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MACHINE LEARNING IN
INTELLIGENT ROBOTIC SYSTEM

Abstract

Nowadays, one of the most desirable features of every robotic system is
the ability to adapt to the real world changing conditions. Similarly, failure
prediction is equally important in different manufacturing environments in
which repairs are often infeasible and failures can have disastrous
consequences. In industrial robotics, failure prediction is helpful in reduction of
a system down-time by identifying and repairing faulty components. Also, the
reliability of a product manufacturing and increased human safety is ensured
by implementing fault tolerance and failure prediction unit in the robotic
system.

It is known that the supervision and learning of robotic executions is not
a trivial problem. In the 21st century, robots must be able to tolerate and predict
internal failures in order to successfully continue performing their tasks. This
doctoral dissertation presents a novel approach for prediction of robot
execution failures based on machine learning technique - neural networks
(NNs). Real data consisting of robot forces and torques recorded immediately
after the system failure are used for the NN training. Two types of neural
networks are used: feedforward and recurrent (Elman) NNs. In total, 7 different
learning algorithms and 24 NN architectures are implemented in order to find
optimal solution for the problem of robot execution failures prediction. Each
multilayer feedforward NN with different learning algorithm and architecture
that consists of 1, 2, 3, or 4 hidden layers is evaluated several times, and the
same NN architectures are trained using Elman recurrent NN. Experimental
results indicate that Bayesian Regularization algorithm is the best choice for the

prediction problem with prediction rate of 95.4545 percent, despite having the



erroneous or otherwise incomplete sensor measurements invoked in the
dataset. The experimental results show that the NN outperforms state-of-the-art
algorithms, such as the Naive Bayes, Decision Trees and Support Vector
Machine based algorithms employed for the prediction of robot execution
failures.

Additionally, two independent failure prediction problems are treated in
this dissertation. Several experiments in real time are conducted on an real
nonholonomic mobile robot Khepera II in a laboratory model of manufacturing
environment.

First real world failure problem refers to the robot obstacle detection in
indoor environment. Six infrared sensors mounted on the mobile robot are used
to obtain information of the obstacle located left and right from the platform.
Randomly generated failed sensor data is integrated into the training set so as
to test the NN performance in this task. The result show that in over 96 percent
of all tested cases NN recognized failed value, meaning that the obstacle
location is successfully determined after the failed information is replaced with
the expected one.

Second real world problem refers to the failure prediction in a mobile
robot trajectory tracking problem. Two independent trajectories are employed
so as to objectively test the proposed intelligent approach. The tracking of the
M-shaped and Labyrinth-type trajectories showed as a fairly easy task for the
developed prediction method. In more than 99 percent of the cases, the neural
network predicted the wheel command failure, which is next replaced with the
desired value in order to successfully track chosen trajectory. The experiments
show that a mobile robot can track desired trajectories with a minimal error in
every control iteration, which evidence the robustness and the applicability of
the proposed approach.

Finally, all aforementioned experiments and obtained results indicate
that the new method based on neural networks can successfully be applied for

robot failure prediction, and also that novel neural network based control



system of the mobile robot can be successfully used for solving obstacle
detection and trajectory tracking problems in laboratory model of a

manufacturing environment.
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Chapter 1 - Introduction and motivation

1. Introduction and motivation

Machine learning refers to the process of development of automatic
methods for learning, in order to generate predictions or valuable decisions
based on determined complex relations. Starting from the late 1990s, it has
become a highly successful discipline with applications in many different
scientific areas such as robotics. Generally speaking, machine learning today
plays crucial role in the formation of versatile, powerful and robust intelligent

applications and solutions.

Over the past thirty years, the types of machine learning implementations
varied from computational biology to intelligent robotic systems. Moreover,
new kind and amount of data influence the development of new techniques. In
other words, in order to properly analyze and quantify data, novel machine
learning algorithms have been introduced. As a result, new approaches like
computational intelligence methods are intensely exploited in research, as well

as in industry.

Regarding the aforementioned, this work focuses on the development
and implementation of original and advanced machine learning algorithms,

specifically applied in the domain of intelligent and cognitive robotics.

The development of a new generation of industrial robots has
significantly contributed to increasing the efficiency of the production system,
simultaneously reducing the burden of production workers. The use of robots is
conducted for those technological tasks in which the presence of manufacturing
workers is dangerous, or in case when constant repetition of the same actions
leads to a drop in the workers' concentration. Previous experience in industrial

robotization for various technological tasks indicate the viability of this
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approach, given that the introduction and installation of the robots takes care of
the humanization of work and that it increases the efficiency of technological

systems.

At the beginning of the new century, there is a fundamental paradigm
shift in the field of robotics as a scientific and technical discipline that is based
on the use of mobile robots. Today's robots have the opportunity to interact
with working environment with the use of appropriate sensors for data
acquisition and processing the obtained information. At the same time, with the
development of science and technology, there are robotic systems use a variety
of techniques of artificial intelligence when comes to processing sensory

information and identification of the response from technological environment.

Therefore, it is crucial to provide smooth operation of robotic systems in
a production facility. Changes in the environment, immeasurable disturbances
and errors that occur in the subsystems of the robot indicate that it needs to
have intelligent control in order to overcome these problems. One example is
the existence of ambiguity of the small errors in the positioning of the robot
relative to the object, which accumulates over time. It is clear that, in case of
exceeding the limits of positioning errors, the system of industrial robot must
undergo reprogramming or different engineering organization. Both of these
approaches involve shutdown of industrial robots, or sometimes even a
redesign of the entire manufacturing cells and lines. In order to avoid these
problems and reduce costs evident, it is necessary to apply advanced artificial
intelligence techniques in the management and evaluation of the behavior of

the robotic systems of different structures.

Given the aforementioned, mobile robots that work in structured or
unstructured environment must be able to deal with dynamic changes in that
environment. In other case, mentioned unwanted errors in mobile robot

behavior are one of the most challenging problems to deal with. One of the
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solutions for this is the development and implementation of algorithms and
techniques to predict abnormal operations of robotic systems. These algorithms
are usually based on machine learning, and their goal is to increase the
efficiency and reduce the overall cost in product development. The intelligent
algorithms for predicting unwanted behavior of robotic systems should be
based on soft computing techniques of artificial intelligence with the aim of

eliminating the various problems of stochastic nature in the online mode.

In order to facilitate the smooth functioning of the robot in the working
environment, it is necessary to develop such subsystems of industrial robot that
collects information about the state of the working environment and the state of
the robot. It must be able to process the obtained information, perform decision-
making and ultimately act in accordance with the derived conclusions. It is vital
that sensory information is processed correctly and that the possible unwanted
behavior of the robot is detected. Given the complexity of this problem, current
robotic systems use advanced machine learning methods so as to recognize

occurrence of a particular failure type.

This dissertation refers to the implementation of the soft computing
technique of artificial intelligence to detect and predict irregular robotic
systems, and also perform intelligent control, navigation, and tracking of the
desired trajectory of mobile robot. This study involves development of the
systems of artificial neural networks, and also presents comparisons of different
methods for training artificial neural networks in order to accelerate the

convergence of the original prediction algorithms.

Artificial Intelligence (Al) enhanced systems are systems designed for
detecting knowledge in data without human interruptions. One of the most
popular techniques in the domain of Al-based prediction of systems'
performance are Neural Networks (NNs). NNs are a well-known tool used as a

solution for various engineering problems [1]. They can understand the
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relationship or mapping between input and output variables during the
training process using different learning algorithms. The applications of this
machine learning method are very diverse: it can be used for prediction of
vehicle reliability performance [2] or in education to predict professional
movements of graduates [3]. In robotics, this artificial intelligence technique is
often applied for control of a mobile robot [4, 5], or a robot manipulator [6, 7].
For failure problems, the NNs are employed in the assembly tasks [8],
prediction of failure rates of large number of the centrifugal pumps [9] or in the
robust scheme for robot manipulators [10]. However, despite various
mentioned applications, the robot failure prediction based on the soft
computing methods has not been reported in the literature so far. This
dissertation delivers a novel approach using multilayer feedforward neural
networks as a solution for this problem, and also presents performance
comparison of different learning algorithms and architectures. Given the
aforementioned, it is important to stress out motivation for conducting this

research study.

e Motivation of dissertation

In today's industry, it is necessary that the industrial robot has the ability
to understand and recognize the state of the environment, and the possibility
that under certain conditions it independently decide on future actions. In order
to carry out unhindered interaction of robots and manufacture environment,
the robotic system must have a subsystem for prediction behavior that would
allow working in nominal work, in spite of existing defects and disorders.
Given the theoretical and experimental conditions for the accomplishments of
the complex tasks in the domain of predicting irregular behavior, the selected

following motivation directions are used in this dissertation:
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* Using methods and machine learning algorithms, industrial robot
predicting subsystem can be developed. It must recognize undesired
operations of intelligent robots and subsystems in order to correct the
behavior of robots, with final goal to continue the smooth operation of

robots in online mode.

* Using soft computing techniques of artificial intelligence it is possible to
increase the degree of success in predicting robot failures, errors and

irregularities in the industrial robotic system;

* Novel intelligent control system for a mobile robot based on artificial
neural networks can ensure the detection of obstacles and characteristic
structures in the environment. Likewise, it can provide safe mobile robot
trajectory tracking within a defined working area in a laboratory model of

a manufacturing environment.

1.1 Overview of machine learning in intelligent robotic systems

One of the most challenging fields in the domain of applications of
machine learning techniques is robotics. This complex research area is
characterized by the direct interaction with a physical world. In recent years,
various studies on implementation of machine learning techniques to specific
robotic tasks has been presented. The learning techniques used range from rote
learning [11, 12, 13, 14, 15] and inductive learning algorithms [16, 17, 18, 19, 20,
21, 22, 23] over analogical reasoning [24] to Explanation Based Learning [25, 26,
27].

Robotics is one of the most challenging applications of Machine Learning
techniques. It is characterized by direct interaction with a real world. In recent

years several approaches to apply ML to o specific robotics tasks have been
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published and have been an increasing interest in applying machine learning
techniques to robotics. The applications are manipulator as well as mobile
system tasks The learning techniques used range from rote learning [11, 12, 13,
14, 15] and inductive learning algorithms [16, 17, 18, 19, 20, 21, 22, 23] over
analogical reasoning [24] to Explanation Based Learning [25, 26, 27]. Many of
the systems cited above deal with only very specific robotics problems or with
simplifications that make the step from a simulated to a real environment very
difficult [11]. This is often due to the fact that at the moment ML-techniques and
robotics problems do not match very well. Many ideas in machine learning are

applied to quite easy 'worlds' only [11].

1.1.1 Applications of machine learning to robotics

The application of ML techniques in real-world robotic applications is currently
a topic gaining a lot of interest. It is known that a successful employment of
learning techniques on all levels of robot control is not possible without deeply
revising the design criteria that are usually underlying the robot control system
[28]. In particular, it is necessary to identify both the tasks of the learning
system and the tasks of the robot first and to design an architecture being able
to host both the learning and the performance components afterwards [29].
Some possible applications of machine learning to robotics are the following

[11]:
1. World model and elementary (sensor-based) actions

a) Learning of object properties (e.g. mass distribution, stable positions,
geometry)
b) Exploration of the current world (e.g. finding known or prototypically

represented objects, determining obstacles)
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e)
f)

Learning of elementary (sensor-based) actions in the world (e.g.
collision-free paths, macro- trajectories, hand-eye coordination, acts of
actions)

Learning of elementary (sensor-based) actions with objects (e.g. reactive
execution of a joining task, manipulation of an object)

Optimization and refining of certain actions (e.g. trajectories)

Learning to recognize/ classify states in the internal world model

2. Sensors

a)
b)

Learning of classifiers for objects based on image data
Learning of sensor strategies/plans, i.e. how to monitor an action to
ensure the correct execution or how to determine certain states of the real

world

3. Error analysis

a)

Learning of error recognition, error diagnosis and error repairing rules

4. Planning

a)

Improvement (speed-up) of the planning module (e.g. planning macros,
control rules)

Learning of domain knowledge (e.g. general planning rules, orders that
have to be taken into ac-count in assembly applications)

Learning of action rules or plans, i.e. how to solve a (sub) task in
principle

Learning of couplings between typical task classes and related action
plans (e.g. generalized action plan for a set of tasks)

Learning at the task level (e.g. which geometrical arrangements/action

plans satisfy certain functional specifications).
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1.1.2 Types of machine learning

Three main types of machine learning frameworks can be distinguished,
namely supervised learning, self-organized or unsupervised learning, and
reinforced learning [30]. The supervised and unsupervised learning are

sometimes referred to as classification and clustering tasks respectively [31, 32].

a) Supervised machine Learning

In supervised learning, an external teacher, having the knowledge of the
environment represents a set of input-output examples for the neural network
which may not have any prior knowledge about that environment [32]. When
the teacher and the neural network are both exposed to a training vector drawn
from the environment, by virtue of built-in knowledge, the teacher is able to
provide the neural network with a desired response for that training vector. The
network adjusts its weights and thresholds until the actual response of the
network is very close to the desired response. The supervised learning requires
a teacher or a supervisor to provide desired or target output signals. The
difference (error) can then be used to change the network parameters, which
results in an improvement in performance [32].

Examples of supervised learning algorithms for neural networks include
the perception learning algorithm, delta rule, the generalized delta rule or back-
propagation algorithm, and the learning vector quantization algorithm. As
shown in Figure 1 [33], neural network response to inputs is observed and compared
with the predefined output. The difference is calculated refer as “error signal” and that

is feed back to input layers neurons along with the inputs to reduce the error to get the

perfect response of the network as per the predefined outputs [33].
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Figure 1 : Block diagram of supervised learning [33]

b) Unsupervised machine Learning

Unsupervised learning has no teacher to guide the system in the right
direction, carried out by training vectors with similar properties to produce the
same output. The input vectors automatically adjust the weights during
training such that input vectors with the similar properties are clustered
together. Unsupervised learning includes Kohonen self-organizing maps, k-Means
clustering algorithm, adaptive resonance theory, competitive learning algorithms, etc.

Main block diagram of this kind of learning is given in Figure 2 [33].
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Figure 2 : Block diagram of unsupervised learning [33]
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¢) Reinforcement machine learning

Reinforcement learning can be described as learning by trial and error. In
this, the learning is by interaction whereby an action is performed on the
environment and is reinforced by the response (reward) it receives from it.
Maximization of the received numerical reward signal is the main objective of
each intelligent agent in the reinforcement learning theory. The agent learns this
task systematically, by trying various actions in different states and with the
reward signal that is assigned within the process. At the same time, the agent
changes its knowledge about the environment by modifying current mapping
from each state of actions (i.e. the policy).

Reinforcement learning system consists of three elements, see Figure 3. These
are:

* Learning element

+  Knowledge base

* Performance element

Vector describing state | Primarv

Of environment Beinforcement

Critic

L J

» Environment

Heuristic

Beinforcement

Leaming

Svstem

Action

Figure 3: Block diagram of Reinforcement learning [33]
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Because no information on way the right output should be provided, the
system must employ some random search strategy so that the space of plausible
and rational choices is searched until a correct answer is found [34].
Reinforcement learning is usually involved in exploring a new environment
when some knowledge (or subjective feeling) about the right response to
environmental inputs is available. The system receives an input from the
environment and process an output as response. Subsequently, it receives a

reward or a penalty from the environment [34].

1.2 Significance of soft computing techniques in domain of robot
control and failure prediction

In real world, we have many problems which we have no way to solve
logically, or problems which could be solved theoretically but actually
impossible due to its requirement of huge resources and huge time required for
computation [35]. Soft computing techniques as addressed out by Dr Lotfi
Zadeh, have become one of promising tools that can provide practice and
reasonable solution using several methodologies, i.e., neural networks [33],
fuzzy logic [36], and genetic algorithms (evolutionary programming) [37]. It is
also important to stress out that they have some drawbacks in determining the
internal parameters of the particular technique, because it requires expert-level
knowledge and needs more time and effort depending on the problems and the

technique used.

In recent years, the significance of the use of soft computing in various
engineering areas is increased in order to identify and resolve some of the
problems and improve performance; for example in the industry to come up
with an advanced manufacturing in the required quality. Recent advances of

soft computing methods and their applications in engineering design and

11
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manufacturing can be found in [38]. Likewise, the role of robotic work in the
industrial or manufacturing environment has been intensified, so the
importance of soft computing in learning is even greater. It is important to
develop the robotic control system that can become aware of its present
limitations and predict cases of failure and errors in various tasks. Therefore,
soft computing techniques contribute to one of the long term goal in robotics, to
solve the problems that are unpredictable and imprecise namely in

unstructured real-world environments.

In recent years, several adaptive hybrid soft computing frameworks [39]
have been developed and provided for model expertise, robotics and
complicated automation tasks. It is known that soft computing techniques allow
us to develop flexible computing tools to solve complex problems that cannot
be solved using traditional algorithms. The main significance of soft computing

which related to their application is:

It can solve nonlinear problems which are not possible using traditional
mathematical methods
+ It introduced the human knowledge such as prediction, learning and

others depends of the scientific field

In general, soft computing methods consist of three essential paradigms:
neural networks [33], fuzzy logic [36], and evolutionary programming [37].
Nevertheless, soft computing is an open instead of conservative concept. That
is, it is evolving those relevant techniques together with the important advances
in other new computing methods such as artificial immune systems [40],

memetic computing, evolutionary robotics, etc.

12



Chapter 1 - Introduction and motivation

1.2.1 Importance of soft computing in robot control

Nowadays, the development of soft computing methods has attracted
considerable research interest over the past decade. They are applied to
important fields such as control which need to solve more and more complex
problems in industry and many other domains [5, 41, 42]. Soft computing
techniques are highly appropriate methods to deal with such complex
problems. In many robotic applications, such as mobile robot navigation is
shown in Figure 4 [41, 42], It consists of four blocks: perception - the robot must
interpret its sensors to extract meaningful data; localization - the robot must
determine its position, cognition - the robot must decide how to act to achieve
its goals; and motion control - the robot must modulate its motor outputs to

achieve the desired trajectory [41, 42].

Localisation N Cognition
Position
M o - .
lap Building Local Map Path Planning
Enviromment model Path
Localmap l
- ) Path
Mmictmation £ .
LeCuto
5 . Extrzction e Motion
ercephion T Actustor command | Clontrol

Feal- World
Environment

Figure 4: The general control scheme for mobile robot navigation [41]
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In situations when precise execution in structured or unstructured
environments is of key importance, it is difficult to obtain a precise analytical
model of the robot’s interaction with its environment. Therefore, the question is:
how to make mobile robots move in effective, implement task correctly, safe,
and predictable ways? The intelligent robotics systems, whose behaviors
change over time, can be effectively used in collaboration with soft computing
techniques. These methods allow us to transparently control and simulate
several different types of mobile robots. The successful applications of soft
computing suggest that the impact of these techniques will be significantly
increased in coming years. For example, various methods that use soft
computing have been developed to solve mobile robot control problems [40].
Likewise, this artificial intelligence technique is often applied for control of a
mobile robot [18, 19], robot manipulator [20, 21], or within the empirical control
strategy for industrial robots [41].

