UNIVERZITET U BEOGRADU ELEKTROTEHNIČKI FAKULTET

Dejan R. Ivić

RAZVOJ UPRAVLJAČKIH ALGORITAMA ZA UPRAVLJANJE JEDNOSMERNIM PORTOVIMA U DISTRIBUTIVNIM MREŽAMA SA DISTRIBUIRANIM GENERATORIMA

doktorska disertacija

Beograd, 2022.

UNIVERSITY OF BELGRADE SCHOOL OF ELECTRICAL ENGINEERING

Dejan R. Ivić

DEVELOPMENT OF CONTROL ALGORITHMS FOR DC PORTS CONTROL IN DISTRIBUTION NETWORK WITH DISTRIBUTED GENERATORS

doctoral dissertation

Belgrade, 2022.

Mentor:

dr Predrag Stefanov, vanredni profesor

Članovi komisije:

dr Jovan Mikulović, redovni profesor

dr Čedomir Zeljković, vanredni profesor

dr Goran Dobrić, docent

dr Milan Bebić, vanredni profesor

dr Željko Đurišić, vanredni profesor

Datum odbrane:

Zahvalnica

Ozbiljan posao kao što je izrada doktorata, pored napornog rada i truda, zahtevao je i dosta odricanja, ne samo mene kao autora već i mojih najbližih. Ovim putem zahvaljujem se mojoj porodici, roditeljima i devojci, na neizmernoj podršci, razumevanju i strpljenju tokom proteklih godina. Bez njih sav moj trud i uspeh pretočen u doktorat ne bi bio potpun.

Posebnu zahvalnost dugujem mentoru, prof. dr Predragu Stefanovu. Zahvaljujući njegovim savetima, podršci, i pre svega razumevanju, realizovane su neke ideje koje su se na početku činile kao nedostižne. Takođe se zahvaljujem i članovima komisije na trudu uloženom u pregled disertacije i konstruktivnim predlozima koji su u mnogome upotpunili disertaciju i poboljšali kvalitet mog celokupnog naučnoistraživačkog rada.

Veliko hvala i svim kolegama, profesorima Elektrotehničkog fakulteta u Beogradu, profesorima Elektrotehničkog fakulteta u Banjaluci i svim prijateljima koji su dali snažan doprinos mom radu i profesionalnom razvoju.

Autor

Mojim roditeljima, Radi i Petri

Dedi Neđi (1935-2020)

Rezime

Energetska tranzicija, kojoj svedočimo u prethodnih nekoliko decenija, snažno je uticala na sve sfere ljudskih aktivnosti. Konceptualne promene posebno su vidljive u aktivnostima i tehničkotehnološkim sistemima koji su usko vezani za proizvodnju i ekspolataciju bilo kog oblika energije. Ovaj proces značajno je uticao i na elektrodistributivne sisteme, naročito u delu koji obuhvata integraciju obnovljivih izvora energije te regulaciju rada distributivnih mreža kako bi se omogućilo što bolje iskorišćenje postojećih kapaciteta.

Savremene distributivne mreže u mnogome se razlikuju od konvencionalnih distributivnih mreža. Najbitnija promena ogleda se u tome što distributivni sistemi, zahvaljujući integraciji distribuiranih generatora, više nisu pasivini. Posledično, i tokovi snaga u modernim distributivnim sistemima više nisu jednosmerni što u konačnici značajno utiče na upravljačke strategije i koordinaciju funkcija relejne zaštite. Razvoj uređaja energetske elektronike, praćen razvojem adekvatnih upravljačkih algoritama, dodatno je uticao na povećanje fleksibilnosti distributivnih sistema. Savremeni distributivni sistemi često se karakterišu i kao pametne mreže (eng. Smart Grid) koje osim distributivnog generisanja podrazumevaju i integraciju upravljive potrošnje. Osim toga, koncept pametnih mreža obuhvata i korišćenje različitih uređaja za poboljšanje pouzdanosti celokupnog sistema kao i uređaja koji značajno utiču na poboljšanje kvaliteta električne energije koja se isporučuje potrošačima. Kada se ovome dodaju i tržišni aspekti tj. trendovi deregulacije tržišta na distributivnom nivou, neizbežno se nameće potreba za maksimalnim iskorišćenjem postojećih kapaciteta distributivnog sistema odnosno potreba za razvojem novih upravljačkih resursa kako na hardverskom tako i na softverskom nivou.

Primena jednosmernih portova kao novih upravljačkih resursa u distributivnim mrežama razmatrana je u ovoj doktorskoj disertaciji. Kao i u slučaju većine uređaja energetske elektronike, primena jednosmernih portova u svojoj osnovi zahteva adekvatne modele i upravljačke algoritme. Integracijom jednosmernih portova u distributivnu mrežu omogućava se regulacija tokova snaga u mreži (ili određenom delu mreže) koja kao krajnji cilj ima postizanje nekog predefinisanog, optimalnog, stanja u mreži.

