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I

DIAGNOSIS OF DYNAMIC BEHAVIOR OF STRUCTURES USING THE

DISTRIBUTION OF KINETIC AND POTENTIAL ENERGY

Abstract:

In most structures vibration is undesirable. This is because vibration creates dynamic

stresses and strains which can cause fatigue and failure of the structure. The response of the

structure to excitation depends upon the method of application and the location of the

exciting force or motion, and the dynamic characteristics of the structure such as its natural

frequencies and inherent damping level. The structural response can be improved by

changing the mass or stiffness of the structure, by moving the source of excitation to

another location, or by increasing the damping in the structure.

Structural Dynamics Modification (SDM) is a very effective and reliable technique

which is extensively used to improve structure's dynamic characteristics such as natural

frequency, mode shape and frequency response functions (FRFs). The dynamic behavior of

the structure can be improved by predicting the modified behavior making some

modifications parts like rigid links, beams, lumped masses, dampers etc. Many times it

happens that the structure does not meet the required design constraints and the design has

to be modified numerous times before it meets all the design constraints. This repeated

analysis for each such modification becomes very expensive and time consuming,

especially if there are lots of degrees of freedoms. The main point of improving dynamic

behavior of a structure is increasing its natural frequencies and maximizing the interval

between adjacent natural frequencies. This request can be achieved by changing the design

parameters of the structure.

The procedures used in this thesis are concerned with the analysis of the distribution

of potential and kinetic energy and the differences between them in elements of the

structure. Study of distribution of potential and kinetic energy in main oscillation modes of

structure gives obvious prediction which elements need some modifications to achieve the

best dynamic characteristics. The aim of developed the proposed method of reanalysis and
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diagnostic of structure behavior is to determine real behavior of the construction in

exploitation.

Reanalysis technique can be done for the structure using finite element methods (FEM).

Information about the structure like material, geometry and boundary conditions should be

prepared before making FE model.

In this thesis, Structural Dynamics Modification procedures, in process of

reanalysis, have been numerically applied on well known simple structures, such as trusses,

beams, and plates, as well as on complex real structures to improve its dynamic response.

FE models, using ABQUS and KOMPIS softwares, were created for each case. Then, by

studying the distribution of kinetic and potential energy and the difference between them

through whole elements of the structure one can predict the appropriate structural dynamic

modification needed to avoid problems caused by resonance. Furthermore, in order to

verify the results which were obtained numerically using finite element analysis, laboratory

experiments were conducted to prototype model which simulate a case study of a real

structure.

The obtained results of the FE model were in reasonably good agreement with the

measured results of the prototype model. Accordingly, successful investigation was

conducted on the real structure model, which emphasis that the proposed method provides

effective results.
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DIJAGNOSTIKA DINAMIČKOG PONAŠANJA STRUKTURA PRIMENOM 

RASPODELE KINETIČKIH I POTENCIJALNIH ENERGIJA 

Rezime:

U većini objekata vibracije su nepoželjne. To je zato što vibracije stvaraju dinamičke sile i 

udarce koji mogu izazvati zamor i otkaz strukture. Odgovor strukture na njenu pobudu

zavisi od načina primene i lokacije pobudne sile, kao i dinamičke karakteristike strukture 

kao što su prirodne frekvencije i nivo prigušenja. Strukturalni odgovor se može poboljšati

promenom raspodele masa ili krutosti strukture, pomeranjem izvora pobude na drugu

lokaciju , ili povećanjem prigušenja u strukturi . 

Strukturalna dinamička modifikacija ( SDM ) je veoma efikasna i pouzdna tehnika koja se 

intenzivno koristi za poboljšanje dinamičkih karakteristika strukture kao što su prirodne 

frekvencije, glavnih oblika i funkcija frekventnih odziva ( FRFs ) . Dinamičko ponašanje 

konstrukcije može se poboljšati čineći modifikacije delova kao što su kruta mesta, masa , 

prigušenja itd. Mnogo puta se desi da struktura ne ispunjava potrebne ograničenja dizajna i 

da dizajn mora da bude modifikovan nekoliko puta pre nego što ona ispuni sve uslove

projektovanja. Suština poboljšanja dinamičko ponašanje objekta jeste povećanje prirodnih 

frekvencija i povećanje intervala između susednih prirodnih frekvencija. Ovaj zahtev se 

može postići promenom dizajna parametara strukture . 

Procedura koje se koriste u ovom radu jesu analize distribucije potencijalne i kinetičke 

energije i razlike između njih u elementima strukture. Studija distribucije potencijalne i 

kinetičke energije na glavnim oblicima oscilacija strukture daje očigledno predviđanje koje 

elemente i kako treba izmeniti da se postigne najbolje dinamičko ponašanje . Cilj 

predloženog razvijenog metoda reanalise i dijagnostike ponašanja struktura je da se utvrdi

stvarno ponašanje konstrukcije u eksploataciji.

Tehnika reanalise strukture se izvodi primenom metode konačnih elemenata (MKE ) . 

Informacije o strukturi kao materijal, geometrija i granični uslovi treba da budu spremni pre 

nego što generiše model.

U ovom radu , procedure strukturne dinamičke modifikacija, u procesu reanalise, brojčano 
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su primenjene na poznate jednostavne strukture, kao što su rešetke, grede, i ploče, kao i na 

složene realne strukture sa ciljem da se poboljša dinamičko ponašanje. 

Proračun je izveden sa programima ABAKUS i Komips. Proučavajući raspodelu kinetičke i 

potencijalne energija i razlika između njih kroz sve elemente strukture može se predvideti 

odgovarajuće strukturne dinamičke modifikacije potrebne da bi izbegli problemi izazvani 

rezonancom . Osim toga, da bi se proverili rezultati koji su dobijeni numerički pomoću 

konačnih elemenata, laboratorijski eksperimenti su sprovedeni na prototipu modela koji 

simuliraju pravu strukturu.

Dobijeni rezultati proračuna modela su u prilično dobroj saglasnosti sa rezultatima merenja 

prototipa modela.

Ključne reči: 

Dinamika, Metod konačnih elemenata, Dijagnostika, energije, distribucija, ponašanje 

Naučna oblast: Doktor nauka, Mašinsko inženjerstvo

Uža naučna oblast : Otpornost konstrukcija

UDK broj : 539.4.014(043.3)

624.04:534.28(043.3)
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Nomenclature

A – cross section area of the element

E – Young’s modulus of material

FRF – Frequency Response Function

L, l – length

Q – nodal displacement.

– nodal velocity

R – dissipation function

Iz – area moment of inertia

Ek – Kinetic energy

Ep – Potential energy

ek – Kinetic energy of element

ep – Potential energy of element

Er, Ek,r , Ep,r – total, kinetic and potential energies of a structure in r-th

main oscillation mode

(ek)e , (ep)e – kinetic and potential energies of e-th element in r-th main

oscillation mode

V (e) – volume of element

} – vector of displacement

{ – vector of velocity

– the matrix of the shape functions

{ (௘)} – vector of nodal displacements

– global nodal displacement vector

– global nodal velocity vector



X

{
௖

– vector of concentrated nodal forces of the structure or body

௦ ௘ – vector of element nodal forces produced by surface forces

௕ ௘ – vector of element nodal forces produced by body forces

௥
௦
௘– corresponding r-th eigenvector, of e-th element with s degrees of

freedom

{ ௥} – eigenvector

[B] – matrix relating strains and nodal displacements

[D] – elasticity matrix

– matrix of shape function

௘ – damping matrix of element e in local coordinate system

௘ – stiffness matrix of element e in local coordinate system

௘ – mass matrix of element e in local coordinate system

global damping matrix of the structure

global stiffness matrix of the structure

global mass matrix of the structure

[T ] – transformation matrix from local to global coordinate

[ΔK] , [ΔM] – changes in stiffness and mass matrices

ᇱ– stiffness matrix of the modified structure

ᇱ– mass matrix of the modified structure

௥ – eigenvalue

Δλ , 
௥
– changes of eigenvalues and eigenvectors

௘ ௘ – values that define the modification of e-th element

– density of material

௥ – natural frequency

f0r – frequency of structure in r-th main oscillation mode

– strain vector

– stress vector
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Chapter 1

INTRODUCTION

1.1 General Introduction

Nowadays structure design requirements have broad definitions because of high technology

industry. For example, the development of materials with superior properties in exploitation

conditions leads to extend the design requirements to involve structural integrity, reliability

and life specification, in order to increase the life of structure. Structures which have a

complicated design require massive efforts in analyzing and diagnosing the defects. Thus,

one should deal carefully with the factors affecting the structure. The external load is one of

the important factors that have big influence on the structure and its response. Moreover, in

the static analysis, strength and deformation of structure are governed by the value of the

external load. Therefore, the strength and deformation should be always under control in

the case of static load. Although the static analysis is very important, the complete

significant solution requires a dynamic analysis to reach the best results especially when the

structure is subjected to the dynamic load or under high revolution rates such as complex

manufacturing systems in mines and power plants, aircrafts, ground vehicles, rail-road

vehicles, etc.

Dynamic analysis is more complex than static analysis, and the design requirements

must include dynamic properties such as vibration level, resonance range, response

properties, eigenvalues, dynamic stability and modal forms. The vibration that occurs in

most machines, structures and dynamic systems is undesirable, not only because of the

resulting unpleasant motions, the noise and the dynamic stresses which may lead to fatigue

and failure of the structure or machine, but also because of the energy losses and the

reduction in performance that accompany the vibrations. It is therefore essential to carry out

a vibration analysis of any proposed structure. There have been very many cases of systems

failing or not meeting performance targets because of resonance, fatigue or excessive
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vibration of one component or another. It is usually much easier to analyze and modify a

structure at the design stage than it is to modify a structure with undesirable vibration

characteristics after it has been built [1].

1.1.1 The Causes and Effects of Structural Vibration

There are two factors that control the amplitude and frequency of vibration in a structure:

the excitation applied and the response of the structure to that particular excitation.

Changing either the excitation or the dynamic characteristics of the structure will change

the vibration stimulated. The excitation arises from external sources such as ground or

foundation vibration, cross winds, waves and currents, earthquakes and sources internal to

the structure such as moving loads and rotating or reciprocating engines and machinery.

These excitation forces and motions can be periodic or harmonic in time, due to shock or

impulse loadings, or even random in nature. The response of the structure to excitation

depends upon the method of application and the location of the exciting force or motion,

and the dynamic characteristics of the structure such as its natural frequencies and inherent

damping level.

In most structures vibration is undesirable. This is because vibration creates

dynamic stresses and strains which can cause fatigue and failure of the structure, fretting

corrosion between contacting elements and noise in the environment; also it can impair the

function and life of the structure or its components (see Fig. 1.1).
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Figure 1.1 Causes and effects of structural vibration.

1.1.2 The Reduction of Structural Vibration

The level of vibration in a structure can be attenuated by reducing either the excitation or

the response of the structure to that excitation or both (see Fig. 1.2). It is sometimes

possible, at the design stage, to reduce the exciting force or motion by changing the

equipment responsible, by relocating it within the structure or by isolating it from the

structure so that the generated vibration is not transmitted to the supports. The structural

response can be altered by changing the mass or stiffness of the structure, by moving the

source of excitation to another location, or by increasing the damping in the structure.

Naturally, careful analysis is necessary to predict all the effects of any such changes,

whether at the design stage or as a modification to an existing structure [1].
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Figure 1.2 Reduction of structural vibration.

1.1.3 Structural Dynamics Modification (SDM)

Structural Dynamics Modification (SDM) is a very effective and reliable technique which

is extensively used to improve structure's dynamic characteristics such as natural frequency,

mode shape and frequency response functions (FRFs). Although this topic has been widely

studied in the previous decades, the methodology of modification (reanalysis) of

constructions is still under intense development. Predicting the change of natural

frequencies and mode shapes is not effortless, because of the complexity of the structure.

The dynamic behavior of the structure can be improved by predicting the modified

behavior making some modifications parts like rigid links, beams, lumped masses, dampers

etc. Many times it happens that the structure does not meet the required design constraints
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and the design has to be modified numerous times before it meets all the design constraints.

This repeated analysis for each such modification becomes very expensive and time

consuming, especially if there are lots of degrees of freedoms. To avoid dynamic problems,

some modification will be done for structure in process of reanalysis. Reanalysis is a

technique through which the dynamic response of the structure is improved. The main

purpose of reanalysis techniques is to analyze the modified structure without performing

the complete analysis of the structure but give a reasonably accurate solution within the

allowable tolerance limits. This helps in reducing both the computational time and cost.

Finite element (FE) is a powerful method to perform these processes using simple

procedures.

Due to advances in numerical methods and the availability of powerful computing

facilities, FE analysis has become the most popular technique in structural dynamic

analysis. Modeling of complex structures using finite elements method is a helpful

approach in solving problems in short time with reliable results. The fundamental principle

of the FE method is to divide a complicated structure into many small elements such as

plates, beams, shells, etc. The mass and stiffness matrices of an individual element, which

is a simple, homogeneous element, can be obtained easily. The global mass and stiffness

matrices of the structure can be assembled using these element matrices by considering

connectivity and all the boundary conditions. Once the mathematical model has been built

(or the mass and stiffness matrices have been constructed), the equations of motion can be

solved by using various algorithms to obtain a description of the dynamic behavior of the

structure.

Anew user of finite element analysis is unlikely to start writing a computer program.

The reason for this is that there are large numbers of general purpose finite element

programs which can be obtained commercially. All are available on a wide range of

powerful desktop computers. There is also an increasing number available for running on

personal computers. These tend to be a subset of the desktop version. They can be used to

analyze small scale structures and also prepare the input data for large scale structures

which are to be analyzed on a powerful desktop [2].
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The main point of improving dynamic behavior of a structure is increasing its natural

frequencies and maximizing the interval between adjacent natural frequencies. This request

can be achieved by changing the design parameters of the structure. The procedures used in

this thesis are concerned with the analysis of the distribution of potential and kinetic energy

and the differences between them in elements of the structure, which gives prediction for

which elements need a modification.

1.2 OBJECTIVES

The main purpose of the proposed thesis is, therefore, to diagnosis and investigates the

dynamic behavior of some real structures. Structural Dynamics Modification procedures

will be applied on well known simple structures, such as trusses, beams, and plates, as well

as on complex real structures to improve its dynamic response. To this end, FE model will

be created for each case. Then, by studying the distribution of kinetic and potential energy

and the difference between them through whole elements of the structure one can predict

the appropriate structural dynamic modification needed to avoid problems caused by

resonance. Furthermore, in order to validate the theoretical results which are obtained using

finite element analysis, laboratory experiments will be conducted to a prototype model

which simulates the real structure.

1.3 OUTLINE OF THE THESIS

In order to fulfill the above objectives, this Thesis is organized as follows:

In Chapter 2, a literature review on the structural dynamic modification is given.

In Chapter 3, the procedures involved in deriving the finite element equation of dynamic

problems are presented. Stiffness and mass matrices of some structural element are derived.

In Chapter 4, the procedures of reanalysis which are used in this thesis are proposed. The

proposed method depends on the concept of energy distribution through the structure. The

process of analysis is done using a computer program, based on the using of finite element

methods and the implementation of structure energy distributions.

Chapters 5 and 6 are devoted to the application of the proposed method on some cases: in

Chapter 5, numerical examples of some different structures (one Dimensional (1D) and two
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Dimensional (2D)) subjected to structural modifications are presented in order to assess

numerically the effectiveness of the method proposed in this thesis. In Chapter 6, the

reanalysis procedures are applied to real complex structures. Finite Element Analysis is

made in order to diagnosis of dynamic behavior of some real complex structures.

Furthermore, a case study for a complex real structure (Bucket wheel excavators) is

presented. In order to validate the effectiveness of the proposed method, numerical analysis

and experiments are done on a prototype model which simulates the Bucket wheel

excavators, and then the reanalysis procedures are applied to the real structure.

In Chapter 7, the major conclusions are drawn.
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Chapter 2

LITERATURE REVIEW

This chapter gives brief literature reviews as it pertains to this research.

Structural dynamic modification is aimed to improve the dynamic behavior of a structure,

based on the available information for the original structure. There are two opposite

approaches for structural modifications. The first one is direct structural modification, and

the second is inverse structural modification. Several studies have been addressed to the

subject of modal reanalysis and structure dynamic modifications. Also, a few surveys have

been conducted [3,4,5,6].

