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Dissertation title: Detection of Interaction Forces in Industrial Robotics

Abstract: With Industry 4.0 becoming a reality and Industry 5.0 emerging on the horizon, the
need for seamless integration, shared workspace and interoperability of production entities is ever
increasing. To aid in this transition, this thesis presents approaches intended to allow the evolution of
industrial robots by enabling them to detect and interpret interactions with their surroundings. The
detection of interaction forces is based on non-model-based algorithms due to their inherent ability to
include all aspects of the behaviours of the robot as well as to capture the contact task-specific forces
and dynamics. To detect interactions, the reference sequence recorded during an exemplary task
execution cycle is compared with measurements from the robot while it is performing its repetitive task.
The thesis presents several different approaches to detection of collisions and interactions in general
intended for the implementation on industrial robots with closed control architecture. To overcome
implementation issues, the modified Dynamic Time Warping (mDTW) method, as one of the key
presented contributions, enables optimal matching of compared signals. The mDTW enables comparing
a signal with the most similar section of the other signal. Partial matching also enables online
application of time warping principles and reduces the time and computation resources needed to
perform matching. The developed and presented algorithms for automatic calculation of kinematic
parameters of the robot and its end-effector enable further evolution of the mDTW in into its
kinematically augmented version - KA-mDTW, extending the interaction’s detection algorithm’s
application domain. Furthermore, it enables the inclusion of unmodeled task dynamics or a robot’s end-
effector into algorithms for collision detection or general understanding of a robot’s operation context.
The presented algorithms and conclusions are supported and validated by the experimental testing on
industrial robots.

Keywords: Industrial robotics; Interaction detection, Physical interaction, Dynamic Time
Warping, Industry 4.0

Scientific field: Electrical and Computer Engineering

Scientific subfield: Robotics and Control Systems



HacnoB qucepranuje: Jlerekiyja cuiaa HHTEPAKIM]E Y HHAYCTPH)CKO] POOOTHITH

Caxerak: Ycien Unnyctpuju 4.0 koja moctaje crBapHocT U Maaycrpuje 5.0 koja ce jaBjba Ha
BUJUKY, CBE je¢ jaya moTpeba 3a OJIAKIIAHOM WHTErPalyjoM, NeJbEHUM pPagHUM IMPOCTOPOM U
mehynosesanomthy nmpousBoanux ynHMiIana. Kao onrosop Ha te nmorpede, oBa aucepraiyja npeacTaBiba
NPUCTYIIE HAMEHEHE eBOIYIHJU HHIYCTPUjCKUX poOOTa Tako ITO MM oMoryhasa Jia onaxajy ¥ Tymaue
WHTEPaKIIM]y ca CBOJUM OKpYyKemeM. JIeTeKIrja crila HHTEPaKIFje je 3aCHOBaHa Ha aIrOPUTMUMAa KOj!
HE 3aXTeBajy MoAeN poOoTa 300T HHXOBE OCOOMHE J1a MOCPEIHO YKJbyde CBE YMHHUOIIEC MOHAIIAama
poboTa U crienn(pUIHUX CUjla BE3aHHUX 33 IMHAMHKY WHTepakiyje. JleTekinja HHTepakiuje ce TOCTHKE
nopehemeM pedepeHTHUX BPEIHOCTH CHUMJBEHHX TOKOM PENpPEe3CHTAaTUBHOI TOKpETa ca MepemuMa
No0HMjeHnx 0]l poOOTa TOKOM BpIICHa CBOT TIOHOBJBHBOT 33jaTKa. Jlucepraiuja mpeacTaBba HEKOJIUKO
pa3IMYUTUX TPUCTYNAa HAMEHEHHX MPUMEHH Ha MHIYCTPUJCKUM poOOTMMA ca 3aTBOPEHOM
yIpaB/bauKOM apXHTEKTypOM a KOjU C€ MOTY KOPUCTHTH paad JETEKIUje CyJapa W HHTEpaKIuje
yommmre. Kako Ou ce mpeBasuILIM M3a30BM BE3aHU 3a NPUMEHY, jelaH OJ TJIaBHUX JONPHUHOCA,
passujean modified Dynamic Time Warping (mDTW) merton, omoryhaBa ONTHMAJIHO yIapUBarbe
nopehennx curHana. [lpeacraBiberm MDTW wmeton omoryhaBa ymapuBame jeQHOT CHUTHalla ca
HAjCIMYHUJUM JIEJIOM JIPYror CUTHala. YmnapuBame nenoBa omoryhaBa mpumeny Time Warping-a y
pEaTHOM BPEMEHY M CMamyje BpeMme IMOTpeOHO 3a o0pany mojgaraka. Pa3BujeHHM W NpeACTaBbCHH
QITOPUTMHU 32 ayTOMAaTCKO pauyHame KHHEMAaTHYKHX IapaMeTapa poOora u 3aBpiiHOr ypehaja
omoryhaBajy nmamy esomynujy MDTW-a y meroBy kuHeMaTHUKd JomymeHy Bepsujy - KA-mDTW,
YyMe Cce€ TPOIIUpYyje IMoJbe MPUMEHE AIrOpUTMa 3a JCTEKIHWjy HHTepakuuje. OBUM c€ J0JaTHO
omoryhaBa yKkJbyuuBame HEMOJIEIIOBaHE TMHAMHUKE POOOTCKOT 3aJaTKa WM 3aBPIIHOT ypehaja y nusby
JICTEeKIIMje Cylapa WM OIIITEr pa3yMeBama OINCPATHBHOI KOHTEKCTA. [IpencTaB/beHU aIrOPUTMH H
3aKJbYYIIH Cy TOTBP)EHH ¥ MPOBEPEHU EKCIIEPUMEHTAIHUM TECTUPAKHEM Ha MHIYCTPH]CKHUM POOOTHMA.

Kibyune peum: Munycrpujcka poGortuka; [lerekuuja mHTepakiuje; Pu3nuka WHTEpaAKIH]ja;
Dynamic Time Warping, Uunyctpuja 4.0

Hayuna o6aact: EnexTporexHuka u padyHapCTBO
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1. INTRODUCTION

Tendencies in modern day robotics demand a transition to a more flexible, adaptable, and
interconnected event-driven environment. Availability of information in form of process-related
measurements and operation context is of crucial importance for a successful integration and
optimized control of all processing and management entities.

These transitions reflect not only on a control and sensing level, but also on the physical
workspace of the production resources. Ever increasing requirements for sharing workspace
between industrial robots and other production entities open numerous possibilities in framework of
Industry 4.0 and slowly emerging Industry 5.0, but also a multitude of related challenges.

As the backbone of the Third industrial revolution, industrial robots were developed to
achieve best performance in highly structured and supervised environments. They were designed to
be reliable, mechanically robust, and fast machines with high positioning repeatability which work
in closed work cells without interference of humans or other sources of unpredictability. Absence of
potential external disturbances meant that their sensors, actuators, and control algorithms were
focused on achieving best performance without considering their surroundings.

The evolution of the architecture of interaction [1] between the robotized production cells
and other manufacturing entities including mobile robots, human workers and manned vehicles
results in violation of the structured environment which the industrial robots were intended for.
Addressing these violations inadequately may lead to numerous types of erroneous states and events
such as incorrect or suboptimal task execution [2], and potentially to more severe consequences
such as damage of production resources, or even injury of humans [3], [4], [5].

Collaborative robots were conceived as the answer to the emerging requirements from the
standpoint of safety and sharing workspace with humans, and there are certainly fields where their
implementation is the key enabling factor for a successful robotization. However, their performance
and robustness are often not the answer for environments where high efficiency and repeatability
are required, and where human presence or intervention is not frequent. Moreover, although there
are fields where new developments in automation have enabled successful robotization for the first
time, in most cases they are introduced as improvements into already existing robotized systems. In
such systems and environments, industrial robots are by far the most dominant robot type [6], [7] ,
and projections for the foreseeable future predict that the demand for them will only increase.

No matter how revolutionary some shifts in automation paradigm are, their influence on the
manufacturing components is that of evolution. The same is true for the industrial robots. One
important direction in which industrial robots need to evolve to respond to these shifts is to
appropriately detect, interpret, react, and share information about the physical interactions they
encounter during operation.



1.1.Motivation

The motivation for the work presented in this thesis is to develop algorithms that can unlock
the underused potential of industrial robots and their readily available sensors to facilitate their
transition into Industry 4.0 and beyond. Detection, interpretation, and reaction to the forces that
occur during physical interaction of the robot and its surrounding is one of the prime examples and
most impactful fields in which the contribution to this transition can be made.

Collision detection and reaction on different levels [8], [9] is one of the primary and
essential aspects that need to be addressed in shared workspace, especially during physical human-
robot interaction (pHRI). The research presented in the thesis is focused on the co-existence [8], as
the innermost level of any pHRI that is the last instance preventing the human injury if all other
levels fail. Besides reliable detection, the reaction time in case of collisions is of the greatest
importance from the perspective of human safety. Applicability is another important aspect since
collision detection algorithms only contribute to human safety and protection of production
resources if they are implemented.

Identification of intentional interaction while performing contact tasks is another important
aspect of robotized production. It enables interpretation of the forces that occur during physical
contact to determine whether they indicate correct task execution or some erroneous state, such as
misalignment with the work object, dropped load, irregular behaviour of the robot or its tool.
Information about physical interaction can further be used for predictive maintenance or providing
context information regarding operation state of the robot and its equipment.

The main attention of the research is directed towards industrial robots with closed
controller architecture [10], [11], [12], [13], [14] since they are the most common and most
challenging type of industrial robot controllers. Closed architecture of industrial robots’ controllers
imposes certain limitations on the availability of information and levels of control possible to attain.
These controllers do not allow access or insight to the inner control loops nor the parameters of the
model of robot for which they are optimally designed.

The algorithms presented in this thesis rely exclusively on readily available signals possible
to attain from closed architecture controllers at a robot joint level. This makes the presented
algorithms universally applicable to robots of different configurations and generations, enabling
their evolution and facilitating their seamless integration into modern and future production
environments.



1.2.Contributions

The research within the thesis has been devoted to the development of algorithms that will
enable the industrial robots to detect interactions and better integrate with their surroundings. The
work presented in this thesis summarizes and heavily relies on the related work presented
throughout the studies. The related publications by the author are:

International journals:

[1] Z. Gordi¢, K. Jovanovi¢: A Framework for Inclusion of Unmodelled Contact Tasks Dynamics
in Industrial Robotics, Sensors (ISSN: 1424-8220), Vol. 22, No. 19, pp. 1-19, Nov, 2022

[2] Z. Gordi¢, K. Jovanovi¢: Collision Detection on Industrial Robots in Repetitive Tasks Using
Modified Dynamic Time Warping, Robotica (ISSN: 0263-5747), Vol. 38, No. 10, pp. 1717-1736,
2020

National journals:

[DJ1] Z. Gordié, C. Ongaro, Calibration of Robot Tool Centre Pointusing Camera-based System,
Serbian Journal Of Electrical Engineering, Vol. 13, No. 1, pp. 9-20, 2016.

International conferences:

[IC1] Z. Gordié, K. Jovanovi¢, Influence of Unmodelled External Forces on the Quality of
Collision Detection, Advances in Service and Industrial Robotics. RAAD 2019. Advances in
Intelligent Systems and Computing, pp. 319-328, Springer, Cham, Kaiserslautern, Germany, Jun,
20109.

[IC2] Z. Gordi¢, K. Jovanovi¢, Fully Integrated Torque-Based Collision Detection in Periodic
Tasks for Industrial Robots with Closed Control Architecture, Advances in Service and Industrial
Robotics Proceedings of the 27th International Conference on Robotics in Alpe-Adria Danube
Region (RAAD 2018), pp. 71-81, Springer, Greece, Jun, 2018.

[IC3] Z. Gordi¢, C. Ongaro, Development and Implementation of Orthogonal Planes Images
Method, Advances in Intelligent Systems and Computing (Proc. 25th IFTOMM/IEEE International
Conference on Robotics in Alpe-Adria- Danube Region — RAAD 2016), pp. 105-115, Springer,
Serbia, 2017.

National conferences:

[DC1] Z. Gordié, K. Jovanovi¢, Identifying Unmodelled Dynamics in Contact Tasks in Industrial
Robotics, Proceedings of the 7th International Conference on Electrical, Electronic and Computing
Engineering, ICETRAN 2020, pp. 695-700, Jun, 2020.

[DC2] Z. Gordi¢, K. Jovanovi¢: Collision Detection on Industrial Robot using Dynamic Time
Warping, Proceedings of the 5th International Conference on Electrical, Electronic and Computing
Engineering (ICETRAN 2018), pp. 1039-1043, Drustvo ETRAN, Serbia, Jun, 2018.

[DC3] Z. Gordi¢, K. Jovanovi¢, Partial Pose Measurements for Identification of Denavit-
Hartenberg Parameters of an Industrial Robot, Proceedings of the 4th International Conference on
Electrical, Electronic and Computing Engineering (ICETRAN 2017), pp. ROI1.6.1-ROI1.6.4,
Hpymteo 3a ETPAH, Kladovo, Serbia, Jun, 2017.



[DC4] N. Knezevi¢, K. Jovanovi¢, Z. Gordié, V. Potkonjak, M. Majstorovi¢, Hazard Identification,
Risk Assessment and Safety Integration for Flexible Robotic Cell, Proceedings of the 4th
International Conference on Electrical, Electronic and Computing Engineering (ICETRAN 2017),
Hpywreo 3a ETPAH, Jun, 2017.

[DC5] Z. Gordié¢, V. Potkonjak, Overview of Methods for Robotic Manipulators Calibration,
Proceedings of the 3rd International Conference on Electrical, Electronic and Computing
Engineering (ICETRAN 2016), pp. ROI2.6.1-R012.6.4, Drustvo ETRAN, Serbia, 2016.

[DC6] Z. Gordi¢, C. Ongaro, Robot Tool Centre Point Calibration using Analysis of Images from
Orthogonal Planes, Proceedings of 2nd International Conference on Electrical, Electronic and
Computing Engineering, pp. ROI4.6.1-R0O14.6.5, Jun, 2015.

The contribution of the research presented in the thesis can be divided into two principal
categories:
1. Detection of interactions and safety:
a. Detection of interactions based on the principles and modifications of Dynamic
Time Warping: 1J1, 1J2, IC1, DC1, DC2
b. Collision detection and safety for application on industrial robots with closed
control architecture: 11, 132, IC1, IC2, DC1, DC2, DC4
2. Identification of robot kinematics parameters:
a. Identification of kinematic parameters of the robot manipulator based on partial
pose measurements of position of a point of interest at the robot’s end effector:
DC3, DC5
b. Identification of kinematic parameters of the robot end-effector based on the
analysis of images obtained from cameras in two orthogonal planes. DJ1, IC3,
DC5, DC6



1.3.Thesis overview

The thesis is divided into five Chapters.

The First Chapter introduces the reader into the topic, motivation, contributions, and the
structure of the thesis.

The Second Chapter is dedicated to the overview of methods for detection of interactions. It
is divided into sections dedicated to the different approaches to detection and interpretation of
external forces. It discusses advantages and disadvantages of the model-based and non-model-based
approaches in general and offers reasoning behind opting for the latter approach in the thesis. The
Chapter also offers initial considerations regarding a hybrid approach to interaction detection,
combining prospects of the two main groups of approaches.

This Chapter also presents the analysis of signals that are readily available on robots with
closed control architecture. The discussion focuses on the type, availability and statistical properties
od available signals and their possibility for implementation in the field of interaction detection.

The Third Chapter presents developed algorithms for non-model-based interaction detection
for tasks which repeat in cycles in identical way. To this end, two approaches are presented and
discussed for implementation on industrial robots with closed control architecture.

With aim of reducing reaction time to possible collisions, the first approach is intended for
integration on the controller of the robot itself. The algorithm considers limitations imposed by the
closed control architecture and proposes applicable solutions for efficient collision detection.

Aiming to extend the possibilities and increase reliability and sensitivity of detection, the
second approach relies on implementation of more complex signal-matching algorithms enabled by
the permanent connection with PC. This approach proposes an effective modification of elastic
similarity measures to overcome the sampling issues and enable real-time implementation of
performant collision detection.

Following the discussion of results obtained from the experimental setup, the proposed
approach for collision detection is discussed also in scope of a hybrid interaction detection in which
it would be used to detect intentional interactions.

The Fourth Chapter presents an innovative augmentation of the methods used in the Third
Chapter, enabling matching signals from similar tasks. The alteration which enables the extension
of the application field is based on the identification of kinematic parameters of the robot. With a
goal of identification of parameters of the robot manipulator itself and its end effector, two
innovative approaches are presented and discussed in terms of their reliability and applicability.

The algorithm for detection of the parameters of the robot itself is based on obtaining
partial-pose measurements of a point of interest on at the robot’s end effector and can be used for
forming kinematic model of robot without limits to its joint configuration.

The algorithm for determining parameters of the robot’s end effector is based on the analysis
of images from two orthogonal planes, and it can be fully automated.

Following the identification of the kinematic parameters of the robot and its end effector,
this Chapter introduces the kinematically augmented non-model-based algorithm for detection of
interaction forces, which enables correct interpretation of interaction influences under different
movements. The Chapter concludes with discussion of the results and considerations for
implementation in standalone and hybrid configuration with model-based approach.

The Fifth Chapter summarizes conclusions derived from the overall discussion and results
analysis of the work presented in the thesis.



2. INTERACTION DETECTION

The intention of the research presented in this thesis is to use the existing sensors commonly
found in industrial robots and use them with intention of detecting interactions of robots with their
surroundings. Industrial robots typically feature sensors which are essential and used almost
exclusively for the efficient execution of the direct and indirect kinematics control tasks.

This chapter aims to present and summarize the different approaches in detection of physical
interaction of the robot and its surrounding. The approaches will be discussed in terms of their
reliability, complexity, sensitivity, and applicability in order to present their respective advantages
and disadvantages.

2.1.Approaches to the interaction detection

2.1.1. Model-Based approach

Model-based approaches are by far the most academically represented type of interaction
detection algorithms. The primary field of research for these algorithms is collision detection and
reaction, but they are applied also in areas such as kinaesthetic robot guidance [15]. There is a very
good justification for their popularity in academic papers, and that is their sensitivity. Depending on
the quality of the model they rely on, they can detect contacts measured even in fractions of
Newtons, without using additional sensors which industrial robots typically do not possess. For that
reason, these types of algorithms are popular choice of collaborative robot’s manufacturers, since
they have the best possibility to obtain or calculate accurate models of the robots they produce.
Simultaneously, they allow producers of collaborative robots to omit torque sensors from robot
joints, which positively affects both the engineering challenges related to their integration in each
joint and the final price.

As their name suggests, model-based algorithms rely on model of the robot and
identification of its parameters. A number of successful collision detection algorithms have been
proposed so far, and they mostly rely on model of the robot or some form of dynamics model [5],
[8], [9], [10], [12], [16], [17], [18], [19], [20]. Some of them include algorithms to identify the
model [9], [17], [18], [21], [22] of the robot which they use to predict values of currents or torques.
Predicted values are then compared with measured values in order to detect collisions.

Mostly, the model which they require is the dynamics model, including inertia, friction, and
rigidity related parameters, which in turn also relies on kinematic parameters of the robot. Whereas
the identification of the latter is generally easier to attain, identification of the dynamic parameters
is much more complex [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34]. While the
theoretical and practical procedure for their identification have been known addressed in numerous
research papers, there still are limitations to the practical implementation. These limitations are
mostly related to the physical and structural possibilities of the robot to perform movements
necessary for the successful identification of the required parameters. This is evidenced by the
numerous research papers related to the calculation of optimal excitation trajectories [35].

Model-based algorithms can only reach peak performance if they are applied to the robot
under same circumstances as when the model was identified. If some relevant piece of equipment or
accessory, such as robot tool or wire feeder for welding robot, is changed or was omitted during the
identification of dynamic parameters, the entire modelling process may need to be repeated [36].
These issues are addressed to some extent by the possibility of certain robot brands to run a built-in
routine for identification of inertial parameters of the load or gripper. However, this feature does not
solve the issue of equipment which is not attached to the end-effector, and tools or load which do
not allow performing movement required to identify these parameters due to spatial or structural
constrictions.



Another drawback of model-based algorithms is that unmodelled interaction forces which
occur during intentional physical interaction of robot’s end effector during contact tasks may cause
improper behaviour. If models of such interactions are not accounted for, they may lead to false
collision detections, affecting the production cycle and overall efficiency. Various techniques [10],
[12], [18], [21], [37] have been developed to help prevent contact misinterpretation, such as various
filtering and analysis of the duration and intensity of detected change, or learning from previous
measurements. Some of algorithms are able to identify collided link [8], [17], [37] and react
accordingly, in order to minimize the severity of impact or modify robot trajectory or joint
configuration. However, the additional analysis and filtering induce additional time needed for
interpretation, effectively slowing down the reaction and therefore possibly increasing the risk and
severity of the injury.

In practical terms, this drawback is commonly addressed with introduction of force/torque
sensor between the robot’s flange and the end effector, which does provide useful feedback which
can be used to mitigate these issues. However, there are certain limitations to this approach, besides
increased implementation complexity, and they are especially related to the nature of the contact
task and/or environment where the robot operates. Manipulation of heavy loads is one example
where the possibility of integration of these sensors is questionable and complex due to the transfer
of weight from the end effector to the robot body. Tasks which expose end effector to vibration or
impacts are typically not favourable conditions for implementation of force-torque sensors since it
may affect their reliability or longevity. The same can be applied to work in environments with high
temperatures, humidity or otherwise unfavourable conditions for which robots have adequate
ingress protection (IP) level, but there are no sensors with comparable protection level.

2.1.2. Non-model-based approach

Approaches which do not require a model of the robot to detect its interactions with
surroundings belong to a group of non-model-based approaches. However, in some cases it is
difficult to constitute a line which determines to which extent can certain approaches be considered
as non-model based. That line depends on the perspective of what is considered as a model. In this
thesis, non-model-based approaches and algorithms are those which do not rely on parameters and
values which have direct corelation with physical parameters of the system. Therefore, to some
extent, this definition could include neural network and fuzzy logic-based algorithms which may
even be used to predict values of measured signals in robot joints [17], [37].

The obvious advantage of non-model-based approaches is that they do not require complex
identification of the model parameters. Consequently, their performance does not depend on the
quality of the model which may be difficult, impractical, or even impossible to obtain. Moreover,
this type of approaches and algorithms tend to be easier to implement in production environment
since they are less likely to require specialist knowledge related to model identification and related
experiment execution.

Arguably the most important advantage of non-model-based approaches is that they
implicitly include the entire dynamic behaviour of the system they were developed and
implemented for. This means that all interactions, process-specific phenomena, and behaviour of
the system are accounted for and can potentially be used for the interaction detection, interpretation,
and reaction. From the viewpoint of detection of interaction forces, this is a very important aspect,
and the one which has a lot of potential if correctly implemented.

The drawbacks of non-model-based approaches mostly relate to their lower sensitivity and
versatility. Their lower sensitivity for detection of interactions, compared to the model-based
algorithms, is mostly caused by the uncertainties of synchronizing the measurements from the robot
with their corresponding expected values. Additionally, their versatility is limited by a predefined
set of measurements they rely upon to detect and interpret interactions. If an action of the robot or
the type of interaction with surroundings is out of scope of the set of measurements based on which
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the detection and interpretation is performed, the algorithms may behave unexpectedly or
incorrectly.

The drawbacks of non-model-based approaches made them less attractive for researchers
looking for universal solution for interaction detection. The strive to develop a comprehensive
model-based solution, makes it easy to overlook the great potential that other approaches have,
especially given the properties of the industrial environment in which they are arguably needed the
most. Namely, the predominant types of applications for industrial robots include repetitive and pre-
defined tasks with a limited set of variations. That sort of environment favours the reliability,
simplicity and applicability of the non-model-based approaches while minimizing the impact and
importance of their drawbacks.

The work presented in this thesis aims to explore and harness the potential of non-model-
based approaches for implicit inclusion of dynamic behaviour of the system by developing reliable
and applicable algorithms for interaction detection. Equally importantly, the intention is to develop
solutions for drawbacks of the non-model-based approaches and present them as viable or even
preferable alternatives to the model-based algorithms.

2.1.3. Hybrid approach

In some respects, it is possible to notice that the two general approaches have
complementary advantages in terms of complexity and implementation. A hybrid approach,
combining advantages of both the model- and non-model-based type of algorithms is also examined
and presented in this thesis. The main idea behind the proposed hybrid approach is to augment the
non-model-based approach with coefficients corresponding to identified kinematic parameters of
the robot. The kinematically augmented algorithm’s promising properties have the potential not
only to expand the field of application of the non-model-based approaches, but also to solve some
of the drawbacks of the model-based algorithms related to the contact interaction tasks. Another
dimension of hybrid approach which will be theoretically examined is to use model and non-model
based algorithms in a cascading fashion. In this configuration, model-based algorithms would be
used to cover nominal behaviour of the robot and its task, while the non-model-based algorithms
would be used to complement them by incorporating the unmodelled or unforeseen interaction
dynamics.



2.2.Analysis of available signals

The first step in understanding the possibilities and considering the design of the interaction
detection algorithm is the analysis of the properties of the available signals. This section aims to
provide insights into characteristics of signals that are commonly available in industrial robotics.

Industrial robot controllers with closed control architecture rely on two main types of signals
for efficient control of robot manipulators. These types of signals are necessary for achieving any
meaningful robot behaviour and are consequently present in all types, configurations, and
generations of industrial robots with rotational joints.

The first readily available type of signal is the information about each of the joint angles,
referred to as joint coordinates, and typically represented in degrees. Industrial robots almost
exclusively receive this type of information from incremental encoders, although there are also
other realizations employing absolute encoders and resolvers. This type of signals is used in control
algorithms for both direct and indirect kinematics, along with angular velocity and acceleration,
which are obtained as derivates and double derivates respectively.

The second type of signals which are used in control loops is the measurement of joint
currents. The range of their values depends on the rated values for the joint motors, and depending
on the robot brand, they are either available in Ampers or percentage of the joint current rated
value. Depending on the manufacturer, both representations may include the information on polarity
or be represented in absolute values. Some manufacturers also offer another signal, and that is the
torque values which are estimated based on the current measurements. Similar to joint currents,
these estimates may be represented in absolute values of Newton-meters, or as percentage of the
permissible joint torque values, but are almost always signed, i.e., have positive and negative
values.

Having in mind that the predominant architecture of industrial robots employs rotary joints,
the effect of external forces of interaction on robot links translates into torques affecting the joint
motors. At the joint actuator level, these torques manifest themselves in form of changes in joint
current, indicating the presence of external force. The nature of the environment and tasks for which
industrial robots are intended for has led to the design of control algorithms which efficiently and
promptly eliminate the effect of the disturbances on the commanded joint position values.
Consequently, the changes in joint positions caused by the external forces are rarely allow
noticeable. For this reason, the primary source of interaction-induced information in industrial
robotics are the measurements of joint currents, and the torque estimates based on them.

Following sections will present the analysis of available and subject-relevant signals, with
focus on joint currents and torques obtained from the industrial robot with closed control
architecture. The robot used to illustrate signal properties is Denso VP-6242, a 6-axis industrial
robot. Measurements from this robot are provided on a scale -100% to 100% for joint torques, 0%
to 100% for joint currents and in degrees for the joint angles.

2.2.1. Repeatability analysis

Signal repeatability in the time domain is one of the most important aspects and
preconditions for designing efficient non-model-based interaction detection algorithms. This signal
property can be observed from the perspective of the robot itself i.e., its actuators and the equipment
permanently attached to it, as well as from the nature of the desired contact task. The following
results are related to the properties analysis of the former, while the latter will be addressed in the
following sections on a case study-basis.

With the aim of discussing this important property of the signal, measurements of joint
values were recorded while the robot was performing the same repetitive task in cycles., and results
were analysed. Thirty consecutive measurements from the same movement are shown on Figure 1,
and they show that the overall shape of the signal is generally repeatable, which is favourable from
the standpoint of the non-model-based algorithm development and implementation. However,
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although the beginnings of the signal were matched to start at the same time instant, it is evident
that they start to deviate from each other after only a few samples, and it is important to find the
cause for this observation.