Upravljački algoritmi koji se uobičajeno koriste za regulaciju rada distributivnih mreža zasnovani su na proračunu optimalnih tokova snaga (*eng. Optimal Power Flow – OPF*) koji u svojoj osnovi podrazumevaju primenu nekih metoda optimizacije, bilo klasičnih metoda ili metoda baziranih na metaheuristici. Integracija jednosmernih portova u distributivne sisteme istovremeno znači i integraciju modela jednosmernih portova u proračune optimalnih tokova snaga pri čemu se jednosmerni portovi tretiraju kao potpuno upravljivi resursi u mreži. Realizacija proračuna optimalnih tokova snaga zahteva i dostupnost velikog broja podataka tj. merenja u mreži. S obzirom na dimenzionalnost distributivnih sistema, proračuni optimalnih tokova snaga mogu se razmatrati i sa aspekta analize i obrade velikog broja podataka (*eng. Big Data Analysis*).

Problematika apostrofirana u ovoj disertaciji odnosi se na slučajeve neraspoloživosti ulaznih podataka neophodnih za realizaciju OPF proračuna. Naime, usled prekida komunikacije ili usled nekog drugog razloga, vrlo često se dešava da rezultati OPF proračuna nisu dostupni ili se pak OPF proračuni ne mogu ni izvršiti. Kako bi se i u ovim slučajevima omogućio rad jednosmernih portova i rad celokupne distributivne mreže u stanju koje je jako blisko optimalnom stanju, predloženi su novi upravljački algoritmi. Upravljački okvir predložen u ovoj disertaciji omogućava rad jednosmernih portova i u normalnim radnim režimima (na bazi OPF-a) i u režimima neraspoloživosti OPF proračuna kada se upravljanje jednosmernim portovim vrši lokalno.

U disertaciji su predložena dva nova upravljačka algoritma koja se mogu koristiti za lokalno upravljanje jednosmernim portovima u slučajevima neraspoloživosti centralizovanog upravljanja na bazi OPF proračuna. Oba predložena algoritma bazirana su na primeni jednostavnih metoda veštačke inteligenicije na skup istorijskih podataka koji opisuje rad jednosmerih protova u nekom prethodnom periodu.

Prvi predloženi algoritam nazvan Algoritam pretrage bazira se na primeni metode pretraživanja istorijske baze podataka. Na taj način, tokom neraspoloživosti OPF proračuna iz baze podataka identifikuje se kvazioptimalno stanje i referentne vrednosti izlaza jednosmernih portova postavljaju se na vrednosti koje su se imale u tom stanju. Drugi predloženi algoritam, Polyfit algoritam, zasniva se na polinomnoj estimaciji referentnih vrednosti izlaza jednosmernih portova. Tokom neraspoloživosti OPF proračuna izlazi jednosmernih portova estimiraju se korišćenjem vrednosti dostupnih merenja koje se uvode u postupak estimacije zasnovan na nekoj predefinisanoj polinomnoj funkciji.

Predloženi algoritmi implementirani su i testirani izvođenjem simulacija na 2 test sistema: modifikovani IEEE 33 test sistem i modifikovani IEEE 69 test sistem. Osim test sistema, primena predloženih algoritama testirana je i pomoću simulacija izvedenih na jednom stvarnom distributivnom sistemu – 20 kV distributivni dalekovod Autoput, Laktaši, Republika Srpska. Rezultati simulacija detaljno su analizirani i diskutovani. Uvažavajući rezultate simulacija, predloženi upravljački algoritmi dalje se mogu korisiti za razvoj i implementaciju lokalnih kontrolera jednosmernih portova kao i za dodatna poboljšanja centralizovanih upravljačkih sistema i njihovih specijalizovanih modula.

Ključne reči: jednosmerni portovi, optimalni tokovi snaga, pametne mreže, metode veštačke inteligencije, optimizacija, upravljanje u distributivnim mrežama

Naučna oblast: tehničke nauke, elektrotehnika

Uža naučna oblast: elektroenergetika, upravljanje u elektroenergetskim sistemima

Abstract

The Green Energy transition which is ongoing since past few decades has significantly affected all spheres of human activity. Conceptual changes are mostly visible in activities and systems that are closely related to the production and exploitation of different energy forms. This process has also affected the electricity distribution systems, especially in the part that includes the integration of renewable energy sources and the distribution networks control.

