
 

 

UNIVERSITY OF NOVI SAD 

FACULTY OF TECHNICAL SCIENCES IN 
NOVI SAD  

 

 

 

Marija Milojević Jevrić 

 

 

 

THE APPLICATION OF META-
HEURISTICS TO OPTIMISE LOAD 

DISTRIBUTION IN MACHINE ELEMENTS 
AND ASSEMBLIES 

 

DOCTORAL THESIS 

 

 

 

 

 

 

 

 
 
 
 

Novi Sad, 2015 





 

 

УНИВЕРЗИТЕТ У НОВОМ САДУ  ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА  

21000 НОВИ САД, Трг Доситеја Обрадовића 6 

КЉУЧНА ДОКУМЕНТАЦИЈСКА ИНФОРМАЦИЈА 

 

 

Редни број, РБР:  

Идентификациони број, ИБР:  

Тип документације, ТД: Монографска документација 

Тип записа, ТЗ: Текстуални штампани материјал 

Врста рада, ВР: Докторска дисертација 

Аутор, АУ: Марија Милојевић Јеврић 

Ментор, МН: Др Татјана Давидовић, Виши научни сарадник 

Наслов рада, НР: Примена метахеуристика на оптимизацију расподеле оптерећења код 
машинских елемената и склопова 

Језик публикације, ЈП: Енглески 

Језик извода, ЈИ: Срп. / Енг. 

Земља публиковања, ЗП: Србија 

Уже географско подручје, УГП: Војводина 

Година, ГО: 2015 

Издавач, ИЗ: ауторски репринт 

Место и адреса, МА: Трг Доситеја Обрадовића 6, Нови Сад 

Физички опис рада, ФО: 
(поглавља/страна/ цитата/табела/слика/графика/прилога) 

(8 / xxviii+135 / 148 / 23 / 33 / 0 / 0) 

Научна област, НО: Математика, Информатика 

Научна дисциплина, НД: Оптимизација 

Предметна одредница/Кључне речи, ПО: Континуална оптимизација; Метахеуристике, Расподела оптерећења , 
Радни век, Лежаји, Зупчаници 

УДК  

Чува се, ЧУ: Библиотека факултета техничких наука у Новом Саду 

Важна напомена, ВН:  

Извод, ИЗ: Докторска дисертација се бави темама везаним за хеуристичке, 
метахеуристичке и предикционе методе. Извршена је метахеуристичка 
оптимизација проблема трансверзалног фактора расподеле 
оптерећења код цилиндричног зупчастог пара. Вишекритеријумски 
проблем геометрије планетарног преносника је решаван применом 
генетских алгоритама. Поређење неколико метахеуристичких метода је 
дато на решавању оптимизационог проблема радног века и динамичке 
носивости код котрљајних кугличних лежаја. Бајесове мреже, као 
предикциона метода, су уграђене у софтвер за подршку одлучивању у 
комплексним машинским постројењима. 

 
Датум прихватања теме, ДП: 17. 04. 2014. 

Датум одбране, ДО:  

Чланови комисије, КО: Председник: др Наташа Сладоје Матић, ванредни професор 

 Члан: др Љиљана Теофанов, ванредни професор 

 Члан: др Синиша Кузмановић, редовни професор Потпис ментора 

 Члан: др Драган Урошевић, научни саветник  

 Члан др Милан Дражић, ванредни професор 

 Члан, ментор: др Татјана Давидовић, виши научни сарадник 

Образац Q2.НА.06-05- Издање 1 



 

 

UNIVERSITY OF NOVI SAD  FACULTY OF TECHNICAL SCIENCES  

21000 NOVI SAD, Trg Dositeja Obradovića 6  

KEY WORDS DOCUMENTATION 

 

 

Accession number, ANO:  

Identification number, INO:  

Document type, DT: Monograph documentation 

Type of record, TR: Textual printed material 

Contents code, CC: Ph. D. thesis 

Author, AU: Marija Milojević Jevrić 

Mentor, MN: Tatjana Davidović, Ph.D., Researh Assosiate 

Title, TI: The application of meta-heuristics to optimise load distribution in machine 
elements and assemblies 

Language of text, LT: English 

Language of abstract, LA: eng. / srp.. 

Country of publication, CP: The Republic of Serbia 

Locality of publication, LP: A. P. Vojvodina 

Publication year, PY: 2015 

Publisher, PB: Author’s reprint 

Publication place, PP: Trg Dositeja Obradovića 6, Novi Sad 

Physical description, PD: 
(chapters/pages/ref./tables/pictures/graphs/appendixes) 

(8 / xxviii+135 / 148 / 23 / 33 / 0 / 0) 

Scientific field, SF: Mathematics; Computer Science 

Scientific discipline, SD: Optimisation 

Subject/Key words, S/KW: Continual optimisation; Meta-heuristic; Load distribution; Working life; 
Bearings; Gears; 

UC  

Holding data, HD: Library of the Faculty of Technical Sciences in Novi Sad 

Note, N:  

Abstract, AB: In this Phd thesis, heuristic, meta-heuristic and predictive methods are 
considered. Meta-heuristics optimisation of the transverse load distribution 
factor of helical and spur gears is conducted. The multi-objective optimisation 
problem of the planetary gear train is done using Genetic Algorithm method. 
A comparative study of several meta-heuristic methods is given for solving 
the problem of dynamic load capacity and working life at radial ball bearings. 
Bayesian network, as a predictive method, is implemented in the software to 
support the decision making in complex mechanical plants.  

 
Accepted by the Scientific Board on, ASB: 17. 04. 2014. 

Defended on, DE:  

Defended Board, DB: President: Nataša Sladoje Matić, Ph.D., Associate Professor 

 Member: Ljiljana Teofanov, Ph.D., Associate Professor 

 Member: Siniša Kuzmanović, Ph.D., Full Professor Menthor's sign 

 Member: Dragan Urošević, Ph.D., Research Professor  

 Member Milan Dražić, Ph.D., Associate Professor 

 Member, Mentor: 
Tatjana Davidović, Ph.D., Research Associate 
Professor 

Obrazac Q2.НА.06-05- Izdanje 1 



Acknowledgments

First and foremost, I would like to express my gratitude and great appreciation
to my supervisor, Dr. Tatjana Davidović, research associate professor, for the
cooperation, patience, methodical approach and tactfulness, as well as for her
enormous technical help and support which made me persevere in my scientific
research. Dr Davidović’s flexibility, genuine caring and concern, and faith in
me during the dissertation process enabled me to attend to life while also
earning my PhD. She has been motivating, encouraging, and enlightening.
Her guidance helped me in all the time of research and writing of this thesis.
I could not have imagined having a better supervisor for my PhD study. I
will forever be thankful to my supervisor and she remains my best role model
for a scientist and supervisor.
I also express my appreciation to the extinguished members of the committee:
Prof. Dr. Nataša Sladoje, the committee president
Prof. Dr. Ljiljana Teofanov
Prof. Dr. Siniša Kuzmanović
Prof. Dr. Milan Dražić and
Prof. Dr. Dragan Urošević,
for accepting to be part of the team and invest time in reading of my thesis.
I would like to express them my gratitude for all their very useful comments
and reviews. I feel honored to have my work examined by them and I would
like to thank them for spending a day as opponents in my dissertation defence.

Special appreciation to professor Milan Dražić for his exhaustive and useful
advice and guidance, and also to my supervisor Dr. Davidović for her patience
and professional conduct through all the editing work.

I would like to thank to professor Siniša Kuzmanović, for his expertise
and meticulousness, to professor Nataša Sladoje Matić for her great ideas
and for encouraging me in highlighting my results. My gratitude also goes
to professor Ljiljana Teofanov for her methodicalness and precision and to
professor Dragan Urošević for his great expert comments and emphasising.
Thank you all for helping me improving my PhD thesis.

I owe my gratitude to all the members of staff, all the professors at MI
SASA for their support and trust. I am grateful to you for making me feel a
part of your team.

I appreciate all the financial, technical and professional help and support
received from my Home institution, Mathematical Institute of SASA (Serbian
Academy of Science and Arts), III04406 project and the manager Dr Zoran
Ognjanović.

Exeptional appreciation to Dr Silvia Ghilezan, for all the help and support
and cofidence invested in me during my doctoral studies.



I am especially grateful to my parents, Novak and Dragana Milojević,
and to the extended family members for their immense love and constant
encouragement. In their honour, from the bottom of my heart, I dedicate this
doctoral dissertation.

And finally, my deep gratitude goes to people who didn’t want to be named,
but without whose support this thesis would have not been possible, they know
who they are!

Novi Sad, 2015.



REZIME vii

R E Z I M E

Analiza dostupne literature u vezi sa projektovanjem mašinskih elemenata i
sklopova ukazala je na pojavu mnogih optimizacionih problema, koji su najčešće kon-
tinualnog tipa. Poznati optimizacioni problemi u mašinstvu su optimizacija u pro-
jektovanju kotrljajnih ležaja, optimizacija rotorskog sistema, optimizacija raspodele
opterećenja, optimizacija menjača, optimizacija geometrije vratila, optimizacija di-
namičke nosivosti i mnogi, mnogi drugi.

Da bi rešili ove probleme istraživači su primenjivali metodu konačnih elemenata,
razne algebarske transformacije, Bajesove i veštačke neuronske mreže, optimizaciju
rojem čestica, genetske i neke druge hibridne evolutivne algoritme. Modeli koji
se javljaju u dostupnoj litaraturi uglavnom uzimaju u obzir jednu grupu uticajnih
parametara na raspodelu opterećenja, dok svim ostalim parametrima dodele fiksne
vrednosti radi pojednostavljenja. Izbor parametara koji će biti fiksirani moguće je
izvršiti na razne načine pri čemu je bitno da se time ne gubi na opštosti modela.

Na primer, metode za proračun cilindričnih zupčanika sa pravim ili kosim zupcima
za svrhe preliminarnog dizajna ili za standardizaciju se uglavnom svode na korišćenje
linearne teorije elastičnosti (Navijeova jednačina) ili korišćenje Hercovih kontaktnih
modela. Pored toga, kontaktni pritisak se, prilikom korišćenja metode konačnih
elemenata, često izjednačava sa srednjim Hercovim pritiskom. Korišćenjem takvih
i sličnih aproksimacija dobijaju se modeli čija simulacija može malo da odstupa od
realnog stanja. Potrebno je simulirati raspodelu opterećenja u što realnijem obliku
sa svim uticajnim parametrima što može biti vremenski i/ili memorijski zahtevno.
Zbog toga su se aproksimativne metode, kao veštačke neuronske mreže ili genetski
algoritmi, pokazale prikladnijima od klasičnih algebarskih metoda. Aproksimativne
metode omogućavaju dobijanje rezultata zadovoljavajuće tačnosti za znatno kraće
vreme rada.

U ovom radu su opisane neke optimizacione metode koje su primenjivane u reša-
vanju raznih teških optimizacionih problema kod mašinskih elemenata i sklopova.
Pre svega su prikazane egzaktne optimizacione metode, posebno one zasnovane na
Njutnovom algoritmu i njegovim modifikacijama. Aproksimativne metode nalaze
rešenje koje je blizu tačnom rešenju, dok se simulacione metode koriste da bi se
izvršila statička i dinamička analiza različitih tipova objekata. Prediktivne metode
kao ulaz koriste empirijske podatke u poznatim uslovima rada sistema, a na izlazu
daju predikciju ponašanja sistema za nepoznate uslove rada. U tu svrhu, u ovom
istraživanju su korišćene Bajesove mreže. Heurističke metode su efikasne zato što
koriste neka a priori znanja o problemu koji se rešava i na taj način generišu prili-
čno kvalitetna rešenja. Iz tog razloga se kod metaheuristika koriste za generisanje
početnih rešenja. Metaheurističke metode su veoma efikasne u traženju rešenja
optimizacionih problema koje je blizu optimalnom za znatno kraće vreme rada i uz
manju upotrebu procesorke memorije u odnosu na egzaktne metode. Postoje razne
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vrste metaheurističkih metoda, a među najviše korišćenim u mašinstvu su genetski
algoritmi kao i hibridi zasnovani na genetskim algoritmima. Genetski algoritmi su
zasnovani na populaciji rešenja, koja pokušava da pređe iz jedne generacije slučajno
generisanih dopustivih rešenja u drugu generaciju primenom genetskih operatora.
Genetski operatori predstavljaju mehanizme pretraživanja u cilju pronalaženja op-
timalnog hromozoma u jednom regionu. Hibridni genetski algoritmi uključuju i
neke dodatne optimizacione metode da bi se efikasnije dobio očekivani rezultat. Za
poređenje rezultata dobijenih genetskim algoritmima, u ovom istraživanju su ko-
rišćene heurističke metode lokalnog pretraživanja patern search i active set u multi-
start okruženju.

Uopšteno govoreći, doprinosi u ovom doktorskom radu se sastoje u primeni op-
timizacionih i predikcionih metoda na rešavanje problema izabranih mašinskih ele-
menata i sklopova. Samim tim, doprinosi pripadaju dvema oblastima istraživanja,
matematika i mašinstvo, što daje disertaciji multidisciplinarni karakter. Doprinosi
u oblasti matematike, pre svega, uključuju razvoj efikasnih matematičkih modela
razmatranih mašinskih sistema. Tako razvijeni modeli omogućuju jednostavnu pri-
menu metoda optimizacije kao i alata veštačke inteligencije na rešavanje odgovara-
jućih problema. Razvijeni modeli su omogućili da se, za pojedine mašinske elemente
i sklopove, identifikuju parametri koji imaju presudan uticaj na povećanje njihove
efikasnosti. Softverska implementacija predloženih metoda predstavlja ključne ele-
mente u razvoju sistema za podršku odlučivanju koji u poslednje vreme postaje
nezamenljiv alat inženjerima u procesu projektovanja. Doprinos u mašinstvu je
primena ove metodologije na konkretne primere problema raspodele opterećenja
kod zupčanika i radnog veka kod ležaja. Postojeći rezultati iz novije literature su
poboljšani primenom ove metodologije i pružaju preporuke za buduće projektovanje
efikasnijih mašinskih elemenata i sklopova. U nastavku su ukratko opisani primeri
razmatrani u ovoj disertaciji i ukazano je na publikacije autora u kojima su objav-
ljeni glavni rezultati.

Jedan od primera razmatranih u ovom radu je optimizacija raspodele opterećenja
spregnutog cilindričnog zupčastog para. Istraživanje je bazirano na ISO standardima
[ISO 6336-1], [ISO 6336-2], [ISO 6336-3], [ISO 1328], [ISO 53], kao i na postojećim
metodama optimizacije [Sánchez 2008], [Schneider 2006], [Szabó 2005]. Korišćene
su heurističke, metaheurističke metode uglavnom bazirane na genetskim algoritmima
kao i hibridi.

Razmatrani su matematički modeli spregnutih cilindričnih zupčastih parova sa
pravim i kosim zupcima utvrđeni u skladu sa ISO stadardima. Oni zavise od nekoliko
desetina geometrijsko-konstrukcionih parametara. Izbor najuticajnih predstavlja
značajnu istraživačku temu u kojoj metaheuristike mogu mnogo da pomognu. Meta-
heurističke metode je moguće primeniti na rešavanje optimizacionog problema kada
imamo egzaktan matematički model, predstavljen jednačinama ili sistemima jed-
načina.

Doprinos u mašinstvu uključuje korišćenje razvijenog hibridnog algoritma za
rešavanje optimizacionog problema transverzalnog parametra raspodele opterećenja
kod cilindičnih zupčastih prenosnika. Hibridizacija je ostvarena obogaćivanjem
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genetskog algoritma funkcijom lokalnog pretraživanja. Pretpostavljen je idealni
slučaj u kome je raspodela opterećenja tokom vremena ravnomerna kako bi se došlo
do zaključka koji su to najuticajniji parametri. Korišćenjem ove metode, izveden
je zaključak da ugao nagiba zupca kao i koeficijenti pomeranja profila alata na-
jviše utiču na promenu vrednosti paramentra raspodele opterećenja. U okviru sim-
ulacije rada matematičkog modela opterećenja spregnutog cilindričnog zupčastog
para, menjane su vrednosti uticajnih parametara, da bi se izvela odstupanja vred-
nosti parametra raspodele opterećenja od pretpostavljenih idealnih vrednosti.

U procesu evaluacije je pokazano da je metoda, predložena u ovom radu, efikas-
nija od metoda koje su uzete za poređenje prema unapred zadatim kriterijumima.
Ovo pripada doprinosu u mašinskom inženjerstvu. Konačni rezultat predložene
metode je povećanje kvaliteta raspodele opterećenja spregnutih cilindričnih zupčastih
parova.
Rezultati u ovoj tezi su poboljšanja rezultata dobijenih u radovima [Sánchez 2013],
[Pedrero 1996], [Pedrero 2011], [Sánchez 2013], [Simon 1988], [Zhang 2010],
[Zhang 1999]. Poboljšanja u odnosu na prethodno uspostavljene rezultate se sastoje
u sledećem:

• Manje pojednostavljenja nego u modelima [Pedrero 2011], [Pedrero 2010],
[Sánchez 2013].

• Raspodela optrećenja je optimizovana korišćenjem genetskih algoritama, za
razliku od metoda korišćenih u literaturi. Uticajni parametri su optimizovani
tako da je dobijena raspodela opterećenja je približnija ravnomernoj nego u
radovima [Simon 1988], [Zhang 2010], [Zhang 1999], što dovodi do njihovog
poboljšanja.

Ova poboljšanja pripadaju doprinosima u mašinskom inženjerstvu. Razvijena je
MATLAB biblioteka za proračun transverzalnog faktora raspodele opterećenja kod
cilindričnih zupčanika koja je javno dostupna a predložena u radu [Milojević 2013].
Dobijeni rezultati su opisani u [Milojević 2013].

Drugi primer primene genetskih algoritama, razmatran u okviru ovog istraži-
vanja, je rešavanje višekriterijumskog nelinearnog optimizacionog problema plane-
tarnih prenosnika. Pri optimizaciji geometrije planetarnog prenosnika, jako je važno
uzeti u obzir ograničenja u obliku osnog rastojanja između centralnog zupčanika i
planetarnog zupčanika u cilju dobijanja što većeg stepena iskorišćenja. U toku simu-
lacije rada predloženog modela, uzete su u obzir promene vrednosti nekih uticajnih
parametara u odnosu na preporučene u fazi projektovanja. Promenom parametara
potvrđuje se osetljivost stepena iskorišćenja što je i prikazano na odgovarajućem
grafiku zavisnosti (Pareto skup tačaka). Rezultati mogu biti vrlo korisni inženjerima
koji se bave projektovanjem planetarnih prenosnika sa raznim prenosnim odnosima.
Dobijeni rezultati pripadaju doprinosima u mašinskom inženjerstvu i oni su publiko-
vani u [Rosić 2011a, Rosić 2011b] i jasno ukazuju na važnost formulisanja problema
u obliku višekriterijumske optimizacije.
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Genetski algoritmi su veoma pogodna tehnika u situacijama kada je potrebno
rešiti problem kontinualne optimizacije. Međutim, uvek je dobro imati i uporedne
rezultate dobijene nekim drugim metaheurističkim metodama. Kako su, za prob-
lem optimizacije dinamičke nosivosti kod kugličnih ležaja najčešće primenjivani
genetski algoritmi, u ovom istraživanju je urađena komparacija rezultata dobi-
jenih genetskih algoritmom i rezultata dobijenih drugim metodama. U tom smislu,
treći primer razmatran u ovoj tezi je razvijanje nove metode za optimizaciju di-
namičke nosivosti i radnog veka kod kotrljajnih kugličnih ležaja u funkciji 10 ra-
zličitih parametara, korišćenjem tri metaheurističke metode. Razvijena metoda
pripada doprinosu u mašinskom inženjerstvu. U tu svrhu, za rešavanje višekri-
terijumskog optimizacionog problema dinamičke nosivosti i radnog veka kugličnog
ležaja, pored genetskih algoritama su korišćene još dve metaheurističke metode
(patern search i active set). Dobijeni rezultati su pokazali da patern search i ac-
tive set postižu bolje rezultate od genetskog algoritma i to za kraće vreme izvrša-
vanja što je dalo smisao i opravdalo upotrebu novih metoda. Optimizacija pri-
menom patern search i active set daje veći dinamički kapacitet i duži radni vek za
isti matematički model i to za kraće vreme sopstvenog izršavanja, i uz korišćenje
manje memorijskog prostora. U dosadašnjim istraživanjima patern search i ac-
tive set nisu primenjivani na posmatrani problem, što predstavlja još jedan do-
prinos ove doktorske disertacije u matematici. Na osnovu dobijenih rezultata, za-
ključeno je da povećanje broja kuglica i pogodna promena unutrašnje geometrije
ležaja dovodi do blagog povećanja dinamičkog kapaciteta i radnog veka ležaja u
odnosu na standardne kataloške vrednosti. Rad [Milojević 2014] sadrži kratak opis
dobijenih rezultata i predstavlja doprinos u mašinskom inženjerstvu. Dobijeni rezul-
tati u ovom istraživanju predstavljaju poboljšanja u odnosu na rezultate prikazane u
sledećim radovima [Chakraborty 2003], [Costin 2010], [Gupta 2007], [Mendi 2010a],
[Rao 2007], [Waghole 2014], [Shigley 1989].

U slučajevima kada matematički model nije poznat ili je suviše komplikovan da
bi se mogao predstaviti korišćenjem sistema jednačina, mogu se primeniti neke druge
tehnike kao što su Bajesove ili Neuralne mreže. Kao ilustracija, Bajesove mreže su
primenjene na dva mašinska sistema u cilju prevencije preopterećenja i potencijalnih
otkaza [Milojević 2012], [Glišović 2013].

U prvom primeru, Bajesove mreže su primenjene na procenu pouzdanosti mašin-
skog postrojenja za farbanje metalnih poluproizvoda. Predstavljena je funkcional-
nost mašinskog postrojenja i razvijena je metoda za predikciju kvaliteta proizvoda
na kraju procesa ukoliko dođe do otkaza nekog od podsistema. Ispitano je neko-
liko različitih scenarija: verovatnoća otkaza nekog podsistema ako je poznato stanje
kvaliteta proizvoda, verovatnoća stanja kvaliteta proizvoda ukoliko je došlo do otkaza
jednog podsistema ili nekoliko podsistema istovremeno. Urađena je komparativna
analiza između iskustvenih (istorijskih) verovatnoća i verovatnoća dobijenih ko-
rišćenjem Bajesovih mreža. Dobijeni rezultati (predstavljeni i u [Milojević 2012]),
koji su doprinos u mašinskom inženjerstvu, pokazuju da se te dve verovatnoće među-
sobno razlikuju za manje od 3% što potrvrđuje da Bajesove mreže dobro modeliraju
realno stanje sistema. Mera kvaliteta predikcije Bajesovim mrežama se ogleda u ra-
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zlici između istorijskih verovatnoća i verovatnoća dobijenih modelovanjem. Ukoliko
je ta razlika manja od 3%, kao što je slučaj u radu [Milojević 2012], smatra se da je
predikcija veoma zadovoljavajuća [Darwiche 2009].

Drugi primer primene Bajesovih mreža odnosi se na mašinsko postrojenje za fil-
traciju transformatorskog ulja. Razvoj Bajesove mreže je uključio tri koraka: iden-
tifikaciju važnih promenljivih zajedno sa njihovim sopstvenim verovatnoćama; veze
između promenljivih i njihove prikaze u grafičkoj strukturi; procenu pouzdanosti
rezultujućih verovatnoća dobijenih korišćenjem Bajesovih mreža. Rezultujuća mreža
je ugrađena u softver za podršku odlučivanju tokom proizvodnih procesa u situaci-
jama kada postoji nedostatak informacija o stanju sistema i/ili proizvoda što je
opisano u radu [Glišović 2013]. Ovaj rezultat je praktičan doprinos u mašinskom
inženjerstvu.

U modernim poslovnim okruženjima kada su investitori izloženi čestim i stalnim
promenama, teorije pouzdanosti i održavanja dobijaju značajnu ulogu u upravljanju
poslovnim procesima. Bajesovi modeli mogu efikasno da se primene na probleme
predikcije i prevencije i na taj način utiču na smanjenje troškova održavanja. Studije
sprovedene u [Milojević 2012], [Glišović 2013] pokazuju visoku pouzdanost Bajeso-
vih modela kroz simulacione eksperimente.

Razmatrani primeri primene metaheurističkih i predikcionih metoda na nekoliko
reprezentativnih optimizacionih problema u mašinstvu su potvrdili njihovu efikas-
nost. Samim tim, otvorena je mogućnost primene tih i drugih metoda na slične
probleme, tj. predložena je nova metodologija za rešavanje teških optimizacionih
problema u mašinstvu.

U mašinstvu postoji niz problema koji zahtevaju primenu predikcije ili opti-
mizacije velikog broja konstrukcionih parametara u cilju omogućavanja donošenja
temeljne odluke. Višekriterijumska optimizacija je takođe često potrebna u mašin-
stvu usled pojave suprotstavljenih kriterijuma cene koštanja materijala i kvaliteta
materijala, ili veličine mašinskog dela i njegove dinamičke izdržljivosti itd. Ova dok-
torska teza se upravo bavi integracijom matematičkih modela pojedinih mašinskih
elemenata i metoda veštačke inteligencije što otvara vrata za buduća istraživanja
u ovoj sferi. Proračuni pri konstrukciji mašinskih elemenata i sklopova u skladu
sa ISO standardima zahtevaju dosta vremena čak i u slučaju kada su svi podaci
unapred poznati. Ukoliko je potrebno vršiti dalja istraživanja u cilju poboljšanja
rada mašinskih elemenata, klasični proračuni nisu efikasni. Radovi [Milojević 2013],
[Rosić 2011a] i [Rosić 2011b] se bave modelovanjem funkcionalnosti mašinskog sklopa
matematičkim modelom na koji se zatim primenjuje genetski algoritam. Cilj op-
timizacije je poboljšanje konstukcionih parametara radi ostvarivanja ravnomerne
raspodele opterećenja, odnosno visokog stepena iskorišćenja. U svakom slučaju, ova
doktorska disertacija predstavlja sintezu matematike, mašinstva i kontrole kvaliteta
industrijskog proizvoda. U ovoj disertaciji, naglasak je bilo na kvalitetu prozivoda
(bez obzira na povećanje cene). Međutim, isti principi važe i u situacijama kada
je primarna minimalna cena koštanja proizvoda, ali zahtevaju modifikacije matem-
atičkih modela u skladu sa tim zahtevima. U radu [Milojević 2014], predstavljena
je optimizacija dinamičke nosivosti kugličnih kotrljajnih ležajeva primenom tri ra-
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zličite metaheurističke metode. Postignuti rezultati ovog istraživanja su doveli do
poboljšanja od čak 30.3% u odnosu na dosadašnji najbolji poznat rezultat u litera-
turi, što opravdava dalja istraživanja primene metaheurističkih metoda u mašinstvu.
Upotreba predikcije u mašinskoj industriji je u današnje vreme sve više potrebna
radi donošenja brzih i ispravnih odluka, kao i sprečavanja mogućeg gubljenja novca.
Radovi [Milojević 2012] i [Glišović 2013] se bave povezivanjem predikcionih metoda
sa postojećim mašinskim postrojenjima u fabrikama. Pristup zastupljen u nave-
denim radovima se pojavljuje po prvi put u literaturi i pravi konekciju između
iskustvenih podataka iz mašinskog fabričkog postrojenja i predikcione mreže. Kako
su dobijeni predikcioni rezultati izuzetno precizni na testiranom skupu podataka,
očekuje se da oni daju adekvatne odgovore i u nepoznatim okolnostima. Time se
potvrđuje značaj upotrebe ovakvih i sličnih matematičkih aparata u mašinskoj in-
dustriji.



A B S T R A C T

An analysis of the available literature related to the design of mechanical ele-
ments and assemblies indicated the existence of many optimisation problems, mostly
continuous type. Known optimisation problems in the mechanical engineering in-
clude optimisation in design of rolling bearings, rotor system optimisation, load
distribution, gears optimisation, shaft geometry optimisation, dynamic load optimi-
sation, and many others.

To derive these problems researchers have applied finite elements methods, var-
ious algebraic transformation, Bayesian and Artificial Neural Network (ANN), Par-
ticle Swarm Optimisation, Genetic and some other hybrid Evolutionary Algorithms.
Models that are appearing in available literature usually take into consideration one
group of influential parameters for load distribution, while all other parameters are
set to the fixed values, for simplification. The selection of parameters to be fixed
should enable good presentation of model without loos of generality.

For example, calculation methods for helical and spur cylindrical gears for pur-
poses of preliminary design or for standardization are usually reduced to linear
elasticity theory (Navier equations) or to implementation of Hertz contact models.
Furthermore, by using the finite element models, contact pressure is often taken to
be equal to an average Hertz pressure. Such and similar approximations can lead to
models which simulation may not agree with experimental results. It is necessary
to simulate load distribution in the realistic form with all influential parameters,
which can be time and / or memory demanding. Because of that, approximate
methods, like ANN or Genetic Algorithms (GA), are shown to be more appropriate
than classical algebraic methods. Approximation methods allow getting results of
good quality within considerably shorter execution time.

In this paper, some optimisation methods that are applicable for solving hard
optimisation problems of machine elements and assemblies, are described. First of
all, exact optimisation methods are explained, especially those based on Newton’s
algorithm and its modifications. Approximation methods find solution that is close
to exact one, while simulation methods are used in order to perform static and dy-
namic analysis of different type of objects. Prediction methods use empirical data
as an input in known condition of a working system and, as an output, they give
prediction of the system’s behavior in case of unknown working conditions. To this
purpose, in this research Bayesian networks are used. Heuristic methods are effi-
cient because they use some a priori knowledge about the problem they are solving,
and based on that knowledge they generate high quality solutions. Because of that,
they are used in meta-heuristics to generate initial solutions. Comparing to exact
methods, meta-heuristic methods are very efficient to find solutions for optimisation
problems that are close to optimal for shorter working time and using lees memory
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than the exact methods. There are many types of meta-heuristic methods, how-
ever the most frequently used in mechanical engineering are GAs as well as hybrid
algorithms based on GAs. GAs are based on randomly generated population of solu-
tions and they try o enhance the solutions from one generation into solutions of the
next generation by applying genetic’s operators. The operators represent searching
mechanisms in order to find optimal chromosome in one region. Hybrid GAs in-
clude some additional optimisation methods in order to reach expected result more
efficiently. In order to evaluate results obtained by GAs, some other local search
based heuristic methods, such as pattern search and active set within multi-start
framework, are used in this thesis.

Generally speaking, contributions in this thesis are addressed to application of
optimisation and predictive methods to solve problems related to mechanical ele-
ments and assemblies. Hence, achieved contributions belong to two fields of research
i.e. mathematics and mechanical engineering, which gives multidisciplinary dimen-
sion to this thesis. First of all, contributions in mathematics include the development
of effective mathematical models for the considered mechanical elements. The mod-
els developed in such a way are enabling easy application of optimisation methods,
as well as artificial intelligence tools to solve the considered problems. The developed
models have allowed to identify some parameters, for particular mechanical elements
and assemblies that have crucial impact to increasing their effectiveness. Software
implementation of the proposed methods is the key element for the development
of decision support systems that lately exist as permanent tool used by engineers
in the design process. Contribution in mechanical engineering is application this
methodology to the concrete examples of distribution problem at gears and life of a
bearing. Existing, more recent, results are improved by applying this methodology
and offer recommendations for future modeling more efficient mechanical elements
and assemblies. In the following, we briefly describe the considered examples in this
thesis and refer to author’s publications where main results are published.