Robot brands typically possess some form of parallel processing capability. However, these
apparent parallel processes are often performed on single core processors, meaning that they are not
strictly run in parallel. Instead, they share resources of the single processor by switching rapidly
from execution of one process to another. This fact causes slight deviation of time instants in which
identical command will be executed within a repetitive cycle. Therefore, it is very difficult to
guarantee that measurements obtained in one of parallel processes will be performed with strictly
accurate periods. That in turn means, that sampling of measurements will not be constant, but some
periods will slightly vary from the others.

This also includes the motion commands, which consequently leads to the situation in
which measurements from consecutive measurements from the identical movement do not match in
time domain. Additionally, it is clear that one cycle of robot movement doesn’t necessarily contain
a whole number of samples. When all aforementioned is put together, the result is that movement of
the robot will not be sampled in same time instants. The consequence is that measurements from
two identical movement cycles of the robot cannot be compared directly in an effective way. On the
left graph of Figure 1, these differences are shown as set of 30 consecutive recordings of the torque
measurements in a robot axis for same movement sequence, all varying in duration.
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Figure 1. (left) Measurements from 30 consecutive executions of the same movement [38] show time domain related
differences in recorded signal caused by the differences in sampling instants. Signals have slightly different lengths, and
they are shifted in time for up to 13 samples or just under 10% of the total length of the signal. (right) Six consecutive
movement cycles and differences between them which are caused by sampling. Signal peaks shown in sections of signal
marked in yellow are not visible on sections marked in red. Peaks marked in yellow and red show biggest effects of the
issues related to numerical position derivation.

Another observation related to the nature of the measurement signal of current/torque is the
irregular occurrence of peaks, as shown on the right section of Figure 1. The occasional appearance
of peaks in measurement is related to the fact that currents/torques are dependent on speed and
acceleration in each joint [13],[15]. As mentioned earlier, due to the fact that industrial robots
possess only position measurements from encoders, speed and acceleration are calculated
numerically as derivatives and double derivatives of position measurements. Depending on the
actual dynamics of the position change in relation to the sampling rate, these numerical derivations
may result in values which do not correspond accurately to the actual dynamics of the robot [39].
Although these numerical values may differ from real values, they are absolutely adequate for the
proper functioning of the robot due to robot’s inherent actuators and structural inertia which filter
out the high frequencies of the control signal. However, from the standpoint of observation of signal
deviations, these peaks may be mistaken for unexpected external forces. The peaks must not be
filtered out because they may contain important indications of a collision or other real external
force/torque which are of importance for the collision detection algorithms and worker safety.

10



2.2.2. Statistical signal analysis

Detection of interaction of industrial robots with their surrounding requires setting certain
thresholds and limits which are used to determine whether certain interaction has occurred or not.
The thresholds for such detections can be determined in various ways, but all of them require
understanding of the factors which influence their values. For better understanding of these
influences, the following analysis is conducted on first three joints of the 6-axis industrial robot to
demonstrate effects which position, speed and acceleration have on signal properties. These joints
were selected specifically because they contribute the most to the positioning of the robot end-
effector, and therefore best illustrate these influences.

In the first test phase, for each joint, both currents and estimated torques were recorded
along with the joint positions which are used primarily to better depict different stated during
measurements. Each joint was moved individually, and the same movement was repeated with 5%,
10%, 20% and 40% of the maximum speed of the robot, to which corresponds 0.25%, 1%, 4% and
16% of the maximum acceleration.

The measurements from the 1% axis shown on Figure 2 show that, both for the joint torque
and the current, the influence of the joint position does not have any noticeable effect in the
stationary state, when the angle does not change. This observation in due to the fact that the 1% axis
of the robot is vertical and is therefore unaffected by the weight. The influence of speed and
acceleration is evident in each of the transitions to the new position, and it is quite repeatable in
shape for the same reason. In this example, the current and the torque have similar shapes, and their
real physical correlation is evident. The exception can be noticed at the beginnings of each
sequence, since the torque has negative values, whereas the current is shown in absolute values. The
values of the variance in the stationary state are ¢®> = 0.1283 on average for the current and o =
0,1452 for the torque for the 4 regions without change in angle.
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Figure 2. Influence of the joint position and speed on measured values from the 1% axis. The graphs illustrate that the
stationary currents and torques for the 1% axis are mostly unaffected by different positions due to the invariance to the
influence of gravity and unchanged weight distribution. The effects of speed and acceleration differ only in the periods
with movement.

The 2" axis of the robot presents same type of measurements as shown for the 1% axis, but
performed in both directions, for increasing and decreasing joint values. Since the 2" axis is
horizontal, the measurements show differences between the upward and downward movements,
caused by the different weight distribution and its effect on joint torques and currents. Results
shown on Figure 3 show that the different positions do not affect the variance of the current and
torque signals in stationary states, which are o® = 0.0631 and o = 0.0029 respectively. Transient
periods show that profiles of currents and torques during the movement differ from each other in
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shape, which is caused by the different weight distribution of the succeeding links and joint. When
observed for the same portion of the signal, it is evident that shapes of torques and currents are
scaled mirror images of each other, with exception to the sections where differences exist due to
availability of absolute values of the currents.

The same conclusion as with the upper row of Figure 3 can be made with the lower row of
the same figure, on which the values recorded during upwards motion were recorded. The variance
in the stationary sections is almost identical to the previous analysis, but the variance in the
transient periods is smaller.
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Figure 3. Influence of the joint position and speed on measured values from the 2" axis. (upper row) The graphs during
downward movements illustrate that the stationary currents and torques for the 2™ axis increase in mean values due to
the influence of gravity and changes in weight distribution. The effects of speed and acceleration also change with
changes in robot joint configuration. Torques resemble scaled mirror images of currents in regions where the current
does not change sign. (lower row) The graphs during upward movements illustrate that the stationary currents and
torques for the 2" axis decrease in mean values due to the reduced influence of gravity and changes in weight
distribution. The effects of speed and acceleration also change shape with changes in robot joint configuration. Similar
to the downward motion, the torques resemble scaled mirror images of currents in regions where the current does not
change sign.

The conclusions made for the analysis of the 2" axis are also valid for the analysis of
downward and upward motion of the 3™ axis, shown on Figure 4. The difference in tested angles is
caused by the physical constructions of the robot, which limit the motion of the 3" axis, not
allowing angles smaller than 19 degrees. The variance of measurements in stationary periods is
almost identical for each joint angle and is equal to o = 0.1125 for joint currents and ¢ =
0.2131*10°2 for the joint torques.

For the next phase of testing, each of the axis was moved individually in both directions,
with increasing speed. The first movement was made with 5% of maximum speed, while the
following movements were made with 10%, 20% and 40% respectively. The Figure 5 shows
recorded joint currents and estimated torques, as well as angular joint speeds which were calculated
offline based on the recorded joint angles.

Results from the measurement from the 1% axis show that the speed and acceleration do
have influence on the variance of the signal, as shown in Table 1 and Table 2, and that higher
values of calculated speed have higher variance as well. Closer observation of the calculated
angular speed reveals occasional peaks related to the numerical derivatives and irregular sampling
periods, which is even more evident from the analysis of the lower left graph showing angular
speed recorded with the current measurements. Another observation which can be made for all
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graphs is that measurements of torques shown in the upper row, and currents, shown in the lower
row, have up to 10% different numbers of samples, although they belong to the same movement
sequence, providing further proof about the differences in sampling periods.
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Figure 4. Influence of the joint position and speed on measured values from the 3" axis. (upper row) The graphs during
downward movements illustrate that the stationary currents and torques for the 3™ axis change in mean values due
changes in weight distribution. The effects of speed and acceleration also change with changes in robot joint
configuration. Torques resemble scaled mirror images of currents in regions where the current does not change sign.
(lower row) The graphs during upward movements illustrate that the stationary currents and torques for the 3" axis
reach highest mean values at the angle of 90°, since the centre of the mass is at its furthest position from the observed
joint. The effects of speed and acceleration also change shape with changes in robot joint configuration. Similar to the
downward motion, the torques resemble scaled mirror images of currents in regions where the current does not change
sign.
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Figure 5. Influence of the joint speed on measured joint values. (left column) Effect of the speed on the 1% axis
measurements shows that the speed has non-linear influence on the variance of the measured signal at the specific
sampling frequency. Since the axis is unaffected by the gravity, profile of torques shown in the upper part is
symmetrical. (middle column) Influence of the changes of speed is non-symmetrical due to the different 2™ joint motor
effort in upwards and downwards motion. Upward motion results marginally in higher signal variance. (right column) )
Influence of the changes of speed on the 3" axis is non-symmetrical due to the different joint motor effort in upwards
and downwards motion, which is better observed on the torque graph. (upper row) Profiles of the torques are more
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intuitive to the analysis since they have both positive and negative values. (lower row) For the same movement,
duration of the sequences with current measurement is different from those of the sequences with torque measurement,
shown in the upper rows.

Table 1 Influence of speed on the standard deviation ¢ of joint currents and torques

1%t axis 2" axis 3 axis
Current 6 Torque o Current 6 Torque Current 6 Torque o
Speed up/down up/down up/down up/down up/down up/down
5% 1.1125/0.7512 1.3106/1.1674 0.2477/0.2486 0.1182/0.0538 0.2591/0.2632 0.1743/0.1904
10%  1.8436/3.0848 2.5471/2.0940 0.2233/0.2790 0.2204/0.3109 0.2460/0.2143 0.1927/0.2213
20%  2.3864/1.6495 2.4470/1.9838 0.2359/0.2381 0.1388/0.1302 0.2381/0.2691 0.2703/0.2148
40%  1.6772/4.3021 4.5836/3.4267 0.1875/0.2173 0.0120/0.0014 0.2429/0.2942 0.5770/0.7226

A sequence featuring movement at different speeds and to different positions, will have
sections with different joint measurement dynamics. Although variance across the sequence will
differ, each section generally conforms to Gaussian/Normal distribution, and therefore standard
deviation 6 can be used to determine the limits within which all measurements should occur.
However, in cases where a sequence feature underrepresented and drastic changes in the dynamics,
induced, for example, by the changes of the motion speed as in Figure 6, the variations are not
always within the range defined by the standard deviation, as shown in red. Consequently, the
conformity to 3o interval, is best applicable to the regions with similar variance, as show in yellow
on Figure 6. Therefore, in such signals the limits may best be determined in a segmented fashion,
with each segment corresponding to the region with similar variance, as shown on Figure 6.
Alternatively, the variance may be observed on a sliding window basis, width of which depends on
the performed task, as shown in purple on the same figure. The latter is by far the most appropriate
for the applications in which deviations need to be detected, as such limits offer better sensitivity.
However, it is important to note that the detection of interactions often involves numerous
compromises related to implementation and complexity, including those related to detection
thresholds.

Table 2 Influence of acceleration on the standard deviation ¢ of joint currents and torques

1% axis 2" axis 3" axis
Current ¢ Torque o Current ¢ Torque Current ¢ Torque
Acc. up/down up/down up/down up/down up/down up/down
0.25% 0.6823/0.6649 0.7404/1.1751 1.1783/1.4022 0.7325/1.3214 17522/2.1761 2.4862/3.4641
1% 0.8164/3.0848 0.7196/0.5693 1.4194/1.3965 1.5532/1.4382 2.1201/2.1691 3.2297/2.9094
4%  1.7844/1.5855 1.9492/0.9976 3.3351/2.8852 3.2123/2.6564 2.7813/2.6931 4.0892/4.0996
16%  1.6762/2.6651 3.5512/4.2231 4.1914/2.8623 5.7054/4.6271 6.0691/5.2112 6.1269/4.7553
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Figure 6. Signal limits determined on three standard deviations from the mean value. The figure illustrates the effect of
the observed interval of the sequence to the conformity to Gaussian distribution. The best results are achieved when
sections with similar speed are observed, or when sliding variance window principle is applied.
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The previous analysis has shown the effect of the position, speed, and acceleration on the
measurement variance. Industrial robots are relatively complex machines with intricate correlation
and cross-influence of their integral parts. The following analysis aim to illustrate some of these
cross-influences using an intuitive and simple example.

For the two joints whose axes are not perpendicular to each other, movement of one joint
affects the joint currents on the other joint. Such effect can be best observed in joints with parallel
axes, such as 2" and 3™ joint, measurements from which are shown on the Figure 7. The left
portion shows the effect movement of the 2" axis has on currents and torques of the 3" axis. The
right portion of the figure shows the opposite situation, in which the 2" axis is stationary, but still
affected by the movements of the 3" axis.
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Figure 7. Cross-influence of the torque of stationary joints observed on an example of joints with parallel axis. (left
column) Effects of movement of the 2" axis reflected on torques and currents of the 3" axis. (right column) Motion of
the 3" axis influencing torques and currents of the 2" axis while it was not moving.

Results from Figure 7 illustrate that the motion of one axis has manifested itself onto a
different stationary axis in form of disturbances in mean value of currents/torques, as well as in
some occasional influences on the variance. These influences are a consequence of the shifts in
distribution of the mass and the inertia experienced by the observed stationary axis. However,
although the disturbances differ in dynamics, they have similar peak values and similar shape,
though stretched and compressed in time domain. This indicates that at speeds up to 40%,
movement acceleration impacts on the torque are much less prominent than the influence of
gravitation acceleration, and consequently the weight distribution. This conclusion will be
important for the analysis in the 4'" Chapter, where spatial relation of joints is considered.

From the aforementioned observations, it is possible to conclude that industrial robots with
closed control architecture pose a unique set of challenges when it comes to detecting deviations
from their expected joint current values. When these challenges are viewed from the perspective of
interaction detection, it should additionally be noted that all signal processing and decision making
must be made in very short amount of time in order to make timely reactions of the robot and
prevent injury or damage.
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3. DETECTION IN REPETITIVE TASKS

The traditional philosophy of automation still often divides automated and robotized
processes from humans. There are numerous reasons why the division has been considered
desirable and even necessary, but the most important reason is safety of the human workers.
Although industrial robots have come long way since they were first introduced in production, for a
long time they were developed to work in human-free environments, and hence the safe interaction
was not a major concern.

Prerequisites for safe physical human-robot interaction are described in three nested layers
which robot must guarantee — safety, coexistence, and collaboration [8], [9]. Safety, the innermost
layer, relies on various internal and external sensory, mechanical construction, control algorithms
and speed of the robot to reduce the risk of injury to the worker and of damage to the robot.
Consequently, lot of research [3], [4], [5], [16], [40], [41], [42], [43] has gone into standardization
and setting safety limits for human-robot interaction. Collision detection is one of the key aspects of
the safety layer, and it is one of the few features of safety possible to effect on an industrial robot
without any external sensing and closed control architecture. Efficient collision detection also
enables sharing of the workspace with humans, and opens possibility for coexistence, since humans
and robot can perform separate tasks in the same environment. Collaboration requires physical
interaction between human and robot in such way that the robot can sense the intentions of human,
and react accordingly, as well as to exchange information with the worker in an intuitive and
predictive manner [44], [45]. As such, collaboration is the next from coexistence, and is therefore
also dependent from reliable collision detection.

One of the basic ideas of the algorithms proposed in this Chapter is to use the fact that most
present robot tasks in industry are highly repetitive. This fact enables recording of one typical
movement cycle of the robot and using recorded values as reference current/torque sequence.
Comparing reference sequence with measurements obtained from the robot during its operation
enables detecting deviations from reference values. Collision detection algorithms proposed in this
Chapter and in [13], [38] rely on these principles in order to detect collisions and react accordingly.
Although these algorithms are not as versatile as model-based algorithms in terms of modification
of robot movement, they offer advantages in reduced complexity and reaction time. Additionally,
since reference sequences are recorded from the real operation cycle of the robot, they inherently
include changes to the current/torque profile induced by picking and placing, assembling, as well as
other intentional contacts.
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3.1.Implementation on the robot controller

The first algorithm for interaction detection to be presented and analysed in this thesis is
intended for implementation on the industrial robot’s controller with closed architecture and limited
capacities for connection to external devices. As mentioned before, the closed control architecture
of controllers is typical for most robot brands, and it often allows very basic structures and types of
commands. Compared to [12], [16] [19], [21], [10] and in particular similar method used in [18],
this section presents an algorithm which can be fully implemented inside robot controllers with
closed control architecture, without torque or any other external sensors or devices, as a
contribution to safer human-robot coexistence.

The idea behind implementation of the algorithm on the controller itself is that it could
positively influence the reaction time to the detected interaction. Gathering, arranging, and sending
information to external devices and waiting for processing and feedback regarding the detected
interaction may consume valuable reaction time, especially with older generations of robots, whose
processing power is not substantial. Instead, the intention is to use some of the commonly used
communication protocols to perform data acquisition, analysis, and setup in conjunction with a PC,
and then apply a simple detection algorithm on the robot. The algorithm relies on readily available
joint current or torque measurements, and the ability to stop the robot motion with a high priority
level command or hardwired signal. The relative simplicity of the algorithm ensures its fast
execution and minimal processing effort on the controller’s side, but it is also very convenient as an
introduction to the idea of non-model-based approaches.

3.1.1. Principal Design

The design and background idea of the presented algorithm imply that the field of its
application are robot tasks which involve movement which repeats in cycles in identical ways and
under same circumstances. Consequently, the measurements of currents or torques on a joint level
are also expected to repeat in values cyclically. The main idea of the algorithm is to record these
values during execution of one representative cycle are then use them as reference values for all
following cycles. All deviations of the measured values from their corresponding reference values
indicate that there is an unexpected interaction with an external force. The algorithm itself cannot
determine the nature of the unexpected interaction, and therefore all deviations from the reference
values are considered to be collisions. For that reason, the approach presented here effectively
describes the working principle of the collision detection algorithm. It goes through steps in
execution of the algorithm and explains how the collision is identified on a joint level, with the
following description being valid for every joint.

The algorithm contains two procedures, out of which only one is executed at any time, and
there are two main phases required for the successful implementation of the interaction detection
algorithm.

The first phase is related to the actions needed for the proper setup of the algorithm, setting
the reference values and tolerances. In the setup phase, the first procedure is executed only once,
and its sole purpose is to record joint torques while robot is performing its main, repetitive task.
During execution of the first procedure, torques from several periods of repetitive movement are
stored in internal memory of the robot. The recorded values reflect the effects which the internal
and external forces have on joint during a typical cycle of the repetitive task execution. For this
reason, they are used as reference values to which measurements from all subsequent cycles of
repetitive task execution will be compared against in order to detect potential unexpected
interaction.

The second procedure has dual purpose, and it is used both in setup and operation phase. In
the setup phase, the second procedure is executed after acquisition of the reference values and used
to determine the number of samples in one period of execution, which is later used for resampling
purposes. The reason for using the second, rather than the first procedure to determine the number
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of samples is that this procedure will also be used in operation phase, unlike the first procedure. The
determined number of samples, which depends on the complexity of the executed procedures, will
therefore represent number of samples which will be encountered in operation phase.

In order to perform measurements reliably, both procedures rely on triggering signal from
the main task of the robot, which is used to ensure synchronization of measurements with the
periodic movement of the robot.

Once the measurements are acquired/recorded, they are transferred to PC for processing,
where they are analysed in terms of dynamics and signal limits. Processing includes generating
reference limits of the torque for one period of task execution, as well as limits related to the
dynamics of the signal. After reference limits are determined, they are transferred to the robot’s
controller to be used for collision detection, from which point onwards, the connection with PC is
not required.

The second phase of the algorithm is related to the actual operation of the robot with
interaction detection functionality. In this phase, only the second procedure is used and its main
assignment is to compare online measurement values of the torque with reference limits in order to
detect collision/interaction. Collision detection is a result of at least one of two conditions being met
at any joint. First condition, or first decision rule, is that measured torque is within expected limits
set by the PC, and it is more sensitive to detection in periods when acceleration of the robot is not
changing rapidly. Second condition, or rule, is related to the dynamics of the torque signal, and it
demands that difference between two consecutive samples is smaller than a certain value. The
second condition is more restrictive in periods with higher torque dynamics, i.e., when acceleration
changes sign or values rapidly.

Since it was shown in [12], [16], that collision on a segment influence is most prominent on
joints that preceded it, the implemented algorithm can also detect where the impact has most likely
occurred. Although this information can be useful in many situations, in current implementation it is
used only to verify the validity of the collision detection in testing phase, and as such is not subject
of any further analysis or discussion.

Algorithm and both of its procedures are designed to run as processes parallel to the main
robot task. When robot is performing its main routine in the operation phase, the second procedure
is running in background, and its only task is to stop the movement of the robot and signal to the
main routine when collision is detected, as shown on Figure 8.

ROBOT CONTROLLER
ALGORITHM TRIGGER
w COLLISION ROBOT
SETUP v DETECTED ) MAIN
PROCEDURE 1 PROCEDURE 2 TASK
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MEASURED REPETTITIVE
TORQUES NUMBER OF MOVEMENT
i SAMPLES
A 4 STOP
MOVEMENT
TORQUE
oc TOLLERANCES A 4
REFERENCE
TORQUE ROBOT ARM
LIMITS

Figure 8. Structure of collision detection algorithm [13]. The algorithm requires PC only during setup, and it can stop
the movement of the robotic arm independently of the main robot task
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3.1.2. Setting reference limits and thresholds

Analysis of the signal was conducted on a set of samples from multiple measurements.
Values of tolerances and signal dynamics mentioned in following text are particular values for the
performed sequence. However, corresponding values for decision rules can be generated for any
given sequence.

The left graph of Figure 9 shows thirty execution sequences of the task while the right graph
shows absolute differences in neighbouring samples. By analysing sequences shown in Figure 9, it
is possible to make two observations, both of which are results of varying number of samples in one
period of execution. First, that the torque signal might appear to be stretched, compressed, or shifted
in time compared to other recorded sequences, which is the primary cause for differences between
any two sequences at any sample point. However, within one period of cycle execution, torque
signal preserves its general shape. The second observation is that the moment when
acceleration/torque changes its sign is not constant.

Due to the design of the robot’s controller discussed previously, it is impossible to affect the
time when torque is sampled and improve the situation, so the focus is on finding adequate
compensation.

With regards to analysis of graphs in Figure 9, it is possible to differentiate two different
regions based on dynamics of the signal. First region is where acceleration of any joint is relatively
slowly changing, and the second region is where it rapidly changes its intensity and sign. First
region can be identified on right graph of Figure 9 as period with differences in neighbouring
samples of less than 12%, and the second is marked by the regions with changes of more than 12%.
The two mentioned regions require two different strategies for identifying collision.
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Figure 9. Left graph shows sample of 30 consecutive periods of the torque signal of the third axis [13]. Differences in

successive samples over one period of the signal, shown on right graph, differentiate regions with higher and lower
dynamics.

From the first observation, it is possible to conclude that the envelopes of measurements
shown in left graph of Figure 9, can be approximated relatively well, and generated from just one
signal shifted in time backwards and forwards. The maximum number of samples for shifting at any
direction can be obtained from second observation, i.e., from the region with rapid change in torque.
From the left graph of the Figure 9, it is possible to measure that difference of first and last falling
edge of the signal in this region is 8 samples. If the leftmost signal is shifted 8 times for amounts
from 1 to 8, the upper envelope at any point can be approximated as maximum of at any point of all
the shifted signals. Similar thing can be done for lower envelope and minimum at any point. The
two envelopes are shown on left graph of Figure 10.

Statistical analysis has shown that the variations in amplitude of any sequence outside this
envelope do not exceed 3%. Since it was conceived that the execution of algorithm during setup is
performed only once, it could have happened that the only signal obtained was signal similar to the
rightmost sequence on Figure 9 on the left. In that case, the envelope would have been created by
shifting the signal 8 samples to the left. Since it is not possible to be sure from which extreme
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sample sequence may be obtained, the way to be sure envelope will contain all the signals is to shift
the sample sequence both left and right. The statistical analysis of testing for the region critical for
this occurrence on more than hundred recorded sequences has shown that the time shifts conform to
the 3o interval from the mean value and the amount of shifting was therefore set to rounded amount
of 10 samples.
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Figure 10. The left graph shows limits for the signal which allow for different number of samples per period, as well as
approximation of envelope for all shown signals [13]. Right graph shows limits to the signal imposed by two detection
rules, with second rule narrowing transition region.

With respect to analysis of deviation of signals from the previously described envelope
approximation, the first rule, or condition, for detecting condition can be derived. Upper limit for
the signals can be set as values of upper envelope increased for 5%. Similarly, lower limit for
signals can be calculated as values of lower envelope reduced for 5%. Signal limits are shown on
Figure 10 as rule 1.

The second rule, or condition, for detection is intended to identify collisions in areas where
torque has higher dynamics, i.e., were acceleration changes rapidly. Widening the regions where
rapid changes occur means that some collisions may remain undetected, as it will be shown in
evaluation section. From the right graph of Figure 9, it is possible to notice that in areas of interest,
difference between two neighbouring, or succeeding samples is never greater than 22%, which was
also confirmed by testing on a larger sample of sequences based on which the 3¢ interval was
calculated and rounded to the first higher integer value of 25%. This observation was used to form a
second rule, or condition for detecting collisions. If absolute difference between neighbouring
samples is greater than 25%, the second rule will indicate collision.

3.1.3. Implementation of detection rules

Processing of obtained torque values is one of the most important tasks in the entire algorithm since
its results are used as reference tolerances and limits based on which the collisions are detected.
There are various aspects of the processing, and each one of them will be explained separately.

One of the main issues is adaptation to different sampling times which correspond to each of two
procedures of the algorithm. Although both procedures have similar structures, execution of one
cycle in each one of them is different, but relatively procedure-consistent. Therefore, if each
procedure executes command for torque measurement once per its cycle, it is inevitable that these
torque values will be sampled with different periods. Since robot’s controller doesn’t have the
ability to perform tasks with strict time execution, i.e., to perform tasks with absolutely exact
periods, these periods are considered sampling times in this thesis. In order to compare
corresponding samples to each other, it is necessary that sampling times of reference and execution
sequences are identical, or very close. To do so, it is needed to measure period of each sequence.
However, due to the fact that period of the robot movement does not contain a whole number of
samples, analysis of the signal has indicated that one period of the movement may correspond to
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different number of samples. Since number of samples needs to be a whole number, the best
possible solution is to pick number of samples closest to the average value. When number of
samples per period has been set for each sequence, it is possible to resample reference sequence to
match sampling time of execution sequence.

From resampled reference sequence, it is now possible to extract one representative period of signal
and use it as a base for further formation of reference limits period. Each period of movement
execution contains slightly different number of samples, whose mean value is not necessarily equal
number of samples of the resampled reference sequence. Over long time, difference in number of
samples may accumulate if the new period of reference signal is started when the previous has
ended, and lead to a situation where two sequences are not in phase or may even be in opposite
phase. Therefore, in order to prevent potential accumulation of error, it is suggested that main
program should trigger the start of each new sequence of reference values. Final step was to create a
single period of reference limits by shifting reference torque period in time and adding tolerances to
its values, as explained in previous section.

Stopping movement without cutting off the power of the motor is action which can be
implemented in various ways on most robots in existence. This enables resuming the motion and
execution of the program from the point where it was stopped, once the cause and consequences are
no longer present. It is a significant improvement over going through steps needed for going out of
the safety procedures for treating post-collision states which may include but are not limited to
clearing some signals and warnings, resetting programs, switching on the power to the motors and
starting the program from the beginning.

Optionally, the main task can use information about detected collision in order to react to it
in designated manner in order to reduce further injury or damage. The robot can react to a number
of ways [12], [16] including continuing movement, stopping, moving back, or activating
collaborative mode. While algorithm itself stops the movement in event of collision, another
reaction has been implemented on the robot, which is to move away from direction of detected
impact. This is possible thanks to the use of torque measurement, which carries the information
about the sign of deviation. This information can be effectively used to determine from which
direction has disturbance occurred, and it is available for all joints. When collision is detected, the
algorithm stops the movement, and measures differences between set reference limits and last
measured values of torque in every joint of robot. These differences are than scaled and used to
indicate how much the robot should move at every joint affected by collision.

While having many benefits, aforementioned and various other reactions to collision can be
implemented only on certain models of robots, and in ways which might not guarantee safety. Since
focus of this algorithm is on implementation of safe reaction on collision, and in a way which is
easy to implement on various brands and generations of robots without any external equipment,
other reactions are out of the scope.

3.1.4. Experimental Validation and Discussion

Implemented algorithm has been tested on Denso VP-6242 robot with RC8 controller. All
the functions and procedures are implemented in robot’s controller using Wincaps III environment,
which is standard programming software for this brand of robots. Demonstration of collision
detection can be seen on https://youtu.be/nO4i5bA0gIU.