Modern distribution networks are very different from conventional distribution networks. The most important change is that distribution systems, thanks to the integration of distributed generators, are no longer passive. Consequently, power flows in modern distribution systems are no longer oneway, which ultimately affects control strategies and coordination of protection functions. The development of power electronics devices, followed by the development of adequate control algorithms, additionally influenced the increase of distribution systems flexibility. Modern distribution systems are often characterized as smart grids, which, in addition to distributed generation, include the integration of controlable consumption. Furthermore, the concept of smart grids includes the use of various devices to improve the reliability of the entire system as well as devices used to improve the quality of energy supplied to end consumers. Considering the market aspects, ie trends of market deregulation at the distribution level, the need for efficient utilization of existing capacities and the need for development of new controlable resources at both hardware and software levels inevitably arises.

The application of Soft Open Points (SOP) as new management resources in distribution networks is analyzed in this doctoral dissertation. As in the case of most power electronics devices, the use of SOPs basically requires appropriate models and control algorithms. The integration of SOPs into the distribution network enables the power flow control in the considered network (or a certain part of the network) which shall finally lead to some predefined, optimal, state in the network.

The control algorithms commonly used to control the operation of distribution networks are based on the Optimal Power Flow calculations (OPF), which basically involve the application of some optimization methods, either classical or methods based on metaheuristics. The SOP integration also implies the integration of SOP models into the OPF calculations, where SOPs are treated as completely controlable resources in the network. The implementation of the OPF calculations requires the availability of a large amount of data, ie. network measurements. Ought to the dimensionality of distribution systems, OPF calculations can also be considered from the Big Data Analysis point of view.

The tasks highlighted in this dissertation refer to cases of unavailability of input data necessary to implement the OPF calculations. Due to communication interruption or due to some other reason, the results of OPF calculations are often unavailable or even worse, OPF calculations cannot be executed. In order to enable the optimal SOP operation (and operation of the entire distribution network) in such cases, new control algorithms have been proposed. The control framework proposed in this dissertation enables the operation of the SOPs in both normal operating modes (based on OPF) and in the cases when OPF calculations are unavailable so SOP control is performed locally.

Two completely new control algorithms that could be used to enable the local SOP control during communication interruptions (cases when centralized control framework is not available) are proposed in this dissertation. Both proposed algorithms are based on the application of simple deep learning methods to a set of historical data that describes the SOP operation in some previous period.

The first proposed algorithm called the Search Algorithm is based on the application of a historical database search method. In this manner, during the communication interruptions, the quasi-optimal state is identified from the database and the reference values of the SOP outputs are set to the

corresponding values. The second proposed algorithm, the Polyfit algorithm, relies on the polynomial estimation of the SOP output values. During the unavailability of the OPF calculations, the SOP outputs are estimated using the values of available network measurements that are further introduced into the estimation procedure based on polynomial function.

The proposed algorithms were implemented and tested by performing simulations on 2 test systems: a modified IEEE 33 test system and a modified IEEE 69 test system. In addition to the test systems, the application of the proposed algorithms was tested using simulations performed on real distribution system - 20 kV distribution power line Autoput, Laktasi, Republic of Srpska. The results of the simulations were analyzed and discussed in detail. Considering simulations results, the proposed control algorithms can be used for the development and implementation of the local SOP controllers as well as for further improvements of centralized control systems and/or their specialized modules.

Key words: Soft Open Point (SOP), Optimal Power Flow (OPF), Smart Grid, Deep Learning, Optimization, Distribution automation&control.

Scientific area: Technical Sciences, Electrical Engineering.

Specific scientific area: Power Systems Engineering, Power Systems Control.