The first considered example in this thesis is optimisation of load distribution
problem at helical and spur gears. Research is based on ISO standards [ISO 6336-1],
[ISO 6336-2], [ISO 6336-3], [ISO 1328], [ISO 53], as well as on the existing optimi-
sation methods [Sánchez 2008], [Schneider 2006], [Szabó 2005]. Heuristic and meta-
heuristic methods mostly based on GAs are used, as well as hybrid algorithms.

Mathematical models of helical and spur cylindrical gears are considered accord-
ing to ISO standards. These models are depending on a few dozens of geometrical
and design parameters. Selection of the most influential parameters represents an
important research challenge where meta-heuristic methods may help a lot. Meta-
heuristic methods are usually applicable to optimisation problems represented by the
known exact mathematical model, expressed by equations or system of equations.

Contribution in mechanical engineering includes the usage of developed hybrid
algorithm for solving optimisation problem of transversal load distribution factor for
helical and spur gears. Hybridisation is achieved with enhancement of GA with a
local search function. In order to conclude which parameters are the most influential,
the ideal case is assumed, which has uniform load distribution during the considered
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period of time. By using this method, it turned out that helix angle and profile shift
coefficients of the pinion and the wheel mostly affect the changing of transversal load
distribution factor. Within simulation of mathematical model for load distribution
at helical and spur gear pair the influential factors are changed over the time, in
order to derive the deviations of the obtained values for the distributional load from
the assumed ideal values.

It is shown, in the process of evaluation, that method proposed in this thesis
is more efficient than methods taken for comparison, according to some predefined
criteria. This belongs to contribution in mechanical engineering. Final result of
the proposed method is increasing the quality of load distribution at helical and
spur cylindrical gear pairs. These results are presenting improvements of the results
obtained in papers [Sánchez 2013], [Pedrero 1996], [Pedrero 2011], [Sánchez 2013],
[Simon 1988], [Zhang 2010], [Zhang 1999]. There are the following improvements of
previous results:

• Less simplification than in models [Pedrero 2011], [Pedrero 2010], [Sánchez 2013].

• Load distribution is optimised by using GA instead of other methods available
in the literature. Influential parameters are optimised and obtained load dis-
tribution is more uniform than the load distribution obtained in [Simon 1988],
[Zhang 2010], [Zhang 1999], which improves these results.

These improvements belong to contributions in mechanical engineering. Publicly
available MatLab library for computation of transversal load distribution factor op-
timisation at helical and spur gears, based on proposed framework [Milojević 2013]
is implemented. The obtained results are described in [Milojević 2013].

The second example of GAs application, conducted within this research, is solv-
ing the multi-objective nonlinear optimisation problem of planetary gear trains. To
perform the geometry optimisation of planetary gear trains, it is very important to
take into consideration the limitations in the form of an axial distance between the
sun and planetary gear in purpose of obtaining higher degree of efficiency. During
the simulation of the proposed working model, the changing of the most influen-
tial parameters, with respect to the ones derived in the design phase, are taken
in consideration. The changing of the project parameters reveals the sensitivity of
the degree of efficiency as it is shown on the dependance graphics (Pareto set of
points). The results are very useful for the designers dealing with planetary gear
trains with various transmission ratio. Obtained results belong to contribution in
mechanical engineering and they are published in [Rosić 2011a], [Rosić 2011b] and
clearly indicates the importance of problem formulation in the form of multi-criteria
optimisation.

GAs are very suitable technique in cases when it is necessary to solve continu-
ous optimisation problems. However, it is always good to have comparative results
obtained by some other meta-heuristic methods. For the dynamic load optimisation
problem, in the recent literature GAs are among the most deployed methods for
solving maximisation problem of dynamical load at ball bearings. To examine the
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efficiency of GA, In this research a comparison of the results obtained by GA and
other methods is conducted. In that sense, third example, considered in this thesis, is
related to the development of a new method for optimisation of dynamical load rat-
ings and rating life at radial ball bearings, as a function of 10 different parameters by
using three meta-heuristic methods. The developed method belongs to contribution
in mechanical engineering. For that purpose, beside GA, two other meta-heuristic
methods (patterns search and active set) are used for solving multi-criteria optimi-
sation problem of dynamic load capacity and service life of ball bearings. Obtained
results showed that pattern search and active set are giving better results than GA
for shorter computing time which justify employment of the two additional meth-
ods. Optimisation by pattern search and active set is providing better results with
regards to dynamic capacity and working life for shorter computing time and less
memory consuming. From the-state-of-the-art, pattern search and active set are
not applied to the observed problem, which gives another contribution of this PhD
thesis in mathematics. Based on the obtained results, it appears that increase in
the number of balls and adequate improvement in the terms of internal geometry
lead to slight increase in the dynamic capacity and bearing life within comparison
to standard catalog values. The paper [Milojević 2014] contains short description
of obtained results and represents contribution to mechanical engineering. The ob-
tained results are improving the following results [Chakraborty 2003], [Costin 2010],
[Gupta 2007], [Mendi 2010a], [Rao 2007], [Waghole 2014], [Shigley 1989].

In the cases when mathematical model is not known or it is too complicated
to be expressed by using a system of equations, other techniques like Bayesian or
Neural Networks can be applied. As an illustration, Bayesian Networks (BN) are
applied to two mechanical systems in order to prevent the overload or potential
failures [Milojević 2012], [Glišović 2013].

As the first example, BNs are applied to reliability assessment of the mechanical
assembly for painting of the metal semi-products. A functionality of the mechanical
assembly is presented and the method for prediction of product quality at the end
of the process in the case of a failure of one of the subsystems is developed. Several
different scenarios are tested: probability of system failure if product quality state
is known, probability of the product quality conditions if one subsystem fails and/or
several subsystems fail simultaneously. Comparative analysis between experienced
(historical) probabilities and probabilities obtained by using BNs is performed. The
obtained results (presented in [Milojević 2012]), that are the contribution to me-
chanical engineering, show that these two probabilities differ in less than 3%, which
confirms accurate modelling of realistic system conditions. A measure of quality
of BNs prediction is reflected in the difference between the historical probabilities
and the probabilities obtained by modeling. If the ratio is less than 3%, which is
proofed in [Milojević 2012], it is considered that the prediction is very satisfactory
[Darwiche 2009].

The second example of the Bayesian network application refers to machine as-
sembly for the transformer oil filtration. The development of the Bayesian Network
was performed within three steps: identification of important variables together
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with their state probability; relations between variables and their representation in
graphic structure; assessment of resulting probabilities obtained by using Bayesian
Networks. Resulting network is incorporated into decision support system software
during manufacturing process in cases of missing information about state of a sys-
tem and/or products, as it is explained in [Glišović 2013]. This result is practical
contribution to mechanical engineering.

In modern business environments, when investors are exposed to frequent and
constant changes, theory of reliability and maintenance has gain a new role in busi-
ness processes management. Bayesian models can be effectively applied to solve
problems of the prediction and prevention in order to reduce the costs of main-
tenance. Case studies in [Milojević 2012], [Glišović 2013] show high reliability of
Bayesian models through simulation experiments.

The considered examples of meta-heuristic and prediction methods application
to several typical optimisation problems in mechanical engineering confirmed their
effectiveness. Therefore, there is an open possibility to apply these and other meth-
ods to similar problems. In other words, a new methodology for solving hard opti-
misation problems in manufacturing engineering is proposed.

Mechanical engineering has huge number of construction tasks that require de-
ployment of prediction or optimisation techniques to enable easier decision mak-
ing. Deployment of multi-objective optimisation is often needed in mechanical en-
gineering due to appearing of conflicting criteria, such as price and quality ratio
or mechanical element size and dynamical capacity ratio, etc. In this thesis, the
integration between mathematical models of mechanical elements and artificial in-
telligence methods is done which opens a new research area. The calculations in
mechanical elements and assemblies with respect to ISO standards require plenty of
constructors time even if all the data is known in advance. If the further improve-
ments are needed, classical calculations are not very efficient. The work presented
in [Milojević 2013], [Rosić 2011a] and [Rosić 2011b] is referring to modeling func-
tionality of mechanical assembly with mathematical models, which present basis for
the application of GA. Optimisation goal in this research is improvement of the de-
sign parameters for load distribution or efficiency. In any case, this doctoral thesis
is the synthesis of mathematics, mechanical engineering and quality control of the
industrial products. The emphasis in this thesis was on the quality of the product
(regardless the potential increase in the cost). However, the same principles can
be applied in the situations when the primary objective is the minimal cost of the
manufacturing, but the mathematical models would require certain adjustments in
accordance with these requirements. A work presented in [Milojević 2014] is dealing
with the optimisation of the dynamical capacity of rolling bearings with 3 different
meta-heuristics. Achieved results yield more than 30.3% improvement with respect
to the current best known result in the relevant literature, which justifies further
research about possible deployment of meta-heuristics in mechanical engineering.
The prediction in mechanical industry is needed nowadays for fast decision making
and preventing unnecessary costs due to damages. Research results presented in
[Milojević 2012] and [Glišović 2013] are dealing with the connection of predictive
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methods and fault detection of mechanical systems in the existing factories. The
approach proposed in the mentioned works presents the connection between the his-
torical data from factories and prediction networks. As achieved prediction results
are shown to be highly precise, it is expected that the network will give accurate
responses even in the unknown conditions. Following this, a deployment of these
and similar mathematical apparatus in mechanical industry is completely justify.



N O M E N C L A T U R E

The used labels, abbreviations, and names of variables are listed here. The mea-
surement units (when applicable) are given in square brackets.

a - centre distance of gears [mm]
α - radial contact angle of bearings [◦]
αn - normal pressure angle of gears [◦]
αP - pressure angle of the basic rack for cylindrical gears [◦]
αPn - normal pressure angle of the basic rack for cylindrical gears [◦]
αt - transverse pressure angle of gears [◦]
αw - operating (working) pressure angle of gears [◦]
αwt - pressure angle at the pitch cylinder [◦]
b - face width of gears [mm]
bs - central web thickness [mm]
β - an unknown constant, it is the factor which determines the upper bound of the

rolling element diameter of bearings; helix angle of gears [◦]
bm - rating factor for contemporary, commonly used, high quality hardener bearing

steel in accordance with good manufacturing practices, the value of which varies
with bearing type and design

c1 - tip clearance of pinion [mm]
c2 - tip clearance of wheel [mm]
cγα - mean value of mesh stiffness per unit face width (used for Kv, KHα, KFα)

[ N
mmµm ]

C - single stiffness [ N
mmµm ]

Cb - basic rack factor (same rack for pinion and wheel)
Cd - dynamic load capacity [N]
CM - correction factor
Cor - basic static radial load rating of bearings [N]
Cr - gear blank factor
Cs - static load capacity [N]
Cth - theoretical single stiffness [ N

mmµm ]
d - bearing bore diameter [mm]
d1 - reference diameter of pinion [mm]
d2 - reference diameter of wheel [mm]
d(a) - reference diameter of the sun gear [mm]
da1 - tip diameter of the pinion [mm]
da2 - tip diameter of the wheel [mm]
db - base diameter of gears [mm]
db1 - base diameter of the pinion [mm]
db2 - base diameter of the wheel [mm]
df1 - root diameter of the pinion [mm]
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df2 - root diameter of the wheel [mm]
di - the inner raceway diameter at the grooves of bearings [mm]
do - the outer raceway diameter at the grooves of bearings [mm]
D - bearing outer diameter [mm]
Db - ball diameter of bearings [mm]
Dm - pitch diameter of bearings [mm]
Dout - outer diameter of planetary gear train [mm]
e - parameter for mobility conditions of bearings
E - modulus of elasticity, the Young modulus [ N

mm2 ]
ε - parameter for outer ring strength consideration of bearings
εα - transverse contact ratio of gears
εγ - total contact ratio of gears
fc - factor which depends on the geometry of the bearing components, the accuracy

which the various components are made, and the material
fi - inner raceway curvature coefficient
fo - outer raceway curvature coefficient
fpb - transverse base pitch deviation (the values of fpt may be used for calculations

in accordance with ISO 6336, using tolerances complying with ISO 1328-1) [µm]
Fa - bearing axial load (axial component of actual bearing load) [N]
Fr - bearing radial load (radial component of actual bearing load) [N]
Ft - transverse tangential force at pinion reference circle [N]
FtH - tangential load in a transverse plane for KHα and KFα [N]
h - tooth depth (between tip line and root line) [mm]
ha1 - addendum of pinion [mm]
ha2 - addendum of wheel [mm]
hfP - dedendum of basic rack of cylindrical gears [mm]
i - number of rows in the bearing
KA - application factor (gears)
KDmax - maximum ball diameter limiter
KDmin - minimum ball diameter limiter
KFα - transverse load factor (root stress of gears)
KFβ - face load factor (tooth-root stress of gears)
KHα - transverse load factor (contact stress of gears)
KHβ - face load factor of gears
KV - dynamic factor (gears)
L10 - basic rating life, in million revolutions
m - module of gears [mm]; parameter for mobility conditions of bearings
mn - normal module of gears [mm]
mt - transverse module of gears [mm]
nw - number of planet gears
odn - represents the boundary condition based on ratio bs

b

pb - pitch on the base circle of gears [mm]
Pr - dynamic equivalent radial load in [N]
Φo - assembly angle in [rad]
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Q - accuracy rate
R - effective radius of gears curvature
rct - hob tip radius of gears
ri - inner raceway groove curvature radius [mm]
ro - outer raceway groove curvature radius [mm]
SF - factor of safety from breakage (gears)
SH - factor of safety from pitting (gears)
Sr - gear rim thickness [mm]
Srn - normal gear rim thickness [mm]
σF - effective tooth root stress of gears [ N

mm2 ]
σFP - permissible bending stress [ N

mm2 ]
σFlim - nominal stress number (bending) of gears [ N

mm2 ]
σF0 - nominal tooth-root stress of gears [ N

mm2 ]
σH - effective contact stress of gears [ N

mm2 ]
σHP - allowable contact stress [ N

mm2 ]
σHlim - allowable stress number (contact) of gears [ N

mm2 ]
σH0 - nominal contact of gears [ N

mm2 ]
u - gear ratio
v7 - represent a ratio FtKa/b

100

W - bearing width [mm]
x1 - profile shift coefficient of pinion
x2 - profile shift coefficient of wheel
xa, xb, xg - addendum modification of sun gear, ring gear and planet gear, -
respectively X - dynamic radial load factor of bearings
ya - running-in allowance for a gear pair [µ m]
Y - dynamic axial load factor of bearings
Yβ - helix angle factor of gears
YdrelT - relative notch sensitivity factor of gears
Yε - contact ratio factor of gears
YF - tooth form factor of gears tooth form factor, for the influence on nominal tooth

root stress with load applied at the outer point of single pair tooth contact
YRrelT - relative surface factor of gears
YS - stress correction factor of gears
YST - stress correction factor of gears
YX - size factor of gears
Z - number of rolling elements in a single-row bearing; or number of rolling elements

per row of a multi-row bearing with the same number of rolling elements per
row

z1 - number of teeth of the pinion
z2 - number of teeth of the wheel
za, zb, zg - numbers of teeth of sun gear, ring gear and planet gear, respectively
Zβ - helix angle factor of gears

ZE - elasticity factor of gears
√

N
mm2
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Zε - contact ratio factor of gears
Zh - zone factor of gears
ZL - lubricating factor of gears
Zν - speed factor of gears
ZR - roughness factor of gears
ZW - work hardening factor of gears
ZX - size factor of gears
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Chapter 1

Introduction

This section gives mathematical background for optimisation problems, briefly de-
scribes the methods required to deal with hard instances of these problems, and
shortly underlines how this mathematical tool helps in solving some practical prob-
lems in mechanical engineering. In addition, the main results obtained during the
research connected with this work are presented at the end of this section.

1.1 Mathematical background

Intuitively speaking, optimisation problems require finding the best solution among
all feasible solutions. One of the most famous optimisation problems is the travel-
ing salesman problem (TSP) [Rothlauf 2011]. For a given weighted graph G, the
problem is to find the shortest cycle in a graph by visiting each node exactly once.
In Chapter 2 the definition of optimisation problems taken from [Cvetković 1996] is
provided.
According to [Rothlauf 2011] (Chapter 2), the optimisation problem is pair (X, f),
where X is a set of feasible solutions and f : X → R is an evaluation function that
assigns a real value to every element x of the solution space. The condition x ∈ X
represents the constraints that a solution should satisfy in order to be feasible. The
problem is to find an x∗ ∈ X for which

f(x∗) ≥ f(x) for all x ∈ X (maximisation problem)

f(x∗) ≤ f(x) for all x ∈ X (minimisation problem).

The solution x∗ is called a globally optimal solution (or optimal solution if no
confusion can occur) to the given problem [Rothlauf 2011].
The example of an objective function is to find min f(x), subject to a constraint
x ∈ X. Here, X is a set of feasible solutions and f is the objective function to be
optimised with respect to the set of constraints x ∈ X.

When solving an optimisation problem, it is necessary to find all feasible solu-
tions x∗ (or at least some of them) such that f(x∗) = minx∈X f(x). Such solutions
are called (globally) optimal solutions. By taking into account

max
x∈X

f(x) = −min
x∈X

(−f(x))

the maximisation problem is easily reduced to a minimisation problem, and it is suf-
ficient to consider only one of these two problems. Formulated like this a solution
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can be also considered as a globally optimal solution. Therefore, in the rest of this
work, only minimisation is analysed. If X is the finite or countable set, the optimi-
sation problem is the problem of combinatorial or discrete optimisation. In the case
when X ⊆ Rn (X * Zn), the optimisation problem is called continuous, otherwise
it is referred to as mixed optimisation problem. The optimisation problems can be
classified according to various criteria. For example, one could distinguish linear
or nonlinear optimisation problems, based on the type of objective function f and
constraints [Boyd 2004]. In addition, the optimisation problems may be determin-
istic (if the values of all relevant parameters are known in advance) or stochastic
[Schneider 2006], [Boyd 2004].
In local optimisation, the compromise between solution quality and search efficiency
is made. The idea is to give up seeking for the optimum x∗ which minimises the
objective over all feasible solutions. Instead, a solution that is only locally optimal,
i.e., that minimises the objective function on a subset of feasible solutions, is deter-
mined [Boyd 2004]. In global optimisation, the true globally optimal solution of the
given optimisation problem is tried to be found.
Some optimisation problems have multiple (conflicting) objectives. These type of
problems are referred to as multi objective optimisation problems and they require
special mathematical tools, since the best solution for one objective may not be the
best for another.
If the mathematical model is given by the system of equations, the usual goal of
optimisation is to find the best solution of that given system of equations. Mathe-
matical model is described by variables and parameters. In the optimisation process,
normally, the values of variables are to be determined, while the values of param-
eters are fixed. However, in some situations, the roles of variables and parameters
may be changed. This is the case described in this research.
Methods used to solve optimisation problems can be divided into three categories:
exact, heuristic (approximate, simulation) and meta-heuristic. Exact optimisation
methods are providing the true optimal solution. On the other hand, they are usu-
ally computationally and memory consuming. Therefore, they could be applied only
to a small size instances of the problem. Heuristic methods are usually problem ori-
ented and designed to quickly provide solutions of high quality. For example, the
greedy heuristic [Johnson 1995] for TSP problem is based on the shortest distance.
The most deployed are the so called iterative heuristics, like local search, pattern
search, etc. Iterative heuristics start from an initial solution and try to find better
solutions in the neighborhood of the initial solution.
Meta-heuristics are general set of rules that can be applied to solve a variety of
optimisation problems. It is expected that application of meta-heuristics (Genetic
Algorithms (GA), Neural Networks, Tabu Search, Variable Neighborhood Search,
Simulated Annealing, Bee Colony Optimization, Ant Colony Optimization, etc.)
when resolving optimisation problems generate better solutions than the one that
is given by classical, constructive heuristics with reasonable (acceptable) increase
of the execution time. However, some special heuristics are reaching the solution
in a shorter computing time. Applying meta-heuristics methods often significantly
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improves an initial solution obtained by classical heuristical methods. Development
and implementation of meta-heuristic methods is an individual research field.
Apart from Tabu Search and Simulated Annealing, GAs belong to the group of old
meta-heuristics methods. They are based on biological evolution described by Dar-
win’s theory of natural selection. The specific mechanisms of GA use the principles
of microbiology and their implementation mimics the genetic process. The basic
idea of GA approach to problem solving is how to move from current set of feasible
solutions towards the better solutions within feasible boundaries. The initial set of
solutions is usually randomly generated taking into account the given constraints in
order to preserve the feasibility. The number of feasible solutions at the beginning
of each generation is called population size. For any feasible solution the value of the
corresponding objective function can be determined, whose quality is determined by
the appropriate fitness value. The better fitness value ensures higher probability for
the corresponding solution to be involved in GA operator. The basic operations of
GA are: selection, crossover and mutation. These operations are executed in each
generation until the fulfillment of a pre-determined stopping condition. At that
point the best obtained solution is reported as the final one.
Among all optimisation methods, approximate and simulation methods are also
recognised as important in solving optimisation problems. They are applicable in
cases when mathematical model is not available. Instead, they use experimental
or historical data to learn the behaviour of the considered system. Therefore, they
are usually used for predicting the future states of the system. Typical representa-
tives of this class of methods are Artificial Neural Networks (ANN) and Bayesian
Networks (BN).

1.2 Optimisation in mechanical engineering

Many studies on modelling and design of various mechanical components involving
optimisation processes can be found in the literature. For example, transmission er-
rors, prediction of gear utilization with dynamic load, gear noise and optimal design
are some of the major concerns for their designers. The design of roller bearings is
a challenging task in the field of mechanical engineering. As the producers usually
do not reveal the real aspects of the production of bearings, the optimisation of
design parameters in bearings can improve the performance as compared to those
that currently exist in the standards and catalogues.
Bearing related optimisation problems are solvable by using the optimisation meth-
ods. In order to have long working life and good performances of rolling bearings,
as important components in mechanical engineering, a plenty of constraints must
be satisfied during their design. In order to do that, optimal design methodology is
employed by using GA. For example, to design rolling-element bearings, a constraint
nonlinear optimisation procedure is used, based on GA.
Exact optimisation techniques are efficient in solving design problems in mechan-
ical engineering. For example, they help in modeling and design of assemblies in
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aerospace engineering. In addition, Bayesian Networks are used to predict the be-
haviour of various mechanical systems. An example of such a system is the trans-
former oil filtering machine.
Appearing contact and root bending stress on teeth of a gear pair is commonly inves-
tigated problem in mechanical engineering on which FEM model is usually applied.
In modern gear design, static stress analysis in order to reduce stress concentration
is investigated with an aim to minimise development of the initial cracks (by reduc-
ing the fatigue). Within the optimisation of the gearbox components, the biggest
challenge is to optimise the gearbox with the smallest volume which can carry the
system load. For solving these and similar kind of optimisation problems, meta-
heuristics can be of a great help because they provide usable results in a shorter
computing time with respect to other optimisation methods. In this research, there-
fore, meta-heuristics, mostly GA, are used as a tool for solving several optimisation
problems.
Optimisation problem of working load is related to assessment of working capacity
of machine parts, especially gear pairs. In that sense, GA-based procedure is used to
optimise design of helical and spur gear pairs. Approximate and simulation methods
are widely applicable for solving optimisation problems in the design of mechanical
elements and assemblies.

1.3 Contributions

One of the problems investigated within this research is the optimisation problem
of the transverse load distribution factor at helical and spur gears. Load transmis-
sion by gear pairs is followed by the non-uniform load distribution in the meshing
process. The opposite assumption, where the load factor does not change over
time along the line of contact, was made. The aim was to identify the param-
eters with the largest influence on violating this assumption. It was also neces-
sary to determine the extent of their changes. For the purposes of developing
this model, all parameters which determine transverse load factor, according to
[ISO 6336-1], [ISO 6336-2], [ISO 6336-3], [ISO 1328], [ISO 53] and [ISO 21771] were
considered as relevant. The developed model represents the main mathematical
contribution in this example. The model is used within the optimisation algorithm
based on GA that involves an additional local search optimisation procedure used
at the end in order to improve the solution obtained by GA. Such a hybrid al-
gorithm has 12 direct input variables affecting the objective function. The main
procedure is divided into several sub-procedures: calculation of geometry, calcu-
lation of the stiffness and calculation of the value of total contact ratio. Since
the mathematical model of this problem is nonlinear and continuous, the corre-
sponding computational methods, such as Newton-Raphson method and the non-
linear interpolation of three-dimensional function, are implemented. The obtained
results [Milojević 2013] showed that the proposed hybrid GA is useful and appli-
cable for optimisation of helical and spur gears design. These results are improve-
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ments of research results obtained in [Sánchez 2013], [Pedrero 1996], [Pedrero 2011],
[Sánchez 2013], [Simon 1988], [Zhang 2010], [Zhang 1999]. There are the following
improvements of previous results:

• In the model presented in [Milojević 2013] most of parameters like helical angle
or number of teeth are treated as non-constant which means there are less
simplification than in models [Pedrero 2011], [Pedrero 2010], [Sánchez 2013].

• Load distribution is obtained by using GA instead of other methods usually
used (i.e. finite element method). Settings of GA used in [Milojević 2013]
are conducted respecting the nature of the problem which improves results
provided in [Zhang 2010]. Results being obtained by GA in design parame-
ters of helical and spur gears for different gear ratios improve performances
of these mechanical elements more than the methods used in [Simon 1988],
[Zhang 1999].

Other formulations of mathematical models, known from the state-of-the-art, are
varying a maximum of 6 input parameters, while the work presented in [Milojević 2013]
is optimising 12 different parameters, categorised in several modules. More precise,
in [Zhang 2010], only six input parameters such as, face width, number of teeth
on pinion, module, shaft diameters and distance between the bearings on reducer
have been taken into consideration. In [Milojević 2013], 6 additional parameters
influencing load distribution factor have been analysed with respect to the results
obtained in [Zhang 2010], [Pedrero 2010] and [Pedrero 2011]. It is also concluded
that 4 parameters that directly affect accurate determination of stiffness have been
taken as fixed inputs in other investigations, which is pointing out to the advantage
of the results in [Milojević 2013]. Results also show that the optimised value for one
of the considered parameters is 7.5 times improved in [Milojević 2013] with respect
to [Zhang 2010], while the same parameter in [Pedrero 2010] and [Pedrero 2011] is
taken as fixed input and therefore, it is not optimised at all. Other significant re-
sult is twice better optimised value of the considered parameter in [Milojević 2013]
comparing to the same result in [Zhang 2010].

Planetary gear trains take a very significant place among the gear transmissions
which are used in many branches of industry such as automobile transmissions, air-
crafts, marine vessels, machine tool gear boxes, gas turbine gear box, robot manipu-
lators, etc. Planetary gear trains have a number of advantages over the transmission
with fixed shafts. The relationship between nine influential parameters of planetary
gear trains was formulated as the multi-objective nonlinear problem. The weight-
ing method was used to approximate the Pareto set. This method transforms the
multi-objective optimisation problem into single-objective optimisation problem by
associating each objective function with a weighting coefficient and then minimising
the weighted sum of the objectives. The gear contact minimum film thickness is
calculated by the Dowson and Higginson’s method. In [Rosić 2011a], [Rosić 2011b]
the relationship between nine influential parameters is considered, totally (all nine)
and pairwise. The proposed GA-based approach produced quite satisfactory re-
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sults promptly supplying the designer with the preliminary design parameters of
planetary gear train for different gear ratios.

Among the most significant contributions of [Rosić 2011b] is deployment of GA
method for multi-objective optimisation of the planetary gear train efficiency which
has not been done before in the literature. Very complex analysis, involving 9 con-
flicted objective functions and 6 constraints has been performed in [Rosić 2011b]
and [Rosić 2011a]. For the same problem considered in [Qing-Chun 2008] and
[Tripathi 2010], only 2 conflicted objective functions influencing the efficiency have
been optimised. Optimisation in [Rosić 2011b] and [Rosić 2011a] covered 10 influ-
ential parameters, while in [Cho 2006], only 1 relationship between the inputs and
outputs is analysed, covering 3 influential parameters. In [Tripathi 2010], only 6
constraint functions have been analysed, while in [Rosić 2011b] and [Rosić 2011a]
8 constraints have taken into account due to the complexity of minimisation of the
elastohydrodynamic lubrication film. New models are developed to comprehend in-
fluential parameters and to provide simultaneous optimisation of larger number of
objective functions.

The multi-objective optimisation of bearings dynamical load ratings and working
life, having in mind that these objectives are not conflicting, has also been consid-
ered. GA has proven to be a suitable technique in situations when it is necessary
to deal with continuous optimisation problems. However, two other meta-heuristic
methods based on multi-start local search heuristic algorithms are applied to opti-
mise the problem of dynamic load capacity and working life of ball bearings. The
applied local search methods are Pattern Search and Active Set, and the resulting
meta-heuristics are referred to as MPS and MAS. The comparative results with
GA are given in [Milojević 2014]. Obtained results represent the improvements
with respect to these presented in [Chakraborty 2003], [Costin 2010], [Gupta 2007],
[Mendi 2010a], [Rao 2007], [Waghole 2014], [Shigley 1989]. Based on the obtained
results, it appears that increase in the number of balls and adequate improvement
in the terms of internal geometry can increase the dynamic capacity and working
life of bearings compared to standard catalog values.

Comparing with the above mentioned papers, the optimisation methods pro-
posed in [Milojević 2014] provided significant increase in a dynamic capacity with
respect to the values from the available standards [Bowman] in all eight examples.
The average percentage of the improvement is 9.4%, 12.2% and 12.6% for GA, MPS
and MAS, respectively comparing to the values in [Bowman]. It is also concluded
that optimisation in [Milojević 2014] is improving dynamic capacity for 13.41%,
20.91%, 18.43% than optimisation in [Gupta 2007] for 4 considered types of bear-
ings. Also, the average percentage of improvement of the dynamic capacity with
respect to [Rao 2007] for 4 cases of bearings is 22.22%, 30.3% and 27.64%. The
work presented in [Gupta 2007] and [Rao 2007] is referring to the values from the
[Shigley 1989].

If mathematical model is known and given in the form of algebraic equations
then optimisation methods are applied. If it is not case, other techniques should
be applied such as Bayesian or Neural Network. As a main contribution in me-
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chanical engineering, Bayesian Network is used first time for reliability assessment
of the mechanical system for painting of metal semi-products [Milojević 2012]. The
functionality of the mechanical system is presented and the method for predicting
the impact of the sub-systems’ failure on the final product quality is developed.
Based on historical data about system’s behavior, probabilities of defined events are
determined by applying BN and used for prediction and decisions making.

Another Bayesian model has been developed to predict the behaviour of the
transformer oil filtering machine. The model is implemented in C] and tested on
real problems. Some different scenarios were tested and the obtained results are
presented in [Glišović 2013]. The results show that the improvement of product
quality can be obtained by applying the proposed methods and therefore signifi-
cantly support the application of BN in mechanical engineering.

