
UNIVERSITY OF NOVI SAD

FACULTY OF TECHNICAL SCIENCES
NOVI SAD

Application of Deep Learning
Methods in Monitoring and

Optimization of Electric Power
Systems

DOCTORAL DISSERTATION

Advisors: Candidate:
prof. dr Dejan Vukobratović Ognjen Kundačina
dr Dragiša Mišković

 Novi Sad, 2023

УНИВЕРЗИТЕТ У НОВОМ САДУ

ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА У
НОВОМ САДУ

Примена метода дубоког учења за
надгледање и оптимизацију
електроенергетских система

ДОКТОРСКА ДИСЕРТАЦИЈА

Ментори: Кандидат:
проф. др Дејан Вукобратовић Огњен Кундачина
др Драгиша Мишковић

 Нови Сад, 2023. године

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ – 5а
НАВЕСТИ НАЗИВ ФАКУЛТЕТА ИЛИ ЦЕНТРА

КЉУЧНA ДОКУМЕНТАЦИЈСКА ИНФОРМАЦИЈА1

Врста рада: Докторска дисертација

Име и презиме
аутора:

Огњен Кундачина

Ментор 1:
др Дејан Вукобратовић, редовни професор, Факултет техничких наука,
Универзитет у Новом Саду

Ментор 2:
др Драгиша Мишковић, научни сарадник, Истраживачко-развојни
институт за вештачку интелигенцију Србије

Наслов рада:
Примена метода дубоког учења за надгледање и оптимизацију
електроенергетских система

Језик публикације
(писмо):

Енглески (латиница)

Физички опис рада:

Унети број:
Страница 139
Поглавља 8
Референци 174
Табела 10
Слика 31
Графикона 0
Прилога 0

Научна област: Електротехничко и рачунарско инжењерство

Ужа научна област
(научна дисциплина):

Телекомуникације и обрада сигнала

Кључне речи /
предметна
одредница:

Машинско учење, електроенергетски системи, графовске неуронске
мреже, естимација стања, учење подстицајем, динамичка
реконфигурација дистрибутивне мреже

Резиме на језику
рада:

Ова докторска дисертација темељно испитује употребу техника дубоког
учења у циљу унапређења алгоритама који се користе у надгледању и
оптимизацији електроенергетских система. Први допринос дисертације
се односи на примену графовских неуронских мрежа за унапређење
естимације стања електроенергетских система. Други кључни аспект ове
дисертације се фокусира на употребу учења подстицајем за динамичку
реконфигурацију дистрибутивне мреже. Ефикасност предложених метода
је потврђена путем обимних експеримената и симулација.

Датум прихватања
теме од стране
надлежног већа:

24.11.2022.

Датум одбране:
(Попуњава
одговарајућа служба)

1 Аутор докторске дисертације потписао је и приложио следеће Обрасце:
5б – Изјава о ауторству;
5в – Изјава o истоветности штампане и електронске верзије и о личним подацима;
5г – Изјава о коришћењу.
Ове Изјаве се чувају на факултету у штампаном и електронском облику и не кориче се са тезом.

Чланови комисије:
(титула, име,
презиме, звање,
институција)

Председник: др Татјана Лончар-Турукало, редовни професор, Факултет
техничких наука, Универзитет у Новом Саду

Члан: др Милан Рапаић, редовни професор, Факултет техничких наука,
Универзитет у Новом Саду

Члан: др Предраг Видовић, ванредни професор, Факултет техничких
наука, Универзитет у Новом Саду

Члан: др Мирсад Ћосовић, доцент, Електротехнички факултет,
Универзитет у Сарајеву

Ментор: др Дејан Вукобратовић, редовни професор, Факултет техничких
наука, Универзитет у Новом Саду

Ментор: др Драгиша Мишковић, научни сарадник, Истраживачко-
развојни институт за вештачку интелигенцију Србије

Напомена:

UNIVERSITY OF NOVI SAD
FACULTY OR CENTER

KEY WORD DOCUMENTATION2

Document type: Doctoral dissertation

Author: Ognjen Kundačina

Supervisor 1
dr Dejan Vukobratović, full professor, Faculty of Technical Sciences,
University of Novi Sad

Supervisor 2
dr Dragiša Mišković, science associate, The Institute for Artificial Intelligence
Research and Development of Serbia

Thesis title:
Application of Deep Learning Methods in Monitoring and Optimization of
Electric Power Systems

Language of text
(script): English language (latin)

Physical description:

Number of:
Pages 139
Chapters 8
References 174
Tables 10
Illustrations 31
Graphs 0
Appendices 0

Scientific field:
Electrical and computer engineering

Scientific subfield
(scientific discipline):

Telecommunications and signal processing

Subject, Key words:
Machine learning, power systems, graph neural networks, state estimation,
reinforcement learning, dynamic distribution network reconfiguration

Abstract in English
language:

This PhD thesis thoroughly examines the utilization of deep learning
techniques as a means to advance the algorithms employed in the monitoring
and optimization of electric power systems. The first major contribution of this
thesis involves the application of graph neural networks to enhance power
system state estimation. The second key aspect of this thesis focuses on
utilizing reinforcement learning for dynamic distribution network
reconfiguration. The effectiveness of the proposed methods is affirmed
through extensive experimentation and simulations.

Accepted on Scientific
Board on:

24.11.2022.

Defended:
(Filled by the faculty
service)

Thesis Defend Board:
(title, first name, last

President: dr Tatjana Lončar Turukalo, full professor, Faculty of Technical
Sciences, University of Novi Sad

2 The author of doctoral dissertation has signed the following Statements:
 5б – Statement on the authority,
 5в – Statement that the printed and e-version of doctoral dissertation are identical and about personal data,
 5г – Statement on copyright licenses.
 The paper and e-versions of Statements are held at he faculty and are not included into the printed thesis.

name, position,
institution)

Member: dr Milan Rapaić, full professor, Faculty of Technical
Sciences, University of Novi Sad

Member: dr Predrag Vidović, associate professor, Faculty of Technical
Sciences, University of Novi Sad

Member: dr Mirsad Ćosović, assistant professor, Faculty of Electrical
Engineering, University of Sarajevo

Supervisor: dr Dejan Vukobratović, full professor, Faculty of Technical
Sciences, University of Novi Sad

Supervisor: dr Dragiša Mišković, science associate, The Institute for Artificial
Intelligence Research and Development of Serbia

Note:

Application of Deep Learning Methods

in Monitoring and Optimization

of Electric Power Systems

by

Ognjen Kundačina

M.Sc.El.Comp.Eng. Power, Electronic and Telecommunication Engineering,

University of Novi Sad, Serbia, 2018.

B.Sc.El.Comp.Eng. Power, Electronic and Telecommunication Engineering,

University of Novi Sad, Serbia, 2017.

for the degree of

Doctor of Technical Sciences

A dissertation submitted to the

Department of Power, Electronics

and Communication Engineering,

Faculty of Technical Sciences,

University of Novi Sad,

Serbia.

Advisors:

Dr Dejan Vukobratović, Full Professor
Department of Power, Electronics and Communication Engineering,

University of Novi Sad, Serbia.

Dr Dragǐsa Mǐsković, Science Associate

The Institute for Artificial Intelligence Research and Development of Serbia.

Thesis Committee Members:

Dr Tatjana Lončar-Turukalo, Full Professor
Department of Power, Electronics and Communication Engineering,

University of Novi Sad, Serbia.

Dr Milan Rapaić, Full Professor
Department of Computing and Control Engineering,

University of Novi Sad, Serbia.

Dr Predrag Vidović, Associate Professor

Department of Power, Electronics and Communication Engineering,

University of Novi Sad, Serbia.

Dr Mirsad Ćosović, Assistant Professor,

Faculty of Electrical Engineering,

University of Sarajevo, Bosnia and Herzegovina.

This research has received funding from the European Union’s Horizon 2020

research and innovation programme under Grant Agreement number 856967.

Contents

List of Publications 9

List of Figures 11

List of Tables 15

Abstract 17

Abbreviations 21

1 Introduction 23

1.1 Deep Learning Fundamentals . 24

1.2 Convolutional Neural Networks . 26

1.3 Recurrent Neural Networks . 27

1.4 Graph Neural Networks . 28

1.5 Deep Reinforcement Learning . 30

1.6 Power System State Estimation using Graph Neural Networks 32

1.7 Dynamic Distribution Network Reconfiguration based on Deep Rein-

forcement Learning . 35

I State Estimation and Graph Neural Networks 41

2 Power System State Estimation 43

6 Contents

2.1 Foundational Concepts . 43

2.2 Linear State Estimation . 46

2.3 Nonlinear State Estimation . 48

3 Graph Neural Networks 51

3.1 Overview of Machine Learning on Graphs 51

3.1.1 Graphs . 51

3.1.2 Common Tasks of Machine Learning on Graphs 54

3.1.3 The Need for Graph Representation Learning 54

3.1.4 Graph Representation Learning 56

3.1.5 Graph Representation Learning using GNNs 58

3.2 Theoretical Foundations of Spatial Graph Neural Network 61

3.2.1 Graph Attention Networks . 64

3.3 Practical Aspects of Graph Neural Networks 65

4 Graph Neural Network-based State Estimation 69

4.1 Power System Factor Graph Augmentation 69

4.2 Proposed GNN Architecture . 72

4.2.1 Computational Complexity and Distributed Inference 73

4.3 Numerical results . 74

4.3.1 Linear State Estimation . 75

4.3.2 Scalability and Sample Efficiency Analysis of Linear State Esti-

mation . 82

4.3.3 Nonlinear State Estimation . 86

4.4 Summary and future work . 89

II Dynamic Distribution Network Reconfiguration and Re-
inforcement Learning 93

5 Dynamic Distribution Network Reconfiguration 95

5.1 Distribution Network Reconfiguration 95

5.2 Mathematical Formulation of the DDNR Problem 97

5.2.1 Objective Function . 98

5.2.2 Constraints . 99

6 Reinforcement Learning 103

6.1 Finite Markov Decision Processes . 103

6.2 Q-Learning . 106

6.3 Deep Q-learning . 107

Contents 7

7 Reinforcement Learning based Dynamic Distribution Network Re-

configuration 109

7.1 Modelling Dynamic Distribution Network Reconfiguration as a Markov

Decision Process . 109

7.2 Training and Evaluation Algorithms 111

7.3 Numerical Results . 113

7.3.1 Benchmark Test Examples . 113

7.3.2 Real-Life Large-Scale Distribution Network 119

7.3.3 IEEE 33-bus Radial System . 120

7.4 Summary and future work . 123

8 Conclusions 125

Bibliography 127

List of Publications

Journal Publications:

O. Kundacina, M. Cosovic, D. Miskovic, and D. Vukobratovic, “Graph Neural Net-

works on Factor Graphs for Robust, Fast, and Scalable Linear State Estimation with

PMUs,” in Sustainable Energy, Grids and Networks, 2023.

O. Kundacina, P. Vidovic, and M. Petkovic, “Solving dynamic distribution network

reconfiguration using deep reinforcement learning,” in Electrical Engineering, 2021.

Conference Publications:

O. Kundacina, M. Cosovic, D. Miskovic, and D. Vukobratovic, “Distributed Nonlin-

ear State Estimation in Electric Power Systems using Graph Neural Networks,” in

2022 IEEE International Conference on Communications, Control, and Computing

Technologies for Smart Grids (SmartGridComm), Singapore, 2022, pp. 1–6.

O. Kundacina, M. Forcan, M. Cosovic, D. Raca, M. Dzaferagic, D. Miskovic, M.

Maksimovic, and D. Vukobratovic, “Near Real-Time Distributed State Estimation via

AI/ML-Empowered 5G Networks,” in 2022 IEEE International Conference on Commu-

nications, Control, and Computing Technologies for Smart Grids (SmartGridComm),

Singapore, 2022, pp. 1–6.

O. Kundacina, M. Cosovic, and D. Vukobratovic, “State estimation in electric power

systems leveraging graph neural networks,” in 2022 17th International Conference on

Probabilistic Methods Applied to Power Systems (PMAPS), online, 2022, pp. 1–6.

O. Stanojev, O. Kundacina, U. Markovic, E. Vrettos, P. Aristidou, and G. Hug,

“A reinforcement learning approach for fast frequency control in low-inertia power

systems,” in 52nd North American Power Symposium (NAPS), online, 2021, pp. 1–6.

O. Kundacina, G. Gojic, M. Cosovic, D. Miskovic, and D. Vukobratovic, “Scalability

and Sample Efficiency Analysis of Graph Neural Networks for Power System State

Estimation,” in Sixth International Balkan Conference on Communications and

Networking (BalkanCom), Istanbul, 2023, pp. 1–6.

O. Kundacina, G. Gojic, M. Mitrovic, D. Miskovic, and D. Vukobratovic, “Support-

ing Future Electrical Utilities: Using Deep Learning Methods in EMS and DMS

Algorithms,” in 22nd International Symposium INFOTEH-JAHORINA (INFOTEH),

Jahorina, 2023, pp. 1–6.

List of Figures

1 Introduction 23

1.1 A simple fully connected neural network containing an input layer, two

hidden layers, and an output layer. 25

2 Power System State Estimation 43

2.1 Simple two-bus power system containing a PMU at the bus 1, one legacy

active power flow measurement, and one legacy voltage magnitude

measurement at the bus 2. 46

3 Graph Neural Networks 51

3.1 Example of the simple undirected graph containing six nodes and seven

edges. 52

3.2 Node embeddings - a simplified example of graph representation learn-

ing algorithm’s outputs. 56

3.3 A GNN layer, which represents a single message passing iteration,

includes multiple trainable functions, depicted as yellow rectangles.

The number of first-order neighbours of the node j is denoted as nj . . 62

4 Graph Neural Network-based State Estimation 69

4.1 Subfigure (a) shows a simple two-bus power system with two phasor

measurements from a PMU placed at the bus 1. Subfigure (b) displays

the corresponding factor graph (full-line edges) and augmented factor

graph (all edges). Variable nodes are depicted as circles, and factor

nodes are as squares. 70

4.2 Subfigure (a) shows a simple two-bus power system containing a PMU

at the bus 1, one legacy active power flow measurement, and one

legacy voltage magnitude measurement at the bus 2. Subfigure (b)

displays the corresponding factor graph (full-line edges) and augmented

factor graph (all edges). Variable nodes are represented as circles, and

factor nodes are depicted as squares, coloured differently to distinguish

between phasor and legacy measurements. 71

4.3 Subfigure (a) shows a high-level computational graph that starts with

the loss function for the output of a variable node v. Subfigure (b)

depicts the detailed structure of a single GNN Layerv. Functions with

trainable parameters are highlighted in yellow. 74

4.4 GNN predictions and labels for one test example with optimally placed

PMUs. 77

4.5 GNN predictions and labels for one test example with phasors from two

neighbouring PMUs removed. Vertical black lines indicate unobserved

buses, while green lines represent buses that are affected by the loss of

measurement data. 78

4.6 Properties of augmented factor graphs along with the system’s mea-

surement redundancy for different test power systems, labelled with

their corresponding number of buses. 83

4.7 Validation losses for trainings on four different training set sizes. . . . 84

4.8 Test set results for various power systems and training set sizes. 86

4.9 A ratio of the execution times for WLS SE and GNN SE inference on

a test set of 100 samples, as a function of the power system size. . . . 86

4.10 The test set MSE between the predictions and the labels per each bus

for voltage magnitudes and angles in the IEEE 30-bus test case. 88

4.11 Average MSEs of test sets created by randomly excluding measurements. 89

4.12 GNN predictions and labels for one test example, with all measurements

connected to two neighbouring buses removed. Dashed lines indicate

the buses in the 1-hop neighbourhood of the excluded measurements. . 89

4.13 GNN predictions and GN based SE solutions for one test example with

corrupted input data. 90

5 Dynamic Distribution Network Reconfiguration 95

5.1 An example of distribution network before (subfigure a) and after

(subfigure b) the reconfiguration. 97

6 Reinforcement learning 103

6.1 The agent-environment interaction process. 104

6.2 An example of a deep Q-network. 107

7 Reinforcement Learning based Dynamic Distribution Network Re-

configuration 109

7.1 The agent-environment interaction process for DDNR. 110

7.2 Single-line diagram for 15-bus test benchmark. 114

7.3 Daily load profiles for three feeders. Full lines represent average load

values, and dashed lines represent limits between which training set

loads are sampled. 115

7.4 Average DQN loss per episode (top) and total reward per episode along

with its moving average (bottom). 116

7.5 Switch status changes during the 24-hour period. 118

7.6 Loss reduction using DDNR. 118

7.7 Voltage profile for 15-bus test benchmark. 119

7.8 Switch status changes during the 24-hour period when the maximal

number of switch manipulations is two. 120

7.9 IEEE 33-bus radial system. 122

7.10 Voltage profile for IEEE 33-bus radial system. 122

List of Tables

3.1 Comparison of various deep learning models from the inductive bias

perspective. 59

4.1 List of GNN hyperparameters. 75

4.2 Comparison of GNN and approximative SE test set MSEs for various

measurement variances. 76

4.3 A comparison of the performance of GNN and DNN models trained

on different training set sizes, as measured by test set MSE and the

number of trainable parameters. 79

4.4 A comparison of the results of various approaches for two test sets with

different degrees of outlier intensity. 82

4.5 Epoch until validation loss minimum for various power systems and

training set sizes. 85

7.1 Total load, active power losses and switch status changes in the 24-

hour time optimization period for the 15-bus test benchmark (O–open;

C–close). 117

7.2 Total losses, number of switch status changes, and total cost in the

24-hour time optimization period. 117

7.3 Active power losses and switch status changes in the 24-hour time

optimization period for the large-scale radial distribution network

(O–open; C–close). 121

7.4 Active power losses and switch status changes in the 24-hour time

optimization period for the IEEE 33-bus radial system (O–open; C–close).123

Abstract

Electric power systems consist of generation, distribution, and transmission systems,

which are all traditionally coordinated from the corresponding control centres. System

operators use specialized software solutions for monitoring and optimization of electric

power systems, installed in control centres. Typical algorithms implemented in

mentioned software solutions should satisfy near real-time operation requirements,

while delivering accurate information for power system monitoring and optimizing its

operation.

Modern electric power systems have been increasing in size, complexity, as well as

dynamics due to the growing integration of renewable energy resources, which have

sporadic power generation. This necessitates the development of near real-time power

system algorithms, demanding lower computational complexity regarding the power

system size. Considering the growing trend in the collection of historical measurement

data and recent advances in the rapidly developing deep learning field, the topic

of this dissertation is the application of deep learning algorithms, namely graph

neural networks (GNNs) and deep reinforcement learning (DRL), for monitoring and

optimization of electric power systems.

The first part of this thesis presents a GNN approach to solving the power system

state estimation (SE) problem, which aims to estimate complex bus voltages based

on available measurements. Two formulations of the SE problem are considered: the

first is a linear SE formulation that uses measurements from phasor measurement

units (PMUs), while the second is a nonlinear SE formulation that incorporates both

PMU measurements and legacy measurements from the supervisory control and data

acquisition (SCADA) system.

As PMUs become more widely used in transmission power systems, a fast state

estimation algorithm that can take advantage of their high sampling rates is needed.

To accomplish this, we present a method that uses GNNs to solve the linear formulation

of SE problem by learning complex bus voltage estimates from PMU voltage and

current measurements. We propose an original implementation of GNNs over the

power system’s factor graph to simplify the integration of various types and quantities

of measurements on power system buses and branches. Furthermore, we augment

the factor graph to improve the robustness of GNN predictions. The proposed GNN

model is highly efficient and scalable, as its computational complexity is linear with

respect to the number of nodes in the power system. Training and test examples were

generated by randomly sampling sets of power system measurements and annotating

them with the exact solutions of linear SE with PMUs, obtained using a traditional

weighted least squares-based method. The numerical results demonstrate that the

GNN model provides an accurate approximation of the SE solutions. Furthermore,

errors caused by PMU malfunctions or communication failures that would normally

make the SE problem unobservable have a local effect and do not deteriorate the

results in the rest of the power system.

Alongside the linear SE problem formulation, in this thesis, we consider nonlinear

SE, which takes into account all types of measurements available in the power system,

and is usually solved using the iterative Gauss-Newton (GN) method. The nonlinear

SE formulation presents some difficulties when considering inputs from both PMUs and

SCADA system. These include numerical instabilities, convergence time depending

on the starting point of the iterative method, and the quadratic computational

complexity of a single iteration regarding the number of state variables. Analogously

to the GNN-based linear SE, we apply GNN over the augmented factor graph of the

nonlinear power system SE. Once trained, the proposed regression model has linear

computational complexity during the inference time, with a possibility of distributed

implementation. Since the method is noniterative and non-matrix-based, it is resilient

to the problems that the GN solver is prone to. In addition to good prediction accuracy

on the test set, the proposed model demonstrates robustness during the simulation of

cyberattacks and unobservable scenarios due to communication irregularities.

In the second part of this thesis, we focus on distribution network reconfigura-

tion (DNR), which is critical for enhancing energy efficiency by coordinating switch

operations in the distribution network. The sufficient number of remote switching

devices in the distribution network enables dynamic distribution network reconfigu-

ration (DDNR), which determines the optimal network topologies over a specified

time interval. To achieve this, we propose a data-driven approach for DDNR using

DRL. The proposed DDNR controller aims to minimize the objective function which

includes active energy losses and the cost of switching manipulations, while ensuring

that all constraints are satisfied. The following constraints are considered: allowed

bus voltages, allowed line apparent powers, a radial network configuration with all

buses being supplied, and the maximal allowed number of switching operations. This

optimization problem is modelled as a Markov decision process by defining the possible

states and actions of the DDNR agent (controller) and rewards that lead the agent to

minimize the objective function while satisfying the constraints. Switching operation

constraints are modelled by modifying the action space definition instead of including

the additional penalty term in the reward function, to increase the computational

efficiency. The proposed algorithm was tested on three test examples: small bench-

mark network, real-life large-scale test system and IEEE 33-bus radial system and

the results confirmed the robustness and scalability of the proposed algorithm.

Abbreviations

CNN Convolutional neural network

DDNR Dynamic distribution network reconfiguration

DMS Distribution management system

DNN Deep neural network

DNR Distribution network reconfiguration

DRL Deep reinforcement learning

DQN Deep Q-network

EMS Energy management system

GAT Graph attention network

GN Gauss-Newton

GNN Graph neural network

GRU Gated recurrent unit

LSTM Long short-term memory

MADRL Multi-agent deep reinforcement learning

MDP Markov decision process

MSE Mean square error

PMU Phasor measurement unit

ReLU Rectified linear unit

RNN Recurrent neural network

RL Reinforcement learning

SCADA Supervisory control and data acquisition

SE State estimation

WAMS Wide area measurement system

WLS Weighted least-squares

5G Fifth-Generation

Chapter 1

Introduction

Power systems are undergoing a transition due to the increased integration of renewable

energy resources, and as a result they are facing new challenges in their operations.

These challenges include the unpredictable nature of renewable energy resources,

maintaining stability within the power system, managing the impacts of distributed

generation, and the challenges presented by reverse power flows [1]. Consequently, the

mathematical formulations of traditional algorithms that solve these problems have

become increasingly complex and nonlinear, with larger dimensionality, making their

practical implementation and real-time operation more challenging. These algorithms

are usually implemented as parts of specialized software solutions, such as energy

management systems (EMS) for transmission networks and distribution management

systems (DMS) used in distribution networks, which are installed in power system

control centres and used by power system operators on a daily basis. Some of the

algorithms typically used as EMS and DMS functionalities include state estimation

(SE), fault detection and localization, demand and generation forecast, voltage and

transient stability assessment, voltage control, optimal power flow, economic dispatch,

etc. Increasing amounts of data generated by power systems [2] and collected by EMS

and DMS are enabling the development of new deep learning-based algorithms to

overcome the limitations of traditional ones.

Deep learning is a subfield of artificial intelligence that involves training neural

network models to find patterns and make predictions based on the available set of

data samples [3]. Some of the advantages of employing deep learning methods in the

field of power systems include:

• Speed: Once trained, a deep learning algorithm usually operates quickly, even

when processing large amounts of data [4]. This is crucial for applications where

fast decision-making is required, as is the case in many power system operation

problems.

• Accuracy: Universal approximation theorem [5] states that neural networks can

24 1. Introduction

approximate any function to a desired degree of accuracy, if it consists of a

sufficient number of trainable parameters. Practically, this implies that neural

networks can be employed to tackle a wide range of problems, including those

in power systems, and that different network architectures and sizes can be used

to adapt to the complexity of the problem.

• Adaptability: Deep learning methods are easily adaptable, meaning that they

can be retrained when the underlying data generation process changes [6]. This

makes them suitable for dynamic environments, such as when the power system’s

operating conditions change.

• Robustness: Traditional model-based algorithms can encounter problems when

faced with uncertain or unreliable power system parameters [7]. As a model-free

alternative, deep learning methods alleviate these problems by not relying on

power system parameters.

• Automation: Since deep learning algorithms can learn from human responses

in various situations given enough training data, they can be used to reduce

the need for human intervention in certain power system tasks. For instance,

in applications such as predictive maintenance [8], which are integral parts of

asset management systems, deep learning can be applied within an automated

real-time monitoring system.

In the continuation, we shortly introduce the basic deep learning terminology, de-

scribe the most common deep learning approaches and review their recent applications

in the field of monitoring and optimization of electric power systems [9].

1.1 Deep Learning Fundamentals
Deep learning is a field of machine learning that involves training neural networks on

large datasets [3], with a goal of generating accurate predictions on unseen data samples.

Therefore, neural networks can be seen as trainable function approximators, composed

of interconnected units called neurons, which process and transmit information. In

a simple fully connected neural network, the information processing is organized

in layers, where input information from the previous layer is linearly transformed

using a function fi(·), where i denotes the layer index. The linear transformation is

defined using a matrix of trainable parameters Wi, i.e., the weights of the connections

between the neurons, shown in Fig. 1.1. Trainable parameters also include biases,

which are free terms associated with each neuron, and are omitted in the figure. The

information is then passed through a nontrainable nonlinear function gi(·) to create

the outputs of that layer. Inputs and outputs of the whole neural network are denoted

as xj and yk in Fig. 1.1, where j and k denote the indices of input and output neurons.

1.1. Deep Learning Fundamentals 25

1

x1

x2

xN

. . .

y1

y2

yn

. . .
g1(f1(‧))

g2(f2(‧))

gout(fout(‧))

W1 W2 Wout

Figure 1.1: A simple fully connected neural network containing an input layer, two
hidden layers, and an output layer.

Neural network training assumes adjusting the trainable parameters (i.e., weights

and biases of the neurons) using the knowledge in the collected data, so that accurate

predictions can be performed based on the new inputs. The training process is

formulated as an optimization problem which searches through the trainable parameter

space to minimize the distance function between the predicted output and the true

output. The problem is usually solved using gradient-based optimization methods

such as gradient descent, or some of its variants [10].

In practice, when using deep learning to solve a problem, it is common to train

multiple instances with different neural network model structures. This structure is

defined by hyperparameters, such as the number of layers and the number of neurons

in each layer. By finding the optimal set of hyperparameters, the neural network

structure that best fits the problem being solved can be identified. The hyperparameter

search can be done manually or with the use of specialized optimization methods [11].

Commonly, the collected data is split into three sets: a training set, a validation set,

and a test set. The training set is used in a neural network training process, the

validation set is used to evaluate the performance of a single training instance, and

the test set is used to evaluate the overall performance of the trained model.

Adjusting the architecture of a deep learning model to match the structure of the

input data can enhance training speed and performance and reduce required training

data. For example, convolutional neural networks (CNNs) use shared parameters to

process grid data, exploiting local relations between neighboring pixels and achiev-

26 1. Introduction

ing spatial translation invariance. Recurrent neural networks (RNNs) use shared

parameters to process sequential data, resulting in time translation invariance, while

graph neural networks (GNNs) aim for permutation invariance and are particularly

efficient when applied to graph structured data. Since ordinary, fully connected neural

networks have been widely used for solving power systems problems, we focus on

applications of more advanced deep learning architectures.

1.2 Convolutional Neural Networks
Convolutional Neural Networks are a well studied class of deep learning architectures

primarily designed for analysing spatial patterns in grid-structured data such as

images [3]. They consist of multiple convolutional layers, each of which acts as a

trainable convolutional filter that extracts local information from the image, transforms

it into more abstract, grid-shaped representations, and feeds it into the succeeding

layer. Applying multiple CNN layers enables CNN to extract useful features from an

image, which can then be used for various tasks such as classification or regression.

Although power system data is not inherently arranged in the format of an image,

CNNs have been effectively used to address power system problems, mostly involved

with processing data sequences. To meet the requirements of CNNs, power system

data is transformed and reshaped in various ways, some of which include:

• One approach for dealing with the time-varying nature of power systems is to

utilize 1D CNNs on univariate time series data. For example, in study [12],

1D CNNs were used to predict power system inertia using only frequency

measurements. The process involves stacking time series of changes in frequency

measurements, along with their rates of change, into a one-dimensional array

and then processing it using 1D CNNs.

• A more effective method is to group signals into a matrix, where each row

represents a single univariate signal. By using a 2D CNN to process this matrix,

we can perform multivariate time series analysis, which allows us to analyse

patterns across multiple time series and how they interact with each other.

This approach has been used in recent research, such as in the study [13], to

detect faults in power systems through analysing series of voltage, current, and

frequency measurements.

• Time series data can be subjected to time-frequency transformation, allowing

for analysis of the frequency content of the signal while maintaining its tem-

poral localization. These transformations can be visually represented in two

dimensions, and therefore can be analysed using various image processing tools,

including CNNs. For instance, in [14] a CNN was trained to classify faults in

1.3. Recurrent Neural Networks 27

power systems by analysing 2D scalograms, which were generated by applying

the continuous wavelet transform to time series of phasor measurements.