The first phase of testing was performed offline, on a PC, to test the performance of rules for
collision identification. First, more than hundred sequences of execution of the repetitive routine
without collision were recorded. After that, similar thing was done, but for sequences in which at
least one collision has occurred in each period of execution. During acquisition of the sequences
with collisions, it was attempted to generate various types and intensities of collision, by pushing,
pulling, gradually increasing force, or making short time impacts on the robot.

Some of sequences without collision were used to generate reference torque limits and set
tolerances. For each of the calculated reference torque limits and tolerances, there were two cycles
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of testing. The first cycle of testing was with remaining sequences without collision. The aim of this
testing was to count number of false collision identifications caused primarily by variations in
number of samples per period. The result showed that if the signals used for forming upper and
lower limit were shifted for five samples compared to original signal, false identification happened
in less than 1%. However, if the signals were shifted for nine samples, there was no false
identification. Even though significant shifts of recorded signals were noticed, triggering signal,
described earlier, has ensured that signals stay in phase, and shifted references have ensured that
only irregular sequences can deviate from them.

The second cycle of offline testing for each set of limits and tolerances was conducted with
sequences with collision. The aim was to determine if collisions can occur without detection. For
this testing, limits were formed from signals shifted for nine samples compared to the original
signal. Therefore, primary concern was in detecting collisions in areas where acceleration changes
sign, where first rule is less sensitive, and where difference in subsequent samples is more
restrictive detection rule. Test results have also shown that combination of two rules has resulted in
only one false identification as a result of first rule, and zero false identifications caused by second
rule. At the same time, zero real impacts which exceed set tolerances were ignored.

The second phase of testing was primarily focused on verifying the reliability of collision
detection. The detection was tested for the entire robot, as well as for each joint individually.
Individual testing for each joint was performed by increasing the thresholds for all other joints. In
this manner, overall execution of commands was not modified in any way, and the program itself
operated in normal conditions, while only being sensitive to desired joints.

For each joint, it was attempted to cause various types of collisions, with different timing,
intensity, duration, and impact location. For the entire robot, identification of joints affected by
impact was used in addition, in order to verify proper identification.

The robot was also left on several occasions to repeat its task for 4 h without stopping, in
order to check for false collision detections. Testing on robot has only confirmed testing results
from offline testing, with zero false detections, and satisfactory sensitivity to collisions. Results
given on Figure 11and Figure 12 show proper identification of collisions on first three joints using
first decision rule, and one occasion where only second decision rule detected collision on third
joint. Collisions are detected with first sample which exceeds the limit, the movement is stopped
within same cycle execution, after which the program will execute one more sampling cycle.
Unfortunately, without external force sensors, the correct reaction time cannot be measured.
However, it was estimated that reaction time is around 0.02 s.
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Figure 11. [13] Left graph shows three occurrences of collision detected using first rule on first axis, while right graph
shows application of first rule on three examples on second axis.
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Figure 12. Three occurrences of detected collision on third axis [13] (left) using first rule and one example of collision
detected with second decision rule (right).

The third phase of testing was related to convenience of use. Robot is programmed in usual
manner, with the only difference at the beginning of the repeating sequence, where a trigger must be
activated with a single command. All torque acquisition, processing, and comparison related to
collision detection are done by service routines.

These routines run in background, in parallel with the main program, and they are started
automatically by switching to mode for automatic execution. To ensure proper execution, the
algorithm related routines are protected from unauthorized persons. During setup phase, the user
needs to perform only four simple steps. First, the user chooses appropriate procedure by setting
corresponding variable values on the robot, after which recording of the torques starts
automatically. When this phase is over, the second routine will automatically start, and determine
duration of one period of the repetitive movement. The second step for the user is to transfer
recorded measurements and period duration to PC, where a routine automatically processes signals,
and calculates referent torque limit values, as well as tolerances. The third step for the user is to
transfer calculated values to robot’s internal memory, after which PC can be disconnected. The
fourth and final step of the user is to run the algorithm in collision detection mode by setting
predetermined value of the variable.

Testing has shown that, although the algorithm has good performance and sensitivity, it is
limited by the processing capabilities of the controller and lack of even sampling which would
make it even better. The implementation of the synchronization trigger signal is of crucial
importance for the proper functioning over extended time periods, and it has proven itself to be a
simple, yet effective solution. The implemented safety measures and implementation simplicity
have certainly increased the likelihood of proper setup and use, preventing misuse or serious
consequences for the operator.
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3.2.Integration on a computer

Previous related work [13], [14] has shown that it is possible to design a collision detection
algorithm which has satisfying performance and which is simple enough to be implemented on the
robot controller itself. The algorithm requires connection to the computer only in the setup phase,
when signal limits are determined, and it can operate independently in regular use. However, the
main drawback of such algorithm is that the computer needs to be connected every time the
movement of the robot is modified, in order to determine new limits. Moreover, additional tests
have also shown the possibility that the algorithm’s performance can deteriorate over longer
operation times. The reason for the deterioration can be found in small changes of the dynamic
parameters of the robot during long periods of execution, which then affect profiles of the measured
signal. Although such changes do not affect the safety aspect of the system, they may occasionally
cause false alarms since the algorithm is not flexible enough to adapt to them.

The motivation for this section is to design an efficient collision detection system that can be
used with various brands of existing industrial robots without any external sensors or alterations to
robot’s control algorithms or mechanical design. In order to achieve better performance and
reliability, collision detection algorithm itself is implemented on a PC with permanent connection
with the robot’s controller. The following sections give special attention towards solving
implementation issues along with experimental validation on two robots from different brands. By
developing a collision detection algorithm for industrial robots with no such capabilities, the
intention is to minimize the risk and severity of potential injury to human workers, making a major
step towards fulfilling conditions for safety and coexistence.

3.2.1. Principal Design

This section is dedicated to presenting the principle on which this detection algorithm is
based on. As mentioned earlier, due to the increased complexity of the algorithm presented in this
section, the possibility of its full integration on robot’s controller is reduced for many brands
because of their closed architecture and lack of interface [12]. Therefore, it was decided to explore
benefits and performance of more complex collision detection algorithms by implementing them on
a PC which has permanent connection to the robot. In order to preserve versatility and brand-
independent applicability, it was decided to use Ethernet TCP/IP connection, since it is a
standardized and widely available communication connection type.

The overall structure and behaviour of the collision detection system is designed to be
simple in order to minimize reaction time and load on the robot side. Following descriptions aim to
illustrate the principal workings of the algorithm on a basis of a typical measurement
acquisition/collision detection cycle.

The robot performs its intended repetitive task. The background parallel procedure on the
robot sends measurements of values of interest for each joint to the algorithm operating on a PC.
Each measurement sent by the robot contains only one sample of current/torque for each robot joint.

The algorithm on the PC receives the measurement and uses it in accordance with one of the
two scenarios. If the reference is being formed, then the algorithm records a certain number of
measurements and uses them as the reference sequence. Otherwise, if the algorithm is actively
detecting collisions, then the measurements from the robot are used to form a measurement vector.
The measurement vector contains most recent and several preceding successive measurements.
Procedure on the PC then matches the measurement vector to the corresponding section of the
reference sequence. Using matched signals, collision detection rules decide whether the collision
occurred on any of the robot joints.

A signal indicating whether a collision was detected is sent from the PC back to the robot.
The robot stops its movement if the collision was detected. Otherwise, the robot sends new
measurement to the PC and entire cycle repeats. In case of failed communication, the robot will stop
as a safety precaution.
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Within the described structure of the collision detection algorithm, there are a few matters
implemented on the PC which deserve additional description.

The first aspect is related to the choice of reference signal. The background on which the
algorithm relies on is the reality that majority of robot tasks are repetitive. With robot operation
repeating in cycles, the intuitive choice of reference would be to exploit this fact. Signal values
from more than one cycle of robot operation can be recorded for each joint and used as a reference
signal. As mentioned earlier, if the reference signal is acquired during real operation of robot
performing its tasks, it brings important benefits. Most importantly, it incorporates the nominal
robot dynamics during the desired movement. In addition to that, external forces occurring during
payload manipulation, assembly or processing are intrinsically included in the recorded signal.
Finally, the signal includes potential influences of robot dynamics related to changes in robot
behaviour over time. It is important that the reference signal contains more than one cycle of
recorded repetitive robot movement. This ensures that the transition from one cycle of the repetitive
movement to another is also included in the reference. Another important, although intuitive note is
that no collision should occur during recording the reference signal. To detect collisions, reference
signal is compared with measurement vector which is periodically updated from the robot. The
measurement vector contains relevant signal values for each joint of the robot for several time
instants. The vector is formed of adequate number of signal samples and updated with new
measurements with first-in-first-out logic. Therefore, the measurement vector contains
measurements from a fraction of the repetitive movement of the robot.

As mentioned earlier, the reference sequence contains signal values more than one cycle of
repetitive movement. In order to compare it with measurement vector, it is needed to find a section
of reference signal which corresponds to the content of measurement vector. As described in
previous sections, the sampling frequencies of reference signal and measurement vector do not
necessarily need to be identical. To overcome this situation, a modification of Dynamic Time
Warping Algorithm (mDTW) was developed. It allows online matching of reference sequence and
measurement vector and enables application of collision detection rules.

Collisions of robot are identified based on two detection rules. Matched signals are
compared, and if either of the two detection rules is triggered, a signal is immediately sent to the
robot to stop the movement. Thresholds for decision rules are set based on statistical analysis of the
measurements without collisions.

With regards to the collision reaction strategy, various options are available. Strategies
include stopping the robot, performing reflex motion away from the direction of impact, going to
zero-gravity compliant mode or attempting partial completion of the task using redundant joints
while trying to avoid further contact [9], [44], [4], [19], [10], [12]. Although fully recognizing the
benefit of refined collision reaction strategies, the focusof further elaboration is more on reliable
detection and its applicability across various brands. As such, the algorithm proposed in this section
employs stopping upon detected impact as the simplest reaction strategy which is also available on
vast majority of robot brands and generations.

Although the developed mDTW presented in this section offers numerous benefits, there are
some limitations. A potential drawback of using mDTW is that it effectively limits the number of
samples which can be used for the reference sequence and measurement vector. While there are no
theoretical limitations of the proposed method related to the length of compared signals, there are
practical issues related to reaction time. For a collision detection, the reaction time needs to be as
short as possible. For mDTW, processing time depends directly on the number of samples in each
of the compared signals. Nevertheless, there are effective ways of managing this issue. Reducing
sampling frequency can reduce the number of samples in reference signal. If handled responsibly,
this solution can reduce the computing time without loss of detection quality thanks to the nature of
mDTW. Additional solutions include parallel processing for different axis of the robot, as well as
changing hardware platform on which the algorithm is implemented. Although not affecting the
computation time, switching to a faster communication protocol can speed up the overall reaction
time.
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It is important to emphasize that the presented algorithm can work with current
measurements and torque measurements/estimates alike, making it highly versatile. The reason for
opting to present results with torque estimates, rather than current measurements, is purely to make
them easier to comprehend. Torques have a more physical manifestation, making them more
understandable. Additionally, measurements of joint current provided by Denso are in absolute
values, which means that graphs would not clearly illustrate the nature of the movement.

3.2.2. Modified Dynamic Time Warping

One of main contributions presented in this section is a modification of the Dynamic Time
Warping (DTW) algorithm. Similar to DTW, the proposed modification enables non-linear time
axis transformations to perform optimal matching of two signals. However, unlike DTW, the
proposed modification also enables optimal matching of one sequence with most similar section of
the other sequence, rather than comparing the two entire signals. The modification enables use of
DTW principles in online applications such as collision detection. Although there are variants of the
DTW which allow matching of certain sections of one signal to another signal [46], [47], no other
existing modification allows combination of such traits at the same time.

In early phases of algorithm development, various techniques were considered in order to
solve the issue of variability and inconsistencies of measurement signal sampling. Methods such as
EDIT [48] distances, was one of the first to be analysed, since it allowed for different lengths of
compared signals and some time-domain distortion. Regardless of its potential, it was abandoned
because of two main reasons. The most important drawback was that it allowed some values to be
deleted and/or added, which meant that values indicating collision could be missed due to nature of
the algorithm. This issue remained present to a similar extent also with similar techniques, such as
Hirschberg's algorithm [49] and Approximate string matching [48]. The second reason for
abandoning this approach was that it was intended for a finite set of values of compared signals,
such as in string comparison. This would require significant changes to the algorithm or introduce
value quantization related heuristics. Methods such as Partial Curve Mapping [50] and Discrete
Fréchet Distance [50] were also analysed due to their versatility. Nevertheless, the key drawback of
such methods was that they were intended for parametric curve comparison, rather than time series.

Dynamic Time Warping (DTW) [51] is a well-known method used to match signals with
different lengths and similar shape. It is widely considered as a reference for shape-based matching
of the signals in time series [52]. Consequently, it can also be used as a good measure of similarity
of two signals. It allows for contraction and/or dilatation of a signal in the time domain, and uses
matrices to find sequences of best matching pairs of samples from two signals a and b. By
definition, the matrix d based on which optimal pairs are determined is formed using rules (1)-(4):

d(1,1) =la(l) -bM)li=1j=1 (1)
d(1,j) = la() =b()I+d(1,j-1),i=11<j<n @)
d(i,1) = la(®) —bD)|+d(i—-11)1<i<mj=1 (3)

d(i,j) = la@® = b(D| +min(d(i - 1,j - 1,d(,j - 1),d(( - 1,)),1<isml<jsn (4

In the aforementioned expressions, m and n stand for lengths of the first and the second
signal. In essence, rule (4) implies that d(i,j) carries the information about the minimal possible
accumulated absolute difference of all samples preceding and including i-th sample of signal a and
J-th sample of signal b. To achieve a minimal absolute difference, any sample of signal a can be
matched with multiple samples of signal b, as well as the opposite. This type of matching
effectively causes apparent signal contraction or dilatation. Rules (1)-(3) are only special cases of
rule (4), used to fill the starting field, first row and first column of matrix d. For the starting point,
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there are no preceding samples, so there is no other way to compute the field value, but the absolute
difference of first samples of both signals. For the first row, value of preceding element of the first
row is added to absolute difference of the first sample of signal a and j-th sample of signal b.
Analogue logic is applicable for rule (3) and forming values of the first column of matrix d.
Effectively, rules (1)-(4) force the algorithm to start from the first element of the matrix d because it
has the lowest possible value.

Best matching pairs within the matrix d are found using rules described with (5)-(7), starting
from the last sample of both sequences d(m,n).

min(d(i —1,j - 1),d(i,j —1),d(i - 1,))),i #1,j #1 (5)
d@i,j—1),i=1j#1 (6)
di—1,/),i#1,j=1 @)

Rule (5) implies that the search for the optimally matched pairs starts from the element
d(m,n), and looks for the minimal value among all neighbouring preceding elements. The search
does not allow going back, preserving the order of samples and therefore the causality in matching.
In case first row or first column is reached during the search, the search is directed towards the first
element, belonging to beginning of both signals, according to rules (6) and (7). The matching is
finished when the d(1,1) is reached.

It is possible to notice that the search supposes that the beginning and the end of both signals
are common. One more important property of DTW is that it does not allow skipping of any
samples. The two aforementioned observations lead to the conclusion that the contents, or shapes,
of the compared signals needs to be similar in order to successfully perform matching. In other
words, it is not possible to take a subsequence of one signal and find the best matching section of
the other signal.

The fact that DTW can only be used to match sequences with same shape i.e., content means
that it cannot be used for online collision detection, as it would only be able to detect collision after
the entire sequence has been recorded. Solutions proposed and described in [53] offer increase in
speed and a modified measure of dissimilarity of compared signals. However, they are still not
suitable for application in collision detection, as they presume the same starting and ending point of
compared signals. Some research has also gone into reducing calculation speed by implementation
on different platforms and some early pruning [54], but this type of research is not a subject of this
research.

Some modifications of DTW were proposed to enable partial matching of signals. However,
they require either beginning or the end of the signal to match [46], [47], or allow skipping some
samples, such as in Minimal Variance Matching [55]. In collision detection application, skipping
some samples is unacceptable, because the algorithm could potentially skip samples which indicate
collision. On the other side, it is possible to implement an algorithm which requires only matching
of beginnings of the two signals. In this case, the signal matching would be re-initiated with a
trigger signal at the beginning of each new cycle of robot’s movement. However, as length of
measurement increases over time, so does the matrix, and the time needed for matching, making the
algorithm increasingly ineffective and unreliable over duration of one movement cycle. Another
solution [46], [47], which allows a partial matching of signals to occur does so effectively, but
allows both signals to be trimmed from either end, which is not acceptable in application in
collision detection as those sections might contain important samples indicating collision.

In addition to aforementioned issues related to implementation of DTW in collision
detection, there are also some other aspects to consider. One of the biggest issues related to DTW is
the computation time which depends on the lengths of matched signals. While it is not an issue in
offline applications, processing time is very important for timely collision detection, and it needs to
be considered.

27



The presented modification of DTW enables matching a subsequence of any signal with
corresponding section of the entire sequence. In particular case, it enables matching of set of
measurements from the robot with previously acquired reference sequence of current/torque. The
impact is that this modification enables online implementation of DTW - mDTW, and thus implies
that mMDTW can be used in collision detection. Additional benefit originates from the fact that one
of the signals can be significantly shorter than the other. This fact offers possibility for significant
reduction in computing time, making it even more suitable for collision detection application.

The proposed modification modifies the rules (1)-(4) for forming the matrix d with rules (8)-
(12).

d(1,)) = la(1) = b()| + min(la(2) — b + D, 1a(2) —=b()l, la(1) = b+ DD, i=1jj#n (8
d(1,n) =la(1) —b(M)| +|a(2) —bM)|,i=1j=n (9)

d(i,1) = la@)) —b(D|+d(i-1,1)1<i<mj=1 (10)

d(i,j) = la(@) — b()| + min(d(i —1,j — 1),d(i,j — 1),d(i—1,j)),1<i<ml1<j<n  (11)

Rules (8)-(11) introduce difference in calculating matrix d. Rule (8) implies that all elements
in the first row of matrix d are calculated based on absolute difference between the first sample of
signal a and the j-th sample of signal b increased by a minimal absolute difference of any of the
neighbouring succeeding samples. This ensures causality as well as that all elements in the first row
have a chance to be the end point of the search. The search no longer has to end with d(1,1), but
rather any element in the first row. This means that signal a, which is supposedly subsequence of
signal b, can start at any sample of signal b. Rule (9) is a special case of rule (8) which ensures the
consistency for the search algorithm. Rules (10) and (11) are the same as rules (3) and (4)
respectively, and they ensure causality.

The search for optimal pairs starts from the element with minimal value in last row of the
matrix, min(d(m.,j)), 1<j<n. The search continues with finding the minimum of preceding values as
described with (12)-(13), and stops immediately when the first row of the matrix is reached.

min(d(i—1,j = 1),d@,j - 1),di-17)),i #1,j#1 (12)
di—-1,j),i#1j=1 (13)

Since values increase monotonically with an increase of row and/or column number, the
algorithm inherently ensures that the minimal value in the last row is the optimal starting point for
the search. Modifications (8)-(11) ensure that each field in every row and/or column but the first
row includes information about the minimal sum of deviations before it, making sure that optimal
path to that particular point can be traced back to the first row.

The proposed mDTW method enables effective application in collision detection. A set of m
consecutive measurements (measurement vector) with first-in-first-out logic can be compared to a
subsequence of the reference sequence with n values. In this thesis, a reference signal to which all
other signals are compared is called the reference sequence. The reference sequence is compared
with a signal called measurement vector, as in a real application, it represents a set of m consecutive
measurements received from the robot. The reference sequence remains constant during the
collision detection. Measurement vector is formed from m consecutive samples which are updated
in each detection cycle. The movement of the robot is periodical, and as a consequence of that, so
are the measurement vectors, which represent a section of repetitive movement. This ensures that
signals do not change without bound over time in nominal operation of the robot. The only time the
vector can deviate is when a collision occurs, which is not a regular occasion.
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For simulation purposes, measurement vector is formed using a window of m samples
moving across signal referred to as measurement sequence. Section of the reference sequence to
which the measurement vector was matched is called reference subsequence. Graphs presented on
Figure 13 show values of d matrix of mDTW, measurement vector matched with reference
subsequence, highlighted section of reference sequence representing reference subsequence and
section of the measurement sequence from which the measurement vector was formed. In a real
application, from the implementation point of view, initial set of measurements can be formed as a
vector of m identical values of the first obtained measurement and filled with new values as they are
received from the robot. At the beginning, until m samples are received from the robot, any
identical values will be compressed and matched with a single value from the reference sequence,
and all following samples will be matched with their best matching values from the reference
sequence, as it is illustrated on Figure 14.
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Figure 13. Signals matching performed by modified DTW (mDTW) [14]. (upper left) Values of matrix used for optimal
matching. Optimally matched pairs of signals correspond to the lowest sections of the surface. (upper right) Two
matched signals - blue signal corresponds to the section of the reference signal, while the red represents the
measurement vector received from the robot. (lower left) The signal which shows from which section of a measurement
sequence the measurement vector was taken. (lower right) The signal shows which section of the reference sequence
was matched with the measurement vector.
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Figure 14. Two instants during formation of the 30 samples long measurement vector [14]. (upper left) Initially, all
values in the measurement vector are the same and equal to the first measured value received from the robot, Therefore,
they are matched with single value of the reference sequence. (upper right) Point of the reference sequence paired with
the measurement vector. (lower left) Measurement vector shown in blue colour is partially updated with new values
upon receiving them from the robot, while initial values are still present at the beginning of the vector. The new vector
is matched with the most similar section of the reference signal, shown in red after each new measurement is received.
Although measurement vector has 30 samples, the matching process has dilated it to 46 samples to perform optimal
matching. (lower right) The section of the reference sequence to which the updated measurement vector was matched.
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Similar to the solution described in [53], [52], the presented modification limits the signal
lengths, and consequently the computational complexity, by using constant lengths of the reference
sequence and of the measurement vector. However, the proposed modification allows for two key
advantages which are important for collision detection application. The first advantage is the
possibility to perform matching one signal to a most similar part of the other signal, which enables
online application in collision detection. The second advantage is that, unlike [55], mDTW method
does not allow skipping of samples, which prevents missing a collision. With all aforementioned
said, it is important to note that the computation time mDTW still depends on the lengths of signals.
However, this property, inherited from the original DTW, is much less prominent. Recently
published work [52] also presents techniques which limit computational requirements, such as
incremental computation and restrictions of search region. While incremental computation is a big
step in reducing the computational complexity, it is not applicable in the specific application of
collision detection without modifications, since it assumes that the beginning and the end of
compared signals is the same.

3.2.3. Decision Rules and Thresholds for Collision Detection

In the proposed approach, decision-making rules which determine whether the collision has
occurred or not, were derived from statistical analysis of the signal. As a result of the analysis of
signals previously matched with mDTW, two complementary decision-making rules were designed.

The first rule was derived from the most intuitive feature of signal matching after
application of mDTW, and that is the absolute deviation of a sample from its pair. For each joint of
the robot, statistical analysis was performed on a set of more than 500 cycles of repetitive motion in
order to determine the maximum permissible deviations of signals without collision. The set limits
also determine what will be the minimum detectable collision. The limits are set as the first integer
value higher than the 3¢ value calculated from samples which did not belong to a collision,
similarly as implemented in [12]. After the absolute values of permissible deviations were set for
each joint, the rule was applied as a first and the faster form of detection. During matching of
sequences samples, the search for optimal pairs is started from the last row of the matrix, which
means that the most recent measurement is matched first. If the minimal value of deviation for the
most recent measurement sample is bigger than the set threshold for the corresponding joint, the
collision is indicated, and the robot is stopped, with minimal reaction time. Two examples
demonstrating the first rule being inactive and active are shown in Figure 15.
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Figure 15. Matched signals on 2" axis of the robot [14]. (upper left) Section of the reference signal matched with the
measurement vector without collisions as well as signal thresholds imposed by the first rule. (upper right) Subsequence
of the reference signal to which the measurement from the upper left picture vector was paired and thresholds set by the
first rule. (lower left) A measurement vector which was paired with the most similar subsequence of the reference
signal. The sample belonging to the collision is over the upper threshold. (lower right) Subsequence of the reference
signal which was most similar to the measurement vector.
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The second decision rule complements the first one and increases the reliability of collision
detection. It is best illustrated when relative dependency of matched pairs is observed, as depicted
on Figure 16. Since matched pairs have similar values, their dependency on sigl-sig2 plane is
approximately linear. The direction of the line fitted to paired samples approximately corresponds
to the direction of main Eigen vector of the covariance matrix of all matched samples. The direction
of the second Eigen vector corresponds to the dissipation of samples from the main Eigen vector
direction. Consequently, intensity of the second vector, or the second Eigen value, can be used as a
reliable measure of how well the samples have been matched. Samples which have not been
matched properly, will contribute to the noticeable increase of the second Eigen value even if the
absolute difference is not significant. By performing a statistical analysis of the signals without
collision for each joint, it is possible to determine limits for this decision-making rule. Thresholds
for this rule were derived from the statistical analysis and set to values 20% higher than the highest
second Eigen value during operation without collision. Unlike the first rule, which is related to the
absolute difference between last pair of matched samples, the second rule is related to the square
value of the maximum difference between any pair of matched samples. This means that the second
rule has a more restrictive threshold, meaning it is more sensitive to collisions. This rule also
observes the entire sequence, so any potential collision has potential to be visible for at least the
number of cycles equal to the length of the measurement vector, drastically reducing the possibility
of missed collision.

The two described rules observe different aspects of the matched signals and complement
each other to drastically reduce the chance of a missed collision. The first rule focuses on only the
most recent matched sample in order to react promptly before the complete matching is performed.
It is therefore especially sensitive to higher intensity collisions. The duration of the collision does
not affect the quality of detection for the first rule, since it only observes the last matched sample.
The second rule is more sensitive to short impacts, and transients from nominal behaviour to
collision. While each rule independently has its own benefits, the highest performance in collision
detection is reached when they are used simultaneously.
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Figure 16. Illustration of the Eigen values rule [14]. (left) Approximately linear distribution of paired samples without
collision on sigl-sig2 plane. Higher intensity Eigen vector approximately corresponds to the line fitted to the
measurements. The lower intensity Eigen vector is a measure of dissipation of sample pairs along direction orthogonal
to the higher intensity vector, and it is used to identify collisions in the second rule. (right) Sigl-sig2 plane with
indicated collision marked with the red circle which is out of the threshold indicated with a red dashed line. The
collision sample influenced the orientation of Eigen vectors and increased intensity of the lower intensity Eigen vector.
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3.2.4. Experimental Results and Discussion

The performance of the algorithm was tested in two main phases. The first phase of testing
was performed offline, on a PC, with a large number of recorded measurements. The goal of offline
testing was to validate mDTW, decision rules as well as communication and interfacing programs
on the part of the collision detection algorithm implemented on the PC. The second phase of testing
was done with a real robot with a running collision detection algorithm, and its goal was to
experimentally validate the performance of the collision detection algorithm.

Current-based torque estimations can be obtained in majority of robots directly, and the
presented algorithm is analysed and tested based on the torque estimations. The results are validated
for two different robot brands (Denso and ABB) using current-based torque estimation. Since
torque estimates are obtained directly from the robot, as if they were real measurements, they will
be referred to as torque estimations. For Denso robot, torque measurements range from -100% to
100% of permissible torque in each joint, and all graphs based on measurements on this brand will
be presented in these limits. Graphs from ABB robot are shown with real torque values, and all
measurements and results related to this brand will be presented in absolute values.

During implementation, two routines were designed for part of the algorithm implemented
on the PC. The first routine is very simple, since its only task is to record the movement of the robot
with high sampling frequency. The reason for this is to capture the shape of signal from the
movement cycle with high level of details. The higher sampling frequency is a reason why the
reference signal is also recorded using this routine. During recording of the reference signal, no
collisions should be allowed.

Set of sequences used in offline testing was recorded with the first routine to provide greater
flexibility for testing. Additionally, sequences recorded this way enable better understanding the
influence of different sampling times to interpretation of signal features and detection of collisions.
Some sequences were recorded with and some without collisions, so that different aspects of
algorithm performance can be evaluated.

The second routine is used for online collision detection, and it is more complex. Due to its
complexity, it requires a longer execution time. The robot samples its movement once per cycle of
PC program execution, while executing collision detection routine. Therefore, the sampling
frequency of the second routine will be lower than with the first routine, which is used for reference
acquisition only.