The similar problems of fault prediction in Mechanical systems applying Bayesian
networks have been considered in [Alamaniotis 2014], [Hernandez-Leal 2011] and
[Boksteen 2014]. The quality of the prediction is estimated based on the difference
between historical data and the data obtained after Bayesian network application.
In [Milojević 2012], the prediction errors have been calculated and the best obtained
result guaranteed the certainty of 97%. In estimation of the prediction results for
the remaining useful life of turbine [Alamaniotis 2014], authors claimed 3.3% of min-
imum error and 42.5% of maximum error occurred. The maximal prediction error in
[Milojević 2012] is 3% which improves for 0.3% with respect to [Alamaniotis 2014].
Maximal error obtained in [Glišović 2013] is 1% while in [Hernandez-Leal 2011]
authors obtained the minimal error of 15.29% for BN diagnosis of the failures in
the combined cycle power plant. This is pointing out that the results obtained in
[Milojević 2012] and [Glišović 2013] are approximately 15 and 5 time precise than
the results in [Hernandez-Leal 2011], respectively. In [Boksteen 2014], the predic-
tion of plant power and efficiency as a function of ambient temperature is obtained
with approximately 95% of certainty. This is leading to the approximate error of 5%

which makes the results in [Milojević 2012] and [Glišović 2013] better for 2% and
4%, respectively. The conclusion is that the modeling of the problem is improved
in [Milojević 2012] and [Glišović 2013] with respect to the literature and providing
more certain prediction as such.

The manuscript consists of the following chapters. Chapter 2 introduces the op-
timisation problems in a general sense. Chapter 3 contains the description of various
optimisation algorithms. An exact optimisation algorithm is the algorithm that pro-
vides the true optimal solution to a given optimisation problem. Heuristic, approxi-
mate and simulation methods are also presented in Chapter 3. In addition, Chapter
3 contains the description of meta-heuristic methods, where nature-inspired, hybrid
and other types of meta-heuristics methods are detailed. Some relevant optimisa-
tion problems in mechanical engineering are presented in Chapter 4. The methods
that have been applied in purpose of solving optimisation problems of machine ele-
ments and assemblies are also discussed. In Chapter 5 an example of optimisation
of the transverse load distribution factor of helical and spur gears is described in
detail. In order to maximise uniformity of load distribution the GA based method
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is proposed. In addition, in Chapter 5 the mathematical model for optimisation of
pre-design parameters of planetary gears formulated in the form that is the most
convenient for the application of meta-heuristic methods is presented. Chapter 6
contains the description of the mathematical model for optimisation of radial ball
bearings in order to maximise basic working life and dynamic load capacity. Ap-
plication of Bayesian Network to reliability assessment of two mechanical systems
is described in Chapter 7. The final chapter (8) contains concluding remarks and
directions for future research.



Chapter 2

Optimisation

Optimisation problems are common in many disciplines and various domains. In
optimisation problems we have to find solutions which are optimal or near-optimal
with respect to some goals. Usually, we are not able to solve problems directly (in
one step), but we follow some iterative process which guides us through problem
solving [Rothlauf 2011]. Often, the modelling process is separated into different
steps which are executed one after the other, where the optimisation is related to
one of the steps. Commonly used steps are: recognising and defining problems,
constructing and solving models (optimisation), and evaluating and implementing
solutions.

The optimisation problems can be found almost everywhere in real life. Some
representative examples are routing, scheduling, resource allocation, etc. This chap-
ter is devoted to the definition, classification and complexity of various optimisation
problems.

2.1 Optimisation problems

In general, optimisation problems are defined as follows [Cvetković 1996]:
Definition 1. Let f : S → R or a real function defined on the set S and let X ⊆ S
be some given set. The problem is to find

min f(x),

subject to a constraint
x ∈ X.

Here, the domain S represents a solution (search) space, X is a set of feasible
solutions and f is the objective function to be optimised with respect to the set
of constraints x ∈ X. Each x ∈ S is called solution and x ∈ X is called feasible
solution. In order to solve a given optimisation problem, it is necessary to find all
feasible solutions x∗ (or at least some of them) such that f(x∗) = minx∈X f(x). The
resulting solution x∗ is called optimal solution or global optimum. It is obvious that
(∀x ∈ X)f(x∗) ≤ f(x). The solution x] is called local optimum if f(x]) ≤ f(x)

for x ∈ X] ⊂ X. Here, X] = B(x], ε) ⊂ X, with B(x], ε) denoting a ball of small
enough radius.

A special case of this formulation is given by [Rothlauf 2011, Boyd 2004]:
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minimise z = f(x), (2.1)

subject to

gi(x) ≥ 0, i = 1, ...,m

hi(x) = 0, i = 1, ..., p,

x ∈W1 ×W2 × ...×Wn, Wi ∈ {R,Z,B}, i = 1, ..., n,

where x is a vector of n decision variables x1, ..., xn, f(x) is the objective function
that is used to evaluate different solutions, and g(x) and h(x) are inequality and
equality constraints on the variables xi. B indicates the set of binary values {0, 1}.

2.2 Classification of optimisation problems

Optimisation problems can be classified by several criteria and some of them are
analysed in the following sections.

2.2.1 Optimisation problems according to domain type

Decision variables can be either continuous (x ∈ Rn) or discrete (x ∈ Zn). Conse-
quently, optimisation models are either continuous where all decision variables are
real numbers, combinatorial where the decision variables are from a finite or at most
countable, discrete set, or mixed where some decision variables are real and some
are discrete.

2.2.2 Optimisation problems according to function and constraint
type

Based on the function and constraint type, problems can be either linear or nonlinear
optimisation problems.

Optimisation problems are linear if the objective and all constraint functions are
linear [Boyd 2004]:

minimise cT · x
subject to aTi · x ≤ bi, i = 1, . . . ,m

Here the vectors c, a1, ..., am ∈ Rn and scalars b1, ..., bm ∈ R are problem param-
eters that specify the objective and constraint functions.

In order to solve this linear optimisation problem, one has to find a vector
(x1 . . . xn), such that c1x1 + c2x2 + · · ·+ cnxn has the minimal value and the set of
the following inequalities is fulfilled:
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a11x1 + a12x2 + · · ·+ a1nxn ≤ b1
...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

Representative examples of linear problems are resource allocation problems,
production problems, or network flow problems.

Nonlinear optimisation (or nonlinear programming) is the term used to describe
an optimisation problem where the objective or constraint functions are not linear
[Boyd 2004]. There are no effective methods for solving the general nonlinear pro-
gramming problem. Even simple looking problems, with as few as ten variables,
can be extremely challenging, while problems with a few hundreds of variables can
be intractable. Methods for the general nonlinear programming problem therefore
take several different approaches, each of which involves some compromise. One of
the special cases is convex objective function.

2.2.3 Optimisation problems according to parameter values

According to the parameter values problems can be deterministic or stochastic.
The deterministic model is the one in which values of parameters are "a priori"
known. Therefore, deterministic models perform the same way for a given set of
initial parameter values. Conversely, in a stochastic model, randomness is present,
and parameter values are not described by unique values, but rather by probability
distributions.

Stochastic optimisation problems include uncertain or dynamic information in
their parameters. The objective function value and the violation of constraints of
such problems are therefore random variables. Evaluating the objective function
value and/or its feasibility can be done either exactly (if a closed-form expression
is available), by approximation, by Monte Carlo simulation or by using Fuzzy sets.
Meta-heuristics enriched by any of these possibilities have been proposed to solve
different stochastic problems.

2.2.4 Classification according to solution type

A globally optimal solution is the one where there are no other feasible solutions with
better objective function values. A locally optimal solution is one where there are
no other feasible solutions in the small enough neighbourhood with better objective
function values. You can visualize this as a point at the top of a "peak" or at the
bottom of a "valley" which may be formed by the objective function and/or the
constraints - but there may be a higher peak or a deeper valley far away from the
current point.

In local optimisation, the compromise between solution quality and search effi-
ciency is made. The idea is to abandon seeking for the optimum x∗ which minimises
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the objective over all feasible points. A large fraction of the research on general
nonlinear programming has focused on methods for local optimisation, which, as
a consequence have been well developed. In an engineering design application, for
example, local optimisation can be used to improve the performance of a design
originally obtained by manual, or other design methods.

The goal of global optimisation is to find the true global optimal solution of the
given optimisation problem. The possibility of finding the true global solution is
higher for optimisation problems with a small number of variables where computing
time is not critical. An example from engineering design is the worst-case analysis
or verification of a high value or safety-critical system. Here, the variables represent
uncertain parameters that can vary during manufacturing, or with the environment
or operating condition. The objective function is a utility function, i.e., one for
which smaller values are worse than larger values, and the constraints represent
prior knowledge about the possible parameter values. The optimisation problem is
the problem of finding the worst-case values of the parameters. If the worst-case
value is acceptable, we can certify the system as safe or reliable (with respect to the
parameter variations).

2.3 Combinatorial optimisation problem

The optimisation problem (2.1) is combinatorial if S is a finite or at most countable
set. Combinatorial optimisation problems are concerned with the efficient alloca-
tion of limited resources to meet the desired objectives. The decision variables can
take values from discrete sets with respect to additional constraints on basic re-
sources, such as labour, supplies, or capital. These constraints are used to restrict
the possibilities for solutions that are considered feasible. Usually, there are many
possible alternatives to consider and a corresponding value of the objective function
determines which of these alternatives is the best. Typical sets of solutions used for
combinatorial optimisation models are integers, permutations, or graphs.

Some representative examples of combinatorial optimisation problems are Integer
Linear Problem (ILP), Quadratic Assignment Problem (QAP) [Loiola 2007], Dis-
crete Network Design Problem [Wang 2013], Facility Location Problems p-median
[Arya 2012], [Mladenović 2007] and p-center [Mladenović 2003], [Davidović 2011]),
3-SAT Problem [Kutzkov 2007], Knapsack Problem [Bretthauera 2002], etc.

2.3.1 Integer linear problems (linear combinatorial problems)

One of the most known combinatorial optimisation problem is Integer Linear Pro-
gramming (ILP) problem. ILPs are used to model combinatorial optimisation prob-
lems where the decision variables are integers and the objective function and con-
straints are linear. ILPs in canonical form can be formulated as [Rothlauf 2011]:
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min cTx

subject to Ax ≤ b,
xi ∈ No,

where No is the set of non-negative integers x ≥ 0. Problems are called Mixed
Integer Linear Problems (MILPs) if, besides the discrete decision variables xi, there
are some continuous decision variables yi. Their canonical form is:

min cTx+ dT y

subject to Ax+By ≤ b,
xi ∈ No,
yj ≥ 0.

If we drop the integer constraints of an ILP, we get an LP in canonical form which
is called relaxation of the ILP or the relaxed problem. The solution of this problem
represents lower bound for the original ILP in the case of minimisation, i.e., upper
bound when the maximum is searched.

2.3.2 Complexity of discrete optimisation problems

Combinatorial optimisation problems that can be solved by polynomial algorithms
are considered "easy" and belong to the so-called P -class. An example of polynomi-
ally solvable combinatorial optimisation problem is 2-SAT [Misra 2013]. However,
most of the real life problems are hard. Some of them are known as "NP" hard
problems.

In the theory of complexity, NP (non-deterministic polynomial time) is a set of
the optimisation problems which one can solve in a polynomial time on the non
deterministic Turing machine [Ognjanovic 2004]. Equivalently, NP is the set of
problems whose solutions can be deterministically checked on Turing machine in
polynomial time. NP-complete problems are the hardest problems in NP class in
the sense that every problem in NP class can be reduced to them. Reducing in this
context means that for every problem L from NP and the problem C in NP-complete
there is a deterministic polynomial time algorithm that converts the cases l ∈ L into
cases c ∈ C, such that l is the optimum of L if and only if c is the optimum of C.
To prove that the NP problem A is NP-complete, it is sufficient to show that some
already known NP-complete problem is reducible to A.

2.4 Continuous optimisation problem

The optimisation problem (2.1) is continuous if W = W1 ×W2 × · · · ×Wn ⊆ Rn.
Actually, continuous optimisation problems are concerned with the optimal settings
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of continuous decision variables. Here, the main problem is to determine optimal
values among uncountably many possibilities.

2.4.1 Convex optimisation problem

Convex optimisation problem, asks to minimise the function f(x), subject to the
constraints gi(x) ≤ 0, where i = 1, . . . ,m, under the condition that the following
functions f , g1, . . . , gm : Rn → R are convex. More precisely those functions should
for all x, y ∈ Rn satisfy the following inequalities:

f(αx+ βy) ≤ αf(x) + βf(y),

gi(αx+ βy) ≤ αgi(x) + βgi(y),

where α, β ∈ Rn and α+β = 1, α 6= 0, β 6= 0. Each x ∈ Rn is optimisation variable,
while f is the objective or optimisation function. Opposite to this, gi(i = 1, . . . ,m)

are inequality constraint functions [Boyd 2004].

2.4.1.1 Global optimality in convex problems

Before stating the description of global optimum, optimal point is defined. Optimal
value of an convex optimisation problem is denoted f∗. This value is equal to
minimum value of objective function when satisfying inequality constraints. We say
that a x∗ is optimal point if f(x∗) = f∗. It is said that a point x is local optimum
if it satisfies all constraints of defined convex problem and if f(x) ≤ f(z), for all
points z in the vicinity of x. More precisely, x is a local optimum if there exists
ε > 0 and ε ∈ R, such that all points z ∈ Rn satisfy the following two conditions:

||x− z|| ≤ ε, and f(x) ≤ f(z).

It is said that a point x is global optimum if it satisfies all the constraints and it
holds that f(x) ≤ f(z) for all z ∈ Rn.

If the optimisation function is convex and differentiable, optimisation problem
can be solved by exact methods. Moreover, if the optimisation function f is twice
differentiable, then f is convex if the Hessian matrix Hf is a positive definite.

In this section, very widely known problems from a subclass of the convex opti-
misation called linear programs and least-squares problems, are presented.

2.4.1.2 Linear problem

(Continuous) Linear Programs (LP) are among the simplest continuous optimisa-
tion problems. Their characterization is that the objective function and the set of
constraints are linear combination of decision variables. LPs in canonical form can
be formulated as [Rothlauf 2011]:
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min cTx

subject to Ax ≤ b,
xi ∈ R,
xi ≥ 0.

2.4.1.3 Least-squares problems for linear model

A least-squares problem, for linear model, is an optimisation problem (2.1) with no
constraints [Boyd 2004] (i.e. m = 0) and with an objective function in the following
form:

minimise f0(x) = ||ATx− b||22 =

k∑
i=1

(aTi x− bi)2.

Here, A is a given matrix, and x ∈ Rn is the vector of optimisation variables. There
are nonlinear models for which we define least-squares problems.

2.5 Multi-objective optimisation

Many optimisation problems have multiple (conflicting) objectives, essentially chang-
ing the concept of optimality, since the best solution for one objective may not be
the best for another. In multi-objective optimisation the concept of dominance is
therefore introduced. A solution is said to dominate another solution if its qual-
ity is at least as good on every objective and better on at least one. The set of all
non-dominated solutions of an optimisation problem is called the Pareto set and the
projection of this set onto the objective function space is called the Pareto front.
The aim of multi-objective optimisation is to find (approximate) the Pareto front
and therefore generate a set of mutually non-dominated solutions called the Pareto
optimal set (Pareto set approximation).

In general, a multi-objective optimisation problem can be defined as determining
a vector of decision variables within a feasible region to minimise a vector of objective
functions f = (f1, . . . , fk)

T that usually conflict with each other [Eschenauer 1990].
Formally, the problem is stated as follows:

Find the values of n decision variables (x1, ..., xn) which satisfy n upper and
lower boundaries xil, xiu, i = 1, ..., n and optimise (minimise or maximise) k objec-
tive functions. Since (as it has already been mentioned) the problems of minimising
and maximising are equivalent maxf(x) = −min(−f(x)), the general problem can
be written as:

minimise {f1(x), ..., fk(x)}
subject to g(x) ≤ 0,

xil < x < xiu,
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where x is a vector of decision variables, fi(x) is the i-th objective function, and
g(x) is a constraint vector function. The value xil represents the lower boundary
and xiu the upper boundary of the decision variable xi.

The optimal solution in this case is not unique because the objectives can con-
tradict each other. Therefore, a set of solutions that is called the Pareto optimal set
is considered according to the following definition:

Definition 2. Pareto optimal: Consider a point x∗ in the feasible solution space,
X, f(x∗) is multi-objective function, where x∗ ∈ X. The point (the assigned values
of decision variables) is Pareto optimal if and only if there does not exist another
point, x ∈ X, that satisfies f(x) ≤ f(x∗) and fi(x) < fi(x

∗) [Arora 1989] for at
least one function. In other words, this definition states that, for a minimisation
problem, there is no other point which can cause a decrease in one objective function
value without causing a simultaneous increase in at least one of the other objective
function values. �

Definition 3. Dominated and non-dominated points: A vector of objective
functions values, f(x∗), is non-dominated if and only if there does not exist another
vector, f(x), that satisfies f(x) ≤ f(x∗) with at least one fi(x) < fi(x

∗). Otherwise,
f(x∗) is dominated. �

Definition 4. Pareto front: The set X∗ = {x∗ ∈ Rn|x∗ is non-dominated so-
lution} which is composed of all the non-dominated Pareto optimal solutions that
compromise the Pareto front of non-dominated solutions [Eschenauer 1990], is called
Pareto front. �

Definition 5. The "feasible" domain is defined by the following: D = {x ∈
Rn|g(x) ≤ 0}.

Fig. 2.1 shows a mapping of the "feasible" domain D, given by Definition 5, into
the criterion space X where the Pareto-optimal solutions lie on the curved section
AB.

Figure 2.1: Mapping of a feasible set into the criterion space taken from [Rosić 2011a]
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The weighting sum method is used to approximate the Pareto set. This method
transforms the multi-objective optimisation problem into a single-objective optimi-
sation problem by associating each objective function with a weighting coefficient
and then minimising the weighted sum of the objectives, as follows:

min f(x) = Σk
i=1wifi(x), (2.2)

where weights wi are non-negative, such that:

Σk
i=1wi = 1, (2.3)

for k objective functions.
A subset of the Pareto optimal set can thus be generated through a system-

atic varying of the weights w = {w1, w2, · · · , wk} and repeatedly solving the scalar
form of the problem (2.2). The weights are modified after every certain number of
iterations during the optimisation.

The weights are defined by the following equation:

wi(l) =
randomi(l)

Σk
j=1randomj(l)

, (2.4)

where l is the index of iteration, randomj(l) is the function used to create a uni-
formly distributed random value in the range [0, 1].





Chapter 3

Optimisation methods

This section describes the conventional (classical) and meta-heuristics methods used
for solving optimisation common problems of machine elements and assemblies.
Main contribution of this section is survey of some optimisation methods that are
applicable to solving practical optimisation problems such as load distribution prob-
lem in a meshed gear pair. Additionally, there is a contribution with survey of
methods that are efficient in solving optimisation problems of ball bearings geome-
try, prediction of potential machine faults and providing help with decision making.
The methods are divided into the following groups: exact optimisation methods,
heuristic, approximation and simulation methods, meta-heuristics methods. Main
focus was in explanation of meta-heuristic methods, such as genetic algorithms,
because they are used to provide one of the main contributions in this thesis.

3.1 Exact Optimisation methods

This section summarizes some exact optimisation methods based on the following
criteria (adapted from [Schneider 2006], [Brunet 2010]):

1. Exact optimisation methods that include algorithms for solving discrete opti-
misation problems.

2. The set of methods that solve optimisation problems by using Newton’s algo-
rithm and its adaptations.

3. Methods that use global optimisation techniques.

4. Methods that use linear programming techniques in order to solve continuous
problems.

3.1.1 Algorithms for Discrete Optimisation Problems

According to [Schneider 2006], [Brunet 2010], the group of methods that solve dis-
crete optimisation problems includes the following: exhaustive enumeration, branch
& bound, dynamic programming, and cutting plane.
Exhaustive enumeration method (EE) is a combinatorial optimisation technique.
The method evaluates all the combinations of discrete variables [Schneider 2006].
The optimal solution obtained is the minimum over all objective function values
calculated for the complete list of feasible solutions. This method assures the global
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optimum, but it may be computationally or memory consuming. In order to reduce
the computational time of EE, some other exact methods were developed.
The Branch & Bound (BB) uses various intelligent ways to avoid visiting solutions
that do not have good quality [Schneider 2006]. Branch & Cut (BC) [Schneider 2006]
is another exact optimisation method used instead of EE due to its reduced com-
putational complexity. Dynamic programming is another exhaustive search method
that intelligently enumerates all solutions of a combinatorial optimisation problem
[Rothlauf 2011]. To be able to apply dynamic programming, the problem has to
be formulated as a multistage process. In that sense, dynamic programming was
proposed by Bellman [Bellman 1964] as an approach to solve multistage decision
process.
Cutting Plane methods perform in an iterative manner and therefore (in general
case) they require exponential effort for NP-complete problems [Rothlauf 2011] .

3.1.2 Differentiable functions optimisation

3.1.2.1 Newton’s Method

This section introduces Newton’s optimisation method. The Google Scholar search
engine offers wide range of resources that explain Newton’s method, as well as
explain how to use the method in solving many optimisation problems. According
to [Brunet 2010], the method has an iterative algorithm that minimises a function
of the form f : Rn → R. Each step of the Newton’s algorithm consists in finding
the minimum of the quadratic approximation of the function f around the current
point x. As stated in [Brunet 2010], this principle can be expressed by using the
second order Taylor expansion of the form:

min
δ
f(x) +∇f(x)δ +

1

2
δTHf (x)δ. (3.1)

In equation (3.1), H denotes Hessian regular matrix, δ is vector, ∇f(x) is gra-
dient. A necessary condition for the optimum of the problem (3.1) is obtained
by setting to zero the derivative of the cost function. This amounts to solve the
following linear system of equations:

Hf (x)δ = −∇f(x). (3.2)

Based on [Brunet 2010], the search direction δ for the Newton method is defined
as follows:

δ = −(Hf (x))−1∇f(x). (3.3)

Note that, in practice, the inverse Hessian matrix in equation (3.3) does not
need to be explicitly calculated. It is possible to compute δ from the equation (3.2)
using an efficient solver of linear systems.
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Fig. 3.1 gives an complete Newton’s method. According to [Brunet 2010], the
update x = x + δ can be replaced by the update x = x + γδ where γ is a positive
value smaller than 1.

Figure 3.1: Newton’s Optimisation Algorithm (taken from [Brunet 2010])

Function f must satisfy certain conditions specified in [Culioli 1994]. In other
words, if the Newton’s method is initialized with x(0) ∈ N , the convergence is
quadratic. Outside of the neighbourhoods of the local minima of the cost function,
there are no guarantee that Newton’s method will converge.

3.1.2.2 Quasi-Newton methods

Quick convergence is an advantage of Newton’s method [Brunet 2010]. This means
that it does not take a lot of iterations to reach the minimum. Each iteration
requires one to compute the Hessian matrix [Brunet 2010]. To reduce the cost of
computation, the goal of quasi-Newton approach is to replace the Hessian matrix
with appropriate approximation [Brunet 2010].

Quasi-Newton [Culioli 1994] relies on the second order Taylor expansion of the
function to optimise, except that the Hessian matrix is replaced with an approxi-
mation A [Culioli 1994]:

f(x+ δ) ≈ f(x) + δ +
1

2
δTAδ. (3.4)

The gradient of this approximation with respect to δ is given as follows :

∇f(x+ δ) ≈ ∇f(x) +Aδ. (3.5)

The general principle of a quasi-Newton approach is to choose the matrix A such
that [Culioli 1994]:

∇f(x+ δ) = ∇f(x) +Aδ. (3.6)

The difference between the different formulation are the properties that the
matrix A satisfies at each iteration of the algorithm.
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3.1.2.3 Newton-Raphson method

According to [Schneider 2006], Newton-Raphson method gives answer on the fol-
lowing question: whether it is possible to find optimal operating points of systems
with many variables and a definite cost for any operating point so that there exist a
cost function whose value can be minimised? [Schneider 2006]. To answer on this
question, let’s start with continuous function, denoted by H(x), with single vari-
able x. Additionally, suppose that it is not expensive to compute derivatives of
H(x) [Schneider 2006]. In this case, if the starting value of x is not too far from a
minimum, the Taylor expansion of the form [Schneider 2006]:

H(x) = H(x0)− b(x− x0) +A(x− x0)2/2, (3.7)

will allow the "stimulation" of the value of the minimum (the point at which the
first derivative of H disappears), at the point where the following condition should
hold [Schneider 2006]:

b = A(x− x0). (3.8)

By guessing the next approximation, x1, for the point of the minimum will be
[Schneider 2006]

x1 = x0 + b/A (3.9)

Based on [Schneider 2006], the last formula will give a quadratically convergent
iterations of approximations to the minimum [Schneider 2006]. In this case the
error in minimising H(x) decreases by the square of the deviation remaining in x

with each iteration [Schneider 2006].

3.1.2.4 Gauss-Newton method

The Gauss-Newton method [Culioli 1994] is an optimisation algorithm used to min-
imise a cost function that can be written as a sum of squares. The following formula
expresses such function:

f(x) =

m∑
i=1

(fi(x))2 , (3.10)

where f : Rn → R, x is vector, and each fi (i ∈ [1,m]) is a function of the form
fi : R → R. The only hypothesis that must be satisfied for the Gauss-Newton
method is that the functions fi are all differentiable [Culioli 1994] . Equation (3.10)
is the definition of a least-squares problem. Least-squares optimisation problems
are important since the corresponding cost functions often arise when estimating
the parameters of a parametric model [Culioli 1994]. The derivation of the Gauss-
Newton method is more conveniently done by considering the minimisation of a
vector-valued function F : Rn → Rm, in the following way [Culioli 1994]:

min
x
‖F(x)‖2, (3.11)

where F is defined as:
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F(x) =

 f1(x)
...

fm(x)

 . (3.12)

In formula (3.12), x are vectors. Note that, solving the problem (3.11) is equiv-
alent to minimising the function f as defined in equation (3.10) [Culioli 1994]. The
Gauss-Newton method is an iterative algorithm where each iteration consists in min-
imising the first-order approximation of the function F around the current solution.
The first-order approximation of F is given by [Culioli 1994]:

F(x+ δ) = F(x) + JF (x)δ. (3.13)

In Gauss-Newton method, each iteration tries to determine the step δ, by solving
the following minimisation problem [Brunet 2010]:

min
δ
‖F(x) + JF (x)δ‖2. (3.14)

Problem (3.14) is well known as a linear least-squares minimisation problem, that
does not require many computations [Brunet 2010]. According to [Brunet 2010],
Fig. 3.2 illustrates the complete principle of the Gauss-Newton method.

Figure 3.2: Gauss-Newton method (taken from [Brunet 2010])

The step δ is a descent direction [Björck 1996] (see page 38 in [Brunet 2010]). As
stated in [Brunet 2010], if the algorithm converges then the limit is a stationary point
of the function f (but not necessarily a minimum). However, with no assumptions
on the initial solution, there is no guarantee that the algorithm will converge, even
locally.

It is stated in [Brunet 2010] (see page 38), that the convergence speed of the
Gauss-Newton method is almost quadratic, but only in case of acceptable starting
point and a "nice" function f (i.e. a mildly nonlinear function). Even more, it
can be worse than quadratic if the starting point is far from the minimum or if the
matrix JTFJF is ill-conditioned [Brunet 2010].
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Adapted Newton’s methods, also, play an important role in solving least-squares
minimisation problem [Levenberg 1944]. The following subsection examines meth-
ods [Marquardt 1963] for global optimisations, and discusses their relationships with
Newton’s method.

3.1.2.5 Levenberg-Marquardt method

The content and the presentation of this section is inspired by [Madsen 2004] and
[Brunet 2010]. The Levenberg [Levenberg 1944] and the Levenberg-Marquardt method
[Marquardt 1963] are an versions of the Gauss-Newton method [Brunet 2010]. The
Levenberg-Marquardt algorithm is given in Fig. 3.3 [Brunet 2010].

Figure 3.3: Levenberg-Marquardt (taken from [Brunet 2010])

The Levenberg algorithm [Brunet 2010] solves a least-squares minimisation prob-
lem proposed by [Levenberg 1944]. Slight variation of the initial method of Lev-
enberg algorithm, also known as the Levenberg-Marquardt algorithm, is given in
[Marquardt 1963]. The step for the Levenberg-Marquardt algorithm, denoted as δlm
where lm in index denotes short description of first words of name for Levenberg-
Marquardt algotirhm, is defined as [Marquardt 1963]:

(JTJ + λdiag(JTJ))δlm = JT f. (3.15)

The linear system of equations (3.15) is called augmented normal equations. The
value λ is a positive value named the damping parameter, and J is the Jacobian ma-
trix of the function f evaluated at x, and fT = (f1(x), ..., fm(x)) [Marquardt 1963],
where m ≥ 1, m ∈ N . The matrix (JTJ + λdiag(JTJ)) has a property of be-
ing a positive definite. Therefore, δlm is necessarily a descent direction. For large
values of λ, it holds δlm ≈ − 1

m∇f [Brunet 2010]. In this case, the Levenberg-
Marquardt algorithm is almost a gradient descent method (with a short step)
[Brunet 2010]. This strategy is appropriate when the current solution is far from
the minimum [Brunet 2010]. On the contrary, if λ is a small value, then the
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Levenberg-Marquardt step δlm is almost identical to the Gauss-Newton step δgn
[Marquardt 1963], [Madsen 2004]. This is a desired behaviour for the final iter-
ations of the algorithm since, near the minimum, the convergence of the Gauss-
Newton method can be almost quadratic. The length and the direction of this step
are affected by the damping parameter [Brunet 2010]. In this case one does not
need for a line-search procedure in the iterations of this algorithm [Brunet 2010].
The value of λ is changed along with the iterations based on the following strategy
[Brunet 2010]:

1: If the current λ results in an improvement of the cost function, then the step
is applied and λ is divided by a constant ν (with, typically, ν = 2).

2: On the contrary, for the iteration where the current λ increases the function,
the step is discarded and λ is multiplied by ν.

Moves 1 and 2 are strategies for updating the damping parameter [Brunet 2010].
More details about the strategy are given in [Madsen 2004].
Next section introduces another algorithm that falls into exact optimisation meth-
ods, and it is known as Newton-Raphson [Schneider 2006]. The algorithm is solving
linear-continuous problem [Schneider 2006], where state of a system can be described
with an N-dimensional vector x with real-valued components [Schneider 2006].

According to [Brunet 2010], Iteratively Reweighed Least Squares and Golden
Section Search (GSS) algorithms apply to minimisation of function f : R → R
[Brunet 2010], over given interval. In case of second one, the function f should be
continuous and unimodal on the given interval [Brunet 2010]. For the first case of
minimisation, the function is f(x) =

∑n
i=1w(x)‖fi(x)− yi‖2, where w is a function

from Rn to R [Brunet 2010]. The GSS algorithm works on the principle of refining
a set of 3 locations x1 < x2 < x3 with the assumptions that f(x2) ≤ f(x1) and
f(x2) ≤ f(x3) [Brunet 2010].

3.1.2.6 Active Set Method

Active set method for nonlinear optimisation is based on sequential linear program-
ming (SLP) methods.

If the problem is to find

minx f(x) subject to a contraint g(x) ≥ 0, where f(x) is quadratic objective
function and f(x) : Rn → R.

SLP methods are solving a trust-region LP around the current iterate xk, given
by:

mind f
T
k d subject to gk +DT

k d ≥ 0 and ||d||∞ ≤ ∆k,

where hk = ∇f(xk), gk = g(xk), and Dk = ∇g(xk)T [Leyffer 2005].
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The solution of this LP provides an estimate of the active inequality constraints,
which is used to define an equality constrained quadratic programs(QP) to compute
a second-order step.