2.1 Direct Structural Modification

The direct structural modification problem is treated as prediction problem which is

concerned with determining the dynamic response of a structure brought about by

modification. The Rayleigh quotient can be considered as the basic of direct dynamic

modification [7]. Rayleigh showed that the smallest natural frequency is the global

minimum and the largest natural frequency the global maximum of the quotient. A

consequence of this minimal property is that any stiffness increase or mass decrease will

generally result in an increase the system natural frequencies, except when a mass or

stiffness is added at a vibration node when there is no change in that particular natural

frequency. Wittrick [8] concluded that any small change to an eigenvalue should be

attributed to small parameter changes only and not to any small changes to the modes

shape, because of the stationarity of the Rayleigh quotient. Fox and Kapoor [9] showed that

expressions of both eigenvalue and eigenvector rate of change may be written in terms of

only the corresponding unmodified eigenvector and eigenvalue. The importance of

knowing the rates of change of eigenvectors and eigenvalues with respect to structural

changes is that they can be used to obtain a first-order approximation of the actual modified

eigenvalues and eigenvectors. Structural modification techniques based on the Rayleigh

Quotient, and in general on techniques that rely on the estimation of rates of change of
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eigenvalues and eigenvectors with respect to structural parameters, are suitable only for

infinitesimal modifications. Weissenberg [10,11] treated lumped mass and stiffness

modifications as a symmetric unit rank perturbation on the eigenvalue problem of the

unmodified structure. For example, for a point mass modification this perturbation is given

by

௜
ଶ

௜
ଶ ୘

௜

Where m is the mass modification and u a unit vector that indicates the position of the

structural modification. He obtained the expressions

ଶ
௝
ଶ

௝
ଶ ଶ

௡

௝ୀଵ

௝௜ ௜
௝

௝
ଶ ଶ

Where ωj and ௜ are, respectively, the jth natural frequency of the original system and the

ith natural frequency of the modified system. The latter is one of several frequencies

௜ that satisfies Eq. (2.2). zji the jth component of ௜
୘

௜where Φ is the modal

matrix having the eigenvectors of the original system in its columns. M is the mass matrix

and ௜�is the ith eigenvector of the modified system. ௝ is the jth component of the vector

and ௜ is a scaling constant. This approach was extended by Pomazal and Snyder

[12] and Hallquist [13] by taking damping into consideration and adding DOFs. An exact

method for calculating the eigenvalues and eigenvectors of the modified structure using a

local modification based on the complete eigensolution of the original structure was

presented by Hirai et al [14]. Although the accurate results can be obtained from only

several eigenvalues and eigenvectors of the original structure by using this method, it lacks

applicability when only a few lower eigenvalues and eigenvectors of the original structure

are known, or when higher ordered eigenvalues of the modified structure need to be

determined from a limited number of eigenvalues and eigenvectors of the original structure
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Crowley, J. et al. [15] presented the basic theory behind direct Structural Modification

using experimental frequency response functions. He also examined some of the

applications, advantages and disadvantages of the technique, and presented examples

illustrating its usage. Wang et al. [16] experimentally investigated the effects of local

modification on the dynamic characteristics of an existing structure. The frequency

response functions (FRFs) of the modified structure were computed based on the frequency

response data of the original structure and the characteristics of the local modification.

Hence, the dynamic characteristics of the modified structure could be identified using the

calculated transfer functions. This method was applied to a free-free plate with local mass

modification and without additional DOFs. Wallack [17] extended the local modification

method, which must be used repeatedly, i.e., for each local modification, to handle general

matrix modification which can solve multiple modifications simultaneously. Özgüven[18]

developed a general method, using either theoretically calculated or experimentally

measured FRFs, to analyze a structure subjected to lumped structural modification in two

different cases: with and without additional DOFs. In this method, the frequency response

functions (FRFs) of the modified structure are calculated from those of the original system

and system matrices of the modifying structure. This method has been successfully applied

to several simple structures, e.g., a plate and a propeller by Tahtali[19]. The technique of

Structural Modifications Using Frequency Response Functions SMURF involves the direct

manipulation of frequency response functions, or FRFs, of component systems to yield the

FRFs of the modified system. This is advantageous since FRFs from sources such as

experimental modal tests, finite element models, or analytical models may be combined to

produce a modified set of FRFs for a system. The theoretical formulation of the SMURF

technique is well established and has been documented on many occasions [20-25]. This

technique was employed by D.S. Massey and C.P. Constancon [26] for the prediction of the

modified dynamic characteristics of beam-like structures, with experimentally derived

FRFs serving as a basis. The underlying principles of these limitations Pinned and rigid

modification types were employed, which made it necessary to consider FRFs which

related rotational excitation and response. The results indicated that the (SMURF)

technique was able to predict the dynamic characteristics of the modified structures with a
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high degree of accuracy. Aforementioned studies were dealt with problems of lumped

modification. In the direct structural dynamic modification, the number of studies on

distributed structural modification problems is limited although most modifications in

engineering practice being continuous. D'Ambrogio [27] studied the prediction of the

frequency response function (FRF) of the modified structure subjected to structural

modifications. This approach depends on knowledge of the FRF of the original structure in

addition to a physical description of the modified structure. He demonstrated that is

difficult to combining the theoretical model of the modifying structure, which includes

rotational DOF with the frequency response model of the original structure system, derived

from measurements based on translational dofs. The proposed solution is based on the

condensation of mass and stiffness matrices of the modifying structure to eliminate

rotational dofs. B. J. Schwarz and M. H. Richardson [28] demonstrated how all of the most

commonly used elements of finite element analysis (FEA) can also be used to model

structural modifications(SDM). These include rods, bars, triangular and quadrilateral plate

and shell elements, and tetrahedron, prism, and brick solid elements. They modeled and

tested a flat plate structure with a rib stiffener attached to its centerline using SDM, with

both plate and bar elements. The modal data for the unmodified structure (plate without rib)

and the element properties were used as input data to the SDM method. The modes of the

modified structure (plate with rib) were calculated by SDM. To evaluate the structural

modification results objectively, they used the FEA modes of the unmodified plate, and

compared the SDM results with the FEA modes of the plate with rib. Likewise they used

the experimental modes of the unmodified plate, and compared the SDM results with the

experimental results for the plate with rib. The obtained results were very useful. In his

doctoral thesis H. Grafe [29] investigated the fundamental concepts of FRF model updating

methods. The use of component mode synthesis methods for FE model reduction was

proposed. Two new FRF correlation functions were introduced, the shape- and amplitude-

correlation coefficients. Both correlation measures may be used across the full measured

frequency range and uniquely map any complex response to a real scalar between zero and

unity. An analytical closed-form solution of the derivatives of the correlation functions was

used to formulate the predictor- corrector model updating formulation. This correlation-
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based technique resolves problems associated with incomplete measurements and updating

frequency point selection and is also robust against measurement noise. As a result of this

new philosophy of FRF model updating, modal damping coefficients may also be

identified. . D'Ambrogio, and A. Sestieri [30, 31, 32] presented a procedure for creating a

consistent model for distributed modifications. They proposed a solution for the problem of

computing the dynamic stiffness matrix [ΔB] for distributed structural dynamic 

modifications by employing its quasi-local characteristics for no change in DOFs. They

extend their work in [33] by applying it to a real structure consisting of a complex plate.

Three different techniques to tackle appropriately the structural modification problem were

considered which are a condensation technique, an expansion technique providing the

rotational DOFs from translational measurements and a modal synthesis technique

providing the rotation/moment elements from measured translations and rotations. A

comparison among these methods was presented and discussed. M. Corus and E. Balm'es

[34] proposed a method to predict the effects of distributed modifications of structures. The

method is an evolution of the classical formulation but uses distinct measurement and

coupling points; it includes a smoothed expansion procedure and two indicators to estimate

the quality of the result. Two examples were presented to illustrate some advantages of the

proposed approach. Starting from the original relationship developed by Özgüven [18] for

structural modifications and the description method for distributed modifications developed

by D’Ambrogio and Sestieri [30], Hang et al. [35] proposed an approach to predict the

effects of distributed structural modifications with additional DOFs. Also, Hang et al. [36-

38] developed the distributed structural modification theory to include distributed structural

modifications with reduced DOFs. In order to include the non-zero effects after the

condensation procedure, known as Guyan reduction, the definition of the interface DOFs is

extended from physical to numerical. G. Canbaloglu and H. N. Özgüven [39] presented an

approach for predicting the dynamic response of a structure with distributed modifications

from the response of the original structure itself and dynamic flexibility matrix of the

modifying structure. The performance of this method was investigated by applying it to a

real structure. They compared the receptances calculated by using the structural

modification method with measured ones. Successful results were obtained. Accordingly,
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they concluded that the structural reanalysis method proposed can be successfully and

efficiently used for structures with distributed modifications. H.P. Chen [40] proposed an

improved iterative procedure for efficiently determining the eigenvalues and the

corresponding eigenvectors for a dynamic system with large modifications of structural

parameters and a large number of DOFs present. Only a limited knowledge of original

modes is required to provide correct predictions of the modified modal parameters, and the

knowledge of the original or modified stiffness and mass matrices may not be needed. He

demonstrated that the proposed high order approximation approach can give good

predictions of the modified modal parameters even in the cases where relatively large

modifications of structural parameters are present

2.2 Inverse structural modification

The inverse structural dynamic modification is treated as an optimization procedure which

is used to determine necessary modifications in order to achieve the desired dynamic

behavior of structure usually in terms of the desired values for natural frequencies and

mode shapes. Since the 1970s, there has been considerable development of this topic, as

summarized in the review by Venkayya [41]. K. Saitou et al. [42] reviewed and

summarized a brief history of structural analyses and optimization from an industry

perspective. The general inverse structural modification problem was first considered by

Weissenburger [43], and Pomazal and Snyder [44]. Due to the development of commercial

softwares which are running on desktop computers and with increased use of finite element

analysis, perturbation methods have become popular for inverse modification problems.

peturbation is a technique used to investigate the solution of a modified structure by

considering the modification as a perturbation of the linear baseline system. Stetson [45]

proposed a first-order perturbation method based on the assumption that the new mode

shapes could be expressed as admixtures of the baseline mode shapes. In a subsequent

work, Stetson et al [46-48] casted this technique in terms of finite elements and applied it to

several problems. Kim et al [49] presented an analytical method for the automated redesign

of the modal characteristics of undamped mechanical systems. The method is based on a

perturbation of the eigensystem, and all nonlinear terms were considered. A penalty
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function method was employed in this work in which the original objective function is a

minimum weight condition and the penalty term is a properly normalized set of residual

nodal force errors. A nonlinear incremental inverse perturbation method for structural

redesign was presented by Hoff et al [50, 51]. The method uses a single finite element

analysis of an undamped baseline structural system, and can be applied to large or small

natural frequency and/or mode shape changes. Done and Rangacharyulu [52] described an

application of a mathematical optimization process to helicopter vibration control by

structural modification. Their attention was focused on the reduction of vibration in the

crew area. Forced vibration response was used to identify the most effective parameters for

controlling vibration in the crew area. The method was applied to a simple two-dimensional

beam-element helicopter fuselage model. As a result, the exercise demonstrated what can

and cannot be done in controlling vibration by using optimization structural modification.

Wang et al. [53] developed numerical methods for the structural modification of a fuselage

structure and for the analysis and design of appendant structures. These were applied to the

problem of alleviation of helicopter vibration while design techniques were developed to

achieve the desired anti-resonance through structural modification. A local modification

method was used to analyze both the appendant structures and the modified system. Sestieri

and D’Ambrogio [54] developed a method which uses the raw data of measured FRFs and

lumped modifications to achieve the best structural modifications in order to fulfill the need

to vary the structural dynamic characteristics. Bucher and Braun [55] developed a theory to

show how the necessary mass and stiffness modifications can be computed using modal test

results only, even when only a partial set of eigensolutions is available from such tests.

Their method relied upon extracting the left eigenvectors from noisy data in order to assign

the mode shapes of the modified system. S.G. Hutton [56] presented analytical procedures

for modifying the vibration characteristics of structures. It has been shown that once a

baseline analysis has been conducted the calculated modes can be effectively used in

further computation to determine how to modify the structure to obtain the prescribed

frequencies. Ram and Elhay [57] studied the undamped multi-degree-of-freedom vibration

absorber and treated the problem of determining the parameters of the secondary system as

an inverse eigenvalue problem. This is the problem of determining the terms in the stiffness
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and mass matrices that will produce specified natural frequencies and mode shapes.

G. Gladwell [58] discussed some inverse problems relating to finite-element formulations

for simple chain-like structures. Li and He [59] developed a new approach based on the

solution of linear equations for structural modification of a dynamic system. It determines

mass and stiffness modifications of an undamped structural system needed to change the

dynamic characteristics of the system. This approach formulates the structural modification

problem using a set of linear equations and does not require an eigenvalue solution. The

data it needs are only the frequency response function data at designated modification

points. A structural modification method based on frequency response functions was

presented by Park et al. [60, 61]. The design objective in this method is to derive multiple

lumped mass, damper and stiffness modifications needed to reallocate eigenvalues and

specify eigenvectors of an existing structure. Based on FRFs, a substructure coupling

concept is used to derive the system dynamic equations. Finally a linear algebraic equation

for identifying the necessary structural modifications is obtained. W.H.Tong et al [62]

presented the basic theory to find out a solution existence for the structure optimization

with frequency constraints. Based on this theory, natural frequencies do not change with

uniform frame modification and key limitation for determination of optimal dynamic

solution of frame structure modification is mostly that of eigenfrequencies. Mottershead et

al. [63] presented an inverse method for the assignment of natural frequencies and nodes of

normal modes of vibration by the addition of grounded springs and concentrated masses.

The method relies entirely on measured receptances at the coordinates of the nodes and the

modifications. Measurements at other locations are not needed and it does not require an

analytical model. The stiffness and mass parameters are determined by an analysis of the

null space of a matrix containing the measured receptances. An optimization procedure was

presented in [64, 65] for the minimum weight optimization with discrete design variables

for truss structures subjected to constraints on stresses, natural frequencies and frequency

responses. An efficient relationship between geometric and material properties of pin-

jointed truss structures and their eigenvalues was established by Djoudi et al. [66]. The

problem is formulated as an inverse eigenvalue problem. This formulation allows the

determination of the required modifications on the structural members to achieve specified
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eigenfrequencies. In addition to the modification of the existing structural elements, the

formulation also allows addition of new structural elements to obtain the desired

frequencies. Bahai et al. [67] and Bahai and Aryana [68] presented formulations for inverse

optimisation of vibration behaviour of finite element models of both truss and continuous

structures. The proposed algorithms determine the required modifications on truss and

continuous structures to achieve specified natural frequencies. The modification can be

carried out globally or locally on the structures stiffness and matrices and the formulation

can also be used to add new structural members to achieve the desired response. The

problem of assigning natural frequencies to a multi-degree-of-freedom undamped system

by an added mass connected by one or more springs was addressed by Kyprianou et al.

[69]. The added mass and stiffnesses are determined using receptances from the original

system. The modifications required to assign a single natural frequency may be obtained by

the non-unique solution of a polynomial equation. If more than one frequency is to be

assigned, then a system of non-linear multivariate polynomial equations must be solved.

