, should be derived from the G-FRFs (Egs. (2.64) and (2.65)).

3.5. Derivation procedure of the frequency response functions

The next step in our analysis is deriving the defined sets of FRFs. The derivation and
analysis will be limited to the first order and the ASO FRFs for single input modulation
and, in addition to the cross ASO FRFs for two-input modulation. The basic steps of
this procedure are:

1. The dimensionless inlet concentration (Cai(z)) or/and flow-rate (®(z)) is/are
defined in the form of co-sinusoidal function(s);

2. The dimensionless outlet concentrations of the reactant (Ca(z)) and product
(Cp(z)) are expressed in the Volterra series form;

3. The expressions for dimensionless input(s) (Cai(r) or/and @(z)) and
dimensionless outlet concentrations (Ca(z) and Cp(z)), from steps 1 and 2, are
substituted into the corresponding dimensionless model equations (for
simultaneous modulation in equations (3.10) and (3.11), for single input
modulation of inlet concentration in equations (3.12) and (3.13), for single input
modulation of flow-rate in equations (3.14) and (3.15));

4. The method of harmonic probing is applied to the equations obtained in step 3
meaning that the terms with the same amplitude and frequency are collected and
equated to zero;

5. The equations obtained in step 4 are solved.

The basic steps of the derivation procedure for single input modulation of inlet
concentration and flow-rate are given in Appendix A.2 and for simultaneous modulation
of inlet concentration and flow-rate in Appendix A.3. The final expressions of the FRFs
are given below. The ASO FRFs and the cross ASO FRFs are presented here in their
final form but in Appendix A.2 and A.3 they are also given as functions of the first
order FRFs.

After deriving the G-FRFs, the reactant and product H-ASO FRFs for flow-rate
modulation are derived and given as well as the cross reactant and product H-ASO
terms for simultaneous modulation of inlet concentration and flow-rate.
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Considering that the ASO FRFs Gy(w,-w) and Gz(w,-w) are conjugate-complex function

only ASO FRF Gy(w,-w) will be given here. In a similar way, only Hx(w,-@) will be

given.

3.6. G frequency response functions

3.6.1. Inlet concentration modulation

The first order FRFs Gai c(®) and Gpy c(®)

Garc(w) =

Gpic(w) =

The asymmetrical second order FRFs Gaz cc(w,-@) and Gp; cc(w,-)

Gazcc(w,—w) = —

Gpycc(w,—w) =

3.6.2. Flow-rate modulation

1+«

Bps +jw

n

1+«

X
1+jwo By +jw

a(l+a)? nn-1)
2By (w? + szs)
1+a)® nn-1)
2By (w? + Bgs)

The first order FRFs Gay r(w) and Gpy r(w)

Garr(w) =

GP1,F(<U) =

By + jw

-1

Bps +jw

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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The asymmetrical second order FRFs Gz rr(w,-@) and Gp; re(o,-)

a n(n—1a? + 2(1 + na)

Gazpr (W, —w) = —

2B, (w? + B%)
(3.26)
1 nn-1Da?+2(1+na)
Gpopr(@, =) = 2B, % (w? + BX%)
(3.27)

3.6.3. Simultaneous modulation of inlet concentration and flow-rate

The cross asymmetrical frequency response functions Ga, cr(w,-w) and Gp, cr(,-

)

1+a) (w?+na(l+a)+jo)
Gazcr(w, —w) = X

By (w? + BZ)
(3.28)
n(l+ a) 1
Gpz,cr (@, —w) = B (w2 + (w4 BY) ((0*
+0?(1+na)?+(1+na)+1-(a+1) - (a+1)))
+jo(w? + (1 +na)? + (1 +na) + 1))
(3.29)

3.7. The H-asymmetrical second order frequency response functions

Considering that the H-FRFs need to be defined only in the cases when the flow-rate is
periodically modulated, the H-FRFs for single input modulation of the flow-rate and for
simultaneous modulation of the inlet concentration and flow-rate are derived from the
G-FRFs (Egs. (2.48), (2.49), (2.69) and (2.70)) and given in this Section. For inlet
concentration modulation the H-ASO FRFs are equal to the G-ASO FRFs.

3.7.1. Flow-rate modulation
The asymmetrical second order FRFs Ha2 rr(w,-0) and Hpy re(o,-0)

a (n(n—1a? - 2na(l+ na))
2B, (w? + B%)

Hpp pr(0,—w) = —

(3.30)
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1 (n(n-1)a? - 2na(l + na))
2B, (w? + BZ)

HPZ,FF((U: -w) =
(3.31)
3.7.2. Simultaneous modulation of inlet concentration and flow-rate

The cross asymmetrical second order FRFs Haz cr(w,-@) and Hpz cr(w,-o)
The cross ASO FRF Haz cr(w,-w)

1+ a) 8 (w? +na(1+ a) + (1 +na)? — najow)
Bys (a)2 + B,?s)

Hpp or(w,—w) =
(3.32)

is also given in the following form

Hyy cr(w,—w) = Re (HAZ,CF (w, —w)) + jim (HAZ,CF (w, —w))
(3.33)

where the real and imaginary parts of the cross ASO FRF Ha, cr(w,-w) are, respectively

(1+a) w?+na(l+a)+ 1+ na)?

Re (HAZ,CF (w, —CU)) =

Bys (w? + BZ)
(3.34)
na(l+ a) )
Im(H (w,—w)) =-— X
(ron-a0) =R
(3.35)
The cross ASO FRF Hp, cr(w,-w)
Hoy oo ) n(1+a)X(a)2+(1+na)2—(a+1)+jw)
w,—w) =
P2,CF B,s (w? + ng)
(3.36)
can also be written in following form
Hpycr(w, —w) = Re (HPZ,CF((‘)f —(U)) +jIm (HPZ,CF((U’ —0)))
(3.37)

where the real and imaginary parts of the cross ASO FRF Hp; cr(w,-w) are, respectively
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nl+a) w?+@1+na)>—(a+1)

Re(H ,— =
e( pa,cr(@ w)) B, x (@ + ng)
(3.38)
n(l+ a) )
Im(H ,— =
m( pa,cr(@ w)) B, x (@? + Bﬁs)
(3.39)

The cross ASO terms H a2 cr(p,) and H'py cr(p,0)
Hjiocr (9, @) = cos() Re (Hap,cr (@, ~w)) + siniip)Im (Haz.cr(w,—w))  (3.40)
Hi,cr (@, @) = cos(p) Re (Hpzcr(w, —)) + sinilip)im (Hpp cp (0, —0))  (3.41)

3.8. Correlations between the reactant and product asymmetrical frequency
response functions and terms

Single input modulation

The reactant and product ASO FRFs for modulation of the inlet concentration,
Gazcc(w,-w) and Gpycc(w,-w) (Egs. (3.22) and (3.23)), are correlated in the following
way:

1
Gpycc(w,—w) = — EGAZ,CC (w, —w)
(3.42)

Similarly, the reactant and product H ASO FRFs for modulation of flow-rate, Haz pr(,-
) and Hpz rr(w,-o) (Egs. (3.30) and (3.31)) are correlated in an analogous way:

Hp; pr(w, —w) = _EHAZ,FF (w, —w)
(3.43)
Thus, for single input modulation, the product ASO FRF (Gpy cc(w,-@) and Hp, gr(w,-

)) and the corresponding reactant ASO FRF (Gazcc(w,-w) and Hazrr(w,-w)) are
proportional and they have opposite signs.

Therefore, the dimensionless DC components of outlet reactant and product
concentrations for periodical modulation of the inlet concentration are also proportional
and have opposite signs
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CP,DC = - ECA,DC
(3.44)

as well as dimensionless DC components of outlet reactant and product molar flow-rates
for periodical modulation of the flow-rate

1
NP,DC = _ENA,DC

(3.45)

As a consequence it can be concluded that the conversion of the reactant and yield of
the product for single input modulation are equal (Xapo=Yppo) as Well as their relative
changes (Axapo=AYppo) OWing to periodic operation of inlet concentration (from
equations (2.24)-(2.27)) or flow-rate (from equations (2.52)-(2.55)). This lead to
conclusion that, the effect of improvement or deterioration of the reactor performance
owing to periodic operation can be determined just based on one of these ASO FRFs,
for the reactant or for the product.

Simultaneous modulation of inlet concentration and flow-rate

The correlations between the cross H-ASO FRFs (Hazcr(w,-w) and Hp, cr(w,-w)) is

1+a
Hpy cr(w, —w) = _EHAZ'CF(O)’ —w) +
(3.46)
and between the cross ASO terms H a2, ce(p,@) and H pa ce(p,@)
. 1 1+a
H; cpp(@,0) = — 7 H2cra (o, w) + - cos(¢p)
(3.47)

Therefore, the dimensionless DC components of outlet reactant and product molar flow-
rates are correlated as follows

1 A\ (A 1+ @
Nppc = _ENA,DC +2 (—) (—) - cos(¢p)

2 /\2
(3.48)

It can be easily shown that the reactant conversion and the yield of the product are equal
(Xapo=Yppo) for this case, as well, based on equation (3.48) and the definitions of the
reactant conversion and product yield (Egs. (2.73) and (2.74)). It can be shown that the
same is valid for their relative changes (AXapo=AYp o). This also leads to a conclusion
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that in order to evaluate the effect of simultaneous modulation of inlet concentration and
flow-rate it is enough to analyze just one of the derived sets of the ASO FRFs, for the
reactant or for the product.

3.9. Estimating the possible improvement throughout the sign analysis of the
asymmetrical second order frequency response functions

For single input modulation it can be concluded whether it is possible to achieve
improvement by forced periodic modulation in comparison to the optimal steady-state
operation just from the sign of the corresponding ASO FRF. For the sign analysis, it is
important to notice that the auxiliary parameter a (Eqg. (3.6)) is always positive which
can be concluded from its definition. Also, for a stable isothermal CSTR the stability
parameter By (EQ. (3.19)) is also always positive.

As already explained in Chapter I1, for simultaneous modulation of inlet concentration
and flow-rate, the sign analysis of the ASO and cross ASO FRFs will not lead to
conclusions about the possible improvement, considering that the inlet molar flow-rate
depends on the forcing amplitudes and phase difference.

3.9.1. Asymmetrical second order frequency response functions for inlet
concentration modulation

From the expressions of the ASO FRFs Gaz.cc(w,-®) (EQ. (3.22)) and Gp; cc(w,-o) (EQ.
(3.22)) for single input modulation of inlet concentration, it can be concluded that the
signs of these functions depend only on the reaction order n. The signs of the ASO
FRFs Gaz,cc(w,-w) and Gp cc(w,-w) are always opposite (Eq.(3.42)). The results of the
sign analysis are given in Table 3.2.

Table 3.2 The summary of the sign analysis results for the ASO FRFs Gaz cc(w,-w) and

Gp2,cc(w,-w)

Gaz,cc(w,-m) Gpz.ce(w,-)
Reaction order, n
(negative is desirable) (positive is desirable)
n<0vn>1 negative positive
0<n<l1 positive negative
n=0vn=1 0 0
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Based on the above presented results of the sign analysis of the ASO FRFs for single
input modulation of inlet concentration, it is obvious that improvement (increase of the
reactant conversion as well as increase of the product yield) will be always achieved for
reaction orders n<0 and n>1, while for n=0 and n=1 periodic operation has no effect on
the improvement and for 0<n<1, the reactor performance will be deteriorated.

3.9.2. Asymmetrical second order frequency response functions for flow-rate
modulation

The signs of the ASO FRFs Haz rr(w,-@) (EQ. (3.32)) and Hpz rr(w,-0) (Eg. (3.36)),
corresponding to modulation of the flow-rate, depend only on the term in the numerator
of these FRFs:

n(n—1Da? — 2na(1 + na) (3.49)

This term can be positive or negative and it changes it sign for n=0 and ng which
depends on the value of the auxiliary parameter o, in the following way:

2
np=-1--

(3.50)

The summary of the sign analysis of the ASO FRFs Ha, rr(®,-®) and Hp, pr(w,-o),
depending on the reaction order, are given in the Table 3.3.

Table 3.3 The summary of the sign analysis results for the ASO FRFs Haz rr(w,-w) and

Hp2 er(w,-0)

Haz Fr(,-o) Hp2 Fr(w,-o)
Reaction order, n
(negative is desirable) (positive is desirable)
n=ng or n=0 zero zero
n<ng or n>0 positive negative
Ng<n<0 negative positive

For single input modulation of the flow-rate, the improvement will be achieved when
the reaction order is in the range ng<n<0, for the reaction orders n=ng and n=0 the
periodic modulation of flow-rate has no effect on the reactor performance and for
positive reaction orders, n>0 and for n<ng the periodic modulation of the flow-rate will
deteriorate the reactor performance throughout the conversion and yield decrease.
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3.10. Numerical examples for isothermal CSTRs

The results of the NFR method are tested on two numerical examples of isothermal
CSTRs, Numerical example ISO-1 and Numerical example ISO-2.

Numerical example 1SO-1 represents an isothermal CSTR which is taken from the
previous publication (Markovi¢ et al., 2008) and it includes analysis of forced
periodically operated isothermal reactor for different reaction orders. For this Numerical
example, only the product ASO FRFs for single input modulation (Gp;cc(w,-w) and
Hp2 rr(@,-)) will be analyzed, in order to verify the results of the sign analysis of these
ASO FRFs.

Numerical example 1SO-2 corresponds to an optimized industrial reactor which was
used as an example in the literature (Douglas, 1972). The analysis is performed for the
inlet concentration and flow-rate modulations, separately and simultaneously. The
results obtained by the NFR method are compared with the results of numerical
integration of the model equations, and good agreements between these results are
obtained. The results of numerical simulations obtained in MATLAB, will also be given
in this Section.

3.10.1. Numerical example 1SO-1
Definition

Numerical example 1SO-1 is defined with the same parameter values which were used
in (Markovié et al., 2008):

k=0.001 5™ mol™™, cais= 1 mol/m®, 7,65=100 s

for five different reaction orders (n=-2, -1, 0.5, 1, 2). The example which includes
different reaction orders is used in order to test the results of the sign analysis of the
ASO FRFs, which mainly depend on the reaction order.

Simulation results

In Figure 3.1, the ASO FRFs Gpycc(w,-w) for five different reaction orders are
presented vs. dimensionless frequency.

61



GPZ_( . (o,-0)

Dimensionless frequency

Figure 3.1 The ASO FRFs Gp cc(w,-w) for different reaction orders, as functions of the
dimensionless forcing frequency

As it can be seen from Figure 3.1:

e The ASO FRFs Gpycc(w,-w) tend to asymptotic values for low-forcing
frequencies. The low-frequency asymptote is a function of the reaction order and
parameter a:

n(n—-11+ a)?
2(1 + na)3

lim Gpy cc(w, —w) =
w-0 !
(3.51)

e High-frequency periodic modulation of the inlet concentration has no effect on
the reactor performance, as for all reaction orders

lim Gp; cc(w,—w) =0
W —0
(3.52)
e The simulation results are in accordance with the results of the sign analysis for
the ASO FRF Gp; cc(w,-w). For n=-2, -1, 2 (n<0 or n>1) (Table 3.2) Gpycc(w,-
®)>0, meaning that improvement (increased yield of product) will be obtained

with periodic modulation of the inlet concentration in comparison to the steady-
state. For n=1, Gpycc(w,-»)=0, i.e. the periodic modulation of the inlet
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concentration has no influence on the reactor performance and for n=0.5
(0<n<1) Gpy,cc(w,-w)<0, i.e., the reactor performance will be deteriorated.

The ASO FRFs Hparr(w,-w) are graphically presented in Figure 3.2 for different
reaction orders (n=-2, -1, 0.5, 1, 2), as functions of the dimensionless forcing frequency.

H PoF [;( ,-0)

Dimensionless frequency

Figure 3.2 The ASO FRFs Hp; rr(w,-w) as functions of the dimensionless frequency for
different reaction orders

As it can be seen from Figure 3.2:

e For low-forcing frequencies the ASO FRFs Hp,rr(w,-w) tend to asymptotic
values for all investigated reaction orders. The low-frequency asymptotic value
of this function can be determined from (Eq.(3.30)), and becomes:

n(n — Da? — 2na(1 + na)
2(1 + na)3

lim Hp; pr(w, —w) =
w-0 ’
(3.53)

e In the case of periodic modulation of the flow-rate, the high-frequency
modulation again has no effect on the reactor performance, as for all reaction
orders

lim Hpj pp(w, —w) =0
w —>00

(3.54)
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e The simulation results are in accordance with the sign analysis results which
were presented in Table 3.3. From the sign analysis, considering that the
auxiliary parameter ng is -2.09 (Eqg. (3.50)), for the reaction orders n=-2 and -1
(ne<n<0), the ASO FRF Hp, re(w,-w) is expected to be positive. Furthermore,
for n=0.5, 1 and 2 (n>0), the ASO FRF Hp;, rr(w,-w) is expected to be negative.
These results have been confirmed by the simulation results presented in the
Figure 3.2. Periodic modulation of the flow-rate will lead to improvement in
comparison to the steady-state operation for reaction orders n=-2 and -1, while
for n=0.5, 1 and 2 it leads to deterioration of the reactor performance.

3.10.2. Numerical example 1SO-2

Definition

Analysis of the periodically operated isothermal CSTR by the NFR method is also done
for the Numerical example ISO-2 taken from the literature (Douglas, 1972), for the
periodic modulation of inlet concentration and flow-rate, separately and simultaneously,
around the optimal steady-state. This example corresponds to an industrial isothermal
CSTR with a simple, second-order (n=2), irreversible chemical reaction, with a rate

constant k=1.248x10° m%kmol/min. The optimal design has been defined with the
following values (Douglas, 1972)

V=28.32 m®, Fs=2.832 m®/h, ca;s=16.02 kmol/m?®.

The conversion of the reactant and yield of product for the optimal steady-state is 75%
(cas=4.01kmol/m?, cp=12.01 kmol/m®), and the auxiliary parameter ¢=3.00.

The rector performance will be followed by analyzing the product ASO FRFs and the
change of the product yield. For single input modulation, only the product ASO FRFs
Gp2.cc(w,-w) and Hp, rr(w,-@) will be analyzed, considering that they are proportional
to the reactant ASO FRFs Gazcc(w,-w) and Haorr(w,-w), respectively. For
simultaneous modulation of the inlet concentration and flow-rate the yield of product
will be evaluated from the product ASO FRFs Gp; cc(w,-w) and Hpy rr(w,-w) and the
product cross ASO FRF Hpy ce(w,-m).

Simulation results for single input modulation

The ASO FRF Gp, cc(w,-w) vs. dimensionless forcing frequency is given in Figure 3.3
and the ASO FRF Hp; rr(w,-w) in Figure 3.4.
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Figure 3.4 The ASO FRF Hp, rr(w,-) as a function of dimensionless forcing frequency

As expected from the sign analysis (Tables 3.2 and 3.3), the simulation results presented
in Figures 3.3 and 3.4 confirm that the improvement for the reaction order n=2 (n>0),
will be obtained for single input modulation of the inlet concentration (Gp2 cc(w,-w)>0)
and deterioration for single input modulation of the flow-rate (Hp2 rr(w,-»)<0). The
highest improvement for single input modulation of inlet concentration modulation can
be achieved for low-forcing frequencies, where ASO FRF Gp;cc(w,-®) tends to an
asymptotic value. Nevertheless, the highest value of this ASO FRF is still low (Figure
3.3).
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As illustration, in Figure 3.5, the yields of product are graphically presented for single
input modulation of inlet concentration with forcing amplitude Ac=100% and for single
input of flow-rate with forcing amplitude Ar=75%. For comparison, the yield in steady-
state is also given in Figure 3.5.
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Figure 3.5 Yield of product for the steady-state operation, for single input modulation of
inlet concentration with forcing amplitude Ac=100% and for single input modulation of
flow-rate with forcing amplitude Ar=75% as functions of dimensionless forcing

frequency

Despite the fact that inlet concentration modulation will lead to increase of the product
yield, even for the highest forcing amplitude (Ac=100%), this increase is still low, with
highest relative increase of 2.33% at low frequencies.

Simulation results for simultaneous modulation of inlet concentration and flow-

rate

In order to simulate the case when inlet concentration and flow-rate are simultaneously
modulated, arbitrary forcing amplitudes are chosen, for the inlet concentration
Ac=100% and for the flow-rate Ar=75%.

The optimal phase difference which maximizes the product yield gop(w) as a function
of the dimensionless forcing frequency for defined forcing amplitudes (Ac=100% and
Ar=75%) is graphically presented in Figure 3.6.
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Figure 3.6 The optimal phase difference gou(w) which maximizes the product yield for
forcing amplitudes Ac=100% and Ar=75%, vs. dimensionless forcing frequency

In Figure 3.7, the product yields are graphically presented for: steady-state operated
reactor, for single input modulation of inlet concentration with forcing amplitude
Ac=100%, for flow-rate modulation with forcing amplitude Ar=75% and for
simultaneous modulation of these two inputs with optimal phase difference gop(w), all
as functions of the dimensionless forcing frequency.
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Figure 3.7 The product yield for steady-state operation, for periodic modulation of inlet
concentration (Ac=100%), for flow-rate modulation (Ag=75%) and for simultaneous
modulation of these two inputs with optimal phase difference (@opi(®), Ac=100%,
Ar=75%) vs. dimensionless forcing frequency

The simultaneous modulation of the inlet concentration and flow-rate, for these forcing
amplitudes and phase difference, for low-forcing frequency is inferior than the single
input modulation of inlet concentration, i.e. the increase of the product yield is obtained
but for low-forcing frequency this increase is lower than for single input modulation of
inlet concentration (Figure 3.7).

On the other hand, for high-forcing frequencies the situation is completely different.
Despite the fact that for high-forcing frequency single input modulations have no effect
on the reactor performance, the simultaneous modulation of the two inputs will cause
increase of the product yield. This increase is even higher than for the low-frequency
single input of inlet concentration.

This phenomena is a result of the fact that the real part of the cross ASO FRF Hp; cr(w,-
) and therefore the cross ASO FRF Hp, cr(w,-w) for high-frequency modulation tend
to following asymptotic value, which is different from zero:

n(l+ a)

B

lim Re (HPZ,CF (w, —CU)) = lim Hp; cr (0, —w) =
pSs

(3.55)
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which leads to a conclusion that the cross ASO FRF H'pscr(e,) and, therefore, the
dimensionless outlet molar flow-rate of the product for high-forcing frequencies also
tend to corresponding asymptotic values, as follows:

] X nl+a) _
al)l_f}go Hpy,cr (9, w) = B—COSUCKP)
ps
(3.56)
i . AC AF Tl(l + a) .
Jim Moo =2 () (F) =, cost)
(3.57)

Therefore, the product yield for high-forcing frequencies is given with the following
expression

1+2(%) (%) 09 cosiip)
lim Yp,, = Yp 2

e 142 (AZ—C) (“‘7"‘) cosi{ip)

(3.58)

Thus, the product yield for high-frequencies simultaneous modulation of inlet
concentration and flow-rate depends on the forcing amplitudes, phase difference
between modulated inputs and the characteristics of the system (throughout reaction
order n and auxiliary parameter o). The reactor performance for high-forcing frequency
modulations of the inlet concentration and flow-rate depends only on the cross effect of
two modulated inputs.

For the isothermal CSTR analyzed in Numerical example ISO-2, the optimal forcing
amplitudes Ac,opt(®) and Ar,p(®), and the optimal phase difference gon(w) are
numerically determined in Matlab by using standard fminmax function and graphically
presented in Figure 3.8, as functions of the dimensionless forcing frequency. The
optimal forcing parameters which correspond to maximal product yield are determined
from equation (2.77).
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Figure 3.8 The optimal forcing amplitudes Ac,opi(®), Ar,opt(®), and the optimal phase
difference gopi(w) which maximize the product yield for simultaneous modulation of
inlet concentration and flow-rate, vs. dimensionless forcing frequency

The optimal forcing amplitude for inlet concentration modulation is Ac,opt(«)=100% in
the whole frequency range, which is expected concerning that the ASO FRF Gp, cc(®,-
) is positive. On the other hand, for flow-rate modulation, the optimal forcing
amplitude is small for low-forcing frequencies where the ASO FRF Hp; rr(@,-o) is
negative, while for high forcing frequencies where the ASO FRF Hp, rr(w,-w) tends
zero the optimal forcing amplitudes is Ag,opt(0)=100%.

Then, the product yield for simultaneous modulation of inlet concentration and flow-
rate with the optimal forcing amplitudes and optimal phase difference is graphically
presented in Figure 3.9. In the same Figure, the product yields for single input
modulations with same forcing amplitudes, as well as for steady-state operation, are also
given.
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Figure 3.9 The yield of the product for steady-state operation, for periodic modulation
of inlet concentration (Ac,opt(®)), for flow-rate modulation (Arp(w)) and for
simultaneous modulation of these two inputs with optimal forcing amplitudes and
optimal phase difference gopn(w) corresponding to them, vs. dimensionless forcing

frequency

When the optimal forcing amplitudes and phase difference are used, the yield of the
product for low-forcing frequencies is insignificantly higher than for the single input
modulation of inlet concentration. For high-forcing frequencies, the increase of yield is
higher when the optimal forcing parameters are used in comparison to the previous
investigated case, and again higher than for low-frequency single input modulation of
inlet concentration. When both optimal forcing amplitudes and optimal phase difference
are used, the increase of the product yield is higher than for arbitrary chosen forcing
amplitudes (Figure 3.7).

Comparison with the results obtained by numerical integration

In order to prove the effectiveness of the NFR method, the approximate values of the
product yields, calculated by the NFR method are compared with the results obtained by
numerical simulations, for periodic modulation of the inlet concentration and flow-rate,
separately and simultaneously, around the previously established steady-state. The
numerical integration was performed by using the dimensional mathematical model of
the isothermal CSTR (Egs. ((3.2) and (3.3)), for the system defined in Numerical
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example 1SO-2. The model equations were solved by using a standard Matlab function
0del5s.

Comparison of the product yields estimated by the NFR method and calculated by
numerical simulation is shown in Tables 3.4, 3.5 and 3.6. The results obtained for single
input modulation of the inlet concentration with forcing amplitude Ac=100% and for
single input modulation of the flow-rate with forcing amplitude Ag=75%, for
dimensionless forcing frequencies w=0.1, 1, and 10 are given in Table 3.4. In Tables 3.5
and 3.6, the numerical results are compared with results of NFR method for
simultaneous modulation of inlet concentration and flow-rate. In Table 3.5, the product
yields are determined for the case when arbitrary forcing amplitudes (Ac=100% and
Ar=75%) and optimal phase difference corresponding to them are used @qp(w) for
dimensionless forcing frequencies »=0.1, 1, and 10. In Table 3.6, the results are given
for the optimal forcing amplitudes Ac,opt(®) and Ag,opi(@) and the optimal phase
differences gop(w) corresponding to them.

The relative changes of product yield owning to the periodic operation were also
calculated,

Yppo — YP,S

AYp o (%) = =22 100
P,s

(3.59)
and they are given in Tables 3.4-3.6, in percentages.

