

UNIVERZITET U NIŠU TEHNOLOŠKI FAKULTET U LESKOVCU

Jovana J. Stepanović

ISTRAŽIVANJE DEFORMACIONIH KARAKTERISTIKA TEKSTURIRANIH MULTIFILAMENTNIH POLIESTERSKIH PREĐA

DOKTORSKA DISERTACIJA

Leskovac, 2023.

UNIVERSITY OF NIŠ FACULTY OF TECHNOLOGY LESKOVAC

Jovana J. Stepanović

RESEARCH OF DEFORMATION CHARACTERISTICS OF TEXTURED MULTIFILAMENT POLYESTER YARNS

DOCTORAL DISSERTATION

Leskovac, 2023.

Komisija za ocenu i odbranu doktorske disertacije

Predsednik	dr Nenad Ćirković, docent
	Univerzitet u Nišu
	Tehnološki fakultet u Leskovcu
Mentor, član komisije	dr Dušan Trajković, redovni profesor
	Univerzitet u Nišu
	Tehnološki fakultet u Leskovcu
Član komisije	dr Vasilije Petrović, redovni profesor
	Univerzitet u Novom Sadu
	Tehnički fakultet "Mihajlo Pupin" Zrenjanin
Član komisije	dr Sonja Jordeva, vanredni profesor
	Univerzitet "Goce Delčev" Štip
	Tehnološko – tehnički fakultet
Član komisije	dr Tatjana Šarac, docent
J *	Univerzitet u Nišu
	Tehnološki fakultet u Leskovcu

Mentor:	Prof. dr Dušan Trajković, Univerzitet u Nišu, Tehnološki fakultet u Leskovcu
Naclass	Istroživanja daformanianih konstranstika takaturinanih multifilamentnih
Inasiov:	Istrazivanje deformacionih karakteristika teksturiranih multifilamentnih
	poliesterskih pređa
Dogimor	Delterska digertagija obubugta regultata istroživanja utigaja teknoložkih regeretara
Rezime:	Doktorska disertacija obuhvata rezultate istrazivanja uticaja tennoroskih parametara
	proizvodnje na deformaciona svojstva teksturiranih multifilamentnih poliesterskih
	pređa. Posebna pažnja je usmerena na svojstva teksturiranih multifilamentnih pređa
	pri malim opterećenjima. Razrađena je i prikazana metoda za analizu deformacionih
	karakteristika teksturiranih pređa proizvedenih od POY PES multifilamenata.
	Analizirana su mehanička svojstva velikog broja komercijalnih teksturiranih
	multifilamentnih poliesterskih pređa izrađenih, pri različitim tehnološkim
	narametrima na mačini sa kratkim visokotemperaturnim grejačima. Rezultati analiza
	parametrina, na masini sa Kratkini visokotemperaturnini gregacinia. Kezunan ananze
	menanickin svojstava teksturiranin preda su iskorisceni za razvoj metode za
	predviđanje ključnih parametara deformacije teksturiranih pređa pri istezanju, što će
	doprineti predviđanju karakteristika pređa u procesima prerade u složenije tekstilne
	strukture. Rezultati istraživanja će doprineti i optimizaciji tehnološkog procesa
	proizvodnje teksturiranih multifilamentnih poliesterskih pređa.
Naučna oblast:	Tehnološko inženjerstvo
Naučna	
disciplina:	Tekstilna tehnologija
	telesturing in simultane una donie una lifeto antes una te succionale stižnosti
Ključne reči:	granica puzania, nonučtanje, deformacija
	granica puzanja, popusianje, detornacija
UDK:	677.072.7 - 4872 : 677494.674 (043.3)
CERIF klasifikacija	T 470 Tekstilna tehnologija
Kiuomikuonju.	
Tip licence	
Kreativne zajednice:	
Lujeunice.	

Podaci o doktorskoj disertaciji

Data on Doctoral Dissertation

Doctoral Supervisor:	Prof. Dušan Trajković, PhD, University of Niš, Faculty of Technology in Leskovac
Title:	Research of deformation characteristics of textured multifilament polyester yarns
Abstract:	The doctoral dissertation includes the results of research into the influence of technological production parameters on the deformation properties of textured multifilament polyester yarns. Special attention is focused on the properties of textured multifilament yarns at low loads. A method for analyzing the deformation characteristics of textured yarns produced from POY PES multifilaments was developed and presented. The mechanical properties of a large number of textured multifilament polyester yarns produced in industrial conditions, at different technological parameters, on a machine with short high-temperature heaters were analyzed. The results of the analysis of the mechanical properties of textured yarns were used to develop a method for predicting the key parameters of the deformation of textured yarns during stretching, which will contribute to the prediction of yarn characteristics in the processes of processing into more complex textile structures. The research results will also contribute to the optimization of the technological process of the production of textured multifilament polyester yarns.
Scientific Field:	Technology engineering
Scientific Discipline:	Textile technology
Key Words:	texturing, false twist, multifilament yarn, elastic limit, creep limit, yielding, deformation
UDK:	677.072.7 - 4872 : 677494.674 (043.3)
CERIF Classification:	T 470 Textiles technology
Creative Commons Licnse Type:	CC BY-NC-ND

Sadržaj

Cilj naučnog istraživanja	8
Sadržaj istraživanja	8
Naučni doprinos doktorske disertacije	9
UVOD	11
1. TEORIJSKI DEO	
1.1. Osnove simultanog frikcionog upredanja	
1.2. Princip simultanog frikcionog upredanja	20
1.3. Uređaj za simultano frikciono upredanje	
1.4. Mehanika simultanog upredanja	
1.5. Oscilacije sile zatezanja pređe u procesu teksturiranja	
1.6. Geometrija upredanja multifilamentne pređe	
1.7. Mehanička svojstva teksturirane multifilamentne pređe	
1.7.1. Elastična, viskoelastična i plastična deformacija	
1.8. Sila zatezanja i izduženje pređe	
1.9. Modeli zavisnosti napon - deformacija	41
1.10. Faktori koji utiču na kvalitet teksturirane pređe	47
2. EKSPERIMENTALNI DEO	49
2.1. Eksperimentalni materijal	49
2.2. Osnovne tehničke karakteristike mašine za teksturiranje pređa	
2.3. Metode ispitivanja eksperimentalnog materijala	51
2.3.1. Određivanje granice elastičnosti teksturirane multifilamentne pređe	
2.3.2. Određivanje granice puzanja teksturirane multifilamentne pređe	53
2.3.3. Određivanje granice popuštanja i prekida multifilamentne pređe	55
2.3.4. Određivanje kovrdžavosti multifilamentne teksturirane pređe	
2.3.5. Merenje sile zatezanja teksturirane PES multifilamentne pređe	
2.3.6. Metoda analize vizuelne promene oblika površine multifilamentne PES pređe	57
2.4. Rezultati mehaničkih karakteristika teksturirane poliesterske pređe	
2.4.1. Analiza rezultata sile i izduženja na granici elastičnosti teksturirane PES multifila	amentne
pređe	64
2.4.2. Analiza rezultata sile i izduženja na granici puzanja teksturirane PES multifila	amentne
pređe	69

2.4.3. Analiza rezultata sile i izduženja na kraju zone puzanja teksturirane PES multifilamentne
pređe75
2.4.4. Razmatranje karakteristika teksturirane PES multifilamentne pređe u zoni puzanja81
2.4.5. Analza rezultata sile i izduženja na granici popuštanja teksturirane PES multifilamentne
pređe
2.4.6. Analiza prekidnih karakteristika teksturirane PES multifilamentne pređe
2.5. Analiza učešća sile F1, F2, F3 i F4 u prekidnoj sili teksturirane PES multifilamentne pređe96
2.6. Analiza povezanosti parametara na granici elastičnosti i puzanja, i na kraju zone puzanja i
granice popuštanja101
2.7. Predviđanje parametara na granici elastičnosti, puzanja, kraju zone puzanja, popuštanja i
prekida103
2.8. Analiza kovrdžavosti teksturirane PES multifilamentne pređe
2.9. Analiza morfoloških karakteristika teksturirane PES multifilamentne pređe112
2.10. Rezultati merenja sile zatezanja osnove i potke u procesu tkanja
ZAKLJUČAK
LITERATURA
PRILOG
SPISAK TABELA
SPISAK SLIKA

Cilj naučnog istraživanja

Cilj naučnog istraživanja disertacije je da se razvije metoda za predviđanje graničnih opterećenja teksturiranih multifilamentnih poliesterskih pređa, kako ne bi došlo do narušavanja njihovih svojstava u tehnološkim procesima prerarade u tekstilne materijale. Takođe, istraživanja će doprineti definisanju optimalnih tehnoloških parametara proizvodnje teksturiranih poliesterskih pređa, saglasno nameni gotovih tekstilnih proizvoda. Posebna pažnja biće usmerena na analizu deformacionih karakteristika teksturiranih multifilamentnih pređa proizvedenih u industrijskim uslovima.

U eksperimentalnom delu je prikazana analiza mehaničkih karakteristika velikog broja partija teksturiranih poliesterskih multifilamentnih pređa, izrađenih pri različitim temperaturama teksturiranja, brzinama pređa, istezanjima pređa i obimnim brzinama frikcionih diskova mašine.

Dobijeni rezultati će doprineti razvoju novog pristupa definisanju svojstava teksturiranih multifilamentnih poliesterskih pređa, zasnovanog na rezultatima analize deformacija pređa pri dejstvu sila istezanja. Pored toga, rezultati analize mehaničkih karakteristika teksturiranih pređa su korisni za predviđanje promena u strukturi multifilamentnih pređa u narednim tehnološkim fazama prerade u složenije tekstilne materijale.

Dobijeni rezultati imaju za cilj da doprinesu unapređenju aktuelnih i razvoju novih metoda za predviđanje deformacionih karakteristika teksturiranih multifilamentnih poliesterskih pređa, kao i da će biti korisni budućim istraživanjima u ovoj oblasti.

Sadržaj istraživanja

Istraživanjem se definiše uticaj procesnih parametara proizvodnje teksturiranih multifilamentnih poliesterskih pređa na njihova mehanička svojstva.

Istraživanje je sprovedeno u nekoliko faza, pri čemu svaka faza teži ispunjenju definisanih specifičnih ciljeva.

Prva faza rada je posvećena analizi dosadašnjih istraživanja u oblasti strukturnih i mehaničkih karakteristika teksturiranih multifilamentnih poliesterskih pređa.

U drugoj fazi rada je razrađena metoda za određivanje deformacionih karakteristika teksturiranih pređa. Metoda omogućava precizno definisanje granice elastičnosti, puzanja, zone puzanja, popuštanja posle puzanja i prekida multifilamentnih teksturiranih poliesterskih pređa.

Analizom toka funkcije zavisnosti sila izduženje multifilamentnih pređa objašnjene su moguće promene u strukturi ovih pređa prilikom istezanja u narednim tehnološkim procesima.

U trećoj fazi rada, analizirane su različite partije teksturiranih poliesterskih multifilamentnih pređa izrađenih u industrijskim uslovima pri različitim temperaturama teksturiranja, različitim brzinama pređe, različitim istezanjima pređa i različitim obimnim brzinama frikcionih diskova mašine.

Dobijeni rezultati su doprineli da se razvije novi pristup analizi svojstava teksturiranih multifilamentnih poliesterskih pređa, koji se zasniva na promeni deformacije pri istezanju pređe do prekida. Takođe, rezultati analize mehaničkih karakteristika teksturiranih pređa su iskorišćeni da se predloži metoda koja povezuje sve ključne tačke u procesu deformacije pređe pri istezanju do prekida, čime se mogu predvideti moguće promene karakteristika pređe u narednim tehnološkim fazama prerade u složenije tekstilne strukture, u zavisnosti od sila zatezanja kojima se pređa podvrgava u tim procesima. Rezultati istraživanja će doprineti i optimizaciji tehnološkog procesa proizvodnje teksturiranih multifilamentnih poliesterskih pređa.

U završnom delu rada su sumirani rezultati istraživanja koji doprinose unapređenju aktuelnih i razvoju novih metoda za predviđanje mehaničkih karakteristika teksturiranih multifilamentnih poliesterskih pređa.

Naučni doprinos doktorske disertacije

U procesu teksturiranja glatki filamenti se oblikuju u kovrdžave multifilamentne pređe. Kombinovanjem toplotnog i mehaničkog dejstva, termoplastična vlakna dobijaju trajni talasast oblik. Voluminoznost i rastegljivost teksturirane multifilametne pređe imaju značajnu ulogu u oblikovanju izgleda i karakteristika gotovih proizvoda pri upotrebi.

Poseban problem pri analizi svojstava teksturiranih multifilamentnih pređa formiranih od delimično orijentisanih poliesterskih filamentnih pređa (POY - Partially Oriented Yarn) je nedostatak literaturnih podataka. Znatno veći broj radova je posvećen analizi parametara teksturiranih pređa istegnutog poliesterskog filamenta (FOY - Fully Oriented Yarn) koji se odlikuje stabilnijom strukturom. Radovi koji proučavaju svojstva teksturiranih pređa, od delimično orijentisanog poliesterskog filamenta, su uglavnom nastali analiziranjem pređa formiranih u laboratorijskim uslovima.

S obzirom da su teksturirane multifilamentne pređe, formirane od POY PES filamenata, proizvedene na mašinama sa visokotemperaturnim grejačima nedovoljno proučene, u okviru ovog rada prikazana su istraživanja uticaja ključnih parametara procesa teksturiranja (temperatura

primarnog grejača, brzina pređe, istezanje pređe, obimna brzina frikcionih diskova) na strukturna i mehanička svojstva teksturiranih pređa. Pri tome je definisan uticaj procesnih parametara proizvodnje teksturiranih multifilamentnih poliesterskih pređa na njihova svojstva pri malim opterećenjima, koja su karakteristična za procese dalje prerade pređa u složenije tekstilne materijale. Rezultati istraživanja su doprineli da se razvije metoda za predviđanje karakteristika teksturiranih multifilamentnih poliesterskih pređa na njihova svojstva teksturiranih multifilamentnih poliesterskih pređa pri malim opterećenjima, pri kojima će pređa sačuvati svoja svojstva tokom prerade u složenije tekstilne strukture. Posebna pažnja je usmerena na definisanje i analizu granice elastičnosti, zatim granice puzanja, zone puzanja i popuštanja posle puzanja multifilamentnih teksturiranih poliesterskih pređa. Takođe, budući da je kovrdžavost ključno svojstvo ovih pređa, prikazane su analogije promena kovrdžavosti i istezanja, što može doprineti razvoju primenljive metode za opisivanje kovrdžavosti multifilamentnih teksturiranih poliesterskih pređa.

UVOD

U procesu teksturiranja vrši se preoblikovanje vlakana pri čemu ona postaju kovrdžava i voluminozna. Na ovaj način sintetička filamentna vlakna dobijaju neka svojstva koja su karakteristična za prirodna vlakna. Pored voluminoznosti, teksturirana pređa se razlikuje od filamenta i po znatno većoj rastegljivosti. Nivo rastegljivosti ima veliku ulogu u oblikovanju izgleda i svojstava teksturirane pređe, kao i karakteristika gotovih proizvoda pri upotrebi. Voluminoznost teksturirane pređe potiče od talasavosti njenih pojedinačnih niti koja je češće poznata pod imenom kovrdžavost. Oblik talasa, odnosno kovrdža pređe i njena mehanička svojstva, zavise od postupka teksturiranja i parametara procesa teksturiranja.

U industrijskim uslovima proizvodnje pređe najviše se koristi istezno simultano frikciono teksturiranje [1, 2, 3]

Prva generacija mašina za simultano frikciono teksturiranje je imala duge zone grejanja i hlađenja. Zbog duge zone teksturiranja nastali su problemi u pogledu ergonomije (visoke mašine), povećane potrebe za energijom i enormne potrebe za prostorom što povećava investicione troškove. Pored toga javljaju se i problemi sa stabilnošću procesa jer u dugoj zoni pređe dolazi do talasanja zategnutosti pređe (surging) što utiče na njen kvalitet. To uslovljava smanjenje brzine teksturiranja i produktivnost procesa.

Tehnika simultanog frikcionog upredanja, uvedena početkom 1970-ih godina, ima najveću primenu u procesima proizvodnje teksturirane multifilamentne pređe. Ključni problem u procesu izrade pređe tehnikom simultanog frikcionog upredanja su pojave skokova sile zatezanja pri nekim brzinama teksturiranja, pri čemu nastaju deformacije teksturirane pređe. Ovaj skok naprezanja, u industrijskim uslovima proizvodnje pređe, obično nastaje u intervalu brzine teksturiranja m/min do 1000 m/min. Kritična brzina teksturiranja zavisi od izbora tehnoloških parametara mašine, kao i svojstava filamentne pređe [2]. Problem stabilnosti tehnološkog procesa proizvodnje pređe u procesu isteznog simultanog frikcionog teksturiranja posebno je analiziran u studiji [4].

Nestabilnost tehnološkog procesa proizvodnje pređe tehnikom isteznog simultanog frikcionog teksturiranja analizirali su mnogi autori [1, 2, 4, 5, 6]. U procesu simultanog upredanja pređa se deformiše uvijanjem do nivoa koji neće prouzrokovati sekundarno upredanje. Naprezanje koje nastaje u pređi je posledica istezanja, upredanja i savijanja. Brzina teksturiranja se ograničava povećanjem naprezanja u pređi, pa se u literaturi često pominje stabilan režim rada mašine do pojave skoka narezanja i nezadovoljavajući režim posle pomenute granične brzine.

Problem koji se javlja je i pojava izvijanja filamenta koje nastaje u procesu teksturiranja pri brzinama iznad granične vrednosti. U procesu proizvodnje pređe tehnikom simultanog frikcionog teksturiranja pri brzinama koje prevazilaze graničnu vrednost, odnosno koje dovode do nestabilnog rada mašine, nastaju zamke na pređi, što se negativno odražava na kvalitet pređe [4, 5, 6]. Povećanje brzine teksturiranja moguće je ili povećanjem dužine grejača ili povećanjem temperature teksturiranja, kako bi multifilamentna pređa bila zagrejana do optimalne temperature.

Međutim, u radovima [2 i 6] istraživanja idu isključivo u pravcu skraćenja zone teksturiranja kako bi se povećala brzina proizvodnje. Mašine sa visokotemperaturnim grejačima su doprinele da se znatno skrati vreme zadržavanja pređe u grejače, potrebno za postizanje optimalne temperature teksturiranja. Takođe, u radovima [1, 2, 6] se ukazuje da bi skraćenje svake zone u procesu simultanog frikcionog teksturiranja doprinelo pogodnijem vođenju pređe kroz mašinu i poboljšanju performansi procesa proizvodnje pređe.

Radovi [7, 8, 9] obrađuju strukturu i svojstva teksturiranih POY poliesterskih pređa, proizvedenih tehnikom simultanog frikcionog teksturiranja. Međutim, ne postoji sveobuhvatna studija i znanje o svojstvima ovih pređa. Većina istraživanja se bavi teorijskom analizom procesa ili analizira neka svojstva pređa primenom manjih brzina teksturiranja [10, 11]. Istraživanja [7, 9] pokazuju da mehanička svojstva i voluminoznost teksturiranih pređa uglavnom zavisi od brzine teksturiranja, količnika obimne brzine frikcionih diskova i brzine pređe, istezanja pređe u procesu teksturiranja i temperature primarnog grejača. U radu [12] istraživači konstatuju da na intenzitet teksturiranja ima uticaj i rastojanje između frikcionih diskova u frikcionoj jedinici.

Voluminoznost pređe se poboljšava sa porastom temperature primarnog grejača, a opada sa povećanjem brzine teksturiranja, dok je uticaj stepena istezanja i količnika obimne brzine frikcionih diskova i brzine pređa manje izražen [13].

Rezultati prikazani u radu [14] pokazuju da povećanjem temperature primarnog grejača se smanjuje žilavost, jačina i izduženje pređe, dok veće istezanje dovodi do porasta jačine i izdržljivosti pređe.

Pokušaji za unapređenje procesa teksturiranja idu u pravcu skraćenja puta kretanja pređe kroz mašinu, kako bi se podigla granična brzina pri kojoj nastaje prenaprezanje pređe. U tom cilju istraživači su razvili vodeni hladnjak male dužine [15] koji je namenjen za ugradnju na konvencionalne mašine za teksturiranje pređe.

Takođe, sprovode se istraživanja sa ciljem da se smanji dužina zone zagrevanja primenom pregrejane pare [15, 16]. Kombinovanjem uređaja za upredanje vodenim mlazom koji je istovremeno i hladnjak, kao i tehnike zagrevanja grejačem sa pregrejanom parom razvijen je novi sistem dužine jedan metar, koji je u fazi testiranja [17]. Ovaj novi sistem simultanog teksturiranja treba da doprinese povećanju brzine rada mašine [18].

Mašine za teksturiranje sa kratkim (1,4 m i 1 m) visokotemperaturnim grejačima znatno su unapredile proces teksturiranja. Kako se pri visokim brzinama teksturiranja, čak i do 1500 m/min, vreme zadržavanja pređe u zoni grejača skraćuje na 0,06 s do 0,04 s (od prethodnih 0,2 s kod grejača dužine 2,5 m), da bi se akumuliralo u vlaknima dovoljno toplote neophodne za termoplastičnu transformaciju strukture pređe koriste se visoke temperature u grejačima 350 °C, 400 °C, 450 °C pa i 500 °C. Ujedno je skraćenjem zone teksturiranja popravljena putanja pređe i smanjena mogućnost nestabilnosti procesa [19].

Poseban problem pri analizi voluminoznosti teksturiranih pređa formiranih od delimično orijentisanih PES filamenatnih pređa (POY) je nedostatak literaturnih podataka. Efekti simultanog frikcionog teksturiranja na strukturu i svojstva POY poliestera, pimenom HT grejača i velikih brzina teksturiranja prikazani su u malom broju radova [13, 30, 31] pa nedostaju sažete studije o ovim efektima. Taj pristup je ograničen na teorijske studije [19] ili na brzine iznad 700 m/min [10, 11] i uglavnom se bave analizom kovrdžavosti i prekidnih karakteristika teksturiranih multifilamentnih PES pređa [29]. Znatno veći broj radova je posvećen analizi parametara teksturiranih pređa istegnutog poliestarskog filamenta (FOY) koji se odlikuje stabilnijom strukturom [20, 21, 22, 23, 24].

Temeljnija analiza kovrdžavosti i mehaničkih karakteristika teksturiranih multifilamentnih poliesterskih pređa proizvedenih u industrijskim uslovima prikazana je u radovima [13, 28, 29, 30, 31, 32]. Svojstva teksturiranih POY PES multifilamentnih pređa su uslovljena temperaturom teksturiranja, brzinom teksturiranja, stepenom istezanja, perifernom (obimnom) brzinom frikcionih diskova i brzinom pređe. Analiziran je uticaj temeprature i brzine teksturiranja na stepen kristalnosti i stepen orijentisanosti strukturnih elemenata poliesterske pređe. Takođe, analiziran je i uticaj ovih parametara na stepen kovrdžavosti, karakterističnu kovrdžavost i stabilnost kovrdža teksturirane pređe. Istraživanja su bila usmerena i na prekidna svojstva teksturiranih pređa proizvedenih u industrijskim uslovima na mašini sa visokotemperaturnim grejačima.

Za analizu karakteristika kovrdžavosti teksturirane pređe koriste se i specijalizovani softveri razvijeni za tu namenu [61, 62, 63]. Zasnivaju se na analizi slike teksturirane pređe.

Pregledom navedenih radova, kao i radova u drugim izvorima [64 do 95] uočeno je da nedostaju podaci o promenama mehaničkih karakteristika teksturiranih multifilamentnih poliesterskih pređa pri malim opterećenjima, odnosno pri realnim vrednostima sila zatezanja pređe u tehnološkim procesima izrade tekstilnih materijala. Zato je u okviru ovog istraživanja razvijena i primenjena metoda analize deformacionih karakteristika teksturiranih multifilamentnih poliesterskih pređa [28, 32, 35, 96, 97, 98]. Posebna pažnja je usmerena na deformacione karakteristike teksturiranih PES pređa pri malim opterećenjima, koja su karakteristična za procese dalje prerade pređa u složenije tekstilne materijale. Analiziran je uticaj različitih procesnih parametara izrade teksturiranih multifilamentnih PES pređa na njihova mehanička svojstva i prikazana povezanost

vrednosti intenziteta sila koje deformišu pređu u procesu istezanja, od granice elastičnosti do prekida. Analizirana je elastičnost, puzanje, zona puzanja, popuštanje pređe posle zone puzanja sve do prekida, kao i uticaj različitih tehnoloških parametara proizvodnje na ova svojstva. Dobijeni rezultati su poslužili da se predlože zavisnosti koje će doprineti predviđanju deformacionih karakteristika teksturiranih multifilamentnih poliesterskih pređa.

1. TEORIJSKI DEO

Teorijski deo disertacije obuhvata saznanja o osnovima i principima simultanog frikcionog upredanja, kao i o mehanizmima koji se koriste za ovu namenu. Takođe, razmatrana je mehanika simultanog upredanja i oscilacije zatezanja pređe koje su glavni problem ograničenja brzine teksturiranja. Pored toga, ovaj deo rada obuhvata analizu geometrije upredanja i mehanička svojstva pređe, čije je razumevanje neophodno za pravilnu analizu deformacionih svojstava teksturiranih multifilamentnih poliesterskih pređa.

1.1. Osnove simultanog frikcionog upredanja

Tehnološki proces simultanog upredanja se zasniva na termoplastičnim svojstvima poliesterskih vlakana. Pri tome se filamenti istežu u procesu teksturiranja u cilju bolje orijentacije makromolekula, dobijaju odgovarajuću upredenost deformacijom monofilamenata, zagrevaju se u upredenom stanju pri čemu se dejstvo toplote i zatezanja pređe odražavaju na strukturu filamenata, a zatim raspredaju pod temperaturnim uslovima i zatezanjem koji ne utiču na deformaciju filamenata.

Kod simultanog frikcionog teksturiranja filamenti se istovremeno istežu i upredaju, i od ranih 1970-ih godina ova metoda je postala ključna u procesu izrade teksturirane pređe. Bolja ergonomija mašine, veća produkcija, manja potrošnja energije, veća efikasnost prosesa samo su neke od prednosti tehnološkog procesa frikcionog simultanog teksturiranja.

Na slici 1.1. prikazana je šema simultanog frikcionog teksturiranja sa odgovarajućim međusobno povezanim zonama [1].

Savremeni tehnološki procesi proizvodnje teksturiranih multifilamentnih pređa uglavnom se zasnivaju na principu simultanog frikcionog upredanja. U procesu teksturiranja pređa se isteže, zagreva, upreda, hladi i fiksira. Posle raspredanja pređa zadržava kovrdžavost i poseduje dobru voluminoznost.

U procesu teksturiranja pređa se upreda u zagrejanom stanju, blizu tačke omekšavanja, a zatim se hladi i termički fiksira. Raspredanjem pređe monofilamenti zadržavaju kovrdže, koje ih čine elastičnim i veoma voluminoznim.

POY pređa (1) se vodi pomoću ulaznog para valjaka (2) kroz primarni grejač (3), gde se pređa zagreva do predviđene temperature i upreda zahvaljujući frikcionoj jedinici za simultano upredanje. Zatim se pređa vodi kroz zonu hlađenja (4) u frikcionu jedinicu za simultano upredanje (5). Po

napuštanju frikcione jedinice pređa gubi uvoje, ali zadržava kovrdžavost i voluminoznost. Na ulazu u sekundarni grejač nalaze se valjci za vođenje pređe (6), koji zajedno sa valjcima na izlazu (8) regulišu silu zatezanja pređe u sekundarnom grejaču (7). Termičko fiksiranje teksturirane pređe vrši se primenom sekundarnog grejača (7). Kontinualno vođenje pređe vrši se odvodnim valjcima (8), a teksturirana pređa se namotava na kalem (9). U procesu teksturiranja vrši se i istezanje pređe, pri čemu se ostvaruje projektovana podužna masa teksturirane pređe.

Slika 1.1. Prikaz postupka simultanog frikcionog teksturiranja [1]
1 – POY, 2 – valjci na ulazu, 3 – primarni grejač, 4 – zona hlađenja,
5 – uređaj za simultano upredanje, 6 – valjci na ulazu u sekundarni grejač,
7 – sekundarni grejač, 8 – valjci na izlazu, 9 – namotavanje teksturirane pređe

U procesu upredanja pređe, neposredno pre ulaza u frikcionu jedinicu, nastaje migracija monofilamenata što doprinosi ujednačavanju naprezanja monofilamenata u multifilamentnoj pređi [2].

U svom radu [33] Danton (*M.J. Denton*) je analizirao promene upredenosti u pojedinim zonama procesa teksturiranja.

Ako se zanemari skupljanje pređe i ako je zagrevanje multifilamentne pređe ravnomerno, uz pretpostavku da su brzina vođenja pređe i obimna brzina frikcionih diskova konstantne i uz zanemareno klizanje pređe, Danton i saradnici su dali jednačine za predviđanje upredenosti teksturirane multifilamentne pređe u zoni zagrevanja-hlađenja i u zoni raspredanja (*M.J. Denton*) [2, 33]:

- u zoni zagrevanja / hlađenja

$$T_l = T\left[1 - exp\left(-\frac{v \cdot t}{l}\right)\right] \tag{1}$$

- u zoni raspredanja

$$T_2 = T\left(1 - \frac{h}{l}\right) \left[exp\left(-\frac{v \cdot t}{l}\right) - exp\left(-\frac{v \cdot t}{h}\right) \right]$$
(2)

gde je:

 T_1 - upredenost u zoni zagrevanja / hlađenja u vremenu t,

 T_2 - upredenost u zoni raspredanja u vremenu t,

- T krajnja upredenost u zoni zagrevanja / hlađenja,
- v brzina pređe,
- *l* dužina zone zagrevanja / hlađenja,
- *h* dužina zone raspredanja.

Analiza upredenosti pređe na putu kretanja kroz pomenute zone u procesu teksturiranja, pokazale su nagli rast upredenosi u zoni zagrevanja / hlađenja, što je rezultat deformacije zagrejanih monofilamenata u multifilamentnoj pređi [33].

Moment uvijanja multifilamentne pređe neposredno pre njenog ulaska u grejač je važan i to se često zanemaruje. Ovde počinje migracija filamenta. Filamenti teže da migriraju u jednostavnu spiralnu formu, ali je u praksi migracija ograničena zbog njihovog savijanja i međusobnog trenja. Kao rezultat toga, oni migriraju u i iz uvijenog snopa filamenata. Na karakteristike migracije utiču:

- sile trenja između filamenata (tip završne obrade, vrsta i nivo preparacije primenjene na sirovoj pređi, poprečni presek niti i sjaj),

- moment upredanja (primenjen nivo upredanja, trenje i uglovi skretanja pređe na putu pre frikcione jedinice za upredanje).

Toplota se prenosi na upredene filamente prilikom prolaza kroz grejač. Na izlasku iz grejača, multifilamentna pređa je u izvučenom, upredenom stanju i na visokoj temperaturi. Po napuštanju grejača, na putu prema frikcionoj jedinici, pređa se hladi dok prolazi kroz zonu hlađenja preko metalne staze, pre ulaska u jedinicu za uvijanje.

Pri nepromenjenom istezanju, povećanje primarnog upredanja u zoni teksturiranja doprinosi smanjenju aksijalnog naprezanja pređe neposredno pre frikcione jedinice (slika 1.2 - *b*) [1].

Slika 1.2. Smanjenje aksijalnog naprezanja pređe sa povećanjem upredenosti (a-aksijalna komponenta sile F_1 , b-aksijalna komponenta sile F_2)

Aksijalna komponenta sile, kao rezultat upredanja monofilamenata u multifilamentnoj pređi u termoplastičnom stanju je (slika 1.2):

$$F_a = F_1 \cos \theta_a \tag{3}$$

$$F_b = F_2 \cos \theta_b \tag{4}$$

gde je:

 F_a – aksijalna komponenta sile F_1

 F_b – aksijalna komponenta sile F_2

 F_1 i F_2 – sile koje deluju na monofilament kao posledica uvijanja

 θ_1 i θ_2 – uglovi uvijanja monofilamenata (slika 1.2.)

Ovo je rezultat povećanja ugla uvijanja monofilamenata u upredenoj multifilamentnoj pređi, pri čemu sile kontrakcije nisu značajne jer je pređa u termoplastičnom stanju. Aksijalno naprezanje multifilamentne pređe je suma aksijalnih sila pojedinačnih monofilamenata, a ugao zavojne linije monofilamenta raste sa povećanjem upredenosti.

Sekundarni grejač ima ulogu stabilizatora strukture multifilamente teksturirane pređe. Posle napuštanja sekundarnog grejača multifilamentna pređa gubi težnju ka uplitanju u stanju minimalne zategnutosti, kao i u labavom stanju.

Primenom sekundarnog grejača, multifilamentna teksturirana pređa se relaksira pod dejstvom toplote, oslobađajući unutrašnje naprezanje u molekularnoj strukturi monofilamenata. Ovo doprinosi stabilizaciji pređe, pri čemu se procenat skupljanja ili istezanja teksturirane pređe svodi na definisanu

meru. Generalno, visoka elastičnost pređe nije potrebna za proces proizvodnje tkanih materijala od teksturiranih multifilamentnih poliesterskih pređa.

Za zagrevanje multifilamentne pređe se obično primenjuju cevasti beskontakni grejači da bi se izbeglo trenje pređe i površine grejača. Takođe, kontrola temepretaure mora biti besprekorna, budući da povećanje temperature iznad dozvoljenih granica, kao i smenjenje brzine kretanja pređe kroz grejač može imati negativan uticaj na savitljivost i elastičnost teksturirane multifilamentne pređe.

Oslobađanje unutrašnjih naprezanja monofilamenta upotrebom sekundarnog grejača takođe doprinosi smanjenju nepoželjne tendencije uvijanja pređe u zamku (slika 1.3.). Prevelika sklonost ka uvijanju može biti problematična u procesima izrade tekstilnih materijala na mašinama, naročito kod zastoja u radu mašina.

Slika 1.3. Tendencija formiranja zamki teksturirane pređe

Tendencija ka uvijanju je rezultat rezidualnog obrtnog momenta uvijanja u pređi, koji je svojstven procesu uvijanja - zagrevanja u primarnoj zoni teksturiranja. Ovo zaostalo uvijanje se može smanjiti povećanjem primarnog stepena upredanja, što dovodi do povećanja broja međusobnih dodirnih tačaka između monofilamenata koje ograničavaju filamente da se samouvijaju u jednostavnom spiralnom obliku. Simultano frikciono teksturiranje se ne može postići jednostavno primenom niske temperature i upredanja u primarnoj zoni teksturiranja, pošto nivoi zaostalog obrtnog momenta mogu biti previsoki i problematični u daljem procesu. Postoje i druga ograničenja u vezi sa problemima konzistentnosti kvaliteta pređe pri maloj upredenosti i niskim temperaturama grejača.

Teksturiranje primenom tehnike simultanog frikcionog upredanja je proces koji zahteva precizno podešavanje parametara procesa teksturiranja, pri čemu je posebno važno da:

- temperature grejača se održavaju unutar uskih tolerancija,

- brzine vođenja pređe u procesu teksturiranja su konstantne,

- geometrije putanja pređa su identične preko mašine za pojedinačne pozicije (naročito u primarnoj zoni teksturiranja),

- kontaktne površine pređe su ujednačene na celoj mašini (u pogledu keramičkih vođica, habanja kontaktnih površina i čistoće).

1.2. Princip simultanog frikcionog upredanja

Mehanizam kojim se uvijanje prenosi na pređu u procesu teksturiranja, a zatim se kontinuirano oslobađa pri izlasku iz jedinice za uvijanje, prikazan je na slici 1.4..