Sadržaj

Rezime			.iv	
Abs	Abstractvi			
1.	UVC	DD	14	
1	1	Pregled literature	15	
2.	MOI	DELOVANJE JEDNOSMERNIH (DC) PORTOVA	19	
2	.1	Jednosmerni (DC) port za povezivanje dva distributivna voda	19	
	2.1.	1 Osnovna topologija i princip rada DC porta	19	
	2.1.2	2 Interne regulacione konture DC porta	21	
	2.1.3	3 Model DC porta u proračunima tokova snaga	22	
2	.2	Modelovanje gubitaka u DC portu	23	
	2.2.2	1 Kvadratni model gubitaka aktivne snage u konvertorima DC porta	24	
	2.2.2	2 Linearizovani model gubitaka aktivne snage u konvertorima DC porta	25	
2	.3	Jednosmerni (DC) port za povezivanje proizvoljnog broja distributivnih vodova	26	
3.	UPR	AVLJANJE DC PORTOM U NORMALNIM RADNIM USLOVIMA	28	
3	.1 Ve	ktor upravljačkih promenjivih u mreži	28	
3	.2	Kriterijum optimizacije	29	
3	.3	Ograničenja optimizacije	29	
	3.3.1	1 Ograničenja tipa jednakosti	29	
	3.3.2	2 Ograničenja tipa nejednakosti	31	
3	.4	Kriterijumska funkcija	31	
	3.4.2	1 Penalizaciona funkcija za termička ograničenja vodova u mreži	32	
3.4.		2 Penalizaciona funkcija za ograničenja vrednosti napona u čvorovima mreže	32	
	3.4.3	Penalizaciona funkcija za termička ograničenja konvertora DC porta	32	
3	.5	Realizacija postupka optimizacije – algoritam sivih vukova	33	
	3.5.2	1 Metoda sivih vukova (eng. Grey Wolf Optimizer – GWO)	33	
4. L	JPRAV	LIANJE DC PORTOM U KRITIČNIM USLOVIMA RADA – ALGORITAM PRETRAGE	37	
4	.1	Opis algoritma pretrage	37	
5. ι	JPRAV	LIANJE DC PORTOM U KRITIČNIM USLOVIMA RADA – POLYFIT ALGORITAM	41	
5	.1	Formiranje trenažnog skupa podataka	41	
5	.2	Postupak obuke – izračunavanje polinomnih koeficijenata	42	
5	.3	Izračunavanje vrednosti izlaznih promenjivih DC porta	43	
6. OPTIMIZACIJA SKUPA DOSTUPNIH MERENJA				
6	5.1	Model mreže	45	
	6.1.3	1 Modelovanje potrošača i generatora u mreži	45	
6.1.2		2 Modelovanje vodova u mreži	46	

	6.1.3	Modelovanje regulacionih transformatora u mreži	. 46
	6.1.4	Formiranje modela mreže	. 47
e	.2 Moc	lel merenja u mreži	. 47
	6.2.1	Funkcija merenja, h(x)	. 48
	6.2.2	Jakobian merenja, H	. 49
	6.2.3	Matrica pojačanja (Gain matrica), G	. 50
e	.3 Kore	elacije između merenja u mreži	. 51
	6.3.1	Primena korelacija između merenja u mreži za optimizaciju skupa dostupnih merenja	. 52
7. F	EZULTATI	SIMULACIJA	. 54
7	'.1 Test	sistemi	. 54
	7.1.1	Modifikovani IEEE 33 test sistem	. 54
	7.1.2	Modifikovani IEEE 69 test sistem	. 57
	7.1.3	Distributivni fider 20 kV DV Autoput, Laktaši, Republika Srpska	. 59
7	.2 Rezu	ıltati simulacija – Algoritam pretrage	. 60
	7.2.1	Rad DC porta u normalnim uslovima rada (modifikovani IEEE 33 test sistem)	. 60
	7.2.2	Rad DC porta u kritičnim uslovima rada (modifikovani IEEE 33 test sistem)	. 61
	7.2.3	Uticaj skupa ulaznih podataka (merenja) na performanse algoritma pretrage	. 65
	7.2.4	Uticaj norme vektora (kriterijuma pretrage) na performanse algoritma pretrage	. 67
	7.2.5	Rezultati simulacija – modifikovani IEEE 69 test sistem	. 67
	7.2.6	Rezultati simulacija – distributivni fider 20 kV DV Autoput, Laktaši, Republika Srpska	. 73
7	.3 Rezu	ıltati simulacija – Polyfit algoritam	. 77
	7.3.1 perioda s	Rezultati simulacija: IEEE 33 modifikovani test sistem (Scenario 1) – obuka i estimacija tok a sličnim meteorološkim prilikama	om . 78
	7.3.2 vedrog ne	Rezultati simulacija: IEEE 33 modifikovani test sistem (Scenario 2) – obuka tokom perioda eba, estimacija izlaznih promenjivih tokom oblačnih perioda	. 83
	7.3.3 perioda, e	Rezultati simulacija: IEEE 33 modifikovani test sistem (Scenario 3) – obuka tokom oblačnih estimacija izlaznih promenjivih tokom vedrih perioda	ı . 85
	7.3.4	Područje primene i pokazatelji efikasnosti Polyfit algoritma	. 88
	7.3.5	Rezultati simulacija: IEEE 69 modifikovani test sistem (Scenario 1)	. 89
	7.3.6	Rezultati simulacija: IEEE 69 modifikovani test sistem (Scenario 2)	. 94
	7.3.7	Rezultati simulacija: Distributivni fider 20 kV DV Autoput Laktaši, Republika Srpska	. 97
8. Z	AKLJUČAK		101
LITI	ERATURA		104
BIO	GRAFIJA A	UTORA	110