In order to compare the agreement between the approximate results obtained by the
NFR method with the results of numerical integration, which are considered to be exact,
the relative errors for product yields were calculated in the following way:

Yp po (NFRM) — Yp ,, (num)

100
Yp o (num)

Sy (%) =

(3.60)

and they are also given in Tables 3.4-3.6.
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Table 3.4 Yields of the product and their relative changes for single input modulation of

the inlet concentration and the flow-rate, estimated by numerical simulation and by the

NFR method, and the relative errors

Inlet concentration modulation, Ac=100%

j Yo g0 (%) 5 ) AYp g0 (%)
num NFRM num NFRM
0.1 77.62 76.75 -1.16 +3.49 +2.33
1 77.33 76.71 -0.80 +3.11 +2.28
10 75.59 75.57 -0.03 +0.79 +0.76
Flow-rate modulation, Ar=75%
o Yp,po (%) 54 (%) AYp,po (%)
num NFRM num NFRM
0.1 72.89 72.97 +0.11 -2.81 -2.71
1 72.95 73.01 +0.08 -2.73 -2.65
10 74.37 74.33 -0.05 -0.84 -0.89

Table 3.5 Yields of the product and their relative changes for simultaneous modulation

of the inlet concentration and the flow-rate with optimal phase differences, estimated by

numerical simulation and by the NFR method, and the relative errors

Simultaneous modulation of inlet concentration and flow-rate,

Ac=100%, Ar=75%, ¢=popt

" popt (rad) Yoro (%) Sv (%) AYepo (%)
num NFRM num NFRM
0.1 0.0600 75.77 75.81 +0.05 +1.03 +1.08
1 0.5035 75.87 75.98 +0.14 +1.16 +1.31
10 0.7063 77.84 77.88 +0.05 +3.79 +3.84
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Table 3.6 Yields of the product and their relative changes for simultaneous modulation
of the inlet concentration and the flow-rate with optimal forcing amplitudes and phase
differences, estimated by numerical simulation and by the NFR method, and the relative

errors
Simultaneous modulation of inlet concentration and flow-rate
0, 0,
0.1 13.20 0.1892 7741 | 76.81 | -0.78 | +3.21 | +2.41
1 100 18.73 0.7038 7722 | 76.84 | -0.49 | +2.96 | +2.45
10 100 0.8394 78.18 | 78.25 | +0.09 | +4.24 | +4.33

From the results which are given in Tables 3.4, 3.5 and 3.6, it can be concluded that
good agreement between the approximate results (product yield and their relative
change) estimated by the NFR method with the results obtained by numerical
integration (which are considered to be exact) for periodic modulation of the inlet
concentration or/and flow-rate is obtained. The relative errors are less than +1.2%,
which leads to a conclusion that the NFR method, based on the second order
approximation, gives excellent prediction of the magnitude of the product yield for the
periodically operated isothermal CSTR.

As expected, from the NFR analysis, the improvement (higher yield) can be obtained
with single input modulation of the inlet concentration and for simultaneous modulation
of both inputs, which was confirmed with the results of numerical integration given in
Tables 3.4-3.6.

3.11. Summary of Chapter Il

In this Chapter, the nonlinear frequency response method was used for evaluation of
possible improvement of forced periodically operated isothermal CSTR in which
homogeneous, irreversible simple nth order reaction A—vpP takes place, when inlet
concentration and flow-rate were modulated separately (single input modulation) or
simultaneously (two-input modulation).

The general methodology of the derivation procedure was used for derivation of the
necessary ASO FRFs which determine the outlet reactant and product DC components,
and thus the yield of the product or conversion of the reactant:
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e The asymmetrical frequency response functions which correlate the outlet
concentration of the reactant and the product with the modulated inlet
concentration (Gaz,cc(w,-®) and Gp cc(w,-w))

e The asymmetrical frequency response function which correlate the outlet molar
flow-rates of the reactant and the product to the modulated flow-rate (Haz re(w,-
w) and Hp rr(w,-w))

e The cross asymmetrical frequency response function which correlates the outlet
molar flow-rates of the reactant and the product to modulated inputs, inlet
concentration and flow-rate (Haz cr(w,-®) and Hpy cr(w,-)).

From the expression of the ASO FRFs, it was concluded that the high-frequency single
input modulation had no influence on the reactor performance and that for the low-
frequency modulation the ASO FRFs tended to asymptotic values. On the contrary,
simultaneous modulation of inlet concentration and flow-rate had influence on the
reactor performance in the whole frequency range.

From the correlations between the reactant and product asymmetrical frequency
response functions for each case of periodic modulation, it was concluded that the
analysis of one of them (reactant or product ASO FRFs) was enough, considering that
both approaches lead to the same conclusions.

The sign analysis of the ASO FRFs which correspond to the single input modulation of
the inlet concentration or flow-rate was performed. It was concluded that for single
input modulation of the inlet concentration the improvement would always be obtained
for negative reaction orders (n<0) and for reaction orders higher than 1 (n>1), while for
the reaction orders between 0 and 1 (0<n<1), the reactor performance would be
deteriorated. For reaction orders n=1 and n=0, the modulation of inlet concentration
would not influence the reactor performance. On the other hand, for single input
modulation of the flow-rate, an auxiliary parameter ng exists, which depends on the
characteristics of reactor system which needs to be evaluated in order to predict the sign
of the corresponding ASO FRF, and thus the possible improvement. Nevertheless,
positive reaction orders (n>0) will always lead to deterioration of the reactor
performance and for n=0, the periodic modulation of flow-rate will not influence the
reactor performance. If reaction order is negative, than it was shown that the reactor
performance would be improved for ne<n<0 and deteriorated for n<ng.
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The results of the NFR method were tested on two numerical examples, Numerical

example ISO-1 and Numerical example 1SO-2. The Numerical example ISO-1 included

analysis for different reaction orders. The prediction of the sign analysis for single input

modulations was confirmed with simulations of the ASO FRFs. Therefore, it can be

decided whether to operate in the periodic regime or not, based only on the sign analysis
of the corresponding ASO FRF.

For Numerical example 1SO-2, which corresponds to an optimized industrial reactor

taken from the literature, separate and simultaneous modulation of inlet concentration

and flow-rate were analyzed by the NFR method, and it was concluded that:

Single input modulation of the inlet concentration will lead to increase of the
product yield, which is highest for low-forcing frequencies, but is still low (for
maximal forcing amplitude Ac=100%, the relative increase of the product yield
was AYp =2.33%;

Single input modulation of the flow-rate will cause the product yield decrease;
The results of the sign analysis again gave correct predictions of the signs of
ASO FRFs for single input modulations;

The forcing amplitudes and phase difference for simultaneous modulation of the
two inputs have a decisive role on the reactor performance;

For simultaneous modulation of the inlet concentration and flow-rate, when the
optimal forcing parameters (which maximize the product yield) were used, the
yield of product could be increased. For low-forcing frequencies this increase
was insignificantly higher than for single input modulation of the inlet
concentration, but for high-forcing frequencies modulations, this increase is
higher;

Still, the highest increase of the product yield which can be achieved for this
industrial reactor system is modest, and the highest increase of AYp ~4.76% can
be obtained for high-forcing frequency simultaneous modulation of inlet
concentration and flow-rate, with maximal forcing amplitudes (Ac=Ar=100%)
and the corresponding optimal phase difference.

The results of the NFR method were compared with the results of numerical
integration and very good agreement was obtained, both for separate and for
simultaneous modulations of the inlet concentration and flow-rate.
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IV Application of nonlinear frequency response method for
evaluation of periodically operated non-isothermal CSTRs

4.1. Forced periodic operations of non-isothermal CSTRs

In this Chapter, the NFR method is applied for evaluation of periodically operated non-
isothermal CSTRs. Besides the two inputs which can be modulated for isothermal
CSTRs, the concentration of the feed steam and its flow-rate, for the case of a non-
isothermal CSTRs two additional inputs can also be periodically modulated: the
temperature of the feed stream and the temperature of the cooling/heating fluid (Nikoli¢
and Petkovska, 2014a).

It can be expected to obtain much higher difference between the periodic and optimal
steady-state operation for a non-isothermal reactors, because the equations used to
describe the non-isothermal system contain exponential nonlinearity in the reactor
temperature, so that nonlinear behavior often becomes visible even for small input
disturbances. In addition, the system equations can have complex conjugate roots and, if
the damping coefficient of the linearized equations is less than 0.707, the system can
exhibit resonance. In this case, the reactor tends to amplify the effect of disturbances in
the neighborhood of the resonant frequency and the larger deviations from the steady-
state conditions will cause the nonlinear phenomena to become more pronounced
(Douglas, 1972).

Since the potential for improvement through periodic operation strongly depends on the
degree of the nonlinearity of the system, it is expected that the non-isothermal CSTR,
which is highly nonlinear, would offer a lot of potential for process improvement. Also,
the non-isothermal CSTR is a good test for the NFR method considering that the
method is valid for weakly nonlinear systems (Nikoli¢ and Petkovska, 2014a).

Considering that the NFR method is applicable only for stable systems and the fact that
a non-isothermal CSTR can in principle exhibit unstable behavior (Douglas, 1972), the
stability analysis is very important.

In this Chapter, the NFR method is applied for evaluation of periodic operations of non-
isothermal CSTRs in which a simple nth order, irreversible, homogeneous chemical
reaction takes place for single input modulation of the concentration of the reactant in
the feed stream, the flow-rate, the temperature of the feed stream and the temperature of
the cooling/heating fluid. Part of these results has been published in (Nikoli¢ et al.,
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2014a, 2014b). The analysis of forced periodic operation of non-isothermal CSTRs is
also performed for the case of simultaneous modulation of two inputs, inlet
concentration and inlet temperature (part of this investigation has been published in
(Nikoli¢ et al., 2015) as well as inlet concentration and flow-rate (publication in
preparation).

In principle, six combinations are possible for simultaneous modulation of two inputs,
as four inputs can be modulated, but, in this work, we limited our investigation just on
two combinations for two input modulation, as stated above.

4.2. Mathematical model

The non-isothermal CSTR is considered in which a simple, irreversible, liquid
homogeneous nth order chemical reaction, A — vp P, takes place, with a rate law

_Ea
r=ky,e rrcj
(4.1)

where ca is the reactant concentration, T the temperature, k, the pre-exponential factor
in the Arrenius equation, Ea activation energy and R the universal gas constant.

The mathematical model consists of the material balances of the reactant:

dey (1) 4
V—r— = FOcai(O) - F(O)ca(t) - koe OOV
(4.2)
material balance of the product
dcp(t) _ Ea
% T —F(t)cp(t) + vpk,e ETOC)()V
4.3
and the energy balance
dT (t) _ _ _Ea_
Vpc, T F(t)pc,T;(t) - F(t)pc,T(t) + (-4Hg)k,e ROy (£)V
- UA, (T(®) - T (1))
(4.4)

The notations used for the isothermal CSTR are also used for the non-isothermal CSTR.
The new notations used in the mathematical model of the non-isothermal CSTR are:
AHg heat of reaction, U the overall heat transfer coefficient, A, the surface for heat
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exchange, p density and ¢, heat capacity. The subscript i which is used in the balance
equations denotes the inlet, and the subscript J the heating/cooling fluid in the reactor
jacket.

The mathematical model of the non-isothermal CSTR is based on the following
assumptions: all physical and chemical properties are constant, independent on
temperature (p, ¢,, AHg, ko, Ea, U), the volume of the reactor is constant, (meaning that
inlet flow-rate is equal to outlet flow-rate (V=const, F;(t)=F(t)), and the flow-rate of the
cooling/heating fluid is sufficiently high to ensure that the inlet temperature in the jacket
is equal to outlet temperature from the jacket.

The material and energy balances in the steady-state are reduced to the following

equations
Cais _ 14 koe_’f_ﬁscﬁgl i
Ca,s " F
(4.5)
_Ea
Cps = Vpkye RTscy F
(4.6)
_Ea
Tis (—AHR)k e scy V. L UAy UALT,
T pCyT Fg Fgpc, FgpCpTs
4.7
The following dimensionless auxiliary parameters can be introduced
Ea oy AHgpk e“ff_;lsc" % UA, T E UA
a= kye RTsc},l'le—S, ,[?:;TTS“F—S, 6:#_1);‘:, :R—;S, St:ﬁ
(4.8)
and incorporated in the steady-state material and energy balances, they lead to:
CAis _ 14w q
Cas
4.9
Crs _ Vet
Ca,s
(4.10)
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&:1+B+St—6
T

N

(4.11)

The introduced dimensionless auxiliary parameters (a, £, , y and St) depend on:
e the kinetic and thermodynamic data of the chemical reaction (n, ko, Ea, AHR),

e the physical and thermodynamic parameters of the reactor system (V, p, ¢,, U,
Ay)

e the steady-state reactant concentration (cas), temperature in the reactor (Ts),
flow-rate (Fs) and the temperature of the cooling/heating fluid (T ).

Again, the model equations are transformed into dimensionless form for easier analysis
in the frequency domain. Besides the dimensionless variables defined in the previous
Chapter, for the isothermal CSTR (Table 3.1) which have been defined as relative
deviations from their steady-state values, additional dimensionless variables for the non-
isothermal CSTR are given in Table 4.1.

Table 4.1 Definitions of additional dimensionless variables for non-isothermal CSTR

_ T, — Ti,s
Inlet temperature 0, =
Ti,s
. T- Ts
Temperature in the reactor 9 = -
N
. . . T] - ’1},5
Temperature of the heating/cooling fluid o = =
/s

The dimensionless variables (Tables 3.1 and 4.1) and the auxiliary parameters (Eq.
(4.8)) are introduced in the model equations (Egs. (4.2)-(4.4)) and the following
dimensionless equations are obtained:

dcC V __Ea
d—TA = (1+ @)@+ DGy + 1 = (®+ D (Ca + 1) = kocfs" e (L +C,)"
S
(4.12)
de CXS V __Ea
—=—(Dbd+1 1 > e RTsO+1D(1 n
T = @+ DG )k, e (G
(4.13)
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do
E=(1+ﬁ+St—6)(Cb+1)(9i+1)—(CD+1)(9+1)—St(0+1)—6(0]+1)
AHgk,cf V. _ _Fa _
—————— ¢ RT;0+D(1 4+ C n

(4.14)

Since, for application of the NFR method all nonlinearities should be given in the

___Fa
polynomial form, the nonlinear terms in the dimensionless model equations e R7s@+1)

and (1 + C4)™ are expanded in the Taylor series form, around the steady-state point. For
our analysis only the first and second order terms are shown. The Taylor series
expansions of these nonlinear terms are given in Appendix B1l. The terms F(t)cai(t),
F(t)ca(t) (in Eq. (4.2)), F(t)cp(t) (in Eq. (4.3)) and F(t)T;(t), F(t)T(t) (in Eq. (4.4)) are
also nonlinear, and their expansion in Taylor series is done in an analogy as for
isothermal CSTR (given in Appendix A.1).

The Taylor series expansions of the nonlinear terms are incorporated into equations
((4.12)-(4.14)), and the following final form of the dimensionless model equations is

obtained:
dCy
T = 1+ a)Cy + A+ a)PCy; — (1 +na)Cy —ayl + ad — PCy
yz 2 1 2
—a(nyCu6 + 7Y 0 +§n(n—1)CA + -
(4.15)
dCp y? , 1 ,
anCA —Cp+y0 —D—DCp + | nyCy 0 + 7Y 0 +§n(n—1)CA + .-
(4.16)
dé
== L+ B +St=8)P0, + (1+ B + St = 6)6, = (1 + St + fy)0 — nC,
+ (B +St—6)d— DO+ 456
y2 2 1 2
— B | nyCy0 + 7Y 0 +En(n—1)CA + -
(4.17)

Equations ((4.15)-(4.17)) represent the dimensionless model equations of the non-
isothermal CSTR for the general case, i.e. simultaneous modulation of all possible
modulated inputs: inlet concentration (Ca;), flow-rate (®), inlet temperature (6;) and
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temperature of the cooling/heating fluid (¢;). These equations can be easily reduced for
each specific case of the forced periodic modulation of the non-isothermal CSTR. For
instance, for single input modulation all dimensionless inputs which are not subject of
the periodic modulation are set to zero. For simultaneous modulation of two-inputs, all
others dimensionless inputs except modulated ones, should be set to zero and so on.

4.3. Stability analysis

As already stated, the NFR method is applicable only for stable systems while the non-
isothermal CSTR can be unstable. Because of that, it is important to analyze the stability
of the reactor and to determine the domain in which the non-isothermal CSTR s stable
first. By analyzing the characteristic equation which corresponds to the linearized
model, the stability and oscillatory domains of the system can be easily determined.

The characteristic equation of the system can be obtained after applying Laplace
transform on the linearized mathematical model of the non-isothermal CSTR:

dCy
I = 1+ a)Cy; — (1 +na)Cy —ayb + ad

(4.18)
dCp
?=HCA—CP+)/9—CD

(4.19)
do
e A+p+5t—=08)8; —(1+St+pBy)0 —npCy + (B +St—38)P + 656

(4.20)

after equating the denominator of the transfer functions to zero.

The characteristic equation of the non-isothermal CSTR defined with model equations
((4.2)-(4.4)) is

(s+ 1) x(s? +s(2+By+St+na) + (1 +na+py+naSt+S5t)) =0 (4.21)
The roots of this characteristic equation, i.e. the poles of the non-isothermal CSTR, are:

p1=-—1 (4.22)
P23 = Aps £\ Ajs — Bys (4.23)

where the following stability parameters Aps and Bys have been introduced
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(2 +na+St+py)
Ays = — 5

(4.24)
B,s = (1 + na + fy + naSt + St) (4.25)

As p;=-1 is always negative, the analysis of the roots of characteristic equation shows
that the non-isothermal CSTR will be stable if p, and ps have negative real parts, i.e., if
the following conditions are met (Nikoli¢ et al., 2014a):

A,s <0 and B,s >0 (4.26)

Thus, the NFR method and the concept of higher frequency response functions can be
applied for a forced periodically operated non-isothermal CSTR only if A<0 and
Bps>0, i.e. in the domain of the reactor stability.

The oscillatory domain can also be determined by analyzing the roots of the
characteristic equation. If all roots of the characteristic equation are real the system is
non-oscillatory, otherwise, if the roots of the characteristic equation are conjugate-
complex, the system will be oscillatory (Douglas, 1972).

Therefore, the system is oscillatory for Ay’<B,s, and otherwise, if Ay">B,s the system is
non-oscillatory.

The stability and oscillatory domains for the non-isothermal CSTR, depending on the
auxiliary parameters Ays and Bps, are graphically presented in Figure 4.1.

28

o1 STABLE UNSTABLE
OSCILLATORY OSCILLATORY
158+
2 2 _
@ A-B =0
10F
5_
STABLE "UNSTABLE
NONOSCILLATORY NONOSCILLATORY
L S D . 7 3 i 5
A

ps

Figure 4.1 Areas of stability and oscillatory for a non-isothermal CSTR, depending on
the stability parameters Aps and Bps
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If the characteristic equation of the non-isothermal CSTR is given in the standard form
of a second order system (Douglas, 1972)

s?+28w,s+w2=0 (4.27)

the damping coefficient (¢) and the natural frequency (wn) can also be determined from
the auxiliary stability parameters Aps and Bys:

f= -
By

(4.28)

wn = /By (4.29)

It is well known that a stable oscillatory system with damping coefficient less than
0.707 exhibits resonance, i.e., amplification of the inlet modulation for some input
frequencies (Douglas, 1972). The frequency at which the amplitude of the outlet is
maximal is called resonant frequency (Douglas, 1972).

For the non-isothermal CSTR which exhibits resonant behavior, the resonant frequency
can also be determined form the auxiliary parameters Aps and By from the following
equation:

w, = /Bps — 24,,° (4.30)

4.4. Definition of the frequency response functions

Single input modulation

For single input periodic modulations, the non-isothermal CSTR represents a nonlinear
system with one modulated input and three outputs, since modulation of each input will
cause change of the reactant concentration, the product concentration and the
temperature in the reactor.

Therefore, in order to describe the forced periodically operated non-isothermal CSTR
for single input modulation, it is necessary to derive three sets of FRFs for modulated
input.

For the general case of single input modulation, if the dimensionless input which is
periodically modulated is defined as X(z), in order to describe the system it is necessary
to derive three sets of FRFs which correlate three outputs and the input X(z)
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e Set 1: Gaix(®), Gazxx(w,-w),... - FRFs which correlate the dimensionless outlet
concentration of the reactant Ca(z) with the modulated dimensionless input X(z);

o Set 2: Gpyx(w), Gpoxx(w,-w),... - FRFs which correlate the dimensionless outlet
concentration of the product Cp(z) with the modulated dimensionless input X(z);

e Set 3: Fix(w), Faxx(w,-®),... - FRFs which correlate the dimensionless outlet
temperature 6(z) with the modulated dimensionless input X(z).

If flow-rate is the input which is modulated, in order to evaluate the possible
improvement, the reactant H ASO FRF (Hazrr(w,-®)) should be derived from the
reactant G-FRFs Gayr(®w) and Gazrr(w,-w) (Eg. (2.44)) and the product H ASO FRF
(Hp2rr(@,-m)) should be derived from the product G-FRFs Gp1 (@) and Gpyrr(w,-)

(Eq. (2.45)).
Simultaneous modulation of two inputs

When two inputs of the non-isothermal CSTR are simultaneously periodically
modulated, it represents a nonlinear system with two modulated inputs and three
outputs: the outlet concentration of the reactant, the outlet concentration of the product
and the outlet temperature.

If the dimensionless inputs which are periodically modulated are denoted as X(z) and
Z(7), in order to describe the system, it is necessary to derive nine sets of FRFs: three
sets of FRFs which correspond to the single input modulation of input X(z) (listed
above), three sets of FRFs which correspond to single input modulation of input Z(z):

e Set 4: Garz(w), Gazzz(w,-w),...- FRFs which correlate the dimensionless outlet
concentration of the reactant Ca(z) with the modulated dimensionless input Z(z);

e Set 5: Gpyz(w), Gpazz(w,-w),...- FRFs which correlate the dimensionless outlet
concentration of the product Cp(z) with the modulated dimensionless input Z(z);

e Set 6: F17(w), Fozz(w,-w),... - FRFs which correlate the dimensionless outlet
temperature 6(z) with the modulated dimensionless input Z(z);

and three sets of cross FRFs, which correspond to simultaneous modulation of both
inputs, X(z) and Z(z)

o Set 7: Guxz(w,-w), Gazxz(-w,w),... - The cross FRFs which correlate the
dimensionless outlet concentration of the reactant Ca(z) with the modulated
dimensionless inputs X(z) and Z(z);
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e Set 8 Gpyxz(w,-w), Gpaxz(-w,w),... - The cross FRFs which correlate the
dimensionless outlet concentration of the product Cp(z) with the modulated
dimensionless inputs X(z) and Z(z);

o Set 9. Foxz(w,-w), Foxz(-w,w),... -The cross FRFs which correlate the
dimensionless outlet temperature 6(z) with the modulated dimensionless inputs
X(z) and Z(7).

For the case when the flow-rate and inlet concentration are simultaneously modulated,
the reactant cross H ASO FRF Haz cr(w,-w) should be derived from the reactant first
order G-FRF Ga1c(w) and the reactant cross ASO FRF Gaz cr(w,-») (Eg. (2.69)) and
the product cross H ASO FRF Hp; cr(w,-@) needs to be derived from the product first
order G FRF Gp; c(w) and the product cross ASO FRF Gp; cr(w,-@) (EQ. (2.70)).

Since we are interested in the improvement of the reactor performance, i.e. increase of
reactant conversion or product yield, the outlet temperature is not of interest.
Nevertheless, if it is necessary to follow the temperature in the reactor from the aspect
of safety and equipment limitations, the mean outlet temperature can be estimated in an
analogous way as the outlet concentrations, from the ASO FRFs F;,xx(w,-w) or/and
F22z(w,-) (and the cross ASO FRF Faxz(w,-w) for simultaneous modulation of two
inputs), which correlate the outlet temperature with the modulated input(s).

The derivation of the F-FRFs will be give, since they need to be derived in the process
of the derivation of the G-FRFs, but without their further analysis. The final expressions
for the F FRFs will be given in Appendix B.2, B.3 and B.4.

4.5. Derivation procedure of the FRFs

The basic steps of the procedure for derivation of the frequency response functions for
forced periodically operated non-isothermal CSTRs, similar as for the isothermal
CSTRs, are:

1. For single input modulation, the modulated dimensionless input X(z) (inlet
concentration Cai(z), flow-rate ®(7), inlet temperature 6i(z) or temperature of the
heating/cooling fluid (7)) is defined in the form of a co-sinusoidal function,
while for simultaneous modulation of two-inputs, the two inputs are defined in
the form of co-sinusoidal functions with equal frequencies, different amplitudes
and a phase shift between them,
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2. The outputs: the dimensionless outlet concentration of the reactant Ca(z), the
dimensionless outlet concentration of the product Cp(z) and the dimensionless
outlet temperature 6(z), are expressed in the Volterra series form,

3. The expressions for the dimensionless modulated input(s), from step 1 and
dimensionless outputs, from step 2, are substituted into the corresponding
dimensionless model equations (Eqgs. (4.15)-(4.17)) while all dimensionless
inputs which are not modulated should be equated to zero,

4. The method of harmonic probing is applied to the equations obtained in step 3,
i.e., the terms with the same amplitude and frequency are collected and equated
to zero,

5. The equations obtained in step 4 are solved.

As a result of the derivation procedure the final expressions for the ASO FRFs
(Grzxx(@,-®), Gpaxx(w,-w), Gazzz(®,-®), Gpzzz(w,-®)) and the cross ASO FRFs
((Gazxz(w,-®), Gprxz(-®,w), Gpaxz(w,-w) and Gpyxz(-w,w)) will be obtained.
Additionally, the H ASO FRFs should be derived for flow-rate modulation (Hazrr(,-
), Hp2rr(w,-w)) and cross H ASO FRFs for simultaneous modulation of inlet
concentration and flow-rate (Hazcr(w,-®), Hp2cr(®,-®)) from some of the derived G
FRFs. Considering that the ASO FRFs Ga(w,-w) is a conjugate complex function of
G2(-w,w), which is also valid for cross ASO FRFs as well as for the H ASO FRFs, only
one of them will be given (Ga(w,-w) or Ha(w,-w)).

For single input modulation, the final expressions for the first and the ASO FRFs which
correlate the outlet concentrations of the reactant and the product with each modulated
input (inlet concentration, flow-rate, inlet temperature and temperature of the
cooling/heating fluid), the G-functions, are obtained and given below, as well as the H-
functions for flow-rate modulation. The basic steps of the derivation procedure for each
modulated input are given in Appendix B.2. The ASO FRFs, expressed based on the
first order FRFs are also given in Appendix B.2.

Furthermore, the cross ASO FRFs for simultaneous modulation of the inlet
concentration and inlet temperature, as well as, both the G and the H cross ASO FRFs
for simultaneous modulation of inlet concentration and flow-rate, are derived and given
below. The basic steps of the derivation procedure for simultaneous modulation of the
inlet concentration and inlet temperature are given in Appendix B.3, for simultaneous
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modulation of the inlet concentration and flow-rate in Appendix B.4. Here, only the
final expressions are given.