Slika 1.4. Formiranje i oslobađanje uvoja u procesu simultanog upredanja

Za slučaj da nema aksijalnog pomeranja pređe kroz jedinicu za uvijanje, posle napuštanja frikcione jedinice formirao bi se odgovarajući broj uvoja suprotnog pravca (Z, odnosno S).

Kada se pređa transportuje kroz jedinicu za uvijanje u aksijalnom pravcu, upredenost koju dobija pre ulaska u jedinicu za uvijanje poništava se napuštanjem te jedinice. Kao rezultat toga, pređa nema upredenost posle napuštanja frikcione jedinice. Ovo je osnova za tehniku uvijanja koja se primenjuje u procesu teksturiranja lažnim upredanjem.

Oblikovanje kovrdža se ostvaruje tehnikom zagrevanja pređe u primarnom grejaču ispred jedinice za upredanje. Zatim se pređa hladi na radnu temperaturu i vodi kroz frikcionu jedinicu. Po izlasku iz jedinice za uvijanje, filamenti se oslobađaju naprezanja i odvrću, ali zadržavaju kovrdžavost iz svog zagrejanog uvijenog stanja. Upredenost teksturirane pređe zavisi od njene podužne mase. Na slici 1.5. prikazana je promena upredenosti u zavisnosti od podužne mase teksturirane pređe. Ovi podaci su nastali analizom upredenosti uzoraka pređe iz primarne zone teksturiranja.

Slika 1.5. Tipične upredenosti teksturiranih pređa primenom tehnike simultanog upredanja

1.3. Uređaj za simultano frikciono upredanje

U procesu teksturiranja multifilamentnih pređa najveću primenu u praksi imaju mašine sa frikcionim diskovima za simultano upredanje. Upredanje se ostvaruje dejstvom frikcionih diskova na pređu koja se transportuje kroz jedinicu za upredanje (slika 1.6. i slika 1.7.).

Slika 1.6. Putanja pređe kroz frikcionu jedinicu (Friction twist unit - FTU)

Slika 1.7. Podešavanje položaja osovine frikcione jedinice (FTU)

Kroz frikcionu jedinicu pređa prolazi spiralnom putanjom (Slika 1.6.). Moment uvijanja se prenosi na pređu kontaktom (trenjem), sa svakim rotirajućim diskom na putu kretanja pređe. Vođenjem pređe kroz frikcionu jedinicu, upredanje se dodaje i kumulira kontaktom pređe sa svakim diskom jedinice (slika 1.8.). Odnosno, što je veći broj frikcionih diskova u jedinici za upredanje, sa kojima pređa dolazi u kontakt, to je i veći broj dodatih uvoja pređi u procesu teksturiranja simultanim upredanjem. Po napuštanju frikcione jedinice nastaje nulta uprednost teksturirane pređe, što je suština koncepta simultanog upredanja [1].

Slika 1.8. Upredanje frikcionim diskovima

Efikasnost upredanja pređe može se menjati izborom tipa frikcionog diska i broja diskova. Ravnomerna upredenost zavisi i od krutosti pređe i obrtnog momenta koji se prenosi pređi u procesu simultanog upredanja. Sa ciljem da se poveća koeficijent trenja između površina frikcionih diskova i pređe koriste se materijali čije se površine odlikuju visokim koeficijentima trenja [34]. Primena većeg broja frikcionih diskova doprinosi povećanju sumarnog obuhvatnog ugla oko površina frikcionih diskova. Time je i efikasniji prenos obrtnog momenta pređi.

Frikcioni uređaj (slika 1.9.) za simultano upredanje se u literaturi nalazi i pod imenom frikcioni agregat ili FTU (Friction twist unit). Proces simultanog frikcionog upredanja obuhvata upredanje zagrejanih i istegnutih monofilamenata u multifilamentnoj pređi, a zatim njihovo raspredanje u ohlađenom stanju, pri čemu teksturirana pređa dobija na voluminoznosti. Zato se u literaturi i sreće naziv lažno upredanje.

Pređa se upreda relativno velikom brzinom pomoću frikcionih diskova. Upredenost se prenosi unazad (posmatrano u odnosu na smer kretanja pređe) na putu od dovodnih valjaka, kroz primarni grejač do frikcionog uređaja. Na ovom putu pređa je "omekšana" dejstvom temperature grejača, usled upredanja zauzima odgovarajući oblik koja se naglim hlađenjem po napuštanju grejača fiksira. Raspredanje pređe po napuštanju frikcione jedinice ne utiče na unutrašnju strukturu vlakna koja je nastala kao rezultat upredanja, čime se obezbeđuju dobra taktilna i voluminozna svojstva teksturirane multifilamentne pređe.

Slika 1.9. Frikcioni uređaj za sumultano upredanje (https://textile-future.com/archives/74583)

Intenzitet upredanja pređe u frikcionoj torzionoj jedinici zavisi od:

- obuhvatnog ugla pređe oko frikcionih diskova u uređaju za upredanje i

- količnika periferne (obimne) brzine frikcionih diskova (D) i brzine kretanja pređe (Y) u procesu teksturiranja (D/Y).

Obuhvatni ugao pređe podrazumeva zbirni ugao oko kontaktnih površina frikcionih diskova odnosno:

$$\alpha = \sum_{i=1}^{n} (\alpha_1 + \alpha_2 + \dots + \alpha_n) \tag{5}$$

gde je:

n - broj frikcionih diskova

 $\alpha_1, \alpha_2, \dots, \alpha_n$ - obuhvatni uglovi pređe oko površina diskova

Obuhvatni ugao pređe oko površina frikcionih dikova se menja u zavisnosti od:

- prečnika frikcionog diska,
- rastojanja između susednih frikcionih diskova (diskovi na istoj osovini),
- rastojanja između frikcionih diskova po vertikali (rastojanje između osovina diskova),
- broja frikcionih diskova u frikcionom agregatu.

Frikcionu jedinicu čine ulazni disk, radni diskovi i izlazni disk. Ulazni i izlazni disk imaju funkciju da obezbede pravilno vođenje pređe i dobar kontakt pređe sa kontaktnim površinama radnih diskova, kako bi se obezbedilo intenzivno upredanje i ravnomeran raspored uvoja u pređi.

Prečnik, debljina i hrapavost kontaktne površine, zatim materijal od kojeg su radni diskovi izrađeni, rastojanje između osovina diskova (preklapanje diskova), koeficijent trenja između kontaktne površine diskova i pređe, obimna brzina diska, brzina pređe i njena sila zatezanja su neki od ključnih parametara koji utiču na ravnomernost rasporeda uvoja u pređi u zoni upredanja.

Zadatak frikcionih diskova je da obezbede efikasan prenos obrtaja diskova na pređu, obrazujući uvoje, sa ravnomernim rasporedom uvoja po jedinici dužine i bez oštećenja filamenata. Pored toga, diskovi moraju pokazati visoku otpornost na habanje.

Slika 1.10. Izgled frikcionih jedinica sa individualnim pogonom

Komercijalne jedinice sa frikcionim diskovima (slika 1.10.) sastoje se od tri osovine na koje se postavljaju diskovi sa međusobnim preklapanjem (Triplet sistem). Pređa se kreće po spiraloj putanji kroz frikcionu jedinicu, preko kontaktnih površina diskova. Potreban broj radnih diskova zavisi od podužne mase, upredenosti i brzine pređe. Veći broj radnih diskova dopinosi boljoj voluminoznosti pređe, ali i prouzrokuje veći broj prekida pređe u procesu teksturiranja.

U procesu teksturiranja poliesterskih pređa najbolje rezultate daju diskovi od poliuretana. Deblji diskovi (9 mm) umesto diskova debljine 6 mm poboljšavaju intenzitet upredanja.

Od prvobitnog diska debljine 4 mm, preko debljine 6 mm, stiglo se do diska od 9 mm i 12 mm debljine [1, 2, 27, 29, 36].

Prečnik diskova se u međuvremenu promenio od 45 mm, kod diskova debljine 9 mm upotrebljavaju se diskovi prečnika 51 mm i 52 mm.

Što se tiče površine diskova razlikuju se: nikl/hrom diskovi, plazmom presvučeni diskovi, keramički i poliuretanski diskovi. Od pomenutih diskova najčešće se koriste keramički i poliuretanski. Oba imaju svoje prednosti i nedostatke, ali se uglavnom prednost daje poliuretanskim diskovima. Frikcioni disk od poliuretana je mekan, visoko-frikcioni material zahvata pređu bolje od keramičkog. Zbog toga, trenjem prenosi pređi veći broj uvoja po jedinici dužine uz manju silu zatezanja pređe na izlazu iz frikcionog agregata.

Dubine hrapavosti kod radnih diskova su 0,85 μ m, 1,0 μ m i 1,3 μ m, a ulazni i izlazni diskovi imaju po pravilu dubinu hrapavosti od 0,3 μ m.

Preklapanje diskova zavisi od prečnika diskova i rastojanja osovina, a optimalno preklapanje omogućuje intenzivniju upredenost. Zavisno od proizvođača agregata i prečnika diskova (52 mm) preklapanje iznosi 15,07 mm ÷ 16,05 mm kod debljine diskova od 9 mm.

Frikcioni diskovi se stalno unapređuju izborom materijala i geometrije, sa ciljem da se optimizuje tehnološki proces teksturiranja. Radne površine frikcionih diskova imaju raznovrsne profile (ravne, sferne, polukružne). Profil radne površine diska utiče na ravnomernost i efikasnost upredanja [2, 27].

U industrijskim uslovima proces teksturiranja se optimizuje izborom broja radnih diskova. Retko se menjaju diskovi drugih prečnika ili tvrdoća.

Kod diskova većih prečnika manji je ugao kontakta pređa i diskova. Efikasnost upredanja je niža u ovim slučajevima, ali je i sila zatezanja na izlazu iz frikcione jedinice manja. Ova tehnika se koristi za ostvarivanje veće brzine teksturiranja.

Na slici 1.11. je prikazana slika konfiguracije diskova 1-4-1, pri brzini pređe od 1000 m/min.

Slika 1.11. Kretanje pređe u sistemu konfiguracije diskova 1-4-1

Na slici se mogu uočiti četiri radna, jedan keramički disk na ulazu u sistem i jedan keramički disk na izlazu iz sistema. Kretanje pređe je odozgo naniže.

Pređa ulazi skoro pod pravim uglom preko površine ulaznog keramičkog diska, a zatim nastavlja put kretanja preko površina radnih diskova obrazujući spiralnu putanju. U realnim uslovima pređa menja položaj pri kretanju preko kontaktnih površina frikcionih diskova tj. "krivuda".

Obimna brzina frikcionog diska je veća od linearne brzine pređe. Obimna brzina frikcionog diska je veća od obimne brzine rotiranja pređe u procesu upredanja, budući da nastaje proklizavanje pređe po kontaktnim površinama frikcionih diskova.

Intenzivna frikcija između pređe i površine diskova dovodi do istrošenosti poliuretanskih diskova zbog abrazije. Kod primene keramičkih diskova, tvrda keramička površina pri velikim obimnim brzinama izaziva abraziju znatno mekše pređe pa se na mašini stvaraju naslage od finog praha.

Donji disk (slika 1.11.) je tzv. disk sa oštricom, sličnom nožu. Ima veoma čestu primenu na mašinama za teksturiranje i ima zadatak da pomogne pri odstranjivanju tvrdih delova sa površine pređe. Ovaj disk se izrađuje od specijalnog materijala otpornog na habanje ili od keramike.

U zoni teksturiranja pređa se zateže, pri čemu se primenjuje intenzitet sile zatezanja za obezbeđenje stabilnosti procesa teksturiranja.

Pre zone teksturiranja, odnosno pre dovodnih valjaka, nalazi se grejač koji zagreva pređu. Pređa postaje termoplastična i može da menja svoj oblik, kao rezultat upredanja. Po napuštanju grejača pređa prolazi kroz zonu hlađenja, pri čemu se stabilizuju uvoji koji su nastali u termoplastičnom stanju. Na kraju po napuštanju frikcionog agregata, odmah nakon izlaza pređe iz izlaznih valjaka, filamenti zauzimaju trodimenzionalni spiralni oblik u multifilamentnoj pređi.

Kao rezultat teksturiranja pređa postaje voluminozna i istegnuta do zadate podužne mase.

1.4. Mehanika simultanog upredanja

Sila trenja između frikcionih diskova i pređe rezultuje silu u pravcu uvijanja i silu u pravcu transportovanja pređe – aksijalnu silu. Prilikom projektovanja frikcionih agregata vodi se računa da pređa naleže na disk pod odgovarajućim uglom, da bi se obezbedio odgovarajući intenzitet aksijalne sile u pravcu transportovanja pređe kroz frikcionu jedinicu.

Za slučaj da je putanja pređe pod pravim uglom u odnosu na rotirajući disk (slika 1.12. - a), nema aksijalne sile u pravcu transportovanja. To bi dovelo do negativnog režima rada, stvarajući velike vrednosti sile trenja koje prouzrokuju veliko naprezanje u aksijalnom pravcu pređe i veliku rezultujuću silu zatezanja pređe (F₂) posle napuštanja jedinice za simultano upredanje. Ova situacija, gde je pređa podvrgnuta prevelikom aksijalnom opterećenju, dovodi do deformacije i oštećenja pređe, kao rezultat velikog naprezanja i reakcionih sila na kontaktnim površinama [1].

Kod frikcionog teksturiranja, koje je danas dominantno, pređa dolazi na površinu frikcionog diska pod određenim uglom (slika 1.12 - *b*) [1, 25, 26]. Na slici je prikazan vektor obimne brzine frikcionog diska V_s i vektor brzine tačke na površini pređe V_p , koja je u kontaktu sa frikcionom površinom diska.

Slika 1.12. Sile koje deluju na pređu u procesu frikcionog upredanja

Komponente vektora V_p su V_Y i V_c . Komponenta brzine upredanja V_c je normalna na vektor kretanja pređe V_Y . Između V_p i V_s nalazi se vektor relativne brzine R, koji se može razložiti na komponentu upredanja P i komponentu transportovanja pređe T. Jedna komponenta obimne brzine frikcione površine prenosi pređi uvoje a druga komponenta omogućava transportovanje pređe. Na slici 1.13. prikazan je vektorski dijagram sila u sistemu frikcionog agregata.

Slika 1.13. Međusobno dejstvo sila između diska i pređe u procesu teksturiranja

Ukoliko nema klizanja, ugao zavojnice (heliksa) pređe je jednak uglu između ose pređe i pravca kretanja frikcione površine. Pređa takođe prolazi kroz frikcionu jedinicu pri čemu njena sila zatezanja po izlasku iz jedinice zavisi i od brzine kretanja pređe pre i posle frikcionog sistema.

Sila zatezanja pređe u procesu teksturiranja se menja u zavisnosti od obuhvatnog ugla koji zauzima pređa u frikcionoj jedinici i koeficijenta trenja.

Pri razmatranju kretanja pređe preko površine diska (slika 1.13. - b), sila zatezanja po napuštanju površine diska se može odrediti iz jednačine [1, 27]:

$$F_2 = F_1 \cdot exp(\mu\alpha) \tag{6}$$

gde je:

 F_2 – sila zatezanja pređe posle kontakta sa površinom frikcionog diska

 F_1 - sila zatezanja pređe pre kontakta sa površinom frikcionog diska

 μ – koeficijent trenja između pređe i frikcionog diska

 α – obuhvatni ugao pređe oko frikcionog diska

Ova jednačina važi za slučaj da pređa prelazi preko diska koji ne rotira i pređi ne daje uvoje. Iz ove jednačine se može zaključiti da odnos sile zatezanja na izlazu i ulazu u frikcionu jedinicu raste sa porastom ugla obuhvata pređe. U procesu teksturiranja, frikciona jedinica daje pređi uvoje, odnosno frikcioni diskovi rotiraju odgovarajućim brojem obrtaja u jedinici vremena. Zavisno od broja obrtaja diska u jedinici vremena menja se sila zatezanja pređe u frikcionoj jedinici. Takođe, kada je frikciona jedinica u radnoj funkciji, povećanjem obuhvatnog ugla pređe količnik sile zatezanja na izlazu i ulazu opada, što je suprotno prethodno navedenoj zavisnosti.

Ugao između pravca vektora brzine *S* i ose pređe na ulazu u frikcioni agregat (slika 1.13. - *a*) definiše se kao "vučni ugao" (γ) i ima ključnu ulogu pri pravilnom podešavanju sile zatezanja pređe u procesu simultanog frikcionog teksturiranja.

Vučni ugao se određuje iz jednačine:

$$\gamma = \operatorname{arc} tg \frac{D \sin\varphi - Vr \sin\theta}{Vr \cos\theta - D \cos\varphi} \tag{7}$$

gde je:

 φ - ugao između vektora V_1 i vektora D

 θ - ugao zavojnice istegnute i upredene pređe

Sila zatezanja na izlazu iz frikcionog agregata može se izračunati iz jednačine:

$$F_2 = F_1 \cdot exp(\mu\alpha\sin\phi\cos\gamma) \tag{8}$$

Parametri frikcionog diska i pređe se mogu povezati jednačinom:

$$2\pi \cdot r_e \cdot T \cdot \tau^{3/2} = \tan\theta \tag{9}$$

gde je:

 r_e - ekvivalentni prečnik neupredene pređe aproksimiran snopom paralelnih filamenata τ - stepen skupljanja pređe, tj.dužina pređe bez uvoja/dužina pređe sa uvojima T - upredenost pređe

Jednačinu (10) izveli su Herle i Morton [2].

$$\tau = \frac{1}{2}(1 + \sec\theta) \tag{10}$$

Iz ovih jednačina izvedena je jednačina koja povezuje upredenost i ugao zavojnice:

$$T = \frac{2(\sec\theta - 1)}{\pi \cdot r_e(1 + \sec\theta)} \tag{11}$$

Na osnovu slike 1.13. - *a* proizilazi da je:

$$\sec \theta = \frac{v_r}{v_1} \tag{12}$$

gde je:

 V_r - vektor brzine upredanja pređe V_l - vektor brzine kretanja pređe

Takođe je:

$$Y = \tau \cdot V_1 \tag{13}$$

Ako se zanemari klizanje između pređe i frikcionog diska, tada je $D = V_r$, odnosno:

$$\frac{D}{Y} = \frac{V_r}{\tau \cdot V_1} = \frac{\sec \theta}{\tau} \tag{14}$$

Iz prethodnih jednačina sledi:

$$\frac{D}{Y} = 2 - \frac{1}{\tau} \tag{15}$$

ili

$$\frac{D}{Y} = \frac{2}{1 + \cos \theta} \tag{16}$$

Veza između količnika D/Y i upredenosti teksturirane multifilamentne pređe je data jednačinom:

$$\frac{D}{Y} = \frac{3}{2} - \frac{1}{2}\sqrt{1 - 4\pi^2 r_e^2 T^2}$$
(17)

gde je:

D – obimna brzina frikcionog diska

Y – linearna brzina pređe bez uvoja

Iskustveni rezultati su pokazali da su vrednosti D/Y u praksi veće od teorijskih vrednosti.

Simultano upredanje frikcijom se zasniva na stvaranju obrtnog momenta u frikcionoj jedinici. Pošto upredanje ima veliki uticaj na teksturu pređe to je ovaj parametar veoma važan za kvalitet teksturirane pređe. Uopšteno se može reći da, geometrija kontakta pređe i diska, torzija i stvaranje uvoja u pređi primarno zavise od broja diskova, odnosa D/Y, stepena istezanja pređe, zatezanja pređe i ostalih procesnih parametara.

Gustina i raspodela uvoja, nastala simultanim upredanjem u zoni upredanja, zavisi od konstrukcijskih parametara diskova kao sto su: prečnik, debljina, hrapavost površine, rastojanje osa slogova diskova i njihovo međusobno preklapanje. Pored toga, u slučaju rada sa diskovima različitih profila to se takođe može odraziti na kvalitet teksturirane pređe.

Fizičko-mehaničke karakteristike i taktilna svojstva teksturirane pređe se menjaju u zavisnosti od vrste frikcionih diskova (tvrdi dijamantski, keramički, nikl/hromni diskovi, diskovi obrađeni plazmom, aluminijumoksidni i poliuretanski). Praksa je pokazala da poliuretanski diskovi daju mekši opip teksturiranoj pređi ali se brže troše. Obezbeđenje konstantnosti parametara procesa je važno za održavanje nivoa kvaliteta teksturirane pređe.

Podešavanje intenziteta sila koje deluju na pređu u zoni kontakta sa frikcionim diskom ima ključni uticaj na kvalitet pređe.

1.5. Oscilacije sile zatezanja pređe u procesu teksturiranja

Istezanje pređe zavisi od sile zatezanja u procesu teksturiranja. Ravnomernost kovrdža u pređi, voluminoznost, ravnomernost jačine i izduženja i druga svojstva zavise od konstantnosti naprezanja pređe u procesu teksturiranja. Naprezanje multifilamentne pređe zavisi i od temperature grejača, zatim od putanje kretanja multifilamenta kroz mašinu, stepena istezanja, količnika D/Y, brzine teksturiranja i vrste i količine preparacije na pređi.

Stepen istezanja ima značajan uticaj na produktivnost tehnološkog procesa teksturiranja i voluminoznost teksturirane multifilamentne pređe. Naime, povećanje stepena istezanja dovodi do većeg broja prekida pojedinih filamenata, dok manje istezanje pređe pogoduje njenoj voluminoznosti i produktivnosti tehnološkog procesa teksturiranja.

Povećanjem brzine teksturiranja, pri konstantoj sili zatezanja, povećava se naprezanje u pređi ispred frikcione jedinice. Takođe, povećanje brzine teksturiranja prouzrokuje rast sile zatezanja i sklonost ka talasanju pređe (surging), odnosno nastaju periodične oscilacije napona u pređi sa različitim amplitudama.

Talasanje dovodi do neravnomernosti rasporeda uvoja, odnosno smenjuju se upredena i neupredena mesta na pređi, te je samim tim narušena ravnomernost voluminoznosti pređe po dužini. Takođe nastaju oscilacije podužne mase teksturirane pređe.

Istezanje, brzina teksturiranja, obimna brzina frikcionih diskova, kao i odnos D/Y utiču na naprezanje u pređi u procesu teksturiranja. Naprezanje pre frikcione jedinice raste povećanjem količnika D/Y, dok se istovremeno naprezanje pređe po napuštanju frikcione jedinice smanjuje.

Na slici 1.14. je prikazana povezanost stepana istezanja pređe, vrednosti D/Y i kritične brzine teksturiranja.

Slika 1.14. Kritična brzina teksturiranja, odnos D/Y i stepen istezanja pređe

Podaci iz literature ukazuju da pri većoj vrednosti količnika D/Y talasanje nastaje pri većim brzinama teksturiranja, tj raste kritična brzina koja prouzrokuje talasanje [2].

Primenom većeg stepena istezanja u procesu teksturiranja, čak i pri velikim brzinama neće nastati talasanje pređe. Međutim, pri manjem stepenu istezanja raste verovatnoća da nastane talasanje pređe sa porastom količnika D/Y.

Uticaj stepena istezanja u procesu teksturiranja na relativnu prekidnu silu i prekidno izduženje pređe prikazan je na slici 1.15. [2].

Slika 1.15. Uticaj stepena istezanja na prekidne karakteristike pređe

1.6. Geometrija upredanja multifilamentne pređe

Kontinualni proces upredanja snopa vlakana odvija se pod dejstvom obrtnog momenta, koji se dobija od odgovarajućeg mehanizma za upredanje. Kao posledica dejstva obrtnog momenta posmatrana tačka na pređi vrši rotaciono kretanje [37].

Kao rezultat upredanja multifilamentne pređe filamenti zauzimaju spiralni položaj u pređi [38].

Geometrijski raspored filamenata u strukturi multifilamentne pređe može se opisati modelom koncentričnih spirala (model idealnih spirala) [39, 40].

Ovaj model uzima u obzir sledeće elemente:

- ose svih filamenata zauzimaju oblik spirale, sa istim smerom rotacije,

- heliksi svih filamenata imaju jednu zajedničku osu (osa multifilamentne pređe),

- korak spirale je konstantan,

- zapreminska masa multifilamenta je konstantna.

Ugao nagiba perifernog filamenta je β_D , dužina koraka jednog navoja filamenta je 1/T. Upredenost multifilamentne pređe (broj uvoja po jedinici dužine) je označen sa T, a D je prečnik multifilamentne pređe (slika 1.16. – a).

Mnogi autori [39, 40, 41, 42, 43, 44, 45] su se bavili ovim problemima, a posebno su analizirali uticaj upredenosti na mehanička svojstva različitih tipova pređa.

Ako se odmota filament iz strukture multifilamentne pređe formira se pravougli trougao (slika 1. 16.), na osnovu koga se može izraziti sledeća zavisnost:

$$\beta_D = \operatorname{arc} tg \ \pi DT = \frac{2\sqrt{\pi \cdot \alpha}}{\sqrt{p \cdot \rho}} \tag{18}$$

gde je:

 β_D - ugao nagiba perifernog vlakna prema osi multifilamentne pređe,

- D prečnik multifilamentne pređe,
- T upredenost pređe (broj uvoja po jedinici dužine pređe),
- α koeficijent upredanja (Koëchlin),
- ρ zapreminska masa vlakana,
- *p* koeficijent pakovanja snopa filamenata u multifilamentnoj pređi.

Slika 1.16. Periferni filament u spiralnom modelu multifilamentne pređe [37]: (*a*) jedan spiralni namotaj filamenta na površini pređe i (*b*) odmotana dužina filamenta

Veza između upredenosti i podužne mase pređe data je jednačinom (Koëchlin):

$$T = \frac{\alpha}{\sqrt{T_t}} \tag{19}$$

Kao posledica upredanja snopa filamentnih vlakana, multifilamentna pređa se skraćuje. Ovo skraćenje se može iskazati jednačinom:

$$s = \frac{l_f - l_p}{l_f} \tag{20}$$

gde je:

s - koeficijent skraćenja filamenta u multifilamentnoj pređi,

lf - počedna dužina filamenta,

l_p - dužina upredene multifilamentne pređe.

Skraćenje filamenta u upredenoj multifilamentnoj pređi može se izraziti i na osnovu Slike 1.16.

$$s = \frac{\sqrt{1 + (\pi \cdot D \cdot T)^2} - 1}{\sqrt{1 + (\pi \cdot D \cdot T)^2} + 1}$$
(21)

35

Primenom jednačine (19) i (22) dobija se zavisnost:

$$S = \frac{\sqrt{1+4\pi \cdot \alpha^2/(p \cdot \rho)} - 1}{\sqrt{1+4\pi \cdot \alpha^2/(p \cdot \rho)} + 1}$$
(22)

Na osnovu prethodnih jednačina može se izračunati koeficijent pakovanja filamenta u multifilamentnoj pređi:

$$p = \frac{\pi \cdot \alpha^2 (1-s)^2}{\rho \cdot s} \tag{23}$$
1.7. Mehanička svojstva teksturirane multifilamentne pređe

Teksturirane multifilamentne pređe se odlikuju viskoelastičnim svojstvima. U zavisnosti od spoljašnjih uslova, temperature i naprezanja, teksturirane multifilamentne pređe imaju različita svojstva. Pored toga, za ove pređe je tipična viskoelastična deformacija.

Najznačajniji faktori koji utiču na deformaciju teksturiranih multifilamentnih pređa su, pored svojstava polimera od kojih je pređa ispredena, vrste primenjene sile koje deluju na pređu. Sila zatezanja, sila pritiska, sila smicanja imaju značajan uticaj na deformaciju multifilamentne teksturirane pređa. Takođe, sile savijanja i torzije imaju veoma značajan uticaj na deformaciona svojstva ovih pređa.

Generalno posmatrano, deformaciju teksturirane multifilamentne pređe čine tri komponente i to: elastična, viskoelastična i plastična.

Ukupna deformacija se može iskazati kao zbir ovih deformacija:

$$\varepsilon = \varepsilon_e + \varepsilon_v + \varepsilon_p \tag{24}$$

gde je:

- ε_e - elastična deformacija,

- ε_v - viskoelastična deformacija.

- ε_p - plastična deformacija.

Udeo svake od komponenti deformacija u ukupnoj zavisi od temperature kojoj je pređa izložena, kao i od intenziteta i vremena delovanja spoljašnje sile.

1.7.1. Elastična, viskoelastična i plastična deformacija

Elastična deformacija je reverzibilna deformacija. Sa termodinamičke tačke posmatranja znači da nema rasipanja toplote nastale mehaničkim radom. Elastična deformacija je proporcionalna sili koja deluje na pređu. Ne zavisi od vremena i brzine deformacije. Ova deformacija je odlika čvrstih tela. Deformacijom elastičnih materijala raste unutrašnja energija sistema, tj. potencijalna energija molekula, koja prouzrokuje reverzibilne promene dužina hemijskih veza i veličina valentnih uglova. Elastična deformacija nastaje kod amorfnih polimera ispod tačke ostakljivanja, dok je kod kristalnih polimera ispod tačke topljenja. Karakteriše je linearna zavisnost sila-izduženje.

Viskoelastična deformacija je karakteristika materijala koji istovremeno pokazuje i elastična i plastična svojstva, kada se podvrgne deformaciji. Predstavlja reverzibilnu deformaciju, odnosno deformaciju povratnu u vremenu. Karakteristična je za viskoelastična tela koja imaju unutrašnje trenje. Mehanizam deformacije se zasniva na većem termičkom (Braunovom) kretanju. Naime, veća pokretljivost makromolekulskih segmenata dovodi do reverzibilne dislokacije makromolekula iz njihove ravnotežne konformacije.

Deformisanjem se molekul dovodi u stanje višeg strukturnog reda, tj. niže entropije, te je reverzibilnost rezultat težnje ka porastu entropije. Viskoelastičnu deformaciju karakteriše složena nelinearna zavisnost sila-izduženje i ona zavisi od vremena delovanja spoljašnje sile.

Ova deformacija nastaje u amorfnim polimerima iznad tačke ostakljivanja i u rastvorima kristalnih polimera. Specifična je za određene vrste polimernih materijala. Materijali u kojima je dominantna viskoelastična deformacija nazivaju se viskoelastična tela. Tipična viskoelastična tela su elastomeri.

Plastična deformacija je trajna deformacija koja je uzrokovana nepovratnim međusobnim kretanjem makromolekula. Karakteristika plastične deformacije je nelinearna zavisnost sile i izduženja.

1.8. Sila zatezanja i izduženje pređe

Mehanička svojstva teksturiranih multifilamentnih pređa određuju se statičkim ili dinamičkim metodama, dejstvom različitih sila istezanja. Najkorisnija metoda za analizu mehaničkih svojstava teksturiranih pređa je utvrđivanje ponašanja pređe u uslovima promene izduženja pod dejstvom sile zatezanja (slika 1.17.).

Slika 1.17. Tipična kriva sila – izduženje teksturirane PES pređe [29, 30]

Budući da se svojstva teksturiranih multifilamentih pređa menjaju sa vremenom, korisni su i podaci koji daju informacije o promenama karakteristika analizom parametara sila – izduženje – vreme.

Ključna metoda koja se koristi je uticaj sile na deformaciju pređe, pri čemu se mogu pratiti promene karakteristika pređa od elastičnog istezanja do prekida.

Područje proporcionalnosti podrazumeva deformaciju koja odgovara Hookovom zakonu. Sila istezanja je proporcionalna istezanju pređe ($E \cdot \varepsilon$), gde je E modul elastičnosti.

Područje elastičnosti definiše zonu elastičnih deformacija. Prestankom dejstva spoljašnje sile pređa se vraća u dimenzijama početnog stanja.

Granica puzanja je tačka na krivoj sila-izduženje pri kojoj naglo počinje da raste deformacija pređe. U zoni puzanja nastaju mikro deformacije u materijalu, kao i promene unutrašnje strukture (promene konformacije i orijentacije makromolekula). Ove promene u strukturi pređe dovode do nepovratnih deformacija.

Posle granice puzanja nastaje područje "hladnog razvlačenja", budući da se javlja pri temperaturi nižoj od temperature ostakljivanja. Zonu "hladnog razvlačenja" karakteriše istezanje multifilamenta pri skoro konstantnoj sili zatezanja.

U području zone puzanja, odnosno "hladnog razvlačenja", preuređuju se položaji makromolekulskih lanaca. Puzanje počinje smanjenjem prečnika multifilamenta pri konstantnoj sili zatezanja. Nakon okončanja procesa preuređenja položaja makromolekulskih lanaca nastaje ojačanje filamenta. Po okončanju zone puzanja pređa se ponovo suprotstavlja silama zatezanja sve do granice popuštanja (popuštanje posle zone puzanja), kada počinju deformacije i prekidi pojedinih monofilamenata u pređi sve do konačnog prekida multifilamenta.

1.9. Modeli zavisnosti napon - deformacija

Prekidna sila i prekidno izduženje vlaknastih materijala su dve veoma značajne karakteristike [46] koje se najčešće koriste za karakterisanje mehaničkih svojstava različitih tipova pređa. Međutim, prekidne karakteristike su samo dve krajnje tačke na krivoj sila - istezanje. Iako veoma značajne nisu dovoljne da daju pravu sliku o svojstvima teksturiranih multifilamentnih pređa pri istezanju [47, 48]. Oblik krive napon – deformacija zavisi od sirovinskog sastava i morfološke strukture vlakana, kao i od izbora tehnoloških parametara u procesu teksturiranja.

Za opisivanje zavisnosti napona, vremena delovanja i deforrmacije koriste se različiti modeli. Razvijeni modeli mogu da doprinesu predviđanju svojstava pređa pri različitim opterećenjima u tehnološkim procesima prerade u složene tekstilne strukture.

U literaturi se najčešće pominju Maksvell-ov, Kelvin-Foygt-ov i Frenkel-ov model. Karakteriše ih njihova prilagodljivost eksperimentalnim podacima. Pored ovih modela u poslednje vreme se pojavljuju radovi koji za opisivanje povezanosti napona i deformacije tekstilnih materijala koriste model Leseriča i Eyring-ov model.

Generalno posmatrano svi ovi modeli sadrže dva elementa i to oprugu koja karakteriše elastična svojstva materijala i podvrgava se Hook-ovom zakonu i klip koji se kreće u cilindru ispunjenim viskoznom tečnošću koji karakteriše plastičnu deformaciju i podvrgava se Newton-ovom zakonu. Viskoelastičnu deformaciju predstavljaju različite kombinacije ova dva elementa [49, 50, 51, 52]

Maksvell-ov model čine dva redno vezana elementa, opruge i klipa (slika 1.18.).

Slika 1.18. Maksvell-ov model

Relativna deformacija, koja nastaje pod dejstvom spoljašnje sile, je zbir izduženja opruge i pomeranja klipa. Odnosno izduženje opruge predstavlja elastičnu deformaciju a pomeranje klipa plastičnu deformaciju.

Ako je napon konstantan relativno izduženje po ovom modelu se određuje:

$$\varepsilon = \frac{\sigma}{E_{y_1}} \left[1 - exp\left(-\frac{t}{t_{r_1}}\right) \right] + \frac{\sigma}{E_{y_2}} \left[1 - exp\left(-\frac{t}{t_{r_2}}\right) \right] + \frac{\sigma}{E_{y_3}} \left[1 - exp\left(-\frac{t}{t_{r_3}}\right) \right]$$
(25)

odnosno,

$$\varepsilon = d_1 \left[1 - \exp\left(-\frac{t}{t_{r_1}}\right) \right] + d_2 \left[1 - \exp\left(-\frac{t}{t_{r_2}}\right) \right] + d_3 \left[1 - \exp\left(-\frac{t}{t_{r_3}}\right) \right]$$
(26)

Kada se ukloni opterećenje, relativno izduženje je:

$$\varepsilon = \varepsilon_1 \cdot exp\left(\frac{t}{\theta_1}\right) + \varepsilon_2 \cdot exp\left(\frac{t}{\theta_2}\right) + \varepsilon_3 \cdot exp\left(\frac{t}{\theta_3}\right)$$
(27)

gde je:

 σ - napon,

 E_y - modul elastičnosti,

 t_{r1}, t_{r2}, t_{r3} - srednja vremena relaksacije, koja odgovaraju brzim, usporenim i procesima kočenja deformacije, respektivno,

 θ_1 , θ_2 , θ_3 - srednja vremena zakašnjenja, koja odgovaraju brzim, usporenim i procesima kočenja deformacije, respektivno,

 d_1 , d_2 , d_2 (t_{r1} , t_{r2} , t_{r3}) - deformacija sa srednjim vremenom relaksacije,

 ε_1 , ε_2 , ε_2 (θ_1 , θ_2 , θ_3) - deformacije koje nastaju sa srednjim vremenom zakašnjenja.