Such a modification involves not only an added mass and one or more stiffness terms, but

also an added coordinate. It is demonstrated that it is impossible to assign more than two

natural frequencies independently. In order to assign a third natural frequency

independently, using the same oscillator, a second spring is connected between the added

mass and another coordinate. The proposed method uses Groebner bases [70] as a tool for

finding the simultaneous solutions that define the modification parameters. Farahani and

Bahai [71] proposed an inverse strategy for relocation of structural natural frequencies

using first order formulation and solution algorithm. The proposed technique incorporates

the design constraints or objective functions in the system equations in such a way that a

square system of equations is always preserved. The formulations are general and

applicable to all finite element structures. This technique was extended in [72] to second

order methods for relocation of structural natural frequencies from their initial design

values to new modified frequencies. Kyprianou et al. [73] solved the inverse structural

modification problem in order to determine the dimensions of the cross-section of a beam

that when added to an original structure will assign natural frequencies or anti-resonances

as specified. In order for this to be accomplished rotational receptances must be measured
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as presented in the companion paper [74]. When added beam is cast as an additional forcing

term on the original structure a system of multivariate polynomials in the parameters of the

beam cross-section are revealed. The solution of this system gave the beam cross-section

dimensions that assigned the desired natural frequencies and anti-resonances. Hua-Peng

Chen [75] presented efficient methods for determining the modified modal parameters

(natural frequencies and mode shapes) in a structural dynamic modification analysis when

structural modifications are relatively large. An improved iterative procedure was proposed

for efficiently determining the eigenvalues and the corresponding eigenvectors for a

dynamic system with large modifications of structural parameters and a large number of

DOFs present. A high order approximation approach is also presented without iterative

procedures involved. He concluded that even in the cases with a large modification of

structural parameters the proposed iterative procedure can provide exact predictions of the

modified modal parameters after only a few iterations, and the high order approximation

approach can give excellent estimates. The computation of the modified modal parameters

does not require the knowledge of the original or modified structural parameters, and only a

limited knowledge of the original modal data may be sufficient in a dynamic reanalysis for

complex structures. Olsson and Lidström [76] studied the inverse structural modification

using constraints. The undamped natural vibrations of a constrained linear structure were

calculated by solving a generalized eigenvalue problem derived from the equations of

motion for the constrained system involving Lagrangian multipliers. The non-symmetric

constraint formulation which is given in [77] was used with the constraint matrix elements

as design variables. The procedure was applied numerically to a few simple problems in

order to illustrate the methodology of this method.

The methods of sensitivity analysis of the structure's eigenvalues and eigenvectors with

respect to modification parameters have proved to be a powerful tool leading to achieve the

objective of inverse dynamic modification problems. For a thorough review of the research

in sensitivity methods, one may refer to the survey presented by Haftka and Adelman [78].

An approach for real symmetric eigensystems was first presented by Fox, R. and Kapoor

[9]. Hallquist [79] proposed a method for determining the effects of mass modification in

viscously damped vibratory systems. Nelson [80] proposed a method to calculate the first-
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order derivatives of eigenvectors with distinct eigenvalues for the general real

eigensystems. This method was developed by Ojalvo [81], Mills-Curran [82], Dailey [83]

and Wuetal [84] for calculating the first-order derivatives of eigensolutions of structures

with repeated eigenvalues. Yoshimura [85,86 ] presented a new optimization method for

increasing or decreasing the natural frequency at an arbitrary degree of natural mode and

maximizing the frequency interval between adjacent natural frequency, in order to improve

dynamic characteristics with respect to forced vibration, noise, and feed drive performance

of machine structures. The optimization is performed in two steps. First, the evaluation of

the energy distribution through the complete structure at the objective natural frequency

provides design modifications continuing until roughly optimum design points are obtained

and reduction of design parameters taking part in the optimization are determined.

Secondary, a mathematical direct search method identifies the true optimum design point.

Zimoch [87] presented a method, which is applied to conservative as well as non-

conservative systems, for the analysis of the sensitivity dynamical characteristics of

mechanical linear systems to variations in the parameters. In his doctoral thesis, Jung [88]

discussed the advantages and disadvantages (or limitations) of various model updating

methods. One of the advantages of model updating using eigensensitivity analysis is that

mode expansion is not required. However, this method requires large computational effort

because of the repeated solution of the eigendynamic problem and repeated calculation of

the sensitivity matrix. Jung developed a sensitivity method using arbitrarily chosen macro

elements at the error location stage in order to reduce the computational time and to reduce

the number of experimental modes required. Accordingly, the model updating problem

which is generally under determined can be transformed into an over-determined one and

the updated analytical model can be a physically meaningful model. Lee and Jung [89, 90]

proposed methods for the computation of eigenpair derivatives for the real symmetric

eigenvalue problem with distinct eigenvalues. Lee et al. [91, 92] extended the previous

work to the proportionally and non-proportionally damped systems with multiple natural

frequencies. Aryana and Bahai [93] proposed a method which is based on the second order

approximation in order to determine the required geometrical and material modifications

for pre-defined natural frequency values of structures. The advantage of this method is that
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the modification is conducted only on small parts of the global stiffness and mass matrices,

requiring minimal computational processing time and memory. Therefore, the

modifications can be conducted on the stiffness and mass matrices in their assembled form.

Choi et al. [94] presented a method for the derivatives of eigenvalues and eigenvectors of

non-conservative systems. In this method, contrary to previous methods, the eigenvalue and

eigenvector sensitivities can be obtained simultaneously from one equation. Chen and Tan

[95] presented a new method to compute the eigensolution variability of asymmetric

damped systems. In order to reduce the condition number of the coefficient matrix, some

weight constants were introduced. The method is well-conditioned since elements of the

coefficient matrix are all of the same order of magnitude and several special cases can be

presented based on the similar idea of the proposed method.

2.3 Energy methods

In general, Finite Element Method is used to predict vibration levels of structures at low

frequency. However, as the frequency increases, this method needs higher order shape

functions or more numbers of elements [96]. Consequently, this leads to a time consuming

and unreliable results. At higher frequencies, the response of the system becomes sensitive

to small details in its construction. Various Energy-based approaches have been presented

in order to overcome this limitation of frequencies. One of these methods is Statistical

Energy Analysis (SEA), which has been developed by Lyon and Dejong [97]. Another

analysis method for high frequency is Energy Flow Analysis (EFA), which was introduced

by Belov et al [98]. Nefske and Sung [99] developed a finite element method to predict the

energy flow and the vibrational response of the Euler–Bernoulli beam. Wohlever and

Bernhard [100] established the energy flow model for the rod and Euler– Bernoulli beam.

The Energy Finite Element Analysis (EFEA) has been developed for high-frequency

structural simulations [101,102] and constitutes an alternative formulation to the

established SEA method. Cho and Bernhard [103] used Energy Finite Element Analysis

formulation to predict the frequency-averaged vibrational response of a frame structure

with a three-dimensional joint.
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The proposed method which is used in this thesis is concerned with distribution of potential

and kinetic energy in all elements of the structure. Accordingly, elements which is needed

modifications can be easily determined. Then, through reanalysis procedures one can

predict and develop the behavior of the structure. The methodology of this method has

been proposed by Ki, I. K. [121], and later developed by Maneski, T [104]. This

methodology was applied numerically by Trisovic,N. [105] to investigate the dynamic

behavior of some real structures using procedures of re-analysis. Trisovic, N. etc [106,107]

extended this work by applying it to complex real structures. The obtained results were

very useful.
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Chapter 3

FINITE ELEMENT METHOD FOR DYNAMIC PROBLEMS

The first step in the analysis of any structural vibration problem is the formulation of the

equations of motion. If the structure has a simple geometric shape, such as uniform axial,

torque and beam elements, then a partial differential equation of motion can be used to

describe its dynamics behavior. Complex structures, however, consist of an assemblage of

components of different types (beams, plates, shells and solids). Furthermore, in many real

structures, the shape of the boundaries cannot be described in terms of known functions.

Therefore, it is impossible to obtain analytical solutions, which describe the dynamics

behavior of these complex structures. Finite element method is a powerful technique which

used to solve real complex structures problems. The principal advantage of the finite

element method is its generality; it can be used to calculate the natural frequencies and

mode shapes of any linear elastic system.

3.1 Dynamic Equation of motion

In dynamic problems the displacements, velocities, strains, stresses, and loads are all time

dependent. The procedure involved in deriving the finite element equation of dynamic

problems can be stated by the following steps [108]:

Step 1: dividing the structure into E finite elements.

Step 2: assume the displacement model of element e as:

(௘) (3.1)

Where:

: is the vector of displacement.

: is the matrix of the shape functions.

(௘) : is the vector of nodal displacements that assumed to be a function of time (t).
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Step 3: Derive the stiffness and mass matrices and load vector.

From Eq.(3.1), the strains can be expressed in form

(௘) (3.2)

and the stresses as

(௘) (3.3)

Where:

[B]: is the matrix relating strains and nodal displacements, and

[D]: is the elasticity matrix

Differentiating equation (3.1) with respect to time leads to obtain the velocity as:

(௘) (3.4)

Where:

(௘) : is the vector of nodal velocity.

The dynamic equations of motion of a structure can be derived by applying Lagrange

equations as following:

ௗ

ௗ௧

డ௅

డொ̇

డ௅

డொ

డோ

డொ̇
(3.5)

Where:

௞ ௣ (3.6)

is called the Lagrangian function. Ek and Ep are the kinetic and potential energy of the

system respectively.

R : is the dissipation function.

Q: is the nodal displacement.

: is the nodal velocity.
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The kinetic and potential energies of an element “e” can be expressed, respectively, as

௞ ௘
ଵ

ଶ

்

௏(೐) (3.7)

and

௣ ௘

ଵ

ଶ
்

௏(೐)

்

௦భ
(೐) Ф ଵ

்

௏(೐) (3.8)

Where

V (e) is the volume, ρ is the density, and is the vector of velocities of the element e.

The dissipation function R(e) of the element e can be expressed as:

(௘) ଵ

ଶ

்

௏(೐) (3.9)

Where is called the damping coefficient. In equations (3.7) – (3.9) the volume integral

has to be taken over the volume of the element. And in Eq. (3.8) the surface integral has to

be taken over that portion of the surface of the element on which distributed surface forces

are prescribed. By using Equations (3.1)-(3.3), the expressions for Ek, Ep and R can be

written as

௞ ௞ ௘

ா

௘ୀଵ

்

்

ܸ( )݁

ா

௘ୀଵ

௣ ௣ ௘

ா

௘ୀଵ

்

்

ܸ( )݁

ா

௘ୀଵ

்
்

ௌభ
(೐)

ா

௘ୀଵ

ଵ
்

ܸ( )݁

்

௖
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௘

ா

௘ୀଵ

்

்

ܸ
( )݁

ா

௘ୀଵ

Where

is the global nodal displacement vector

is the global nodal velocity vector.

௖
..is the vector of concentrated nodal forces of the structure or body.

From equations (3.10) – (3.12) the next expressions can be defined as:

௘ = element mass matrix

்

௏(೐)

௘ = element stiffness matrix

்

௏(೐)

௘ = element damping matrix

்

௏(೐)

௦ ௘ = vector of element nodal forces produced by surface forces

ܶ�
ଵ

ௌభ
೐

௕ ௘ = vector of element nodal forces produced by body forces
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்

௏(೐)

Step 4: Derive the equations of motion of the whole system by assembling the elements

matrices and vectors of equations (3.13)-(3.17). Thus equations (3.10)-(3.12) can be written

as:

௞
ଵ

ଶ

்

(3.18)

௣
ଵ

ଶ

் ்

(3.19)

ଵ

ଶ

் ்

ܿ (3.20)

Where:

master (global) mass matrix of the structure =  
e

E

e

m
1

,

master (global) stiffness matrix of the structure =  
e

E

e

k
1

,

master (global) damping matrix of the structure =  
e

E

e

c
1

global load vector of the structure = ௦
(௘)

௕
(௘)ா

௘ୀଵ ௖

The desired dynamic equations of motion of the structure can be obtained by substituting

equations (3.18)-(3.20) into equation (3.5) as:

(3.21)

Where:
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is the vector of nodal acceleration in the global system.

When damping is not taken into account the equations of motion become as

(3.22)

Step 5and 6: Appling the boundary and initial conditions to solve the system equations of

motion. Equations (3.21) or (3.22) can be solved numerically.

3.2 Consistent and Lumped Mass Matrices

Equation (3.13) for the mass matrix was first derived by Archer [109] and is called the

consistent mass matrix of the element. It is called consistent because the same displacement

model that is used for deriving the element stiffness matrix is used for the derivation of

mass matrix. It is of interest to note that several dynamic problems have been and are being

solved with simpler forms of mass matrices. The simplest form of mass matrix that can be

used is that obtained by placing point (concentrated) masses mi at node points i in the

directions of the assumed displacement degrees of freedom. The concentrated masses refer

to translational and rotational inertia of the element and are calculated by assuming that the

material within the mean locations on either side of the particular displacement behaves

like a rigid body while the remainder of the element does not participate in the motion.

Thus, this assumption excludes the dynamic coupling that exists between the element

displacements, and hence the resulting element mass matrix is purely diagonal and is called

the lumped mass matrix. The lumped mass matrices will lead to nearly exact results if small

but massive objects are placed at the nodes of a lightweight structure. The consistent mass

matrices will be exact if the actual deformed shape (under dynamic conditions) is contained

in the displacement shape functions [N]. Since the deformed shape under dynamic

conditions is not known, frequently the static displacement distribution is used for [N].

Hence, the resulting mass distribution will only be approximate; however, the accuracy is
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generally adequate for most practical purposes. Since lumped element matrices are

diagonal, the assembled or overall mass matrix of the structure requires less storage space

than the consistent mass matrix. Moreover, the diagonal lumped mass matrices greatly

facilitate the desired computations [108].

3.3 Stiffness matrix and Mass matrix of some structural element

In order to do dynamic finite element analysis, one needs a mass matrix to pair with the

stiffness matrix. The mass and stiffness matrices of an individual element, which is a

simple, homogeneous element, can be obtained easily. The global mass and stiffness

matrices of the structure can be assembled using these element matrices by considering

connectivity and all the boundary conditions. Once the mass and stiffness matrices have

been constructed, the equations of motion can be solved to obtain a description of the

dynamic behavior of the structure.

3.3.1 Stiffness and Mass matrix of bar element

Consider a uniform elastic bar of length l, figure 3.1, with elastic modulus E and cross

sectional area A.

Figure 3.1 two nodes bar element

For a linear displacement model

(௘)

where:

q1
u (x) q2

x
l

Local Node 1 Local Node

A, E
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(௘) ଵ

ଶ

(௘)

Where q1 and q2 represent the nodal degrees of freedom in the local coordinate system

(unknowns) and the superscript e denotes the element number. The axial strain can be

expressed as

௫௫
ଶ ଵ

or

௫௫
(௘)

where

The stiffness matrix of the element (in the local coordinate system) can be obtained, from

Eq. (3.14) for [D] = [E], as

(௘) ்

௏(೐)

௟

௫ୀ଴

Similarly, from Eq. (3.13), the consistent mass matrix of the element is

(௘) ்

௏(೐)

In general, the consistent mass matrices are fully populated. While, the lumped mass matrix

of the element is a diagonal matrix, and can be obtained (by dividing the total mass of the

element equally between the two nodes) as

(௘)



Diagnosis of Dynamic Behavior of Structures Using the Distribution of Kinetic and Potential Energy

29

3.3.2 Stiffness and Mass matrix of beam element

Consider a beam element of length l in the xy plane as shown in Figure 3.2. The four

degrees of freedom in the local (xy) coordinate system are indicated as q1, q2, q3, and q4.

Because there are four nodal displacements, we assume a cubic displacement model for v(x)

as (Figure 3.2)

Figure 3.2 two nodes beam element

ଵ ଶ ଷ
ଶ

ସ
ଷ

where the constants αl - α4 can be found by using the conditions

ଵ ଶ

and

ଷ ସ

Equation (3.32) can thus be rewritten as

(௘)

Where [N] is given by

ଵ ଶ ଷ ସ

q1= v(x=0) v (x)

x
l

q3= v(x=l)

ଶ ସ

Local Node 1 Local Node 2
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with

ଵ

ଷ ଶ ଷ

ଷ

ଶ

ଷ ଶ ଶ

ଶ

ଷ

ଷ ଶ

ଷ

ସ

ଷ ଶ

ଶ

and

ଵ

ଶ

ଷ

ସ

Based on simple beam theory, plane sections of the beam remain plane after deformation

and hence the axial displacement u due to the transverse displacement v can be expressed as

(Figure 3.3) [108]

Figure 3.3 Deformation of an Element of Beam in xy Plane
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where y is the distance from tile neutral axis. Thus, the axial strain is

௫௫

ଶ

ଶ

where the matrix [B] is

ଷ

The stiffness matrix of the element can be obtained, from Eq. (3.14) for [D] = [E], as

(௘) ்

௏(೐)

்

஺

௟

௫ୀ଴

ଵ ଶ ଷ ସ

௭

ଷ

ଶ ଶ

ଶ ଶ

ଵ

ଶ

ଷ

ସ

where ௭
ଶ

஺
is the area moment of inertia of the cross section about the z axis.