• Another approach is to use a CNN over the matrix of electrical quantities

created for a single time instance, where each row contains the values of a

specific electrical quantity for each power system element. This approach, which

does not consider time series data, has been shown to be effective in certain

applications. The study [15] solves the DC optimal power flow problem by

using this approach and taking node-level active and reactive power injections

as inputs, with labels obtained using the traditional DC optimal power flow

approach.

It’s important to note that these approaches use only aggregated inputs from all

the elements of the power system, without considering the connectivity between them.

1.3 Recurrent Neural Networks
Recurrent neural networks represent a significant development in deep learning

algorithms, particularly in the processing of sequential data such as speech, text,

and time series. [3]. Each of the recurrent layers acts as a memory cell that takes in

information from previous steps in the sequence, processes it, and generates a hidden

state representation that is passed on to the next step. The final hidden state of RNNs

encapsulates the information of the entire input sequence and can be applied to tasks

such as natural language processing, speech recognition, and time-series prediction.

While 1D CNNs are limited to fixed length sequences, meaning that all time series

in the training and test samples must have the same number of elements, RNNs are

adaptable to varying sequence lengths, making them more versatile and useful for

analysing sequential data.

The fundamental building blocks of RNNs are memory units, such as gated recurrent

units (GRUs) and long short-term memory units (LSTMs) [16]. These architectures

are created to tackle the challenge of longer-term dependencies in sequential data.

Both GRUs and LSTMs include an internal memory, which allows them to selectively

retain or discard information from previous steps in the sequence, thus enhancing their

ability to handle inputs of varying lengths. LSTMs are more complex and powerful,

capable of handling longer-term dependencies, while GRUs are computationally

simpler and faster, yet may not be as effective in certain tasks.

In the field of power demand and generation forecasting, various time series

prediction algorithms, including RNNs, have been utilized. One recent study, [17]

uses LSTM RNNs to predict multistep-ahead solar generation based on recorded

measurement history while also addressing missing records in the input time series.

28 1. Introduction

RNNs can also be used to predict the flexibility of large consumers’ power demand in

response to dynamic market price changes, as demonstrated in [18]. This approach

combines two LSTM RNNs, one for predicting market price and the other for predicting

a consumer’s demand flexibility metric, with a focus on uncommon events such as

price spikes. An interesting technical aspect of this method is that the two RNNs

share some LSTM-based layers, resulting in more efficient and faster training, as well

as improved prediction capabilities.

RNNs can also be applied to other data available in DMS and EMS, other than

power and energy. The work [19] proposes using an RNN to classify the voltage

stability of a microgrid after a fault, using time series of measurement deviations,

providing power system operators with valuable information, needed to take corrective

actions. The employed RNN architecture is the bidirectional LSTM, which processes

the time series data in both forward and backward directions, allowing the RNN to

consider both past and future context in each step of the sequence when making

predictions. In the study [20], the authors evaluate different deep learning models for

detecting misconfigurations in power systems using time series of operational data.

They compare GRU RNN, LSTM RNN, the transformer architecture [21], which has

been successful in natural language processing tasks, and a hybrid RNN-enhanced

transformer [22]. The results show that the RNN-enhanced transformer is the most

effective architecture, highlighting the potential of attention-based architectures for

solving time series problems in power systems.

1.4 Graph Neural Networks
Graph Neural Networks, particularly spatial GNNs that utilize message passing, are an

increasingly popular deep learning technique that excels at handling graph structured

data, which makes them well-suited for addressing a wide range of power systems

problems. Spatial GNNs process graph structured data by repeatedly applying a

process called message passing between the connected nodes in the graph [23]. The

goal of GNNs is to represent the information from each node and its connections in a

higher-dimensional space, creating a vector representation of each node, also known

as node embeddings. GNNs are made up of multiple layers, each representing one

iteration of message passing. Each message passing iteration is performed by applying

multiple trainable functions (implemented as neural networks) such as a message

function, an aggregation function, and an update function. The message function

calculates the messages being passed between two node embeddings, the aggregation

function combines the incoming messages in a specific way to create an aggregated

message, and the update function calculates the update to each node’s embedding.

This process is repeated a predefined number of times, and the final node embeddings

1.4. Graph Neural Networks 29

are passed through additional neural network layers to generate predictions.

GNNs have several advantages over the other deep learning architectures when

used in power systems. One of them is their permutation invariance property, which

means that they produce the same output for different representations of the same

graph by design. GNNs are able to handle dynamic changes in the topology of power

systems and can effectively operate over graphs with varying numbers of nodes and

edges. This makes them well suited for real-world power systems, which may have

varying topologies. Additionally, GNNs are computationally and memory efficient,

requiring fewer trainable parameters and less storage space than traditional deep

learning methods applied to graph-structured data, which is beneficial in power

system problems where near real-time performance is critical. Spatial GNNs have the

ability to perform distributed inference with only local measurements, which makes it

possible to use the 5G network communication infrastructure and edge computing to

implement this effectively [24]. This enables real-time and low-latency decision-making

in large networks as the computations are done at the network edge, near the data

source, minimizing the amount of data sent over the network.

GNNs have recently been applied to a variety of regression or classification tasks

in the field of power systems. The work [25] proposes using GNNs over the bus-

branch model of power distribution systems, with phasor measurement data as inputs,

to perform the fault location task by identifying the node in the graph where the

fault occurred. The use of GNNs for assessing power system stability has been

explored in [26], where the problem is formulated as a graph-level classification task

to distinguish between rotor angle instability, voltage instability, and stability states,

also based on power system topology and measurements. The paper [27] presents

a hybrid neural network architecture which combines GNNs and RNNs to address

the Short-Term Load Forecasting problem. The RNNs are used to process historical

load data and provide inputs to GNNs, which are then used to extract the spatial

information from users with similar consumption patterns, thus providing a more

comprehensive approach to forecast the power consumption. In [28] the authors

propose a GNN approach for predicting the power system dynamics represented as

time series of power system states after a disturbance or failure occurs. The GNN is

fed with real-time measurements from phasor measurement units that are distributed

along the nodes of the graph. In [29] GNNs are applied over varying power system

topologies to detect unseen false data injection attacks in smart grids.

In the previously mentioned studies, GNNs have been applied to the traditional

bus-branch model of power systems, however, a recent trend in the field has been to

apply GNNs over other topologies representing the connectivity in power system data.

As it will be further discussed in this thesis, GNNs can be applied in combination with

30 1. Introduction

heterogeneous power system factor graphs to solve the SE problem, both linear [30]

and nonlinear [31]. In these approaches, measurements are represented using factor

nodes, while variable nodes are used to predict state variables and calculate training

loss. These approaches are more flexible regarding the input measurement data

compared to traditional deep learning-based SE methods because they provide the

ability to easily integrate or exclude various types of measurements on power system

buses and branches, through the addition or removal of the corresponding nodes in

the factor graph. A different approach that does not use the GNN over the traditional

bus-branch model is presented in [32]. The proposed method solves the power system

event classification problem based on the collected data from phasor measurement

units. The approach starts by using a GNN encoder to infer the relationships between

the measurements, and then employs a GNN decoder on the learned interaction graph

to classify the power system events.

1.5 Deep Reinforcement Learning
So far, we have reviewed deep learning methods that are inherently suited for pre-

dicting discrete or continuous variables based on a set of inputs. In contrast, deep

reinforcement learning (DRL) methods have a direct goal of long-term optimization

of a series of actions that are followed by immediate feedback [33]. Therefore, DRL

methods are powerful tools for multi-objective sequential decision-making, suitable

for application in various EMS and DMS functionalities that involve power system

optimization [34]. In the DRL framework, the agent interacts with the stochastic

environment in discrete time steps and the goal is to find the optimal policy that

maximizes the long-term reward while receiving feedback about its immediate per-

formance. The agent receives state variables from the environment, takes an action,

receives an immediate reward signal and the state variables for the next time step.

The DRL training process involves many episodes that include agent-environment

interaction, during which the agent learns by trial and error. Using the collected data

from these episodes, the agent is able to predict the long term rewards in various

situations using neural networks, and these predictions are then used to generate an

optimal decision-making strategy.

There are many studies that apply DRL in the field of power system optimization

and control. Some of the examples include distribution network reconfiguration [35],

Volt-VAR control in power distribution systems [36], frequency control in low-inertia

power systems [37], and so on. In these studies, an RL agent receives various electrical

measurements as state information and takes a single multidimensional action per

time step, which includes both discrete and continuous set points on controllable

devices within a power system.

1.5. Deep Reinforcement Learning 31

A recent trend in the power system research is transitioning from single agent to

multi-agent deep reinforcement learning (MADRL), which is based on coordinating

multiple agents operating together in a single environment using the mathematical

apparatus developed in the field of game theory [38]. MADRL relies on centralized

training and decentralized execution concept, where a centralized algorithm is respon-

sible for training all the agents at once, allowing for coordination and cooperation

among the agents. This centralized training approach results in faster real-life execu-

tion due to significantly reduced communication delays during decentralized execution,

where each agent can act independently based on the knowledge acquired during the

centralized training. Reducing these communication delays is particularly important

in large transmission power systems where the individual agents may be significantly

geographically separated.

For example, a decentralized Volt-VAR control algorithm for power distribution

systems based on MADRL is proposed in [39]. In this algorithm, the power system

is divided into multiple independent control areas, each of which is controlled by

a corresponding DRL agent. These agents observe only the local measurements of

electrical quantities within their corresponding area, and the action of each agent

contains set points on all the reactive power resources in that area. Similarly, in [40],

a MADRL algorithm is used to solve the secondary voltage control problem in isolated

microgrids in a decentralized fashion by coordinating multiple agents, each of which

corresponds to a distributed generator equipped with a voltage-controlled voltage

source inverter. The action of each agent is a single secondary voltage control set

point of the corresponding generator. The fundamental difference compared to [39] is

that the agent in [40] uses not only the local measurements of electrical quantities

for the state information, but also messages from the neighbouring agents, leading to

improved performance. Work [41] proposes using a MADRL algorithm to perform the

economic dispatch, which minimizes the overall cost of generation while satisfying the

power demand. The agent models an individual power plant in a power system, with

the action being the active power production set point. Another example of using

MADRL for an economic problem in coupled power and transportation networks

is given in [42]. A MADRL method is proposed to model the pricing game and

determine the optimal charging pricing strategies of multiple electric vehicle charging

stations, where each individually-owned EV charging station competes using price

signals to maximize their respective payoffs. In all the aforementioned works, multiple

agents are trained in a centralized manner to optimize the reward function defined

globally based on the nature of the particular problem at hand.

32 1. Introduction

1.6 Power System State Estimation using Graph

Neural Networks
The power system state estimation is a problem of determining the state of the power

system represented as the set of complex bus voltages, given the available set of

measurements [43]. The dominant part of the input data for the SE model consists

of legacy measurements coming from the supervisory control and data acquisition

(SCADA) system, which have relatively high variance, high latency, and low sampling

rates. Increasingly deployed phasor measurement units (PMUs), provided by the

wide area measurement system (WAMS), have low variance and high sampling rates

and are a potential enabler of real-time system monitoring. There are two main

SE formulations that emerge based on the type of input measurements taken into

account:

• Nonlinear SE: Taking into account both legacy and phasor measurements

results in the SE model formulated by the system of nonlinear equations and

is traditionally solved using the iterative Gauss-Newton (GN) method [43].

Different approaches can be used to integrate phasor measurements into the

well established model with legacy measurements. A standard way to include

voltage and current phasors coming from PMUs is to represent them in the

rectangular coordinate system [44]. The main disadvantage of this approach is

related to measurement errors, where measurement errors of a single PMU are

correlated, and the covariance matrix does not have diagonal form. Despite that,

because of the lower computational effort, the measurement error covariance

matrix is usually considered as diagonal matrix, which has the effect on the

accuracy of the nonlinear SE. The diagonal form of the covariance matrix could

be preserved by representing voltage and current phasors coming from PMUs in

the polar coordinate system, which requires a large computational effort with a

convergence time significantly depending on the state variables’ initialization [45].

Additionally, using magnitudes of branch current measurements can cause

numerical instabilities such as undefined Jacobian elements due to the “flat

start” [46, Sec. 9.3]. Furthermore, different orders of magnitude of phasor

and legacy measurement variances can make the SE problem ill-conditioned by

increasing the condition number of the estimator’s gain matrix [44]. A single

iteration of the GN method involves solving a system of linear equations, which

results in near O(n2) computational complexity for sparse matrices, where n is

the number of power system buses.

• Linear SE: When a sufficient number of PMUs is installed in a power system,

the SE algorithm can consider only phasor measurements as inputs, without

1.6. Power System State Estimation using Graph Neural Networks 33

the need to include legacy measurements in the calculation. In this case, the

SE problem can then be expressed as a system of linear equations if both state

variables and phasor measurements are represented in a rectangular coordinate

system. This approach provides non-iterative solutions which are faster than the

nonlinear SE, and utilize high sampling rates of PMUs more. Solving linear SE is

traditionally done by solving a linear weighted least-squares (WLS) problem [44],

which involves matrix inversions or factorizations, which can be difficult in cases

where the matrix is ill-conditioned due to varying orders of magnitudes of power

system parameters. It is common practice to neglect the phasor measurement

covariances represented in rectangular coordinates [44]. This can make the SE

problem much easier to solve, but it also results in a computational complexity

of nearly O(n2) for sparse matrices.

In both SE problem formulations, real-time monitoring of large power systems

can be challenging using traditional approaches due to their high computational

complexity of O(n2) and mentioned numerical difficulties associated with them.

Recent advancements in GNNs [23,47] open up novel possibilities for developing power

system algorithms with linear computational complexity and potential distributed

implementation. GNNs (as well as other deep learning methods) can be particularly

useful for the SE problem because they are not based on the matrix model of the

power system, which eliminates numerical difficulties associated with traditional SE

solvers. These approaches, when trained on relevant datasets, are able to provide

solutions even when traditional methods fail.

Generally, the popularity of deep learning in the field of power systems analysis

has been well-documented in recent research, with several studies showing that it can

be used to learn the solutions to computationally intensive algorithms such as power

system SE. In [48], the authors used a combination of recurrent and feed-forward

neural networks to solve the SE problem using measurement data and the history

of network voltages. Another study, [49], provides an example of training a feed-

forward neural network to initialize the network voltages for a Gauss-Newton power

distribution system SE solver.

As the use of GNNs in power systems becomes more common, several studies

suggest applying GNNs to power flow problems, which are similar to the SE problem in

some aspects. In [50] and [51], power flows in the system are predicted based on power

injection data labelled by a traditional power flow solver. Similarly, [52] suggests using

a trained GNN as an alternative to computationally expensive probabilistic power flow

methods, which calculate probability density functions of unknown variables. Different

approaches propose training a GNN in an unsupervised manner to perform power

flow calculations by minimizing the violation of Kirchhoff’s law [53] or power balance

34 1. Introduction

error [54] at each bus, thus avoiding the need for labelled data from a conventional

power flow solver.

In [55], the authors propose a combined model- and data-based approach using

GNNs for power system parameter and state estimation. The model predicts power

injections and consumptions in nodes where voltage and phase measurements are taken,

but it does not consider branch measurements and other types of node measurements

in its calculations. In [56], the authors train a GNN by propagating simulated or

measured voltages through the graph to learn the voltage labels from a historical

dataset, and then use the GNN as a regularization term in the nonlinear SE loss

function. However, the proposed GNN only uses node voltage measurements and

does not consider other types of measurements, although they are handled in other

parts of the algorithm. Another feed-forward neural network learns the solutions that

minimize the SE loss function, resulting in an acceleration of the nonlinear SE solution

with O(n2) computational complexity at inference time. In [57], state variables are

predicted based on a time-series of node voltage measurements, and the authors solve

the nonlinear SE problem using GNNs with gated recurrent units.

Contributions: This thesis proposes specialized GNN models for solving linear

and nonlinear SE problems in positive sequence power transmission systems. To

provide fast and accurate predictions during the evaluation phase, GNNs is trained

using the inputs and solutions from traditional SE solvers. The following are the main

contributions of our work regarding GNN-based SE, also published in [30,58] and [31]:

• Inspired by [59], we present the first use of GNNs on factor graphs [60] for the

SE problem, instead of using the bus-branch power system model. This enables

trivial integration and exclusion of any type and number of measurements on the

power system buses and branches, by adding or removing the corresponding nodes

in the factor graph, and therefore is applicable to both linear and nonlinear SE

problem formulations. Furthermore, the factor graph is augmented by adding direct

connections between variable nodes that are 2nd-order neighbours to improve infor-

mation propagation during neighbourhood aggregation, particularly in unobservable

scenarios when the loss of the measurement data occurs.

• We present a graph attention network (GAT) [61] model, with the architecture

customized for the proposed heterogeneous augmented factor graph, to solve the SE

problem. GNN layers that aggregate into factor and variable nodes have separate

sets of trainable parameters. Furthermore, separate sets of parameters are used for

variable-to-variable and factor-to-variable message functions in GNN layers that

aggregate into variable nodes.

• Given the sparsity of the power system’s graph, and the fact that node degree

1.7. Dynamic Distribution Network Reconfiguration based on Deep Reinforcement
Learning 35

does not increase with the total number of nodes, the proposed approach has O(n)

computational complexity, making it suitable for large-scale power systems. The

inference of the trained GNN is easy to distribute and parallelize. Even in the case

of centralized SE implementation, the processing can be done using distributed

computation resources, such as graphical-processing units.

• We demonstrate that the number of trainable parameters in the proposed GNN-

based SE model is constant, while it grows quadratically with the number of

measurements in conventional deep learning approaches.

• We evaluated the performance of the proposed method by testing on various

data samples, including unobservable cases caused by communication errors or

measurement device failures, and scenarios corrupted by malicious data injections.

Furthermore, we study the local-processing nature of the proposed model and

show that significant degradation of results in these scenarios affects only the local

neighbourhood of the node where the failure or malicious data injection occurred.

• In addition to the standalone application, the proposed GNN-based nonlinear SE

can be used as a fast and accurate initializer of the GN method by providing it

with a starting point near the exact solution.

1.7 Dynamic Distribution Network Reconfiguration

based on Deep Reinforcement Learning
Distribution network reconfiguration (DNR) is a widely used distribution system

optimization procedure, which has the goal of finding the optimal topology of the

distribution network by manipulating the statuses of switching devices. Primarily,

DNR is used to achieve objectives such as the minimization of power loss and voltage

deviations [62, 63], and secondarily, it can be used for load balancing, Volt-VAR

optimization, supply restoration, etc. [64]. Therefore, DNR is an important feature

of software systems used for distribution network management. In the research

literature, DNR is a common name for a static formulation of the DNR problem,

which is determined for the fixed operation point, defined by load and generation

in the one time instance. In the cases of limited distribution network automation,

static DNR is performed once per interval ranging up to one year, due to the time-

variability of the distribution system state. The number of possible solutions to

the static DNR problem is 2Nsw , where Nsw is the number of switches available for

network reconfiguration. The other formulation of the DNR problem is the dynamic

distribution network reconfiguration (DDNR), which optimizes the network operations

over the specified time period. This makes DDNR suitable for real-time applications

due to the time-varying nature of load, generation, and other network conditions.

36 1. Introduction

Using DDNR instead of static DNR can result in larger benefits and increased network

operation performance, with the drawback of requiring the use of the fully automated

distribution network. Since the aim of developing DDNR is to be executed more

often than the static DNR, it must consider the number of switching manipulations in

the cost and the constraint functions. The large number of switching manipulations

can reduce the life span of switching devices and cause instability in the distribution

network operation in the case of complex topology changes. Therefore, DDNR resolves

the trade-off between performing the optimal reconfiguration too often and changing

the network topology less frequently to reduce the number of switching manipulations.

The DDNR problem introduces discretization of the optimization horizon into T

time intervals, resulting in increased problem complexity with the total of 2NswT

possible solutions. Since operation planning based on DDNR can be performed daily

or every hour, the aim of this work is to develop a DDNR algorithm that optimizes the

operation of the distribution network and is fast during the evaluation time, making

it applicable to real-world scenarios.

The first studies on DNR address problems such as power loss reduction [65–67]

and load balancing [67] among distribution feeders in the scope of static DNR. Some

extensions of the standard DNR problem for the optimization over time period have

been developed for the specialized cases like energy loss reduction [68], and operation

cost reduction [69]. The static DNR is often solved using the standard deterministic

optimization tools from the classical optimization theory. For example, DNR based

on the mixed-integer linear programming is presented in [70–74], with the main

advantage of finding the global optimum using the standard solvers, with the expense

of computational complexity. The ”path-to-node” concept for DNR proposed in [75]

efficiently models the radiality of the distribution network and solves the formulated

problem using a mixed-integer linear programming solver. The main drawback of this

concept is the significant increase in the number of decision variables with an increase

in the optimization problem dimension. In [76], DNR integrated with the optimal

power flow based on the Benders decomposition approach is presented.

Heuristic methods utilize physics and engineering knowledge about a specific

problem to produce practically effective solutions. One type of these methods used

for the DNR problem performs a heuristic search through the distribution network

topologies by opening switches with minimal current flows obtained from power

flow solutions [66,77,78]. Branch exchange methods [65,67,79, 80] provide a faster

alternative by performing only a local heuristic topology search starting from the

current distribution network topology. These methods are often used in practice

because of their robustness and explainability; however, they do not provide a

theoretical guarantee of optimality because they search only through the subset of all

1.7. Dynamic Distribution Network Reconfiguration based on Deep Reinforcement
Learning 37

possible network topologies.

In addition to performing local and heuristic searches, or applying classical op-

timization techniques or exhaustive searches, one can use stochastic optimization

algorithms that perform approximate searches through the whole search space. There-

fore, a set of tools often used for solving static DNR are nature-inspired metaheuristic

algorithms, which are more computationally efficient than the classical optimization

approaches and can provide better solutions compared to the heuristic algorithms.

Representative metaheuristic algorithms used to solve the DNR problem are the

genetic algorithm [74, 81–83], evolutionary algorithms [84, 85], particle swarm op-

timization [86, 87], simulated annealing algorithm [88, 89], and others. The main

drawbacks of these methods are their stochastic nature and suboptimal solutions

when the problem dimensionality increases.

Ref. [90] uses a different methodology that performs DNR without solving opti-

mization based or power flow-based programs. It presents a simple and fast strategy

specific to the DNR problem for selecting candidate solutions using only primitive

network topology information. Several supervised learning approaches to static DNR

using artificial neural networks have been presented in [91, 92]. In both references,

neural networks output the radial distribution network topology given the input set of

variables describing the power system state, directly or indirectly. Neural networks are

trained on datasets labelled by classical optimization-based DNR solvers and try to

mimic them during the evaluation time. Outputs of these methods are deterministic,

and the evaluation time is fast, since it is determined by the computational complexity

of several matrix-vector multiplications. The main drawbacks of these approaches

include the need for DNR solver to the training set, and significantly deteriorated

results in the case where inputs significantly differ from the training set samples.

Besides the typical DNR problem formulation, some extensions regarding the

optimization function and the constraints are emerging. The study [93] presented

the DNR for reducing power loss with a budget limit as a hard constraint for the

planning purposes of distribution networks. The modern distribution network is being

transformed from passive to active due to increasingly deployed renewable energy

resources and, consequently, the use of distributed generators for the DNR problem is

becoming a study of importance [63,94].

A significantly lower number of studies tackle the dynamic DNR problem for-

mulation. Ref. [95] formulates day-ahead scheduling as a mixed-integer nonlinear

optimization problem that minimizes total operational costs. The scheduling problem

consists of control of distributed generations and responsive loads, as well as per-hour

network reconfiguration with switching manipulation constraints, and is solved using

38 1. Introduction

the genetic algorithm. Study [96] also solves DDNR with switching manipulation

constraints in a multi-agent fashion, by dividing the problem into multiple time inter-

vals, generating multiple instances of a problem solved separately by particle swarm

optimization based agents. Both of these studies are numerically tested on small dis-

tribution networks and have the problem of computation time increasing significantly

with the increase of the problem dimension. DNR can reduce active power losses by

being performed hourly, daily, or monthly, as in [97–99]; however, these references do

not consider the limits of the number of switching operations in the mentioned time

periods. DNR studies for annual network reconfiguration that consider variable loads

are presented in [100,101]. The study [100] additionally deals with minimizing the

cost of switching operations using dynamic programming combined with the harmony

search algorithm. While solving the annual DDNR using the genetic algorithm, the

study [101] considers the stochastic power generation of distributed generators. The

study [102] also attempts to solve DDNR using the genetic algorithm, by calculating

the optimal intervals between the two topology changes. Ref. [103] presents the DDNR

based on the rule-based algorithm which ranks per-hour DNR solutions and using that

finds the optimal time for the network reconfiguration. Multi-objective DDNR using

the combination of the heuristic exchange market algorithm and the population-based

wild goats algorithm with the possibility of parallel implementation is presented

in [104]. The proposed method optimizes active power loss and reliability indexes

while satisfying radiality, bus voltage, and branch apparent power constraints, where it

does not consider switching manipulation constraints. References [105, 106] proposed

single- and multi-objective formulation of DDNR based on the Lagrange relaxation

approach. In the single-objective formulation, the objective function models the active

power loss reduction, while in the multi-objective formulation, the objective function

minimizes the costs of energy losses, network reliability, and switching operations.

The study [35] presents a data-driven DDNR for active power loss reduction without

using the network parameter information. DDNR is formulated as a Markov decision

process (MDP) and is solved using an off-policy reinforcement learning algorithm

trained on a historical operation data set.

Contributions: This thesis proposes DDNR based on the DRL algorithm. The

proposed expression of the DDNR problem in the RL framework, that is, the definition

of the state variables, leads to lower observability requirements compared to the

approach proposed in [35]. The amount of information needed for the algorithm

execution is decreased since the topology information and the information about

the power flows in the network are compressed into a single set of variables. This

reduces the number of telemetered measurements needed for the possible execution of

the algorithm in the real world. The reduced state size is also convenient from the

algorithm training perspective, since it decreases the required size of the neural network.

1.7. Dynamic Distribution Network Reconfiguration based on Deep Reinforcement
Learning 39

We also propose a way of considering switching operation constraints that improves the

algorithm training computational efficiency. The proposed approach assumes selecting

the actions from the available subset of the action set, which is updated during the

episode, so that switching operation constraints are not violated. This approach

simplifies the reward function when compared to the approach that allows actions

that violate constraints but penalizes them with a large amount of negative reward.

This way of selecting actions can be used for optimization problem constraints whose

violation can be detected without the feedback from the environment (by evaluating

only the agent’s action) and it can be applied to similar power system control and

optimization problems treated with RL such as Volt-VAR optimization, energy storage

scheduling, supply restoration, etc. The total cost benefits and execution times of the

proposed algorithm are compared with the state-of-the-art method from [105]. The

main contributions of our work regarding DDNR, published in [107], are:

• Suggested multi-objective and scalable DRL-based approach is computationally

efficient during the algorithm execution, with the expense of high computation cost

during the algorithm training.

• We introduce a novel definition for the state variables of the RL agent, resulting in

decreased observability requirements.

• We proposed a computationally efficient way of considering switching operation

constraints by creating the available subset of the action set and updating it during

the episode.

In Chapter 5 we introduce the main idea of DNR and formulate the DDNR problem.

Chapter 6 presents the theoretical foundations of MDPs and RL. Chapter 7 presents

the expression of the DDNR problem in the RL framework, description and discussion

of the numerical experiments, and the conclusion along with the possible future work

directions.

Part I

State Estimation and Graph

Neural Networks

Chapter 2

Power System State Estimation

In this chapter, we review two most common formulations of the power transmission

system SE problem. The SE algorithm is a key component of the energy management

system that provides an accurate and up-to-date representation of the current state

of the power system. Its purpose is to estimate complex bus voltages using available

measurements, power system parameters, and topology information [43, 108]. In

this sense, the SE can be seen as a problem of solving large, noisy, sparse, and

generally nonlinear systems of equations. The measurement data used by the SE

algorithm usually come from two sources: the SCADA system and the WAMS system.

The SCADA system provides low-resolution measurements that cannot capture

system dynamics in real-time, while the WAMS system provides high-resolution data

from PMUs that enable real-time monitoring of the system. The SE problem that

considers measurement data from both WAMS and SCADA systems is formulated

in a nonlinear way and traditionally solved in a centralized manner using the Gauss-

Newton method [43]. On the other hand, the SE problem that considers only PMU

data provided by WAMS has a linear formulation, providing faster, non-iterative

solutions. In the following sections, we provide a detailed description of both linear

and nonlinear SE problem formations.

2.1 Foundational Concepts
This section provides the fundamentals of SE state variables and input data, which

are necessary for specific SE problem formulations. For clarity, all variables are

expressed in per unit and all transformer ratios are normalized to unity (cancelled

out). Additionally, without loss of generality, we make the assumption that the power

system does not include phase-shifting transformers.

As mentioned, the outputs of the SE algorithm, i.e., the state variables consist of

voltage phasors of all the buses in the power system, where each voltage phasor is

represented using a complex number. Let H = {1, . . . , n} represents the set of buses,

where n is the number of buses in the power system. The complex bus voltages can

44 2. Power System State Estimation

be represented both in polar and rectangular coordinate system:

Vi = Vie
jθi = ℜ(Vi) + jℑ(Vi), (2.1)

where i ∈ H represents the bus index. Vi and θi represent magnitude and phase

angle, while ℜ(Vi) and ℑ(Vi) represent real and imaginary parts of the complex bus

voltage Vi. Since the state variable vector x is a vector of real numbers, it can also

be represented in polar:
x = [θ,V]T

θ = [θ1, . . . , θn]

V = [V1, . . . , Vn],

(2.2)

as well as in rectangular coordinate system:

x = [Vre,Vim]
T

Vre =
[
ℜ(V1), . . . ,ℜ(Vn)

]
Vim =

[
ℑ(V1), . . . ,ℑ(Vn)

]
.