Kelvin-Foygt-ov model (slika 1.19.) se sastoji od paralelne veze Hook-ove opruge i Newtonovog klipa. Zasniva se na tezi da je elastičnost povezana sa viskoznošću (unutrašnje trenje).

Slika 1.19. Model Kelvin-Foygt-a

Pri konstantnim naponom deformacija se određuje iz jednačine:

$$\varepsilon = \frac{\sigma}{E_y} \left[1 - exp\left(-\frac{E_y \cdot t}{\eta_v} \right) \right] = \frac{\sigma}{E_y} \left[1 - exp\left(-\frac{1}{t_{r_2}} \right) \right]$$
(28)

Pokušaji da se Maksvel-ov i Kelvin Foygt-ov model primene za definisanje zavisnosti napon – deformacija nisu dali adekvatne rezultate za vlaknasti materijal [53, 54].

Koblyakov A. I. je razvio trokomponenetni model Kelvin-Foygt-a (slika 1.20.). Prvi element označava početnu fazu relaksacije, drugi odgovara sporoj relaksaciji, a treći odgovara procesima kočenja deformacije.

Slika 1.20. Trokomponentni model Kelvin-Foygt-a

Deformacija koja se pokazuje ovim modelom data je jednačinom:

$$\varepsilon = \varepsilon_1 \cdot exp\left(\frac{t}{\theta_1}\right) + \varepsilon_2 \cdot exp\left(\frac{t}{\theta_2}\right) + \varepsilon_3 \cdot exp\left(\frac{t}{\theta_3}\right)$$
(29)

Frenkel-ov model je pogodan za karakterisanje tekstilnih materijala koji poseduju dominantno plastičnu komponentu deformacije [49, 51]. Frenkel-ov model čine tri dela, odnosno može se konstatovati da je on nastao kombinovanjem Maksvell-ovog i Kelvin-Foygt-ovog modela (slika 1.21).

Slika 1.21. Frenkel-ov model

U prvom delu je elastična opruga, modula E_{y1} , (elastična deformacija). Drugi deo čini paralelna veza elastične opruge, modula E_{y2} , i klipa zaronjenog u tečnost sa koeficijentom viskoznosti η_{v2} (viskoelastična deformacija). Treći deo čini klip potopljen u tečnost koeficijenta viskoznosti η_{v3} (plastična deformacija).

U slučaju konstantnog napona, deformacija se određuje iz jednačine:

$$\varepsilon = \frac{\sigma}{E_{y_1}} + \frac{\sigma}{E_{y_2}} \left[1 - exp\left(-\frac{t_p}{\tau_2}\right) \right] + \frac{\sigma}{\eta_{v_3}} t_p \tag{30}$$

gde je:

t_p - vreme delovanja opterećenja,

 τ_2 - količnik koeficijenta viskoznosti η_{v2} i modula elastičnosti opruge E_{y2} .

Model Leseriča čini rednu vezu Newton-ovog i Kelvin-ovog modela (slika 1.22.) [55, 56, 57, 58].

Slika 1.22. Model Leseriča

Zavisnost napona (σ) i izduženja (ϵ) se opisuje jenačinom:

$$\sigma = \eta_N \cdot \dot{\varepsilon} \left[1 - exp\left(\frac{l_o}{100 \cdot v \cdot \tau_r} \cdot \varepsilon \right) \right] \tag{31}$$

gde je:

*l*_o - početna dužina epruvete,

v - brzina kidanja,

 τ_r - vreme relaksacije,

 $\dot{\varepsilon}$ - prvi izvod deformacije po vremenu,

 η_N - koeficijent viskoznosti Newton-ovog tela.

Eyring-ov model se sastoji od elastične opruge na jednoj strani i elastične opruge i klipa uronjenog u viskoznu tečnost na drugoj strani, tj. sastoji se od redne veze Hook-ove opruge i Newtonovog klipa na desnoj strani koji su paralelno vezani sa Hook-ovom oprugom na levoj strani (slika 1.23) [47]. Zasniva se na činjenici da brzina konformacionih promena kod linearnih lanaca zavisi od energetskih barijera između različitih geometrijskih rasporeda veza u makromolekulu [59].

Slika 1.23. Eyring-ov model

Razvojem tehnike koja obezbeđuje velike brzine računanja primena ovog modela je postala realnost. Tako su autori u radu [60] koristili Eyring-ov model za proučavanje relaksacije napona i puzanja pređe.

Zavisnost napon – deformacija na osnovu Eyring-ovog modela definiše se jednačinom:

$$\sigma = \frac{1}{\alpha} \sinh^{-1} \left\{ tg \left[2tg^{-1} \left(exp \left(\sqrt{r^2 + A^2} \cdot \left(\frac{E_1 \cdot \alpha \cdot \varepsilon}{r} + c \right) \right) \right) - \frac{\pi}{2} - ctg^{-1} \frac{r}{A} \right] \right\} + \varepsilon \cdot E_2$$
(32)

gde je:

- c koeficijent modela: $c = \frac{1}{\sqrt{r^2 + A^2}} ln \left[tg \left(\frac{\pi}{4} + \frac{1}{2} \right) ctg^{-1} \frac{r}{A} \right],$ E_1 - modul elastičnosti opruge 1 (slika 1.23.), E_2 - modul elastičnosti opruge 2 (slika 1.23.), ε - izduženje ($\varepsilon = \varepsilon_1 + \varepsilon_2$) (slika 1.23.), r - konstanta ($r = \frac{\varepsilon}{t}$), t - vreme,
- A konstanta Newton-ovog fluida (indirektna mera aktivacione slobodne energije),
- α konstanta Newton-ovog fluida (indirektna mera aktivacione zapremine).

1.10. Faktori koji utiču na kvalitet teksturirane pređe

Kvalitet teksturirane multifilamentne poliesterske pređe zavisi od više faktora. Naravno, jedan od ključnih faktora je kvalitet polazne sirovine, u ovom slučaju kvalitet sirovog neteksturiranog multifilamenta. Pored toga, konstrukcijsko rešenje mašine za teksturiranje ima značajan uticaj na kvalitet tekturirane pređe, pri čemu je posebno značajna putanja kretanja pređe kroz mašinu, kao i parametri procesa teksturiranja. Mikroklimatski uslovi u pogonu gde se odvija proces teksturiranja su takođe značajni za stabilnost tehnološkog procesa teksturiranja.

Svojstva sirovog multifilamenta pre procesa teksturiranja imaju glavni uticaj na strukturne i mehaničke karakteristike teksturirane multifilamentne pređe. Kvalitet namotaja POY multifilamenta i njegova sposobnost odmotavanja su takođe značajni činioci stabilnosti tehnološkog procesa teksturiranja.

Teksturiranje je termomehanički proces, pa značajan uticaj na kvalitet proizvedene pređe ima finoća pojedinačnih filamenata. Kod grubljih filamenata otežan je proces prenosa toplote ka jezgru filamenta, dok sa druge strane, kod finijih filamenata prenos toplote je bolji ali je njihova jačina manja, što zahteva posebno prilagođavanje putanje kretanja multifilamenta kroz mašinu, kako bi stabilnost procesa teksturiranja bila odgovarajuća. Ovo je naročito značajno kod teksturiranja mikrofilamenata ($T_{tf} < 1$ dtex), što je veoma zastupljeno u proizvodnji teksturirane pređe.

U procesu teksturiranja nastaje deformacija oblika poprečnog preseka filamenata, pri čemu je ona manja kod trilobalnog, pentalobalnog i oktalobalnog preseka u odnosu na kružni poprečni presek filamenta. Ovo je značajno budući da deformacija filamenta ima uticaj na opip i vizuelna svojstva (sjaj) teksturirane pređe.

Preparacija na ulaznom multifilamentu ima poseban uticaj na stabilnost procesa teksturiranja. Preparacija treba da zadovolji niz zahteva, ali su dva ključna i to da statičko naelektrisanje multifilamenta svede na minimum a da istovremeno obezbedi odgovarajuća frikciona svojstva multifilamenta, kako bi raspored kovrdža bio ravnomeran na teksturiranoj multifilamentnoj pređi.

Izborom odgovarajućih tehnoloških parametara procesa teksturiranja, može se uticati na strukturna i mehanička svojstva teksturirane multifilamentne poliesterske pređe. Temperatura teksturiranja, obimna brzina frikcionih diskova, brzina teksturiranja i istezanje pređe bitni su parametri, čijim se optimalnim izborom proizvode teksturirane pređe visokog kvaliteta.

Temperatura procesa teksturiranja dovodi do dezintegracije strukture vlakana. Budući da u procesu teksturiranja pređa dobija lažne uvoje frikcijom, to nastaje i dezorijentacija kristalnih i amorfnih područja u filamentima. Sa druge strane, istovremeno istezanje u procesu teksturiranja doprinosi boljoj orijentisanosti makromolekulskih lanaca u pravcu ose istezanja.

Količnik obimne brzine frikcionih diskova i linearne brzine pređe je takođe značajan parametar koji utiče na kvalitet teksturirane pređe. Veća obimna brzina frikcionih diskova doprinosi većoj upredenosti multifilamentne pređe, ali i intenzivnijim frikcionim silama koje mogu prouzrokovati nestabilnost sile zatezanja pređe, što ima negativan uticaj na konačna svojstva teksturiranog multifilamenta.

Stepen istezanja predstavlja količnik sile zatezanja multifilamenta na izlazu i ulazu u frikcioni agregat. Ravnomernost kovrdža i voluminoznost, kao i ravnomernost podužne mase teksturirane multifilamentne pređe naročito zavise od konstantosti sile zatezanja multifilamenta u frikcionom agregatu.

Brzina procesa teksturiranja takođe ima veoma bitan uticaj na svojsta teksturirane multifilamentne pređe. Pored uticaja različitih vremena dejstava i intenziteta sila koje deluju na pređu u proceu teksturiranja, veoma značajan uticaj na strukturu multifilamenta ima vreme u kome se pređa izlaže dejstvu temperature u grejaču, što je sve direktno povezano sa brzinom teksturiranja.

Sve ovo ukazuje na složenost tehnološkog procesa teksturiranja, te da se kvalitetna multifilamentna teksturirana pređa može proizvesti izborom optimalnih parametara koji predstavljaju kompromisno rešenje navedenih uticajnih faktora [29].

2. EKSPERIMENTALNI DEO

U cilju definisanja deformacionih karakteristika teksturiranih multifilamentnih PES pređa urađeno je ukupno 108 partija pređa primenom različitih tehnoloških parametara proizvodnje u industrijskim uslovima. Primenom standardizovanih metoda određene su mehaničke karakteristike eksperimentalnog materijala. Dobijeni rezultati su poslužili da se objasne ključna svojstva teksturiranih multifilamentnih pređa i da se predlože optimalni tehnološki parametri teksturiranja sa ciljem proizvodnje kvalitetne pređe. Budući da su glavna svojstva teksturiranih multifilamentnih pređa, kovrdžavost i elastičnost, to je cilj istraživanja i da se definišu granična naprezanja pređa u narednim tehnološkim procesima prerade u tekstilne proizvode pri kojima će teksturirana multifilamentna pređa sačuvati svoje karakteristike. Pored toga, dobijeni rezultati su korišćeni da se razvije metoda za predviđanje karakteristika teksturiranih poliesterskih pređa na granici elastičnosti, granici puzanja, kraja zone puzanja, popuštanja posle puzanja i prekida.

2.1. Eksperimentalni materijal

Izrada eksperimentalnog materijala je vršena u industrijskim uslovima. Poliesterska multifilamentna pređa proizvedena je na mašini za istezno frikciono teksturiranje sa visokotemperaturnim grejačem FTF-15 (ICBT, Francuska). Proizvedeni su uzorci teksturirane PES pređe finoće 167f36x1 dtex i 165f36x1 dtex, od POY PES multifilamenta finoće 278f36x1 dtex, proizvođača TWD Fibers (Nemačka). POY poliesterski filament (poli(etilentereftalat)) korišćen u okviru ovog istraživanja je delimično orijentisan sa veoma niskim stepenom kristalnosti (manjim od 5 %), tako da njegova svojstva mogu varirati u velikom stepenu promenom parametara procesa teksturiranja.

Na slici 2.1. prikazan je grafik zavisnosti sila izduženje za POY poliesterski multifilament.

U procesu teksturiranja analiziranih partija pređa (108 partije) korišćene su različite temperature primarnog grejača (350 °C, 400 °C i 450 °C) pri konstantnoj temperaturi sekundarnog grejača (180 °C), zatim pri različitim brzinama teksturiranja (500 m/min, 600 m/min, 700 m/min, 900 m/min, 1000 m/min i 1100 m/min), uz vrednosti D/Y 2,15, 2,20 i 2,25 i stepen istezanja 1,665 i 1,685.

Slika 2.1. Krive F-E POY PES multifilamenta

Eksperimenti u industrijskim uslovima treba da omoguće izbor optimalnih parametra procesa teksturiranja, sa ciljem da se poveća produktivnost i ostvari ušteda energije. Dobijeni rezultati treba da doprinesu ekonomičnosti proizvodnje multifilamentnih PES pređa.

2.2. Osnovne tehničke karakteristike mašine za teksturiranje pređa

Teksturirana multifilamentna PES pređa proizvedena je na mašini za istezno frikciono teksturiranje sa visokotemperaturnim grejačem FTF-15 (ICBT, Francuska). Osnovne tehničke karakteristike mašine su: maksimalna brzina teksturiranja - 1500 m/min; dužina primarnog grejača - 1,050 m; dužina sekundarnog grejača - 1,60 m; zona hlađenja: 1,24 m; frikcioni agregat - ICBT agregat 1-5-1; radni (5 kom.) PU diskovi; C profil .

2.3. Metode ispitivanja eksperimentalnog materijala

Mehaničke karakteristike eksperimentalnog materijala određene su primenom automatskog dinamometra USTER TENSORAPID 4, po standardu SRPS EN ISO 2062 [99]. Primenom softvera "USTER TENSORAPID" definisane su tipične krive sila-istezanje (slika 2.2. - *a*).

Slika 2.2. Tipična kriva F-ɛ multifilamentne PES pređe

Tipične krive su predstavljene u obliku funkcije polinoma devetog stepena, pri čemu koeficijenti determinacije iznose oko 0,999 (slika 2.2. - *b*).

Analizom toka funkcije sila - izduženje određene su:

- granica elastičnosti (F₁, ε₁),
- granica puzanja (F₂, ε₂),
- kraj zone puzanja (F₃, ε₃),
- popuštanje posle zone puzanja (F4, ε4) i
- prekid (F₅, ε₅) eksperimentalnog materijala.

Kod tekstilnih materijala se uglavnom govori o zonama u kojima dominira neki vid deformacije. Kod teksturiranih multifilamentnih pređa date granice zavise od svojstva polaznog multifilamenta, ali i od procesnih parametra njihove izrade. Pri tome je zona puzanja posebno karakteristična kod multifilamentnih POY pređa. Veliki broj filamenata i njihov položaj u multifilamentnoj pređi prouzrokuju nejednake uslove prerade pojedinih monofilamenata. Različit prijem toplote prilikom teksturiranja zbog položaja filamenata u multifilamentnoj pređi, kao i neujednačena dodirna površina pojedinih filamenata sa elementima frikcionog agregata prouzrokuju različita svojstva proizvedenih pređa, koja se posebno manifestuju na elastičnost i kovrdžavost pređa.

Prilikom istezanja pređe (slika 2.2.), u početku nastaje ispravljanje kovrdža koje su nastale u procesu teksturiranja. U početku je primetan veći nagib krive, odnosno brži rast sile u odnosu na istezanje teksturirane pređe do tačke (F_1 , ε_1). Ova tačka istovremeno predstavlja kraj zone elastičnosti. Neposredno posle granice elastičnosi je granica puzanja (F_2 , ε_2). Prilikom daljeg istezanja nastaju značajnije promene u strukturi i sve do tačke (F_3 , ε_3) primetan je pad nagiba funkcije sila - izduženje. Zatim nagib ponovo raste do tačke (F_4 , ε_4) i na kraju pada sve do destrukcije i prekida u tački (F_5 , ε_5).

2.3.1. Određivanje granice elastičnosti teksturirane multifilamentne pređe

Granica elastičnosti definiše preporučeno dozvoljeno opterećenje teksturiranih pređa pri kome neće nastati neželjena plastična deformacija materiajla. Granica elastičnosti teksturiranih multifilamentnih poliesterskih pređa je određena analizom toka funkcije sila - izduženje. Sa ciljem da se jasnije prikažu promene tokom istezanja pređe prikazana je zavisnost $F(\varepsilon)$ do granice popuštanja, odnosno do tačke F4, ε 4 grafika funkcije (slika 2.3.). Definisanjem lokalnog maksimuma prvog izvoda funkcije (slika 2.4.), gde je drugi izvod funkcije jednak nuli (slika 2.5.) određena je granica elastičnosti, kao i paramentri sila - izduženje na granici elastičnosti.

Slika 2.3. $F(\varepsilon)$ do granice popuštanja

Slika 2.4. F'(ε) do granice popuštanja

2.3.2. Određivanje granice puzanja teksturirane multifilamentne pređe

Puzanje teksturiranih multifilamentnih pređa nastaje primenom opterećenja koje prouzrokuje naprezanje u pređi iznad granice elastičnosti. Definiše se analizom toka funkcije sila izduženje i određuje u tački lokalnog minimuma drugog izvoda funkcije (slika 2.5.), odnosno u odgovarajućoj nuli trećeg izvoda funkcije (slika 2.6.). Pri datoj granici određene su vrednosti sile i izduženja do granice puzanja. Granica puzanja teksturiranih multifilamentnih pređa je gornja granica opterećenja,

kojoj se pređa može podvrgnuti u narednim tehnološkim procesima, a da svojstva pređe i dalje budu prihvatljiva za projektovane karakteristike tekstilnih proizvoda.

Slika 2.5. F''(ɛ) do granice popuštanja

Slika 2.6. F'''(ε) do granice popuštanja

Zona puzanja počinje granicom puzanja i traje do momenta kada ponovo počinje da raste ugao nagiba krive sila - izduženje teksturirane multifilamentne poliesterske pređe. Kraj zone puzanja se određuje u tački minimuma prvog izvoda funkcije sila – izduženje (slika 2.4.), odnosno u odgovarajućoj tački gde je drugi izvod funkcije jednak nuli.

2.3.3. Određivanje granice popuštanja i prekida multifilamentne pređe

Po završetku puzanja, multifilamentna teksturirana PES pređa ponovo pruža veći otpor istezanju i raste ugao nagiba krive sila - izduženje. Ovaj brži rast sile u odnosu na istezanje traje sve do momenta kada ponovo nastanu značajnije promene u strukturi monofilamenata zbog istezanja i određuje se u tački lokalnog maksimuma prvog izvoda funkcije sila - izduženje (slika 2.7.), odnosno nule drugog izvoda funkcije u datoj tački (slika 2.8.). Ova tačka na grafiku može da predstavi maksimalno naprezanje koje će teksturirana multifilamentna pređa da podnese u procesima eksploatacije, da se deformiše ali ipak ne prekine, što je značajno za primenu u tehničkim tekstilnim materijalima. U ovom istraživanju je okarakterisana kao granica popuštanja pređe posle puzanja.

Slika 2.7. $F'(\varepsilon)$ do prekida

Daljim istezanjem nastaju značajne promene u strukturi teksturirane multifilamentne pređe, destrukcija pojedinih monofilamenta i na kraju prekid pređe, što je obeleženo tačkom (F₅, ϵ_5) na grafiku (slika 2.2.). Prekid multifilamentne teksturirane PES pređe je registrovan na automatskom dinamometru Uster Tensorapid 4.

Slika 2.8. F''(ɛ) do prekida

2.3.4. Određivanje kovrdžavosti multifilamentne teksturirane pređe

Karakteristična kovrdžavost određena je u skladu sa standardom SRPS EN 14621 [100]. Karakteristična kovrdžavost (K_k) se određuje iz jednačine:

$$K_k = \frac{l_o - l_2}{l_o} \cdot 100 \quad (\%)$$

gde je:

 l_o - dužina kanure pri opterećenju od 500 cN (mm)

 l_2 - dužina kanure pri opterećenju od 25 cN (mm)

2.3.5. Merenje sile zatezanja teksturirane PES multifilamentne pređe

Merenje sile zatezanja teksturirane PES multifilamentne pređe rađeno je pomoću elektronskog tenzometra DTFX 200 (slika 2.9.). Sile zatezanja merene su u industrijskim uslovima, u procesu proizvodnje tkanih materijala od teksturiranih multifilamentnih poliesterskih pređa.

Slika 2.9. Elektronski tenzometar DTFX 200

2.3.6. Metoda analize vizuelne promene oblika površine multifilamentne PES pređe

U laboratorijskim uslovima analizirane su promene oblika površine teksturiranih PES multifilamentnih pređa korišćenjem računarom kontrolisanog (stereo) mikroskopa Leica sa softverom "Video Analyser 2000" (slika 2.10.).

Slika 2.10. Mikroskop Leica sa softverom Video Analyser 2000

Prethodno su uzorci teksturiranih PES multifilamentnih pređa bili opterećeni odgovarajućim silama zatezanja (ISO 2062) na dinamometru Tinius Olsen podržan softverom "Horizon" (slika 2.11.).

Slika 2.11. Dinamometar Tinius Olsen

2.4. Rezultati mehaničkih karakteristika teksturirane poliesterske pređe

Poliesterski filamenti koji su korišćeni u ovom istraživanju su delimično orijentisani i sa niskim stepenom kristalnosti. Zato svojstva proizvedenih teksturiranih multifilamentnih poliesterskih pređa mogu znatno varirati zbog promena u strukturi tokom procesa teksturiranja. Najznačajniji parametri procesa teksturiranja su brzina teksturiranja, temperatura primarnog grejača, odnos periferne brzine frikcionih diskova i brzine pređe i istezanje pređe u procesu teksturiranja. S obzirom da ovi parametri utiču na temperaturu, ravnomernost zagrevanja i deformaciju pređa u procesu teksturiranja, samim tim imaju značajan uticaj na strukturu i deformaciona svojstva proizvedenih teksturiranih pređa.

Rezultati dobijeni analizom teksturiranih PES multifilamentnih pređa prikazani su u tabelama 2.1. do 2.18. Tabele sadrže rezultate analize teksturiranih PES multifilamentnih pređa proizvedenih pri brzinama teksturiranja u opsegu 500 m/min do 1100 m/min, temperaturama primarnog grejača 350 °C, 400 °C i 450 °C, količniku periferne brzine diskova i brzine pređe 2,15, 2,20 i 2,25 i pri istezanju u procesu teksturiranja 1,665 i 1,685.

Uzorak	v	F_1	ε1	F ₂	ε2	F ₃	ε3	F_4	ε4	F ₅	CV _{F5}	£5	$CV_{\epsilon 5}$
	(m/min)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(%)	(%)
1	1100	82,7	0,53	142,5	1,13	222,3	2,90	290,1	4,88	591,6	4,4	19,21	9,2
2	1000	93,5	0,66	167,0	1,41	252,9	3,48	323,5	5,84	616,8	5,8	20,86	13,2
3	900	81,5	0,56	140,0	1,19	226,6	3,97	325,9	8,16	629,8	3,1	27,03	6,6
4	700	81,7	0,56	141,1	1,19	213,1	3,75	346,1	9,38	640,0	2,9	24,56	6,9
5	600	78,0	0,56	134,2	1,21	206,2	3,83	340,2	9,52	643,0	2,7	26,41	7,2
6	500	70,1	0,53	117,7	1,18	216,5	4,32	369,1	9,99	663,5	3,2	25,18	8,9

Tabela 2.1. Rezultati mehaničkih karakteristika pređa; T=350 °C, D/Y=2,15, i = 1,665

Tabela 2.2. Rezultati mehaničkih karakteristika pređa; T=350 °C, D/Y=2,20, i = 1,665

Uzorak	v	F ₁	ε1	F ₂	ε2	F ₃	E 3	F ₄	ε4	F ₅	CV _{F5}	85	CV _{ε5}
	(m/min)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(%)	(%)
7	1100	83,5	0,52	146,2	1,12	234,0	3,11	301,9	5,10	598,5	5,4	19,78	11,4
8	1000	97,2	0,67	170,5	1,40	249,1	3,42	327,9	6,01	605,8	6,0	20,67	12,1
9	900	82,5	0,55	142,3	1,16	222,9	3,87	325,5	8,46	619,6	3,9	27,83	7,2
10	700	77,2	0,57	130,5	1,21	212,5	4,02	354,6	9,78	643,8	4,2	25,01	7,7
11	600	77,7	0,57	132,5	1,22	211,2	3,95	340,5	9,32	650,0	2,0	26,38	4,4
12	500	75,8	0,58	126,5	1,23	214,3	4,11	363,9	9,78	661,1	3,1	25,04	8,2

Uzorak	v	\mathbf{F}_1	ε1	F_2	ε2	F ₃	ε3	F_4	ε4	F_5	$\mathrm{CV}_{\mathrm{F5}}$	E 5	$CV_{\epsilon 5}$
	(m/min)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(%)	(%)
13	1100	76,2	0,52	127,0	1,07	221,2	3,10	294,6	5,13	593,6	4,8	19,36	10,0
14	1000	98,8	0,68	173,6	1,40	257,5	3,67	348,6	6,68	622,8	6,5	20,40	13,1
15	900	83,3	0,55	145,2	1,18	218,6	3,78	323,4	8,52	619,9	2,8	27,29	6,8
16	700	80,2	0,59	137,6	1,26	214,9	4,02	332,9	9,11	624,3	3,1	24,64	6,7
17	600	77,5	0,57	134,1	1,26	216,3	4,12	342,6	9,39	650,7	1,6	25,85	3,9
18	500	73,3	0,55	124,5	1,21	212,0	4,08	372,3	10,18	666,6	3,3	25,94	9,3

Tabela 2.3. Rezultati mehaničkih karakteristika pređa; T=350 °C, D/Y=2,25, i = 1,665

Tabela 2.4. Rezultati mehaničkih karakteristika pređa; T=400 °C, D/Y=2,15, i = 1,665

Uzorak	v	F_1	ε1	F ₂	ε2	F ₃	E 3	F_4	ε4	F ₅	CV _{F5}	E 5	$CV_{\epsilon 5}$
	(m/min)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(%)	(%)
19	1100	71,7	0,51	119,0	1,06	220,4	3,28	295,4	5,37	594,2	5,3	18,61	11,3
20	1000	87,1	0,64	146,9	1,28	238,8	3,41	313,2	5,68	626,5	6,0	21,17	14,4
21	900	84,6	0,74	142,6	1,46	233,4	4,32	334,7	8,16	646,9	2,9	25,68	6,2
22	700	75,7	0,66	122,9	1,32	216,5	4,29	364,0	9,54	685,0	3,0	26,28	5,6
23	600	74,6	0,62	122,9	1,27	215,3	4,27	345,0	9,17	666,2	2,6	25,89	5,8
24	500	67,8	0,71	103,2	1,34	216,5	4,90	371,4	10,13	673,8	3,7	24,69	8,2

Tabela 2.5. Rezultati mehaničkih karakteristika pređa; T=400 °C, D/Y=2,20, i = 1,665

Uzorak	v	F ₁	ε1	F ₂	ε2	F ₃	ε3	F ₄	ε4	F ₅	CV _{F5}	ε ₅	$CV_{\epsilon 5}$
	(m/min)	(cN)	(%)	(%)	(%)								
25	1100	77,8	0,51	136,0	1,13	223,0	3,02	291,8	4,93	615,7	5,6	19,59	10,3
26	1000	84,2	0,58	145,5	1,21	233,1	3,28	313,4	5,75	632,0	14,0	20,57	11,9
27	900	88,4	0,66	152,0	1,34	236,4	4,06	338,1	8,14	646,6	3,4	26,91	8,3
28	700	68,2	0,60	107,5	1,22	218,3	4,53	367,8	9,53	688,8	2,3	25,77	6,4
29	600	73,9	0,55	123,8	1,19	216,1	4,13	357,0	9,41	670,1	2,7	26,22	5,3
30	500	69,5	0,76	108,8	1,49	203,1	4,54	357,4	9,79	682,1	3,8	25,99	7,4

Tabela 2.6. Rezultati mehaničkih karakteristika pređa; T=400 °C, D/Y=2,25, i = 1,665

Uzorak	v	F ₁	ε1	F ₂	ε2	F ₃	£3	F ₄	ε4	F ₅	CV _{F5}	ε5	$CV_{\epsilon 5}$
	(m/min)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(%)	(%)
31	1100	82,9	0,53	145,1	1,16	216,3	2,75	283,4	4,66	618,5	5,7	19,13	11,0
32	1000	99,5	0,72	170,0	1,43	256,1	3,57	336,2	6,11	646,1	5,2	22,13	12,3
33	900	78,7	0,58	133,2	1,21	221,6	4,04	329,8	8,40	634,5	3,1	26,48	7,4
34	700	64,5	0,57	100,0	1,16	190,9	4,07	361,5	9,96	666,5	2,0	25,31	6,9
35	600	65,8	0,50	112,0	1,16	213,0	4,42	364,4	10,09	673,4	1,6	26,50	4,9
36	500	67,5	0,56	107,0	1,16	216,5	4,47	373,8	9,87	681,0	2,3	24,58	6,4

Uzorak	V	F_1	ε ₁	F_2	ε2	F ₃	ε3	F ₄	ε4	F ₅	CV _{F5}	ε ₅	$CV_{\epsilon 5}$
	(m/min)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(%)	(%)
37	1100	82,0	0,52	139,7	1,09	219,9	2,88	296,5	5,03	652,1	6,9	21,42	12,4
38	1000	78,6	0,63	126,7	1,26	207,0	3,22	281,3	5,37	656,9	5,6	25,51	12,5
39	900	73,9	0,72	118,3	1,42	215,5	4,38	329,2	8,29	660,3	2,8	25,56	5,9
40	700	70,2	0,63	112,3	1,27	210,0	4,26	356,2	9,25	693,9	2,5	26,01	6,1
41	600	64,1	0,56	101,1	1,18	209,6	4,54	369,5	10,02	680,5	2,6	26,03	5,6
42	500	73,0	0,67	118,1	1,35	210,2	4,21	370,5	9,53	709,3	1,8	25,44	5,2

Tabela 2.7. Rezultati mehaničkih karakteristika pređa; T=450 °C, D/Y=2,15, i = 1,665

Tabela 2.8. Rezultati mehaničkih karakteristika pređa; T=450 °C, D/Y=2,20, i = 1,665

Uzorak	v	F ₁	ε1	F ₂	ε2	F ₃	E 3	F ₄	ε4	F ₅	CV _{F5}	85	$CV_{\epsilon 5}$
	(m/min)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(%)	(%)
43	1100	74,2	0,52	121,5	1,06	226,0	3,38	313,4	5,77	627,2	8,0	21,50	16,5
44	1000	74,2	0,64	119,9	1,27	227,6	3,77	311,6	6,11	644,8	6,4	21,00	11,4
45	900	71,1	0,77	108,6	1,42	222,5	4,83	342,5	8,90	669,5	2,4	26,59	6,3
46	700	68,6	0,61	112,8	1,31	217,4	4,48	385,5	10,07	700,6	2,6	26,05	6,0
47	600	64,3	0,65	100,0	1,35	190,3	4,29	357,7	10,00	683,7	1,9	26,33	4,7
48	500	73,7	0,68	116,5	1,28	208,3	4,07	344,1	8,65	701,6	3,3	25,07	6,5

Tabela 2.9. Rezultati mehaničkih karakteristika pređa; T=450 °C, D/Y=2,25, i = 1,665

Uzorak	v	F ₁	ε1	F ₂	ε2	F ₃	E 3	F ₄	ε4	F ₅	CV _{F5}	85	CV _{ε5}
	(m/min)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(%)	(%)
49	1100	76,8	0,49	130,5	1,06	200,3	2,72	273,9	4,95	614,9	7,0	20,73	12,5
50	1000	78,8	0,87	125,5	1,69	226,1	4,21	356,0	7,80	628,4	7,8	20,86	15,2
51	900	74,7	0,67	120,9	1,34	224,9	4,45	343,5	8,56	661,2	2,9	25,67	7,6
52	700	70,6	0,60	112,5	1,23	204,3	4,14	380,0	10,22	690,7	2,5	25,61	5,5
53	600	67,7	0,66	104,0	1,26	198,3	4,25	366,5	9,93	680,0	2,9	26,01	3,9
54	500	71,2	0,63	115,5	1,30	200,5	3,99	367,2	9,59	708,5	3,0	25,60	7,0

Tabela 2.10. Rezultati mehaničkih karakteristika pređa; T=350 °C, D/Y=2,15, i = 1,685

Uzorak	v	F ₁	ε1	F ₂	ε2	F ₃	E 3	F ₄	ε4	F ₅	CV _{F5}	85	$CV_{\epsilon 5}$
	(m/min)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(%)	(%)
55	1100	79,0	0,50	136,7	1,08	232,9	3,25	319,4	5,64	608,7	5,7	20,07	11,3
56	1000	92,5	0,62	163,0	1,30	247,2	3,66	344,1	6,99	643,2	3,9	21,54	9,3
57	900	91,5	0,66	162,9	1,45	239,2	4,01	337,7	7,90	632,3	3,4	24,65	7,7
58	700	78,8	0,54	136,0	1,18	214,7	3,83	348,1	9,20	641,6	3,3	23,87	7,9
59	600	80,3	0,56	138,5	1,20	212,7	3,78	346,1	9,19	646,9	2,5	25,26	4,9
60	500	76,6	0,58	129,6	1,23	218,5	4,06	361,9	9,38	657,7	2,8	23,40	7,5

Tabela 2.11. Rezultati mehaničkih karakteristika pređa;	T=350 °C	^L , D/Y=2,20, <i>i</i> = 1,685
---	----------	---

Uzorak	v	F ₁	ε1	F ₂	ε2	F ₃	ε3	F ₄	ε4	F ₅	CV _{F5}	ε ₅	$CV_{\epsilon 5}$
	(m/min)	(cN)	(%)	(%)	(%)								
61	1100	83,7	0,56	142,1	1,15	232,8	3,09	304,2	5,08	626,6	5,7	19,66	10,9
62	1000	81,5	0,60	138,8	1,25	237,9	3,74	333,2	6,65	635,1	4,7	21,24	10,6
63	900	84,4	0,58	144,6	1,20	226,6	3,84	334,0	8,22	639,9	2,8	25,62	5,9
64	700	81,3	0,56	142,0	1,22	212,5	3,72	340,5	8,94	637,5	3,7	23,49	7,6
65	600	81,5	0,59	139,4	1,23	219,7	3,97	351,9	9,32	651,9	1,9	24,47	4,8
66	500	71,4	0,56	121,3	1,23	209,4	4,09	368,0	9,88	659,8	2,8	23,78	7,9