The consistent mass matrix of the beam element is

(௘) ்

௏(೐)

ଶ

ଶ

ଶ

ଶ

Also, the lumped mass matrix for the beam element is

(௘)
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3.3.3 Stiffness and Mass matrix of space frame element

A space frame element is a straight bar of uniform cross section that is capable of resisting

axial forces, bending moments about the two principal axes in the plane of its cross section,

and twisting moment about its centroidal axis. The corresponding displacement degrees of

freedom are shown in Figure 3.3.

Figure 3.4 Space frame element with 12 degrees of freedom

In order to obtain the stiffness matrix and mass matrix of space frame element, the

displacements can be separated into four groups, each of which can be considered

independently of the others. The stiffness matrix and mass matrix of each independent set

of displacement can be obtained separately and then the total stiffness matrix and mass

matrix of the element can be obtained by superposition.

3.3.3.1 Axial displacement

Similar to steps which were done in section 3.3.1, for bar element, the stiffness matrix and

consistent mass matrix of the space frame element, corresponding to the axial displacement,

are, respectively:

(௘) ்

௏(೐)

ଵ ଻

ଵ

଻
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(௘) ்

௏(೐)

3.3.3.2 Torsional displacements

Figure 3.4(b) shows the torsional degrees of freedom for the space frame element. For the

linear variation of the torsional displacement or twist angle, the displacement model can be

expressed as:

௧

where

and

௧
ସ

ଵ଴

The shear strain in the element, considering a circular cross section of the frame, is:

ఏ௫

where r is the distance of the fiber from the centroidal axis of the element.

Thus,

ఏ௫

where
ݎ

݈

ݎ

݈
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Figure 3.5 Degrees of freedom of a space frame element

Consequently; for [D] = [G], G is the shear modulus of material, the stiffness matrix of the

element corresponding to torsional displacement degrees of freedom can be derived as:

௧
(௘) ்

௏(೐)

௟

௫ୀ଴

ଶ

஺

ସ ଵ଴

ସ

ଵ଴
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where ଶ
஺

is the polar moment of inertia of the cross section, and
ீ௃

௟
. is the

torsional stiffness of the frame element.

The consistent mass matrix of the element corresponding to torsional displacement degrees

of freedom is

(௘) ்

௏(೐)

3.3.3.3 Bending displacements in the Plane xy

Similar to the section 3.3.2, the stiffness matrix and consistent mass matrix of the space

frame element, corresponding to the Bending displacement in the xy plane (figure 3.4(c)),

are, respectively:

௫௬
(௘) ்

௏(೐)

ଶ ଺ ଼ ଵଶ

௭

ଷ

ଶ ଶ

ଶ ଶ

ଶ

଺

଼

ଵଶ

௫௬
(௘) ்

௏(೐)

ଶ

ଶ

ଶ

ଶ
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3.3.3.4 Bending displacements in the Plane xz

By replacing the degrees of freedom q3, q5, q9, and q11 instead of q2, q6, q8, and q12 in the

previous section, the stiffness matrix and consistent mass matrix of the space frame

element, corresponding to the bending displacement in the xz plane (figure 3.4(d)), can be

obtained as:

ଷ ହ ଽ ଵଵ

௫௭
(௘) ௬

ଷ

ଶ ଶ

ଶ ଶ

ଷ

ହ

ଽ

ଵଵ

௫௭
(௘) ்

௏(೐)

ଶ

ଶ

ଶ

ଶ

Now, the complete stiffness matrix and complete mass matrix of the space frame can be

obtained (by superposition), respectively, as:
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(௘)

௭

ଷ

௬

ଷ

௬

ଶ

௬

௭

ଶ

௭

௭

ଷ

௭

ଶ

௭

ଷ

௬

ଷ

௬

ଶ

௬

ଷ

௬

ଶ

௬ ௬

ଶ

௬

௭

ଶ

௭ ௭

ଶ

௭

(௘)

ଶ

ଶ

ଶ ଶ

ଶ ଶ
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For planer frame analysis, the element is assumed to lie in the XZ plane, the stiffness

matrix and mass matrix can be determined respectively, as

(௘) ௬

ଷ

ଶ

௬

ଶ

ଶ

௬

ଶ

௬

ଶ ଶ

(௘)

ଶ

ଶ ଶ

3.3.4 Stiffness and Mass matrix of Triangular Membrane element

Consider a triangular membrane element which lies in the xy plane of a local xy coordinate

system as shown in Figure 4.5. For a linear displacement variation inside the element, the

displacement model can be expressed as:

ଵ ଶ ଷ
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ସ ହ ଺

Figure 3.6 Degrees of freedom of Triangular Membrane element

Thus, the displacement model is;

(௘)

where

ଵ ଶ

ଵ

ଷ

ଶ ଷ

ଵ ଷଶ ଶ ଷଶ ଶ

ଶ ଷଵ ଷ ଷଵ ଷ

ଷ ଶଵ ଵ ଶଵ ଵ

A is the area of triangle

ଷଶ ଶଵ ଶଵ ଷଶ

x
1
, y

1

x
3
, y

3

x
2
, y

2

x, y u (x, y)

v (x, y)

q
4

= v
2

q
3

= u
2

q
6

= v
3

q
5

= u
3q

2
= v

1

q
1

= u
11

2

3

y

x
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௜௝ ௜ ௝

௜௝ ௜ ௝

(௘)

ଵ

ଶ

ଷ

ସ

ହ

଺

(௘)
ଵ

ଵ

ଶ

ଶ

ଷ

ଷ

(௘)

By using the relations

௫௫

௬௬

௫௬

௨

௫

௩

௬

௨

௬

௩

௫

(௘)

where

ଷଶ ଷଵ

ଷଶ

ଷଶ ଷଶ ଷଵ

ଶଵ

ଷଵ ଶଵ

ଷଵ ଶଵ ଶଵ

For a constant plate thickness (t), the stiffness matrix of the triangular membrane element

can be obtained using Eq. (3.14) as following;

(௘) ்

௏(೐)

்

஺

்

where

ଶ
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Eq.(3.67) can be solved numerically. For simplicity, the matrix (௘) can be separated into

two parts: one due to normal stresses ௡
(௘)

, and the other due to shear stresses ௦
(௘)

.

Thus, the components of the matrices ௡
(௘)

and ௦
(௘)

are, respectively:

௡
(௘)

ଷଶ
ଶ

ଷଶ ଷଶ ଷଶ
ଶ

ଷଶ ଷଵ ଷଶ ଷଵ ଷଵ
ଶ

ଷଶ ଷଵ ଷଶ ଷଵ ଷଵ ଷଵ ଷଵ
ଶ

ଷଶ ଶଵ ଷଶ ଶଵ ଷଵ ଶଵ ଷଵ ଶଵ ଶଵ
ଶ

ଷଶ ଶଵ ଷଶ ଶଵ ଷଵ ଶଵ ଷଵ ଶଵ ଶଵ ଶଵ ଶଵ
ଶ

௦
(௘)

ଷଶ
ଶ

ଷଶ ଷଶ ଷଶ
ଶ

ଷଶ ଷଵ ଷଶ ଷଵ ଷଵ
ଶ

ଷଶ ଷଵ ଷଶ ଷଵ ଷଵ ଷଵ ଷଵ
ଶ

ଷଶ ଶଵ ଷଶ ଶଵ ଷଵ ଶଵ ଷଵ ଶଵ ଶଵ
ଶ

ଷଶ ଶଵ ଷଶ ଶଵ ଷଵ ଶଵ ଷଵ ଶଵ ଶଵ ଶଵ ଶଵ
ଶ

Also, the consistent mass matrix of a triangular membrane element can be derived as

(௘) ்

௏(೐)

and, the lumped mass matrix is

(௘)
૟
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3.3.5 Stiffness and Mass matrix of a Plate Bending Element

For the triangular plate bending element shown in figure 3.5, the displacement model can

be described as

ଵ ଶ ଷ ସ
ଶ

ହ ଺
ଶ

଻
ଷ

଼
ଶ ଶ

ଽ
ଷ

the constants ଵ ଶ ଽ can be determined from the nodal conditions as

ଵ ଶ ଷ ଵ ଵ

ସ ହ ଺ ଶ ଶ ଶ

଻ ଻ ଽ ଶ ଶ

Thus,

(௘)

ଵ

ଶ

ଽ

(௘)

where

ଶ ଶ
ଶ

ଶ
ଷ

ଶ ଶ
ଶ

ଶ ଶ
ଶ

ଷ ଷ ଷ
ଶ

ଷ ଷ ଷ
ଶ

ଷ
ଷ

ଷ
ଶ

ଷ ଷ ଷ
ଶ

ଷ
ଷ

ଷ ଷ ଷ ଷ ଷ
ଶ

ଷ
ଶ

ଷ ଷ ଷ
ଶ

ଷ
ଶ

ଷ ଷ

For plate bending, the stress-strain relations are
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௫௫

௬௬

௫௬

௫௫

௬௬

௫௬

௫௫

ଶ

ଶ

௬௬

ଶ

ଶ

௫௬

ଶ

By using Eqs. (3.73) and (3.75) ,Eq.(3.77) can be written in the form

(௘)

Figure 3.7 Degrees of freedom of Triangular plate bending element

ଶ ଵ ଵ 1

32

x

y

q4

q5

q7 q9

q8

q1= w(x1,y1)

ଷ ଵ ଵ

w(x,y)

t
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For a constant plate thickness (t), the stiffness matrix of the triangular plate bending

element can be obtained using Eq. (3.14) as

(௘) ்

௏(೐)

ିଵ ்

௔௥௘௔

்
௧/ଶ

ି௧/ଶ

ିଵ

where

and

ିଵ

and

ଶ

For the triangular bending element, the consistent mass matrix of a triangular membrane

element can be derived as

From Eq.(3.75)

ିଵ (௘)
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Substituting Eq.(3.82) in to Eq.(3.81) leads to

ିଵ (௘)

Based on the principle of thin plate theory, the displacements parallel to the undeformed

middle surface are given by [1]

Therefore, using Eqs.(3.83) and (3.84), one can get

ିଵ (௘)
ଵ

ିଵ (௘) (௘)

where

ଵ

ଶ ଶ

ଶ ଶ

ଶ ଶ ଷ ଶ ଶ ଷ

Thus, the consistent mass matrix of the element can be obtained using Eq. (3.13) as

(௘) ்

௏(೐)

ିଵ
்

ଵ
் ିଵ

௏(೐)

For more details of plate bending, and derivation of more stiffness and mass matrix of some

structural different elements, one can see references [1],[3], and [108].
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3.3.6 Transformation to global coordinates

The stiffness and mass matrices derived previously used a system of local coordinates as

the reference plane. Transformation of coordinates to common global system is necessary

to assemble the elements in global matrix.

If the element nodal displacements and nodal velocities are denoted as (௘) and (௘) in the

global system, the transformation relations can be written as

(௘) (௘)

and

(௘) (௘)

where T is the transformation matrix[108].

The kinetic energy associated with the motion of the element in the local coordinate system

can be expressed as

௞ ௘
(௘)

்
(௘) (௘)

From Eqs.(3.89) and (3.90), one can get

௞ ௘
(௘)் ் (௘) (௘)

Also, the kinetic energy associated with the motion of the element in the global coordinate

system can be expressed as

௞ ௘
(௘)் (௘) (௘)

Since kinetic energy is a scalar quantity, it must be independent of the coordinate system.
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Thus, the consistent mass matrix of the element in the global system can be obtained by

equating Eqs.(3.91) and (3.92) as

(௘) ் (௘)

The previous procedure can be used to determine the stiffness matrix of the element in the

global system [108].

3.4 Analysis of Free Vibration

When an elastic structure is disturbed initially at time t = 0, the structure can be made to

oscillate harmonically. This oscillatory motion is a characteristic property of the structure

and it depends on the distribution of mass and stiffness in the structure. If damping is

present, the amplitudes of oscillations will decay progressively and if the magnitude of

damping exceeds a certain critical value, the oscillatory character of the motion will cease

altogether. On the other hand, if damping is absent, the oscillatory motion will continue

indefinitely, with the amplitudes of oscillations depending on the initially imposed

disturbance or displacement. The oscillatory motion occurs at certain frequencies known as

natural frequencies or characteristic values, and it follows well defined deformation

patterns known as mode shapes or characteristic modes. The study of such free vibrations

(free because the structure vibrates with no external forces after t = 0) is very important in

finding the dynamic response of the elastic structure.

For no external force (P=0), and harmonic motion, the displacements can be described as

௜ఠ௧

Then, Eq.(3.22) becomes

ଶ
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where

is the amplitudes of the displacements Q (the mode shape or eigenvector)

is the natural frequency of vibration .

The natural frequency is a very important characteristic of the structure carrying dynamic

loads. It has been found that if a structure is excited by a load with a frequency of one of

the structure’s natural frequencies, the structure can undergo extremely violent vibration,

which often leads to catastrophic failure of the structural system. Such a phenomenon is

called resonance. Therefore, an eigenvalue analysis has to be performed in designing a

structural system that is to be subjected to dynamic loadings.

Also analysis of the eigenvalue equation gives very important information on

possible vibration modes experienced by the structure when it undergoes a vibration.

Vibration modes of a structure are therefore another important characteristic of the

structure. Mathematically, the eigenvectors can be used to construct the displacement

fields. It has been found that using a few of the lowest modes can obtain very accurate

results for many engineering problems. Modal analysis techniques have been developed to

take advantage of these properties of natural modes.

Equation (3.95) is called a "linear" algebraic eigenvalue problem since neither [K] nor [M]

is a function of the circular frequency , and it will have a nonzero solution for provided

that the determinant of the coefficient matrix ଶ is zero that is.

ଶ

Two general types of methods, namely, transformation methods and iterative methods, are

available for solving eigenvalue problems Eq. (3.96). The transformation methods such as

Jacobi, Givens and Householder schemes are preferable, when all the eigenvalues and

eigenvectors are required and the dimension of the eigenvalue problem is small. The

iterative methods such as the power method, subspace iteration and Lanczos methods are
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preferable, when few eigenvalues and eigenvectors are required only and the eigenvalue

problem has a large dimension. These methods are described in more details in [1], and

[117].

In general, all the eigenvalues of Eq. (3.96) will be different, and hence the structure

will have n different natural frequencies. Only for these natural frequencies, a nonzero

solution can be obtained for from Eq. (3.95).

Once the natural frequencies and its mode shapes have been determined, the

dynamic behavior of the structure can be easily predictable. Accordingly, the dynamic

structural modification can be done accurately.
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Chapter 4

Procedures of Reanalysis Technique

4.1 Reanalysis Procedure

The procedures of reanalysis which are used in this thesis depend on the concept of energy

distribution through the structure. Study of the energy distribution leads to find out the right

place, which will be conducted by some modifications to improve the eigenvalues of the

structure. Therefore, determination of distribution of kinetic and potential energies on the

elements of whole structure is the main step in the reanalysis procedure. Complex

structures need several steps during the analysis to reach the most accurate results. Starting

with initial rough analysis of a structure which is followed by the precise analysis based on

the sensitivity of each element of the structure. The improvement of dynamic

characteristics, during the reanalysis steps, can be achieved by making some adjustment to

the structure such as geometrical modifications, material properties and boundary

conditions. The process of analysis is done using a computer program, based on the using

of finite element methods and the implementation of structure energy distributions. The

distributions of potential and kinetic energies of elements of the whole structure give a clear

view to the problem, which help to make appropriate decision for structure modifications.

The decision of the final modification can be made according to the structure dynamic

behavior during reanalysis steps and its obtained results. Several studies have been

addressed to the subject of modal reanalysis and structure dynamic modifications (see, e.g.

[118]).

4.2 Potential and kinetic energy

Free vibration of systems involves the cyclic interchange of kinetic and potential energy

[119]. In undamped free vibrating systems, no energy is dissipated or removed from the

system. The kinetic energy KE is stored in the mass by virtue of its velocity and the

potential energy KP is stored in the form of strain energy in elastic deformation. Since the
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total energy in the system is constant, the principle of conservation of mechanical energy

applies. Since the mechanical energy is conserved, the sum of the kinetic energy and

potential energy is constant and its rate of change is zero. This principle can be expressed

as

KE+KP = Constant (4.1)

Or   0 PE KK
dt

d
(4.2)

The principle of conservation of energy can be restated by

KE 1 + KP1 = KE 2 + KP 2 (4.3)

Where the subscripts 1 and 2 denote two different instances of time when the mass is

passing through its static equilibrium position and select KP1 = 0 as reference for the

potential energy.