(2.3)

For simplicity, we omit the concept of the slack bus whose angle value is fixed and

acts as a reference value, as it does not impact the way in which the GNN-based SE

will be realized in Chapter 4.

Traditionally, the input data for the SE algorithm consists of the network topology

and parameters, and measured values obtained from the measurement devices spread

across the power system. The power system network topology is described by the

bus-branch model and can be represented using a graph G = (H, E), where the set of

nodes in the graph is equal to the already defined set of buses in the power system

H, while the set of edges E ⊆ H × H represents the set of branches of the power

network. Power system parameters are characteristics of a power system, such as

impedance, admittance, etc., that describe the system’s behaviour. These parameters

are used to build a set of equations that describe the power system via the two-port

π-model of branches in the network. More precisely, the branch (i, j) ∈ E between

buses {i, j} ∈ H can be modelled using complex expressions:[
Iij

Iji

]
=

[
yij + ysi −yij
−yij yij + ysj

] [
Vi

Vj

]
, (2.4)

where the parameter yij = gij + jbij represents the branch series admittance, while

branch shunt admittances are given as ysi = gsi + jbsi and ysj = gsj + jbsj . The

complex expressions Iij and Iji define branch currents from the bus i to the bus j,

and from the bus j to the bus i, respectively. The complex bus voltages at buses

2.1. Foundational Concepts 45

{i, j} are given as Vi and Vj , respectively.

Input measurements can be placed on various elements in the power system and

measure different electrical quantities. Each measurement is associated with the

measurement value zi, the measurement variance vi, and the measurement function

fi(x). Measurement functions are mathematical models that express individual

measurements in terms of state variables x using the physical laws in the power

system, and can be derived using equations given in (2.4). A typical set of input

measurements includes:

• Legacy measurements: The set of legacy measurements provided by SCADA

includes active and reactive power flow and injection, branch current magnitude,

and bus voltage magnitude measurements. These measurements have low

sampling rates and therefore are not suitable for real-time SE. Measurement

functions that express these measurements are generally nonlinear, regardless of

the coordinate system in which they are represented.

• Phasor measurements: The WAMS supports PMUs and provides phasor mea-

surements of bus voltages and branch currents [109, Sec. 5.6]. More precisely,

phasor measurement is formed by a magnitude, equal to the root-mean-square

value of the signal, and phase angle [109, Sec. 5.6]. The PMU placed at the bus

measures bus voltage phasor and current phasors along all branches incident

to the bus [44]. Phasor measurements have high sampling rates, with values

around 50 samples per second, and also have lower variances compared to legacy

measurements. When phasor measurements and state variables are expressed in

rectangular coordinate system, the corresponding measurement functions are

linear; otherwise they are nonlinear.

Values of both legacy and phasor measurements can be stacked together in a vector

of measurement values z = [z1, . . . , zm]T. Corresponding measurement functions

form their own vector f(x) = [f1(x), . . . , fm(x)]T, where m denotes the number of

measurement values.

An example of a simple two-bus power system is given in Fig.2.1. Its state variables

consist of two complex bus voltages, V1 and V2, and the state variable vector is given

in polar coordinates as:

x = [θ1, θ2, V1, V2]
T. (2.5)

The system has a PMU placed at the bus 1 which measures the voltage phasor given

on that bus Vm1 = Vm1e
jθm1 and the current phasor I12 = I12e

jθI12 on the branch

which connects the two buses. The system also contains a legacy active power flow

measurement P12 on the same branch and the legacy voltage magnitude measurement

46 2. Power System State Estimation

Vm2 on the bus 2. The vector of measurement values of this system can be given as:

z = [Vm1, θm1, I12, θI12 , V2, P12]
T. (2.6)

Vm1=Vm1e
jθm1

V1 = V1e
jθ1

Bus 1

I12=I12e
jθI12 P12

V2 = V2e
jθ2

Bus 2

Vm2

Figure 2.1: Simple two-bus power system containing a PMU at the bus 1, one legacy
active power flow measurement, and one legacy voltage magnitude measurement at
the bus 2.

2.2 Linear State Estimation
Since measurement functions corresponding to phasor measurements can be expressed

as a linear combination of state variables when represented in rectangular coordinate

system, the SE problem formulation which considers only phasor measurements is

linear. This formulation is viable in cases when the power system is fully observable

using PMUs, and a fast SE solver is then needed to fully utilize their high sampling

rates.

PMUs measure complex bus voltages and complex branch currents, and originally

output phasor measurements in polar coordinates. In addition, PMU outputs can

be observed in the rectangular coordinates with real and imaginary parts of the bus

voltage and branch current phasors. In that case, the vector of state variables x

can also be given in rectangular coordinates x ≡ [Vre,Vim]
T. Using rectangular

coordinates, we obtain the linear system of equations defined by voltage and current

measurements. The measurement functions corresponding to the bus voltage phasor

measurement on the bus i ∈ H are simply equal to:

fℜ{Vi}(x) = ℜ{Vi}
fℑ{Vi}(x) = ℑ{Vi}.

(2.7)

According to the two-port π branch model (2.4), functions corresponding to the

2.2. Linear State Estimation 47

branch current phasor measurement are given as:

fℜ(Iij)(·) = (gij + gsi)ℜ(Vi)− (bij + bsi)ℑ(Vi)− gijℜ(Vj) + bijℑ(Vj)

fℑ(Iij)(·) = (bij + bsi)ℜ(Vi) + (gij + gsi)ℑ(Vi)− bijℜ(Vj)− gijℑ(Vj).
(2.8)

The presented model represents the system of linear equations, where the solution

can be found by solving the linear weighted least-squares problem:(
JTΣ−1J

)
x = JTΣ−1z, (2.9)

where the Jacobian matrix J ∈ Rm×2n is defined according to measurement functions

(2.7)-(2.8), m is the total number of linear equations, the measurement error covariance

matrix is given as Σ ∈ Rm×m, and the vector z ∈ Rm contains measurement values

given in rectangular coordinate system.

The main disadvantage of this approach is that measurement errors are originally

given in polar coordinates (i.e., magnitude and angle errors); therefore, the covariance

matrix must be transformed from polar to rectangular coordinates [110]. As a result,

measurement errors are correlated and the covariance matrix Σ does not have a

diagonal form. Despite that, because of the lower computational effort, the non-

diagonal elements of the covariance matrix Σ are usually neglected, which has an

effect on the accuracy of the SE [44]. Using the classical theory of propagation of

uncertainty [111], the variance in the rectangular coordinate system can be obtained

using variances in the polar coordinate system. For example, let us observe the

voltage phasor measurement at the bus i, where PMU outputs the voltage magnitude

measurement value z|Vi| with corresponding variance v|Vi|, and voltage phase angle

measurement zθi with variance vθi . Then, variances in the rectangular coordinate

system can be obtained as:

vℜ{Vi} = v|Vi|(cos zθi)
2 + vθi(z|Vi| sin zθi)

2

vℑ{Vi} = v|Vi|(sin zθi)
2 + vθi(z|Vi| cos zθi)

2.
(2.10)

Analogously, we can easily compute variances related to current measurements vℜ{Iij},

vℑ{Iij} or vℜ{Iji}, vℑ{Iji}. We will refer to the solution of (2.9) in which measurement

error covariances are neglected to avoid the computationally demanding inversion of

the non-diagonal matrix Σ as an approximative WLS SE solution.

In this work, we will investigate if the GNN model trained with measurement

values, variances, and covariances labelled with the exact solutions of (2.9) is more

accurate than the approximative WLS SE, which neglects the covariances. Inference

performed using the trained GNN model scales linearly with the number of power

48 2. Power System State Estimation

system buses, making it significantly faster than both the approximate and the exact

solver of (2.9).

2.3 Nonlinear State Estimation
Today’s power systems are often not fully monitored with PMUs, therefore, SE

that incorporates both phasor and legacy measurements is required. As previously

discussed, that SE formulation is nonlinear and uses state variables expressed in a

polar coordinate system x = [θ,V]T.

Below, we present expressions for measurement functions corresponding to legacy

measurements:

• Measurement function for the bus voltage magnitude measurements is simply

given as voltage magnitude state variable corresponding to that bus:

fVi(x) = Vi. (2.11)

• Measurement functions for active and reactive power flow measurements on

branches are given as:

fPij
(x) = V 2

i (gij + gsi)− ViVj(gij cos θij + bij sin θij)

fQij
(x) = −V 2

i (bij + bsi)− ViVj(gij sin θij − bij cos θij).
(2.12)

• Measurement function for current magnitude measurements on branches are:

fIij (x) = [AcV
2
i +BcV

2
j − 2ViVj(Cc cos θij −Dc sin θij)]

1/2, (2.13)

where the coefficients of the function are given as:

Ac = (gij + gsi)
2 + (bij + bsi)

2; Bc = g2ij + b2ij

Cc = gij(gij + gsi) + bij(bij + bsi); Dc = gijbsi − bijgsi.

• Measurement functions for active and reactive power injection measurements

are described as:

fPi(x) = Vi

∑
j∈Ni ∪ i

Vj(Gij cos θij +Bij sin θij)

fQi
(x) = Vi

∑
j∈Ni ∪ i

Vj(Gij sin θij −Bij cos θij),
(2.14)

2.3. Nonlinear State Estimation 49

where Ni ∈ H is the set containing first order neighbours of the bus i. Gij

and Bij are the elements of bus admittance matrix often used in power system

analysis [112], and can be calculated using:

Yij = Gij + jBij =

∑

j∈Ni

(yij + ysi), if i = j (diagonal element)

−yij , if i ̸= j (non− diagonal element).

(2.15)

Next, we provide expressions for measurement functions corresponding to phasor

measurements expressed in polar coordinate system:

• Measurement functions for bus voltage phasors measurements are given as:

fVi
(x) = Vi

fθi(x) = θi.
(2.16)

• The measurement function for the magnitude of the branch current phasor is

given in (2.13), while the function for the measured angle of the branch current

phasor is:

fθI12 (x) = arctan

[
(Aa sin θi +Ba cos θi)Vi − (Ca sin θj +Da cos θj)Vj

(Aa cos θi −Ba sin θi)Vi − (Ca cos θj −Da sin θj)Vj

]
,

(2.17)

where the function’s coefficients are as follows:

Aa = gij + gsi; Ba = bij + bsi

Ca = gij ; Da = bij .

Finally, the SE model can be expressed as the following system of nonlinear

equations:

z = f(x) + u, (2.18)

where u ∈ Rm is a vector of uncorrelated measurement errors, where ui ∼ N (0, vi)

represents a zero-mean Gaussian distribution with variance vi. The GN method

is typically used to solve the nonlinear SE model (2.18), where the measurement

functions f(x) precisely follow the physical laws derived on the basis of (2.4):[
J(x(ν))TΣJ(x(ν))

]
∆x(ν) = J(x(ν))TΣr(x(ν)) (2.19a)

x(ν+1) = x(ν) +∆x(ν), (2.19b)

50 2. Power System State Estimation

where ν = {0, 1, . . . , νmax} is the iteration index and νmax is the number of iterations,

∆x(ν) ∈ R2n is the vector of increments of the state variables, J(x(ν)) ∈ Rmx2n is the

Jacobian matrix of measurement functions f(x(ν)) at x = x(ν), Σ ∈ Rmxm is in this

case a diagonal matrix containing inverses of measurement variances, and r(x(ν)) = z

−f(x(ν)) is the vector of residuals. Note that the nonlinear SE represents a nonconvex

problem arising from nonlinear measurement functions f(x) [113]. Due to the fact

that the values of the state variables x usually fluctuate in narrow boundaries, the

GN method can be used.

The SE model (2.18) that considers both legacy and phasor measurements, where

the vector of state variables x = [V,θ]T and phasor measurements are represented in

the polar coordinate system, is known as simultaneous. The simultaneous SE model

takes measurements provided by PMUs in the same manner as legacy measurements.

More precisely, the PMU generates measurements in the polar coordinate system,

which delivers more accurate state estimates than the other representations [44], but

requires more computing time [45] and produces ill-conditioned problems [44]. To

address these issues, we propose a non-matrix-based and noniterative GNN base SE,

which can be used as a standalone approach to solve (2.18), or as a fast and accurate

initializer of the GN method (2.19).

Chapter 3

Graph Neural Networks

Graph neural networks are an increasingly popular deep learning method used for

efficient learning over graph-structured data. Various real-world objects and phe-

nomena can be represented as graphs; therefore, GNNs found application in a wide

variety of domains, such as chemistry for molecular property prediction [47], antibiotic

discovery [114], social sciences for fake news detection [115], complex physics simu-

lations [116], wireless communications [117], analysis and optimization of electrical

power systems [118], etc. In this chapter, we provide a short overview of machine

learning on graphs, the foundation of the GNN theory used in the rest of the thesis,

and list some practical aspects in using GNNs in real-world applications.

3.1 Overview of Machine Learning on Graphs
The main goal of this section is to provide the context necessary to understand

GNNs. Firstly, we introduce the definition of a graph and categorize the most

common machine learning on graphs tasks. We provide a short reference to the

traditional machine learning on graphs methods to emphasize the necessity for graph

representation learning. Finally, we provide an overview of graph representation

learning methods, including deep learning-based GNNs.

3.1.1 Graphs
Graphs are often used to describe a set of entities and the relationships between

them. Formally, a graph is defined as a tuple (V, E), where V denotes the set of

nodes, and E denotes the set of edges between the nodes. The graph is commonly

represented with the corresponding adjacency matrix A ∈ R|V|×|V|. If there is an edge

between the nodes a, b ∈ V, then a matrix element A[a, b] is equal to one; otherwise,

it is equal to zero. Graphs can contain self-loops, i.e., edges that connect nodes to

themselves, resulting in diagonal elements of the adjacency matrix equal to one. An

undirected graph assumes bidirectional connections between all the nodes, resulting

in a symmetric adjacency matrix. An example of a simple undirected graph is given

52 3. Graph Neural Networks

in Fig.3.1, with the corresponding adjacency matrix given in (3.1):

A =

0 1 0 0 1 0

1 0 1 0 1 0

0 1 0 1 0 1

0 0 1 0 0 0

1 1 0 0 0 1

0 0 1 0 1 0

. (3.1)

1

2 3

4

5 6

Figure 3.1: Example of the simple undirected graph containing six nodes and seven
edges.

There are many extensions of the simplest form of graph presented above. Some

of them are the following:

• Directed graph, in which the adjacency matrix is generally not symmetric

since a connection from one node to another does not imply the existence of a

connection in the reverse direction;

• Heterogeneous and multi-relational graphs, where there can be multiple types

of the nodes and the edges;

• Weighted graphs, which have weights associated with the edges, and consequently

their adjacency matrices contain real number scalars instead of only zeros and

ones.

Real-world graphs can contain a large number of nodes, reaching hundreds of

millions in the cases of the most popular social networks. The adjacency matrices

of these graphs are sparse and space-inefficient, necessitating a more compact graph

storage. Therefore, in practise large and sparse graphs are usually stored in adjacency

lists, which are implemented as unordered lists of different sizes containing neighbours

of each node.

Additional input data can be incorporated into the graph data structure, usually at

the node level via real-valued feature vectors, introducing the need for machine learning

3.1. Overview of Machine Learning on Graphs 53

methods on graphs. Less often, the input data are provided using the edge-level

features, or at the graph level using a single feature vector. In the case of supervised

learning on nodes, edges, and graphs, training labels are usually concatenated into

the corresponding feature vectors. From the graph signal processing perspective,

node-level features can be viewed as signals on a graph. A vector containing one scalar

feature per node defines a one-channel graph signal x ∈ R|V|1, while multichannel

graph signals can be represented with a matrix X ∈ R|V|·Nc , where Nc denotes the

number of input features per node.

Another matrix that represents fundamental properties of a graph and will be

referred to throughout this chapter is the graph Laplacian matrix L ∈ R|V|×|V|, defined

as:

L = D−A, (3.2)

where D ∈ R|V|×|V| is diagonal and represents the node degree matrix, whose diagonal

elements are equal to corresponding node degrees. This matrix is positive semi-definite,

and it can always be eigendecomposed. The Laplacian matrix of the graph is given in

Fig. 3.1 is:

L =

2 −1 0 0 −1 0

−1 3 −1 0 −1 0

0 −1 3 −1 0 −1

0 0 −1 1 0 0

−1 −1 0 0 3 −1

0 0 −1 0 −1 2

. (3.3)

The normalized version of the graph Laplacian is also often used:

L = I−D− 1
2AD− 1

2 . (3.4)

The eigendecomposition of the Laplacian matrix, also known as the spectrum of

the graph Laplacian, is given as follows:

L = UΛUT, (3.5)

where Λ ∈ R|V|×|V| is a diagonal matrix containing the eigenvalues, while the columns

of U ∈ R|V|×|V| contain the eigenvectors ordered by their corresponding eigenvalues.

The Laplacian spectrum reveals some information about the grouping of the graph’s

nodes. The multiplicity of null eigenvalues is equal to the number of connected

1In Chapters 2 and 4, x was used as notation for state variables. In this chapter, it is used to
denote signals on a graph. No overlap in meaning occurs between chapters, avoiding any potential
confusion.

54 3. Graph Neural Networks

components in a graph, while the second-smallest eigenvalue and the corresponding

eigenvector can be used to perform the optimal node clustering into two.

3.1.2 Common Tasks of Machine Learning on Graphs
Generally, learning problems on graphs can be reduced to supervised and unsupervised

problems; however, due to graph-related specificities there is a need for a more detailed

categorization. Before introducing graph representation learning concepts, we provide

descriptions of most common tasks of machine learning on graphs:

• Node-level tasks, in which classification or regression is performed on individual

nodes, based on a dataset containing nodes labelled with target values. Typical

supervised learning approaches perform poorly in this task, as the nodes in a

graph are not independent and identically distributed.

• Edge-level tasks, with the most common being prediction of edge presence in

a graph, also known as link prediction. Models for these tasks are trained on

graphs with an incomplete set of edges to predict the missing edges between the

pairs of nodes. By minimizing the loss similar to logistic regression, this task is

usually reduced to the classification problem, given data from the node pairs as

inputs. Less common tasks are classification and regression of individual edges.

• Node clustering, often also called community detection, is a form of unsupervised

learning with the goal of grouping similar nodes according to their features and

connectivity information.

• Graph-level tasks can also be formulated as supervised and unsupervised learning

problems, once a useful set of graph features is extracted. Supervised learn-

ing on graphs assumes predicting the class or a real-number value associated

with a graph, whereas unsupervised learning on graphs usually involves tasks

that calculate a measure of similarity between pairs of graphs, such as graph

clustering.

• Influence maximization, often used for viral marketing purposes, is defined as

the problem of finding the subset of nodes in a graph such as a social network

that maximizes the spread of influence. The main goal of influence maximization

is finding small subsets that provide a high number of affected nodes in the rest

of the graph.

3.1.3 The Need for Graph Representation Learning
In the standard applications, trivial usage of common machine learning models such as

neural networks expect input structured as multidimensional arrays, making the usage

of adjacency lists more difficult. An additional problem with using common machine

3.1. Overview of Machine Learning on Graphs 55

learning models for graph learning problems is that they expect all the node and

connectivity data as an input, yielding machine learning models with a high number

of parameters, which are inefficient from the storage perspective and hard to train

as well. Furthermore, common neural networks are not permutation invariant; the

same graph topology can be represented with multiple different adjacency matrices

or lists, but it can not be ensured that all of them can be mapped to the same

output [119]. Therefore, machine learning algorithms specialized for operating on

graphs that preserve permutation invariance become necessary.

Traditional approaches to machine learning on graphs methods are out of the scope

of this thesis. Based on the overview given in [23], we briefly refer to some of these

methods to motivate the need to develop graph representation learning algorithms:

• Node-level tasks can be solved by extracting multiple node-level features using

common node statistics such as node degree, node centrality, clustering coef-

ficient, etc., and feeding them to the inputs of the common machine learning

algorithms.

• Solving graph-level tasks traditionally involves extracting graph-level features

that can be later used in common machine learning models. One of the trivial

graph-level feature extractions is defined as a simple aggregation of node-

level features, which can miss some important global information about the

graph because it is solely based on local node statistics. More advanced graph

kernel methods [120], perform iterative neighbourhood aggregation of node-level

features, to capture global information about the graph. Additional graph-

level information can be provided by counting the number of small subgraph

structures or by analysing various types of paths in the graph. Information

about paths is created by collecting the node statistics along the shortest paths

or random walks on the graph [121].

• Neighbourhood overlap detection methods quantify how much two nodes are

related by analysing similarities between their corresponding neighbourhoods.

These statistics can be used for edge-level relationship prediction tasks [122]. In

addition to trivial k ∈ N-hop neighbourhoods, more advanced random walk and

shortest path-based neighbourhood functions can be used.

• Node clustering tasks can be traditionally solved using graph Laplacian matrix

and the spectral methods. Many node clustering methods rely on determining

and analysing its eigenvalues and eigenvectors, that is, its spectrum [123]. As

mentioned in 3.1.1, the spectrum of the graph Laplacian can be used to perform

some variants of node clustering. Additionally, the Laplacian spectrum can be

used to create vector representations of nodes in a graph, which can be used as

56 3. Graph Neural Networks

input to a typical clustering algorithm.

The main drawback of these methods is the need for manual feature engineering, which

can be an expensive and time-consuming process. Additionally, designed feature

extractors are inflexible and cannot generalize well on new graphs with different

topologies. In the Subsection 3.1.4 we will consider the most common approaches to

learning node vector representations, instead of extracting them manually.

3.1.4 Graph Representation Learning
The most common objective of a graph representation learning is to create the

representation vectors called node embeddings, that encode the information about

graph’s local structure2. This process can also be interpreted as a transformation of

the graph data into the latent feature space, also known as the embedding space. The

distances between the points in the embedding space reflect the node similarity with

respect to the relative positions of the nodes. Node embeddings can be a direct output

of a graph representation learning algorithm or an intermediate result, as in the case

of end-to-end GNNs. In either case, node embeddings, their pairs, or aggregated node

embeddings of the whole graph can be used as an input to node, edge, or graph-level

tasks mentioned in Subsection 3.1.2. Fig. 3.2 displays the simplified output of a typical

graph representation learning algorithm, where each node is assigned a corresponding

node embedding of size three.

1[0.0; 0.2; 2.0]

2[0.1; 0.3; 3.0] 3 [0.2; 0.3; 3.0]

4 [0.3; 0.3; 1.0]

5[0.1; 0.4; 3.0] 6 [0.2; 0.5; 2.0]

Figure 3.2: Node embeddings - a simplified example of graph representation learning
algorithm’s outputs.

Prior to introducing deep learning-based graph representation learning methods,

we will briefly list the types of shallow embedding methods which fundamentally

create unique node embeddings for all the nodes, based on their identifiers and their

neighbourhood structure. All of these methods follow the idea of the graph encoder-

decoder framework, containing an encoder function which maps each node into the

real-number vector representation, and a decoder function which maps learned node

embedding vectors to the structural information of that node. We will consider the

2In this thesis we do not consider less common graph representation learning methods that create
edge and graph-level embeddings.

3.1. Overview of Machine Learning on Graphs 57

most often used pairwise decoders, which take two node embeddings as an input,

and predict some measure of similarity between the two nodes. Encoder-decoder

models defined in this way are trained on pairs of similar nodes by minimizing the

discrepancy between the similarity of the nodes (e.g. the neighbourhood overlap) and

the similarity of the node embeddings obtained as outputs of the decoder. If the

graph structure information can be successfully decoded, the learned node embeddings

represent the graph well, and can be used as inputs to some of the common machine

learning algorithms. The most common types of shallow embedding methods that fit

into the encoder-decoder framework are:

• Factorization-based methods that express the encoder-decoder loss in matrix

form and use matrix-factorization algorithms to minimize it. In these methods,

the decoder is usually defined as an L2-norm of the difference between the two

node embeddings [124], or their inner product [125]. An example of the measure

of similarity between two nodes in a matrix form is the Leicht-Holme-Newman

similarity [126], which provides the expected number of paths of all lengths

between two nodes by solving the geometric series of the adjacency matrix.

• Random walk embedding methods use stochastic node similarity measures based

on random walk statistics, since similar pairs of nodes should occur together in

short random walks [127,128].

For example, the DeepWalk shallow embedding algorithm [127] embeds the nodes

based on the random walk sequences, similarly like the word2vec algorithm [129]

embeds words based on the set of sentences. After a dataset of short fixed-length

random walks is generated, the model is optimized to closely embed the nodes that

co-occur in the same random walks:

max
H

∑
u∈V

∑
v∈NRW (u)

logPr(v|u). (3.6)

NRW (u) denotes the multiset of nodes visited on random walks starting from the node

u, while V denotes the set of all nodes. H ∈ Rd·|V| is the trainable node embedding

matrix, containing the node embeddings for individual nodes hv ∈ Rd, v ∈ V , where d

denotes the embedding size. Probability that the node v is in the neighbourhood of

the node u is parametrized using the softmax function and the node embedding inner

products in the following way:

Pr(v|u) = exphu
Thv∑

n∈V exphu
Thn

. (3.7)

In other words, by going through the pairs of nodes that co-occurred in random

58 3. Graph Neural Networks

walks, the algorithm maximizes the inner product of the node embedding pairs,

maximizing the probability that the trained algorithm will categorize those node pairs

as neighbours. The softmax function also enforces the minimization of inner products

of embeddings of nodes that did not co-occur in random walks, making them further

apart in the embedding space.

The main drawback of the listed shallow embedding approaches is that they are

trained to create unique vector representations of all the nodes of one graph, meaning

that they do not have the ability to generalize to new graphs. A more flexible approach

would be to learn a function that encodes the local neighbour structure and can

be trained and used on graphs with different topologies simultaneously. Another

drawback of shallow embedding methods is that they can encode only the graph

structure, without taking into account node, edge, and graph-level input features. In

the following subsection, we will introduce deep learning-based encoders, which map

local node neighbourhoods and all the input feature vectors they contain to node

embeddings.

3.1.5 Graph Representation Learning using GNNs
GNNs are becoming the most popular tool for machine learning on graphs problems

because of their successful application in various domains. Throughout this chapter

we have been motivating the development of specialized machine learning methods

for graphs and methods for learning vector representations of nodes in the graphs,

until we have motivated the need for training deep learning functions to encode the

graph data. Unlike shallow, node embeddings are not the final output of the GNN

algorithm, but an intermediate result in end-to-end machine learning on a graph task,

either supervised or unsupervised.

We make an introduction to GNNs from the deep learning model’s architecture

perspective by comparing them to the other common deep learning approaches in

Table 3.1. Adjusting the model’s architecture to the specific structure of the input

data can increase the training speed and performance and reduce the amount of

needed training data. This way of exploiting the regularity of the input data space by

imposing the structure of the trainable function space is known by the term relational

inductive bias [130]. One of the most successful examples of exploiting relational

inductive biases are CNN layers, producing algorithms that surpass human experts

in many computer vision tasks. CNNs use the same set of trainable parameters

(known as the convolutional kernel) to operate over parts of the input grid data

independently, achieving locality and spatial translation invariance. Locality exploits

the fact that neighbouring grid elements are more related than further ones, while

spatial translation invariance is the ability to map various translations if the input

3.1. Overview of Machine Learning on Graphs 59

Table 3.1: Comparison of various deep learning models from the inductive bias
perspective.

Neural network
layer type

Input data
structure

Relational
inductive bias

Property

Fully connected Arbitrary
Input elements
weakly related

-

Convolutional Grids, images Local relation
Spatial translation

invariance

Recurrent Sequences Sequential relation
Time translation

invariance

GNN layer Graphs Arbitrary relation
Permutation invariance

and equivariance

data into the same output. Similarly, recurrent units utilize trainable parameter

sharing to process the segments of the sequential data, resulting in a time translation

invariant algorithm. From an inductive bias perspective, the main goal of GNNs is

to achieve permutation invariance, so that various adjacency matrix representations

of the same graph map into the same output. An additional goal of GNNs is to

achieve permutation equivariance for node and edge-level tasks, so that node and edge

permutations in the input data should manifest only in the corresponding outputs.

The main classification of GNN methods is the following:

• Spectral GNNs are based on trainable graph convolutions in the spectral domain,

achieved using the graph Fourier transform, and involve the eigendecomposition

of the graph Laplacian [131]. In spectral domain, the graph convolution reduces

to element-wise multiplication of the trainable convolution filter with the graph

signal. These methods have some important theoretical implications, but also

a few drawbacks that make them less applicable in practise; therefore they

will not be studied in detail in this thesis. One of the drawbacks is the high

computational cost for large graphs, since the eigendecomposition has a O(|V|3)
computational complexity, and the fact that the number of trainable parameters

grows with the input graph size. Additionally, spectral filters on which they rely

cannot localize in the original domain of the graph, and they cannot generalize

to new graphs whose eigendecompositions are different from the graphs the

model was trained on. Finally, these methods are limited to undirected graphs

which have symmetric Laplacian matrices, and cannot include edge-level input

features.

• Spatial GNNs are a widely used class of GNN methods based on trainable

60 3. Graph Neural Networks

neighbourhood aggregation of node input features, performed in the original

(spatial) domain of the graph. The neighbourhood aggregation process is applied

locally and independently over the parts of the input graph, making the spatial

GNNs easily generalizable to new graphs. Since the spatial GNNs act as local

graph filters, the number of trainable parameters does not grow with the input

graph size and their inference can be distributed, making them convenient for

large scale applications.

Before presenting spatial GNNs in detail, we will give a theoretical overview of

graph convolution operation in spectral domain and derive a spectral GNN layer using

it. The Laplacian matrix eigendecomposition L = UΛUT defines a graph Fourier

transform F(·) providing a way to project a graph signal x ∈ R|V| into the spectral

domain:

F(x) = UTx. (3.8)

The graph convolutional filter gθ ∈ R|V| has the same size as the graph signal, and

when employed in spectral GNNs, its elements are trainable, i.e. learned from data.