Uzorak	v	F_1	ε ₁	F ₂	ε2	F ₃	ε3	F ₄	ε4	F ₅	CV _{F5}	ε ₅	$CV_{\epsilon 5}$
	(m/min)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(%)	(%)
67	1100	74,2	0,52	126,3	1,13	224,0	3,32	313,7	5,79	598,5	5,4	18,00	11,2
68	1000	82,2	0,60	143,0	1,29	231,1	3,48	331,5	6,37	629,3	4,4	21,28	10,8
69	900	85,5	0,60	147,7	1,24	235,6	3,94	340,7	8,05	632,9	2,6	24,82	5,7
70	700	72,0	0,58	118,6	1,23	201,2	4,05	362,9	10,13	659,4	2,7	24,44	5,6
71	600	79,2	0,59	134,0	1,23	218,8	4,04	351,1	9,24	653,8	2,8	24,87	6,0
72	500	72,2	0,54	126,2	1,26	210,5	4,05	374,0	10,04	672,9	2,8	24,71	7,4

Tabela 2.12. Rezultati mehaničkih karakteristika pređa; T=350 °C, D/Y=2,25, i = 1,685

Tabela 2.13. Rezultati mehaničkih karakteristika pređa; T=400 °C, D/Y=2,15, i = 1,685

Uzorak	v	F ₁	ε1	F ₂	ε2	F ₃	ε3	F ₄	ε4	F ₅	CV _{F5}	ε ₅	$CV_{\epsilon 5}$
	(m/min)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(%)	(%)
73	1100	72,0	0,49	120,3	1,02	212,5	2,90	276,2	4,59	631,3	5,9	20,41	11,3
74	1000	79,6	0,65	131,3	1,29	227,9	3,78	327,6	6,82	650,0	4,0	22,08	9,7
75	900	82,2	0,64	135,8	1,24	240,5	4,16	350,6	7,98	661,3	2,5	24,78	7,0
76	700	64,2	0,57	105,1	1,27	207,3	4,44	382,5	10,30	686,3	3,3	25,00	7,1
77	600	70,0	0,54	114,9	1,15	218,7	4,35	364,9	9,62	671,1	3,2	25,08	5,0
78	500	70,2	0,75	109,8	1,47	190,1	3,98	306,8	7,86	669,7	3,6	23,72	7,3

Tabela 2.14. Rezultati mehaničkih karakteristika pređa; T=400 °C, D/Y=2,20, i = 1,685

Uzorak	v	F ₁	ε1	F ₂	ε2	F ₃	E 3	F_4	ε4	F ₅	CV _{F5}	85	CV _{ε5}
	(m/min)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(%)	(%)
79	1100	84,0	0,56	142,2	1,15	223,3	2,91	294.8	4.88	606.7	5.8	18.12	11.7
80	1000	89,7	0,65	153,8	1,30	244,3	3,59	342.5	6.61	648.9	4.5	21.07	8.7
81	900	79,5	0,63	129,9	1,23	233,6	4,20	350.6	8.26	656.5	3.5	24.13	7.3
82	700	67,2	0,53	111,3	1,18	202,2	3,97	373.3	9.79	688.1	2.5	24.96	5.6
83	600	75,0	0,57	126,8	1,23	217,5	4,06	357.3	9.15	670.1	3.1	24.72	5.7
84	500	73,8	0,86	117,7	1,71	217,2	4,78	366.9	9.64	678.4	2.7	24.25	7.4

Tabela 2.15. Rezultati mehaničkih karakteristika pređa; T=400 °C, D/Y=2,25, i = 1,685

Uzorak	V	F_1	ε1	F_2	ε2	F ₃	ε3	F_4	ε4	F ₅	CV_{F5}	ε5	$CV_{\epsilon 5}$
	(m/min)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(%)	(%)
85	1100	75,7	0,54	126,2	1,12	230,0	3,39	324.0	5.86	634.3	7.0	19.83	13.1
86	1000	80,8	0,61	133,5	1,23	224,5	3,49	323.7	6.38	645.4	3.2	21.47	7.5
87	900	83,0	0,63	140,6	1,28	239,1	4,13	350.4	8.10	647.4	2.8	23.81	6.4
88	700	66,5	0,61	103,0	1,22	188,7	4,02	377.1	10.43	663.4	2.7	23.71	6.4
89	600	72,6	0,55	121,6	1,18	211,3	4,01	362.7	9.47	681.8	1.9	24.99	5.2
90	500	73,0	0,60	119,2	1,22	213,5	4,01	363.9	9.00	675.1	3.7	22.50	8.9

Tabela 2.16. Rezultati mehaničkih karakteristika pređa; T=450 °C, D/Y=2,15, i = 1,685

Uzorak	v	F ₁	ε1	F ₂	ε2	F ₃	E 3	F ₄	ε4	F ₅	CV _{F5}	ε5	$CV_{\epsilon 5}$
	(m/min)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(%)	(%)
91	1100	90,8	0,66	154,7	1,34	248,0	3,58	325.8	5.74	643.9	8.1	21.28	15.0
92	1000	73,9	0,56	121,2	1,15	211,3	3,48	329.4	6.90	661.7	3.6	22.91	10.5
93	900	79,5	0,64	130,8	1,27	238,1	4,27	362.6	8.39	664.8	3.2	25.40	7.7
94	700	68,2	0,57	112,5	1,23	206,8	4,07	365.3	9.31	682.3	3.1	23.79	6.5
95	600	65,1	0,61	100,8	1,22	194,9	4,14	362.6	9.70	689.9	2.0	25.17	4.9
96	500	78,0	0,70	126,0	1,33	218,1	4,10	362.3	8.86	707.5	2.2	23.63	5.8

Uzorak	V	F_1	ε ₁	F_2	ε2	F ₃	ε3	F ₄	ε4	F ₅	CV _{F5}	ε ₅	$CV_{\epsilon 5}$
	(m/min)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(%)	(%)
97	1100	71,2	0,54	110,5	1,02	218,6	3,29	346.7	6.62	648.4	10.3	20.61	18.2
98	1000	90,7	0,72	153,6	1,41	237,0	3,49	327.5	6.20	652.5	4.2	22.45	9.1
99	900	74,3	0,64	119,7	1,27	226,3	4,17	342.1	7.88	665.0	5.0	23.27	9.2
100	700	67,4	0,55	112,2	1,23	211,1	4,21	383.0	9.90	699.0	3.1	25.10	7.3
101	600	65,8	0,62	102,0	1,24	216,7	4,68	371.8	9.79	686.7	2.4	24.86	5.0
102	500	81,0	0,74	134,0	1,47	210,4	3,90	337.3	8.12	702.1	2.8	23.83	5.3

Tabela 2.17. Rezultati mehaničkih karakteristika pređa; T=450 °C, D/Y=2,20, i = 1,685

Tabela 2.18. Rezultati mehaničkih karakteristika pređa; T=450 °C, D/Y=2,25, i = 1,685

Uzorak	v	F_1	ε1	F ₂	ε2	F ₃	E 3	F ₄	ε4	F ₅	CV _{F5}	85	CV _{ε5}
	(m/min)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(cN)	(%)	(%)	(%)
103	1100	90,8	0,66	154,7	1,34	245,4	3,34	325.8	5.59	638.4	10.9	20.36	18.3
104	1000	77,0	0,62	124,3	1,20	227,7	3,70	331.4	6.63	662.2	3.7	20.52	7.9
105	900	77,8	0,64	128,3	1,29	223,3	3,92	324.2	7.27	670.8	3.2	23.48	7.0
106	700	66,4	0,51	113,1	1,19	200,4	3,88	382.5	9.97	688.0	3.1	24.17	6.8
107	600	64,9	0,66	98,4	1,29	207,6	4,64	374.2	10.04	685.2	3.3	25.07	6.5
108	500	72,6	0,67	115,4	1,30	204,7	4,02	357.3	8.97	708.6	2.9	24.41	5.5

U tabelama 2.1. do 2.18. prikazani su parametri teksturiranja i neke karakteristike analiziranih teksturiranih POY PES multifilamentnih pređa (v – brzina teksturiranja – (m/min); T – temperatura primarnog grejača – (°C); F₁ – sila na granici elastičnosti – (cN); ε_1 – izduženje na granici elastičnosti – (%); F₂ – sila na granici puzanja – (cN); ε_2 – izduženje na granici puzanja – (%); F₃ – sila na kraju zone puzanja – (cN); ε_3 – izduženje na kraju zone puzanja – (%); F₄ – sila na granici popuštanja – (%); F₅ – prekidna sila – (cN); ε_5 – prekidno izduženje – (%); CV_{F5} –koeficijent varijacije prekidne sile - (%); CV_{ε5} - koeficijent varijacije prekidnog izduženja – (%)

2.4.1. Analiza rezultata sile i izduženja na granici elastičnosti teksturirane PES multifilamentne pređe

Na granici elastičnosti teksturiranih POY PES multifilamentnih pređa registrovane su vrednosti sile i izduženja. Na osnovu dobijenih rezultata, na slici 2.12. i slici 2.13. prikazani su grafici koji ukazuju na uticaj različitih procesnih parametara proizvodnje teksturiranih multifilamentnih pređa na vrednost sile i izduženja na granici elastičnosti pri odnosu obimne brzine diskova i brzine pređe 2,15.

Slika 2.12. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na granici elastičnosti (D/Y = 2,15, i = 1,665)

Slika 2.13. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na granici elastičnosti (D/Y = 2,15, i = 1,685)

Rezultati pokazuju da kod teksturiranih pređa proizvedenih pri temperaturi primarnog grejača od 350 °C vrednosti sile na granici elastičnosti su veće u odnosu na pređe proizvedene pri temepraturi

primarnog grejača 450 °C. Tek pri brzini teksturiranja iznad 1000 m/min i istezanju 1,685 vrednost sile na granici elastičnosti je veća kod pređe proizvedene pri temperaturi primarnog grejača od 450 °C. Takođe, trend rasta sile na granici elastičnosti sa povećanjem brzine teksturiranja do 1000 m/min uočava se kod pređa proizvedenih primenom temperature primarnog grejača 350 °C, a zatim je registrovan pad sile, za razliku od pređa proizvedenih primenom temeprature teksturiranja od 450 °C, gde je trend rasta sile sve do brzine teksturiranja od 1100 m/min. Vrednosti izduženja na granici elastičnosti uglavnom su veće kod pređa koje su proizvedene primenom više temperature teksturiranja.

Slike 2.14. i 2.15. prikazuju grafike promene vrednosti sile i izduženja na granici elastičnosti u zavisnosti od različitih procesnih parametara proizvodnje teksturiranih multifilamentnih pređa, pri odnosu obimne brzine diskova i brzine pređe 2,20.

Slika 2.14. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na granici elastičnosti (D/Y = 2,20, i = 1,665)

Slika 2.15. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na granici elastičnosti (D/Y = 2,20, i = 1,685)

Kao i u prethodnom slučaju rezultati merenja pokazuju da kod teksturiranih pređa proizvedenih pri temperaturi primarnog grejača od 350 °C vrednosti sile na granici elastičnosti su veće u odnosu na pređe proizvedene pri temperaturi 450 °C. Nasuprot tome, pri brzini teksturiranja 1000 m/min vrednost sile na granici elastičnosti je veća kod pređe proizvedene pri temperaturi primarnog grejača od 450 °C i stepenom istezanja 1,685. Takođe, registrovan je blagi rast sile na granici elastičnosti sa povećanjem brzine teksturiranja do 1000 m/min. Pri brzini teksturiranja iznad 1000 m/min uočava se pad vrednosti sile kod pređe proizvedene primenom temperature primarnog grejača 350 °C uz istezanje 1,665, i kod pređe proizvedene primenom temperature teksturiranja od 450 °C pri istezanju 1,685. Takođe, vrednosti izduženja na granici elastičnosti uglavnom su veće kod pređa koje su proizvedene primenom više temperature teksturiranja.

Slike 2.16. i 2.17. prikazuju grafike promene vrednosti sile i izduženja na granici elastičnosti u zavisnosti od različitih procesnih parametara proizvodnje teksturiranih multifilamentnih pređa, pri odnosu obimne brzine diskova i brzine pređe 2,25.

Slika 2.16. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na granici elastičnosti (D/Y = 2,25, i = 1,665)

Slika 2.17. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na granici elastičnosti (D/Y = 2,25, i = 1,685)

Rezultati pokazuju da kod pređa proizvedenih pri temperaturi teksturiranja od 350 °C vrednosti sile na granici elastičnosti su uglavnom veće u odnosu na pređe proizvedene pri temperaturi primarnog grejača 450 °C. Tek pri brzini teksturiranja 1100 m/min vrednost sile na granici elastičnosti je veća kod pređe proizvedene pri temperaturi primarnog grejača od 450 °C. Takođe, uočava se trend rasta sile na granici elastičnosti pređa sa povećanjem brzine teksturiranja do 1000 m/min kod pređa proizvedenih uz stepen istezanja 1,665. Granica elastičnosti pređa proizvedenih uz stepen istezanja 1,665. Granica elastičnosti pređa proizvedenih uz stepen istezanja 1,665. Vrednosti izduženja na granici elastičnosti uglavnom imaju veće vrednosti kod pređa koje su proizvedene primenom više temperature teksturiranja.

Na slikama 2.18 do 2.23 prikazan je uticaj odnosa D/Y na vrednosti sile i izduženja na granici elastičnosti teksturiranih multifilamentnih poliesterskih pređa,

Slika 2.18. Uticaj odnosa D/Y na intenzitet sile i izduženje na granici elastičnosti, pri različitim brzinama teksturiranja (T = 350 °C, i = 1,665)

Slika 2.19 Uticaj odnosa D/Y na intenzitet sile i izduženje na granici elastičnosti, pri različitim brzinama teksturiranja (T = 350 °C, i = 1,685)

Slika 2.20. Uticaj odnosa D/Y na intenzitet sile i izduženje na granici elastičnosti, pri različitim brzinama teksturiranja (T = 400 °C, i = 1,665)

Slika 2.21. Uticaj odnosa D/Y na intenzitet sile i izduženje na granici elastičnosti, pri različitim brzinama teksturiranja (T = 400 °C, i = 1,685)

Slika 2.22. Uticaj odnosa D/Y na intenzitet sile i izduženje na granici elastičnosti, pri različitim brzinama teksturiranja (T = 450 °C, i = 1,665)

Slika 2.23. Uticaj odnosa D/Y na intenzitet sile i izduženje na granici elastičnosti, pri različitim brzinama teksturiranja (T = 450 °C, i = 1,685)

Analizom dobijenih rezultata, kao i posmatranjem grafika na slikama 2.18. do 2.23. ne može se uočiti jasan uticaj količnika D/Y na vrednosti sila i izduženja na granici elastičnosti. Takođe, promena istezanja (1,665 na 1,685) u procesu teksturiranja nije dala jasnu korelaciju sa parametrima na granici elastičnosti teksturirane PES multifilamentne pređe. U većini slučajeva registrovan je pad sile i izduženja na granici elastičnosti kod pređa proizvedenih brzinama iznad 900 m/min, odnosno iznad 1000 m/min.

2.4.2. Analiza rezultata sile i izduženja na granici puzanja teksturirane PES multifilamentne pređe

Granica puzanja teksturiranih multifilamentnih poliestarskih pređa određena je analizom toka funkcije sila - izduženje (slike 2.5. i 2.6.). Granica puzanja definiše gornju dozvoljenu granicu opterećenja teksturiranih poliesterskih pređa u narednim tehnološkim procesima njene prerade.

Na granici puzanja teksturiranih poliesterskih multifilamentnih pređa registrovane su vrednosti sila i izduženja, a rezultati su prikazani u tabelama. Na osnovu dobijenih rezultata, prikazani su grafici (slike 2.24. i 2.25.) koji ukazuju na uticaj različitih procesnih parametara proizvodnje teksturiranih multifilamentnih pređa na njihova svojstva na granici puzanja pri odnosu obimne brzine frikcionih diskova i brzine pređe D/Y = 2,15.

Slika 2.24. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na granici puzanja (D/Y = 2,15, i = 1,665)

Slika 2.25. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na granici puzanja (D/Y = 2,15, i = 1,685)

Rezultati pokazuju da kod teksturiranih pređa proizvedenih pri temperaturi primarnog grejača od 350 °C vrednosti sile na granici puzanja su veće u odnosu na pređe proizvedene pri temperaturi teksturiranja 450 °C. Tek pri brzini teksturiranja 1100 m/min uz istezanje 1,685 vrednost sile na granici puzanja je veća kod pređe proizvedene pri temperaturi primarnog grejača od 450 °C. Takođe, trend rasta sile na granici puzanja sa povećanjem brzine teksturiranja do 1000 m/min uočava se kod pređa prozvedenih primenom temperature primarnog grejača 350 °C, a zatim je registrovan pad sile, za razliku od pređa proizvedenih primenom temperature teksturiranja od 450 °C, gde je trend rasta sile sve do brzine teksturiranja 1100 m/min.

Slike 2.26. i 2.27. prikazuju uticaj brzine teksturiranja i temperature primarnog grejača na parametre teksturiranih poliesterskih pređa na granici puzanja, pri odnosu D/Y = 2,20.

Slika 2.26. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na granici puzanja (D/Y = 2,20, i = 1,665)

Slika 2.27. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na granici puzanja (D/Y = 2,20, i = 1,685)

Rezultati merenja pokazuju da teksturirane multifilamentne pređe proizvedene primenom niže temperature primarnog grejača imaju veće vrednosti sile na granici puzanja u odnosu na pređe proizvedene pri višoj temperaturi teksturiranja. Nasuprot tome, pri brzini teksturiranja 1000 m/min vrednost sile na granici puzanja je veća kod pređe proizvedene pri temperaturi primarnog grejača od 450 °C i stepenom istezanja 1,685. Takođe, registrovan je rast sile na granici puzanja sa povećanjem brzine teksturiranja do 1000 m/min, uz stepen istezanja 1,665, za pređe proizvedene primenom temperature primarnog grejača 350 °C. Porast vrednosti sile na granici puzanja pri brzini teksturiranja do 1000 m/min registrovan je kod pređa proizvedenih primenom temperature primarnog grejača 450 °C uz stepen istezanja 1,685. Vrednosti izduženja na granici puzanja uglavnom su veće kod pređa koje su proizvedene primenom više temperature teksturiranja. Odstupanje od ovoga pokazuju pređe proizvedene brzinom teksturiranja 1000 m/min i 1100 m/min pri istezanju 1,665, odnosno 1100 m/min pri istezanju 1,685.

Slike 2.28. i 2.29. prikazuju uticaj brzine teksturiranja i temperature primarnog grejača na parametre teksturiranih poliesterskih pređa na granici puzanja pri odnosu D/Y = 2,25 i pri istezanju 1,665 i 1,685.

Slika 2.28. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na granici puzanja (D/Y = 2,25 i = 1,665)

Slika 2.29. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na granici puzanja (D/Y = 2,25, i = 1,685)

Rezultati pokazuju da kod pređa proizvedenih pri temperaturi teksturiranja 350 °C vrednosti sile na granici puzanja su veće u odnosu na pređe proizvedene pri temperaturi primarnog grejača 450 °C sve do brzine teksturiranja 1000 m/min. Pri brzini teksturiranja 1100 m/min vrednost sile na granici puzanja je veća kod pređe proizvedene primenom temperature primarnog grejača od 450 °C. Takođe, uočava se trend rasta sile na granici puzanja pređa sa povećanjem brzine teksturiranja do 1000 m/min kod pređa proizvedenih uz stepen istezanja 1,665. Vrednost sile na granici puzanja pređe proizvedene uz stepen istezanja 1,685 ima trend rasta do brzine teksturiranja 900 m/min pri temperaturi 350 °C. Vrednosti sile na granici puzanja imaju trend rasta kod pređa proizvedenih
primenom temperature teksturiranja 450 °C sa povećanjem brzine teksturiranja, uz stepen istezanja 1,665 i 1,685. Vrednosti izduženja na granici puzanja uglavnom su veće kod pređa koje su proizvedene primenom više temperature teksturiranja, pri čemu je razlika izraženija pri manjem stepenu istezanja.

Na slikama 2.30. do 2.35. prikazan je uticaj odnosa D/Y na svojstva teksturiranih multifilamentnih PES pređa na granici puzanja, pri različitim brzinama teksturiranja.

Analizom dobijenih rezultata i grafika na slikama 2.30. do 2.35. ne uočava se jasan uticaj količnika D/Y na vrednosti sile i izduženja na granici puzanja. Takođe, promena istezanja (1,665 na 1,685) u procesu teksturiranja nije pokazala jasnu korelaciju sa parametrima na granici puzanja teksturirane PES multifilamentne pređe.

Slika 2.30. Uticaj odnosa D/Y na intenzitet sile i izduženje na granici puzanja, pri različitim brzinama teksturiranja (T = 350 °C, i = 1,665)

Slika 2.31. Uticaj odnosa D/Y na intenzitet sile i izduženje na granici puzanja, pri različitim brzinama teksturiranja (T = 350 °C, i = 1,685)

Slika 2.32. Uticaj odnosa D/Y na intenzitet sile i izduženje na granici puzanja, pri različitim brzinama teksturiranja (T = 400 °C, i = 1,665)

Slika 2.33. Uticaj odnosa D/Y na intenzitet sile i izduženje na granici puzanja, pri različitim brzinama teksturiranja (T = 400 °C, i = 1,685)

Slika 2.34. Uticaj odnosa D/Y na intenzitet sile i izduženje na granici puzanja, pri različitim brzinama teksturiranja (T = 450 °C, i = 1,665)

Slika 2.35. Uticaj odnosa D/Y na intenzitet sile i izduženje na granici puzanja, pri različitim brzinama teksturiranja (T = 450 °C, i = 1,685)

U većini slučajeva registrovan je pad sile i izduženja na granici puzanja kod teksturiranih pređa proizvedenih brzinama iznad 900 m/min, odnosno iznad 1000 m/min.

2.4.3. Analiza rezultata sile i izduženja na kraju zone puzanja teksturirane PES multifilamentne pređe

Kraj zone puzanja tekturirane multifilamentne PES pređe nastaje u momentu kada sila prilikom istezanja počinje ponovo brže da raste u odnosu na deformaciju.

Na slikama 2.36. i 2.37. prikazani su grafici koji ukazuju na uticaj temperature primarnog grejača i brzine teksturiranja poliestarske multifilamentne pređe na svojstva na kraju zone puzanja pri odnosu obimne brzine diskova i brzine pređe 2,15.

Slika 2.36. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na kraju zone puzanja (D/Y = 2,15, i = 1,665)

Slika 2.37. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na kraju zone puzanja (D/Y = 2,15, i = 1,685)

Analizom vrednosti sile na kraju zone puzanja pri temperaturama teksturiranja 350 °C i 450 °C može se konstatovati da su vrednosti sile uglavnom veće pri nižoj temperaturi, dok se teksturirana PES multifilamentna pređa više izdužuje na kraju zone puzanja ako je proizvedena pri višoj temperaturi primarnog grejača. Takođe, na osnovu dobijenih rezultata može se konstatovati značajniji pad izduženja na kraju zone puzanja kod pređa koje su proizvedene brzinom većom od 900 m/min.

Na slikama 2.38. i 2.39. date su zavisnosti koje pokazuju uticaj brzine teksturiranja i temperature primarnog grejača na parametre teksturiranih poliesterskih pređa na kraju zone puzanja pri odnosu D/Y = 2,20.

Slika 2.38. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na kraju zone puzanja (D/Y = 2,20, i = 1,665)

Slika 2.39. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na kraju zone puzanja (D/Y = 2,20, i = 1,685)

Rezultati pokazuju da pređe proizvedene pri većim brzinama imaju veće vrednosti sile na kraju zone puzanja. Pad vrednosti sile registrovan je kod pređa proizvedenih brzinom 1100 m/min. Izduženje ima trend opadanja sa porastom brzine teksturiranja, pri čemu je značajniji pad registrovan kod pređa proizvedenih brzinama većim od 900 m/min.

Vrednosti sila na kraju zone puzanja uglavnom su veće kod pređa proizvedenih primenom temperature primarnog grejača 350 °C, dok su vrednosti izduženja na kraju zone puzanja uglavnom veće kod teksturiranih multifilamentnih poliesterskih pređa koje su proizvedene primenom temperature primarnog grejača 450 °C.

Slike 2.40. i 2.41. prikazuju uticaj brzine teksturiranja i temperature primarnog grejača na parametre teksturiranih poliesterskih pređa na kraju zone puzanja pri odnosu D/Y = 2,25.

Slika 2.40. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na kraju zone puzanja (D/Y = 2,25, i = 1,665)

Slika 2.41. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na kraju zone puzanja (D/Y = 2,25, i = 1,685)

Najveće vrednosti sile na kraju zone puzanja imaju pređe proizvedene brzinom teksturiranja 1000 m/min, uz stepen istezanja 1,665, dok su veće vrednosti kod pređa proizvedene uz istezanje 1,685 registrovane pri brzini teksturiranja 900 m/min i temperaturama primarnog grejača 350 °C i 400 °C, odnosno 1100 m/min kod pređe proizvedene primenom temperature primarnog grejača 450 °C. Vrednosti izduženja na kraju zone puzanja opadaju sa porastom brzine teksturiranja.

Na slikama 2.42. do 2.47. prikazan je uticaj odnosa D/Y na svojstva teksturiranih multifilamentnih PES pređa na kraju zone puzanja, pri različitim brzinama teksturiranja.

Slika 2.42. Uticaj odnosa D/Y na intenzitet sile i izduženje na kraju zone puzanja, pri različitim brzinama teksturiranja (T = 350 °C, i = 1,665)

Slika 2.43. Uticaj odnosa D/Y na intenzitet sile i izduženje na kraju zone puzanja, pri različitim brzinama teksturiranja (T = 350 °C, i = 1,685)

Slika 2.44. Uticaj odnosa D/Y na intenzitet sile i izduženje na granici puzanja, pri različitim brzinama teksturiranja (T = 400 °C, i = 1,665)

Slika 2.45. Uticaj odnosa D/Y na intenzitet sile i izduženje na kraju zone puzanja, pri različitim brzinama teksturiranja (T = 400 °C, i = 1,685)

Slika 2.46. Uticaj odnosa D/Y na intenzitet sile i izduženje na kraju zone puzanja, pri različitim brzinama teksturiranja (T = 450 °C, i = 1,665)

Slika 2.47. Uticaj odnosa D/Y na intenzitet sile i izduženje na kraju zone puzanja, pri različitim brzinama teksturiranja (T = 450 °C, i = 1,685)

Analizom dobijenih rezultata u tabelama i grafika na slikama 2.42. do 2.47. ne može se uočiti jasan uticaj odnosa periferne brzine frikcionih diskova i linearne brzine pređe (D/Y) na vrednosti sile i izduženja na kraju zone puzanja. Takođe, promena istezanja (1,665 na 1,685) u procesu teksturiranja nije pokazala jasnu korelaciju sa parametrima na kraju zone puzanja teksturiranih PES multifilamentnih pređa. U većini slučajeva registrovan je trend rasta sile i pada izduženja na kraju zone puzanja sa porastom brzine teksturiranja u procesu izrade ovih pređa. Značajniji pad vrednosti izduženja na kraju zone puzanja registruje se pri brzinama teksturiranja većim od 900 m/min.

2.4.4. Razmatranje karakteristika teksturirane PES multifilamentne pređe u zoni puzanja

Granica puzanja predstavlja gornju granicu naprezanja koju pređa može podneti a da se značajnije ne deformiše. Istovremeno, ona predstavlja početak promena u strukturi monofilamenata (u ovom slučaju broj monofilamenata je 36) multifilamentne pređe. Budući da svi monofilamenti nemaju jednak tretman u procesu teksturiranja, to je očekivano i da imaju različita svojstva tokom istezanja. Naime, iako se radi o istoj pređi, otpor spoljašnjim silama pojedinih monofilamenata nije isti. Položaji koje zauzimaju pojedini monofilamenti u multifilamentnoj pređi u odnosu na osu pređe su različiti, pa samim tim nije jednako zagrevanje svih monofilamenata u grejaču. Takođe, u frikcionoj jedinici svi monofilamenti nemaju jednako vreme kontakta sa površinama frikcionih diskova, što takođe ima uticaj na različita svojstva pojedinih monofilamenata u multifilamentnoj pređi. Zato u zoni puzanja sila lagano raste sa istezanjem multifilamenta, sve do momenta kada se promene u strukturi okončaju.

Kraj zone puzanja određen je analizom toka funkcije zavisnosti sila - izduženje. Na slikama 2.48. do 2.53. date su promene nekih karakteristika teksturiranih multifilamentnih PES pređa u zoni puzanja. Na slikama je prikazana razlika vrednosti sila i izduženja na kraju i na početku zone puzanja multifilamentne teksturirane PES pređe.

Slika 2.48. Uticaj brzine teksturiranja i temperature primarnog grejača na svojstva teksturirane pređe u zoni puzanja (D/Y = 2,15, i = 1,665)

Slika 2.49. Uticaj brzine teksturiranja i temperature primarnog grejača na svojstva teksturirane pređe u zoni puzanja (D/Y = 2,20, i = 1,665)

Slika 2.50. Uticaj brzine teksturiranja i temperature primarnog grejača na svojstva teksturirane pređe u zoni puzanja (D/Y = 2,25, i = 1,665)

Slika 2.51. Uticaj brzine teksturiranja i temperature primarnog grejača na svojstva teksturirane pređe u zoni puzanja (D/Y = 2,15, i = 1,685)

Slika 2.52. Uticaj brzine teksturiranja i temperature primarnog grejača na svojstva teksturirane pređe u zoni puzanja (D/Y = 2,20, i = 1,685)

Slika 2.53. Uticaj brzine teksturiranja i temperature primarnog grejača na svojstva teksturirane pređe u zoni puzanja (D/Y = 2,25, i = 1,685)

Na osnovu grafika uočava se da je razlika vrednosti sile na kraju i početku zone puzanja uglavnom veća kod pređe koje su proizvedene primenom više temperature primarnog grejača. Izvesna odstupanja pokazuju pređe proizvedene brzinom teksturiranja iznad 1000 m/min.

Promena izduženja teksturirane multifilamentne pređe u zoni puzanja ima sličan karakter kao i promena vrednosti sile, kada se razmatra uticaj primenjene temperature teksturiranja. Pored toga, ovde se uočava i pad razlike izduženja sa povećanjem brzine teksturiranja iznad 900 m/min.

Dobijeni rezultati mogu doprineti izboru optimalnih parametara proizvodnje teksturiranih PES multifilamentnih pređa, saglasno njenoj nameni.

2.4.5. Analza rezultata sile i izduženja na granici popuštanja teksturirane PES multifilamentne pređe

Na slikama 2.54. i 2.55. prikazani su grafici koji prikazuju uticaj temperature primarnog grejača i brzine teksturiranja poliesterske multifilamentne pređe na njena svojstva na granici popuštanja pri odnosu obimne brzine diskova i brzine pređe 2,15.

Slika 2.54. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na granici popuštanja (D/Y = 2,15, i = 1,665)

Slika 2.55. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na granici popuštanja (D/Y = 2,15, i = 1,685)

Rezultati pokazuju da teksturirane pređe proizvedene brzinom teksturiranja do 900 m/min, pri temperaturi primarnog grejača od 450 °C imaju veće vrednosti sile na granici popuštanja u odnosu na pređe proizvedene pri temperaturi primarnog grejača 350 °C (D/Y = 2,15). Izduženja

teksturiranih pređa na granici popuštanja imaju približne vrednosti. Takođe, uočen je trend opadanja vrednosti sile i izduženja na granici popuštanja pređa sa povećanjem brzine teksturiranja. Uočava se značajni pad izduženja na granici popuštanja kod pređe proizvedene sa brzinama teksturiranja iznad 900 m/min.

Na slikama 2.56. i 2.57. prikazani su grafici koji ukazuju na uticaj temperature primarnog grejača i brzine teksturiranja poliesterske multifilamentne pređe na svojstva na granici popuštanja pri odnosu obimne brzine diskova i brzine pređe 2,20.

Slika 2.56. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na granici popuštanja (D/Y = 2,20, i = 1,665)

Slika 2.57. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na granici popuštanja (D/Y = 2,20, i = 1,685)

Teksturirane pređe proizvedene brzinom teksturiranja do 900 m/min (D/Y = 2,20), pri temperaturi primarnog grejača od 450 °C uglavnom imaju veće vrednosti sile na granici popuštanja u odnosu na pređe proizvedene pri temperaturi primarnog grejača 350 °C. Izduženja teksturiranih pređa na granici popuštanja imaju približne vrednosti, pri čemu su nešto više vrednosti kod pređe

proizvedene sa manjim stepenom istezanja i temperaturom teksturiranja 450 °C. Takođe, uočen je trend opadanja vrednosti sile i izduženja na granici popuštanja pređa sa povećanjem brzine teksturiranja, pri čemu je značajniji pad vrednosti sile i izduženja uočen kod pređe proizvedene brzinom iznad 900 m/min.

Na slikama 2.58. i 2.59. dati su grafici koji ukazuju na uticaj temperature primarnog grejača i brzine teksturiranja poliesterske multifilamentne pređe na karakteristike na granici popuštanja pri odnosu obimne brzine diskova i brzine pređe 2,25.

Slika 2.58. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na granici popuštanja (D/Y = 2,25, i = 1,665)

Slika 2.59. Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na granici popuštanja (D/Y = 2,25, i = 1,685)

Teksturirane pređe proizvedene pri temperaturi primarnog grejača od 450 °C uglavnom imaju veće vrednosti sile na granici popuštanja u odnosu na pređe proizvedene pri temperaturi primarnog grejača 350 °C (D/Y = 2,25). Izduženja teksturiranih pređa na granici popuštanja imaju približne vrednosti, pri čemu su nešto više vrednosti registrovane kod pređe proizvedene sa stepenom istezanja

1,665 i temperaturom teksturiranja 450 °C. Uočen je trend opadanja vrednosti sile i izduženja na granici popuštanja pređa sa povećanjem brzine teksturiranja.

Na slikama 2.60. do 2.65. prikazan je uticaj odnosa D/Y na svojstva teksturiranih multifilamentnih PES pređa na granici popuštanja, pri različitim brzinama teksturiranja.

Slika 2.60. Uticaj odnosa D/Y na intenzitet sile i izduženje na granici popuštanja, pri različitim brzinama teksturiranja (T = 350 °C, i = 1,665)

Slika 2.61. Uticaj odnosa D/Y na intenzitet sile i izduženje na granici popuštanja, pri različitim brzinama teksturiranja (T = 350 °C, i = 1,685)

Slika 2.62. Uticaj odnosa D/Y na intenzitet sile i izduženje na granici popuštanja, pri različitim brzinama teksturiranja (T = 400 °C, i = 1,665)

Slika 2.63. Uticaj odnosa D/Y na intenzitet sile i izduženje na granici popuštanja, pri različitim brzinama teksturiranja (T = 400 °C, i = 1,685)

Slika 2.64. Uticaj odnosa D/Y na intenzitet sile i izduženje na granici popuštanja, pri različitim brzinama teksturiranja (T = 450 °C, i = 1,665)

Slika 2.65. Uticaj odnosa D/Y na intenzitet sile i izduženje na granici popuštanja, pri različitim brzinama teksturiranja (T = 450 °C, i = 1,685)

Analizom dobijenih rezultata u tabelama i prikazanih grafika na slikama 2.60. do 2.65. ne može se uočiti jasan uticaj odnosa periferne brzine frikcionih diskova i linearne brzine pređe (D/Y) na vrednosti sile i izduženja na granici popuštanja. Međutim, registrovan je trend opadanja sile i izduženja na granici popuštanja sa porastom brzine teksturiranja pređe.

Analizom podataka iz tabela 2.1. do 2.18. uočavaju se uglavnom nešto veće vrednosti sila na granici popuštanja teksturiranih pređa sa primenjenim stepenom istezanja 1,685.

2.4.6. Analiza prekidnih karakteristika teksturirane PES multifilamentne pređe

Na slikama 2.66. i 2.67. prikazani su grafici koji prikazuju uticaj temperature primarnog grejača i brzine teksturiranja poliesterske multifilamentne pređe na njena prekidna svojstva, pri odnosu obimne brzine diskova i brzine pređe 2,15.