4.6. The G-frequency response functions

4.6.1. Inlet concentration modulation
The first order FRFs Gaj c(w) and Gpy c(w)

A1+a)A+St+ By +jw)

Gprc(w) = B,s — w2 — 24,5 wj
(4.31)
n(l+a)(1+St+jw)
Gpic(w) = : 2 .
(1 +]a))(BpS - W — ZAPSa)])
(4.32)
The ASO FRFs GAZ,CC((U,‘(U) and szﬁcc(a),-a))
G on ) a(1+a)2(1+5t)x A
A2,cc\W, —W) = —
2Bps (Bys — wz)z + 442, w?
(4.33)
G oc ) (1+a)2(1+5t)>< A
p2,cc\W, —W) =
2Bps (Bys — a)z)z + 4A%; w?
(4.34)

In the expressions of the ASO FRFs Gazcc(w,-@) and Gpzcc(w,-w), an auxiliary

parameter (A) is introduced

A= N + A, (4.35)
where the A; and A, are defined as:

A =n(n—-1) (4.36)
A, = n?((1+ St)? — 2B%y) — n(1 + St + By)? (4.37)
4.6.2. Flow-rate modulation

The first order FRFs Gay r(w) and Gpy ()

a(l+St—y(St—296) + jw)

B,

Garr(w) = .
ALF s — w? — 24, wf

(4.38)
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1+St—ySt—906)+jw)

Gpop(@) = = Bs — w? — 2A,,0)
(4.39)
The ASO FRFs Gaz rr(®,-w) and Gp; rr(,-0)
Gaz,rr (W, —w) = — - X %
2Bps (Bys — w?)" + 4A%, w?
(4.40)
Gpypr(w, —w) = ! X g
2Bps (Bys — w?)" + 44%,w?
(4.41)

An auxiliary parameter Q was introduced in the numerators of the final expressions of
the ASO FRFs GAZ'FF(C(),-C!)) and szﬁpp(w,-w):

Q=0 w?+Q, (4.42)

Q; and Q; are functions of the reaction order n and all auxiliary parameters, which can
be presented with the following expressions:

Q1 =nn—1a?(1 +St) + 2na(1 + St)(L +y(B + St — 5))
+ QA+ St+By)+y(y—2)A +St)(B + St —5)?)
(4.43)
Q, =n(n— Da1 + SO + St — y(St — 5))°
+y( —2)A +SOH(B + (St — &) (1 +na))’
+ 2nay(1 + SO + (St = 8)(1 + na))(1 + St —y(St — 8))
+2(1 4 St + By + na(1 + St)) ((1 + By + St)(1 + St —y(St — §))

—y(B + (St — 8)(1 +na) )

(4.44)
4.6.3. Modulation of inlet temperature
The first order FRFs Ga1 1(w) and Gpy ()
—ay(1+ B+ St—9)
G w) = -
Al,T( ) Bps _ (1)2 _ ZAPS(U]
(4.45)
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y(1+ B+ St—206)

Gpyr(w) = Bys — w? — 24,,0j
(4.46)

The ASO FRFs GAZ,TT((U,‘(U) and GPZ,TT((U,‘(U)

ay(1+ St)(1+ B + St — 5)? LY
Gz (W, —w) = — B X ) R
ps (Bys — w?)" +44%w
(4.47)
y(1+St)(1 + B + St — 6)? DY
Gpyrr (0, —w) = °B X 5
ps (Bys — w?)" + 443, w?

(4.48)

The auxiliary parameter W used, in the numerators of the ASO FRFs Gaz 11(w,-®) and
Gpz211(w,-w) is defined as:

Y=Y w+¥, (4.49)
where the parameters ¥; and W, are defined as follows:

Y1 = -2) (4.50)
Y, = —2n%a’> —a(4+ay)n+ (y — 2) (4.51)
4.6.4. Modulation of temperature of the cooling/heating fluid

The first order FRFs Ga13(w) and Gpy ()

Gt (@) —ayd
w) = .
At B,s — w2 — 24, 0]
(4.52)
Y8
G w) = :
p1 (@) B,s — w? — 24, wj
(4.53)
The ASO FRFs GAZ,JJ(w,'w) and sz,JJ(w,-w)
ay85?(1 + St) ¥
Gazyy (0, —w) = = 2B % 2)? 2 .2
ps (Bps ) ) + 445, w
(4.54)
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y82(1 + St) o ¥
2By (Bps - w2)2 + 442, w?

GPZ,]] (w,—w) =

(4.55)

The auxiliary parameter which figures in the expressions in the ASO FRFs Gaz ji(w,-w)
and Gpy,j3(w,-w) is the same as in the ASO FRFs Gaz t1(w,-) and Gpy 11(w,-), defined
with Egs. ((4.49)-(4.51)).

4.6.5. Simultaneous modulation of inlet concentration and inlet temperature
The cross ASO FRFs Gaz cr(w,-w) and Gp, c1(o,-o)

The cross ASO FRF Gaz c1(w,-)

Gaz,cr(w, —w)
_nay(l +a)A+St)(1+ B +St—0)

By
y ((1+St+a(l+St+By) +28(1 +na) + 0?) + jw(a — 28 — St))

(Bys — w2)" + 442, w?

(4.56)

can be written in the following form

Gaz,cr(w,—w) = Re (GAZ,CT (w, —w)) + jIm (GAZ,CT (w, —w)) (4.57)
where the real and imaginary parts of the cross ASO FRF Ga cr(w,-) are defined as:

Re (GAZ,CT(wv —w))
nay(l+a)(A +St)(L+ B+ St —96)
= _ B
y 1+ St+a(l+St+By)+28(1 +na) + w?)

(Bps — wz)z + 4A% w?

(4.58)

_nozy(l+0()(1+St)(1+ﬁ+5t—6)>< w(a —2p —St)

Bys (Bps - wz)z + 4A%; w?

Im (GAZ,CT(w' —a))) =
(4.59)

In analogy, the cross ASO FRF Gp; cr(w,-w)
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Gpacr (0, —w)
B ny(l+a)(1+St)(1+ B + St —6)

B
y ((1+St+a(l+St+By) +2B(1 +na) + w?) + jw(a — 28 — St))

(Bys — w2)" + 442, w?

can be written in the form

Gpycr(w, —w) = Re (GPZ,CT (w, —w)) + jim (GPZ,CT (w, —0)))

(4.60)

(4.61)

where the real and imaginary parts of the cross ASO FRF Gp; ct(w,-) are defined as:

Re (sz,cr(w' —a)))
B ny(l+a)(1+St)(A+ L +St—96)
= 5,

8 A+ St+a(l+St+py)+26(1+na) + w?)

(Bys — 2)° + 442,02

ny(1+a)(1+St)(1 +[>’+St—5)>< w(a— 2 —St)
Bys (Bys — w2)2 + 442, w?

Im (GPZ,CT((U' —CU)) =

The cross ASO terms G a2 cr(p,®) and G py c1(p,0)

Gazcr (@, w) = cos(p) Re (GAZ,CT (w, —w)) + sin(p) Im (GAZ,CT (w, —w))
Gha,cr(p, @) = cos(@) Re (Gpaer (@, —w)) + sin(@) Im (Gpa,cr (@, —w))
The optimal phase differences

Im (GAZ,CT (w, —w)

Re (Gaz,er (@, —w)§> -
)

Popt A (w) = arctan

Im (GPZ,CT (w, —w)
Popt P (w) = arctan (

Re | Gpycr(w, —w)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)
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4.6.6. Simultaneous modulation of inlet concentration and flow-rate
The cross ASO FRFs GAzycp(w,-w) and sz,cp(w,-w)
The cross ASO FRF Gaz cr(w,-w), can be written in the following way

1+a) o (I + joll))
Bps (Bps - w2)2 + 447 w?

GAZ,CF((U; —w) =

(4.68)
where two additional auxiliary parameters have been introduced, Il and IT,.
The auxiliary parameter Iz can be written in the polynomial form:
Iy = gy 0* + Mgyw? + Tgs (4.69)
with
[ =14+ By + St (4.70)
Mg, = n*a?By

+na(2(1+ By +SO? + (1 + By + St) — 2(1 + St)(1 + By + St)
+By +a(l+St)—y(B+St—8)(1+5)+ (1+ Py +St)’
(4.71)
Mpz = n?a?By(1+ SO)(1+ St — (1 + 2(St — 6)))
+na (1 + SO+ By + St)? — By (1 + fy + St)
+a(l+py+SO(A+S)—y(St—68)) —y(B+St—8)(1+S)(1
+5t+2p))
(4.72)
Igr1, I1r2 and ITgs are functions of the reaction order and parameters a, £, y, 0 and St.
The auxiliary parameter I, can also be given in the polynomial form
I, = Mjw? + 10, (4.73)

where the parameter I1;; is a function of auxiliary parameters £, y and St (and is equal to
ITry)

and IT;, is a function of the reaction order and all auxiliary parameters (o, 3, y, 6 and St)

93



I, = nzazﬁ]’
+ na((1+ By + St)?> + By(1 + By + St) + By
—A+SHA+By+St)—y(B+St—6)1+St)(a—St—2pB))
+ (1 + By + St)3

(4.75)
The cross ASO FRF Gp;, cr(w,-w) can be written in the following way:
1+ a) (T + joIy)
Gpycr(w,—w) = B X R 12
Abps (w2 +1) ((Bps —w?) + 4A,2,Sa)2)
(4.76)
by introducing the auxiliary functions I'r and I’
T = Bys ((Bys — 0?)" +44%,07) 0? — (w? + DIy 4.77)
I = By ((Bys — 0?)’ +44%,02) — (? + DI, (4.78)

The auxiliary functions I'r and I'y can also be presented in their developed polynomial
forms which are, owing to their complexity, given in Appendix B5.

4.7. The H-asymmetrical second order frequency response functions

4.7.1. Flow-rate modulation
The ASO FRFs HAZYFF(w,-w) and sz,FF(w,-w)

a QH

X
2
2Bps (Bps — w?)" + 443, w?

HAZ,FF (w,~w) = —

(4.79)

1 Qy
X 2
2Bps (Bps — w?)" + 44%, w?

Hpy pr(w, —w) =

(4.80)

The auxiliary parameter Qy, introduced in the numerator of the ASO FRFs Haz rr(®,-®)

and HPQYFF(C(),-CO) is:
‘Q‘H = .QlH(J)Z + ‘QZH (481)

where Qi and Q,y are functions of the auxiliary functions Q; and Q,, respectively and,
therefore of the reaction order n and all auxiliary parameters («, £, 7, 6 and St):
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Qy = Q1 + 2B, (1 + St — (St — 6)) + 44,5 Bys

Qop = Q; —2(1+ St —y(St — 6))BL

4.7.2. Simultaneous modulation of inlet concentration and flow-rate
The cross ASO FRFs Haz cr(o,-@) and Hp; cr(w,-o)

The cross ASO FRF Haz cr(w,-w) can be written in the following way:

1+a % (HRH +](1)H1H)
Bps (Bps — w2)2 + 447 w?

Hpp or(w,—w) =

with the newly introduced auxiliary functions Iy and ITj4:
Mgy = Mg + Bys(Bys — @?)(1 + St + By) — 24,5 B,sw?

My =1} + Bys (Bys — w?) + 24,5B,s (1 + St + By)

Their developed polynomial forms are given in Appendix B6.

The cross ASO FRF Haz cr(w,-w) can also be given in the following form:

Hyp cr(w,—w) = Re (HAZ,CF (w, —w)) + jIm (HAZ,CF (w, —w))

where its real and imaginary parts are defined as follows

1+« HRH

X
2
Bys (Bys — w?)" + 4A%, w?

Re (HAZ,CF (w, —CU)) =

1+a wll
Im (HAZ,CF((U: —a))) =5 X ZIH
ps  (Bps — w?)" + 44%w?

The cross ASO FRF Hp, cr(w,-w) can be expressed in the following way:
1+« FRH +j(1)FIH

X 2
aBps (w2 +1) ((Bps —w?) + 4A§Sw2)

Hpy cr(w, —w) =

where:

(4.82)

(4.83)

(4.84)

(4.85)

(4.86)

(4.87)

(4.88)

(4.89)

(4.90)

Tiir = T + nBys (1 + St + BY)(Bps — w? + 2455 07) + @ (Bys — 0?) = 24507

(4.91)
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iy =T} + naB,, (Bps — w? + 24,,0% + (14 St + By) (ZAPS — (Bys — a)z))>
(4.92)

(The auxiliary functions I'ry and I'y are also given in their developed polynomial form
in Appendix B7).

The cross ASO FRF Hp, ce(w,-w) can also be given in the following form:
Hpy cr(w, —w) = Re (HPZ,CF((U’ —a))) + jIm (HPZ,CF((U’ —w)) (4.93)

where its real and imaginary parts are defined as:

1+« % FRH
aBps (w2 +1) ((Bps - a)z)z + 4A,2,Sa)2)

Re (HPZ,CF((U; —00)) =

(4.94)
1+a wl’
Im (HPZ,CF((U; —a))) =—5 X L
ABps  (w?2+1) ((Bps —w?) + 4A,2,Sa)2)
(4.95)

The cross ASO terms H a2 cr(@,) and H'py cr(p,0)
Hjocr (¢ @) = cos(9) Re (Hap,cr (@, ~w)) + sin(g) Im (Hap cp (0, —w))  (4.96)
Hp,cr (@, @) = cos(9) Re (Hpzcr(w, —)) + sin(@) Im (Hpacr(w, —w))  (4.97)

4.8. Correlations between the reactant and product asymmetrical frequency
response functions and terms
Single input modulation

For single input modulation of the inlet concentration, inlet temperature and temperature
of the cooling/heating fluid, the reactant G-ASO FRFs and product G-ASO FRFs are
correlated as follows

1
Gpoxx (W, —w) = —EGAz,xx (w,—w) X=CT,]
(4.98)

For flow-rate modulation, the reactant H-ASO FRF and product H-ASO FRF are
correlated in an analogous way
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1
Hpy pr(w, —w) = _EHAZ,FF (w, —w)
(4.99)

In a similar way as for the isothermal CSTR, for single input modulation of the inlet
concentration, inlet temperature, and temperature of the cooling/heating fluid of the
non-isothermal CSTR, the DC components of the outlet reactant concentration (Eg.
(2.12)) and the DC component of outlet concentration of the product (Eg. (2.13)) are
always proportional, and have opposite signs.

CP,DC = - E CA,DC
(4.100)

This is also valid for the reactant and product dimensionless DC component of the outlet
molar flow-rate (Egs. (2.36) and (2.37)) when the flow-rate is periodically modulated:

1
NP,DC = _ENA,DC

(4.101)
As a consequence of these correlations, the reactant conversion and product yield are
equal, as well as their relative changes (x40 = Yppo, AXapo = AYpp,) (EGS. (2.24)-
(2.27)) and (2.52)-(2.55)). Consequently, it is enough to focus on analysis of either the
reactant or product FRFs and DC components, in order to estimate the possible
improvements of the periodically operated non-isothermal CSTRs.

Simultaneous modulation of inlet concentration and inlet temperature

When inlet concentration and inlet temperature are simultaneous periodically
modulated, the cross ASO FRFs corresponding to the outlet reactant concentration and
outlet product concentration are proportional and have the opposite signs (similar as for
the single input modulations).

Gpocr(w,—w) = — . Gaz,cr(w, —w)
(4.102)
The same is true for their real and imaginary parts
Re (sz cr(w —w)) = - lRe (GAZ cr(@ —w))
’ ’ a ) )
(4.103)
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1
Im (GPZ,CT (w, —a))) == Elm (GAZ,CT (w, —0)))
(4.104)
and the cross ASO terms

1
G;Z,cr(fp; w) = _EGZZ,CT (o, w)

(4.105)

Considering the correlation between the cross ASO FRFs Gaz c1(w,-@) and Gpz cr(w,-w)
(Eq. (4.102)) and their real (Eg. (4.103)) and imaginary parts (Eq. (4.104)), it can be
concluded that the optimal phase difference which minimizes the outlet concentration of
the reactant popea(w) (EQ. (2.28)) and the phase difference which maximizes the outlet
concentration of the product gopp(w) (EQ. (2.29)) are equal.

<p0pt,A ((1)) = (popt,P ((1)) = (popt (0)) (4106)

This optimal phase difference in the same time maximizes the reactant conversion
reactant and the product yield.

As a consequence of all the facts explained above, the outlet dimensionless DC
components of the outlet product (Eq. (2.16)) and reactant (Eq. (2.18)) concentrations,
for simultaneous modulation of inlet concentration and inlet temperature, are also
proportional and have opposite signs:

1
CP,DC = - E CA,DC

(4.107)
Therefore, similarly as for single input modulations, it can be shown that the conversion
of the reactant and yield of the product are equal (x4 ,, = Yp,,) for this case, as well as,

their relative changes owing to periodic operation (Ax, ,, = AYp ).

Simultaneous modulation of inlet concentration and flow-rate

For simultaneous modulation of inlet concentration and flow-rate, the cross ASO FRFs
HAZ,CF(C(),-CO) and szycp(a),-a)) and the cross ASO terms H*Azycp(a),w) and H*pzlcp(a),gﬂ)
are correlated in same way as for the isothermal CSTR (Eqgs. (3.46) and (3.47)):

1+a

1
Hpy cr(w, —w) = _EHAZ,CF((U’ —w) +

(4.108)
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1+a
a

1
Hpy cr(w, @) = _EHZZ'CF (w, @) + cos(p)
(4.109)

It is important to notice that the correlation between the cross ASO FRFs Ha cr(w,-o)
and Hp, cr(w,-w) (EQ. (4.108)) for simultaneous modulation of inlet concentration and
flow-rate for the non-isothermal CSTR is reduced to the same correlation as for the
isothermal CSTR:

1+«
a

1 Ao\ /Ap
Nppc = — aNA,DC + 2 (7) (7) cos(p)

(4.110)

Consequently, all conclusions given for the isothermal CSTR with simultaneous
modulation of the inlet concentration and flow-rate, concerning the equality between the
reactant conversion and product yield, as well as theirs relative changes, are also valid
for the non-isothermal CSTR.

4.9. Estimating the possible improvement throughout the sign analysis of the
asymmetrical second order frequency response functions

The ASO FRFs corresponding to the outlet concentration of the reactant Ga, xx(w,-®)
and the ASO FRFs which correspond to the outlet concentration of the product
Gpa.xx(w,-w), for single input modulations always have opposite signs. Therefore, the
sign analysis of the ASO FRFs for single input modulations will be performed only for
the ASO FRFs Gazxx(w,-@) (the desirable sign is negative), and these results will
directly be used to predict the sign of Gp, xx(w,-w).

From the definitions of the dimensionless auxiliary parameters (Eq. (4.8)), it can be
concluded that the auxiliary parameters o, y, 6 and St are always positive, while the
auxiliary parameter f is positive for endothermic and negative for exothermic reactions.
The sign of the stability parameters for stable systems are also defined, Aps<0 and Bps>0.

Considering that the forcing frequency represents a new variable of the forced
periodically operated reactors which can be varied as desired, the sign of the ASO FRFs
will be analyzed in respect to the forcing frequency, as for any investigated system, the
system parameters are known (Nikoli¢ et al., 2014a, 2014b).

The sign analysis of the real and imaginary parts of the cross ASO FRFs for
simultaneous modulation of inlet concentration and inlet temperature will also be
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analyzed in order to determine the range of phase difference which should be used in
order to ensure the desired signs of the cross ASO terms.

4.9.1. Asymmetrical second order FRFs for inlet concentration modulation

The sign analysis of the ASO FRF Gazcc(w,-@) (EQ.(4.33)) can be reduced to the sign
analysis of the term A, since all other terms are positive. The sign of the ASO FRF

Gazcc(w,-w) depends on the sign of the term A in the following way:
sign(Gaz cc(w, —w)) = —sign(A) (4.111)

The term A depends on the characteristics of the reactor system (throughout the reaction
order n and the auxiliary parameters f, y and St) and forcing frequency w, which is a
parameter of periodic operation.

In general, the ASO FRF Ga, cc(w,-) can change its sign if the following equation:

GAZ,CC((U; —w)=0A=0=

n(n—1Dw? +n?((1 +St)? —2B%y) —n(1+St+By)? =0

(4.112)
has a real solution, which is then given with the following expression
J(l + St + By)? —n((1 + St)? — 2B%y)
Wo,c =
n—1
(4.113)

If Eq. (4.112) has no real solutions, the Gaycc(w,-w) has the same sign in the whole
frequency range. Eq. (4.112) will have real solutions if the numerator and denominator
of the rational function under the square root in Eq. (4.113) have the same sign. The
sign in the denominator depends only on reaction order and changes for n=1. The sign
of the numerator also depends on the reaction order and changes for:

(@ +St+py)?
CT(A+S5)2-282%y

n=n
(4.114)
which can be calculated from the auxiliary parameters $, y and St.

The results of the sign analysis of the ASO FRF Gaz cc(w,-@) and Gpy cc(w,-w) (which
has the opposite sign (Eq. (4.98))) are summarized and presented in Table 4.2.
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Table 4.2 The summary of the sign analysis results for Ga, cc(w,-w) and Gp cc(w,-®)

. Gaz,ce(w,-) Gpz,cc(w,-)
Condition Frequency range o . o ]
(negative is desirable) | (positive is desirable)

n=0 Yo zero zero
n<nc and n<0 Yo negative positive
n<nc and 0<n<1 \0)) positive negative
nc<1and n=1 Vo negative positive
w<woc positive negative

n<nc and n>1 - —
W>woc negative positive
w<mwoc positive negative

n>nc and n<0 _ _
W>woc negative positive
w<woc negative positive

n>nc and 0<n<1 — -
W>woc positive negative
ni < 1landn=1 Vo positive negative

C

n>nc and n>1 Vo negative positive

4.9.2. Asymmetrical second order FRFs for flow-rate modulation

The sign of the ASO FRF Ha,rr(w,-w) depends on the characteristics of the reactor
system (reaction order n and all auxiliary parameters) and the forcing frequency w.

The sign of ASO FRF Haz rr(w,-@) depends on the auxiliary function in the numerator
Qy in the following way (Eq. (4.79)):

sign(Hyz pr(w, —w)) = —sign(Qy) (4.115)

Therefore, the sign analysis of the ASO FRF Hazrr(w,-@) can be reduced to the sign
analysis of the function Qu, defined by equations ((4.81)-(4.83)).

The frequency for which the function Hazrr(w,-w) can change its sign can be
determined from the following condition:

HAZ,FF((U: _w) =0 < Q‘H =0 Qlywz + QZH =0 (4116)

The solution of Eq. (4.116) is real if the complex functions Q3 and Qo have opposite
signs
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(4.117)

If auxiliary functions Qi and Q,y have the same sign, the ASO FRF Haz rr(w,-w) will

have the same sign in the whole frequency range.

The results of the sign analysis of the ASO FRFs Ha, re(w,-w) and Hp, pr(w,-w) are

summarized in the Table 4.3. As mentioned, these ASO FRFs will always have opposite
signs (Egs. (4.99)).

Table 4.3 The summary of the sign analysis results for Haz rr(w,-®) and Hp, pr(w,-o)

Haz rr(o,-w)

Hp2 rr(w,-w)

Sign of Sign of Range of forcing
O Qi frequency (negative is (positive is
desirable) desirable)
w<woF positive negative
positive negative
W>wo F negative positive
w<wo negative positive
negative positive
W>wo F positive negative
positive positive Vw negative positive
negative negative Vo positive negative
negative Yw positive negative
zero
positive Vw negative positive
positive Vw negative positive
zero
negative Yw positive negative
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4.9.3. Asymmetrical second order FRFs for inlet temperature modulation

All terms in the asymmetrical second order FRF Ga mr(w,-w) are positive, except the
term W which can be positive or negative. Based on this, the sign of ASO FRF
Gaz11(w,-w) depends on the sign of the term W in the following way:

sign(Gazrr(w, —w)) = —sign(¥) (4.118)

The sign of the term ¥ depends on the reaction order n, auxiliary parameters o and y,
which are characteristic of the investigated system, and the forcing frequency w.

The ASO FRF for a particular investigated reaction system (with defined values of
reaction order n and auxiliary parameters a and y), can have the same sign in the whole
frequency range or it can change the sign, depending on whether the solutions of the
following equation:

Grorr(w,—w) =0 ¥ =(y—-2)w’*-2a’n* —a(d+ay)n+(y—2)=0
(4.119)

_ [2a'n?t+a(d+ay)n—(y —2)
Wo,r = Y =2
(4.120)
are real or complex-conjugates.

The solution for ay, r will be real if the numerator and denominator under the square
root have the same signs and complex if these signs are different. Further, the numerator
depends on the reaction order, and it will change its sign for

—(4+ay)+Ja?y? +8ay +vy
Nryr2 = 4ot

(4.121)

It should be noticed that nt; and nr, are always real. If we choose that the solutions are
nrq < nry, the final results of the sign analysis of the ASO FRF Gaz 11(w,-w) are given
in Table 4.4. The sign of the ASO FRF Gp, r1(w,-@) will be always opposite to the sign
of Gaz 11(w,-w) (Eq. (4.98)).
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Table 4.4 The summary of the sign analysis results for Gaz 11(®,-®) and Gaz ji(w,-w)
(negative sign is desirable), Gp, 11(w,-®) and Gp; j3(w,-w) (positive sign is desirable)

GAZ,TT(CU,-CO) and sz,TT(a),-a)) and
Reaction Sign of (- Forcing Gaz.n(®,-0) Gra.n(w,-0)
order, n 2) frequency, e (negative is (positive is
desirable) desirable)
w<wo T positive negative
positive
n<nr; or W>Wo T negative positive
n>nt» . -
negative or . negative
Vo positive
zero
w<woT negative positive
negative
W>Wo T positive negative
Nt1<N<Nr
positive or ) positive
Yo negative
zero
positive Vo negative positive
n=nrt; Or - — -
negative Yo positive negative
n=nNm
zero Yo zero zero

4.9.4. Asymmetrical second order FRFs for modulation of temperature of the
cooling/heating fluid

Again, the term W in the numerator is the only one that determines the sign of the ASO
FRFs Ga2i(w,-w) and Gpyy(w,-w), and it can change its sign (all other terms are
positive). As a result, the sign analysis of the ASO FRF Gaz y(w,-w), is practically
identical as in the previous case, for the ASO FRF Gaz r(w,-w). Consequently, the signs
of the ASO FRFs Gaz 33(,-®) and Gp; j3(w,-w) are the same as the signs of Gaz rr(w,-w)
and Gp, 11(w,-w), respectively, and they can be predicted by using the results given in
Table 4.4.
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4.9.5. The cross asymmetrical second order terms for simultaneous modulation of
inlet concentration and inlet temperature

The sign of the cross ASO term G act(p,w) depends on the sign of the real and
imaginary parts of the cross ASO FRF Ga, cr(w,-w) and the phase difference between
the two modulated inputs (Eq. (4.64)). As already explained in Chapter Il in detail, in
this case the cross ASO term can always have the desired sign, by appropriate choice of
the phase difference. The sign analysis of the real and imaginary parts of the cross ASO
FRF Gazct(w,-@) will be done and the recommended phase difference which will
ensure negative sign of the cross ASO term G’ aycr(p,) will be given. Based on signs
of the real and imaginary parts of the cross ASO FRF Gaz cr(w,-w), the sign of the real
and imaginary parts of the cross ASO FRF Gp;, c1(w,-w) are also determined considering
the previously concluded fact that these FRFs have opposite signs, as given with (Egs.
(4.103) and (4.104)). Based on this, and the results given in Tables 2.1 and 2.2, the
recommended phase difference which will give the negative value of the cross ASO
term G a2 cr(p,@) will, in the same time, ensure the positive sign of the cross ASO term

G p2c1(p0).
Signs of Re(GAZYCT(w,-w)) and Re(sz,CT(w,-w))

The sign of the real part of the cross ASO FRF Gazcr(w,-w) depends on the reaction
order n, newly introduced auxiliary parameter in the denominator of the cross ASO FRF

Grzcr(w,-):
Er=1+St+a(1+St+py)+28(1+na) (4.122)
and, in some cases, on the forcing frequency w.

The real part of the cross ASO FRF Gazcr(w,-w) changes its sign if <0, for a
frequency

wO,CT = _gR (4123)
otherwise if eg=0, it has the same sign in the whole frequency range.

The results of the sign analysis of Re(Gazct(w,-)), as a function of the reaction order
n, auxiliary parameter ez and forcing frequency, are summarized in Table 4.5.
According to equation (4.103), the sign of the real part of the ASO FRF Gpy cr(w,-w) is
always the opposite.
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Table 4.5 The summary of the sign analysis results for the real parts of Ga, cr(w,-®) and

Gpoc1(w,-m)

Reaction Forcing
€R Re(Gpacr(w, —w)) | Re(Gpyor(w, —w))
order, n frequency, w
n=0 any Vo Zero Zero
positive or ) -
Yo negative positive
zero
n>0 w<wocT positive negative
negative W=wocT zero ZEero
W>wo,cT negative positive
positive or . .
Yo positive negative
zero
n<0 w<wocT negative positive
negative W=wocT zero Zero
W>wo cT positive negative
Signs of Im(Gaz cr(e,-®)) and Im(Gp, c1(w,-m))
The sign of Im(Gaz cr(w,-®)) depends on the reaction order n and the term:
E=a—-2B-St (4.124)

The final results of the sign analysis for the imaginary part of FRF Gazcr(w,-w), as a

function of the reaction order n and the sign of the term ¢, are given in Table 4.6, as

well as the signs of the imaginary part of cross ASO FRF Gp; cr(w,-w) (EQ. (4.104)).
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Table 4.6 The summary of the sign analysis results for the imaginary parts of Gaz ct(w,-
w) and Gpy,cr(w,-m)

Reaction order, n €l Im(Gpa,cr(w,—w)) | Im(Gpycr(w, —w))
n=0 any Zero Zero
zero zero zero
n>0 positive negative positive
negative positive negative
zero zero zero
n<0 positive positive negative
negative negative positive

After determining the signs of the real and imaginary parts of the cross ASO FRFs
Gazct(w,-w) or Gp,cr(w,-»), from the general case for two-input modulation (Tables
2.1 or 2.2), the final conclusions for the recommended phase difference which should be
used in order to obtain the desirable signs can be made.