Spisak slika

Slika 2.1 – Arhitektura DC porta – bazni slučaj	19
Slika 2.2 – Topologija DC porta – principijelna shema	20
Slika 2.3 – Upravljačke konture DC porta	21
Slika 2.4 – Blok shema DC porta – bazni slučaj	22
Slika 2.5 – Odstupanje između linearizovanog i kvadratnog modela gubitaka DC porta	25
Slika 2.6 – Opšt model DC porta: (a) arhitektura; (b) blok shema	26
Slika 3.1 – Algoritam sivih vukova – dijagram toka	35
Slika 4.1 – Algoritam pretrage – dijagram toka	40
Slika 5.1 – Polyfit algoritam– dijagram toka	44
Slika 6.1 – Ekvivalentni model voda	46
Slika 6.2 – Ekvivalentni model regulacionog transformatora	46
Slika 7.1 – IEEE 33 distributivna test mreža sa integrisanim DC portom i distribuiranim generatorom	55
Slika 7.2 – Normalizovani dijagrami potrošnje/proizvodnje u mreži	55
Slika 7.3 – IEEE 69 distributivna test mreža – osnovna (radijalna) topologija	57
Slika 7.4 – Distributivni fider 20 kV DV Autoput, Laktaši – osnovna (radijalna) topologija	59
Slika 7.5 – Rad DC porta u normalnim uslovima rada – ukupni gubici aktivne snage u mreži	61
Slika 7.6 – Rad DC porta u kritičnim uslovima rada – ukupni gubici aktivne snage u mreži	62
Slika 7.7 – Rad DC porta u kritičnim uslovima rada – izlazne promenijve DC porta	62
Slika 7.8 – Estimacija aktivne snage DC porta (PL) pomoću različitih setova ulaznih promenijvih	65
Slika 7.9 – Estimacija reaktivne snage DC porta (QL) pomoću različitih setova ulaznih promenjivih	66
Slika 7.10 – Estimacija reaktivne snage DC porta (QM) pomoću različitih setova ulaznih promenjivih	66
Slika 7.11 – Rezultati simulacija - estimacije pomoću različitih vektorskih normi u algoritmu pretrage	67
Slika 7.12 – IEEE 69 distributivna test mreža – topologija sa 2 DC porta i 3 distribujrana generatora	68
Slika 7.13 – Algoritam pretrage - rezultati simulacija za modifikovani IEEE 69 test sistem: ukupni gubici	
aktivne snage u mreži i izlazne promenijve DC porta 1	69
Slika 7.14 – Algoritam pretrage - rezultati simulacija za modifikovani IEEE 69 test sistem: ukupni gubici	
aktivne snage u mreži i izlazne promenijve DC porta 2	69
Slika 7.15 – Distributivni fider 20 kV DV Autoput. Laktaši – modifikovana topologija	73
Slika 7.16 – Algoritam pretrage - rezultati simulacija za distributivni fider DV 20 kV Autoput Laktaši: ukup	oni
gubici aktivne snage u mreži	74
Slika 7.17 – Algoritam pretrage - rezultati simulacija za distributivni fider DV 20 kV Autoput Laktaši: ukuć	ni
gubici aktivne snage u mreži – OPF vs. Algoritam pretrage	75
Slika 7.18 – Algoritam pretrage - rezultati simulacija za distributivni fider DV 20 kV Autoput Laktaši: izlazi	ne
promenijve jednosmernog porta	75
Slika 7.19 – Izlazne promenijve DC porta (scenario 1)	
Slika 7.20 – Ukupni gubici aktivne snage u mreži (scenario 1)	
Slika 7.21 – Izlazne promenijve DC porta (scenario 2)	83
Slika 7.22 – Ukupni gubici aktivne snage u mreži (scenario 2)	. 84
Slika 7.23 – Izlazne promenijve DC porta (scenario 3)	. 86
Slika 7.24 – Ukupni gubici aktivne snage u mreži (scenario 3)	. 86
Slika 7.25 – Vreme izvršavanja Polyfit algoritma	89
Slika 7.26 – IFFF 69 distributivna test mreža – topologija sa 2 DC norta i 3 distribujirana generatora	90
Slika 7.27 – Polyfit algoritam - rezultati simulacija za modifikovani IFFF 69 test sistem (scenario 1): ukupr	50 1i
gubici aktivne snage u mreži	
Slika 7.28 – Polyfit algoritam - rezultati simulacija za modifikovani IFFF 69 test sistem (scenario 1). izlazn	e
promeniive DC porta 1	91
· · · · · · · · · · · · · · · · · · ·	