Active Set (AS) methods are two-phase iterative methods that provide an es-
timate of the active set at the solution. In the first phase (the feasibility phase
or phase 1), the objective is ignored while a feasible point is found for the con-
straints h(x) = b and D(x) ≥ v, where D is inequality constraint matrix, and v

is constant vector. In the second phase (the optimality phase or phase 2), the ob-
jective is minimised while feasibility is maintained. For efficiency, it is beneficial
if the computations of both phases are performed by the same underlying method.
The two-phase nature of the algorithm is reflected by changing the function being
minimised from a function that reflects the degree of infeasibility to the quadratic
objective function.
Suppose that x0 is feasible point. Active-set methods are computing a sequence of
feasible iterates {xk} such that xk+1 = xk + ∆kpk and f(xk+1) ≤ f(xk), where pk
is nonzero search direction, and ∆k is nonnegative step length. Active-set methods
are based on Farkas’ Lemma [Wong 2011]. The lemma states that a feasible point
x myst satisfy first order optimally conditions or to be starting point of a direction
such that Bap ≥ 0 and D(x)T p < 0, where Ba is active constraint matrix.
One technique to find a solution to the first order necessary optimality conditions
here is to guess the subset of inequality constraints which will be active at the
optimum, called the active set [Leyffer 2005], [Wong 2011], [Murty 1988].

Methods that can be considered as active set methods are

• Successive linear programming (SLP)

• Sequential quadratic programming (SQP)

• Sequential linear-quadratic programming (SLQP)

• Reduced gradient method (RG)

• Generalized reduced gradient method (GRG)

3.1.3 Algorithms for Linear-Continuous problems

3.1.3.1 Simplex method

The simplex algorithm solves the linear problems where the state of a system can be
described with an n-dimensional vector x with real-valued components [Schneider 2006].
The cost function is given in the following form [Schneider 2006]:

f(x) = c1x1 + c2x2 + ...+ cnxn = cx (3.16)

with c ∈ Rn and xi > 0 ((∀i)(i = 1, . . . , n)). The simplex algorithm performs over
a set of linear inequalities. It means that, in case of two dimensions, optimisation
problem can be solved geometrically [Schneider 2006] by determining the region of
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feasible solutions, also known as the polytope. Authors in [Schneider 2006] stated
that graphical solution is not possible for dimensions higher than two. In all cases,
set of inequalities can be transformed into set of equalities and solved by using
matrix calculus.

3.1.3.2 Cholesky factorisation method

Cholesky factorisation method is well known tool that efficiently solves linear equa-
tions [Davis 1999]. The method supposes that every symetric matrix A can be
written as

A = RRT , (3.17)

where R is called the Cholesky factor of A [Davis 1999] [Brunet 2010]. Additionally,
we suppose that the matrix A is positive definite because all R should be real
numbers, and not complex numbers. Suppose that the following equation has to be
solved:

Ax = b, (3.18)

with positive definite A of order n, and b ∈ Rn. According to [Brunet 2010], the
algorithm works as follows:

1. Factorise matrix A as RRT .

2. Solve RRTx = b.

The costs of factorisation is (13)n3 flops. To solve equation RRTx = b one should
use forward and back substitutions [Davis 1999]. Although efficient, this approach
works only if the problem is well-conditioned [Davis 1999]. Practically speaking, the
Cholesky factorisation solves efficiently sparse matrices.

QR Factorisation method [Brunet 2010] is used to solve linear least-squares min-
imisation problem of the form [Brunet 2010]:

min
x
‖Fx− y‖2 (3.19)

with F ∈ Rm×n, m ≤ n, and y ∈ Rm . The method is based on Cholesky fac-
torisation method [Brunet 2010] and it can be solved by using back-substitution
algorithm.

3.2 Heuristic, Approximate and Simulation methods

This section covers four methods from the group of heuristics, approximate and
simulation methods. According to the author’s best knowledge and practical expe-
rience, these four methods are very applicable in solving problems that require a lot
of memory to be solved in comparison to the exact optimisation methods analysed
in previous section. Heuristics methods may produce results by themselves, improve
the efficiency of other optimisation algorithms by generating good starting values.
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Approximation methods obviously find solution that is close to exact one, while sim-
ulation methods are applicable in manufacturing engineering for simulation models
for static and dynamic analysis of different types of objects.

3.2.1 Finite elements model method

The finite element method (FEM) is from the group of the simulation methods, very
often used in solving the problems from mechanical engineering. FEM is used in
building, modeling and simulation of advanced engineering systems [Liu 2003]. FEM
helps in checking workability of the product to be finished, and more importance
the cost of effectiveness [Liu 2003]. According to [Liu 2003], the FEM procedure of
computational modeling includes the following steps:

• Modeling of the geometry.

• Meshing (discretization).

• Specification of material property.

• Specification of boundary, initial and loading conditions.

Engineers during modeling of engineering systems try to reduce its complexity by
using techniques borrowed from geometry. Geometry of such complex engineering
systems can be represented by geometry of its elements. For example, curved parts
of the geometry and its boundary can be modeled by using curves and curved sur-
faces [Liu 2003]. Software for modeling geometry allows engineers to rotate and
translate created lines and curves. According to the practical experience in man-
ufacturing engineering, modeling geometry helps to understand model of creating
complex system, use patterns in geometry to optimise some elements of the engi-
neering system, and finally having documentation of the engineering system that is
very important for later maintenance of the system and its improvements.
To solve complex modeling problem in manufacturing engineering, engineers try to
divide problem domain in smaller elements (also known as cells) [Liu 2003]. The
techniques of dividing domain, in FEM, by using set of grids and nodes is known
as meshing [Liu 2003]. Solution within cells is approximated by using, for example,
polynomials [Liu 2003].
Almost every engineering system has more than one material. For simulations in
FEM, it is important to define its properties [Liu 2003]. During modeling of engi-
neering system, obtaining these properties is not easy task. Mostly, engineers use
available databases of material properties. By experience in particular domain, en-
gineers already know many properties of materials to be used during FEM.
The most important role in solving simulation, during the application of FEM meth-
ods, is boundary, initial and loading condition [Liu 2003]. User of a system specify
these conditions to the geometrical identities (such as points, lines or curves), or
elements of grid [Liu 2003].
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3.2.2 Pattern search

An overview of Pattern Search (PS) method based on Hooke-Jeeves (HJ) Pattern
Search optimisation algorithm [Stanimirovic 1999], [Wetter 2003] is given in the fol-
lowing lines. The HJ algorithm is known as generalized pattern search algorithm.
As stated in [Wetter 2003], [Lai 2007] the HJ constructs sequence of iteration, also
known as moves, among which exploratory moves and pattern moves can be distin-
guished. The first move achieves as a result value of function f(x) in the neigh-
bourhood of the current basic point xk. Each variable xkj from xk = (xk1, ..., x

k
n) of

function f(xk)(k = 1, . . . , n) is changed for a given incremental ∆ and the corre-
sponding function value is calculated. If function value is reduced, also noted as if a
move is successful, then new value of that variable will be retained. Upon analysing
all available variables, new basic point xk+1 is reached. If the function reduction
fails, then xk+1 = xk holds. The pattern move improves the speed of search by
using information about function f(x) in order to determine the most appropriate
search direction [Lai 2007]. To explain in details how these moves work, steps of HJ
algorithm described in [Stanimirovic 1999] are recalled. Instead of moves, authors
[Stanimirovic 1999] use term search.

At the beginning, the initialisation of all coordinate values at some point x0 is
performed, and the starting value for incremental step ∆ is determined. The initial
point x0 becomes the first basic point, i.e. x0B = x0. Next, exploratory move I
is run where variables are changing by given incremental step, one at a time. In
the kth iteration, the basic point xkB = (xk1, . . . , x

k
n) and xk+1

1 = xk1 + ∆. During
the exploratory move I, if f is improved, then xk+1

1 = xk1 + ∆ is adopted as a new
element of xk+1

B . If f is not improved, then xk+1
1 = xk1−∆ and the objective value of

f is checked for the improvement. The process of changing xkj (j = 2, . . . , n) by some
∆ is the same as for xk1, until all the independent variables have been changed and
the exploratory move I is completed. Each time the current value of f is compared
with the value of f at previous point [Stanimirovic 1999]. If the improvement of
the function f by changing the variable xj for +∆ or −∆ is not reached, then
the previous value of coordinate is kept, i.e. xk+1

j = xkj . The exploratory move I
produces new basic point xk+1

B .
After applying exploratory move I, pattern move is applied by defining the new
starting point as follows: xk+2

B = xk+1
B +(xk+1

B −xkB). The alternative for determining
xk+2
B was also considered in [Stanimirovic 1999].
As a continuation of pattern move, exploratory move II is applied. Success of

pattern move is provided, after success of exploratory move II. The same holds
for failure of pattern move. It can be claimed that pattern move fails if f is not
improved after exploratory move II. In this case ∆ is reduced gradually. On the
contrary, if f is improved after applying exploratory move II, the last point reached
at this step is coined as new basic point xk+2

B . The whole process is finished when
∆ is less than some pre-specified value. An implementation of the HJ algorithm is
given in [Stanimirovic 1999].



30 Chapter 3. Optimisation methods

3.2.3 Bayesian networks

Bayesian networks (BN) belong to the class of artificial networks that deal with
probabilistic models [Ben-Gal 2007]. In another words, they represent knowledge
in uncertain domain by using graphs, more precisely, Directed Acyclic Graphs
(DAGs). Each node in a DAG represents a random variable, and the edges between
the nodes denotes probabilistic dependencies among the linked random variables
[Ben-Gal 2007]. According to [Ben-Gal 2007], they became extremely applicable
in last decade. The following, (non formal) definition of BN, is borrowed from
[Ben-Gal 2007] (see page 1 in [Ben-Gal 2007]).
The network is defined by a pair B = 〈G,Θ〉, where G is the DAG whose nodes
X1, X2, ..., Xn represent random variables, and whose edges represent the direct de-
pendencies between these variables [Ben-Gal 2007]. The graph G encodes indepen-
dence assumptions, by which each variable Xi is independent of its non-descendents
given by its parents in G [Ben-Gal 2007]. The second component Θ denotes the set
of parameters of the network. This set contains the parameter Θxi|πi = PB(xi|πi)
for each realization xi of Xi conditioned on πi, the set of parents of Xi in G. Finally,
the following formula holds [Ben-Gal 2007]:

PB(X1, X2, ..., Xn) = Πn
i=1PB(Xi|πi) = Πn

i=1ΘXi|πi (3.20)

It is important to note that B defines a unique Joint Probability Distribution (JPD)
over V [Ben-Gal 2007]. More generally, edge from node Xi to the node Xj states
that a value taken by the variable Xj depends on the value taken by the variable
Xi, or more generally it means that Xi "affects" Xj [Ben-Gal 2007]. It can be also
claimed that there are parent-child relations among nodes in DAG, as follows: the
node Xi is parent of node Xj and, inverse, Xj is child of Xi [Ben-Gal 2007]. It is
important to note that parent-child relations among nodes in this type of networks
are not reflexive. It means that no node is parent of itself.
Bayesian networks learning problem is defined as follows (see page 1 in [Ben-Gal 2007]):
Given training data and prior information (e.g., expert knowledge, casual relation-
ships), estimate the graph topology (network structure) and the parameters of the
JPD in the BN.
There are four methods of learning BN and they are listed as stated in [Ben-Gal 2007]:

• Maximum-likelihood estimation

• Expectation-maximisation (EM) (gradient ascent)

• Search through model space

• EM +search through model space.

3.2.3.1 An example of Bayesian network

The example shown in Fig. 3.4 illustrates a BN. It states a person who might suffer
from a back injury, an event represented by the variable Back (denoted by B). Such
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Figure 3.4: The backache BN example (taken from [Ben-Gal 2007])

an injury can cause a backache, an event represented by the variable Ache (denoted
by A) [Ben-Gal 2007]. S denotes Sport . The back injury might result from a wrong
sport activity. Chair is denoted by C. The back injury might also result from new
uncomfortable chairs installed at the person’s office [Ben-Gal 2007]. It is assumed
that a Worker, denoted by W , may report a similar backache syndrome. All vari-
ables are binary and they are true (T), or false (F). Close to the each node, the
conditional probability table (CPT) is shown [Ben-Gal 2007].
The example in Figure 3.4 shows parent-child relations between nodes, illustrated
by arrows. The parents of the variable Back are the nodes Chair and Sport. The
child of Back is Ache, but the parent of Worker is Chair. Several independence
statements are observed from this BN, by following the BN independence assump-
tion. For example, the variables Chair and Sport are marginally independent, but
when Back is given they are conditionally dependent [Ben-Gal 2007]. This relation
is known as explaining away. When Chair is defined, Worker and Back are condi-
tionally independent. When Back is defined, Ache is conditionally independent of
its parents Chair and Sport [Ben-Gal 2007].
Joint distribution of all the variables is defined by using the chain rule as follows:

P (C, S,W,B,A) = P (C)P (S|C)P (W |S,C)P (B|W,S,C)P (A|B,W,S,C) (3.21)

Previous formula is recognized as factorisation [Ben-Gal 2007]. Instead of the for-
mula above, JPD can be defined in a so called factored form as follows:

P (C, S,W,B,A) = P (C)P (S)P (W |C)P (B|S,C)P (A|B) (3.22)

The inference over BN in practical usage of BN is very important. Main infer-
ence task in BN is to derive unobserved variable, by using probabilistic inference
[Ben-Gal 2007].
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3.2.4 Artificial neural networks

To solve optimisation problems, engineers often use artificial neural networks (ANN).
According to [Prridy 2005], ANN can be defined as a parallel distributed structure
for processing data (information) which has the following properties:

• It is a mathematical model inspired by the biological nervous system.

• It consists of numerous linked processing elements called nodes.

• The node dynamically responds to the input stimulus, and its answer com-
pletely depends on the local information contained in its environment.

• ANN has the property to learn, remember and generalise based on the training
set.

ANN consists of a large number of neurons (connected nodes) that work in parallel
(simultaneously) and are organized by some regular architectures [Liu 2003]. Up-
dated from [Liu 2003], Fig. 3.5 shows a simple mathematical model of biological
neuron, so called M-P neuron. In the ANN model i-th node calculates the weighted

Figure 3.5: Neuron sketch (updated from [Liu 2003])

sum of input signals and as an output generates signal yi = 1 or yi = 0 depending
on whether the weighted sum is greater or smaller than a predefined threshold θi
[Liu 2003]:

yi(t+ 1) = a(

m∑
j=1

wijxj(t)− θi) (3.23)

where the activation function a(f) is a unit step function [Liu 2003]:

a(f) =

{
1 za f ≥ 0;

0 za f < 0.

Training an neural network is important for problems to be solved. For a specific
task to solve a class of functions F , training denotes to find f∗ ∈ F which solves
the task in some optimal sense, by using a set of observations [Liu 2003].
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3.3 Meta-heuristics methods

Meta-heuristics have become extremely efficient in solving real problems based on
optimisation. The basic requirement is to obtain solutions close to optimal in a
reasonable time. In addition they can be used to accelerate other methods e.g., by
providing a good initial solution [Davidović 2006].

3.3.1 Meta-heuristics in general

Generally speaking, meta-heuristics proved to be very successful as integral parts
of the knowledge discover systems within the artificial intelligence [Davidović 2006].
According to [Davidović 2006], [Talbi 2009], [Glover 2003], [Crainic 2010], the most
important characteristics of meta-heuristic methods include :

• Simplicity: They should be based on simple and easily understandable rules;

• Precision: The steps that describe meta-heuristic methods should be formu-
lated in a precise mathematical terms, if possible;

• Consistency: All steps of methods should be in accordance with the rules
which define meta-heuristics;

• Efficiency: The application of meta-heuristics to a specific problem needs to
ensure getting solutions close to optimal for most of real examples, specially
for official test examples(benchmarks) available in that class;

• Effectiveness: The method must provide an optimal or a solution close to the
optimum in a reasonable executive time, for each specific problem;

• Robustness: The method should give equally good results for wide range of
examples from the same class, and not only for some selected test examples;

• Clarity: It should be clearly described to be easily understood and, more
importantly, easily implemented and used;

• Universality: The principles which define the methods should be general to
assure easy application to new problems.

Meta-heuristics methods orchestrate an interaction between local improvement
procedures and higher level strategies to create a process capable of escaping from
local optima and performing a robust search of a solution space [Talbi 2009]. The
procedures utilise one or more neighbourhood structures as the means of defining
admissible moves to transition from one solution to another, or to build or destroy
solutions in constructive and destructive processes [Talbi 2009].
Based on type procedure, the degree to which neighbourhoods are exploited varies.
In the case of certain population-based procedures, such as genetic algorithms, neigh-
bourhoods are implicitly (and somewhat restrictively) defined by reference to replac-
ing components of one solution with those of another, by variously chosen rules of



34 Chapter 3. Optimisation methods

exchange popularly given the name of "crossover." In other population-based meth-
ods, based on the notion of path relinking, neighbourhood structures are used in
their full generality, including constructive and destructive neighbourhoods as well
as those for transitioning between (complete) solutions.

3.3.2 Background to meta-heuristics

Meta-heuristics are designed to help in solving complex optimisation problems where
other optimisation methods have failed to be effective or efficient [Crainic 2010].
They represent general sets of rules (the recipes) to build efficient optimisation
methods [Crainic 2010], [Davidović 2006]. Most important challenge is adapting the
meta-heuristics to a particular problem or a problem class [Talbi 2009]. Some of the
widely used meta-heuristics methods are tabu search, genetic algorithms, simulated
annealing. The structure of the search has many common elements over different
methods. In each step of the search algorithm, there is always a solution (or a set
of solutions) xk, which represents the current state of the algorithm [Crainic 2010],
[Davidović 2006].

3.3.3 Types of meta-heuristics methods

There are three fundamental classification criteria for meta-heuristics [Crainic 2010],
[Talbi 2009], [Voss 2001]: solution treatment, number of solutions and development
inspiration. According to the solution treatment, meta-heuristics are classified as
constructive and improvement. According to number of solutions: single-solution or
population based meta-heuristics are distinguished. Based on the development inspi-
ration, nature-inspired methods are considered opposed to mathematically founded
meta-heuristics [Talbi 2009], [Voss 2001]. These classes are not mutually exclusive
[Voss 2001].

3.3.3.1 Constructive meta-heuristics

Constructive meta-heuristics construct solutions from their constituting elements
[Voss 2001]. This is done by adding one element at a time to a partial solution, an
operation that is also called a move. To improve the quality of the final solutions,
some constructive meta-heuristics include a local search phase after the construction
phase [Talbi 2009], [Voss 2001].

Ant Colony Optimization (ACO) is term used to denote constructive meta-
heuristics that build solutions by mimicking the foraging behaviour of ants [Talbi 2009].
The ACO utilizes multiple artificial agents (known as ants) that construct solutions
in parallel [Talbi 2009]. The ants construct solutions utilising learning, in such a
way that elements that were present in high quality solutions will receive a larger
probability of being selected as a result of their higher pheromone levels [Talbi 2009].
BCO and GRASP are also examples of constructive meta-heuristic methods.
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3.3.3.2 Improvement

Improvement based meta-heuristics operate on complete solutions and apply vari-
ous transformations to enhance them. In most of the cases, local search procedure
is used as the enhancement transformation with an addition of appropriate mech-
anisms to escape from local optima. Some of the well known improvement based
meta-heuristics are Simulated Annealing (SA), Tabu Search (TS), Genetic Algo-
rithm (GA), Variable Neighborhood Search (VNS), recently developed versions of
Bee Collony Optimization (BCO).
Tabu Search (TS) is among the most popular local search based methods. It was cre-
ated by Fred W. Glover in 1986 [Glover 1986] and formalized in 1989 [Glover 1989].
TS is a meta-heuristic employing local search methods used for mathematical opti-
misation [Glover 1986]. In tabu search it is important to distinguish how solutions
are selected from the neighbourhood [Glover 1986]. In each step of the algorithm,
there is a list Lk of solutions that have recently been visited and are therefore
considered as tabu for the next moves in order to avoid cycling.

3.3.3.3 Single solution meta-heuristics

Single solution based meta-heuristics are efficient in solving various optimisation
problems in different domains. At each step, they operate with a single solution
trying either to construct it using basic components and attained knowledge or to
enhance the current best solution by the appropriate transformations. According to
[Talbi 2009], some of them are: Variable Neighborhood Search, Fitness Landscape
Analysis, Simulated Annealing, Tabu Search, Iterated Local Search, Guided Local
Search.
Variable Neighborhood Search (VNS) [Hansen 2010], [Mladenović 1997], are de-
signed for approximating solutions of discrete and continuous optimisation problems.
It computes distant neighbourhoods of the current solution, and moves to a new one
iff an improvement was made [Hansen 2010]. VNS is successfully applied to linear
programming problems, integer programming problems, mixed integer programming
problems, nonlinear optimisation problems [Hansen 2010].

3.3.3.4 Population-based meta-heuristics

Population-based meta-heuristics can be understandable as an operator on a popula-
tion of solutions [Talbi 2009]. At the beginning, the population is initialized. Second
step is that a new population of solutions is generated [Talbi 2009]. Finally, this new
population is integrated into the current one using some selection procedures. The
search process is stopped when a given condition is satisfied (stopping criterion)
[Talbi 2009]. Algorithms such as Evolutionary Algorithms (EAs), Scatter Search
(SS), Estimation of Distribution Algorithms (EDAs), Particle Swarm Optimization
(PSO), Ant Colony Optimization(ACO), Bee Colony Optimization (BCO), and Ar-
tificial Immune Systems (AISs) belong to this class of meta-heuristics [Talbi 2009].
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3.3.3.5 Nature inspired meta-heuristics

Many meta-heuristics are inspired by natural processes. According to [Talbi 2009],
Evolutionary Algorithms and Artificial Immune Systems from biology; Swarm Intel-
ligence Methods (Ant Colony Optimization, Bee Colony Optimization, and Particle
Swarm Optimization) are proposed by analyzing processes in social sciences; and
Simulated Annealing is taken from physics [Talbi 2009].

3.3.3.6 Mathematically based meta-heuristics

Contrary to the nature inspired, there are mathematically-founded meta-heuristic
methods. They use the concepts of metric functions to measure the distance be-
tween various solutions [Talbi 2009]. More preciselly, they utilize various mathemat-
ical transformations to modify existing solutions. Some of them are Tabu Search,
Iterated Local Search, Variable Neighborhood Search, Fitness Landscape Analysis,
Guided Local Search [Talbi 2009].

3.3.4 Further enhancement of meta-heuristics

3.3.4.1 "Hybrid" meta-heuristics

Hybrid meta-heuristics [Talbi 2002] combine algorithms such as population-based
meta-heuristics, single-solution meta-heuristics, mathematical programming, con-
straint programming (CP), and machine learning techniques. As stated in [Talbi 2009],
there are four different types of combinations:

• Combining meta-heuristics with (complementary) meta-heuristics.

• Combining meta-heuristics with exact methods from mathematical program-
ming approaches that are mostly used in operations research.

• Combining meta-heuristics with constraint programming approaches devel-
oped in the artificial intelligence community.

• Combining meta-heuristics with machine learning and data mining techniques.

Hybridisation of meta-heuristics have two major issues such as design and imple-
mentation [Yang 2008]. Design includes functionality and architecture of the algo-
rithm. The implementation includes the hardware platform, programming, model,
and environment on which the algorithm is to be run [Yang 2008].

A typical example of hybrid meta-heuristic isGreedy Randomized Adaptive Search
Procedure (GRASP) [Yang 2008]. It has two parts:

• Constructive.

• Improvement (local search).

Constructive is related to search diversification process, while improvement (local
search) realizing intensification phase [Yang 2008].
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3.3.4.2 Parallelization

Many difficulties arise during solving combinatorial optimisation problems, where
the number of feasible solutions usually grows exponentially with the number of
objects in the initial set. Parallelization of search procedures [Crainic 2010], is one
approach that can remove this shortcoming. Based on [Talbi 2009], parallel and
distributed computing optimise the design and implementation of meta-heuristic
methods in order to reach the following goals :

• Speeding up the search (i.e., reducing the search time).

• Improving the quality of the obtained solutions.

• Improving the robustness;

• Solving large-scale problems.

To improve the final solution quality within a smaller amount of execution time,
the parallel execution is enabled overefficient search through different regions of the
solution space [Crainic 2010, Crainic 2005].

3.3.5 Multi-start meta-heuristics

One of the simplest way to create meta-heuristic method is to restart some heuristic
optimisation procedure from randomly generated initial points [Glover 2003]. For
example, Multi-start Local Search (MLS) is obtained when local search is used as
the heuristic procedure [Glover 2003].

The best solution in a neighbourhood is called a local optimum (as opposed to
a global optimum, which is the best among all solutions in the feasible domain)
[Glover 2003]. When the current solution is a local optimum, a meta-heuristic uses
a strategy to "skip" from this local optimum [Glover 2003]. Depending on the
optimisation problem as a local search, one of the following methods: Pattern search,
Newton’s method, Levenberg-Marquardt method, Golden section search can be used
[Glover 2003].

3.3.6 Genetic algorithm

Genetic algorithms (GA) are inspired by biological evolution based on Darwin’s the-
ory of natural selection. The GA tries to move from one set of feasible randomly
generated solutions to another by applying genetic operation [Haupt 2004]. From
the initial set of the randomly generated solutions, a subset of feasible solutions
with the advantage of containing the best members is selected. Random processes
are constantly used to generate new feasible solutions using solutions obtained in
the previous iteration. The size of permissible set of solutions is the same in each
iteration. For the next iteration, the best solutions are selected with larger proba-
bility in order to provide more accurate solutions. The process is repeated until the
predetermined conditions of stopping are satisfied. Some of the advantages of GA
are [Haupt 2004]:
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• Can optimise both discrete and continuous problems;

• Does not require the original information or the nature of the problems which
it resolves;

• Simultaneously searches from a wide sampling of the cost surface;

• Can be applied to large scale problems (with a large number of variables);

• Is suitable for parallel processing;

• Optimise variables with extremely complex admissible field (avoiding local
minimum);

• May encode the variables so that the optimisation is done with the encoded
variables;

• Can work with numerically generated data, experimental data, or analytical
functions.

These benefits allow GAs to obtain excellent results when traditional optimisa-
tion methods are not able to do the same.

3.3.6.1 Definitions of terms

According to [Kumara 2007] the following fundamental (basic) terms in GA are
defined:

• Population: Represents a set of solutions in the corresponding iteration, or a
set of feasible solutions. Np is the number of feasible solutions in the popula-
tion, also called the population size.

• Generation: A single iteration in the process of GA is called a generation.
Each generation is dealing with population of a size Np (which is not the case
in biology).

• Chromosome: A solution from the population is called a chromosome. For
a given problem it represents the set of variables in a given solution. The
variables in a chromosome do not have actual values; Instead they are coded
[Whitley 1994]. The most commonly used coding is binary, however, integer
or real values codes can also appear.

• Gen: The encoded value of each variable in the chromosomes is called a gen.
Depending on the values that variables can take, GAs are divided into binary,
integer and continuous. Gene of binary GA can take only values 0 and 1, while
generally it can be any real number.
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3.3.6.2 The structure of GA

There are three basic operators of GA [Davidović 2006]:

• selection

• crossover and

• mutation

Figure 3.6: The basic operators of GA (updated from [Davidović 2006])

These operators are executed in each generation until the fulfillment of a pre-
determined stop conditions Fig. 3.6.

Selection is a process in which individual chromosomes are copied onto the next
generation according to their fitness values. Fitness function f(i) is assigned to
each of the individuals in the population in order to define the quality of the cor-
responding solution. The increased value of this function indicates higher quality
of the individual. This function can be either linear, nonlinear, differentiable or
non-differentiable, with or without discontinuities. However, it has to be a positive
function (because the algorithm looks only its value and no other property). A se-
lection operation is usually implemented using the roulette wheel (wheel of fortune)
Fig. 3.7.
Example: Considering a sequence of six chromosomes (binary strings) whose values
of the fitness function are given in the Table 3.1:

As a total performance of the set of chromosomes is equal to 50, in order to select
the individual which will be transferred to the next generation, a number from the
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Figure 3.7: The wheel of fortune (updated from [Davidović 2006])

Table 3.1: Population of six individuals and their fitness values
ID Chromosome Value of the fitness function Cumulative value
1 01110 8 8
2 11000 15 23
3 00100 2 25
4 10010 5 30
5 01100 12 42
6 00011 8 50

Table 3.2: Illustration of the selection process

Random number 26 2 49 15 40 36 9
Chosen chromosome 4 1 6 2 5 5 2

interval [0,50] should be randomly generated. The possible selections are illustrated
in Table 3.2. The described process is entirely equivalent to turning the wheel of
fortune. The value of fitness function directly affects the selection of chromosomes
by using the roulette wheel.

Crossover: Selection takes into account good individuals of the population.
Crossover is a GA operator with the role to create better individuals from the
existing ones. In nature, the progeny has two parents and inherits genes from both
of them. Similarly, the crossover operator takes two chromosomes (parents) and
combines them with the probability pc. The crossover chooses two chromosomes
randomly and then, again randomly, chooses the intersection (crossover) points.
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Figure 3.8: Crossover (updated from [Davidović 2006])

Finally, a random number from interval 0-1 is selected and, if it is smaller than
crossover probability pc, the offsprings are generated: part of genes are exchanged
starting from the intersection point (Fig. 3.8).

Mutation: Although selection and crossover generally lead to better solutions,
they do not bring new quality or information at the level of gene. As a source
of different values of genes (some bits) mutation operation is used. With a low
probability pm, each gene is inverted in a chromosome (Fig. 3.9).

Figure 3.9: Mutation (updated from [Davidović 2006])

The parameters that define GA are [Davidović 2006]:

• Np-population size;

• pc-probability of crossover (crossover rate);

• pm-probability of mutation.

As in the nature, mutation may lead to degenerative individuals (which will be
quickly eliminated by a selection process), or may generate a completely new quality.
Degree of mutations should be carefully selected because it is a random search
operator.





Chapter 4

Optimisation Problems in
Mechanical Engineering

The results from the recent literature related to the optimisation problems with
gears, bearings, gear boxes, shafts and some other mechanical elements and assem-
blies will be described in this section. A detailed description of some optimisation
problems related to the mechanical elements and assemblies is given below. In ad-
dition, in some cases, formal description i.e., mathematical models represented by a
system of equations are also presented. Those models are important since the solu-
tions lead to the optimal parameter values for a given element and/or an assembly.
Each section discusses one class of problems, and gives an overview of works that
are in some way involved in these problems.

4.1 Gears related problems

In connection with the gear optimisation, there is a large number of results in the
recent literature. Gears are among the most important mechanical transmission
elements, thanks to their high efficiency (which can reach over 99% in a gear pair).
Limited resources on our planet force the efficiency related to the usage of fuel and
force increasing of the working life and the power of mechanical systems.

One can find many studies on modelling and design of gears which are followed by
the implementation of the corresponding optimisation process. Transmission errors,
prediction of gear utilization with dynamic load, gear noise and optimal design are
some of the major concerns for the designers.

Errichello [Errichello 1979], Ozguven and Houser [Ozguven 1998] investigated
development of simulation models for static and dynamic analysis of different types
of gears. Harris [Harris 1958] was the first one to study transmission errors. He
showed that the behaviour or the gears at low speeds can be summarized in a set of
statistical errors in the transfer curve.

In later years, Mark [Mark 1978], [Mark 1979] investigated the theoretical as-
pects, related to the vibration of gears. Expressions for the coefficients of Fourier-
series for all components of the static transmission error are derived. They are
obtained by two-dimensional Fourier transformations of local tooth-pair stiffness
and stiffness-weighted deviations of tooth faces from perfect involute surfaces. Re-
sults are valid for arbitrary, specified tooth-face contact regions and include spur
gears as the special case of helical gears with zero helix angle.
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Kohler and Regan [Kohler 1985] discussed the error transmission of the gear from
the part of errors transfer in the frequency domain using the analytical approach.
Kubo and co-authors [Kubo 1991] evaluated the transmission error of cylinder gears
using the contact model.