The optimal phase difference, will always be in the recommended range of the phase
difference, which leads to desirable influence of the cross effect.

4.10. Numerical example NONISO-1

In order to illustrate the theoretical results obtained by the NFR method for forced
periodically operated non-isothermal CSTRs, a numerical example is chosen for
simulation of the ASO FRFs, cross ASO FRFs and analysis of their signs, as well as for
comparison of the results obtained by the NFR method with numerical integration. The
analysis is performed for single input modulations of the inlet concentration, flow-rate,
inlet temperature, temperature of the cooling/heating fluid, for simultaneous modulation
of inlet concentration and inlet temperature and for simultaneous modulation of inlet
concentration and flow-rate. This numerical example will be referred as NONISO-1.
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4.10.1. Definition of the Numerical example NONISO-1

The values of the model parameters used for simulations are given in Table 4.7. The
parameters listed in Table 4.7 correspond to an optimized exothermal reactor with a
first-order reaction, taken from of a textbook by Douglas (Douglas, 1972).

Table 4.7 Parameters for the non-isothermal CSTR named as Numerical example
NONISO-1

Parameter Value
Reaction order, n 1
Stochiometric coefficient, vp 1
Volume of the reactor, V (m°) 1.439

Pre-exponential factor of the reaction rate constant, k, (1/min) | 4.3177 x 10°

Activation energy, Ea (kJ/kmol) 50242
Heat capacity, pc, (kJ/(m°K)) 4186.8
Heat of reaction, AHg (kJ/kmol) -50242
Steady-state flow-rate, Fs (m*/min) 0.0238
Steady-state inlet concentration, cais (kmol/m®) 5
Steady-state inlet temperature, T; s (K) 300
Steady-state temperature of the coolant, T; (K) 400
Overall heat transfer coefficient, U (kJ/(m°Kmin)) 101.8
Surface area for heat exchange, A,, (m°?) 1.073

For this numerical example and the steady-state input variables defined in Table 4.7,
only one steady-state solution exists, defined by the outlet steady-state concentrations
cas=1.50 kmol/m® and cps=3.50 kmol/m*® and the outlet steady-state temperature
Ts=372.33 K. The conversion of the reactant and yield of the product are xa s=Yps=0.70.
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The residence time for this non-isothermal CSTR corresponding to this steady-state is
Tress—00.46 min. It should be pointed out that this steady-state has been optimized
(Douglas, 1972).

The values of the auxilliary parameters defined with Eq. (4.8) are: «=2.33, =-0.11,
y=16.23 0=1.18 and St=1.10. Furthermore, for the investigated non-isothermal CSTR
defined as Numerical example NONISO-1, the stability parameters are Aps=-1.80 (Eq.
(4.24)) and Bys=5.16 (Eq. (4.25)). Considering that the stability conditions are satisfied
for this steady-state (Eq. (4.26)), i.e., Aps<0, Bps>0, the system is stable. This system is
oscillatory (A3s < B,s) with damping coefficient ¢=0.79 (Eq. (4.28)) and natural
frequency w,=2.27 (Eq. (4.29)) and it doesn’t exhibit resonant behavior (£>0.707).

For each case of periodic input modulation, our focus will be on the outlet concentration
of the product or outlet molar flow-rate of the product. The improvement or
deterioration of the reactor performance will be followed by the change of the product
yield.

4.10.2. Simulation results for single input modulation

In Figure 4.2, the ASO FRFs Gpy cc(w,-w), Hpz rr(@,-), Gpa 11(w,-0) and Gpy 3(w,-o)
corresponding to the single input modulation of inlet concentration, flow-rate, inlet
temperature and temperature of the cooling fluid, respectively, are graphically presented
as functions of the dimensionless forcing frequency.
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Figure 4.2 The ASO FRFs Gp,cc(w,-w) and Hpyre(w,-w) (up); the ASO FRFs
Gpz1r(w,-w) and Gppgi(w,-w) (down), as functions of the dimensionless forcing
frequency

From Figure 4.2, it can be concluded that:

e All ASO FRFs tend to asymptotic values for the low-frequency modulation and
tend to zero for high-frequency modulation, which is in accordance with their
expressions given with equations (4.34), (4.80), (4.48) and (4.55).

e It is expected to achieve improvement of the reactor performance for the inlet
concentration modulation, which is most significant for the low-frequency
modulation. The simulation results are in accordance with the results of sign
analysis from which it is expected that the ASO FRF Gp; cc(w,-w) is positive in
the whole frequency range (Table 4.2 and Eq. (4.114)) as nc=0.018 (nc<1 and
n=1).

e Single input modulation of the flow-rate will deteriorate the reactor
performance, which is also in accordance with the result of the sign analysis.
From Eqgs. ((4.82) and (4.83)), Qun=-4.12<0 and Q,1=-245.19<0, and according
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to the results presented in Table 4.3, the ASO FRF Hp;, re(w,-w) is expected to
be negative in the whole frequency range, which is confirmed in Figure 4.2.

e Single input modulation of the inlet temperature or temperature in the jacket will
cause deterioration of the reactor performance for low-frequency range and only
in a narrow range of higher forcing frequency (w>2.57) it could lead to
improvement. The simulation results from Figure 4.2 are in accordance with the
results of the sign analysis given in the Table 4.4. From Egs. ((4.120) and
(4.121)), nr;=-8.97, n1»=0.0003, wo7=2.57, and the value of the auxiliary
parameter y ((y-2)=14.23), for w<wo1=2.57, Gpy11(w,-w) and Gpy i(w,-w) are
negative while for w>wy71=2.57, these ASO FRFs are positive (where the
improvement can be expected).

As illustration, for arbitrary chosen forcing amplitudes: 100% for the inlet
concentration, 50% for the flow-rate and 10% for the inlet temperature and temperature
in the jacket, the product yields for all cases of single input modulation, as functions of
the dimensionless forcing frequency, are given in Figure 4.3. The product yield for
steady-state (Yp=0.70) is also given in Figure 4.3.

,ﬂ‘(,:l()()%_ ,4}:50%, A‘I:](J%. A ’:IO%

steady-state
GO0000000000000000060a —e—c 0

S —— F(1) .
——T )
—o—T0)

Yield of product

0.7 : SEHPRASLLE S A & s 8
DS

A
O
WV VY VYV VVVV.VVVVV.V.5.

1 1
10" 10° 10
Dimensionless frequency

Figure 4.3 Yield of the product for the steady-state operation, for periodic operation
with modulation of the inlet concentration (Ac=100%), flow-rate (Ar=50%), inlet
temperature and temperature in the jacket (Ar=A,=10%), as functions of the
dimensionless forcing frequency
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The highest increase of yield of the product will be obtained for low-frequency inlet
concentration modulation when the relative increase is approximately 16.58%. The
increase of the product yield for the inlet temperature modulation or temperature of the
cooling fluid for the higher forcing frequencies (w>wo1=2.57) is practically
insignificant.

Comparison with the results obtained by numerical integration

The approximate product yields owing to single input modulation of the inlet
concentration, flow-rate, inlet temperature and temperature of the cooling fluid,
calculated by the NFR method, are compared with the results of numerical simulation
for Numerical example NONISO-1.

In Table 4.8, the results obtained by the NFR method and numerical integration of the
model equations are given for forcing frequencies »=0.1, 1 and 10, forcing amplitudes
for the inlet concentration Ac=100%, for the flow-rate Ar=50% and for the inlet
temperature and the temperature of the cooling/heating fluid Ar=A;=10%. The relative
change of the yield and the relative errors (Eg.(3.59 )) are also given in Table 4.8.
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Table 4.8 The product yield for single input modulations of the inlet concentration, the
flow-rate, the inlet temperature or the temperature of the cooling fluid, estimated by

numerical simulation and by the NFR method, and the relative errors

Inlet concentration modulation, Ac=100%

) Yo p0(%) 5 ) AYp po(%)
num NFRM num NFRM
0.1 79.92 81.61 +2.11 +14.17 +16.58
1 78.38 80.23 +2.36 +11.97 +14.61
10 70.03 70.03 0 +0.04 +0.04
Flow-rate modulation, Ar=50%
j Yo pol%) 52 0% AYp po(%)
num NFRM num NFRM
0.1 62.21 62.18 -0.05 -10.54 -11.17
1 63.57 63.00 -0.90 -9.18 -10.00
10 69.95 69.95 0 -0.07 -0.07
Inlet temperature modulation, Ar=10%
) Y0 (%) 50 9% AYp po(%)
num NFRM num NFRM
0.1 67.52 67.35 -0.25 -3.54 -3.79
1 68.28 68.01 -0.40 -2.46 -2.84
10 70.10 70.10 0 +0.14 +0.14
Modulation of the cooling fluid, A;=10%
. Y0 (%) 51 0% AYppo (%)
num NFRM num NFRM
0.1 65.18 64.33 -1.30 -6.88 -8.10
1 66.82 65.76 -1.59 -4.54 -6.06
10 70.21 70.21 0 +0.29 +0.30

The results of the numerical simulations confirmed all above presented conclusions
based on the NFR method and the sign analysis of the ASO FRFs. The values of the
relative errors show very good agreement between the results of the NFR method and
numerical integration, despite the fact that non-isothermal CSTR is a system of
significant nonlinearity.
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In order to explore the influence of the input amplitude on yield increase and the error
of the NFR method for single input modulation of inlet concentration the same results
are given in Table 4.9 as in Table 4.8, but with lower forcing amplitude, for Ac=75%.
As it can be seen from these results, the relative errors significantly decreased with the
decrease of the forcing amplitude. The yield increase is also considerably lower.

Table 4.9 Yields of product for single input modulation of inlet concentration with
forcing amplitude Ac=75% estimated by numerical simulation and by the NFR method
and the relative errors

Inlet concentration modulation, Ac=75%

) Yo pol%) 50 9% AYp po(%)

num NFRM num NFRM
0.1 75.93 76.53 +0.79 +8.47 +9.33
1 75.07 75.75 +0.90 +7.24 +8.21
10 70.02 70.02 0 +0.03 +0.03

4.10.2. Simulation results for simultaneous modulation of inlet concentration and
inlet temperature

Furthermore, the data defined for Numerical example NONISO-1 were used for
simulations of simultaneous modulation of the inlet concentration and inlet temperature.

For this case, the real and imaginary parts of the cross ASO FRF Gp; cr(w,-w), (EQS.
(4.62) and (4.63)), are graphically presented in Figure 4.4.
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Figure 4.4 The real and imaginary parts of the cross ASO FRF Gp; c1(w,-w) as functions
of the dimensionless forcing frequency

The simulation results are in accordance with the results of the sign analysis (Table 4.5
and 4.6): both the real and the imaginary part of the cross ASO FRF Gp; cr(w,-w) are
positive in the whole frequency range (n=1, ¢&g=1.96>0, (Eq. (4.122)), &=1.46>0 (Eq.
(4.124))). The recommended phase difference which should be used in order to ensure
the positive sign of the cross ASO term G pacr(p,w) is between 0 and z/2 (Table 2.2).
The optimal phase difference gopi(w) (EQ. (4.67)) is graphically presented in Figure 4.5,
and as it can be seen, is in the recommended range.

For low-frequency modulations, the real part of the cross ASO FRF Gp, ct(w,-w) tends
to an asymptotic value and for high-frequency modulations this function tends zero (Eq.
(4.62)). On the other hand, the imaginary part of the cross ASO FRF Gp; c1(w,-) tends
to zero both for low-forcing frequencies and for high-forcing frequencies (Eq. (4.63)).
Thus, in the case of simultaneous modulation of the inlet concentration and inlet
temperature, the cross ASO FRF Gp, c1(w,-) tends to zero for high forcing frequencies
(Eq. (4.60)), as well as the cross ASO term G pycr(p,0) (EQ. (4.65)). Therefore, in this
case, the high-forcing frequency modulation has no effect on the reactor performance,
similarly as for the single input modulations.
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Figure 4.5 The optimal phase difference for simultaneous modulation of the inlet
concentration and inlet temperature pop() as a function of the dimensionless forcing
frequency

The ASO FRFs Gpcc(w,-w) and Gp, 11(w,-), which correspond to the single input
modulation of the inlet concentration and inlet temperature, together with the cross ASO
term G*pz,CT(qoopt,a)) for these two inputs, vs. forcing frequency, are presented in Figure
4.6.
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Figure 4.6 The ASO FRFs Gp cc(w,-w), Gpa11(w,-w) and the cross ASO term
G*pz,CT(q;opt,w) as functions of the dimensionless forcing frequency

As expected, the cross ASO term G*pz,CT(goopt,w), when the optimal phase difference is
used, is positive in the whole frequency range, as is the ASO FRF Gp; cc(@,-@) which
corresponds to the inlet concentration modulation. Nevertheless, since the ASO FRF
Gpz11(®w,-w) which corresponds to inlet temperature modulation is negative for ©<2.57,
the overall effect of simultaneous modulation of these two inputs on the reactor
improvement can be estimated only by evaluation of the overall dimensionless DC
component of the outlet product concentration or by evaluation of the product yield.

Finally, in Figure 4.7, the yield of the product, obtained for simultaneous modulation of
the inlet concentration and temperature, with optimal phase difference goun(w), and
forcing amplitudes Ac=100% and A1=10%, is graphically presented. For comparison, in
Figure 4.7, the product yields which correspond to the single input modulations of these
two inputs with the same forcing amplitudes, as well as for the steady-state operation,

are also given.
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Figure 4.7 Yield of the product for the steady-state operation, for single and
simultaneous modulation of the inlet concentration and inlet temperature, with forcing
amplitudes Ac=100%, Ar=10% and optimal phase difference, as functions of the
dimensionless forcing frequency

Despite the fact that inlet temperature modulation will lead to decrease of the product
yield for w<2.57, simultaneous modulation of the inlet concentration and inlet
temperature with appropriate choice of the phase difference and the chosen forcing
amplitudes, Ac=100% and Ar=10%, will lead to increase of the product yield, which is
higher than for single input modulation of the inlet concentration.

It should be pointed out, that for simultaneous modulation of the inlet concentration and
temperature the forcing amplitudes can also be optimized in order to maximize the
product yield. Nevertheless, in our analysis we are using arbitrary chosen amplitudes
which have physically reasonable values.

Comparison with the results obtained by numerical integration

The approximate product yields calculated by the NFR method are compared with the
results of numerical simulation for the Numerical example NONISO-1, for
simultaneous modulation of the inlet concentration and inlet temperature.

The comparison is performed for optimal phase differences, for dimensionless forcing
frequencies w=0.1, 1 and 10, forcing amplitudes Ac=100% and Ar=10% (Table 4.10).
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The relative changes of the yield owing to simultaneous modulation of the inlet
concentration and inlet temperature and the relative errors (Eq. (3.60)) are also given in
Table 4.10.

Table 4.10 Yields of the product for simultaneous modulation of the inlet concentration
and inlet temperature with forcing amplitudes Ac=100% and Ar=10% with optimal
phase differences, estimated by numerical simulation and by the NFR method, and the
relative errors

Simultaneous modulation of inlet concentration and inlet temperature,
Ac=100%, Ar=10%, @opt

Yp,po (%) dv (%) AYp.po (%)
w Popt (rad)
num NFRM num NFRM
0.1 0.0740 82.28 83.57 +1.57 +17.54 +19.38
1 0.4586 81.57 85.02 +4.23 +16.53 +21.45
10 0.1425 70.75 70.75 0 +1.07 +1.07

The results of numerical simulation for simultaneous modulation of the inlet
concentration and inlet temperature confirmed the conclusions made by the NFR
method.

Again, the same results are given in Table 4.11, for lower forcing amplitude of the inlet
concentration modulation (Ac=75%), in order to compare the relative errors and the
product yield increase.

Table 4.11 Yields of the product for simultaneous modulation of the inlet concentration
and inlet temperature with forcing amplitudes Ac=75% and At=10%, with optimal phase
differences, estimated by numerical simulation and by the NFR method, and the relative

error
Simultaneous modulation of inlet concentration and inlet temperature,
Ac=75%, Ar=10%, @opt(w)
Yp,po (%) dv (%) AYp po (%)
num NFRM num NFRM
0.1 0.0740 77.41 77.34 -0.09 +10.59 +10.48
1 0.4586 77.45 78.85 +1.81 +10.65 +12.64
10 0.1425 70.58 70.58 0 +0.83 +0.83
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The values of the relative errors show good agreement between the results of NFR
method and numerical integration. The relative errors are lower for lower forcing
amplitude of the inlet concentration (Tables 4.10 and 4.11). Lower amplitude also
results in lower increase of the product yield.

4.10.3. Simulation results for simultaneous modulation of inlet concentration and
flow-rate

The case of periodically operated non-isothermal CSTR when inlet concentration and
flow-rate are simultaneously modulated is also tested for the Numerical example
NONISO-1.

The simulation results will be first given for arbitrary chosen forcing amplitudes of inlet
concentration and flow-rate, when the optimal phase difference which will maximize
the product yield is used. Afterwards, the optimal forcing amplitudes and phase
difference which maximize the product yield will be determined numerically as
functions of the forcing frequency. Then, the simulation results will be given for these
optimal forcing parameters.

The optimal phase difference which maximizes the yield of the product gox(w) (EQ.
(2.84)) for forcing amplitudes Ac=100% and Ag=50%, is given in Figure 4.8, as a
function of the dimensionless forcing frequency.
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Figure 4.8 The optimal phase difference gqpi(e) for simultaneous modulation of the inlet
concentration and flow-rate with forcing amplitudes Ac=100% and Ar=50%, as a
function of the dimensionless forcing frequency
Furthermore, the vyield of the product for simultaneous modulation of the inlet
concentration and flow-rate with forcing amplitudes Ac=100% and Ar=50% and the
corresponding optimal phase difference gopi(w) is graphically presented in Figure 4.9, as
a function of dimensionless forcing frequency. In the same Figure, the yields of the
product corresponding to single input modulations of these two inputs, with the same

forcing amplitudes, as well as for the steady-state operation, are given.

121



4 = 9, =509 0
A4,7100%, 4,=50%. ¢, (o)

steady-state
—e—c, )
—— F(1)

— cv“(/)&l"(l) Ll

Yield of product

o
bz

0.65

| 1 "
10* 10" 10° 10 10
Dimensionless frequency

Figure 4.9 Yield of the product for the steady-state operation, for single and
simultaneous modulation of the inlet concentration and flow-rate with forcing
amplitudes Ac=100% and Ar=50%, and the optimal phase difference @opn(w), Vvs.

dimensionless forcing frequency

The simulation results in this case showed that simultaneous modulation of the inlet
concentration and flow-rate is inferior then the single input modulation of the inlet
concentration for low-forcing frequencies. Nevertheless, for high-forcing frequencies,
contrary to all previous investigated cases of periodic operations, the simultaneous
modulation of the inlet concentration and flow-rate improves the reactor performance.

This can also be confirmed from equation (4.94), as it was shown that the real part of
the cross ASO FRF Hp,cr(w,-w) and the cross ASO FRF Hppcr(w,-w) tend to
following asymptotic value, for high frequency modulation

n(1+a)(1+ St
lim Re (HPZ,CF((U: —a))) = lim Hpycr(w,—w) = ( N )
w —00 w —00 Bps

(4.125)

From equation (4.97), the cross ASO FRF H’p, ce(¢,0) for high-forcing frequencies will
also tend to an asymptotic value:

) i nl+a)(1+St)
all_r}c}o Hpycr (9, 0) = B cosifip)
ps

(4.126)
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as well as the outlet dimensionless molar flow-rate of the product

lim Neoc =2(5) (3) B, %@
(4.127)

From the above presented, the product yield for high-forcing frequencies is given with
the following expression

L2 () (4) 0 oy

o3, Yoo = Yo 1+2 (%) (%) cositip)
(4.128)

It can be seen that in this case the product yield will depend on the forcing amplitudes,
phase difference between the modulated inputs and the characteristics of the system
(through the reaction order n and auxiliary parameters «, S, y and St). Also, for high-
forcing frequencies, the reactor performance depends only on the cross effect of the
simulated inputs. Only in the case of simultaneous modulation of inlet concentration
and flow-rate the high forcing frequency will have an influence on the reactor
improvement.

Furthermore, for simultaneous modulation of the inlet concentration and flow-rate, the
optimal forcing parameters, i.e. the forcing amplitudes and the phase difference which
should be used in order to maximize the product yield are graphically presented in
Figure 4.10. The optimal forcing amplitudes and phase difference were obtained
numerically from equation (2.77) in Matlab (by using standard fminmax function).
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Figure 4.10 The optimal forcing amplitudes (up) and the optimal phase difference
(down) as functions of the dimensionless forcing frequency

For low-forcing frequencies, the optimized forcing parameters indicated that the single
input modulation of inlet concentration is recommended, considering that the optimal
forcing amplitude for the inlet concentration is 1 and for the flow-rate 0. For high-
forcing frequencies, simultaneous modulation of these two inputs is recommended,
considering the fact that both optimal forcing amplitudes are 1 (Figure 4.10).

Then, the yield of the product for simultaneous modulation of the inlet concentration
and flow-rate with optimal forcing amplitudes Ac opi(®@), Aropt(w) and optimal phase
difference ¢@on(w) is graphically presented in Figure 4.11, as a function of the
dimensionless forcing frequency, together with the yields corresponding to single input
modulations of the inlet concentration and flow-rate, with the same forcing amplitudes.
The vyield of the product for steady-state operation is also graphically presented in
Figure 4.11.
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Figure 4.11 Yield of the product for the steady-state operation, for single and
simultaneous modulation of the inlet concentration and flow-rate with optimal forcing
amplitudes Ac opt(®), Aropt(w) and optimal phase difference gou(w), vs. dimensionless

forcing frequency

Comparison with the results obtained by numerical integration

In Table 4.12, the results of the NFR method are compared with the results of numerical
integration for simultaneous modulation of inlet concentration and flow rate with
arbitrary chosen forcing amplitudes Ac=100% and Ar=50% and with the corresponding

optimal phase difference gqpi(@) (Eq. (2.84)).

In Table 4.13, the same results are given, but for the optimal forcing amplitudes
Ac.opt(®), Aropt(w) and the corresponding optimal phase difference gopi(w) which were
numerically obtained in such a way to maximize the product yield.

The results presented in Tables 4.12 and 4.13 are given for dimensionless forcing
frequencies 0.1, 1 and 10. The product yields together with their relative changes owing
to periodic operation are given. The relative errors of the NFR method, in comparison
with the numerical solutions are also given in these Tables.
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Table 4.12 Product yields of product for simultaneous modulation of the inlet
concentration and flow-rate with forcing amplitudes Ac=100% and Ag=50% with the
corresponding optimal phase differences, estimated by numerical simulation and by the
NFR method, and the relative errors of the NFR method

Simultaneous modulation of inlet concentration and flow-rate,
AC:].OO%, AFZSO%, gﬂopt(w)

YP,po (%) oy (%) AYP,po (%)
num NFRM num NFRM
0.1 -0.2361 77.09 75.92 -1.52 +10.13 +8.46
1 -1.3066 76.26 76.23 -0.04 +8.94 +8.90
10 0.4867 75.08 74.37 -0.95 +7.26 +6.24

Table 4.13 Product yields for simultaneous modulation of the inlet concentration and
flow-rate with optimal forcing amplitudes and optimal phase differences, estimated by
numerical simulation and by the NFR method and the relative errors of the NFR method

Simultaneous modulation of inlet concentration and flow-rate

Vo 00 A¥ogo ©6)
o | Ac) ] A0 | gop(rad) e o O I TNERM
0.1 2.05 0 7902 | 8163 | +2.14 | +14.17 | +16.61
11 100 0 0 7838 | 80.23 | +2.36 | +11.97 | +14.61
10 100 06151 | 79.13 | 77.35 | -2.25 | +13.04 | +105

As it can be seen from the results given in Tables 4.12 and 4.13, all conclusions and the
results obtained by the NFR method are confirmed with the numerical simulation
results. The NFR method gives very good predictions, considering low values of the
relative errors which are given in Tables 4.12 and 4.13.

As illustration, the simulated outlet concentration of the product, flow-rate and outlet
molar flow-rate of the product from the non-isothermal CSTR defined in this example,
obtained by numerical integration of the model equations, for simultaneous co-
sinusoidal modulation of the inlet concentration and flow-rate, for optimal forcing
amplitudes Ac op=100%, Aroxi=100%, for forcing frequency »=10 and optimal phase
difference p=¢,,=0.6151, is given in Figure 4.13. The simulated outlet is given with the
start-up period. But first, in Figure 4.12, the modulation of the inlet concentration of the
reactant, flow-rate and the inlet molar flow-rate of the reactant are presented for the
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defined forcing parameters. In both Figures, the corresponding mean or/and steady-state
values are given.
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Figure 4.12 The modulated inlet concentration of the reactant (top), and flow-rate
(middle), for simultaneous modulation of these two inputs with dimensionless forcing
frequency =10, optimal forcing amplitudes Ac=Ar=100%, and optimal phase
difference ¢o=0.6151, and the inlet molar flow-rate of the reactant (bottom)
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Figure 4.13 The outlet product concentration (top), flow-rate (middle) and the outlet
molar flow-rate of the product (bottom) for dimensionless forcing frequency w=10,
optimal forcing amplitudes Ac=Ar=100%, and optimal phase difference ¢o,=0.6151

4.11. Analysis of influence of the system nonlinearity on the results obtained
by the NFR method

Considering that the NFR method can be applied only for weakly nonlinear stable
systems (Petkovska and Seidel-Morgenstern, 2012) for which the Volterra series is
convergent, and the fact that non-isothermal CSTR is in principle a system which is
highly nonlinear, in this Section, the NFR method based on the second order
approximation will be tested on the systems with different degree of nonlinearity.

Simulation of the ASO FRFs and the cross ASO FRFs and the analysis, whether, and to
which extent, it would be possible to increase the product yield in a non-isothermal
reactor owing to periodic modulation of the inlet concentration and inlet temperature,
separately or simultaneously, is performed considering three numerical examples: one
which corresponds to an oscillatory stabile system with strong resonant behavior
(Numerical example NONISO-2(a)), one which corresponds to an oscillatory stable
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system with weak resonant behavior (Numerical example NONISO-2(b)) and one which
corresponds to a non-oscillatory stable system (Numerical example NONISO-2(c)).

4.11.1. Numerical examples NONISO-2(a), NONISO-2(b), NONISO-2(c)

The model parameters corresponding to these numerical examples are given in Table
4.14. All parameters have the same values for all three numerical examples, except the
heat of reaction. The parameters for Numerical example NONISO-2(a) correspond to a
numerical example used in a textbook by Marlin (Marlin, 2000).