In spectral domain, the graph convolution reduces to element-wise multiplication of

the graph signal with the filter F(x) ⊙ F(gθ). By performing the inverse Fourier

transform F−1(·) to the signal filtered in the spectral domain, we obtain the result of

the graph convolution ∗G in the original domain:

x ∗G gθ = F−1(F(x)⊙F(gθ)) = U(UTx⊙UTgθ). (3.9)

This expression can further be simplified by expressing the filter in the spectral domain

UTgθ as a diagonal matrix Θ = diag(UTgθ):

x ∗G gθ = UΘUTx. (3.10)

A spectral GNN layer transforms a multichannel input into the multichannel output

by performing multiple graph convolutions and summing them per output channel.

This process is repeated K times, starting with the input multichannel graph signal

X ∈ R|V|·Nc , and ending with the final node embedding matrix X ∈ R|V|·fK , where

fK denotes the size of the final node embeddings. Generally, each spectral GNN

layer can have a different number of input and output channels, and a separate set of

trainable parameters. Operations performed in kth GNN layer can be described as:

Hk
:,j = σ(

fk−1∑
i=1

UΘk
i,jU

THk−1
:,i), j = 1, 2, . . . fk. (3.11)

3.2. Theoretical Foundations of Spatial Graph Neural Network 61

σ represents some nonlinear function, while fk−1 and fk denote the number of GNN

layer’s input and output channels. Hk−1 ∈ R|V|·fk−1 is the input graph signal for

kth layer, with H0 = X. Finally, Θk
i,j contains trainable filter’s parameters for every

input-output channel combination. The final node embeddings are used as inputs of

the additional trainable functions which perform node, edge, or graph-level tasks, and

the whole model is trained in an end-to-end fashion.

To make spectral GNNs applicable to large graphs, approximations using Chebyshev

polynomials of the diagonal matrix of eigenvalues [132] are often employed. Some of

these approximations exhibit spatial GNN properties like localization, which blurs the

border between spatial and spectral GNNs. The best example are graph convolutional

networks [133], whose neighbourhood aggregation process is theoretically equivalent

to the graph convolutional filtering in the original spectral version of the algorithm.

In the next section, we will give the theoretical foundations of spatial GNN methods,

which will be applied to the power system state estimation problem in Chapter 4.

3.2 Theoretical Foundations of Spatial Graph Neu-

ral Network
The spatial GNNs perform recursive neighbourhood aggregation, also known as

message passing [47], over the local subsets of graph-structured inputs to create a

meaningful representation of the connected pieces of data. More precisely, a GNN

acts as a trainable local graph filter which has a goal of transforming the inputs

from each node and its connections to a higher dimensional space, resulting in a

s-dimensional vector embedding h ∈ Rs per node. In other words, the goal of the

node embedding is to represent the information about the node’s position in the

graph, as well as its own and the input features of the neighbouring nodes. The GNN

layer, which implements one iteration of the recursive neighbourhood aggregation,

consists of several differentiable functions that can be represented using a trainable

set of parameters, usually in the form of the feed-forward neural networks. These

functions co-operate to produce updated versions of node embeddings based on the

previous ones, as shown in Fig. 3.3. We will discuss the role of each of the functions

and the intermediate values that they exchange in the continuation of the text. In

the rest of the section, nodes into which the messages are aggregated will be denoted

with index j, while their 1-hop neighbours, which are the sources of the messages,

will be denoted with index i.

The message function Message(·|θMessage) : R2s 7→ Ru outputs the message mi,j ∈
Ru between the embeddings of a pair of connected nodes, hi and hj . Many GNN

architectures do not explicitly define this function, but instead simply use node

62 3. Graph Neural Networks

Message

Message

...

Message

Aggregate Updateh2
k−1; hj

k−1

h1
k−1; hj

k−1

hnj

k−1; hj
k−1

m1,j
k−1

m2,j
k−1

mnj,j
k−1

mj
k−1

hj
k

hj
k−1

Figure 3.3: A GNN layer, which represents a single message passing iteration, includes
multiple trainable functions, depicted as yellow rectangles. The number of first-order
neighbours of the node j is denoted as nj .

embeddings of the 1-hop neighbours i as messages: Message(hi,hj |θMessage) = hi.

The expressive power of a GNN model can be increased by including a set of trainable

parameters θMessage to the message function definition [47]. The message function can

also be defined in a way to include the data from the edge input features; however,

that consideration is out of the scope of this thesis.

The aggregation function Aggregate(·|θAggregate) : Rdeg(j)·u 7→ Ru defines in which

way incoming neighbouring messages are combined, and outputs the aggregated

messages denoted as mj ∈ Ru for node j. The aggregation function is designed to take

the set of messages as an input, which makes it permutation invariant. Some of the

commonly used are element-wise average, sum, minimum, and maximum, optionally

followed by some kind of trainable function. In some GNN architectures, the incoming

messages are weighted before being aggregated. For example, in graph convolutional

networks [133], the messages are normalized by the product of node degrees of source

and target nodes. In some of the more advanced aggregation functions, weights for

the messages are learned. One of the most popular examples are GATs [61], which

will be discussed in greater detail in Subsection 3.2.1.

The output of one iteration of the neighbourhood aggregation process is the updated

node embedding obtained by applying the update function Update(·|θUpdate) : Ru+s 7→
Rs on the aggregated messages concatenated with the embedding of the node j prior

to the update. In this way, the update of the node embedding does not rely only on the

aggregated messages, but also on its previous values. When the number of recursive

neighbourhood aggregations is large, this can help a GNN model distinguish node

embeddings of similar nodes3. The update function can be implemented using GRUs

3However, this problem, known as over-smoothing, limits the use of deep GNN models and is still
an open area of GNN research [134].

3.2. Theoretical Foundations of Spatial Graph Neural Network 63

or LSTM units, in which node embedding values are maintained as a hidden state

while aggregated messages are taken as new inputs during multiple neighbourhood

aggregations [135,136].

The recursive neighbourhood aggregation process is repeated a predefined number

of iterations K, also known as the number of GNN layers, where the initial node em-

bedding values are equal to the l-dimensional node input features, linearly transformed

to the initial node embedding hj
0 ∈ Rs. The iteration that the node embeddings and

calculated messages correspond to is indicated by the superscript. One iteration of

the neighbourhood aggregation process for the kth GNN layer, depicted in Fig. 3.3,

can also be described analytically by equations (3.13):

mi,j
k−1 = Message(hi

k−1,hj
k−1)

mj
k−1 = Aggregate({mi,j

k−1|i ∈ Nj})

hj
k = Update(mj

k−1,hj
k−1)

k ∈ {1, . . . ,K},

(3.12)

where Nj denotes the 1-hop neighbourhood of the node j, and the vector superscript

corresponds to the message passing iteration. Either the same or different trainable

parameters can be used across different GNN layers; will consider only the former

since it results in a smaller GNN model, and also has a regularization effect (i.e.,

reduces overfitting) due to parameter sharing.

As an example, we present a simple GNN layer architecture in which the message

passing process is described using a single equation:

hj
k = σ

W
(k)
selfhj

k−1 +W
(k)
neigh

∑
i∈Nj

hi
k−1

 . (3.13)

This GNN layer uses node embeddings of the 1-hop neighbours hi
k−1 as messages,

while the aggregation function is defined as the sum of messages linearly transformed

using the matrix W
(k)
neigh which contains trainable parameters. Finally, the update

function is defined by applying the nonlinear function σ(·) element-wise on the sum of

the aggregated messages and the current embedding of the node j linearly transformed

using an additional trainable matrix W
(k)
self .

The outputs of the message passing process are final node embeddings hj
K which

can be used for the classification or regression over the nodes, edges, or the whole

graph, or can be used directly for the unsupervised node or edge analysis of the

64 3. Graph Neural Networks

graph. In the case of supervised learning over the nodes, the final embeddings are

passed through the additional nonlinear function, creating the outputs that represent

the predictions of the GNN model for the set of inputs fed into the nodes and their

neighbours. GNN training is performed by optimizing the model parameters using

variants of the gradient descent algorithm [137], with the loss function being some

measure of the distance between the labels and the predictions. We refer the reader

to [23] for a more comprehensive introduction to graph representation learning and

GNNs.

It is important to note that since nearby nodes have a significant overlap of the

corresponding k−hop neighbourhoods, GNN’s message passing process results in

similar node embeddings for those nodes by design, even for suboptimal values of

trainable parameters. Works [138, 139] report that untrained, randomly initialized

GNNs can match the performance of trained random walk-based shallow embedding

methods.

3.2.1 Graph Attention Networks
An important decision to be made while creating the GNN model is to select the

GNN’s aggregation function. Aggregation functions that are commonly used include

sum, average, minimum and maximum pooling, and graph convolution [133]. One

common drawback of these approaches is that incoming messages from all the node’s

neighbours are weighted equally, or using weights calculated using the structural

properties of the graph (e.g., node degrees) prior to training. GATs [61] propose

using the attention-based aggregation, in which the weights that correspond to

the importance of each neighbour’s message are learned from their corresponding

embeddings, increasing the representational capacity of a GNN model. The weights

are calculated using the attention mechanism [140] which is traditionally used in

transformer models for sequential data [21] and has achieved significant success in the

field of natural language processing.

The attention mechanism introduces an additional set of trainable parameters

in the aggregation function, usually implemented as a feed-forward neural network

Attend(·|θAttend) : R2s 7→ R applied over the concatenated embeddings of the node j

and each of its neighbours:

ei,j = Attend(hi,hj|θAttend). (3.14)

We obtain the final attention weights ai,j ∈ R by normalizing the output ei,j ∈ R

3.3. Practical Aspects of Graph Neural Networks 65

using the softmax function:

ai,j =
exp(ei,j)∑

i′∈Nj
exp(ei′,j)

. (3.15)

To add a regularization effect and stabilize the learning process, GAT implementa-

tions usually include the multi-head attention concept [61]. It introduces calculating

multiple attention weights for each message using separate attention layers, which

are trained independently. Multiple replicas of the same message are then aggregated

in some way, usually using concatenation followed by a trainable function such as

feed-forward neural network.

3.3 Practical Aspects of Graph Neural Networks
This section discusses some of the aspects of applying GNNs to real-world problems,

like scalability, mini-batch training, and application to various types of graphs. Addi-

tionally, we discuss graph augmentation methods when the graphs are too sparse or

lack input features, as well as applying GNNs in a semi-supervised and self-supervised

setting, which is useful in the cases of sparsely labelled data.

The GNN model presented in the previous section may suffer from scalability issues

when applied to large graphs in which some of the nodes have very high degrees.

An example of this kind of graph would be social networks, in which nodes that

correspond to popular members have a large number of connections. The problem

arises during the K- hop neighbourhood aggregation process, which would aggregate

neighbours of high-degree nodes multiple times, resulting in large computational

graphs and high training and inference computational complexity. GraphSAGE [141]

is one of the first GNN models successfully applied to large graphs, with one of his

variants deployed at the Pinterest’s recommendation system over the graph containing

3 billion nodes and 18 billion edges [142]. During both the training and inference

processes, GraphSAGE employs stochastic neighbourhood aggregation, in which only

a subset of neighbouring messages is calculated during each message passing iteration.

However, sampling is not done uniformly at random, but with a strategy in which

important neighbours are sampled with a higher probability instead of numerous

low-degree nodes. As a side effect, stochastic neighbourhood aggregation improves

robustness to the changes in the graph during the inference time, but also increases

the variance of the training process, making it less stable.

Deep learning models are usually trained using a mini-batch gradient descent

algorithm, which calculates a loss function and model updates over a group (i.e., a

mini-batch) of training examples rather than over individual examples or a whole

66 3. Graph Neural Networks

training dataset. This strategy can be easily applied in the case of GNNs when graphs

have small sizes, allowing multiple graphs from the dataset to be grouped together in

mini-batches without violating memory constraints of the hardware being used for

the training. The issue of how to split up graph elements into mini-batches arises

in the case of large graphs that require more memory than is available. Making the

subgraphs using graph cuts is a simple solution, but doing so results in the loss of

connectivity information between the nodes in different subgraphs, which disables

message passing between them. GraphSAGE authors [141] propose grouping K-hop

neighbourhoods of nodes into mini-batches, in which each mini-batch can include

multiple nodes with their neighbourhoods. Although this approach may result in the

use of overlapping neighbourhoods, it preserves the message passing in the original

graph while allowing the training process to meet the memory requirements.

The GNN methods previously presented can be tailored to specific types of graphs

that may arise in practise. Without going into too much detail, here are some examples

of how the neighbourhood aggregation process needs to be modified for the specific

use cases:

• Directed graphs introduce a notion of direction to each edge. In social networks,

an example would be the concept of following, in which one member of the

network can be connected to another but not vice versa. In these cases, the

process of aggregation into a node is typically carried out by gathering only the

incoming messages defined by the edge directions.

• Temporal graphs are used to model dynamic networks in which nodes and edges

appear and disappear over time. Temporal graph networks [143] introduce

the spatio-temporal aggregation which gathers the messages from the current

and past 1-hop neighbours in each time step. Every node is given a memory

component that serves as a representation of its interaction history, much like

the hidden state concept in recurrent neural networks. The message between

two nodes is determined by the current values of their memory components,

the interaction time step, and, if present, the edge features. The aggregation

function employs the attention mechanism, which computes the importance

score for all 1-hop neighbours throughout the history.

• Heterogeneous and multi-edge graphs contain different types of nodes and edges.

GNNs can use distinct sets of trainable parameters for aggregation and update

functions that operate over different types of nodes. Likewise, different message

functions can be used for different edge types.

• Graph-structured data can contain hierarchical information, like in the cases

of networks of molecules [144] or object-oriented data models. These data

3.3. Practical Aspects of Graph Neural Networks 67

structures can be efficiently represented as hypernode-based nested graphs [145],

which are composed of hypernodes, which are themselves graphs. Learning

over these types of graphs is done using multiple levels of GNNs, which operate

at different hierarchy levels and exchange information at particular message

passing iterations.

Because data in real-world problems is typically sparsely labelled due to high

labelling costs, techniques that make the best use of both unlabelled and labelled data

samples are required. Semi-supervised learning techniques fall somewhere between

supervised and unsupervised learning, with the goal of making predictions on unseen

data based on small sets of labelled data while utilizing large amounts of unlabelled

data. The self-training method [146], also known as self-labelling, is a simple form

of semi-supervised learning for classification problems in which an initial classifier

is trained on a small labelled dataset and then used to label the rest of the data

using the most confident predictions. Then, using the larger labelled dataset, a

new classifier is trained, and the process is repeated several times. More advanced

approaches employ generative models to learn the distribution of real-world data

from unlabelled samples [147]. Generative models are then used to enrich the labelled

dataset by generating new data samples with the desired label. GNNs can adapt well

to the semi-supervised concept when dealing with node-level prediction problems in

graph-structured data, where labels are only available to a small subset of nodes [133].

In this scenario, the GNN model is trained by backpropagating the supervised learning

loss function calculated using only the labelled nodes. However, because all nodes

and their incident edges participate in the message passing process, the node input

features and connectivity data from unlabelled nodes also contribute to prediction

generation.

Self-supervised learning [148] is another type of methods that falls somewhere

between supervised and unsupervised learning. It uses unlabelled data samples to

create a supervised learning objective using pseudo-labels, resulting in useful data

representations (i.e., embeddings) that can be used as inputs for other, so-called

downstream tasks. Similarly to semi-supervised learning, it became popular because

of its ability to avoid annotating large amounts of data. Because no manual data

labelling is required, some classifications consider self-supervised learning to be a

subset of unsupervised learning. One of the most common forms of self-supervised

learning is contrastive learning [149], in which data samples are associated with positive

and negative pseudo-labels automatically. A subset of data samples, for example, can

be intentionally corrupted by adding some noise and labelled as negative, whereas

uncorrupted data samples are labelled as positive. Models defined in this manner are

trained using the binary classification loss (e.g., cross-entropy) as a learning objective

68 3. Graph Neural Networks

and produce data representations that can be reused for downstream tasks as an

intermediate result.

To make use of unlabelled graph-structured data, GNNs can also be used in

self-supervised setting. Link prediction can be thought of as a simple form of self-

supervised contrastive learning based on GNNs. It is essentially a binary classification

task in which pairs of nodes are sampled, and classification labels are generated

based on the presence of direct connections between the nodes. This task can be

generalized so that positive pseudo-labels indicate that a pair of nodes is close in

terms of some neighbourhood metric (e.g., k-hop or random walk-based), and negative

pseudo-labels indicate that they are not. Node embeddings obtained using these

positive and negative label definitions can be useful for tasks which rely on local graph

information. To obtain more relevant node embeddings for global tasks, contrastive

learning methods that distinguish between original and corrupted graphs can be

used [138].

We conclude the overview of the practical aspects of GNNs by discussing the

augmentation methods that are commonly used with graph-structured data. In

real-world problems, the original, raw graph data is rarely used as an input for GNNs

without being augmented in some way. Since nodes in a graph can lack input features,

feature augmentation in the form of expanding the node input feature vectors is often

used. Let’s consider a case of a graph in which nodes do not have any input features.

A trivial form of feature augmentation is adding a constant feature (e.g., a scalar with

a value of 1.0) to every node. As a result, the GNN is able to learn the structural

information of a graph using the aggregation function, which is not possible when

aggregating zeroes. More advanced types of feature augmentation, such as one-hot

vector encoding, cycle counts, node centralities, and clustering coefficients, can reveal

more information about the graph structure and increase the expressive power of

GNN. Aside from feature augmentation, graph augmentation is used when the input

graph is either too sparse, making the message passing process inefficient, or has

long-range dependencies between nodes. Some common graph augmentation methods

include connecting pairs of nodes using virtual edges and adding virtual nodes that

connect all the nodes in a certain subset.

Chapter 4

Graph Neural Network-based State
Estimation

In this chapter, we explain how GNNs can be applied to both linear and nonlinear SE,

using the power system factor graph-like structures. Since we used similar methodolo-

gies for both linear and nonlinear formulations, they are presented simultaneously,

with specific differences highlighted as necessary. First, we present the augmentation

techniques for the power system’s factor graph, then the details of the proposed GNN

architecture, and analyse the computational complexity and the distributed imple-

mentation of the GNN model’s inference. Finally, we demonstrate the effectiveness of

our proposed method through numerical evaluations on various test cases.

4.1 Power System Factor Graph Augmentation
Inspired by recent work on using probabilistic graphical models for power system

SE [150], we first create a GNN over a graph with a factor graph topology. This

bipartite graph consists of factor and variable nodes connected by edges, and it is

established in accordance with different SE problem formulations:

• Linear SE: Variable nodes are used to calculate a s-dimensional node embedding

for all real and imaginary parts of the bus voltages, ℜ(Vi) and ℑ(Vi), i = 1, . . . , n,

using which state variable predictions can be generated. Factor nodes, two per

each measurement phasor, serve as inputs for the measurement values, variances,

and covariances, also given in rectangular coordinates. These values are then

transformed and sent to variable nodes via GNN message passing. Unlike the

approximative WLS SE defined in 2.2, which neglects measurement covariances,

the GNN includes them, leading to accurate solutions without increasing the

computational complexity. The upper subfigure of Fig. 4.1 illustrates a two-bus

power system, with a PMU on the first bus, containing one voltage and one

current phasor measurement. The nodes connected by full lines represent the

corresponding factor graph in the lower subfigure.

70 4. Graph Neural Network-based State Estimation

• Nonlinear SE: In this case, pairs of variable nodes generate s-dimensional

node embeddings for magnitudes Vi and phase angles θi of complex bus voltages

Vi = Vie
jθi . The inputs to the factor nodes are the values and variances of

both phasor and legacy measurements. Phasor measurements are expressed in

polar coordinates, which eliminates any correlation between measurement errors.

Therefore, in contrast to linear SE, in nonlinear SE measurement covariances do

not need to be included as inputs into factor nodes. When creating the factor

graph from the bus-branch power system model, each phasor measurement

generates two factor nodes, while each legacy measurement generates one factor

node. As an example, in the upper subfigure of Fig. 4.2 we consider a simple

two-bus power system, in which we placed one voltage phasor measurement on

the first bus and one legacy voltage magnitude measurement on the second bus.

Additionally, we placed one current phasor measurement and one legacy active

power flow measurement on the branch connecting the two nodes. The factor

graph of this simple power system consists of the generated factor and variable

nodes, connected by full-line edges, as shown in the lower subfigure of Fig. 4.2.

Vm1=ℜ(Vm1) + jℑ(Vm1)

V1=ℜ(V1) + jℑ(V1)

Bus 1

I12=ℜ(I12) + jℑ(I12)

V2=ℜ(V2) + jℑ(V2)

Bus 2

(a)

fℜ(V1) fℑ(V1)

ℜ(V1) ℑ(V1)

fℜ(I12) fℑ(I12)

ℜ(V2) ℑ(V2)

(b)

Figure 4.1: Subfigure (a) shows a simple two-bus power system with two phasor mea-
surements from a PMU placed at the bus 1. Subfigure (b) displays the corresponding
factor graph (full-line edges) and augmented factor graph (all edges). Variable nodes
are depicted as circles, and factor nodes are as squares.

4.1. Power System Factor Graph Augmentation 71

Vm2=Vm1e
jθm1

V1 = V1e
jθ1

Bus 1

I12=I12e
jθI12 P12

V2 = V2e
jθ2

Bus 2

Vm2

(a)

fVm1 fθm1

V1 θ1

fI12 fθI12

V2 θ2
fVm2

fP12

(b)

Figure 4.2: Subfigure (a) shows a simple two-bus power system containing a PMU
at the bus 1, one legacy active power flow measurement, and one legacy voltage
magnitude measurement at the bus 2. Subfigure (b) displays the corresponding factor
graph (full-line edges) and augmented factor graph (all edges). Variable nodes are
represented as circles, and factor nodes are depicted as squares, coloured differently
to distinguish between phasor and legacy measurements.

Unlike approaches that apply GNNs over the bus-branch power system model,

such as in [55, 57], the using GNNs over factor-graph-like topology allows for the

incorporation of various types and quantities of measurements on both power system

buses and branches. The ability to simulate the addition or removal of various

measurements can be easily achieved by adding or removing factor nodes from any

location in the graph. In contrast, using a GNN over the bus-branch power system

model would require allocating a single input vector to each bus that includes all

potential measurement data for that bus and its neighbouring branches. This can

cause problems, such as having to fill elements in the input vector with zeros when

not all possible measurements are available, and making the output sensitive to the

order of measurements in the input vector. This can make it difficult to accurately

model the system and generate reliable results.

72 4. Graph Neural Network-based State Estimation

Augmenting the factor graph topology by connecting the variable nodes in the 2-hop

neighbourhood significantly improves the model’s prediction quality in unobservable

scenarios. This is because the graph should remain connected even when we remove

factor nodes to simulate measurement loss. This will allow the messages to be still

propagated in the whole K-hop neighbourhood of the variable node. In other words,

a factor node corresponding to a branch current measurement can be removed while

still preserving the physical connection between the power system buses. This requires

an additional set of trainable parameters for the variable-to-variable message function.

Although the augmented factor graph displayed with both full and dashed lines in

Figs. 4.1 and 4.2 is not a factor graph because it is no longer bipartite, we will still

refer to the nodes as factor and variable nodes for simplicity.

To achieve better representation of node’s neighbourhood structure, we perform

variable node feature augmentation using binary index encoding. Since variable nodes

have no additional input features, this encoding allows the GNN to better capture the

relationships between nodes. Compared to one-hot encoding used in [30], binary index

encoding significantly reduces the number of input neurons and trainable parameters,

as well as training and inference time.

4.2 Proposed GNN Architecture
Since the proposed GNN operates on a heterogeneous graph, we use two different

types of GNN layers: one for aggregation in factor nodes, and one for variable nodes.

These layers, denoted as Layerf(·|θLayerf) : Rdeg(f)·s 7→ Rs and Layerv(·|θLayerv) :

Rdeg(v)·s 7→ Rs, have their own sets of trainable parameters θLayer
f

and θLayer
v

,

allowing their message, aggregation, and update functions to be learned separately.

Additionally, we use different sets of trainable parameters for variable-to-variable

and factor-to-variable node messages, Messagef→v(·|θMessagef→v
) : R2s 7→ Ru and

Messagev→v(·|θMessagev→v
) : R2s 7→ Ru, in the Layerv(·|θLayerv) layer. In both GNN

layers, we use two-layer feed-forward neural networks as message functions, single layer

neural networks as update functions and the attention mechanism in the aggregation

function. Furthermore, we apply a two-layer neural network Pred(·|θPred) : Rs 7→ R
to the final node embeddings hK of variable nodes only, to create state variable

predictions xpred. For factor and variable nodes with indices f and v, neighbourhood

aggregation and state variable prediction can be described as:

hv
k = Layerv({hi

k−1|i ∈ Nv}|θLayer
v

)

hf
k = Layerf({hi

k−1|i ∈ Nf}|θLayer
f

)

xv
pred = Pred(hv

K |θPred)

k ∈ {1, . . . ,K},

(4.1)

4.2. Proposed GNN Architecture 73

where Nv and Nf denote the 1-hop neighbourhoods of the nodes v and f . All the

trainable parameters θ of the GNN are updated by applying gradient descent, using

backpropagation, to a loss function calculated over a mini-batch of graphs. This loss

function is the mean-squared difference between the predicted state variables and

their corresponding ground-truth values:

L(θ) =
1

2nB

2nB∑
i=1

(xi
pred − xi

label)2

θ = {θLayer
v

∪ θLayer
f

∪ θPred}

θLayer
v

= {θMessagef→v
∪ θMessagev→v

∪ θAggregatev ∪ θUpdatev}

θLayer
f

= {θMessagev→f
∪ θAggregatef ∪ θUpdatef},

(4.2)

where the total number of variable nodes in a graph is 2n, and the number of graphs

in the mini-batch is B. In this work, we chose the loss function for training the

GNN based on the fundamental SE problem, where state variables are obtained from

available measurement information. However, if there is a requirement to include

additional constraints in the SE calculation, it is possible to achieve this by adding

new terms to the loss function defined in (4.2). For example, the loss function can

be augmented with the power balance error at each bus where the constraints are

imposed, in addition to minimizing the prediction error from the labels. A similar

approach has been proposed in [54], where the power flow problem is solved using GNN

by minimizing the power balance errors at each bus. Adding additional constraints

(e.g., zero injection constraints) to the GNN SE loss function can improve the SE

results, especially in distributed power systems with limited measurement coverage.

Fig. 4.3 shows the high-level computational graph for the output of a variable

node from the augmented factor graph given in Fig. 4.1. For simplicity, only one

unrolling of the neighbourhood aggregation is shown, as well as only the details of

the parameters θLayer
v

.

4.2.1 Computational Complexity and Distributed Inference
Because the node degree in the power system graph does not increase with the total

number of nodes, the same is true for the node degrees in the augmented factor graph.

This means that the inference time per variable node remains constant, as it only

requires information from the node’s K-hop neighbourhood, whose size also does

not increase with the total number of nodes. This implies that the computational

complexity of inferring all state variables is O(n). To avoid the over-smoothing

problem in GNNs [134], a small value is assigned to K, thus not affecting the overall

74 4. Graph Neural Network-based State Estimation

Layerf

Layerv

hf
K−1

hv2
K−1

hv
K

Layerv

PredLoss

...

...

...

...

output

label

(a)

Messagef→v

Messagev→v GATv Updatevhv2
K−1;hv

K−1

hf
K−1;hv

K−1

...

... hv
K

hv
K−1

(b)

Figure 4.3: Subfigure (a) shows a high-level computational graph that starts with the
loss function for the output of a variable node v. Subfigure (b) depicts the detailed
structure of a single GNN Layerv. Functions with trainable parameters are highlighted
in yellow.

computational complexity of the inference.

To make the best use of the proposed approach for large-scale power systems, the

inference should be performed in a computationally and geographically distributed

manner. This is necessary because the communication delays between the PMUs and

the central processing unit can hinder the full utilization of the PMUs’ high sampling

rates. The distributed implementation is possible as long as all the measurements

within a node’s K-hop neighbourhood in the augmented factor graph are fed into the

computational module that generates the predictions. For any arbitrary K, the GNN

inference method only requires measurements that are physically located within the

⌈K/2⌉-hop neighbourhood of the power system bus.

4.3 Numerical results
In this section, we conduct comprehensive numerical tests to evaluate the effectiveness

of proposed augmented factor graph-based GNN approaches for linear and nonlinear

SE problems. We used the IGNNITION framework [151] for building and utilizing

GNN models, with the hyperparameters presented in Table 4.1, the first three of

4.3. Numerical results 75

Table 4.1: List of GNN hyperparameters.

Hyperparameters Values
Node embedding size s 64
Learning rate 4× 10−4

Minibatch size B 32
Number of GNN layers K 4
Activation functions ReLU
Gradient clipping value 0.5
Optimizer Adam
Batch normalization type Mean

which were obtained with the grid search hyperparameter optimization using the

Tune tool [152]. All the results presented in this section are normalized using the

corresponding nominal voltages in the test power systems and a base power of 100

MVA.

4.3.1 Linear State Estimation
To evaluate the proposed GNN-based linear SE, we create various scenarios using

the IEEE 30-bus system, the IEEE 300-bus system, and the ACTIVSg 2000-bus

system [153], on which the GNN model is trained and tested. Training, validation,

and test sets are obtained using WLS solutions of the system described in (2.9) to

label various samples of input measurements. Measurements are obtained by adding

Gaussian noise to the exact power flow solutions, with each calculation performed using

a different, randomly sampled load profile to capture a wide range of power system

states. Due to the strong interpolation and extrapolation abilities of GNNs [154], our

method of randomly sampling from a wide diversity of loads for training examples is

effective for generalizing the GNN algorithm for state estimation under varying load

conditions. GNN models are tested in three different situations: i) optimal number of

PMUs (minimal measurement redundancy, for which the WLS SE offers a solution);

ii) underdetermined scenarios; iii) scenarios with maximal measurement redundancy.