Generally speaking, robotic control system must have adaptive
capabilities, i.e. the characteristics that enable robot to automatically adapt to
environmental changes without a priori knowledge of these changes. In order
to do this, robotic system must satisfy following properties:

a) System complexity
b) Nonlinearity
c) Uncertainty

Soft computing today serves as a basic tool for development of many
interconnected fundamental problems such as:

+ Path Planning for robots. Many methods have been developed for
avoiding both static and moving obstacles.

* Localization. The robotic system must use its on-board sensors and
wheels to cope with dynamic environmental changes.

+ Simultaneous localization and mapping (SLAM) for robotics.

14
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1.2.2 Robust soft computing in the failure domain

It is known that many of systems in nature can have malfunctions and
failures due to physical faults in their components. The possibilities of failures
increase with the growing complexity of industrial environments. It is therefore
essential to pay more attention to the robustness of the industrial robots and

systems [5].

The defects in robotic system may occur in sensors, actuators,
components of the controlled process, etc. Moreover, faults in their components
may develop into failures of the whole system and thus effect the system
functioning. To prevent this from happening, the failure of robotic systems has
gained more and more attention in the last decade; for example, in fault
tolerance [45], failure robot execution [46], failure avoidance [47], layered failure
tolerance control structure [48], failure tolerance by trajectory planning [49], and

kinematic failure recovery [50].

The failure situations can be classified to many cases and the solution can
be achieved by different strategies. The most important and essential
requirement for technique of model-based failure analysis is to provide
robustness to different kinds of errors [51]. The generation of residuals using
parity relations is one example of a method which would be unsuitable for

robotic applications [51, 52].

At present time, different efficient robust techniques for aforementioned
problems are proposed. Neural networks, fuzzy logic, and evolutionary
algorithms are known for addressing and solving these problems to some
extent. Neural networks are known for their generalization and can be very

useful when analytical models are not available. The NNs are employed in the

15
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assembly tasks [8], prediction of failure rates of large number of the centrifugal
pumps [9] or in the robust scheme for robot manipulators [10]. These methods
are implemented so as to obtain better control and prediction failure of highly
non-linear systems behavior. In this thesis, various neural networks and
architectures are developed in order to address failure prediction problems in

different robotic systems.

1.3 Organization of the dissertation

This dissertation entitled "Machine learning in intelligent robotic system" is
divided into introduction, and covers the tasks of the research work, theoretical
chapters providing background information and hypothesis, chapters with
experimental results and conclusions. The following are a general description of

the contents of each chapter and the outlines of the structure of the dissertation:

The PhD thesis begins with the background and an introduction with the
motivation of the dissertation. In here, first part refers to and overview
of machine learning in intelligent robotic systems as well as their
disadvantages. Also, the significance and the aim of soft computing techniques

in domain of robot contol and failure prediction are given.

Chapter 2: Presents the importance of dissertation objectives and approach.
Section 1 gives an overall objective, while Section 2 show main specific

objectives and sets the scope of work and overall solutions.
Chapter 3: Express state-of-the-art review including relevant literature and

scientific sources. Section 1 describes the main problem, and section 2 presents

execution failure prediction related to industrial robotic systems. Section 3

16
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shows advantages and disadvantages of various approaches, while section 4
presents the end of this chapter and includes some of soft computing

applications in the domain of prediction analysis.

Chapter 4: Introduces the main methods and approaches given in this work.
The problem refers to the robotic failure prediction. The tools include
MATLAB® and BPnet software. Section 1 gives an extensive discussion about
the basics and algorithms of neural networks. Section 2 has description of real
failure information data, measured immediately after failure detection. Section
3 discusses various prediction algorithms selected and used for the prediction
problem, and also gives details about activation functions for the neural
networks. Section 4 represents the end of this chapter, and describes entire
neural network training procedure in two of software environment-

MATLAB® and BPnet software respectively, with all necessary details.

Chapter 5: Section 1 explains the usage of the intelligent mobile robot in a
manufacturing environment. Section 2 describes artificial intelligence
techniques implemented for control of the mobile robot. Section 3 explains
intelligent robotics localization in a laboratory model of manufacturing
environment and in domain of obstacle detection and trajectory tracking.
Section 4 presents a lengthy discussion and express two problems in real world
domain of obstacle detection and trajectory tracking conducted by real

nonholonomic mobile robot.

Chapter 6: Presents experimental study. Section 1 describes experimental setup.
Section 2 shows in details the results of all experimental that was created and
used in order to develop successful robot prediction system. Moreover, this

section show comparison of various tools used in the work.

17
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Chapter 7 is the final chapter. Section 1 presents conclusions that are drawn

from this work. Section 2 gives additional recommendations and future

research directions.

1.3.1

Main contributions of the dissertation

The thesis contributed to the field of intelligent robotic systems by developing

novel machine learning tools for prediction of robot failures. The main

experimental results are related to the learning of robotic executions, so that a

correct failure prediction can be derived.

The main contributions of the dissertation are:

a)

To the author best knowledge, this is the first idea that involves NNs in
prediction of robot execution failures using real mobile robot data.
Furthermore, the erroneous data is also implemented in the NN training

set.

Various neural network architectures and learning algorithms are tested
in the main experiment. In total, 6 algorithms and 24 neural architectures
are tested in the Matlab environment. Additionally, another prediction
tool is used in this dissertation - specially designed software titled BPnet
[25] which employs most common feedback method for minimizing the
error between input and output variables - backpropagation technique
[26]. The experimental results confirmed that NN can successfully
predict robot execution failures from partially corrupted sensor

measurements.

18
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c) This is also the first study that treats prediction of robot failures in the
domain of obstacle detection and trajectory tracking using neural

networks.

According to the set hypotheses, the main scientific results presented in this

dissertation are:

* Methods of predicting undesired behavior of robots based on a
system of artificial neural networks.

* The technique for comparison and analysis of different algorithms
used for training artificial neural network so as to determine the
optimal network architecture.

* Experimental methods for the verification of the developed
approach for failure prediction in the domain of object detection
problem of unknown dimensions in technological environment.

* Experimental methods for the verification of the developed
approach for failure prediction in the domain of the trajectory

tracking for mobile robots in indoor environment.
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2. Research objectives and approach

2.1 Overall objective

The general scientific objective of the dissertation is the development of
an experimental system for prediction of failures in subsystems of industrial
robots. This prediction technique is based on obtained sensor information and
computational intelligence algorithms such as neural networks. Overall
objective is to verify the developed method in the laboratory model of the
technological environment using real nonholonomic mobile robot. In order to
realize intelligent behavior of the robotic system, the research objective must

include the following directions:

* Development of algorithms for the prediction of unwanted behavior of
industrial robots in the manufacturing environment based on artificial
neural networks and the information obtained from external and/or

internal sensors.

* Analysis and comparison of different learning algorithms so as to
determine the optimal architecture of the artificial neural network in

terms of predicting irregular work in online mode.

* An experimental verification of a new subsystem for failure prediction in
intelligent mobile robot, which is used for solving typical problems of
obstacle detection and trajectory tracking in manufacturing

environments.

At the end of the 20th century and early 21st century various scientific
papers, books and PhD dissertation are published, which from different

viewpoints treat problems of prediction unwanted behavior for industrial
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robots. These studies treat robots in different technological environments, as
well as their work in domains of detection of obstacle and trajectory tracking.
However, none of the research studies has given attention to the use of artificial
neural networks in these areas so far; therefore, one can note the significance

and importance of this dissertation.

2.2 Specific objective

A robotic systems working in a structured or unstructured environment
is exposed to severe conditions such as, increased working hours, changeable
working demands, possibility of collision with known or unknown objects,
and/or presence of human workers near the robot workspace. Therefore,
research presented here must focus on elimination of the aforementioned
problems, preferably using the intelligent techniques because of their

generalization ability and overall robustness.
In this context, the specific objective of this dissertation has the following:

* To evaluate a possibility use of artificial neural networks for
predicting mobile robot failure according to erroneous data from
internal sensors.

* To show the application of these techniques on real robotic system
working in manufacturing environment.

» To explore using the NNs as a tools to analyze the classification of
possible failures.

* To test various prediction algorithms and compare the predictive
accuracy of the artificial neural network algorithms in reaching

optimal solution.
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» To test and confirm that the NNs are able for predict robot execution
failure from partially computed sensor measurements.

+ To discuss and explain the power of soft computing for predicting the
robot failure [53, 46], and also to stress out the advantages of the

approaches given in this thesis.

2.2.1 Scientific dissertation methods and approach

After providing the prerequisites for the development of this

dissertation, the developed prediction algorithms are based on using following

approaches and methodologies:

Approach of classification of selected real execution task for intelligent

industrial robot.

Approach for failure prediction of intelligent mobile robot based on soft
computing techniques; artificial neural networks are the main algorithm

for detection and classification of failures.

Approach for comparing different training algorithms of artificial neural

networks.

Approach for control and programming of mobile robots in the field of
localization so as to determine the position and orientation in current
pose. Also, this approach treats problems of trajectory tracking and
obstacle detection in a laboratory model of the manufacturing

environment.

Test different software implementation of the developed algorithms in

order to increase the work efficiency of intelligent industrial robots.

22



Chapter 2 - Research objectives and approach

This dissertation uses two software products. In the Matlab environment,
various NN training algorithms and architectures are tested by means of mean
square error between desired and obtained output values. Additionally,
another prediction tool is used in this dissertation - specially designed software
titled BPnet [54] which employs most common feedback method for
minimizing the error between input and output variables - backpropagation
technique [55]. The BPnet software used for the training of backpropagation
artificial neural networks, while the Matlab programming environment is used
for comparison of different neural network training algorithms. Moreover, real
world experiments are conducted on a Kheperall mobile robot in indoor
environment for solving obstacle detection and trajectory tracking problems
with the aim to additionally verify the method and prove the robustness of the

propose prediction algorithms.
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3. State-of-the-art review

3.1 Problem description

The problem treated in this dissertation refers to the failure detection in a
robot system; more specifically, this thesis treats the robotic failure prediction
problem using neural networks and a set of recorded sensor measurements.
Consider a robotic system working in manufacturing environment exposed to
severe conditions given in previous sections: increased working hours,
changeable working demands, possibility of collision with known/unknown
objects, and/or presence of human workers near the robot workspace. In these
cases it is crucial to ensure maximum safety and smallest deviation from the
nominal operating mode by recognizing irregularities in robot behavior. The
prediction of industrial robot failures is equally important, since this can
provide a continuous and undisturbed work using a backup emergency control

commands.

In order to successfully predict execution failures, some sort of safety
unit must be employed in the robotic system. In this case, the artificial neural
networks are used in the control system as an element for predicting
misbehavior based on the corrupted internal and/or external measurements.
For example, one can consider obstacle detection problem and an irregular
work of several infrared sensors. Given the set of correct sensor values for a
particular case (for example, obstacle on the left side of the robot), the robot
with the installed NN-based safety element can predict if one or more sensors
are malfunctioning. After this, the incorrect sensor measurements can be
ignored or replaced with their initial (i.e. nominal) value. In that way using this
prediction approach, the system is enabled to work uninherently and to

successfully detect different obstacles. Likewise, the trajectory tracking problem
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can be treated in the same manner; for example, the NN-based unit can be used
to predict irregular behavior in wheel control domain. Consider that mobile
robot wheels command unit is not working properly all the time, and that in
certain control iterations it gives unexplainable large or small commands for
tracking the specific trajectory. In this case, NNs can predict these irregularities,
with the aim to invoke a nominal control value in the command dataset. In this
manner, the bad wheel command is replaced with the desired (calculated)

value, and the robot motion is continued without difficulties.

3.2 Prediction of industrial robot execution failures

Nowadays, one of the most desirable features of every robotic system is
the ability to adapt to the real world changing conditions [5]. This is especially
important for robots working in the hazardous and dangerous surroundings
where unwanted events frequently interfere in task accomplishment. Likewise,
failure prediction is equally important in these environments in which repairs

are often infeasible and failures can have disastrous consequences [56].

In this known that failure prediction and fault tolerance are helpful in
reduction of a system down-time. Particularly, with the overcome of failures
robot’s lifespan is increased, and also the identification of faulty components
can significantly speed up the repair process [57]. Also, the reliability of a
product manufacturing and increased human safety is ensured by

implementing fault tolerance and failure prediction unit in the robotic system.

Failure tolerance has been addressed in various applications for robot
manipulators. Usually; redundancy approach in actuation [58], sensors [59] or
joints [60] is used. Likewise, different methods are employed for solving the

failure detection problem such as second-order sliding-mode algorithm [61],
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robust nonlinear analytic redundancy technique [62], or partial least squares

approach [63].

3.2.1 Fault detection in mobile robotics

The term “fault detection” is commonly referred to as the detection of an
abnormal condition that may prevent a functional unit performing required
function [64]. Nowadays, the fault detection is solved by implementing a torque
filtering technique [65], multiple model adaptive estimation method [66] or

using an interacting approach [67].

3.2.3 Failure prediction problem in industrial robotics

Several interesting studies have been reported regarding the failure
prediction problem in general. In [68], the method that utilizes the concept of
augmented global analytical redundancy relations to handle failures with both
parametric and non-parametric nature is presented. Additionally, multiple
hybrid particle swarm optimization algorithm is employed in order to realize

multiple failures prediction.

Twala addressed the robot execution failure prediction using incomplete
data in [53]. Here, this prediction is formulated as a classification problem
which is solved by developing a novel probabilistic approach. Likewise, the
work given in [46] presents the performance comparison of base-level and
meta-level classifiers on the same problem. The results show the superiority of

Bagged Naive Bayes classifier across different settings

However, none of the aforementioned studies incorporate learning

techniques in order to improve presented solutions. In this study, neural
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networks (NNs) are employed for prediction of robot execution failures in order

to solve the nonlinear dependencies between input and output variables.

3.2.4 Use of neural networks in prediction of robot failure

Neural Networks are one of the various methods of artificial intelligence
that have proved to be useful for many engineering applications. Due to their
widely parallel structure, NNs can deal with many multivariables non-linear
modeling for which an accurate analytical solution is very difficult to obtain.
NNs has already been used for various engineering problems, for example in
the areas of image and speech recognition, classification and control of dynamic
systems. The ability to learn by example is one of the key aspects of NNs. As a
main advantage of this, the system can be considered as a black box where the
user does not need to know the details of the internal behavior. These networks
may therefore offer an accurate and cost effective approach for modeling
problem of failures in mechanical systems. If trained adequately, the NN can
simply be used to obtain the prediction of failures in different robots. In this
domain, NNs can give accurate prediction if not better than those obtained by
conventional methods. However, to develop a reliable prediction model, the
appropriate NN architecture, the number of hidden layers and the number of

neurons in each hidden layer must be experimentally determined.

This dissertation delivers a novel approach using multilayer feedforward
neural networks as a solution for the problem of failure prediction, and also
presents performance comparison of different learning algorithms and
architectures. In different experiments, NNs are employed for prediction of
robot failures in order to solve the nonlinear dependencies between input and
output variables. In addition, to check prediction accuracy of different learning

systems, other types of NN structures were used - ELMAN neural network is
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compared to achieve the abovementioned objective. The obtained results
indicate that these NNs can also be successfully implemented for failure

prediction in robotic applications.

3.3 Advantages and disadvantages of different approaches

Fault and failure detection and their prediction in robotics is critical for
the utilization and effectiveness of these systems. There are many quantitative
techniques that have been successfully researched and implemented for such
kind of failure detection or prediction and have been introduced in various

approaches.

Fault tolerance and detection, as well as failure prediction are complex
issues for intelligent systems and autonomous robotics. Generally, choosing
approaches and techniques are important in order to achieve good failure
prediction or detection in many cases; this still remains a challenge to the
researchers due to the absence of efficient prediction approaches. Fortunately,
NN is a quantitative approach that is widely employed for pattern recognition,
classification, function approximation, and system identification, so it is
applicable in failure domain also. The NNs based approach for prediction is
able to learn from examples, and is able to catch hidden and strongly non-linear
dependencies, even when there is a significant noise in the training set, The
ability to learn a mapping between input and output is the main advantage the
NNs very attractive to use. Efficient learning algorithms have been developed
and proposed to determine the weights of the network, according to the data of
the failure task in hand. Considerable research has been carried out to improve
accuracy of learning algorithms. Although training algorithms appear in recent
neural network literature, in terms of convergence speed and accuracy, it is

difficult to know which algorithm works best and is most suitable for the given
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problem. A number of factors, including the complexity of the problem, the
number of datasets used in training, the number of weights and biases in the
network, the error goal, and whether the NN is used for classification or

regression seem to have influence [69].

3.3.1 Advantages of neural networks

The advantages of NNs are due to their components and abilities, such
as the learning mechanisms, their structure, and activation functions. They are
able to classify both linearly and nonlinearly separable problems due to the
nonlinear transformation they perform on the learned data. This allows them to
fit linearly separable problems as well as more complex nonlinearly separable
problems [70]. Many learning algorithms and neural structures have emerged,
giving neural networks a wide selection of methods to improve performance.
Neural networks are also error tolerant. This is largely due to the relatively
large number of neurons they contain. Errors in the form of missing data, noise
or glitches get averaged out over the entire network [71]. Neural networks are
also very robust in that for given a dataset, neural networks can adjust
themselves to fit the given data automatically via chosen learning algorithm
[33]. The true power of neural networks is demonstrated when they are applied
to complex multivariate nonlinear problems [71]. Neural networks require no
prior assumptions or knowledge regarding the underlying relationships
between variables of a given problem, since they learn directly from the data in
a robust manner [71].

Neural networks can successfully represent many statistical techniques,
i.e., regression models from simple linear regression to projection pursuit
regression, nonparametric regression, generalized additive models, logistic

regression, Fisher’s linear discriminated function, classification trees, etc. [71,
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72]. The prediction problem in this thesis is transformed into a classification
problem, similarly to research work in [53]. Although neural networks are
effective, there are still many ways to improve their classification accuracy.
Many techniques, such as the input preprocessing, modular approach [73] and
the ensemble technique [74, 75, 76, 77] can be used for this purpose.

The advantages of using neural nets in prediction can be express as following;:

e They can be used in various applications, ranging from classification, to
control and optimization. Different to conventional algorithms, NNs are
incremental learning algorithms because at any stage during the training
process training can be stopped, NN would still serve as a model of
function being learned, even though it may not be quite accurate.

e They can be used in developing the empirical models based on
experimental and observational knowledge.

e They are best suited for fast computations on parallel architectures.

e They have good generalization capabilities.

e They can learn from experience and give accurate results from
incomplete and noisy data.

e They do not require any a priori knowledge of mathematical function
that map the input to the output. They need only input-output examples

to train the network (in supervised learning).

3.3.2 Limitations & Disadvantages of neural networks

A major disadvantage of NNs is in the difficulty to interpret the meaning
of its structure. That is, given a trained network, it is not easy to derive
meanings from the weights of the network to understand the underlying
relationships between the inputs and the outputs. Although the network is

excellent at detecting significant features and relationships, it is difficult to
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understand them [77]. Neural networks require a large number of training
instances to be able to generalize well on a given problem. Moreover, they
require knowing, prior to training the network, what features of the data are
more indicative to the class since neural networks do not learn such information
[71]. Attribute selection and preprocessing, such as normalization,
discretization, and others are often required [77], as to be discussed shortly in
Chapter 4. Moreover, it is difficult to determine the best neural network
structure and learning time for a given problem. Although many techniques are
presented to deal with this problem, no state-of-the-art algorithm is able to

determine the best neural structure [71].