Slika 2.66. Uticaj brzine teksturiranja i temperature primarnog grejača na prekidnu silu i prekidno izduženje (D/Y = 2,15, i = 1,665)

Slika 2.67. Uticaj brzine teksturiranja i temperature primarnog grejača na prekidnu silu i prekidno izduženje (D/Y = 2,15, i = 1,685)

Na osnovu dobijenih rezultata uočava se da teksturirane pređe proizvedene pri temperaturi primarnog grejača od 450 °C imaju veće vrednosti prekidne sile u odnosu na pređe proizvedene pri temperaturi primarnog grejača 350 °C. Prekidna izduženja teksturiranih pređa imaju približne vrednosti, pri čemu su nešto veće vrednosti kod pređa proizvedenih pri temperaturi teksturiranja 450 °C i brzinama iznad 900 m/min. Takođe, uočava se trend opadanja vrednosti prekidne sile i prekidnog izduženja registruje se kod teksturiranih pređa proizvedenih pri brzinama iznad 900 m/min.

Na slikama 2.68. i 2.69. dati su grafici koji prikazuju uticaj temperature primarnog grejača i brzine teksturiranja poliesterske multifilamentne pređe na prekidnu silu i prekidno izduženje, pri odnosu obimne brzine diskova i brzine pređe 2,20.

Slika 2.68. Uticaj brzine teksturiranja i temperature primarnog grejača na prekidnu silu i prekidno izduženje (D/Y = 2,20, i = 1,665)

Slika 2.69. Uticaj brzine teksturiranja i temperature primarnog grejača na prekidnu silu i prekidno izduženje (D/Y = 2,20, i = 1,685)

I u ovom slučaju uočava se da teksturirane pređe proizvedene pri temperaturi primarnog grejača od 450 °C imaju veće vrednosti prekidne sile u odnosu na pređe proizvedene pri temperaturi primarnog grejača 350 °C. Prekidna izduženja teksturiranih pređa opadaju sa porastom brzine teksturiranja, pri čemu se uočava značajan pad vrednosti kod pređa koje su proizvedene brzinom teksturiranja većom od 900 m/min. Takođe, nešto su veće vrednosti prekidnog izduženja kod pređe proizvedene temperaturom teksturiranja 450 °C pri brzinama iznad 1000 m/min (i = 1,665), odnosno 1100 m/min (i = 1,685).

Na slikama 2.70. i 2.71. dati su grafici koji prikazuju uticaj temperature primarnog grejača i brzine teksturiranja na prekidnu silu i prekidno izduženje poliesterske multifilamentne pređe, pri odnosu obimne brzine diskova i brzine pređe 2,25.

Slika 2.70. Uticaj brzine teksturiranja i temperature primarnog grejača na prekidnu silu i prekidno izduženje (D/Y = 2,25, i = 1,665)

Slika 2.71 Uticaj brzine teksturiranja i temperature primarnog grejača na prekidnu silu i prekidno izduženje (D/Y = 2,25, i = 1,685)

Teksturirane pređe proizvedene pri temperaturi primarnog grejača od 450 °C imaju veće vrednosti prekidne sile u odnosu na pređe proizvedene pri temperaturi primarnog grejača 350 °C. Značajan pad prekidnih izduženja pređa je registrovan pri brzinama teksturiranja iznad 900 m/min. I u ovom slučaju, nešto su veće vrednosti prekidnog izduženja kod pređe proizvedene temperaturom teksturiranja 450 °C pri brzinama iznad 1000 m/min i istezanju 1,665, odnosno 1100 m/min i istezanju 1,685.

Na slikama 2.72. do 2.77. prikazan je uticaj odnosa D/Y na prekidna svojstva teksturiranih multifilamentnih PES pređa.

Slika 2.72. Uticaj odnosa D/Y i brzine teksturiranja na prekidnu silu i prekidno izduženje (T = 350 °C, i = 1,665)

Slika 2.73. Uticaj odnosa D/Y i brzine teksturiranja na prekidnu silu i prekidno izduženje

(T = 350 °C, i = 1,685)

Slika 2.74. Uticaj odnosa D/Y i brzine teksturiranja na prekidnu silu i prekidno izduženje

(T = 400 °C, i = 1,665)

Slika 2.75. Uticaj odnosa D/Y i brzine teksturiranja na prekidnu silu i prekidno izduženje (T = 400 °C, i = 1,685)

Slika 2.76. Uticaj odnosa D/Y i brzine teksturiranja na prekidnu silu i prekidno izduženje (T = 450 °C, i = 1,665)

Slika 2.77. Uticaj odnosa D/Y i brzine teksturiranja na prekidnu silu i prekidno izduženje (T = 450 °C, i = 1,685)

Analizom dobijenih rezultata u tabelama (tabele 2.1. do 2.18.) i na graficima (slike 2.72. do 2.77.) ne može se uočiti jasan uticaj odnosa periferne brzine frikcionih diskova i linearne brzine pređe (D/Y) na vrednosti prekidne sile i prekidnog izduženja pređe. U svim slučajevima registrovan je trend opadanja prekidne sile sa povećanjem brzine teksturiranja, dok je značajniji pad prekidnog izduženja registrovan kod pređa proizvedenih sa brzinama teksturiranja iznad 900 m/min.

Pored toga, analizom podataka iz tabela 2.1. do 2.18. uočavaju se uglavnom nešto veće vrednosti prekidnih sila teksturiranih pređa sa primenjenim stepenom istezanja 1,685.

Nemogućnost da se jasno uoči uticaj vrednosti D/Y na deformacione karakteristike teksturiranih multifilamentnih PES pređa je zbog ograničenog opsega u kojima je taj odnos podešavan. Granice podešavanja parametra D/Y su u opsegu 2,15 do 2,25, što je bilo uslovljeno stabilnošću procesa teksturiranja komercijalnih pređa na mašini sa HT grejačima. Poznato je da odnos D/Y utiče na sile zatezanja pređe pre i posle frikcione jedinice. Težnja je da vrednosti sile zatezanja

pređe u procesu teksturiranja pre i posle frikcione jedinice budu približno jednake. Naime, povećanje brzine frikcionih diskova u odnosu na linearnu brzinu pređe dovelo bi do bržeg povlačenja i taloženja pređe u frikcionu jedinicu, što bi prouzrokovalo neravnomerno upredanje i pojavu previše upredenih ili neupredenih mesta na teksturiranoj pređi. Sa druge strane, manji broj obrtaja frikcionih diskova u odnosu na predviđen, za datu vrstu i definisanu podužnu masu pređe, doveo bi praktično do vučenja pređe iz frikcione jedinice što bi povećalo broj prekida u procesu teksturiranja, kao i oštećenje pređe i brže habanje poliuretanskih diskova. Dobijeni rezultati koji su prikazani u tabelama 2.1. do 2.18. i na odgovarajućim graficima mogu poslužiti kao pomoć za podešavanje mašine za teksturiranje, sa smernicama izbora povoljnijeg odnosa D/Y po mehaničke karakteristike pređe, pri predviđenom istezanju, brzini i temperaturi teksturiranja.

Stepen istezanja ima važan uticaj na vrednosti sile zatezanja teksturirane multifilamentne PES pređe pre i posle frikcione jedinice. Izabrani opseg stepana istezanja (1,665 i 1,685) je mali i takođe je uslovljen stabilnošću procesa teksturiranja, jer bi veće vrednosti istezanja prouzrokovale talasanje zategnutosti, probleme pri bojenju, smanjenu voluminoznost, veći broj prekida u procesu teksturiranja, kao i značajniju promenu deklarisane podužne mase pređe. Ove male promene stepena istezanja nisu bile dovoljne da se uoči jasna korelacija istezanja i parametara na granicama elastičnosti i puzanja ali su konstatovane uglavnom nešto veće vrednosti sila na granici popuštanja, kao i prekidnih sila teksturiranih multifilamentnih PES pređa proizvedenih sa većim stepenom istezanja (1,685).

Analize dobijenih rezultata su pokazale veoma kompleksan uticaj procesnih parametara teksturiranja na svojstva multifilamentnih pređa na granici elastičnosti, granici puzanja, granici popuštanja posle puzanja, kao i na prekidne karakteristike ovih pređa. Uticaj temperature teksturiranja, brzine teksturiranja, obimne brzine frikcionih diskova i stepena istezanja pređe je veoma složen i zahteva izbor kompromisnog rešenja uticajnih parametara, pre svega vodeći se karakteristikama koje pređa treba da poseduje saglasno njenoj nameni. Zavisno od toga da li je teksturirana multifilamentna pređa namenjena proizvodima gde je ključni parametar kvaliteta jačina ili voluminoznost treba birati procesne parametre teksturiranja sa ciljem da se ostvare projektovana svojstva pređa uz maksimalnu uštedu energije. Takođe, treba voditi računa o zahtevima dalje prerade teksturirane pređe u složenije tekstilne strukture i naprezanjima kojima će pređa biti izložena u tim procesima.

2.5. Analiza učešća sile F₁, F₂, F₃ i F₄ u prekidnoj sili teksturirane PES multifilamentne pređe

Na slikama 2.78. do 2.86. prikazani su histogrami učešća sile na granici elastičnosti, sile na granici puzanja, sile na kraju puzanja i sile na granici popuštanja u prekidnoj sili pređe u zavisnosti od temperature primarnog grejača, odnosa periferne brzine diskova i brzine pređe, istezanja u procesu teksturiranja i brzine teksturiranja.

Slika 2.78. Učešće sile F₁, F₂, F₃ i F₄ u F₅ (T = 350 °C, D/Y = 2,15)

Slika 2.79. Učešće sile F₁, F₂, F₃ i F₄ u F₅ (T = 400 °C, D/Y = 2,15)

Slika 2.80. Učešće sile F₁, F₂, F₃ i F₄ u F₅ (T = 450 °C, D/Y = 2,15)

Slika 2.81. Učešće sile F_1 , F_2 , F_3 i F_4 u F_5 (T = 350 °C, D/Y = 2,20)

Slika 2.82. Učešće sile F₁, F₂, F₃ i F₄ u F₅ (T = 400 °C, D/Y = 2,20)

Slika 2.83. Učešće sile F₁, F₂, F₃ i F₄ u F₅ (T = 450 °C, D/Y = 2,20)

Slika 2.84. Učešće sile F₁, F₂, F₃ i F₄ u F₅ (T = 350 °C, D/Y = 2,25)

Slika 2.85. Učešće sile F₁, F₂, F₃ i F₄ u F₅ (T = 400 °C, D/Y = 2,25)

Slika 2.86. Učešće sile F₁, F₂, F₃ i F₄ u F₅ (T = 450 °C, D/Y = 2,25)

Rezultati učešća vrednosti sila na granicama elastičnosti, puzanja, kraja zone puzanja i popuštanja u prekidnoj sili dati su u Prilogu u tabelama p.1 do p.9.

Na osnovu dobijenih rezultata (srednje vrednosti) može se konstatovati da pređe proizvedene pri temperaturi teksturiranja 350 °C i 450 °C i pri odnosu periferne brzine diskova i brzine pređe 2,15 imaju nešto veći procenat učešća sile F_1 , F_2 , F_3 i F_4 u prekidnoj sili pri istezanju 1,685. Suprotno ovim rezultatima, kod pređe proizvedene pri temperaturi teksturiranja 400 °C i pri odnosu periferne brzine diskova i brzine pređe 2,15 nešto veći procenat učešća sile F_1 , F_2 , F_3 i F_4 u prekidnoj sili uočava se pri istezanju 1,665.

Takođe, na osnovu rezultata (srednje vrednosti) može se konstatovati da pređe proizvedene pri temperaturi teksturiranja 400 °C i 450 °C i pri odnosu periferne brzine diskova i brzine pređe 2,20 imaju nešto veći procenat učešća sile F_1 , F_2 , F_3 i F_4 u prekidnoj sili pri istezanju 1,685. Za razliku od ovih rezultata, kod pređe proizvedene pri temperaturi teksturiranja 350 °C i pri odnosu periferne brzine diskova i brzine pređe 2,20 nešto veći procenat učešća sile F_1 , F_2 , F_3 i F_4 u prekidnoj sili registrovan je pri istezanju 1,665.

Na osnovu rezultata (srednje vrednosti) može se konstatovati da pređe proizvedene pri temperaturi teksturiranja 350 °C i 400 °C i pri odnosu periferne brzine diskova i brzine pređe 2,25 imaju nešto veći procenat učešća sile F₁, F₂ i F₃ u prekidnoj sili pri istezanju 1,665. Za razliku od ovih rezultata, kod pređe proizvedene pri temperaturi teksturiranja 450 °C i pri odnosu periferne brzine diskova i brzine pređe 2,25 nešto veći procenat učešća sile F₁, F₂ i F₃ u prekidnoj sili F₁, F₂ i F₃ u prekidnoj sili registrovan je pri istezanju 1,685. U svim slučajevima (T=350 °C, T=400 °C, T=450 °C i D/Y=2,25) učešće F4 u prekidnoj sili je veće pri istezanju 1,686 u procesu teksturiranja.

Učešća sile na granici elastičnosti, sile na granici puzanja, sile na kraju zone puzanja u prekidnoj sili imaju trend rasta sa povećanjem brzine teksturiranja u svim analiziranim slučajevima.

Suprotno od ovih rezultata, vrednosti učešća sile na granici popuštanja u prekidnoj sili imaju trend opadanja sa porastom brzine teksturiranja. Takođe, zapažen je trend opadanja procenta učešča sile na granici elastičnosti i sile na granici puzanja u prekidnoj sili teksturirane PES pređe sa porastom temperature teksturiranja pri jednakim ostalim procesnim parametrima proizvodnje.

Na osnovu dobijenih rezultata, prikazanih u tabelama p.1 do p.9. u Prilogu, mogu se izračunati preporučena opterećenja teksturiranih multifilamentnih PES pređa u narednim tehnološkim procesima prerade u složenije tekstilne strukture. Na ovaj način preporučena opterećenja se mogu odrediti ako su poznate prekidne karakteristike teksturiranih multifilamentnih poliesterskih pređa, koje se dobijaju ustaljenom standardizovanom metodom merenja na dinamometru.

2.6. Analiza povezanosti parametara na granici elastičnosti i puzanja, i na kraju zone puzanja i granice popuštanja

U tabelama p.10. do p.27. (Prilog) dati su podaci F_1/ϵ_{a1} , F_2/ϵ_{a2} , F_3/ϵ_{a3} , F_4/ϵ_{a4} i F_5/ϵ_{a5} za sve analizirane partije pređa. Na osnovu dobijenih podataka prikazani su grafici koji pokazuju povezanost parametara na granici elastičnosti i granici puzanja, kao i parametara na kraju zone puzanja i popuštanja posle puzanja. Vrednost količnika sile i izduženja prikazana je u jedinici cN/mm.

Slika 2.87. Povezanost parametara teksturiranih multifilamentnih PES pređa

T = 350 °C, D/Y = 2,15; 2,20; 2,25, i = 1,665; 1,685

Slika 2.88. Povezanost parametara teksturiranih multifilamentnih PES pređa

a)
$$F_2/\epsilon_{a2} = f(F_1/\epsilon_{a1}); b) F_4/\epsilon_{a4} = f(F_3/\epsilon_{a3})$$

T = 400 °C, D/Y = 2,15; 2,20; 2,25, i = 1,665; 1,685

Slika 2.89. Povezanost parametara teksturiranih multifilamentnih PES pređa a) $F_2/\epsilon_{a2} = f(F_1/\epsilon_{a1})$; b) $F_4/\epsilon_{a4} = f(F_3/\epsilon_{a3})$

T = 450 °C, D/Y = 2,15; 2,20; 2,25, i = 1,665; 1,685

Povezanost parametara (F/ϵ_a) na granici puzanja i na granici elastičnosti može se predstaviti regresionim jednačinama čiji su koeficijenti dati u tabeli 2.19. Takođe, tabela 2.19. sadrži i koeficijente regresionih jednačina kojima su povezane karakteristike (F/ϵ_a) teksturiranih PES multifilamentnih pređa na granici popuštanja i na kraju zone puzanja.

Funkcija	$\mathbf{F}_{y}/\mathbf{\varepsilon}_{ay}=a+b$ ($\mathbf{F}_{x}/\mathbf{\varepsilon}_{ax}$)							
	r^2	а	Standard error	b	Standard error			
T=350 °C; D/Y=2,15, 2,20, 2,25; i=1,665, 1,685								
$\mathbf{F}_2 / \boldsymbol{\varepsilon}_{a2} = f(\mathbf{F}_1 / \boldsymbol{\varepsilon}_{a1})$	0,899	-5,60	1,602	1,00	0,057			
$F_4/\varepsilon_{a4}=f(F_3/\varepsilon_{a3})$	0,948	-3,23	0,477	0,99	0,039			
T=400°C, D/Y=2,15, 2,20, 2,25; i=1,665, 1,685								
$\mathbf{F}_{2}/\varepsilon_{a2}=f(\mathbf{F}_{1}/\varepsilon_{a1})$	0,919	-1,19	1,084	0,85	0,042			
$F_4/\epsilon_{a4}=f(F_3/\epsilon_{a3})$	0,954	-0,35	0,348	0,80	0,030			
T=450°C, D/Y=2,15, 2,20, 2,25; i=1,665, 1,685								
$\mathbf{F}_{2}/\epsilon_{a2}=f(\mathbf{F}_{1}/\epsilon_{a1})$	0,918	-0,49	0,989	0,82	0,042			
$F_4/\epsilon_{a4}=f(F_3/\epsilon_{a3})$	0,959	0,15	0,303	0,78	0,027			

Tabela 2.19. Koeficijenti regresione jednačine

Na osnovu dobijenih zavisnosti mogu se predvideti granične vrednosti opterećenja analiziranih pređa.

2.7. Predviđanje parametara na granici elastičnosti, puzanja, kraju zone puzanja, popuštanja i prekida

Na slikama 2.90. do 2.107. prikazana je povezanost parametara na granici elastičnosti (F_1 - ε_1), granici puzanja (F_2 - ε_2), na kraju zone puzanja (F_3 - ε_3), popuštanja posle puzanja (F_4 - ε_4) i prekida (F_5 - ε_5). Vrednosti sile (cN) i odgovarajuća izduženja (%) u datim tačkama opisane su jednačinama oblika:

 $F = a \cdot \varepsilon^b (cN)$

v = 600 m/min; T = 400 °C

750

v = 700 m/min

ר ⁷⁰⁰

650 -

v = 1000 m/min

ר 700

650 -

v = 1000 m/min

Primenom eksperimentalnih rezultata, definisani su koeficijenti jednačine $F = a \cdot \varepsilon^{b}$. U tabeli 2.20. dati su koeficijenti "*a*" i "*b*" za određivanje vrednosti sile u tačkama 1 do 5, pri temperaturama teksturiranja 350 °C, 400 °C i 450 °C i brzinama teksturiranja 500 m/min do 1100 m/min.

Funke	iia			$F = a \cdot s^b (c \Lambda)$	7)	
v (m/min)	T (°C)	a	St.error	$\frac{1-u+c}{b}$	St.error	\mathbf{r}^2
500	350	95,00	2,427	0,60	0,010	0,997
500	400	81,65	2,328	0,66	0,010	0,996
500	450	88,04	2,124	0,65	0,008	0,997
600	350	101,50	3,021	0,57	0,010	0,994
600	400	94,27	2,290	0,60	0,008	0,997
600	450	80,33	1,773	0,66	0,007	0,998
700	350	99,93	3,330	0,58	0,012	0,993
700	400	85,49	2,002	0,64	0,008	0,998
700	450	88,14	1,819	0,64	0,007	0,998
900	350	115,62	3,143	0,52	0,009	0,994
900	400	109,67	2,751	0,55	0,009	0,995
900	450	96,22	2,645	0,60	0,010	0,996
1000	350	127,08	2,193	0,52	0,007	0,997
1000	400	120,38	2,143	0,55	0,007	0,997
1000	450	107,32	3,002	0,58	0,010	0,994
1100	350	124,46	1,877	0,53	0,006	0,997
1100	400	119,72	1,501	0,55	0,005	0,999
1100	450	121,07	2,226	0,54	0,007	0,997

Tabela 2.2	20. Koef	icijenti	funkcije
------------	----------	----------	----------

Razultati su prikazani za teksturirane poliesterske pređe proizvedene primenom odgovarajuće temperature primarnog grejača i brzine teksturiranja uz definisan odnos obimne brzine diskova i brzine pređe i istezanja u procesu izrade. Rezultati se mogu primeniti za predviđanje svojstava teksturiranih PES multifilamentnih pređa pri odgovarajućim tehnološkim parametrima proizvodnje. Pored toga, dobijeni rezultati mogu poslužiti za predviđanje svojstava teksturiranih PES pređa u narednim tehnološkim procesima prerade u tekstilne proizvode.
2.8. Analiza kovrdžavosti teksturirane PES multifilamentne pređe

Voluminoznost teksturirane multifilamentne PES pređe potiče od talasavosti monofilamenata koja je poznata pod imenom kovrdžavost. Oblik i gustina kovrdža zavise od parametara procesa teksturiranja. Za karakterisanje kovrdžavosti koriste se stepen kovrdžavosti, karakteristična kovrdžavost i postojanost kovrdža [29]. U literaturi se karakteristična kovrdžavost pominje i kao podatak koji pruža informacije o sposobnosti teksturirane multifilamentne pređe da se isteže i obnovi svoja svojstva.

Zanimljive rezultate su dala istraživanja upoređivanja trenda promena karakteristične kovrdžavosti i izduženja teksturirane multifilamentne pređe u momentu kada ona počinje ponovo da pruža veći otpor sili zatezanja, posle zone puzanja, pri različitim brzinama teksturiranja.

Na slikama 2.108. do 2.113. prikazani su grafici koji pokazuju trend promena karakteristične kovrdžavosti (K_k) i izduženja na kraju zone puzanja (ϵ_k), pri različitim brzinama teksturiranja, zatim različitim temperaturama primarnog grejača, kao i različitim vrednostima D/Y (tabele p.28., p.29. i p.30. u Prilogu).

U većini slučajeva se mogu konstatovati analogne promene analiziranih parametara teksturiranih multifilamentnih pređa, što može doprineti razvoju nove metode za predviđanje kovrdžavosti.

Slika 2.109. Izduženje na kraju zone puzanja T = 350 °C; 400 °C; 450 °C D/Y = 2,15, i = 1,665

Istovremeno dobijeni rezultati karakteristične kovrdžavosti i izduženja na kraju zone puzanja pokazuju da pređe teksturirane sa višim temperaturama uglavnom imaju veće vrednosti ove dve

karakteristike u odnosu na pređe teksturirane sa nižim temperaturama. Naime, sa povećanjem temperature pređe slabe međumolekulske interakcije što za rezultat ima povećanje pokretljivosti i fleksibilnosti makromolekulskih lanaca, omogućavajući lakše stvaranje sređenih struktura.

T = 350 °C; 400 °C; 450 °C

D/Y = 2,20, i = 1,665

T = 350 °C; 400 °C; 450 °C

D/Y = 2,20, i = 1,665

Slika 2.113. Izduženje na kraju zone puzanja T=350 °C; 400 °C; 450 °C D/Y = 2,25, i = 1,665

Više temperature doprinose relaksaciji unutrašnjih naprezanja u pređi. Međutim, istovremeno istezanje u procesu teksturiranja prouzrokuje povećanje naprezanja u pređi i smanjuje mogućnost relaksacije. Pored toga, dejstvo frikcionih diskova u procesu lažnog upredanja utiče na dezorijentaciju makromolekulskih lanaca, kao i uvijanje teksturirane multifilamentne pređe oko sopstvene ose. Budući da se teksturani multifilament krivolinijski kreće oko frikcionih diskova dolazi i do

deformisanja zbog savijanja. Dejstvo temperature u procesu teksturiranja, kao i uvijanje i savijanje, prouzrokuje oblikovanje kovrdža teksturiranih multifilamentnih pređa. Naravno, razlog odstupanja rezultata od jasne korelacije karakteristične kovrdžavosti i izduženja na kraju zone puzanja je i u nejednakom zagrevanju svih monofilamanata u multifilamentnoj pređi, zbog položaja koji zauzimaju u odnosu na osu pređe. Naime, teksturiranje multifilamentne pređe, sa velikim brojem pojedinačnih filamentnih niti (u ovom slučaju 36 filamenata), ulaze u grejač kao gust i kompaktan snop. Time se sprečava migracija pojedinačnih niti u okviru upredenog snopa filamenata, u zoni teksturiranja. To dovodi do neravnomerne raspodele temperature (temperaturni gradijent) po poprečnom preseku multifilamentne pređe (filamentne niti sa spoljašnje strane snopa primiće više toplote od niti u unutrašnjem delu snopa) i asimetrične raspodele naprezanja zbog sile zatezanja u procesu teksturiranja i torzione sile usled upredanja, što se samim tim odražava i na ravnomernost kovrdžavosti pojedinačnih niti i voluminoznost multifilamentne pređe.

Pojedina odstupanja rezultata od očekivanih mogu biti posledica i oštećenja pređe pri manjim brzinama i višim temperaturama u procesu teksturiranja.

2.9. Analiza morfoloških karakteristika teksturirane PES multifilamentne pređe

U poglavlju 2.6. analizirana je povezanost parametara na granici elastičnosti i puzanja kao i na kraju zone puzanja i granice popuštanja. Veza između odnosa sile i izduženja u tačkama 2 (puzanje) i 1 (elastičnost), kao i u tačkama 4 (popuštanje) i 3 (kraj zone puzanja) prikazana je jednačinom oblika $F_{y/\varepsilon_{ay}=a} +b$ ($F_{x/\varepsilon_{ax}}$). Date zavisnosti pokazuju značajnu povezanost analiziranih parametara sa visokim koeficijentima determinacije. Zato je bilo zanimljivo uraditi vizuelnu analizu oblika teksturirane pređe opterećene silom do granice elastičnosti, do granice puzanja, kao i do kraja zone puzanja i popuštanja posle puzanja. Na osnovu ove analize mogu se videti promene oblika relaksirane pređe posle opterećenja silom zatezanja do granice elastičnosti. Takođe, mogu se videti promene oblika pređe posle opterećenja i rasterećenja do granice popuštanja u odnosu na morfološke svojstva na kraju zone puzanja.

Analizirane su promene oblika teksturirane PES multifilamentne pređa primenom (stereo) mikroskopa Leica, koji je podržan softverom Video Analyser 2000. Prethodno su uzorci teksturiranih PES multifilamentnih pređa bili opterećeni odgovarajućim silama zatezanja (ISO 2062) na dinamometru Tinius Olsen.

Pripremljeno je više uzoraka teksturirane multifilamentne PES pređe 167f36x1 dtex. Svaki od pripremljenih uzoraka je snimljen pre istezanja na dinamometru, a zatim je vršeno istezanje do zadatih vrednosti sila F₁, F₂, F₃ i F₄, odnosno istezanje je vršeno do granice elastičnosti, granice puzanja, kraja zone puzanja i do granice popuštanja posle zone puzanja.

Na slikama 2.114. do 2.121. prikazani su izgledi relaksiranih uzoraka pređe sa kalema (slika – a) i posle zatezanja do odgovarajuće sile i relaksiranja (slika – b). Prikazana su po dva primera za primenjena opterećenja F_1 (88 cN), F_2 (152 cN), F_3 (236 cN) i F_4 (338 cN).

Sve analizirane pređe su snimljene sa jednakim uvećanjem.

(a) (b) Slika 2.114. Izgled relaksiranih pređa pre (a) i posle (b) opterećenja silom F₁ (primer 1)

(a) (b) Slika 2.115. Izgled relaksiranih pređa pre (a) i posle (b) opterećenja silom F₁ (primer 2)

(a) (b) Slika 2.116. Izgled relaksiranih pređa pre (a) i posle (b) opterećenja silom F₂ (primer 1)

(a) (b) Slika 2.117. Izgled relaksiranih pređa pre (a) i posle (b) opterećenja silom F₂ (primer 2)

(a) (b) Slika 2.118. Izgled relaksiranih pređa pre (a) i posle (b) opterećenja silom F₃ (primer 1)

(a) (b) Slika 2.119. Izgled relaksiranih pređa pre (a) i posle (b) opterećenja silom F₃ (primer 2)

(a) (b) Slika 2.120. Izgled relaksiranih pređa pre (a) i posle (b) opterećenja silom F₄ (primer 1)

(a) (b) Slika 2.121. Izgled relaksiranih pređa pre (a) i posle (b) opterećenja silom F₄ (primer 2)

Na slikama 2.114. (a) do 2.121. (a) prikazani su snimci uzoraka relaksirane teksturirane poliesterske multifilamentne pređe po odmotavanju sa kalema. Na slikama se uočava da svi monofilamenti nisu jednako raspoređeni u strukturi pređe. Takođe, analiza morfoloških svojstava ukazuje na razlike talasavosti pojedinih monofilamenata, različite uvijenosti oko sopstvene ose kao i ose multifilamentne pređe. Takođe, mogu se uočiti neki sastavljeni filamenti, kao i filamenti različitog spoljašnjeg oblika. Razloge nehomogenosti pojedinih monofilamenata u multifilamentnoj pređi treba tražiti u nejednakim uslovima kojima je pređa izložena u procesu teksturiranja. Tu se pre svega misli na nejednako zagrevanje filamenata u primarnom grejaču i neravnomerne raspodele torzije i abrazije monofilamenata u frikcionom agregatu, zbog različitog položaja pojedinih monofilamenata u odnosu na osu multifilamentne pređe. Naime, u procesu teksturiranja kroz primarni grejač prolazi multifilamentna pređa koju čini kompaktan snop monofilamenata. Migracija monofilamenata je svedena na minimum pa je i njihovo zagrevanje pri prolasku kroz grejač neravnomerno. Sve ovo dovodi do nejednakih karakteristika monofilamenata te i svojstva multifilamentnih pređa mogu varirati i odstupati od predviđenih.

Na slikama 2.114. (b) i 2.115. (b) prikazane su teksturirane PES pređe opterećene silom do granice elastičnosti (F₁) a zatim rasterećene. Sa slike se vidi veoma mala promena morfologije pređe opterećene do granice elastičnosti. Neznatne promene su još jedan dokaz da kod tekstilnih materijala i male promene naprezanja prouzrokuju deformaciju, doduše neznatnu ali je ipak treba uzeti u obzir prilikom projektaovanja svojstava pređa. Elastična deformacija predstavlja preporučeno opterećenje u narednim tehnološkim procesima i ovo je samo još jedan dokaz da se treba voditi ovim saznanjem.

Slike 2.116. (b) i 2.117. (b) prikazuju promene oblika relaksirane teksturirane multifilamentne PES pređe koja je prethodno opterećena silom do granice puzanja (F₂). Promene oblika teksturirane pređe opterećene silom do granice puzanja (F₂) posmatrano u odnosu na morfologiju teksturirane pređe opterećene silom do granice elastičnosti (F₁) su veoma male. U literaturi se granica puzanja definiše kao krajnja dozvoljena vrednost opterećenja pređe u narednim tehnološkim procesima prerade. Naravno, kada god je to moguće treba primenjivati opterećenja pređe do granice elastičnosti, međutim, pikovi sile zatezanja u procesima proizvodnje složenijih tekstilnih struktura su veoma čest problem koji se mogu negativno odraziti na konačni kvalitet tekstilnih proizvoda.

Na slikama 2.118. (b) i 2.119. (b) prikazani su snimci relaksiranih teksturiranih multifilamentnih PES pređa koje su prethodno opterećene silom do kraja zone puzanja (F₃). Morfologija ovako opterećenih pređa se znatno razlikuje u odnosu na izgled pređe pre postupka istezanja na dinamometru. Različite pozicije koje zauzimaju monofilamenti u pređi su još jedan dokaz nehomogenosti karakteristika monofilamenata, što je rezultat nejednakog prijema toplote, torzije, abrazije. Međutim, i u ovom slučaju nisu zabeleženi prekidi pojedinih monofilamenata.

Na slikama 2.120. (b) i 2.121. (b) prikazana je morfologija relaksiranih teksturiranih multifilamentnih poliesterskih pređa opterećih silom do granice popuštanja (F₄). Registrovane su znatne promene morfologije teksturirane pređe posle opterećenja do granice popuštanja i relaksiranja u odnosu na izgled relaksirane pređe sa kalema pre procesa istezanja na dinamometru. Međutim, promene oblika teksturirane pređe opterećene silom do granice popuštanja (F₄), posmatrano u odnosu na morfologiju teksturirane pređe opterećene silom do kraja zone puzanja (F₄), su veoma male, što potvrđuje činjenicu da pređa posle zone puzanja u procesu istezanja ponovo počinje da pruža značajan otpor silama zatezanja do granice popuštanja. Takođe, na slikama se ne uočavaju prekidi monofilamenata, što može biti veoma značajno pri predviđenju graničnih opterećenja složenijih tekstilnih struktura. Odnosno, podatak o granici popuštanja teksturiranih multifilamentnih poliesterskih pređa može da doprinese definisanju gornje granice opterećena pri projektovanju karakteristika složenijih tekstilnih struktura, koje će prouzrokovati deformaciju materijala ali ne i prekide a koji mogu biti značajni za primenu proizvoda u nekim ekstremnim uslovima eksploatacije.

2.10. Rezultati merenja sile zatezanja osnove i potke u procesu tkanja

U cilju očuvanja mehaničkih karakteristika multifilamentnih teksturiranih PES pređa veoma je značajno definisati dozvoljena opterećenja pređe u narednim tehnološkim procesima prerade. Tim pre što svi monofilamenti multifilamentne PES pređe nisu mogli apsorbovati istu količinu toplote u procesu teksturiranja, zbog položaja u pređi, pa će se i njihova svojstva razlikovati. Ta nehomogenost strukture će u svakom slučaju dovoditi do variranja kvaliteta multifilamentne pređe, na šta se mora obratiti posebna pažnja pri predviđanju svojstava ovih pređa.

U industriji se veoma često donosi zaključak o kvalitetu neke pređe, u pogledu mehaničkih karakteristika, samo na osnovu njenih prekidnih karakteristika. To nije dobro rešenje. Poznavanjem vrednosti sila i izduženja na granicama elastičnosti i puzanja teksturiranih multifilamentnih PES pređa stiče se prava slika o vrednostima sila kojima se pređa može opteretiti u tehnološkim procesima prerade u tekstilne materijale. Na taj način biće sačuvana svojstva pređe i samim tim osiguran dobar kvalitet gotovih proizvoda u skladu sa projektovanim karakteristikama materijala i zahtevima standarda.

Sile zatezanja pređe u procesu formiranja tkanine na razboju imaju značajan uticaj na prekide žica i produktivnost rada razboja. Sa ciljem da se stekne utisak o vrednostima sila zatezanja teksturiranih multifilamentnih pređa u procesu formiranja tkanina na tkačkim mašinama, u industrijskim uslovima, merene su vrednosti sile zatezanja osnovinih i potkinih žica.

Merenje sile zatezanja osnove i potke vršeno je na razboju sa hvatačima, čije su tehničkotehnološke karakterstike prikazane u tabeli 2.21.

Redni Broj	Tehničko - tehnološke k	arakteristike tkačke mašine
1	Broj obrtaja glavnog vratila	650 min ⁻¹
2	Radna širina	1900 mm
3	Unošenje potke u zev	hvatači sa fleksibilnim trakama
4	Princip unošenja potke u zev	dvofazni (DEWAS)
5	Redukcija radne širine	$30 \div 50$ cm (diskontinuirano)
6	Formiranje zeva	elektronska rotaciona nitna mašina (20 nita)
7	Popuštanje osnove	elektronski regulator
8	Povlačenje tkanine	elektronski regulator
9	Prečnik osnovinog valjka	805 mm
10	Prečnik robnog valjka	805 mm
11	Broj boja po potki	do 8 boja ili različite vrste sirovina
12	Opseg podužne mase potke	pređa 5 ÷ 333 tex, filament 2.4 ÷ 666 tex
13	Vrsta pogona	indirektan sa SUMO motorom
14	Uređaj za ivice	ELZI sistem sa posebnim pogonom
15	Koeficijent iskorišćenja	$0.80 \div 0.97$

Tabela 2.21. Tehničko - tehnološke karakteristike tkačke mašine

Uzorci tkanina su izrađeni u industrijskim uslovima. Tehničke karakteristike ovih tkanina su prikazane u tabeli 2.22.