Subscript 2 indicates the time corresponding to the maximum displacement of the mass at

this position, we have then KE = 0, and

KE 1 + 0 = 0 + KP 2 (4.4)

If the system is undergoing harmonic motion, then KE 1 and KP 2 denote the maximum

values of KE and KP, respectively and therefore last equation becomes

KE max = KP max (4.5)

It is quite useful in calculating the natural frequency directly.



Diagnosis of Dynamic Behavior of Structures Using the Distribution of Kinetic and Potential Energy

52

4.3 Potential and kinetic energy distribution over the principal modes of oscillation

For the system with no damping and no external force, the equation of motion in the

matrix form is:

         0)()(  tQKtQM  (4.6)

Then, the eigenvalues of the previous differential equation for r-th mode can be expressed

as:

         0 rrr QMQK  (4.7)

Where r - is the r -th eigenvalue, and rQ - is the r -th eigenvector for the structure.

Now, by multiplying the left side of equation (4.7) by transposed value of r-th eigenvector

and divided by 2 one can get:

          r

T

rir

T

r QMQQKQ  
2

1

2

1
(4.8)

Equation (4.8) is the balance equation of potential and kinetic energy for a structure in main

modes of oscillation. Furthermore, the potential energy of a structure on r-th main

oscillation mode, having in mind the previous equation, can be rewritten as:

    r

T

rrp QKQE
2

1
,  . (4.9)

In the same way, the kinetic energy is:

    r

T

rrrk QMQE 
2

1
,  , (4.10)
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Theoretically, the total energy conservation on main oscillation modes is:

rrkrp EEE  ,, . (4.11)

The kinetic and potential energy of the structure on -th main oscillation mode is the sum

energy of all elements structure modeling and can be represented as:

       
e

s
re

T

e

s
r

N

e
r

e

N

e
rkrk qmqeE 




1

2

1
,,

2

1


       



N

e
e

s
re

T

e

s
r

e

N

e
rprp qkqeE

11
,,

2

1
(4.12)

Where are:

       
e

s
re

T

e

s
rerp qkqe

2

1
,  - potential energy of e-th element on its -th main oscillation

mode,

       
e

s
re

T

e

s
rrerk qmqe 2

,
2

1
 - kinetic energy of e-th element on -th main oscillation mode,

 
e

s
rq - is the corresponding -th eigenvector, of e-th element with s degrees of freedom.

Consequently, the dynamic analysis can be done according to the difference between

potential and kinetic energy distribution (ep - ek) through all structure’s elements.

r

r

r

r
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4.4 Analysis of the energy distribution for a simple structure

Truss composed of three connected rods

The following simple example is presented to illustrate the procedures of determine the

distributions of potential and kinetic energies through all elements of the whole structure.

For plane truss, the transformed stiffness matrix and the transformed mass matrix are as

following [120]:

௘
௘

ଶ ଶ

ଶ

ଶ ଶ

ଶ

ଶ ଶ

௘
௘

ଶ ଶ

ଶ

ଶ ଶ

ଶ

ଶ ଶ

For a uniform member, A and E are the area of the cross-section and the elastic modulus,

respectively. In addition, Le is a length of member and ρ is a density.   

β

3L 3L

2L

Y

X

3 2

1
1

3

2β
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Element 1;

The orientated angle with respect to the horizontal axis X, θ =0 so that C=cos θ =1 and

S=sin θ=0. The element stiffness matrix is:

ଵ
ଵ ଵ

ଵ
ଵ ଵ

Let:

ଵଵ ଵ ଶଶ ଵ
ଵ ଵ

ଵଶ ଵ ଶଵ ଵ
ଵ ଵ

Element 2; θ =180- β. The element stiffness matrix is:

ଶ
ଶ ଶ

ଶ
ଶ ଶ

Let:

ଵଵ ଶ ଶଶ ଶ
ଶ ଶ
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ଵଶ ଶ ଶଵ ଶ
ଶ ଶ

Element 3; θ = β. The element stiffness matrix is:

ଷ
ଷ ଷ

ଷ
ଷ ଷ

Let:

ଵଵ ଷ ଶଶ ଷ
ଶ ଶ

ଵଶ ଷ ଶଵ ଷ
ଶ ଶ

The next step after getting the element matrices will be to assemble the element matrices

into a global finite element matrix. So, the global stiffness matrix for the truss is:

௚௟௢௕

ଵଵ ଵ ଶଶ ଷ ଵଶ ଵ ଶଵ ଷ

ଶଵ ଵ ଶଶ ଵ ଵଵ ଶ ଵଶ ଶ

ଵଶ ଷ ଶଵ ଶ ଶଶ ଶ ଵଵ ଷ

(4.15)

For the same material and Area of rods (E1=E2=E3=E, A1=A2=A3 =A), the global stiffness

matrix is:
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௚௟௢௕

ଵ

ଵ

ଶ

ଶ

ଷ

ଷ

By applying the boundary condition (u1= v1= v2=0), the global stiffness matrix becomes:

௚௟௢௕

ଵ

ଵ

ଶ

ଶ

ଷ

ଷ

The reduced global stiffness matrix for (u2, u3 and v3) is:

௚௟௢௕,௥௘ௗ

ଶ

ଷ

ଷ

The mass matrix for each element can be obtained as following:

Element 1;

The orientated angle with respect to the horizontal axis X, θ =0 so that C=cos θ =1 and

S=sin θ=0. Substituting in eq.(4.9), the element mass matrix is:

ଵ

For m1=m2=m3 =m=ρ A L,
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ଵ

Element 2; θ =180- β and

ଶ

Element 3; θ =β and

ଷ

The global mass matrix can be written as:

௚௟௢௕

By applying boundary condition (u1= v1= v2=0), the global mass matrix becomes:
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௚௟௢௕

The reduced mass matrix for (u2, u3 and v3) is:

௚௟௢௕

Now, the next step is to determine Eigen value and Eigen vector:

௚௟௢௕,௥௘ௗ
ଶ

௚௟௢௕,௥௘ௗ (4.16)

ଶ
ଷ௜

ହ௜

଺௜

To obtain the Eigen value, the characteristic equation is:

ଶ

Solving the previous equation gives the three natural frequencies as:

ଵ
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ଶ

ଷ

The corresponding Eigen vector can be determine by solving the next equation

௜
ଶ

ଷ௜

ହ௜

଺௜

The Eigen vector matrix is:

For ω1;

a 51/a51=1, a 31/a51= 1.5823 , and a 61/a51= -1.5

The first mode shape vector is:

ଵ

ଷଵ
ହଵ

ହଵ
ହଵ

଺ଵ
ହଵ

ଵ
்
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For ω2;

a 52/a52=1, a 32/a52= 0 , and a 62/a52= 1.5

The second mode shape vector is:

ଶ

ଷଶଶ
ହଶ

ହଶ
ହଶ

଺ଶ
ହଶ

ଶ
்

For ω3;

a 53/a53=1, a 33/a53= -0.8742 , and a 63/a53= -1.5

The third mode shape vector is:

ଷ

ଷଷ
ହଷ

ହଷ
ହଷ

଺ଷ
ହଷ

ଷ
்

4.4.1 Kinetic and Potential Energy of the Whole Structure:

The kinetic and potential energies of the whole structure can be determined as following:

௥
௞
௥

௣
௥

௥
ଶ

௥
்

௥ ௥
்

௥ (4.17)

The Kinetic and potential energy of the whole structure of the first main form of oscillation

are:

௞
ଵ

ଵ
ଶ

ଵ
்

ଵ
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௞
ଵ ଶ

௞
ଵ

௣
ଵ

ଵ
்

ଵ

௣
ଵ

௣
ଵ

Similarly, the Kinetic and potential energy of the whole structure of the second main form

of oscillation are:

௞
ଶ

ଶ
ଶ

ଶ
்

ଶ

௞
ଶ ଶ

௞
ଶ

௣
ଶ

ଶ
்

ଶ

௣
ଶ
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The kinetic and potential energy of the whole structure of the third main form of oscillation

are:

௞
ଷ

ଷ
ଶ

ଷ
்

ଷ

ଶ

௞
ଷ

௣
ଷ

ଷ
்

ଷ

௣
ଷ

4.4.2 Kinetic and potential energy of individual elements

Kinetic ௞
௥ and potential ௣

௥ energy for each element can be individually determined as

following:

௞(௘)௥ ௥
ଶ

௘,௥௘ௗ,௥
்

௚௟௢௕,௥௢ௗ,௘,௥௘ௗ ௘,௥௘ௗ,௥
(4.18)

௣(௘)௥ ௘,௥௘ௗ,௥
்

௚௟௢௕,௥௢ௗ,௘,௥௘ௗ ௘,௥௘ௗ,௥
(4.19)

For the first natural frequency:

Rod 1
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௞(ଵ)ଵ ଵ
ଶ

ଵ,௥௘ௗ,ଵ
்

௚௟௢௕,௥௢ௗଵ,௥௘ௗ ଵ,௥௘ௗ,ଵ

௞(ଵ)ଵ
ଶ

௞(ଵ)ଵ

௣(ଵ)ଵ ଵ,௥௘ௗ,ଵ
்

௚௟௢௕,௥௢ௗଵ,௥௘ௗ ଵ,௥௘ௗ,ଵ

௣(ଵ)ଵ

௣(ଵ)ଵ

Rod 2

௞(ଶ)ଵ ଵ
ଶ

ଶ,௥௘ௗ,ଵ
்

௚௟௢௕,௥௢ௗଶ,௥௘ௗ ଶ,௥௘ௗ,ଵ

௞(ଶ)ଵ

ଶ

௞(ଶ)ଵ

௣(ଶ)ଵ ଶ,௥௘ௗ,ଵ
்

௚௟௢௕,௥௢ௗଶ,௥௘ௗ ଶ,௥௘ௗ,ଵ



Diagnosis of Dynamic Behavior of Structures Using the Distribution of Kinetic and Potential Energy

65

௣(ଵ)ଵ

௣(ଵ)ଵ

Rod 3

௞(ଷ)ଵ ଵ
ଶ

ଷ,௥௘ௗ,ଵ
்

௚௟௢௕,௥௢ௗଷ,௥௘ௗ ଷ,௥௘ௗ,ଵ

௞(ଷ)ଵ
ଶ

௞(ଷ)ଵ

௣(ଷ)ଵ ଷ,௥௘ௗ,ଵ
்

௚௟௢௕,௥௢ௗଷ,௥௘ௗ ଷ,௥௘ௗ,ଵ

௣(ଷ)ଵ

௣(ଷ)ଵ

The sum of kinetic and potential energies of all elements of the first form of oscillation is:

௞(௜)ଵ

ଷ

௜ୀଵ

௞(ଵ)ଵ ௞(ଶ)ଵ ௞(ଷ)ଵ



Diagnosis of Dynamic Behavior of Structures Using the Distribution of Kinetic and Potential Energy

66

௣(௜)ଵ

ଷ

௜ୀଵ

௣(ଵ)ଵ ௣(ଶ)ଵ ௣(ଷ)ଵ

This implies the equality of kinetic and potential energy of the whole structure of the first

form oscillation.

௞(௜)ଵ

ଷ

௜ୀଵ

௣(௜)ଵ

ଷ

௜ୀଵ

The same procedure can be repeated for the second and third form of oscillation, and the

next table shows the obtained results:

Table (4.1): energy distribution on the truss rods for all forms of oscillation

Rod number
For the first mode For the second mode For the third mode

Ek [J] * Ep [J] Ek [J] Ep [J] Ek [J] Ep [J]

1 0.1730 0.4174 0 0 0.6486 0.1275

2 0.2779 0.0335 0 0 1.0650 1.5861

3 0 0 0.7681 0.7681 0 0

௞(௜)

ଷ

௜ୀଵ

௣(௜)

ଷ

௜ୀଵ

0.4509 0.4509 0.7681 0.7681 1.7136 1.7136

_______________________________________________________________________

* All members of the energy are multiplied by a factor of ா஺

௅
. The numbers in the table have the

dimension [m
2
].
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4.5. Modification of dynamic parameters

For free vibration case the modified system can be describe by a modified equation

(perturbation equation) as:

  K

Introducing

respectively. Then,

 K


 rQ

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For a modified system equation (
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For free vibration case the modified system can be describe by a modified equation

(4.21)

] are the corresponding changes in stiffness and mass matrices

(4.22)
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         

           rrrr

rr

QQMM

QQKK






(4.23)

In the same manner, the balanced equation of potential and kinetic energy (3) can be

rewritten in its perturbed form as:

              

                rr

T

rrrr

rr

T

rr

QQMMQQ

QQKKQQ







(4.24)

After some manipulations and neglecting the higher order terms [121], the change of i-th

eigenvalue under system modification can be expressed as:

         

     















r

T

rr

r

T

rrr

T

r

r

r

QMQ

QMQQKQ









2

1
2

1

2

1

(4.25)

Equation (4.25) can be considered as a basic formula for reanalysis procedure to improve

structure dynamic characteristics.

Furthermore, the next formula can be used for the unmodified system:

         

    r

T

rr

r

T

rrr

T

r

r

r

QMQ

QMQQKQ









2

1
2

1

2

1





(4.26)

The denominator in equation (4.26) represents the kinetic energy of a certain oscillation

mode and having in mind equation (4.8), it also represents the potential energy, for reasons

of energy balance in the main oscillation modes.
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The stiffness and mass matrices after the modification is done in e-th finite element can be

expressed as:

         

         eeeeee

eeeeee

mmmmm

kkkkk











,
(4.27)

Where e and e are values that define the modification of e-th element, and are called

modification coefficients. In this case, the members of stiffness matrices and mass matrices

within the matrices of construction parameters are all equal to zero except for those

corresponding to e-th finite element, so that the nominator in equation (4.26) for r-th

oscillation mode becomes

         

           

 rkerpe

e

s
re

T

e

s
rree

s
re

T

e

s
re

r

T

rrr

T

r

ee

qmqqkq

QMQQKQ

,,
2

1

2

1

2

1

2

1

2

1













(4.28)

Where: - is the corresponding -th eigenvector of e-th element with degrees of

freedom,

     
e

s
re

T

e

s
rrp qkqe

2

1
,  - is the potential energy of e-th element in -th main oscillation

mode without constructional modification, and

     
e

s
re

T

e

s
rrrk qmqe 2

,
2

1
 is the kinetic energy of e-th element in -th main oscillation

mode without constructional modification. Consequently, equation (4.26) can be written as:

 es
rq r s

r

r
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         

    
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rkerpe

r

T

rr

r

T

rrr
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


















(4.29)

The previous equation has an important definition to understand the procedures of

reanalysis and to define the position of elements that require modifications to improve the

dynamic behavior of the structure. Because the denominator has the same value, the

numerator is the main interest of analysis. The natural frequency of the structure increased

or decreased according to the values of αe and βe. When αe has a positive value, hence

increased rigidity, the natural frequency is increased. When αe has negative values, hence

decreased rigidity, the natural frequency is decreased. On the other hand, when βe has a

positive value, hence increased mass, the natural frequency is decreased. When βe has

negative values, hence decreased mass, the natural frequency is increased. Consequently,

the modification (increase/decrease structure rigidity or mass) which will be done for the

structure depends on the sign value of numerator in equation (4.29). The main point of

improving dynamic behavior of the structure is increasing its natural frequencies and

maximizing the interval between adjacent natural frequencies. Hence, study of energy

distribution will be done for each element in the structure to determine places of

modification.

4.6 Calculation of the Supporting Structure

The basic idea of the finite element method is to find approximate solutions (numerically)

of complicated problems. Modeling is the most important step in engineering practice.