Slika 7.29 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 69 test sistem (scenario 1): izlazne	ē
promenjive DC porta 2	. 92
Slika 7.30 – IEEE 69 distributivna test mreža – topologija sa DC portom sa 3 priključka i 3 distribuirana	
generatora	. 94
Slika 7.31 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 69 test sistem (scenario 2): ukupn	i
gubici aktivne snage u mreži	. 95
Slika 7.32 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 69 test sistem (scenario2) : izlazne	ē
promenjive DC porta	. 95
Slika 7.33 – Polyfit algoritam - rezultati simulacija za distributivni fider DV 20 kV Autoput Laktaši: ukupni	
gubici aktivne snage u mreži	. 97
Slika 7.34 –Polyfit algoritam - rezultati simulacija za distributivni fider DV 20 kV Autoput Laktaši: ukupni	
gubici aktivne snage u mreži – OPF vs. Algoritam pretrage	. 98
Slika 7.35 – Polyfit algoritam - rezultati simulacija za distributivni fider DV 20 kV Autoput Laktaši: izlazne	
promenjive jednosmernog porta	. 98

Spisak tabela

Tabela 7.1 –	Rezultati proračuna vrednosti korelacija između dostupnih merenja i snaga DC porta	
	(modifikovani IEEE 33 test sistem)	52
Tabela 7.1 –	Nominalne vrednosti potrošnje u mreži i usvojeni model potrošnje	56
Tabela 7.2 –	Vrednosti normalizovanih dijagrama potrošnje	56
Tabela 7.3 –	Parametri IEEE 33 distributivne mreže	57
Tabela 7.4 –	Nominalne vrednosti potrošnje u mreži (IEEE 69 test sistem)	57
Tabela 7.5 –	Parametri IEEE 69 distributivne mreže	58
Tabela 7.6 –	Nominalne vrednosti potrošnje u mreži (Distributivni fider 20 kV DV Autoput, Laktaši)	59
Tabela 7.7 –	Parametri distributivne mreže 20 kV DV Autoput, Laktaši	60
Tabela 7.8 –	Skup dostupnih merenja tokom trajanja prekida komunikacije	61
Tabela 7.9 –	Algoritam pretrage - rezultati simulacija za modifikovani IEEE 33 test sistem: ukupni gubici aktivne snage u mreži	63
Tabela 7.10	– Algoritam pretrage - rezultati simulacija za modifikovani IEEE 33 test sistem: estimirane vrednosti izlaznih promenjivih DC porta	64
Tabela 7.11	– Algoritam pretrage - rezultati simulacija za modifikovani IEEE 69 test sistem: dostupna merenja	68
Tabela 7.12	– Algoritam pretrage - rezultati simulacija za modifikovani IEEE 69 test sistem: ukupni gubici	70
Tabela 7.13	– Algoritam pretrage - rezultati simulacija za modifikovani IEEE 69 test sistem: estimirane vrednosti izlaznih promenjivih DC porta 1	70
Tabela 7.14	– Algoritam pretrage - rezultati simulacija za modifikovani IEEE 69 test sistem: estimirane vrednosti izlaznih promenjivih DC porta 2.	72
Tabela 7.15	– Algoritam pretrage - rezultati simulacija za distributivni fider 20 kV DV Autoput Laktaši: dostupna merenia	74
Tabela 7.16	– Algoritam pretrage - rezultati simulacija za DV 20 kV Autoput Laktaši: ukupni gubici aktivne snage u mreži	76
Tabela 7.17	– Algoritam pretrage - rezultati simulacija za DV 20 kV Autoput Laktaši: estimirane vrednosti izlaznih promenijvih DC porta	77
Tabela 7.18	– Skup dostupnih merenja tokom trajanja prekida komunikacije	78
Tabela 7.19	– Polyfit algoritam - rezultati simulacija za modifikovani IEEE 33 test sistem: estimirane vrednosti izlaznih promenijvih DC porta – scenario 1	80
Tabela 7.20	– Polyfit algoritam - rezultati simulacija za modifikovani IEEE 33 test sistem: ukupni gubici aktivne snage u mreži – scenario 1	81
Tabela 7.21	– Polyfit algoritam - rezultati simulacija za modifikovani IEEE 33 test sistem: estimirane vrednosti izlaznih promenjivih DC porta – scenario 2	84
Tabela 7.22	 Polyfit algoritam - rezultati simulacija za modifikovani IEEE 33 test sistem: ukupni gubici aktivne snage u mreži – scenario 2 	85
Tabela 7.23	– Polyfit algoritam - rezultati simulacija za modifikovani IEEE 33 test sistem: estimirane vrednosti izlaznih promenjivih DC porta – scenario 2	87
Tabela 7.24	– Polyfit algoritam - rezultati simulacija za modifikovani IEEE 33 test sistem: ukupni gubici aktivne snage u mreži – scenario 3	87
Tabela 7.25	– Parametri efikasnoti predloženog algoritma (maksimalna relativna greška)	88
Tabela 7.26	– Polyfit algoritam - rezultati simulacija za modifikovani IEEE 69 test sistem (scenario 1):	90
Tabela 7.27	 Polyfit algoritam - rezultati simulacija za modifikovani IEEE 69 test sistem (scenario 1): ukup gubici aktivne snage u mreži 	ni 92