Table 4.14 Model parameters for the numerical examples

Parameter Value

Reaction order, n 1
Volume of the reactor, V (m°) 1
Pre-exponential factor of the reaction rate constant, ko, (1/min) 1 %1010
Activation energy, Ea (kJ/kmol) 69256

Numerical example -543920

NONISO-2(a)
Heat of reaction, AHg (kJ/kmol) Numerical example 271960

NONISO-2(b)

Numerical example -54392

NONISO-2(c)
Heat capacity, pc, (kJ/K/ m°) 4.184 x 103
Steady-state flow-rate, Fs(m*/min) 1
Steady-state inlet concentration, ca;s (kmol/ m°) 2
Steady-state inlet temperature, T; s (K) 323
Steady-state temperature of the coolant, T; (K) 365
Overall heat transfer coefficient multiplied by the heat transfer 27337

area, UA,, (kJ/K/min)

Furthermore, the steady state point defined with the outlet concentration of the reactant
(cas) and product (cps), product yield (Yps) and the outlet temperature (Ts), as well as
the stability parameters (Aps, Bps) (Egs. (4.24) and (4.25)), the damping coefficient (&)
(EQ. (4.28)), the resonant frequency (wy) (if existing) (Eq. (4.30)) and the eigenvalues,
are given in Table 4.15, for all three numerical examples.
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Table 4.15 The steady-state concentrations, yield and temperature, the stability
parameters, damping coefficient, resonant frequency and the eigenvalues for the
numerical examples

Numerical Steady-state point Th
e
example Cas Cps Ypys Ts Aps Bps ¢ @y .
3 5 eigenvalues
NONISO (kmol/m?) | (kmol/m”) | (K)
2(a) 0.3466 1.6534 | 82.67 | 388.1 0 -71 31.59 | 0.126 | 5.53 | -0.71+5.58i
2(b) 0.7356 1.2644 | 63.22 | 370.5 ) -63 15.50 | 0.669 | 1.28 | -2.63+2.93i
2(c) 1.016 0.9842 | 49.20 | 361.3 A _34 14.02 | 1.160 | / -2.14, -6.54

The Numerical example NONISO-2(a) is identical to the one used for investigation of
single inputs modulations in (Nikoli¢ et al. 2014a, 2014b). The reactor is oscillatory
stable (Aps<0 and Bps>0, Aps’<B,s), With a low damping coefficient ¢=0.126 (Nikoli¢ et
al. 2014a). The non-isothermal CSTR defined as Numerical example NONISO-2(a) is
highly nonlinear as a consequence of an extremely high heat of reaction (AHg=-543920
kJ/kmol). Also, concerning that the damping coefficient is quite low, the system is
highly oscillatory with pronounced resonant behavior.

For the Numerical example NONISO-2(b) the heat of reaction is 2 times lower than for
the system defined as Numerical example NONISO-2(a). The non-isothermal CSTR
defined in this way is oscillatory stable with weak resonant behavior with a damping
coefficient ¢=0.669. The increase of the damping coefficient for Numerical example
NONISO-2(b) in comparison to the Numerical example NONISO-2(a), means that the
system is less oscillatory.

Finally, the Numerical example NONISO-2(c) corresponds to a non-isothermal CSTR
with heat of the reaction which is 10 times lower than the heat of the reaction for
Numerical example NONISO-2(a) (AHr=-54392 kJ/kmol). The system is stable and
non-oscillatory with damping coefficient £=1.160. The non-isothermal CSTR defined in
this way does not exhibit resonant behavior.

The maximal allowed forcing amplitudes of the inlet concentration and inlet
temperature are assumed to be the same for all numerical examples, Acmax=100%,
At max=15%. The forcing amplitudes are not limited from the aspect of the system
stability, but are from the aspect of what could be practically realized. E.g. the maximal
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amplitude of the inlet temperature corresponds to absolute maximal change in the inlet
temperature of AT; nax=48.5 K (Nikoli¢ et al. 2014a, 2014b).

The analysis of the periodic operations for these numerical examples is done through
simulation and analysis of the product ASO FRFs and product cross ASO FRFs.

4.11.2 Simulation results modulation of the inlet concentration and temperature,
separately and simultaneously

In this Section, the simulation results of the product concentration ASO FRFs
corresponding to the single input modulation of inlet concentration and temperature, as
well as the cross ASO FRFs of product concentration and the yields of product are
presented for each numerical example.

In Figure 4.14 the graphical representation of the ASO FRFs Gp; cc(w,-w) for each
numerical example is given vs. dimensionless forcing frequency.
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Figure 4.14 The ASO FRFs Gp,cc(w,-w) vs. dimensionless forcing frequency, for
Numerical examples NONISO 2(a), 2(b) and 2(c)

For each numerical example, the ASO FRFs Gp,cc(w,-w) are positive in the whole
frequency range, meaning that the inlet concentration modulation will lead to increase
of the product yield in comparison to the steady-state operation. For low-frequencies
these ASO FRFs tend to asymptotic values, and for high-forcing frequencies they all
tend to zero.
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This behavior is in accordance with the sign analysis given in Table 4.2. For reaction
order n=1 and the values of parameters nc which are for Numerical examples NONISO-
2(a), 2(b) and 2(c), n.=0.43, 0.12 and 0.80, respectively, the positive sign of the
Gp2.cc(w,-w) is obtained.

It is interesting to notice, that the ASO FRF Gpycc(w,-w) for the highly nonlinear
system, Numerical example NONISO-2(a), has an extensive maximum around the
corresponding resonant frequency (w,=5.53).

In Figure 4.15, the ASO FRFs Gp, 11(w,-@) for each numerical example is graphically
presented vs. dimensionless forcing frequency.
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Figure 4.15 The ASO FRFs Gp11(w,-w) vs. dimensionless forcing frequency for
Numerical examples NONISO 2(a), 2(b) and 2(c)

From the results of the sign analysis of the ASO FRF Gp, 11(®,-w) which were given in
Table 4.4 and the parameters (Egs. (4.120) and (4.121)), given in Table 4.16,
considering that the reaction order is n=1, it can be predicted that the ASO FRFs
Gpz11(w,-w) for all numerical examples will change the sign from negative to positive,
for corresponding forcing frequencies wo t (also given in Table 4.16).
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Table 4.16 The parameters necessary for the sign analysis of the ASO FRF Gp; t1(w,-®)

Numerical N1 Nto -2 o T
example NONISO-

2(a) -11.15| 0.001 | 19.46 | 5.24

2(b) -12.42 1 0.01 | 20.48 | 1.69

2(c) -13.63 | 0.03 |21.0 | 0.55

The results of the sign analysis are again confirmed with the simulation results which
are given in Figure 4.15. The results of the sign analysis and the simulation results
indicate that for each numerical example, the increase of product yield is possible for
the forcing frequencies which are higher than corresponding value of forcing frequency

@o,T-

Again, it is interesting to notice the existence of an extensive maximum for Numerical
example NONISO-2(a), for the forcing frequency which is near the resonant one
(wr=5.53). Also, for Numerical example NONISO-2(b), a maximum exists for the
forcing frequency which is near to corresponding resonant frequency (w,=1.28), but not
as extensive as for Numerical example NONISO-2(a).

A graphical representation of the real and imaginary parts of the cross ASO FRFs
Gpzct(w,-w) as functions of the dimensionless forcing frequency is given in Figure
4.16, for all three numerical examples.
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Figure 4.16 The real and imaginary parts of the cross ASO FRF Gp,cr(w,-w), as
functions of the dimensionless frequency, for Numerical examples NONISO-2(a),
NONISO-2(b) and NONISO-2(c)

For Numerical example NONISO-2(a), the real and imaginary parts of Gp,cr(w,-®)
both have extensive extremes near the resonant frequency (w(=5.53). For Numerical
example NONISO-2(b), the real and imaginary parts of Gpycr(w,-w) again have
extremes near the resonant frequency (wy=1.28), but not as extensive as for Numerical
example NONISO-2(a). For the non-oscillatory stable non-isothermal CSTR, i.e.
Numerical example NONISO-2(c), the real part of the cross ASO FRF Gp; cr(,-@) has
no extreme values and the imaginary part of this function has a minimum.

The results of the sign analysis, in accordance with Table 4.5 and Table 4.6, as well as
the values of the auxiliary parameters g (EQ. (4.122)), woct (EQ. (4.123)) and ¢
(Eq.(4.124)) necessary for the sign analysis, are summarized in Table 4.17, with respect
that the chemical reaction is first order (n=1). The results of the sign analysis of the real
and imaginary parts of the cross ASO FRF Gpycr(w,-w) are confirmed with the
simulation results, presented in Figure 4.16.
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Table 4.17 The results of the sign analysis of the real and imaginary parts of Gp, c1(w,-
o), for the three numerical examples

Numerical Forcing
Re(Gpy,cr(w, IM(Gpy cr(,- Recommended
example &R wocr | frequency, ) & N "
- 1) range 0
NONISO- o e oty
w<4.43 negative << —g
2(a) 1963 | 443 | w=4.43 zero . '65 negative —T<p<0
' T
®>4.43 positive -3 <p<o0
- s
2(b 10.70 / Vo ositive negative —=—< <0
(b) p 437 g S <@
- T
2(c 13.90 / v ositive negative —=—< <0
(c) w p £ 50 g 5 <@

The phase differences which should be used in order to achieve the positive value of the
cross term G pa.cr(p,@), With respect to the signs of the real and imaginary parts of the
cross ASO FRF Gp; c1(m,-m), according to Table 2.2, are also given in Table 4.17.

The optimal phase differences popi(w) (defined by Eq. (4.67)), for all three numerical
examples, are graphically presented in Figure 4.17. The optimal phase differences are in
the recommended ranges which are given in Table 4.17.
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Figure 4.17 The optimal phase differences as functions of the dimensionless forcing
frequency, for Numerical examples NONISO-2(a), NONISO-2(b) and NONISO-2(c)
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The cross ASO terms corresponding to the optimal phase differences G*pz,CT(gaopt,a)), are

graphically presented in Figure 4.18, for Numerical examples NONISO-2(a), NONISO-
2(b) and NONISO-2(c), respectively.

N
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NONISO-2 (b)
|| e NONISO-2 (c)

Dimensionless frequency

Figure 4.18 The cross ASO terms corresponding to the optimal phase differences,

(G*pz,CT(goopt,co)) as functions of the dimensionless forcing frequency, for Numerical
examples NONISO-2(a), NONISO-2(b) and NONISO-2(c)

From Figures 4.14, 4.15 and 4.18 we can conclude the following:

For Numerical example NONISO-2(a), similarly to the ASO FRFs which
correspond to the single input modulations, the cross ASO term G*PZ,CT(¢opt,w)
has an extensive maximum close to the resonant frequency w,=5.53, where the
highest improvement is expected.

For Numerical example NONISO-2(b), the cross ASO term (G*pz,CT((popt,w)) has
a maximum in the vicinity of the resonant frequency w,=1.28, but not as
extensive as for Numerical example NONISO-2(b).

For the non-oscillatory non-isothermal CSTR defined as Numerical example
NONISO-2(c), the cross ASO term G*PZ,CT((l)optaw) has no extremes.

For all three numerical examples, the ASO FRFs Gp; cc(w,-w) are positive in the
whole frequency range (Nikoli¢ et al. 2014a), while Gpy1r(w,-w) changes its
sign from negative to positive. Gp, 11(w,-®) is negative for w<wo,t and positive
for w>wor (Nikoli¢ et al. 2014b). The forcing frequency for which these ASO
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FRFs change its signs is wo,t=5.24 for Numerical example NONISO-2(a),
o 71=1.69 for Numerical example NONISO-2(b) and @ 1=0.55 for Numerical
example NONISO-2(c).

e The cross ASO terms for the optimal phase G'pacr(pop@) are, as expected,
positive in the whole frequency range for all three numerical examples (Figure
4.19).

e For forcing frequencies w>wq,r both product ASO FRFs corresponding to the
single input modulations Gp;cc(w,-w) and Gpy11(w,-@) are positive, which
guaranties that in this frequency range simultaneous modulation of these two
inputs will results with yield increase.

e For w<wort, since the ASO FRFs Gp,11(w,-w) are negative, it is necessary to
evaluate the overall DC components of the outlet product concentration or the
corresponding yield of the product in order to reveal whether improvement is
possible in this frequency range.

The yield of the product for Numerical example NONISO-2(a), obtained when the inlet
concentration and inlet temperature are modulated, separately or simultaneously
modulated with the optimal phase difference, for forcing amplitudes Ac=50%, Ar=10%,
as functions of the dimensionless forcing frequency, are graphically presented in Figure
4.19. The yield of product in steady-state is also given in Figure 4.19 for comparison.
The same results are given for the Numerical example NONISO-2(b) in Figure 4.20,
and for Numerical example NONISO-2(c), in Figure 4.21.
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Figure 4.19 The product yield for steady-state operation, for periodic modulation of the
inlet concentration with forcing amplitude Ac=50%, for periodic modulation of the inlet
temperature with forcing amplitude Ar=10% and for simultaneous modulation of these
two inputs with the optimal phase difference, vs. dimensionless forcing frequency, for

Numerical example NONISO-2(a)
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Figure 4.20 The product yield for steady-state operation, for periodic modulation of the
inlet concentration with forcing amplitude Ac=50%, for periodic modulation of the inlet
temperature with forcing amplitude Ar=10% and for simultaneous modulation of these
two inputs with the optimal phase difference, vs. dimensionless forcing frequency, for

Numerical example NONISO-2(b)
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Figure 4.21 The product yield for steady-state operation, for periodic modulation of the
inlet concentration with forcing amplitude Ac=50%, for periodic modulation of the inlet
temperature with forcing amplitude Ar=10% and for simultaneous modulation of these
two inputs with the optimal phase difference, vs. dimensionless forcing frequency, for
Numerical example NONISO-2(c)

From Figures 4.19-4.21 it can be concluded that:

For all three numerical examples, it is possible to achieve higher increase of
conversion when both inputs are periodically modulated with optimal phase
difference, in comparison to the single input modulations (with same forcing
amplitudes).

Even for forcing frequencies for which it is not possible to achieve higher yield
of product by modulation of the inlet temperature (w<wor, Gpz11(®,-®)<0), if
inlet concentration and inlet temperature are simultaneously modulated with
forcing amplitudes Ac=50%, At=10% and the optimal phase difference, it is
possible to achieve increase of the product yield. This increase of the product
yield is higher in comparison to the single input modulation of inlet

concentration.

The increase of the product yield for two-input modulation around the resonant
frequency for Numerical example NONISO-2(b) is significantly lower that it is
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for Numerical example NONISO-2(a), around its resonant frequency.
Nevertheless, the difference between the product yield increase for Numerical
examples NONISO-2(a) and NONISO-2(b) at low-frequencies are much less
significant than around the resonant frequency. The increase of the product yield
for Numerical example NONISO-2(c) (non-oscillatory CSTR) is lower than for
Numerical examples NONISO-2(a) and NONISO-2(b). This means that higher
improvement can be expected for the highly nonlinear systems, which is in
accordance with the previous investigations (Ritter and Douglas, 1970).

e For Numerical example NONISO-2(a), for inlet concentration modulation or
simultaneous modulation of inlet concentration and inlet temperature, the
product yields have maximums around the resonant frequency (w.=5.53). For
the case of simultaneous modulation of these two-inputs for the forcing
frequency which is near to the resonant one, the product yield, based on the NFR
method, is predicted to be higher than 1, which is physically impossible.

e For Numerical example NONISO-2(b), the product yield has a maximum for
simultaneous modulation of inlet concentration and inlet temperature for forcing
frequencies which are near to the resonant one (w,=1.28).

e For Numerical example NONISO-2(b), the product yield for simultaneous

modulation of inlet concentration doesn’t have any extremes.

4.11.3. Comparison with results obtained by numerical integration

The product yields predicted by application of the NFR method are compared with the
results obtained by numerical integration of the model equations, for the periodic
modulation of the inlet concentration and inlet temperature, separately and
simultaneously (with the optimal phase difference). The model equations were
numerically solved in their original, dimensional form (Nikoli¢ et al, 2014a) by using a
standard Matlab function odel5s. The inputs were modulated in a co-sinusoidal way
around the previously established steady-state.

The results of numerical integration and of the NFR method are compared for
Numerical examples:

e NONISO-2(a) for 2 different combinations of forcing amplitudes, Ac=50% and
25% for inlet concentration (corresponding to absolute changes of inlet
concentration of 1 kmol/m® and 0.5 kmol/m? respectively) and A;=10% and 5%
for inlet temperature (corresponding to absolute changes of inlet temperature of
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32.3 K and 16.2 K respectively) and for 12 different forcing frequencies,
including the resonant one.
e NONISO-2(b) for forcing amplitudes Ac=50% and Ar=10% for 8 different
forcing frequencies including the resonant one;
e NONISO-2(c) for forcing amplitudes Ac=50% and Ar=10% for 3 different
forcing frequencies
In order to compare the agreement between the results obtained by the NFR method and
by numerical integration, the relative errors were calculated. The yield of the product
obtained by numerical simulation is considered to be exact.

The results of numerical integration and the corresponding results of the NFR method
for Numerical example NONISO-2(a) are given in Tables 4.18 and 4.19, for Numerical
example NONISO-2(b) in Table 4.20 and for Numerical example NONISO-2(c) in
Table 4.21. In Tables 4.18-4.21, the yields of the product and the relative errors oy (EQ.
(3.59)) are given in percentages. The steady-state yields were 82.67 %, 63.22 % and
49.20 %, respectively (Table 4.15).

Table 4.18 The product yield for separate and simultaneous modulation of the inlet
concentration and temperature with forcing amplitudes Ac=50% and At=10%, estimated
by numerical simulation and by the NFR method, and the relative errors, for Numerical
example NONISO-2(a)

Inlet concentration Inlet temperature Simultaneous modulation
modulation, Ac=50% modulation, A;=10% Ac=50%, A;=10%
@ Yp Yp Yp
5y Sy Popt 5y

num | NFRM num | NFRM num | NFRM
0.1 | 84.05 83.69 -0.43 | 82.27 82.28 +0.01 | -3.14 | 84.32 84.29 -0.04
1 84.15 83.75 -0.48 | 82.27 82.27 0 -3.11 | 84.37 84.36 -0.01
2 84.24 83.99 -0.30 | 82.24 82.24 0 -3.06 | 84.32 84.59 +0.32
3 84.25 84.59 +0.40 | 82.21 82.17 -0.05 | -2.96 | 83.83 85.13 +1.55
4 84.16 86.35 +2.60 | 82.08 82.08 0 -2.52 | 83.31 86.58 +3.92
5 84.51 93.47 | +10.60 | 82.15 82.30 0.18 -0.55 | 84.42 96.51 +14.32
553 | 8458 | 98.86 | +16.88 | 82.42 | 83.39 | +1.18 | -0.32 | 84.83 109 +28.49
6 84.53 93.69 | +10.84 | 82.77 84.01 +150 | -0.24 | 85.06 104.35 +22.68
7 84.12 85.19 +1.27 | 83.22 83.44 +0.26 | -0.16 | 85.25 89.72 +5.24
8 | 8346 | 8353 | +0.08 | 83.08 | 83.11 | +0.04 | -0.12 | 85.04 85.90 +1.01
9 83.05 83.06 +0.01 | 82.96 82.97 +0.01 | -0.10 | 84.40 84.56 +0.19
10 | 82.88 82.88 0 82.88 82.88 0 -0.08 | 83.89 83.93 +0.05
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Table 4.19 The product yield for separate and simultaneous modulation of the inlet
concentration and temperature with forcing amplitudes Ac=25% and Ar=5%, estimated
by numerical simulation and by the NFR method, and the relative errors, for Numerical
example NONISO-2(a)

Inlet concentration Inlet temperature Simultaneous modulation
modulation, Ac=25% modulation, A;=5% Ac=25%, A;=5%
“ Yp Yp Yp
dy oy Popt dy
num | NFRM num | NFRM num | NFRM
0.1 | 82.95 82.93 -0.02 | 82.57 82.57 0 -3.14 83.08 83.08 0
1 82.98 82.94 -0.05 | 82.57 82.57 0 -3.11 83.10 83.09 -0.01
2 | 83.05 | 83.00 | -0.06 | 82.56 | 82.56 0 -3.06 | 83.15 83.15 0
3 83.05 83.15 +0.12 | 82.55 82.55 0 -2.96 83.11 83.29 +0.22
4 83.17 83.59 +0.50 | 82.52 82.52 0 -2.52 83.12 83.65 +0.64
5 83.52 85.37 +2.21 | 82.55 82.58 +0.04 | -0.55 83.24 86.13 +3.47
5.53 | 83.65 86.72 +3.67 | 82.68 82.85 +0.20 | -0.32 83.59 89.25 +6.77
6 | 83.65 | 8543 | +2.13 | 82.83 | 83.01 | +0.22 | -0.24 | 83.82 88.09 +5.09
7 83.22 83.30 +0.10 | 82.85 82.86 +0.01 | -0.16 83.91 84.43 +0.62
8 82.88 82.89 +0.01 | 82.78 82.78 0 -0.12 83.43 83.48 +0.06
9 82.77 82.77 0 82.74 82.75 +0.01 | -0.10 83.13 83.14 +0.01
10 | 82.72 82.72 0 82.72 82.72 0 -0.08 82.98 82.99 +0.01

Table 4.20 The product yield for separate and simultaneous modulation of the inlet
concentration and temperature with forcing amplitudes Ac=50% and A1=10%, estimated
by numerical simulation and by the NFR method, and the relative errors, for Numerical
example NONISO-2(b)

Inlet concentration Inlet temperature Simultaneous modulation
modulation, Ac=50% modulation, A;=10% Ac=50%, A1=10%
@ Yp Yp Ye
Jy dy Popt dy
num | NFRM num | NFRM num NFRM

0.1 | 65.97 66.06 +0.14 | 62.91 62.09 -1.30 | -0.04 | 67.28 67.57 +0.43

1 65.98 66.09 +0.17 | 63.02 63.01 -0.02 | -0.36 | 67.55 68.03 +0.71

1.28 | 65.99 66.09 +0.15 | 63.09 63.08 -0.02 | -0.43 | 67.69 68.29 +0.89

2 66.05 66.03 -0.03 | 63.34 63.34 0 -0.54 | 68.22 69.04 +1.20

3 65.66 65.56 -0.15 | 63.74 63.79 +0.08 | -0.59 | 68.98 69.45 +0.68

4 64.80 64.76 -0.06 | 63.98 64.02 +0.06 | -0.58 | 68.36 68.50 +0.20

5 64.10 64.09 -0.02 | 63.96 63.98 +0.03 | -0.55 | 66.99 67.04 +0.07

10 | 63.29 63.29 0 63.48 63.48 0 -0.38 | 64.04 64.04 0
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Table 4.21 The product yield for separate and simultaneous modulation of the inlet

concentration and temperature with forcing amplitudes Ac=50% and Ar=10%, estimated

by numerical simulation and by the NFR method, and the relative errors, for Numerical
example NONISO-2(c)

Inlet concentration Inlet temperature Simultaneous modulation
modulation, Ac=50% modulation, A;=10% Ac=50%, A;=10%
@ Yp Yp Yp
Oy dy Popt dy
num | NFRM num | NFRM num NFRM
0.1 | 49.58 49.59 +0.02 | 49.17 49.17 0 -0.04 | 51.43 51.45 +0.04
1 49,51 49,51 0 49.28 49.28 0 -0.35 | 51.31 51.33 +0.04
10 | 49.21 49.21 0 49.38 49.38 0 -0.45 | 49.61 49.61 0

From the results given in Tables 4.18-4.21, it can be concluded that:

For Numerical example NONISO-2(a), good prediction by the NFR method is
obtained only for frequencies which are not near to the resonant frequency. For
higher forcing amplitudes (Ac=50%, Ar=10%) the relative errors around the
resonant frequency are significant for single input modulation of inlet
concentration and for simultaneous modulation of two defined inputs. For lower
forcing amplitudes (Ac=25%, A1=5%) the relative errors are also highest for the
forcing frequencies which are near to the resonant one for inlet concentration or
simultaneous two-input modulation. Nevertheless, the relative errors for forcing
amplitudes (Ac=25%, Ar=5%) are significantly lower than for forcing
amplitudes (Ac=50%, Ar=10%) and it can be concluded that the predictions of
the NFR method for Numerical example NONISO-2(a) for forcing amplitudes
(Ac=25%, A1=5%) are good.

For Numerical example NONISO-2(b), excellent agreement between the
approximate (NFR method) and exact (numerical) solutions are obtained in the
whole frequency range, in spite the fact that the forcing amplitudes are high. The
relative errors are higher for forcing frequencies around the resonant one but
even in this case the maximal relative error is 1.20%.

For Numerical example NONISO-2(c), excellent agreement between the
approximate (NFR method) and exact (numerical) solutions are obtained in the
whole frequency range. The relative errors are insignificant.

The NFR method based on the second order approximation gives better
prediction for the oscillatory stable non-isothermal CSTR with weak resonant
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behavior (Numerical example NONISO-2(b)) in comparison to the oscillatory
stable non-isothermal CSTR with strong resonant behavior (Numerical example
NONISO-2(a)), which is highly nonlinear. The disagreements which were
observed for the non-isothermal CSTRs which exhibit resonant behavior
(Numerical examples NONISO-2(a) and NONISO-2(b)) disappeared for the
non-oscillatory non-isothermal CSTR (Numerical example NONISO-2(c)).

4.11.4. Explanation of the largest disagreement observed around the resonant
frequency (Numerical example NONISO-2(a))

The explanation of the disagreement between the results of numerical simulations and
the NFR method, for forcing frequencies near the resonant frequency for the Numerical
example NONISO-2(a), lies in the fact that the system nonlinearity becomes more
pronounced around the resonant frequency (Ritter and Douglas, 1970), and the second
order approximation, used in our NFR method (Eqg. (1.37)), is not good enough. In the
case of more pronounced nonlinearity, a considerable amount of higher harmonics is
expected in the system output. In order to investigate the influence of higher order
nonlinearities, harmonic analysis of the outlet concentration of the product, obtained by
numerical simulation is performed, by Fourier analysis (Nikoli¢ et al., 2014a).

For illustration, the amplitude spectrum of the outlet product concentration, for the case
of simultaneous modulation of inlet concentration and inlet temperature, with a forcing
frequency equal the resonant frequency (»=5.53) and with forcing amplitudes Ac=50%
and A1=10%, is graphically presented in Figure 4.22. In this case, the relative error
between the product yield estimated by the NFR method and calculated by numerical
integration was high (6y=28.49%, Table 4.18). For comparison, the amplitude spectrum
obtained with the same forcing frequency, but with lower forcing amplitudes, Ac=25%
and Ar=5%, is also presented in Figure 4.23, for which the relative error was 6y=6.77%
(Table 4.19).
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Figure 4.22 Amplitude spectrum of the outlet concentration of the product when the
inlet concentration and inlet temperature are periodically modulated in a co-sinusoidal
way, with forcing amplitudes Ac=50% and Ar=10%, and for resonant frequency
(0=5.53)
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Figure 4.23 Amplitude spectrum of the outlet concentration of the product when the
inlet concentration and inlet temperature are periodically modulated in the co-sinusoidal
way, with forcing amplitudes Ac=25% and Ar=5% and for resonant frequency (»=5.53)

From Figure 4.22, it is evident that for the resonant frequency and high forcing
amplitudes, the output exhibits a considerable amount of higher harmonics with large
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gains, which means that the nonlinearities of the orders higher than two should not be
neglected. In the DC component which is of our interest, these higher nonlinearities are
defined by the forth, sixth, etc., ASO FRFs (G4(w,w,-w,-w), Gg¢(w,w,0,-0,-0,-»),...)
(Eg. (1.15)), which were neglected in our approximation of the DC component (Eq.
(1.19)). As a consequence, the disagreement between the NFR method and numerical
integration is significant. Therefore, in order to evaluate the average output
concentration for high amplitudes of highly nonlinear system near the resonant
frequency more accurately, for the system which exhibits resonance, it would be
necessary to derive the higher order FRFs and take them into account (Nikoli¢ et al.,
2014a).

For the resonant frequency and lower forcing amplitudes (Ac=25% and Ar=5%) the
output still exhibits a considerable amount of higher harmonics, but with lower gains in
comparison to previous case (Figure 4.23), which results in lower relative error between
the results of the NFR method and numerical integration.