Sequences used in the online part of testing were recorded with the second routine, which is
used for collision detection in the online loop. Therefore, they realistically illustrate the quality of
online collision detection. Similar to the offline part of testing some of the used sequences were
recorded with and some without collision, in order to verify the performance of the algorithm,

The discussion part of this section summarises results from both offline and online testing. It
also comments the benefits and drawbacks of the algorithm concept as well as of decision rules.

Offline Testing

The presented collision detection algorithm relies on optimal matching of a reference
sequence with a recorded vector of measurements. Therefore, the first part of offline testing was
performed on mDTW to check for any mismatching of samples. The target is to receive a vector of
m measurements from the robot and match it optimally with the most similar subsequence of the
previously recorded reference sequence of torque signal. To perform this type of test, reference and
measurement sequences were both emulated — selected from the previously recorded sequences.

To form a measurement sequence, a sequence was chosen from the set of previously
recorded sequences. In order to emulate a measurement vector, a window of m samples was taken
from the measurement sequence. This window was selected by moving for 1 sample along the
measurement sequence in every cycle of matching, just as the measurement vector would be
updated with one new measurement in each new cycle in realistic situation. Similarly, for reference
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sequence, any sequence can be chosen from a set of previously recorded sequences which do not
contain any collisions.

In order to verify the concept of the mDTW, at the beginning, the reference and
measurement sequences were the same signal. For the same sequences, the zero matching error
proved the concept without exceptions. In part of the experiment that followed, the same test was
repeated by using a different measurement sequence. The result of the second part of mDTW testing
proved the optimal matching regardless of whether the measurement sequence was taken from the
set of measurements recorded with or without collision. Figure 17 depicts two examples of mDTW
testing with different measurement sequences — one with collision and one without collision.

Another phase of mDTW testing was conducted to verify the performance of matching
signals recorded with different sampling time. The measurement sequence was re-sampled with up
to 3 times higher and lower frequency, as well as non-integer multiples of original frequencies.
Results have shown that the matching of samples was performed optimally, regardless of the
differences between sampling times. An example of testing with various sampling times is shown in
Figure 18. The results have also shown that the matching error increased with the difference in
sampling times. However, these results were in accordance with expectations, since significantly
different sampling frequencies mean that one sample of one sequence needs to be paired with
several samples of the other sequence, all of which have different values, contributing to the
cumulative matching error.
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Figure 17. Testing of modified DTW, example on the 3" axis [14]. (upper left) Measurement vector matched to the
subsequence of the reference sequence. (upper middle) Matched subsequence of the reference sequence. (upper right)
Portion of measurement sequence from which the measurement vector was formed. (lower left) Measurement vector
taken from a sequence with collision and mached with most similar subsequence of the reference equence. (lower
middle) Subsequence of reference sequence which was matched. (lower right) Portion of the measurement sequence
used to form the measurement vector.
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Figure 18. Influence of sampling frequency on the quality of matching on the 4™ axis [14]. (upper row) Reference
sequence sampled at 3 times lower frequency compared to measurement sequence. (middle row) Reference sequence
sampled at the same frequency as measurement sequence. (lower row) Reference sequence sampled at 3 times higher
frequency compared to measurement sequence. (left column) Matched samples of measurement vector and reference
subsequence with different sampling time. (middle column) Subsequence of the reference sequence to which the
measurement vector was matched. (right column) Same section of the measurement sequence was used to form the
measurement vector in all three cases.

The second part of offline testing was performed to validate the two collision detection
rules. The results from offline testing of individual and combined use of collision detection rules are
shown in Table 3. The first collision detection rule testing was to check the rule which considers
absolute value of the difference between matched samples. As mentioned earlier, the purpose of this
decision rule is to make prompt identifications of collisions. The measurement vector was obtained
in a previously described manner, and the deviation of the last matched pair was observed. The set
of measurement sequences used in this phase of testing was not the same set which was used for
statistical analysis of the signal. Based on the previous statistical analysis, the limit for each axis of
the robot was set to a value as described in the previous section. With limits set by the statistics, this
decision rule has successfully detected all major collisions. One detection example using the first
rule is shown in Figure 19, while the statistical analysis of the first detection rule can be seen in
Table 3.
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Figure 19. Example of the first rule application on the 1% robot axis [14]. (left) Sample of measurement vector has
crossed the threshold, triggering the collision detection. (middle) Subsequence of the reference to which the
measurement vector was matched. (right) Portion of the measurement sequence used to form the measurement vector.
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Table 3 Statistical results from the offline testing. [14]

Collision not Detected Collision Detected
Rule 1 Rule 2 Combined Rulel Rule 2 Combined

Sequences without collision  99.73% 98.92% 98.66%  0.27% 1.07% 1.34 %
Sequences with collision 5.63% 17.50 % 0% 94.37% 82.50 % 100 %

The second collision detection decision rule relies on the distribution of mutual dependence
of matched samples. By observing the value of second Eigen value, the overall measure of the
matching success is considered. The sensitivity of this decision rule is higher, as a single value
which clearly indicates a collision contributes to the rise of Eigen value significantly. Results have
shown that this algorithm has classified collisions with lower corresponding tolerance to absolute
differences than the first rule. More details related to the performance of the second rule are
presented in Table 3. However, the complexity of the processing behind this rule caused slightly
longer times needed to identify the collision than the first rule. During several tests, it was shown
that the same collision takes about 10%-30% more time than the first rule (e.g., the first rule took
approximately 0.05 s for collision detection while, the second rule took 0.055 s to 0.65 s to identify
the collision). Figure 20 demonstrates a particular situation in which the second decision rule
managed to identify the collision one cycle before the first rule was activated due to higher
sensitivity. Figure 21 shows that the collision would be detected also by the first rule, but one cycle
after the second rule was activated. With regards to reaction times, this is very significant, and
although such situations are not common, they are very important.
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Figure 20. Example of the second rule application on 4™ robot axis in moment when the first rule was not yet
triggered[12]. (upper left) Sample of measurement vector has not yet crossed the threshold of first rule. (upper right)
Subsequence of the reference to which the measurement vector was matched. (lower left) Portion of the measurement
sequence used to form the measurement vector. (lower right) Sample after which the second rule was triggered because
it was bigger than the threshold, shown in red dashed line.
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Figure 21. Example of the first rule being triggered for collision on the 4™ robot axis one sample after collision was
detected by second rule[12]. (upper left) Sample of measurement vector has crossed the threshold of the first rule after
one sample more compared to the moment shown on Figure 20. (upper right) Subsequence of the reference to which the
measurement vector was matched. (lower left) Portion of the measurement sequence used to form the measurement
vector. (lower right) Samples after which the second rule was triggered because it was bigger than the threshold.

Online Testing

Online testing was conducted with 2 robots of different brands in order to verify the versatility
and implementability of the algorithm. During the development phase of the algorithm, Denso VP-
6242 6-axis industrial robot was used, and all tests and statistical analysis were made using
measurements from this particular model. However, every aspect of online testing was additionally
performed on ABB IRB120 6-axis industrial robot. In each test, the robot was connected with the
PC and communication was established over Ethernet. Robots used for experimental validation are
shown in Figure 22. Videos of online testing are available on https://youtu.be/gEysgZhN7YO0 for
Denso and on https://youtu.be/ SXtQOEJM | for ABB robot.

Figure 22. Robots used in experimental validation[12]. (left) Denso VP-6242 robot used of offline and online testing.
(right) ABB IRB120 robot which was used in online testing.
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For each robot, a robot routine was designed to start automatically after switching the robot
to automatic mode of program execution and to run in background of the main robot program. The
task of this routine is to send a string containing values of torques from each axis and receive a
value of 0 or 1 from the PC. The values indicate whether the robot is running normally, or the
collision is detected. If the collision is detected, the movement of the robot is stopped, and it
remains in this state until the return value changes to 0. As a safety measure, if the connection to the
PC is lost, or if the return value is not received from the robot, the routine will stop the robot
immediately. All the movements as well as all other programs and functions of the robot are
programmed in an unmodified manner.

The main goal of the online testing was to check the performance of the algorithm in real
exploitation. In particular, three aspects were observed as the most important — absence of missed
collisions detection, collision detection time and absence of false detections.

Firstly, it was important to check whether a real collision will be detected, since it is the
main purpose of the algorithm. The robot was impacted with various forces, from different
directions, and with different impact durations. Results from online tests are shown in Table 2.
Figure 23 shows one example of a collision detected on the 4™ axis of Denso robot using the first
rule. Collision detection example on the 1% axis of Denso robot, in which only the second detection
rule was activated one cycle before the first rule detected it, is shown on Figure 24.
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Figure 23. Results from online collision detection on the 4" axis of Denso robot. (left) collision detected using
application of the first rule. (middle) Subsection of the reference sequence to which the measurement vector was
matched. (right) Section of measurement sequence used as measurement vector.
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Experimental results from online testing on ABB robot are shown in figures below. Figure
25 shows detection of a collision on the 1% axis of ABB robot, while Figure 26 shows detection of
the 3™ axis of the same robot.
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Figure 25. Results from online collision detection on ABB IRB120 robot, example from the 1% axis[12]. (left) Collision
detected using application of the first rule and matched signals. (middle) Subsequence of the reference sequence to
which the measurement vector was matched. (right) Section of measurement sequence used as a measurement vector.
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Figure 26. Results from online collision detection on ABB IRB120 robot, example on the 3™ axis [14]. (left) Collision
detected using application of the first rule on the 3 axis of the robot. (middle) Subsequence of the reference sequence
to which the measurement vector was matched. (right) Section of measurement sequence used as measurement vector.

The second most important aspect is the time needed for reaction to the collision, which was
tested together with the previous phase of testing. Although analytical dependence cannot be
derived, and reaction time depends on the hardware (robot controller and the PC), conclusions from
the extensive experimentation are listed. For a constant length of the reference sequence, the
reaction time depends on the length of the measurement vector and joint on which the collision was
detected. Reaction time increases with the length of the measurement vector, and with the number
of joints. For example, it means that collision will be detected faster if it influenced the second axis
than the fifth axis. The reason for the difference related to the affected joint, is that joints are tested
in sequence one after the other, and not in parallel. Despite all variations, during online testing, the
slowest reaction time was less than 0.1 s, while the fastest was 0.028 s. It is important to note that
reaction time also includes the communication time between the robot and the PC.

The third most important aspect is the absence of false identifications, and the results from
testing are shown in Table 4.

Table 4 Statistical results from the online testing [38]

Collision not Detected Collision Detected
Rule 1 Rule2 Combined Rulel Rule2  Combined

Sequences without collision  99.47% 97.92% 97.39% 053% 2.08% 2.61 %
Sequences with collision 18.86 % 7.55% 0 % 81.14% 92.45% 100 %
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Discussion

During the testing phase, all key indicators related to the performance of both mDTW and
decision rules were tested. Algorithm implementation aspects were also tested in terms of reliability
and reaction time.

The results from both offline and online testing have demonstrated that the proposed mDTW
performs well in both offline and in the online application. The mDTW is resilient to different
sampling times and non-linear time domain deviations. Therefore, it is suitable for online
application in collision detection. However, its biggest advantage may simultaneously be its biggest
reason for concern. Testing on a large sample, shown in Table 3 and Table 4, has shown a
significant number of missed collisions, when observed independently for each of the decision
rules. This fact has demonstrated that mDTW sometimes matches samples so well, that the sample
originating from a collision can be mistaken for a nominal operation sample. To prevent this
undesirable behaviour, the two implemented decision rules complement each other. Testing on a
large sample has shown that zero collisions were classified as nominal behaviour by both decision
rules at the same time. This ensures that missed collisions are highly unlikely when the two decision
rules are used in parallel.

When results from confusion matrices shown in Table 3 and Table 4 are observed, it is
noticeable that there is significant room for improvement. This particularly relates to the refinement
of decision rules in terms of their reliability in identifying real collisions. One aspect which has the
highest potential to significantly improve performance of existing rules is related to setting
thresholds. New rules for setting thresholds should rely not exclusively on the statistical analysis of
the signal and but allow for some smart adaptability. One of the ways in which this can be
implemented is the moving average and moving variance analysis performed on the sliding window
with length determined in accordance with the length of the measurement vector. This
implementation would allow higher sensitivity in regions where the dynamics and variance of
signals is lower and reduce the chance of false collision in regions with higher activity. For certain
applications, shifts in variance calculated in this way could potentially be used also as one of
thresholds for detecting collisions. There are also possibilities for designing completely new rules
and approaches or extending and improving existing ones. In all cases, complexity of the algorithm
should be carefully analysed with respect to processing, and consequently, reaction times.

Collision reaction times depend on algorithm complexity on robot and PC side, the time
needed for communication, and time needed for the robot to react to a detected collision. Part of the
algorithm implemented on the robot has a simple logic which is possible to implement on various
robots. The robot only needs to send a sample of measurements from each of its joints and receive a
signal indicating whether a collision has occurred. The communication is performed using Ethernet
TCP/IP, and there are limits to the time needed for this type of communication. Other
communication protocols can be used to further the collision reaction times.

However, the main concern related to collision reaction time is in the design of DTW and,
consequently, also mDTW. With increases in length of the reference signal and/or measurement
vector, the time needed to perform matching of signals also increases. The reason for the increase of
computing time is directly related to increases in dimensions of the matrix which needs to be
formed and searched to perform signal matching. The maximum length of the reference signal
depends on various implementation aspects, including sampling times and a hardware platform.
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3.3.Detection of intentional interactions

3.3.1. Principal idea

One important aspect of the proposed algorithm with mDTW that has not been addressed in
the previous sections is its potential for implementation of intentional interaction detection. Namely,
the logic behind the presented algorithm relying on mDTW is completely applicable in the field of
detecting intentional interactions. It was mentioned on several occasions that one of arguably the
biggest advantages of the non-model-based approaches is the inherent inclusion of the intentional
interactions in the algorithm itself. In the presented approaches, the influence of intentional
interactions was included in form of their influence on joint currents or torques. It was also
mentioned that model-based algorithms typically tend to solve the issue of external interaction
forces through integration of a force/torque sensors, although it is not always optimal or adequate.

With the aim of addressing these issues of model-based algorithms, the force-torque sensor
in the repetitive applications can effectively be replaced by implementation of the mDTW-based
algorithm. From the implementation point of view, there are no theoretical or practical limitations
for the presented algorithm to be used in a hybrid mode with a model-based collision detection
algorithm, and such possibility will be discussed in this section.

Since collision detection aspect is one of, if not the most important of interaction detection
algorithms, different profiles of intentional interaction-induced deviations from nominal values will
be compared with deviations caused by collisions in order to discuss the potential and limitations of
the proposed hybrid approach.

There are several possible implementation architectures for the hybrid interaction detection
algorithm. The principal idea of the algorithm discussed in this section is that the model-based
algorithm is in charge of estimating the expected values of the observed joint measurement, which
can be either current or torque. The difference between the estimated and measured values, called
deviation vector, would serve as the input to the non-model-based part of the algorithm. In the
proposed way, all intentional and desired non-modelled behaviour and dynamics of the system
would be possible to record using the non-model-based algorithm which would be able to use it as a
reference deviation sequence.

Given that the discussed field of application is still related to the tasks which repeat in cycles
in identical way, the deviations from the reference values caused by intentional interactions would
repeat as well. Consequently, the logic of the mDTW collision detection algorithm presented in the
section 3.2 would be applicable also in the field of detecting the intentional interactions.

During normal operation, the part of the algorithm based on mDTW would match the
deviation vector of measurement with the reference deviation sequence. The occasion in which
samples from the deviation vector cannot be successfully matched with the reference deviation
sequence would indicate an unintended interaction or collision and should trigger appropriate
response from the algorithm and the entire system.

The following sections are based on [56] and aim to examine the possibility for development
of the hybrid approach from the measurement point of view and discuss the implications they may
have on the applicability of the solution.
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3.3.2. Experiment description

This section intends to examine the effect of load and external forces on the torques of the
robot with experiments performed for different types of manipulation and assembly tasks. The
unmodelled influence originating from these tasks is compared with the effect of collisions on the
internal robot torques. To this end, for each task-related experiment, three cycles of measurements
were performed.

First, a torque profile was recorded from a robot executing movement needed to perform the
manipulation or assembly task, but without the load or object of assembly itself, so that all recorded
torques correspond to signals that would be generated by the optimal robot model which includes
only the dynamics of the robot itself.

The second cycle of measurements was recorded from the robot performing the
manipulation or assembly task with the load or object which needs to be assembled, therefore also
including the external forces related to the load or assembling process.

The third measurement cycle is similar to the first cycle since it was performed on a robot
performing its task without the load or assembly object. However, during third measurement cycle,
the robot was impacted with different intensities and durations.

With measurements from three cycles, it is possible to better understand the influence of
external forces on torques of the robot, and their difference from real impacts. Differences between
the second and the first cycle of measurements represent the nature of the deviations the mDTW-
based algorithm would receive. Based on the analysis of these deviations, it is possible to
understand how applicable they are in the scope of the hybrid approach due to their repeatability
and range of values. The difference between the third and the first cycle of measurements is useful
for comparison with the deviations from intentional interactions. Their comparative analysis is
useful for understanding how applicable and reliable a hybrid approach to interaction detection can
be.

Experiments were conducted on Denso VP-6242 6-axis industrial robot with 2 kg of
payload. The weight of the object which was manipulated is 1.5 kg, which is 75% of the specified
maximum load of the robot. For assembly tasks, the forces needed for the assembly process varied
from piece to piece. As mentioned earlier, since VP-6242 does not possess torque sensors, values
shown on graphs represent torque values estimated based on current measurements. Measurements
range from -100% to 100% of maximum permissible torque for each joint.

3.3.3. Manipulation task analysis

This section analyses the influence of load-related forces that occur during load
manipulation tasks. Related, but different tasks were analysed in order to identify possible issues
related to unmodelled load.

A movement shown on Figure 27was designed so that it combines pick and place /
palletizing and machine tending tasks into one sequence. The robot picks up the load from one of
four positions on the pallet, brings it close to the assumed loading position, changes the orientation
of the load, and loads it into the machine.

The pick and place / palletizing aspects of the task need to be observed together because of
their similarity. The pick and place part is the most interesting from the perspective of the analysis
of the repeatability of influence which load picking and releasing has on the torques of the robot
when the picking or placing position is the same. The palletizing, or rather de-palletizing aspect of
the robot task is interesting to analyse because of different distances requiring different joint
configurations.

The first and second pair of picking positions are symmetrical to the robot base which
enables examining the effect of load picking to the 2" and the 3™ axis of the robot since they
contribute the most to the vertical movement. For each pair, from the perspective of those two axes,
the movement is the same as if the picking was performed from the same point. However, the
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distance of second pair of picking points from the robot base is bigger, and it requires different joint
configuration. Since the placing point is the same, the effect the load releasing is expected to be the
same.

Results shown on Figure 27 confirm that the influence of unmodelled load is very similar
for first two picking points. Shape of deviation from the torque measurement without load is
repetitive, as well as the intensities of torque differences. Repeated tests from multiple
measurements confirm that the load influence on the 2" axis is predictable and repeatable. Similar
conclusion can be made for the second pair of picking points. The repeatability of the deviations
from intentional interaction implicates that there is a high potential for application of mDTW-based
algorithm for the detection of intentional interactions. However, due to increased distance of the
second pair of picking points, the difference in torque caused by the load is slightly higher than for
the first pair of picking points as on Figure 27(middle right). The difference in values caused by the
different distance from the robot’s base can be significant enough to trigger a false collision
detection, since the mDTW in the presented form is intended only for identical movements.
Releasing of the load caused changes which were also repetitive in intensity and shape resembling a
step pulse.
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Figure 27. Torque measurements during combined manipulation task [2]. (upper left) Torque measurements with and
without load and with collisions. The four segments when the load was picked from different positions are clearly
visible as deviations from measurements without load. (upper right) Deviations originating from load and collisions
show difference in nature. (middle left) The shown segments of measurements from five consecutive manipulation tasks
correspond to periods from when the load was picked from first picking point to the point it was released are repeatable
in shape and value. (middle right) Average torque measurements from points closer to the robot base show lower values
in sections related to the picking, compared to average torque measurements from those more distant from the base.
From the moment the load is close to the loading position, the averaged sections match in values. (lower left) Torque
measurements with load are clearly distinguishable from measurements without load from the moment the 41" axis starts
to move to change loading orientation. (lower right) Shape deviations of torque originating from the load are repetitive
and distinguishable from collision induced deviations.
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The machine tending aspect of the robot task is intended to use for analysis of the change of
flange orientation to the torque measurements. Unlike the pick and place and palletizing
experiments, flange is not oriented vertically downwards in this experiment. Orientation of the
flange is influenced by motors in last three axes, which generally have lower power, so the load
influence will be more noticeable on them.

Results from Figure 27 (lower left) and Figure 27 (lower right) show that the influence on
the 4" axis of the robot is significant, but only from the moment when the orientation of the flange
starts to change. With exception to some occurring peaks, the shape of deviation is related to the
change of the 4™ axis angle, with highest values being achieved at moments when the loading
orientation is reached, and slowly decreasing during the final approach to the loading position due
to movement of the 5™ axis. The conclusions made during the analysis of the 2" axis are also valid
here. Nevertheless, this example also indicates the influence of the change of the joint spatial
configuration has on the profile of deviation signal.

In all parts of the manipulation experiment, the influence of load was predictable and
repeatable in shape, making it distinguishable from the impacts in most cases when entire signal is
observed as it is visible on Figure 27 (upper right) and Figure 27 (lower right). However, the
difference between intensities of deviations caused by the load and by collision is not very big, and
occasional peaks make them more difficult to tell apart, especially if the distinction needs to be
made in matter of samples.

3.3.4. Assembly task analysis

Assembly tasks often require the robot to exert some force in order to join two parts. The
following examples analyse the influence of interaction forces during three different assembly
types.

Snap fit. Snap fit is a very common type of assembly process performed by robots.
Variations of this process can be found in different fields of industry, depending on the assembly
requirements. The experiment was conducted on pieces with annular snap fit, but derived
conclusions are applicable on any type of snap assembly.

The results from the testing are shown on Figure 28. The two peaks on the image originate
from two levels of latches and corresponding grooves. It is also noticeable that the second peak has
higher value, since the force needed to deform both levels of latches is higher than the force needed
to deform only the first level of latches. When the difference between signals recorded with and
without assembly object is compared, it is possible to notice that it resembles a peak belonging to an
impact. Repeated tests have shown that while the general shape of the torque is constant, slight
variations in the position of the assembly object affect the intensity of peaks. The profile of
deviations makes them unsuitable for the mDTW-based detection algorithm because the intensity
and shape make them difficult to distinguish, especially in short time. However, repetitiveness of
the tasks for which the proposed hybrid approach is intended enables additional information related
to periods in which the intentional interaction is expected. Therefore, a possible solution might be to
interpret all deviations outside this time period as unintentional contacts, i.e., collisions.
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Figure 28. Measurements from snap fit assembly [2]: (left) Torque measurements of robot operation with and without
object of assembly as well as with collisions. The double peak originated from two levels of latches and grooves of the
object of assembly. (upper right) Five consecutive measurements of assembly task show similar shape, but also
differences in intensities in some areas which are result of slight variations of position of the assembly object. (lower
right) The shape of the deviation originating from the assembly is similar both in shape and in intensity to the shape of
deviations originating from collisions and requires special attention.

Spring latch. This type of joining parts is present in applications where it is required to
have a good contact, but also allow for easy disassembly. In order to connect the pieces, it is first
needed to force the inserted part against a spring, and then move it to a position in which the
compressed spring will hold it in place. Assembly and disassembly were performed in a single
movement with a two second break between them.

Results on Figure 29 have shown significant influences on torque, most notably on the 5%
axis of the robot. Measurements signals with and without actual assembly piece show great
difference, both in assembly and disassembly movement. Although shapes of deviation are roughly
symmetrical, tests have shown some differences in intensities of torques exerted on the robot during
assembly and disassembly. While collisions with similar shape as parts of assembly induced
deviations have been recorded during testing, the overall shape makes them distinguishable from
collisions. In particular experiment, the spring induced high torque differences which greatly
surpass those of impacts. However, in general case, intensities of assembly and collision induced
deviations may happen to be very similar, making them more difficult to tell apart, implying that
reliability of mDTW algorithm application would need to be analysed on a specific case-based
analysis. Similar to the conclusion for the snap-fit assembly, addition of the period in which the
intentional interaction is expected would increase the reliability and applicability of the proposed
approach.
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Figure 29. Spring latch task results: [2] (upper left) Torques during assembly and disassembly movement. The
deviations originating from the assembly task greatly surpass those induced by collision. (upper right) Torque
measurements from 5 consecutive recordings show great similarity and repeatability. (lower left) Deviations induced by
assembly task and collisions. Assembly originating deviations show elements of symmetry, but with slightly different
intensities. Some collision deviations match sections of the deviations originating from assembly. (lower right)
Assembly torque deviation and mirrored disassembly deviation show elements of symmetry.

Screwing. Although commonly performed by screwing devices mounted on a robot as a
dedicated tool, many robots with unlimited rotation on the 6 axis are used in applications where a
part itself is screwed onto another part of the assembly, rather than two parts being fastened by a
screw. This is especially the case when a part needs to be rotated less than entire circle in order to
screw it in place. In this experiment, both screwing and unscrewing operations were performed and
analysed.

According to expectations, experimental results have shown that the biggest torque
difference is on the 6™ axis of the robot. The shape of deviation shown on Figure 30 resembles a
ramp signal profile, which corresponds to the nature of the process. In the particular case, the
difference can be distinguished from the real collisions due to its duration and intensity, as well as
its shape. However, it is possible to imagine that some screwing assemblies might require a higher
force. More importantly, collisions need to be identified as soon as possible, which means that
decision cannot wait for several samples to make the distinction. The unscrewing action resulted in
decrease in intensity of the torque originating from the unscrewing, as it can be seen on Figure 30
(right). However, the shape of deviation from the measurement without the assembly object has
maintained the same shape and nature as with the screwing process. Results from the analysis of
this type of assembly task imply that it would be possible to effectively implement the proposed
hybrid detection approach, since the mDTW algorithm would be able to distinguish between the
intentional and unintentional interactions, as long as there is an adequate difference in intensities.

5 Torque meas. from screwing assembly task Deviations of torques from meas. without assembly object
40
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Figure 30. Screwing assembly task [2]: (left) Torque measurements from screwing and unscrewing action resemble
ramp signals due to changing forces that act upon the 6™ axis. (right) Deviations of torques originating from the task
execution and collisions. Though sometimes similar in intensity, the shape of deviations is clearly distinguishable in
terms of shape.
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3.3.5. Discussion of results

The aim of this analysis was to examine the influence of unmodelled intentional external
forces on the quality of collision detection and their potential incorporation into a hybrid detection
approach with possibility to interpret intentional interactions. To that end, two types of applications
which regularly incorporate forces of different profiles and nature were chosen as typical examples.

Experiment with manipulation tasks was performed in a single experiment combining pick
and place/palletizing and machine tending tasks. Experiments have shown that the influence of the
unmodelled load-related forces has varying effect on the torque measurements depending mainly on
the position and orientation of robot flange and consequently the joints affected. This observation is
irrelevant for the application in strictly repetitive tasks, but it is one of the most important aspects
which will be addressed in the 4™ Chapter in which the identification while performing similar
movements is considered. It was shown that the disturbances in measurements with and without
load can easily be mistaken with collisions with regards to their intensity. However, with exception
to variations in intensity, it was shown that the shape of disturbances is repetitive, and that it does
not depend on the configuration of robot segments. The aforementioned is important because it
means that a disturbance of certain shape can potentially be excluded from being identified as
collisions. In [12] it was shown that intentional contact can be identified through use of low and
high pass filters with corresponding rules, which implies that influence of load-related disturbances
can potentially also be classified as intentional using similar principles with some modifications.
The main risk lays in the fact that collisions and unintentional disturbances need to be identified as
soon as possible, making it harder to enable processing time needed for avoiding misinterpretation
of intentional contacts. However, the processing and interpretation delay are much lower with the
approach in which mDTW is used to match deviation vector to the profile of the reference deviation
sequence.