Tkanina	Sirovinski sastav	Podužna masa pređe (tex)		Gustina ž	ica (cm ⁻¹)	Širina tkanine	Prepletaj
		za osnovu	za potku	po osnovi	po potki	(cm)	
1					19		T *: * :
2					21		Trozicni Z komor
3	filomont	16.7	16.7	42.5	23	173	
4	mament				25		efekta
5					27		CICKIA

Tabela 2.22. Tehničke karakteristike tkanina

Merenje sile zatezanja osnovinih i potkinih žica vršeno je primenom elektronskog tenzometra *DTFX-*200 (*Schmidt*). Registrovene su srednje vrednosti, zatim minimalne, maksimalne i pik-ovi sila zatezanja, kao i srednje kvadratno odstupanje dobijenih rezultata. Pri tome je zategnutost osnove merena na delu između osnovinog mosta i lamela, ravnomerno po njenoj širini, dok je zategnutost potke merena između aditivnog zatezača i elektronskog čuvara potke.

Rezultati merenja sile zatezanja žica prikazani su u tabelama 2.23. i 2.24.

Tabela 2.23. Sila zatezanja osnovinih žica u procesu tkanja

Tkanina	Sile zatezanja osnovinih žica u procesu tkanja (cN)								
	$f_{z,\max}$	$f_{z,\min}$	Pic	$\overline{f_z}$	SD				
1	45,2	26,9	79,3	33,5	9,8				
2	46,4	28,8	68,5	35,5	8,3				
3	49,2	20,2	68,6	37,3	8,6				
4	47,6	22,6	63,9	36,2	7,6				
5	41,3	29,9	74,8	32,6	9,4				

Tabela 2.24. Sila zatezanja potkinih žica u procesu tkanja

Tkanina	Sile zatezanja potkinih žica u procesu tkanja (cN)								
	$f_{z,\max}$	$f_{z,\min}$	Pic	$\overline{f_Z}$	SD				
1	21,3	20,0	41,8	20,7	0,4				
2	23,1	20,0	41,8	21,8	1,0				
3	24,5	23,2	46,7	23,7	0,4				
4	19,0	18,0	38,2	18,6	0,4				
5	28,6	27,3	53,9	27,7	0,4				

Rezultati merenja sile zatezanja osnovinih i potkinih žica pokazuju da su maksimalne vrednosti sila zatezanja u granicama elastičnih deformacija primenjenih teksturiranih

multifilamentnih PES pređa. U nekim slučajevima vrednosti *Pic*-ova sila zatezanja osnove prevazilaze granicu elastičnosti primenjenih pređa za osnovu, ali su oni i dalje u zoni prihvatljivih vrednosti sila zatezanja, odnosno ispod vrednosti sile na granici puzanja.

Analizom podataka, utvrđeno je da su odstupanja sile zatezanja osnove značajno veća u odnosu na promene sile zatezanja potke. To može biti posledica formiranja zeva i pribijanja potke, ali i posledica grešaka u procesu snovanja.

Odstupanja sile zatezanja potke su znatno manja. Sila zatezanja potke merena je pri provlačenju kroz zev, što predstavlja početnu silu zatezanja. Naprezanje žica menja se u procesu tkanja formiranjem elementarne dužine tkanine, zbog preplitanja osnovinih i potkinih žica, kao posledica njihovih međusobnih pritisaka u vezivnim tačkama, što dotatno može uticati na svojstva primenjenih pređa.

Da bi se ostvario pravilan geometrijski raspored osnove i potke i maksimalno iskorišćenje razboja, neophodno je obezbediti konstantnu silu zatezanja osnove po celoj širini razboja. Međutim, analiziranjem dobijenih rezultata, može se konstatovati da je variranje sile zatezanja osnove relativno veliko. Budući da savremeni razboji imaju elektronske regulatore za popuštanje osnove i namotavanje tkanine, to ova odstupanja sile zatezanja nisu posledica formiranja zeva i pribijanja potke uz kraj tkanine već su rezultat nepravilnosti u procesu snovanja osnove. Zato, u procesu snovanja treba održavati ujednačene sile zatezanja žica jer se u suprotnom mogu javiti značajni problemi u procesu izrade tkanine na razboju. Da bi se ostvarila optimalna sila zatezanja osnovinih žica neophodno je obezbediti jednake uslove snovanja svih pantljika kod snovanja u pantljikama ili svih snovaćih valjaka kod širinskog snovanja.

U praksi se snovanje osnove vrši uglavnom odmotavanjem pređe sa konusnih kalemova koji su tokom snovanja nepokretni. Pređa se odmotava u pravcu ose kalema aksijalno. Pri tome je sila zatezanja žica određena dejstvom "balona" pređe i zatezača. Pored toga, ona dobija dodatno zatezanje pri prolazu kroz vodiče koji određuju pravac kretanja.

Osnovni faktori koji utiču na proces snovanja su: različite pozicije kalemova po visini i dubini rednika snovaljke, promene brzine snovanja (zbog zastoja mašine), nestabilnost rada zatezača i vodiča, promena uslova odmotavanja pređe sa kalemova tokom vremena, promena frikcionih svojstava pređe, prekidi i različite greške na pređi. Svi ovi faktori u određenom stepenu utiču na sile zatezanja žica u procesu snovanja, što znači da se ne mogu uvek predvideti i tačno odrediti. Međutim, sigurno je da se u većem broju slučajeva može uticati na rešenje izvesnih problema od kojih zavisi kvalitet snovanja. Time se stvaraju odgovarajući preduslovi koji omogućavaju formiranje kvalitetnih osnova, a samim tim ostvaruju povoljniji uslovi za postizanje maksimalnih iskorišćenja tkačkih mašina.

ZAKLJUČAK

Poznavanje deformacionih karakteristika teksturirane multifilamentne PES pređe veoma je značajno sa aspekta predviđanja njenog ponašanja u procesima dalje prerade u tekstilne materijale i proizvode, kao i predviđanja ponašanja tekstilnih proizvoda tokom eksploatacije.

Definisane su ključne tačke deformacije teksturirane multifilamentne PES pređe u procesu istezanja i predložena je metoda za određivanje granice elastičnosti, granice puzanja, kraja zone puzanja i granice popuštanja posle puzanja.

Pored toga, rezultati su pokazali da temperatura teksturiranja ima analogan uticaj na vrednosti sila na granici elastičnosti i granici puzanja. Konstatovano je da niže temperature teksturiranja imaju povoljniji uticaj na vrednosti sile na granici elastičnosti i sile na granici puzanja, dok više vrednosti temperature uglavnom imaju povoljniji uticaj na izduženje na granici elastičnosti i granici puzanja. Ova konstatacija je doprinela da se definišu povezanosti parametara na granici puzanja i na granici elastičnosti, koje se mogu koristiti za predviđanje preporučenih graničnih opterećenja teksturiranih PES multifilamentnih pređa u procesima dalje prerade u tekstilne materijale.

Uticaj temperature na vrednost sile na granici popuštanja i na prekidnu silu pređe je suprotan u odnosu na promene vrednosti sile na granici elastičnosti i na granici puzanja. Naime, više temperature teksturiranja daju uglavnom nešto veće vrednosti sile na granici popuštanja i veće vrednosti prekidne sile.

Prekidna izduženja teksturiranih pređa imaju približne vrednosti, pri čemu su nešto više vrednosti kod pređe proizvedene temperaturom teksturiranja 450 °C pri brzinama 1000 m/min i 1100 m/min. Takođe, uočava se trend opadanja vrednosti prekidne sile i prekidnog izduženja sa povećanjem brzine teksturiranja iznad 900 m/min.

Viša temperatura primarnog grejača i duže izlaganje temperaturi doprinose relaksaciji naprezanja unutar molekulskih lanaca filamentnih pređa, što pogoduje elastičnosti pređe. Istovremeno dejstvo frikcionih diskova u procesu simultanog upredanja prouzrokuje dezorijentaciju makromolekulskih lanaca zbog uvijanja i savijanja pređe, te više temperature i duže zadržavanje pređe u grejaču doprinose većoj dezorijentaciji makromelekula u procesu teksturiranja i nešto niže vrednosti sile na granici elastičnosti i puzanja.

Relaksiranje unutrašnjih naprezanja u pređi usled više temperature i dužeg izlaganja temperaturi dolazi do izražaja u vrednostima parametara pređa na granici popuštanja posle zone puzanja, kada je orijentacija makromolekula u pravcu sile istezanja maksimalna. Naime, prilikom istezanja, u procesu kidanja na dinamometru, makromolekuli se orijentišu u pravcu ose pređe. Očekivano je da bolju orijentisanost makromolekulskih lanaca na granici popuštanja imaju multifilamentne teksturirane pređe proizvedene primenom više temperature teksturiranja, zbog manjeg unutrašnjeg naprezanja ovako formiranih pređa. Ovo može biti razlog uglavnom nešto većih vrednosti sila na granici popuštanja i većih vrednosti prekidnih sila teksturiranih multifilamentnih PES pređa, proizvedenih primenom viših temperatura teksturiranja.

U cilju očuvanja mehaničkih karakteristika multifilamentnih teksturiranih PES pređa veoma je značajno definisati dozvoljena opterećenja pređe u narednim tehnološkim procesima. Tim pre što svi monofilamenti multifilamentne pređe nisu mogli apsorbovati istu količinu toplote, zbog položaja u pređi, pa će se i njihova svojstva razlikovati u dovoljnoj meri da ne može da se govori o homogenosti multifilamentne teksturirane PES pređe. Ta nehomogenost strukture će u svakom slučaju dovoditi do variranja kvaliteta multifilamentne pređe, na šta se mora obratiti posebna pažnja pri predviđanju svojstava ovih pređa. Odgovornim pristupom analizi svojstava teksturiranih multifilamentnih pređa, mogu se ostvariti uštede energije u procesu teksturiranja i doprineti optimizaciji proizvodnje pređa, proizvedenih na mašinama sa HT grejačima.

U industriji se veoma često donosi zaključak o kvalitetu neke pređe, u pogledu mehaničkih karakteristika, samo na osnovu njenih prekidnih karakteristika. To nije dobro rešenje. Analizom vrednosti sila i izduženja na granicama elastičnosti i puzanja teksturiranih multifilamentnih PES pređa stiče se prava slika o vrednostima sila kojima se pređa može izložiti u tehnološkim procesima prerade u tekstilne materijale. Na taj način biće sačuvana svojstva pređe i samim tim osiguran dobar kvalitet gotovog proizvoda u skladu sa projektom tekstilnog materijala i zahtevima standarda.

Dobijeni rezultati su pokazali da se delimično orijentisana multifilamentna poliesterska pređa, korišćena u ovom radu, može teksturirati pri značajno većim brzinama teksturiranja (do 1100 m/min) u odnosu na standardne brzine (do 700 m/min) koje se koriste za preradu analiziranih pređa.

Sa ciljem da se doprinese razvoju metode za predviđanje karakteristika teksturirane multifilamentne PES pređe u narednim tehnološkim procesima prerade, predložena je jednačina koja korektno povezuje ključne tačke (sila-izduženje na granici elastičnosti, na granici puzanja, na kraju zone puzanja, na granici popuštanja i prekida pređe) u procesu istezanja pređe sve do prekida.

Sve analize ukazuju da se parametri teksturiranja moraju birati kao usklađeno rešenje, imajući u vidu temperaturu primarnog grejača, istezanje i silu zatezanja multifilamentne pređe u procesu izrade, obimnu brzinu frikcionih diskova, brzinu pređe, kvalitet POY PES multifilamenta i stanje mašinskog parka.

Uzevši u obzir rezultate istraživanja, optimalne parametre procesa teksturiranja treba definisati u skladu sa svojstvima koja se očekuju od teksturirane multifilamentne PES pređe. Namena teksturirane multifilamentne PES pređe i sile zatezanja pređe u tehnološkim procesima prerade u tekstilne materijale, moraju se posmatrati istovremeno i shodno tome podesiti tehnološki parametri

teksturiranja. Na ovaj način se može ostvariti ušteda energije u procesu teksturiranja i doprineti optimizaciji proizvodnje teksturirane multifilamentne PES pređe na mašinama sa kratkim visokotemperaturnim grejačima.

LITERATURA

[1] Atkinson C., False twist textured yarns: Principles, processing and applications. Woodhead Publishing Limited, Cambrige, 2012.

[2] Hearle, J.W.S., Hollick, L, Wilson, D.K. Yarn texturing technology, Woodhead Publishing Limited, Cambridge, 2001.

[3] Silva E.A., Paiva A.P., Balestrassi P.P., Silva C.E.S., New Modeling and Process Optimisation Approach for the Fals-Twist Texturing of Polyester, Fibres & Textiles in Eastern Europe, 2009., Vol.17, No.6, 57-62.

[4] Du, G.W. and Hearle, J.W.S., Thread line Instability in the False-twist Texturing Process. Part III: Stability of the Yarn Path and Surging Mechanisms, Journal of the Textile Institute, 1990., Vol.81, No.1, 36-47.

[5] Du, G.W. and Hearle, J.W.S., Thread line Instability in the False-twist Texturing Process. Part I: Experimental Observations of Tension Surging, Journal of the Textile Institute, 1989., Vol.80, No.2, 202-215.

[6] Hearle, J.W.S., Limiting speed of false-twist texturing: a possible explanation of the postsurging mode, Journal of the Textile Institute, 2012., Vol.103, No.8, 262-265.

[7] Gangurde Sandesh, Turukmane Ranjit N., Kolte Prafull P., Impact of heat setting on moisture absorbency and dyeability of polyester draw textured yarn, Colourage, 2018., Vol.65, No.10, 35-37.

[8] Turukmane, R., Parsi, R.D., Mahajan, S. and Raichurkar, P., Machine parameters and their effect on textured yarn properties, Chemical Fibers International, 2018., Vol.68, 41-43.

[9] Bhadane, R., Patil, N. and Turukmane, R., Effect of heater settings on the textured yarn properties, Man-Made Textiles in India, 2020., Vol.48, No.3, 82-84.

[10] Yildirim, K., Altun, S. and Ulcay, Relationship between yarn properties and process parameters in false-twist textured yarn. Journal of Engineered Fibers and Fabrics, 2009., Vol.4, No.2, 26-32.

[11] Mohammad Amani Tehran, Bahareh Azimi, Mohammad Reza Mohades Mojtahedi, Investigating the Effect of False Twist Texturing Process on the Color Coordinates Variation of Spundyed Polyester Filament Yarns, Journal of Engineered Fibers and Fabrics, 2011., Vol.6, No.3, 54-62.

[12] Wickramasinghe, G.L.D. and Foster, P.W., Effect of disc spacing on twist level of the friction disc false-twist texturing, 11th international symposium, Engineering Research Unit (ERU), University of Moratuwa, Sri Lanka, 28. 09. 2005., Proceedings, pp. 93-106.

[13] Stojanovic, P., Savic, M., Trajkovic, D., Stepanovic, J., Stamenkovic, M. and Kostic, M., Effect of false-twist texturing parameters on the structure and crimp properties of polyester yarn, Chemical Industry & Chemical Engineering Quarterly, 2017., Vol.23, No.3, 411–419.

[14] M. Taghavi Deilamani, A. Rashidi, M. E. Yazdanshenas, M. B. Moghadam, S. Eskandarnejad, Effect of major false-twist texturing parameters on tensile properties and crystallinity of polyester microfilament yarn and optimized by RSM, Bulgarian Chemical Communications, 2016., Vol.48, Special Issue D, Supplement, 55 – 64.

[15] Foster, P.W., Aggarwal, R.J., Lu, B.I., Gunasekera, U.S.W. and Cork, C.R., A New Concept in Cooler Design for False-Twist Texturing Systems, Textile Research Journal, 2002., Vol.72, No.7, 567-572.

[16] P. W. Foster, S. K. Mukhopadhyay, R. Jeetah, I. Porat & K. Greenwood, Constant-bulk False-twist Texturing. Part I: Principle and Method, The Journal of The Textile Institute, 1992, Vol.83, No.3, 414-422.

[17] Foster, P.W., Wickramasinghe, G.L.D., and Gunasekera, U.S.W., False-twist texturing with water-jet twister/cooler: effect of water pressure on textured yarn properties, Journal of the Textile Institute, 2021., Vol.112, No.5, 792-800.

[18] Foster, P.W., Wickramasinghe, G.L.D., and Gunasekera, U.S.W., False-twist drawtexturing with water-jet twister/cooler and superheated steam heater: effect of steam temperature on textured yarn properties, Journal of the Textile Institute, 2022., Vol.113, No. 3, pp. 405 – 411.

[19] N. Eskin, Analysis of a high temperature hester in a false twist texturing process, Enrgy Conversion and Management, 2003., Vol.44, No.16, 2531-2547.

[20] Celik, P., Ozdil, N., Supure, G., Experimental investigation on the static and dynamic strength of false twist textured polyester yarns, Industria Textila, 2011., Vol.62, No.1. 38-43.

[21] Bhattacharya, SS., Shaikh, TN., Pratap, A. An investigation of Thermal Characteristic of Mechanical Crimp Textured Polyester by Differential Scanning Calorimeter (DSC), AIP Conference Proceedings, 1249, 2010., 67-74.

[22] Shaikh, TN., Bathhacarya, SS., Mechanical Crimp Texturing: A Novel Concept, Textile Research Journal, , 2010., Vol.80, No.6, 483-486.

[23] Shaikh T.N., Bahattacharya S.S. Deriving an empirical formula to determine the optimum level of false-twist in mechanically-crimped textured polyester yarn, Textile Research Journal, 2011., Vol.81, No.19, 1995-2005.

[24] Mahnish, SS., Punj, S.K., Kothari, V.K., Comfort and Handle Relatd Properties of P/V Blended Air-jetTextured Yarn Fabrics, Fibres and Polymers, 2010., Vol.11, No.6, 932-940. [25] Morris W.J., Denton M.J., An improved method of friction-twisting in the false-twist-texturing process. Part I: The development of an improved method, Journal of the Textile Institute, 1975., Vol.66, No.3, 116-122.

[26] Denton M. J., Morris W. J., An improved method of friction-twisting in the false-twist-texturing process. Part II: Theoretical relations between yarn and processing parameters in the improved friction spindle, Journal of the Textile Institute, 1975., Vol.66, No.3, 123-128.

[27] A. Demir, H.M. Behery, Synthetic filament yarn: texturing technology, Publisher: Prentice Hall, Upper Saddle River, NJ, 1997.

[28] Jovana Stepanović, Tatjana Šarac, Nataša Radmanovac, Dušan Trajković, Jovan Stepanović, Crimping analysis of textured polyester multifilament yarn, Industria textila, 2019., Vol.70, No.5, 463–469.

[29] Petar Stojanović, Proučavanje uticaja parametara procesa teksturiranja na strukturu i svojstva teksturiranih poliesterskih pređa, Doktorska disertacija, Tehnološki fakultet u Leskovcu, 2017.

[30] Petar Stojanović, Dušan Trajković, Jovana Stepanović, Natasa Radmanovac, Jovan Stepanović, The influence of texturing process parameters on yield points and breaking forces of PES filament yarns, Industria textila. 2018., Vol.69, No.4, 282 - 287.

[31] Petar Stojanović, Dušan Trajković, Nataša Radmanovac, Jovana Stepanović, The influence of the texturing speed and the degree of stretching on breaking characteristics of the textured PES yarn, Advanced technologies, 2017., Vol.6, No.1, 77-80.

[32] Jovana Stepanović, Dušan Trajković, Nenad Ćirković, Nataša Radmanovac, A new method for the determination of a crimping degree of textured PES filament yarns, Advanced technologies, 2018., Vol.7, No.1, 69-73.

[33] M.J. Denton, The Development of False Twist in Bulking, Journal of the Textile Institute, 1968, Vol.59, No.7, 344-350.

[34] Peter R. Lord, Handbook of yarn production: Technology, science and economics, Woodhead Publishing Limited, Cambridge, England, 2003.

[35] Jovana Stepanović, Dušan Trajković, Jovan Stepanović, Method for analysis of deformation properties of textured multifilament polyester yarn, Textile Science and Economy XI, 11th International Scientific-Professional Conference, November, 23 st, 2020., Zrenjanin , Serbia, Proceedings, 101-105.

[36] Saurer Components GmbH, Texturing discs: Superior process stability and quality, Tehnička dokumentacija, 2014.

[37] Iva Mertová, Eva Moučková, Bohuslav Neckář, Monika Vyšanská, Influence of twist on selected properties of multifilament yarn, AUTEX Research Journal, 2018., Vol.18, No.2, 110–120.

[38] Ursíny P., Machines and Technology of Spinning, VŠST Liberec, 1984.

[39] Neckář. B., Yarn-Forming, structure and properties, SNTL Prague, 1990.

[40] Hearle, J. W. S., Grosberg, P. and Backer, S., Structural Mechanics of Fibers, Yarns and Fabrics. Wiley- Interscience, New York, 1969.

[41] J. Stepanovic, D. Radivojevic, V. Petrovic, S. Golubovic, The analysis of the breaking characteristics of the twisted yarns, Fibres & Textiles in Eastern Europe, 2010., Vol.79, No.2, 40-44.

[42] Neckář, B., Das, D., Theory of structure and mechanics of fiber assemblies. (1 edition). Woodhead Publishing India, New Delhi, 2012.

[43] Jones, J. E. Haddad, G. N. and Sutton, J.N.. Tensile Characteristics of Twisted Continuous-Filament Glass Yarns. Textile Research Journal, 1971., Vol.41, No.11, 900 – 904.

[44] Kilby, W. F. The Mechanical Properties of Twisted Continuous Filament Yarns. The Journal of the Textile Institute, 1964., Vol.55, No.12, T589-T632.

[45] Treloar, L. R. G. and Riding, G. A., Theory of Stress-Strain Properties of Continuous-Filament Yarns, The Journal of the Textile Institute, 1963., Vol. 54, No.4, T156-T170. Москва

[46] J. Stepanovic, D. Radivojevic, V. Petrovic, C. Besic, Projecting of deformation characteristics of single and twisted wool yarns, Industria textila, 2010., Vol.61, No.3, 95-105.

[47] Ghosh, A., Das, S. & Saha, B., Simulation of Stress–Strain Curves of Polyester and Viscose Filaments, Journal of The Institution of Engineers (India): Series E, 2015., Vol.96, No.2, 139–143.

[48] A. Ghosh, S.M. Ishtiaque, R.S. Rengasamy, Stress–strain charac - teristics of different spun yarns as a function of strain rate and gauge length, The Journal of The Textile Institute, 2005., Vol.96, No.2, 99-104.

[49] Кукин Г. Н., Соловьев А. Н., Коблыков А. И., Текстильное материаловедение, Легпромбытиздат, Москва, 1989.

[50] Бузов Б. А., Модестова Т. А., Алименкова Н. Д., Мариаловедение швейного производства, Легпромбытиздат, Москва, 1986.

[51] Кукин Г. Н., Соловьев А. Н., Текстильное материаловедение-часть II, Легкая индустрия, Москва, 1964.

[52] D. Stojiljković. Ž. Živković, Ž. Tasić, Modelovanje istezanje pređe, Monografija, Tehnološki fakultet Leskovac, 1995.

[53] I.M. Ward, Mechanical Properties of Solid Polymers, 2nd edn., Wiley, New York, 1983.

[54] W.E. Morton, J.S.W. Hearle, Physical Properties of Textile Fibress, 3rd edn., The Textile Institute, Manchester, 1993.

[55] Stojiljkovic D., Petrovic V., Djurovic M., Rheological modeling of yarn elongation. Tekstil, 2007., Vol.56, No.9, 551-561. [56] Jovan Stepanovic, Dusan Trajkovic, Dragan Stojiljkovic, Dragan Djordjic, Predicting the Behavior of Nonwoven Geotextile Materials Made of Polyester and Polypropylene Fibers, Textile Research Journal, 2016., Vol 86, No 8, 1385-1397.

[57] Jovan Stepanovic, Dragan Stojiljkovic, Dragan Djordjic, Dusan Trajkovic, Modeling of elongation of nonwoven geotextile materials, Industria textila, 2014., Vol.65, No.2, 90 - 94.

[58] Dušan Trajković, Jovan Stepanović, Dragan Stojiljković, Dragan Đorđić, Predicting behavior of needled geotextile materials made of recycled polyester fibres up to yield point, Indian Journal of Fibre & Textile Research, 2018., Vol.43, No. 2, 158 – 163.

[59] G. Halsey, H.J. White, H. Eyring, Mechanical properties of textiles, Part I. Textile Research Journal, 1945., Vol.15, No.9, 295-311.

[60] A. Ghosh, S. Das, D. Banerjee, Simulation of yarn stress relaxation and creep behaviors using genetic algorithm, Indian Journal of Fibre & Textile Research, 2013., Vol.38, No.4, 375-379.

[61] P Ghaderpanah, F Mokhtaria & M Latifi, Evaluation of false-twist textured yarns by image processing, Indian Journal of Fibre & Textile Research, 2015., Vol. 40, No.4, 399-404.

[62] Maleki M, Latifi M & Amani M, Definition of structural features of nano coated webs by image processing methods, <u>International Journal of Nanotechnology</u>, 2009., Vol.6, No.1-2, 1131-1154.

[63] Shih-Hsuan Chiu, Hung-Ming Chen, Jyh-Yeow Chen, Che-Yen Wen, Appearance Analysis of FalseTwist Textured Yarn Packages Using Image Processing and Neural Network Technology, Textile Research Journal, 2001., Vol.71, No.4, 313-317.

[64] Bahareh Azimi, Mohammad Amani Tehran, PhD, Mohammad Reza Mohades Mojtahedi, Prediction of False Twist Textured Yarn Properties by Artificial Neural Network Methodology, Journal of Engineered Fibers and Fabrics, 2013., Vol.8, No.3, 97-101.

[65] Tasnim N Shaikh and Someswar S Bhattacharya, Deriving an empirical formula to determine the optimum level of false-twist in mechanically-crimped textured polyester yarn, Textile Research Journal, 2011., Vol.81, No.19, 1995–2005.

[66] Shaikh TN and Bhattacharya SS., Mechanical crimp texturising: A novel concept, Textile Research Journal, 2010., Vol.80, No.6, 483–486.

[67] Bhattacharya SS, Shaikh TN and Pratap A., An Investigation of Thermal Characteristic of Mechanical Crimp Textured Polyester Yarn by Differential Scanning Calorimeter (DSC), 5th National Conference on Thermophysical Properties: (NCTP-09). AIP Conference Proceedings, Vol.1249, No.1, 67-74.

[68] Marjan Abbasi, Mohammad Reza Mohades Mojtahedi, Richard Kotek, Experimental study on texturability of filament yarns produced from recycled PET, Textile Research Journal, 2020., Vol. 90, No. 23-24, 2703-2713.

[69] Ranjit Turukmane, Shubham Patil, Rahul Chaudhari, Impact of Texturing machine parameters on the properties of PET textured yarn, Chemical Fibers International, 2021., Vol,71, No.1, 35-36.

[70] Bahareh Mehrabli, Mohammad Reza Mohaddes Mojtahedi, PhD, Ahmad Mousavi Shoushtari, Investigation on Physical Properties of Textured Yarns Produced from PP/LDPE Blend, Journal of Engineered Fibers and Fabrics, 2014., Vol.9, No.4, 135-139.

[71] Tasnim N Shaikh, Satyajeet Chaudhari, Alpa Varma, Mechanical crimp texturizing of non-thermoplastic viscose rayon yarn, Textile Research Journal, 2014., Vol.84, No.10, 1034-1043.

[72] Ranjit Turukmane, Yash Marathe, Comparative analysis of structural properties of PET POY and DTY, 2019., Chemical Fibers International, Vol.69, No.2, 94-96.

[73] Eskin N., Analysis of a high temperature heater in a false twist texturing process, Energy Conversion and Management, 2003., Vol.44, No.16, 2531–2547.

[74] Özkan Hacıoğulları, S. and Babaarslan, O., An investigation on the properties of polyester textured yarns produced with different fiber cross-sectional shapes, Industria Textila, 2018, Vol.69, No.4, 270-276.

[75] Celik P., Ozdil N., Supure G., Experimental investigation on the static and dynamic strength of false twist textured polyester yarns, Industria Textila, 2011., Vol.62, No.1, 38-43.

[76] Shaikh TN., Bhattacharya SS., Deriving an empirical formula to determine the optimum level of false-twist in mechanically-crimped textured polyester yarn, Textile Research Journal, 2011., Vol.81, No.19, 1995-2005.

[77] Mahish S.S., Punj S.K., Kothari V.K, Comfort and Handle Related Properties of P/V Blended Air-jet Textured Yarn Fabrics, Fibers and Polymers, 2010., Vol.11, No.6, 932-940.

[78] Ranjit Turukmane, Sujit Shrikrushnarao Gulhane, Krishna Kumar Gupta, Sanjay Shinde, Effect of Spinneret shape on the proprties of polyester filament, 2021., Chemical Fibers International, Vol.71, No.3, 130-131.

[79] M. Taghavi Deilamani, A. Rashidi, M. E. Yazdanshenas, M. B. Moghadam, S. Eskandarnejad, Statistical Investigation of the Effect of Major Parameters of False Twist Texturing on the Dyeing Characteristic and Color Properties of Microfilament Polyester Yarn, Moroccan Journal of Chemistry, 2022., Vol. 10, No.1, 160-179.

[80] Karakaşa C., Dayıoğlu H., Influence of false-twist texturing parameters on the structural properties of polyester yarn, Indian Journal of Fibre & Textile Research, 2005., Vol.30, No.1, 37-41.

[81] S.K. Pal, R.S. Gandhi, V.K. Kothari, Draw-Texturing of Microfiber Polyester Yarn, Textile Research Journal, 1996., Vol.66, No.12, 770-776.

[82] Purane, S.V., Panigrahi, N. R.; Microfibers, Microfilament & Their Application, AUTEX Research Journal, 2007., Vol. 7, No. 3, 148-158.

[83] Varshney, RK., Kothari, V.K., Dhamija, S., Influence of polyester fibre fineness and cross-sectional shape on lowstress characteristics of fabrics, Journal of the Textile Institute, 2011., Vol.102, No.1, 31–40.

[84] Babaarslan, O., Telli, A. and Gören, A.G., Properties of yarns obtained by combining FDY with POY, CDPET and micro POY polyester filaments under different texturing conditions and their visual effects in knitted fabric, Journal of Science and Engineering, 2019., Vol.21, No.62, 409-418.

[85] Babaarslan, O. and Özkan Hacıoğulları, S., Effect of fibre cross-sectional shape on the properties of POY continuous filaments yarns, Fibers and Polymers, 2013., Vol.14, No.1, 146-151.

[86] K. Yıldirimm, H. Ogut, Y. Ulcay, Comparing the Prediction Capabilities of Artificial Neural Network (ANN) and Nonlinear Regression Models in Pet-Poy Yarn Characteristics and Optimization of Yarn Production Conditions, Journal of Engineered Fibers and Fabrics, 2017., Vol.12, No.3, 7-16.

[87] Kadir Bilisik, Oguz Demiryurek and Gaye Yolacan, Analyses and statistical modeling of crimp extension stage of single and multiple yarn ends pull-out in textured polyester woven fabric, Journal of Industrial Textiles, 2012., Vol.42, No.3, 319-339.

[88] Shaikh TN and Bhattacharya SS, Mechanical crimp texturising: A novel concept. Textile Research Journal, 2010., Vol.80, No.6, 483–486.

[89] Azita Asayesh and Ali A. A. Jeddi, Modeling the Creep Behavior of Plain Woven Fabrics Constructed from Textured Polyester Yarn, Textile Research Journal, 2010., Vol.80, No.7, 642–650.

[90] S. Özkan, Osman Babaarslan, Effect of number of filaments in the cross-section of yarn on the properties of continuous filament and textured yarns, Tekstil ve Konfeksiyon, 2021., Vol.20, No.11, 17-22.

[91] Gokarneshan N, K Velumani, Aishwarya Sree and Sethupathy, A Review of Some Significant Research Trends in Yarn Texturising, Research & Development in Material Science, 2018., Vol.4, No.2, 369-372.

[92] Kenan Yildirim, Şule Altun, Yusuf Ulcay, The effect of first heater temperature on the properties of false-twist textured poly (ethylene terapthalate) yarn, Tekstil ve Konfeksiyon, 2009., Vol.19, No.4, 286-290.

[93] Kenan Yildirim, A. Melek Köstem, Nurcan Aydin, Hüseyin Tuna, Ayhan Cenan, Twist setting temperature and time effects on morphology of polyethylene terephthalate yarn, Tekstil ve konfeksiyon, 2014., Vol.24, No.2, 186-194.

[94] Babaarslan, O., Hacıoğulları, SO., Properties of POY and textured yarn with different cross-sectional shapes, The Fiber Society Spring 2012 Conference - Fibers Research for Tomorrow's Applications, Empa, St. Gallen, Switzerland, 2012, Proceedings, 87–88.

[95] K.O. Fashola, A. Giwa, E.B. Iliya and J.G. Onemano, Studies on the Properties of Some Selected Polyester Textured Yarns, Middle East Journal of Scientific Research, 2012., Vol.11, No.4, 498-502.

[96] Jovana Stepanović, Dušan Trajković, Tatjana Šarac, Nenad Cirkovic, Jovan Stepanovic, Influence of temperature and texture speed on the creep limit of multifilament polyester yarn, IV International scientific conference "Contemporary Trends and Innovations in the Textile Industry", Belgrade, 16-17th September. 2021., Proceedings, 126-131.

[97] Jovana Stepanovic, Dusan Trajkovic, Nataša Radmanovac, Jovan Stepanovic, Analysis of textured PES filament yarn characteristics in the zone of elastic deformations, Textile Science and Economy IX, 9th International Scientific-Professional Conference, November, 06., 2018., Zrenjanin, Serbia, Proceedings, 176-181.

[98] Stepanović, J., Šarac, T., Trajković, D., Stepanović, J., Investigation of deformation properties of textured multifilament PES yarns, Industria Textila, 2022, Vol.73, No.4, 397–404.

[99] SRPS EN ISO 2062, Tekstil - Pređa iz namotaja - Određivanje prekidne sile i prekidnog izduženja pojedinačnih niti upotrebom uređaja sa konstantnom brzinom istezanja (CRE), 2012.

[100] SRPS EN 14621, Tekstil - Multifilamentna pređa - Metoda ispitivanja teksturirane i neteksturirane filament pređe, 2012.