In Figure 4.24, the amplitude spectrum of the outlet product concentration for
simultaneous modulation of inlet concentration and inlet temperature with high forcing
amplitudes (Ac=50% and Ar=10%) but with forcing frequency which is not near to the
resonant one (w=10) is graphically presented. In this case, the relative error between the
results of the NFR method and numerical simulation was 0.05% (Table 4.18). As it can
be seen, the higher order harmonics are negligible and in this case, Eq. (1.37), which
takes into account only the contribution of second order FRFs in the DC component,
gives an excellent estimate of the product yield change.
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Figure 4.24 Amplitude spectrum of the outlet concentration of the product when the
inlet concentration and inlet temperature are periodically modulated in a co-sinusoidal
way, with forcing amplitudes Ac=50% and A;=10% and dimensionless forcing
frequency =10

As a physical explanation, we can say that, in principle, there are two major sources of
nonlinearity in the non-isothermal CSTR: the reaction term, which is a nonlinear
function of concentration and temperature, and the coupling between the heat and
material balances. In the Numerical example NONISO-2(a), the reaction order is n=1,
but, owing to the values of heat of reaction and energy activation (Table 4.14), the
temperature dependence of the reaction rate constant and the coupling effect are very
strong, resulting with high degree of nonlinearity which can be observed in Figure 4.22.
The nonlinearity is more pronounced around the resonant frequency, where the coupling
effect is strongest, which explained the results presented in Figures 4.22-4.24 (Nikoli¢ et
al., 2014b).

Harmonic analysis of the numerical results obtained for single input modulation of inlet
concentration modulation for which the relative errors are also significant give very
similar results and the same conclusions can be drawn.
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4.12. Summary of Chapter IV

In this Chapter, the nonlinear frequency response method was used for evaluation of
possible improvements of forced periodically operated non-isothermal CSTRs with
homogeneous, irreversible, simple nth order reaction A—vpP.

Single input modulations were analyzed, when inlet concentration, flow-rate, inlet
temperature and temperature of the cooling/heating fluid were modulated. Simultaneous
modulation of inlet concentration and inlet temperature and simultaneous modulation of
inlet concentration and flow-rate were also investigated.

The asymmetrical second order frequency response functions which correlate the
corresponding outlet concentration or molar flow-rate of the reactant and product for
each case of single input modulation were derived and analyzed. Then, the cross
asymmetrical second order frequency response functions for simultaneous modulation
of two inputs were derived and analyzed.

It was concluded that the high-frequency single input modulations had no influence on
the reactor performance and that for the low-frequency modulation the ASO FRFs
corresponding to single input modulation, tended to asymptotic values. For the
simultaneous modulation of inlet concentration and inlet temperature the same
conclusions were drawn. Nevertheless, simultaneous modulation of inlet concentration
and flow-rate has influence on the reactor performance in the whole frequency range,
including the high-frequency modulations. It was concluded that analysis of only the
reactant or only product ASO FRFs was enough. Also, it was concluded that the phase
difference between the two modulated inputs had an important and decisive influence
on the reactor performance. These results are analogous to the ones obtained for
isothermal CSTRs (Chapter I1I).

The sign analysis of the ASO FRFs which correspond to single input modulations of
each input, as well as for simultaneous modulation of inlet concentration and inlet
temperature, was performed. The summary of the sign analysis of the ASO FRFs were
given, in regard to the reactor parameters and the forcing frequency.

The results of the NFR method were tested on several numerical examples, Numerical
example NONISO-1 and Numerical example NONISO-2(a), 2(b) and 2(c).

The Numerical example NONISO-1 corresponded to an optimized exothermal reactor
with first-order reaction taken from the literature (Douglas, 1972). The NFR method
predicted that single input modulation of the inlet concentration would lead to increase
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of the product yield, while the flow-rate modulation would lead to its decrease. The inlet
temperature modulation and modulation of the cooling fluid would lead to insignificant
improvement and only in a narrow range of higher forcing frequencies. All conclusions
were made by evaluation of the corresponding ASO FRF. The results of the NFR
method were compared with numerical integration results and good agreement between
them was obtained. The results of the sign analysis have correctly predicted the signs of
the ASO FRFs and therefore the possible improvements.

In the second numerical example, NONISO-2, the NFR method was tested on three
non-isothermal CSTRs: one oscillatory stable with strong resonant behavior (NONISO-
2(a)), one oscillatory stable with weak resonant behavior (NONISO-2(b)) and one non-
oscillatory stable (NONISO-2(c)). The analysis was performed for modulation of inlet
concentration and inlet temperature, separately and simultaneously. In summary, we
could say that the NFR method based on the second order approximation gave
satisfactory results for over-damped and under-damped reactors with high and moderate
damping coefficients, even for high input amplitudes, while it failed for low damping
coefficients. The next step in our research would be to define exact criteria for the range
of dumping coefficients for which the method gives reasonable approximations. This
issue is directly related to defining the limiting level of non-linearity and the acceptable
range of input amplitudes for using the second order approximation of NFR method and
finding in which cases it would be necessary to introduce the forth, and possibly higher
order FRFs, in order to expand that range. These issues need to be analyzed together
with analysis of convergence of the Volterra series (Nikoli¢ et al., 2015).
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V Application of nonlinear frequency response method for
evaluation of periodically operated adiabatic non-isothermal
CSTRs

5.1. Forced periodic operations of adiabatic non-isothermal CSTRs

The adiabatic CSTR is a special case of the non-isothermal CSTR, for which the reactor
Is operating in adiabatic condition, meaning that there is no heat transfer between the
reactor and the environment (Fogler, 2005). Therefore, the NFR analysis of the
adiabatic CSTR can be derived directly from the already derived FRFs of the non-
isothermal CSTR, by setting all the terms and auxiliary parameters which are related to
the heat exchange with the cooling/heating medium, i.e., the auxiliary parameters St and
o to zero (St=0, 6=0).

For the adiabatic non-isothermal CSTR (in further text named only adiabatic CSTR), in
comparison to the general non-isothermal CSTR with heat exchange with the
cooling/heating fluid, the inputs which can be periodically modulated are the same (inlet
concentration, flow-rate, inlet temperature), except the temperature of the
cooling/heating fluid.

5.2. Mathematical model

The definitions of the dimensionless variables are the same as they are for the
isothermal and general non-isothermal CSTRs (Tables 3.1 and 4.1), except the
dimensionless variable for the temperature of the heating/cooling fluid &; which can be
equated to zero in the dimensionless model equation of energy balance of the non-
isothermal CSTR, equation (4.17). The dimensionless mass balance equations for
reactant and product are the same as for the general non-isothermal CSTR (given with
Egs. (4.15) and (4.16)) and the dimensionless energy balance is reduced to the following
equation:

do

== 1+, + (1 +8)6; — (14 Py)8 —npCy+ fD — DO

2

- B (nyCAH + <y7 — y> 0% + %n(n - 1)CA2>

(5.1)

151



For the adiabatic CSTR, it is possible to modulate the inlet concentration (Ca;), flow-
rate (®) and inlet temperature (¢;), separately and simultaneously, two-by-two. Here the
analysis of forced periodically operated adiabatic CSTR by NFR method is done for
single input modulation of inlet concentration, flow-rate and inlet temperature, for
simultaneous modulation of inlet concentration and inlet temperature and for
simultaneous modulation of inlet concentration and flow-rate.

5.3. Stability analysis

The stability parameters for the adiabatic CSTR can be deducted from the stability
parameters of the general non-isothermal CSTR, by setting St=0, to the following
expressions:

(2 +na + By)
Aps = — >
(5.2)
B,s =1+ na+py (5.3)

Furthermore, it can be concluded that the adiabatic CSTR will be stable always when
the stability parameter Bys is positive (Bys>0), considering the fact that stability
parameters for the adiabatic CSTR, Ay and Bps are correlated, as follows:

__A+By)
ps 2
(5.4)
It can also be concluded that the adiabatic CSTR will be oscillatory for the case when
the stability parameter is between 0 and 1 (0<Bps<1). Otherwise, for Bps>1, the reactor
will be non-oscillatory.

The natural frequency (wy) is given with the same expression as for the general non-
isothermal CSTR (Eg. 4.29) and the damping coefficient (&), for adiabatic CSTR
becomes:

_1(1 + B,s)

=5 o

(5.5)
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5.4. Definition of the frequency response functions

The definitions of the FRFs are the same as for the general non-isothermal CSTR,
except the FRFs which correlate the output with the modulation of the temperature of
the cooling/heating fluid, which does not exist.

The frequency response functions for periodically operated adiabatic non-isothermal
CSTR can be derived by implementing the derivation procedure of the NFR method as
for isothermal and non-isothermal CSTR. Nevertheless, it is easier to use already
derived expressions for non-isothermal CSTR by equating the above mentioned
auxiliary parameters (St and o) to zero in each expression of frequency response
functions and to get the ASO FRFs for adiabatic CSTR.

In the following Section, the final expressions for the reactant and product G FRFs for
single input modulation of inlet concentration, flow-rate and inlet temperature, as well
as reactant and product cross G ASO FRFs for simultaneous modulation of inlet
concentration and inlet temperature and for simultaneous modulation of inlet
concentration and flow-rate will be given for adiabatic CSTR. The reactant and product
H ASO FRFs will be given for flow-rate modulation as well as reactant and product
cross H ASO FRFs for simultaneous modulation of inlet concentration and flow-rate.

5.5. The G-frequency response functions
5.5.1. Inlet concentration modulation
The first order FRFs Ga1c(w) and Gpy c(w)

Q1+a)(A+ By +jw)

Garc(w) = ;
ALc B,s — w? +jw(1 + Bps)
(5.6)
n(l+ a)
G w) =
prc(@) Bys — w? + jw(1 + B,,)
(5.7)
The ASO FRFs GAZ’CC(w,-w) and szycc(a),-w)
c _a(l+a)? « A
azcc(@—w) = 2B, (@? + D)(w? + BE)
(5.8)
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(1 + a)? A

GPZ,CC((‘)' -—w) = B
ps

(w? + 1) (w? + Bg)

(5.9)

where the same auxiliary parameter A (Eq. (4.35)) is used as for the general non-
isothermal CSTR, with the same definition of A; (Eq. (4.36)), while A; reduces to:

Ay =n*(1—2B%y) —n(1+ By)*
5.5.2. Flow-rate modulation

The first order FRFs Gay (@) and Gpy g(w)

Gy oa (@) a(l+jw)
a) =
LA B,s — w? +jw(1 + Bps)
(1+jw)
G1,FP(CU) = -

B,s — w? +ja)(1 + Bps)
The ASO FRFs GAZ,FF((U,'(U) and sz,pp(w,-w)

a % Ql
ZBpS (w? + Bgs)

GAZ,FF (w,—w) = —

1 o

X
2B,; (w?+ BX)

GPZ,FF (w,~w) =

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

The expression for the ASO FRF Gaz rr(w,-w) is significantly reduced in comparison to

the same function for the general non-isothermal CSTR, considering that for adiabatic
CSTR the auxiliary parameters Q; (Eqg. (4.43)) and Q, (Eq. (4.44)) are reduced to the

same expression:

0 =Q, =n(n—1Da?+2na(1+ Ly) + 2(1 + By) + B2y (y — 2)

Thus, the auxiliary function Q (Eq. (4.42)) is reduced to

Q=0,(w?+1)

(5.15)

(5.16)
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5.5.3. Modulation of inlet temperature
The first order FRFs Ga1 1(w) and Gp; 1(®)

—ay(1+p)

Gar(w) = :
ALT B,s — w? +jo(1+ Bps)
(5.17)
y(1+B)
Gpyr(w) = ,
PLT Bys — w? + jow(1 + Byg)
(5.18)
The asymmetrical second order FRFs Ga, t1(®,-®) and Gpy t1(o,-o)
ay(1+ B)? Y
G ,—w) = — X
azrr (@, ~®) 2B, (w? + 1)(w? + B%)
(5.19)
_y(1+B)? ¥
Gpar (@, —w) = 2B, % (w? +1)(w? + B)
(5.20)

where the auxiliary parameter W is the same as for the general non-isothermal CSTR
(Eq.(4.49)), as well as W1 (Eq. (4.50)) and ¥, (Eq. (4.51)).

5.5.4. Simultaneous modulation of inlet concentration and inlet temperature
The cross ASO FRFs Gaz cr(w,-w) and Gp, c1(o,-o)

The real part of the FRF Gaz c1(w,-o) is reduced to

_nay(l +a)(1+pB) o (a)z +1+a(l+By)+2601+ na))

Re(Gpper(w,—w)) =

B,s (w? + D (w? + Bg)
(5.21)
and the imaginary part to
_ nay(1+a)(1+p) w(a—2pB)
Im (GAZ,CT((U: _w)) = - Bps (wz + 1)(0)2 + B,?s)
(5.22)

In a similar way, the real and imaginary parts of the cross ASO FRF Gp; c1(w,-w) are
given with:
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2
Re (G cr (60, —@)) = ny(1+ a)(1+p) y (w?+1+a(l+pBy)+28(1+na))

B,s (w? + 1 (w? + By)
(5.23)
ny(1+a)(1+B) w(a—2p)
Im (GPZ,CT((U: _(U)) = Bps x (w? + 1)(w2 + Bﬁs)
(5.24)

The cross ASO terms G, cr(p,@) and G pac1(p,w) are given with equations (4.64) and
(4.65). The optimal phase differences for simultaneous modulation of inlet
concentration and inlet temperature are given with equations (4.66) and (4.67).

5.5.5. Simultaneous modulation of inlet concentration and flow-rate

The cross ASO FRFs Gaz cr(w,-w) and Gp; cr(w,-o)
The cross ASO FRF Gaz cr(w,-m) is given with

B,s (w?+ 1)(w?+ B)

GAZ,CF((U; —w) =
(5.25)

where the auxiliary function IIg is defined in the same way as for the general non-
isothermal CSTR, with (Eq. (4.69)), while the auxiliary parameters ITr1, I1g, and I1gs are
reduced to the following:

Mg, = na?By + naR(A+By)> — (1 +By) +a) + (1 + By)? (5.27)
Mrz = na(1+ a+ By(a—2B)) (5.28)

The auxiliary function I, is defined in the same way as for the general non-isothermal
CSTR (Eq.(4.73)), but the auxiliary parameters I1j; and ITj, are reduced to:

M, = n?a?By + na(2(1 + By)* — (1 + By) — 1 — By(a — 2B)) + (1 + By)?
(5.30)

The cross ASO FRF Gp; cr(w,-w) is given with

aB,; (w?+ 1)(w? + B)

GPZ,CF((U' —w) =

(5.31)
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where the auxiliary function I'r (Eq. (4.77)) for the adiabatic CSTR can be given in a
polynomial form:

FR = FR1w4 + FRz(UZ + FR3 (532)

The auxiliary parameters I'r1, I'r2 and I'rs are, respectively

FRl =na (533)
Tpy = na(Bys + Bys + 1 — (a + 1)) (5.34)
[r3 = —na(l +a+ pyla— Zﬁ)) (5.35)

The auxiliary function I'y (Eq. (4.78)) for the adiabatic CSTR is also given in a
polynomial form:

F] = Fll(l)z + F]z (536)
where the auxiliary parameters I'j; andI'}, are, respectively

FIl = na (537)
Tz = na (B + Bys + 1+ fy(a — 23)) (5.38)

5.6. The H-asymmetrical second order frequency response functions

5.6.1. Flow-rate modulation
The ASO FRFs HAz,Fp(w,-w) and HPZ’FF(C(),'C())

a % QH
2B,s (w2 + Bgs)

HAZ,FF (w,~w) = —

(5.39)

1
2B (w2+B§S)

Hpy pr(w, —w) =
(5.40)

The auxiliary parameter Qg in the numerator of the ASO FRFs Hazrr(w,-w) and
Hp2 rr(w,-w) of the adiabatic CSTR is reduced to

Qy = —n?a? —na(a+ 21+ By)) +2(1 + By) —2(1 + By)* + B2y (y — 2)
(5.41)
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and, contrary to general case of non-isothermal CSTR (Eq. (4.81)), this auxiliary
parameters is not a function of forcing frequency.

5.6.2. Simultaneous modulation of inlet concentration and flow-rate
The cross ASO FRFs Haz ce(m,-@) and Hp, cr(w,-o)
For the adiabatic CSTR, the cross ASO FRF Haz cr(w,-) is given as

1+a) (gy + jwll;y)

Bps % (w? + 1)(w? + B%)

HAZ,CF (w,—w) =

(5.42)

where the auxiliary functions Ilgy and Iy, for the adiabatic CSTR become,
respectively:

Mpy = (w? +1) ((1 + BY)(w? + B%) + na(a + 1)) + nafy(a —2B) (5.43)

My = —na(w? + 1+ By(a —2p)) (5.44)
The cross ASO FRF Hp, cr(w,-w) for the adiabatic CSTR is given as

1+a) y (Tgy + joIy)
By (w?+ 1)(w? + szs)

Hpy cr(w, —w) =

(5.45)

with the auxiliary functions I'ry and I';y which are given with following expressions

T = ((@? + 1)(w? + BE — (¢ + 1)) — fy(a - 2)) (5.46)
Ty =n(w? + 1+ By(a —2B)) (5.47)

The cross ASO terms H a2 ce(@,0) and H'pa ce(p,w) for the adiabatic CSTR are given
with the same equations as for the general case (equations (4.96) and (4.97)). The
optimal phase difference for the adiabatic CSTR, when inlet concentration and flow-rate
are periodically modulated, with arbitrary chosen forcing amplitudes, Ac and Ag, is
given with equation (2.84).
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5.7. Correlations between the reactant and product asymmetrical frequency
response functions and terms

All equations and conclusions presented in Section 4.8 for the general non-isothermal
CSTR are completely the same and valid for the adiabatic CSTR, both for single input
modulation and for simultaneous modulation of two-inputs.

5.8. Estimating the possible improvements throughout the sign analysis of
the asymmetrical second order frequency response functions

5.8.1. Asymmetrical second order FRFs for inlet concentration modulation

For the adiabatic CSTR, the results of the sign analysis of the ASO FRFs Gaz cc(w,-®)
and Gpy cc(w,-w) are the same as they are for the general non-isothermal CSTR, given
in Table 4.2 with differently defined wo ¢

) j(l + By)? —n(1 — 282))
Wo,c =

n—1
(5.48)
and nc
(1 +py)?
T T 2py
(5.49)

5.8.2. Asymmetrical second order FRFs for flow-rate modulation

For the adiabatic CSTR, the sign analysis of the ASO FRF is simpler than it is the case
of the general non-isothermal CSTR. The signs of the ASO FRFs Ha rr(w,-w) and
Hp2 rr(w,-@) does not depend on the forcing frequency, but they depend only on the
sign of the auxiliary parameter Qy (EQ. (5.41)) in the following way:

sign (HAZ,FF((‘): —a))) = —sign(Qy) (5.50)

The ASO FRF Haz rr(w,-@) will have the opposite sign than the auxiliary parameter Qy,
therefore just by determination of its sign, the sign of the ASO FRF Haz rr(w,-@) will be
also determined. On the other hand, the ASO FRF Hp; rr(w,-w) will have the same sign
as the auxiliary parameter Q.
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5.8.3. Asymmetrical second order FRFs for inlet temperature modulation

The results of the sign analysis of the ASO FRFs Ga, tr(w,-w) and Gp, 11(w,-w) for the
adiabatic CSTR are completely the same as for the general non-isothermal CSTR, given
in Table 4.4. The auxiliary parameters which are necessary to determine the signs of
these ASO FRFs wor, Nt and nr are defined in the same way as in Chapter IV
(equations (4.120) and (4.121)).

5.8.4. The cross asymmetrical second order terms for simultaneous modulation of
inlet concentration and inlet temperature

The auxiliary parameters e (Eq. (4.122)) and ¢ (EqQ. (4.124)), necessary for the sign
analysis of the real and imaginary parts of the cross ASO FRFs G, cr(w,-@) and
Gpz2.ct(w,-w), for the adiabatic CSTR are defined with the following equations:

eg=1+a(l+By)+28(1+na) (5.51)
g=a—20 (5.52)

All other conclusions of the sign analysis of the ASO cross FRFs Ga,cr(w,-») and
Gp2ct(w,-w) are the same as for the general non-isothermal CSTR, given in Tables 4.5
and 4.6 and, for the recommended phase difference, in Tables 2.1 and 2.2.

5.9. Numerical example ADIAB-1: Laboratory scale adiabatic CSTR for
hydrolysis of acetic acid anhydride to acetic acid

5.9.1. Definition of Numerical example ADIAB-1

As an example for testing the NFR method on the adiabatic CSTR, is a laboratory
reactor of volume V=0.384 dm?, in which hydrolysis of acetic acid anhydride to acetic
acid takes place (Numerical example ADIAB-1). The overall hydrolysis reaction of
acetic acid anhydride ((CH3CO),0) to acetic acid (CH3COOH) can be represented as

(CHsC0O),0 + H,O — 2 CH3COOH

and it is a pseudo-first order reaction in excess of water. The hydrolysis of acetic
anhydride is a moderately to highly exothermic, fast reaction (Hirota et al., 2010).

The kinetic parameters of acetic acid production, i.e. activation energy (Ea), the pre-
exponential factor in the Arrenius equation (ko) and reaction order (n) were
experimentally determined in Max-Plank Institute for Dynamics of Complex Technical
Systems (Magdeburg, Germany) and given in Table 5.1. The experimental data agree
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quite well with the data in the literature (Kralj, 2007).The heat of the reaction and heat
capacity, are also given in Table 5.1.

Table 5.1 The parameters for the hydrolysis reaction of acetic acid anhydride

Parameter Value
Reaction order, n 1
Pre-exponential factor of the reaction rate constant, ko (1/s) 139390
Activation energy, Ea (kJ/mol) 44.350
Heat of reaction, AHg (kJ/mol) -55.500
Heat capacity, pe, (kJ/(Kdm®)) 4.186

Before investigating the periodic behavior of the reactor, through simulations of the
ASO FRFs, an optimization procedure was performed in order to choose the optimal
steady-state around which the reactor would be modulated. The inlet concentration of
the acetic acid anhydride and the residence time for a laboratory CSTR in which the
room temperature was assumed (T;=295.15 K), were optimized.

The optimization was done in order to optimize two objective functions: the Space-
Time-Yield (STY) which is defined as follows

mol ) Cps
3

STY. <
$\sdm

Tres,s

(5.53)
and the product yield (or the reactant conversion) (Egs. (2.20) and (2.21)).

The details about the optimization procedure are given in Appendix C1, and here, in
Table 5.1 the solution which was adopted, is defined with the optimized values of inlet
concentration (Cai,s) and the residence time (zress) for the inlet temperature (T; s=295.15
K), is given. The Multi-objective optimization using Genetic Algorithm was done in
Matlab.

Furthermore, for the adopted optimal steady-state, there is one steady-state solution
defined with the concentration of the reactant in the reactor (cas), concentration of the
product in the reactor (cps) and the temperature in the reactor (Ts) (Table 5.2). The

161




values of the objective functions (STYsand Yps) are also given, as well as the stability
parameter (Bys) and the damping coefficient (¢).

Table 5.2 The steady-state concentrations, temperature and objective functions, the
stability parameter and the damping coefficient for the optimal steady-state

Cais Tis Tress Cas Cps T STY, Yps

(mol/ (K) (s) (mol/ (mol/ (Ks) (molis/ | (%) | By | &
dm?) dm?) dm?) dm?)

3.640 |295.15[218.96 | 0.8662 | 5.5477 |331.93| 0.0253 | 76.20 | 2.42 | 1.099

The adiabatic CSTR in which the hydrolysis of acetic acid anhydride takes place, for the
optimal steady-state is stable (Bps=2.42>0) and non-oscillatory, with the damping
coefficient £=1.099. The values of the auxiliary parameter for the chosen optimal
steady-state are: 0=3.2024, f=- 0.1108 and y=16.07.

Considering that the residence time for the optimal steady-state is zress=218.95 s and the
fact that the reactor with of volume V=0.384 dm? is examined, the steady-state flow rate
will be F¢=0.1052 dm*/min.

Also, the analysis of the periodically operated laboratory adiabatic CSTR, in which the
hydrolysis of the acetic anhydride takes place, by the NFR method, showed that the
ASO FRF Gp, 11(w,-w) for modulation of the inlet temperature has very high negative
values in the investigated range of inlet concentration and flow-rate (Appendix C2,
Figures C1-C2) indicating highly unfavorable periodic operation. Therefore, the
modulation of inlet temperature will not be considered and the temperature of the inlet
temperature will be assumed to be constant, and modulations of only the inlet anhydride
concentration and flow-rate, separately and simultaneously is considered.

5.9.2. Simulation results for single input modulations

The graphical representation of the product (acetic acid) ASO FRF Gp; cc(w,-w) which
correspond to single input modulation of the inlet concentration of acetic acid
anhydride, vs. dimensionless forcing frequency is given in Figure 5.1.
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Figure 5.1 The ASO FRF Gp;,,cc(w,-) as a function of the dimensionless forcing
frequency

The ASO FRF Gp;,cc(w,-w) is negative in the whole frequency range (Figure 5.1)
which indicates that the inlet concentration modulation will lead to deterioration of the
reactor performance. The simulation results are in accordance with the sign analysis
results, since they lead to a conclusion that the ASO FRF Gp; cc(w,-w) is negative in
whole frequency range (Table 4.2, (1/nc<1 and n=1), nc=1.006 (Eq. (5.49)). Despite the
fact that this ASO FRF is negative, its value is quite low, and it can be approximated
and accepted that the inlet concentration modulation has no effect on the reactor
performance.

The ASO FRF Hp; rr(w,-w) which correlates the outlet molar flow-rate of the product
with modulation of the flow-rate is graphically presented in Figure 5.2, as a function of
the dimensionless forcing frequency.
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Figure 5.2 The ASO FRF Hp, rr(w,-w) as a function of the dimensionless forcing
frequency

From the sign analysis of the ASO FRF Hp, rr(w,-w), it is expected this function to be
negative in the whole frequency range, since Qu=-15.52<0 (Eq. (5.41)). This is
confirmed with the simulation results (Figure 5.2). Therefore, the modulation of the
flow-rate will lead to deterioration of the reactor performance.

Thus, the NFR method and simulation results for single input modulations of inlet
concentration and flow-rate for the examined system showed that the improvement of
the reactor performance can not be obtained by single input modulation.

5.9.3. Simulation results for simultaneous modulation of inlet concentration and
flow-rate

Despite the fact that the single input modulations of the inlet concentration and flow-
rate will lead to deterioration of the reactor performance, simultaneous modulation of
these two inputs with appropriate choice of the forcing parameters might have a positive
effect on the reactor performance. This analysis will be presented here.

For forcing amplitudes of the inlet concentration and flow-rate, Ac=Ar=75%, the
optimal phase difference (Eq. (2.84)) which should be used in order to maximize the
product yield is given in Figure 5.3.
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Figure 5.3 The optimal phase difference popi(e) for forcing amplitudes Ac=Ar=75%, as
a function of the dimensionless forcing frequency

The product yields obtained for single and simultaneous modulations of the inlet

concentration and flow-rate, with Ac=Ar=75% and optimal phase difference presented

in Figure 5.3, are shown in Figure 5.4.
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Figure 5.4 The product yields for steady-state operation, for single input modulation of
the inlet concentration of acetic anhydride, flow-rate and for simultaneous modulation
of inlet concentration and flow-rate, with Ac=Ar =75% and the optimal phase difference
popt(®), as functions of the dimensionless forcing frequency
As expected, based on the results presented in Figure 5.1 and 5.2, the inlet concentration
modulation has practically no influence on the reactor performance and the flow-rate
modulation will lead to deterioration of reactor performance. Nevertheless, the
simultaneous modulation of these two inputs, with forcing amplitudes Ac=Ar=75% and
the corresponding optimal phase difference gopi() will lead to significant increase of

the product yield for low and high forcing frequencies.