Three types of assembly examples were used for experiments. Snap fit assembly example
has shown that profile of torque disturbances it generates has a high potential to be classified as a
collision. In particular test case, both the intensity and duration of the peaks in torque originating
from connecting two parts closely resemble those of a real collision. Furthermore, it was shown that
slight deviations of position of the assembly parts cause variations in intensity of force required to
join them. A potential solution to the problem of false identification can be in having higher
tolerances for collision detection in a limited time interval within the assembly cycle.
Unfortunately, such tolerance modification or introduction of the time interval for intentional
contact could lead to higher risks of faulty implementation, and potential missed detection of real
collision, so this issue deserves special attention.

Forces originating from spring latch assembly example have a high potential to be
misclassified, primarily due to their intensity. While shapes of disturbances induced by this
assembly type have repeatable profile in particular test, in general case it may depend on
positioning accuracy of the assembly parts and repeatability of the spring stiffness. As a general
conclusion on this example, the repeatability of the assembly process is the main factor influencing
whether forces in this type of assembly can reliably be interpreted as intentional, without risking
missing real collisions.

Assembly by screwing experiment has shown that the deviations from the measurements
from the robot without actual load are repetitive both in shape and in intensity. Although the
intensity of the torque deviation was not very significant in the performed experiment, in general
case the torques needed to apply can easily rise to much higher levels and be misclassified as
collisions. Nevertheless, with adequate positioning accuracy of the assembly parts, a solution can be
found to interpret forces during this type of assembly as intentional, in the proposed hybrid
approach architecture, or even as in [12].

As a general conclusion with regards to effect that unmodelled dynamics has on collision
detection, the experimental results have shown that influence of unmodelled intentional forces
should not be neglected. Failing to do so may lead to false collision detections, while simple

46



increase in detection thresholds may even lead to human injuries. It was shown that some types of
forces are predictable and repeatable in shape, making them easier to model and/or include into
collision detection algorithm in some other manner. Unfortunately, there are forces which are very
difficult to distinguish from the collision because of their shape and/or intensity.

Prompt and timely collision detection poses an additional challenge even for forces which
have been shown to be distinguishable from collisions as their correct classification may require
additional time for processing.

In a broader sense, varying and unmodelled external force influences have been examined
and dealt with in context of impedance control [57] [58], which can be one of directions to elaborate
on this topic in future.

Nevertheless, the analysis of deviation has shown that algorithms based on mDTW have
significant potential also for detection of intentional interactions when they are used to observe
deviations from the expected joint measurement values. To this end, their hybrid implementation
with model-based algorithms would make them a viable and potentially preferable alternative to
implementation of force/torque sensors. The biggest advantage over integration of force/torque
sensors at the tool flange is that they can detect collisions on all joints from the base of the robot to
the robot’s flange, and not only interactions that the tool has with the surroundings.

3.4.Chapter discussion

The intention of the presented approaches was to offer a collision detection algorithm as a
contribution towards safer workspace sharing and future collaboration between humans and
industrial robots without external sensors or open control architecture. Compared to most existing
methods, the previously presented collision detection algorithms are not based on a robot model.
Instead, they relay on the fact that vast majority of robot tasks are repetitive and uses measurements
from one cycle of task execution as reference values for all succeeding operation cycles. While this
concept offers lower flexibility compared to model-based approaches, it benefits from reduced
complexity and inherent inclusion of various aspects of the robot motion which are difficult to
model. These may include unknown weight and dynamic properties of part in manipulation tasks,
intentional contact forces during assembly, variable weight in dispensing applications, and many
other aspects which are either complex or time consuming to model.

The first realization of the algorithm for collision detection was intended for the integration
on the robot controller itself, as an attempt at reducing reaction time by avoiding time needed to
exchange data with another device. To overcome issues related to the uneven sampling, two
decision rules were set in place to cover regions with different signal dynamics. However, the way
in which the detection thresholds are determined is suboptimal, as it requires understanding the
reasoning behind the detection rules and some knowledge of signal analysis. The threshold setting
can be translated into an automatic procedure, but it would require larger recorded sequence sample,
which would affect the algorithm’s applicability on older versions of robots. For better reliability,
the algorithm was designed with inherent safety precautions. It works in background of all tasks
created by user and starts automatically by switching to mode for automatic task execution. It can
be protected from unauthorized access, and it stops the movement of the robot if the collision is
detected, regardless of the other programs. In order to run properly, i.e., to minimize number of
false collision identifications, it requires a triggering signal from the main robot program. However,
if this signal is omitted, the algorithm will not allow any motion of the robot, preventing injury or
damage.

Although it performed quite well, the algorithm implemented on the robot controller served
best as an introduction to the collision detection topic, and a solid base for designing a version
intended to be implemented on PC.
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The attention to designing an efficient and performant collision detection algorithm was
shifted to implementation on a PC permanently connected to the robot controller using standard
communication protocols. The reason for this was the increased complexity, which meant it could
no longer be fully implemented on controllers of robots with closed control architecture. However,
permanent connection to a PC or similar processing unit should not be an issue, having in mind
increased reliability and sensitivity.

As a corner stone for reliable collision detection, this approach presented a modification of
Dynamic Time Warping method (mDTW) which was used in order to overcome sampling
uncertainties imposed by the robot controller design. Compared to traditional DTW [51], it offers
two advantages of key importance for Collision detection application. Most importantly, unlike [51]
[53] [52], it allows matching signals with different content. That means that one signal can be
compared to a part of another signal with similar content or shape. This modification also allows the
online application of DTW, making it useable for the presented collision detection concept. At the
same time, the mDTW preserved the ability of DTW to optimally match signals by compressing or
dilating the time axis. Unlike some other proposed modifications of DTW [55], the mDTW does not
allow skipping samples. This ensured that the samples indicating a collision, or some other anomaly
cannot be neglected. The reduced length of compared signals enables shorter processing time,
without early pruning or other techniques proposed for speeding up DTW [54]. Unlike EDIT
distance [48], Hirschberg's algorithm [49] and Approximate string matching [48], the proposed
method is applicable in applications with infinite number of signal values, and it does not allow
skipping samples. Compared to other signal matching techniques, such as Partial Curve Mapping
[50]and Discrete Fréchet Distance [50], the mDTW is intended for application with time series.

Additional contributions are the two complementary decision rules. They rely on mDTW
matching ability to detect deviations from reference signal in terms of absolute difference and Eigen
values. While the idea to observe absolute differences between samples is not new, mDTW
matching allowed lowering detection thresholds. This increased the sensitivity of the algorithm and
allowed detection of lower intensity collisions. The rule based on Eigen values observed the
distribution of matched sample pairs, offering a new perspective and additional safety measure.

The proposed algorithm was intended for realistic application on various brands and
generations of industrial robots with closed control architecture. Therefore, signals which are most
commonly available from all robots, such as current and torque estimate, were used for the purpose
of detection. Throughout the Chapter, various aspects of the algorithm were considered and
designed with implementation in mind. The procedures for collision detection were designed to be
the least intrusive to the normal programming of the robot and to provide maximum safety. All
procedures, both on robot and on PC are fully automatic, and they require very low setup time. The
only intervention required from the user at setup, and/or after changing of the robot main movement
task, is to set correct IP address of the robot, and to initiate the procedure on PC.

In accordance with its intended purpose, the algorithm was also experimentally validated on
Denso VP 6242 and ABB IRB 120 6-axis industrial robots, and results were discussed from
reliability and implementability point of view. Conclusive results show that collisions are efficiently
detected even in the early stages of the algorithm development, and that safety within the shared
workspace is significantly improved.

Nonetheless, improvements on the algorithm itself can be made in reduction of reaction time
by improving existing or using more efficient calculation strategies for signal matching and focus
on improving the sensitivity of the algorithm even further. Examining the possibilities of
incremental computing, such as the one presented in [52], and its adaptation to the specifics of the
mDTW has a potential for great improvements in computational requirements and reaction speed.
One important field for improvement includes improving the flexibility of the algorithm and its
capability to adapt to a family of similar movements without having to re-set reference values. To
this end, solutions will be considered in the next Chapter.

The consideration related to the implementation of the mDTW-based collision detection in
the field of detection of intentional interactions has shown its potential for application in that field
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as well. Such implementation does require observation of the deviation from expected values,
which led to the conclusion that a hybrid approach, in which deviations would be generated based
on the experimented values of the model-based algorithm. Suggested approach would solve many
of the problems related to model-based algorithms and contact tasks or unmodelled dynamics.
Additionally, it would extend the field of application of mMDTW as a non-model-based algorithm.

The analysis of the representative contact tasks has shown that there are applications in
which such hybrid approach can be very successful, due to the differences of collision induced
deviations and those originating from the intentional interactions. More importantly, it has pointed
out tasks in which such distinctions cannot be made reliably, especially given the requirements for
short reaction times.

The downside of use of the mDTW-based intentional interactions detection are related to the
fact that it is limited to the identical repetition of the task, which narrows the field of application for
such approach. The possibilities for extending the application field of the mDTW-based algorithms
to movements which require different spatial relation of robot joints than those during the
representative referent movement are examined in the next Chapter.
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4. DETECTION WHILE PERFORMING SIMILAR TASKS

This Chapter aims to present strategies and solutions related to identification of interactions
while performing tasks which do not repeat in identical cycles but perform the same type of task
[59]. Compared to the movement or operation made during recording the reference sequence, these
tasks include movements and operations performed under different spatial relation of robot joints,
i.e., different joint configurations. This augmentation aims to offer a completely new quality to the
previously presented algorithms for collision detection, allowing them to be used under different
conditions to those when the reference sequence was formed. From the perspective of load
manipulation, rather than pick and place operations from and onto same positions, these tasks may
include palletizing or depalletizing operations, bin picking, camera-guided pick and place
operations, machine tending etc. From the processing tasks, examples may include riveting, drilling,
stamping, snap-fit assembly, bending and other operations which can be performed with different
orientations of the tool and joint configurations.

The aforementioned greatly extends the potential field of applications, but it requires
additional analysis and information from the robot controller. This information is primarily related
to understanding the joint spatial distribution and its influence on individual joints.

Additional and highly valuable benefit of the alteration proposed in this Chapter is related to
its extended possibility for implementation in field of detection of intentional interactions, in a
standalone or hybrid capacity. Therefore, the analysis in the following sections will be mostly
considered from the perspective of a hybrid approach in which only the deviations of the measured
signal from its nominal values is observed, as explained in the section 3.3.

4.1.Background idea and applications

Considerations from the introductory part of this Chapter and conclusions related to the
previously presented mDTW approach form the basis on which the approach and algorithm
presented in this Chapter are conceived. The approach will be designed to be implementable
without expert knowledge, to work without additional sensors, and to be platform independent. To
achieve these goals, it relies on previously developed algorithms for the identification of kinematic
parameters and, more importantly, for non-model-based collision detection. The most important
contribution presented in this Chapter will be in the augmentation of the modified Dynamic Time
Warping (mDTW) algorithm in the form of the inclusion of coefficients related to a kinematic
model of the robot. In this way, an entirely new dimension to the algorithm is added, enabling it to
respond to changes in spatial relation of robot joints and the effects that external contact forces have
on them.

All research and procedures relevant to the realization and implementation of the proposed
algorithm will be briefly overviewed to understand better the information required and the level of
automation it is possible to achieve, both of which are important aspects from the Industry 4.0
perspective. However, the focus will be on the fusion of this information to enable an effective and
reliable algorithm for the inclusion of contact task dynamics. To simplify the analysis, an industrial
robot with six revolute joints is considered, being the most common configuration, but all
conclusions are also valid for other robot configurations as well as robots with prismatic joints.

The starting assumption is that when a robot is performing a task that does not involve
contacts or changes in weight, values of all measurements that are available at each robot joint are
in accordance with nominal values, i.e., can be considered to be known based on a nominal model
of the robot or in some other shape or form. Contacts with the surroundings or changes in weight
cause deviations from these nominal values. The idea underlying the proposed approach and
algorithm is that these deviations reflect contact task dynamics and that their correct interpretation
can lead to the implicit inclusion of the unmodelled forces and torques that appear during contact
tasks.
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In this Chapter, deviations recorded while performing one representative example of the
contact task are referred to as a reference sequence. Deviations recorded during the operation of the
robot stored in a sequence with first-in-first-out logic will be referred to as the measurement vector.
The correct interpretation of the deviations in the measurement vector based on its comparison with
the reference sequence can indicate whether the deviation originates from an expected, desired
contact whose dynamics was not included in the nominal model or from some erroneous state or
condition.

As presented and discussed earlier, the mDTW enables matching the measurement vector to
a segment of the reference sequence as well as implementation in real time [53]. It also has the
advantage of implicitly including all dynamic events and phenomena without modelling or deep
understanding, since it observes joint events, which are consequences of task dynamics. However,
the drawback of mDTW is that it was designed to perform matching of signals while the robot
performs the movement in an identical or very similar way, maintaining a similar joint posture.
Periodic tasks that include such movement are very common, but in the general case and especially
in Industry 4.0 applications, a robot is expected to be more agile and adaptable to meet the needs of
the interconnected event-driven production environment. These requirements also relate to its
movement, meaning that the straightforward implementation of mDTW is no longer suitable in the
general case, since the movements for the same type of task may require significant changes in the
spatial relation of the robot’s joints. Differences in joint spatial relation dictate differences in effects
that contact forces have on individual joints, resulting in the different profiles of deviations that are
noticeable on a joint level. Supplementing mDTW with values related to the kinematic model of the
robot aims to solve these drawbacks, and to this end, the following sections describe procedures
used to identify kinematic model of the robot and its end-effector as well as the way in which these
parameters are introduced into mDTW.

4.2.1dentification of robot DH parameters

Starting from identifying robot Denavit-Hartemberg (DH) parameters from the base of the
robot to the flange to which the end effector can be attached, it is essential to note that it can be
performed in numerous ways, including manual calculations. However, the general approach of
algorithms in this thesis is to facilitate the implementation of the algorithm and reduce the chances
of errors wherever possible using automated procedures. To this end, this section aims to present an
approach to designing an automatic procedure for obtaining DH parameters of a robot with arbitrary
configuration. The approach is based on obtaining partial pose measurements, containing only the
positions of the point of interest, and using this information to perform a full body identification of
kinematic parameters.

Previous research [60], [61] [62] has described that an automatic procedure that moves the
individual axis while monitoring the position of the point of interest at the end effector can be used
to perform the identification of kinematic DH parameters of the robot, or some of their alternatives
[63]. The procedure can effectively extract relevant parameters for rotational and prismatic joints
alike, and therefore the configuration of the robot does not impose any applicability limitation. A
similar principle was later further elaborated [64] [65] with considerations regarding accuracy and
tools that can be used for its successful implementation in realistic environments.

Common to all the mentioned identification approaches is that the DH parameters are
calculated based on the trajectories that the observed point of interest has while the robot moves
each of its axes individually. In the case of rotational joints, the trajectory will be circular, and the
centre and orientation of the path will indicate the direction of the z axis of the observed current
joint. From the formed spatial directions of z axes for each joint, directions of other axes can be
calculated as well. In the case of non-parallel z joint axes, the common normal from the previous
towards the current direction of the z axis will determine the direction of the new x axis, and the
point of its intersection with the current z axis will determine the current coordinate origin.
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The approach to the identification presented in the following sections is based on [60] and it
introduces a different way of calculating parameters using only three measurement points per joint.
This approach enables complete definition of joint rotation axis based on analysis of two
measurement vectors and their bisectors, unlike method presented in [62] which uses fitting
measurements to the arc in order to determine the rotation centre. Furthermore, unlike in [62] the
directions of x and y axes of each joint are determined in accordance with DH convention for
facilitated further calculation of kinematic parameters. For better understanding, it additionally
differs from the [61] by its representation of vectors using direction and point, rather than Plucker
coordinates.

The benefit of using the aforementioned approach is that it is not restrictive regarding the
type of sensors that are used to determine the position of the observed point in some external
reference frame. The position can be measured directly as long as the accuracy and measurement
volume are not issues.

A theodolite or any other measurement sensor can be used. Another approach is to measure
the position indirectly, using joint encoder measurements and a built-in kinematics model all robots
use for direct kinematic tasks. For the purpose of performing the analysis in following sections, the
kinematic model was calculated using the coordinates of the TCP in the robot’s base frame, which
were provided by the robot’s controller based on the measurements of the joint encoders.

4.2.1. Denavit-Hartemberg notation

Starting from the notation on which the analysis and development of the approach is based,
this section offers a quick overview of the terms and notations used in the following discussion and
elaboration, illustrated on Figure 31.

In order to describe a relation between two joints with indexes i and i-1, i.e., coordinate
systems related to them, using D-H notation, two preconditions must be met [66]:

- axis x; is perpendicular to axis zi-1

- axis xi intersects axis zi-1.

For the base coordinate system, the z axis goes along rotation axis of the joint. The x axis
can be chosen in any suitable direction, as long as it is perpendicular to the z axis, and y axis is set
in such way that it forms a right-handed Cartesian coordinate system together with previously set x
and z axes.

For a joint with index i, z; axis is also set along its rotation axis. However, the x;i axis is
chosen in such way that it is positioned along the vector perpendicular to both z; axis and zi.1 axis of
previous joint, which is why it is also known as common normal.

Figure 31. Notation used for calculation of Denavit-Hartenberg parameters [66].

To Denavit and Hartenberg, the common normal served as the main geometrical concept
which enabled them to find a minimal representation [67]. This normal also represents the shortest
distance between axes zj and zi.1 The origin O; of coordinate system is located at the intersection of
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zi axis and the previously determined axis xi. The yi axis completes the right-handed Cartesian
coordinate system.

In order to match coordinate systems of two neighbouring joints with indexes i and i-1, a set
of two translations and two rotations was used. First, the coordinate system with index i-1 is
translated along axis zi.1 to the point where it intersects with axis xi. The distance of translation
represents parameter di. Second operation rotates the coordinate system with index i-1 until axis Xi-1
is aligned with axis xi. The angle of rotation is equal to parameter oj. The third step is to move the
coordinate system with index i-1 along axis x; until the origins Oj and Oi.1 match. Distance travelled
along x; axis is equal to parameter ai. The final step is to rotate coordinate system with index i-1
around axis x; until axes zj and zi.1 match. The angle of rotation represents parameter 6i.

All four steps of matching two coordinate systems can be described with set of four acquired
parameters 6, ai, di, and a;, and a homogenous transformation matrix (14) - (15) [66]:

{1 =Rot, , Trans, 4 Trans, , Rot, , (14)
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4.2.2. Obtaining Parameters

This section describes an algorithm that can be used in order to identify Denavit-Hartenberg
(DH) parameters. The concept is based on gathering partial pose measurements of a single point
attached onto robot's end effector. During the acquisition of measurements, the robot performs
elementary movements, and therefore it does not require any complex programming. Additionally,
this approach can be fully automatic. Although similar movement procedure is used by company
Scape Technologies to extract DH parameters from robot itself, the calculations are based on a
different concept and for different purposes. The following analysis is considered for a 6-axis robot
with revolute joints, but it is applicable to any other configuration as well.

The idea is to gather exactly the information which is needed to calculate DH parameters,
and that is the relative position and rotation angles between neighbouring axes.

Figure 32. Examples of robot movements and measured positions [60].

In order to perform measurement, it is needed to measure position of a point rigidly fixed to
the last segment of the robot. Let us name that point of interest as tracked point, or TP. The only
restriction to the position of TP is that it may not be located on the rotation axis of the last joint. The
restriction is imposed by the principle of the algorithm itself.

If the TP is not collinear with the axis of the rotation of the last joint, when rotation of that
particular joint occurs, the TP will have a circular trajectory, as shown on Figure 32. The rotational
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axis of the observed joint is parallel to the vector which is normal to the plane in which the
measurements are located and runs through the centre of the measurement circle.

It is possible to identify the needed values in numerous ways. However, having in mind the
restrictions that are often imposed by various factors including the construction of the robot,
measuring volume or accuracy of the measuring devices, robot surroundings etc., it is desirable to
keep in mind the applicability and implementation aspects of the solution. In order to define the two
defining aspects for the rotational axis, i.e., the direction and the point at the centre of the
measurement circle, an approach described in this section relies on the possession of measurements
in only three points per observed joint.

Let us assume that the three measurement points A, B and C located on the circular
trajectory of the TP after movement of a single joint were acquired as the first, the second and the
third measurement. In that case, vector product of vectors AB and BC would result in the vector
parallel to the joint rotation axis.

After normalization of this vector, the next step in defining the rotation axis is to specify the
point through which the rotation axis runs, i.e., the centre of the circle. The centre of the circle can
be defined as the point of intersection of the vectors AB, and BCy, bisecting the vectors AB and BC
respectively in the plane defined by the three non-collinear points A, B and C, as shown on Figure
33.

Although theoretically inevitable, due to the nature of the measurements, it is expected that
the bisecting vectors will not exactly intersect with each other, so the point of interest is actually the
point in which they are the closest. Having acquired the point of interest, it is possible to define the
exact joint rotation axis, which is by the definition of DH notation the z axis of the observed joint.

The procedure described for the last joint can be repeated for all joints, and once the
directions of all robot joints, i.e., all of their z axes have been calculated, it is possible to extract the
DH kinematic parameters of the entire robot.

Figure 33. Calculation of the joint rotation axis.

When points and direction vectors of z axis of two neighbouring joints i and i-1 are
observed, the shortest distance can be calculated as a vector connecting two points on axes, while
being perpendicular to both axes. This vector is also known as a common normal, and its length
represents parameter ai. Point of intersection of this vector with axis zi determines the origin of the
coordinate system of joint i, and its direction determines the direction of axis xi, which points away
from the previous joint.

In the case of parallel zi and zi.; axes, the direction of the x; axis is determined using identical
rules. However, since the number of the common normal is infinite, any convenient point can be
chosen as the current joint coordinate system origin. The yi coordinate axis is determined to
complete the right-handed Cartesian frame, forming the joint coordinate frame. The spatial relation
of all joint coordinate frames can then be used conventionally to determine kinematic parameters in
DH or any other notation.
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The distance between the coordinate origin Oi.1 of joint i-1 and point on zj1 closest to the
axis zj represents offset d;.

When coordinate origins have been matched, axes xi and xi1 lay in the same plane.
Therefore, the angle & can easily be calculated from scalar product of unit vectors ii and ii-t along X;
and xi-1 (16), respectively.

0; = arccos(i; - i;_1) (16)

After rotation of axis xj to match xi.1, the angle between z; and zi.1 can also be calculated
using scalar product of unit vectors ki and ki.1 along respective axes. Calculated angle represents
angle o (17).

a; = arccos(k; - k;_1) 17)

Calculated values form DH parameters for one set of joints, which can be incorporated into
homogenous transformation matrix (15). When values for all neighbouring joints have been
determined, the final transformation matrix is equal to product of all matrices (18).

n
HI' = Hfinal = nHii—l (18)
i=1

When final transformation matrix has been obtained, the model can be used to accurately
represent the real robot. Parameters «i , di and ai are constant in case of rotary joints, while 6; are
actually internal coordinates i, used to calculate the position of segments. While the described
procedure has been explained on example for robots with rotary joints, it is also applicable for
robots with linear axis with simple modifications.

If the robot has linear joints, there are a few differences, some of which simplify calculation.
One difference is that axis zj is set along the axis in which the linear joint moves. Value a; is
considered to be zero since it can be chosen arbitrarily. Axis Xi is set to be normal to the plane in
which z;j and zi1 lay, i.e., to be in direction of zi.1xz;, or the opposite direction. Axis yi is set so that it
forms a right-handed Cartesian coordinate system with x; and zi. Value d; is now internal coordinate
gi, and it is equal to zero at the point where O; and Oi.1 match. Parameters 6; and a; are constant in
case of a linear joint.

From the described procedure, it is possible to conclude that the approach can be applied for
any number and type of joints with single degree of freedom. Therefore, it can be used with any
given configuration of the robot, including external axes that may be used to extend its robot's
working range or to introduce redundancy, as long as they form a kinematic chain with robot itself.

4.2.3. Results and Discussion

Based on the previously described algorithm, parameters of Denso VP-6242 robot were
calculated. The measurements obtained from the robot controller in form of full-pose measurements
were calculated on the controller itself using its kinematics model using measurements from joint
positions/angles. This model used by the robot controller for forward kinematics calculations, and it
is commonly found on almost all industrial robots in use. Full-pose measurements include the
positions and orientations of the point in robot’s base coordinate system, but for calculations, only
the positions were used, while rotations about each of the axes were omitted during calculations.
The results of calculations is presented in Table 5.

This approach to calculation of DH parameters for the use within the KA-mDTW algorithm
IS very convenient, as it does not require any external sensors or equipment. Additional advantage
of the algorithm presented in this section is that it can accommodate for constrictions imposed by
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the physical design of the robot or its working environment. The former was most useful for the
application on this robot, as its 3" axis does not have the full range of motion, as mentioned earlier.
For that reason, the acquisition for all joints was performed in the configuration in which the 3
joint was at 90°. The consequence of this configuration are visible in Table 5, where @ for the 3'
joint is 90°. This however, is easily compensated by the algorithm by means of simple subtraction
performed when forward kinematics calculations are performed.

Table 5 Calculated spatial axis distribution and joint DH parameters

Calculated axis directions and relevant points Calculated DH parameters

zaxis  Cicrle centre (x,y,2) X axis Origin(x,y,z) af[mm] d[mm] a/°] O/

1stjoint (0,0, 1) (0, 0, 515) (1,0,0) 0,0,0) 0 280 90 180
2nd joint (0, 1, 0) (0, 0, 280) (-1,0,0) (0, 0, 280) 210 0 0 90
3rd joint (0, 1, 0) (0, 0, 490) 0,0,1) (0, 0, 490) 75 0 -90 0
4th joint (1,0, 0) (380, 0, 565) 0,0,1) (0, 0, 565) 0 210 90 0
5th joint  (0,1,0) (210, 0, 565) (0,0,1) (210, 0, 565) 0 0 90 180
6th joint (1,0, 0) (380, 0, 565) (0,0,-1) (210, 0, 565) 0 70 0 0

From the implementation point of view, the procedure is very simple, and it can be divided
into two main phases. The first phase is dedicated to the acquisition of measurements. The robot
needs to move only one joint for each set of measurements. Therefore, its program only needs to
move the arm in joint coordinates in certain angular increments. Angular increments and number of
samples in general depend on the physical capabilities of the robot and computational requirements
of the algorithm. Although only three non-collinear points are required to perform the algorithm in
the proposed way, it is recommended that they are chosen properly in order to cover widest range of
movement of each joint with adequate resolution. Robot - intended program is repeatable for each
joint, so one function can be reused, cutting down on programming time, and making it easier to
adapt for various brands of robots.

The second phase of model acquisition is the analysis of measurements and calculation of
DH parameters. Homogenous transformation greatly simplifies computation requirements, as it
reduces number of operations. Accurate acquisition of measurement points is one of most important
aspects of the algorithm since its quality directly or indirectly influences the accuracy of many other
values. Additionally, more samples generally result in better outcome. However, simply increasing
the number of samples while measuring them in limited range of joint's movement cannot bring
optimal results by itself. As mentioned before, measurements should be taken from entire range of
motion of one joint, in order to get more robust calculation.

It is possible to note that the described procedure only requires partial pose measurements,
i.e., positions of points in space. Orientation of points is not necessary for any of the calculations, as
all the needed information can be extracted from position of points.

4.3.1dentification of end-effector kinematic parameters

Robot Tool Centre Point (TCP) calibration is actually identification of its kinematic
parameters and it presents an ordinary task which needs to be carried out to enable robot to perform
any reasonable action with its end-effector, i.e., tool. Although repeatability of modern robotic
manipulators is satisfying, they still need an information about the TCP in relation to their
coordinate system. Besides manual method, robots can be calibrated in automated ways. The
following discussion about identification of TCP parameters is mostly based on [68] [69] and the
insights from designing the calibration unit [70].

One of the automated solutions is offered by ABB in form of BullsEye system [71].
Calibration unit resembles an arc with light beam generator and detector on its opposing ends.
During calibration process, robot moves the tool inside the calibration unit intersecting the light
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beam from different directions. Using this principle, 3-dimension TCP calibration can be
performed.

Further improvement in performance, but using same principle was done by LEONI. Their
advintec TCP-3D/5D unit is capable of up to 5-dimension TCP calibration. It uses two mutually
perpendicular infrared beams, enabling it to increase number of dimensions it can calibrate, or
decreasing the time and number of steps needed to perform calibration. Nevertheless, it still requires
several steps to perform all the measurements, which increases calibration time.