Mathematical modeling, or idealization, is a process by which an engineer passes from the

actual physical system under study, to a mathematical model of the system. Modeling is

achieved through the selection of the type, number and size of the finite element

discretization, the degree of freedom of nodes and boundary conditions, as well as the

introduction of some idealization, approximations and appropriate alternatives. Types of
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finite elements depend on the geometry of the problem. The main classification is based on

the types of supporting structures that are modeled. Accordingly, the element can be

classified as a line (1 D - rods, beams), surface (2 D - membranes, plates, shells) and

volumetric (3 D - tetrahedron, hexahedron ...). Also, the choice of finite element modeling

and idealized models depends on the dimensions (length, width, height), the degree of

freedom in the nodes (translation, rotation), and the type of loading (longitudinal strain,

twisting, bending, complex, planar...), etc. The size and number of elements directly affect

the accuracy and convergence solutions.

4.6.1 Dynamic Analysis and Diagnostics of Model and its Groups

The procedures which are used in this thesis are concerned with distribution of potential

and kinetic energy in all elements of the structure which gives predictions for reanalysis.

Calculations of main modes of oscillation were performed using Abaqus software [115],

while the energy distributions using KOMIPS software [104].

These procedures were developed by Natasa [105] and the following cases should be

considered for reanalysis of similar constructions:

a) Elements in which the kinetic and potential energies (and the difference in their

increase) are negligible with respect to other elements.

b) Elements in which the kinetic energy is dominant compared to potential energy

c) Elements in which the potential energy is dominant compared to kinetic energy

d) Elements in which the potential and kinetic energy exist and are not negligible in

comparison with other elements.

4.6.2 Concepts of the KOMIPS program

The basis for structural performance diagnostics is the computer modeling and structural

analysis calculation software (KOMIPS) [104] with the application of finite element

numerical method throughout static, dynamic, and thermal calculation of consisting

structural elements. The main parts of the program are as follows:

- Preprocessor for interactive computer model generation,
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- Processor for static, dynamic and thermal calculation

- Postprocessor for analysis and diagnostic of structure behavior,

- Users functions,

- Interactive computer graphics and

- Model conversion.

K O M I P S
computer modeling and structural calculations

Author: Prof.dr Taško Maneski, Faculty of Mechanical Engineering, Beograd

MODELING

-Mapping

-Defining the problem

-The choice of the finite-

element

-discretization

-Boundary conditions,

- load

PREPROCESSOR

-Local-generating

-Global-generating

-Graphics

-Optimize. connecting

nodes

-Conversions: Acad

and HPGL

PROCESSOR

-Static

-Dynamic

-Thermo

-Linear and

non-linear

-Stationary and

non-stationary

POSTPROCESSOR

-Analysis of results

-Specific calculations -

Graphics

-Elements of optimization

-Conversions: Acad and

HPGL

1 D - 2 D - 3D PROBLEMS

KOMIPS allows modeling and the calculation of complex structures and problems,

determination of real displacements and stresses, and real structural behavior including the

consisting elements, it gives a reliable forecast of structural behavior in service and depicts

the parameters for decision making (operating regime, repairs, reconstructions,

revitalizations, optimizations, confirmations of selected solution variants), poor

performance sample identification or structural deterioration, service life estimation and

-SYSTEM
-Subsystem

-Element

CONSTRUCTION -Experiment
-References
-Performed
Calculations

?
VARIANT OR
VARIANTS
CONSTRUCTIONS
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time of reliable operation efficiency. Every improvement of structural performance that can

be reached by this approach allows service life extension and increase of reliability.

4.6.3 Reanalysis Algorithm

The following algorithm is established based on the previous analysis as illustrated in the

following steps [105]:

Step 1: The observed structure is divided into appropriate number of finite elements for

which kinetic energy      2
,

1

2

Ts s
k r r r ree e

e q m q , and

potential energy      ,

1

2

Ts s
p r r ree e

e q k q , are calculated separately, on those main modes

which are interest in the analysis.

Step 2: Comparing the values of potential and kinetic energy over zones or elements, as

well as corresponding energy differences, based on which the following courses of analysis

are formed:

Step 3: In elements for which is valid:

0, 0pr kre e  , there are no possibilities for successful modifications with respect to

increasing eigenfrequencies. These elements do not have significant effect on dynamic

behavior of structure, but they might be suitable for other types of optimizations. In

general, reducing the mass of those elements lightens the weight of whole structure without

endangering its dynamical behavior.

Step 4: For those elements where pr kre e , eigenvalues can be increased by increasing the

stiffness of structure. The modifications to increase these values are not arbitrary, but they

are done according to the principle of energy distributions through the elements of

structure.
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Step 5: For those elements where kr pre e , eigenvalues can be increased by decreasing

the mass of structure. Also, this operation can be done based on distribution of energy

through the elements of structure. According to many criteria, decreasing of mass is a

generally desired type of modification.

Step 6: Most often, elements appear in structure for which the values of ,kr pre e are not

negligible. Therefore, the situation is more complex and those elements are suitable for

reanalysis. In this case, the reanalysis of structure is done based on the differences in

increases of potential and kinetic energy pr kre e  between modified and original system.

The modification parameters α and β are independently calculated for each element. It has

been shown that modification parameters depend on type of cross sectional area, type of

material used, and boundary conditions. Reanalysis formula can be applied to achieve the

purpose of increase eigenvalues.
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Step 7: When the desired value of increase is achieved, it is possible to conduct the check

of modified structure by running the software based on the finite element analysis, with

modified parameters. Then, the evaluation of modified structure can be obtained based on

new energy distribution schemes. If the difference of energy increase on the redesigned

places is less than the previous that means that the procedure converges, and vice versa.

Convergence is the goal of every optimization procedure.
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Chapter 5

Implementation of reanalysis technique on 1D and 2D structures

In this chapter, numerical examples of some different 1D and 2D structures subjected to

structural modifications are presented in order to assess numerically the effectiveness of the

method proposed in this thesis.

As mentioned previously, the main idea of improving dynamic behavior of the

structure is increasing its natural frequencies and maximizing the interval between adjacent

natural frequencies. Hence, the distribution of kinetic and potential energy in the structural

elements of the main forms of oscillations will be deemed as an indicator of the direction of

dynamic modification.

5.1 Calculation of the Supporting Structure

The basic idea of the finite element method is to find approximate solutions (numerically)

of complicated problems. Modeling is the most important step in engineering practice.

Mathematical modeling, or idealization, is a process by which an engineer passes from the

actual physical system under study, to a mathematical model of the system. Modeling is

achieved through the selection of the type, number and size of the finite element

discretization, the degree of freedom of nodes and boundary conditions, as well as the

introduction of some idealization, approximations and appropriate alternatives.

Types of finite elements depend on the geometry of the problem. The main

classification is based on the types of supporting structures that are modeled. Accordingly,

the element can be classified as a line (1 D - rods, beams), surface (2 D - membranes,

plates, shells) and volumetric (3 D - tetrahedron, hexahedron ...). Also, the choice of finite

element modeling and idealized models depends on the dimensions (length, width, height),

the degree of freedom in the nodes (translation, rotation), and the type of loading

(longitudinal strain, twisting, bending, complex, planar...), etc. The size and number of

elements directly affect the accuracy and convergence solutions.
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5.2 Structural modification on 1D structure

In this section, structural modification is applied to trusses and beams as one-dimensional

(1D) structures.

5.2.1 Simply- supported Truss

The first example is a simply-supported truss as shown in figure 5.1 which is subjected to

structural modification in order to improve its dynamic behavior. The geometry and

material properties of the original proposed truss are listed in Table 5.1.

Figure 5.1 FE model of the original truss

Table 5.1 Geometry and material parameters of the original simply-supported truss

Length ( L ) 10 m
Height ( H ) 1.5 m

Distance ( S ) 1.0 m

Cross-sectional Area of the horizontal Rods 0.0024 m2

Cross-sectional Area of the vertical and
inclined Rods 0.0009 m2

Young’s modulus 200 GPa
Poisson’s Ratio 0.3

Density 7800 Kg/m3

Total Mass 616 Kg

H

S
L
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Figure 5.2 shows the obtained results for the first mode of oscillation of this model

(bending). Potential and kinetic energies have been calculated using Equations (4.9) and

(4.10) and the differences in increment were determined.

Figure 5.2 FEA of original model. The first frequency is f01= 39.7 Hz. Difference between potential and

kinetic energy [Nm]

Based on the distribution of energy through the structure, it can be seen that the zones

which have positive values in the difference between potential and kinetic energy (red and

purple colors) require increasing in the stiffness. In this example, the first natural frequency

of the truss can be increased 12.59% (f01= 44.7 Hz) by increasing the area of both two

inclined rods in the corners to become 0.0024 m2. This is accompanied by an increase in

the total mass to become a 701 kg. Although the target is increasing the first natural

frequency, the total mass of the structure is important factor which should be taken in

account in structural design. Accordingly, after many reanalysis process without increasing

the area of any rod , figure 5.3 shows the best modified structure with approximately the

same value of the first natural frequency (f01= 44.1 Hz), but the total mass is 463 Kg

(33.95% decreases).
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Figure 5.3 FEA of model A. The first frequency is f01= 44.1 Hz. Difference between potential and kinetic

energy [Nm]

In order to investigate the effect of truss height (H) on the natural frequency, some models

are presented. Figures (5.3, 5.4) show the distribution of energy through the structure and

its first mode of oscillation for models B and C respectively. The obtained results are listed

on table 5.2, and the comparison between all models is shown in figure 5.6. Although

model C has a highest value of the first natural frequency, model A can be considered as

the best model because it has a natural frequency value close to model C with lower

weight.

Figure 5.4 FEA of model B. The first frequency is f01= 36. Hz. Difference between potential and kinetic

energy [Nm]
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Figure 5.5 FEA of model C. The first frequency is f01= 46.4 Hz. Difference between potential and kinetic

energy [Nm]

Table 5.2 Comparison of natural frequencies for different models of truss

Model Height (H ) Length (L) Total mass
First Natural
Frequency f01

A 1.5 m 10 m 463.51 Kg 44.1 Hz
B 1 m 10 m 436.23 Kg 36.0 Hz
C 2 m 10 m 493.93 Kg 46.4 Hz

Figure 5.6 Comparison between models by considering the effect of Truss height on its natural frequency
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5.2.2 Frame structure

A planer frame with a uniform cross sectional area as shown in figure 5.7 is presented to

demonstrate the effectiveness of the proposed method to improve the performance of the

structure. The frame consists of three beams and the geometry and material properties of

the frame are listed in Table 5.3.

Figure 5.7 Frame structure. (a) Without a horizontal Beam link. (b) With a horizontal Beam link

Table 5.3 Geometry and material parameters of the Frame

Length ( L ) 10 m

Cross-sectional Area 1.121 m2

Second Moment of Inertia 0.1 m4

Young’s modulus 210 GPa

Poisson’s Ratio 0.3

Density 7800 Kg/m3

u= 0
v= 0

( a )

L

u= 0
v= 0

u= 0
v= 0

u= 0
v= 0

L

H

( b )
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(a)

(b)

Figure 5.8 FEA of Frame - model A. (a) First mode f01= 3.7 Hz. (b) Second mode f02= 24.9 Hz. Difference

between potential and kinetic energy [Nm]

Based on the energy distribution through the frame elements, one can figure out from figure

5.8 that the performance of the frame can be improved by linking the two vertical beams

with a horizontal beam as shown in figure 5.7 (b). To this end, two additional models,

model A and Model B respectively, are proposed. Figures (5.9, 5.10) show the effect of a

horizontal beam position (H/L) on the behavior of the frame. The first two natural

frequencies of the frame in different cases of (H/L) are shown in figure 5.11. Accordingly,

it is clear that model B has the best structure behavior.
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(a)

(b)

Figure 5.9 FEA of Frame - model B. (a) First mode f01= 4.6 Hz. (b) Second mode f02= 40.8 Hz. Difference

between potential and kinetic energy [Nm]

(a)
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(b)

Figure 5.10 FEA of Frame - model C. (a) First mode f01= 6.0 Hz. (b) Second mode f02= 30.1 Hz. Difference

between potential and kinetic energy [Nm]

Figure 5.11 Comparison between models by considering the effect of a horizontal beam position (H/L) on the

behavior of frame.

5.2.3 Excavator Boom

The boom of a mining excavator can be modeled as a simple 1D structure as shown in

figure 5.12.The structure consists of two beams elements and two rods (truss) elements. The

dimensions of the horizontal cantilever beam are L=10 m, L1= L/3, L2= L/4.
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Figure 5.12 Planer 1D model of the Excavator Boom

ρ = 7800 Kg/m3 E= 2.1 Gpa

Three models A, B, C, which have (H = L/4, L/3, L/2) respectively are presented in order to

study the effect of the height (H) on the behavior of structure. Figures (5.13-5.21) respectively

show the results of the three first natural frequencies and its mode shapes of the three models.

Figure 5.13 FEA of Boom - model A. First mode f01= 9.25Hz. Difference between potential and kinetic

energy [Nm]

Figure 5.14 FEA of Boom - model A. Second mode f02= 17.37 Hz. Difference between potential and kinetic

energy [Nm]
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Figure 5.15 FEA of Boom - model A. Third mode f03= 36.93 Hz. Difference between potential and kinetic

energy [Nm]

Figure 5.16 FEA of Boom - model B. First mode f01= 9.43Hz. Difference between potential and kinetic

energy [Nm]

Figure 5.17 FEA of Boom - model B. Second mode f02=19.33 Hz. Difference between potential and kinetic

energy [Nm]

Figure 5.18 FEA of Boom - model B. Third mode f03=38.45 Hz. Difference between potential and kinetic

energy [Nm]
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Figure 5.19 FEA of Boom - model C. First mode f01= 9.62Hz. Difference between potential and kinetic

energy [Nm]

Figure 5.20 FEA of Boom - model C. Second mode f02=20.97 Hz. Difference between potential and kinetic

energy [Nm]

Figure 5.21 FEA of Boom - model C. Third mode f03=33.10 Hz. Difference between potential and kinetic

energy [Nm]

By reference to figures (5.13-5.21) one can figure out that model B has a best behavior

compared with other two models A and C. Also, based on the energy distribution through

the whole structure, it can be seen that the positive values in difference between potential

and kinetic energies (purple color) are located on the rods, which means that the structure

performance can be improved by increasing the stiffness of rods. Table 5.4 shows the

obtained results of the first three natural frequencies when the rod area is 0.002 m2 instead

of 0.001 m2.



Diagnosis of Dynamic Behavior of Structures Using the Distribution of Kinetic and Potential Energy

88

Table 5.4 Comparison of natural frequencies for different models of Excavator Boom

H/L
Rod Area = 0.001 m2 Rod Area = 0.002 cm2

f01 Hz f02 Hz f03 Hz f01 Hz f02 Hz f03 Hz

1/4 9 17.1 36 9.4 19.2 36.3

1/3 9.3 19.1 38.1 9.6 21.1 39.6

1/2 9.5 20.8 33.1 9.6 22.2 33.5

5.3 Structural modification on 2D structure

In this section, the structural modification procedures which are mentioned in Chapter 4 are

applied to a rectangular plate as an example of a 2-D structure. In order to investigate the

effect of the boundary condition on the dynamic behavior of plate, three cases are presented

which are: clamped rectangular plate (membrane structure), simply supported and

cantilever plate (shell structure) respectively. In addition, and in order to highlight the

effectiveness and the ease of implementation of the proposed approach, a rectangular

clamped plate along four edges as the same as that in [38] is presented to investigate the

frequency response functions FRFs under structural dynamic modifications.