The disadvantages of using feed forward neural nets as predicting tool for robot

failures are [78]:

e The largest drawback with feedforward back-propagation algorithm
appears to be its convergence time. Training sessions can require
hundreds or thousands of iterations. Realistic applications may have
thousands of examples in a training set, and it may take days of
computing time or more for complete training. Usually, this lengthy
training needs to be done only during the development of the network,
because most applications require a trained network and do not need on
line re-training of the net.

e Lack of proper guidelines for networks architecture (number of hidden
layers and number of nodes in each layer) hinders the use of these
networks fully. However, the flexibility of the network’s paradigm is
enhanced by the large number of design choices available: choices for the

number of layers, learning constant, and data representations.

It is important to note that there are some limitations to neural

computing. The key limitation is the neural network’s inability to explain the
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model it has built in a useful way. Analysts often want to know why the model
is behaving as it is. Neural networks get better answers but they have a hard
time explaining how they got there [79]. There are a few other limitations that
should be understood. First, it is difficult to extract rules from neural networks.
This is sometimes important to people who have to explain their answer to
others and to people who have been involved with artificial intelligence,

particularly expert systems which are rule-based.

As with most analytical methods, you cannot just throw data at a neural
net and get a good answer. You have to spend time understanding the problem
or the outcome you are trying to predict [79]. And, you must be sure that the
data used to train the system are appropriate and are measured in a way that
reflects the behavior of the factors. If the data are not representative for the
problem, neural computing will not product good results [79]. Finally, it can
take time to train a model from a very complex data set. Neural techniques are
computer intensive and will be slow on low end PCs or machines without math
coprocessors. It is important to remember though that the overall time to results
can still be faster than other data analysis approaches, even when the system

takes longer to train [79].

3.4 Applications of soft computing techniques in the prediction
domain

Nowadays many research studies have been using soft computing in
various fields [80]. They included the application of neural net works, fuzzy
logic, genetic algorithms, etc. The popular soft computing technique is NN
which is considered as a main computational tool in this dissertation and is
used for performing the nonlinear mapping between inputs and outputs. For

example, NNs can be used for prediction of vehicle reliability performance [2]
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or in education to predict professional movements of graduates [3]. In this
subsection, some specific applications of NNs in prediction analysis are

mentioned.

3.4.1 General NN application

As stated before, NN are mostly employed for solving many types of
non-linear problems that are difficult to solve by traditional techniques. The
NNs have been found to be both reliable and effective when applied to
applications involving prediction, classification, and clustering [81]. The most
frequent areas of NNs applications are production/operations (53.5%) and

finance (25.4%) [82].

3.4.2 NN application with noise data

NNs often find usage in cases when dealing with noise in data, in the
situations when data contains complex relationships between many factors, or
when other mathematical techniques or methods are not adequate [83]. By
adjusting weights iteratively between the neurons in different layers, the
network is able to find hidden rules between the data [1]. The main advantages
of NNs are their information processing abilities such as nonlinearity, high
parallelism, robustness, fault and failure tolerance, learning, ability to handle

imprecise information, and their capability to generalize [84].
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3.4.3 Neural computing and output calculation

The robot failure prediction based on the soft computing methods has
not been reported in the literature so far, and with the stated advantages the
prediction of robot execution failures appears to be an appropriate assignment
for NNs. Neural network are inspired by biological neurological system, and
are composed of simple processing elements called artificial neurons or nodes
capable of performing massive parallel computations for data processing and
knowledge representation [1, 84]. The neurons are able to communicate
between themselves and to exchange information through the biased or

weighted connections.

Each neuron in NN is active or non-active based on the adding value and
activation function value. Adding value is determined by summarizing all
inputs to the particular cell modified by their weighting coefficients, while
activation function affects amplitude of the neuron output. After defining these
neuron components, the training process in a supervised manner is set to start.
Firstly, an input to the each neuron in the first (i.e. input) layer must be defined.
The weights between an input neuron and the neurons in hidden layer indicate
the degree of importance between these units. Thus, the strength of connections
between neurons is given by the numerical value between -1 and 1 which
represents aforementioned weight number. Secondly, the output value for each
neuron is calculated by using weighted input through the activation function. If
that value is larger than the neuron internal threshold, the processing unit is
activated; otherwise, there is no output from that particular neuron. After the
calculation of outputs from every neuron in the network, the error between the
output values in the last (i.e. output) layer and the pre-defined desired output is

calculated. Then, that error is propagated backwards from the output to the
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input layer, in order to determine new network weights that will decrease the
difference between the desired and actual output. This iterative procedure is
finished when these values are close enough, i.e. when they are bellow the pre-
defined learning threshold. After the training step is over, a validation and
testing are active next. In the validation phase, the length of NN training,
learning parameters and number of units in hidden layers are optimized. The
testing phase represents network performance evaluation on a new sample, and
the result is taken as the assessment of the NN. Finally, the network with the

optimal performance is used as a solution for the problem in hand.
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4. Robotic failure prediction in MATLAB® and BPnet
software

4.1 Introduction to neural networks

Essentially there are two types of neural networks: biological neural
networks and artificial neural networks. The human brain is an example of a
biological neural network, composed of billions of neurons organized in a
fashion so that it can perform complex tasks such as vision and speech
recognition [86, 87]. Artificial neural networks are a product of attempts to
enable computers to do the types of things that the human brain does well.
Computers are high speed, serial machines designed to carry out a set of
instructions, one after another, extremely rapidly [86]. They can typically carry
out millions of operations per second, which enables them to be very good at
tasks such as adding long lists of large numbers. However, unlike the human
brain, computers are not good at complex tasks such as pattern recognition.
This is because the problem of pattern recognition is a parallel one, requiring
the processing of many different items of information which all interact to form

a solution [86, 88].

The early goal of neural computing was to model the human brain and
to capture the underlying principles that allow it to solve complex problems
[86]. Early artificial neural networks consisted of individual electronic devices;
the neurons were actual hardware in the computer. The first "neural network"
was built in 1951 by Martin Minsky and Dean Edmonds. It was a large scale
device that consisted of 300 tubes, motors, clutches and a gyro from a World
War II bomber, all used to move 40 control knobs [86]. The position of these

knobs represented the memory of the machine [88].
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Nowadays, artificial neural networks are composed of a set of computer
instructions which simulates the neurons and the connections between the
neurons [86]. Information is stored as patterns, not a series of information bits
as in normal computer programs. An artificial neural network does not work
using a series of instructions; instead the network architecture and training
method determine how the system will work [86]. Artificial neural networks do
not have separate memory for storing data; data is stored throughout the

system in patterns.

4.1.1 Biological Neurons

The human brain contains approximately 10 billion (1010) basic units
called neurons. Each of these neurons is connected on average to about 10,000
(104) other neurons [86]. Biological neurons are complicated devices that have a
number of parts, sub-systems and control mechanisms. The operation of the
biological neuron is a complicated and not fully understood process, but the
basic details are simple. The neuron accepts inputs and adds them up in some
fashion. If the neuron receives enough active inputs at once, the neuron will be

stimulated and "fire;" if not the neuron will remain in an inactive state [86, 88].

A representation of the basic components of a biological neuron, the

soma, the axon, synapses, and dendrites, is shown in Figure 5.
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Dendrites

Cell bu}f

Synapse

Figure 5 : Schematic drawing of biological neurons

A brain neuron receives signals from many other neurons through
synapses, which regulate how much of each incoming signal passes to the
dendrites, which are the input channels to the soma [86]. The soma is the body
of the neuron. In the soma, incoming signals are added up and a determination
made of when and how to respond to the inputs when the neuron "fires," a
pulse is sent down the axon, an extension of the nerve cell body. The axon is the
output channel of the neuron, carrying impulses to other neurons in the brain

[86].

4.1.2 Artificial Neurons

Artificial network neurons work in much the same way as biological

neurons. A typical neuron used in artificial neural networks is shown in Figure
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6. The neuron is receiving six distinct inputs from other neurons. This neuron is

shown sending an output to six other neurons in the system.

Weighted Activation Transfer
Activation
Function Function

Sum of

inputs

J/
Inputs Output

To other

Neurons

Figure 6 : Artificial Neuron Internal Representation

The inputs may be excitatory, tending to increase the activity of the
neuron, or inhibitory, tending to decrease the neuron's activity. Once in the
neuron, the inputs are weighted and combined into a single value in the box
labeled weighted sum of inputs [86]. Usually the inputs are simply multiplied
by some weight and added together, but in some artificial neurons the
calculation is more complex. Inhibitory signals can have a negative value, and
thus can be added to excitatory signals but reduce the activation value. The
result is the total input, which is transformed by another function know as the
activation function [86].

Artificial neurons are sometimes compared to latches [86]. A latch is a
digital circuit with a feedback loop which causes it to retain or store its state. A
latch can hold that piece of data indefinitely. Neurons do not hold specific
on/off information, instead they keep track of how they respond to the neurons

connected to them and fire based upon their input. When a neuron fires it sends
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out a signal. The length of time spent firing a signal is constant but the overall
tiring frequency is variable. Higher firing frequencies signal that the neuron is

more excited [86, 87].

4.1.3 Characteristics of NNs

Many types of artificial neural networks exist today [86]. It is beneficial
to understand some of the terms that define and describe different types of
neural networks before discussing them in detail [86]. Various terms and simple
definitions that describe behavior and abilities are presented in the remainder

of this section [86].

Adaptability is the ability to modify a response to changing conditions in
the network. Four separate processes produce this ability: Learning, training,
self-organization, and generalization [86]. Learning is the process by which a
network modifies its connection weights in the activation function of the

neuron. There are two types of learning: supervised and unsupervised.

Supervised learning is characterized by an outside influence (either a set of
training facts or an observer) telling the network whether or not its output is
corrects [86]. The network's output is compared to the correct output, and the
synaptic weights in the individual neurons are adjusted to make the next

output closer to the desired output.

In unsupervised learning the network does not use a set of training facts
nor is it coached by an outside observer [86]. Rather, it classifies inputs as
patterns that share common features with other input patterns, with no regard

to actual output [86, 87].

Training is the process in which the connection weights are modified in

some fashion, using the learning method. Self-organization is how artificial
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neural networks train themselves according to the learning rule. Typically all of

the network's neuron weights are modified at the same time.

Generalization is the network's ability to classify patterns that have not
been previously presented to the network [86]. Networks generalize by
comparing input patterns to the patterns held In the synaptic weights of the
individual neurons. A pattern that the network previously has not seen is
classified with other patterns that share the same distinguishing features as

those on which the network has been trained [86].

In typical computers, if a sector of memory is lost, the program will fail.
However, an artificial neural network will continue to function, but at a
reduced speed and capacity. Plasticity is the ability of a group of neurons to
adapt to different functions over time. When a portion of the network is
damaged, other neurons adapt to take over functions that the damaged portions
performed. Fault tolerance is the ability to keep processing, at a reduce speed

and capacity, when a portion of the network is damaged [86, 87].

Most training data sets will typically have outliers in the data, that is,
observations that are outside the "normal" range for the set of observations.
Dynamic stability is the ability of the network to be given an extreme
observation and yet remain within its functional boundaries and reach a stable
state. Convergence is the changing state of the network as it moves towards that

steady state [86].

4.1.3.1 Layers

A neural network consists of groups of neurons arranged in structural

units known as layers [86]. A layer of neurons is a group of neurons that share a
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functional feature. There are three possible types of neurons in a neural

network, each type relating to the layer in which it lies in the network [86].

The input layer neurons receive data from the outside world, from data
tiles, keyboards or other transmitting devices. The output layer neurons send
information back to the user in a form defined by the setup of the network. The
hidden layer neurons are all of the neurons lying in the layers between the input
and output layers. Neural networks may have only one hidden layer, no hidden
layers, or many hidden layers, u-pending on the architecture and complexity of
the network and the computing capacity of the user computer. The user will not
see the inputs and outputs of the hidden neurons because they connect only to

other neurons [86, 87].

4.1.3.2 Network classification and description

This section explains the various classifications of artificial neural
networks shown in Figure 7, and briefly explains the theories behind the
networks [86]. Because this dissertation uses the backpropagation learning
algorithm as its basic artificial neural network, much of the remainder of this
section is devoted to backpropagation and its predecessor, the perceptron. A
basic mathematical foundation for these types of artificial neural networks is
provided [86]. The remainder of this section provides a short description of
other artificial neural networks not used in this thesis, but used in other areas

nowadays [86].
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Theory

Hoptield NNs

Figure 7 : Various classifications of artificial neural networks [86]

4.1.3.4.1 Perceptrons

The perceptron, developed in 1957 by Frank Rosenblatt of Cornell
University, was the result of one of the first major research projects in the field
of artificial neural networks [86]. A simple perception neuron with two inputs
and one output is shown in Figure 8. The term X, is always positive one, and
the weight W, is referred to as the bias, and operates like the constant in a

regression equation [86].
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X0 I = W, + X, W+ X, W, FlD = E

X1

Step transfer function

X2 Simple perception neuron

Figure 8 : Simple perception neuron and step transfer function [86]

The perception network is essentially a linear separator. If we assume a
simple network with two neurons in the input layer and one neuron in the
output layer, the network can be used to separate the two classes of output
shown in Figure 9 [86]. When the network begins with random weights,
occasionally the inputs to the network will result in a correct output [86].
However, some of the input combinations will result in incorrect outputs. In
these cases the weights need to be adjusted so that future sets of inputs will
yield correct outputs. This adjustment of weights is referred to as learning. The
learning algorithm for the perceptron network, as modified by Windrow and

Hoff in 1960 follows [86]:
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Class A

ClassB

Figure 9 : Two lineally separable classes [86]

1. Randomly initialize the weights and the bias
2. Present an input pattern (Xi;,Xz;, ... ...., Xy )and a desired output d, to
the network
3. Calculate the actual output of input ¢, y;,
from the network: y, = f[X Xi; yW;;
4. Compute the error of output ¢, e;: e, = d; — vy,
5. Compute the new weights for input t + 1: W,y = Wi + a exy;
Where a is the learning rate, 0 < a < 1
6. Repeat steps one through four for each new input pattern
(X1,X2, ... ..., X). Repeat steps one through five until error is less than
some preset tolerance
For the above example d, = 1 if the desired output is from classA4, and
d; = 0 if the desired output is from classB. If W, and W, initially are randomly
set to one and the bias is set to zero, the initial line will have a slope of negative
one and an intercept of zero [86]. As the perceptron is fed input patterns and

learning is accomplished through the Windrow Hoff delta rule, the line
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separating the two categories will gradually shift until the slope is equal
to—X, /X1, and the intercept is equal to -W, [86]. This gradual shifting of the
linear separator is shown in Figure 10. Line one (L,) is the beginning line, with
initial weights of positive one, and line five (Ls) is the hypothetical ending line

that the network produces that separates class A from class B [86].

Class A L4

L3

ClassB

4 ¥

Figure 10 : Two linearly separable classes [86]

As previously stated, the perception was the result of early work in the
field of artificial neural networks. As with any model, the perception has
limitations to its capabilities [86]. It will learn a solution if the problem is
linearly separable. In many cases however, the separation between classes is
much more complex. The classic simple problem that the perception is unable
to solve is the case of the exclusive-or (XOR) problem [86]. The XOR logic
function has two inputs and one output. It produces an output only if either one

or the other of the inputs is on, but does not produce an output if both inputs

46



Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

are off or both inputs are on [86]. The exclusive-or (XOR) problem is shown in

both tabular and graphic form in Figure 11 [86].

X, X, Y
0 0 0
0 1 1
1 0 1
1 1 0

Figure 11 : Exclusive-or (XOR) problem [86]

4.1.3.4.2 Backpropagation

In 1986 a breakthrough in the study of artificial neural networks was put
forth by Rumelhart, McClelland, and Williams in their book Parallel Distributed
Processing [86, 89]. Their breakthrough was a way to use a smooth transfer
function in a multi-layer perceptron network, combined with a learning rule
which "backpropagated" the error from the output layer to the input layer, thus
solving the credit-assignment problem [86]. The term "backpropagation" refers
to a type of learning algorithm for adjusting the weights in a multiple layer
feed-forward network. However, the term has become synonymous with the
type of network itself. In backpropagation, the responsibility for output error is
assumed to be the problem of all the connection weights in the network. Errors
are calculated at the output layer, then using a sum of products to the previous
layer, the previous artificial neurons are assigned error [86]. The errors are then
used in adjusting the incoming weights so as to produce an output closer to the

correct output for the next set of learning inputs [86, 90].
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4.14 Operation of NNs

The normal operation of a neural network is a selective response to a
signal pattern [86]. How each specific network learns is determined by type of
connections between the neuron, the weight assigned to a signal, and the rules
which change the input function. An example which helps to explain the
operation of a neural network is that of a network trained to predict dependent
numerical outputs from a set of inputs, or explanatory variables. A feed-
forward, backpropagating network is used in this case. Each of the explanatory
variables is assigned to an input neuron, which in turn sends signals to the next
layer of neurons, the hidden layer [86]. Each hidden neuron receives signals
from all the neurons in the preceding layer. The signals are assigned connection
weights and summed in the activation function of the neuron. If the activation
value is greater than the threshold value, the neuron "fires" and sends a signal
to the next layer. If less than the threshold value, the neuron remains in an
inactive state [86]. Once all of the inputs have been passed through the hidden
layer the outputs are sent to the output layer of neurons. The output layer of
neurons, in this case only the one neuron associated with the dependent
variable that is being predicted, is compared to a value known as the training
value. The training value is the actual value of the dependent variable for the
explanatory variables in the observation [86]. In the back propagation learning
method the predicted value is compared with the actual value of the dependent
variable, and if there is a difference, an error signal is fed back throughout the
network, altering the connection weights in each of the neuron's activation
functions. The network iteratively moves to the next observation in the data set,
until a pattern is formed and the network can successfully predict and match all
of the output values to their actual values At this point the network is
considered trained and ready for testing by the user. Testing is accomplished in

much the same manner as training [86]. A separate testing data set with new
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explanatory and dependent observations is input into the network. The
predicted outputs are compared with the actual dependent values to determine
how well the network is performing on data separate from the training data set

[86].

4.2 Failure data description

As mentioned before, this work considers the NN prediction ability
concerning robot failures so as to successfully detect and classify failures and to

dependently track and monitor the action execution.

4.2.1 Robot execution data

The data used in this dissertation is obtained from a real system, and
refers to the evolution of forces and torques during execution of a specific task.
In order to correctly evaluate and compare various NN algorithms and
architectures, the failures in approach to grasp position are considered. Each
feature in the dataset represents a force or torque value measured immediately
after failure detection. Total number of instances is 88, and each instance
consists of sensor measurements (i.e. samples) collected at regular time

intervals. Three values of forces and torques are founded in each sample.
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Figure 12 : 90 different features of one instance (i.e. F&T values)
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Therefore, Figure 12 shows one instance has 90 different features (i.e. the values

of F and T). This data is publicly available via well-known machine learning

repository [91].