PRILOG

Brzina	(F ₁ /F ₅) ·100 (%)	(F ₂ /F ₅) ·100 (%)	(F ₃ /F ₅) ·100 (%)	(F ₄ /F ₅) ·100 (%)	(F ₁ /F ₅) ·100 (%)	(F ₂ /F ₅) ·100 (%)	(F ₃ /F ₅) ·100 (%)	(F ₄ /F ₅) ·100 (%)
(m/min)	i =	1,665; T=350	$^{\circ}C; D/Y = 2$	2,15	i =	1,685; T=350	$0 {}^{\circ}C; D/Y = 2$	2,15
1100	13,97904	24,08722	37,57606	49,03651	12,97848	22,45770	38,26187	52,47248
1000	15,15888	27,07523	41,00195	52,44812	14,38122	25,34204	38,43284	53,49813
900	12,94062	22,22928	35,97968	51,74659	14,47098	25,76309	37,83014	53,40819
700	12,76563	22,04688	33,29688	54,07813	12,28180	21,19701	33,46322	54,25499
600	12,13064	20,87092	32,06843	52,90824	12,41305	21,40980	32,87989	53,50131
500	10,56518	17,73926	32,62999	55,62924	11,64665	19,70503	33,22183	55,02509
Srednja vrednost	12,92333	22,34146	35,4255	52,64114	13,02869	22,64578	35,68163	53,69337

Tabela p.1. Procenat učešća sile F1, F2, F3 i F4 u F5 (T=350 °C; D/Y = 2,15)

Tabela p.2. Procenat učešća sile F₁, F₂, F₃ i F₄ u F₅ (T=400 °C; D/Y = 2,15)

р ·	(F_1/F_5)	(F_2/F_5)	(F_3/F_5)	(F_4/F_5)	(F_1/F_5)	(F_2/F_5)	(F_3/F_5)	(F_4/F_5)
Brzina	·100 (%)	·100 (%)	·100 (%)	·100 (%)	·100 (%)	·100 (%)	·100 (%)	·100 (%)
(m/min)	i =	1,665; T=400) °C; D/Y = 2	,15	i =	1,685; T=400	$O \circ C; D/Y = 2$	2,15
1100	12,06664	20,02693	37,09189	49,7139	11,40504	19,05592	33,6607	43,75099
1000	13,90263	23,44773	38,11652	49,99202	12,24615	20,20000	35,06154	50,40000
900	13,07776	22,04359	36,07977	51,73906	12,43006	20,53531	36,36776	53,01679
700	11,05109	17,94161	31,60584	53,13869	9,35451	15,31400	30,20545	55,73364
600	11,19784	18,44791	32,31762	51,78625	10,43064	17,12114	32,58829	54,37342
500	10,06233	15,31612	32,1312	55,12021	10,48231	16,39540	28,38584	45,81156
Srednja vrednost	11,89305	19,53731	34,55714	51,91502	11,05812	18,10363	32,7116	50,5144

Tabela p.3. Procenat učešća sile F1, F2, F3 i F4 u F5 (T=450 °C; D/Y = 2,15)

Dumina	(F ₁ /F ₅)	(F_2/F_5)	(F_3/F_5)	(F_4/F_5)	(F ₁ /F ₅)	(F_2/F_5)	(F_3/F_5)	(F_4/F_5)
Brzina	·100 (%)	·100 (%)	·100 (%)	·100 (%)	·100 (%)	·100 (%)	·100 (%)	·100 (%)
(m/min)	i =	1,665; T=450	$0 \circ C; D/Y = 2$	2,15	i =	1,685; T=450	$O \circ C; D/Y = 2$	2,15
1100	12,57476	21,42309	33,72182	45,46849	14,10157	24,02547	38,5153	50,59792
1000	11,96529	19,28756	31,51165	42,82235	11,1682	18,31646	31,9329	49,78087
900	11,19188	17,9161	32,63668	49,85613	11,95848	19,67509	35,81528	54,54272
700	10,11673	16,18389	30,26373	51,33305	9,995603	16,48835	30,30925	53,5395
600	9,419544	14,85672	30,80088	54,29831	9,43615	14,61081	28,25047	52,55834
500	10,29184	16,65022	29,63485	52,2346	11,02473	17,80919	30,82686	51,20848
Srednja vrednost	10,92667	17,7196	31,42827	49,33549	11,28079	18,48756	32,60834	52,03797

								-
Brzina	(F ₁ /F ₅) ·100 (%)	(F ₂ /F ₅) ·100 (%)	(F ₃ /F ₅) ·100 (%)	(F ₄ /F ₅) ·100 (%)	(F ₁ /F ₅) ·100 (%)	(F ₂ /F ₅) ·100 (%)	(F ₃ /F ₅) ·100 (%)	(F ₄ /F ₅) ·100 (%)
(m/min)	i =	1,665; T=350	$0 \circ C; D/Y = 2$	2,20	i =	1,685; T=350	$0 \circ C; D/Y = 2$	2,20
1100	13,95155	24,42774	39,09774	50,44277	13,3578	22,67794	37,15289	48,54772
1000	16,04490	28,14460	41,11918	54,12677	12,83262	21,85483	37,45867	52,46418
900	13,31504	22,96643	35,97482	52,53389	13,18956	22,59728	35,41178	52,19566
700	11,99130	20,27027	33,00715	55,07922	12,75294	22,27451	33,33333	53,41176
600	11,95385	20,38462	32,49231	52,38462	12,50192	21,38365	33,70149	53,98067
500	11,46574	19,13478	32,41567	55,04462	10,82146	18,38436	31,73689	55,77448
Srednja vrednost	13,12040	22,55474	35,68448	53,26865	12,57605	21,52876	34,79918	52,72908

Tabela p.4. Procenat učešća sile F₁, F₂, F₃ i F₄ u F₅ (T=350 °C; D/Y = 2,20)

Tabela p.5. Procenat učešća sile F1, F2, F3 i F4 u F5 (T=400 °C; D/Y = 2,20)

Brzina	(F ₁ /F ₅) ·100 (%)	(F ₂ /F ₅) ·100 (%)	(F ₃ /F ₅) ·100 (%)	(F ₄ /F ₅) ·100 (%)	(F ₁ /F ₅) ·100 (%)	(F ₂ /F ₅) ·100 (%)	(F ₃ /F ₅) ·100 (%)	(F ₄ /F ₅) ·100 (%)
(m/min)	i =	1,665; T=400) °C; D/Y = 2	,20	i =	1,685; T=400	$O \circ C; D/Y = 2$	2,20
1100	12,63602	22,08868	36,21894	47,39321	13,84539	23,43827	36,80567	48,59074
1000	13,32278	23,02215	36,88291	49,58861	13,82339	23,70165	37,64833	52,78163
900	13,67151	23,50758	36,56047	52,2889	12,10967	19,78675	35,58264	53,40442
700	9,901278	15,60685	31,6928	53,39721	9,76602	16,17497	29,38526	54,25084
600	11,0282	18,47485	32,24892	53,27563	11,19236	18,92255	32,45784	53,32040
500	10,18912	15,95074	29,77569	52,39701	10,87854	17,34965	32,01651	54,08314
Srednja vrednost	11,79149	19,77514	33,89662	51,39009	11,9359	19,89564	33,98271	52,73853

Tabela p.6. Procenat učešća sile F1, F2, F3 i F4 u F5 (T=450 °C; D/Y = 2,20)

Brzina	(F_1/F_5)	(F_2/F_5)	(F_3/F_5)	(F_4/F_5)	(F_1/F_5)	(F_2/F_5)	(F_3/F_5)	(F_4/F_5)
DiLina	·100 (%)	·100 (%)	·100 (%)	·100 (%)	·100 (%)	·100 (%)	·100 (%)	·100 (%)
(m/min)	i =	1,665; T=450	$0 \circ C; D/Y = 2$	2,20	i =	1,685; T=450	$0 \circ C; D/Y = 2$	2,20
1100	11,83036	19,37181	36,03316	49,96811	10,98088	17,04195	33,71376	53,47008
1000	11,50744	18,59491	35,29777	48,32506	13,90038	23,54023	36,32184	50,19157
900	10,61987	16,22106	33,23376	51,15758	11,17293	18.00000	34,03008	51,44361
700	9,791607	16,10049	31,03055	55,02426	9,642346	16,05150	30,20029	54,79256
600	9,404710	14,6263	27,83385	52,31827	9,582059	14,85365	31,55672	54,14300
500	10,50456	16,6049	29,68928	49,04504	11,53682	19,08560	29,96724	48,04159
Srednja vrednost	10,60976	16,91991	32,18639	50,97305	11,1359	18,09549	32,63165	52,01374

Brzina	(F ₁ /F ₅) ·100 (%)	(F ₂ /F ₅) ·100 (%)	(F ₃ /F ₅) ·100 (%)	(F ₄ /F ₅) ·100 (%)	(F ₁ /F ₅) -100 (%)	(F ₂ /F ₅) ·100 (%)	(F ₃ /F ₅) ·100 (%)	(F ₄ /F ₅) ·100 (%)
(m/min)	i =	1,665; T=350) °C; D/Y = 2	,25	i =	1,685; T=350) °C; D/Y = 2	2,25
1100	12,83693	21,39488	37,26415	49,62938	12,39766	21,10276	37,4269	52,41437
1000	15,86384	27,87412	41,34554	55,97303	13,06213	22,72366	36,72334	52,67758
900	13,43765	23,42313	35,26375	52,16970	13,50924	23,33702	37,22547	53,83157
700	12,84639	22,04069	34,42255	53,32372	10,91902	17,98605	30,51259	55,03488
600	11,91025	20,60858	33,24112	52,65099	12,1138	20,49556	33,46589	53,70144
500	10,99610	18,67687	31,80318	55,85059	10,72968	18,75464	31,28251	55,58032
Srednja vrednost	12,98186	22,33638	35,55672	53,26623	12,12192	20,73328	34,43945	53,87336

Tabela p.7. Procenat učešća sile F₁, F₂, F₃ i F₄ u F₅ (T=350 °C; D/Y = 2,25)

Tabela p.8. Procenat učešća sile F1, F2, F3 i F4 u F5 (T=400 °C; D/Y = 2,25)

Brzina	(F ₁ /F ₅) ·100 (%)	(F ₂ /F ₅) ·100 (%)	(F ₃ /F ₅) ·100 (%)	(F ₄ /F ₅) ·100 (%)	(F ₁ /F ₅) ·100 (%)	(F ₂ /F ₅) ·100 (%)	(F ₃ /F ₅) ·100 (%)	(F ₄ /F ₅) ·100 (%)
(m/min)	i =	1,665; T=400	$0 \circ C; D/Y = 2$,25	i =	1,685; T=400	$0 \circ C; D/Y = 2$	2,25
1100	13,40340	23,45998	34,97171	45,82053	11,93442	19,89595	36,26044	51,07993
1000	15,40009	26,31172	39,63783	52,03529	12,51937	20,68485	34,78463	50,15494
900	12,40347	20,99291	34,92514	51,97794	12,82051	21,71764	36,93234	54,12419
700	9,677419	15,00375	28,64216	54,23856	10,02412	15,52608	28,44438	56,84353
600	9,771310	16,63202	31,63053	54,11345	10,64828	17,83514	30,99149	53,19742
500	9,911894	15,71219	31,79148	54,88987	10,81321	17,65664	31,62494	53,90313
Srednja vrednost	11,76126	19,68543	33,59981	52,17927	11,45999	18,88605	33,17304	53,21719

Tabela p.9. Procenat učešća sile F1, F2, F3 i F4 u F5 (T=450 °C; D/Y = 2,25)

Dezino	(F_1/F_5)	(F_2/F_5)	(F_3/F_5)	(F_4/F_5)	(F_1/F_5)	(F_2/F_5)	(F_3/F_5)	(F_4/F_5)	
DIZIIIa	·100 (%)	·100 (%)	·100 (%)	·100 (%)	·100 (%)	·100 (%)	·100 (%)	·100 (%)	
(m/min)	i =	1,665; T=450	$0 {}^{\circ}C; D/Y = 2$	2,25	i = 1,685; T=450 °C; D/Y = 2,25				
1100	12,48984	21,22296	32,5744	44,54383	14,22306	24,23246	38,43985	51,03383	
1000	12,53978	19,97136	35,98027	56,65181	11,62791	18,77076	34,38538	50,04530	
900	11,29764	18,28494	34,01391	51,95100	11,59809	19,12642	33,28861	48,33035	
700	10,22151	16,28782	29,57869	55,01665	9,651163	16,43895	29,12791	55,59593	
600	9,955882	15,29412	29,16176	53,89706	9,471687	14,36077	30,29772	54,61179	
500	10,04940	16,30205	28,29922	51,82781	10,24555	16,28563	28,88795	50,42337	
Srednja vrednost	11,09234	17,89387	31,60138	52,31469	11,13624	18,2025	32,40457	51,67343	

Brzina (m/min)	F_{1}/ϵ_{a1} (cN/mm)	F_2/ϵ_{a2} (cN/mm)	F_{3}/ϵ_{a3} (cN/mm)	F_{4}/ϵ_{a4} (cN/mm)	F_5/ϵ_{a5} (cN/mm)
1100	31,20755	25,22124	15,33103	11,88934	6,159292
1000	28,33333	23,68794	14,53448	11,07877	5,91371
900	29,10714	23,52941	11,41562	7,987745	4,660007
700	29,17857	23,71429	11,36533	7,379531	5,211726
600	27,85714	22,18182	10,76762	7,147059	4,869368
500	26,45283	19,94915	10,02315	7,389389	5,270056

Tabela p.10. Količnik sile i izduženja u tačkama 1 do 5: F₁/ε_{a1}, F₂/ε_{a2}, F₃/ε_{a3}, F₄/ε_{a4} i F₅/ε_{a5} (T=350 °C, D/Y=2,15, i=1,665)

Tabela p.11.	Količnik sile i izduženja	a u tačkama 1 do	5: F ₁ /ε _{a1} ,	$F_2/\epsilon_{a2}, F$	3/Ea3,	F₄/ɛa₄ i	F5/Ea5
(T=350 °C, D	/Y=2,15, i=1,685)						

Brzina (m/min)	$F_{l}/\epsilon_{al} \; (cN/mm)$	$F_{2}/\epsilon_{a2}~(cN/mm)$	F_3/ϵ_{a3} (cN/mm)	F_4/ϵ_{a4} (cN/mm)	$F_{5}/\epsilon_{a5}~(cN/mm)$
1100	31,6	25,31481	14,33231	11,32624	6,06577
1000	29,83871	25,07692	13,5082	9,845494	5,972145
900	27,72727	22,46897	11,93017	8,549367	5,130223
700	29,18519	23,05085	11,21149	7,567391	5,375786
600	28,67857	23,08333	11,25397	7,5321	5,121932
500	26,41379	21,07317	10,76355	7,716418	5,621368

$(1=330^{\circ}C, D/1=4,20, 1=1,003)$	(T=350 °C,	D/Y=2,20,	i=1,665)
---------------------------------------	------------	-----------	----------

Brzina (m/min)	F_{l}/ϵ_{al} (cN/mm)	F_2/ϵ_{a2} (cN/mm)	F_3/ϵ_{a3} (cN/mm)	F_4/ϵ_{a4} (cN/mm)	F_5/ϵ_{a5} (cN/mm)
1100	32,11538	26,10714	15,04823	11,83922	6,051567
1000	29,01493	24,35714	14,56725	10,91181	5,861635
900	30	24,53448	11,51938	7,695035	4,452749
700	27,08772	21,57025	10,57214	7,251534	5,148341
600	27,26316	21,72131	10,69367	7,306867	4,927976
500	26,13793	20,56911	10,42822	7,441718	5,280351

Tabela p.13.	Količnik sile	e i izduženja	u tačkama	1 do 5:	F ₁ /ε _{a1} , F	² /ε _{a2} , F ₃ /ε _a	3, F4/Ea4 i F5/Ea5
--------------	---------------	---------------	-----------	---------	-------------------------------------	--	--------------------

Brzina (m/min)	$F_{l}/\epsilon_{al} \; (cN/mm)$	$F_2\!/\epsilon_{a2}~(cN\!/mm)$	F_3/ϵ_{a3} (cN/mm)	F_4/ϵ_{a4} (cN/mm)	F_5/ϵ_{a5} (cN/mm)
1100	29,89286	24,71304	15,06796	11,97638	6,374364
1000	27,16667	22,208	12,72193	10,02105	5,980226
900	29,10345	24,1	11,80208	8,126521	4,995316
700	29,03571	23,27869	11,42473	7,61745	5,427842
600	27,62712	22,66667	11,06801	7,551502	5,328157
500	25,5	19,72358	10,23961	7,449393	5,549201

Brzina (m/min)	$F_{l}/\epsilon_{al} \; (cN/mm)$	F_2/ϵ_{a2} (cN/mm)	F_{3}/ϵ_{a3} (cN/mm)	F_4/ϵ_{a4} (cN/mm)	F_5/ϵ_{a5} (cN/mm)
1100	29,30769	23,73832	14,27097	11,48538	6,132231
1000	29,05882	24,8	14,0327	10,43713	6,105882
900	30,29091	24,61017	11,56614	7,591549	4,543056
700	27,18644	21,84127	10,69154	7,308452	5,06737
600	27,19298	21,28571	10,5	7,297125	5,034429
500	26,65455	20,57851	10,39216	7,314342	5,139553

Tabela p.14. Količnik sile i izduženja u tačkama 1 do 5: F₁/ε_{a1}, F₂/ε_{a2}, F₃/ε_{a3}, F₄/ε_{a4} i F₅/ε_{a5} (T=350 °C, D/Y=2,25, i=1,665)

Tabela p.15. Količnik sile i izduženja u tačkama 1 do 5: F₁/ɛ_{a1}, F₂/ɛ_{a2}, F₃/ɛ_{a3}, F₄/ɛ_{a4} i F₅/ɛ_{a5}

(T=350 °C, D/Y=2,25, i=1,685)

Brzina (m/min)	$F_{l}/\epsilon_{al} \; (cN\!/\!mm)$	F_2/ϵ_{a2} (cN/mm)	F_{3}/ϵ_{a3} (cN/mm)	F_{4}/ϵ_{a4} (cN/mm)	$F_{5}/\epsilon_{a5}~(cN/mm)$
1100	28,53846	22,35398	13,49398	10,83592	6,65
1000	27,4	22,17054	13,28161	10,40816	5,914474
900	28,5	23,82258	11,95939	8,464596	5,099919
700	24,82759	19,28455	9,935802	7,164857	5,396072
600	26,84746	21,78862	10,83168	7,599567	5,25774
500	26,74074	20,03175	10,39506	7,450199	5,446378

Tabela p.16. Količnik sile i izduženja u tačkama 1 do 5: F₁/ε_{a1}, F₂/ε_{a2}, F₃/ε_{a3}, F₄/ε_{a4} i F₅/ε_{a5}

(T=400 °C, D/Y=2,15, i=1,665)

Brzina (m/min)	F_{1}/ϵ_{a1} (cN/mm)	$F_{2}/\epsilon_{a2}~(cN/mm)$	F_3/ϵ_{a3} (cN/mm)	F_4/ϵ_{a4} (cN/mm)	F_5/ϵ_{a5} (cN/mm)
1100	28,11765	22,45283	13,43902	11,00186	6,385814
1000	27,21875	22,95313	14,00587	11,02817	5,918753
900	22,86486	19,53425	10,80556	8,203431	5,038162
700	22,93939	18,62121	10,09324	7,631027	5,21309
600	24,06452	19,35433	10,08431	7,524537	5,146389
500	19,09859	15,40299	8,836735	7,332675	5,45808

Tabela p.17. Količnik sile i izduženja u tačkama 1 do 5: F₁/ɛ_{a1}, F₂/ɛ_{a2}, F₃/ɛ_{a3}, F₄/ɛ_{a4} i F₅/ɛ_{a5}

(T=400 °C, D/Y=2,15, i=1,685)

Brzina (m/min)	$F_{l}/\epsilon_{a1}~(cN/mm)$	$F_{2}/\epsilon_{a2}~(cN/mm)$	F_3/ϵ_{a3} (cN/mm)	F_4/ϵ_{a4} (cN/mm)	$F_{5}/\epsilon_{a5}~(cN/mm)$
1100	29,38776	23,58824	14,65517	12,03486	6,186183
1000	24,49231	20,35659	12,0582	9,607038	5,887681
900	25,6875	21,90323	11,5625	8,786967	5,337369
700	22,52632	16,55118	9,337838	7,427184	5,4904
600	25,92593	19,98261	10,05517	7,586279	5,351675
500	18,72	14,93878	9,552764	7,806616	5,646712

Brzina (m/min)	F_{l}/ϵ_{al} (cN/mm)	F_2/ϵ_{a2} (cN/mm)	F_{3}/ϵ_{a3} (cN/mm)	F_4/ϵ_{a4} (cN/mm)	F_5/ϵ_{a5} (cN/mm)
1100	30,5098	24,0708	14,76821	11,83773	6,28586
1000	29,03448	24,04959	14,21341	10,90087	6,144871
900	26,78788	22,68657	11,64532	8,307125	4,805648
700	22,73333	17,62295	9,637969	7,718783	5,345751
600	26,87273	20,80672	10,46489	7,587673	5,111365
500	18,28947	14,60403	8,947137	7,301328	5,248942

Tabela p.18. Količnik sile i izduženja u tačkama 1 do 5: F₁/ε_{a1}, F₂/ε_{a2}, F₃/ε_{a3}, F₄/ε_{a4} i F₅/ε_{a5} (T=400 °C, D/Y=2,20, i=1,665)

Tabela n 1	9. Količnik s	ile i izduženia	u tačkama 1	do 5. E1/8-1	F2/802 F2/802	Falent i Falens
Labera p.1	2. KUIUIK S	ne i izuuzenja	и наскаша і	uu J. 1 1/Cal	1 2/ Ca2, 1 3/ Ca3	, 1 4/ Ca4 I 1 5/ Ca5

(T=400 °C, D/Y=2,20, i=1,685)

Brzina (m/min)	F_{1}/ϵ_{a1} (cN/mm)	F_2/ϵ_{a2} (cN/mm)	F_{3}/ϵ_{a3} (cN/mm)	F_{4}/ϵ_{a4} (cN/mm)	F_5/ϵ_{a5} (cN/mm)
1100	30	24,73043	15,34708	12,08197	6,696468
1000	27,6	23,66154	13,61003	10,36309	6,159468
900	25,2381	21,12195	11,12381	8,489104	5,441359
700	25,35849	18,86441	10,1864	7,626149	5,513622
600	26,31579	20,61789	10,71429	7,809836	5,421521
500	17,16279	13,76608	9,087866	7,612033	5,595052

Tabela p.20. Količnik sile i izduženja u tačkama 1 do 5: F₁/ε_{a1}, F₂/ε_{a2}, F₃/ε_{a3}, F₄/ε_{a4} i F₅/ε_{a5}

(T=400 °C, D/Y=2,25, i=1,665)

Brzina (m/min)	$F_{l}/\epsilon_{al} \; (cN/mm)$	$F_{2}/\epsilon_{a2}~(cN/mm)$	F_3/ϵ_{a3} (cN/mm)	F_4/ϵ_{a4} (cN/mm)	$F_{5}/\epsilon_{a5}~(cN/mm)$
1100	31,28302	25,01724	15,73091	12,16309	6,466283
1000	27,63889	23,77622	14,34734	11,00491	5,839132
900	27,13793	22,01653	10,9703	7,852381	4,792296
700	22,63158	17,24138	9,380835	7,259036	5,266693
600	26,32	19,31034	9,638009	7,222993	5,082264
500	24,10714	18,44828	9,686801	7,574468	5,54109

Tabela p.21. Količnik sile i izduženja u tačkama 1 do 5: F₁/ɛ_{a1}, F₂/ɛ_{a2}, F₃/ɛ_{a3}, F₄/ɛ_{a4} i F₅/ɛ_{a5}

(T=400 °C, D/Y=2,25, i=1,685)

Brzina (m/min)	F_{l}/ϵ_{al} (cN/mm)	$F_{2}/\epsilon_{a2}~(cN/mm)$	F_{3}/ϵ_{a3} (cN/mm)	$F_{4}\!/\epsilon_{a4}~(cN\!/mm)$	$F_{5}/\epsilon_{a5}~(cN/mm)$
1100	28,03704	22,53571	13,56932	11,05802	6,397378
1000	26,4918	21,70732	12,86533	10,14734	6,01211
900	26,34921	21,96875	11,57869	8,651852	5,438051
700	21,80328	16,88525	9,38806	7,231064	5,595951
600	26,4	20,61017	10,53865	7,659979	5,456583
500	24,33333	19,54098	10,64838	8,086667	6,000889

Brzina (m/min)	F_{l}/ϵ_{al} (cN/mm)	$F_{2}/\epsilon_{a2}~(cN/mm)$	F_{3}/ϵ_{a3} (cN/mm)	$F_{4}/\epsilon_{a4}~(cN/mm)$	F_5/ϵ_{a5} (cN/mm)
1100	31,53846	25,63303	15,27083	11,78926	6,088702
1000	24,95238	20,11111	12,85714	10,47672	5,150137
900	20,52778	16,66197	9,840183	7,942099	5,166667
700	22,28571	17,68504	9,859155	7,701622	5,33564
600	22,89286	17,13559	9,23348	7,37525	5,228582
500	21,79104	17,4963	9,985748	7,775446	5,576258

Tabela p.22. Količnik sile i izduženja u tačkama 1 do 5: F₁/ε_{a1}, F₂/ε_{a2}, F₃/ε_{a3}, F₄/ε_{a4} i F₅/ε_{a5} (T=450 °C, D/Y=2,15, i=1,665)

Tabela n.23	. Količnik sile	i izduženia u	tačkama 1 d	do 5: F1/8.1.	F2/E02. F3/E0	3. F1/E01 i F5/E05
rabeia p.20	• IXONCHIK SHC	i izuuzunja u	tachama i y		• I 2/Ga∠• I 3/Ga	39 I 4/ Ga4 I I 5/ Ga5

(T=450 °C, D/Y=2,15, i=1,685)

Brzina (m/min)	F_{1}/ϵ_{a1} (cN/mm)	F_2/ϵ_{a2} (cN/mm)	F_{3}/ϵ_{a3} (cN/mm)	F_{4}/ϵ_{a4} (cN/mm)	F_5/ϵ_{a5} (cN/mm)
1100	27,51515	23,08955	13,85475	11,35192	6,051692
1000	26,39286	21,07826	12,14368	9,547826	5,776517
900	24,84375	20,59843	11,15222	8,643623	5,234646
700	23,92982	18,29268	10,16216	7,847476	5,736024
600	21,34426	16,52459	9,415459	7,476289	5,481923
500	22,28571	18,94737	10,63902	8,17833	5,988151

Tabela p.24. Količnik sile i izduženja u tačkama 1 do 5: F₁/ε_{a1}, F₂/ε_{a2}, F₃/ε_{a3}, F₄/ε_{a4} i F₅/ε_{a5}

(T=450 °C, D/Y=2,20, i=1,665)

Brzina (m/min)	$F_{l}/\epsilon_{al} \; (cN\!/mm)$	$F_{2}/\epsilon_{a2}~(cN/mm)$	F_3/ϵ_{a3} (cN/mm)	F_4/ϵ_{a4} (cN/mm)	$F_{5}/\epsilon_{a5}~(cN/mm)$
1100	28,53846	22,92453	13,37278	10,86308	5,834419
1000	23,1875	18,88189	12,07427	10,19967	6,140952
900	18,46753	15,29577	9,213251	7,696629	5,035728
700	22,4918	17,22137	9,705357	7,656405	5,378887
600	19,78462	14,81481	8,871795	7,154	5,193316
500	21,67647	18,20313	10,23587	7,956069	5,597128

Tabela p.25. Količnik sile i izduženja u tačkama 1 do 5: F₁/ɛ_{a1}, F₂/ɛ_{a2}, F₃/ɛ_{a3}, F₄/ɛ_{a4} i F₅/ɛ_{a5}

(T=450 °C, D/Y=2,20, i=1,685)

Brzina (m/min)	$F_{l}/\epsilon_{al} \; (cN\!/mm)$	$F_{2}/\epsilon_{a2}~(cN/mm)$	$F_{3}/\epsilon_{a3}~(cN/mm)$	$F_{4}\!/\epsilon_{a4}~(cN\!/mm)$	$F_{5}/\epsilon_{a5}~(cN/mm)$
1100	26,37037	21,66667	13,28875	10,47432	6,292091
1000	25,19444	21,78723	13,58166	10,56452	5,812918
900	23,21875	18,85039	10,85372	8,682741	5,715514
700	24,50909	18,2439	10,0285	7,737374	5,569721
600	21,22581	16,45161	9,260684	7,595506	5,524537
500	21,89189	18,23129	10,78974	8,307882	5,892572

Brzina (m/min)	F_{l}/ϵ_{al} (cN/mm)	$F_{2}/\epsilon_{a2}~(cN/mm)$	F_{3}/ϵ_{a3} (cN/mm)	F_4/ϵ_{a4} (cN/mm)	F_5/ϵ_{a5} (cN/mm)
1100	31,34694	24,62264	14,72794	11,06667	5,932465
1000	18,11494	14,85207	10,74109	9,128205	6,024928
900	22,29851	18,04478	10,10787	8,025701	5,151539
700	23,53333	18,29268	9,869565	7,436399	5,393987
600	20,51515	16,50794	9,331765	7,381672	5,228758
500	22,60317	17,76923	10,05013	7,657977	5,535156

Tabela p.26. Količnik sile i izduženja u tačkama 1 do 5: F₁/ε_{a1}, F₂/ε_{a2}, F₃/ε_{a3}, F₄/ε_{a4} i F₅/ε_{a5} (T=450 °C, D/Y=2,25, i=1,665)

Tahela n 2'	7 Količnik	sile i izdužer	nia u tačkama	1 do 5.	E1/c.1	Fale a	Fale	F/c.	i Falera
Tabela p.2	7. KOHCHIK	she i izuuzei	ца и саскаша	1 00 5:	F 1/Ea1,	Г 2/ Ca2,	F 3/Ea3,	Γ4/Ea4	ГГ5/Ca5

(T=450 °C, D/Y=2,25, i=1,685)

Brzina (m/min)	F_{1}/ϵ_{a1} (cN/mm)	F_2/ϵ_{a2} (cN/mm)	F_{3}/ϵ_{a3} (cN/mm)	F_{4}/ϵ_{a4} (cN/mm)	F_5/ϵ_{a5} (cN/mm)
1100	27,51515	23,08955	14,69461	11,65653	6,27112
1000	24,83871	20,71667	12,30811	9,996983	6,454191
900	24,3125	19,89147	11,39286	8,918845	5,713799
700	26,03922	19,0084	10,3299	7,673019	5,693008
600	19,66667	15,25581	8,948276	7,454183	5,466294
500	21,67164	17,75385	10,18408	7,966555	5,805817

Tabela p.28. Karakteristična kovrdžavost, D/Y=2,15; T1-6=350 °C, T19-24=400 °C, T37-42=450 °C; i=1,665

Uzorak	K _k (%)	Uzorak	K _k (%)	Uzorak	K _k (%)
1	9,2	19	9,4	37	13,7
2	12,5	20	15,3	38	15,0
3	17,6	21	18,1	39	19,6
4	11,5	22	19,5	40	20,0
5	10,9	23	15,5	41	16,5
6	14,3	24	18,9	42	26,3

Uzorak	K _k (%)	Uzorak	K_{k} (%)	Uzorak	K_{k} (%)
7	9,1	25	10,4	43	12,6
8	12,5	26	15,0	44	15,7
9	13,5	27	17,7	45	20,8
10	10,7	28	21,5	46	20,1
11	11,7	29	15,4	47	17,3
12	14,1	30	20,4	48	26,5

Tabela p.30. Karakteristična kovrdžavost, D/Y=2,25; T13-18=350 °C, T31-36=400 °C, T49-54=450 °C; i=1,665

Uzorak	K _k (%)	Uzorak	K_{k} (%)	Uzorak	K _k (%)
13	10,2	31	10,1	49	11,3
14	12,5	32	13,9	50	14,5
15	13,7	33	18,0	51	20,4
16	10,6	34	16,5	52	20,2
17	12,0	35	15,9	53	17,5
18	14,6	36	20,4	54	27,0

SPISAK TABELA

Tabela 2.1	Rezultati mehaničkih karakteristika pređa; T=350 °C, D/Y=2,15, i=1,665	58
Tabela 2.2	Rezultati mehaničkih karakteristika pređa; T=350 °C, D/Y=2,20, i=1,665	58
Tabela 2.3	Rezultati mehaničkih karakteristika pređa; T=350 °C, D/Y=2,25, i=1,665	59
Tabela 2.4	Rezultati mehaničkih karakteristika pređa; T=400 °C, D/Y=2,15, i=1,665	59
Tabela 2.5	Rezultati mehaničkih karakteristika pređa; T=400 °C, D/Y=2,20, i=1,665	59
Tabela 2.6	Rezultati mehaničkih karakteristika pređa; T=400 °C, D/Y=2,25, i=1,665	59
Tabela 2.7	Rezultati mehaničkih karakteristika pređa: T=450 °C, D/Y=2.15, i=1.665	60
Tabela 2.8	Rezultati mehaničkih karakteristika pređa: T=450 °C, D/Y=2.20, i=1.665	60
Tabela 2.9	Rezultati mehaničkih karakteristika pređa; T=450 °C, D/Y=2,25, i=1,665	60
Tabela 2.10	Rezultati mehaničkih karakteristika pređa: T=350 °C, D/Y=2.15, i=1.685	60
Tabela 2.11	Rezultati mehaničkih karakteristika pređa; T=350 °C, D/Y=2,20, i=1,685	60
Tabela 2.12	Rezultati mehaničkih karakteristika pređa; T=350 °C, D/Y=2,25, i=1,685	61
Tabela 2.13	Rezultati mehaničkih karakteristika pređa; T=400 °C, D/Y=2,15, i=1,685	61
Tabela 2.14	Rezultati mehaničkih karakteristika pređa: T=400 °C, D/Y=2.20, i=1.685	61
Tabela 2.15	Rezultati mehaničkih karakteristika pređa: T=400 °C, D/Y=2.25, i=1.685	61
Tabela 2.16	Rezultati mehaničkih karakteristika pređa: T=450 °C, D/Y=2.15, i=1.685	61
Tabela 2.17	Rezultati mehaničkih karakteristika pređa: T=450 °C, D/Y=2.20, i=1.685	62
Tabela 2.18	Rezultati mehaničkih karakteristika pređa: T=450 °C, D/Y=2.25, i=1.685	62
Tabela 2.19	Koeficijenti regresione jednačine	101
Tabela 2.20	Koeficijenti funkcije	106
Tabela 2.21	Tehničko - tehnološke karakteristike tkačke mašine	118
Tabela 2.22	Tehničke karakteristike tkanina	119
Tabela 2.23	Sila zatezania osnovinih žica u procesu tkania	119
Tabela 2.24	Sila zatezanja potkinih žica u procesu tkanja	119
Tabela p.1	Procenat učešća sile F ₁ , F ₂ , F ₃ i F ₄ u F ₅ (T=350 °C: D/Y = 2.15)	132
Tabela p.2	Procenat učešća sile F_1 , F_2 , F_3 i F_4 u F_5 (T=400 °C; D/Y = 2.15)	132
Tabela p.3	Procenat učešća sile F_1 , F_2 , F_3 i F_4 u F_5 (T=450 °C; D/Y = 2.15)	132
Tabela p.4	Procenat učešća sile F_1, F_2, F_3 i F_4 u F_5 (T=350 °C; D/Y = 2,20)	132
Tabela p.5	Procenat učešća sile F_1 , F_2 , F_3 i F_4 u F_5 (T=400 °C; D/Y = 2.20)	133
Tabela p.6	Procenat učešća sile F_1 , F_2 , F_3 i F_4 u F_5 (T=450 °C; D/Y = 2,20)	133
Tabela p 7	Procenat učešća sile F_1 , F_2 , F_3 i F_4 u F_5 (T=350 °C; D/Y = 2,25)	134
Tabela p.7	Procenat učešća sile F_1, F_2, F_3 i F_4 u F_5 (T=400 °C; D/Y = 2.25)	134
Tabela p 9	Procenat učešća sile F_1 , F_2 , F_3 i F_4 u F_5 (T=450 °C; D/Y = 2,25)	134
Tabela p 10	Količnik sile i izduženja u tačkama 1 do 5: F_1/s_{-1} F_2/s_{-2} F_2/s_{-2} F_3/s_{-4} i F_5/s_{-5}	101
ruoona p.10	(T-350 D/Y-2 15 i-1.665)	135
Tabela n 11	(1-500, D/1-2, 15, 1-1, 005) Količnik sile i izduženja u tačkama 1 do 5: E./c E./c E./c E./c E./c	155
rabela p.11	(T-250 D/V-2 15 i-1.685)	135
Tabala p 12	(1-550, D/1-2, 15, 1-1, 005) Kaližnih sila i izduženia u tažkama 1 da 5 : E /a E /a E /a E /a i E /a	155
Tabela p.12	Konchik she i izduzenja u tackama i do 5. Γ_1/ϵ_{a1} , Γ_2/ϵ_{a2} , Γ_3/ϵ_{a3} , Γ_4/ϵ_{a4} i Γ_5/ϵ_{a5} (T-250, D/V-2, 20, :-1, 665)	125
Tabala m 12	(1-50, D/1-2, 20, 1-1, 005)	155
rabela p.15	Koncnik sile i izduzenja u tackama i do 5: F_1/\mathcal{E}_{a1} , F_2/\mathcal{E}_{a2} , F_3/\mathcal{E}_{a3} , F_4/\mathcal{E}_{a4} i F_5/\mathcal{E}_{a5}	125
T.L.1 14	(1=350, D/Y=2, 20, 1=1, 685)	155
Tabela p.14	Kolicník síle i izduzenja u tackama I do 5: F_1/ε_{a1} , F_2/ε_{a2} , F_3/ε_{a3} , F_4/ε_{a4} i F_5/ε_{a5}	126
T 1 1 15	(1=350, D/Y=2,25, 1=1,665)	136
Tabela p.15	Količnik sile i izduženja u tačkama 1 do 5: F_1/ϵ_{a1} , F_2/ϵ_{a2} , F_3/ϵ_{a3} , F_4/ϵ_{a4} i F_5/ϵ_{a5}	10.5
	(T=350, D/Y=2,25, i=1,685)	136
Tabela p.16	Količnik sile i izduženja u tačkama 1 do 5: F_1/ϵ_{a1} , F_2/ϵ_{a2} , F_3/ϵ_{a3} , F_4/ϵ_{a4} i F_5/ϵ_{a5}	
	(T=400, D/Y=2,15, i=1,665)	136
Tabela p.17	Količnik sile i izduženja u tačkama 1 do 5: F_1/ϵ_{a1} , F_2/ϵ_{a2} , F_3/ϵ_{a3} , F_4/ϵ_{a4} i F_5/ϵ_{a5}	
	(T=400, D/Y=2,15, i=1,685)	136
Tabela p.18	Količnik sile i izduženja u tačkama 1 do 5: F_1/ϵ_{a1} , F_2/ϵ_{a2} , F_3/ϵ_{a3} , F_4/ϵ_{a4} i F_5/ϵ_{a5}	
	(T=400, D/Y=2,20, i=1,665)	137
Tabela p.19	Količnik sile i izduženja u tačkama 1 do 5: F_1/ϵ_{a1} , F_2/ϵ_{a2} , F_3/ϵ_{a3} , F_4/ϵ_{a4} i F_5/ϵ_{a5}	
	(T=400, D/Y=2,20, i=1,685)	137
Tabela p.20	Količnik sile i izduženja u tačkama 1 do 5: F ₁ /ɛ _{a1} , F ₂ /ɛ _{a2} , F ₃ /ɛ _{a3} , F ₄ /ɛ _{a4} i F ₅ /ɛ _{a5}	
	(T=400, D/Y=2,25, i=1,665)	137
Tabela p.21	Količnik sile i izduženja u tačkama 1 do 5: F_1/ϵ_{a1} , F_2/ϵ_{a2} , F_3/ϵ_{a3} , F_4/ϵ_{a4} i F_5/ϵ_{a5}	
-	(T=400, D/Y=2,25, i=1,685)	137