Friction gear substantially varies depending on the position of the load. Im-
provement of the analysis of compliance is made based on the works of Weber
[O’Donnell 1974] and O’Donell [Heywood 1952]. Sensitivity analysis of friction is
a modified version of Haywood’s method [Kasuba 1961]. These results show the
improvement of compliance sensitivity analysis of friction whit the estimates, us-
ing the tests, FE analysis and results of analytical transformations. Cockerham
[Cockerham 1967] made a computer program for designing the 20-degree pressure
angle of the gear, which ignores the cut off in gear flanks. In order to minimise
size and weight, the optimisation models are presented in [Kamenatskaya 1975],
[Andersson 1973].

The paper [Zhang 1999] provides analysis of teeth in contact and their load
distribution for gears with crossed axes. This approach is based on a model of teeth
in contact with the influences of modification on the teeth, with production errors
and surface deformations. The load on teeth in contact is distributed along the lines
of the tooth surface which coincides with the relative primary direction on surfaces
of teeth in contact. Compared with the existing analyses of teeth in contact which
assume that the contact teeth are solid, the proposed model gives a more realistic
analysis of the errors at gear train, contact patterns and the distribution of the load.
As a numerical example, a contact pair of helical gear with small angle of rotation is
analysed using a computer program that implements the above described approach.
The analysis makes the conclusion that helical gears with a small angle of rotation
have similar coupling characteristics and load distribution as gears with parallel
axes.

In [Flodin 2001] a simplified model for simulate wear in helical gear has appeared.
The helical gear model is designed considering several independent thin sun gears.
Sun gears have the common central axes along which they gradually turn relative
to one another for the size of the angle of inclination of tooth. Load distribution
along the tooth depends on the strength of the tooth, and the tooth strength is
determined by the empirical model which was developed in 1988 in [Simon 1988].
The deformation on the tooth and the deviation from the ideal form caused by
the tooth friction and wear, also affects for the load distribution. The modified
Arcard’s wear model and basic principle called "single point observation principle"
are used in [Flodin 2001]. This principle means that the conditions in the particular
points on the sides of gears are observed. It is assumed that the contact pressure in
this simplified model is constant and equal to the middle Hertzian pressure. Sliding
distance, the point at the sides of teeth compared with interactive surface during the
working cycle is determined by analytic expressions previously used for worm gear
pairs. Results obtained by simulating the simplified model are compared with the
corresponding results obtained from the previously made simulation of an extended
model.
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In [Atanasovska 2006] the description of the procedure developed for investigat-
ing the influence of the addendum modification coefficient value on the load capacity
of cylindrical involute gear is given. The model of meshed gears teeth contact in
FEM is made to enable simultaneously monitoring of tooth flanks stress state and
tooth roots stress state. In order to compare the stress states of meshed teeth’s
flanks and roots during the meshing period for gear pairs with different values of
addendum modification coefficients, the comparative diagrams are made and shown.

A 3D FEM model for simultaneously monitoring strain and stress state of teeth
flanks, teeth roots and parts of gears is simulated in accordance with the analysis
of mathematical solution in [Atanasovska 2007]. Special types of contact finite ele-
ments that define contact of two deformable bodies are used for teeth flanks contact
simulation.

Atanasovska [Atanasovska 2010] investigated the effects of the nominal load
value on load distribution of simultaneously meshing gear teeth pairs, and on the
involute gear load capacity. The presented results confirmed that the nominal load
value has a significant influence on the gear load capacity calculations. In addition,
a detailed description of the iterative numerical method, developed to support the
modelling and analysis of load distribution in meshed gears using FEM, is provided.

In 2010, Zhang and co-autors [Zhang 2010] established a mathematical model
for optimisation in designing gear pair used for the purposes of reducing the load
(gear reducer). The model was developed with an aim to maximise the working life
of bearings and minimise the size. Using a genetic algorithm and genetic tools in
MATLAB for faster and more precise obtaining of optimal solutions, design efficiency
and quality are improved.

In [Jabbour 2009] the analysis of plastic helical gears has been performed. This
analysis takes into account the non-uniform load distribution along the contact line.
The model proposed for the calculation of the load is based on the actual gear
ratio in the meshed gear pairs. In addition, this model provides tooth bending and
contact stress calculations along the contact line.

In [Pedrero 1996] a simple, analytical method for the estimation of the adden-
dum modification factors for gears designed to have a specific balanced sliding is
presented. The analysed model is valid for every value of the pressure angle and
the addendum. The proposed method requires neither iterations nor tabular values,
and that makes it efficient for computer applications.

J. Pedrero [Pedrero 2010] presented a model of non-uniform load distribution
along the contact line, obtained from the minimum elastic potential energy criterion.
This model, combined with the equations of Navier and Hertz, yields more realistic
values of the bending and contact stresses. An approximate, accurate equation for
the inverse unitary potential, allowing analytic calculations of the load per unit
length at any point of the contact line and any position of the cycle of meshing, is
also presented. The same equation, with a slight modification of the coefficients, is
also valid for undercut teeth. Results have been validated by the comparison with
some studies carried out by FEM.

The results related to a balanced model of load distribution along the line of
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contact obtained in [Pedrero 2010] are resumed in [Pedrero 2011]. The extension
of model is established according to the criterion of the minimum elastic potential.
This model combined with the Hertz equation yields more accurate values of the
contact stress. The load per unit length at any point of the line of contact and any
position of the meshing cycle has been described by a very simple analytic equation.
Therefore, it was possible to carry out a complete study of the location and value
of the critical contact stress. A recommendation for the calculation of the pitting
load capacity of spur and helical gears is given.

In [Sánchez 2013], a non-uniform model of load distribution along the line of
contacts in spur and helical gears, obtained from the minimum elastic potential
criterion, combined with the equations of the linear elasticity has been used to
evaluate the fatigue tooth-root stress. The critical value of the stress and the critical
load conditions have been obtained, and a complete analysis of the tooth bending
strength has been carried out. The load per unit length at any point of the line of
contact and any position of the meshing cycle has been described by a very simple
analytic equation. Therefore, it was possible to carry out a complete study of the
location and value of the tooth-root bending stress. A recommendation for the
calculation of the bending load capacity of spur and helical gears is given.

3D FEM for the conduction of the surface contact stress and the root bending
stress calculations of a pair of spur gears with manufacturing errors, assembly errors
and tooth modifications is developed in [Li 2007]. Positions of a pair of parallel-
shaft spur gears are defined in a 3D coordinate system. Then, a tooth contact of
the pair of gears is assumed on a reference face around the geometrical contact line.
This tooth contact on the reference face is called a face-contact model of the gears.
With this face-contact model, contact reference points on the reference face of one
gear are firstly assumed, then a geometrical method that can consider the effects
of manufacturing errors, assembly errors and tooth modifications are presented.
Manufacturing errors, assembly errors, and tooth modifications on tooth contact
are presented to find the responsive contact reference points on the tooth surface of
the second gear (the mating gear).

A set of modern tools for the design of the gear trains is presented in [Ciavarella 1999].
Kinematic optimisation (minimisation and balancing specific slip), static stress anal-
ysis (in order to reduce stress concentration) and development of the initial cracks
(fatigue assessment of previously existing effects) are taken into account. All three
mentioned aspects are integrated into the software developed by the authors. In par-
ticular, boundary element method and FEM network are automatically generated
to match the gears produced with standardised tools. Boundary element method is
used only for automatic subcritical field propagation of initial cracks. On the other
hand, FE networks are used only for cases with no cracks.

Gologlu and Zeyveli [Gologlu 2009] minimised the value of two-phase spiral gear
wheel train taking normal module. The number of gear teeth, gear teeth width and
the flexibility have been considered as variables while the contacts have been treated
as constraints. A stochastic approach based on GA has been applied. The results
have been compared with a developed deterministic design procedure.
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Faggioni and coauthors [Faggioni 2011] presented the basic method of optimi-
sation focused on reducing gear vibrations by teeth profile modifications. A multi-
objective optimisation problem concerned with minimising the noise at a cylindrical
gear pair was investigated in [Szabó 2005]. The results showed that in the case
of the optimal geometry, noise level was reduced for 10% compared to the simpler
geometry case.

In [Li 2008] the adaptive GA approach to multi-objective optimisation problem
of gear train which has been used as a reducer has been proposed. GA in combina-
tion with suitable objective functions has been used in [Barbieri 2008] to find the
corresponding modification on the gear teeth profile.

The face load factor is a common coefficient used in gear design standards that
takes into account the uneven distribution of load across the face width of the
gears caused by the mesh misalignment. In [Roda-Casanova 2013], a FEM that
considers the gears and the corresponding shafts is proposed. The results obtained
from the application of FE analysis to this model are compared with those obtained
from application of the ISO Standard 6336 coefficient-based method (Method C).
Finally, the influence of the gear shafts length, the face width of the gears, the
relative position of the gears over their shafts, the ratio between the pitch radii of
the gears and the their shafts radii, and the relation between the mesh misalignment
and the face load factor, are investigated.

An approach for optimising geometry for the flank of a tooth by minimising
the equivalent contact stress is given in [Guyonnea 2013]. The stress calculation
method is based on Hertz theory. The geometric variation of the flank of the tooth
is achieved relative to the involute profile. The optimum profile is obtained by
Monte Carlo simulation. During this optimisation, a polynomial expression of the
tooth geometry is used. The four characteristic contact points are the parameters
influencing the simulation. The Monte Carlo simulation is compared with analytical
propagation.

Rafiee and co-authors [Rafiee 2010] introduced an automatic feature extraction
system for gear and bearing fault diagnosis using wavelet-based signal processing.
Vibration signals recorded from the two experimental set-ups were processed for
gears and bearing conditions. Four statistical features were selected: standard de-
viation, variance, kurtosis, and the fourth central moment of continuous wavelet
coefficients of synchronised vibration signals (CWC-SVS). The mother wavelet se-
lection was broadly discussed.

In [Mendi 2010a], the dimensional optimisation of motion and force transmitting
components of a gearbox has been performed by GA. The aim was to obtain the
optimal dimensions for gearbox shaft, gear and the optimal rolling bearing. With the
optimisation of the gearbox components, the design with the smallest volume which
can carry the system load was obtained. The results obtained by GA optimisation
were compared to those generated by analytical methods. The comparison indicates
that GA can be a reliable tool in machine element design problems.
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4.2 Bearings related problems

A long fatigue life is one of the most important criteria in the optimum design of
needle roller bearings (NRBs) [Waghole 2014]. Therefore, the dynamic capacity of
the bearing is optimised. The nonlinear optimisation model has been formulated
and threaded with Artificial Bee Colony Algorithm (ABCA), Differential Search
Algorithm (DSA), Grid Search Method (GSM) and Hybrid Method (HM, a novel
approach of combination of the ABCA/DSA and GSM). A total of four design
variables corresponding to bearing geometry, which include the roller diameter, roller
length, pitch diameter and number of rollers, were considered. In addition, three
constraint parameters have been optimised. The constraint violation study is carried
out to prioritise the constraints. The effect of the tolerance of design variables on the
dynamic capacity were investigated by sensitivity analysis. The dynamic capacity
of optimised bearings is found better than those specified in bearing catalogues.

Rolling bearings are widely used as an important component in most of the
mechanical and aerospace engineering applications. The design of rolling bearings
has to satisfy various constraints, e.g., the geometrical, kinematics and the strength,
while delivering excellent performance, long life and high reliability. This invokes the
need of an optimal design methodology to achieve these objectives collectively, i.e.,
the multi-objective optimisation. In [Gupta 2007], three primary objectives for a
rolling bearing, namely, the dynamic capacity (Cd), the static capacity (Cs) and the
elastohydrodynamic minimum film thickness (Hmin) have been optimised separately,
pair-wise and simultaneously using an advanced multi-objective optimisation algo-
rithm: non-dominated sorting based genetic algorithm (NSGA II). These multiple
objectives are conflicting and therefore Pareto optimality was investigated. A sen-
sitivity analysis of various design parameters has been performed, to see changes in
bearing performance parameters, and results show that, except for the inner groove
curvature radius, no other design parameters have adverse affect on performance
parameters.

A constraint nonlinear optimisation procedure based on GAs for designing rolling-
element bearings has been developed in [Rao 2007]. Based on maximum fatigue life,
the objective function and associated kinematic constrains have been formulated.
The design parameters include the bearing pitch diameter, the rolling element di-
ameter, number of rolling elements and inner and outer-race groove curvature radii.
The constraints contain unknown constants, which have been given ranges based of
parametric studies through initial optimisation runs. In the final run of the opti-
misation, these constraint constants are also included as design parameters. The
optimised design parameters yield better fatigue life as compared to those listed in
standard catalogues. A convergence study has been performed to ensure that the
optimised design variables do not suffer from local extremes.

A new methodology for predicting crack initiation life was presented and vali-
dated experimentally in [Liu 2008]. The methodology considers the total fatigue life
as the sum of crack initiation life and crack propagation life. It has been established
that the crack propagation life can be estimated based on a modified Paris’ law when
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the size of the crack is larger than a certain value. However, a verified method for
estimating the crack initiation life with good accuracy doesn’t exist. The proposed
methodology for predicting the crack initiation life is based on a dislocation model,
and the constants for the model are determined by the crack initiation lives obtained
by a new approach. This new approach determines the crack initiation life by sub-
tracting the predicted crack propagation life from the experimentally obtained total
fatigue life. The developed crack initiation life model is combined with the crack
propagation life model for the prediction of fatigue life. Experimental valuation
shows that the developed model results in the predictions that are improved 14%

with respect to the International Standard.

4.3 Optimisation of the roller bearings design

Different objective functions of rolling-element bearings may be proposed based
on the operating requirements. The most important requirement is the length of a
bearing life which is a consequence of a fatigue life. In a normal operating conditions
of rolling-element bearings, the main reason of failure is contact fatigue.

To solve this problem for a given size of the bearing outline dimensions (i.e.,
bearing bore, d, and outside diameter, D), the dynamic load rating Cr should be
maximised. The dynamic load rating Cr is defined as the constant radial load which
a group of apparently identical bearings can endure for a rating life of one million
revolutions of the inner ring (stationary load and stationary outer ring). The fatigue
life, L, of the bearing (in millions of revolutions) subject to any other applied load
Pr is given by:

L =

(
Cr
Pr

)a
, (4.1)

where a = 3 for radial ball bearings, while in the case of barrel bearing a = 10
3 .

Five design parameters for the given problem are represented as [Chakraborty 2003]:

X = [Db, Z,Dm, fo, fi]
T ,

with:
Db− ball diameter
Z− number of balls
Dm− pitch diameter
fo = roDb− outer raceway curvature coefficient
fi = riDb− inner raceway curvature coefficient
ro and ri outer and inner raceway groove curvature radius, respectively (see Fig. 4.1
and Fig. 4.2).

Based on the dynamic load rating, the objective function can be expressed as
follows:
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Figure 4.1: Ball bearing geometry taken from [Chakraborty 2003]

Figure 4.2: Cut sections of Bearing Races (Sectional plane A, see Fig. 4.1) taken
from [Chakraborty 2003]
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max[f(x)] =

{
max[fcZ

23D1.8
b ], Db ≤ 25.4 mm,

max[3.647fcZ
23D1.4

b ], Db > 25.4 mm,

The problem is then maximised with respect to the constraints which are formu-
lated based on the ISO standards. All constraints will be explained in more details
in Chapter 6.

To satisfy various constraints in optimum design of rolling bearings, application
of GAs is proposed in [Gupta 2007]. The challenge includes optimal design method-
ology in order to achieve multi-objective optimisation of dynamic capacity (Cd),
static capacity (Cs), and the elastohydrodynamic minimum film thickness (Hmin).
Pair-wise and advanced multi-objective optimisation algorithm is used, also known
as NSGA II (non-dominated sorting based genetic algorithm). The algorithm marks
the objectives that need to be optimised, and generates initial population of size N .
In [Gupta 2007], crossover probability was set to 0.85, mutation probability to 0.2,
population size N = 4500 and a maximum number of generations nmax = 50.

In [Rao 2007], a constraint non-linear optimisation procedure based on genetic
algorithm is developed for designing rolling element bearings. The algorithm starts
by choosing population size, maximum number of generations, crossover probability,
and mutation probability. After generation initial population, an increment n = 1

is defined. Reproduction, crossover, and mutation over population is applied while
n ≤ nmax. Termination of algorithm is forced by satisfying condition n > nmax.

4.4 Optimisation of the rotor system

Design of a rotor-bearing system is a challenging task due to various conflicting
design requirements, which should be fulfilled. The paper [Costin 2010] considers
an automatic optimisation approach for the design of a rotor supported on tilting-
pad bearings.

A number of geometrical characteristics of the rotor, including the parameters
defining the configuration of tilting pad bearings, are considered as design variables
for the automatic optimisation process. The power loss in bearings, stability criteria,
and unbalance responses are defined as a set of objective functions and constraints.

The assembled motion equation for the rotor-bearing system is formulated as:

[M ]{q̈}+ (Ω[G] + [C]){q̇}+ [K]{q} = {f(t)} (4.2)

where {q} is the displacement vector, Ω is the angular speed of the rotor, [M ] is the
inertia matrix, [G] is the gyroscopic matrix, [C] is the damping matrix, [K] is the
stiffness matrix, and f is external force vector.

The FEM is used to discretise the above given motion equation. In FEM code,
a node with four degrees of freedom (two displacements and rotations in the lateral
plane) is defined at each disk location, and the inertial properties of disks are in-
troduced in the equations of motion of lateral rotor vibrations. The Euler-Bernoulli
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beam theory is employed to determine the mass and stiffness matrices of beam
elements.

The code uses a vector approach to transform the second order equation (4.2)
into the the first order equation:

{ẋ} = [A]{x}+ {b} (4.3)

where

[A] =

[
0 I

−M−1K −M−1(ΩG+ C)

]
, (4.4)

{x} =

(
q

q̇

)
(4.5)

and
{b} =

(
0

M−1f

)
(4.6)

which can be easily solved.
Therefore, the considered single-objective optimisation problem can be presented

in the following standard form:

min f(x) where x =
[
x1, x2, · · · , xn

]T (4.7)

such that: aj ≤ gj(x) ≤ bj , j = 1,m and hk(x) = 0, k = 1, l. The functions
f(x), gi(x) and hk(x) are the functions of the independent variables xi. Function
f(x), known as the objective function, identifies the quantity to be minimised. The
functions gi(x) and hk(x) are used to define constraints. The feasible space where
one can find the best solution is usually n-dimensional rectangle defined by using
their upper and lower bounds,

xil ≤ xi ≤ xiu, for i = 1, n.

Formulated design optimisation problem is solved using the heuristic optimi-
sation algorithms, namely GA and PSO. Numerical example for demonstration of
the rotor modelling is given as: the centrifugal compressor, which is approximately
2.8 m in length and 954kg in weight, has been discretised into 34 beam elements
(sections) with 35 nodes (stations) using an "in-house" code for the rotor dynamics
analysis. The presented computational results show that both heuristic algorithms
have found design solutions with better performance than the nominal design and
GA have exhibited the fastest convergence.

4.5 Optimisation problem of working load

For the assessment of working capacity of machine parts, components and assem-
blies it is essentially important to analytically and experimentally determine the
workload. For gear pairs it is very complex to determine the characteristics and the
intensity of the load due to the strong influence of kinematic, geometric conditions
and accuracy grade. Workload, based on the power and movement speed is referred
to as nominal load [Ristivojević 2002]:
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Fnom = f1(P ;ω) or Fnom = f2(P ; v)

Exact determination of the workload characteristic (the actual workload) is
very complex in most cases. In addition, it is sometimes economically unjustified,
because, apart from the theoretical research, it also requires the experimental eval-
uation. Therefore, the analysis is usually based on the applicable load of machine
parts or assemblies. Nominal load is translated into relevant, based on the factors
of working conditions, and the applicable load factor K.

Fmer = FnomK; K ≥ 1

In [Ristivojević 2002], this factor does not include the entire range of operating
conditions. Instead, the theoretical and experimental investigations are conducted
for a specific class of working conditions. The results are presented in the form of
tables and/or diagrams. Typical examples of this procedure are the gears and roller
bearings factors of working conditions:

In the teeth of gear pairs, there are two load distribution [Ristivojević 2002]:
(1) The load distribution at the meshed pair of teeth;
(2) The load distribution along the current line of contact.

Optimising the impact of these two distributions on the relevant tooth load
is very important. Load transfer using the gear pair, implies a non-uniform load
distribution during the meshing process. As a result of load transfer, contact and
tooth-root stresses appear. These stresses are the main component of the budget in
the design process calculation and the working life of a gear pair depends on them.
According to the variation of gear parameters from nominal values and based on
the number of teeth in contact, a non-uniform distribution is created and it takes
into account various values along the line of contact as illustrated in the Fig. 4.3.

The equation for the maximum contact stress (4.8) and tooth-root stress (4.9)
in the distribution loads, which are then taken in the calculations, and according to
the standards [ISO 6336-2, ISO 6336-3], are as follows:

σH = ZσH0

√
KAKVKHβKHα ≤ σHP (4.8)

σF = σF0KAKVKFβKFα ≤ σFP (4.9)

In the above mentioned equations for contact stress calculation:

• σH0 represents the nominal contact stress,

• σF0 represents the nominal tooth-root stress caused by errors in the gearing
teeth that are strained with static nominal torque;

• Z is a contact factor that turns the contact stress at the point of teeth contact
during meshing to the internal contact points (different for pinion and wheel);
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Figure 4.3: Contact model of a gear pair taken from [Milojević 2013]

• KA is the application factor, which takes into account the load increment due
to externally influenced variations of input or output torque;

• KV is the dynamic factor, which takes into account the load increment due to
internal dynamic effects;

• KHβ is the face load factor for contact stress;

• KHα is the transverse load factor for contact stress;

• KFβ is the face load factor for tooth-root stress;

• KFα is the transverse load factor for tooth-root stress;

• σHP /σFP is the permissible contact/bending stress.

The load distribution factor in the gears of spur and helical gear, according to
the ISO standard [ISO 6336-1], takes into account many parameters. In addition, it
is assumed to be variable along the contact line. Models provided in standards are
not consistent with the experimental results due to some changes in gear meshing
along the contact line that produce a non-uniform load distribution. Therefore,
within calculations it is necessary to take into account some additional influencing
factors for the contact and bending stress.

The factors responsible for the characteristic ratio of non-uniform load distri-
bution at a meshed gear pair are KHα and KFα [Zhang 1999]. According to the
standard [ISO 6336-1], these factors are calculated using the following equations:

KHα = KFα =
εγ
2

(
0, 9 + 0, 4

cγα(fpb − ya)
FtH/b

)
, (4.10)
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for gears with total contact ratio εγ ≤ 2,

KHα = 0, 9 + 0, 4

√
2(εγ − 1)

εγ

cγα(fpb − ya)
FtH/b

, (4.11)

for gears with εγ > 2.
Howard [Howard 2001] details a simplified gear dynamic model aimed at explor-

ing the effect of friction on the resultant gear case vibration. The model incorporates
the effect of variations in gear tooth torsional mesh stiffness, developed using FE
analysis, as the gears mesh together. The method of introducing the frictional force
between teeth into the dynamic equations is given. The comparison between the re-
sults with friction and without friction is investigated using MATLAB and Simulink
models developed from the differential equations. The effects of a single tooth crack
on the frequency spectrum and on the common diagnostic functions of the resulting
gearbox component vibrations are also shown.

Kahraman [Kahraman 1992] developed a FEMmodel of a geared rotor system on
flexible bearings. The developed model includes the rotary inertia of shaft elements,
the axial loading on shafts, flexibility and damping of bearings, material damping of
shafts and the stiffness and damping of gear mesh. Coupling between the torsional
and transverse vibrations of gears was considered in the model. A constant mesh
stiffness was assumed. The analysis procedure can be used for forced vibration
analysis of geared rotors by calculating the critical speeds and determining the
response of any point on the shafts to mass unbalances, geometric eccentricities
of gears, and displacement transmission error excitation at the mesh point. The
dynamic mesh forces due to these excitations can also be calculated. The model
has been applied to several systems for the demonstration of its accuracy and for
studying the effect of bearing compliances on system dynamics.

Sabot and Perret-Laudet [Perret-Liaudet 1994] analysed the noise in the gear-
box. Problems with the noise in the cabin of the car or truck can be attributed to
transmission errors. That errors impact the increase of dynamic load on the gears,
shafts, bearings and housing. Such problems were solved using FEM.

In [Sánchez 2008] a GA-based optimisation procedure for the design of gear
transmissions is presented. For gear design, simultaneous discrete and continuous
nonlinear related variables were used. The approach presented uses GAs as a tool
to achieve the optimal (or at least near-optimal) designs.

4.6 Reliability assessment in mechanical systems

A application of Bayesian networks (BN) to the problem of reliability assessment of
power systems is presented in [Yu 1999]. Efficient probabilistic inference algorithms
in BNs not only permit computation of the loss of load probability, but also answer
various probabilistic queries about the system. The advantages of BN models for
power system reliability evaluation are demonstrated through examples. Results of
a reliability case study of a multi-area test system are also reported.
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The application of BN to reliability reassessment of structural system, with
the incorporation of two important features combined with the branch-and-bound
method to improve its efficiency is proposed in [Mahadevan 2011]. BNs for agricul-
tural use are presented in [Kristensen 2002] and a prototype decision support system
for growing malting barley with one main and two sub modules is given. The result
of this system (network) is the set of probabilities for plant growing. In [Lauría 2006]
Bayesian Belief Networks for real-world data representing an information technology
environment, based on combining the techniques like artificial intelligence, statistics,
and computer-based decision making were used. In [Chen 2012] a BN is developed
to model an open press electric shock accident as a result of charged press enclo-
sure. It offers a comparative tool for various safety designs of a machine system to
guarantee the machine inherent safety.

In [Richard 2008] the use of multilevel neural networks is presented for Bayesian
probabilities estimation with analysing the influence of network complexity, the
amount of training data, and the degree to which training data reflect true likeli-
hood distributions to results. The paper [Marquez 2010] presents the nodes of BNs
extended with fault trees by defining the time-to-failure of the fault tree constructs
as deterministic functions of the corresponding input components’ time-to-failure.
This approach is used for solving any configuration of static and dynamic gates
with general time-to-failure distributions and can be used with any parametric or
empirical distribution for the time-to-failure of the system components.

In [Krstić 2009], the probabilistic reasoning is used to analyse the preventive
maintenance of the motor vehicles clutch. The main advantage of probabilistic
reasoning is the possibility of rational decisions making, even when there is not
enough information to completely describe a system.

The paper [Langseth 2007] gives a review of BNs used for reliability evaluation,
especially, the discussion on the properties of the modelling framework that make
BNs particularly well suited for reliability applications. In addition, it points to an
on-going research that is relevant for practitioners in reliability.



Chapter 5

Optimisation Problems in Helical,
Spur and Planetary gears

For the assessment of machine parts, components and assemblies, it is very impor-
tant to determine their experimental and analytical characteristics depending on the
set of relevant parameters. For the proper operation of assemblies and machines, it
is extremely important to investigate all parameters in the gears pre-design. It is
also of great importance to provide balanced distribution of workloads.

Today, optimisation is a common method to improve the properties of mechanical
devices and it has received a significant attention. Many engineering problems have
multiple objectives, including engineering system design and nonlinear optimisation.
Solving engineering problems, especially design optimisation, in most of the cases
involves multiple and conflicting objectives. Within this research, meta-heuristics
are applied on solving optimisation problems at helical, spur and planetary gears.

One of the investigated problems within this research is the optimisation prob-
lem of the transverse load factor at helical and spur gears. Load transmission by
gear pairs is followed by non-uniform load distribution in the meshing process. The
opposite assumption, where the load factor does not change over time along the line
of contact, was made. The goal was to identify parameters with the largest influence
on violating this assumption. It was also necessary to determine the extent of their
changes. For the purposes of developing this model, all parameters which deter-
mine transverse load factor, according to [ISO 6336-1], [ISO 6336-2], [ISO 6336-3],
[ISO 1328], [ISO 53] and [ISO 21771] were considered as relevant. The proposed
optimisation algorithm was based on GA and involved an additional local search
optimisation procedure called at the end in order to improve the solution obtained
by GA. Such a hybrid algorithm has 12 direct input variables affecting the objective
function. The main procedure was divided into several modules: Calculation of
geometry, Calculation of the stiffness and Calculation of the value of total contact
ratio. Since the mathematical model of this problem is nonlinear and continuous,
the corresponding computational methods, such as Newton-Raphson method and
interpolation of three-dimensional function, were implemented. The obtained results
are presented in [Milojević 2013].

Planetary gear trains take a very significant place among the gear transmissions
which are used in many branches of industry such as automobile transmissions, air-
crafts, marine vessels, machine tool gear boxes, gas turbine gear boxes, robot ma-
nipulators and other. Planetary gear trains have a number of advantages over the
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transmission with fixed shafts. The multi-objective nonlinear optimisation of plane-
tary gear trains is considered here. The weighting method is used to approximate the
Pareto set. This method transforms the multi-objective optimisation problem into
a single-objective optimisation problem by associating each objective function with
a weighting coefficient and then minimising the weighted sum of the objectives. The
proposed GA-based approach has produced quite satisfactory results promptly sup-
plying the designer with the preliminary design parameters of a planetary gear train
for different gear ratios. The obtained results [Rosić 2011a, Rosić 2011b] showed
that the genetic algorithm is useful for application in optimisation of planetary
gears design.

5.1 Optimisation of transverse load distribution factor
of helical and spur gears

The model of meshing, based on the assumption that the transverse load factor
does not change over the time and along the line of contact, is adopted in this
research. Moreover, the assumption includes that these load factors have the same
value KHα = KFα = 1, for both double and single pair tooth-contact, in order to
determine if there are still some deviations from the assumptions and the extent of
their changes.

In addition, the rigidity of the pair of teeth was taken into consideration as a
very meaningful parameter. Rigidity is influenced by a lot of input data that are
used for optimisation (it is adopted that the gears are made from steel). A new
approach to calculating the best values of all relevant parameters for meshing gears,
in such a way that the load is uniform at any point of the line of contact, has been
presented. All influential parameters were varied with the time, but the parameters
of the basic rack were pre-approved from [ISO 53] and as such were considered to
be constant input parameters.

This new method allows finding the optimal geometry with respect to many
other relevant parameters based on meshing of helical and spur gears Fig. 5.1. The
model is evaluated as the simulation of gear meshing along the line of contact.

5.1.1 Load distribution model of helical and spur gears

Load transmission by gear pairs is followed by non-uniform load distribution in the
meshing process. As a result of load transmission, the root stress on the teeth
contact surface occurs. These stresses are the main parameters in gear calculations,
design procedures and period of exploitation.

Due to gear parameters deviations from nominal values and depending on the
number of teeth pairs in contact, the appearing stress was followed by non-uniform
load distributions and different values along the line of contact, as shown in Fig.
4.3.

The maximal contact stress and the tooth-root stress in load distribution, that
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Figure 5.1: (a) Spur Gears Geometry (b) Helical Gear Geometry taken from
[Akinnuli 2012]
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were taken into consideration for further calculations, are calculated by Eqs. (4.8)
and (4.9) according to [ISO 6336-2] and [ISO 6336-3].