One computer vision solution is presented in [72]. It uses an USB camera connected to a
computer in order to acquire needed images. From those images, algorithms can perform a 6-
dimension TCP calibration. To increase accuracy of this method, an iterative procedure was
proposed by the author. While this approach offers a simple and affordable camera-based solution,
it does not eliminate the effect of external influences, like lighting conditions or dust. Additionally,
the algorithm looks for distinct points on the object, and can be confused when working with
rotation symmetric tools.

The objective of this section is to describe an innovative camera-based calibration solution.
Small area footprint and robust design of the calibration unit, explained in the following sections,
enable easy installation in industrial environment and prove that it is practically orientated.

The main idea behind this calibration approach is to simultaneously acquire images of the
tool from two orthogonal planes and use them to determine tool's orientation and TCP position.
Robot needs to introduce the tool into the image acquisition area of the calibration unit, after which
it will receive feedback in form of angular offsets in two planes from the reference tool orientation.
After correcting angular offsets, the robot will receive information about TCP position offsets in X,
y and z axis from the reference point in image acquisition area,.

Experimental validation section shows main observations based on initial test results. Data
shows successful angle and position measurements and prove that the calibration principle can
perform well with selected optics and hardware. However, it is noted that the best performance is
achieved when the robot tool is positioned closer to the centre of the image, where camera
distortion is least prominent.

It is concluded that presented principle offers a simple and reliable solution for up to 5-
dimension TCP calibration. It also provides great flexibility and significantly reduces calibration
and overall cycle time. This enables more frequent recalibration checks, which leads to higher
quality of product. It is also mentioned that the design might have potential application in Factories
of the Future. Conclusion also offers directions for further development and improvements.

4.3.1. Calibration Unit Design

In order to make the calibration unit suitable for industrial use, all the necessary components
are packed into a single unit. At the top of the unit an image acquisition area is located, in a form of
a box with open top from where the robot can introduce the tool. Two neighbouring vertical sides of
the box are used as background panels and remaining two sides are transparent to enable image
acquisition, as shown on Figure 34.

Background panels are illuminated with LED strips which can be triggered by camera. On
the transparent sides of the acquisition area, two mirrors, placed at 45 degrees were introduced into
system to reflect the image vertically downwards. As shown on Figure 35, cameras are positioned
pointing upwards towards mirrors, close to the bottom end of corresponding vertical sides of
calibration unit. By choosing this layout, small area footprint of the calibration unit was kept, while
increasing the distance between cameras and the observed object, thus decreasing image distortion
imposed by camera’s lens. Mirrors are placed in sealed chambers to prevent contamination by dust
or humidity. The camera used in the prototype is Basler acA2040-90uc USB 3.0 camera with the
CMOSIS CMV4000 CMOS sensor. It is capable of delivering 90 frames per second at 4 MP
resolution.
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Mirrors

—= Background
panels

LED strips
Figure 34. Image acquisition area with mirrors, background panels and LED strips. [68]
Power supply, fan-less PC, cables, and connectors are all located inside the calibration unit

casing. Cover can be removed from one corner of the casing to enable easy access to internal
components. The information about calibration unit is given in Table 6.

Image
acquisition
area

Fanless
PC

Cameras

Figure 35. Overall layout of the calibration unit with access cover removed. [68]

Table 6 Calibration unit information. [68]

Camera type Basler acA2040-90uc

Distance of camera from the

s 353 mm
acquisition area

External dimension of the unit

300 mm x 300 mm x 635 mm
(Ixw x h)

Dimension of image acquisition

95 mm x 95 mm x 80 mm
area (I xw x h)
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4.3.2. Calibration Principle

Calibration of robot TCP means providing the robot with information about position and
orientation of TCP in robot's coordinate system. Usually, it is required that provided information is
relative to the robot's flange. Coordinates of flange are available at any moment from the robot's
side, so what is really needed is only information about the position and orientation of the tool.

The main working principle for this calibration approach is based on acquiring images of the
robot tool from two orthogonal planes. With properly illuminated background, a dark contour of the
tool can be recognized by the pattern recognizing algorithm. From that point on, the calibration
algorithm has two steps. First, the angle between the current longitudinal axis of the tool and
previously referenced axis is measured on each image and forwarded to the control unit. If the
current angle measurement is not satisfactory, robot can use provided information to make
corrections in angle in order to match desired orientation. Second step is to measure the coordinates
of the TCP on both image planes. Measured position in then compared with position of one point in
space of image acquisition area, which represents desired position for the TCP. The offset between
those two points is sent to the robot's control unit, in order to move the tool into desired position.
Once the robot has guided the tool to match desired position and orientation, it remembers the
position of its flange. Since coordinates of desired position in camera acquisition area are known, as
well as coordinates of flange, parameters of the tool can easily be calculated and sent to the robot.
The following text will provide the more detailed elaboration of the processes in described
procedure.

The problem of identifying the tool and measuring the angle and position on the image is
assigned to National Instruments' Image processing software, and it is not the subject of this
discussion.

First issue needed to overcome is related with determining the angles of rotation. After the
images have been acquired, and angles on both images have been measured, it is needed to
determine the angles at which the tool must be rotated to reach desired orientation. Namely, out of
two measured angles, only one can be considered to be actual angle, in which case the second angle
is the consequence of perspective distortion. If the goal is to lead the robot tool into desired angular
position using two sequential rotations in corresponding image planes, then it is of crucial
importance to determine the exact value of both angles, excluding the perspective distortion.

Perspective distortion of one angle value is a result of the fact that one of the rotations is not
in plane that is parallel to the corresponding image plane. Let us consider that the measured angular
position of the tool is a result of two sequential rotations in mutually orthogonal planes.

As mentioned previously, planes of two images are also orthogonal. Suppose right-handed
Cartesian coordinate system is used, with its origin in TCP and with z axis pointing vertically
upwards. Further, let us consider that one image plane is parallel to xz plane, and the other is
parallel to yz plane, as shown on Figure 36.

Figure 36. Image coordinate system within image acquisition area. [68]
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Without losing generality, we can consider that the initial orientation of the tool is vertical,
and that it has length I. Supposing that the first rotation is about axis parallel to x axis, the angle of
rotation « is visible in yz plane, and the y axis projection of the object length, /'y is equal to (19):

'y =lsin(a) (19)

In xz plane, the object would appear vertical, but shorter than before rotation. If the rotation
angle about x axis is «, then the apparent height of the object in xz plane, [’, is equal to apparent
projection of the tool length to z axis /’; (20),

I'=10,=lcos(a) (20)

Next, the tool rotates at an angle f about y axis, and this action affects views in both planes.
In xz plane, the rotation angle appears to be g, and the length of the tool remains apparently
unchanged. In yz plane, the length of the object appears to be shorter. However, the y axis
projection is unaffected, as written in (21). The z axis projection of the length after second rotation
is equal to (22).
— l’

I (21)

y y

I'",=10U,cos(B) =1lcos(a)cos(B) (22)

It is now clear that the apparent angle in yz plane is also affected by the second rotation, it is
now bigger than «, and it is equal to (23):

lll

sin(a
a' = arctan <l> = arctan( (2 )

cos(a) cos(f) 23)

n
Iz

Angles that would be seen by the pattern recognition algorithm are o’ in yz plane and £ in xz
plane. The angle of second rotation remained unaffected by the perspective distortion. In an
analogous way, it can be proved that if the rotations happened in different order, the angle « would
stay unaffected, and the angle £’ would be (24):

sin(B) )

ﬁ’ = arctan (m

(24)

Having shown that the angles seen on image are not the real angles of rotation, but result of
perspective distortion, it is needed to find a way to calculate real angles. In reality, the algorithm
would not know which rotation happened first. Therefore, for every pair (ameas,fmeas) Of measured
angles in xz and yz plane respectively, two pairs of real angles exist, (ameas,8) and (o, fmeas).

According to (23), if the first rotation happened about x axis, the real angle « is not visible,
but it can be calculated using (25).

(25)
a = arctan(tan(a") cos(p))

In similar way, formula for calculating angle £ can be derived from (24).

Having determined the real angle of the rotation, it is possible to position the tool vertically.
Also, it is clear that by rotating the tool for the opposite angles, it can be brought to the initial
position from vertical position. The situation where desired tool orientation is not vertical can be
solved in different ways. One of the trivial solutions is to first measure the angles in desired
position and calculate real angles of rotation. In that way, it is known how to move the tool from
desired position to the vertical position, and vice versa. Then, for any other measured position, tool
can be first brought to vertical position, and from that position rotated for the angles that bring it to
the desired position.
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The process described above represents the first step of calibration procedure. Having
orientated the object correctly, it is important to measure the translation offset of the TCP from the
desired position of TCP. This operation is first done by measuring and remembering the desired
TCP coordinates on both images, and then comparing it to the TCP position of the tool in every
calibration check. If the measured TCP position does not match the desired position, robot can
correct it using information provided by the calibration unit. Then, the robot receives TCP
parameters calculated by the calibration unit based on flange coordinates when TCP is in desired
point, and previously known position of that desired point.

Theoretically, the calibration procedure can be performed without the movement which
compensates the position. The solution would be to use offset information and flange coordinates in
order to calculate what would be the flange coordinates when TCP is in desired position. However,
this action is not recommended because the accuracy of offset measurement cannot be guaranteed in
every point of image acquisition space due to image distortion.

Because of camera distortion, formula given with (25) is applicable in situations where
cameras with telecentric lenses are used. However, the size of telecentric lenses that can cover the
needed field of view and their price are far too big to be practically useable in industrial
applications. For example, the length of telecentric optics which have field of vision of 62 mm in
diameter is more than 540 mm in length, which combined with other components would give total
height of the calibration unit of more than one meter.

When using regular lenses, effects of camera distortion become less prominent as the
distance from the observed object and camera increases, and theoretically decrease to zero as the
distance increases to infinity. In order to increase the distance of the camera from the tool, cameras
are positioned in the way explained previously within calibration unit design section. The described
solution is a result of the trade-off between calibration unit dimensions and desirable distance.

4.3.3. Image acquisition results and discussion

Testing consisted of two phases. In first phase, image acquisition and pattern recognition
algorithm were tested separately. The calibration unit was tested to check if the images are acquired
with good quality and reliability, Special attention was dedicated to external influences analysis,
which proved to be not significant.

Pattern recognition algorithm and (25) were first tested with images generated using a 3D
modelling and rendering software. The advantage of these images is that the virtual tool can be
rotated at any known angle, so the (25) can be tested to full extent. These tests also showed that the
pattern recognition works accurately, and reliably. Angles obtained from the algorithm were
measured with accuracy of under 0.1 degrees. Calculations of distorted angle matched those of the
real rotation with similar accuracy.

Second phase was dedicated to testing the whole system, with real test objects and real
environmental influences. Based on initial tests, it was concluded that the distortion effect is not
significantly prominent and that (25) can be used with good results.

Pattern recognition algorithm proved itself to be very reliable, with high repeatability, and
good precision. For testing and development purposes, several functionalities were introduced into
program. One of them checks if the algorithm has measured the angle correctly. It does so by
rotating the image for the angle determined by the algorithm, but in the opposite direction. In that
way, the operator can visually check if some notable mistake happened. The angle measuring
algorithm can be run on the rotated image to check if the angle is equal to zero. This functionality is
shown on Figure 37 and Figure 38. Image acquired from one camera with test object is shown on
Figure 37. The angle measured by recognition algorithm was -19.1° from vertical plane. Section of
the same image, rotated for measured angle, is shown on Figure 38. Shown pictures and tests
demonstrate that the pattern recognition algorithm has high precision in determining angular
orientation.
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Figure 38. Image from Fig. 4, rotated for 19.1°. [68]

Some of the introduced functionalities are shown on Figure 39. This image demonstrates
three tests. First one, shown on upper right part of the image shows the TCP, as recognized by the
algorithm. On the image, the TCP is represented by the centre of the red circle. Second test is
performed on lower left part of the Figure 39. Area of the image painted in red shows which part of
the image is recognized as part of the tool. The third check is visible on both upper and lower part
of the Figure 39 in form of a straight blue line. The line goes through the centre of the tool, as
determined by the algorithm.

These tests were performed on a number of test objects. Some of test objects were designed
especially for testing purpose, such as one shown on Figure 37 and Figure 38, while some of them
are every-day objects, such as screw shown on Figure 39. All objects were held in place by a
specially designed plate with drilled holes through which the test objects can be inserted into image
acquisition area. The plate can be rotated to check if the algorithm measures angles symmetrically,
and do both cameras see the same angle. For example, the angle measured on Figure 37 was 70.9°
from the horizontal plane, while the angle on Figure 39 was 109.1°, which means that both of them
are 19.1° in absolute value from the vertical plane. This demonstrates that the algorithm does not
favour different areas of the image, and that the camera is positioned correctly, i.e., the camera does
not introduce any angular error. Tests for camera in different plane were done with similar
conclusion.

One of the testing phases also included testing of TCP identification in situations where it is
not clearly visible. It can happen that, due to unfavourable orientation of the tool, the real TCP is
not visible for the algorithm, as it is shown on Figure 40 on example A. Therefore, it must be
estimated. At this moment, such functionality of pattern recognition algorithm is not developed.
However, the longitudinal axis of the object can be recognized, and therefore tool can be oriented in
a favourable way, in which the TCP can be properly identified.
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X coordinate: 564.8
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Object area

Figure 39. Images used for algorithm verification. [68]

During testing, it was noticed that the distortion is less prominent in the areas closer to the
centre of the image. Also, it was noted that the angular measuring precision is greater if the tool is
closer to vertical position. Therefore, in order to have optimal conditions regarding accuracy, it is
recommended to set desired orientation to vertical, and desired TCP position in the centre of
images, as it is shown on Figure 40 on example B.

Pattern recognition was tested for robustness by deliberately damaging the shape of the
images. This checks how the algorithm would behave in situations where tool is deformed, or the
lighting conditions on image are not optimal. One other thing that was recognized as a potential
source for errors were scratches, dirt specs, and other types of visual contaminations on transparent
sides, or on background panels in the image acquisitions box. All listed disturbances were not able
to introduce any significant error, thanks to the fact that the pattern recognition algorithm observes
whole object, rather than only one section of it. This presents an important advantage compared to
the methods where moving tool intersects light beams.

™

R

| R
i

Figure 40. Test object: A - unfavourable orientation; B - favourable orientation. [68]
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4.3.4. Implementation

Local Coordinate System

In order to guide the tool according to the information obtained from analysed images, it is
necessary to establish a relation between the coordinate system defined by cameras, and the
coordinate system of the robot's base. In essence, a transformation matrix between the two
coordinate systems must be obtained using only the calibration unit and any tool that can fit its TCP
within the image acquisition area.

The cameras' coordinate frame consists of the horizontal axes of two orthogonal images
which form its x and y axes, while the vertical axis is represented by the z axis. If the coordinates of
a point in the reference frame of robot's base are Co=[Xs Y v]", and coordinates of the same point in
reference frame of cameras Cc=[xc Yc zc]", the relation (26) connects them.

Ce=Tep (Cb - Vcb)i (26)

where T¢p is a matrix that performs orientation alignment of axes, and Ve is a column-vector
that represents the translational offset between origins of the two frames.

When the origins of two reference frames are matched, by analysing the transformation
matrix, it is possible to identify that columns in matrix Te, represent projections of respective unit
vectors in robot's the base frame onto axes in the cameras' frame, as shown in (27). First column
represents projections of [1 0 0]} onto x, y and z axis of cameras' frame, second column of
[0 1 0]}, and third of [0 0 1]%, where subscript b denotes that these are coordinates of unit
vectors in the reference frame of robot's base.

T, =[[1 0 Olpproj. [0 1 O]jproj. [0 0 1]jproj] (27)

With this perspective in mind, it is possible to perform unit movements of the robot along
each axis of its coordinate system and observe their projections in coordinate system of cameras.
The idea is to assume that the first point where the robot's TCP is located in the cameras' frame
represents the origin of coordinate system that is aligned with cameras. Then, upon performing unit
movement of the TCP along the x axis of the robot's frame, it is possible to measure the offset
between the new position and the position of the origin in each axis. The offsets represent
projections of the first unit vector onto the axes of coordinate systems of cameras and give the first
column of the transformation matrix. A similar procedure is applied for unit movement along y axis
and second column, and along z axis for third column of the transformation matrix Tcp.

From the implementation point of view, it is important to determine which distance should
be considered as a unit movement. Although most logical, movement of 1 millimetre is not big
enough because of limited resolution of cameras, and accuracy issues of the robot. The solution is to
perform longer movements, and then normalize the obtained results.

Using the acquired matrix Tep, it is possible to determine the Euler angles of transformation
between two coordinate systems, needed by the robot's controller to define a new coordinate
system. For this purpose, it is necessary to know the order of elemental rotations, and in this case,
the X-Y-Z order was used. Therefore, matrix Tep is equal to matrix T containing Euler angles Ry, Ry
and R; and given by (28)-(32).

cos(Ry)cos(R;) cos(R,)sin(R;) —sin(Ry)
T = Ty, Ty, cos(Ry) sin(Ry) (28)
T3, T3, cos(Ry) cos(Ry)
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T4 = cos(R;) sin(Ry) sin(R,) — cos(Ry) sin(R;) (29)

T, = cos(Ry) cos(R;) + sin(Ry) sin(R,) sin(R,) (30)
T3, = sin(Ry) sin(R;,) + cos(Ry) cos(R;) sin(R,) (31)
T3, = cos(Ry) sin(R,) sin(R;) — cos(R,) sin(Ry) (32)

The Euler angles can be calculated using (33)-(35) obtained from (28):

R, = arctan(T,3/T33) (33)
R, = arcsin(—Ty3) (34)
R, = arctan(Ty /Ty 1). (35)

The transformation matrix Tep, and angles obtained can be used to transform coordinates
from the robot's frame to the cameras' frame. Since the transformation matrix T is real, symmetric,
and orthogonal, the inverse matrix is equal to transposed matrix. Therefore, in order to transform
from cameras' to robot's base reference frame, expression (36) can be used:

Co=Tep "CotVep =Tep Cc+ Ve (36)

The described procedure offers the theoretical background for acquiring matrix Tep,
therefore performing alignment of coordinate systems of the camera and robot's base. However, it is
not described how to obtain the offset vector V.

Due to the fact that the tool used to perform alignment is unknown, the coordinates of the
TCP seen on images are also unknown, and the whole procedure is performed using coordinates of
the robot's flange. While the axes of the coordinate system defined in this way are parallel to the
respective axes of cameras' reference frame, the offset introduced by the tool between them is not
compensated. The next section will provide the means for calculation of the complete offset V.

The procedure was designed such as to enable alignment using any tool that can fit its tip
into the image acquisition area, making it easy to implement and adapt without any changes to the
system. The procedure needs to be executed only once, when the relative position of the robot and
calibration unit are determined and fixed. All the movements and calculations are performed
automatically, so the operator only needs to guide the tool into the image acquisition area, and run
the procedure.

Initial Calibration of the TCP

Once the alignment of coordinate systems is performed, the TCP can be moved along the
axes of the cameras frame at any desirable distance in any direction. However, at this point, the
origin of the newly defined reference frame (and therefore coordinates of points within image
acquisition area) is unknown in the robot's base reference frame. This section will describe the TCP
calibration procedure which does not require any prior information about the tool, and which will
later be used to acquire coordinates of points inside the camera's reference frame, and the vector
Vcb.

In order to define a tool, it is usually required to define a 6-dimension vector that contains
positions and orientations of the TCP relative to the coordinate system of the robot's flange. One
solution of determining tool parameters without any previous information is to guide the TCP in the
same point several times, from different directions. In theory, it is enough to approach the same
point from only two directions, but they need to be different at least in two angles. In that way, it is
possible to find position coordinates of the TCP relative to the flange. Position and orientation
coordinates of the flange in both positions are known, since they can be obtained from the robot's
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controller, and the point TCPy, where the tool's tip is guided, is the same in both cases. By assuming
that the tool is rigidly fixed to the flange, it is possible to write (37):

Ty'TCP +V, = T; 'TCP; 4+ V, = TCP, (37)

Subscripts f and b of TCP signify that these are TCP coordinates in the reference frames of
the robot's flange and base, respectively; T1 and T» are transformation matrices between the
coordinate system of robot's base and flange in the first and second position, and Vi and V> are
offsets between the reference frames of the robot's base and flange in these two positions. Ty, T2, Vi,
V, are all known parameters provided by the robot's controller in form of 6-dimension vector of the
flange's positions and orientations. T matrices are acquired by substituting respective Ry, Ry and R;
angles of the flange orientation into (28), and V matrices consist of flange offsets from the origin of
the robot's base coordinate system, V=[Xoffset Yoffset Zoffset] -

An analytical solution to the problem of finding the TCP position can be obtained using
(13). However, in practice this solution requires very high precision, and it is highly unlikely that it
would work mainly because of two reasons. The first reason originates from inaccuracies of the
robot's structural parameters which lead to direct kinematics inaccuracy [73], [74] which means that
position and orientation information obtained from the robot is usually not accurate enough. The
second reason is that it is very difficult to guide the TCP in exactly the same point due of finite
resolution of measuring and guiding devices. These two issues, although irrelevant in most practical
applications, can lead to a situation where two directions do not intersect, and therefore the solution
does not exist. In reality, the solution would be to take the points where direction axes are closest to
each other.

A suboptimal solution can be implemented using a numerical solving algorithm. Although
in theory it could work with only two points, it is advised to use at least four points for improved
accuracy, (Figure 41 a). The solution is a point TCPs from the search region Ry in the flange's
coordinate system, for which the sum (38) is the smallest.

Z(TiTCPf ~T,TCP)’ i=Tn—1,j =,n,TCP; € Ry (38)

It is evident that the search region R¢ (Figure 41 b) must be big enough to enable wide
variety of tools, but the algorithm must also provide sufficient accuracy. Time and computational
resources needed to meet these two conditions at the same time are very high. The solution is in an
iterative algorithm, which uses relatively low search resolution in the first iterations, when the
search region is big, and gradually increases the resolution while narrowing the search region as
iterations progress.

The process of guiding the robot into the same point from several directions is done by the
vision system, being enabled by previously performed axes alignment. Once at least four flange
coordinates are obtained, the calibration unit performs the calculations using the previously
described principles and defines the TCP position.

b

\\‘I

Figure 41. Example of positions for TCP calibration (a) and search region R¢(b) [68]
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Using the tool defined with this procedure, the coordinates of any desired point in image
acquisition area can simply be requested from the robot and used as vector V.

From the perspective of obtaining DH parameters of the tool, i.c., the robot’s end-effector, at
this point it is possible to calculate them using previously described procedure for the identification
of DH parameters of the robot itself. Namely, since position of the TCP is known in the coordinate
system of camera as well as the orientation of the tool’s longitudinal axis, these values can be
transformed into coordinate frames of the robot’s base, or flange. The longitudinal axis of the end-
effector is conventionally regarded as its z axis, and the known TCP position completes the pair of
parameters needed to define the joint vector, or joint rotation vector, as regarded in the section 4.2.
From that point on, the procedures described in section 4.2 can successfully be used to obtain DH
parameters of the end-effector and include them in the overall DH model.

Fast Calibration Procedure

This procedure practically implements the calibration principle and algorithm explained in
this section and in [69], since all its preconditions are fulfilled. Tool parameters are typically
coordinates of the TCP in the robot’s flange coordinate frame. If the TCP is guided into a point in
space whose coordinates are known the robot’s base frame, and the position and orientation of the
robot’s flange are also known in the same coordinate system, the tool parameter calculation is a
matter of transformation of coordinate systems (39):

TCP; = T(TCP, — V), (39)

where TCPy represents the position of the TCP in the robot's base frame, V stands for
position coordinates of the robot's flange in its base frame, and TCPs are coordinates of the TCP in
the coordinate system of robot’s flange.

Evidently, this procedure requires far less time and computational resources than the
previous one. It is used in regular operation, and it performs two main tasks. The first task is to
check whether the position and orientation of the tool are within tolerances relative to the reference
position when the flange is in its reference position. If the result is true, the robot will continue its
normal routine. The second task is to orientate and guide the tool to the reference position and
orientation if it is not there and recalibrate it using the new position of the flange, after which the
robot can again proceed with normal operation. The design of this technique additionally simplifies
the implementation since the same routine verifies and corrects the tool parameters. As a result, the
TCP is always calibrated and the robot can resume with its regular operation after running this
procedure.

4.3.5. Algorithm Observations and Discussion

The evaluation of the calibration principle was performed and presented earlier, and it is not
in focus of this section. The recommendations to set the reference position of the TCP close to
centre of the image acquisition area and the reference orientation close to the vertical axis in both
images, should be followed to reduce distortion and achieve optimal performance.

The procedure for axis alignment, as well as other procedures, was tested using a DENSO
VS-087 6-axis industrial robot and information obtained from the camera system. After the
alignment was performed, the movement was attempted along axes of the camera system. Although
the axes were aligned with adequate precision, the results of the test also demonstrated that the
movement on longer distances resulted in offsets of less than 2% of attempted distance in axes that
should have remained unchanged. A greater positioning accuracy can be achieved by introducing
positioning check. If the position recorded after the movement is not within set tolerances,
additional correction can be performed. It is reasonable to set positioning tolerance to be at least as
big as the robot's declared repeatability. The robot used for testing has very good repeatability of
0.02 mm. Considering the maximum percentage of error, and the size of the image acquisition area,

67



in order to guide the TCP within tolerances, no more than two movements must be performed. The
main reason for this positioning imperfection lays in the fact that the image is not orthographic, but
slightly distorted because of the finite distance between the camera and the observed object.
However, this effect is only noticeable in areas that are close to the borders of the image acquisition
area and does not affect the robot’s guidance in regular operation. The procedure was repeated for
various relative orientations between the calibration unit and the robot, and conclusions were
consistent.

The procedure for initial calibration of the TCP was tested in order to verify its accuracy.
The first step was to compare its performance with the performance of built-in TCP calibration
functionality of the Denso robot. The functionality uses a similar principle, and requires identical
type inputs, being therefore suitable to compare them. When identical coordinates were used for
both algorithms, the difference in obtained tool parameters was less than 0.1 mm. The second
testing phase was to identify potential sources of inaccuracy. The procedure was performed for
various angles, and it was concluded that calibration results were more accurate when angles of
rotation were bigger.

However, it is not recommended to perform big angle rotations because of high risk of
collision with the calibration unit. The reason is that at the start of the procedure, the robot has no
information about the tool, and therefore rotations have to be made around the centre of the robot’s
flange. In that way, if the tool is long, even small angle rotation would result in big offsets of the tip
of the tool. The solution is to perform two sequential calibrations. The first calibration uses small
rotation angles, and therefore does not result in big movement of the tool’s tip, but results in lower
accuracy. However, the accuracy is good enough to provide initial information about the tool
parameters. It is possible and recommended to repeat the procedure with bigger angles, but this time
around previously provided TCP information. The result of the second iteration is calibration with
higher accuracy without the risk of collision with the calibration unit. Testing was performed with
various shapes and sizes of tools, which proved that the initial calibration of the tool can be
successfully performed in two steps with different tools.

The procedure for fast calibration uses the result of axes alignment and initial calibration to
check and correct the tool parameters. In this procedure, a position tolerance is set to consider small
deviations of TCP's position caused by minor tool deformations or robot’s repeatability issues. The
procedure was tested with different levels of distorted tools, ranging from untampered tool to
realistic impact scenario where both position and posture of the tool have been changed. In some
tests, changes were made to the extent where such deviations would indicate serious tool damage.

However, in all cases the procedure was performed according to expectations and managed
to recalibrate all the necessary parameters. In order to ensure correct positioning in all
circumstances, a check was also introduced to verify whether the position and orientation were
properly corrected. If they were not, an additional correction iteration is going to be performed.

The intention of this section was to present theoretical and practical concepts and procedures
implemented during the development of a solution for robot TCP calibration. The idea to use
images from orthogonal planes to acquire TCP information, conceived in earlier phases of research,
served as a basis for development of calibration unit. The presented algorithms and routines serve as
crucially important links between theoretical concepts and practical realization ready for
implementation in industry. The procedure for axes alignment uses a simple and reliable algorithm
to enable the calibration unit to guide the robot's tool. The routine used for the initial calibration of
the tool additionally serves as a mean to determine coordinates of the points within the image
acquisition area and therefore enables a faster algorithm to be used in subsequent tool
identifications or TCP checks in regular operations.