Tabela 7.28 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 69 test sistem (scenario 1):	
estimirane vrednosti izlaznih promenjivih DC porta 1	93
Tabela 7.29 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 69 test sistem (scenario 1):	
estimirane vrednosti izlaznih promenjivih DC porta 2	93
Tabela 7.30 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 69 test sistem (scenario 2):	
dostupna merenja	94
Tabela 7.31 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 69 test sistem (scenario 2): uku	pni
gubici aktivne snage u mreži	96
Tabela 7.32 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 69 test sistem (scenario 2):	
estimirane vrednosti izlaznih promenjivih DC porta 1	96
Tabela 7.33 – Polyfit algoritam pretrage - rezultati simulacija za DV 20 kV Autoput Laktaši: ukupni gubici	
aktivne snage u mreži	99
Tabela 7.34 – Polyfit algoritam - rezultati simulacija za DV 20 kV Autoput Laktaši: estimirane vrednosti	
izlaznih promenjivih DC porta	99

1. UVOD

Tranzicija ka ekološki prihvatljivim izvorima energije donela je značajne promene u globalnoj energetici koje su se očitovale i u elektroenergetskim sistemima. Razvoj "zelenih tehnologija" baziranih na obnovljivim izvorima energije i njihova integracija u konvencionalne elektroenergetske sisteme značajno su uticali na strukturu i performanse savremenih elektroenergetskih sistema. Razvoj informacionih tehologija i njihova primena u elektroenergetici omogućili su razvoj i primenu novih alata u planiranju, eksploataciji i regulaciji elektroenergetskih sistema. Kada se ovim tehničkotehnološkim aspektima dodaju i tržišne promene tj. deregulacija i decentralizacija tržišta električne energije, lako se uočava značajana transformacija elektroenergetskih sistema od centralizovanih, vertikalno organizovanih sistema ka decentralizovanim distribuiranim sisitemima.

Promene na makro nivou nisu zaobišle ni distributivne sisteme kao jedan od najznačajnijih delova elektroenergetskog sistema. Savremeni distributivni sistemi teže ka implementaciji koncepta inteligentnih elektroenergetskih mreža (*eng. Smart Grid*). Inteligentne mreže u svojoj osnovi podrazumevaju integraciju distribuiranog generisanja iz obnovljivih izvora energije, aktivno upravljanje potrošnjom u mreži te optimizaciju performansi distributivnog sistema uz poštovanje svih tehničkih ograničenja u pogledu pouzdanosti i kvaliteta napajanja krajnih korisnika dovoljnom količinom električne energije. Ovako definisan koncept inteligentnih mreža nemoguće je realizovati bez visokog stepena automatizacije distributivnih mreža koji se može postići primenom savremenih upravljačkih uređaja (hardverski nivo) u kombinaciji sa odgovarajućim upravljačkim algoritmima.

Integracija distribuiranih generatora i upravljivih potrošača značajno je promenila karakter konvencionalnih distributivnih sistema. Savremene distributivne mreže više nisu pasivne, javljaju se tokovi snaga u više smerova što u mnogome utiče na upravljačke strategije i komplikuje zaštitne sheme. Posmatrano sa tehno-ekonomskog aspekta, integracija distribuiranih generatora dodatno opterećuje postojeće distributivne kapacitete te vrlo često može zahtevati izgradnju novih, skupih distributivnih vodova i postrojenja. Kako bi se omogućili dodatni kapaciteti za integraciju distribuiranih generatora u postojeće distributivne sisteme (*eng. Hosting Capacity*) razvijeni su različiti upravljački resursi kao i upravljačke strategije koje podrazumevaju promenu topologije distributivne mreže (rekonfiguraciju) te primenu različitih upravljačkih resursa za regulaciju tokova snaga u mreži.

Razvoj energetske elektronike u proteklim decenijama omogućio je primenu ovakvih uređaja i na distributivnom nivou, uvažavajući specifičnosti distributivnih mreža. Novi upravljački resursi koji omogućavaju regulaciju tokova snaga u distributivnoj mreži (ili određenom delu mreže) zasnivaju se na uređajima energetske elektronike. Adekvatna primena uređaja energetske elektronike pored hardverskog dela zahteva i specifične upravljačke strategije koje će omogućiti efikasan rad kao i integraciju sa ostalim sistemima upravljanja u distributivnom sistemu. Jedan od novih upravljačkih resursa u distributivnim mrežama jesu i jednosmerni (DC) portovi (*eng. Soft Open Points*) čiji je rad razmatran u ovoj disertaciji. Primena DC portova na distributivnom nivou u fokus interesovanja vraća zatvaranje petlji u distributivnim mrežama. Zatvaranjem petlji pomoću DC portova značajno se povećava pouzdanost, rasterećuju postojeći kapaciteti i omogućava povećanje penetracije distribuiranih generatora. Istovremeno, zahvaljujući karakteristikama konvertora energetske elektronike koji čine osnovu DC porta, eliminisan je glavni nedostatak petljastih mreža odnosno propagacija struja kvara.