5.3.1 Clamped rectangular Plate (membrane structure)

A clamped plate is chosen as an example of a 2-D structure. The dimensions of the original

plate are 1m X 1m, 10 mm thickness. The material properties are: Young’s modulus=210

GPa; Poisson’s ratio=0.3; and density=7800 kg/m3. The purpose is to investigate the effect

of boundary condition on the dynamic behavior of plate. Figures (5.22-5.30) show the

dynamic response of the plate for five different cases of clamping. It can be seen that the

dynamic behavior of plate can be improved by increasing the fixation sides. Furthermore,

in each case of clamping, one can clearly decide the interest area of modification according

to the distribution in difference between potential and kinetic energy.
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Figure 5.22 FEA of a plate clamped along one side, First mode f01= 532.7 Hz. Difference between potential

and kinetic energy [Nm]

Figure 5.23 FEA of a plate clamped along one side, Second mode f02= 1273. Hz. Difference between potential

and kinetic energy [Nm]
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Figure 5.24 FEA of a plate clamped along two adjacent sides, First mode f01= 1238.5 Hz. Difference between

potential and kinetic energy [Nm]

Figure 5.25 FEA of a plate clamped along two adjacent sides, Second mode f02= 1590. Hz. Difference

between potential and kinetic energy [Nm]

Figure 5.26 FEA of a plate clamped long two opposite sides, First mode f01= 1441. Hz. Difference between

potential and kinetic energy [Nm]



Diagnosis of Dynamic Behavior of Structures Using the Distribution of Kinetic and Potential Energy

91

Figure 5.27 FEA of a plate clamped long two opposite sides, Second mode f02= 2546. Hz. Difference between

potential and kinetic energy [Nm]

Figure 5.28 FEA of a plate clamped along three sides, First mode f01= 1917. Hz. Difference between potential

and kinetic energy [Nm]

Figure 5.29 FEA of a plate clamped along three sides, Second mode f02= 2661. Hz. Difference between

potential and kinetic energy [Nm]
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Figure 5.30 FEA of a plate clamped along four sides, First mode f01= 2974. Hz Second mode f02= 2974. Hz.

Difference between potential and kinetic energy [Nm]

5.3.2 Simply Supported rectangular Plate (shell structure)

A simply supported plate, which has the same dimensions and properties of the plate

described in previous section, is presented to examine the effect of boundary condition on

the dynamic behavior of plate. Similar to the previous example, four cases of different

boundary conditions are considered and figures (5.31-5.38) show the results.

Figure 5.31 FEA of a simply supported plate along two adjacent sides, First mode f01= 8.2 Hz. Difference

between potential and kinetic energy [Nm]
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Figure 5.32 FEA of a simply supported plate along two adjacent sides, Second mode f02= 41.6 Hz. Difference

between potential and kinetic energy [Nm]

Figure 5.33 FEA of a simply supported plate along two opposite sides, First mode f01= 23.5 Hz. Difference

between potential and kinetic energy [Nm]

Figure 5.34 FEA of a simply supported plate along two opposite sides, Second mode f02= 39.1 Hz. Difference

between potential and kinetic energy [Nm]

Figure 5.35 FEA of a simply supported plate along three sides, First mode f01= 28.5 Hz. Difference between

potential and kinetic energy [Nm]
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Figure 5.36 FEA of a simply supported plate along three sides, Second mode f02= 67.2 Hz. Difference

between potential and kinetic energy [Nm]

Figure 5.37 FEA of a simply supported plate along four sides, First mode f01= 47.9 Hz. Difference between

potential and kinetic energy [Nm]

Figure 5.38 FEA of a simply supported plate along four sides, Second mode f02= 119.9 Hz. Difference

between potential and kinetic energy [Nm]

In each case, it is clear through the energy distribution that the dynamic behavior of the

plate can be improved by increasing the rigidity of the elements which close to the

boundary conditions, where the positive values in difference between potential and kinetic

energy (purple and red colors) are located at those zones. The sensitivity analysis can be

done for the case of the simply supported plate along four sides by change the thickness of

some certain elements in the plate. Table (5.5) shows the sensitivity analysis of first and
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second natural frequencies to the change in the thickness of some element. The analysis has

been carried out by using Abaqus software [115].

Figure 5.39 Meshing and section numbering of a simply supported plate along four sides.

Table 5.5 first and second natural frequencies for a simply supported plate depending on

the change in the thickness of some element

section

Modified models

O A B C D E

Thickness (mm)

1 10 11 12 12 15 15

2 10 10 10 11 13 13

3 10 10 10 10 10 12

4 10 10 10 10 10 11

5 10 10 10 10 10 10

f01=47.9 Hz f01=49.21 Hz f01=50.64 Hz f01=51.86 Hz f01=59.32 Hz f01=57.18 Hz

f02=119.9 Hz f02=121.57 Hz f02=123.3 Hz f02=125.85 Hz f02=136.04 Hz f02=121.2 Hz

1 1 2 2 3 3 2 2 1 1
1 1 2 2 3 3 2 2 1 1
2 2 4 4 4 4 4 4 2 2
2 2 4 4 4 4 4 4 2 2
3 3 4 4 5 5 4 4 3 3
3 3 4 4 5 5 4 4 3 3
2 2 4 4 4 4 4 4 2 2
2 2 4 4 4 4 4 4 2 2
1 1 2 2 3 3 2 2 1 1
1 1 2 2 3 3 2 2 1 1
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Figure 5.40 studying of the effect of elements thickness on the dynamic behavior of the plate

From table 5.5 and figure 5.40 one can figure out that model D has the best dynamic

characteristics. Because the modification for this model was done based on the energy

distribution to the elements near to the boundary conditions, the best results were obtained.

Hence, that is evidence that the energy distribution gives a clear view to the problem, which

helps to make appropriate decision for structure modifications.

5.3.3 Cantilever plate (shell structure)

Similar to the previous example the diagnostic and sensitivity analysis was done to the

clamped plate which has the same dimensions and property of the plate described in section

5.3.1. Figure (5.41) shows the first mode of the plate. Table (5.6) shows the sensitivity

analysis of first and second natural frequencies to the change in the thickness of some

element. The modifications have been done based on the distribution of energy and the

results show that model E is the best modified model.
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Figure 5.41 FEA of a cantilever plate, First mode f01= 8.4 Hz. Difference between potential and kinetic energy

[Nm].

Table 5.6 first and second natural frequencies for a clamped plate depending on the change

in the thickness of some element

section

Modified models

O A B C D E

Thickness (mm)

1 10 11 12 12 15 15

2 10 10 10 11 12 13

3 10 10 10 10 11 12

4 10 10 10 10 10 11

5 10 10 10 10 10 10

f01=8.4 Hz f01=9.17 Hz f01=9.77 Hz f01=10.27 Hz f01=12.74 Hz f01=13.42 Hz

f02=20.5 Hz f02=21.52 Hz f02=22.28 Hz f02=22.97 Hz f02=26.30 Hz f02=28.00 Hz

5 5 4 4 3 3 2 2 1 1
5 5 4 4 3 3 2 2 1 1
5 5 4 4 3 3 2 2 1 1
5 5 4 4 3 3 2 2 1 1
5 5 4 4 3 3 2 2 1 1
5 5 4 4 3 3 2 2 1 1
5 5 4 4 3 3 2 2 1 1
5 5 4 4 3 3 2 2 1 1
5 5 4 4 3 3 2 2 1 1
5 5 4 4 3 3 2 2 1 1
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5.3.4 Clamped rectangular plate (shell structure)

An aluminum plate clamped along four sides (Figure 5.42) is presented. The focus of this

example is to calculate and improve the frequency response functions FRFs of the plate

based on the procedure of reanalysis. The plate is divided into 20 shell elements per side

and the geometry and material properties of the original plate is the same as that in [38] and

are listed in Table 5.7.

Figure 5.42 FE model of the original clamped rectangular plate.

Table 5.7 Geometry and material parameters of original plate

Length 490 mm

Width 410 mm

Young’s modulus 70 GPa

Poisson’s Ratio 0.33

Density 2800 Kg/m3
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Similar to the analysis done by Hang [38] (Figure 5.43), and by using the harmonic analysis

in ABAQUS V6.7, the FRF of the original plate is obtained within the frequency range of

0.25 Hz to 800 Hz and a 0.25 Hz frequency resolution. Figure 5.44 shows the calculated

FRFs of the original plate at location (2). This location was selected because it has

reasonable responses for all the modes within the frequency range of interest [38].

Figure 5.43 Calculated FRF of original plate at location 2. [38].

Figure 5.44 Calculated FRF of original plate at location 2.
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Figure 5.45 shows the first mode of oscillation of the original plate. Based on the reanalysis

procedure described previously in this thesis, the dynamic behavior of the plate can be

improved by increasing the rigidity of the elements located near to the boundary conditions,

where the positive values in difference between potential and kinetic energy (purple and red

colors) are located at those zones. Three models, model 1, model 2 and model 3

respectively, are proposed and the thickness of those elements (shaded elements in figure

5.46 a ) have been modified to become 4.5 mm instead of 4 mm for model 1, and 5 mm

instead of 4 mm for model 2. While for model 3, the shaded elements in figure 5.46 (b)

have been modified to become 5 mm instead of 4 mm.

Figure 5.45 FEA of a clamped plate along four sides, First mode f01= 178.4 Hz Second mode f02=323.3 Hz.

Difference between potential and kinetic energy [Nm].

(a) (b)

Figure 5.46 FE model of the modified clamped rectangular plate. (a): Model 1 & 2, (b): Model 3.
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Figure 5.47 shows the comparison of FRFs of original and modified plates at location (2).

In addition, Table 5.8 shows the first seven natural frequencies for the original and

modified models, which is located within the frequency range of 0.25 Hz to 800 Hz based

on the original plate model. As a consequence, it can be seen that modified models have got

a best dynamic behavior compared with the original one. As mentioned before, the highest

value of the first frequency of the structure the best structure performance. Moreover, it is

apparent that the proposed method improves the plate response, where the natural

frequencies of model 2 and model 3 have been reduced in to five frequencies instead of

seven frequencies within the frequency range.

Figure 5.47 Comparison of FRFs of original and modified plate at location 2.
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Table 5.8 Comparison of calculated natural frequencies of the original plate and modified

models

Mode
Calculated natural frequency (Hz)

Original plate Model 1 Model 2 Model 3

1 178.43 197.22 216.76 214.23

2 323.37 347.99 372.93 367.41

3 400.42 428.05 455.78 451.08

4 533.75 573.89 613.76 600.73

5 556.51 590.91 621.81 615.20

6 740.16 782.61 819.48 814.12

7 756.18 810.83 862.87 843.39

Model 3 is the closest modified model which has been proposed based on the distribution

of energy as shown in figure 5.45. Although model 2 has a highest value of the first natural

frequency, however, model 3 can be considered as the best model because it has natural

frequencies values close to model 2 with a less weight, which emphasis that the proposed

method provides effective results. Thus, if more precise modifications according to the

energy distribution will be done to the plate, one can predict that the plate performance will

get more improvement.
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Chapter 6

Implementation of reanalysis technique on real complex structures

The aim of developed the proposed method of reanalysis and diagnostic of structure

behavior is to determine real behavior of the construction in exploitation. Because most of

the dynamic problems that occur during the operation of machinery mainly come from

insufficiently geometrical designs, redesign of these structures, therefore, is required in

order to overcome the operation problems. In addition, most of complex structures are

obtained by assembling components. Thus, it is desirable to simplify a complex problem to

an easier problem. The problem of modeling a complicated structure could be greatly

simplified by first dividing the structure into components, each of which could be

represented as a substructure model. In substructure analysis, it is common to break down

the whole structure into a number of components, or substructures, each of which is

analyzed individually using whichever method is the most convenient [110].

Modeling of complex structures using finite elements method is a helpful approach

in solving problems in short time with reliable results, and it has been considered in many

papers and PhD theses [104,107,111,112,113,114].

In order to evaluate structures precisely and obtained accurate results, structures shall be

modeled as close to the actual structural conditions in reality as possible. Furthermore, to

get a compatible model for real complex structure, numerical analysis and experiments

should be done on a prototype model. Accordingly, the best model is achieved when good

agreement of results is obtained from the numerical analysis and the experiments.

6.1 Diagnosis of Dynamic Behavior of Real Complex Structures

Unlike the previous chapter where aforementioned structures could be deemed somewhat

simple problems, the reanalysis procedures are applied in this chapter on real complex

structures. It has already been pointed out that the distributions of potential and kinetic

energies of elements of the whole structure give a clear view to the problem, which helps to

make appropriate decision for structure modifications. Consequently, proceeding from this
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principle, energy analysis has been conducted on some real complex structures to locate the

position of dynamic modifications if needed.

6.1.1 Diagnosis of Dynamic Behavior of Portal Cranes

Cranes are transport machines, which generally used in heavy machinery industry,

shipyards, seaports, warehouses and construction sector. There are several factors that have

to be taken into consideration when a crane being designed. Most important factors are;

own weight of the crane, the weight of the bulk which has to be transported and the

dynamic loads which occur during the movements. Moreover, for the cranes which operate

in open-air, the external loads caused by wind and the other climate conditions have to be

considered. In order to prevent possible accidents which can cause enormous losses after

manufacturing, all these factors have to be taken into account during the design process

[116]. In this section, three portal cranes have been investigated in order to diagnosis its

behavior without the completeness of reanalysis procedures, and then, one can decides

which modification should be done to avoid problems resulting of a heavy duty operating.

Calculations of main modes of oscillation were performed using Abaqus [115] while the

energy distributions using KOMIPS [104].

Model 1

Electric gantry cranes, span 15m between the legs (Figure 6.1), are designed to work

outdoors, on a dam ĐERDAP Kladovo. Gantry cranes are designed for servicing the hydro-

mechanical equipment at the dam and the entrance building, mounting block, and for

unloading equipment from the locks.

In order to investigate the dynamic behavior of the crane, a Finite Element Model

has been proposed. For the finite element analysis, the total node number used is 8666 and

the element number is 9702 for the gantry crane. The element type used in the model is four

node linear shell element (S4R) for 9686 elements, and 16 elements are triangular elements

of type (S3). The material properties are: Young’s modulus=200 GPa; Poisson’s ratio=0.3;

and density=7800 kg/m3.
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Figures (6.2-6.4) show the results of the first three natural frequencies and its mode shapes.

As previously mentioned in this thesis, one can decide the required modifications for the

crane, if needed, based on the energy distribution through the model.

Figure 6.1: Electric gantry cranes in- situ, Model 1.

Figure 6.2: FEA of model 1. First mode, f01= 1.327 Hz. Difference between potential and kinetic energy [Nm]
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Figure 6.3: FEA of model 1. Second mode, f02= 1.9 Hz. Difference between potential and kinetic energy [Nm]

Figure 6.4 FEA of model 1. Third mode, f03= 3.12 Hz. Difference between potential and kinetic energy [Nm].

Model 2

Similar to the previous example, a gantry cranes, as shown in figure 6.5, is modeled in

order to diagnosis its dynamic behavior. For the finite element analysis, the total node

number used is 6442 and the element number is 7108 for the gantry crane. The element

type used in the model is four node linear shell element (S4R). The material properties are

same as that used for the previous crane. Figures (6.2-6.4) show the results of the first three

natural frequencies and its mode shapes.



Diagnosis of Dynamic Behavior of Structures Using the Distribution of Kinetic and Potential Energy

107

Figure 6.5: Gantry cranes in- situ, Model 2.

Figure 6.6: FEA of model 2. First mode, f01= 4.46 Hz. Difference between potential and kinetic energy [Nm]
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Figure 6.7: FEA of model 2. Second mode, f02= 7.4 Hz. Difference between potential and kinetic energy [Nm]

Figure 6.8 FEA of model 2. Third mode, f03= 23.2 Hz. Difference between potential and kinetic energy [Nm].

Model 3

The third model for this investigation is a portal crane as shown in figure 6.9. The

investigation of this model had been done as same as model 1 and model 2. For the finite

element analysis, the total node number used for this model is 7126 and the element

number is 6780. The element type used in the model is four node linear shell element
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(S4R). The material properties are same as that used for the previous models. Figures (6.2-

6.4) show the results of the first three natural frequencies and its mode shapes.

`

Figure 6.9: Portal gantry crane in- situ, Model 3.

Figure 6.10: FEA of model 3. First mode, f01= 3.04 Hz. Difference between potential and kinetic energy [Nm]
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Figure 6.11: FEA of model 3. Second mode, f02= 3.64 Hz. Difference between potential and

kinetic energy [Nm]

Figure 6.12: FEA of model 3. Third mode, f03= 20.26 Hz. Difference between potential and

kinetic energy [Nm].
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6.1.2 Case Study 1

Bucket wheel excavators are complex systems, with numerous functionally important

components. This wheel excavator is working in cement factory BFC Lafarge Beocin. In

this thesis the diagnostic of dynamic behavior of the bogie rotary excavator has been done

in order to achieve the appropriate reconstruction. The study consists of two parts. The first

is a numerical and experimental study to the prototype which simulates the real structure,

and the second is the implementation of the proposed method to improve its dynamic

characteristics. Calculations of main modes of oscillation were performed using Abaqus

[115] while the energy distributions using KOMIPS [104]. In this analysis plate finite

elements are used.