The fast calibration procedure is the only one used in regular operation, and it can perform
checks of proper calibration, or recalibrate the tool if its parameters have changed. The important
benefit of this procedure it that its outcome is always a calibrated tool, which means that the robot
can continue with regular operation without human-assisted recovery. This is especially important
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in environments where tools are frequently switched using an automatic changing station in order to
perform different operations.

From the beginning, the system was practically oriented, and therefore its construction and
all the algorithms were designed to be accurate, reliable, and robust. All procedures are independent
from other devices, and none of them requires any modifications of the system, or some specially
developed tool, which makes them easy to implement. Human intervention is only needed to guide
the new tool into the unit and run the procedure during the installation phase, or when introducing
an entirely new tool. This means that the system is completely automated, and therefore it can be
integrated in facilities that rarely require human presence. The short time needed for calibration
checks means they can be performed more frequently, which ensures higher quality of production.
From the versatility point of view, one calibration unit can be used by multiple robots, if it is in
their working range, and it is universal to all robot brands.

4.4.Kinematically Augmented mDTW

The first step in the inclusion of kinematics-related parameters into modified Dynamic Time
Warping (mDTW) is a determination of which parameters would be most effective in reflecting the
effects of the changes in spatial relation of robot joints, which affect the projection of external
forces. The projection of external forces originating from the contact task onto axes of interest can
be determined reliably using a kinematic model of the robot. For this reason, it is necessary to
identify the kinematic parameters of the robot itself as well of its tool, i.e., end-effector, as
presented in sections 4.2 and 4.3. Denavit—Hartenberg (DH) notation is one method that is
commonly used for this purpose and, as such, is considered for the representation of the kinematic
parameters used in the algorithm. Still, the idea is also valid for any other notation. The DH model
is represented in the form of homogenous transformation matrices H.

Once the DH parameters of the entire robot and end-effector have been obtained, it is
possible to use them to determine projections of the contact force profile onto the individual joint of
the robot. To that end, it is first necessary to determine the relationship between the joint of interest
and the end effector frame. This is achieved by multiplication of matrices H_, from the observed
joint o to the end effector indexed with e (40) and (41):

cos (0;) —sin(0;)cos (a;) sin (0;)sin (a;) a;cos (6;)
sin (0;) cos (0;)cos (;) —cos (0;)sin (a;) a;sin (0;)
0 sin (a;) cos (a;) d;

0 0 0 1

e
HE = HHl-. (41)
i=o0

Based on the calculated matrix Hg, it is possible to determine the distance between joint of
interest and the Tool Centre Point (TCP) in coordinate frame of the observed joint of interest o (42):

Hl.i_ 1= (40)

lg = (xoeJ yoeJZOS) = (Hoe(lJ4)1 Hg(214)1 H§(314)) (42)

The calculated distances in the relevant joint coordinate frame effectively represent the lever
lengths [¢ that may affect the torque in that joint. Since for single-degree-of-freedom (DoF) revolute
joints the only axis affected by torques is the z axis, the actual lever components that may affect the
torque are those perpendicular to the z axis. This means that only x and y components of the lever [
are relevant for further calculations, and therefore, they are the only ones depicted in Figure 42 in
blue.
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If the normalized components of contact force are known in the robot base coordinate frame,
Fp, they first need to be transformed into the coordinate frame of the tool (43)—(45):

e
Hg =] mis (43
i=1
HE(L,1) HE(L2) HE(L3)
T¢ = (HE(2,1) HE(2,2) Hg(2,3) (44)

HE(31) HE(B32) HEB3)
F,=F,- Tbe, (45)

where Hy is the homogenous transformation matrix from the coordinate frame of the robot
base into the coordinate frame of the tool, and F, represents components of the force in the end-
effector coordinate frame, as shown in the upper right part of Figure 42 in green colour.

If the normalized components of the contact force F, are known in the coordinate frame of
the tool, steps (43)—(45) can be skipped. Once the relevant kinematic chain has been calculated, it is
then possible to determine its components in the coordinate frame of the joint of interest (46) and
(47).

HE(1,1) HEQA,2) HE(L,3)
TE = |H5(2,1) HE(2,2) HE(2,3) (46)
HE(3,1) HE(3,2) HE(3,3)

Fo:Fe'T(f, (47)

The cross product of relevant lever length components and components of the contact force
in the tool coordinate frame yields components of torques in the tool coordinate frame, while the
absolute value of the z component of the cross product, shown in purple in Figure 42, is equal to the
equivalent lever length for the joint of interest (48).

leqiv = |(l¢e) XFo) (00 1]| (48)

Calculation of the lever lengths for each sample contained in the measurement vector and
reference signal enables morphing both the reference value and the measurements to enable better
comparison. When values of the measured samples, i.e., deviations from the nominal values, and
corresponding lever lengths are observed, it is evident that there is a significant correlation.
Depending on the dynamics of the measurement signal caused by the robot’s movement on the
observed sequence, type of task, and observed joint, this correlation coefficient pe[-1,1] ranges
from 0.64 to 0.95, while a simple smoothing filter raises the lower limit to 0.84, confirming the
intuitive assumption.

At this point, it is important to make a physical interpretation of the connection between the
calculated equivalent lever lengths and the deviations in the measurement vector. Deviations within
the measurement vector correspond to torques produced by the unmodelled external contact force
acting on the equivalent lever length. The intensity of force components does not have to be known
explicitly, since the effect of components on an individual joint axis is implicitly reflected through
intensities of deviations.

70



Relevant lever

End-effector 4 ). V4 . (l5xF,)-[001]
External coordinate frame
interaction

force s et

wst®
Sl

"""

(Xoe, Yoe, Zoe)

Figure 42. Coordinate frames and transformations [59]. The left section of the figure illustrates the base and tool
coordinate frame as well as the coordinate frame of the observed joint together with levers and direction of the external
interaction force. The upper right section illustrates the steps of transforming the external force into the coordinate
frame of the observed joint. The lower right section of the figure shows the distance between the origins of coordinate
frames of the observed joint and the end effector projected onto the x-y plane to determine the relevant lever length.
This section of the figure also shows the relevant component of the torque, whose absolute value equates to the
equivalent lever length.

From the implementation perspective, to enable calculation of the lever lengths, the
measurement signal received from the robot must contain measurements of joint angles, in addition
to the measurements of joint currents or estimated torques, which are used to indicate the presence
of contact. For each joint, the measurement vector M, (i) contains two pieces of information, joint
current or estimated torque a(i) and rotation angle from the encoder 0,(i) (49). Similarly,
measurements based on which the reference sequence M,.(j) was stored contain components of
joint current or estimated torque b(j) and rotation angle 6,.(j) (50).

M, (D) = (a(@),0,()),1<i<m (49)
M. () = (b(),6:(N), 1 <j<n (50)

Inclusion of lever lengths into the mDTW is done with the substitution of Rules (8)—(11)
with Rules (51)—(54).

e (| (la@ bG+D| [a@ bD| [a) bGHD [\ .
=il (Estee b wol o)== e
Cja) b)) (a@ b
W =rn  Lml L Ll T T 52
diny =20 2D i <ismj=1 (53)
LD LD
a()  b()

dd,j) = o Lol min(d(i—1,j—1),d(i,j— 1),di—1j)),1<i<m1<j<n (54)
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Within these rules, [,(i), 1 < i < m represents the equivalent lever length calculated for i-th
sample of the measurement vector using 0,,(i), whereas 1, (j), 1 < j < n represents the equivalent
lever length calculated for j-th element of the reference sequence using angle ©,.(j), for the
observed joint using (40)—(48). Effectively, while forming the matrix d, each of elements a(i) and
b(j) are divided by their corresponding lever lengths calculated for the observed joint based on the
measurements of the joint angles, whose values are stored as part of the measurement vector and
reference sequence, respectively. This modification does not affect the causality since the manner in
which the elements of matrix d are formed is unchanged. The search algorithm can still end at any
element in the first row, although it may no longer be the same element as in the mDTW.

Rules (55) and (56) for searching the optimal path in matrix d are the same as Rules (12)—
(13) of the mDTW:

min(d(i—1,j —1),d(,j —1),d(i — 1,j)),i #1,j # 1 (55)
di—-1j),i#Lj=1 (56)

The search will start from the element in the last row that has the minimal sum,
min(d(m,j)), 1 <j < n, though again, it may not be the same element as with the mDTW. Since a
monotonical increase in value with an increase in row and/or column number is preserved, the
starting element chosen in this way will surely be the optimal one for the start of the search. As with
mDTW, finding the optimal path is ensured by the fact that elements in each row, with the
exception of the first one, inherently point to the optimal preceding element, since other candidates
surrounding it will have higher values.

To enable easier implementation and reduce the computational time and effort, division of
reference signal sample b(j) with its corresponding lever length [,(j) does not have to be
performed in each cycle of the comparison. Instead, all samples from the reference sequence can be
divided with their corresponding lever lengths by piecewise division prior to the start of
computation of the matrix d. This alteration has a considerable effect on the speed and number of
calculations, since the reference sequence is significantly longer than the measurement vector.
Similarly, since measurement vector Mv has first-in-first-out logic, at each comparison cycle,
calculation of a(i) and [,(i) must be performed only for the newest sample m using
M, (a(n), @,(n)), while other values can be reused.
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4.5.Testing Results—Contact Tasks

The type of contact tasks addressed in this section are primarily so-called force contact tasks
[23], in which both force and position need to be considered for successful execution. Here, they are
further divided into two categories based on the direction of forces that are affecting the robot at the
end effector side.

The first category includes tasks where the direction or profile of the external force is
consistent in the robot‘s base frame, and it does not change regardless of the configuration of the
robot. The most obvious example and the one that has the biggest impact on the quality of anomaly
detection due to its frequency of application is the weight during load manipulation tasks. Other
examples or variations of load manipulation include operations such as tending the press for
bending, stamping, or clinching operations, in which the workpiece needs to be held throughout the
process.

In the second group of tasks, the direction of external force is relative to the orientation of
the end effector, i.e., considered consistent in the tool coordinate frame. These assignments mostly
include processing and assembly tasks where the robot or its end effector are used to exert some
force to the external object. Examples from this group include tasks such as drilling, screwdriving,
riveting, nailing, stapling, snap-fitting, and bolting.

It is important to note that there are tasks that are a combination of the mentioned types.
These tasks, however, are not the topic which will further be elaborated, since, in most cases, they
can be separated into more basic operations to which the classification and related conclusions can
be applied.

For testing purposes, all presented data were recorded using Denso VP-6242 six-axis
industrial robot while it was performing its tasks, as shown in Figure 43. Testing of algorithms was
done offline on a PC but with real measurement data from the robot, recorded using data exchange
between the PC and the robot’s controller. In a realistic scenario, data gathering and processing
would be implemented in a similar way, and therefore, the shown testing results are considered to
closely resemble the results that would be obtained with hardware-in-loop testing. However, it is
important to mention that data exchange and processing can be implemented on other platforms to
achieve better performance or convenience [54].

g

‘-,ﬂ

®

Figure 43. Measurement setups [59]. (left) Load manipulation contact task. (right) Snap-fit assembly contact task.
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45.1. Consistent Base Frame Direction of Force

Following the general description of tasks within this category and relevant case of lever
length calculations, this section aims to illustrate the inclusion and interpretation of contact task
forces with consistent direction in the robot’s base frame while performing a representative task
example. Load manipulation is one of the typical tasks from this category and perhaps the most
intuitive to understand since gravity is universally familiar.

To emulate possession of the optimal robot model, the first sequence of the movement was
made without the presence of the load. The measurement from this movement represents an optimal
model of the robot in which load dynamics are not included. The second sequence was recorded
with actual load in a task where the robot simulates manipulation, in which the picking position is
constant while placing positions differ one from the other. The first four placing positions feature
identical orientations of the tool but with different distances from the base of the robot. The last two
placing positions have identical tool orientations between them but differ compared to the first four
and differ from each other in distances from the robot’s base. Absolute values of joint currents were
used in the manipulation contact task, together with joint angles, to complete the measurement
vector.

Second axis analysis: The analysis of the interaction effects of the manipulation task is best
illustrated with the example of the second axis, since it is affected by the weight of the load due to
its orientation. Figure 44 shows one complete sequence of six picking and six placing operations.
The upper part shows signals that correspond to the sequence recorded without load, shown in blue,
a sequence recorded with actual load, shown in red, and the difference between them, shown in
yellow. The difference between the first two signals is the actual deviation caused by the weight of
the load, i.e., deviation caused by the contact task force, which was not included in the nominal
dynamic model of the robot. The lower part of Figure 44 shows joint angles of the observed second
axis, shown in blue, which are used to calculate lever lengths shown in red colour. When lever
lengths are observed in parallel with deviations caused by the weight of the load, their effect on the
profile of the deviation is evident. Deviation signal along with the joint angles form the
measurement.
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Figure 44. Signals obtained during the manipulation task from the 2nd axis [59]. (upper) Measurements of joint currents
while the robot was performing the task without load and with the load. The difference between the two signals
represented corresponds to the deviation profile originating from unmodelled dynamics of the contact task. Samples of
deviation signal from each axis are one of the inputs to the proposed algorithm. (lower) Measurement of the joint angle
is one of the inputs to the proposed algorithm. The algorithm calculates equivalent lever lengths in each sample based
on DH parameters and joint angles from all axes.

The upper left part of Figure 45 shows the two sections of the deviations recorded on the
second axis, which were used as examples of reference sequence and measurement vector for
testing the algorithm’s effectiveness. Both the reference sequence, shown in red, and the
measurement vector, shown in yellow, were chosen due to their differences in shape caused
primarily by the different direction and intensity of change in their corresponding lever lengths,
shown in corresponding colours on the upper right part of Figure 45. One important aspect when
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choosing the section that represents the reference sequence is that it needs to correspond to all
phases that a contact task may have when the lever length is different from zero. In the case of
manipulation contact tasks, it must include phases prior to picking up the load, lifting, transporting,
lowering, releasing, and a brief section after the load is released. The lower left graph shows that the
signals have different scales and that there is no obvious section of the reference sequence, shown
in blue, that could reasonably be matched with the measurement vector shown in red. The lower
right section of the same figure illustrates that after scaling, it is evident that, aside from the shift in
time, there is a section of the scaled reference sequence that is similar in shape and scale to the
scaled measurement vector.
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Figure 45. Signals used in the analysis for the 2nd axis [59]. (upper left) Sections of the deviation signal are used as a
reference sequence and as a measurement vector during analysis. (upper right) Highlighted sections of the lever lengths
corresponds to the chosen reference sequence and chosen measurement vector. (lower left) Original values of signals
used as reference sequence and measurement vector shown prior to scaling by the algorithm. (lower right) Signals used
as reference sequence and measurement vector after scaling was performed.

The upper left part of Figure 46 shows how the KA-mDTW algorithm has successfully
matched these two signals, i.e., recognized the correct section of the reference sequence that needs
to be matched with the measurement vector, as shown in the upper right part of Figure 46, enabling
correct interpretation of the physical process, i.e., contact task dynamics. The corresponding
matching cumulative error when KA-mDTW was used is 0.4173. For comparison purposes, the
diagram shown on the lower left part of Figure 46 shows how the mDTW algorithm would match
the two signals if they were in their original form. As shown, the entire measurement vector would
be matched with the very end of the reference sequence, corresponding to the load-releasing phase.
This matching completely misses the phase when the robot was stationary just prior to releasing the
load, thus not interpreting the task dynamics correctly. Due to the incorrect selection of the
corresponding section of the reference sequence, as seen in the lower middle part of Figure 46, the
cumulative matching error for this case when mDTW was used is deceivingly small, at 0.2199. A
correct way to calculate the real error would be to use the classical DTW algorithm to optimally
match the section of the reference sequence highlighted on the upper right part of Figure 45, which
was chosen by the KA-mDTW algorithm, with measurement vector, without applying scaling by
the lever lengths. In that case, the cumulative error of the matching shown on the lower right part of
Figure 46, accounting for the different scales of signals, is 3.1506, which is drastically higher than
that of KA-mDTW.
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Figure 46. Matching of chosen signals from the 2nd axis [59]. (upper left) Optimally matched section of the reference
sequence and the entire measurement vector and the sample-wise matching error. (upper right) Reference sequence
profile with the highlighted section, which was correctly interpreted and optimally matched with the measurement
vector. (lower left) Section of reference sequence incorrectly recognized and matched with measurement vector using
mDTW without scaling the signals. (lower middle) Reference sequence profile with the highlighted section, which was
incorrectly recognized and matched with the measurement vector using mDTW. (lower right) The section of the
reference sequence identified by KA-mDTW is matched with the measurement vector using DTW algorithm to
determine a realistic matching error.

Fourth axis analysis: The analysis of the manipulation contact task on the fourth axis
enables illustrating another aspect related to the proper setting of the reference sequence. This axis
was unaffected by the manipulation of load during the first four pick and place movements due to
zero equivalent lever length, but it is affected during the fifth and sixth movements due to changes
in tool orientation, as shown in Figure 47 in the upper sections. The reference sequence in blue must
be chosen to include exclusively non-zero lever lengths for the observed joint if there is any
possibility that that joint will be affected by the contact force. Otherwise, the joint cannot be used
for effective comparison with the measurement vector. The middle right part of Figure 47 shows
that the scaled reference has some significant peaks at the beginning, which are caused by division
with small values of equivalent lever length. If the lever length is equal to zero, the algorithm does
not work properly, which is a property that needs to be addressed. In the case of the second axis, it
was explained that the reference signal must include all phases of the contact task that may occur
when there is a lever. If only certain phases of the contact task are performed while the lever length
is different from zero, then the reference signal does not have to include the phases during which
the lever length is equal to zero, only those during which it is over a certain small threshold. If there
is a theoretical chance that a certain phase not included in the reference signal may occur, then the
reference sequence is not representative enough and needs to be changed. In case there are mutually
exclusive non-zero lever length phases, the reference sequence can be composed of two separately
recorded reference sequences that combined include all possible non-zero lever phases. In the
presented scenario, only transporting, lowering, and the releasing phase of the manipulation task
were possible due to the robot’s configuration.
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Figure 47. Analysis of example from the 4th axis [59]. (upper left) Deviation signal throughout the task with sections of
the deviation signal used as reference sequence and the measurement vector. (upper right) Sections of the lever lengths
corresponding to the chosen reference sequence and the chosen measurement vector. (middle left) Signal used as
reference sequence and measurement vector in their original values prior to scaling by the algorithm. (middle right)
Signals used as reference sequence and measurement vector after scaling was applied. (lower left) Graph shows
optimally matched section of the reference sequence and the entire measurement vector as well as the sample-wise
matching error. (lower right) Reference sequence profile with the highlighted section, which was correctly interpreted
and optimally matched with the measurement vector.

The lower left part of Figure 47 shows that the KA-mDTW algorithm can optimally match
the reference sequence shown in blue, and the measurement vector shown in red with a cumulative
error is 2.3941. The lower right part highlights in red the section of the reference to which the
measurement vector was matched, which corresponds to the actual situation, although it is slightly
shorter. For the same signals without scaling, the cumulative sum of error, compensated for the
different scaling, is 19.2877, even with matching with the incorrect section of the reference
subsequence. When DTW is applied to the correct section of the reference sequence, the realistic
cumulative error is even higher, at 28.2313, showing the importance of the scaling phase of the KA-
mDTW algorithm.

45.2. Consistent Tool Frame Direction of Force

As a representative for the type of contact forces, a snap-fit assembly task was chosen. It
features a profile that can easily be mistaken for a collision due to its nature [56]. Therefore, the
importance of proper interpretation of this signal is very high, as it may have serious consequences
for production. The effects that this assembly contact task dynamics has on joint manifest
themselves in the form of peaks in measurement values. With an aim to demonstrate the versatility
of the algorithm in terms of signal availability using this example, instead of absolute values of
currents, the current-based estimations of torque were used together with measurements of joint
angles. The values of this signal were readily available as outputs from the Denso VP-6242 robot,
and in this section, they will interchangeably be referred to as torques or torque estimates.
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First axis analysis: The first axis is interesting for analysis, because it is usually not
affected by gravity and is theoretically relatively insensitive to the influence of external forces. The
latter is due to gearing ratios and powerful motors, which need to be used because of the high
moments of inertia that it must withstand. The analysis of the effects that the dynamics of the snap-
fit assembly contact task have on the first axis of the robot was performed using measurements and
values presented in Figure 48. The deviation signal, shown in yellow on the left graph of Figure 48,
which is used as input to KA-mDTW algorithm together with joint angles shown in blue on the
right part of the same figure, has different dynamics compared to the corresponding signals
analysed in the manipulation task examples. The reason is that during this task, the robot only
moved to assume new positions for the assembly, while the force was exerted on the work object
while the robot was stationary. This situation is present in various contact tasks of this type, and
therefore, the conclusions made during this analysis are not limited to snap-fit assembly.

Movement sequence = Joint angles and lever lengths
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Figure 48. Signals obtained during snap-fit assembly task from the 1st axis [59]. (left) Measurements of joint torques
while the robot was performing the task without and with assembly of the object. The difference between them
corresponds to the profile of the contact-task-induced deviation. (right) Measurement of the joint angle used to calculate
equivalent lever lengths.

Similar to previous examples, Figure 49 in the upper left part shows sections of the
deviation sequence, shown in yellow, which were used as reference sequence and measurement
vector, highlighted in blue and red, respectively. The same is valid for lever lengths on the upper
right graph of the same figure. From the lower left part of Figure 49, it is possible to observe that
the selected reference sequence shown in blue and the measurement vector shown in red are similar
only in shape but not in scale and values, although they originate from the same task. Scaling,
which is an integral part of the KA-mDTW algorithm, makes these signals much easier to compare
and interpret, as shown in the lower right part of Figure 50.

Figure 50 in the upper left part shows that the observed signals shown in blue and red were
correctly matched, which is confirmed by the error signal shown in the yellow and cumulative
matching error of 0.0207. The reference sequence segment corresponding to the measurement
vector was correctly identified, as highlighted on the upper right part of the same figure, indicating
that the contact task dynamics would be correctly interpreted. The most striking observation is that
the mDTW algorithm is powerless in this situation and only manages to match the entire
measurement with a single point from the reference sequence, which can be seen in the lower left
and middle parts of Figure 50. Although striking, this result from mDTW is expected, and it is truly
the best result it could theoretically achieve. Nevertheless, the error shown in yellow on the lower
left graph has a cumulative value of 0.3106, which is significantly higher than with KA-mDTW.
However, the biggest implication of this matching is that the contact force would be completely
wrongly interpreted and would surely indicate some erroneous state. When the DTW algorithm is
used to match the section of the reference sequence identified by the KA-mDTW with the
measurement vector, the best result it can achieve is 0.70009.
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Figure 49. Matching chosen signals from the 1st axis [59]. (upper left) Sections of the deviation signal used as reference
sequence and the measurement vector during analysis. (upper right) Sections of the lever lengths corresponding to
chosen testing signals. (lower left) Signals used as reference sequence and measurement vector in their original values
prior to scaling by the algorithm. (lower right) Signals used as reference sequence and measurement vector after scaling
was applied.
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Figure 50. Matching of chosen signals from the 1st axis [59]. (upper left) Graph shows optimally matched section of the
reference sequence and the entire measurement vector as well as the sample-wise matching error. (upper right)
Reference sequence profile with the highlighted section, which was optimally matched with the measurement vector.
The highlighted section correctly interprets the phase of the contact task contained in the measurement vector. (lower
left) Section of reference sequence matched with measurement vector using mDTW without scaling the signals. A
matching error has the same shape as the measurement vector, since the entire vector was only matched with a single
point of reference, which was closest in value. (lower middle) Reference sequence profile with the highlighted section,
which is just a point matched with the measurement vector using mDTW. The highlighted section corresponds to the
peak of the reference signal, since it was the closest to all the values within the measurement vector. (lower right) The
section of the reference sequence, which was optimally matched using KA-mDTW from the upper right graph, is
matched with the measurement vector using DTW algorithm to determine a realistic matching error.
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Third axis analysis: The third axis of the robot is one of the most affected axes, regardless
of the contact task type. The selected example aims to illustrate two things, the first of which can be
observed from the upper graphs of Figure 51. In the upper left graph, the deviation signal shown in
yellow on this axis shows that the first and the third deviation caused by the snap-fit contact task
have similar intensity due to the identical corresponding equivalent lever lengths, which is also
valid for the second and fourth deviation-induced peak.

The signals chosen for comparison as reference sequence and measurement vector,
highlighted in blue and red, respectively, on the upper parts of Figure 51, demonstrate performance
in the situation opposite of the one analysed for the first robot axis. In a situation when the reference
signal, shown in blue on the middle right part of Figure 51, has higher values than the measurement
vector shown in red, the performance of KA-mDTW algorithm is unaltered. As shown in the middle
right part of the same figure, it correctly identifies the section of the reference sequence and
optimally matches it with a cumulative matching error of 0.0518. The mDTW algorithm performs
better than in the example from the first axis with a cumulative matching error of 0.0473, which is
due to the incorrect section with which it was matched, leading to dynamics misinterpretation. The
equivalent matching error calculated using DTW is 0.1640.
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Figure 51. Matching chosen signals from the 3rd axis [59].(upper left) Section of the deviation signal used as a
reference sequence during analysis, and the section used as the measurement vector. (upper right) Sections of the lever
lengths corresponding to the chosen reference sequence and the chosen measurement vector. (middle left) Optimally
matched section of the reference sequence, the entire measurement vector, and the sample-wise matching error. (middle
right) Reference sequence profile with the highlighted section, which was correctly recognized, optimally matched with
the measurement vector. (lower left) Section of reference sequence matched with measurement vector using mDTW
without scaling the signals and matching error. (lower right).
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4.6.Chapter discussions

Contents of this Chapter address the issue of unmodelled dynamics related to contact tasks
performed by industrial robots. The reasons for not considering contact task dynamics include
modelling or implementation complexity, insufficient knowledge of the task, and underestimation
of the effect they have. Consequences, however, are almost universally negative with regards to the
reliability, observability, and predictability of the process involving them. From the perspectives of
Industry 4.0 and 5.0, where collision erroneous state detection and handling, as well as operation
context brokerage, are the basis of successful implementation, each of the mentioned drawbacks
gains more significance.

This Chapter proposes to include the contact task dynamics implicitly by observing their
effects on individual robot joints and understanding how this influence transforms with changes in
the spatial relation of joints. Correct interpretation of the effects of contact forces enables the
identification of phases of the task, and their comparison with expected values enables the detection
of erroneous states.

The underlying idea proposes that the effects of contact task dynamics are observed through
deviations of joint currents or torques from the nominal values. Samples from a representative task
execution form a reference sequence with which all future samples of deviation will be compared.
Since the effects that an external contact force may have on a robot joint change with changes in the
spatial relation between the joints, so do the profiles of the detected deviation.

To enable comparison between different profiles of deviations, an equivalent lever length
parameter is introduced based on the considerations of its correlation with the deviation signal. The
equivalent lever length is calculated for each joint at each sample based on the DH parameters of
the robot and measurements of the joint angles and used to scale the corresponding sample of joint
current or torque. The sample-wise scaling of samples of the reference sequence and the
measurement vector enables their reliable comparison using a modification of Dynamic Time
Warping (mDTW), a previously developed algorithm for real-time matching of signals with content
and sampling differences.

Fusion of equivalent lever lengths scaling and mDTW resulted in the newly proposed
Kinematically Augmented mDTW (KA-mDTW). This versatile and efficient algorithm introduces
robot kinematics into flexible time series matching. Furthermore, the proposed changes influence
the rules for calculation of the d matrix of mDTW algorithm, based on which the matching surface
is shaped and optimally matched pairs are determined.

The KA-mDTW algorithm was thoroughly tested using real measurements from an
industrial robot performing load manipulation and snap-fit assembly tasks as representative
examples from two groups of contact tasks. For each example, the efficiency of the algorithm was
demonstrated and commented on with regards to the cumulative matching error compared to the
mDTW algorithm, as well as the correct identification of the matched section of the reference
sequence. Due to its inherent signal scaling ability, KA-mDTW’s cumulative matching error was
shown to be drastically lower than the equivalent error of mMDTW. Correctly matched sections of the
reference sequence enable proper interpretation of the phases of the contact task dynamics, as well
as reliable detections of erroneous states.

The testing phase also commented that the reference sequence must be representative of the
contact task, including all possible effects that the task may have on the joint. These include all
phases of the task during which the equivalent lever length is non-zero. That effectively means that
the algorithm can match detected deviation successfully only if the reference sequence includes an
example of the same phase of the task that caused the deviation. It was also noted that references
recorded with small lever lengths cause peaks due to scaling with small values. For the same reason,
the reference sequence must not include samples during which the equivalent lever length was zero.