We also compare the proposed approach with more conventional deep neural network

(DNN)-based SE algorithms and assess its scalability, sample efficiency, and robustness

to outliers.

Power System With Optimally Placed PMUs

In this subsection, we conduct a series of experiments on the IEEE 30-bus power

system, using measurement variances of 10−5, 10−3, and 10−1 for the creation of

the training, validation, and test sets. The number and positions of PMUs are fixed

and determined using the optimal PMU placement algorithm [155], which finds the

smallest set of PMUs that make the system observable. This algorithm has resulted

76 4. Graph Neural Network-based State Estimation

in a total of 10 PMUs and 50 measurement phasors, 10 of which are voltage phasors

and the rest are current phasors.

Table 4.2 shows the 100-sample test set results for all the experiments on the IEEE

30-bus power system, in the form of average mean square errors (MSEs) between

the GNN predictions and the test set labels. These results are compared with the

average MSE between the labels and the approximate WLS SE solutions defined in

Sec. 2.2. The results show that for systems with optimally placed PMUs and low

measurement variances, GNN predictions have very small deviations from the exact

WLS SE, although they are outperformed by the approximate WLS SE. For higher

measurement variances, GNN has a lower estimation error than the approximate WLS

SE, while also having lower computational complexity in all cases.

Table 4.2: Comparison of GNN and approximative SE test set MSEs for various
measurement variances.

Variances GNN Approx. SE
10−5 2.48× 10−6 1.87× 10−8

10−3 8.21× 10−6 2.25× 10−6

10−1 7.47× 10−4 2.27× 10−3

In Fig. 4.4, we present the predictions and labels for each of the variable nodes for

one of the samples from the test set created with measurement variance 10−5. The

results for the real and imaginary parts of the complex node voltages (shown in the

upper and lower plots, respectively) indicate that GNNs can be used as accurate SE

approximations.

Performance in a Partially Observable Scenario

To further assess the robustness of the proposed model, we test it by excluding several

measurement phasors from the previously used test samples with optimally placed

PMUs, resulting in an underdetermined system of equations that describes the SE

problem. These scenarios are relevant even at higher levels of system redundancy,

where partial grid observability can occur due to multiple component (PMU and

communication link) failures caused by natural disasters or cyberattacks. To exclude a

measurement phasor from the test sample, we remove its real and imaginary parts from

the input data, which is equivalent to removing two factor nodes from the augmented

factor graph. We use the previously used 100-sample test set to create a new test

set by removing selected measurement phasors from each sample while preserving

the same labels obtained as SE solutions of the system with all the measurements

present. As an example, we consider a scenario where two neighbouring PMUs fail

to deliver measurements to the state estimator. In this case, all eight measurement

4.3. Numerical results 77

0.95

1

1.05
ℜ
(V

i)
[p
.u
.]

Predictions

Labels

0 5 10 15 20 25 30

-0.3

-0.2

-0.1

0

Bus index (i)

ℑ
(V

i)
[p
.u
.]

Figure 4.4: GNN predictions and labels for one test example with optimally placed
PMUs.

phasors associated with the removed PMUs are excluded from the GNN inputs. The

average MSE for the test set of 100 samples created by removing these measurements

from the original test set used in this section is 3.45 × 10−3. The predictions and

labels for a single test set sample, per variable node index, are shown in Figure 4.5.

The figure includes vertical black dashed lines that indicate the indices of unobserved

buses 17 and 18. These buses have higher prediction errors due to the lack of input

measurement data. Neighbouring buses that are not unobserved, but are affected by

measurement loss, are indicated with vertical green lines and have lower prediction

errors. It can be observed that significant deviations from the labels occur for some of

the neighbouring buses, while the GNN predictions are a decent fit for the remaining

node labels. This demonstrates the proposed model’s ability to sustain error in the

neighbourhood of the malfunctioning PMU, as well as its robustness in scenarios that

cannot be solved using standard WLS approaches. A possible explanation for the

higher susceptibility to errors in the imaginary parts of the voltage is related to their

variance in the training set. The variance of real parts of voltages is 6.6× 10−4, while

the variance of imaginary parts of voltages is 4.8 × 10−3. This indicates that the

imaginary parts of voltages have a higher variability and may therefore be more prone

to errors in the prediction model.

78 4. Graph Neural Network-based State Estimation

0.95

1

1.05

ℜ
(V

i)
[p
.u
.]

Predictions

Labels

Unobserved buses

Affected buses

0 5 10 15 20 25 30

-0.3

-0.2

-0.1

0

Bus index (i)

ℑ
(V

i)
[p
.u
.]

Figure 4.5: GNN predictions and labels for one test example with phasors from two
neighbouring PMUs removed. Vertical black lines indicate unobserved buses, while
green lines represent buses that are affected by the loss of measurement data.

Comparison With the Feed-Forward Deep Neural Network-Based State

Estimation

The main goal of this subsection is to compare the performance of the proposed GNN-

based SE approach with a state-of-the-art deep learning-based approach on a variety

of power systems. We used a 6-layer feed-forward DNN model, proposed by [48], with

the same number of neurons in each layer as the number of input measurement scalars.

This DNN architecture has similar performance as the best architecture proposed in

the same work obtained by unrolling the iterative nonlinear SE solver, which cannot

be applied directly to the linear SE problem we are considering.

We tested both approaches on the IEEE 30-bus, IEEE 118-bus, IEEE 300-bus,

and the ACTIVSg 2000-bus power systems [153], with measurement variances set to

10−5. In contrast to previous examples, we used maximal measurement redundancies,

ranging from 3.73 to 4.21. We provide a comparison of the number of trainable

parameters for both GNN and DNN models for various power system sizes, which is

often left out in similar analyses. To compare sample efficiencies between the GNN

and DNN approaches, separate models for each of the test power systems were trained

using smaller and larger datasets, containing 10 and 10000 samples. The results

4.3. Numerical results 79

Table 4.3: A comparison of the performance of GNN and DNN models trained on
different training set sizes, as measured by test set MSE and the number of trainable
parameters.

IEEE 30 IEEE 300 ACTIVSg 2000
Small training set GNN 4.73 × 10−6 5.94 × 10−5 5.08 × 10−4

Small training set DNN 9.29× 10−4 5.92× 10−3 4.77× 10−3

Large training set GNN 2.48 × 10−6 6.62 × 10−6 3.91 × 10−4

Large training set DNN 6.28× 10−6 2.91× 10−3 2.61× 10−3

GNN parameters 4.99 × 104 4.99 × 104 4.99 × 104

DNN parameters 3.16× 105 3.15× 107 1.77× 109

for all test power systems are presented in Table 4.3. The first four rows show the

100-sample test set MSE for GNN and DNN models trained using smaller and larger

datasets. The last two rows of the table show the number of trainable parameters for

both approaches, depending on the power system size.

The results show that the GNN approaches result in higher overall accuracy

compared to the corresponding DNN approaches for all the power system and training

set sizes. Furthermore, the number of trainable parameters (i.e., the model size) is

constant1 and relatively low for GNN models, because the number of neurons in a layer

is constant regardless of power system size. In contrast, the number of parameters

grows quadratically for DNN models, because the number of neurons in a layer grows

linearly with the input size, resulting in quadratic growth of the trainable parameter

matrices. When expressed in computer memory units, the GNN models we used had

a significantly smaller memory footprint, taking up only 0.19 MB. In comparison, the

DNN model used for the ACTIVSg 2000 power system required a much larger 6.58

GB of memory, resulting in more challenging training and inference processes. The

high number of trainable parameters required by DNN models increases their storage

requirements, increases the dimensionality of the training process, and directly affects

the inference speed and computational complexity. Since the proposed GNNs have a

linear computational complexity in the prediction process, one training iteration of

GNN also has a linear computational complexity. In contrast, one training iteration of

DNN-based SE would have at least quadratic computational complexity per training

iteration, making the overall training process significantly slower. To recall, the reason

1More precisely, the number of trainable parameters in the proposed GNN model remains nearly
constant as the number of buses in the power system increases. This effect would only be noticeable
for larger power systems. The only exception is the number of input neurons for the binary index
encoding of the variable nodes, which grows logarithmically with the number of variable nodes.
However, this increase is insignificant compared to the total number of GNN parameters.

80 4. Graph Neural Network-based State Estimation

why the GNN has a constant number of parameters and generates predictions with

linear computational complexity is that it takes measurements from a limited K-hop

neighbourhood for every node, regardless of the size of the power system.

The results indicate that the quality of GNN and DNN model predictions improves

with more training data. However, compared to GNNs, DNN models performed

significantly worse on smaller datasets, suggesting that they are less sample efficient

and more prone to overfitting due to their larger number of hyperparameters. While

we used randomly generated training sets in the experiments, narrowing the learning

space by selecting training samples based on historical load consumption data could

potentially result in even better performance with small datasets.

The use of GNNs for power systems analysis has several additional advantages

over using DNNs. One advantage is flexibility: spatial GNNs can produce results

even if the input power system topology changes, whereas conventional DNN methods

are trained and tested on the same topology of the power system. For example, if

some measurements are removed from the inputs (as discussed in Subsection 4.3.1),

a DNN would require retraining from scratch with the new topology. GNNs also

have some theoretical advantages over other deep learning methods in that they are

permutation invariant and equivariant. This means that the output of the GNN is

the same regardless of the order in which the inputs are presented, and that the GNN

output changes in a predictable and consistent way when the inputs are transformed.

This property is useful for problems like SE, where the order of the nodes and edges

is not important and the system can undergo topological changes. In addition, GNNs

incorporate topology information into the learning process by design, whereas many

other deep learning methods in power systems use node-level data as inputs while

ignoring connectivity information. Finally, unlike most deep learning methods, spatial

GNNs can be distributed for evaluation among edge devices.

Similar conclusions can be drawn when comparing GNNs with recurrent and

convolutional neural networks for similar power systems’ analysis algorithms, as

they also require information from the entire power system as input. Overall, this

comparison highlights the potential advantages of using GNNs for power system

modelling and analysis.

Robustness to Outliers

To assess how well the proposed model can handle outliers in input data, we carried

out experiments on two separate test sets, each containing samples with different

degrees of outlier intensity. The experiments followed the setup described in Sec.

4.3.1, with the test samples initially generated using a measurement variance of 10−5.

We replaced one of the existing measurements in each test sample with a randomly

4.3. Numerical results 81

generated value, using a variance of either σ1 = 1.6 or σ2 = 1.6 · 102. WLS SE

solutions without outliers in the inputs are used as ground-truth values. The results,

shown in Table 4.4, indicate the performance of four different approaches, as well as

the WLS SE and the approximative WLS SE algorithm on the same test sets.

The first approach, which uses the already trained model from Sec. 4.3.1, results in

the highest prediction error on tests set with outliers. The primary factor contributing

to the MSE, particularly in the test set with outliers generated using larger variances,

are significant mismatches from the ground-truth values in the K-hop neighbourhood

of the outlier. This occurs because the ReLU activation function does not constrain

its inputs during neighbourhood aggregation. To address this problem, we propose

a second approach where we train a GNN model with the same architecture as the

previous one, but which uses the tanh (hyperbolic tangent) activation function instead

of ReLU. As presented in Table 4.4, this approach results in a significantly lower test

set MSE for outliers generated using larger variances compared to the proposed GNN

with ReLU activations, WLS SE, and the approximative WLS SE. The saturation

effect of tanh prevents high values stemming from outliers from propagating through

the GNN, but also reduces the training quality due to the vanishing gradient problem.

Specifically, all the experiments we conducted under the same conditions for GNN

with tanh activations required more epochs to converge to a solution with lower

prediction quality compared to the GNN with ReLU activations. As a third approach,

we propose training a GNN model with ReLU activations on a dataset in which half

of the samples contain outliers, which are generated in the same manner as the test

samples used in this subsection. This approach turned out to be the most effective for

both test cases because the GNN learns to neutralize the effect of unexpected inputs

from the dataset examples while maintaining accurate predictions in the absence of

outliers in the input data. To confirm the validity of this methodology, we trained the

DNN introduced in the subsection 4.3.1 using the same datasets containing outliers.

DNN was able to neutralize the effect of unexpected inputs because the input power

system is small, resulting in the second-best approach in terms of robustness to

outliers, trailing the GNN trained on the dataset containing outliers.

In summary, as expected, all methods produced better results for the test set

containing outliers with lower variances, while the GNN trained with outliers demon-

strated the best performance for both higher and lower variance outliers. We note

that these are only preliminary efforts to make the GNN model robust to outliers, and

that future research could combine ideas from standard bad data processing methods

in SE with the proposed GNN approach.

82 4. Graph Neural Network-based State Estimation

Table 4.4: A comparison of the results of various approaches for two test sets with
different degrees of outlier intensity.

Approach
Test set MSE

σ1 = 1.6
Test set MSE
σ2 = 1.6 · 102

GNN 9.48× 10−3 1.60× 103

GNN with tanh 6.87× 10−3 2.39× 10−2

GNN trained with outliers 4.44 × 10−6 7.99 × 10−6

DNN trained with outliers 1.06× 10−5 4.21× 10−5

WLS SE 1.43× 10−3 1.41× 10−1

Approximative WLS SE 1.39× 10−3 1.35× 10−1

4.3.2 Scalability and Sample Efficiency Analysis of Linear State

Estimation
In the previous subsection, the GNN model for linear SE demonstrated good ap-

proximation capabilities under normal operating conditions and performed well in

unobservable and underdetermined scenarios. This subsection extends the previous

one in the following ways:

• We conduct an empirical analysis to investigate how the same GNN architecture

could be used for power systems of various sizes. We use the IEEE 30-bus system,

the IEEE 118-bus system, the IEEE 300-bus system, and the ACTIVSg 2000-bus

system [153], with measurements placed so that measurement redundancy is

maximal. Our main assumption is that the local properties of the graphs in these

systems are similar, leading to local neighbourhoods with similar structures

which can be represented using the same embedding space size and the same

number of GNN layers.

• To evaluate the sample efficiency of the GNN model, we run multiple training

experiments on different sizes of training sets. Additionally, we assess the

scalability of the model by training it on various power system sizes and evalu-

ating its accuracy, training convergence properties, inference time, and memory

requirements. For this purpose we create training sets containing 10, 100, 1000,

and 10000 samples for each of the mentioned power systems, while the GNN

models are tested on sets comprising 100 samples.

• As a side contribution, the proposed GNN model is tested in scenarios with high

measurement variances, using which we simulate phasor misalignments due to

communication delays [156]. While this is usually simulated by using variance

values that increase over time, as an extreme scenario we fix the measurement

variances to a high value of 5× 10−1.

4.3. Numerical results 83

30 118 300 2000
0

2

4

6

8

10

12

14

Number of buses

P
ow

er
sy
st
em

gr
a
p
h
p
ro
p
er
ti
es

Redundancy

Avg. Degree

Avg. Path Length

Avg. Cluster Coeff.

Figure 4.6: Properties of augmented factor graphs along with the system’s measure-
ment redundancy for different test power systems, labelled with their corresponding
number of buses.

It is important to note that the conclusions that will be made apply to GNN

based-nonlinear SE as well.

Properties of Power System Augmented Factor Graphs

For all four test power systems, we create augmented factor graphs using the method-

ology described in Section 4.2. Fig. 4.6 illustrates how the properties of the augmented

factor graphs, such as average node degree, average path length, average clustering

coefficient, along with the system’s maximal measurement redundancy, vary across

different test power systems.

The average path length is a property that characterizes the global graph structure,

and it tends to increase as the size of the system grows. However, as a design property

of high-voltage networks, the other graph properties such as the average node degree,

average clustering coefficient, as well as maximal measurement redundancy do not

exhibit a clear trend of change with respect to the size of the power system. This

suggests that the structures of local, K-hop neighbourhoods within the graph are

similar across different power systems, and that they contain similar factor-to-variable

node ratio. Consequently, it is reasonable to use the same GNN architecture (most

importantly, the number of GNN layers and the node embedding size) for all test

power systems, regardless of their size. In this way, the proposed model achieves

scalability, as it applies the same set of operations to the local, K-hop neighbourhoods

of augmented factor graphs of varying sizes without having to adapt to each individual

case.

84 4. Graph Neural Network-based State Estimation

1 3
0

6
0

9
0

1
2
0

1
5
0

0

0.05

0.1

Epoch

V
a
li
d
a
ti
on

lo
ss

10 100

1000 10000

Figure 4.7: Validation losses for trainings on four different training set sizes.

Training Convergence Analysis

First, we analyse the training process for the IEEE 30-bus system with four different

sizes of the training set. As mentioned in 4.2, the training loss is a measure of the

error between the predictions and the ground-truth values for data samples used in

the training process. The validation loss, on the other hand, is a measure of the error

between the predictions and the ground-truth values on a separate validation set. In

this analysis, we used a validation set of 100 samples.

The training losses for all the training processes converged smoothly, so we do not

plot them for the sake of clarity. Figure 4.7 shows the validation losses for 150 epochs

of training on four different training sets. For smaller training sets, the validation

loss decreases initially but then begins to increase, which is a sign of overfitting. In

these cases, a common practice in machine learning is to select the model with the

lowest validation loss value. As it will be shown in 4.3.2, the separate test set results

for models created using small training sets are still satisfactory. As the number

of samples in the training set increases, the training process becomes more stable.

This is because the model has more data to learn from and is therefore less prone to

overfitting.

Next, in Table 4.5, we present the training results for the other power systems

and training sets of various sizes. The numbers in the table represent the number of

epochs after which either the validation loss stopped changing or began to increase.

Similarly to the experiments on the IEEE 30-bus system, the trainings on smaller

training sets exhibited overfitting, while others converged smoothly. For the former,

the number in the table indicates the epoch at which the validation loss reached its

minimum and stopped improving. For the latter, the number in the table represents

the epoch when there were five consecutive validation loss changes less than 10−5.

4.3. Numerical results 85

Table 4.5: Epoch until validation loss minimum for various power systems and training
set sizes.

Power system IEEE 118 IEEE 300 ACTIVSg 2000
10 samples 61 400 166
100 samples 38 84 200
1000 samples 24 82 49
10000 samples 12 30 15

Increasing the size of the training set generally results in a lower number of epochs

until the validation loss reaches its minimum. However, the epochs until the validation

loss reaches its minimum vary significantly between the different power systems. This

could be due to differences in the complexity of the systems or the quality of the data

used for training.

Accuracy Assessment

Fig. 4.8 reports the MSEs between the predictions and the ground-truth values on

100-sample sized test sets for all trained models and the approximate WLS SE. These

results indicate that even the GNN models trained on small datasets outperform the

approximate WLS SE, except for the models trained on the IEEE 30-bus system

with 10 and 100 samples. These results suggest that the quality of the GNN model’s

predictions and the generalization capabilities improve as the amount of training

data increases, and the models with the best results (highlighted in bold) have

significantly smaller MSEs compared to the approximate WLS SE. We assume that

using carefully selected training samples based on historical load consumption data

instead of randomly generated ones could potentially lead to even better results with

small datasets.

Inference Time

The plot in Fig. 4.9 shows the ratio of execution times between WLS SE and GNN SE

inference as a function of the number of buses in the system. These times are measured

on a test set of 100 samples. The difference in computational complexity between

GNN, with its linear complexity, and WLS, with more than quadratic complexity,

becomes more apparent on the plot as the number of buses increases. From the results,

it is clear that GNN significantly outperforms WLS in terms of inference time on

larger power systems.

Unlike with GNNs, the hardware implementation of matrix operations in WLS is

a well-established field. However, the hardware implementation of GNNs is an active

area of research, and it is possible that inference times may improve even further in

the future [157].

86 4. Graph Neural Network-based State Estimation

Approx. SE (baseline) GNN SE

10 102 103 104
0

0.02

0.04

Number of training samples

T
es
t
se
t
M
S
E

(a) IEEE 30

10 102 103 104
0

0.02

0.04

Number of training samples
T
es
t
se
t
M
S
E

(b) IEEE 118

10 102 103 104
0

0.02

0.04

Number of training samples

T
es
t
se
t
M
S
E

(c) IEEE 300

10 102 103 104
0

0.02

0.04

Number of training samples

T
es
t
se
t
M
S
E

(d) ACTIVSg 2000

Figure 4.8: Test set results for various power systems and training set sizes.

30 118 300 2000

1
2

10

64

Number of buses

In
fe
re
n
ce

ti
m
e
ra
ti
o

Figure 4.9: A ratio of the execution times for WLS SE and GNN SE inference on a
test set of 100 samples, as a function of the power system size.

4.3.3 Nonlinear State Estimation
Finally, in this subsection, we present the numerical results of the proposed approach

for the nonlinear SE problem formulation. We describe the GNN model’s training

4.3. Numerical results 87

process and test the trained model on various examples to validate its accuracy,

and its robustness under measurement data loss due to communication failure and

cyberattacks in the form of malicious data injections.

Demonstration of prediction accuracy

We conducted separate training experiments for IEEE 30 and IEEE 118-bus test

cases, for which we generated a training set containing 10000 samples and validation

and test sets containing 100 samples each. Similarly to the linear SE approach, each

sample is created by randomly sampling the active and reactive power injections and

solving the power flow problem. Measurement values are created by adding Gaussian

noise to the power flow solutions, and the nonlinear SE is solved by GN to label the

input measurement set in each sample. We used a Gaussian noise variance of 10−5

for phasor measurements, 10−3 for bus voltage magnitude and active and reactive

power flow legacy measurements, and 10−1 for active and reactive injection legacy

measurements.

For the IEEE 30-bus test case, we placed 100 legacy measurements and three PMUs

(i.e., three bus voltage phasors and eight branch current phasors) in each sample,

resulting in 2.03 measurement redundancy. The trained model performed well on

the test set, with the average test set mean square error of 1.233 × 10−5 between

predictions and ground truth labels; the average test set MSE for voltage magnitudes

of 5.221× 10−6; the average test set MSE for voltage angles of 1.944× 10−5. Fig. 4.10

shows the average test MSE per each bus, where the upper plot corresponds to voltage

magnitudes and the lower one to voltage angles.

For the IEEE 118-bus test case, we placed 500 legacy measurements and seven PMUs

(i.e., seven bus voltage phasors and 26 branch current phasors) in each sample, resulting

in 2.39 measurement redundancy. The average test set mean square error equals

2.038× 10−5, with the average test set MSE for voltage magnitudes of 1.572× 10−5

and the average test set MSE for voltage angles of 2.505×10−5. Based on the insights

from both experiments, we can conclude that the proposed GNN model is a good

approximator of the nonlinear SE solved by GN.

Robustness to Loss of Input Data

Next, we observe predictions of the GNN models previously trained on IEEE 30 and

IEEE 118-bus test data when exposed to the loss of input data caused by communica-

tion failures or measurement device malfunctions. We simulate the described cases by

randomly removing a percentage of all input measurements, ranging from 0% to 95%

with a step of 5%. We create 20 test sets per IEEE test case, each containing samples

with the same percentage of excluded measurements, and show the average test set

MSEs in Fig. 4.11. Proposed GNN models yields predictions in all examples, with an

88 4. Graph Neural Network-based State Estimation

10−12

10−9

10−6

10−3
M
S
E

o
f
V
i

1 5 10 15 20 25 30

10−12

10−9

10−6

10−3

Bus Index i

M
S
E

o
f
θ i

Figure 4.10: The test set MSE between the predictions and the labels per each bus
for voltage magnitudes and angles in the IEEE 30-bus test case.

expected growing trend in MSE as the number of excluded measurements increases.

In comparison, the GN method could not provide a solution for many examples due

to underdetermined and ill-conditioned systems of nonlinear SE equations. A possible

explanation for significantly lower MSEs for the IEEE 118-test case in these scenarios

is that it contains a greater variety of subgraphs for GNN training. To investigate

the GNN predictions further, we create a test set by excluding five measurements

connected to the two directly connected power system buses from each test sample,

resulting in the average test set MSE of 1.488 × 10−4. Fig. 4.12 shows the results

for one test sample, where vertical dashed lines correspond to the buses in the 1-hop

neighbourhood of the excluded measurements. We can observe that the deviation from

the ground truth values manifests mainly in the vicinity of the excluded measurements,

not affecting the prediction accuracy in the rest of the power system.

Behaviour Under Malicious Data Injections

We examine the robustness of the proposed GNN model to malicious data injection

type of cyberattacks by randomly altering the values of five neighbouring measurements

in each test sample. We compare the proposed GNN model’s predictions with the

solutions of the GN method and the ground truth values obtained using the GN

method applied on the uncorrupted measurement data. The GNN model demonstrated

an order of magnitude better performance than the GN method, with the average test

set MSEs 1.281×10−4 and 1.034×10−3, respectively. Fig. 4.13 depicts the comparison

4.4. Summary and future work 89

0 20 40 60 80 100

10−5

10−4

10−3

10−2

10−1

100

Percentage of Excluded Measurements

A
ve
ra
ge

M
S
E

IEEE 30

IEEE 118

Figure 4.11: Average MSEs of test sets created by randomly excluding measurements.

0.97

1

1.03

1.06

1.09

V
ol
ta
g
e
M
a
gn

it
u
d
e
V
i

Predictions

Labels

0 5 10 15 20 25 30

-0.4

-0.3

-0.2

-0.1

0

Bus Index i

V
ol
ta
g
e
A
n
g
le

θ i

Figure 4.12: GNN predictions and labels for one test example, with all measurements
connected to two neighbouring buses removed. Dashed lines indicate the buses in the
1-hop neighbourhood of the excluded measurements.

of the state variable predictions under corrupted input data for one example from the

test set.

4.4 Summary and future work
In this chapter, we introduced methods for linear and nonlinear SE based on the

GNN model specialized for operating on augmented power system factor graphs. The

method avoids the problems that traditional SE solvers face, such as sensitivity to

ill-conditioned cases, numerical instabilities and convergence time depending on the

90 4. Graph Neural Network-based State Estimation

0.96

1

1.04

1.08

1.12

V
ol
ta
g
e
M
ag
n
it
u
d
e
V
i

Predictions

GN based SE

Ground truth

0 5 10 15 20 25 30

-0.4

-0.3

-0.2

-0.1

0

Bus Index i

V
ol
ta
g
e
A
n
g
le

θ i

Figure 4.13: GNN predictions and GN based SE solutions for one test example with
corrupted input data.

state variable initialization. By testing the GNN on power systems of various sizes, we

observed the prediction accuracy in the normal operating states of the power system

and the sensitivity when encountering false data injection cyberattacks and input

data loss due to communication irregularities.

The results showed that the proposed approach provides good results for large

power systems, and is an effective approximation method for traditional SE solutions

even with a relatively small number of training samples, indicating its sample efficiency.

The GNN model used in this approach is also fast and maintains constant memory

usage, regardless of the size of the power system. More specifically, the computational

complexity of the proposed GNN model regarding the number of state variables is linear

during the inference phase, and it is possible to distribute the inference computation

across multiple processing units. Given these characteristics, the approach is worthy

of further consideration for real-world applications.

Since the proposed GNN model generates predictions even for underdetermined

systems of equations describing the SE problem, it could be applied to highly unob-

servable distribution power systems. Another application of the proposed model for

nonlinear SE could be the fast and accurate initialization of the traditional nonlinear

SE solver, resulting in a hybrid approach that is both model-based and data-driven.

4.4. Summary and future work 91

While our work shows promising results, an important limitation is the inability

to quantify the uncertainty of the GNN predictions. However, we are encouraged

by ongoing research efforts to address this issue, as quantifying uncertainty for

GNN regression remains an open problem. For instance, [158] proposes a Bayesian

framework that uses assumed density filtering to quantify aleatoric uncertainty and

Monte Carlo dropout to capture epistemic uncertainty in GNN predictions. In light

of this, we believe implementing a similar approach represents a promising future

research direction.

Part II

Dynamic Distribution

Network Reconfiguration and

Reinforcement Learning

Chapter 5

Dynamic Distribution Network
Reconfiguration

In this chapter, we introduce the foundations of static and dynamic distribution

network reconfiguration, stating their importance in distribution management software.

Furthermore, we provide a mathematical formulation of the dynamic distribution

network reconfiguration problem, which will be transformed into the equivalent

reinforcement learning formulation in Chapter 71.

5.1 Distribution Network Reconfiguration
The electrical distribution network is the part of the electrical power system which

delivers electric power from the transmission system to individual consumers. Tradi-

tional distribution networks consist of passive elements, with power flows directed

only from the network supply point to the customers. Due to growing power demand,

modern distribution networks exhibit changes such as energy deregulation, increased

installation of the distributed generation coming mainly from renewable energy re-

sources, and the deployment of controllable loads. These changes bring numerous

challenges to the operation of modern distribution networks, such as bidirectional

power flows, increased system dynamics, transient instabilities, short-circuit conditions

supplied by multiple sources, overall operation inefficiency in terms of increased power

losses, decreased reliability, etc.

To overcome these challenges and improve response time in unforeseen situations,

modern distribution networks increase the level of network automation by using

remotely controlled equipment and employing domain-specific software solutions such

as DMS. DMS, which is usually tightly coupled with the SCADA system, is used

for distribution network monitoring, analysis, optimization, and planning [159]. It

includes functionalities like network model management and topology processing, load

1Chapters 5, 6, and 7 introduce a new nomenclature.

96 5. Dynamic Distribution Network Reconfiguration

flow, state estimation, short circuit analysis, relay protection-related functionalities,

Volt-VAR optimization, distributed energy resources monitoring and control, etc.

Distribution network reconfiguration is one of the most important DMS function-

alities used for the optimization of distribution network operation. In general form,

DNR minimizes the objective function, which usually includes power loss and voltage

deviation, by changing the network topology using manipulations on the switching

devices [63]. During topology changes, it is necessary to satisfy multiple constraints,

such as not exceeding the bus voltage, the apparent power of the branch, and the

number of switching manipulation limits. Additional constraints related to the net-

work topology are those that enforce the radiality of the network and ensure that all

customer buses are connected to the supply point. Some of the reasons for enforcing

network radiality are lower short circuit currents and simpler relay protection setup

than in the distribution networks containing loops. Fig. 5.1 represents an example of

DNR on a simple 15-bus distribution network consisting of three feeders, with black

squares representing closed switches and white squares representing open switches.