4.2.2 Failure Dataset classes

In the failure dataset, 4 different robot situations (i.e. data classes) can be

identified: normal,

collision, obstruction and front collision with the

distribution of 24%19%18% 39%, respectively. The identification of particular

class is based on the values and/or relationships between measured forces and

torques. As an example, in Figure 13 the Fx and Tx in one instance for each

robot situation are presented. It is obvious that the values are very different,

which is especially suitable for NN prediction purposes [1, 5].
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Figure 13 : An example of force and torque value in one dataset instance:
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4.3 Prediction algorithms, activation functions and neural
network architectures

The attractiveness of using NNs lie in the ability to ‘learn’ between
inputs and outputs by using various learning algorithms [5]. These methods
have been developed and proposed to determine the weights of the network,
according to the data of the computational task to be performed. The learning
ability of the NNs makes them useful to solve non-linear problem structures
such prediction, and others. Considerable research has been carried out to
accelerate the convergence of learning algorithms which can be broadly

classified into two categories [92]:

(1) Development of ad-hoc heuristic techniques which include such ideas as

varying the learning rate, using momentum and rescaling variables;

(2) Development of standard numerical optimization techniques. The three
types of numerical optimization techniques commonly used for NN training
include the conjugate gradient algorithms, quasi-Newton algorithms, and the

Levenberg-Marquardt algorithm [92, 93].

4.3.1 Neural networks training algorithms

There are number of batch training algorithms which can be used to train
a network. Here, several types of training algorithms have been evaluated for
classification purposes. The following sub-sections briefly describe the various

NN training algorithms considered in this dissertation:

1. Levenberg-Marquardt (LM) backpropagation algorithm - trainlm [92]:
The LM second-order numerical technique combines the advantages of Gauss-

Newton and steepest descent algorithms. It locates the minimum of a
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multivariate function that can be expressed as the sum of squares of non-linear
real-valued functions [92]. It is an iterative technique that works in such a way
that performance function will always be reduced each iteration of the
algorithm. The LM training algorithm is considered to be very efficient when
training networks which have up to a few hundred weights. Although the
computational requirements are much higher for each iteration of the LM
training algorithm, this feature makes trainlm the fastest training algorithm for
networks of moderate size. Similar to BFGS quasi-Newton Backpropagation,
trainlm algorithm has drawback of memory and computation overhead caused

due to the calculation of the gradient and approximated Hessian matrix [92, 94].

2. Bayesian Regularization (BR) Backpropagation - trainbr [92]:

The BR training algorithm is considered as one of the best approaches to
overcome the over-fitting tendencies of NNs so that their prediction accuracies
for unseen data can be further enhanced [92]. This approach minimizes the
over-fitting problem by taking into account the goodness-of-fit as well as the
network architecture. The BR network training function updates the weight and
bias values according to Levenberg-Marquardt optimization [92]. It minimizes a
combination of squared errors and weights, and then determines the correct
combination so as to produce a network that generalizes well [92]. This process

is called Bayesian regularization

3. Resilence Backpropagation (RP algorithm) - trainrp [92]:

Is the one of the most popular training algorithms that implements basic
gradient descent algorithm and updates weights and biases in the direction of
the negative gradient of the performance function and it is training algorithm
eliminates the effects of the magnitudes of the partial derivatives [92, 95]. In this
sign of the derivative is used to determine the direction of the weight update

and the magnitude of the derivative have no effect on the weight update. The
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size of the weight change is determined by a separate update value. The update
value for each weight and bias is increased by a factor whenever the derivative
of the performance function with respect to that weight has the same sign for
two successive iterations [92, 96]. The update value is decreased by a factor
whenever the derivative with respect that weight changes sign from the
previous iteration. If the derivative is zero, then the update value remains the
same [92]. Whenever the weights are oscillating weight change will be reduced.
Resilient Backpropagation is generally much faster than the standard steepest
descent algorithm although it requires only a modest increase in memory

requirement [92].

4. Scaled Conjugate Gradient (SCG) - trainscg [92]:

The basic gradient descent algorithm adjusts the weights in the negative of the
gradient, the direction in which the performance function is decreasing most
rapidly [92]. This does not necessarily produce the fastest convergence. In the
conjugate gradient algorithms a search is performed along conjugate directions,
which produces generally faster convergence than steepest descent directions.
The conjugate gradient algorithms require only a little more storage than the
other algorithms [92]. Therefore, these algorithms are good for networks with a
large number of weights [92, 97]. Algorithm trainscg is helping to minimize goal
functions of several variables and does not require line search at each iteration
step like other conjugate training functions. Step size scaling mechanism is used
which avoids a time consuming line search per learning iteration. The SCG
training algorithm was developed to avoid this time-consuming line search. The
(trainscg) function requires more iteration to converge than the other conjugate
gradient algorithms, but the number of computations in each iteration is

significantly reduced because no line search is performed [92, 98]
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5. Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton Backpropagation
- trainbfg [92]:

BFGS (trainbfg) algorithm approximates Newton's method is an alternative to
the conjugate gradient methods for fast optimization. a class of hill-climbing
optimization techniques that seeks a stationary point of a function. . For such
problems, a necessary condition for optimality is that the gradient be zero. The
Broyden-Fletcher-Golfarb-Shanno (BFGS) algorithm is one of the most popular
of the quasi-Newton algorithms [33, 92, 99]. The basic step of Newton's method
is to form the Hessian Matrix (second derivatives). This method often converges
faster than conjugate gradient methods but it is complex and expensive to
compute the Hessian Matrix for feedforward neural networks [92]. For smaller
networks, however, BEFGS can be an efficient training function. BEGS have good
performance even for non smooth optimizations and an efficient training

function for smaller networks [92].

6. Variable Learning Rate Backpropagation (GDX) - traingdx [92]:

The GDX training algorithm combines adaptive learning rate with momentum
training [92]. It is similar to Gradient Descent with Adaptive Learning Rate
Backpropagation (GDA) algorithm except that it has a momentum coefficient as
an additional training parameter. Thus, the weight vector update is carried out
the same way as in Gradient Descent with Momentum Backpropagation (GDM)

except that a varying learning rate is used as in GDA [92].

7. Gradient descent backpropagation algorithm [92]:

The gradient descent backpropagation training algorithm is based on
minimizing the mean square error between the network’s output and the
desired output [92]. Once the network’s error has decreased to the specified

threshold level, the network is said to have converged and is considered to be
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trained. The backpropagation algorithm updates synaptic weights and biases

along the negative gradient of the error function [92].

8. Elman NN [100]:

The Elman neural network is asimple recurrent neural network (SRN)
developed by Jeffrey L. Elman in 1990. This network type consists of an input
layer, a hidden layer, and an output layer. In this way it resembles a three layer
feedforward neural network. However, it also has a context layer. This context
layer is fed, without weighting, the output from the hidden layer. The Elman
network then remembers these values and outputs them on the next run of the
neural network. These values are then sent, using a trainable weighted
connection, back into the hidden layer. Elman neural networks are very useful

for predicting sequences, since they have a limited short-term memory [100].

4.3.1.1 NN training

The training process of the feed-forward NN proceeds in a supervised
manner [101]. During the supervised learning, the desired response is provided
for each input instance. The set of N available input patterns can be expressed

as [101]:

T={(xt),dt),t=1...n)} 4.1)

Here x (t) = [x((f) ......, x,(f)] denotes the input n-dimensional vector and
d(t) is the desired output. The task of the training process is to minimize the
error e(t) with respect to the desired output for each input pattern [101]. The

supervised training process of the NN is schematically depicted in Figure 14.
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The performance of the trained NN is tested on input patterns [101]. Hence, set
T can be partitioned into a training set used during the training phase and a
testing set used for performance evaluation [101]. Furthermore, a validation set
can be created in order to validate the generalization performance during the

training process of the training data [102, 103].

Modeled
* system d(t)

NNs v(t)
model

/

Figure 14 : Supervised training of NNs [101]

4.3.2 Activation function

The activation function specifies what the neuron is to do with the
signals after the weights have had their effect [92]. In the simplest models the
activation function is the weighted sum of the neuron's inputs; the previous
state is not taken into account. In more complicated models, the activation
function also uses the previous output value of the neuron, so that the neuron
can self-excite [92]. In most artificial neural networks the activation function is
deterministic, but may be stochastic in more complex networks. The activation

value is then passed through the neuron transfer function [92, 79].
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The transfer function defines how the activation value is output to the
rest of the network [92]. In some models the transfer function is a threshold
function, or an "all or nothing" function. If the activation value is greater than
some threshold amount then the neuron will output a one; conversely an
activation value less than the threshold value will result in a zero output. In this
model the neuron's activation must reach a certain level before the neuron adds
to the total network state. Most common artificial neural networks use a
transfer function known as the saturation function in which more excitation
above some maximum firing level has no further effect on the output of the
neuron [92]. Examples of saturation functions that are widely used in artificial
neural networks today are the sigmoid function and the hyperbolic tangent
function. These functions yield output which is a continuous, monotonic
function of the input. Both the functions and their derivatives are continuous
everywhere, and their values asymptotically approach a high and low value,
with a smooth transition in between [92]. The sigmoid (logistic) transfer
function's output shown in Figure 15 approaches zero when its input is a large
negative number, and approaches one when the input is a large positive
number. The hyperbolic transfer function's output shown in Figure 15
approaches negative one when its input is a large negative number, and
approaches positive one when its input is a large positive number. The sigmoid
transfer function is typically employed in those networks which are used for
classification, while the hyperbolic transfer function is used in those networks

involved in prediction [92, 79].

The mathematical equations of the activation function are:

a. Linear activation function

<
Il

=
o
N
~
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b. Sigmoid activation function

1
Y= 1o (4.3)
c. Hyperbolic function
1—e 2x

+1 +1

U‘J

0 0 1
Linear function Sigmoid function Hyperblic function

Figure 15 : 2D graphical of common activation function

Basically, the activation functions are mathematical formulae that
determine the output of a processing node [104]. Each unit takes its net input
and applies an activation function to it. The purpose of the transfer function is
to prevent output from reaching very large value which can paralyze neural
networks and thereby inhibit training. Transfer function such as sigmoid are
commonly used because they are nonlinear continuously differentiable which
are desirable for network learning [104]. An artificial neuron that uses the

sigmoid transfer function is shown in Figure 16.
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Figure 16 : Backpropagation neuron using sigmoid transfer function [92]

Where: X, ; output of ith neuron in the nth layer and W, ;; weight of the

output of the jth neuron in the (n-1)st layer to the ith neuron in nth layer

The general procedure for backpropagation follows [92]:

1.
2.

Y *® N o g s

Initialize weights, W, ; ; randomly

Present an input pattern (X, X5 .... Xn¢) and a desired output d, to the

network

Calculate the actual output for the input pattern (Xy;, Xo¢ .... Xyt ), y¢, from

the network: y, = f[> X;: Wy,

Compute the total sum of squares error for the network
forinputt, e, : e, = 0.5* sum,(d; — y;)

Calculate AW, ;; (Described in following paragraphs)

Feedback: Correct the weights W, ; i (new) = W, ; ; (old)+ AW, ; ;
Repeat steps one through five for all training patterns

Repeat steps one through six until the error is less than some pre-

determined tolerance.

The basic formula for changing the weights is:

AW, ;; = alphax X, _1 * e, ,

(4.5)
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where: X,,_; is output from neuron i of layer n — i, e, ; error of neuron j in layer

n, Alpha is learning rate (0 < alpha < 1).

There are two formulas for calculating a specific neuron's error. The
formula for a neuron's error in the output layer is directly proportional to the
difference between the desired output and the actual output of the output
neuron. It also depends on the derivative of the transfer function for the neuron

in the output layer. This formula is [92]:

€ out = f’(zj,out ) * (dj - y]) (4:-6)

The formula for a neuron's error in any layer below the output is
proportional to the backpropagated error. This means that the error in these
nodes depends on the errors of the nodes above and the connecting weights to
the above nodes. The neuron's error in any layer below the output layer also

depends upon the derivative of its transfer function at its current output level.

This formula is [92]:

ej,n = f'(Z]n ) * Sum(ek,n+1 * Wk,j,n+1) (47)

Thus, the change in an incoming weight is proportional to the error of a
neuron times the value of the input on the connection being adjusted. One
modification to the backpropagation procedure, developed to avoid local
minima in the error structure is the '"generalized Delta rule" [92]. This
modification adds a momentum term to the change in the W,;; ‘s This
momentum term is a constant, B, multiplied by the weight vector of a neuron
from the previous presentation of an input pattern, which is then added to the
next change in the weights to avoid local minima in the error structure [92]. The

new formula for changing the weights by the generalized Delta rule is:

60



Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

AVl/n,i,j = alpha * Xn—l,i * €n, + B[Wn,i,j(old) - Wn,i,j{new )prev (48)

Backpropagation is thus able to solve the XOR problem because outputs
from the neurons can take on intermediate values between either zero or one
(for the sigmoid transfer function), or negative one and positive one (for the Tan
H transfer function). This allows a network to slowly readjust its weights in the
individual neurons, and to move down the error structure until some preset
error tolerance level is reached [92].

The number of applications for multiple layers, backpropagating
artificial neural networks is continually increasing. Some of the areas in which
they have been used are sonar interpretation, machine vision, converting
English text to phonemes, airline seat marketing, and forecasting in the
economic and banking areas [92]. They have applications in pattern
classification, modeling complex non-linear functions, and signal processing
problems. Additionally, they are beginning to see wide use in the field of

robotics [92, 81].

4.3.2 Neural network architectures

Neural network architecture defines its structure including number of hidden

layers, number of hidden nodes and number of output nodes etc [104].
e Neural of hidden layers:

The hidden layers provide the networks with its ability to generalize
[104]. In theory, a neural with one hidden layers with sufficient number

of hidden neurons is capable of approximating any continuous function.
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In practice, neural network with one and occasionally two hidden layers

are widely used and perform very well.
e Number of hidden nodes:

There is no magic formula for selecting the optimum number of hidden
neurons [104]. However, some thumb rules are available for calculating
number of hidden neurons. A rough approximation can be obtained by
the geometric pyramid rule. For a three layer network with #n input and

m output neurons, the hidden layer would have sgrt(n*m) neurons.
e Number of out nodes :

Neural network with multiple outputs, especial if these outputs are
widely spaced, will produce inferior results as compared to a network

with a single output [104].

4.3.2.1 Single Layer Perceptrons

The Rosenblatt perceptron was built around the McCulloch-Pitt model of
a neuron [105]. The Single Layer Perceptrons (SLPs) are suitable for simple
linear separable or linear discriminants problem for pattern classification into
one or two classes [105, 106, 107, 108, 109]. The training technique used is called
the perceptron learning rule and is capable of learning by generalizing from its

training vectors and learning from randomly distributed connections.

The perceptron model is made up of a linear combiner and a hard limit
transfer function [105]. A high is produced if the net input is equal to or greater
than 0; and O if otherwise. The perceptron learning rule is applied to each

neuron in order to calculate the new weight and bias. Input vectors are
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classified by dividing the input space into two decision regions separated by a

hyperplane defined by [105]:

Zwixi+b=0 (4.9)
i=1

where m isthe number of input variables, w € R™ is the vector of the

weight, x € R™ is the vector of the input stimulus, and b is the bias.

Perceptions are trained on examples by using a set of inputs-output pairs
where p is a vector of the input to the network is and t is the corresponding

correct output target vector as shown in Figure 17 [105].

Input 1 Perceptron Layer
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Figure 17 : Perceptrons [110]
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4.3.2.2 Multilayer Perceptions (MLP)

The MLP consist of the input layer, hidden layer, and an output layer.

The input layer and hidden layer are referred to as source nodes, while the

output layers are regarded as computational nodes [105]. The input layer

propagates signals through the network in a forward direction from layer to

layer. MLP have been reported in the literature to be successful in complex

problem application through supervised training based on the back-

propagation learning algorithm [105, 106,107].

Figure 18 [108] show a typical example of the MLP. One can see that an

input signal propagates forward through the network and emerges at the

output end. Also, an error signal is computed at the output of the network and

is propagated backward through the network.

Input Hidden Layer Output Layer
r N N 0 Al
al ] ai=y
\ N WLW:.l—\‘ =~ EFTERd

7C 3xd - 74
4x1 3x1
Val N Val

2 4x1 4 3xl 3
_/ \ J Y

al = tansig (IWLipt +b1)

a2 =purelin (LW2.1a1 +b2)

Figure 18 : Multi Layer Perceptron [108]

This forms the basis of the error back-propagation algorithm [105]. The

back-propagation learning rule is implemented by adjusting the weights and

biases of networks, in order to minimize the error of the network. The value of
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the network weights and biases are continuously changed in the direction of

steepest descent with respect to the error [105].

4.34 Neural Network Topology for Modeling Approach of

robotic systems

To describe the kinematics and dynamics model of the mobile robot by using

artificial neurons as the basic building element for the development of multi-

layered and higher order neural network, the five basic steps shown in Figure

19 are used in order to overcome the challenge in the identification and of the

mobile robot system.

The Input-Output Patterns

!

Neural Network Model
Structure

!

Estimation

Learning Algonthm and Model | o

}

Dynamics Model
Representation

'

Model Validation

Mot Accept

Model: revise

Accept Model

Figure 19 : Steps of modeling and identifying for mobile robot system
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4.34.1 Types of Neural Network

The most widely NN structures used in this dissertation are the

following;:

1. Feedforward Neural Networks (FNN)
2. Feedback Recurrent Network (FRN)
3. Elman Networks (ELM)

1. Feed forward backpropagation neural networks

FNN in general consists of a layer of input neurons, a layer of output
neurons and one or more layers of hidden neurons [109, 110]. Neurons in each
layer are interconnected fully to previous and next layer neurons with each
interconnection have associated connection strength or weight [109]. The
activation function used in the hidden and output layers’” neurons is non-linear,
where as for the input layer no activation function is used since no computation
is involved in that layer. Information flows from one layer to the other layer in a
feedforward manner. Various functions are used to model the neuron activity
such as sigmoid, tanh or radial (Gaussian) functions [109]. Figure 20 shows a

feed forward neural network.
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Figure 20 : Feed forward neural networks

The input to a node i in the k" layer is given by [109, 111]:

net., = |:Zih'j_J_kO!fi'J.k_1:| +0. ., (4.10)
r

Where, w;;) represents the weight connection strengths for nodej in the
(k — D" layer to node i in the k" layer, out i, k is the output of node i in the k"

layer and 6, ; is the threshold associated with node i in the k" layer.

2. Feedback-Recurrent Network (FRN)

The next dynamic network to be introduced is the FRN. An earlier
simplified version of this network was introduced by Elman [109]. In the FRN
there is a feedback loop, with a single delay, around each layer of the network

except for the last layer. The original Elman (ELM) network had only two

67



Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

layers, and used a tansig transfer function for the hidden layer and a purelin
transfer function for the output layer [109]. The original Elman network was
trained using an approximation to the backpropagation algorithm. The newlrn
command generalizes the Elman network to have an arbitrary number of layers
and to have arbitrary transfer functions in each layer [109]. Various toolbox
softwares trains the FRN using exact versions of the gradient-based algorithms.