Further, the optimal forcing parameters for simultaneous modulation of inlet
concentration and flow-rate which maximize the product yield are determined
numerically from (Eq. (2.77)) as functions of forcing frequency. They are graphically
presented in Figure 5.5.
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Figure 5.5 The optimal forcing amplitudes Ac opt(®), Aropt(w) and the optimal phase
difference gopi(®w), which maximize the product yield for simultaneous modulation of
the inlet concentration and flow-rate, vs. dimensionless forcing frequency

The product yield for simulatenous modulation of the inlet concentration and flow-rate
with these optimal forcing parameters is graphically presented in Figure 5.6. The
product yields for single input modulations with the same forcing amplitudes, as well as
for steady-state operation are also given in Figure 5.6.
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Figure 5.6 The product yields for steady-state operation, for periodic modulation of the
inlet concentration with Ac,opt(@), flow-rate modulation with Ag,gp(w) and simultaneous
modulation of these two inputs with optimal forcing amplitudes and optimal phase
difference gopi(w) vs. dimensionless forcing frequency

In this case, the increase of product yield is higher than for the previous case shown in
Figure 5.4, in whole frequency range. Both low and high-forcing frequency modulations
lead to significant increase of the product yield.

The performance of the adiabatic CSTR, when inlet concentration and flow-rate are
periodically modulated around previously established steady-state, can be significantly
improved from the aspect of product yield increase in comparison to the optimal steady-
state, despite the facts that single input modulation of the inlet concentration practically
has no influence and single input modulation of the flow-rate will cause the product

yield decrease.

5.9.3. Comparison with the results obtained by numerical integration

The approximate results obtained by the NFR method, are compared with the results of
numerical integration for simultaneous modulation of the inlet concentration and flow-
rate, in a co-sinusoidal way, around the previously established optimal steady-state.

The results of numerical simulations and the NFR method for simultaneous modulation
of the inlet concentration and flow-rate with equal forcing amplitudes Ac=Ar=75% and
with the corresponding optimal phase difference gqn(w) are given in Table 5.3, for
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dimensionless forcing frequencies »=0.1, 1 and 10. The same results are given for
numerically determined optimal forcing parameters (amplitudes and phase difference)
for the same frequencies (»=0.1, 1 and 10), in Table 5.4.

The relative errors for the product yield (Jy) are also given in these Tables, in order to
compare the results of numerical integration which are considered to be exact, with the
estimates from the NFR method.

Table 5.3 The product yields and the relative yield changes, for simultaneous
modulation of the inlet concentration and flow-rate with Ac=Ag=75% and the
corresponding optimal phase difference, determined by numerical simulation and by the
NFR method, and the relative errors

Simultaneous modulation of inlet concentration and flow-rate,
AC=75%, A|:=75%,

Yroo(% AYr (%
“ Port num a )NFRM o(%) num ( )NFRM
0.1 0.1321 85.67 85.57 012 +12.43 +12.28
1 -0.7822 79.79 79.99 +0.25 +4.70 +4.96
10 0.2809 85.48 87.23 +2.05 +12.16 +14.46

Table 5.4 The product yields and relative yield changes, for simultaneous modulation of
the inlet concentration and flow-rate with optimal forcing parameters (amplitudes and
phase differences), determined by numerical simulation and by the NFR method, and
the relative errors

Simultaneous modulation of inlet concentration and flow-rate

0 | Acen%8) | Aram 08) | gons(rad) || 509 |20
num | NFRM num | NFRM
0.1 95.45 -0.1437 | 88.87 | 95.03 | +6.93 | +16.62 | +24.71
1 100 66.44 -0.9883 | 81.02 | 84.01 | +3.69 | +6.33 | +10.23
10 100 0.3323 | 88.57 | 93.04 | +5.05 | +16.22 | +22.08

From the values of the relative errors reported in Table 5.4 for forcing amplitudes
Ac=Ar=75%,, it can be concluded that the NFR method gives very good predictions of
the behavior of the adiabatic CSTR in which hydrolysis of acetic acid anhydride takes
place, when the inlet concentration and flow-rate are simultaneously modulated in a co-
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sinusoidal way. Thus, the previous conclusions made by NFR method for the forced
periodically operated adiabatic CSTR are confirmed.

Nevertheless, for the case when both forcing amplitudes are very high, as given in Table
5.4 for forcing frequencies ®=0.1 and 10, the relative errors increased, as expected for a
very high forcing amplitudes.

5.10 Summary of Chapter V

In this Chapter, the nonlinear frequency response method was used for evaluation of
possible improvements of forced periodically operated adiabatic non-isothermal CSTRs
with liquid homogeneous, irreversible, simple nth order reaction A—vpP.

Considering that the adiabatic non-isothermal CSTR represents a special case of the
general non-isothermal CSTR for, which there is no heat exchange between the reactor
and the environment (Fogler, 2005), the inputs which can be modulated in this case are:
the inlet concentration, flow-rate and inlet temperature. Thus, periodic operations with
single input modulations of these three input were analyzed, as well as, periodic
operations with simultaneous modulation of inlet concentration and inlet temperature
and simultaneous modulation of inlet concentration and flow-rate.

The asymmetrical second order frequency response functions and the cross
asymmetrical frequency response functions were obtained by reducing the
corresponding functions for the general non-isothermal CSTR, by setting all the terms
and auxiliary parameters which were related to the heat exchange with the
cooling/heating medium to zero.

The same conclusions, considering the low and high frequency modulation for
investigated single or two-input modulations, were drawn as for the isothermal (Chapter
I11) and general non-isothermal CSTRs (Chapter 1V). The sign analysis of the ASO
FRFs and cross ASO FRFs was also performed and the summary of the sign analysis of
the ASO FRFs was given.

The results of the NFR method were applied here for the analysis of a laboratory scale
adiabatic CSTR for hydrolysis of acetic acid anhydride to acetic acid (Numerical
example ADIAB-1). The analysis was performed for single and simultaneous
modulation of the inlet concentration of acetic acid anhydride and flow-rate. An
optimization procedure was performed and the optimal steady-state was adopted.
Periodic operations around that optimal steady state were analyzed. The NFR method
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predicted that single input modulations of the inlet concentration and flow-rate would
lead to decrease of the product yield. Nevertheless, it was shown that simultaneous
modulation of these two inputs, with appropriate choice of the forcing parameters,
would lead to significant increase of the product yield. Again, good agreement between
the results of the NFR method and the results of numerical integration was obtained.
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V1 Conclusions

In this work, a nonlinear frequency response (NFR) method, based on the second-order
approximation, was used for evaluation of influence of forced periodic modulations of

one or two inputs on the performance of chemical reactors.

The nonlinear frequency response method was used for evaluation of possible
improvements of forced periodically operated continuous stirred tank reactors with
liqguid homogeneous, irreversible, simple nth order reaction A—vpP, for isothermal,
non-isothermal and adiabatic conditions. For the isothermal CSTRs, the analysis was
performed for single input modulations of the inlet concentration and flow-rate and for
simultaneous modulation of these two inputs. For the non-isothermal CSTRs, single
input modulations of the inlet concentration, flow-rate, inlet temperature and
temperature of the cooling/heating fluid were considered, as well as simultaneous
modulations of the inlet concentration and inlet temperature and simultaneous
modulation of the inlet concentration and flow-rate. The adiabatic CSTRs where
analyzed for single input modulations of the inlet concentration of the reactant, flow-
rate and inlet temperature, as well as for simultaneous modulations of the inlet
concentration and inlet temperature and simultaneous modulations of the inlet
concentration and flow-rate. All investigated cases were summarized in Table 2.3.

The proposed method uses only the asymmetrical second order FRFs, for approximate
evaluation of the investigated process. In all investigated cases, a general methodology
of the derivation procedure was used for derivation of the necessary asymmetrical
second order frequency response functions and cross asymmetrical frequency response
functions, defining the outlet reactant and product average concentrations, and thus the
product yield and the reactant conversion corresponding to the forced periodically
operated reactors.

The derived asymmetrical second order frequency response functions and the cross
asymmetrical frequency response functions were analyzed, which included their sign
analysis.

The results of the NFR method were tested on several numerical examples: two for the
isothermal CSTR (ISO-1 and ISO-2), two for the general non-isothermal CSTR
(NONISO-1, and NONISO-2(a) to (c)), and one for the adiabatic non-isothermal CSTR
(ADIAB-1).
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The main conclusions of this investigation can be summarized as follows:

The average performance of forced periodically operated chemical reactors can
be evaluated from the DC (non-periodic term) component of the output of
interest, which, on the other hand, can be approximately estimated from and the
corresponding asymmetrical second order FRF(s). In order to determine the
influence of the forced periodic operation on the reactor performance for single
input modulation, it is enough to derive and analyze only the corresponding
asymmetrical second order frequency response function. For evaluation of the
reactor performance when two inputs are simultaneously modulated, in addition
to the asymmetrical second order FRFs corresponding to each input, the cross
asymmetrical second order FRF needs to be derived and analyzed;

Analysis of either the reactant or the product asymmetrical frequency response
functions should be performed, considering the fact that both lead to the same
result, regarding the change of the reactant conversion or product yield obtained
in the periodic mode of operation.

For single input modulations, except for the flow-rate modulation, the DC
components of the outlet concentrations (reactant or product), estimated from the
corresponding asymmetrical second order frequency response functions, can be
used to evaluate the possible improvements. For single input modulation of the
flow-rate and for simultaneous modulation of the flow-rate with and another
input, except the inlet concentration, the DC components of the outlet molar
flow-rates (reactant or product) are used in order to determine the possibility of
the reactor performance improvements.

For simultaneous modulation of the inlet concentration and flow-rate, in order to
evaluate the possible improvements, besides the DC components of the molar
flow-rates (reactant or product), it is necessary to determine the inlet molar flow-
rate of the reactant which is not constant and to evaluate the reactant conversion
or the product yield corresponding to the periodic operation. The inlet molar
flow-rate of the reactant depends directly on the forcing parameters (forcing
amplitudes and the phase difference the between modulated inputs);
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For single input modulations, the sign of the outlet DC component of interest
can be determined directly from the sign of the corresponding asymmetrical
second order frequency response function, thus giving the answer whether the
reactor performance improvements are possible or not,

For simultaneous modulation of the inlet concentration and temperature, the sign
analysis of the real and imaginary parts of the cross asymmetrical second order
frequency response will give the recommended phase difference range which
should be used in order to obtain the desirable cross effect (positive or negative).
If the ASO FRFs corresponding to the single input modulations have desirable
signs (negative for the reactant and positive for the product), by appropriate
chose of the phase difference the periodic modulation will lead to even higher
improvement. If one or both single input ASO FRFs have undesirable signs, the
overall DC component of the outlet concentration should be evaluated in order
to determine the overall effect on the reactor performance. Also, the forcing
amplitudes and the phase difference which optimize the desirable objective
function (reactant conversion or product yield) can be determined and used.

For simultaneous modulation of the inlet concentration and flow-rate, it is not
possible to draw a decisive conclusion regarding the reactor performance
improvements just on the sign analysis of the ASO FRFs. In this case, the
optimal phase difference which optimizes the chosen objective function
(reactant conversion or product yield) for defined forcing amplitudes can be
determined, or the forcing amplitudes can be optimized together with optimal
phase difference.

High-frequency single input modulations have no influence on the reactor
performance, while for the low-frequency modulations the ASO FRFs tend to
asymptotic values and the periodic operation, in general, will influence the
reactor performance. This is also valid for simultaneous modulation of inlet
concentration and inlet temperature;

Simultaneous modulation of inlet concentration and flow-rate has influence on
the reactor performance in the whole frequency range,

The forcing amplitudes and phase difference for simultaneous modulation of two
inputs have a decisive role on the reactor performance;
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The results of the NFR method based on the second order approximation
compared with the results of numerical integration, gave a very good
agreements. The only exception is a reactor with strong resonance for forcing
frequencies which are close to the resonant one when high forcing amplitudes
are used. Thus, the NFR method based on the second order approximation gave
satisfactory results for over-damped and under-damped reactors with high and
moderate damping coefficients, even for high input amplitudes, while it failed
for low damping coefficients (Nikoli¢ et al., 2015).

In summary, we could say that the NFR method based on the second order
approximation gave satisfactory results for over-damped and under-damped
reactors with high and moderate damping coefficients, even for high input
amplitudes, while it failed for low damping coefficients. The next step in our
research would be to define exact criteria for the range of dumping coefficients
for which the method gives reasonable approximations. This issue is directly
related to defining the limiting level of non-linearity and the acceptable range of
input amplitudes for using the second order approximation of NFR method and
finding in which cases it would be necessary to introduce the forth, and possibly
higher order FRFs, in order to expand that range. These issues need to be
analyzed together with analysis of convergence of the Volterra series (Nikoli¢ et
al., 2015). One of the following steps in our research would also be the
experimental verification of the theoretical results.
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List of symbols
Latin symbols

A input amplitude

Aps  stability parameter

Ay surface area for heat exchange

B output amplitude

Bps stability parameter

Ca [mol/m?] reactant concentration

Ca dimensionless reactant concentration

Cp [mol/m?] product concentration

Cp [J/kg/K] heat capacity

Cp dimensionless product concentration

Ea [J/mol] activation energy

F [m%s] volumetric flow-rate

Ganx N-th order frequency response function which correlate the outlet reactant
concentration with modulated input X

Gpnx n-th order frequency response function which correlate the outlet product
concentration with modulated input X

Ganxz N-th order frequency response function which correlate the outlet reactant
concentration with modulated inputs X and Z

Gpnxz N-th order frequency response function which correlate the outlet product
concentration with modulated inputs X and Z

G anxz the cross term which correlate the outlet reactant concentration with modulated
inputs X and Z

G pnxz the cross term which correlate the outlet product concentration with modulated
inputs X and Z

Hanx N-th order frequency response function which correlate the outlet molar flow-
rate of the reactant with modulated input X

Hpnx N-th order frequency response function which correlate the outlet molar flow-
rate of the product with modulated input X

Hanxz N-th order frequency response function which correlate the outlet molar flow-
rate of the reactant with modulated inputs X and Z

Hpnxz N-th order frequency response function which correlate the outlet molar flow-
rate of the product with modulated inputs X and Z
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H*An‘xz the cross term which correlate the outlet molar flow-rate of the reactant with
modulated inputs X and Z

H pnxz the cross term which correlate the outlet molar flow-rate of the product with
modulated inputs X and Z

k reaction rate constant
Ko [(mol/m®)*™"/s] pre-exponential factor in Arrenius equation
n reaction order

Na dimensionless molar flow-rate of the reactant
Na [mol/s] molar flow-rate of the reactant
Np dimensionless molar flow-rate of the product
Np [mol/s] molar flow-rate of the product

P1, P2, P3 poles (roots of the characteristic equation)
R [J/mol/K] universal gas constant

S Laplace complex varible

St Stanton number

STY [mol/s/m®]  Space-Time-Yield

t [s] time

T [K]  temperature

U [I/m?/K/s] overall heat transfer coefficient
u,v  frequency, general

% [m*]  volume of the reactor

X input

XA conversion of the reactant

X dimensionless input

y output

Y dimensionless output

Yp yield of product
z input
VA dimensionless input

Greek symbols

I'r, T'r1, T'r2, Tr3 auxiliary functions in real part of the cross ASO
FRF Gpgycp(a),-a))
I'ur, TR ThHR2y THR3 THRa auxiliary functions in real part of the cross ASO

FRF Hpo,cr(w,-0)
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I, Ty, T auxiliary functions in imaginary part of the cross ASO FRF

Gp2,cr(w,-)

T, This, Thig, Tiis auxiliary functions in imaginary part of the cross ASO FRF

Hpa cr(w,-o)

A, A1, A auxiliary functions in expressions of the ASO FRFs Gaz cc(w,-o)

and Gpy,cc(w,-w)

IR, Iy, TRy, ITr3 auxiliary functions in real part of the cross ASO FRF

Gaz,cr(w,-)

ITyR, yr1, TRz, THrs auxiliary functions in real part of the cross ASO FRF

Haz,cr(w,-o)

I, Iy, 1), auxiliary functions in imaginary part of the cross ASO

FRF GAZ,CF(G),-OO)

Iy, Mg, e auxiliary functions in imaginary part of the cross ASO

FRF HAZ’CF(G),-OO)

() dimensionless volumetric flow-rate

Y, ¥y, ¥, auxiliary functions in expressions of the ASO FRFs Gaz 11(®w,-),
Gp2,11(0,-0), Gaz,13(w,-w) and Gpy y3(@,-w)

Q, U, Q auxiliary functions in expressions of the ASO FRFs Gaz rr(®,-®)
and Gpy rr(w,-m)

Qn, Quip, Qon auxiliary functions in expressions of the ASO FRFs Haz rr(@,-)
and Hpy rr(o,-)

a auxiliary parameter

S auxiliary parameter

y auxiliary parameter

) auxiliary parameter

Oy relative error for product yield

0 dimensionless temperature

vp stoichiometric coefficient of the product P

¢ damping coefficient

[m3/kg] density

T dimensionless time

Tres [s] residence time

17 [rad] phase difference between two modulated inputs

1) dimensionless forcing frequency

g [rad/s] dimensional forcing frequency
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Wn [rad/s] natural frequency

ar [rad/s] resonant frequency

AHg  [kd/mol] heat of reaction

Subscripts

A reactant

C, CC corresponding to modulation of the inlet concentration

CF  corresponding to modulation of the inlet concentration and flow-rate
CT  corresponding to modulation of the inlet concentration and inlet temperature
DC  non-periodic term

F, FF corresponding to modulation of flow-rate

[ inlet

J heating/cooling fluid (jacket)

J,JJ  corresponding to modulation of the temperature in the jacket

n nth order

opt  corresponding to optimal forcing variable

P product

po periodic operation

S steady-state

T, TT corresponding to modulation of the inlet temperature

X, XX, X, XX corresponding to input x

z,2z,Z,ZZ  corresponding to input z

Xz, XZ
|
I
i

corresponding to inputs x and z
first harmonic

second harmonic

third harmonic

Superscripts

m

mean

Abbreviations

ADIAB adiabatic

ASO
CSTR
FR
FRF

asymmetrical second order
continuous stirred tank reactor
frequency response

frequency response functions
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ISO isothermal

NONISO non-isothermal

NFR nonlinear frequency response
num  numerical
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Appendix

A Basic steps of the derivation procedure of the G-frequency response
function for the isothermal CSTR

A.1l. Taylor series expansions of the nonlinear terms in Eqgs. ((3.2) and (3.3))
F®)c(t) =Fes +os(F —F) + K(c—c) + (F —F)(c —¢) + - (Al1)

C = Cy;,Cy OT Cp

A.2. Derivation of the first order and asymmetrical second order frequency
response functions for single input modulation of inlet concentration and flow-rate

Step 1: Defining the dimensionless input X(z) (X=C, or @) in the form of a co-sinusoidal
function

X(7) = Axcos(wt) = ATXej“” + ATXe_j“” (A2.1)
Step 2: Representing the dimensionless outlet concentrations of the reactant and product in the
form of Volterra series

A wr o (A iwr Ax )2
Ca() = (7;() Garx ()M + (TX) Garx (—w)e T -+ 2 (7;() Gazxx (@, —w)e® + -
(A2.2)

Cp() = (ATX) Gp1x(@)e/*T + (ij) Gp1x(—w)e T + -+ 2 (ij)z Gpaxx (@, —w)e® + -
(A2.3)

Step 3: Substituting the expressions for the dimensionless modulated input X(z) (Eq. (A2.1)) and

dimensionless outlet concentrations defined with equations (A2.2 and A2.3) into the appropriate

dimensionless model equations, (for inlet concentration modulation in equations (3.12) and

(3.12) and for flow-rate modulation in model equations (3.14) and 3.15)).

Step 4: Applying the method of harmonic probing. The terms with (Ax/2)e’”* corresponding to
the first order functions and with (Ax/2)%° corresponding to the asymmetrical second order
function are collected and equated with zero. The resulting equations are presented below:

e For inlet concentration modulation
The equations for the first order frequency response functions
(1+na+jw)Gyclw)=1+a (A2.4)
—nGy1,c(@) + (1 + jw)Gpyc(w) =0 (A2.5)
The equations for the asymmetrical second order frequency response functions
2(1+na)Gyycc(w,—w) = —n(n — D)aGyy ¢ (w)Gyy,c(—w) (A2.6)

—2nGyy cc(W, —w) + 2Gpycc(W) = n(n — 1)Gyy ¢ (W)Gy1,c(—w) (A2.7)
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o For flow-rate modulation
The equations for the first order frequency response functions

(1+na+jw)irlw) =a (A2.8)
—nGyy (@) + (1 + jw)Gpy p(w) = -1 (A2.9)

The equations for the asymmetrical second order frequency response functions

2(1 + na)Gyp pr(w, —w) = — (GA1,F(—00) + Gy p (a))) —n(n —1DaGy; p(w)Gyy r(—w)
(A2.10)

—2nGy; pp(w, —w) + 2Gpy pr(w)

=— (GPLF(_(U) + Gp1,F(w)) +n(n —1)Gyy p(0)Gyp1 p(—w)
(A2.11)

Step 5: Solving equations obtained in Step 4. As a result, the expressions for the first order FRFs
Garc(w) (Eg. (3.20)), Gpyc(w) (EQ. (3.21)) and the asymmetrical second order FRFs Gazcc(w,-
) (EQ. (3.22)), Gpy cc(w,-w) (Eq. (3.23)) for single input modulation of the inlet concentration
as well as the first order FRFs Gay r(w) (EQ. (3.24)), Gpir(w) (EQ. (3.25)) and the asymmetrical
second order FRFs Gpyrr(w,-w) (EQ. (3.26)), Gprrr(w,-w) (Eq. (3.27)) for single input
modulation of the flow-rate. Here the ASO FRFs are given as functions of the first order FRFs,
and in the main text their final expressions are given.

_nha (n-1)

Gpzcc(w,—w) = T Ga1,c(@)Ga1,c(—w) (A2.12)
-1
Gpz,cc(w, —w) = n;;ps 2% Ga1,c()Ga1,c(—w) (A2.13)

Gz pr (W, —w) = — X (Garp (@) + Ga1 p(—w) + na(n — )Gy p(w)Gap p(—w))

2B,,
(A2.14)
1
Gparr(w,—w) = T E(GALF((U) + Gpy p(—w) + na(n — 1)Gaq p(0)Gay p (—w))
ps
(A2.15)

A.3. Derivation of cross asymmetrical second order frequency response functions for
simultaneous modulation of inlet concentration and flow-rate
Step 1: Defining the dimensionless inputs Cai(z) and ®(z) in the form of co-sinusoidal functions

Cyi (1) = Accos(ut) = %Cej’” + AZ—Ce_j”T (A3.1)

®(1) = Apcos(vt) = AZ—Fej"T + %Fe_j'” (A3.2)

Step 2: Representing the dimensionless outlet concentrations of the reactant and product in the
form of Volterra series

188



AC jut AC —jut AC ? 0
Ca(r) = 7G1,CA (we*r + 761,6,4 (—uwe + 42 (7) Goccau, —u)e” + -

Ar jvT Ar —jvt Ar ? 0
+ 7Gl,FA )el”" + 701,&4 (—v)e 7" +.-+2 (7) Gopra(v, —v)e” + -+
Ar A .
7C7F Ga,cra(w, v)el VHOT 4 ...
(A3.3)
2
Co(0) = % G cp (W + 55 Gy o (1) + 4 2(FE) Gacp(u,—w)ed +
2 ’ 2 ’ 2 ’ ’
A . A . Ap\?
+ 7F Gprp (V)T + 7F Grep(—v)e " + 42 (7F> Ga,rrp (v, —v)e"
Ar A .
+ eee + 7C7FGZ,CFP(H" v)e](v+u)T + cee

(A3.4)
Step 3: Substituting the expressions for the dimensionless inputs (Egs. (A3.1) and (A3.2)) and
dimensionless outlet concentrations defined with equations (A3.3) and (A3.4) into the
appropriate dimensionless model equations (Egs. (3.10) and (3.11)).

Step 4: Applying the method of harmonic probing. The terms with %CATF e/ ()T corresponding

to the cross asymmetrical second order FRFs are collected and equated with zero. The resulting
equations are presented below:

Ju+v)Gppcr(u,v) =
1+ a) = Ga1.c(W) — (1 + na)Gazcr (W, v) —n(n — DaGyy,c(W)Gay p(v)
(A3.5)

Ju+v)Gpycr(u,v) =
—Gpy,c(W) + NGy cr(U, v) — Gpacr (W, v) + n(n — 1)Gyq,c (W) Gy p (V)
(A3.6)

Step 5: Solving the equations obtained in Step 4 (Egs. (A3.5) and (A3.6)) leads to the general
expressions for the cross ASO FRFs

Gpz,cr(w,v) = m((l +a) — Gapc(w) —n(n— 1)aGA1,C(u)GA1,F(U))
(A3.7)

Gpa,cr(u,v) = (1+](1—u+v)) (nGaz,cr (W, v) — Gpy,c (W) + n(n — 1)Gay,c (WGa1 (V)
(A3.8)

For equal input forcing frequencies (u = w and v = —w) the following relations between the
cross ASO FRFs and the first order FRFs are obtained:

Gazcr (0, —w) = ((1 +a) — Gy1c(w) —n(n— 1)aGA1,C(CU)GA1,F(—CU))

(A3.9)

(1+ na)
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Gpa,cr(w,—w) = (n(l + a) —nGyy c(w) — (1 +na)Gp c(w)

1+na
—n(m = 1)Gy1,c(0)Ga1,r(—w))

(A3.10)
It should be noticed that the cross ASO FRFs Gaocr(w,-@) and Gazcr(-w,w) are complex-
conjugates as well as Gp, cr(w,-w) and Gpy cr(-w,w). The final expressions for the cross ASO
FRFs Gz cr(w,-w) and Gp, cr(w,-w), after incorporating the expressions for the first order FRFs
into equations (A3.9) and (A3.10) are given in the main body of this work, by the Egs. ((3.28)
and (3.29)).

B. Taylor expansions of the nonlinear terms, derivation procedure of
asymmetrical frequency response function and some auxiliary functions and
parameters for non-isothermal CSTR

B.1.Taylor series expansions of the nonlinear terms in the dimensionless balance
equations (4.12-4.14)

Ea Eq E, —Lf4 E A 92 E\2 —fa
e RTs(6+D) = ¢ RTS+Qﬁe RTs 4 @2 (_#)e RTS+_(__A) e RTs 4 ...

s s 2 \ RT,
(B1.1)
¢TI = 0¥ (14 0y + (L=7)o2+-)
(B1.2)
(14 )" =1+ nCy +n(n— 1)CF + -
(B1.3)

___Ea 2
(14 Cy"e RTs6+1) = 7V (1 +y0 + nCy + nyCy0 + (V?_ y) 02 + %n(n _ 1)@% + )
(B1.4)

B.2. Derivation of the first order and asymmetrical second order frequency
response functions for single input modulation of inlet concentration, flow-rate,
inlet temperature and temperature of the cooling/heating fluid

Step 1: Defining the dimensionless input modulation,

X (1) = Aycos(wrt) = ATXej‘“T + ATXe_j‘“T (B2.1)

where for inlet concentration modulation X=C,;, for flow-rate modulation X=&, for inlet
temperature modulation X=T; and for temperature of the cooling/heating fluid X=T;. The
corresponding forcing amplitudes are: Ac, A, At and A;, respectively.

Step 2: Representing the outlet concentrations of the reactant and product, as well as outlet
temperature, in the form of Volterra series:
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G0 = (1) Gar @)oo + (22 Gy x ()T + -+ 2 (42) Gy (@, —w)e® + -

(B2.2)

Cp(7) = (ATX) Gpyx(w)eT + (ATX) Gpx(—w)e T + o 42 (ATX)Z Gpoxx (W, —w)e? + -

(B2.3)

0(1) = () Fux(@)e™ + () Fiy(—w)e o7 + -+ 2 (/‘T’f)2 Fy xx (@, —w)e® + -
(B2.4)

Step 3: Substituting the expressions for the modulated input, outlet concentrations of the
reactant and product and outlet temperature, defined with Egs. (B2.2-B2.4), into the appropriate

model equations (4.15-4.17) (all inputs which are not modulated are set to zero).