The proposed approach and the algorithm successfully avoided implementation issues by
relying on versatile automatic parameter identification and processing automation. However, the
fact that the algorithm’s performance depends on setting the proper reference sequence leaves room
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for user-induced performance reduction. Further research will examine algorithms for evaluation of
the reference sequence and information they include. Another direction will focus on predicting
time intervals when the deviation is expected, i.e., the intentional contact of the robot and its
surroundings. To this end, many approaches are considered, including Artificial Intelligence and
some other methods of Soft-computing as the most promising [75].

From the standpoint of implementation in scope of a hybrid approach, the KA-mDTW
algorithm solves field of application issues related to the m-DTW-based algorithm presented in the
previous Chapter. Once the deviation signal is generated by the model-based part, the KA-mDTW
part of the algorithm can effectively incorporate the unmodelled dynamics of the robot motion or
the contact task. Thanks to the inclusion of the kinematic parameters, such implementation can
effectively replace the commonly used force/torque sensors while offering a more reliable reaction
to external forces, intentional and unintentional alike. Most importantly, such implementation
would also enable inclusion of task dynamics not reflected on the end-effector, but also detection of
collisions that may occur along the kinematic chain between the robot base and the flange.

82



5. GENERAL CONCLUSION

The work presented in this thesis aimed to enable better understanding and safer interaction
of industrial robots with their surroundings. To that end, several approaches were developed and
presented to provide means for correct interaction interpretation based on readily available sensors
and measurements found in industrial robots with closed control architecture.

The common approach in all presented algorithms for detection of interactions was to
observe, analyse and interpret how the influence of interaction forces manifests itself on the
measurements commonly available on industrial robots. To this end, available signals were first
analysed to draw conclusions about their properties. The observations related to their dynamics,
repeatability and sampling were used to design different non-model-based interaction detection
algorithms.

The principle on which the interaction detection is based in all presented algorithms takes
advantage of the repetitive nature of majority of robot tasks. The basic idea is that the reference
sequence recorded during one exemplary cycle of execution is compared with measurements from
all future cycles of the task execution to determine the presence and type of interactions.

The first two presented algorithms were intended primarily for the detection of the
unintentional interactions, i.e., collisions. The first presented algorithm, developed for integration
on the robot controller itself, relied on practical solutions for simple yet reliable collision detection
and served as a good basis for understanding the fields in which improvements can be made.

Pursue for improvements led the to the shift of attention on implementation on a PC, which
enabled development of a second, more complex and performant collision detection algorithm. The
key contribution and enabling factor for overcoming sampling issues was the development of
modified Dynamic Time Warping (mDTW) method, thanks to which the principles of time warping
were enabled matching sequences with different content in real time. The mDTW enabled
implementation of more sensitive and comprehensive detection rules based on statistical properties
of the signal. The algorithm’s potential for detection of intentional interactions in form of a hybrid
approach was considered and discussed with regards to the properties of the deviations induced by
the typical examples of contact tasks. The overall positive evaluation of such prospect and the m-
DTW based detection in general was found to be limited only to the repetitive tasks which involve
identical movement of the robot arm.

The third presented detection algorithm was developed to extend the application domain of
mDTW-based detection by introduction of kinematics-related parameters which would enable its
implementation in tasks with similar type of movement. To this end, two algorithms for automatic
identification of kinematics parameters were developed. The first algorithm identifies parameters of
robot arm or arbitrary configuration based on partial-pose measurements of a point of interest
mounted on the robot’s end effector. Based on only three position measurements per robot joint,
such algorithm can calculate the complete kinematic model in DH notation. The second algorithm
for kinematic parameter identification was developed as a robot tool calibration unit capable of
automatic calculation of robot’s end effector parameters. Based on analysis of images from two
orthogonal planes, this solution enables not only identification of the end effector parameters, but
also their verification and recovery in case of detected collision.

The two algorithms for identification of kinematic parameters of the robot and its end-
effector enable the further evolution of dynamic warping capabilities in form of Kinematic
Augmented mDTW (KA-mDTW) method. This crucially impactful improvement enables detection
of interactions for movements with different spatial relations of joints than those featured during
recording of the reference sequence. Consequently, with properly chosen references, this
improvement has eliminated the limitations for robot’s motion within the same type of the task, and
by doing so, has also overcome the biggest disadvantage of this type of interaction detection, as
well as for the hybrid approach mentioned earlier.
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All results and conclusions were validated through experimental testing on two brands of
industrial robots to further demonstrate their platform-indifference. Special intention was given to
the design of procedures and algorithms which were developed with consideration to the
constrictions imposed by the physical design of the robot and its typical operating environment. To
reduce the potential for operator-induced errors and facilitate integration into the production
environment.

The impact of the presented work can best be observed through the prism of Industry 4.0
and advanced agile robotization. In event-driven and highly interconnected production
environments the understanding of operation context of production resources is of outmost
importance for the safety and production optimization. Understanding the operation context of the
robot as one of the crucial enablers in such environments is the necessary step in this direction,
especially in scope of proper execution of contact tasks which are and will remain by far the most
predominant type of applications of industrial robots.

84



REFERENCES

[1] N. Pedrocchi, F. Vicentini, M. Matteo i L. M. Tosatti, ,,Safe Human-Robot Cooperation in an
Industrial Environment,” International Journal of Advanced Robotic Systems, t. 10, p. 27,
2013.

[2] Z. Gordi¢ i K. Jovanovi¢, ,Influence of Unmodelled External Forces on the Quality of
Collision Detection,“ u Advances in Service and Industrial Robotics, Cham, 2020.

[3] S. Haddadin, A. Albu-Schéieffer, A. Luca i G. Hirzinger, ,,Evaluation of Collision Detection
and Reaction for a Human-Friendly Robot on Biological Tissues,* 2008.

[4] S. Haddadin, A. Albu-Schiffer i G. Hirzinger, ,,Safe Physical Human-Robot Interaction:
Measurements, Analysis and New Insights, u Robotics Research, Berlin, 2011.

[5] S. Haddadin, A. Albu-Schéeffer i G. Hirzinger, ,,Safety Evaluation of Physical Human-Robot
Interaction via Crash-Testing,” 2007.

[6] International Federation of Robotics, ,,World Robotics 202 1—Industrial Robots,* International
Federation of Robotics, Frenkfurt, Germany, 2021.

[7] A. Perzylo, M. Rickert, B. Kahl, N. Somani, C. Lehmann, A. Kuss, S. Profanter, A. B. Beck,
M. Haage, M. Rath Hansen, M. T. Nibe, M. A. Roa, O. S6rnmo, S. Gestegard Robertz, U.
Thomas, G. Veiga, E. A. Topp, L. Kessler i M. Danzer, ,,SMErobotics: Smart Robots for
Flexible Manufacturing,* IEEE Robotics & Automation Magazine, t. 26, pp. 78-90, 2019.

[8] A. De Luca i F. Flacco, ,,Integrated control for pHRI: Collision avoidance, detection, reaction
and collaboration,” u 2012 4th IEEE RAS & EMBS International Conference on Biomedical
Robotics and Biomechatronics (BioRob), 2012.

[9] F. Flacco i A. De Luca, ,,Safe physical human-robot collaboration,” u 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2013.

[10] A. de Luca i R. Mattone, ,,Sensorless Robot Collision Detection and Hybrid Force/Motion
Control,“ u Proceedings of the 2005 IEEE International Conference on Robotics and
Automation, 2005.

[11] E. Mariotti, E. Magrini i A. D. Luca, ,,Admittance Control for Human-Robot Interaction Using
an Industrial Robot Equipped with a F/T Sensor,” u 2019 International Conference on
Robotics and Automation (ICRA), 2019.

[12] M. Geravand, F. Flacco i A. De Luca, ,,Human-robot physical interaction and collaboration
using an industrial robot with a closed control architecture,” u 2013 IEEE International
Conference on Robotics and Automation, 2013.

[13] Z. Gordi¢ i K. Jovanovié, ,,Fully Integrated Torque-Based Collision Detection in Periodic
Tasks for Industrial Robots with Closed Control Architecture,” u Advances in Service and
Industrial Robotics, Cham, 2019.

[14] Z. Gordic i K. Jovanovic, ,,Collision Detection on Industrial Robots in Repetitive Tasks Using
Modified Dynamic Time Warping,* Robotica, pp. 1-20, 2019.

[15] M. Makarov, A. Caldas, M. Grossard, P. Rodriguez-Ayerbe i D. Dumur, ,,Adaptive Filtering
for Robust Proprioceptive Robot Impact Detection Under Model Uncertainties, IEEE/ASME
Transactions on Mechatronics, t. 19, br. 6, pp. 1917-1928, 2014.

[16] A. De Luca, A. Albu-Schaffer, S. Haddadin i G. Hirzinger, ,,Collision Detection and Safe
Reaction with the DLR-III Lightweight Manipulator Arm,* u 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2006.

[17]1 L. D. Avendano-Valencia, F. Dimeas i N. Aspragathos, ,,Human - Robot collision detection
and identification based on fuzzy and time series modelling,” Robotica, t. 33, May 2014.

85



[18] P. Pastor, L. Righetti, M. Kalakrishnan i S. Schaal, ,,Online movement adaptation based on
previous sensor experiences,” u 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2011.

[19] S. Haddadin, A. Albu-Schaffer, A. De Luca i G. Hirzinger, ,,Collision Detection and Reaction:
A Contribution to Safe Physical Human-Robot Interaction,” u 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2008.

[20] Y. Yamada, Y. Hirasawa, S. Y. Huang i Y. Umetani, ,,Fail-safe human/robot contact in the
safety space,“ u Proceedings 5th IEEE International Workshop on Robot and Human
Communication. RO-MAN'96 TSUKUBA, 1996.

[21] M. S. Erden i T. Tomiyama, ,,Human-Intent Detection and Physically Interactive Control of a
Robot Without Force Sensors,” IEEE Transactions on Robotics, t. 26, pp. 370-382, 2010.

[22] P. Cao, Y. Gan i X. Dai, ,,Model-based sensorless robot collision detection under model
uncertainties with a fast dynamics identification,” International Journal of Advanced Robotic
Systems, t. 16, p. 1729881419853713, 2019.

[23] M. Vukobratovi¢ i V. Potkonjak, ,,.Dynamics of Robots with Contact Tasks. Intelligent
Systems,” u Control and Automation: Science and Engineering Mechanism and Machine
Theory, Springer: Dordrecht, 2003.

[24] S. Hagane, L. Rincon Ardila, T. Katsumata, V. Bonnet, P. Fraisse i G. Venture, ,,Adaptive
Generalized Predictive Controller and Cartesian Force Control for Robot Arm Using Dynamics
and Geometric Identification,” Journal of Robotics and Mechatronics, t. 30, pp. 927-942,
December 2018.

[25] W. Khalil i F. Bennis, ,,Symbolic Calculation of the Base Inertial Parameters of Closed-Loop
Robots,* The International Journal of Robotics Research, t. 14, pp. 112-128, 1995.

[26] P. K. Khosla i T. Kanade, ,,Parameter identification of robot dynamics,” u 1985 24th IEEE
Conference on Decision and Control, 1985.

[27] M. Gautier, ,,Numerical calculation of the base inertial parameters of robots,” u Proceedings.,
IEEE International Conference on Robotics and Automation, 1990.

[28] M. Gautier i W. Khalil, ,,Direct calculation of minimum set of inertial parameters of serial
robots,” IEEE Transactions on Robotics and Automation, t. 6, pp. 368-373, 1990.

[29] M. Gautier i W. Khalil, ,,On the identification of the inertial parameters of robots,” u
Proceedings of the 27th IEEE Conference on Decision and Control, 1988.
[30] A. Janot, P.-O. Vandanjon i M. Gautier, ,,A Generic Instrumental Variable Approach for

Industrial Robot Identification,” IEEE Transactions on Control Systems Technology, t. 22, pp.
132-145, 2014.

[31] M. Brunot, A. Janot, F. J. Carrillo i H. Garnier, ,,A Pragmatic and Systematic Statistical
Analysis for Identification of Industrial Robots,* 2017.

[32] L. Ding, H. Wu, Y. Yao i Y. Yang, ,, Dynamic Model Identification for 6-DOF Industrial
Robots,*“ Journal of Robotics, t. 2015, pp. 1-9, October 2015.

[33] K. Godfrey, ,,Identification of parametric models from experimental data [Book Review],
Automatic Control, IEEE Transactions on, t. 44, pp. 2321-2322, January 2000.

[34] V. Bargsten, P. Zometa i R. Findeisen, ,,Modeling, parameter identification and model-based
control of a lightweight robotic manipulator,” u 2013 IEEE International Conference on
Control Applications (CCA), 2013.

[35] J. Jin i N. Gans, ,,Parameter identification for industrial robots with a fast and robust trajectory
design approach,* Robotics and Computer-Integrated Manufacturing, t. 31, pp. 21-29, 2015.

[36] A. Bahloul, S. Tliba i Y. Chitour, ,,Dynamic Parameters Identification of an Industrial Robot
With and Without Payload,” IFAC-PapersOnLine, t. 51, pp. 443-448, 2018.

86



[37] A.-N. Sharkawy, P. N. Koustoumpardis i N. A. Aspragathos, ,,Manipulator Collision Detection
and Collided Link Identification Based on Neural Networks, u Advances in Service and
Industrial Robotics, Cham, 2019.

[38] Z. Gordi¢ i K. Jovanovic, ,,Collision Detection on Industrial Robots in Repetitive Tasks Using
Modified Dynamic Time Warping,* Robotica, t. 38, pp. 1-20, October 2019.

[39] C.-N. Cho, J.-H. Kim, Y.-L. Kim, J.-B. Song i J.-H. Kyung, ,,Collision Detection Algorithm to
Distinguish Between Intended Contact and Unexpected Collision,* Advanced Robotics, t. 26,
pp. 1-16, November 2012.

[40] A. D. Santis, B. Siciliano, A. D. Luca i A. Bicchi, ,,An atlas of physical human—robot
interaction,” Mechanism and Machine Theory, t. 43, pp. 253-270, 2008.

[41] M. Zinn, O. Khatib, B. Roth i J. K. Salisbury, ,,Playing it safe [human-friendly robots],” IEEE
Robotics & Automation Magazine, t. 11, pp. 12-21, 2004.

[42] N. Knezevi¢, M. Majstorovi¢, Z. Gordi¢, K. Jovanovi¢ i V. Potkonjak, ,,Hazard Identification,
Risk Asse Assessment and Safety Integration for Flexible Roboti Cell,” u Proceedings of 4th
International Conference on Electrical, Electronics and Computing Engineering, ICETRAN
2017,, Kladovo, Serbia, 2017.

[43] R. J. Kirschner, A. Kurdas, K. Karacan, P. Junge, S. A. Baradaran Birjandi, N. Mansfeld, S.
Abdolshah i S. Haddadin, ,,Towards a Reference Framework for Tactile Robot Performance
and Safety Benchmarking,” u 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2021.

[44] E. Magrini, F. Flacco i A. De Luca, ,,Control of generalized contact motion and force in
physical human-robot interaction,” u 2015 IEEE International Conference on Robotics and
Automation (ICRA), 2015.

[45] J. Heinzmann i A. Zelinsky, ,,Quantitative Safety Guarantees for Physical Human-Robot
Interaction,* The International Journal of Robotics Research, t. 22, pp. 479-504, 2003.

[46] D. F. Silva, G. E. A. P. A. Batista i E. Keogh, ,,Prefix and Suffix Invariant Dynamic Time
Warping,“ u 2016 IEEE 16th International Conference on Data Mining (ICDM), 2016.

[47] P. Tormene, T. Giorgino, S. Quaglini i M. Stefanelli, ,,Matching incomplete time series with
dynamic time warping: an algorithm and an application to post-stroke rehabilitation,* Artificial
Intelligence in Medicine, t. 45, pp. 11-34, 20009.

[48] G. Navarro, ,,A Guided Tour to Approximate String Matching,” ACM Computing Surveys, t.
33, April 2000.

[49] D. S. Hirschberg, ,,A linear space algorithm for computing maximal common subsequences,
Communications of the ACM, t. 18, pp. 341-343, 1975.

[50] C. Jekel, G. Venter, M. Venter, N. Stander i R. Haftka, ,,Similarity measures for identifying
material parameters from hysteresis loops using inverse analysis,” International Journal of
Material Forming, t. 12, May 20109.

[51] ,,.Dynamic Time Warping,* u Information Retrieval for Music and Motion, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, p. 69-84.

[52] I. Oregi, A. Pérez, J. D. Ser i J. A. Lozano, ,,On-line Elastic Similarity Measures for time
series, Pattern Recognition, t. 88, pp. 506-517, 2019.

[53] I. Oregi, A. Pérez, J. Del SeriJ. A. Lozano, ,,On-Line Dynamic Time Warping for Streaming
Time Series,*“ u Machine Learning and Knowledge Discovery in Databases, Cham, 2017.

[54] D. Sart, A. Mueen, W. Najjar, E. Keogh i V. Niennattrakul, ,,Accelerating Dynamic Time
Warping Subsequence Search with GPUs and FPGAs,* u 2010 IEEE International Conference
on Data Mining, 2010.

[55] L. J. Latecki, V. Megalooikonomou, Q. Wang, R. Lakaemper, C. Ratanamahatana i E. Keogh,
,Elastic Partial Matching of Time Series,“ 2005.

87



[56] Z. Gordi¢ i K. Jovanovié, ,Influence of Unmodelled External Forces on the Quality of
Collision Detection, u Advances in Service and Industrial Robotics - Proceedings of the 28th,
Kaiserslautern, 2019.

[57] F. Ferraguti, C. Secchi i C. Fantuzzi, ,,A tank-based approach to impedance control with
variable stiffness, u 2013 IEEE International Conference on Robotics and Automation, 2013.

[58] C. Schindlbeck i S. Haddadin, ,,Unified passivity-based Cartesian force/impedance control for
rigid and flexible joint robots via task-energy tanks,* u 2015 IEEE International Conference on
Robotics and Automation (ICRA), 2015.

[59] Z. Gordi¢ i K. Jovanovi¢, ,,A Framework for Inclusion of Unmodelled Contact Tasks
Dynamics in Industrial Robotics,* Sensors, t. 22, 2022.

[60] Z. Gordi¢ i K. Jovanovié, ,,Partial Pose Measurements for Identification of Denavit-Hartenberg
Parameters of an Industrial Robot,” u Proceedings of the 4th International Conference on
Electrical, Electronic and Computing Engineering (ICETRAN 2017), Kladovo, 2017.

[61] C. G. Rajeevlochana, S. Saha i S. Kumar, ,,Automatic Extraction of DH Parameters of Serial
Manipulators using Line Geometry,“ 2012.

[62] H.-N. Nguyen, J. Zhou i H.-J. Kang, ,,A New Full Pose Measurement Method for Robot
Calibration,” Sensors (Basel, Switzerland), t. 13, pp. 9132-47, July 2013.

[63] A. Reddy, ,Difference Between Denavit - Hartenberg (D-H) Clasical and Modified
Conventions for Forward Kinematics of Robots with Case Study,” 2014.

[64] C. Faria, J. L. Vilaga, S. Monteiro, W. Erlhagen i E. Bicho, ,,Automatic Denavit-Hartenberg
Parameter Identification for Serial Manipulators,” u IECON 2019 - 45th Annual Conference of
the IEEE Industrial Electronics Society, 2019.

[65] L. Zlajpah i T. Petri¢, ,,Geometric Identification of Denavit-Hartenberg Parameters
with Optical Measuring System,” u Advances in Service and Industrial Robotics, Cham, 2022.

[66] B. Borovac, S. DPordevi¢, M. Rasi¢ i M. Rakovié, Industrijska robotika, Novi Sad, 2016.

[67] H. Bruyninckx, Robot Kinematics and Dynamics, Leuven, Belgium: Katholieke Universiteit
Leuven, 2010.

[68] Z. Gordi¢ i C. Ongaro, ,,Development and Implementation of Orthogonal Planes Images
Method for Calibration of Tool Centre Point,” u Advances in Robot Design and Intelligent
Control, Cham, 2017.

[69] Z. Gordi¢ i C. Ongaro, ,,Calibration of robot tool centre point using camera-based system,
Serbian Journal of Electrical Engineering, t. 13, br. 1, pp. 9-20, 2016.

[70] C. Ongaro, ,,Device and Method for Calibrating of Torch Welding Robot“. Italy Patent
TV2014A000165, November 2014.

[71] ABB Robotics, BullsEye Application Manual, Revision G., Vasteras, Sweden, 2012.
[72] J. Hallenberg, ,,Robot Tool Center Point Calibration using Computer Vision,* 2007.

[73] F. S. Cheng, ,.Calibration of Robot Reference Frames for Enhanced Robot Positioning
Accuracy,” u Robot Manipulators, M. Ceccarelli, Ur., Rijeka, IntechOpen, 2008.

[74] K. Conrad, P. Shiakolas, S. Edu i T. Yih, ,,Robotic calibration issues: Accuracy, repeatability
and calibration,” pp. 17-19, August 2000.

[75] Z. Gordi¢ i K. Jovanovié, ,,Identifying Unmodelled Dynamics in Contact Tasks in Industrial,
u Proceedings of the 7th International Conference on Electrical, Electronic and, Etno village
“Stanisi¢*, 2020.

88



BIOGRAPHY

Zavisa Gordi¢ was born on August 3, 1989, in Uzice, where he finished Elementary school
and Gymnasium. As the best student in generation of the Gymnasium he received Commendations
from HRH Prince Aleksandar Il Karadordevi¢. In 2008 he enrolled Bachelor studies at University
of Belgrade, School of Electrical Engineering where he graduated in 2016 at the Department of
Signals and Systems with an average grade of 9.13, defending the bachelor thesis titled
"Application of the four-step commutation method on matrix converter”. The same year he started
master studies at the same department and finished in 2013 with an average grade of 10.00 and a
master thesis titled "Modelling and Control of the Car-Handling Box". In 2013, he enrolled at
doctoral studies in robotics on Department for control systems and signal processing, where he
passed all exams with average score of 10.00. The primary field of interest and research is related to
robot and end-effector calibration, increasing safety in work with industrial robots using collision
detection algorithms as well as areas related to human-robot interaction in terms of facilitated
programming, control, and use. He is the author of sixteen conference and three journal papers.

Since 2014 he is employed as research apprentice at the University of Belgrade, School of
Electrical Engineering on a project of Ministry of Education, Science and Technological
Development titled "Research and Development of Ambient Robots with Anthropomorphic
Characteristics”. In 2015 he was promoted to research assistant on the same project. He finished
basic and advanced training for using Denso industrial robots in 2015 in Germany. In 2016 he was
engaged on H2020 cascade funding within the scope of ReconCell on a project “Feasibility Study
for Serbian Manufacturing Innovation Hub (FS4SMIH)". During 2018 he was involved in
ReconCell project titled "Reconfigurable Assembly of Airport Signalization Lights". Since 2019 he
is engaged in H2020 project "DIH? - A Pan-European Network of Robotics DIHs for Agile
Production” as LER (Local Evangelist in Robotics). During 2020 and 2021, as part of the same
project, he was enrolled in technological mentoring and evaluation in five technology transfer
experiments in Finland, Lithuania, Denmark, Belgium, and Portugal aiming to develop and
implement advanced robotics solutions into manufacturing companies. During 2021 he was
engaged in H2020 project "BOWI - Boosting Widening Digital Innovation Hubs™ as well as on a
technological experiment "BrainWatch for increased productivity with improved workers
satisfaction" as part of H2020 project "SHOP4CF - Smart Human Oriented Platform for Connected
Factories".

In August 2016 he attended the summer school of robotics "1S3 HRC 2016: Italian-Serbian
Summer School on Human-Robot Coworking — Master Classes on Human-Robot Coworking and
Advanced Robot Grasping", which was held at the Faculty of Mechanical Engineering in Belgrade.

During studies he was honoured with following awards, and scholarships:

e 2017 Best section paper in conference ICETRAN 2017 for the paper titled "Partial Pose

Measurements for Identification of Denavit-Hartenberg Parameters of an Industrial Robot"

e 2015 Best section paper in conference ICETRAN 2015 for paper titled "Robot Tool Centre

Point Calibration using Analysis of Images from Orthogonal Planes™

e 2013 Awardee of the Scholarship "Dr Zoran Dindji¢" of German Eastern Business

Association (OA), Federal Ministry for Economic Cooperation and Development (BMZ) and

German Corporation for International Cooperation (GI1Z2)

¢ 2012. Scholarship holder of IAESTE (International Association for the Exchange of

Students for Technical Experience)

89



obpasay uzjace o aymopcmey

H3jasa o0 ayTopcTBY
HWme u npesume ayTopa 3apuiua 'opauh
Bpoj uHpekca 2013/5038
H3jaBmyjem

[a je JOKTOPCKa AMCcepTaluja o HacJa0BOM

Jleteknyja cuiia MHTEpaKIKje y MHIYCTPHjCKO] pOOOTHIIH

Detection of Interaction Forces in Industrial Robotics

* pe3yaTaT CONCTBEeHOr HCTPaMHBAYKOI pajia;
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1. AytropcTBo. /lo3BO/baBaTE YMHOMKAaBathe, JHCTPHOYLMjY M jaBHO CAONIUTABaHK:e JeNa, H
npepajie, ako ce HaBejle UMe ayTopa Ha HauuH ojpeheH o/ cTpaHe ayTopa WM JaBaoua
JIHLeHLe, YaK H Y KoMepuujanHe cepxe. OBo je Hajcno6oHKja 0] CBHX JIMLEHLIH.

2. AYTOPCTBO - HeKOMepUnujaaHo. [loiso/pagaTe yMHOMKABAME, JAUCTPUOYLUH]Y W JaBHO
CaoMniluTaBake Jieja, U Nnpepajie, aKko Ceé HABeJle MMe ayTopa Ha HauMH ojipeheH 0Ji cTpaHe
ayTopa wiM Jasaoua auieHie. OBa JHLEHLA He 103B0/bABA KOMEPLUHjAHY ynoTpedy Aena.

3. AyTOpPCTEO - HeKOMepuujanHo - 6e3 mnpepajga. /Jlo3so/kasare YMHOXABAGLE,
JHCTPUOYLH]Y H jaBHO caoniuTaBarke jena, 6e3 npoMeHa, npeobidKoBama WAKM ynoTpebe
JleJia y CBOM Jlesly, aKO Ce HaBejle MMe ayTopa Ha HauuH ojpelen o/ crpane ayropa wid
Jasaoua avueHue. OBa AHIeHNa He A03B0J/baBa KOMEpUHjaaHy ynoTpeby Aena. ¥ oAHOCY Ha
CBE OCTase JHIeHIle, 0BOM JIHIEHIIOM ce orpaHi4aea Hajeehn o6um npasa kopuwhewa gena.

4. AYTOpPCTBO - HEKOMEpUHjaJHO - JAeJHTH NojJ HCTHM ycaoBuma. /lo3po/baBarte
YMHOMXaBawe, JUCTPUOYIHjY W jaBHO caomilTaBawke [efa, U mpepaje, ako ce HaBeje HMe
ayTopa Ha HauyuH oApeheH oj cTpaHe ayTopa WJM JaBaoua JHIEHIE H aKo ce mpepaja
JUCTPUOYHpa MOJ MCTOM MAH CJAMYHOM JuueHunoM. OBa JIHLIEHLA He J03BOJbaBa
KOMePIHjaJHY YyIoTpedy Aena W npepaja.

5. AyropcrBo - 6e3 npepaaa. /lo3Bo/baBaTe YMHOMAaBAawke, AUCTPHOYLHjy MU JaBHO
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6. AYTOPCTBO - J€JIHTH NOJ HCTHM YCJI0BHMA. /|03BO/baBATE YMHOMKABAE, JUCTPUOYLH]Y
M JABHO CAOMNUITaBatbe [esd, W Npepajie, ako ce HaBeJle MMe ayTopa Ha HauuH oapehen ox
CTpaHe ayTopa WJIM JlaBaolla JIMIEHIe M aKo ce mpepaja JUCTPHOYHpa NMojJ HCTOM HJIH
cTMYHOM JuieHioM. OBa JIMIEHIA 03BO/bABA KOMEpIHjaJHy ynoTpeby Aesna ¥ mpepaja.
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