Figure 21 shows two layers- FRN [109, 112].
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Figure 21 : Two Layer feedback-recurrent neural network [112]

3. Elman recurrent neural network

The Elman network (ELM) is commonly a two-layer network with
feedback from the first-layer output to the first-layer input [109]. This recurrent
connection allows the Elman network to both detect and generate time-varying

patterns. A two-layer ELM network is shown in Figure 22.
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Figure 22 : Elman recurrent network [112]

The ELM has tansig neurons in its hidden (recurrent) layer, and purelin
neurons in its output layer [109]. This combination is special in that two-layer
networks with these transfer functions can approximate any function (with a
finite number of discontinuities) with arbitrary accuracy. The only requirement
is that the hidden layer must have enough neurons. More hidden neurons are
needed as the function being fitted increases in complexity. Note that the ELM
differs from conventional two layer networks in that the first layer has a
recurrent connection [109]. The delay in this connection stores values from the
previous time step, which can be used in the current time step. Thus, even if
two ELM, with the same weights and biases, are given identical inputs at a
given time step, their outputs can be different because of different feedback
states. Because the network can store information for future reference, it is able
to learn temporal patterns as well as spatial patterns. The ELM can be trained to

respond to, and to generate, both kinds of patterns [109, 112].
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4.4 Neural networks training procedure in MATLAB® software

In a typical supervised learning scenario, a training set is given and the
goal is to form a description that can be used to predict problem. Thus, in this
section Matlab will deals with two neural networks architectures - multilayer
feed forward and Elman recurrent respectively, then end of the section with
other software called BPnet which specializes in backpropagation technique.
The process of training the network involves set of “training sets” that show the
proper network behavior and target outputs. For the analysis of neural
networks, a different training algorithm will be implemented for a given
problem. These algorithms include learning methods such as Backpropagation,

conjugate gradient algorithm, Quasi-Newton algorithm, etc.

4.4.1 Feedforword neural network training procedure

The collected data needs to be distributed on training and testing set.
Generally, different variables are represented in different order of magnitude;
thus, in order to ensure that every data unit receives the same influence in the
training procedure, it needs to be normalized. In this work for, the data is
divided in training and testing randomly in ratio 7:3. In other words, the Matlab
training set includes 70% of 1320 sensor measurements (88 instances x 15
samples in each instance), randomly chosen over the entire dataset. The rest of
the data is used to test the NN network. In addition, a small portion of data is
replaced with erroneous samples; 0 to 3 percent of real sensor measurement is

randomly replaced in the training and testing process.
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4.41.2 Neural network definition in Matlab

In this dissertation, multilayer feedforward NNs with different learning
algorithms are used. The tested architectures include 1, 2, 3, or 4 hidden layers.
The NN input parameters are 6 scaled values (i.e one sample) of forces and
torques from the dataset. The output neurons represent 4 possible cases that
correspond to the particular input: normal, collision, obstruction or front
collision [5]. Therefore, the prediction problem is formulated as a classification
problem (similarly to [49, 3]), which is solved by developing a novel approach
using NNs. In Matlab implementation, sigmoid and linear activation functions
are used in hidden and output layer, respectively. The leaning parameter is set

to be 0.5 for all networks.

4.4.1.3 Architectures of selected NNs

To obtain the optimal NN, we need to test various architectures. So far,
there is no explicitly determined rule or pattern for selection of the number of
the hidden layers reported in the literature. Likewise, the selection of number of
neurons is not universally determined. This is usually done empirically,
although there are different advices for solving this problem [1]. In this work
different architectures were investigated, including the networks with one, two
or three hidden layers. The network structure marked as means that there are
neurons in the first hidden layer, in the second hidden layer, and in the third
hidden layer. As mentioned, the NN input and output are single column
vectors since they represent scaled values of recorded sensor measurements and
corresponding robot situations [5]. Employed network architectures are listed in

Table 1.
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Table 1 : NN architecture used in experiments in this thesis

NN NN NN NN

No. architecture No. architecture No. architecture No. architecture

1 1 7 1-1 13 2-2-2 19 3-3-3-3
2 2 8 2-2 14 3-2-2 20 4-3-3-3
3 3 9 3-2 15 4-3-2 21 5-4-3-3
4 5 10 5-2 16 5-3-2 22 8-5-4-3
5 8 11 8-4 17 8-3-2 23 10-8-4-3
6 10 12 10-4 18 8-4-2 24 10-8-5-4

4.4.1.4 Algorithms selection

After determining the architectures listed in Table 1, several learning
algorithms are employed in order to investigate the best possible NN behavior.
The specific problem under consideration represents the main problem in
algorithm selection (i.e. the problem mainly influences the performance of the
learning algorithms). Thus, the same algorithm can have different performance
depending on the considered task. Therefore, we tested in Matlab all the main
algorithms that proved to have best performance over classification, pattern
recognition or nonlinear function approximation in order to find optimal
solution for the problem of robot failure prediction. Likewise, we tested one of
the most popular gradient descent algorithms outside of Matlab so as to
discover the best NN based prediction method. These seven algorithms used in

Matlab with corresponding acronyms are listed in Table 2. Note that these
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acronyms and NN ordinal numbers will be used in the next section. As stated
before, in Matlab we use sigmoid and linear activation function in the hidden

and output layer, respectively.

Table 2 : Learning algorithms used in experiments in this thesis

Neural
Network No. Learning Algorithm Software Acronym
Type
1 Levenberg-Marquardt Matlab LM
2 Bayesian Regularisation Matlab BR
3 Resilient Backpropagation Matlab RP
Feedforward 4 Scaled Conjugate Gradient Matlab  SCG
5  BFGS quasi-Newton Backpropagation Matlab  BFG
6 Variable Learning Rate Backpropagation Matlab ~ GDX
7 Gradient Descent Backpropagation BPnet BP
Recurrent 8 Elman NN Matlab  ELM

4.4.1.5.1 Mean-squared error and training in Matlab

The stopping criterion for NN training in Matlab software is defined in
terms of goal MSE or maximum number of learning iterations. These values are
defined to be 10 (MSE) and 1000 (maximum iterations). Nevertheless, the
experimental results show that this difference in MSE has no crucial influence in

the overall prediction outcome [5].
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The NN prediction performance is evaluated using the MSE (equation 2)
on test data in Matlab. The NN ability to predict execution failures is tested
several times for each architecture and learning algorithm. The best results are

obtained and presented in the following sixth chapter

N (02
MSE = MTO) (4.11)

where y; is the NN _output and 0; is the target_output and N number of data
set. Figure 23 shows an example of neural networks training implantation using

Levenberg - Marquardt algorithm in Matlab software.
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Figure 23 : MATLAB training networks

4.4.2 Elman neural network training procedure

In this work, another type of neural network - ElIman NN with different
architectures is employed. This is done in order to obtain overall best solution
and to make comparison with feedforward NNs for the problem of failure
prediction. Likewise, the training architectures include 1, 2, 3, or 4 hidden
layers. The NN input parameters are 6 scaled values (i.e. one sample) of forces
and torques from the dataset. The output neurons represent 4 possible cases

that correspond to the particular input: normal, collision, obstruction or front
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collision. The training procedure in terms of Mean Squared Error (MSE) for
Elman NN is the same as training procedure for feedforward NN. In order to
evaluate and to find optimal NN, the architecture and algorithm are training

several times, the best performance will be presented in the Chapter 6.

4.5 Neural networks training procedure in BPnet software

The software BPnet employs backpropagation technique and is
developed in the Laboratory for Industrial Robotics and Artificial Intelligence at
the Faculty of Mechanical Engineering in Belgrade, primary for the needs of
implementing sensor-motor coordination of learning robot and camera
calibration [50]. Wide ranges of applications using BPnet are established; for
example, it is involved in the domain of intelligent robot control [41] as well as
for predicting professional choices of secondary school graduates [3]. In this
dissertation, the basic idea for BPnet engagement was to test our method using
two independent software packages. In that way, the obtained results are more
credible regarding prediction problem solved by NNs. Likewise, the software
proved to be very useful in previous applications in the robotic domain [50,3],

which represents an additional argument for its utilization.

BPnet software was developed in Visual Basic programming language
[100]. User friendly interface of the software enables that NN topology and
initial weighting coefficients are easily defined. The starting window Figure 24a
shows basic information about the software. After the ,,proceedu button is
pressed and the project is named, four different steps for defining
backpropagation NN in BPnet software are available. The training procedure is

explained in the next four steps.

Firstly, one must define the number of layers and number of neurons in

each layer in the “configuration” step. By using three buttons located on the top
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of the window Figure 24b, each NN architecture can be easily set. The end of
this step is conducted using the “check” mark on the left side. Likewise, by

pressing on the “x” button mis-entered neurons in each layer can be deleted.

Secondly, the weighting coefficients are defined in the next module - in
the “connections” step. Initial weighting coefficients are defined by default and
are given in Figure 24c. These can be varied in order to obtain their optimal
value for the problem in hand. This stage is completed in the same manner as
previous - by confirming weighting coefficients and bias values using the

“check” mark.

Third step implies implementation of input/output training pairs. In this

module we can also open earlier work or save a new training data in a text file.

Finally, the training and testing phase is conducted in the “train”
module. Here, we can define expected (i.e. goal) middle absolute error (MAE)
as well as network learning parameters. Testing is also conducted here by
invoking the new input/output pairs after the training phase is over. An
example of the BPnet engagement during the training process with NN
architecture 6-10-4 (6 neurons in input layer, 10 and 4 in hidden and output
layer, respectively) is given in Figure 24d. One can notice that the
backpropagation algorithm successfully decreased the NN error below the

previously defined value after ~25.000 iterations.

77



Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

FI=F =lolx
Configuration
L L
o - 0 | [Warking space: -
a = a =|
d Universtty d * ® *
b3 of Belgrade ’ _> % * ® .
. s ;"Od'lﬂnlcﬂl ' s * ° S
rComections | ¥ | | Facal T Yy * ® *
ds aculty o s b4 ®
== e DIEERIN :
ol & | | Enginesring I8 ¢
E el m Dapartmant ? m 9!
. 2 Clintr or Mo Technologin - GETI L i S
t| — |-
@
fs ® R
10 Pairs Ja -vnhns—u' a .
Djg | L Ep—
)
E-mail: ciki@sezampro.co.yu - Upperbound - [035333 Upperbound  [533333
Trein s ciki@afrodita.rcub.bg.ac.yu s Lowerbourd [3333 Lorbond [0
y mlmiljko@rcub.rcub.bg.ac.yu M
m m
R B e
w.oPnetv 1.0 — 3 SEn
Configuration—|
[l = :
0 | [ Working space a a
a = d
F s
X | [
Cannectians Y HH
G s o
CERE
e
I :
2 a
t[— o 8
E :
S
U0 Pairs ) a s
% y
D= :
i e
3 m
¥ _
s
: !
m
1"

Figure 24 : BPnet software: (a) starting window, (b) “configuration” module,
(c)“connections” module, (d) training process [5]

4.5.1 Training set for BPnet -software

For BPnet software, the training and testing set are much smaller in order
to significantly reduce the computational cost and to speed up the NN training.
In total, we use 64 randomly chosen sensor measurements, divided into the
training and testing data in the same ratio. The bad data is implemented here in

the same manner as before (0-3 percent of total training data) [5].
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4.5.1.1 Data normalization

Before the start of the training phase, input and output data were scaled
to be between the upper and lower bounds of transfer functions ,the data is
scaled in the [-1 1] interval. Normalization of data helps artificial networks to
better understand the relationship between input and output data as well as
increasing the accuracy of prediction so high efficiency will be achieved during
testing step [113]. This is done so as to enhance the network performance and to

speed up the learning process. The following equation is used in this purpose
[1]:

x X +ﬂ-(f ~Tpin ) (4.12)

scaled — “‘min max min
Xmax ~ Xmin

Where xg.eq denotes scaled data value, X, and X, are minimum and
maximum values in chosen range (i.e. -1 and 1, respectively), xp, and X,

represent minimum and maximum values to be scaled, respectively.

4.5.1.2 BPnet - software parameter settings

In software itself, sigmoid function was used as an activation function
with delta rule as the learning rule, and with parameters for all networks as

given below and in Figure 25:

» Momentum 4 = 0.5
» Learning parameter p = 0.2

> Expected error MAE = 0.01
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Figure 25 : BPnet software training control panel

An example of a neural network with 5 neurons in first and 2 neurons
in second hidden layer is presented in Figure 26. Input values are measured
forces and torques in robotic system, while outputs represent four cases that
correspond to these forces. As mentioned before, the prediction problem is
transformed into classification problem, in which defined failure case must be
identified according to the values of the forces. This is extremely important in
various industrial tasks: the detection of the failure should be quick in order to

prevent further damage or malfunctioning of the whole system.
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Figure 26 : Structure of the multilayer feedforward NN [5]

4.5.2.2 Testing criteria for BPnet software

The NN prediction performance in BPnet and Matlab is also evaluated
using the mean squared error - MAE (equation (4.12)) on test data. The goal
MAE is set to be 0.01.

n
1
MAE _test = EZINN_OM — target_output| (4.13)
i=1

The NN ability to predict execution failures is tested for each architecture. The

best results are obtained and presented in the chapter 6

81



Chapter 4 - Robotic failure prediction in MATLAB® and BPnet software

4.5.3 Prediction procedure summary

In this section, the prediction procedure is concisely given again. This is crucial
part of experimental initial setup, so it is necessary to emphasize it again. In
order to evaluate the NN performance, the collected data needs to be
distributed on training and testing set. Generally, different variables are
represented in different order of magnitude; thus, in order to ensure that every
data unit receives the same influence in the training procedure, it needs to be
normalized. In this work, the data is divided in training and testing randomly
in ratio 7:3. In other words, the Matlab training set includes 70% of 1320 sensor
measurements (88 instances x 15 samples in each instance), randomly chosen
over the entire dataset. The rest of the data is used to test the NN network. In
addition, a small portion of data is replaced with erroneous samples; 0 to 3
percent of real sensor measurement is randomly replaced in the training and

testing process.

For BPnet software, the training and testing set are much smaller in order
to significantly reduce the computational cost and to speed up the NN training.
In total, we use 64 randomly chosen sensor measurements, divided into the
training and testing data in the same ratio. The bad data is implemented here in

the same manner as before.

Multilayer feedforward NNs with different learning algorithms are used
in this dissertation. The tested architectures include 1, 2, 3, or 4 hidden layers.
The NN input parameters are 6 scaled values (i.e. one sample) of forces and
torques from the dataset. The output neurons represent 4 possible cases that
correspond to the particular input: normal, collision, obstruction or front
collision. Therefore, the prediction problem is formulated as a classification
problem (similarly to [49, 3]), which is solved by developing a novel approach
using NNs.
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5. Intelligent mobile robot in a manufacturing
environment

5.1 Introduction to intelligent manufacturing systems (IMS)

Basic definition of IMS is [116]: Intelligent manufacturing system

presents system with autonomous ability to adapt to unexpected changes, i.e.

change of assortment, market requests, technology changes, social needs etc. In

specific type of construction of IMS should be cared about following requests

[116]:

a)
)
c)

o

2

low production costs,

universality, adaptation of production system to specific product,
precision and high quality of manufactured products,

expressive shortening of main and incidental production times,
exclusion of man in production process,

Safety.

With growth of requirements to manufacturing systems, come other

criteria, which would widen abilities of manufacturing system. Requirements

can be defined by changing character of production.

Goal is to create such a system, which is capable to react flexible to

various situation in production process [116]:

a)

to change of shape of manufactured product,
change of measurement properties of product,
packing of subsystems with components,
unexpected switch to different type of products,
time variation in production process,

change of technological parameters,

securing against crash situations.
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Intelligent manufacturing system is possible to consider as higher phase
of flexible manufacturing systems [116]. Intelligent manufacturing systems like
flexible manufacturing systems consist of individual subsystems (technological,
transportation and handling, control, store and operative). Each subsystem has
to contain of intelligence elements, which give to these subsystem certain
degree of intelligence.

To the basic elements of machining intelligence belong visualization of
production process (monitoring), which enables to observe own status of
system and changing conditions of environment. Primary information for
realization of production tasks in required order, come in to the operative
system of IMS over basic elements of machining intelligence - over sensorial
elements, which expressively increase degree of intelligence of manufacturing

system [116].

5.1.1 Components of an intelligent manufacturing system

As mentioned in the previous section, the manufacturing process is a complex
one and can be decomposed into several components. In [117] Rao decomposed
IMS into the following components: intelligent design, intelligent operation,
intelligent control, intelligent planning and intelligent maintenance. We modify
this decomposition slightly to reflect the current trends in the literature on IMS
as shown in Figure 27. This now fully reflects current understanding of a

modern IMS.
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Figure 27 : Components of an mtelhgent manufacturmg system [117].

5.1.2 Intelligent Mobile Robots in manufacturing systems

At the beginning of the 21st century manufacturing is more closely than
ever related to fast growing market requirements and intensively coupled with
diverse customer demands [118]. The increasing complexity of products and
growing tendency for delivery time cutting as well as the need for “make to
order” rather than “make to stock” manufacturing, imposes newly developed
solutions able to tackle with these sophisticated issues. New methods, fast
growing research fields, design principles and newly developed and defined
paradigms, guarantee improvement of the existing technology as well as the
quality of everyday life [118].

Intensive research in the field of robotics has resulted in a great number
of robots able to perform complex and sophisticated tasks they had been
previously designed to do [118]. Throughout years robotics has achieved a
number of important great successes in various fields of application such as

manufacturing, museum touring, cargo handling etc. However, one of the
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greatest successes to date is in the world of industrial manufacturing where
industrial manipulators are able to move with great speed and accuracy
performing all sorts of tasks, such as welding, painting, cutting etc. [119].
Needless to say, implementation of industrial robots for manufacturing
purposes is a standard for highly-developed companies [118].

The implementation of Intelligent Mobile Robots in manufacturing
systems [120] is still a challenge for the research community. Operating on the
shop floor, as a component of material transport system, Intelligent Mobile
Robots would need a particular kind of behavior exclusively developed for

these purposes [118].

5.2 Control of a mobile robot using Al techniques

The traditional control methods for mobile robots have used linear or
non-linear feedback control [121] while artificial intelligent controllers were
carried out using neural networks [122, 123], evolutionary algorithms [124], or
fuzzy inference [125]. Neural networks are recommended for Al control as a
part of a well-known structure [126]. Much research has been done on the
applications of neural networks for control of nonlinear of mobile robot systems
and has been supported by two of the most important capabilities of neural
networks: their ability to learn and their good performance for the
approximation of nonlinear functions [126]. The neural network based control
of mobile robots is usual to work with kinematic models of mobile robot to
obtain stable motion control strategy for goal reaching [126, 127]. The NNs in
demined of an adaptive dynamics control of nonholonomic mobile robots was
addressed in [126, 128]. For tracking control of wheeled mobile robot new
method by using two cascade controllers is proposed in [129]. Second

subsystem is the main one, and consists of adaptive neural fuzzy inference
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system controller for the direct solution of trajectory tracking problem of mobile

robots.