Step 4: Collecting the terms with (AX) e/ | corresponding to the first order functions, and with

2

2

2
(A—X) e, corresponding to the ASO FRF, and equating them to zero. The resulting equations,

which are given in the general form, are for the first order frequency response functions

Garx(@), Gerx(w) and Fyx(w)

[1+na + jwlGarx(w) +[01Gp1 x(w) + [ay]Fi x(w) = kyy

[—n]Ga1x (@) + [1 + jwlGpy x (@) + [=V]F x (@) = kx2 (B2.5)
[nB1Ga1x (@) + [0]Gpyx (@) + [1 + St + By + jw]F x(w) = k3

where

for X=C: kCl =1+ a, kCZ = kcg =0 (826)
for X=F: kp1 =a, kpz = -1, kpg = ,8 +St—946 (827)
for X=T: le = kTZ =0, kT3 =1+ ,8 +St—46 (828)
for X=J: k]1 = k]z = 0, k]3 =0 (829)

For the asymmetrical second order frequency response functions: Gay xx(®), Gpz.xx() and
F1 xx(w), the resulting equations are:

[2(1 + na)]Gaz xx (W, —w) + [0]Gpy xx (0, —w) + [2ay]F; xx (0, —w) = Ix;
[—2n]Gaz xx (0, —w) + [2]Gpy xx (0, —w) + [-2Y]F; xx (w, —w) = Iy, (B2.10)
[2nB]Gaz xx (0, —w) + [0]Gpy xx (0, —w) + [2(1 + St + BY)|Fz xx (w, —w) = I3

where for X=C, T or J:

ly1 = —aPyx; Iy, = Pyx; lx3 = —BPx (B2.11)
and for X=F:
lpy = =Gy pa(w) — Gy pa(—w) — aPp (B2.12)
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lpy = =Gy pp(w) — Gy pp(—w)+Pp (B2.13)

lp3 = —FyF () — Fip (—w) — BPp (B2.14)

where:

Py =n(n — 1)Gy x4 (0)Gy xa(—w) + ¥y — 2)F x (0)Fy x (—w)
+ny (Gl,XA (w)F x(—w) + Gy x4 (—w)F; x (w))
(B2.15)

Step 5: After solving the system of equations for the first order FRFs (Eq. (B2.5)) the final
expressions for the first order G FRFs are given in the main part of this work, and here the
F1 x(w) are given

FLC (w) _ —nf (1+a)

Bys—w%=2jw Apg

(B2.16)

F1_F((U) — (B+St—6+na (St—8))+jw (B+St—6) (8217)

Bps—w2—=2jw Apg

(1+B+St-8)(1+na+jw)

Fl,T ((,()) = Bpg —w2—2jw Aps (8218)
_ d(l+na+tjo)
Py = o e ars (B2.19)

The system of equation for the ASO FRFs (Eq. (B2.10)) is solved and the final expressions for
the G-ASO FRFs are obtained and given in the main part of this work.
Here, the G-ASO FRFs given as a function of the first order FRF.

La(1 + St)
GAZ,CC(Q): —w) = 2T B (nVGALC(w)Fl,C(—w) +nyGyic (—w)Fl,c(w)
ps
+y(y — 2)F c(0)Fy c(—w) + n(n — 1)Gy1 ¢ (@) Gp1 0 (—w))
(B2.20)
Gazpr(w,—w) = — B ((1 + By + St) (GAl,F(w) + GA1,F(—w))
ps
— ay (Fip(w) + Fyp(-w))
+a(l+ St)(nyGALF(w)FLF(—w) + ny Gy p(—w)F; p(w)
70 = DF(O)F p (—0) + 101 = Dy p(@)Garp(—0)))
(B2.21)

a(l+ St)

2B,

+ny Gy r(—w)F (@) + nn— DGy1,r(0)Ga1,7r(—w))

Gazrr (@, —w) = — (v = 2)Fy 1 (@)Fyr (=) + 1y Gy r (0)Fy ()

(B2.22)
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a(l + St)

2B,

+ 1y Ga1y (—w)Fy (@) + n(n — 1)Gyy; (0)Gayy (—w))

Gazgy (@, —w) = = (& = )P (@)Fy (—w) + 1y Gayy (@)Fyy (o)

(B2.23)
The final expressions for the ASO F FRFs which correspond the outlet temperature with
modulated input, are:

L1+ a)? A
Fyec(w,—w) = — B X 3 »
ps (Bps — w?)" + 442, w?
(B2.24)
1

Fypp(w,—w) = X
2Bps (B, — w?)’ + 44%,w?)

21 +na)((B + St — 8§ + na(St — 8))(—w? + 1 + By + St + na + naSt)
+2(1 + na)(w?(B + St — 8)(2 + na + St + By))
—2naf(1+ St —ySt + y8)(—w? + 1 + By + St + na + naSt)
- 2nafw?(2 + St +yp + na)
+ By(y — 2) ((ﬁ + St — 6 + na(St — 6))2 + w?(B + St — 8)2)
+n(n—1)a?B((1+ St —ySt +y86)? + w?)
+ 2nafy((1 + St — ySt + y8)(B + St — § + na(St — 8))
+ w?(B + St — 8)))

(B2.25)
By(1+ B + St — §)? y
Fprr(w,—w) = - B X 2 5
ps (Bps — w?)" + 443, w?
(B2.26)
By &? v
FZ, (O), _(1)) = -
o 2Bys (B,s — w?)” + 4A2%,w?
(B2.27)

B.3. Derivation of cross asymmetrical second order frequency response functions
for simultaneous modulation of inlet concentration and inlet temperature
Step 1: Defining the dimensionless input modulation,

Cai (7) = Accos(ur) = ATCef“T + Az—ce_f’” (B3.1)
0;(t) = Arcos(vr) = AZ—Tef’” + ATTe_f’” (B3.2)
Step 2: Representing the outlet concentrations of the reactant and product as well as outlet
temperature in the form of Volterra series:
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C _AC jut AC —jut AC ? 0
A(T)_7GA1,C(u)e +75A1,c(—u)€ + -+ 2 > Gaz,cc(u, —u)e® + -+

2

Ay A, y Ay .
+76A1,T(v)e}w +7GA1,T(—V)€ e 2(7) Gazrr (v, —v)e” + -

A A .

7C7T Gz,cr (u, v)ed THIT 4 ..

(B3.3)

— AC jut AC —jut AC ? 0
Cp(1) = 70131,6(“)9 + 7@11,6(‘“)6 + -+ 2 > Gpz,cc(u, —u)e” + -
2

Ar JUT Ar —jvt Ar 0
+ > Gpyr(v)e’t + > Gpyr(—v)e + -+ 2 (7) Gpyrr (v, —v)e
A A .
+ -t TC?TGPZ,CT(u' v)e v+u)t + o

(B3.4)

Ac o Ac By Ao\’ .
6(r) = 7F1,C(u)eﬂ” +7F1,C(—u)e JUT .. 4 2 (7) Fycc(u,—u)e” + -

Ar Ap . A2 .
+ 7F1_T(U)€]vr + 7F1,T(—U)€_]vr + -4+ 2 (7) FZ,TT(U' —v)e + .-
Ac A .
_C_T FZ CT(u' v)e] (V+u)T + ves

2 2~

(B3.5)

Step 3: Substituting the expressions for the modulated inputs, outlet concentrations of the
reactant and product and outlet temperature, defined with Egs. (B3.3-B3.5), into the appropriate

model equations (4.15-4.17) after equated inputs which are not modulated to zero.
Step 4: Collecting the terms with AZ—CATT e/ W)t corresponding to the cross ASO FRFs, and

equating them to zero. The resulting equations are:

Ju+v)Gaz cr(u,v)
= —(1+na)Gpz,cr(w,v) — ayFy cr(u,v)
—a(y(y = 2)F c(WF 7 (v) + n(n — 1)Gaq ¢ (W) Gay 7 (v)
+nyGa1,c WFLr(v) + nyGuyr (W) Fr e (W)
(B3.6)
J@ +v)Gpycrp(u, v)
= nGyz,cr (W, v) — Gpa,cr (W, v) + yFp cr(u,v)
+ (y(r = DF c WF r(v) + n(n — 1)Ga1,c (W Gy r(v) + 1y Gay c WFy 7 (v)

+nyGyy,r (W)Fc (W)
(B3.7)
Ju+v)F;cr(u,v)
= —(1+ St + By)Fzcr(w,v) —nBGazcr(u,v)
=By = DF,c@Fr(v) + n(n = DGar,c WGa1,r (1)
+nyGy1,cWFLr (V) + nyGyyr (V)F (W)
(B3.8)

194



After introducingtheu = w and v = —w

0=—-(1+na)Gpcr(w,—w) — ayFcr(w,—w)
—a(y(y — 2)F c()Fr(—w) + n(n — 1)Gay,c(w)Gay r(—w)
+nyGp,c(W)Fr(—w) + nyGayr(—w)Fi c(w))

(B3.9)
0 = nGyz,cr(w, —w) — Gpa cr(, —w) + YF cr (0, —w)
+ (¥ (v = 2)Fc(W)Fy 7 (=) + n(n = 1)Gay1,c (0)Gar,r(—w)
+nyGy,c(W)Fr(—w) + nyGpyr(—w)Fi c(w))
(B3.10)
0=—1+St+By)Fcr(w,—w) —nBGy cr(w, —w)
— B(r(y = 2)Fic()Fr(—w) + n(n — 1Gy,c(@) Gy 7(—w)
+ nyGyy,c(@)Fr(—w) + nyGayr(—w)F c(w))
(B3.11)

The system of equation can be written as follows:

[(1 4+ na)]Gaz,cr (@, —w) + [0]Gpz cr(w, —w) + [ay]Fy cr (0, —w) = lcry

[—n]Gaz,cr(w, —w) + [1]Gpy cr (0, —w) + [=V]F2 cr (w0, —w) = e, (B3.12)
[nB1Gaz,cr(w, —w) + [0]Gpz cr (W, —w) + [(1 + St + BY)]F; cr (0, —w) = lcr3

Where the auxiliary parameters are introduced:

Per =y(y — 2)F; c(@)Fi r(—w) + n(n — 1)Gy c4(0)Gy 74 (—w) + 1y Gy ca(@)Fy 7 (—w) +
nyGy,ra (—w)Fy o () (B3.13)
ler1 = —aPer, lera = Pery lers = —BPer (B3.14)

Step 5: After solving system of equations (B3.12) the final expressions for the cross ASO FRFs
Gazcr(w,-») and Gp,cr(w,-w) are given in the main part of this work and here only the final of

the cross ASO FRF F,cr(w,-w) is given:

nBy(1+a)(1+ B + St —9) o
Bps

(1+St+a(l+St+By)+2B(1 +na) + w?) + jw(a — 2 — St)

(Bps - w2)2 + 445 w?

Fyor(w,—w) =

(B3.15)
The ASO FRFs are here given as a function of the first order FRF, as follows:
—a(l+ St)
Gazcr(W, —w) = — 5 (v = 2)F c(@)Fr(—w) + n(n — 1)Gay ¢ (0)Gy1 7 (—w)
ps

+ ny Gy, c(W)F r(—w) + nyGyy 7 (—w)F; ¢ (w))
(B3.16)
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(1 + St)

By

+ nyGyy,c(WF r(—w) + nyGyy 7 (—w)F; ¢ (w))

Gpycr(w, —w) = (y(&y — 2)F1c(0)F r(—w) + n(n — 1)Gay ¢ (0)Gaq 7 (—w)

(B3.17)

Facr@,-0) = 22 (r(r = DFyc(@)Fyp (-0) + nn — 141 (@)G117(-0)
ps

+ ny Gy, c(W)F 7 (—w) + nyGyy 7 (—w)Fy ¢ (w))
(B3.18)

B.4. Derivation of cross asymmetrical second order frequency response functions
for simultaneous modulation of inlet concentration and flow-rate

Step 1: Defining the dimensionless input modulation,

Cy; (1) = Accos(ur) = Afeﬁ” + AZ—Ce_f“T (B4.1)

®(1) = Apcos(vr) = AZ—Fej'” + Az—Fe‘j'” (B4.2)

Step 2: Representing the outlet concentrations of the reactant and product as well as outlet

temperature in the form of Volterra series:
2

A ut A ut AC 0
Cp(r) = GAI c(w)e’ +7GA1 c(—we v + .+ 2( > ) Gaz.cc(u,—u)e” + -
A Ap Ar\?
+ 7FGA1 r(v)e" + 7@41 p(—v)e 7V 4+ 2 ( 2F> Gppr (v, —v)e® + -
7C7F Gz cr(u, v)ed THIT

(B4.3)
2

Ac
) Gpa,cc(u, —u)e® + -

Ac Ac
CP(T) - GPl C(u)e]uT +7Gp1 C( u)e EAE R +2(2

2

Ap v | AF vt Ap 0
+ = Gpp (W + == Gpyp(—v)e ™ + o+ 2( o) Gy pr (v, —v)e” + o

2

Ac A
== — Gpp,cr(w, v)e/ TTWT
2 2
(B4.4)
jut A —jut AC ’ 0
6(r) = Fl(;(u)e +7F1C( u)e +- +2<2 ) Fycc(u,—u)e” + -
Ar JUT Ar —jvt Ar : 0
+ TFLT(U)Q + 7F1’F(—v)e + -+ 2 (7) FZ,FF(U’ —U)e + .-
Ac A
2C ZF F2 CF (u U)e] (w+w)r +

(B4.5)
Step 3: Substituting the expressions for the modulated inputs, outlet concentrations of the
reactant and product and outlet temperature, defined with Egs. (B4.1-B4.5), into the appropriate
model equations (4.15-4.17) after equated inputs which are not modulated to zero.
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Step 4: Collecting the terms with AZ—CATF e/ )T corresponding to the cross ASO FRFs, and

equating them to zero. The resulting equations are:

[1+na+j(w+wWGacr(v,w) + [0]Gpy,cr(v,w) + [ay]Fy cr(v, w)
=1 +a)—Gcav)
— a[nyGa1 c(W)Fy p (W) + nyGay r(WFy c W) + ¥ (¥ — 2)F c(W)Fy p (W)
+n(n — 1)Ga1,c (W) Gy1,r (W]
(B4.6)
[=nlGaz,cr(w,w) + [1+j( + W]Gpacr (v, w) + [—¥]Fpcr(v,u)
= —Gp1,c(V)
+ [y Gpr,c WIF p(w) + nyGay r WF c(v) + ¥y — 2)Fy ¢ W)Fy p(w)
+n(n — 1)Gp1,c (V) Ga1,r (W]
(B4.7)
[nB1Gaz,cr (v, u) + [01Gpz cr(v,u) + [1+ By + St +j(v + WFy cr(v,uw)
=—Fc(v)
— B[nyGa1,c(WFy p(W) + nyGay r (WFy c () + ¥ (¥ — 2)F ¢ (W)Fy r (W)
+n(n — 1)Ga1,c (W) Gag,r (W]
(B4.8)

After introducing the u = w and v = —w an after introducing the auxiliary parameters
(Egs.(B4.10)-(B4.13)) the system of equations can be written as following:

[1+na]Gyy cr(w, —w) + [0]Gpy cr(w, —w) + [ay]F; cp(w, —w) = lcpy
[—1]Gaz,cr(w, —w) + [1]Gpy cp(w, —w) + [=V]F; cr(w, —w) = lcpy (B4.9)
[nB1Gaz,cr(w, —w) + [0]Gpy cp(w, —w) + [1 + By + StIF, cp(w, —w) = l¢cp3

with

Pep = nyGyyc(W)Fy p(—w) + nyGyy p(—w)Fy c(@) + ¥y — 2)F; c(0)Fy p(—w) +

n(n —1)Gyy c(0)Gypy p(—w) (B4.10)
lepr =1+ a—Gyyc(w) — aPer (B4.11)
lepz = —Gpyc(w) + Per (B4.12)
leps = —Fic(w) — BPer (B4.13)

Step 5: After solving system of equations the final expressions for the cross ASO FRFs
Gaz.cr(w,-w) and Gp, cr(w,-w) are given in the main part of this work. The cross ASO FRFs are
here given as a function of the first order FRFs:
1
Gazcr(w,—w) = B I+ By +S)A +a) — (1 + By +S5t)Gpy1c(w) + ayFy ¢ (w)
ps
— a(1 + St)(nyGay,c (@)Fy p (=) + ny Gy p(—w)Fy ¢ (w)
+ vy — 2)F c(0)F p(—w) + n(n — 1)Gy1,c (@) Gay r (—w)))
(B4.14)
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1
Gpy,cr(w,—w) = B [n(1+ &)1 + St) — n(1 + St)Gay,c (@) — Bys Gpy,c (@) — YFy c(w)
ps

+
+ St)(nyGay,c(W)Fy p(—w) + nyGyy p(—w)Fy ¢ (@)
+y(y — 2)F ¢ (0)Fy p(—0) + n(n — 1)Gyy 0 (@) a1 p(—w))]

(B4.15)
1
Fyor(w,—w) = B [-nB(1 + @) + nBGy1 c(w) — (1 + na)F; ¢ (@)
DS
+ B(nyGarc()Fy p(—w) + ny Gy p(—w)Fy ¢ (w)
+y( — 2F c(0)Fy p(—0) + n(n — 1)Ga1 ¢ (0)Gay p(—))]
(B4.16)

B.5 The auxiliary functions I'r and I'; which figure in the cross asymmetrical
frequency response function Gp; cr(®,-®) in polynomial forms
The auxiliary functions I's and T', can be given in polynomial form of forcing frequency

Tp = TR w® + Trpw* + Tpyw? + Try (B5.1)

I, = Tho* + Tho? + T3 (B5.2)

where the auxiliary parameters I'ry, I'rp, I'rs and I'r4 are defined as functions of the stability
parameters A and By, and auxiliary parameters Ilgs, Ilg, and Ilgs, respectively in following
way:

[r1 = Bps — gy (B5.3)
Try = Bys(44%5 — 2B, ) — gy — Mg, (B5.4)
Tr3 = Bjs — Mgy — g3 (B5.5)
Trq = —Tlg3 (B5.6)

and the auxiliary parameters T';;, T'), and T'j3 which are defined as function of the auxiliary
parameters IT;; and I1,, and stability parameters Ay, and By, as follows:

Fll = Bps - H11 (857)
Tj2 = Bys (4435 — 2B,s) —I;; — I, (B5.8)
;3= BSS =1 (B5.9)

B.6 The auxiliary functions Ilyr and ITy, which figure in the cross asymmetrical
frequency response function Haz cr(e,-®) in polynomial forms

The auxiliary functions Ik and ITy; can be given in polynomial form of forcing frequency as:
Myg = Nypi©* + Mypo@? + Myps (B6.1)

My = Nypw? + My, (B6.2)

The auxiliary parameters ITyry, Ilhre and Ilprs are defined as functions of the stability
parameters A, and By, and auxiliary parameters Ilg, and Ilgs, in following way:

Hypy =Ty =1+ Py + St (B6.3)

HHRZ = HRZ - (1 + ﬂy + St)BpS - ZAPSBpS (864)
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Myr3 = Mgs + (1 + By + St)Bj; (B6.5)

The auxiliary parameters Iy, and ITy;, are defined as function of the auxiliary parameters IT;;
and I, and stability parameters Ay, and By, as follows:

My =1 — Bys (B6.6)

Mz = 2 + B5 + 2(1 + By + St)Aps Bys (B6.7)

B.7. The auxiliary functions I'yr and I'y; which figure in the cross asymmetrical
frequency response function Hp, ce(w,-@) in polynomial forms

The auxiliary functions I'yr and Ty, can be given in polynomial form of forcing frequency as:
Tir = Tur1@® + Typa@* + Typ3@? + Typy (B7.1)

Ty = Ty o* + Typw? + Ty (B7.2)

The auxiliary parameters I'nr1, I'nr2, I'nrs, and T'yrs, are defined as functions of the
stability parameters Aps and Bys and auxiliary parameters I'ry, I'r and I'rs, respectively
in following way:

Thr1 = Tr1 (B7.3)
FHRZ = FRZ —nha (B74)
Turs = Tr3 + na(Bys — 24,5) + na(l + St)(24,5 — 1) (B7.5)
FHR‘I- = na(l + St)BpS (876)

and the auxiliary parameters T'y1, T2 and T'y;3 which are defined as function of the auxiliary
parameters I';, I'p and T'j3 and stability parameters A, and By, as follows:

Ty =T (B7.7)
Tuiz = Tpp + naB,s (24,5 — 1) + na(1 + St)By, (B7.8)
Tuiz = Tj3 + naB% — naBys (14 St)(Bys — 24,) (B7.9)

C. Optimization procedure and asymmetrical frequency response function
Gpy 17(w,-w) for adiabatic CSTR

C.1. Optimization procedure of the laboratory adiabatic CSTR for hydrolysis of
acetic acid anhydride to acetic acid
Two objective functions were defined and the optimal steady-state is obtained in Matlab, by the
Multi-objective Genetic Algorithm.
The lower and upper boundary (Ib, ub) values for the residence time are set to be, for lower
Ib(z1es)=100 s and for upper ub(z,s)=1000 s, considering the volume of the laboratory reactor
and the flow-rates of the pumps for water and anhydride of acetic acid.
Two constraints are considered in the optimization procedure:

1. Constraint 1

—AH,
pccy

Cais+ Tis— Tax <0 (Tmax=353.15 K) (C1.1)

Constraint 1 can be reduced to ¢4; ¢ < 4.375 mol/l
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2. Constraint 2
107, — Ny, <0 (C1.2)
10 ¢y, * Fror — Cwi * Fror <0

The constraint 2 can be reduced to ¢,; s < 3.642 mol/l. Therefore, the upper boundary value
for the inlet concentration is set to be, ub(cais)=3.642 mol/l.

The Multi-objective Genetic Algorithm gives the list of recommended solutions depending on
the values of two defined objective functions, where the following solution is chosen, for
optimal steady-state inlet concentration c,i=3.640mol/l and for optimal residence time 7y
=218.95s.

C.2. The asymmetrical second order frequency response function Ge, r(®,-®)

c_“:3.640 mol/l, e=0.1
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Figure C1 The ASO FRF Gp, 11(w,-w) as a function of the inlet temperature and residence time
for constant inlet concentration ¢, =3.640 mol/l and dimensionless forcing frequency ©v=0.1
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Figure C2 The ASO FRF Gpyrr(w,-w) as a function of the inlet temperature and inlet
concentration of the reactant, for constant residence time 7z,,5s=218.95 s and dimensionless
forcing frequency »=0.1
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Mpunor 1.

'VlsjaBa O ayTOpCTBY

MoTtnucaHu-a Janubopka Hukonuh MayHuh

6poj nHaekca [1C-9/2005

UsjaBrbyjemM
[a je JokTopcka AucepTauyja noj Hacrosom

Forced periodically operated chemical reactors — Evaluation and analysis by the
nonlinear frequency response method (MepuoanyHe onepauuje XeMWUjCKux peakTopa —
Esanyauuja u aHanusa npuMeHoM MeToAe HennHeapHor hpeKBEHTHOT 0A31Ba)

e pesynTaTt COMCTBEHOr UcTpaxueadkor paga,

e [Aa npepnoXeHa aucepTauMja y LENVHA HU Y AenoBuMa Huje Guna npeanoxena
3a pobujare 6WNO Koje AvNMome npema CTYAWjCKAM nporpamuma Apyrix
BUCOKOLLKONCKUX YCTaHOBa,

e [la Ccy pesynTaTv KOPEKTHO HaBeAEeH U

e [a HMCaM KplMo/ma ayTopcka npasa M KOPUCTWO WMHTEMEeKTyarnHy CBOjuHY
ApYrux nuua.

MoTnuc gokTopaHaa

Y Beorpagy, 04.04.2016.
{

Hﬂkt’%i( @&um D(Jﬂmblﬁbw
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Mpwunor 2.

M3jaBa 0 MICTOBETHOCTU LUITaMMNaHe U ENIeKTPOHCKe
Bep3uje JOKTOPCKOr paaa

Mme n npeanme aytopa JJaﬁM6opKa Hukonuh MayHuh
Bpoj uHaekca AC-9/2005
CTyaujcku nporpam Xemuja u Xxemujcka TexHororvja

Hacnos paga Forced periodically operated chemical reactors — Evaluation and
analysis by the nonlinear frequency response method (MepnoaunyHe onepauyje
Xemujckux peaktopa — EBanyauyja v aHanusa npymMeHoM MeToe HernmHeapHor
hpeKBEeHTHOr 0A31Ba) : b e

MenTop Mpodb. Ap. MeHka NeTkoBcka
Motnucanw/a Janu6opka Hukonuh MayHuh

M3jaBrbyjem fa je wramnaHa Bepavja Mor [OKTOPCKOr paja UCTOBETHA EMneKTPOHCKO]
Bepauju Kojy cam npegjao/na 3a objaBrbuBake Ha noprtany [urutanHor
penosutopujyma YHusep3sutera y Beorpaay.

Jlossorbasam fa ce ofjaBe MOjU NMYHW nojauvm BesaHu 3a fobujarse akagemckor
3Bara AOKTOPA Hayka, Kao LUTO Cy UMe U npesume, roanHa n Mecto pohierwa 1 AaTym
opbpaHe paga.

OBM nNWYHM nogaum Mory ce o6jaBuT Ha MpexHWM CcTpaHuuama AaurntandHe
6ubnMoTeke, y eNneKTPOHCKOM KaTtanory 1y nybnukauvjama YHusepauteta y Beorpagy.

Motnuc aokropaHaa

Y Beorpagy, 04.04.2016 _ )
n-! 9 N Nt _
(\‘.‘v\ﬁ\ C PQ\M’»A L mb\/t@() LUJ/‘\
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Mpunor 3.

UzjaBa o kopuwhewy

Osnawhyjem YHusepauteTcky 6uGnuoteky ,Ceetosap Mapkosuh* Aa y [urutanHu
penoauTopujym YHusepauteTa y Beorpagy yHece MOjy AOKTOPCKY oucepTauujy nog
HacrnosoMm:

Forced periodically operated chemical reactors — Evaluation and analysis by the
nonlinear frequency response method (MeproanyHe onepauuje XeMujckux peakropa —
Esanyauuja ¥ aHanuaa npuMeHOM METOAE HenMHeapHor hpeKBEHTHOr 0A3nBa) Koja je
Moje ayTopcKo Aerno.

[vcepTaumjy ca CBUM Npuno3vma npeaao/na cam y enekTpoHckoM opmaty noroaHoM
3a TPajHO apXuBMpaHe.

Mojy AOKTOPCKY AucepTaumjy noxpareHy y JvrutanHy penosutopujyMm YHuBepauteTa
y Beorpaay Mory Aa kopucTe CBU Koju NowwTyjy oApeade cappxaHe y opabpaHom Tuny
nuueHue KpeaTusHe 3ajegHuue (Creative Commons) 3a kojy cam ce oany4uo/na.

1. AyTopcTBo

2) YTOPCTBO - HEKOMEPLWjanHo

3. AyTopcTBO — HekomepLmjanHo — 6es npepage

4. AyTOpCTBO — HEKOMEpLWjanHo — AenUTY Noj UCTUM ycrosuma
5. AytopctBo — 6e3 npepage

6. AyTOpCTBO — AEMNUTU NOJ UCTUM yCnoBuUMa

(MonuMo Aa 3a0KpyXUTE CaMo jeAHy OA LUECT NOHyREeHWX NuLeHUM, KpaTak onuc
nUUEHUM 4art je Ha nonefuHn nucta).

MoTnuc gokropaHaa

Y Beorpagy, 04.04.2016.
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