The figure displays two distribution network topologies, before and after the DNR,

both of which are radial and supply all customer buses.

In the scope of the DMS software, DNR functionality can have secondary goals such

as load balancing and Volt-VAR optimization [64], which are achieved by expanding

the DNR objective function. In emergency conditions, DNR can be used to isolate

the part of the distribution network where the fault occurred and restore supply to

the rest of the affected customers. In these cases, since all the customers can not be

supplied, DNR is used to minimize the number of the disconnected customers, or the

amount of energy not supplied. However, in this thesis, we will not consider these

emergency scenarios.

Static DNR is defined as DNR performed at a predefined time point, with fixed

load and generation values. In traditional distribution networks with low network

automation levels, where the customer load patterns change only seasonally, static

DNR was usually performed a few times a year. Due to increasing load and generation

dynamics, caused by controllable loads and renewable energy resources, a need for

more frequent and more flexible DNR arises. Dynamic DNR optimizes the DNR

objective function over the specified time interval by finding the optimal time points

when DNR should be performed. DDNR is enabled by increased levels of network

automation, as frequent changes to the network topology cannot be performed quickly

in a manual way. In a usual formulation, the optimization interval is divided into time

intervals, in each of which a network topology change can be performed. However, since

switching manipulations have their own costs and can cause instabilities during the

topology changes, their number is usually also a subject of minimization, in addition

5.2. Mathematical Formulation of the DDNR Problem 97

1

14

Feeder 1

5 8

2 6 9

3 12 7 13 10

4 11

Feeder 2 Feeder 3

1 5 8

2 6 9

3 7 10

4 11

12 13

14

0
1 5 8

2 6 9

3 7

1

10

4 12 11
13

14

(a)

1

14

Feeder 1

5 8

2 6 9

3 12 7 13 10

4 11

Feeder 2 Feeder 3

1 5 8

2 6 9

3 7 10

4 11

12 13

14

0
1 5 8

2 6 9

3 7

1

10

4 12 11
13

14

Closed switch

Open switch

(b)

Figure 5.1: An example of distribution network before (subfigure a) and after (subfigure
b) the reconfiguration.

to being limited in the optimization problem constraints. In other words, as the

switching costs can be larger than the network reconfiguration benefits, DDNR solves

the trade-off problem between finding the optimal topology in each time interval and

performing less frequent network topology changes to reduce the number of switching

manipulations. Operation planning using DDNR can be performed on a daily or

even hourly bases; therefore, it is necessary to develop fast algorithms that produce

high-quality DDNR solutions.

5.2 Mathematical Formulation of the DDNR Prob-

lem
The mathematical model of DDNR, formulated as a mixed-integer nonlinear program-

ming problem like in [72,105] consists of a multi-objective function and constraints.

The multi-objective function defined as the total cost of active energy loss and manip-

ulation of switching devices is minimized, subject to the following constraints: active

and reactive power injection constraints, bus voltage constraints, branch capacity con-

straints, switching operation constraints, and a network radiality constraint. Decision

variables of the optimization problem consist of switch statuses in each of the time

intervals, which define the distribution network topology in that time interval.

98 5. Dynamic Distribution Network Reconfiguration

5.2.1 Objective Function
The DDNR problem is defined using the following multi-objective function:

min
xt
sw

T∑
t=1

(CLossT
t
intP

t
Loss + CSWs SW

t). (5.1)

In (5.1), t ∈ 1 . . . T denotes the index of a time interval, where T is the total number

of time intervals and T t
int is the duration of a time interval in hours. The decision

variables of the optimization problem are the status of the switches per time interval,

where the status of the switch sw in the time interval t is defined as follows:

xt
sw =

{
1, if switch sw is closed in time interval t;

0, if switch sw is opened in time interval t.
(5.2)

CLoss is the cost of energy losses, in $ per kWh, P t
Loss denotes the active power losses

in kW , and CSWs is the cost in $ of the switching action for the sth switch. The

total cost of switching actions in the time interval t is calculated using the number of

switches that had their status changed:

SW t =

Nsw∑
sw=1

ytsw, (5.3)

where sw ∈ 1 . . . Nsw denotes the switch index and Nsw is the total number of switches

in the distribution network. ytsw indicates the status change of a single switch sw in

time interval t:

ytsw =

{
1, if the switch sw changed its status in time interval t;

0, otherwise.
(5.4)

The active and reactive powers of the branches in the time interval t are defined as:

P t
b = gjk(V

t
j)

2 − V t
j V

t
k [gjkcos(θ

t
j − θtk) + bjksin(θ

t
j − θtk)],

Qt
b = −bjk(V

t
j)

2 + V t
j V

t
k [bjkcos(θ

t
j − θtk)− gjksin(θ

t
j − θtk)],

(5.5)

where b ∈ 1 . . . Nb denotes the branch index, Nb is the total number of branches,

while j and k denote indices of buses at the ends of the branch b. V t
j and θtj denote

the voltage magnitude and the phase angle at the bus j in the time interval t, while

gjk and bjk represent elements of the nodal conductance and susceptance matrices,

5.2. Mathematical Formulation of the DDNR Problem 99

respectively. Active power losses in the time interval t are defined as follows:

P t
Loss =

Nb∑
b=1

αt
bRb

(P t
b)

2 + (Qt
b)

2

(V t
j)

2
, (5.6)

where Rb denotes the resistance of the branch, and αt
b combines information about

the switch status and the existence of a switch on a branch:

αt
b =

{
1, if branch b does not have a switch;

xt
sw, if branch b has the switch with index sw.

(5.7)

5.2.2 Constraints
The formulation of the DDNR problem considers multiple constraints listed below.

• Active and reactive injection constraints, defined by the bus power balances per

time interval, as in the classical load flow model [160]:

P t
j = V t

j

Nn∑
k=1

V t
k [gjkcos(θ

t
j − θtk) + bjksin(θ

t
j − θtk)],

Qt
j = V t

j

Nn∑
k=1

V t
k [gjksin(θ

t
j − θtk)− bjkcos(θ

t
j − θtk)],

j = 1, . . . , Nn,

(5.8)

where Nn represents the number of buses in the network. Active and reactive

power injections are equal to the difference between the corresponding load and

generation in bus j, and they are assumed constant during one time interval t.

• Slack bus constraints, which specify the voltage magnitude and the phase angle

in the root bus (i.e., the supply point) of the distribution network:

V t
0 = V t

spec,

θt0 = 0,
(5.9)

where V t
spec represents the specified slack bus voltage magnitude value at time

interval t. The slack bus provides an angular reference for all other buses and

balances the system’s active and reactive power [160].

100 5. Dynamic Distribution Network Reconfiguration

• Bus voltage constraints:
V min
j ≤ V t

j ≤ V max
j ,

j = 1, . . . , Nn,
(5.10)

where V min
j and V max

j denote the minimum and maximum voltage magnitude

allowed at the bus j.

• Branch capacity constraints:

(P t
b)

2 + (Qt
b)

2 ≤ (Smax
b)2,

b = 1, . . . , Nb,
(5.11)

where Smax
b represents the maximum apparent power allowed in the bth branch.

• Switching operation constraints:

T∑
t=1

|xt
sw − xt−1

sw | ≤ Nmax
sw ,

sw = 1, . . . , Nsw,

(5.12)

where Nmax
sw represents the maximum number of allowed operations for the

swth switch during the optimization time interval, which depends on the type

and the lifetime of the switch. x0
sw are the initial switch statuses, and they

do not belong to the decision variables. Constraints containing absolute value

operators can not be used directly in classical mixed-integer algorithms, but

require reformulation by introducing additional variables. In the proposed RL

approach, we will consider these constraints directly by adding a penalty term

to the reward function, resulting in a simpler formulation of the problem.

• Network radiality constraint, which assures there are no loops in the distribution

network:
Nb∑
b=1

αt
b = Nn − 1. (5.13)

The DDNR problem formulated in this way is NP-hard, since it has 2NswT possible

solutions, and it can not be solved in polynomial time. In the forthcoming chapters,

we will introduce RL algorithms which are trained to search the solution space based

on the agent-environment interaction concept, and yield quality solutions with low

computational effort during the algorithm’s evaluation.

The proposed multi-objective formulation of the DDNR problem aims to minimize

5.2. Mathematical Formulation of the DDNR Problem 101

the total cost of active energy loss and manipulation of switching devices. However, in

many practical applications the DDNR, apart from minimizing the cost of active energy

loss and manipulation of switching devices, the DDNR is used for voltage deviation

minimization [62,63], load balancing, Volt/Var optimization, supply restoration [64],

the distribution network reliability maximization [105], limiting the budget [93], etc.

Extension of the DDNR problem formulation assumes incorporating additional criteria

into the objective function. That is achieved by adding the corresponding terms to

the objective function while preserving the constraints (5.8) - (5.13).

Chapter 6

Reinforcement Learning

Reinforcement learning (RL), as a machine learning technique, deals with how software

agents learn to take actions in an environment through experience and exploration,

with the goal of finding the optimal strategy that maximizes the long-term reward

obtained [33]. In the RL framework, it is assumed that the agent interacts with the

generally stochastic environment in discrete time steps. At the beginning of each

time step, the agent observes the environment, that is, it receives the state variables

from the environment. Based on the state variables, the agent takes an action and

sends it to the environment. The environment then changes its state due to the action

received, as well as due to its internal processes. After that, the environment sends

the immediate reward signal for that time step and the state variables for the next

time step to the agent. The goal of an RL algorithm is to find the (close to) optimal

policy, i.e., the action selection that maximizes the long-term reward, while receiving

feedback about its immediate performance. This chapter presents the theoretical

background of RL in Sections 6.1 and 6.2 and the deep Q-learning algorithm in Section

6.3, which is applied to DDNR in Chapter 7.

6.1 Finite Markov Decision Processes
Finite Markov decision processes are discrete-time stochastic control processes that

model decision-making in situations in which the outcome is partially stochastic and

partially under the control of the decision-maker. The result of the solved MDP is

the optimal sequence of actions, that is, the optimal policy. The RL problem can be

mapped onto the MDP, which is defined as the following tuple:

• S - finite set of states,

• A - finite set of actions,

• R - finite set of immediate rewards,

• p (s′ | s, a) = Pr (St = s′ |St−1 = s,At−1 = a) - transition probability function.

104 6. Reinforcement Learning

Random variables St, St−1, Rt, At−1 represent the new state, the previous state,

received immediate reward and the action being taken, respectively, while s′, s ∈ S,
r ∈ R, a ∈ A denote the values of these random variables. The transition function

represents the probability of being in the state s′ on the condition of being in the

state s previously and executing the action a. The agent and the environment interact

in discrete time steps, as shown in Fig. 6.1. In each time step the agent observes

the state s, makes an action a, upon which the environment changes, and sends the

feedback to the agent in the form of reward r, and the next state s′.

Agent Environment
reward 𝑟

action 𝑎

next state 𝑠′

Figure 6.1: The agent-environment interaction process.

Additionally, a problem defined as MDP must satisfy the Markov property, meaning

that the next state s′ depends only on the current state s and the action a, and is

independent of all previous states and actions:

Pr (St |S0, A0, S1, A1, . . . , St−1, At−1) = Pr (St |St−1, At−1) (6.1)

Problems that do not satisfy the Markov property can be solved exactly using

traditional MDP methods by expanding the state space with data from previous

states or approximately using the RL methods.

Return in time step t, which represents the long-term reward starting from that

time step, is the subject of optimization:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
i=0

γirt+i+1, (6.2)

where γ ∈ [0, 1] represents the discount factor. The case of γ = 0 corresponds to the

greedy maximization of the immediate reward, while using γ = 1 implies equal weight

6.1. Finite Markov Decision Processes 105

on all rewards in the optimization horizon. Due to convergence problems in the case

of long optimization horizons, the most often used value of the discount factor is

γ ∈ [0.9, 0.99].

Policy π models the action selection in various states. When optimizing the policy,

the long-term reward is optimized. The policy is in the general case stochastic, i.e., it

maps the probability distribution of actions to states π(a|s) = Pr(At = a|St = s), but

it can be also defined in a deterministic way a = π(s). The quality of a policy π in a

state s is usually expressed as an expectation of the discounted long-term reward Gt

given the state s, enabling the way to compare different policies and optimize them.

This quantity is called the state value function, and it assigns higher values to the

more desirable states in terms of the long-term reward, if following the policy π1:

vπ(s) = E
π
[Gt |St = s] = E

π
[

∞∑
i=0

γiRt+i+1 |St = s]. (6.3)

Similarly, the action value function (Q-function) is a mapping of states-action

pairs to the real numbers, where the value of the state-action pair represents the

expected discounted long-term reward starting from that state, taking that action,

and following a concrete policy π afterward:

qπ(s, a) = E
π
[Gt |St = s,At = a] = E

π
[

∞∑
i=0

γiRt+i+1 |St = s,At = a]. (6.4)

The state value function has a more compact representation, while the Q-function

provides a simpler way to determine the action that leads to the most desirable future

state. The state value function and the Q-function can be recursively expressed using

the Bellman equations:

vπ(s) = E
π
[Rt+1 + γvπ(St+1) |St = s]

=
∑
a∈A

π (a | s) (r + γ
∑
s′∈S

p(s′|s, a)vπ(s′)), (6.5)

qπ(s, a) = E
π
[Rt+1 + γqπ(St+1, At+1) |St = s]

= r + γ
∑
s′∈S

p (s′ | s, a)
∑
a′∈A

π (a′ | s′) qπ(s′, a′). (6.6)

1Superscript π denotes that the quantity is calculated with the assumption that the agent takes
actions according to the policy π.

106 6. Reinforcement Learning

Finding the optimal state value function or the optimal Q-function results in

finding the optimal policy. The optimal policy can be generated from e.g. the optimal

Q-function by selecting the action with the largest Q-function value in each state. If

the problem is formulated as an MDP, then at least one optimal solution exists, and

an iterative procedure based on dynamic programming and the Bellman equations

that converges to one of those solutions can be established. Some of the commonly

used algorithms are the value iteration algorithm [161], and the policy iteration

algorithm [162].

To find the exact solution to the MDP, it has to be fully defined, i.e., all transition

probabilities and immediate rewards have to be known, and it has to satisfy the

Markov property. Additionally, for large state and action spaces, solving MDPs

exactly could be computationally infeasible. Partial observability of the environment

state additionally increases the computational time of the traditional algorithms that

solve MDPs [163]. The main idea of RL is to overcome these problems by learning

(close to) optimal policies based on the history of interactions of the agent with the

environment.

6.2 Q-Learning
Our work considers model-free off-policy RL algorithms, where the optimal policy is

learned directly from the accumulated experience, i.e., the history of the interaction

process between the agent and the environment. On the other hand, in the model-

based RL, the MDP, or the transition probabilities and immediate rewards for all

state-action-next state triplets are learned from the accumulated experience and

solved to obtain the policy.

Q-learning is a basic model-free RL algorithm, where the values of the Q-function

for each state-action pair are stored in the Q-table and updated during algorithm

training [164]. During the evaluation of the algorithm, for each state the agent receives

from the environment, the action with the greatest Q-function value in the table

is selected. During the algorithm training, actions are selected randomly with the

probability ϵ, and the actions with the largest Q-function values for the corresponding

states are selected with the probability 1 − ϵ, where ϵ ∈ [0, 1] is the exploration

hyperparameter. This way the agent searches the state-action space and avoids the

local optima problem. Algorithm training is performed by repeating the predefined

number of episodes, which consist of time steps. One time step contains information

about one interaction of the agent with the environment: the current state, the action

selected by the agent, the received reward, and the next state. The length of episodes,

i.e., the number of time steps in them, is generally variable.

6.3. Deep Q-learning 107

Upon one interaction of the agent with the environment, the values in the Q-table

are updated using the following rule, obtained using the idea from the Bellman

equations:

q(s, a) := (1− α)q(s, a) + α[r + γ max
a′

q(s′, a′)], (6.7)

where α is the learning rate hyperparameter. As well as MDPs, the Q-learning

algorithm assumes discrete state and action spaces and for large state and action

spaces it may be infeasible to learn the Q-function value for all state-action pairs.

6.3 Deep Q-learning
The deep Q-Learning algorithm is one of the basic DRL algorithms, that utilizes the

advances in the deep learning field to improve the traditional RL algorithms. The

idea of the algorithm is to use a deep neural network, also called the deep Q-network

(DQN), as an approximator of the Q-function [165]. Inputs to the DQN are state

variables, while output neurons provide the approximation of Q-function values for

each of the actions and for the input state. Therefore, the state variables can be

continuous, which makes the learning feasible for large continuous state spaces which

would have to be discretized when using the Q-learning algorithm. In deep Q-learning,

the action space must be discrete and finite, since the number of output neurons is

limited. An example of a DQN is shown in Fig. 6.2, where Q(s, ai) denotes the DQN

output when the agent takes action ai, i = 1, . . . , z, while being in the state s, where

z = |A| denotes the number of possible actions.

1

. . .

Q(s,a1)

Q(s,a2)

Q(s,az)

. . .

state s

Figure 6.2: An example of a deep Q-network.

Deep Q-learning algorithm introduces target DQN Qtarget which has the same

model architecture as DQN and in which the parameters of DQN are copied at the

predefined period during the training process. Target DQN is used for determining

the labels for the DQN training, as defined in (6.8), which significantly improves the

training process stability [165]. It reduces the oscillations of the training by fixing the

108 6. Reinforcement Learning

label generation process during multiple training steps, allowing the DQN network

weights to be updated steadily. Target networks are a widely used technique in RL,

and recent RL algorithms propose more advanced variations, such as continuously

updating the time-delayed target network [166].

On-policy RL algorithms [33] are trained by updating the same policy using which

the sequence of actions is generated, which results in unstable and sample inefficient

training due to correlation between the actions in the sequence. Deep Q-learning is

an example of an off-policy RL algorithm, which stores the history of the agent’s

interaction with the environment in the experience replay memory [167], and samples

data randomly from it to perform the DQN training in a supervised learning manner.

At each time step, tuple (s, a, r, s′) is stored in the replay memory, from which i.i.d.

mini-batch data for DQN training is sampled.

Labels for DQN training are calculated in the following way, using the idea from

the Bellman equations, similarly to the Q-learning algorithm:

Qlabel(s, a) = r + γ max
a′

Qtarget(s
′, a′|θQtarget). (6.8)

θQ and θQtarget denote the parameters (weights and biases) of the DQN and the target

DQN. DQN is trained using the mini-batch gradient descent algorithm [168], which

minimizes the squared error loss function that expresses the distance between the

labels and the DQN output during training:

L(θQ) =
1

Nmb

Nmb∑
i=1

(Qlabel(si, ai)−Q(si, ai | θQ))2. (6.9)

A trained DQN is evaluated by forwarding the input state s through the network

layers, obtaining the Q-function approximates Q(s, ai) for all actions ai, i = 1, . . . , |A|,
and selecting the action with the largest Q-function value.

Chapter 7

Reinforcement Learning based Dynamic
Distribution Network Reconfiguration

This chapter describes the way DDNR is expressed as an RL problem, how the

objective function and constraints are considered, and the training and evaluation

algorithms of the proposed DQN-based method. Finally, we evaluate the performance

of the proposed approach on three distribution networks: 15-bus test benchmark,

real-life large-scale distribution network, and the IEEE 33-bus network.

7.1 Modelling Dynamic Distribution Network Re-

configuration as a Markov Decision Process
The information flow between the DDNR agent and the environment during their

interaction is presented in Fig. 7.1. Episodes consist of T time steps, where each

episode corresponds to a separate instance of the DDNR applied to the one-day

interval, and each RL agent’s time step corresponds to the beginning of one time

interval in DDNR problem formulation (5.1). At each time step, active and reactive

power consumption data for the next hour are loaded. Then, the power flow calculation

is executed to create the state variables, which contain the time interval index t and

the apparent powers of all switches in the network St
sw, sw ∈ 1, . . . , Nsw, as shown in

(7.1):

st = (t, St
1, . . . , S

t
Nsw

). (7.1)

This choice of state variables, motivated by the fact that switch statuses, and hence

the network topology can be reconstructed using the apparent powers of the switches,

reduces the state space dimensionality and DQN size. The current network configura-

tion and power flow results are compressed into a single set of variables, from which

the agent can make its own representation of the environment, and use it as an input

in the decision-making process.

The action space contains all the switch combinations that lead the network in

110 7. Reinforcement Learning based Dynamic Distribution Network Reconfiguration

Agent: DDNR controller

Environment:
consumption data +
power flow calculation

Action: switch
combination

Reward:
- DDNR objective

- Voltage constraints
- Branch power

constraints

State:
- Time step index
- Apparent powers

of switches

Figure 7.1: The agent-environment interaction process for DDNR.

a feasible radial configuration, in which all the buses are energized. These switch

combinations are enumerated uniquely so that one output neuron corresponds to one

feasible radial combination. This action space definition implies that the radiality

network constraint stated in (5.13) is always satisfied, which accelerates the learning

process.

The reward value for each time interval t is equal to the negative sum of the

following terms:

• Price of active energy losses CLossT
t
intP

t
Loss, used to model the first term in the

DDNR objective function stated in (5.1);

• Price of the switching manipulations needed to conduct the network from the

previous configuration to the current one CSWs SW
t, used to model the second

term in the DDNR objective function stated in (5.1);

• Predefined penalty value CU if the bus voltage constraint is violated in any of

the buses, used to model the bus voltage constraints in (5.10);

• Predefined penalty value CS if the branch capacity constraint is violated for

any of the branches, used to model the branch capacity constraints in (5.11).

As an alternative to adding the predefined penalty to the reward function if the

number of switch manipulations exceeds the predefined limit for any of the switches,

we propose the following way to consider the switching operation constraints in (5.12):

• The subset of available actions is created at the beginning of each episode and

7.2. Training and Evaluation Algorithms 111

is initially equal to the action set (i.e., all the switch combinations that lead the

network into a feasible radial configuration, in which all the buses are energized);

• During the episode, the number of operations of each switch in that episode

is updated. Prior to action selection, actions that would violate the switching

operation constraints if selected are removed from the subset of available actions;

• In each time interval, the action with the largest Q-value is selected from the

subset of available actions, instead of from the action set.

This approach improves the training efficiency compared to the approach that would

penalize the exceeded number of switch operations. Since the actions that violate the

switching operation constraints cannot be selected in the first place, the computational

effort needed to learn Q-function values for those state-action pairs is eliminated.

It is convenient to consider the switching operation constraints using this approach

since only the selected action (switch combination) needs to be known, to conclude

if the constraint is violated. The subset of available actions can be determined

without executing the actions. Bus voltage and branch capacity constraints cannot

be modelled using this approach generally, since the action must be executed and

feedback from the environment is required for any conclusions about the constraint

violations. Active and reactive injection constraints in (5.8), as well as slack bus

constraints in (5.9) are satisfied by the design of the power flow calculation [160] and,

therefore, are not considered in the reward function. Values of the state variables and

rewards are normalized, for the purpose of improving the numerical stability of neural

network training.

7.2 Training and Evaluation Algorithms
During the algorithm training N episodes are repeated, with each episode consisting

of a predefined number of time steps T , where in each time step the interaction

between the agent and the environment takes place, as described in 7.1. The variety

of training scenarios is created by randomly sampling the daily load curves from some

predefined distribution. The way the exploration hyperparameter ϵ is updated during

the training can also be tuned. In this work, we used the linear decrease of ϵ until

the 0.8N th episode, and the constant value afterward. A detailed representation of

the agent training procedure is displayed in Algorithm 1.

Once trained, the deep Q-network model can be evaluated multiple times by

loading the saved trainable parameters, as shown in Algorithm 2. Note that during

the algorithm evaluation target deep Q-network, experience replay buffer, neural

network parameter updates, and the random exploration strategy are not used,

reducing the memory storage and computational requirements per episode, when

112 7. Reinforcement Learning based Dynamic Distribution Network Reconfiguration

Algorithm 1: Deep Q-network training

Initialize the deep Q-network’s Q(s | θQ) parameters randomly

Initialize the target deep Q-network’s Q′(s | θQtarget) parameters using the
original network’s parameters
Initialize the experience replay buffer
for episode = 1, 2, . . . , N do

Sample daily load curves randomly
Initialize ϵ
Initialize the subset of available actions to the action set
Run the initial power flow calculation
Send the initial state s1 to the agent
for t = 1, 2, . . . , T do

rand = random number between 0 and 1
if rand > ϵ then

Based on the current state st select the action at with the largest
Q-value in the subset of available actions

else
Select random action at from the subset of available actions

end
Update the subset of available actions
Update the network configuration according to at
Run the power flow calculation
Collect the immediate reward rt and the next state st+1 data
Store tuple (st, at, rt, st+1) in the experience replay buffer
Sample the mini-batch of tuples from the experience replay buffer
Create labels for deep Q-network training using (6.8)
Update deep Q-network parameters by minimizing the loss function given
in (6.9)
Set loads for the next time interval for each bus

end
if update target network period then

θQtarget = θQ

Update ϵ

end

compared to the training algorithm. The trained algorithm’s evaluation reduces to

T + 1 power flow calculations and T neural network evaluations, which are almost

instantaneous, resulting in a computationally efficient control procedure, which can be

used either standalone or as a part of the more complex power systems’ application.

7.3. Numerical Results 113

Algorithm 2: Deep Q-network evaluation

Load previously saved parameters of the trained deep Q-network Q(s | θQ)
Generate daily load curves for the evaluation example
Initialize the subset of available actions to the action set
Run the initial power flow calculation
Send the initial state s1 to the agent
for t = 1, 2, . . . , T do

Based on the current state st select the action at with the largest Q-value in
the subset of available actions

Update the subset of available actions
Update the network configuration according to at
Run the power flow calculation
Retrieve the next state st+1

Set loads for the next time interval for each bus

end

7.3 Numerical Results
In this section, results and discussion are presented for benchmark test examples –

7.3.1, real-life large-scale distribution network – 7.3.2, and the IEEE 33-bus radial

system – 7.3.3, along with the choice of RL and deep learning hyperparameters.

The proposed algorithms were implemented in Python, deep neural networks were

modelled and trained using the PyTorch deep learning framework, and power system-

related modelling and calculations were completed using OpenDSSDirect, the Python

interface to OpenDSS distribution system simulation software [169]. The algorithms

were executed on a 64-bit Windows 10 with the following hardware configuration:

AMD A8-6410 APU with AMD Radeon R5 Graphics 2.00 GHz, 4 cores, and 8 GB of

RAM.

7.3.1 Benchmark Test Examples
Fig. 7.2 illustrates a 15-bus test benchmark where a slack bus is the bus with the

marker 0 and the other 14 buses are of the PQ type. Loads are defined by the

chronological daily diagrams, which are sampled uniformly from the intervals defined

by dashed lines in Fig. 7.3. The length of all branches is 4.5km. All branches are

balanced with the direct sequence impedance r + jx = (0.224 + j0.109)Ω/km. All

branches have switching devices, and the number of switch manipulations is not

constrained.

Penalty values used to model the bus voltage constraints in (5.10) and the branch

capacity constraints in (5.11) are: CU = CS = 10. The costs of energy losses and

114 7. Reinforcement Learning based Dynamic Distribution Network Reconfiguration

1

14

Feeder 1

5 8

2 6 9

3 12 7 13 10

4 11

Feeder 2 Feeder 3

1 5 8

2 6 9

3 7 10

4 11

12 13

14

0
1 5 8

2 6 9

3 7

1

10

4 12 11
13

14

Closed switch

Open switch

Figure 7.2: Single-line diagram for 15-bus test benchmark.

switching operations in the time interval are [100,170]:

• Cost of energy losses (CLoss): $6.5625 cents/kWh;

• Cost of switching manipulations (Csw): $1 per manipulation.

DQN used for this test example consists of the input layer, four hidden layers,

and the output layer. The input layer has 15 neurons, one for the time step index

variable, and 14 for the apparent powers of each switch. Each hidden layer has 256

neurons, and the output layer consists of 186 neurons, one for each switch combination

that leads to a feasible radial configuration. Rectified Linear Unit (ReLU) activation

function is applied to each of the hidden layers and the output layer. The neural

network is trained using the Adam optimizer, with a learning rate of 10−5 and a

mini-batch size of 128. We experimented with adding batch normalization on several

hidden layers, but it neither improved nor deteriorated the training results.

The number of training episodes we used is 60000. During the training, loads for

each hour were uniformly sampled from the intervals defined by dashed curves in

Fig. 7.3. The target DQN update frequency is 10 episodes and the mini-batches for

DQN training were sampled from experience replay memory, which has the capacity

of 106 samples. The initial value of the exploration parameter ϵ is 1 and decreases

linearly to the episode index until it reaches the value 0.1 in 48000th episode. The

7.3. Numerical Results 115

0
0.2
0.4
0.6
0.8
1

1.2
1.4

L
o
ad

[M
W

]

Feeder 1 load Limits

0
0.2
0.4
0.6
0.8
1

1.2
1.4

L
o
ad

[M
W

] Feeder 2 load
Limits

0 2 4 6 8 10 12 14 16 18 20 22
0

0.2
0.4
0.6
0.8
1

1.2
1.4

Hour [h]

L
o
ad

[M
W

]

Feeder 3 load
Limits

Figure 7.3: Daily load profiles for three feeders. Full lines represent average load
values, and dashed lines represent limits between which training set loads are sampled.

value of the discount factor γ is 0.99, as in [165].

Fig. 7.4. presents the average value of the DQN loss function, defined in (6.9),

over the episodes. As the training advances, the DQN loss decreases, which implies

that the Q-function is being approximated successfully. Additionally, the testing

performance of the RL algorithm with increasing training episodes is presented in

Fig. 7.4 by displaying the amount of the normalized received reward per episode and

its moving average. These rewards were obtained by executing the episodes with

the exploration parameter ϵ equal to zero, after each training episode. The training

demonstrated asymptotic convergence within 20000 episodes.