5.2.1 Neural networks for obstacle detection and avoidance

There are always static or dynamic obstacles in the environment [130].
Hence, robotics needs to autonomously navigate themselves in environments
by detecting or avoiding obstacles. The neural networks, which have been
designed for obstacle detection by mobile robots, should take the sensor data
from the environment as their inputs, and output the direction for the robot to
proceed [130]. In [131] authors presented a multilayered neural network with
error backpropagation through Q-learning for mobile robot obstacle avoidance
in unknown environment. In [132] obstacle detection and avoidance problem of
a mobile robot in unknown environments is addressed by C. Silva using
MONODA (MOdular Network for Obstacle Detection and Avoidance), which
consists of four three-layered feedforward neural network modules and every
module detects the probability of obstacles in one direction of the robot [130].
Parhi et al. presented a approach of real-time obstacle-avoidance, and wall-
following tasks using separate neural networks to solve each of the target
seeking, [133, 134]. In their approach, based on certain criteria one of the
networks is selected at each time step to control the mobile robot allowing it to
move safely in a crowded real world and unknown environment and to reach a

specified target while avoiding static as well as dynamic obstacles.

5.2.2 NNs for trajectory tracking and control

NNs have been known for being good approach for solving complex

control problems. The control using NNs is generally based on learning ability
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of the mobile robot [135]. The control of neural network for trajectory tracking
of mobile robots has been addressed by Fierro et al [136], which refers to the
control of neural network for trajectory tracking based on the neural network
function approximation property and can deal with unmodeled bounded
disturbances and unstructured unmodeled dynamics of the mobile robot. The
neural network is combined with the backstepping controller to learn the full
dynamics of the mobile robot and convert the velocity output of the
backstepping controller to a torque input for the actual vehicle. The advantage
of having neural networks in this approach is that there is no need to know the
dynamic model of the robot and the neural network will learn it online without

a priori knowledge of the dynamics [135].

In [137], J. Ye presented control of neural network for trajectory tracking
uses the learning property of the neural network to make an adaptive controller
which adapts the backstepping controller gains [135]. The approach has the
properties to quickly drive the position error to zero and to indicate better
smooth movement in the tracking performance process. This control approach
integrated the backstepping controller with compound orthogonal networks
and improves its performance by using the learning property of the neural

network [135].

In [138] adaptive control methods for trajectory tracking of a wheeled
mobile robot in dynamics level is given; in other words, the mobile robots with
unknown dynamic parameters in proposed [139]. Adaptive controls are derived
for mobile robots, using backstepping technique, for tracking of a reference
trajectory and stabilization to a fixed posture. For the tracking problem, the
controller guarantees the asymptotic convergence of the tracking error to zero
[139]. For stabilization, the problem is converted to an equivalent tracking
problem, using a time varying error feedback, before the tracking control is

applied. The designed controller ensures the asymptotic zeroing of the
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stabilization error. The proposed control laws include a velocity/acceleration
limiter that prevents the robot’s wheels from slipping [139]. An artificial
potential field is used to navigate the wheeled robot in the controller [140]. Easy
design, fast convergence, and adaptability to other nonholonomic mobile are
obvious advantages. In contrast to adaptive certainty equivalence controllers for
mobile robots, the proposed control law takes into consideration the estimates'
uncertainty, thereby leading to improved tracking performance [140]. Finally,
novel approaches test various learning algorithms and architectures so as to

find optimal NN for mobile robot trajectory tracking problem [141].

5.2.3 NNs Control Methodology

The control of a nonlinear mobile robot depends on the information
available about the system and the control objectives [142]. The information of
the unknown nonlinear system can be determined by the input-output data
only and this system is considered through the implementation of feedforward
neural networks which are considered in this dissertation. The first step in the
procedure of building the control structure is the identification of the
kinematical mobile robot from the input-output data, and then a fee forward
kinematical neural networks controller is used because the robustness of
feedforward NNs enable achieving good tracking of the reference trajectory.

The control mobile robot using NNs consists of [142]:
1- Position and Orientation Neural Networks Predictor.

2- Feed forward Kinematics Neural Networks Controller.
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5.3 Localization of a mobile robot in a laboratory model of
manufacturing environment

The robot also needs the information about its position in the world. One
can think about different ways to express this information [143]. It could be in
relation to some global coordinate system, but it could also be relative to some
object. A combination is likely to be needed as every physical contact requires
the robot to position itself relative to the object, whereas the robot will need its
global position when reasoning about how to go from one place to another

[143].

A problem that is sometimes difficult for a human being as well, Is the
problem of finding the position when there is no information about the history
of movements [144]. That is, there is no information about how the present
position was achieved. This is the problem of initializing the position of the
robot. Initializing the position is more difficult than keeping track of the
position when the initial position is known. Traditionally, most robot systems
have only shown position tracking capabilities and have relied on manual
initialization [144]. This is not adequate if full autonomy is one of the goals. In
order to do anything meaningful a model of the world is needed. This model, or
map, can be of man different types, the way the map is acquired also varies
from system to system, but for a fully autonomous system the robot must

acquire the map on its own.
Localization can be separated into two sub problems as follows [144]:

e Position tracking
Or position estimation refers to the problem of estimating the
location of the robot while it is moving. Drift and slippage reduces

the precision of the robot position within its global map.
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e Global localization

It is the problem of determining the position of the robot under global
uncertainty. This problem arises, for example, when a robot uses a map
that has been generated previously and when it is not informed about its

initial location within the map.

If the operate of mobile robot in such a dynamic environment, like
manufacturing environment, it must be able to determine its position and
orientation. Therefore, most robotics problems ultimately should provide

answers to the following questions [145, 39]

e Where am I?
»  Where have I been?
*  Where am I going?

*  What's the best way there?

The first two questions is the localization and map making, fall in the
realm of mobile robot localization. Mobile robot localization is the problem of
determining the pose (position and orientation) of a robot relative to a given
map of the environment, and quite often is referred to as the pose estimation
problem. The third and the fourth questions are related to planning and control

ability of a mobile robot [118].

5.3.1 Odometry and mobile robotics

Odometry is a method of localization for land vehicles and the general
ability for any system to know its own position [146]. It is therefore an issue of

primary importance in autonomous mobile robotics. Although it’s not always
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necessary to know the robot’s position to reach a certain goal, it's useful in
many applications such as trajectory tracking, path following and map building
[146]. The basic idea of odometry is to retrieve information from different
sensors and process it to estimate the position of the robot. The odometry is
known as dead reckoning as well (derived from deduced reckoning) and can be

expressed through following:

*  Odometry is used by mobile robots to estimate their position relative to a
starting location.

+ Uses data from the rotation of wheels or legs to estimate change in
position over time.

« Often very sensitive to error.

* Rapid and accurate data collection, equipment calibration, and
processing are required in most cases for odometry to be used

effectively.

Implementation of odometry consists of repeated use of wheel counters
in order to update the pose of the robot. The pose of mobile robot is calculated
in the global coordinate frame, i.e. the pose of the robot is made of three values:
(x,y,0) where x and y are the absolute cartesian coordinates, and 6 the

orientation of the robot measured from x axis, as shown in Figure 28.
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Figure 28 : The position of the mobile robot in the plane

The kinematic model of the trajectory tracking for an autonomous
vehicle is introduced next. The position of the mobile robot in the plane is
shown in Figure 28. The plane of motion and the moving frame is attached to

the mobile robot [147].

The position of the mobile robot in the base frame is expressed as:

-l -

And the rotation matrix expressing the orientation of the base frame b with

respect to the moving frame m is given by:

cos@ sinf O
R(0) = |—sinf cos6 0 (5.2)

0 0 1
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The robot motion is obtained by driving the independent active wheels
and providing of the two independent wheels velocities, wi(t) and wr(t), or the
body linear and angular velocities, v(t) and w(t), which can be converted in

terms of each wheel velocity.

Taking a mathematical modeling for this motion, we can consider two
input variables: v(t) and w(t), and three state variables: the robot position and

orientation (x(t),y(t), 8(t)):

x(t) cosH t) 0
[y'(t)‘ smB(t) 0] [”((?) (5.3)
6(t)

where: x(t), y(t), and 8(t) are derivatives of x(t),y(t), 8(t) respectively.

The input variables are also called control variables, and constitute the
way to command the robot so as to provide the desired motion. The robot
motion history, i.e. the executed trajectory, is recorded to plot graphics that

allow easier visualization of motion topological properties [148].

5.3.2 Sensors for Localization

A mobile robot must to identify where it is or how it got there, or to be
able to reason about where it has gone, sensors are necessary for measuring the
distance of wheels have traveled along the environment and also measuring
inertial changes and external structure [130]. In order to implement a mobile
robot, the robot needs to be equipped with sensors. A robot can be equipped
with numerous sensors. Additionally In order to fully understand the problem
of localization it is very important to know the characteristic of the sensor that is

available [130]. The most common sensor is IR sensor, as it’s the sensor which
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this thesis is dealing with in this chapter by implement real experiment and
focuses of obstacle detection problem and related to main approach. The
sensors such as infrared sensors provide the external information about the
environment. The data from sensors can be applied for recognizing a place or a
situation, or be used to construct a map of the environment. Infrared sensor can
obtain distant and directional information about an object and needed to get
information about the environment. As we humans have different senses, there
are sensors which measure different entities, such as color, distance, light, etc
[130]. From a localization point of view, it is also important to understand how
the sensors work as they are the input to the algorithms, i.e. we need good
models for the sensors. In [149] Durrant-Whyte et al say: We will maintain that
the only way to understand and utilize the disparity between different sensor
views is to explicitly model the sensor and the information it provides...", where
a sensor model is defined as an abstraction of the physical sensing process
whose purpose is to describe the ability of a sensor to extract descriptions of the
environment in terms of the information available to the sensor itself [144].
Crowley [150] says that the sensor model can be viewed as a form of logical
sensor which provides the sensor information in a standard form". Independent
of the definition used for a sensor model, it is clear that good physical
understanding is needed to construct such a model. Borenstein et al presented
out that the odometric information is very good most of the time [151]. That is,
trusting in an odometric model is warranted almost all the time [144].

The neural networks have many processing units, they provide of
robustness or fault tolerance for interpretation of the sensor data [130, 152].
Feedforward multi-layer perception neural network, trained by the
backpropagation algorithm, has been applied for pattern classification, pattern
recognition and function approximation. In [153] Thrun has employed a
feedforward neural network to "translate" the readings of sonar sensors into

occupancy values of each grid cell for building metric maps [130].
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5.3.3 Approach employed in this PhD dissertation

In order to verify our work, this section provides procedure related to
real world experiments are conducted on a mobile robot for obstacle detection
and trajectory tracking problems in alaboratory model of manufacturing
environment (see Figure 29). This is done in order to prove the robustness of the
proposed prediction approach and to give evidence the usefulness and the

applicability of the developed intelligent methods [5].

The sensors on the mobile robot can measure the light reflected by
obstacles, those six sensors increment or decrement according to the position of
the robot corresponds to distance of the sensor, the relationship can be found
without any prior knowledge about the geometry of the mobile robot, by
supervised learning techniques [146]. This learning is achieved by training a
neural network with data collected manually. This method has two major
advantages. The first one is simplicity. Indeed, no complicated model of the
robot is needed, it has two position of the robot, and the principle remains the
same [146]. The second advantage is robustness: information from sensor can be
combined in the neural networks; the drawback of the method is that the
performance of the neural network depends highly on how it is trained. There
is no well defined method for this; it is more a matter of empirical rules and
experimentation [146].

The experiments that deal with the trajectory tracking problem are
conducted on a Khepera mobile robot. The original prediction method is
implement and test on a real mobile robot in indoor environment for solving
obstacle detection and trajectory tracking problems [5,141], and the next section

give more details with solutions about those kinds of problems.
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Figure 29 : Laboratory model of manufacturing environment

5.3.3.1 Khepera miniature mobile robot setup

In order to verify the proposed approach in a fair manner, several
experiments in real time are conducted on a nonholonomic mobile robot in
laboratory model of manufacturing environment. The robotic setup consists of
Kheperall mobile robot and six integrated infrared sensors, the miniature robot
is a mobile robot moving on two wheels. The data manipulation and robot
control are carried out using Intel™ i5-2320 3GHz processor desktop computer
with 4GBs RAM on Windows 7. Technical description of a mobile robot used in

experiments is given in Table 3.
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Table 3 : Robot configuration specifications

Specifications Robot

Technical Description

Elements
Processor: Motorola 68331, 25MHz
RAM: 512 Kbytes
Flash: 512 Kbytes
Motion: 2 DC servo motors with
incremental encoders
Speed: Max. 0.5 m/s; Min. 0.02 m/s
Power: Power adapter or rechargeable
NiMH batteries
Communication: Standard serial port, up to
115kbps
Size: Diameter: 0.07 m; Height: 0.03 m
Payload: Approx. 250 g

Figure 30 shows the connection between robot and computer, which is

converted by the connect module to line available on the robot. The line

connects the robot with the interface module, and is also responsible for the

robot power supply [146, 154].
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Figure 30 : Robot - computer connection configuration [154]

5.4 Mobile robot obstacle detection: problem and solution

As mentioned before, the mobile robot has a cylinder-like shape as
shown in Figure 28. First experiment refers to an obstacle detection problem
[155]. Six infrared sensors mounted directly on the front end of the robot are
used to detect obstacle in two characteristic positions - on the left side and on
the right side of the robot as shown in Figure 31. The NN training data are

gathered by placing the platform in several positions for each case.
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Figure 31 : Obstacle detection with IR sensors

In the Figure 32 one can notice that the robot is placed closer and further
away from the object in different positions for both cases. This is done in order
to show robustness of our approach regarding various combinations of
obtained sensor measurements. Additionally, the failed data is gathered in two

ways:
i.  Manually, by blocking the chosen infrared sensor(s), and

ii.  Incontrol commands, by replacing correct values with the failed

ones.

All these information are implemented in the training and testing set for NN
divided in ratio 7: 3 (respectively), as in the previous case with the recorded

forces and torques.
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(b)

Figure 32 : Robot positions in the detection experiment: (a) obstacle on the left
side, (b) obstacle on the right side [5]

5.4.1 Robot Obstacle detection problem based failure prediction

Since the earlier experiments showed that BR algorithm (Table 2) is the
most suitable for this prediction problem, this one is used in all real world
experiments. Also, we tested the overall most successful architecture. the
network number 24 in table 1 (10-8-5-4). The activation functions are the same
as earlier - sigmoid in hidden and linear in output layer. The NN input
represents six infrared sensor measurements with values from 0 (obstacle is
far) to 1020 (obstacle is near), and the output is a value 1 if the failure is
recognized, and 0 otherwise. These values are scaled in accordance with
equation (4.11). Similar to the previous cases, the failure prediction problem is
formulated as classification problem [13, 17] using sensor information. An
example of correct and incorrect sensor measurements for both cases are

represented in Table 4, in which the ,X“ mark denotes failed sensor
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measurement. The first two measured values correspond to the sensor
positions on the left side of the robot, while the last two values correspond to
the sensors placed on the right side of the platform. In accordance to the
aforementioned, one can conclude that the larger sensor values indicate that

the object is closer to the robot (Table 4).

Table 4 : Example of correct and failed sensor information

Correct infrared values Failed (incorrect) infrared

values

Obstacle onthe |;r_[420 704 92 68 56 50]' |IR=[X 554 52 64 56 95]

left side

Obstacleonthe |;|r_[72 68 48 100 984 1020]"[IR=[55 X 63 105 X 921]'

right side

The incorrect sensor values are included in the training set in random
manner, meaning that the number and the index location of the failed
measurement are randomly generated [5,141]. We tested the BR NN algorithm
and selected architecture several times for each detection problem with up to

three failed values included in the input vector.

The result showed that in over 96 percent of all tested cases NN
successfully recognized the failed sensor measurement. In addition to this,
incorrect measurements are replaced with the expected values, so that the object

location (left or right of the robot) is successfully recognized.
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5.5 Mobile robot trajectory tracking: problem and solution

Usually, the main tasks that we consider for mobile robots in the absence

of obstacles in an environment are trajectory tracking and point-to point motion

[156]:

» Trajectory tracking is the case where a reference point of mobile robot
should follow a trajectory in the Cartesian space starting from a given
initial configuration.

+ Point-to-point motion is the case where the mobile robot should reach a

given goal configuration starting from a given initial configuration.

In this work we investigated NN behavior in the domain of failure
prediction in the case of tracking two types of trajectories [5]. One can consider
the case in which the robot wheels command unit is not working properly, i.e.
the situation in which several control commands have unwanted values
regarding tracking the particular trajectory. If the wheel command in every
control iteration is not as expected (calculated), the mobile robot could make a
significant error or even completely mist rack the desired trajectory. To prevent
this from occurring, a safety-unit must be installed within the control system
[5]. Using the developed NN-based approach, the mobile robot can detect the
failed control value and replace it with the desired one, so as to enable

successful accomplishment of trajectory tracking.

5.5.1 M-shaped trajectory tracking based failure prediction

Tracking of M-shaped trajectory is shown in Table 5 (1 unit corresponds

to the wheel motion of 1/12 mm). It is noticeable that each control value must
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be as closer to the desired one, in order to successfully track this kind of
trajectory. Obviously, in the case of employed incorrect wheel commands

(second row in table 5), the tracking problem is not successfully solved.