Based on ISO standard [ISO 6336-1], transverse load factor of helical and spur
gears depends on many parameters and it is assumed to be variable along the contact
line. Models given by standardisation are not consistent with the experimental
results since the changing meshing stiffness of the pair of teeth along the contact line
produces a non-uniform load distribution. As a consequence, some additional load
distribution factors need to be computed in order to determine bending and contact
stresses [Zhang 1999]. According to [ISO 6336-1], these factors are calculated by
equations (4.10) and (4.11).

The set of equations required for the computations of transverse load factors in
helical and spur gears is given below.

z2 = z1u (5.1)

Srn = Srmn (5.2)

tan(αw) = 2(x1 + x2)
tan(α)

(z1 + z2)
+ tan(α)− α (5.3)

yF = arccos

(
z1 + z2

2

(
cos(α)

cos(αw)
− 1

))
(5.4)

Cth = (0.04723 +
0.1551

z1
+

0.25791

z2
− 0.00635x1 − 0.11654

x1
z1
−

0.00193x2 − 0.24188
x1
z2

+ 0.00529x21 + 0.00182x22)
−1 (5.5)

Cr = 1 +

(
log(odn)

5
Sr

5mn

)
; (5.6)

d1 = mz1 (5.7)

fpb = adopted from the Table Kv [Ristivojević 2006] based on the

parameters (x1,mn, d1) (5.8)

ya = 0.075fpb (5.9)

hfp = 1.25m (5.10)

Cb =

(
1 + 0.5

(
1.5−

hfp
mn

))
(1− 0.02(0.348888− αpn)) (5.11)



5.1. Optimisation of helical and spur gears 61

Cm = 0.8 (5.12)

C =

{
CthCmCrCb, x7 ≥ 100,

CthCmCrCbx
0.25
7 , x7 < 100

(5.13)

ha1 = (1 + yF − x2)m (5.14)

ha2 = (1 + yF − x1)m (5.15)

a =

(
(z1 + z2)

2
+ yF

)
m (5.16)

d2 = mz2 (5.17)

db1 = d1 cos(α) (5.18)

db2 = d2 cos(α) (5.19)

c1 = 0.2 (5.20)

c2 = 0.2 (5.21)

h = (2.25 + yF − (x1 + x2))mn (5.22)

da1 = d1 + 2ha1 (5.23)

da2 = d2 + 2ha2 (5.24)

df1 = da1 − 2h (5.25)

df2 = da2 − 2h (5.26)

εβ = 0.9 (5.27)

εα =

√
(da12 )2 − (db12 )2 +

√
(da22 )2 − (db22 )2

mπ cos(α)
(5.28)
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Fth =
FT
b

=
FTKA
b

KA
(5.29)

cγα =

{
C(0.75εα + 0.25), εα ≥ 1.2 and β < 0.5233

0.9C(0.75εα + 0.25), otherwise
(5.30)

The presented equations cover helical and spur gears regardless of the value of
helix angle β. The set of equations that differ with respect to the value of β is given
below. For β = 0:

α = αn (5.31)

αp = αpn (5.32)

m = mn (5.33)

εγ = εα. (5.34)

For β > 0 :

α = a tan

(
tan(αn)

cos(β)

)
(5.35)

αp = a tan

(
tan(αpn)

cos(β)

)
(5.36)

m =
mn

cosβ
(5.37)

εγ = εα + εβ. (5.38)

The above described equations are used within the optimisation procedure pro-
posed in this research.

More precisely, the optimisation function is

min f(V ) = (1−KHα(V ))2, (5.39)

where
V = {z1, u, β, b,mn,

bs
b
, Sr,

FTKA

b
,Q, x1, x2,KA} (5.40)

with respect to the following constraints:

x1 ≥ x2, (5.41)

− 0.5 ≤ x1 + x2 ≤ 2.0 (5.42)
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The solution representation is given as a real valued vector of 12 components,
with respect to the lower and upper bound. To complete the model, namely, to prop-
erly deal with the nonlinearity, some additional numerical procedures are required.
They are described in the next sub-section.

5.1.2 Additional numerical calculations

5.1.2.1 Interpolation of three-dimensional function

In order to find a proper value of the transverse base pitch deviation fpb (see (5.8)),
it was necessary to perform interpolation based on the following variables: the ac-
curacy grade, standard modulus and pitch diameter. Values for the appropriate
base pitch deviation, corresponding to the above-mentioned variables are given in
[ISO 1328], and the three-dimensional functionality is illustrated in Fig. (5.2). The
accuracy grade and standard modulus are direct input values, while the pitch diam-
eter is obtained by calculation. The interpolation is performed through a separate
procedure (module), and the values obtained for the transverse base pitch are dy-
namically transferred to the main program.

Figure 5.2: Functionality of accuracy grade, standard modulus and pitch diameter
taken from [Milojević 2013]

Three-dimensional or trilinear interpolation is the name given to the process of
linearly interpolating points within a box (3D) given values at the vertices of the
box (see Fig. 5.3).
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Figure 5.3: Trilinear interpolation box

The value at position (x, y, z) within the cube will be denoted Vxyz and is given
by

Vxyz =

V000(1− x)(1− y)(1− z)+

V100x(1− y)(1− z)+

V010(1− x)y(1− z)+

V001(1− x)(1− y)z+

V101x(1− y)z+

V011(1− x)yz+

V110xy(1− z)+

V111xyz

5.1.2.2 Newton-Raphson numerical method for solving nonlinear equa-
tion

It is very difficult to find a root of a nonlinear equation algebraically. Using some
basic concepts of calculus, there are several ways of numerically evaluating roots of
complicated equations. For this purpose, commonly used Newton-Raphson method
was selected.

In this research, Newton-Raphson numerical method was used to solve the non-
linear equation of the working pressure angle (5.3), which depends on the number
of teeth on the pinion gear z1, the number of teeth on the wheel gear z2, profile
shift coefficient of the pinion x1 and profile shift coefficient of the wheel gear x2.
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All of these values are direct inputs and they dynamically change their values (in
order to find optimum values). Solving of this nonlinear equation is performed in a
separate procedure (module), and the values obtained for the angle are dynamically
transferred in the main program.

5.1.3 Main procedure

Hybrid algorithm of this procedure, has 12 direct input variables affecting the output
function, as shown in Fig. 5.4, where the main procedure is divided into several
modules and each module will be explained in detail (see Fig. 5.5 and Fig. 5.6). The
different parameters which impact transverse load factor of spur and helical gears
are considered. These parameters are related to geometry, specific load distribution
Ft
b , stiffness C, the application factor KA and the accuracy grade Q.

Figure 5.4: Main procedure algorithm (updated from [Milojević 2013])

The term geometry means optimisation against the number of teeth on the pin-
ion gear z1, gear ratio u (that gives the number of teeth on the wheel gear z2, when
multiplied by the number of teeth on the pinion gear), standard modulus mn, pro-
file shift coefficients of the pinion (x1) and the wheel (x2) and the helix angle β.
All of these factors, together with the pressure angle and the normal pressure an-
gle, directly impact the calculations of pitch diameters, addendum diameters, base
diameters and root diameters.

To be more specific, the calculation of the geometry parameters performed by a
geometry module (illustrated in Fig. 5.5), proceeds as follows: Starting from six (out
of 12) direct input values v1, v2, v3, v5, v10 and v11, the required output values for
z2, df1 and df2 are calculated according to the presented model. The intermediate
dependencies are illustrated by solid arrows in Fig. 5.5. For gears with the helix
angle β > 0, an additional input α is required and it is marked with the dashes line
in Fig. 5.5
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Figure 5.5: Geometry algorithm (updated from [Milojević 2013])

Figure 5.6: Stiffness algorithm (updated from [Milojević 2013])
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The term stiffness means the optimisation against the basic rack factor CB,
correction factor CM , gear blank factor CR, theoretical single stiffness Cth and
the helix angle β. The stiffness value also depends on whether the specific load
is less than 100 N

mm or not (see Fig. 5.6). Therefore, it is evident that specific
load distribution is one of the most significant input values for the optimisation.
In optimizing the basic rack factor CB, the following parameters are taken into
account: a standard modulus mn, the normal pressure angle of the basic rack αpn
and addendum of the basic rack hfp. In this optimisation, the gear blank factor
CR is presented as a function of gear rim thickness SR, and ratio of central web
thickness and gear width (bs/b).

Cth is appropriate for solid disc gears and for the specified standard basic rack
tooth profile. Cth for a helical gear is the theoretical single stiffness, relevant to
the appropriate virtual spur gear [ISO 6336-1]. According to [ISO 6336-1], in this
research, Cth is taken into consideration as a function of the number of teeth on the
pinion gear z1, the number of teeth on the wheel gear z2, the profile shift coefficient
of the pinion x1 and the profile shift coefficient of the wheel gear x2.

The obtained value for the stiffness is then used for calculation of the mean value
of mesh stiffness per unit face width Cγα within Mean value of mesh stiffness per
unit width module (see Fig. 5.4). For the calculation of Cγα, additional intermediate
value, the total contact ratio εγ is needed. Apart from the geometry, the working
pressure angle αw has a great influence on the total contact ratio εγ . The value of αw
is obtained from the Newton-Raphson module. Geometry module outputs enabled
the calculation of another intermediate value, the transverse contact ratio of gears
εα. Transverse base pitch deviation fpb (the values may be used for calculations in
accordance with ISO 6336, using tolerances complying with [ISO 1328]) is obtained
in the Module for interpolation of three-dimensional function. The value of fpb is
used for the calculation of running-in allowance for a gear pair ya and tangential load
in a transverse plane, FtH . Tangential load in a transverse plane, FtH is a function
of tangential load, application factor KA, dynamic factor KV and face load factor
KHβ . The differences between the helical and spur gears are taken into account
through a branch in the simulation depending on the value of the helix angle β.

At this point all is prepared to calculate the KHα, KFα and KV , i.e., the value
of the objective function (5.39) can be determined (see Fig. 5.4).

5.1.4 GA implementation

The proposed optimisation algorithm is based on GA and involves an additional
local search optimisation procedure called at the end in order to improve the solution
obtained by GA. Therefore, it is referred to as hybrid optimisation algorithm, HGA
(Fig 5.7).

Parameter settings of HGA during the optimisation process are shown in Table
5.1. The simulation was iterated three times, with different HGA setups in order
to find the best convergence of the process. As the stopping criterion for HGA the
maximum number of generations was set. In addition, the values for the maximum
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Figure 5.7: Hybrid optimisation algorithm (updated from [Milojević 2013])
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number of stall generations and the function tolerance were specified. Chromosome
is given in formula (5.40) and and it consists of 12 variables v1 · · · v12.

Crossover combines two individuals, or parents, to form the offspring for the next
generation [Matlab 2014]. In three execution of the genetic algorithm for solving
these problem, different types of crossover were applied: Scattered, Single point,
Two point.

Scattered crossover initially creates a random binary vector. Then, it combines
genes with the value 1 from one parent and the genes where the vector is a 0 from
the second parent, to form the child.

Single point crossover initially chooses a random integer n between 1 and the
number of variables (which is 12). To form the child, it selects the vector entries
with the indices less than or equal to n from the first parent and completes the
chromosome with the remaining genes taken from the second parent.

Two point crossover establishes two random integers m and n between 1 and
the number of variables l (l = 12). Furthermore, it selects first m genes and the last
l − n from the first parent, while the remaining genes are taken from the second.
Finally, it merges these genes to form a single chromosome.

Mutation is deployed to make small random changes in the individuals of the
population, which provide genetic diversity and enable the GA to search a broader
space. In three execution of the GA, three different types of mutation were applied:
Uniform, Adaptive feasible and Gaussian.

Uniform Gaussian mutation deploys a two-step process. First, it selects a frac-
tion of the vector entries of an individual for mutation, where each entry has the
same probability as the mutation rate of being mutated. Then, it replaces each se-
lected entry by a random number selected uniformly from the range for that entry.

Adaptive feasible mutation randomly generates directions that are adaptive with
respect to the last successful or unsuccessful generation. A step length is chosen
along each direction so that linear constraints and bounds are satisfied.

Gaussian mutation adds a random number to each vector entry of an individual.
This random number is taken from a Gaussian distribution centered on zero. The
standard deviation of this distribution can be controlled with two parameters. The
Scale parameter determines the standard deviation at the first generation. The
Shrink parameter controls how standard deviation shrinks as generations go by.
If the Shrink parameter is 0, the standard deviation is constant. If the Shrink
parameter is 1, the standard deviation shrinks to 0 linearly as the last generation is
reached.

5.1.5 Results

As shown in Table 5.1, three executions of the same simulation were performed with
different settings of HGA to determine the best possible convergence of the obtained
solution to the required minimum. In all executions HGA has reached the same final
results, which is f = 0. The execution time and number of the stall generations
were different (see Table 5.2). The obtained values for each variable are shown in
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Table 5.1: Selected parameter values for HGA taken from [Milojević 2013]

Name of parameter First execution Second execution Third execution

Population type Double vector Double vector Double vector

Encoding Binary Binary Binary

Scaling func. Proportional Rank Top w. q. 0.4

Selection Roulette Stochastic uniform Uniform

Elite count 4 15 30

for reproduction

Crossover func. Scattered Single point Two point

Population size 40 100 300

Mutation Uniform Adaptive feasible Gaussian

Probability Rate 0.1 - Scale 1.0,

of mutation Shrink 1.0

Max number 1000 1000 1000

of generations

Hybrid func. fminsearch fminsearch fminsearch

Func. tolerance 10(−15) 10(−15) 10(−15)

The remaining parameters are set to their default values

Stopping criteria Maximal number of generations

or number of stall generations (1000)
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the Table 5.3.

Table 5.2: HGA solver simulation properties taken from [Milojević 2013]

First Second Third

execution execution execution

Stopped in 1001 1001 1001

Final time 127 s 130 s 104 s

of process

Convergence Yes Yes Yes

Stopp. criteria Stall Stall Stall

generations generations generations

Stall gen. 900 86 924

Stall time 21 sec 23 sec 20 sec

Optimisation terminated: average change in the fitness value less than options

Convergence obtained in the first, second and the third execution is given in
Figs. 5.8-a, 5.8-b, 5.8-c, respectively. The graph on the top of each figure illus-
trates changing in the value of the fitness function. The corresponding values of the
variables generated as the output of HGA, are presented in the diagram below.

Table 5.3: Final results taken from [Milojević 2013]

Variable Name First Second Third

execution execution execution

v1 z1 44 36 27

v2 u 3.5 3 4

v3 β 21.5◦ 28◦ 30◦

v4 b 69 mm 131 mm 54 mm

v5 mn 10 3 15

v6 bs/b 0, 34 1.048 1.109

v7 Sr 1 2.9 3

v8
FtKA
b

1260 1410 1472

N/mm2 N/mm2 N/mm2

v9 Q 1 3 1

v10 x1 0.905 0.946 0.951

v11 x2 0.806 0.811 0.795

v12 KA 1 1.6 1

f(x) KHα 1 1 1

Optimisation terminated: average change in the fitness value less than options
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Figure 5.8: Convergence in generations taken from [Milojević 2013]
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Although the load transverse factor could take any possible value, it always
converged to the value 1, which affected the distribution of load and made it uniform,
while the influential variables on the load transverse factor took the corresponding
values.

The presented results show that the most influential variable on the value of
load transverse factor is helix angle β, but, in addition, the profile shift coefficients
x1 and x2 also affected changing the value of load transverse factor. HGA could
have chosen the values for the helix angle β from the range 0◦ − 30◦ and it was
usually assigned the values between 20◦ − 30◦ to make the load transverse factor
value converging to 1. It that sense, it can be concluded that the value of helix angle
is influencing the value of the load transverse factor. It is noted that for any number
of teeth (from the range 18 − 54) and any gear ratio (from the range 1 − 5), this
method achieves a value 1 of the load transverse factor, which therefore corresponds
to the uniform load distribution.

The similar situation is with the specific load: at low values of the specific load
distribution, load transverse factor converges to value 1. If the values of the specific
load are higher, the load transverse factor converges to 0.5.

The influence of the profile shift coefficients of the pinion and wheel to the value
of the load transverse factor is as follows: higher differences between x1 and x2
(with respect to the constraints (5.41) and (5.42)) provide convergence of the load
transverse factor to 1. The described results are presented in [Milojević 2013]. Com-
paring to the state-of-the art results, it is shown that there are less simplification
than in models [Pedrero 2011], [Pedrero 2010], [Sánchez 2013], [Zhang 2010]. This
is the first time in the literature that all the geometrical parameters have been
optimised in order to establish uniform load distribution. In most of the investi-
gations, geometry parameters have been given as fixed inputs. In other papers,
a maximum of 6 input parameters have been varied, while the work presented in
[Milojević 2013] is optimising 12 different parameters, categorised in several mod-
ules. In [Pedrero 2010], non-uniform load distribution along the line of contact of
spur and helical gear teeth, obtained from the minimum elastic potential energy
criterion, has been investigated. Calculation of load distribution along the line of
contact line has been validated by deployment of FEM. The minimum of elastic po-
tential energy has been taken into account during calculations. For the purposes of
this study, the geometry parameters such as: number of teeth on pinion and wheel,
pressure angle, helix angle, module, profile shift coefficient, face width and center
distance has been given as fixed inputs, while in [Milojević 2013] this coefficient
has been varied. Also, in [Pedrero 2010] the combinations giving undercut teeth
were avoided, which gives the specific contribution of the work in [Milojević 2013].
The study in [Pedrero 2011] has been restricted only to gears with a transverse
contact ratio between 1 and 2, with non-undercut teeth. In [Milojević 2013], the
algorithm has taken into consideration the differences in calculation based on the
changing values of transverse contact ratio. Thanks to deployment of GA, results
obtained for the load distribution are making it more uniform than the load dis-
tribution obtained in [Simon 1988], [Zhang 1999], which improves these results. In
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[Zhang 2010], only six input parameters as face width, number of teeth on pinion,
module, shaft diameters and distance between the bearings on reducer has been
taken into consideration. In so far known investigations about load distribution at
helical and spur gears, most of the authors have been considering only few isolated
cases, while in [Milojević 2013] it is supposed that all geometrical characteristics can
be varied. The combination of artificial intelligence methods such as GA, enabled
discovery of the most influential parameters for creating uniform load distribution.
Table 5.4 quantitatively compares results of 12 parameters taken as inputs/outputs
for the optimisation of transverse load distribution factor of helical and spur gears.
Criteria taken in this comparison are based on the common parameters used in
[Milojević 2013], [Zhang 2010], [Pedrero 2010] and [Pedrero 2011]. The conclusions
are that [Milojević 2013] analysed 4 additional parameters with respect to the publi-
cations [Zhang 2010], [Pedrero 2010] and [Pedrero 2011]. Ratio of central web thick-
ness and gear width, gear rim thickness, accuracy rate, and application factor are
not taken to be optimised in given research papers. These 4 parameters are the
key parameters for accurate determination of stiffness. Due to the large number of
influential parameters the calculation of teeth stiffness is very complex and mostly is
not taken into consideration. This is pointing out to the advantage of the work pre-
sented in [Milojević 2013]. Columns [Milojević 2013], [Zhang 2010], [Pedrero 2010]
and [Pedrero 2011] represent the ratio of input parameters in each execution. Re-
sults are showing that the optimised value of module mn in [Milojević 2013] is 7.5
times improved with respect to [Zhang 2010]. In [Pedrero 2010] and [Pedrero 2011]
the parameter mn is taken as fixed input and therefore, it is not optimised at all.
There is two times better optimisation of parameter z1 with respect to the same one
optimised in [Zhang 2010]. The best optimisation output in [Milojević 2013] is 44,
but in [Zhang 2010] the best optimisation result is 34.
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Table 5.4: Comparison of [Milojević 2013] with [Zhang 2010], [Pedrero 2010] and [Pedrero 2011]

Parameter [Milojević 2013] Improvement [Zhang 2010] Improvement [Pedrero 2010] Improvement [Pedrero 2011] Improvement
([Milojević 2013]) ([Zhang 2010]) ([Pedrero 2010]) ([Pedrero 2011])

z1 [3,100] Ex. 1: 44. [17,50] Ex. 1: 24. Ex. 2: 34 4:12 NO Ex. 1: 15 Ex. 2: 30 NO
Ex. 2: 36
Ex. 3: 27

u [1,5];h:0.5 Ex. 1: 3.5 Fixed input NI Fixed in all Ex. NO Fixed in all Ex. NO
Ex. 2 :3.
Ex. 3:4

β [0,45] Ex. 1:21.5 Fixed input NO Ex. 1: 0. Ex. 2:15 NO Fixed NO
Ex. 2: 28 Ex. 3:15 . Ex. 4 :15.
Ex. 3: 30

b [10,200] Ex. 1: 69mm. NI NO Ex. 1: 20 . Ex. 2: 8 NO Fixed NO
Ex. 2: 131mm Ex. 3: 32. Ex. 4: 20.
Ex. 3: 54mm

mn [1,50) Ex. 1: 10 NI Ex. 1: 2 Ex. 2: 2 All Ex.=4 NO All Ex.: 5 NO
Ex. 2: 3.
Ex. 3: 15

bs/b [0,1.3] Ex. 1 :0.34 NA NO NA NO NA NO
Ex. 2: 1.048
Ex. 3: 1,109

SR [1,3] Ex.1 : 1 NA NO NA NO NA NO
Ex. 2: 2.9
Ex. 3: 3

FtKA
b

[1,+00) Ex. 1 : 1260 NA NA All Ex. :1000 NO All Ex. : 3840 NO
Ex. 2:1410
Ex. 3:1472

Q [1,8] Ex. 1 : 1 NA NO NA NO NA NO
Ex. 2 : 3
Ex. 3: 1

x1 [-1,+1]; h=0.001 Ex. 1: 0.905 NO NO All Ex.: 0 NO All Ex.: 0.1 NO
Ex. 2: 0.946
Ex. 3: 0.951

x2 [-1,+1]; h=0.001 Ex. 1: 0.806. NO NO Fixed on : 0;0 NO All Ex.: 0.1 NO
Ex. 2: 0.811.
Ex. 3: 0.795

Ka [1,2] Ex. 1 :1 NA NO NA NO NA NO
Ex. 2: 1.6
Ex. 3:1

αw Fixed on: 20 NO NO NO Fixed on : 20 NO Fixed on: 20 NO
Legend:

Ex.=Execution
NO= No output

NA = Not analysed
NO = Not optimised
NI = No information
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5.2 Optimisation of planetary gear train using multi-
objective genetic algorithm

The purpose of this research is to present a method for solving multi-objective
nonlinear optimisation of planetary gear trains. Optimisation of gear train is based
on the genetic algorithm (GA). The weighting method is used to approximate the
Pareto set. This method transforms the multi-objective optimisation problem into
a single-objective optimisation problem by associating each objective function a
weighting coefficient and then minimising the weighted sum of the objectives.

5.2.1 Planetary gear trains

Planetary gear trains are among the most significant gear transmissions. They are
used in many branches of industry such as automobile, aircrafts, marine vessels,
machine tool gear boxes, gas turbine gear box, robot manipulators, etc. Planetary
gear trains have a number of advantages over the transmission with fixed shafts
[Xu 2007].

The advantages of such a transmission are following:

• Under similar operating conditions the planetary transmissions serve longer
and produce less noise compared to the fixed shaft transmissions;

• This power transmission unit can handle larger torque loads relative to its
compact size than any other gear combination in standard transmission;

• Improved efficiency of a gearing system can reduce the requirements on the
capacity of the lubrication system and the gearbox lubricant, thereby reducing
the operation costs of the system;

• Efficiency prediction can assist in estimating the power requirements during
the design stage of a machine and thus ensuring that the system operates
reliably. It can also assist in estimating the power output for a given power
input;

• The input and output shafts are concentric, so no bending moments or torques
are created from radial forces;

• High overall transmission ratio speed.

A planetary gear train consists of three different types of gears: planet, sun and
internal gear (see Fig 5.9).

The effect of instantaneous efficiency of an involute gear drive was studied in
[Radzimovsky 1973] and [Anderson 1986]. The problem of efficiency of the plan-
etary gear train was studied experimentally in [Kasuba 1962]. Gearbox efficiency
optimisation was not normally included in the gearbox design methodology in the
past due to the lack of a technique that could assess a large number of design
variables.
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Figure 5.9: Presentation of an elementary planetary gear set having three planet
gears taken from [Sun 2013].

The introduction of a larger number of criteria considering the desirable perfor-
mances, even the conflicting ones (axial distance - efficiency), represents a significant
step towards the reality of a planetary gear train model solved by the multi-objective
optimisation methods.

There are many papers that present various approaches to finding the Pareto
optimal front, mostly based on the evolutionary algorithms. Articles [Haupt 2004,
Martinez 2009, Holland 1975] are related to a numerical analysis based upon GA,
where the Pareto GA method is defined as a method based on the characteristic of
GA to search for non-dominated solutions. GA starts by generating a random initial
population. Using an iterative procedure, the current population is updated and the
next population is created by using GA operators, namely: selection, mutation and
crossover.

In this GA application, single point crossover is applied in order to combine
two parents to form a child, for the next generation. Single point type of crossover
is working in the way that, initially choose a random integer n between 1 and the
number of variables (which is 10 for this case). To form the child, it selects the vector
entries with indices less than or equal to n from the first parent and selects remaining
genes from the second parent. To perform a mutation process, the adaptive feasible
mutation was deployed. This type of the mutation randomly generates directions
that are adaptive with respect to the last successful or unsuccessful generation. A
step length is chosen along each direction so that linear constraints and bounds are
satisfied [Matlab 2014].

The design of planetary gear trains requires a range of geometrical and kinematic
conditions in order to perform the mounting and appropriate meshing of the gears
during their work. It is necessary to express the above requirements in terms of the
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corresponding functional constraints, whereby all the relevant values of the gears,
and planetary gear trains as a system, are defined in advance. In developing the
optimisation model, one must start with very strict engineering requirements, which
a planetary gear train should fulfil with respect to the efficiency, volume, factor of
safety, etc. Based upon the defined requirements, it follows that it is practically
impossible to describe a planetary gear train regarding the desirable performances
with a single criterion.

5.2.2 Planetary gear train efficiency

According to their kinematic structure, planetary gear trains are complex toothed
mechanisms which can be decomposed into external and internal toothed gears with
the corresponding interaction. Each planet gear has a supporting link, called the
carrier or arm, which keeps the centre distance between the two meshing gears con-
stant. Planets are free to rotate with respect to the carrier. The gear trains in
operation are characterised by losses in the mechanical energy arising as a conse-
quence of the friction between the contact surfaces of the meshing teeth and the
friction in the bearings. The analysis considers sliding losses, which are the result
of the friction forces developed as the teeth slide across each other, the rolling losses
resulting from the formation of an elastohydrodynamic film. The contact starts at
the intersection of the tip diameter of the internal gear with the path of contact at
A2 (Fig. 5.10). The path of contact is tangent to the base circles of two gears. The
contact ends at the intersection of the tip diameter of the external gear with the
path of contact at E2. In this boundary case, the addendum circles of radii ra1 and
ra2 cross the motionless points A2 and E2, respectively. In order to evaluate the
efficiency of an internal gear pair, one must consider the equilibrium of the gears.
Figure 5.10 shows the normal forces Fn, the rolling friction forces FR, and the sliding
friction forces Fm, which suffices 1 for teeth in the path of approach and 2 for teeth
in the path of recess.

On the basis of the models developed for a gear pair with external and internal
gearing, the efficiency of a planet gear train can be determined. The power losses
within the gears are expressed by means of the efficiency. The instantaneous effi-
ciency for internal gear at any particular instant, from the relevant input torque T1,
is determined according to the expression:

ηi =
T2
T1

1

uHgb
. (5.43)

where T2 is the output torque acting on the wheel; T1 - input torque acting on the
pinion; uHgb - relative gear ratio. The overall efficiency for gearing under consideration
may be written as follows:

ηHgb =
1

l

∫ E2

A2

ηidξ. (5.44)

where l is the length of the path of contact A2E2; ξ - path of contact distances. The
instantaneous frictional force due to the sliding of two gear teeth against each other
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Figure 5.10: Forces between gear teeth taken from [Rosić 2011a]

is:
Fµ(ξ) = FnKα(ξ). (5.45)

The friction coefficient is calculated by the method of Benedict and Kelley for min-
eral oil [Benedict 1961]:

µ(ξ) = 0, 0127 log

(
29,66
b Fn

ηνklν
2
ko

)
. (5.46)

where νR is the rolling velocity, νS is the sliding velocity, h is the fluid dynamic
viscosity and b is the face width of gear. Since elastohydrodynamic lubrication film
is minimal, the corresponding instantaneous force is given by the following equation
[Anderson 1986]:

Fr = C1h(ξ)b. (5.47)

where C1 = 9 · 107 is a constant of proportionality.
The gear contact minimum film thickness is calculated by the method of Dowson

and Higginson [Dowson 1977]

h(ξ) = 1, 6α0,6(ηνR)0,7E0,003R
0,43

F 0,13
n

(5.48)

where α is the viscosity-pressure coefficient of lubricant; R - the effective radius of
curvature; E - the Young modulus of gear material. For convenience, the output
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torque of the train is assumed to be constant. From the equilibrium of gears, we
have:

Fn1 =
T1 − p1FR2 − ξFR1

db1 + µ2p1 − µ2ξ
, (5.49)

where
p1 = ξ + pb;

p2 = a sinαw + ξ + pb;

pb = mφ cosα− base pitch ;

p3 = a sinα+ ξ.

The output torque on the driven gear at any any point of time can be expressed
in the form:

T2 = Fn1db2 + p2(µ2Fn1 − FR2)− (µ1Fn1 + FR1)p3. (5.50)

On the basis of the models developed for a gear pair with external and internal
gearing, the efficiency of a planetary gear train may be expressed as follows:

ηbaH =
1− ηHabuHab

1− uHab
, (5.51)

where
ηHab = ηHabη

H
gb. (5.52)

ηHab is the relative efficiency for gear pair a − b; ηHgb - relative efficiency for gear
pair g − b; uHab-relative gear ratio.

Based upon the developed models, computer programs for instantaneous effi-
ciency determination have been devised. The numerical results used for the de-
termination of the instantaneous efficiency of a gear pair with internal gearing are
shown in Fig. 5.11.