6.1.2.1 Numerical and Experimental study

In order to validate finite element analysis, numerical and experimental analysis has been

done on the prototype model which simulates the bogie rotary excavator (Figure 6.13). The

prototype was manufactured with dimensions less than the original 5 times. The parts that

have been used to manufacture the prototype model are shown in Figure 6.14. The source

of excitation is an unbalanced disk which is connected with a rotating motor as shown in

figure 6.13. The speed ratio between the motor and the unbalanced disk is 1.5, and the

motor operates at a frequency up to 50 Hz. Unlike the original model where the fixation is

on all four sides, the prototype has been fastened at four points, because it is stiffer. The

experiments have been done at different rotational speeds of the motor as listed in table 6.1.

Figures 6.15 show the experimental results of the prototype model at several values of

motor rotational speed.
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Figure 6.13: Photographs of Prototype modal under modal testing

x

y
z
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Figure 6.14: drawing for parts used to manufacturing prototype model
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Table 6.1: Number of tests corresponding to different rotational speeds of the motor.

No .of test 1 2 3 4 5 6 7 8 9 10 11
Motor

frequency Hz
2 4 6 8 10 12 14 16 18 20 22

frequency /1.5 1.33 2.7 4.0 5.3 6.7 8.0 9.3 10.7 12.0 13.3 14.7

No .of test 12 13 14 15 16 17 18 19 20 21 22
Motor

frequency Hz
24 26 27 28 29 30 31 32 33 34 35

frequency /1.5 16.0 17.3 18.0 18.7 19.3 20.0 20.7 21.3 22.0 22.7 23.3

No .of test 23 24 25 26 27 28 29 30 31 32
Motor

frequency Hz
36 37 38 39 40 41 42 43 45 46

frequency /1.5 24.0 24.7 25.3 26.0 26.7 27.3 28.0 28.7 30.0 30.6

Results of test no. 1 in x-y-z directions Results of test no. 5 in x-y-z directions

Results of test no. 8 in x-y-z directions Results of test no. 12 in x-y-z directions
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Results of test no. 17 in x-y-z directions Results of test no. 22 in x-y-z directions

Results of test no. 27 in x-y-z directions Results of test no. 31 in x-y-z directions

Results of test no. 12 in x - direction Results of test no. 12 in z - direction

Results of test no. 17 in x - direction Results of test no. 17 in z - direction
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Results of test no. 24 in x - direction Results of test no. 24 in z - direction

Results of test no. 28 in x - direction Results of test no. 28 in z - direction

Results of test no. 29 in z - direction
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Results of test no. 30 in z - direction

Results of test no. 31 in z - direction

Figure 6.15: measurement results in frequency domain at different values of rotational speed.
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For the finite element analysis (Figure 6.16), the total node number used for the prototype

model is 2895 and the element number is 2960. The element type used in the model is

linear shell element (S4R S3R). The material properties are: Young’s modulus = 200 GPa;

Poisson’s ratio=0.3; and density=7850 kg/m3.

The FE results for several significant values of the natural frequency are listed in Table 6.2.

Also, Figure 6.17 shows the corresponding mode shapes of these natural frequencies.

Figure 6.16: FEM of Prototype modal.

Table 6.2 Some of FE results for natural frequencies of the prototype model

Mode number Frequency (Hz)

1 8.663

2 9.698

3 10.455

8 16.443

14 24.406

26 28.166

29 30.589

34 31.632
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Mode shape 1 Mode shape 2

Mode shape 3 Mode shape 8

Mode shape 14 Mode shape 26

Mode shape 29 Mode shape 34

Figure 6.17: Mode shapes of prototype model corresponding to several significant natural frequencies
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Moreover, By using the harmonic analysis in ABAQUS V6.7, the FRF of the prototype

model is obtained within the frequency range of 0.25 Hz to 35 Hz. Figure 6.18 shows the

calculated FRFs of the prototype model at node 15 (Figure 6.16).

According to the obtained results, it can be seen that the results of the FE model are in

reasonably good agreement with the measured of the prototype model.

Figure 6.18: Calculated FRF of prototype model at node 15.

6.1.2.2 Improving dynamic behavior of bogie rotary excavator

After the validation of the finite element model had been done, and acceptable results were

obtained, the next step of this study is to investigate and improve the dynamic performance

of the real structure based on the method proposed in this thesis. This study consists of

seven models for structure reanalysis. Figure 6.19 shows the first model which is the model

of the original structure.
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Figure 6.19: The existing structure of bogie rotary excavator

Figure 6.20 shows the obtained results for the first mode of oscillation of this model

(bending). Based on the procedures described in 4.6.3, potential and kinetic energies have

been calculated using Equations (4.9, 4.10, and 4.12) and the differences in increment were

determined, as presented in Figure 6.20.

.

Figure 6.20: FEA of model 1.The first frequency is f01= 63.132 Hz. Difference between potential and kinetic

energy [Nm]
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Model 2 represents the first proposed modifications for the structure. The additional

materials were added around the hole in the center. Figure 6.21 shows the obtained results

of this model. Based on the distribution of energy through the structure, it can be seen that

the zones which have positive values in the difference between potential and kinetic energy

(red and purple colors) require increasing in the rigidity. Therefore, the rigidity of the

structure was increased in model 3 (figure 6.22) by increasing the distance between the

upper and lower plates. According to the obtained results of model 3, it is clear that the

dynamic behavior of the structure has been improved, where the value of the first frequency

for this model is 92.993 Hz while the first frequency for model 1 was 63.132 Hz.

Figure 6.21: FEA of model 2.The first frequency is f01= 88.975 Hz. Difference between potential and kinetic

energy [Nm].
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Figure 6.22: FEA of model 3.The first frequency is f01= 92.993 Hz. Difference between potential and kinetic

energy [Nm].

To get better results, some modifications have been done to the structure. where both sides

of structure have been covered by additional plates. Figures 6.23, 6.24 and 6.25 show the

effect of these modifications on models 4, 5 and 6.

Model 7 is the final proposed modification model for the structure. The additional stiffeners

have been added to the both sides of the Bucket wheel excavator as shown in figure 6.26.

This model has the best results compared with other previous models. Figure 6.26 shows

the obtained results of this model. The first frequency of this model is f01 = 143.72 Hz

which is considered a higher value in all models.

Figure 6.23: FEA of model 4.The first frequency is f01= 101.88 Hz. Difference between potential and kinetic

energy [Nm].
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Figure 6.24: FEA of model 5.The first frequency is f01= 107.4 Hz. Difference between potential and kinetic

energy [Nm].

Figure 6.25: FEA of model 6. The first frequency is f01= 129.42 Hz. Difference between potential and kinetic

energy [Nm].

Figure 6.26: FEM of model 7.The first frequency is f01= 143.72 Hz. Difference between potential and kinetic

energy [Nm].
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Although the height of first frequency is a good criterion for improving the structure's

behavior, the difference between frequencies is also a very important factor as mentioned

before. Therefore, in order to observe the difference between adjacent frequencies, the first

three frequencies have been determined for all models. The comparison between all models

is shown in Figure 6.27.

Figure 6.27: Comparison between models considering the differences between adjacent frequencies

According to the results obtained from the dynamic behavior of the bogie rotary excavator

after the modifications have been done on the base structure, it can be clearly concluded

that the study of distribution of potential and kinetic energy gives a clear definition for

interest zones and elements for modifications.

The new solution of structure increases the first main mode about 2.2 times of the original

structure. As a result, the improving of the structure's dynamic behavior is achieved.
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6.1.3 Case study 2

Similar to the previous case study (except the experimental part), the procedures of

reanalysis are conducted to the rotary bucket well excavator (BWE C700, Kolubara

opencast mine, Lazarevac, Serbia, Figure 6.28). The first FE model, which simulates the

original structure and its component parts, is as shown in figure 6.29.

Figure 6.28

Figure 6.29: The existing structure of BWE C700 rotary excavator
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This study consists of five models for structure reanalysis. Model 1 is referred to the

original structure. Figure 6.30 (a, b) shows the obtained results for the first and second

modes of oscillation of this model. Similar to what done in case study 1, the modified

models are proposed according to the energy analysis. As had been mentioned, the zones

which have positive values in the difference between potential and kinetic energy (red and

purple colors) require increasing in the rigidity.

Figure 6.30-a: FEA of model 1.The first frequency is f01= 59.57 Hz. Difference between potential and kinetic

energy [Nm]

Figure 6.30-b: FEA of model 1.The second frequency is f02= 64.83 Hz. Difference between potential and

kinetic energy [Nm]
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Model 2 represents the first proposed modifications for the structure. The outer and inner

sides have been covered by additional materials. Figure 6.31 shows the first mode of

oscillation of this model. In contrast to what is required, the obtained results were

unexpected for this model. The first natural frequency is decreased compared with the

original model. Accordingly, in model 3, the outer part of the additional material has been

removed. It can be seen from figure 6.32 that the results are improved compared with

previous and original models. Model 4 and Model 5 have the same geometry, where the

additional inner plates that cover the two sides of structure have been removed. The

modifications of these two models have been done by increasing the thickness of some

plates in the structure. Different results have been obtained as pointed in figures 6.33 and

6.34.

Figure 6.31: FEA of model 2.The first frequency is f01= 42.12 Hz. Difference between potential and kinetic

energy [Nm]
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Figure 6.32: FEA of model 3.The first frequency is f01= 62.97 Hz. Difference between potential and kinetic

energy [Nm]

Figure 6.33: FEA of model 4.The first frequency is f01= 58.92 Hz. Difference between potential and kinetic

energy [Nm]

Figure 6.34: FEA of model 5.The first frequency is f01= 60.22 Hz. Difference between potential and kinetic

energy [Nm]
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The first three frequencies have been determined for all models. The comparison between

all models is shown in Figure 6.35. As a result, it can be seen that model 3 has the best

dynamic performance where the first natural frequency is increased and the difference

between the first and second frequencies are also increased. Also, good results can be

achieved by modifying the geometry of the structure especially in zones of intersection of

cylindrical part with the outsides plates.

Figure 6.35: Comparison between models considering the differences between adjacent frequencies
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Chapter 7

Conclusion

In this Thesis, the methodology of Diagnosis of Dynamic Behavior of Structures using the

Distribution of Kinetic and Potential energy is presented. The aim of developed method for

analysis and diagnostic of structure behavior is to determine real behavior of the

construction in exploitation. The procedures used in this thesis are concerned with the

analysis of the distribution of potential and kinetic energy and the differences between them

in elements of the structure, which gives prediction for which elements need a modification

in order to improve the dynamic characteristic of a structure.

Structural Dynamic Modifications are often undertaken to improve the dynamic

behavior of an existing structure. In many cases, the objective is to modify structure

eigenvalues or eigenvectors to reduce the vibration responses of the structure. There are

two opposite approaches for structural modifications. The first one is direct structural

modification, and the second is inverse structural modification. The direct structural

modification problem is treated as prediction problem which is concerned with determining

the dynamic response of a structure brought about by modification. On the other hand, the

inverse structural dynamic modification is treated as an optimization procedure which is

used to determine necessary modifications in order to achieve the desired dynamic behavior

of structure usually in terms of the desired values for natural frequencies and mode shapes.

The researches concerned with these two approaches have been briefly reviewed in the

second Chapter of thesis.

Because of enormous development in the industry, where complex shapes of the

structures, FE analysis has become the most popular technique in structural dynamic

analysis. Modeling of complex structures using finite elements method is a helpful

approach in solving problems in short time with reliable results. The procedure involved in

deriving the finite element equation of dynamic problems has been described in the third

Chapter.
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Procedures of Reanalysis Technique based on the energy method, which are used in this

thesis, have been presented with an analytical example in the fourth Chapter. Distribution

of potential and kinetic energy in main oscillation modes is the base methodology for

improving dynamic behavior of structure using reanalysis procedures technique. Study of

distribution of potential and kinetic energy of structure gives obvious prediction which

elements need some modifications to achieve the best dynamic characteristics. The main

point of improving dynamic behavior of a structure is increasing its natural frequencies and

maximizing the interval between adjacent natural frequencies.

The algorithm of reanalysis has the following aspects:

I. Elements in which the kinetic and potential energies (and the difference in their increase)

are negligible with respect to other elements.

II. Elements in which the kinetic energy is dominant compared to potential energy.

III. Elements in which the potential energy is dominant compared to kinetic energy.

IV. Elements in which the potential and kinetic energy exist and are not negligible in

comparison with other elements.

In order to demonstrate the effectiveness of the proposed method, the aforementioned

procedures are applied numerically to trusses and beams as 1D structures, as well as to

different cases of plates as 2 D structures in Chapter five. In the first section of this

Chapter, structural dynamic modification is implemented to a simply supported truss

structure and beams as one-dimensional (1D) structures in order to improve its dynamic

behavior. Best results were obtained. For instance, in truss example, the value first natural

frequency of the original truss was f01= 39.7 Hz. after many reanalysis processes, which

have been done based on the distribution of energy through the structure, the best modified

structure with a value of the first natural frequency f01= 44.1 Hz has been obtained with

33.95% decreases in its total mass, which emphasis that the proposed method provides

effective results. Furthermore, in the second section of Fifth Chapter, structural

modification procedures are applied to some different cases of a rectangular plate as an

example of a 2-D structure. In order to investigate the effect of the boundary condition on

the dynamic behavior of plate, three cases are presented which are: clamped rectangular
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plate (membrane structure), simply supported and cantilever plate (shell structure)

respectively. In addition, and in order to highlight the effectiveness and the ease of

implementation of the proposed approach, a rectangular clamped plate along four edges is

presented to investigate the frequency response functions FRFs under structural dynamic

modifications. Also, the satisfactory results were obtained. For example, in the case of

clamped rectangular structure (shell elements), the aim was to calculate and improve the

frequency response functions FRFs of the plate based on the procedure of reanalysis. Three

modified models, model 1, model 2 and model 3 respectively, are proposed with different

thickness of some certain elements. The calculated of FRFs of the original and modified

plates are obtained within the frequency range of 0.25 Hz to 800 Hz and a 0.25 Hz

frequency resolution by using the harmonic analysis in ABAQUS V6.7. According to the

comparison of FRFs between the original plate and the modified plates, it can be seen that

modified models have got a best dynamic behavior compared with the original one.

Consequently, it is apparent that the proposed method improves the plate response, where

the natural frequencies of model 2 and 3 have been reduced to five frequencies instead of

seven frequencies within the frequency range.

Moreover, the implementation of reanalysis technique on real complex structures

has been presented in the Chapter six of this thesis. First, Finite Element Analysis is made

in order to diagnosis of dynamic behavior of some real complex structures without the

completeness of reanalysis procedures to improve structures' behavior. In addition, energy

analysis has been conducted to locate the position of dynamic modifications if needed.

Furthermore, in the second part of this Chapter, complete reanalysis procedures have been

conducted to two complexes sub-structures (Bucket wheel excavators). Although modeling

of complex structures using finite elements method is a helpful approach in solving

problems in short time with reliable results, experiments should be considered in order to

validate Finite Element model. Therefore, In order to validate finite element analysis,

numerical and experimental analysis has been done, for one case study, on a prototype

model. The obtained results of the FE model were in reasonably good agreement with the

measured of the prototype model.
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After the validation of the finite element model had been done, the Bucket wheel

excavator’s models have been investigated based on the method proposed in this thesis in

order to improve their dynamic behavior. As mentioned before, the highest value of the first

frequency of the structure the best structure performance. Consequently, for instance, the

new solution of bogie rotary excavator increases the first main mode about 2.2 times of the

original structure. Therefore, the distributions of potential and kinetic energies of elements

of the whole structure give a clear view to the problem, which helps to make appropriate

decision for structure modifications. As a result, the improving of the structure's dynamic

behavior is achieved.
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лиценца дозвољава комерцијалну употребу дела.

6. Ауторство - делити под истим условима. Дозвољавате умножавање, дистрибуцију 

и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен 

од стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или 

сличном лиценцом. Ова лиценца дозвољава комерцијалну употребу дела и прерада. 

Слична је софтверским лиценцама, односно лиценцама отвореног кода.