Table 7.1 presents load, losses, and switch status changes for the proposed approach

in 24-hour optimization horizon, as well as the comparison of the same results with

116 7. Reinforcement Learning based Dynamic Distribution Network Reconfiguration

Figure 7.4: Average DQN loss per episode (top) and total reward per episode along
with its moving average (bottom).

the state-of-the-art method from [105]. The method from [105] minimizes the costs

of energy losses, switching manipulations, and outages. For this comparison, the

method from [105] is executed with the cost of outages set to zero. A graphical

representation of switch statuses is presented in Fig. 7.5. The results are additionally

compared with the method from [75], as is presented in Table 7.2. By comparing the

results of the proposed algorithm and the method from [105], it can be concluded

that the proposed switching actions are not the same, but the total costs only differ

slightly. The execution time of the proposed algorithm is 0.148s, which is two orders

of magnitude smaller than the execution time of the method from [105].

Based on Table 7.2, it can be concluded that the proposed approach and the

method from [105] provide better solutions than the method from [75]. Solutions from

the proposed approach and the method from [105] provide greater cost savings, and

they achieve it with a lower number of switch manipulations.

Total losses in the time period of 24 hours for 15-bus test benchmark without DNR

are 6477.81kW, with the total cost of $425.1. With the proposed DDNR, losses are

reduced to 5978.48kW and the total cost is reduced to $402.3. Fig. 7.6 compares

loss reduction per hour for the proposed approach and for the method from [105]. In

Fig. 7.6 it can be seen that there is no reduction of losses in the interval from 10 to 16

7.3. Numerical Results 117

Table 7.1: Total load, active power losses and switch status changes in the 24-hour
time optimization period for the 15-bus test benchmark (O–open; C–close).

Proposed approach Method from [105]

Hour Load [kW] Losses [kW]
Switch status
changes

Losses [kW]
Switch status
changes

0 4554.0 114.06 4(O), 14(C) 131.73 No changes
1 4305.0 101.79 No changes 115.32 No changes
2 3876.0 82.49 No changes 89.97 No changes
3 3326.0 61.20 No changes 62.95 No changes
4 3205.0 57.03 No changes 57.81 No changes
5 3693.0 75.01 No changes 80.35 No changes

6 7542.0 316.63
10(O), 14(O),
4(C), 13(C)

316.63 10(O), 13(C)

7 7909.0 348.71 No changes 348.71 No changes
8 8279.0 384.08 No changes 384.08 No changes
9 6067.0 213.94 10(C), 13(O) 220.01 No changes
10 9369.0 465.82 No changes 465.82 10(C), 13(O)
11 9054.0 440.61 No changes 440.61 No changes
12 8823.0 423.20 No changes 423.20 No changes
13 8823.0 423.20 No changes 423.20 No changes
14 7670.0 375.02 No changes 324.18 10(O), 13(C)
15 9801.0 493.87 No changes 493.87 10(C), 13(O)
16 7440.0 278.42 4(O), 14(C) 278.42 4(O), 14(C)
17 7049.0 252.96 No changes 252.96 No changes
18 7317.0 276.55 No changes 276.55 No changes
19 6643.0 227.18 No changes 227.18 No changes
20 5651.0 178.27 No changes 178.27 No changes
21 5163.0 147.68 No changes 147.68 No changes
22 4793.0 126.72 No changes 126.72 No changes
23 4554.0 114.06 No changes 114.06 No changes

Table 7.2: Total losses, number of switch status changes, and total cost in the 24-hour
time optimization period.

Proposed approach Method from [105] Method from [75]
Total losses [kW] 5978.48 5980.28 5967.56
Number of switch
status changes

10 10 22

Total cost [$] 402.3 402.4 413.6

118 7. Reinforcement Learning based Dynamic Distribution Network Reconfiguration

0

1 Other

0

1 Switch 14

0

1

S
w
it
ch

st
a
tu
s

Switch 13

0

1 Switch 12

0

1 Switch 10

0 5 10 15 20
0

1 Switch 4

Figure 7.5: Switch status changes during the 24-hour period.

hours. In Table 7.1 it can be seen that the network configuration from 10 to 16 hours

is the same as the basic network configuration, as in Fig. 7.2 (in the first hour switch

4 was opened and switch 14 was closed; in the seventh hour switch 4 was closed and

switch 14 was opened and switch 10 was opened and switch 13 was closed; in the

tenth hour switch 10 was closed and switch 13 was opened). Consequently, there is no

reduction of losses from 10 to 16 hours. For the method from [105] in the 10th hour,

there is a negative loss reduction (see Table 7.1). From 17 to 24 hours, loss reduction

is the same for both methods, because network configuration in that interval is the

same, too.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0

10

20

30

40

50

60

Hour [h]

L
os
s
re
d
u
ct
io
n
[
k
W
]

Proposed approach Method from [105]

Figure 7.6: Loss reduction using DDNR.

7.3. Numerical Results 119

Fig. 7.7 shows the voltage profile before and after reconfiguration. It is noted that

the voltage profile is improved after applying the configuration found by the proposed

algorithm. Bus loads are taken from the daily load profile presented in Fig. 7.3 at

17th hour.

Next, we present the results of the proposed approach when the number of switch

manipulations is limited to two. A graphical representation of the switch status

changes in this case is given in Fig. 7.8. The cost of losses is equal to $403.5, while
the switching manipulation cost is $12, summing up to the total cost of $415.5, which
means that this solution is more expensive than the solution presented in Table 7.1.

0 2 4 6 8 10 12 14

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Bus index

B
u
s
v
ol
ta
ge
s
[p
.u
.]

Base case

After reconfiguration

Figure 7.7: Voltage profile for 15-bus test benchmark.

7.3.2 Real-Life Large-Scale Distribution Network
To assess the scalability of the proposed approach, we evaluate its results using a

real-life large-scale radial distribution network, which consists of four feeders, 1015

branches, and 1008 loads. The distribution network is equipped with 31 remotely

controlled switches, where 24 of them are normally closed and seven are normally

open. This large number of remotely controlled switches is used to demonstrate how

well does the developed algorithm scale with the increase in the number of decision

variables. DQN used for this test example consists of the input layer, four hidden

layers, and the output layer. The input layer has 32 neurons, one for the time step

index variable and 31 for the apparent powers of each switch. Each hidden layer

has 1024 neurons, and the output layer consists of 3567 neurons, one for each switch

combination that leads to a feasible radial configuration. The algorithm was trained

on 100000 episodes. The initial value of the exploration parameter ϵ is 1 and decreases

linearly to the episode index, until it reaches the value 0.1 in 80000th episode. The rest

120 7. Reinforcement Learning based Dynamic Distribution Network Reconfiguration

0

1 Other

0

1 Switch 14

0

1

S
w
it
ch

st
a
tu
s

Switch 13

0

1 Switch 12

0

1 Switch 11

0

1 Switch 10

0

1 Switch 7

0 5 10 15 20
0

1 Switch 4

Figure 7.8: Switch status changes during the 24-hour period when the maximal
number of switch manipulations is two.

of the parameters are the same as in the case of the 15-bus test benchmark network.

Costs of energy losses and switching manipulations are set to the same values as in

Section 7.3.1.

Table 7.3 presents the resulting losses and switch manipulations of the proposed

approach for the 24-hour optimization horizon. The execution time of the proposed

algorithm is 3.635s, which is two orders of magnitude smaller than the execution time

of the method from [105] when used for networks with 31 remotely controlled switches.

The training of the RL algorithm demonstrated convergence after 30000 episodes, as

evidenced by the analysis of its test time performance after each training episode.

The total active power losses are equal to 13342.49 kW, with a cost of $875.6. The
switching manipulation cost is equal to $24, which sums up to the total cost of $899.6.
The results demonstrate that the proposed DDNR is applicable to real-life large-scale

distribution networks.

7.3.3 IEEE 33-bus Radial System
In this section, a numerical test is performed by using the IEEE 33-bus radial

system [171], displayed in Fig. 7.9. We used the same branch resistances, reactances,

and peak loads as in [171]. The loads between buses 2 and 18 are scaled with the blue

full line in Fig. 7.3, loads between buses 19 and 25 are scaled with the black full line

in Fig. 7.3, and the loads between buses 26 and 33 are scaled with the red full line

in Fig. 7.3. This network is modified to match the developed DDNR. The IEEE33

7.3. Numerical Results 121

Table 7.3: Active power losses and switch status changes in the 24-hour time opti-
mization period for the large-scale radial distribution network (O–open; C–close).

Hour Losses [kW] Switch status changes
0 182.30 238(O), 900 (O), 994(O), 1011 (C), 1013(C), 1014 (C)
1 160.98 No changes
2 127.19 No changes
3 92.46 No changes
4 86.08 No changes
5 196.43 No changes
6 742.05 695(O), 742(O), 900 (C), 1015 (C)
7 783.53 No changes
8 826.54 No changes
9 368.21 947 (O), 1014 (O), 695 (C), 994 (C)
10 1008.27 No changes
11 965.66 No changes
12 932.39 No changes
13 891.17 1011 (O), 1013 (O), 238 (C), 947 (C)
14 746.81 No changes
15 1044.24 No changes
16 786.83 947 (O), 1013 (C)
17 553.33 No changes
18 744.87 No changes
19 645.53 1015 (O), 1014 (C)
20 509.13 191 (O), 1010 (C)
21 455.83 No changes
22 313.87 No changes
23 178.78 No changes

test system is equipped with 20 remotely controlled switches, where 15 of them are

normally closed and 5 are normally open, as shown in Fig. 7.9. Remotely controlled

switches are marked with ”s” and the unique index. If the remotely controlled switch

is placed on the full line, it is closed, otherwise, it is open. Five lines were added to

the original scheme and are presented with dashed lines in Fig. 7.9. Costs of energy

losses and switching manipulations are the same as in Section 7.3.1.

The algorithm was trained with the same training hyperparameters as in the case

of the 15-bus test benchmark network. Table 7.4 presents the losses and switch

manipulations for the proposed approach in the 24-hour time optimization period.

The execution time of the algorithm is 0.272s.

122 7. Reinforcement Learning based Dynamic Distribution Network Reconfiguration

Figure 7.9: IEEE 33-bus radial system.

Total active power losses are equal to 1347.95 kW, with a cost of $88.5. The cost

of switching manipulation is equal to $8, which sums up to the total cost of $96.5.
The RL algorithm was found to converge after 15000 training episodes, as determined

by an analysis of the test time performance with increasing episodes. Fig. 7.10 shows

the voltage profile before and after the reconfiguration. It is noted that in most of

the buses, the voltage profile is enhanced after applying the configuration found by

the proposed algorithm. Bus loads are taken from the daily load profile presented in

Fig. 7.3 at 17th hour.

0 5 10 15 20 25 30

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Bus index

B
u
s
v
ol
ta
ge
s
[p
.u
.]

Base case

After reconfiguration

Figure 7.10: Voltage profile for IEEE 33-bus radial system.

7.4. Summary and future work 123

Table 7.4: Active power losses and switch status changes in the 24-hour time opti-
mization period for the IEEE 33-bus radial system (O–open; C–close).

Hour Losses [kW] Switch status changes
0 34.87 6 (O), 35 (C)
1 30.41 No changes
2 23.50 No changes
3 16.03 No changes
4 14.60 No changes
5 20.85 No changes
6 56.49 No changes
7 62.11 8 (O), 33 (C)
8 70.44 No changes
9 50.05 No changes
10 95.42 14 (O), 34 (C)
11 87.05 No changes
12 81.22 No changes
13 81.22 No changes
14 57.06 No changes
15 108.47 No changes
16 86.87 27 (O), 37 (C)
17 75.20 No changes
18 81.43 No changes
19 65.80 No changes
20 47.51 No changes
21 38.90 No changes
22 33.00 No changes
23 29.45 No changes

7.4 Summary and future work
In this chapter, we present a multi-objective formulation of the DDNR aimed at

reducing the total cost of energy losses and switching operations. Our solution is

based on DRL, and we demonstrate that the proposed definition of state variables,

which demands lower observability, enables successful treatment of the DDNR problem

within the RL framework. Additionally, the proposed computationally efficient method

of addressing switching operation constraints by creating a subset of available actions

and updating it during the episode was proven to be effective for this problem. The

ideas from the suggested way of modelling the DDNR problem as MDP can be used for

solving similar power system control and optimization problems as well. Once trained,

the RL algorithm demonstrates faster execution compared to the state-of-the-art

124 7. Reinforcement Learning based Dynamic Distribution Network Reconfiguration

method, while yielding approximately equal total cost savings. The presented results

indicate that the developed algorithm is scalable, i.e., the computation time does not

increase exponentially with the problem dimension. Therefore, the developed DDNR

algorithm can handle large-scale real-life distribution networks well.

The major drawback of applying typical RL algorithms in power systems is the

need for the usage of power system simulators that enable the exploration process of

an RL agent. Training an RL agent on a real-world power system is not a common

practice due to the high cost of exploration actions. On the other hand, power system

simulators do not represent the real-world power system ideally, which can cause the

lower performance of a trained RL model when deployed in reality. A possible solution

and a topic for future work could be using offline reinforcement learning [172], which

eliminates the need for using the action exploration, by optimizing the policy based on

the variety of historical actions, collected during the real-world distribution network

operation. Another promising area of research is using safe reinforcement learning [173]

and worst-case reinforcement learning [174], which enables safe exploration during

the training while guaranteeing the constraint satisfaction, therefore causing no harm

to the power system.

Chapter 8

Conclusions

Deep learning has demonstrated great potential to improve various tasks in power

systems, including monitoring tasks such as stability assessment and fault detection, as

well as for optimization tasks like Volt-Var optimization, optimal power flow, etc. One

of the current trends in the field is the use of GNNs and DRL. In this thesis, we applied

these methods to SE and DDNR problems and shown that these methods exhibit

high levels of accuracy and improved performance when compared to traditionally

used techniques. As the field continues to evolve, it is expected that more research

and development will be conducted in these areas, with a focus on implementing these

techniques in real-world power systems to demonstrate their practical potential.

This thesis presents two main contributions. As the first one, we investigate how

GNN can be used as fast and accurate solvers of linear and nonlinear SE. The proposed

graph attention network-based model, specialized for the newly introduced heteroge-

neous augmented factor graphs, recursively propagates the input measurements from

the factor nodes to generate predictions in the variable nodes. Evaluating the trained

model on unseen data samples confirms that the proposed GNN approach can be used

as a highly accurate approximator of the traditional SE solutions, with the added

benefit of linear computational complexity at inference time. The model is robust in

unobservable scenarios that are not solvable using traditional SE and deep learning

methods, such as when individual measurements or entire measurement units fail to

deliver measurement data to the proposed SE solver. Furthermore, the GNN model

performs well when measurement variances are high or outliers are present in the

input data. The proposed approach demonstrates scalability and sample efficiency

when tested on power systems of various sizes, as it makes good predictions even when

trained on a small number of randomly generated samples. Finally, the proposed

GNN model outperforms the more conventional deep learning-based SE approach in

terms of prediction accuracy and significantly lower number of trainable parameters,

especially as the size of the power system grows. In this work, we focused on using

GNNs to solve a linear and nonlinear transmission system SE model. However, the

126 8. Conclusions

proposed learning framework, graph augmentation techniques, and conclusions can

be applied to a wide range of SE formulations. For example, the GNN’s ability to

provide relevant solutions in underdetermined scenarios suggests that it could be

useful for GNN-based SE in highly unobservable distribution systems.

As a second main contribution, this thesis has explored a multi-objective formulation

for DDNR, aimed at minimizing the total cost of energy losses and switching operations.

The proposed solution, based on DRL, demonstrated successful treatment of DDNR

as an MDP through the use of state variables with reduced observability requirements

and a computationally efficient approach for handling switching operation constraints.

The results showed that the developed algorithm is scalable, performs faster than

the state-of-the-art method while yielding comparable cost savings, and is capable

of handling large-scale real-world distribution networks. This work contributes to

the field of power system control and optimization by providing a novel and effective

solution for DDNR.

Bibliography

[1] J. R. Aguero, E. Takayesu, D. Novosel, and R. Masiello, “Modernizing the grid:

Challenges and opportunities for a sustainable future,” IEEE Power Energy Mag.,

vol. 15, no. 3, pp. 74–83, 2017.

[2] S. Rusitschka, K. Eger, and C. Gerdes, “Smart grid data cloud: A model for utilizing

cloud computing in the smart grid domain,” in Proc. SmartGridComm. IEEE, 2010,

pp. 483–488.

[3] I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA:

MIT Press, 2016.

[4] I. H. Sarker, “Deep learning: A comprehensive overview on techniques, taxonomy,

applications and research directions,” SN comput. sci., vol. 2, 2021.

[5] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are

universal approximators,” Neural Netw., vol. 2, no. 5, p. 359–366, july 1989.

[6] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence, Dataset

Shift in Machine Learning. The MIT Press, 2009.

[7] G. D’Antona, “Power system static-state estimation with uncertain network parameters

as input data,” IEEE Trans. Instrum. Meas., vol. 65, no. 11, pp. 2485–2494, 2016.

[8] W. Zhang, D. Yang, and H. Wang, “Data-driven methods for predictive maintenance

of industrial equipment: A survey,” IEEE Syst. J., vol. 13, no. 3, pp. 2213–2227, 2019.

[9] O. Kundacina, G. Gojic, M. Mitrovic, D. Miskovic, and D. Vukobratovic, “Supporting

future electrical utilities: Using deep learning methods in ems and dms algorithms,” in

Proc. Infoteh-Jahorina, 2023, pp. 1–6.

128 BIBLIOGRAPHY

[10] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc.

ICLR, Y. Bengio and Y. LeCun, Eds., 2015.

[11] J. Bergstra, D. Yamins, and D. D. Cox, “Making a science of model search: Hyper-

parameter optimization in hundreds of dimensions for vision architectures,” in Proc.

ICML, 2013.

[12] A. Poudyal, R. S. Fourney, R. Tonkoski, T. M. Hansen, U. Tamrakar, and R. D.

Trevizan, “Convolutional neural network-based inertia estimation using local frequency

measurements,” Proc. NAPS, pp. 1–6, 2021.

[13] M. Alqudah, M. Pavlovski, T. Dokic, M. Kezunovic, Y. Hu, and Z. Obradovic, “Fault

detection utilizing convolution neural network on timeseries synchrophasor data from

phasor measurement units,” IEEE Trans. Power Syst., vol. 37, no. 5, pp. 3434–3442,

2022.

[14] S. Wang, P. Dehghanian, and L. Li, “Power grid online surveillance through pmu-

embedded convolutional neural networks,” IEEE Trans. Ind. Appl., vol. 56, no. 2, pp.

1146–1155, 2020.

[15] H. Wu and Z. Xu, “Fast dc optimal power flow based on deep convolutional neural

network,” in Proc. CIEEC. IEEE, 2022, pp. 2508–2512.

[16] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration of recurrent

network architectures,” in Proc. ICML, 2015, p. 2342–2350.

[17] Q. Li, Y. Xu, B. S. H. Chew, H. Ding, and G. Zhao, “An integrated missing-data

tolerant model for probabilistic pv power generation forecasting,” IEEE Trans. Power

Syst., vol. 37, no. 6, pp. 4447–4459, 2022.

[18] G. Ruan, D. S. Kirschen, H. Zhong, Q. Xia, and C. Kang, “Estimating demand

flexibility using siamese lstm neural networks,” IEEE Trans. Power Syst., vol. 37,

no. 3, pp. 2360–2370, 2022.

[19] Y. Seyedi, H. Karimi, and J. Mahseredjian, “A data-driven method for prediction of

post-fault voltage stability in hybrid ac/dc microgrids,” IEEE Trans. Power Syst.,

vol. 37, no. 5, pp. 3758–3768, 2022.

[20] D. Fellner, T. I. Strasser, and W. Kastner, “Applying deep learning-based concepts for

the detection of device misconfigurations in power systems,” Sustain. Energy Grids

Netw., vol. 32, p. 100851, 2022.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin, “Attention is all you need,” in Proc. NIPS, Red Hook, NY, USA,

2017, p. 6000–6010.

[22] Z. Wang, Y. Ma, Z. Liu, and J. Tang, “R-transformer: Recurrent neural network

enhanced transformer,” arXiv preprint arXiv:1907.05572, 2019.

[23] W. L. Hamilton, “Graph representation learning,” Synthesis Lectures on Artificial

Intelligence and Machine Learning, vol. 14, no. 3, pp. 1–159, 2020.

BIBLIOGRAPHY 129

[24] O. Kundacina, M. Forcan, M. Cosovic, D. Raca, M. Dzaferagic, D. Miskovic, M. Mak-

simovic, and D. Vukobratovic, “Near real-time distributed state estimation via ai/ml-

empowered 5g networks,” in Proc. SmartGridComm. IEEE, 2022, pp. 284–289.

[25] K. Chen, J. Hu, Y. Zhang, Z. Yu, and J. He, “Fault location in power distribution

systems via deep graph convolutional networks,” IEEE J. Sel. Areas Commun., vol. 38,

no. 1, pp. 119–131, 2020.

[26] R. Zhang, W. Yao, Z. Shi, L. Zeng, Y. Tang, and J. Wen, “A graph attention networks-

based model to distinguish the transient rotor angle instability and short-term voltage

instability in power systems,” Int. J. Electr. Power Energy Syst., vol. 137, p. 107783,

2022.

[27] S. Arastehfar, M. Matinkia, and M. R. Jabbarpour, “Short-term residential load

forecasting using graph convolutional recurrent neural networks,” Eng. Appl. Artif.

Intell., vol. 116, p. 105358, 2022.

[28] T. Zhao, M. Yue, and J. Wang, “Structure-informed graph learning of networked

dependencies for online prediction of power system transient dynamics,” IEEE Trans.

Power Syst., vol. 37, no. 6, pp. 4885–4895, 2022.

[29] A. Takiddin, R. Atat, M. Ismail, O. Boyaci, K. R. Davis, and E. Serpedin, “Generalized

graph neural network-based detection of false data injection attacks in smart grids,”

IEEE Trans. Emerg. Top. Comput. Intell., pp. 1–13, 2023.

[30] O. Kundacina, M. Cosovic, and D. Vukobratovic, “State estimation in electric power

systems leveraging graph neural networks,” in Proc. PMAPS, 2022, pp. 1–6.

[31] O. Kundacina, M. Cosovic, D. Miskovic, and D. Vukobratovic, “Distributed nonlinear

state estimation in electric power systems using graph neural networks,” in Proc.

SmartGridComm. IEEE, 2022, pp. 8–13.

[32] Y. Yuan, Z. Wang, and Y. Wang, “Learning latent interactions for event classification

via graph neural networks and pmu data,” IEEE Trans. Power Syst., vol. 38, no. 1,

pp. 617–629, 2023.

[33] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed. The

MIT Press, 2018.

[34] M. Glavic, “(deep) reinforcement learning for electric power system control and related

problems: A short review and perspectives,” Annu. Rev. Control, 2019.

[35] Y. Gao, J. Shi, W. Wang, and N. Yu, “Dynamic distribution network reconfiguration

using reinforcement learning,” in Proc. SmartGridComm. IEEE, 2019, pp. 1–7.

[36] W. Wang, N. Yu, Y. Gao, and J. Shi, “Safe off-policy deep reinforcement learning

algorithm for volt-var control in power distribution systems,” IEEE Trans. Smart Grid,

vol. 11, no. 4, pp. 3008–3018, 2020.

[37] O. Stanojev, O. Kundacina, U. Markovic, E. Vrettos, P. Aristidou, and G. Hug, “A

reinforcement learning approach for fast frequency control in low-inertia power systems,”

in Proc. NAPS, 2021, pp. 1–6.

130 BIBLIOGRAPHY

[38] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey of multiagent

reinforcement learning,” IEEE Trans. Syst. Man Cybern., vol. 38, no. 2, pp. 156–172,

2008.

[39] H. Liu and W. Wu, “Online multi-agent reinforcement learning for decentralized

inverter-based volt-var control,” IEEE Trans. Smart Grid, vol. 12, no. 4, pp. 2980–

2990, 2021.

[40] D. Chen, K. Chen, Z. Li, T. Chu, R. Yao, F. Qiu, and K. Lin, “Powernet: Multi-agent

deep reinforcement learning for scalable powergrid control,” IEEE Trans. Power Syst.,

vol. 37, no. 2, pp. 1007–1017, 2022.

[41] L. Ding, Z. Lin, X. Shi, and G. Yan, “Target-value-competition-based multi-agent deep

reinforcement learning algorithm for distributed nonconvex economic dispatch,” IEEE

Trans. Power Syst., vol. 38, no. 1, pp. 204–217, 2023.

[42] T. Qian, C. Shao, X. Li, X. Wang, Z. Chen, and M. Shahidehpour, “Multi-agent deep

reinforcement learning method for ev charging station game,” IEEE Trans. Power

Syst., vol. 37, no. 3, pp. 1682–1694, 2022.

[43] A. Monticelli, “Electric power system state estimation,” Proc. IEEE, vol. 88, no. 2, pp.

262–282, 2000.

[44] A. Gomez-Exposito, A. Abur, P. Rousseaux, A. de la Villa Jaen, and C. Gomez-Quiles,

“On the use of PMUs in power system state estimation,” in Proc. PSCC, 2011.

[45] G. N. Korres and N. M. Manousakis, “State estimation and observability analysis for

phasor measurement unit measured systems,” IET Gener. Transm. Dis., vol. 6, no. 9,

pp. 902–913, September 2012.

[46] A. Abur and A. Expósito, Power System State Estimation: Theory and Implementation,

ser. Power Engineering. Taylor & Francis, 2004.

[47] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message

passing for quantum chemistry,” in Proc. ICML, 06–11 Aug 2017, pp. 1263–1272.

[48] L. Zhang, G. Wang, and G. B. Giannakis, “Real-time power system state estimation

and forecasting via deep unrolled neural networks,” IEEE Trans. Signal Process.,

vol. 67, no. 15, pp. 4069–4077, 2019.

[49] A. S. Zamzam, X. Fu, and N. D. Sidiropoulos, “Data-driven learning-based optimization

for distribution system state estimation,” IEEE Trans. Power Syst., vol. 34, no. 6, pp.

4796–4805, 2019.

[50] B. Donon, B. Donnot, I. Guyon, and A. Marot, “Graph neural solver for power systems,”

in Proc. IJCNN, 2019, pp. 1–8.

[51] V. Bolz, J. Rueß, and A. Zell, “Power flow approximation based on graph convolutional

networks,” in Proc. ICMLA. IEEE, 2019, pp. 1679–1686.

[52] D. Wang, K. Zheng, Q. Chen, G. Luo, and X. Zhang, “Probabilistic power flow solution

with graph convolutional network,” in Proc. ISGT Europe. IEEE, 2020, pp. 650–654.

BIBLIOGRAPHY 131

[53] B. Donon, R. Clément, B. Donnot, A. Marot, I. Guyon, and M. Schoenauer, “Neural

networks for power flow: Graph neural solver,” Electr. Power Syst. Res., vol. 189, p.

106547, 2020.

[54] T. B. Lopez-Garcia and J. A. Domı́nguez-Navarro, “Power flow analysis via typed

graph neural networks,” Eng. Appl. Artif. Intell., vol. 117, p. 105567, 2023.

[55] L. Pagnier and M. Chertkov, “Physics-informed graphical neural network for parameter

& state estimations in power systems,” arXiv, 2021.

[56] Q. Yang, A. Sadeghi, and G. Wang, “Data-driven priors for robust psse via gauss-

newton unrolled neural networks,” IEEE J. Emerg. Sel. Top. Circuits Syst., vol. PP,

pp. 1–1, 01 2022.

[57] M. J. Hossain and M. Rahnamay–Naeini, “State estimation in smart grids using

temporal graph convolution networks,” in Proc. NAPS, 2021, pp. 01–05.

[58] O. Kundacina, M. Cosovic, D. Miskovic, and D. Vukobratovic, “Graph neural networks

on factor graphs for robust, fast, and scalable linear state estimation with PMUs,”

Sustain. Energy Grids Netw., vol. 34, p. 101056, 2023.

[59] V. G. Satorras and M. Welling, “Neural enhanced belief propagation on factor graphs,”

in Proc. AISTATS, 2021.

[60] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product

algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498–519, 2001.

[61] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph

Attention Networks,” in Proc. ICLR, 2018.

[62] M. A. Samman, H. Mokhlis, N. N. Mansor, H. Mohamad, H. Suyono, and N. M. Sapari,

“Fast optimal network reconfiguration with guided initialization based on a simplified

network approach,” IEEE Access, vol. 8, pp. 11 948–11 963, 2020.

[63] V. Fathi, H. Seyedi, and B. M. Ivatloo, “Reconfiguration of distribution systems in the

presence of distributed generation considering protective constraints and uncertainties,”

Int. Trans. Electr. Energy Syst., vol. 30, no. 5, p. e12346, 2020.

[64] S. Mishra, D. Das, and S. Paul, “A comprehensive review on power distribution network

reconfiguration,” Energy Syst., vol. 8, pp. 227–284, 2017.

[65] S. Civanlar, J. Grainger, H. Yin, and S. Lee, “Distribution feeder reconfiguration for

loss reduction,” IEEE Trans. Power Deliv., vol. 3, no. 3, pp. 1217–1223, 1988.

[66] D. Shirmohammadi and H. Hong, “Reconfiguration of electric distribution networks for

resistive line losses reduction,” IEEE Trans. Power Deliv., vol. 4, no. 2, pp. 1492–1498,

1989.

[67] M. E. Baran and F. F. Wu, “Network reconfiguration in distribution systems for loss

reduction and load balancing,” IEEE Power Eng. Rev., vol. 9, no. 4, pp. 101–102,

1989.