In order to achieve the maximal possible value of efficiency, the following objec-
tive functions have to be considered:
- the centre distance

f1(X) =
mnza
cosβ

(1 + uHa−g)
cosαt

cosαwt
(5.53)

- the efficiency

f2(X) =
1− ηHabuHab

1− uHab
(5.54)

- the contact ratio
f3(X) = εα(a−g)(x) (5.55)

- the pressure angle
f4(X) = αw(a−g)(x) (5.56)
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Figure 5.11: Instantaneous efficiencies during the contact period taken from
[Rosić 2011a]

- the safety factor for bending stress

f5(X) = SF (a)(x) =
[σf ]M(a)

σF (a)
(5.57)

- the safety factor for contact stress

f6(X) = SH(a)(x) =
[σH ]M(a)

σF (a)
(5.58)

- the volume of material used for gears

f7(X) = V (x) (5.59)

- the safety factor for bending stress

f8(X) = SF (b)(x) =
[σF ]M(b)

σF (b)
(5.60)

- the outer diameter
f9(X) = Dout(x) (5.61)

The intermediate parameter values are calculated as follows:
- the transverse contact ratio

εα =
0.5(

√
d2a(a) − d

2
a(b) +

√
d2a(g) − d

2
b(g))− a sinαwt

πmt cosαt
(5.62)
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- the function of the pressure angle

invαwt = 2
xa + xg
za + zg

tanαn + invαt (5.63)

- the tooth root stress for the sun gear

σF (a) =
Ft
bmn

YFaYSaYεYβKAKVKαKβ (5.64)

- the critical root stress

[σF ]M = σFlimYSTYNTYδrelTYRrelTYX (5.65)

- the factor of safety from breakage

SF (a) =
[σF ](a)

σF (a)
≥ SFmin (5.66)

- the effective contact stress

σH = ZHZEZεZβ

√
Ft
bd(a)

u+ 1

u
KAKVKHαKHβ (5.67)

- for the sun gear - planet gear

σHa = σHg < [σH ]M = min{[σH ](a), [σH ](g)} (5.68)

- the critical contact stress

[σH ]M = σHlimZNT (ZLZV ZR)ZV ZX (5.69)

- the factor of safety from pitting (sun gear - planet gear)

SHa,g =
[σH ](a,g)

σH
≥ SHmin (5.70)

In addition, it is also necessary to include the functional constraints:
- the factor of safety from bending

g1,2,3 =
[σF ]M(a,g,b)

σF (a,g,b)
− SF > 0 (5.71)

- the factor of safety from pitting

g4 =
[σH ]M(a,g)

σH
− SH > 0 (5.72)

g5 =
[σH ]M(g,b)

σH
− SH > 0 (5.73)
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- the radial interference
g6 = δx > 0 (5.74)

- space requirements

g7 = 2a sin

(
φ

nW

)
− f − da−g ≥ 0 (5.75)

- the condition for an assembly

h1 =
zazb

nWD(zgzb)
− INT = 0 (5.76)

Based on the given objective functions and on the functional constraints, all the
relevant values of the planetary gear train have also been identified.

5.2.3 Optimisation procedure

The optimisation function is

min y =
9∑
i=1

wifi(X),

where

X = {mn, za, zg, xa, xg, xb, a1, nw, h, rct},

with respect to the constraints presented with equations (5.71) - (5.76).
The purpose of assigning weighting coefficients to each objective function is to

transform the multi-objective optimisation problem into single-objective optimisa-
tion problem. Nine functions are optimised simultaneously and the corresponding
weighting coefficients wi, for i = 1, ..., 9 have randomly assigned values.

The considered optimisation problem is addressed by GA based approach. In
GA variables are represented as coded strings in Table (5.5). The coding discretises
the search space of the optimisation problem. Thus, GAs are able to work with
both discrete and continuous functions. GA is useful optimisation method when
other techniques, such as gradient descent or direct analytical discovery, are not
applicable, providing great flexibility to a wide range of applications.

The solution is coded in binary code, and decoded after the optimisation process.
Each integer or real value is represented by a given number of binary digits. This
actually means that the corresponding binary strings may have different length.
Therefore, in order to ensure that crossover operations result with feasible solutions,
the cross-sites should be properly determined. Although some of the variables x1-x10
are continual, a discrete values in specific intervals have been assigned to them with
a determined step (see the Table 5.6). A chromosome is presented with 42 digits
values. A more sophisticated changes in the observed parameters can be achieved
as a part of the future research which would require longer binary codes.
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Table 5.5: GA coding of design variables taken from [Rosić 2011a]

Design variables vector Variables Values Random binary digits String length l

Module mn x1 23 10101 5

Number of teeth za x2 18 1101 4

Number of teeth zg x3 31 11010 5

xa x4 0.4 11100 5

xg x5 0.4 11100 5

xb x6 0.2 111 3

a1 x7 144 11101 5

nw x8 6 101 3

h x9 5.3 11111 5

rct x10 6.0 1111 4

A single 42-bit 1010111011101

individual 011100111001

(chromosome) 1111101111111011111

Mutation is a random process where one genotype is replaced by another to
generate a new chromosome. Each genotype has the probability of mutation, to
change from 0 to 1 and vice versa. Mutation is used to change the elements (genes)
in strings which are generated by a crossover operator. It may improve an existing
gene string and lead the search towards better solutions regions. Mutation is an
important part of GA as it helps to prevent the population from stagnating at any
local optima. The settings of GA used for the considered optimisation problem are
given in Table 5.7.

5.2.4 Results

Pareto optimality can be illustrated graphically by considering the set of all feasi-
ble objective values, i.e., the set of all points in the objective space corresponding
to at least one setting of the design variable. The experimental results are shown
in the form of diagrams, representing pair-vise relationship between the objective
functions. Diagrams are derived by using implemented MatLab library. Fig. 5.12
presents the relationship between the axial distance and efficiency, while Fig. 5.13
illustrates the axial distance - the outer diameter of the planetary gear train corre-
lation.

Based upon a geometrical interpretation of the results in the criterion space, the
following conclusions can be drawn:

• the criteria f1 and f2 (axial distance - efficiency) are mutually conflicting;

• there exists a very strong correlation between the criteria f1 and f9 (axial
distance - outer diameter of the planetary gear train).
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Table 5.6: Coding patterns

Variable Lower border Upper border Step
x1 2 33 1
x2 5 20 1
x3 5 36 1
x4 -1 0.55 0.05
x5 -1 0.55 0.05
x6 -0.15 0.2 0.05
x7 86 148 2
x8 1 8 1
x9 2 5.3 0.1
x10 4.5 6.0 0.1

Table 5.7: Parameters settings for GA taken from [Rosić 2011a]

Name of parameter Value

Population type Double vector

Population size 50
Encoding Binary

Scaling func. Rank

Selection Uniform

Elite count for reproduction 10

Crossover func. Single point

Mutation Adaptive feasible

Max number of generations 1000

Func. tolerance 10(−15)

The remaining parameters are set to their default values

Stopping criteria Maximal number of generations

or number of stall generations (1000)
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Figure 5.12: The criterion space for the axial distance - efficiency taken from
[Rosić 2011a]

Figure 5.13: The criterion space for the axial distance - volume of material used for
gears taken from [Rosić 2011a]
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Multi-objective modelling reflects very well the design process in which usually
several conflicting objectives have to be satisfied such as the efficiency of planetary
gear trains and the distance between centres of a sun gear and a planetary gear.
The effect of changes of the design parameters gives useful information regarding
the sensitivity of various features in the model. A Pareto set, presented as a plot
of the efficiency and axial distance of the planetary gear train, gives a quantitative
description of the compromise between the efficiency and size. The results illustrate
the importance of formulating the problem as a multi-objective optimisation.

First time in the literature, Genetic Algorithm method is applied for optimisation
of the planetary gear train efficiency in [Rosić 2011b] and [Rosić 2011a]. Complex-
ity of analysis can be seen in optimisation of 9 functions, while in [Castillo 2002]
only 3 relationships have been analysed analytically. In [Qing-Chun 2008], MAT-
LAB optimisation toolbox for multi-objective optimisation design of planetary gear
train was used to optimise 2 conflicted functions: minisation of volume (weight) and
maximisation of the efficiency. In [Cho 2006], only one relationship between the in-
puts and outputs is analysed, covering 3 influential parameters. In [Tripathi 2010],
a multi-objective optimization of multi-stage planetary gear train is done. Opti-
misation in [Tripathi 2010] has covered only 2 conflicting functions of multi-stage
planetary gear train: minimisation of the surface fatigue life factor and minimisa-
tion of volume of gear box. In [Tripathi 2010], only 6 constraint functions have been
analysed, while in [Rosić 2011b] and [Rosić 2011a] apart from the 9 objective func-
tion, 8 constraints have taken into account due to the complexity of minimisation
of the minimal elastohydrodynamic lubrication film.

The results obtained within this research are useful for the planetary gear pre-
design. A designer supplied with this preliminary design values has a chance to im-
prove geometrical characteristics of the planetary gear train in order to achieve high
efficiency. The described results are presented in [Rosić 2011b] and [Rosić 2011a].





Chapter 6

Optimisation of Ball Bearing
Dynamical Load Ratings

and Rating Life

A new method for optimisation of dynamical load ratings and rating life, as a func-
tion of 10 different parameters, of radial ball bearings was developed using meta-
heuristics. The aim of this research was to determine which parameters have the
largest influence on achieving the maximum working life. In order to find the proper
values for dynamic radial and axial load factors, it was necessary to perform inter-
polation of three-dimensional nonlinear function.

Dynamical load ratings and rating life of a radial ball bearing, based on ISO
standard [ISO 281, ISO 75], depend on many factors, and it is assumed that the
rating life can be extended by optimising the influencing parameters. The goal of
the optimisation was to find the optimal inner geometry of bearings based on the
outer geometry, using three meta-heuristic methods.

The optimisation is performed in the form of a numerical simulation. Apart from
the formulas and procedures from [ISO 281, ISO 75], the values of some specific
parameters were varied in order to find the appropriate combination of geometry,
rating factor (the value of which varies with a bearing type and design), static and
dynamic radial load rating, the value of the parameter for mobility conditions, the
dynamic radial and axial factor and the factor which depends on the geometry of
the bearing components and the material [Milojević 2014].

In order to simplify the model, the radial component of the actual bearing load
and the axial component of the actual bearing load are set as constant. Optimised
parameters are mostly related to the bearings geometry, and the term geometry
refers to an optimisation against the number of rolling elements in a single row-
bearing, the nominal ball diameter, the pitch diameter of the bearing and the radial
contact angle of bearings. All of these factors, together with the factor of geometry
and material, directly impact the calculation of basic dynamic load rating.
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6.1 Problem formulation

The use of the term basic rating life L10 refers to the optimisation against the load
rating and the equivalent load, which is formulated in the equation:

L10 =
(Cr
Pr

)a
, (6.1)

which is already defined in Chapter 4 with equation (4.1). In the case of radial
rolling bearings, a = 3, while in the case of the barrel bearings, a = 10

3 . The
equation (6.1) only holds if the number of revolutions is equal or greater than 10
min−1 and it is only certain with probability of 90%.

Load rating Pr is given by the equation:

Pr = XFr + Y Fa (6.2)

where X denotes the dynamic radial load factor and Y stands for the dynamic axial
load factor.

To find the optimum value of load rating Pr, it is necessary to find the optimal
values of factors X and Y , which will be explained in the next sections. Basic
dynamic radial load rating for radial ball bearings is given by the following equations
[ISO 281]:

Cr =

{
bmfc(i cosα)0.7Z2/3D1.8

b , Db ≤ 25.4mm

3, 647bmfc(i cosα)0.7Z2/3D1.4
b , Db > 25.4mm

(6.3)

Therefore, the optimisation function to be maximised is

L10(S),

for S = {KDmin ,KDmax , ε,m, β, Z,Db, Dm, fifo}.

6.1.1 Constraints

c1(S) =
Φo

2 arcsin(Db/Dm)
− Z + 1 ≥ 0 (6.4)

c2(S) = 2Db −KDmin(D − d) ≥ 0 (6.5)

c3(S) = KDmax(D − d)− 2Db ≥ 0 (6.6)

c4(S) = Dm − (0, 5−m)(D + d) ≥ 0 (6.7)
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c5(S) = (0, 5 +m)(D + d)−Dm ≥ 0 (6.8)

c6(S) =
di − d

2
− D − do

2
≥ 0 (6.9)

c7(S) = 0, 5(D −Dm −Db)− εDb ≥ 0 (6.10)

c8(S) = βW −Db ≥ 0 (6.11)

c9(S) = fi ≥ 0, 515 (6.12)

c10(S) = fo ≥ 0, 515 (6.13)

c11(S) =

[
[U2 + (D/2− T −Db)

2 − (d/2 + T )2]

2U(D/2− T −Db)

]
+ 1 ≥ 0 (6.14)

c12(S) = 1−
[

[U2 + (D/2− T −Db)
2 − (d/2 + T )2]

2U(D/2− T −Db)

]
≥ 0 (6.15)

c13(S) = (Db/Dm) + 1 ≥ 0 (6.16)

c14(S) = 1− (Db/Dm) ≥ 0 (6.17)

6.1.2 Constraint explanations

For the convenience of the bearing assembly, the number Z and the diameter Db

of balls should satisfy the requirement given by the relation (6.4), where Φo is
the maximum tolerable assembly angle calculated by the equation [Gupta 2007,
Rao 2007]:

Φo = 2π − 2 arccos

[
[U2 + (D/2− T −Db)

2 − (d/2 + T )2]

2U(D/2− T −Db)

]
(6.18)

where

T = (D − d− 2Db)/4; (6.19)
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U = (D − d)/2− 3T. (6.20)

The diameter of the rolling element should be chosen from certain bounds, i.e., the
following inequality must hold (as shown in Fig. 6.1):

KDmin

D − d
2
≤ Db ≤ KDmax

D − d
2

(6.21)

Where KDmin and KDmax are unknown constants (which decide the possible mini-
mum and maximum diameters of the rolling element) and D and d are the outside
and bore diameters of bearings, respectively. For the relation (6.21), the correspond-
ing constraint conditions are given as (6.5) and (6.6).

In order to guarantee the running mobility of bearings, the difference between
the pitch diameter and the average diameter in a bearing should be less than a
certain given value. Therefore, the constraints given by the relations (6.7) and (6.8)
are to be satisfied, wherem is an unknown input variable. In practice, the inner ring
is always exposed to more stresses than the outer ring, this necessitated the need to
put a constraint on the ring thickness that should be larger than or equal to the outer
ring thickness. This requirement is given by the condition (6.9), where di and do are
the inner and outer raceway diameters at the grooves. The thickness of the bearing
ring at the outer raceway bottom should not be less than εDb, where ε is an unknown
constant. Therefore the constraint condition is according to [Gupta 2007, Rao 2007]
given by the relation (6.10).

Figure 6.1: Radial ball bearing macro-geometries taken from [Gupta 2007]

The width of a bearing, (W ) generates the constraint on the diameter of the ball
that can be written as a relation (6.11), where β is an unknown constant. KDmax

and β are the factors which decide the upper bound of the rolling element diameter.
Groove curvature radii of inner fi and outer fo raceways in a bearing should be
larger than 0, 515Db. If this was not true the dynamic load rating of the bearing
would decrease. Therefore, two more constraint conditions are given by the relations
(6.12) and (6.13).
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In addition to the presented constraints, some geometrical characteristics are
expressed by the given lower and upper bounds:

3 ≤ Z ≤ 500

1 ≤ Dm ≤ 500

1 ≤ Db ≤ 500

0, 6 ≤ KDmax ≤ 0, 7

0, 4 ≤ KDmin ≤ 0, 5

0, 3 ≤ ε ≤ 0, 35

0, 03 ≤ m ≤ 0, 08

0, 7 ≤ β ≤ 0, 85.

Arguments of trigonometric functions arccos and arcsin have to take the values
between -1 and 1, so the following equations have to be satisfied:

− 1 ≤
[

[U2 + (D/2− T −Db)
2 − (d/2 + T )2]

2U(D/2− T −Db)

]
≤ 1 (6.22)

− 1 ≤ (Db/Dm) ≤ 1 (6.23)

which produces the constraints: (6.14), (6.15), (6.16), (6.17).

6.1.3 Additional parameter settings

Values of bm for radial ball bearings, as given by [ISO 281], are summarised in the
table below.

Bearing type bm
Radial and angular contact ball bearings (except filling slot bearings),

insert bearings and self-aligning ball bearings 1,3
Filling slot bearings 1,1

In this study bm = 1, 3 has been adopted, since only radial contact ball bearings
are investigated.

The fc can be calculated as follows:

fc = 37, 91 · fd,

fd =

{
1 +

[
1, 04f1,72g f0,41io

]10/3}−0,3 [γ0,3(1− γ)1,39

(1 + γ)1/3

] [
2fi

2fi − 1

]0,41
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where
γ = Dbcosα/Dm,

fg =
1− γ
1 + γ

,

fio =
fi(2fo − 1)

fo(2fi − 1)
,

and α is the free contact angle that depends upon the type of a bearing.
In order to simplify the model, the following working conditions are given:

Fa = 100N , Fr = 1500N .
For the purpose of this study, several bearing types are selected. They are

described by the outer dimensions D, d, W , as it is presented in Table 6.1, while
the corresponding inner dimensions are obtained by optimisation methods.

Table 6.1: Bearing types and the corresponding data

Values from catalogue
Bearing Num. Spec.
type D d W

6200 30 10 9
6201 32 12 10
6202 35 15 11
6203 40 17 12
6204 47 20 14
6205 52 25 15
6206 62 30 16
6207 72 35 17

The selected bearing types belong to the class of the single-row-deep-groove ball
bearings, and therefore it holds that i = 0 and α = 0◦.

6.1.4 Interpolation of three-dimensional nonlinear function

To find a proper value of the dynamic radial load factor X and the dynamic axial
load factor Y , it was necessary to perform an interpolation based on the relative
axial load (given by the relations foFa

Cor
and Fa

iZD2
b
) and e (the limiting value of Fa

Fr
).

Values of the appropriate dynamic radial and axial load factors, for the ranges of
above-mentioned three values, are given in [ISO 281]. The relations foFa

Cor
and Fa

iZD2
b

are input values of the separate interpolation module, and e is a result of calculations
based on the working conditions Fa and Fr where:

Cor = foiZD
2
b cosα. (6.24)

The data relevant for this study are given in Table 6.2.
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Table 6.2: ISO 76 data taken from [ISO 281]

Bearing type Relative axial load

Single row bearings i = 1 Double row bearings i = 2

eFa
Fr

≤ e Fa
Fr

> e Fa
Fr

≤ e Fa
Fr

> e

X Y X Y X Y X Y

Radial contact ball bearing α = 0◦

foFa
Cor

Fa

iZD2
b

0,172 0,172

1 0 0,56

2,3

1 0 0,56

2,3 0,19

0,345 0,345 1,99 1,99 0,22

0,689 0,689 1,71 1,71 0,26

1,03 1,03 1,55 1,55 0,28

1,38 1,38 1,45 1,45 0,3

2,07 2,07 1,31 1,31 0,34

3,45 3,45 1,15 1,15 0,38

5,17 5,17 1,04 1,04 0,42

6,89 6,89 1 1 0,44

Angular contact ball bearing

α = 20◦ - -

1 0

0,43 1

1

1,09 0,7 1,63 0,57

α = 25◦ - - 0,41 0,87 0,92 0,67 1,41 0,68

α = 30◦ - - 0,39 0,76 0,78 0,63 1,24 0,8

α = 35◦ - - 0,37 0,66 0,66 0,6 1,07 0,95

α = 40◦ - - 0,35 0,57 0,55 0,57 0,93 1,14

α = 45◦ - - 0,33 0,5 0,47 0,54 0,81 1,34
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6.2 Meta-heuristics implementations

The above described optimisation problem contains the continuous nonlinear objec-
tive function, with linear continuous constraints. Therefore, various optimisation
methods, designed for this case can be applied. In this study, the optimisation is
performed using three different meta-heuristic methods:

• Genetic algorithms (GA)

• Multi-start Pattern Search (MPS)

• Multi-start Active Set (MAS)

Implementation of Active Set method, for the purposes of this research has
been performed within Fmincon [Venkataraman 2009] optimisation function built in
MATLAB optimisation tool. Active set multistart execution is one of the optimisa-
tion methods incorporated into proposed procedure shown in Fig 6.2 [Milojević 2014]
within the Fmincon function. GA, MPS and MAS methods use the same main pro-
cedure, as well as the same input values. Extensive experimental evaluation is
performed in order to determine the best parameter settings for each of the used
methods. The resulting settings are described in Tables 6.3, 6.4 and 6.5.

Table 6.3: The parameter settings in GA taken from [Milojević 2014]

Population Double vector
Population size 50
Initial population Randomly generated
Scaling function Proportional
Selection function Tournament
Elite count 10
Crossover fraction 0.6
Mutation Adaptive feasible
Crossover function Two point
Number of generation 1000 generation

The stopping criterion is either of the two: the maximum number of generations
or the maximum stall time.

Since PS is an iterative (local search) heuristic method, the parameter settings
(as presented in Table 6.4) are given for a single execution (without restarts).

The stopping criterion is either of the six: Mesh tolerance (10−6) or Max it-
erations (100*number of variables), or Max function evaluations (2000*number of
variables), or X tolerance (10−6), or Function tolerance (10−6), or Nonlinear con-
straint tolerance (10−6). The starting points are created in the form of the feasible
solutions set. The number of PS restarts is determined by reaching a GA stopping
time.
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Figure 6.2: Optimisation algorithm taken from [Milojević 2014]



98 Chapter 6. Optimisation in Ball Bearing Pre Design

Table 6.4: The parameter settings in PS taken from [Milojević 2014]

Poll method GPS Positive basis 2N
Complete poll On
Polling order Success
Complete search On
Search method GPS Positive basis 2N
Mesh Initial size 1.0
Mesh Max size Inf
Accelerator On
Rotate On
Scale On
Expansion factor 2.0
Contraction factor 0.5
Initial penalty 10
Penalty factor 100
Bind tolerance 10−3

Cache On
Tolerance eps
Size 104

The parameter settings given in Table 6.5 correspond to a single execution of
Fmincon function with incorporated Active Set method. The Active Set (AS) is an

Table 6.5: The parameter settings in Fmincon taken from [Milojević 2014]

Algorithm Active set
Derivatives Approximated by solver
Max iterations 400
Max function evaluations 1000
X tolerance 10−6

Nonlinear constraint tolerance 10−6

SQP constraint tolerance 10−6

Function value check None
User-supplied derivatives None
Minimum pertubation 10−8

Maximum pertubation 0.1
Type Forward differences
Hessian None
Typical X values ones(10,1)
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iterative method and the results obtained with AS depend on the starting point.
Different local optimum solutions are obtained by varying the starting points. There-
fore, in order to achieve the best possible solution, a Multi-start of the AS method
is performed from different starting points. The initial solutions for each restart and
the number of restarts are determined in the same way as for MPS. Evidently, MAS
is implemented by repeatedly calling Fmincon function from different initial solu-
tions until a stopping criterion is satisfied. In this case it is the CPU time required
by GA to find its best solution.

6.3 Results

The simulation of dynamical load ratings of normal contact ball bearings is con-
ducted by changing the various influential parameters. As a result, the correspond-
ing values of the rating life and dynamic capacity are measured and optimised by
the applied meta-heuristic methods. At the same time, the extent to which specific
factors influence the best value of the rating life is determined.

Two functions, the dynamic load capacity and maximum working life (under
a certain conditions), are optimised simultaneously which means that the problem
should be treated as multi-objective. However, since the two objective functions are
directly proportional, they are not conflicted and the optimisation is conducted like
the problem is single-objective. Apart from this characteristic, this optimisation
problem is also nonlinear problem with inequality constraints.

The comparative results for three methods are given in tables 6.6 and 6.8. It
appears that, by increasing the number of balls in a ball bearing, it is possible
to increase the dynamic load capacity with comparison to the available standards.
Increasing of the dynamic load capacity leads to the increase in the value of the
dynamic working life.

The MAS method requires less computing time with respect to GA and MPS. It
generates the best values for the dynamic load capacity in six out of eight bearings
type. GA gives the best results for working life in five out of eight cases. MPS
provided the largest dynamic capacity for bearing types 6200 and 6202, while the
longest working life reported for bearing types 6202, 6205, and 6206. The general
conclusion is that for the considered examples of ball bearings MAS performed the
best. It provided largest dynamic capacity, it was the fastest method and, at the
same time, the reported working life was very close to the best obtained value.

During optimisation process, the variable Z is taken as a continuous variable.
Once the optimisation is done, the further calculations are conducted with rounded
values of Z to obtain the working life and dynamic capacities that correspond to
integer values for number of balls. Achieved results show that the best value of the
dynamic load capacity and the largest working life are obtained for Z = 7, Z = 7,
Z = 8, Z = 8, Z = 8, Z = 9, Z = 9 and Z = 9, respectively, for the considered
eight types of bearings.

The proposed optimisation methods provide the increase in a dynamic capacity
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with respect to the values from the available standards in all eight examples. The
average percentage of the improvement is 9.4%, 12.2% and 12.6% for GA, MPS and
MAS, respectively comparing to the values in [Bowman]. The average percentage
of the improvement with respect to the [Gupta 2007] is 13.41%, 20.91%, 18.43% for
four considered cases (See Table 6.7). The average percentage of improvement of the
dynamic capacity with respect to [Rao 2007] for 4 cases of bearings is 22.22%, 30.3%

and 27.64% (See Table 6.7). The work presented in [Gupta 2007] and [Rao 2007] is
compared with the values from [Shigley 1989].
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Table 6.6: Comparative results for three optimisation methods taken from [Milojević 2014]

Catalogue values [Bowman] Heuristic optimisation
Bearing Dynamic GA results MPS results MAS results
type Capacity [N] Dyn. Work. CPU Dyn. Work. CPU Dyn. Work. CPU

Cap [N] life [h] time [s] Cap [N] life [h] time [s] Cap [N] life [h] time [s]
6200 5070 6842.4 540.5016 43.4931 6848.8 531.1687 41.746 6848.7 531.8595 2.6832
6201 6890 7223.7 647.61 21.2473 7223.7 627.2416 83.7723 7238.6 631.5472 0.6084
6202 7800 8079.6 940.6012 18.3301 8319.3 989.2423 8.5864 8263 971.6416 0.39
6203 9560 10636 2351.4 17.1445 10667 2181.8 87.7193 10703 2186.7 0.2808
6204 12700 14211 6178 100.761 14243 5589.6 83.3353 14291 5589.6 0.234
6205 14000 15307 7914.30 29.7962 15998 8233.3 41.5429 16085 8232.6 0.4212
6206 19500 19974 19215 45.2101 21756 22942 42.3698 21878 22941 1.3416
6207 25500 28241 60961 55.4272 28285 55027 83.8503 28447 55028 0.4056

Table 6.7: Comparative results for three optimisation methods with [Gupta 2007] and [Rao 2007]

Values from [Gupta 2007] and [Rao 2007] Heuristic optimisation
Bearing Dynamic Dynamic GA results MPS results MAS results
type Capacity [N] Capacity [N] Dyn. Dyn. Dyn.

[Gupta 2007] [Rao 2007] Cap [N] Cap [N] Cap [N]
6200 6029.54 5942.36 6842.4 6848.8 6848.7
6202 7057.92 6955.35 8079.6 8319.3 8263
6204 12098.9 10890.9 14211 14243 14291
6206 18111.9 16387.4 19974 21756 21878
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Table 6.8: Values for design parameters generated by three optimisation methods taken from [Milojević 2014]

Bearing Opt. Design parameters Calculated values
type method KDmin KDmax ε m β [rad] Z Dm [mm] Db [mm] fi fo F [rad] X Y

GA 0.431 0.699 0.301 0.047 0.848 7 6.999 18.772 0.515 0.515 4.015 0.56 2.02
6200 MPS 0.4 0.7 0.3 0.066 0.85 7 6.999 18.8 0.515 0.515 4.015 0.56 2.02

MAS 0.4 0.7 0.3 0.08 0.778 7 7.000 18.8 0.515 0.515 4.015 0.56 2.06

GA 0.411 0.7 0.3 0.0483 0.7094 7 7.000 20.800 0.515 0.515 3.892 0.56 2.06
6201 MPS 0.4 0.7 0.3 0.066 0.849 7 7.000 20.799 0.515 0.515 3.89 0.56 2.06

MAS 0.4 0.7 0.3 0.0380 0.85 7 7.000 20.8 0.515 0.515 3.892 0.56 2.06

GA 0.401 0.700 0.302 0.067 0.819 8 6.853 24.000 0.515 0.515 3.732 0.56 2.06
6202 MPS 0.4 0.7 0.3 0.066 0.85 8 7.000 23.799 0.515 0.515 3.7926 0.56 2.10

MAS 0.4 0.7 0.3 0.08 0.85 8 7.000 23.1 0.515 0.515 3.76 0.56 2.06

GA 0.487 0.700 0.3104 0.0583 0.7640 8 8.050 26.8764 0.515 0.515 3.7705 0.56 2.22
6203 MPS 0.4 0.7 0.3 0.0665 0.8484 8 8.050 27.11 0.515 0.515 3.7705 0.56 2.22

MAS 0.4001 0.7 0.3 0.08 0.7 8 8.050 27.12 0.515 0.515 3.7705 0.56 2.22

GA 0.4008 0.7000 0.3001 0.0666 0.8096 8 9.4341 31.9035 0.515 0.515 3.7668 0.56 2.3
6204 MPS 0.4 0.7 0.3 0.0663 0.8484 8 9.450 31.8799 0.515 0.515 3.7693 0.56 2.3

MAS 0.4 0.7 0.3 0.08 0.85 8 9.450 31.88 0.515 0.515 3.7693 0.56 2.3

GA 0.4037 0.6974 0.3051 0.0536 0.7909 9 9.1936 36.9667 0.515 0.515 3.6268 0.56 2.3
6205 MPS 0.4 0.7 0.3000 0.0665 0.8484 9 9.450 36.8797 0.515 0.515 3.6585 0.56 2.3

MAS 0.4 0.7 0.3 0.08 0.7 9 9.450 36.88 0.515 0.515 3.6585 0.56 2.3

GA 0.4999 0.7 0.3490 0.0645 0.8461 8 11.200 42.6044 0.515 0.515 3.6529 0.56 2.3
6206 MPS 0.4 0.7 0.3000 0.0663 0.8484 9 11.200 44.0799 0.515 0.515 3.6529 0.56 2.3

MAS 0.4 0.7 0.3 0.0318 0.85 9 11.200 44.08 0.515 0.515 3.6529 0.56 2.3

GA 0.4197 0.6999 0.3101 0.0535 0.8053 9 12.946 50.9664 0.515 0.515 3.6486 0.56 2.3
6207 MPS 0.4000 0.7 0.3000 0.0663 0.85 9 12.950 51.2799 0.515 0.515 3.6489 0.56 2.3

MAS 0.4 0.7 0.3 0.08 0.85 9 12.950 51.28 0.515 0.515 3.6489 0.56 2.3



Chapter 7

Reliability Assessment of
Mechanical Systems by Bayesian

Networks

The purpose of this study is to present a Bayesian network (BN) based prediction
method for the quality of production during the operational process if failure occurs
in the system. The considered two mechanical systems are a semi-automatic system
plant for painting and varnishing metal products and a system for oil filtering. The
input data for BNs are historical and have been collected through several years of
systems operation. If a product failure is detected, based on Bayesian probabilities
generated by the proposed BN, it is possible to determine which subsystem is prob-
ably responsible for significant slowing down of the operational process or for the
defects in the final product.

On the other hand, when diagnosing a failure of the machine it is necessary
to make the appropriate decision whether it is justified to continue the process of
manufacturing or to stop it in order to eliminate failures. The aim of BN systems
is to predict quality of a semi-product when some of the failures of the subsystems
happen.
The proposed BN-models receive information of systems failures at the input and
gives, with some probability, a prediction of the quality of products at the out-
put. Based on the output probabilities, a user of the production system can de-
cide whether to terminate the operational process or to leave the machine in the
operational mode. A comparison of the historical probabilities for the considered
mechanical system against the results obtained by BN method is given.

The maintenance of a system is divided into prevention, correction and invest-
ment. The investment refers only to the purchase of a new, better equipment that
appears on the market. The corrective maintenance refers to an unpredictable event
of the failure in the system. It means that the entire production should be stopped
in order to remove the defect, which can take a lot of time, human energy and
create high economic costs. More precisely, the required are, among other things,
overtime involvement of a large number of people, buying new parts, the loss of
money, stopping production flow. Therefore, it is necessary to pay special attention
to the preventive maintenance.

The preventive maintenance refers to the manufacturer’s recommendations in
terms of what should be done based on the number of working hours after releasing
machine at work. For example, the service life of the bearing is a priori known and
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therefore, bearings should be replaced before the working life period expires.
The preventive maintenance is performed on a daily, weekly, monthly and an-

nually basis, and all of this is based on the manufacturer’s recommendations, law
regulations, guidelines and other technical data. In that way, the preventive mainte-
nance serves to postpone the corrective maintenance, as much as possible, in order
to minimise the number of failures.