Table 5 : Correct and failed wheel comment for M-shaped trajectory

Failed (incorrect) wheel
Trajectory type | Correct wheel commands
commands

-150 200 150 | X 200 150 |

Left _wheel =| 200 -150 200 Left _wheel =| 200 -150 200
M-shaped 150 200 150 150 X 150
trajectory 150 200 -150 ] 150 X -150]

Right _wheel =| 200 150 200 Right _wheel =| X 150 200
-150 200 150 | X 200 150 |

5.5.1.1 Tracking of M-shaped problem and solution

An implemented NN here is the same as in all experiments: BR
algorithm with 10-8-4-2 architecture, and with sigmoid and linear activation
functions. Input to the network is scaled right and left wheel commands, while
the output represents successful or incorrect failure prediction [5, 141]. We
tested trajectory several times, and the results of one test M-shaped is presented
in Figure 33 (the red line denote the robot orientation in every control
iteration). The experiments confirmed the usefulness of the proposed
approach: in more than 99 percent of the cases, the network and the result
show that the mobile robot is able to track M-shaped trajectory and that the
developed intelligent approach successfully predicted the failures in control

values.
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Figure 33 M-shaped trajectory tracking experiment [141]

In addition, in order to successfully track chosen trajectory, failed values
are replaced with the desired information. The results shows that the mobile
robot is able to track each trajectory, and that robot poses do not significantly
differ from the wanted ones in every time instant. Screenshots from real world

experiment are given in Figure 34 [141].
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Figure 34 : Real world experiment in a manufacturing environment using
Kheperall mobile robot [141]

5.5.2 Labyrinth-type trajectory tracking based failure prediction

In this case studied trajectory is more complicated Ilabyrinth-type
trajectory, with good and bad wheel signals given in Table 6. In this case, the
tracking error is even more evident: the tracked trajectory is completely
different unless every control value matches the desired information. As in the
previous experiment, failed data is incorporated in random manner (number of

failures and index locations) in the training set.
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Table 6 : Correct and failed wheel comment of Labyrinth-type trajectory

Failed (incorrect) wheel

Trajectory type | Correct wheel commands
commands
200 -124 200 200 X 200
-124 150 -124 -124 150 124
Left _wheel =| 150 -124 100 | |Left _wheel =| X -124 100
-124 100 -124 X X 124
Labyrinth-type 20 20 10 20 20 10
trajectory
200 124 200 200 X 200
124 150 124 124 150 124
Right _wheel =| 150 124 100 Right _wheel =| 150 124 X
124 100 124 124 100 124
20 20 10 X 20 10

5.5.2.1 Tracking of Labyrinth- type problem and solution

As stated, the other type of trajectory is Labyrinth-type trajectory which is

more complicated task. In experiments, the implemented NN BR algorithm is

the same as in the previous case. Trajectory tracking task is tested several

times, and one of the test is shown in Figure 35. The experiment confirmed the

robustness of the proposed approach: in more than 99 percent of the cases, the

network successfully predicted the failure prediction [5]. In addition, in order

to successfully track chosen trajectory, failed values are replaced with the

desired information. The results shows that the mobile robot is able to track

each trajectory, and that robot poses do not significantly differ from the

wanted ones in every time instant [5].
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Figure 35 : Result of Labyrinth-type of trajectory tracking experiments

Finally, Figure 36 denotes robot poses in characteristic iterations during
tracking of labyrinth-type trajectory (see also Figure 35). Starting from an
arbitrarily pose in indoor environment, Figure 36 shows robot poses at the
beginning and at the end of each straight-line motion (for example, Figure
36(a) and Figure 36(b), and also Figure 36(d) and Figure 36(e)), and the pose
during the rotation (for example, Figure 36(c) and Figure 36(f)). It is obvious
that, using the NN-based prediction method, mobile robot successfully track
the complex trajectory. The minimal errors in the final robot pose evidence the
usefulness and the robustness of the proposed approach described in this

dissertation.
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Figure 36 : Mobile robot tracking the labyrinth-type trajectory: (a)-(t) Robot
poses in characteristic control iterations [5]

109



Chapter 6 - Experimental study: prediction of robot failures using neural networks

6. Experimental study: prediction of robot failures using
neural networks

6.1 Experimental setup

In Chapter 5, two different problems are investigated under challenging
conditions: object detection and trajectory tracking. First hypothesis tell us that
it is possible to develop a machine learning base control subsystem for
prediction of failures. Likewise, the other hypothesis referred to the situation in
which it is possible to develop and implement NN prediction unit in robotic
system which enables undisturbed execution of trajectory tracking and obstacle
detection tasks. Three described experiments are used to validate these
hypotheses; in two experiments a trajectory tracking task is studied, while one
experiment relates to the obstacle detection task. These experiments focus on
the core topic of this dissertation: verifying prediction ability of robots based on
neural networks. Results show that NN with BR algorithm give the overall best

results in aforementioned robotic tasks.

In this chapter, we employ Matlab, a high level matrix oriented
programming language, and specially designed BPnet sofware in order to test
several learning algorithms for analysis of failure data in four situations related
to robot grasp position. The results should prove a remaining hypothesis: that is
possible to develop a more precise prediction system based on Soft computing
methods - neural networks. In Chapter 6 we focus on satisfying this hypothesis,
using different learning algorithms and different NN architectures so as to find

optimal solution for the robotic prediction unit.
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6.1.1 Algorithm implementation (setup)

The verification of NN prediction performance is conducted using Intel®
Core™2 Duo 2.1 GHz processor laptop computer with 2.96 GBs RAM on
Windows XP platform. The Matlab 2009a (v. 7.8.0.347) is employed for
algorithm implementation and testing. In order to find optimal NN, all
architecture and algorithms are tested several times, the dataset is corrupted
with erroneous values in random manner (these values are 0 to 3% in the entire
set). Likewise, in order to test every NN structure in an appropriate way, we
utilize 6 NN architectures separately for 123 and 4 layer networks (the total
number of architectures is 24, as showed in Table 1. As stated before, the
prediction in this work is treated as the classification problem, as used in many
studies [3, 49]. Note that the acronyms listed in Table 2 are used to denote

corresponding learning algorithm.

6.2 Experimental results

This dissertation delivers a novel approach using multilayer feedforward
neural networks and Elman neural networks as a solution for the problem of
failure prediction in robotic system, and also presents performance comparison
of different NN learning algorithms and architectures. The tests are performed
in Matlab, and they include all the main algorithms that proved to have best
performance over classification, pattern recognition or nonlinear function
approximation. We used criteria of MSE in Matlab and MAE in BPnet software
to rank the performances of prediction algorithms. The adopted methodology

and all results are given in the next sections within this chapter.
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6.2.1 Prediction Performance Using LM and BR algorithm

Results of MSE on test data (30% of the dataset) for LM and BR algorithm

are depicted in Figure 37(a) and Figure 37 (b), respectively. The NN

architectures in the figures represent network number given in Table 7 and

correspond to MSE. It is obvious that the MSE for LM has the decreasing trend

when number of neurons and layers increases. In other words, the larger

number of neurons and layers has positive influence on the training process.

The best MSE result for LM algorithm is recorded for network number 23 in

Table 7, and is 0.0023. In the case of BR algorithm the similar conclusion can be

obtained. Overall, the NNs with 4 hidden layers show the best performances.

Particularly, the network number 22 has the smallest test MSE of 0.0036.
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Figure 37 : NN testing results: (a) LM algorithm, (b) BR algorithm
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Table 7 : MSE of LM & BR algorithms for NN architectures

No Algorithm LM BR
Neural Network
1 [1] 0.2026 0.1416
2 [2] 0.2500 0.1646
3 [3] 0.2500 0.2108
4 [5] 0.2500 0.0717
5 [8] 0.1707 0.0567
6 [10] 0.2475 0.0646
7 [11] 0.3227 0.2286
8 [22] 0.2446 0.1060
9 [32] 0.1282 0.1035
10 [52] 0.1137 0.0921
11 [8 4] 0.1059 0.0124
12 [10 4] 0.0104 0.0118
13 [222] 0.2172 0.3509
14 [322] 0.1011 0.0963
15 [432] 0.1281 0.1182
16 [532] 0.2416 0.0825
17 [832] 0.1199 0.0917
18 [842] 0.2478 0.0906
19 [3333] 0.0077 0.0185
20 [4333] 0.0138 0.0075
21 [5433] 0.0048 0.0062
22 [8543] 0.0161 0.0036
23 [10 8 4 3] 0.0023 0.0050
24 [10 8 5 4] 0.0114 0.0146
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The regression plot is used to validate the network performance. This
regression plots display the network outputs with respect to targets for training,
validation, and test sets. For a perfect fit, the data should fall along a 45 degree
line, where the network outputs are equal to the targets and value of R
(correlation coefficient) is equal to 1 indicates perfect correlation. The validation
and regression performance of training NN with LM algorithm and with
architecture [10 8 4 3] reported smallest. As it can be seen in Figure 38, the mean
squared error of the validation and test start to decrease after epoch 15 and at
epoch 38 the validation returns less MSE. The regression plots in Figure 39
show the results of the network outputs for the training patterns compared to

the actual targets.
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Figure 38 : Mean-square error performance for trainlm NN [10 8 4 3]
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Figure 39 : Regression of the outputs vs. targets for the network [10 8 4 3]

The regression and performance plots of training results for BR
algorithm and NN architecture [8 5 4 3] are shown in Figure 40 and Figure 41.
Based on the performance plots we can see that the networks have obtained the
best validation performance for training NN [8 5 4 3] at epochs 27. The plots
show good results with 0.96473 values of all R.
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Figure 40 : Mean-square error performance for trainbr NN [8 5 4 3]
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Figure 41 : Regression of the outputs vs. targets for the network [8 5 4 3]
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6.2.2 Prediction performance using RP and SCG NN algorithms

Figure 42 and Table 8 indicate MSE results for RP and SCG algorithms. As in
the previous case, the best results are for NNs with 4 hidden layers: for RP
algorithm the smallest MSE is 0.0151 (for NN number 22, figure 42(a)), while the
SCG has the best MSE of 0.005 (also NN 22, as shown in figure 42(b)). Likewise,
the two NNs that give good performance are 8-4, and10-4. Similarly to the
result of LM and BR algorithm, the networks under numbers 11 (8-4 NN) and
12 (10-4 NN) show smallest errors among 2 layer networks. In other words,

these NNs also show results that are promising for prediction purposes.
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Figure 42 : NN testing results: (a) RP algorithm, (b) SCG algorithm
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Table 8 : MSE of RP & SCG algorithms for NN architectures

No Algorithm RD SCG
Neural Network
1 [1] 0.1644 0.1324
2 [2] 0.1683 0.2500
3 [3] 0.2131 0.2121
4 [5] 0.0891 0.1791
5 [8] 0.1637 0.1221
6 [10] 0.0445 0.1272
7 [11] 0.2096 0.1883
8 [2 2] 0.111 0.1942
9 [32] 0.1233 0.1121
10 [52] 0.1037 0.0930
11 [8 4] 0.0258 0.0202
12 [10 4] 0.0309 0.0214
13 [222] 0.1920 0.2632
14 [322] 0.1194 0.1513
15 [432] 0.1074 0.2512
16 [532] 0.2361 0.0838
17 [832] 0.1112 0.2532
18 [842] 0.1086 0.3858
19 [3333] 0.1169 0.1148
20 [4333] 0.0191 0.0138
21 [5433] 0.0204 0.0654
22 [8543] 0.0151 0.0050
23 [10 8 4 3] 0.0232 0.0134
24 [10 8 5 4] 0.0191 0.0186
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The validation and regression performance of training NN with RP
algorithm, which gives the minimum MSE for training NN with architecture [8
5 4 3] are given in Figure 43 and Figure 44. The MSE of the best validation
performance is 0.0026096. The regression plots in Figure 44 show the results of

the networks outputs for the training patterns compared to the targets.
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Figure 43 : Mean-square error performance for trainrp ANN [8 5 4 3]
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Figure 44 : Regression of the outputs vs. targets for the network [8 5 4 3]

For the SCG, Figure 45 shows the training performance plot of the neural
network [8 5 4 3]. It can be seen that the network did not achieve the desired
Mean Square Error (MSE) goal by the end of the training process. Same as in
previous case, Figure 46 shows the regression plots of the networks outputs for

the training patterns compared to the actual targets.
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6.2.3 Prediction performance using BFG and GDX algorithms

The MSE test results for BFG and GDX algorithms are presented in

Figure 47(a) and Figure 47(b), respectively. In BFG case, the optimal network is

the one with the 4 hidden layers (NN number 24 in Table 9), while the smallest

MSE for GDX algorithm is NN with 2 hidden layers (NN number 11 in Table 9).

Unlike previous cases, the NNs with the BFG algorithm do not exhibit overall

best results with 4 hidden layers. In Figure 47(b), the NNs with 2 hidden layers

show best GDX algorithm performance. However, the MSE results presented in

this section only indicate the optimal NN outcome, since the prediction is

determined based on the largest value in the network output.
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Figure 47 : NN testing results: (a) BFG algorithm, (b) GDX algorithm
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Figures 48 and Figure 49 show the validation and regression performance of
training NN using BFG algorithm and architecture [10 8 5 4], which gave the
smallest results of MSE. In Table 9, the best validation performance is 0.02073 at
epoch 217 with all R values equal to 0.53803.
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Figure 48 : Mean-square error performance for trainbfg NN [10 8 5 4]
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Table 9 : MSE of GDX & BFG algorithms for NN architectures

No Algorithm GDX BEG
Neural Network
1 [1] 0.2500 0.200
2 [2] 0.2000 0.2500
3 [3] 0.2076 0.1839
4 [5] 0.1460 0.2500
5 [8] 0.1197 0.2500
6 [10] 0.1172 0.2037
7 [11] 0.2634 0.2462
8 [22] 0.2633 0.0979
9 [32] 0.1120 0.1315
10 [52] 0.1511 0.1154
11 [8 4] 0.0178 0.1014
12 [10 4] 0.0226 0.0297
13 [222] 0.3967 0.0917
14 [322] 0.2425 0.1906
15 [432] 0.3594 0.2212
16 [532] 0.3354 0.2208
17 [832] 0.3944 0.2002
18 [842] 0.1145 0.1360
19 [3333] 0.1135 0.1007
20 [4333] 0.0433 0.0998
21 [5433] 0.0384 0.1924
22 [8543] 0.0225 0.0276
23 [10 8 4 3] 0.0822 0.0785
24 [10 8 5 4] 0.0276 0.0089
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In Figure 50 the plot shows the mean squared error during training of the
network with GDX algorithm, starting at a large value and decreasing to a
smaller value. In other words, it shows that the learning process is correct. No
significant change in learning has occurred during the process, and the iteration
1000 gives the best performance. In Figure 51, regression number is shown. The
R-value between the outputs and targets is a measure of how well the variation
in the output is explained by the targets. In this case, total response of R is more
than 0.939, and is not significantly different from 1. Therefore, it can be

concluded that the NN performance is overall satisfying.
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Figure 50 : Mean-square error performance for traingdx NN [1 1]
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Figure 51 : Regression of the outputs vs. targets for the network [1 1]

6.2.4 Overall performance of NNs in prediction task

After the testing phase, the prediction rate was calculated for each
learning class individually. Additionally, the average rate for all algorithms and
all NN architectures is determined. Since the NN inputs are randomly
generated from a predefined base, the prediction performance over the entire
testing dataset is presented. The results obtained in Matlab environment are

shown in Table 10.

Looking at the Table 10 one can notice several important conclusions

(best results are given in bold font):
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Firstly, some results reported in Figures 37 and Figure 47 do not
correspond to the results given in Table 10. For example, the second largest
MSE for BR algorithm (Figure 37(b)) is found for network number 7
(architecture [1 1] in Table 7 ), while the corresponding prediction rate in Table
10 is 56.0606 which is fourth lowest result for that algorithm. This is because we
evaluate prediction based on the largest network output, i.e. we assume that the
NN predicted correctly if the node that gives the largest output corresponds to
the neuron with the target value 1. Nevertheless, this is not significant, since the
NNs with the smallest MSE show the best prediction rate for each learning
algorithm (Table 10).

Secondly, despite the aforementioned, in most cases obtained MSE
corresponds to the algorithm prediction rate. The evident MSE increasing or

decreasing trend reported is also found in the prediction table.

Thirdly, the results confirmed that the NN can successfully predict robot
execution failures and showed that artificial neural networks are a powerful
tool for failure prediction rates [157]. The highest prediction rate of 95.4545 was
found for the network number 24 [10 8 5 4], which is better than the results
obtained with the base-level and meta-level classifier reported in [43]. In spite of
added erroneous data, the NN BR method outperforms the Naive Bayes,
Decision Trees and Support Vector Machine based algorithms [43]. These
results evidence the applicability and the effectiveness of the NN in the case of

failure prediction related task.
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Table 10 : NN prediction rate in Matlab (in percentage)

NN Average
architecture LM BR RP SCG BFG GDX rate
(architecture)
1 42,9293 46.2121 44.4444 51.2626 19.9495 23.2323 38.005
2 27.5253 40.1515 50 37.6263 24.2424 52.7677  38.7189
3 35.6061 37.8788 16.1616 45.9596 38.1313 16.6667 31.734
5 239899 727273 71.4646 37.8788 24.4949 52.5253  47.1801
8 421717 78.5354 37.1212 56.5657 21.2121 63.1313  49.7896
10 23.7374 72.2222 83.0808 63.1313 31.5657 57.0707  55.1347
1-1 51.2626 56.0606 53.2828 53.7879 52.2727 57.5758  54.0404
2-2 57.5758 69.4444 71.2121 54.0404 73.7374 60.3535  64.3939
3-2 67.9293 76.5152 73.7374 66.9192 70.2020 87.1212  73.7374
5-2 70.7071 73.4848 72.9798 69.4444 69.4444 69.4444  70.9175
8-4 924242 929293 92.6768 93.1818 72.2222 921717  89.2677
10-4 91.9192 919192 91.4141 93.1818 91.9192 94.1919  92.4242
2-2-2 55.3030 35.8586 56.0606 55.3030 73.9899 36.1111  52.1044
3-2-2 89.8990 74.7475 69.1919 68.9394 53.7879 55.3030  68.6448
4-3-2 73.2323 71.7172 73.2323 54.7980 58.8384 37.1212  61.4899
5-3-2 56.0606 75 56.3131 77.0202 56.0606 33.8384  59.0488
8-3-2 71.7172 79.0404 70.2020 56.8182 49.2424 33.8384  60.1431
8-4-2 56.0606 77.2727 76.7677 424242 71.4646 70.2020  65.6986
3-3-3-3  89.6465 89.8990 69.1919 72.2222 67.6768 69.4444  76.3468
4-3-3-3  90.6566 921717 91.1616 91.1616 71.4646 85.6061 87.037
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5-4-3-3  94.6970 91.1616 91.6667 78.2828 53.7879 86.6162  82.702
8-5-4-3  93.6869 94.4444 92.6768 92.6768 93.4343 89.3939  92.7189
10-8-4-3 94.4444 944444 911616 91.6667 72.9798 752525  86.6582
10-8-5-4 94.1919 93.6869 921717 93.9394 89.3939
Average

rate 68.950970.3704 66.5194 58.5858 62.0156 /
(algorithm)

6.2.6 Feedforward & Elman neural network comparison results

The testing results in terms of Mean Squared Error (MSE) for Elman NN

(ELM) and feedforward NN with Bayesian Regularization algorithm in are

given in Figure 37(b). In Figure 52 and Figure 53, the Elman NN with smallest

MSE was reported for [10] architecture (is equal 0.0539), and the validation and

training plots are shown in Figure 53. The BR algorithm based NN show overall

better results than ELM. Smallest MSE was reported for [10-8-4-3] architecture

(see Table 7).
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6.3 Experimental results in BPnet software

Results of BPnet engagement are given in Figure 55 and in Figure 56. The
same network architectures listed in Table 11 are considered in this case. MAE
results for each architecture are shown in figure 55. Note that the error is similar
for most of the tested NN. The best result is obtained for the same NN
architecture as in Matlab software - MAE is given in table for 10-8-5-4 network
is 0.009961966. As for the LM case, the worst result shows NN with architecture
1-1 (Table 10). In order to validate the prediction ability, network with smallest
MAE is tested next. Figure 56 presents testing input and output values. It can be
observed that the trained NN successfully predicts the “normal” case from the

scaled input forces and torques.