Količnik sile i izduženja u tačkama 1 do 5: F_1/ϵ_{a1} , F_2/ϵ_{a2} , F_3/ϵ_{a3} , F_4/ϵ_{a4} i F_5/ϵ_{a5} (T=450, D/Y=2,15, i=1,665)	138
Količnik sile i izduženja u tačkama 1 do 5: F_1/ϵ_{a1} , F_2/ϵ_{a2} , F_3/ϵ_{a3} , F_4/ϵ_{a4} i F_5/ϵ_{a5} (T=450, D/Y=2,15, i=1,685)	138
Količnik sile i izduženja u tačkama 1 do 5: F_1/ϵ_{a1} , F_2/ϵ_{a2} , F_3/ϵ_{a3} , F_4/ϵ_{a4} i F_5/ϵ_{a5} (T=450, D/Y=2,20, i=1,665)	138
Količnik sile i izduženja u tačkama 1 do 5: F_1/ϵ_{a1} , F_2/ϵ_{a2} , F_3/ϵ_{a3} , F_4/ϵ_{a4} i F_5/ϵ_{a5} (T=450, D/Y=2,20, i=1,685)	138
Količnik sile i izduženja u tačkama 1 do 5: F_1/ϵ_{a1} , F_2/ϵ_{a2} , F_3/ϵ_{a3} , F_4/ϵ_{a4} i F_5/ϵ_{a5} (T=450, D/Y=2,25, i=1,665)	139
Količnik sile i izduženja u tačkama 1 do 5: F_1/ϵ_{a1} , F_2/ϵ_{a2} , F_3/ϵ_{a3} , F_4/ϵ_{a4} i F_5/ϵ_{a5} (T=450, D/Y=2,25, i=1,685)	139
Karakteristična kovrdžavost, D/Y=2,15; T_{1-6} =350 °C, T_{19-24} =400 °C, T_{37-42} =450 °C; i = 1.665	139
Karakteristična kovrdžavost, D/Y=2,20; $T_{7-12}=350$ °C, $T_{25-30}=400$ °C, $T_{42-48}=450$ °C; $i = 1.665$	139
Karakteristična kovrdžavost, D/Y=2,25; $T_{13-18}=350$ °C, $T_{31-36}=400$ °C, $T_{49-54}=450$ °C; $i = 1.665$	139
	Količnik sile i izduženja u tačkama 1 do 5: F_{1}/ϵ_{a1} , F_{2}/ϵ_{a2} , F_{3}/ϵ_{a3} , F_{4}/ϵ_{a4} i F_{5}/ϵ_{a5} (T=450, D/Y=2,15, i=1,665) Količnik sile i izduženja u tačkama 1 do 5: F_{1}/ϵ_{a1} , F_{2}/ϵ_{a2} , F_{3}/ϵ_{a3} , F_{4}/ϵ_{a4} i F_{5}/ϵ_{a5} (T=450, D/Y=2,15, i=1,685) Količnik sile i izduženja u tačkama 1 do 5: F_{1}/ϵ_{a1} , F_{2}/ϵ_{a2} , F_{3}/ϵ_{a3} , F_{4}/ϵ_{a4} i F_{5}/ϵ_{a5} (T=450, D/Y=2,20, i=1,665) Količnik sile i izduženja u tačkama 1 do 5: F_{1}/ϵ_{a1} , F_{2}/ϵ_{a2} , F_{3}/ϵ_{a3} , F_{4}/ϵ_{a4} i F_{5}/ϵ_{a5} (T=450, D/Y=2,20, i=1,685) Količnik sile i izduženja u tačkama 1 do 5: F_{1}/ϵ_{a1} , F_{2}/ϵ_{a2} , F_{3}/ϵ_{a3} , F_{4}/ϵ_{a4} i F_{5}/ϵ_{a5} (T=450, D/Y=2,25, i=1,665) Količnik sile i izduženja u tačkama 1 do 5: F_{1}/ϵ_{a1} , F_{2}/ϵ_{a2} , F_{3}/ϵ_{a3} , F_{4}/ϵ_{a4} i F_{5}/ϵ_{a5} (T=450, D/Y=2,25, i=1,665) Količnik sile i izduženja u tačkama 1 do 5: F_{1}/ϵ_{a1} , F_{2}/ϵ_{a2} , F_{3}/ϵ_{a3} , F_{4}/ϵ_{a4} i F_{5}/ϵ_{a5} (T=450, D/Y=2,25, i=1,665) Karakteristična kovrdžavost, D/Y=2,15; T_{1-6} =350 °C, T_{19-24} =400 °C, T_{37-42} =450 °C; i = 1,665 Karakteristična kovrdžavost, D/Y=2,20; T_{7-12} =350 °C, T_{25-30} =400 °C, T_{43-48} =450 °C; i = 1,665 Karakteristična kovrdžavost, D/Y=2,25; T_{13-18} =350 °C, T_{31-36} =400 °C, T_{49-54} =450 °C; i = 1,665

SPISAK SLIKA

Slika 1.1	Prikaz postupka simultanog frikcionog teksturiranja	15
Slika 1.2	Smanjenje aksijalnog naprezanja pređe sa povećanjem upredenosti	17
Slika 1.3	Tendencija formiranja zamki teksturirane pređe	18
Slika 1.4	Formiranje i oslobađanje uvoja u procesu simultanog upredanja	19
Slika 1.5	Tipične upredenosti teksturiranih pređa primenom tehnike simultanog upredanja	20
Slika 1.6	Putanja pređe kroz frikcionu jedinicu (Friction twist unit - FTU)	21
Slika 1.7	Podešavanie položaja osovine frikcione jedinice (FTU)	21
Slika 1.8	Upredanie frikcionim diskovima	22
Slika 1.9	Frikcioni uređaj za sumultano upredanje	23
Slika 1.10	Izgled frikcionih iedinica sa individualnim pogonom	24
Slika 1.11	Kretanie pređe u sistemu konfiguracije diskova 1-4-1	26
Slika 1.12	Sile koje deluju na pređu u procescu frikcionog upredanja	28
Slika 1 13	Međusobno deistvo sila između diska i pređe u procesu teksturiranja	28
Slika 1 14	Kritične brzina teksturiranja i količnik D/Y	32
Slika 1.15	Ilticai stepena istezania na prekidne karakteristike pređe	32
Slika 1.15	Periferni filament u spiralnom modelu multifilamentne prede	34
Slike 1 17	Tinična kriva sila – izduženje teksturirane DES prođe	29
Slika 1.17 Slika 1.18	Makevall ov model	40
Slike 1.10	Madel Kelvin Foyat e	40
Slika 1.19	Trakampanantni model Kelvin Foyet a	41
Slika 1.20	Frenkal av model	42
Slika 1.21		43
Slika 1.22	Model Leserica	43
Slika 1.23	Eyring - ov model	44
Slika 2.1	Krive F-E POY PES multifilamentna	49
Slika 2.2	Tipična kriva F-ε multifilamentne PES pređe	50
Slika 2.3	$F(\varepsilon)$ do granice popuštanja	52
Slika 2.4	F'(ε) do granice popuštanja	52
Slika 2.5	F''(ε) do granice popuštanja	53
Slika 2.6	$F'''(\varepsilon)$ do granice popuštanja	53
Slika 2.7	$F'(\varepsilon)$ do prekida	54
Slika 2.8	$F''(\varepsilon)$ do prekida	55
Slika 2.9	Elektronski tenzometar DTFX 200	56
Slika 2.10	Mikroskon Leica sa softverom Video Analyser 2000	56
Slika 2.10	Dinamometar Tinius Olsen	57
Slika 2.11 Slika 2.12	Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje	51
511Ka 2.12	na granici elastičnosti $(D/Y = 2,15, i = 1,665)$	63
Slika 2.13	Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje	(2)
011 + 0.14	na granici elasucnosti $(D/Y = 2,15,1 = 1,085)$	03
Slika 2.14	Uticaj brzine teksturiranja i temperature primarnog grejaca na intenzitet sile i izduzenje	(2)
an .	na granici elasticnosti (D/Y = 2,20, $1 = 1,665$)	63
Slika 2.15	Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje	
~ ~ ~ ~	na granici elastičnosti (D/Y = $2,20, 1 = 1,685$)	63
Slika 2.16	Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje	. –
	na granici elastičnosti (D/Y = 2,25, i = 1,665)	65
Slika 2.17	Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje	
	na granici elastičnosti (D/Y = 2,25, i = 1,685)	65
Slika 2.18	Uticaj odnosa D/Y na intenzitet sile i izduženje na granici elastičnosti, pri različitim	
	brzinama teksturiranja (T=350 °C, i = 1,665)	66
Slika 2.19	Uticaj odnosa D/Y na intenzitet sile i izduženje na granici elastičnosti, pri različitim	
	brzinama teksturiranja (T=350 °C, i = 1,685)	66
Slika 2.20	Uticaj odnosa D/Y na intenzitet sile i izduženje na granici elastičnosti, pri različitim	
	brzinama teksturiranja (T=400 °C, i = 1,665)	66
Slika 2.21.	Uticaj odnosa D/Y na intenzitet sile i izduženje na granici elastičnosti, pri različitim	
	brzinama teksturiranja (T=400 0 C, i = 1,685)	67
Slika 2.22	Uticaj odnosa D/Y na intenzitet sile i izduženje na granici elastičnosti, pri različitim	
	brzinama teksturiranja (T=450 $^{\circ}$ C, i = 1,665)	67
Slika 2.23	Uticaj odnosa D/Y na intenzitet sile i izduženje na granici elastičnosti, pri različitim	
	brzinama teksturiranja (T = $450 \ ^{\circ}$ C, i = 1,685)	68

Slika 2.24	Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje	
<u>91'1 - 2 25</u>	na granici puzanja (D/Y = 2,15, i = 1,665)	69
Slika 2.25	Uticaj brzine teksturiranja i temperature primarnog grejaca na intenzitet sile i izduzenje na granici puzanja (D/Y = 2.15, $i = 1.685$)	69
Slika 2.26	Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje	07
	na granici puzanja (D/Y = 2,20, $i = 1,665$)	70
Slika 2.27	Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje	
01:1 0.00	na granici puzanja (D/Y = 2,20, i = 1,685)	70
Slika 2.28	Uticaj brzine teksturiranja i temperature primarnog grejaca na intenzitet sile i izduzenje na granici puzanja (D/X = 2.25 i = 1.665)	71
Slika 2.29	Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje	/1
	na granici puzanja (D/Y = 2,25, $i = 1,685$)	71
Slika 2.30	Uticaj odnosa D/Y na intenzitet sile i izduženje na granici puzanja, pri različitim	
G1'1 0 01	brzinama teksturiranja (T= 350 °C, i = 1,665)	72
Slika 2.31	Uticaj odnosa D/Y na intenzitet sile i izduzenje na granici puzanja, pri razlicitim brzinama teksturiranja $(T=350 \ ^{\circ}C)$ i = 1.685	72
Slika 2.32	Uticaj odnosa D/Y na intenzitet sile i izduženie na granici puzania, pri različitim	12
51111 2102	brzinama teksturiranja (T=400 $^{\circ}$ C, i = 1,665)	73
Slika 2.33	Uticaj odnosa D/Y na intenzitet sile i izduženje na granici puzanja, pri različitim	
G1'1 0.04	brzinama teksturiranja (T=400 0 C, i = 1,685)	73
Slika 2.34	Uticaj odnosa D/Y na intenzitet sile i izduženje na granici puzanja, pri različitim brzinama taksturiranja $(T-450 {}^{\circ}C)$ i = 1.665)	73
Slika 2.35	Uticaj odnosa D/Y na intenzitet sile i izduženie na granici puzania, pri različitim	15
2000	brzinama teksturiranja (T=450 $^{\circ}$ C, i = 1,685)	74
Slika 2.36	Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje	
~~~	na kraju zone puzanja (D/Y = 2,15, $i = 1,665$ )	74
Slika 2.37	Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na kraju zona puzoria $(D/V = 2.15, i = 1.685)$	75
Slika 2 38	Ila Kraju zone puzanja (D/ $i = 2,15, i = 1,085$ ) Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje	15
Sliku 2.50	na kraju zone puzanja ( $D/Y = 2,20$ , i = 1,665)	75
Slika 2.39	Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje	
	na kraju zone puzanja (D/Y = 2,20, $i = 1,685$ )	76
Slika 2.40	Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na kraju zono puzanja $(D/V = 2.25 i = 1.665)$	76
Slika 2.41	Uticaj brzine teksturirania i temperature primarnog grejača na intenzitet sile i izduženje	70
	na kraju zone puzanja (D/Y = 2,25, $i = 1,685$ )	77
Slika 2.42	Uticaj odnosa D/Y na intenzitet sile i izduženje na kraju zone puzanja, pri različitim	
G1'1 0 40	brzinama teksturiranja (T= $350$ °C, i = 1,665)	77
Slika 2.43	Uticaj odnosa D/Y na intenzitet sile i izduženje na kraju zone puzanja, pri različitim brzinama teksturiranja $(T=350 \ ^{\circ}C)$ i = 1.685)	78
Slika 2.44	Uticaj odnosa D/Y na intenzitet sile i izduženie na granici puzania, pri različitim	70
	brzinama teksturiranja (T= $400^{\circ}$ C, i = 1,665)	78
Slika 2.45	Uticaj odnosa D/Y na intenzitet sile i izduženje na kraju zone puzanja, pri različitim	
<u>911 - 0 46</u>	brzinama teksturiranja (T=400 $^{\circ}$ C, i = 1,685)	78
Slika 2.46	Uticaj odnosa D/Y na intenzitet sile i izduzenje na kraju zone puzanja, pri razlicitim brzinama teksturiranja $(T-450 {}^{0}\text{C})$ i = 1.665)	70
Slika 2.47	Uticaj odnosa D/Y na intenzitet sile i izduženie na kraju zone puzanja, pri različitim	19
2007	brzinama teksturiranja (T= $450 \ ^{\circ}$ C, i = 1,685)	79
Slika 2.48	Uticaj brzine teksturiranja i temperature primarnog grejača na svojstva teksturirane	
	pređe u zoni puzanja (D/Y = 2,15, i= 1,665)	80
Slika 2.49	Uticaj brzine teksturiranja i temperature primarnog grejača na svojstva teksturirane prođe u zoni puzanja $(D X = 2.20) = 1.665)$	01
Slika 2 50	Uticaj brzine teksturiranja i temperature primarnog grejača na svojstva teksturirane	01
Sinku 2.50	pređe u zoni puzanja ( $D/Y = 2.25$ , $i = 1,665$ )	81
Slika 2.51	Uticaj brzine teksturiranja i temperature primarnog grejača na svojstva teksturirane	
0111 0 50	pređe u zoni puzanja (D/Y = 2,15, i= 1,685)	81
Slika 2.52	Uticaj brzine teksturiranja i temperature primarnog grejača na svojstva teksturirane pređe u zoni puzanja ( $D/V = 2.20$ i= 1.685.)	87
Slika 2.53	Uticaj brzine teksturirania i temperature primarnog greiača na svoistva teksturirane	02
	pređe u zoni puzanja $(D/Y = 2,25, i=1,685)$	82
Slika 2.54	Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje	
--------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------
ann <b>a s</b> s	na granici popuštanja (D/Y = 2,15, i = 1,665)	83
Slika 2.55.	Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje na organici negovićanja $(D/V = 2.15, i = 1.085)$	02
Slika 2 56	na granici popusianja ( $D/Y = 2,15, 1 = 1,085$ ) Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje	83
SIIKa 2.30	na granici nonuštanja (D/V = $2.20$ , i = 1.665)	84
Slika 2,57	Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje	04
511Ru 2.57	na granici popuštanja ( $D/Y = 2.20$ , $i = 1.685$ )	84
Slika 2.58	Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje	0.
	na granici popuštanja ( $D/Y = 2,25$ , i = 1,665)	85
Slika 2.59.	Uticaj brzine teksturiranja i temperature primarnog grejača na intenzitet sile i izduženje	
	na granici popuštanja (D/Y = 2,25, i = 1,685)	85
Slika 2.60	Uticaj odnosa D/Y na intenzitet sile i izduženje na granici popuštanja, pri različitim	
	brzinama teksturiranja (T= $350$ °C, i = 1,665)	86
Slika 2.61	Uticaj odnosa D/Y na intenzitet sile i izduženje na granici popuštanja, pri različitim	0.5
G1''I 0 (0	brzinama teksturiranja ( $T=350$ °C, i = 1,685)	86
Slika 2.62	Uticaj odnosa D/Y na intenzitet sile i izduženje na granici popuštanja, pri različitim	07
Sliles 2 (2	brzinama teksturiranja ( $1=400$ °C, $1=1,005$ )	87
Slika 2.03	Uncaj odnosa D/Y na intenzitet site i izduzenje na granici popustanja, pri različnim brzinome teksturirenje $(T_{-}400 \ ^{0}C_{-}i = 1.685)$	07
Slika 2 64	Dizinama teksiumanja $(1=400 \text{ C}, 1=1,003)$ Uticaj odnosa D/V na intenzitet sile i izduženje na granici nopuštanja, pri različitim	87
511Ka 2.04	brzinama teksturirania (T-450 $^{\circ}$ C i - 1.665)	87
Slika 2 65	Uticaj odnosa D/V na intenzitet sile i izduženie na granici nonuštanja, pri različitim	07
Siiku 2.05	brzinama teksturirania (T=450 $^{\circ}$ C, i = 1.685)	88
Slika 2.66	Uticaj brzine teksturirania i temperature primarnog grejača na prekidnu silu i prekidno	00
	izduženie (D/Y = 2.15, i = 1.665)	88
Slika 2.67	Uticaj brzine teksturiranja i temperature primarnog grejača na prekidnu silu i prekidno	
	izduženje (D/Y = 2,15, $i = 1,685$ )	89
Slika 2.68	Uticaj brzine teksturiranja i temperature primarnog grejača na prekidnu silu i prekidno	
	izduženje (D/Y = 2,20, $i = 1,665$ )	89
Slika 2.69.	Uticaj brzine teksturiranja i temperature primarnog grejača na prekidnu silu i prekidno	
	izduženje (D/Y = 2,20, i = 1,685)	90
Slika 2.70	Uticaj brzine teksturiranja i temperature primarnog grejača na prekidnu silu i prekidno	
	izduženje (D/Y = 2,25, i = 1,665)	90
Slika 2.71	Uticaj brzine teksturiranja i temperature primarnog grejača na prekidnu silu i prekidno	0.1
S1:1-2 2 72	1zduženje (D/Y = 2,25, 1 = 1,685)	91
Slika 2.72	Uticaj odnosa D/Y i brzine teksturiranja na preklanu silu i preklano izduzenje $(T-250)$ C $\div -1.665$	01
Slike 2 72	(1=550 °C, 1=1,005) Utioni odnoga D/X i brzina takaturiranja na prakidnu silu i prakidno izdužanja	91
SIIKa 2.75	$(T-350\ ^{\circ}C\ i-1\ 685)$	92
Slika 2.74	Uticaj odnosa D/Y i brzine teksturirania na prekidnu silu i prekidno izduženie	)2
Siiku 2.7 T	$(T=400 \ ^{\circ}C, i = 1.665)$	92
Slika 2.75	Uticaj odnosa D/Y i brzine teksturiranja na prekidnu silu i prekidno izduženje	/ _
	$(T=400 \ ^{0}C, i=1.685)$	92
Slika 2.76	Uticaj odnosa D/Y i brzine teksturiranja na prekidnu silu i prekidno izduženje	
	(T=450 °C, i = 1,665)	93
Slika 2.77.	Uticaj odnosa D/Y i brzine teksturiranja na prekidnu silu i prekidno izduženje	
	$(T=450 \ ^{0}C, i = 1,685)$	93
Slika 2.78	Učešće sile $F_1$ , $F_2$ , $F_3$ i $F_4$ u $F_5$ (T = 350 °C, D/Y = 2,15)	95
Slika 2.79	Učešće sile $F_1$ , $F_2$ , $F_3$ i $F_4$ u $F_5$ (T = 400 °C, D/Y = 2,15)	95
Slika 2.80	Učešće sile $F_1$ , $F_2$ , $F_3$ i $F_4$ u $F_5$ (T = 450 °C, D/Y = 2,15)	96
Slika 2.81	Učešće sile $F_1$ , $F_2$ , $F_3$ i $F_4$ u $F_5$ (T = 350 °C, D/Y = 2,20)	96
Slika 2.82	Učešće sile $F_1$ , $F_2$ , $F_3$ i $F_4$ u $F_5$ ( $T = 400 ^{\circ}$ C, D/Y = 2,20)	96
Slika 2.83	Ucesce sile F ₁ , F ₂ , F ₃ 1 F ₄ u F ₅ (T = 450 °C, D/Y = 2,20)	97
Slika 2.84	Ucesce sile $F_1$ , $F_2$ , $F_3$ 1 $F_4$ u $F_5$ (1 = 350 °C, D/Y = 2,25) Užečće sile $F_1$ , $F_2$ , $F_3$ 1 $F_4$ u $F_5$ (T = 400 %C, D/Y = 2,25)	97
SIIKa 2.03 Slika 2.96	Under the F1, F2, F3 I F4 U F5 (I = 400 °C, D/V = 2.25) Uder the F1, F2, F3 I F4 U F5 (I = $450  ^{\circ}$ C, D/V = 2.25)	9/ 00
Slika 2.00 Slika 2.87	Device one $\Gamma_1, \Gamma_2, \Gamma_3 + \Gamma_4 + \Gamma_5 (1 - 4JU, C, D/1 - 2,2J)$ Devezance: parameters telecturizanih multifilamentnih DEC prode E /c $-f$ (E /c ).	70
511Ka 2.07	For $f(r_1/\epsilon_{a1})$ ,	100
Slika 2 88	14/624-J(13/623), 1-JJU C, $D/1-2$ , 1J, 2,2U, 2,2J, 1-1,0UJ, 1,00J Devezonent peremetere telesturizanih multifilamentnih DEC protecto E /a $-f$ (E /a ).	100
511Ka 2.00	For $f(r_1/\epsilon_{a1})$ ,	100
	$1 \frac{4}{6} \frac{6}{64} - j(1 \frac{3}{6} \frac{6}{63}), 1 - 400 \text{ C}, D/1 - 2, 13, 2, 20, 2, 23, 1 - 1, 003, 1, 003$	100

Slika 2.89	Povezanost parametara teksturiranih multifilamentnih PES pređa $F_2/\varepsilon_{a2}=f$ ( $F_1/\varepsilon_{a1}$ );	
	$F_4/\epsilon_{a4}=f(F_3/\epsilon_{a3}); T=450^{\circ}C, D/Y=2, 15, 2, 20, 2, 25; i=1,665, 1,685$	101
Slika 2.90	Povezanost parametara; v=500 m/min; T=350 °C	102
Slika 2.91	Povezanost parametara; v=500 m/min; T=400 °C	102
Slika 2.92	Povezanost parametara; v=500 m/min; T=450 °C	102
Slika 2.93	Povezanost parametara; v=600 m/min; T=350 °C	102
Slika 2.94	Povezanost parametara; v=600 m/min; T=400 °C	103
Slika 2.95	Povezanost parametara; v=600 m/min; T=450 °C	103
Slika 2.96	Povezanost parametara; v=700 m/min; T=350 °C	103
Slika 2.97	Povezanost parametara; v=700 m/min; T=400 °C	103
Slika 2.98	Povezanost parametara; v=700 m/min; T=450 °C	104
Slika 2.99	Povezanost parametara; v=900 m/min; T=350 °C	104
Slika 2.100	Povezanost parametara; v=900 m/min; T=400 °C	104
Slika 2.101	Povezanost parametara; v=900 m/min; T=450 °C	104
Slika 2.102	Povezanost parametara; v=1000 m/min; T=350 °C	105
Slika 2.103	Povezanost parametara; v=1000 m/min; T=400 °C	105
Slika 2.104	Povezanost parametara; v=1000 m/min; T=450 °C	105
Slika 2.105	Povezanost parametara; v=1100 m/min; T=350 °C	105
Slika 2.106	Povezanost parametara; v=1100 m/min; T=400 °C	106
Slika 2.107	Povezanost parametara; v=1100 m/min; T=450 °C	106
Slika 2.108	Karakteristična kovrdžavost, T=350 °C, T=400 °C, T=450 °C, D/Y=2,15, i = 1,665	108
Slika 2.109	Izduženje na kraju zone puzanja, T=350 °C, T=400 °C, T=450 °C, D/Y=2,15, i = 1,665	108
Slika 2.110	Karakteristična kovrdžavost, T=350 °C, T=400 °C, T=450 °C, D/Y=2,20, i = 1,665	109
Slika 2.111	Izduženje na kraju zone puzanja, T=350 °C, T=400 °C, T=450 °C, D/Y=2,20, i = 1,665	109
Slika 2.112	Karakteristična kovrdžavost, T=350 °C, T=400 °C, T=450 °C, D/Y=2,25, i = 1,665	109
Slika 2.113	Izduženje na kraju zone puzanja, T=350 °C, T=400 °C, T=450 °C, D/Y=2,25, i = 1,665	109
Slika 2.114	Izgled relaksiranih pređa pre (a) i posle (b) opterećenja silom F ₁ (primer 1)	112
Slika 2.115	Izgled relaksiranih pređa pre (a) i posle (b) opterećenja silom F ₁ (primer 2)	112
Slika 2.116	Izgled relaksiranih pređa pre (a) i posle (b) opterećenja silom F ₂ (primer 1)	113
Slika 2.117	Izgled relaksiranih pređa pre (a) i posle (b) opterećenja silom F ₂ (primer 2)	113
Slika 2.118	Izgled relaksiranih pređa pre (a) i posle (b) opterećenja silom F ₃ (primer 1)	114
Slika 2.119	Izgled relaksiranih pređa pre (a) i posle (b) opterećenja silom F ₃ (primer 2)	114
Slika 2.120	Izgled relaksiranih pređa pre (a) i posle (b) opterećenja silom F ₄ (primer 1)	115
Slika 2.121	Izgled relaksiranih pređa pre (a) i posle (b) opterećenja silom F ₄ (primer 2)	115

#### Biografija autora

Jovana Stepanović je rođena 07.07.1992. godine u Nišu.

Osnovnu školu "Miroslav Antić" završila je u Nišu 2007. godine. Srednju stručnu školu, "Škola za tekstil i dizajn" u Leskovcu, završila je 2011. godine i stekla zvanje Tehničar dizajna tekstila.

Studijski program Tekstilne tehnologije, studijsko područje Industrijski dizajn tekstilnih proizvoda, na Tehnološkom fakultetu u Leskovcu, upisala je školske 2011/2012. godine. Osnovne akademske studije na Tehnološkom fakultetu završila je 2015. godine, sa prosečnom ocenom 9,68, i stekla naziv Diplomirani inženjer tehnologije.

Godine 2015. upisala je master akademske studije, studijski program Tekstilne tehnologije, studijsko područje Industrijski dizajn tekstilnih proizvoda, na Tehnološkom fakultetu u Leskovcu, Univerziteta u Nišu. Master akademske studije završila je sa prosečnom ocenom 9,90. Master rad pod naslovom "Projektovanje tehnološkog procesa proizvodnje frotir tkanina" odbranila je 2016. godine i stekla akademski naziv Master inženjer tehnologije.

Po završetku master akademskih studija upisala je doktorske akademske studije, studijski program Tehnološko inženjerstvo na Tehnološkom fakultetu u Leskovcu, Univerziteta u Nišu. Položila je sve ispite sa prosečnom ocenom 10,00.

Od 2017. do 2020. godine bila je stipendista Ministarstva prosvete nauke i tehnološkog razvoja u oblasti Materijali i hemijske tehnologije.

Škoske 2017/2018., 2018/2019., 2019/2020., godine, na osnovu odluke NNV o planu izvođenja nastave, bila je angažovana na izvođenju vežbi na osnovnim i master akademskim studijama na studijskom programu Tekstilne tehnologije na Tehnološkom fakultetu u Leskovcu.

U zvanje asistenta izabrana je 2020. godine, na Tehnološkom fakultetu u Leskovcu, za užu naučnu oblast Mehanička tehnologija tekstila

Bila je član Komisije za samovrednovanje i ocenjivanje kvaliteta studijskog programa osnovnih akademskih studija Tekstilne tehnologije, 2019. godine, na Tehnološkom fakultetu u Leskovcu. Takođe, bila je član Komisije za pripremu dokumentacije za akreditaciju studijskih programa osnovnih i master akademskih studija na Tehnološkom fakultetu, 2020. godine.

Bavi se istraživanjima u naučnoj oblasti Tehnološko inženjerstvo, pri čemu je ostvarila značajne rezultate u oblasti analize deformacionih svojstava tekstilnih materijala. U okviru realizacije projekta Ministarstva (34020) radila je na istraživanjima u oblasti predviđanja mehaničkih karakteristika teksturiranih multifilamentnih PES pređa.

U okviru dosadašnjeg naučno istraživačkog rada objavila je četiri rada kategorije M23, jedan rad kategorije M24, šesnaest radova kategorije M33, četiri rada kategorije M34, jedan rad kategorije

M51, jedan rad kategorije M52, dva rada kategorije M63, jedan rad kategorije M64 i koautor je jednog tehničkog rešenja M85.

Dobitnik je više priznanja, među kojima su Povelja Univerziteta u Nišu najboljem diplomiranom studentu Tehnološkog fakulteta u Leskovcu u školskoj 2015\2016. godini. Specijalno priznanje Srpskog hemijskog društva za 2016. godinu za izuzetan uspeh u toku studija na Tehnološkom fakultetu Univerziteta u Nišu, Nagrada mladom talentu Grada Leskovca i Kancelarije za mlade za postignut uspeh u 2017. i 2018. godini, Zahvalnica Tehnološkog fakulteta za postignut uspeh tokom studija.



### IZJAVA O AUTORSTVU

Izjavljujem da je doktorska disertacija, pod naslovom:

# Istraživanje deformacionih karakteristika teksturiranih multifilamentnih poliesterskih pređa

koja je odbranjena na Tehnološkom fakultetu u Leskovcu, Univerziteta u Nišu:

- rezultat sopstvenog istraživačkog rada;
- da ovu disertaciju, ni u celini, niti u delovima, nisam prijavljivala na drugim fakultetima, niti univerzitetima;
- da nisam povredila autorska prava, niti zloupotrebila intelektualnu svojinu drugih lica.

Dozvoljavam da se objave moji lični podaci, koji su u vezi sa autorstvom i sticanjem naučnog zvanja doktora nauka, kao što su ime i prezime, godina i mesto rođenja i datum odbrane rada, i to u katalogu Biblioteke, Digitalnom repozitorijumu Univerziteta u Nišu, kao i u publikacijama Univerziteta u Nišu.

U Leskovcu, _____

Potpis autora disertacije:

Jovana Stepanović



## IZJAVA O ISTOVETNOSTI ŠTAMPANOG I ELEKTRONSKOG OBLIKA DOKTORSKE DISERTACIJE

Naslov disertacije:

# Istraživanje deformacionih karakteristika teksturiranih multifilamentnih poliesterskih pređa

Izjavljujem da je elektronski oblik moje doktorske disertacije, koju sam predala za unošenje u **Digitalni repozitorijum Univerziteta u Nišu**, istovetan štampanom obliku.

U Leskovcu, _____

Potpis autora disertacije:

Jovana Stepanović



## IZJAVA O KORIŠĆENJU

Ovlašćujem Univerzitetsku biblioteku "Nikola Tesla" da, u Digitalni repozitorijum Univerziteta u Nišu, unese moju doktorsku disertaciju, pod naslovom:

## Istraživanje deformacionih karakteristika teksturiranih multifilamentnih poliesterskih pređa

Disertaciju sa svim prilozima predala sam u elektronskom obliku, pogodnom za trajno arhiviranje.

Moju doktorsku disertaciju, unetu u Digitalni repozitorijum Univerziteta u Nišu, mogu koristiti svi koji poštuju odredbe sadržane u odabranom tipu licence Kreativne zajednice (Creative Commons), za koju sam se odlučila.

1. Autorstvo (CC BY)

2. Autorstvo – nekomercijalno (CC BY-NC)

3. Autorstvo – nekomercijalno – bez prerade (CC BY NC ND)

4. Autorstvo – nekomercijalno – deliti pod istim uslovima (CC BY-NC-SA)

5. Autorstvo – bez prerade (CC BY-ND)

6. Autorstvo – deliti pod istim uslovima (CC BY-SA)

U Leskovcu, _____

Potpis autora disertacije:

Jovana Stepanović