If the mechanical system comes to the failure and the need for the corrective
maintenance appears, then a proposed BN probability model can help in making
the decision to postpone the corrective maintenance. Based on the BN obtained
probability, the production manager can decide that failure will not cause a deteri-
oration in the quality of the final product and will continue the production process.
In that way, the repair can be postponed for some other, more convenient, opportu-
nity. The purpose of the proposed BN procedures is the prediction of the quality of
the final product before the end of the production process, when a failure appears. If
it is necessary to make a quick decision whether to continue the production process
or not, the Bayesian procedure could substitute the production manager’s decision.
Or, for example, if the production manager is on holiday, this procedure could also
be helpful for someone with less experience and knowledge who has to make a de-
cision instead of the manager. Bayesian procedure relieves the production manager
of responsibility for decision making. Since the reparation of the failure and stop-
ping of the production process is considered expensive, this procedure could help
in making the appropriate decisions to postpone stopping of the production process
and thus save money and reduce the number of working hours.

7.1 Reliability assessment of semi-automatic system plant
for painting and varnishing metal products

7.1.1 Problem formulation

The semi-automatic system plant for painting and varnishing metal products (Fig.
7.1) in a wide sense, consists of seven subsystems with the following names:

• The chamber for cleaning and degreasing a product (x1)

• The chamber for applying the base colour (x2)

• The chamber for applying the final colour (x3)

• Drying chamber (x4)

• The Conveyor (x5)

• The control panel that controls all subsystems, through the power and control.
It contains the main switch, the main fuse, as in a house or a flat. So here one
can stop a subsystem or the whole plant (x6)

• g) The ventilation (x7).
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Figure 7.1: The considered mechanical system taken from [Milojević 2012]

For putting the system into operation it is necessary to turn on the main switch
at the chamber x6. First, the working pieces are placed on a conveyor belt in front
of the chamber x1. Second, the working piece is cleaned and degreased using the
pressurised equipment with warm water and a degreasing agent is applied in the
chamber x1. Then, the working piece passes from chamber x1 to the chamber x2
using the conveyor x5. Using the gearing pumps of the chamber x2, the base colour
from a buried tank is applied to the working piece by pouring. The excess paint is
returned to the reservoir by gravity. At the same time, the washing process of other
working pieces is performed in the chamber x1. Again, moving of the conveyor x5
leads the third working piece into the chamber x1, while the second one goes from
the chamber x1 to the x2, and the first working piece is somewhere between the
chambers x2 and x3. Than, the conveyor leads the fourth working piece to enter the
chamber x1, the third working piece moves from the chamber x1 to x2, the second
working piece leaves the chamber x2, and the first piece comes in the chamber x3
where the final painting is done. Powered by the conveyor, the fifth working piece
goes into the chamber x1 and the first piece into the drying chamber x4. After the
drying process, the first working piece goes out of the chamber x4 and it should be
removed from the conveyor while the sixth working piece goes into the chamber x1.
These 7 subsystems consist of a large number of parts which make the machine very
complex and create the potential danger from a various failures on a daily basis.
For example, if the failure of the light in the chamber x1 occurs, it is logical that
the production process does not have to be stopped because of that. On the other
hand, the failure of a cleaning and degreasing device in the chamber x1, or a pump
for watering colour filure in the chamber x2 will cause certain degradation of the
product quality or the production speed and, therefore, the production process must
be stopped. The probabilities that the product will be good, obtained by BN in
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that case would certainly be minimal (tending to zero).

7.1.2 The proposed Bayesian model

The Bayesian networks are graphical models that can be used to model stochastic
systems [Pearl 1985]. They can be "built" on the basis of an expert knowledge or au-
tomatically from the data (or both). The problem analysed in this paper is suitable
to be modelled by BN, since behaviour of the discussed system is probabilistic.

In this example, the Bayesian network is applied to a set of variables

X = {x1, x2, x3, x4, x5, x6, x7}

where:

• x1: the chamber for cleaning and degreasing a product

• x2: the chamber for applying the base colour

• x3: the chamber for applying the final colour

• x4: drying chamber

• x5: the conveyor

• x6: the control panel

• x7: the ventilation

Figure 7.2: A part of the implemented BN taken from [Milojević 2012]

The Bayesian networks have a direct graph structure (Fig. 7.2) with independent
conditional statements about X, and a set of local probabilities P . The nodes rep-
resent X variables and arches describe their relationship. Building of the Bayesian
model for domain application involves three main steps:

• Identification of the variables that are of importance, along with their possible
state values.

• Identification of of the relationships between the variables and expressing them
in a graphical structure.
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• The assessment of the probabilities required for its quantitative part. The
above three steps are, in principle, performed one after the other.

However, building a BN usually requires a careful trade-off between the desire
for a large and rich model on one hand, and the required effort for construction,
maintenance, and probabilistic inference in the network on the other hand. In
practice, therefore, the building of Bayesian models is a creative process that iterates
over these steps until a desired network is achieved.

Figure 7.3: The BN inputs and outputs taken from [Milojević 2012]

In this research, the behavior and possible scenarios of the mechanical system
are examined. A comparative analysis was performed between the results obtained
by the computer program and historical probabilities. At the input of the computer
system, the information about the resulting failure of the mechanical system is given,
and at the output, the BN model gives a prediction of the product quality with some
probabilities. The input was partly provided empirically, but most of the input data
were collected from the documentation for maintenance of this machine in the last
20 years. By simply counting the number of failures form the data tables, it can
be easily concluded what is the most common, or the rarest failure and what can
never fail (like construction walls made of steel). In this model, the output of the
system are events A, B, C, D and F , where A denotes a well done product with no
errors, B means that the product was not done at all, the meaning of C is that the
product was done slowly, the D states that the product was done incorrectly (with
errors), and F means that there was a failure of the entire machine. An example of
the input data is P (B|x2) = 0.1 with the meaning that the probability of B (the
product was not done at all), provided by the event x2 (failure of the chamber x2)
is 0.1. An example of the input data connections in BN is shown in Fig. 7.2, while
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the schema of inputs and outputs is shown in Fig. 7.3. The actual Bayesian model
for this study is shown in Fig.7.4.

Figure 7.4: Bayesian procedure taken from [Milojević 2012]

7.1.3 Results

Table 7.1 gives the best BN probabilities for the cases A-F, compared with the
empirical probabilities. It can be seen that the historical probability that a product
will be correct is 90%, while the corresponding probability obtained by the proposed
BN is 89%. The empirical probability that a product is not done at all is 5%, which
was also obtained by BN. The empirical probability that the product is done slowly
is 30% and by BN it was obtained that it will happen in 27% of cases. The empirical
probability that the product is done with some errors is 5% and the corresponding
BN-obtained result is 4%. The probability of failure of the whole machine is 5%

and 4.5% obtained by historical data and BN, respectively. It can be concluded that
these two probabilities differ in less than 3%, which confirms accurate modelling of
realistic system conditions. A measure of quality of BNs prediction is reflected in
the difference between the historical probabilities and the probabilities obtained
by modeling. If the ratio is less than 3%, which is proofed in this research, it is
considered that the prediction is very satisfactory [Darwiche 2009].

Table 7.2 presents the estimated failures probabilities of the subsystems. If any
type (B, ..., F ) of bad products is detected, it is possible to find the cause of the
particular case with BN model. If the product was not done at all (case B), the
chambers x1, x2, x3 and x4 are equally responsible. The conveyor and the control
panel have larger and mutually equal Bayesian probabilities. The relative ratio,
which shows that each chamber has the same influence on the case B, corresponds
to the actual event. A similar situation happens with the results of the cases C, D
and F .
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Table 7.1: Probabilities of the product quality in the general case [Milojević 2012]

Outcome Bayesian probabilities Empirical conclusion
Case A-the part is good 89% 90%

Case B-the part is not finished 5% 5%

Case C-the part is done slowly 27% 30%

Case D-the part is done with errors 4% 5%

Case F-the failure of the whole system 4,5% 5%

Table 7.2: The failure probabilities of a subsystem if the outcome is known from
[Milojević 2012]

Outcome/Chamber x1 x2 x3 x4 x5 x6 x7
Case B-the part is not finished 2% 2% 2% 2% 5% 5% 3%

Case C-the part is done slowly 6% 6% 6% 6% 15% 15% 9%

Case D-the part is done with errors 2% 2% 2% 2% 5% 5% 3%

Case F-the failure of the whole system 2% 2% 2% 2% 5% 5% 3%

The most important role of the proposed BN, and the corresponding software,
is to provide outputs in the cases of mutual failure of several subsystems. The
corresponding BN obtained results are shown in Table 7.3. This table illustrates
the possibility to calculate probabilities of A-F if some combinations of events x1-
x7 happen. This provides an estimation of the quality of the products in the case
of the machine failures. If cases x1 and x2 happen, there is a drastic difference
between A and B, where the chance of securing good parts is only 4.5% while the
bad product will appear in 45% of cases. This suggests that the production has to
be stopped and the defects repaired.

Table 7.3: The outcome probabilities for cases with more than one failure from
[Milojević 2012]

Failure/Outcome A B C D F
x1, x2 4,5% 45% 13,3% 45% 45%

x3, x4 4.4% 45.6% 14% 45.6% 45.6%

x1, x2, x6 2.25% 65% 15.5% 65% 65%

x1 10% 39% 12.8% 39% 39%

x2, x4 4. 6% 45,3% 13,7% 45,3% 45,3%

x1, x3, x7 2.5% 64% 15% 64% 64%

x4, x5 3% 49% 13.9% 49% 49%
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Based on the obtained results, it can be concluded that there is no significant
difference between the results obtained by BN and historical probabilities. In the
modern business environment, when enterprises are exposed to permanent changes,
the theory of maintenance gains a new dimension in management, which is reflected
through the development and implementation of a new concept in enterprise main-
tenance. The Bayesian model can equally effectively address the problems of tra-
ditional maintenance. This study have proved the feasibility of the model through
the simulation experiments. The results are presented in [Milojević 2012].

7.2 Decision support system for oil filtering problem

Risk management in mechanical engineering is a continual process that requires the
application of the appropriate tools, procedures and methodologies to avoid the risk
or to keep it within certain limits. This study advances the currently available formal
models of risk management in mechanical engineering through the BN implemented
in C]. The Bayesian approach is selected because it successfully solves the prob-
lems that are characterised by a risk analysis. There are three ways to incorporate
Bayesian model in risk analysis. The first way is to take the full assessment and
decision making. Another "forcing" Bayesian model [Jensen 2001], [Wenbin 2008]
can only be used for the assessment of risk allocation. Finally, the third method uses
Bayesian model as the means to select or to input distribution parameterisations for
a model risk. The aim of this work is to highlight the advantages and disadvantages
of Bayesian models.

7.2.1 Problem statement

The oil pump draws the oil with the help of an overhead tank from the storage
of crude oil in an underground barrel, with 50 tons capacity. The overhead tank
has a capacity of 2 tons. From the tank, the oil is transported to the machine
where filtering occurs through a circular filtering process. The oil is circulated in a
process consisting of circulator pumps, centrifugal pumps, vacuum pumps, a unit for
degassing, heaters, filters and water cooling. Once the circular process is started, the
oil takes the maximum flow from the reservoir of 2 tones, passes the filtering process
through the machine and goes back into the tank. Once everything is filtered out,
the oil is drained into a containers for use. The parts of this machine are as follows:

1. the warehouse crude oil in an underground barrel, of 50 tons (x1);

2. the overhead tank of 2 tons (x2);

3. the machine for a filtering process (x3);

4. the unit for degassing (x4);

5. the rough vacuum pump (x5);
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6. the fine vacuum pump (x6);

7. the filters for the separation of mechanical purity (x7);

8. the heaters (x8);

9. the water tank for cooling (x9).

7.2.2 Bayesian implementation

In this research, the behavior and possible scenarios of the oil filtering machine were
examined. A comparative analysis is performed between the results obtained by
the computer program and historical probabilities. At the input of the computer
system, the information about the resulting failure of the oil filtering machine is
given, and on the output, the BN model gives a prediction of the oil quality with
some probabilities.

The output of the system are events A, B, C, D and F , denoting a result of the
oil filtering. Case A denotes that the oil is filtered, case B denotes that the oil is
not filtered, case C means that the oil is slowly filtered, case D means that the oil
is filtered with errors and F stands for the cancellation of the entire installation.

The actual Bayesian model for this study is shown in the Fig.7.5.

Figure 7.5: Inputs and Outputs of the Bayesian network taken from [Glišović 2013]

7.2.3 Results

Bayesian model was applied to predict the behaviour of an oil filtering machine.
The model is implemented in C] and tested on real problems. Various scenarios
were tested and the results are shown in Tables 7.4, 7.5 and 7.6. As in the previous
case the BN obtained results are consistent with the empirical data. The provided
predictions in the case of simultaneous failures of several subsystems enabled the
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identification of the most important parts of the considered machine that can then
be given a special attention by supervisors.

The proposed BN model can be used for the development of the modern software
for prediction in the area of mechanical engineering and decision making, even when
there is not enough information. The extension of this work in the future is seen in
developing of an expert system for automation of the production process in order
to reduce the failures, all based on Bayesian probabilities. The results are presented
in [Glišović 2013].

Table 7.4: Showing results of the historical conclusion of machines parts and the
results obtained by Bayesian approach from [Glišović 2013]

Bayesian network Historical conclusion
The oil is filtered out A 91% 90%

The oil is not filtered out B 9.8% 10%
The oil is slowly filtered out C 29% 30%

The oil is poorly filtered out (with errors) D 10.2% 10%
A total installation cancelled X 9.9% 10%

Table 7.5: Representation of the failure probabilities of a subsystem if the outcome
is known from [Glišović 2013]

The final outcome/
Actuator x1 x2 x3 x4 x5 x6 x7 x8 x9
The oil is

filtered out A 100% 100% 90% 0% 0% 0% 0% 0% 10%
The oil is

not filtered out B 0% 0% 10% 0% 0% 0% 90% 80% 10%
The oil is

slowly filtered out C 0% 0% 0% 90% 90% 90% 10% 20% 10%
The oil is poor

filtered out (with errors) D 100% 100% 100% 0% 0% 0% 0% 0% 20%

Table 7.6: The outcome probabilities for multiple failures simultaneously from
[Glišović 2013]

A B C D F
1,2 2% 10% 1% 0% 4,5%

2,3 87% 1% 3.2% 0% 4.8%

7,9 89.8% 8% 5.2% 10% 9.7%

4,5,6 9% 0.01% 0.02% 12.9% 0.01%

1, 9, 5 81% 5% 0.9% 4% 3.6%
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Different type of BN are used for prediction of power plants, such as tem-
poral BN [Hernandez-Leal 2011] or fuzzy BN [Alamaniotis 2014]. Bayesian cali-
bration of power plant is also analysed in [Boksteen 2014]. In all of given cases
[Hernandez-Leal 2011], [Alamaniotis 2014], [Boksteen 2014], prediction errors, with
comparison to the input in the form of historical probabilities are analysed. In case
of fuzzy BN application [Alamaniotis 2014] for calibration power plant, linear regres-
sion is used. In estimation of the prediction results for the remaining useful life of
turbine (table 2 in [Alamaniotis 2014]), authors claimed 3.3% of minimum error and
42.5% of maximum error occurred. The maximal prediction error in [Milojević 2012]
and [Glišović 2013] is 3%. These results [Milojević 2012, Glišović 2013] give better
prediction for 39.5%, comparing to the result in [Alamaniotis 2014]. Temporal BN
method is applied for the diagnosis of the failures in the combined cycle power plant
[Hernandez-Leal 2011] and the minimal obtained error is 15.29%. This is point-
ing out that the results obtained in [Milojević 2012] and [Glišović 2013] are almost
5 time precise than the results in [Hernandez-Leal 2011]. In [Boksteen 2014], the
prediction of plant power and efficiency as a function of ambient temperature is
obtained with approximately 95% of certainty. This is leading to the approximate
error of 5% which makes the results in [Milojević 2012] and [Glišović 2013] better
for 2%.





Chapter 8

Concluding Remarks and
Directions for Further Research

For the assessment of working capacity of machine parts, components and assem-
blies, analytical and experimental modelling of their characteristics based on the
values of the adjustable parameters is essential. It is possible to determine desired
parameter values by solving the optimisation problems over defined model. The
most common optimisation problems related to mechanical elements and assemblies
are the optimisation of the design of rolling bearings, optimisation of rotor system,
gears design optimisation, workload optimisation of gears and/or gear pairs, etc.

If the problem involves the optimisation of objective function and constraints
which solution is not achievable in a reasonable time, it s necessary to develop a more
efficient and more reliable techniques for solving these kind of problems. Therefore,
meta-heuristics can be of a great help because they are significantly different from
traditional optimisation methods and represent the only possible tools to deal with
optimisation problems that cannot be solved deterministically. For the optimisation
problems in mechanical engineering, neural networks, genetic algorithms, particle
swarm optimisation etc, are usually used.

Models from the available literature are taking into account a group of influential
parameters on the observed target value, while all other parameters are allocated
with fixed values in the purpose of simplification. Parameters which should be
fixed can be selected in different ways, taking into account the importance to assure
generality of such a model. For example, mathematical model of meshed cylindrical
gear pair, determined in accordance with ISO standards, depends on several tenths
of geometric design parameters. Selection of the most influential parameters is an
important research topic in which meta-heuristics can be of great help. In situations
when mathematical model is not known or it is too complicated for calculations,
other techniques as Bayesian or Neural network could be applied.

Within this research, several topics are investigated, namely optimisation of he-
lical and spur gears [Milojević 2013], optimisation of planetary gears [Rosić 2011b,
Rosić 2011a], optimisation of dynamical load ratings and rating life at bearings
[Milojević 2014] and reliability assessment of mechanical systems by Bayesian Net-
works [Milojević 2012, Glišović 2013].

Optimisation of transverse load distribution factor of helical and spur
gears. One of the investigated problems related to the gears is the optimisation of
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the transverse load factor at helical and spur gears. Load transmission by gear pairs
is not constant and it is followed by non-uniform load distribution in the meshing
process. The opposite assumption, where the load factor does not change over time
along the line of contact, was made. The goal was to identify parameters with the
largest influence on violating this assumption. It was also necessary to determine
the extent of their changes. For the purposes of developing this model, all parame-
ters which determine transverse load factor, according to [ISO 6336-1], [ISO 6336-2],
[ISO 6336-3], [ISO 1328], [ISO 53] and [ISO 21771] were considered as relevant. The
proposed optimisation algorithm is based on GA and involves an additional local
search optimisation procedure called at the end in order to improve the solution
obtained by GA. Such a hybrid algorithm has 12 direct input variables affecting the
objective function. The main procedure is divided into several sub-procedures: Cal-
culation of geometry, Calculation of the stiffness and Calculation of the value of total
contact ratio. Since the mathematical model of this problem is nonlinear and contin-
uous, the corresponding computational methods, such as Newton-Raphson method
and interpolation of three-dimensional nonlinear function, are implemented. This
implementation is available as publicly available MatLab library for computation of
transversal load distribution factor optimisation at helical and spur gears, based on
proposed framework and using ISO standards. Library includes implementation of
proposed method for optimisation of transversal load distribution factor optimisa-
tion at helical and spur gears. The presented results [Milojević 2013] showed that
the most influential variable to the value of load transverse factor is helix angle,
and in addition, the profile shift coefficients also affected changing the value of load
transverse factor. It is noted that for any number of teeth (from the range 18− 54)
and any gear ratio (from the range 1 − 5), this method achieves a value 1 of the
load transverse factor, which therefore corresponds to uniform load distribution.
Helix angle can take any value in the range of standard values from 0◦ − 30◦, but
generally was assigned the values between 20◦ − 30◦ to make the convergence of
load transverse factor to 1. The similar method can be applied to other problems
in mechanical engineering. The following includes list of contributions published in
[Milojević 2013] and representing significant part of this thesis. Each item in the list
has annotation written in parenthesis, that denotes in which domain is particular
contribution.

• Mathematics: Optimisation model for load distribution at helical gears is
given, based on ISO standards such that enable easy deployment of meta-
heuristic methods.

• Mechanical Engineering: For the first time in the literature, the Newton-
Raphson method is applied for computation of non-linear operating (working)
pressure angle equation at helical and spur gears.

• Mechanical Engineering: Definition of functional relation between the accu-
racy grade, standard modulus and pitch diameter, by applying ISO standards.
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• Mechanical Engineering: A framework for computation transversal load dis-
tribution factor at helical and spur gears.

• Mathematics & Mechanical Engineering: Construction and definition of geo-
metric module for computation geometry of helical and spur gears, according
to ISO standards. Geometric module can be used as independent component,
with six input values, for solving optimisation problems in domains different
than one analysed in this thesis. For example, other types of gears or mechan-
ical elements.

• Mechanical Engineering: In [Milojević 2013] 4 additional parameters influenc-
ing load distribution factor have been analysed with respect to the publications
[Zhang 2010], [Pedrero 2010] and [Pedrero 2011].

• Mechanical Engineering: There is two times better optimisation of parameter
z1 with respect to the same one optimised in [Zhang 2010]. The best optimisa-
tion output in [Milojević 2013] is 44, but in [Zhang 2010] the best optimisation
result is 34.

• Mechanical Engineering: Results are showing that the optimised value of mod-
ule mn in [Milojević 2013] is 7.5 times improved with respect to [Zhang 2010].
In [Pedrero 2010] and [Pedrero 2011] the parameter mn is taken as fixed input
and therefore, it is not optimised at all.

Future work in solving optimisation problem of transversal load distribution
factor of helical and spur gears can be seen in application of other optimisation
methods, beside GA. Comparative analysis of the achieved results should be pro-
vided. Development of transversal load distribution factor models based on ISO
standards should be performed for other types of gears, such as swarm or crown.
Application of GA or any other method for solving these kind of problems should
be performed.

Optimisation of planetary gear trains. Planetary gear trains take a very
significant place among the gear transmissions which are used in many branches
of industry such as automobile transmissions, aircrafts, marine vessels, machine
tool gear boxes, gas turbine gear box, robot manipulators, etc. Planetary gear
trains have a number of advantages over the transmission with fixed shafts. The
multi-objective nonlinear optimisation of planetary gear trains was considered. The
weighting method is used to approximate the Pareto set. This method transforms
the multi-objective optimisation problem into single-objective optimisation problem
by associating each objective function a weighting coefficient and then minimising
the weighted sum of the objectives. Nine functions are optimised simultaneously and
the corresponding weighting coefficients wi, for i = 1, ..., 9 have randomly assigned
values. This kind of modelling reflects very well the design process in which usually
several conflicting objectives have to be satisfied such as the efficiency of planetary
gear trains and the distance between centers of sun gear and planetary gear. The
effect of changes of the design parameters gives useful information regarding the
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sensitivity of various features in the model. A Pareto set, presented as a plot of
the efficiency and axial distance of the planetary gear train, gives a quantitative
description of the compromise between efficiency and size. The proposed GA-based
approach produced quite satisfactory results promptly supplying the designer with
the preliminary design parameters of planetary gear train for different gear ratios.
The obtained results [Rosić 2011a, Rosić 2011b] showed that the genetic algorithm
is useful and applicable for optimisation of planetary gears design. The concrete
scientific contributions related to this topic are:

• Mathematics & Mechanical Engineering: It is proposed a formal model of
planetary gear train in operation with considered losses in the mechanical
energy arising as a consequence of the friction between the contact surfaces of
the meshing teeth and the friction in the bearings.

• Mechanical Engineering: Application of GA and weighted coefficient method
for approximation of Pareto set in order to transform the multi-objective opti-
misation problem into a single-objective optimisation on an example of solving
planetary gear train problem.

• Mechanical Engineering: The proposed model considers sliding losses, which
are the result of the friction forces developed as the teeth slide across each
other, the rolling losses resulting from the formation of an elastohydrodynamic
film.

• Mechanical Engineering: Based upon a geometrical interpretation of the re-
sults in the criterion space, it is concluded that axial distance and efficiency
are mutually conflicting. Also, it is determined that there exists a very strong
correlation between the axial distance and the outer diameter of the planetary
gear train.

• Mechanical Engineering: First time in the literature, GA method is applied
for optimisation of the planetary gear train efficiency.

• Mechanical Engineering: Complexity of analysis can be seen in optimisation
of 9 functions, while in [Castillo 2002] only 3 relationships have been analysed
analytically.

• Mechanical Engineering: 7 additional conflicted functions have been analysed
comparing to the work in [Qing-Chun 2008] and [Tripathi 2010].

• Mechanical Engineering: Optimisation of 10 influential parameters have been
covered, while in [Cho 2006], only one relationship between the inputs and
outputs is analysed, covering 3 influential parameters.

• Mechanical Engineering: In [Tripathi 2010], only 6 constraint functions have
been analysed, while this investigation is considering 8 constraints have taken
into account due to the complexity of minimisation of the minimal elastohy-
drodynamic lubrication film.
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For the future work in solving the multi-objective nonlinear optimisation of plan-
etary gear trains, the author recommends the changing of the values of weighting
coefficients wi, for i = 1, ..., 9 with respect to the experiments that are already per-
formed. It is expected that changing the values assigned to weighting coefficients
will influence the values of solutions for nine conflicting objectives. Also, the possi-
ble application of other methods, beside GA, should lead to achieving a successful
comparative results.

Optimisation of ball bearing dynamical load ratings and rating life.
The multi-objective optimisation of bearings dynamical load ratings and working
life, having in mind that these objectives are not conflicting, has also been consid-
ered. Changing the internal geometry, for example number of balls, leads to changes
in dynamic capacity and in the length of bearing life in comparison to standard cat-
alog values. Three meta-heuristic methods are applied for the considered problem,
namely: Genetic Algorithm (GA), Multistart Pattern Search (MPS) and Multistart
Active Set (MAS). MAS method obtained results in a shorter computing time than
GA or MPS. MAS obtained the best results for dynamic load capacity in six of
eight bearings type. GA gave the best results for working life in five of eight cases.
The proposed optimisation methods provide the increase in dynamic capacity with
respect to the values from catalog in all eight examples. The average percentage
of the improvement is 9.4%, 12.2% and 12.6% for GA, MPS and MAS respectively.
Even assuming the producers left some degree of safety, the percentage of the im-
provement obtained by meta-heuristic optimisation can be considered as significant
[Milojević 2014]. The concrete scientific contributions related to this topic are:

• Mathematics: Standard ISO model of the selected radial ball bearings has
been transformed to provide effective application of meta-heuristics methods.

• Mathematics & Mechanical Engineering: Comparative analysis of three opti-
misation methods within optimisation framework proposed in this thesis, with
respect to execution time and solution quality. The analysis enabled increas-
ing of dynamic load capacity and working life for eight types of radial ball
bearings.

• Mechanical Engineering: Two functions, the dynamic load capacity and max-
imum working life (under a certain conditions), are optimised simultaneously.
However, since the two functions are not conflicted, optimisation is conducted
like the problem is single objective.

• Mechanical Engineering: MPS and MAS are for the first time applied for
solving optimisation problems of dynamic load capacity and working life.

• Mechanical Engineering: Achievement of increased dynamical load capacity
with respect to the standard catalogue values, by applying GA, MPS, and
MAS.

• Mechanical Engineering: Proposed geometry structure (geometric parameter
values) for improvement of dynamic capacity and rating life of a bearing.
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Formal framework is developed according to ISO standards, and experimental
evaluation is based on GA, MPS, MAS.

• Mechanical Engineering: The average percentage of the improvement in dy-
namic capacity with respect to the values from [Bowman] is 9.4%, 12.2% and
12.6% for GA, MPS and MAS, respectively, in 8 cases.

• Mechanical Engineering: The average percentage of the improvement in dy-
namic capacity with respect to the values from [Gupta 2007] is 13.41%, 20.91%,
18.43% for GA, MPS and MAS, respectively, in 4 cases.

• Mechanical Engineering: The average percentage of the improvement in dy-
namic capacity with respect to the values from [Rao 2007] is 22.22%, 30.3%

and 27.64% for GA, MPS and MAS, respectively, in 4 cases.

Within the future work, a comparative analysis of meta-heuristic methods with
respect to other optimisation applied to increasing dynamic load capacity and work-
ing life for eight types of radial ball bearings should be performed. The optimisation
of the dynamic load capacity and working life should be performed for each bearing
type presented in the market.

Bayesian Network (BN) prediction of the reliability assessment of the
mechanical systems. As one of the examples, the functionality of the system for
painting and varnishing metal product is presented and the method for predicting
the impact of the sub-systems’ failure on the final product quality is developed.
Several different scenarios are tested: probability of system failure if product qual-
ity state is known, probability of the product quality conditions if failure of one
subsystem occurs or if several subsystems fail simultaneously. The obtained results,
also presented in [Milojević 2012], are consistent with the available historical data
confirming the usability of the proposed approach. Another Bayesian model was de-
veloped to predict the behavior of machine for filtering transformer oil. The model
is implemented in C] and tested on real problems. By using C], implementation
and evaluation of model for prediction quality of products in case of machine for
filtering transformer oil [Glišović 2013] is provided. Various scenarios were tested
and the obtained results are presented in [Glišović 2013]. One of the main results
obtained in this study is comparative analysis between the results obtained by BN
and historic probabilities and it is concluded that there is no significant difference
between them. The proposed approach enables the development of the modern soft-
ware for prediction in the area of mechanical engineering and decision making even
when there is no enough information. The concrete scientific contributions related
to this topic are [Milojević 2012], [Glišović 2013]:

• Mathematics: A development of the mathematical model, based on Bayesian
Network, for fault prediction in the cases of mechanical plants: for painting
and varnishing metal products and for filtering transformer oil.
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• Mechanical Engineering: A proposed Bayesian model of prediction quality of
products if one or more subsystems or whole system failed, for both mechanical
plants: for painting and varnishing metal products and for filtering transformer
oil.

• Mechanical Engineering: The development of decision support systems with
application of BN in order to predict quality of products if one or more sub-
systems or whole system failed.

• Mechanical Engineering: A comparative analysis of semifinal products quality
prediction if one or more subsystems or whole system failed, based on historical
data and BNs.

• Mechanical Engineering: A software system for automation of the production
process in order to reduce the failures, all based on Bayesian probabilities.

• Mechanical Engineering: In estimation of the prediction results for the re-
maining useful life of turbine (table 2 in [Alamaniotis 2014]), authors claimed
3.3% of minimum and 42.5% of maximum error. The maximal prediction error
in [Milojević 2012] is 3% which improve the result in [Alamaniotis 2014] for
39.5%.

• Mechanical Engineering: A minimal obtained error while diagnosing the fail-
ures, obtained in [Hernandez-Leal 2011] is 15.29%. Comparing to this result,
[Milojević 2012] and [Glišović 2013] are almost 5 and 15 times precise, respec-
tively.

• Mechanical Engineering: The prediction of the plant power efficiency, as a
function of ambient temperature, is obtained in [Boksteen 2014] with approxi-
mate error of 5% which makes the results in [Milojević 2012] and [Glišović 2013]
improved for 2% and 4%, respectively.

The future extension of this work includes the developing of an expert system
for automation of the production process in order to reduce the failures, based on
the Bayesian probabilities.

The successful applications of meta-heuristic and predictive methods on the con-
sidered problems encourage the future generation of new software systems useful for
supporting the decision making in design and supervising of the complex mechan-
ical systems. This thesis results with several technical contributions in mechanical
engineering. It covers implementation of proposed models and algorithms by using
C] and MatLab.
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