In other words, the generated output vector in Figures 33 and 35 in
chapter 4 corresponds to the randomly selected sensor measurements from the
testing dataset. Generally, the BP algorithm performs well - overall, the
prediction rate for all networks is 70.8333 percent. These results indicate that the
BP, as well as other tested algorithms, can successfully be applied for robot
execution failure prediction. Furthermore, as in the previous cases, the NN
shows robustness regarding implemented erroneous values of forces and

torques in the training/testing dataset.
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Table 11: MAE of Gradient Descent Backpropagation algorithm for NN

architectures in BPnet software

No Algorithm Gradient Descent
Backpropagation
Neural Network
1 [1] 0.141225721
2 [2] 0.011362442
3 [3] 0.0099993
4 [5] 0.009999755
5 [8] 0.009999557
6 [10] 0.009999956
7 [11] 0.14359879
8 [2 2] 0.015681501
9 [32] 0.012203045
10 [52] 0.013296583
11 [8 4] 0.009999593
12 [10 4] 0.009999142
13 [222] 0.045724337
14 [322] 0.014606998
15 [432] 0.013146853
16 [532] 0.012939744
17 [832] 0.01342879
18 [842] 0.014260617
19 [3333] 0.009999993
20 [4333] 0.009972804
21 [543 3] 0.00999136
22 [8543] 0.009998468
23 [108 4 3] 0.010228907
24 [108 5 4] 0009961966
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7. Conclusions and future work

7.1 Conclusions

This PhD dissertation presents several novel approaches for predicting

irregular work of different robotic systems. All proposed intelligent methods

are based on the latest machine learning algorithms. After considering all the

facts listed throughout the thesis, the following conclusions can be drawn:

This is the first study that develops approach based on Neural
Networks (NNs) for prediction of failures and faults in robots. The
treated problem is important if we want to achieve new generation
robots working along with humans in factory plants. One can consider
a robotic system working in a structured or unstructured environment
exposed to severe conditions such as: increased working hours,
changeable working demands, possibility of collision with
known/unknown objects, and/or presence of human workers near
the robot workspace. In these cases it is crucial to ensure maximum
safety and smallest deviation from the nominal operating mode by
recognizing irregularities in robot behavior. Therefore, the prediction
of robot failures is important, since this can provide a continuous and

undisturbed work using a backup emergency control commands.

The first failure problem includes real forces and torques recorded
during execution of a specific task. These are used to train NNs in
order to predict one of four possible working cases (normal, collision,
front collision and obstruction). The erroneous data is also
implemented in the NN training set in order to fully investigate

robustness of the proposed approach.

135



Chapter 7 - Conclusions and future work

In order to fairly investigate proposed prediction approach, two
software environments, Matlab and BPnet, are utilized in the

experiments described in this dissertation.

Various different learning algorithms and architectures are employed
in order to obtain. Two types of neural networks are used:
feedforward and recurrent (Elman) NNs. In total, 7 different learning
algorithms and 24 NN architectures are implemented in order to find
optimal solution for the problem of robot execution failures
prediction. Each multilayer feedforward NN with different learning
algorithm and architecture that consists of 1, 2, 3, or 4 hidden layers is
evaluated several times, and the same NN architectures are trained
using Elman recurrent NN. Experimental results indicate that
Bayesian Regularization algorithm is the best choice for the prediction
problem with prediction rate of 95.4545 percent, despite having the
erroneous or otherwise incomplete sensor measurements invoked in
the dataset. The experimental results show that the NN outperforms
the Naive Bayes, Decision Trees and Support Vector Machine based
algorithms [43] employed for the prediction of robot execution
failures. These results prove assumed hypothesis that Soft Computing
technique (NN) can be used for increasing the reliability and success rate of

prediction unit in industrial robotic system.

Two additional failure prediction problems are treated in this
dissertation. Several experiments in real time are conducted on an
nonholonomic mobile robot Khepera II in a laboratory model of

manufacturing environment.

First real world failure problem refers to the robot obstacle detection
in indoor environment. Six infrared sensors mounted on the mobile

robot are used to obtain information of the obstacle located left and
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right from the platform. Randomly generated failed sensor data is
integrated into the training set so as to test the NN performance in this
task. The result show that in over 96 percent of all tested cases NN
recognized failed value, meaning that the obstacle location is
successfully determined after the failed information is replaced with

the expected one.

e Second real world problem refers to the failure prediction in a mobile
robot trajectory tracking problem. This problem is important if we
want to secure safe mobile robot navigation in technological
environment. Consider that mobile robot wheels command unit is not
working properly all the time, and that in certain control iterations it
gives unexplainable large/small commands for tracking the specific
trajectory. In this case, NNs can predict these irregularities, with the
aim to invoke a nominal control value in the command dataset. In this
manner, the bad wheel command is replaced with the desired
(calculated) value, and the robot motion is continued without

difficulties.

e Two independent trajectories are employed so as to objectively test the
proposed intelligent approach. The tracking of the M-shaped and
Labyrinth-type trajectories showed as a fairly easy task for the
developed prediction method. In more than 99 percent of the cases,
the network predicted the wheel command failure, which is next
replaced with the desired value in order to successfully track chosen
trajectory. The experiments show that a mobile robot can track desired
trajectories with a minimal error in every control iteration, which
evidence the robustness and the applicability of the proposed

approach.

137



Chapter 7 - Conclusions and future work

Finally, it can be concluded that the real world obstacle detection and
trajectory tracking experiments prove remain two research
hypotheses. The experiments show that it is possible to develop failure
prediction unit that enable corrections of robot behavior online, and also that
the control system based on the neural networks and the empirical (i.e.
gathered) sensor information from the environment can be employed for the
obstacle detection and trajectory tracking in a laboratory model of a

manufacturing environment.

7.2 Recommendations for future work

The developed intelligent approach for failure prediction proves

robustness and usefulness in real time control of robotic systems. Other

research studies also acknowledge presented approach; for example, in [158]

novel method use kernel based Extreme Learning Machines coupled with

particle swarm optimization in order to optimize the parameters of kernel

functions of neural networks for improving the prediction accuracy of robot

execution failures. This is therefore a research area that needs additional

investigation. Future work on improving presented approach includes two

main directions:

1. Failure execution dataset should be expanded. In other words,
using data available in [91], the robotic failures need to include
different failure situation (apart from an approaching behavior
studied in this dissertation).

2. Other Computational Intelligence techniques should be used for
the failure prediction, e.g. [124, 159]. For example, it would be
interesting to see the prediction results using swarm intelligence

optimized Support Vector Machines.
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Appendix

The Appendix presents additional results in validation and performance plots
of various neural networks with different numbers of units in hidden layers.
Likewise, the results are given for all algorithms given in Table 2.

One hidden layer

1) Performance plots for architecture [1]
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b) Bayesian Regularisation
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c) Resilient Backpropagation
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d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation
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a) Levenberg-Marquardt
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b) Bayesian Regularisation
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c) Resilient Backpropagation
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d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation
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3) 8]
a) 1 Levenberg-Marquardt
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b) Bayesian Regularisation
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c) Resilient Backpropagation
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d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation
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4) [3]

a) Levenberg-Marquardt
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b) Bayesian Regularisation
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c) Resilient Backpropagation
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d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation
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5) [8]

a) Levenberg-Marquardt
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b) Bayesian Regularisation
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c) Resilient Backpropagation

Best Valdation Perumance i 0 23159 st spoch 80

Iﬁ':— T T T T T T ———
r “akdatan
— i
- =
o
wl
. E
E
iw;_
s
.
1w
Uit
w*k i L | I | I
v] 5 L1} 15 x k1] k] & s /@ 55
55 Epoche
: Traming F=058538
2 Data !
Fit
g oA ¥=T
EDE‘;//_.‘!
b ,
‘;n.a
3 02
o
1] 02 04 06 08 1
Target Target
. Test: R=0 538864 : Al R=0 53283
2 Dala g 2 Data I
w 08 v w 08 o
T R T
—
Eﬂw Eﬂ d____‘_.d_————";_ $
a t
e & -;: o
zul za
3 o2 3 o2
0 - - [}
o 02 04 06 o8 1 o 02 o4 113 o8 1
Target Targat

179



d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation
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6) [10]

a) Levenberg-Marquardt
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b) Bayesian Regularisation
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c) Resilient Backpropagation
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d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation
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2. Two hidden layers
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b) Bayesian Regularisation
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c) Resilient Backpropagation
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d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation
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a) Levenberg-Marquardt
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b) Bayesian Regularisation
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c) Resilient Backpropagation
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d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation
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a) Levenberg-Marquardt
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b) Bayesian Regularisation
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c) Resilient Backpropagation
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d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation
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a) Levenberg-Marquardt
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b) Bayesian Regularisation
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c) Resilient Backpropagation
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d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation
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b) Bayesian Regularisation
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c) Resilient Backpropagation
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d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation
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b) Bayesian Regularisation
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c) Resilient Backpropagation
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d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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b) Bayesian Regularisation
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c) Resilient Backpropagation
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d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation
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3. Three hidden layer
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b) Bayesian Regularisation
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c) Resilient Backpropagation
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d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation
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b) Bayesian Regularisation

Bast Wadsdatae Performance 13 05 FE0E a1 epoch 51

T T T T -
111’-_— . -
el Godl
1w’
H
E
B
E
= I
B R
5
2
107
1w0* I L | 4
10 . a0 50 &
B Epmchs
Traming R=0 63222
1 - ¥ - = 1
08 os
B g
2 ?
Bos Bos
% 04 % 04
%UI %U?
] o
Target
: ' All R=080729
E ul.} E og
H 3
E‘DE g 0g&
b E
3 04 % 04
! {
& 0z go02
0 o
Targat Target

238



c) Resilient Backpropagation
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d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation
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a) Levenberg-Marquardt
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b) Bayesian Regularisation
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c) Resilient Backpropagation
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d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation
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b) Bayesian Regularisation
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c) Resilient Backpropagation
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d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation
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b) Bayesian Regularisation
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c) Resilient Backpropagation
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d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation
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b) Bayesian Regularisation
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c) Resilient Backpropagation
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d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation
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b) Bayesian Regularisation
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c) Resilient Backpropagation
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d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation
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a) Levenberg-Marquardt
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b) Bayesian Regularisation
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c) Resilient Backpropagation
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d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation
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a) Levenberg-Marquardt
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b) Bayesian Regularisation
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c) Resilient Backpropagation
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d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation
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4)[8543]

a) Levenberg-Marquardt
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b) Bayesian Regularisation
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c) Resilient Backpropagation

B Valdution Pedesancs i 0 06056 o apach 737

'ID' r T T r T
b vaddai an
S G_ — .
" ]
]
i
5
1
i
0k E
*
1t | I |
0 = m =0 Fr] =0
22 Pprchs
1
a g o
:;-' % 08
: : o
T g. 02
g £ o
a2
Target
Tast: R=0 0526
1 - 1
B os g o
e
3 o8 % 06
4 ]
Em E LT
¥ 2 ¥ o
g oz -4
a E g 0
o 02
02 04 06 08 1
Target Targat

287



d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation

Baat Vilslatae Performincs i 0 034ET 6l apach 163

1w’ T T T T
'L ——
el J
T 1
E
} iy -
5 [ ]
3
'L .
) O SO —
1tk L I 1 I I .
a F- 1] 40 (5] L] 00 [F.1] & L] ]
194 Epachs
. Traning. R=0 1679 Walidation: R=086793
o Dala ‘ @ Data

E

i

=T

=
=

=
2]

Qutput~= 1E°T arged +0 28
= =
Y] -
X
Owput==l) B3*T arget <0 045
o &

=]
[T
",

=
.
%,
*,

Target Target
Test R=0190105 Al R=0.45126
1 2 =] ;':'I-u
3 o .
= [i1:] b 15
%o g !
5 b os
¥ T o
En? ‘%usr’///
0 A
02 04 06 08 1 K] ] 1 2
Target Target

290



5)[10 84 3]

a) Levenberg-Marquardt
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b) Bayesian Regularisation
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c) Resilient Backpropagation
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d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation
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a) Levenberg-Marquardt
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¢) Resilient Backpropagation
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d) Scaled Conjugate Gradient
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e) Variable Learning Rate Backpropagation
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f) BFGS quasi-Newton Backpropagation
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Mpunor 1.

U3jaBa o ayTopCcTBY

MoTnucanu-a Ali Karkara A. DIRYAG
6poj nHaekca D42/09
UsjaBreyjem

fa je AOKTOpCKa AncepTalmja noj HacnosoMm

MACHINE LEARNING IN INTELLIGENT ROBOTIC SYSTEM

(MALLIMHCKO YYEHE MHTENWUIEHTHOI POBOTCKOI CUCTEMA)

s peaynTaT CONCTBEHOr UCTPaXWBAaYKOr paaa,

e [a npeanoxeHa AncepTaumja y LenuHn HU Y Aenosuma Huje Buna npesnoxexa
3a pobujake GUno Koje Aunnome npema CTYOMjCKMM nporpamuma Apyrux
BUCOKOLLIKOSICKMX YCTaHoBa,

s [acy pesynTaTtu KOPeKTHO HaBedeHW 1

e [a HMACaM KpluMo/na ayTopcka NpaBa U KOPUCTUO MHTENEKTyanHy CBOjUHY
Apyrvax nuua.

MoTtnuc pokTopaHaa

Y Beorpagy, 04.06.2015.
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Mpunor 2.

M3jaBa 0 NICTOBETHOCTM LUTaMMNaHe u
eNeKTPOHCKe Bep3uje AOKTOpPCKor
paga

Wme n npesume aytopa Ali Karkara A. DIRYAG
Bpoj nHaexca D42/09
Cryavjcku nporpam [okTopcke cTyavje

Hacnos papa MACHINE LEARNING IN INTELLIGENT ROBOTIC SYSTEM

(MALLIMHCKO YYEHE UMHTENUTEHTHOI POEOTCKOI CUCTEMA)
MeHTOp Mpod. ap 3opaH Murckosuh

MoTnucanwu/a Ali Karkara A. DIRYAG

W3jaerbyjem ga je witamnada Bep3vja MOr AOKTOPCKOr paja MCTOBETHa eneKTPOHCKO)
Bepauju Kkojy cam npegao/na 3a ofjaereuBarke Ha noprany [JurutanHor
penosuTtopujyma YHuBepsutera y Beorpaay.

[o3sorbasam ga ce objaBe Moju nNu4HM nogaun BesaHu 3a aobujarbe akanemckor
3Baka AOKTOpa Hayka, Kao LWTOo cy UMe U npe3nme, roauHa u mecto poferwa n gatym
onbpaHe paga.

OBM nWuYHM nopjauu mory ce o6jaBuTu Ha MpexHWM CcTpaHuuama [aururanHe
BubnuoTteke, y eneKTPOHCKOM KaTanory v y nybnvkauujama YHueepsuteTa y Beorpaay.

MoTnuc gokTopaHaa

Y Beorpagy, 04.06.2015.
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Mpunor 3.

M3jaBa o kopuwheky

Osnawhyjem YHueepauteTcky 6ubnuoteky ,CeeTozap Mapkosuh" aa y [Aurutantu
penoautopujym YHueepauTeTa y Beorpagy yHece mojy AOKTOPCKY AWcepTauujy nof
HaCcnoBOM:

MACHINE LEARNING IN INTELLIGENT ROBOTIC SYSTEM
(MALLMHCKO YYEHE MHTENWUITEHTHOI POEOTCKOI CUCTEMA)

Koja je Moje ayTopcko aeno.

[ucepTaumjy ca CBUM NpunosvMmMa npeaaoc/na caM y enekTpoHCKoM hopMaTy NorogHoM
3a TPajHO apX1BUpaHe.

Mojy AOKTOpCKYy AucepTauujy noxpaweHy y [JUrutanHu penos3uTtopujyMm YHusepauTeTa
y Beorpany mory ga KopucTe CBW KOju NOLWTYjy oapeande caapxaHe y ogabpaHom tuny
nuueHue KpeatueHe 3ajeaHuue (Creative Commons) 3a kojy cam ce oanyuuno/na.

1. AyTopcTBO
2. AyTOpCTBO - HeKoMepuujanHo
@Awopm‘eo — HekoMepuwjanHo — Ges npepaae
4. AyTOpCTBO — HEKOMEpLMjanHo — AEnNUTU NoA UCTUM YCnoBUMa
5. AytopcTeo — Ge3 npepage
6. AyTOpPCTBO — [€NMUTH NoA UCTUM YCIoBMMa

(Monumo pa 3a0KpyXuTe CaMo jeAHy OA LecT NoHyfeHux NUueHUW, KpaTak onuc
NUUEHUM AaT je Ha nonefuHu nucta).

MoTnuc pokTropaHaa

Y Beorpaay, 04.06.2015. =
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1. AyTopctBo - [lo3BorbaBate yMHOXaBake, AWCTpUOYLM)Y W jaBHO caornTtaBare
Aena, W npepage, ako ce HasBefe Wme ayTopa Ha HauuH oapefleH oa cTpaxe ayTopa
Unu fasaoua nuLeHLe, Y4ak U y komepumjanie cepxe. OBo je HajcnobogHuja of cBMX
nuUeHUw.

2. AyTopcTBO — HekomepuumjanHo. [lo3sorbaBaTe yMHOXaBaHe, JUCTPUOYLM)Y 1 jaBHO
caonwitasarwe Aena, v Npepaje, ako ce Hagege UMe ayTopa Ha HavuH oapefeH oa
cTpaHe ayTopa wnv gaBaoua nuueHue. OBa nuueHUa He [03BOMbaBa KOMepuwjanHy
ynoTpeby aena.

3. AyTopcTBO - HekomepuujanHo — Ges npepage. [o3sorbaeare yMHOXaBarse,
AncTpuOyUM)y W jaBHO caonwTaeakwe Jena, Oe3 npomeHa, npeobnukoBara WU
ynoTpebe gena y CBOM Jeny, ako Ce HaBeae WMe ayTopa Ha HauuH ogpefeH on
cTpaHe ayTopa wnu Aasaoua nuueHue. OBa nuueHUa He [03BCIbaBa KoMepuumjanuy
ynotpeby nena. Y ogHocy Ha cBe ocTane NuueHUe, 0BOM SIMLUEHLUOM ce orpaHuyasa
Hajsehu 0bum npasa kopuwheka gena.

4. AyTOpPCTBO - HEKOMepuMjanHO — AEenuTH nog WCTUM ycnoeuma. [osporbasare
yMHOXaBare, AucTpubyumjy 1 jaBHo caonwTasaie Aena, W npepage, ako ce Hasede
UMe ayTopa Ha HauuH ogpefleH o cTpaHe ayTopa WNv AaBaocua NULEHUE U ako ce
npepaga Aawmctpubywpa nop WCTOM MNW CHMYHOM nuueHuoMm. OBa nuueHua He
[03BOrbaBa KoMepuwjanty ynotpeby fgena v npepaaa.

5. AytopctBo — Ge3 npepage. [JosBorbaeate ymHOXaBake, OucTpubyuujy M jaBHo
caonwTasake fena, 6e3 npomeHa, npecbnukoBawa unv ynotpebe agenay cBom aeny,
ako ce HaeeAe WMe ayTtopa Ha HauuH ogpefeH op cTpaHe ayTopa wnu Jdasaoua
nuueHue. Oea nuueHUa Ao3sorkaea KoMepuujaniy ynotpeby gena.

6. AyTOopcTBO - [OEnUTW NOA WCTWM  ycnoBuma. [lo3BorbaeaTe yMHOXaBakse,
ancTpubyuujy 1 jaBHO caonwiTasake Aena, U npepaje, ako ce Hasede uMe ayTopa Ha
HauumH oppefleH of cTpaWe ayTopa unu fasaoua NUUEHUE W ako ce npepaga
auctpubyupa nog MCTOM WMAW cnuMdHoMm nuueHuom. OBa nuueHua Ao3Borbaea
KomepumjanHy ynotpeby pgena W npepaga. CnuuHa je cogTBEpPCKMM nuueHuama,
0AHOCHO NWLEHUaMa OTBOPEHOr Koga.
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