[68] R. Taleski and D. Rajicic, “Distribution network reconfiguration for energy loss

reduction,” IEEE Trans. Power Syst., vol. 12, no. 1, pp. 398–406, 1997.

132 BIBLIOGRAPHY

[69] Q. Zhou, D. Shirmohammadi, and W.-H. Liu, “Distribution feeder reconfiguration for

operation cost reduction,” IEEE Trans. Power Syst., vol. 12, no. 2, pp. 730–735, 1997.

[70] A. Borghetti, “A mixed-integer linear programming approach for the computation of

the minimum-losses radial configuration of electrical distribution networks,” IEEE

Trans. Power Syst., vol. 27, no. 3, pp. 1264–1273, 2012.

[71] H. Ahmadi and J. R. Mart́ı, “Distribution system optimization based on a linear

power-flow formulation,” IEEE Trans. Power Deliv., vol. 30, no. 1, pp. 25–33, 2015.

[72] M. Lavorato, J. F. Franco, M. J. Rider, and R. Romero, “Imposing radiality constraints

in distribution system optimization problems,” IEEE Trans. Power Syst., vol. 27, no. 1,

pp. 172–180, 2012.

[73] R. A. Jabr, R. Singh, and B. C. Pal, “Minimum loss network reconfiguration using

mixed-integer convex programming,” IEEE Trans. Power Syst., vol. 27, no. 2, pp.

1106–1115, 2012.

[74] H. Haghighat and B. Zeng, “Distribution system reconfiguration under uncertain load

and renewable generation,” IEEE Trans. Power Syst., vol. 31, no. 4, pp. 2666–2675,

2016.

[75] E. Ramos, A. Exposito, J. Santos, and F. Iborra, “Path-based distribution network

modeling: application to reconfiguration for loss reduction,” IEEE Trans. Power Syst.,

vol. 20, no. 2, pp. 556–564, 2005.

[76] H. M. Khodr, J. Martinez-Crespo, M. A. Matos, and J. Pereira, “Distribution systems

reconfiguration based on opf using benders decomposition,” IEEE Trans. Power Deliv.,

vol. 24, no. 4, pp. 2166–2176, 2009.

[77] A. Merlin and H. Back, “Search for a minimal-loss operating spanning tree configuration

in an urban power distribution system,” in Proc. PSCC, vol. 1, 09 1975.

[78] V. Borozan, D. Rajicic, and R. Ackovski, “Improved method for loss minimization in

distribution networks,” IEEE Trans. Power Syst., vol. 10, no. 3, pp. 1420–1425, 1995.

[79] C. T. Huddleston, R. P. Broadwater, and A. Chandrasekaran, “Reconfiguration algo-

rithm for minimizing losses in radial electric distribution systems,” Electr. Power Syst.

Res., vol. 18, no. 1, pp. 57–66, 1990.

[80] I. Roytelman, V. Melnik, S. Lee, and R. Lugtu, “Multi-objective feeder reconfiguration

by distribution management system,” IEEE Trans. Power Syst., vol. 11, no. 2, pp.

661–667, 1996.

[81] N. Gupta, A. Swarnkar, and K. R. Niazi, “Distribution network reconfiguration for

power quality and reliability improvement using genetic algorithms,” Int. J. Electr.

Power Energy Syst., vol. 54, pp. 664–671, 2014.

[82] K. Nara, A. Shiose, M. Kitagawa, and T. Ishihara, “Implementation of genetic algorithm

for distribution systems loss minimum re-configuration,” IEEE Trans. Power Syst.,

vol. 7, no. 3, pp. 1044–1051, 1992.

BIBLIOGRAPHY 133

[83] W.-M. Lin, F. S. Cheng, and M. T. Tsay, “Distribution feeder reconfiguration with

refined genetic algorithm,” IET. Gener. Transm. Dis., vol. 147, pp. 349–354(5),

November 2000.

[84] M.-S. Tsai and F.-Y. Hsu, “Application of grey correlation analysis in evolutionary

programming for distribution system feeder reconfiguration,” IEEE Trans. Power Syst.,

vol. 25, no. 2, pp. 1126–1133, 2010.

[85] A. Delbem, A. de Carvalho, and N. Bretas, “Main chain representation for evolutionary

algorithms applied to distribution system reconfiguration,” IEEE Trans. Power Syst.,

vol. 20, no. 1, pp. 425–436, 2005.

[86] W.-C. Wu and M.-S. Tsai, “Application of enhanced integer coded particle swarm

optimization for distribution system feeder reconfiguration,” IEEE Trans. Power Syst.,

vol. 26, no. 3, pp. 1591–1599, 2011.

[87] S. Sivanagaraju, J. V. Rao, and P. S. Raju, “Discrete particle swarm optimization to

network reconfiguration for loss reduction and load balancing,” Electr. Power Compon.

Syst., vol. 36, no. 5, pp. 513–524, 2008.

[88] Y.-J. Jeon, J.-C. Kim, J.-O. Kim, J.-R. Shin, and K. Lee, “An efficient simulated

annealing algorithm for network reconfiguration in large-scale distribution systems,”

IEEE Trans. Power Deliv., vol. 17, no. 4, pp. 1070–1078, 2002.

[89] H.-C. Chang and C.-C. Kuo, “Network reconfiguration in distribution systems using

simulated annealing,” Electr. Power Syst. Res., vol. 29, no. 3, pp. 227–238, 1994.

[90] H. Karimianfard and H. Haghighat, “An initial-point strategy for optimizing distribu-

tion system reconfiguration,” Electr. Power Syst. Res., vol. 176, p. 105943, 2019.

[91] H. Kim, Y. Ko, and K.-H. Jung, “Artificial neural-network based feeder reconfiguration

for loss reduction in distribution systems,” IEEE Trans. Power Deliv., vol. 8, no. 3,

pp. 1356–1366, 1993.

[92] H. Salazar, R. Gallego, and R. Romero, “Artificial neural networks and clustering

techniques applied in the reconfiguration of distribution systems,” IEEE Trans. Power

Deliv., vol. 21, no. 3, pp. 1735–1742, 2006.

[93] I. Ahmadi, M. Ahmadigorji, and E. Tohidifar, “A novel approach for power loss

reduction in distribution networks considering budget constraint,” Int. Trans. Electr.

Energy Syst., vol. 28, no. 12, p. e2635, 2018.

[94] Z. Liu, Y. Liu, G. Qu, X. Wang, and X. Wang, “Intra-day dynamic network reconfig-

uration based on probability analysis considering the deployment of remote control

switches,” IEEE Access, vol. 7, pp. 145 272–145 281, 2019.

[95] S. Golshannavaz, S. Afsharnia, and F. Aminifar, “Smart distribution grid: Optimal

day-ahead scheduling with reconfigurable topology,” IEEE Trans. Smart Grid, vol. 5,

no. 5, pp. 2402–2411, 2014.

[96] Z. Li, X. Chen, K. Yu, B. Zhao, and H. Liu, “A novel approach for dynamic reconfigu-

ration of the distribution network via multi-agent system,” in Proc. DRPT. IEEE,

2008, pp. 1305–1311.

134 BIBLIOGRAPHY

[97] R. Broadwater, A. Khan, H. Shaalan, and R. Lee, “Time varying load analysis to

reduce distribution losses through reconfiguration,” IEEE Trans. Power Deliv., vol. 8,

no. 1, pp. 294–300, 1993.

[98] C.-S. Chen and M.-Y. Cho, “Energy loss reduction by critical switches,” IEEE Trans.

Power Deliv., vol. 8, no. 3, pp. 1246–1253, 1993.

[99] E. Lopez, H. Opazo, L. Garcia, and P. Bastard, “Online reconfiguration considering

variability demand: applications to real networks,” IEEE Trans. Power Syst., vol. 19,

no. 1, pp. 549–553, 2004.

[100] M.-H. Shariatkhah, M.-R. Haghifam, J. Salehi, and A. Moser, “Duration based recon-

figuration of electric distribution networks using dynamic programming and harmony

search algorithm,” Int. J. Electr. Power Energy Syst., vol. 41, no. 1, pp. 1–10, 2012.

[101] A. Zidan and E. F. El-Saadany, “Distribution system reconfiguration for energy loss

reduction considering the variability of load and local renewable generation,” Energy,

vol. 59, pp. 698–707, 2013.

[102] A. E. Milani and M. R. Haghifam, “An evolutionary approach for optimal time interval

determination in distribution network reconfiguration under variable load,” Math.

Comput. Model., vol. 57, no. 1, pp. 68–77, 2013.

[103] A. Mazza, G. Chicco, H. Andrei, and M. Rubino, “Determination of the relevant

periods for intraday distribution system minimum loss reconfiguration,” Int. Trans.

Electr. Energy Syst., vol. 25, no. 10, pp. 1992–2023, 2015.

[104] A. Jafari, H. Ganjeh Ganjehlou, F. Baghal Darbandi, B. Mohammadi-Ivatloo, and

M. Abapour, “Dynamic and multi-objective reconfiguration of distribution network

using a novel hybrid algorithm with parallel processing capability,” Appl. Soft Comput.,

vol. 90, p. 106146, 2020.

[105] N. V. Kovacki, P. M. Vidović, and A. T. Sarić, “Scalable algorithm for the dynamic

reconfiguration of the distribution network using the lagrange relaxation approach,”

Int. J. Electr. Power Energy Syst., vol. 94, pp. 188–202, 2018.

[106] N. Kovački, “Operativno planiranje rekonfiguracije distributivnih mreža primenom

vǐsekriterijumske optimizacije,” Ph.D. dissertation, University of Novi Sad (Serbia),

2018.

[107] O. B. Kundačina, P. M. Vidović, and M. R. Petković, “Solving dynamic distribution

network reconfiguration using deep reinforcement learning,” Electr. Eng., vol. 104,

no. 3, pp. 1487–1501, 2022.

[108] M. Cosovic, “Distributed state estimation in power systems using probabilistic graphical

models,” Ph.D. dissertation, University of Novi Sad, 2019.

[109] J. De La Ree, V. Centeno, J. S. Thorp, and A. G. Phadke, “Synchronized phasor

measurement applications in power systems,” IEEE Trans. Smart Grid, vol. 1, no. 1,

pp. 20–27, 2010.

BIBLIOGRAPHY 135

[110] M. Zhou, V. Centeno, J. Thorp, and A. Phadke, “An alternative for including phasor

measurements in state estimators,” IEEE Trans. Power Syst., vol. 21, no. 4, pp.

1930–1937, 2006.

[111] P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical

sciences; 3rd ed. New York, NY: McGraw-Hill, 2003.

[112] P. Kundur, Power System Stability and Control. McGraw-Hill Inc., 2022.

[113] Y. Weng, R. Negi, and M. Ilic, “Graphical model for state estimation in electric power

systems,” in Proc. SmartGridComm. IEEE, Oct. 2013, pp. 103–108.

[114] J. M. Stokes, K. Yang, K. Swanson, W. Jin, A. Cubillos-Ruiz, N. M. Donghia, C. R.

MacNair, S. French, L. A. Carfrae, Z. Bloom-Ackermann, V. M. Tran, A. Chiappino-

Pepe, A. H. Badran, I. W. Andrews, E. J. Chory, G. M. Church, E. D. Brown, T. S.

Jaakkola, R. Barzilay, and J. J. Collins, “A deep learning approach to antibiotic

discovery,” Cell, vol. 180, no. 4, pp. 688–702.e13, 2020.

[115] F. Monti, F. Frasca, D. Eynard, D. Mannion, and M. M. Bronstein, “Fake news

detection on social media using geometric deep learning,” ArXiv, vol. abs/1902.06673,

2019.

[116] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. W. Battaglia,

“Learning to simulate complex physics with graph networks,” in Proc. ICML, 2020.

[117] S. He, S. Xiong, Y. Ou, J. Zhang, J. Wang, Y. Huang, and Y. Zhang, “An overview

on the application of graph neural networks in wireless networks,” IEEE Open J.

Commun. Soc., vol. 2, pp. 2547–2565, 2021.

[118] W. Liao, B. Bak-Jensen, J. R. Pillai, Y. Wang, and Y. Wang, “A review of graph

neural networks and their applications in power systems,” ArXiv, vol. abs/2101.10025,

2022.

[119] B. Sanchez-Lengeling, E. Reif, A. Pearce, and A. B. Wiltschko, “A gentle introduction

to graph neural networks,” Distill, 2021, https://distill.pub/2021/gnn-intro.

[120] N. M. Kriege, F. D. Johansson, and C. Morris, “A survey on graph kernels,” Appl.

Netw. Sci., vol. 5, pp. 1–42, 2020.

[121] H. Kashima, K. Tsuda, and A. Inokuchi, “Marginalized kernels between labeled graphs,”

in Proc. ICML, 2003, p. 321–328.

[122] L. Lü and T. Zhou, “Link prediction in complex networks: A survey,” Phys. A: Stat.

Mech. Appl., vol. 390, no. 6, pp. 1150–1170, 2011.

[123] U. Luxburg, “A tutorial on spectral clustering,” Stat. Comput, vol. 17, pp. 395–416, 01

2004.

[124] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding

and clustering,” in Proc. NIPS, ser. NIPS’01, Cambridge, MA, USA, 2001, p. 585–591.

[125] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J. Smola,

“Distributed large-scale natural graph factorization,” in Proc. WWW. New York, NY,

USA: ACM, 2013, p. 37–48.

136 BIBLIOGRAPHY

[126] E. A. Leicht, P. Holme, and M. E. J. Newman, “Vertex similarity in networks.” Phys.

Rev. E Stat. Nonlin. Soft Matter Phys., vol. 73 2 Pt 2, p. 026120, 2006.

[127] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social represen-

tations,” in Proc. ACM SIGKDD. New York, NY, USA: ACM, 2014, p. 701–710.

[128] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,” in

Proc. ACM SIGKDD. New York, NY, USA: ACM, 2016, p. 855–864.

[129] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed represen-

tations of words and phrases and their compositionality,” in Proc. NIPS, C. Burges,

L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, Eds., vol. 26, 2013.

[130] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. F. Zambaldi,

M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, Ç. Gülçehre,

H. F. Song, A. J. Ballard, J. Gilmer, G. E. Dahl, A. Vaswani, K. R. Allen, C. Nash,

V. Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli, M. M. Botvinick, O. Vinyals,

Y. Li, and R. Pascanu, “Relational inductive biases, deep learning, and graph networks,”

CoRR, vol. abs/1806.01261, 2018.

[131] J. Bruna, W. Zaremba, A. D. Szlam, and Y. LeCun, “Spectral networks and locally

connected networks on graphs,” in Proc. ICLR, 2014.

[132] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks

on graphs with fast localized spectral filtering,” in Proc. NIPS, Red Hook, NY, USA,

2016, p. 3844–3852.

[133] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional

networks,” in Proc. ICLR, 2017.

[134] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and relieving the

over-smoothing problem for graph neural networks from the topological view,” in Proc.

AAAI, 2020.

[135] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph sequence neural

networks,” in Proc. ICLR, 2015.

[136] D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. L. Dill, “Learning a sat

solver from single-bit supervision,” in Proc. ICLR, 2019.

[137] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by

back-propagating errors,” Nature, vol. 323, pp. 533–536, 1986.

[138] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm, “Deep

Graph Infomax,” in Proc. ICLR, 2019.

[139] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simplifying graph

convolutional networks,” in Proc. ICML, vol. 97, 2019, pp. 6861–6871.

[140] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning

to align and translate,” in Proc. ICLR, 2015.

BIBLIOGRAPHY 137

[141] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large

graphs,” in Proc. NIPS, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett, Eds., 2017.

[142] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, “Graph

convolutional neural networks for web-scale recommender systems,” in Proc. ACM

SIGKDD. New York, NY, USA: ACM, 2018.

[143] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bronstein, “Temporal

graph networks for deep learning on dynamic graphs,” in Proc. ICML, 2020.

[144] M. Zitnik, M. Agrawal, and J. Leskovec, “Modeling polypharmacy side effects with

graph convolutional networks,” J. Bioinform., vol. 34, no. 13, pp. i457–i466, 2018.

[145] A. Poulovassilis and M. Levene, “A nested-graph model for the representation and

manipulation of complex objects,” ACM Trans. Inf. Syst., vol. 12, no. 1, 1994.

[146] S. Fralick, “Learning to recognize patterns without a teacher,” IEEE Trans. Inf. Theory,

vol. 13, no. 1, pp. 57–64, 1967.

[147] A. Odena, “Semi-supervised learning with generative adversarial networks,” arXiv

preprint arXiv:1807.05118, 2016.

[148] X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J. Tang, “Self-supervised

learning: Generative or contrastive,” IEEE Trans. Knowl. Data Eng., pp. 1–1, 2021.

[149] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive

learning of visual representations,” in Proc. ICML, 2020.

[150] M. Cosovic and D. Vukobratovic, “Distributed Gauss–Newton method for state estima-

tion using belief propagation,” IEEE Trans. Power Syst., vol. 34, no. 1, pp. 648–658,

2019.

[151] D. Pujol-Perich, J. Suárez-Varela, M. Ferriol, S. Xiao, B. Wu, A. Cabellos-Aparicio,

and P. Barlet-Ros, “Ignnition: Bridging the gap between graph neural networks and

networking systems,” Netwrk. Mag. of Global Internetwkg., vol. 35, no. 6, p. 171–177,

nov 2021.

[152] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica, “Tune:

A research platform for distributed model selection and training,” arXiv preprint

arXiv:1807.05118, 2018.

[153] A. B. Birchfield, T. Xu, K. M. Gegner, K. S. Shetye, and T. J. Overbye, “Grid

structural characteristics as validation criteria for synthetic networks,” IEEE Trans.

Power Syst., vol. 32, no. 4, pp. 3258–3265, 2017.

[154] K. Xu, M. Zhang, J. Li, S. S. Du, K.-I. Kawarabayashi, and S. Jegelka, “How neural

networks extrapolate: From feedforward to graph neural networks,” in Proc. ICLR,

2021.

[155] B. Gou, “Optimal placement of pmus by integer linear programming,” IEEE Trans.

Power Syst., vol. 23, pp. 1525 – 1526, 09 2008.

138 BIBLIOGRAPHY

[156] J. Zhao, A. Gómez-Expósito, M. Netto, L. Mili, A. Abur, V. Terzija, I. Kamwa, B. Pal,

A. K. Singh, J. Qi et al., “Power system dynamic state estimation: Motivations,

definitions, methodologies, and future work,” IEEE Trans. Power Syst., vol. 34, no. 4,

pp. 3188–3198, 2019.

[157] A. Auten, M. Tomei, and R. Kumar, “Hardware acceleration of graph neural networks,”

in Proc. DAC. ACM/IEEE, 2020, pp. 1–6.

[158] S. Munikoti, D. Agarwal, L. Das, and B. Natarajan, “A general framework for quanti-

fying aleatoric and epistemic uncertainty in graph neural networks,” Neurocomputing,

vol. 521, pp. 1–10, 2023.

[159] R. C. Dugan, R. F. Arritt, T. E. McDermott, S. M. Brahma, and K. Schneider,

“Distribution system analysis to support the smart grid,” in Proc. PESGM. IEEE,

2010, pp. 1–8.

[160] D. Shirmohammadi, H. Hong, A. Semlyen, and G. Luo, “A compensation-based power

flow method for weakly meshed distribution and transmission networks,” IEEE Trans.

Power Syst., vol. 3, no. 2, pp. 753–762, 1988.

[161] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37, 1966.

[162] R. A. Howard, Dynamic programming and markov processes. John Wiley, 1960.

[163] Åström, Karl Johan, “Optimal Control of Markov Processes with Incomplete State

Information I,” J. Math. Anal. Appl., vol. 10, pp. 174–205, 1965.

[164] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., pp. 279–292, 1992.

[165] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature,

vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[166] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and

D. Wierstra, “Continuous control with deep reinforcement learning.” in Proc. ICLR,

2016.

[167] W. Fedus, P. Ramachandran, R. Agarwal, Y. Bengio, H. Larochelle, M. Rowland, and

W. Dabney, “Revisiting fundamentals of experience replay,” in Proc. ICML, 2020.

[168] M. Li, T. Zhang, Y. Chen, and A. J. Smola, “Efficient mini-batch training for stochastic

optimization,” in Proc. ACM SIGKDD. ACM, 2014, p. 661–670.

[169] R. C. Dugan and T. E. McDermott, “An open source platform for collaborating on

smart grid research,” in Proc. PESGM. IEEE, 2011, pp. 1–7.

[170] S.-A. Yin and C.-N. Lu, “Distribution feeder scheduling considering variable load

profile and outage costs,” IEEE Trans. Power Syst., vol. 24, no. 2, pp. 652–660, 2009.

[171] M. Kashem, V. Ganapathy, G. Jasmon, and M. Buhari, “A novel method for loss

minimization in distribution networks,” in Proc. DRPT, 2000, pp. 251–256.

[172] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learning: Tutorial,

review, and perspectives on open problems,” 2020.

BIBLIOGRAPHY 139

[173] J. Garćıa and F. Fernández, “A comprehensive survey on safe reinforcement learning,”

J. Mach. Learn. Res., vol. 16, pp. 1437–1480, 2015.

[174] Q. Yang, T. D. Simão, S. Tindemans, and M. T. J. Spaan, “Wcsac: Worst-case soft

actor critic for safety-constrained reinforcement learning,” in Proc. AAAI, 2021.

1

Овај Образац чини саставни део докторске дисертације, односно
докторског уметничког пројекта који се брани на Универзитету у Новом
Саду. Попуњен Образац укоричити иза текста докторске дисертације,
односно докторског уметничког пројекта.

План третмана података

Назив пројекта/истраживања

Примена метода дубоког учења за надгледање и оптимизацију електроенергетских система
(Application of Deep Learning Methods in Monitoring and Optimization of Electric Power Systems)

Назив институције/институција у оквиру којих се спроводи истраживање

a) Факултет техничких наука, Универзитет у Новом Саду

б) Истраживачко-развојни институт за вештачку интелигенцију Србије

Назив програма у оквиру ког се реализује истраживање

Истраживање се реализује у оквиру израде докторске дисертације на студијском

програму Енергетика, електроника и телекомуникације.

1. Опис података

1.1 Врста студије

Укратко описати тип студије у оквиру које се подаци прикупљају

У овој студији нису прикупљани подаци.

1.2 Врсте података

а) квантитативни

б) квалитативни

1.3. Начин прикупљања података

а) анкете, упитници, тестови

б) клиничке процене, медицински записи, електронски здравствени записи

в) генотипови: навести врсту ________________________________

г) административни подаци: навести врсту _______________________

д) узорци ткива: навести врсту_________________________________

ђ) снимци, фотографије: навести врсту_____________________________

е) текст, навести врсту _______________________________________

Национални портал отворене науке – open.ac.rs

2

ж) мапа, навести врсту ______________________________________

з) остало: описати ___

1.3 Формат података, употребљене скале, количина података

1.3.1 Употребљени софтвер и формат датотеке:

a) Excel фајл, датотека __________________

b) SPSS фајл, датотека __________________

c) PDF фајл, датотека ___________________

d) Текст фајл, датотека __________________

e) JPG фајл, датотека ___________________

f) Остало, датотека ____________________

1.3.2. Број записа (код квантитативних података)

а) број варијабли ___

б) број мерења (испитаника, процена, снимака и сл.) ______________________

1.3.3. Поновљена мерења

а) да

б) не

Уколико је одговор да, одговорити на следећа питања:

а) временски размак измедју поновљених мера је ______________________________

б) варијабле које се више пута мере односе се на ________________________________

в) нове верзије фајлова који садрже поновљена мерења су именоване као ____________

Напомене: __

Да ли формати и софтвер омогућавају дељење и дугорочну валидност података?

а) Да

б) Не

Ако је одговор не, образложити __

Национални портал отворене науке – open.ac.rs

3

2. Прикупљање података

2.1 Методологија за прикупљање/генерисање података

2.1.1. У оквиру ког истраживачког нацрта су подаци прикупљени?

а) експеримент, навести тип ___

б) корелационо истраживање, навести тип __

ц) анализа текста, навести тип __

д) остало, навести шта __

2.1.2 Навести врсте мерних инструмената или стандарде података специфичних за одређену
научну дисциплину (ако постоје).

__

__

2.2 Квалитет података и стандарди

2.2.1. Третман недостајућих података

а) Да ли матрица садржи недостајуће податке? Да Не

Ако је одговор да, одговорити на следећа питања:

а) Колики је број недостајућих података? __________________________

б) Да ли се кориснику матрице препоручује замена недостајућих података? Да Не

в) Ако је одговор да, навести сугестије за третман замене недостајућих података

__

2.2.2. На који начин је контролисан квалитет података? Описати

__

__

Национални портал отворене науке – open.ac.rs

4

2.2.3. На који начин је извршена контрола уноса података у матрицу?

__

__

3. Третман података и пратећа документација

3.1. Третман и чување података

3.1.1. Подаци ће бити депоновани у ___________________________________ репозиторијум.

3.1.2. URL адреса ___

3.1.3. DOI __

3.1.4. Да ли ће подаци бити у отвореном приступу?

а) Да

б) Да, али после ембарга који ће трајати до ___________________________________

в) Не

Ако је одговор не, навести разлог __

3.1.5. Подаци неће бити депоновани у репозиторијум, али ће бити чувани.

Образложење

__

__

3.2 Метаподаци и документација података

3.2.1. Који стандард за метаподатке ће бити примењен? _________________________________

3.2.1. Навести метаподатке на основу којих су подаци депоновани у репозиторијум.

__

__

Национални портал отворене науке – open.ac.rs

5

Ако је потребно, навести методе које се користе за преузимање података, аналитичке и
процедуралне информације, њихово кодирање, детаљне описе варијабли, записа итд.

__

__

__

__

3.3 Стратегија и стандарди за чување података

3.3.1. До ког периода ће подаци бити чувани у репозиторијуму? _______________________

3.3.2. Да ли ће подаци бити депоновани под шифром? Да Не

3.3.3. Да ли ће шифра бити доступна одређеном кругу истраживача? Да Не

3.3.4. Да ли се подаци морају уклонити из отвореног приступа после извесног времена?

Да Не

Образложити

__

__

4. Безбедност података и заштита поверљивих информација

Овај одељак МОРА бити попуњен ако ваши подаци укључују личне податке који се односе на
учеснике у истраживању. За друга истраживања треба такође размотрити заштиту и сигурност
података.

4.1 Формални стандарди за сигурност информација/података

Истраживачи који спроводе испитивања с људима морају да се придржавају Закона о заштити
података о личности (https://www.paraдraf.rs/propisi/zakon_o_zastiti_podataka_o_licnosti.html) и
одговарајућег институционалног кодекса о академском интегритету.

4.1.2. Да ли је истраживање одобрено од стране етичке комисије? Да Не

Ако је одговор Да, навести датум и назив етичке комисије која је одобрила истраживање

__

Национални портал отворене науке – open.ac.rs

6

4.1.2. Да ли подаци укључују личне податке учесника у истраживању? Да Не

Ако је одговор да, наведите на који начин сте осигурали поверљивост и сигурност информација
везаних за испитанике:

а) Подаци нису у отвореном приступу

б) Подаци су анонимизирани

ц) Остало, навести шта

__

__

5. Доступност података

5.1. Подаци ће бити

а) јавно доступни

б) доступни само уском кругу истраживача у одређеној научној области

ц) затворени

Ако су подаци доступни само уском кругу истраживача, навести под којим условима могу да их
користе:

__

__

Ако су подаци доступни само уском кругу истраживача, навести на који начин могу
приступити подацима:
__

__

5.4. Навести лиценцу под којом ће прикупљени подаци бити архивирани.

__

6. Улоге и одговорност

6.1. Навести име и презиме и мејл адресу власника (аутора) података

Национални портал отворене науке – open.ac.rs

7

__

6.2. Навести име и презиме и мејл адресу особе која одржава матрицу с подацимa

__

6.3. Навести име и презиме и мејл адресу особе која омогућује приступ подацима другим
истраживачима

__

Национални портал отворене науке – open.ac.rs

	List of Publications
	List of Figures
	List of Tables
	Abstract
	Abbreviations
	Introduction
	Deep Learning Fundamentals
	Convolutional Neural Networks
	Recurrent Neural Networks
	Graph Neural Networks
	Deep Reinforcement Learning
	Power System State Estimation using Graph Neural Networks
	Dynamic Distribution Network Reconfiguration based on Deep Reinforcement Learning

	I State Estimation and Graph Neural Networks
	Power System State Estimation
	Foundational Concepts
	Linear State Estimation
	Nonlinear State Estimation

	Graph Neural Networks
	Overview of Machine Learning on Graphs
	Graphs
	Common Tasks of Machine Learning on Graphs
	The Need for Graph Representation Learning
	Graph Representation Learning
	Graph Representation Learning using GNNs

	Theoretical Foundations of Spatial Graph Neural Network
	Graph Attention Networks

	Practical Aspects of Graph Neural Networks

	Graph Neural Network-based State Estimation
	Power System Factor Graph Augmentation
	Proposed GNN Architecture
	Computational Complexity and Distributed Inference

	Numerical results
	Linear State Estimation
	Scalability and Sample Efficiency Analysis of Linear State Estimation
	Nonlinear State Estimation

	Summary and future work

	II Dynamic Distribution Network Reconfiguration and Reinforcement Learning
	Dynamic Distribution Network Reconfiguration
	Distribution Network Reconfiguration
	Mathematical Formulation of the DDNR Problem
	Objective Function
	Constraints

	Reinforcement Learning
	Finite Markov Decision Processes
	Q-Learning
	Deep Q-learning

	Reinforcement Learning based Dynamic Distribution Network Reconfiguration
	Modelling Dynamic Distribution Network Reconfiguration as a Markov Decision Process
	Training and Evaluation Algorithms
	Numerical Results
	Benchmark Test Examples
	Real-Life Large-Scale Distribution Network
	IEEE 33-bus Radial System

	Summary and future work

	Conclusions
	Bibliography