Upravljivost DC porta omogućava regulaciju tokova snaga u mreži i dalju optimizaciju rada distributivnog sistema. Iz ovog razloga DC portovi mogu se razmatrati kao nezavisni upravljački

resursi u mreži ili se pak njihovo upravljanje može vršiti u koordinaciji sa ostalim upravljačkim resursima (npr. kompenzatori reaktivne energije, regulatori napona itd.). Integracija DC portova u konvencionalne distributivne mreže podrazumeva razvoj i implementaciju posebnih upravljačkih algoritama koji uvažavaju sve specifičnosti DC portova i tretiraju ih kao potpuno kontrolabilan resurs u mreži. Naglasak tokom naučnoistraživačkog rada, čiji su rezultati pretočeni u ovu disertaciju, upravo je stavljen na razvoj efikasnih i robusnih upravljačkih algoritama širokog spektra primenjivosti. Sa aspekta upravljanja, rad jednosmernog porta mora se razmatrati u zavisnosti od uslova rada kako samog DC porta tako i ostatka distributivne mreže i prateće komunikacione infrastrukture. U poglavljima koja slede detaljno je opisana upravljačka strategija koja obuhvata ne samo rad DC porta u normalnim uslovima rada već i specifične kritične režime rada do kojih dolazi usled neraspoloživosti ulaznih podataka neophodnih za centralizovano određivanje referentnih vrednosti izlaza DC porta.

Naučni doprinosi ove doktorske disertacije mogu se sažeti u sledećim tačkama:

- Problem upravljanja u distributivnim mrežama sa jednosmernim portovima i distribuiranim generisanjem formulisan je sa novog aspekta koji uvažava DC portove kao upravljačke resurse i uzima u obzir potencijalnu nedostupnost komunikacione infrastrukture i/ili ulaznih varijabli neophodnih za realizaciju centralizovane upravljačke strategije;
- Razvijena je kompletna upravljačka strategija kao i potpuno novi upravljački algoritmi za upravljanje DC portovima pri prekidu komunikacije tj. pri nedostupnosti ulaznih varijabli odnosno nedostupnosti OPF proračuna;
- Razvijena je metodologija kojom se vrši klasifikacija dostupnih ulaznih varijabli (dostupnih merenja) i njihovo dalje korišćenje u upravljačkim algoritmima;
- Razvijena je metodologija kojom se vrši optimizacija/minimizacija skupa dostupnih merenja koja se koriste kao ulazne varijable u upravljačkim algoritmima. Na taj način poboljšane su performanse predloženih upravljačkih algoritama i prošireno područje njihove primene;
- Izvršena je evaluacija predloženih upravljačkih algoritama u odnosu na algoritme za upravljanje DC portovima bazirane na rezultatima OPF proračuna. Evaluacija je izvršena izvođenjem simulacija na tri distributivne mreže dva test sistema i jedana stvarna distributivna mreža.
- Predložen je okvir primene razvijenih algoritama kao i mogućnosti njihove praktične implementacije.

1.1 Pregled literature

Masovnija primena uređaja energetske elektronike u elektroenergetskim mrežama najpre se dogodila u prenosnim sistemima – HVDC prenosni sistemi. Dalji razvoj energetske elektronike omogućio je primenu sličnih uređaja i u distributivnim mrežama srednjeg napona. Zajedno sa razvojem komponenti energetskih pretvarača (hardvera) razvijali su se i upravljački algoritmi (softver) kako bi se DC portovi što je moguće bolje modelovali i uvažili kao upravljački resursi u mreži. Većina upravljačkih algoritama objavljenih do sada odnosi se na normalne uslove rada DC portova gde se upravljanje DC portovima bazira na proračunima optimalnih tokova snaga (*eng. Optimal Power Flow – OPF*), [1], [2]. Nagalasak u ovim studijama stavljen je na adaptaciju različitih metoda optimizacije i njihovu primenu na specifične probleme optimizacije u distributivnim mrežama. Upravljanje DC portovima primenom algoritama baziranih na klasičnim metodama optimizacije detaljno je opisano u [3], [4]. Osnovni nedostatak primene klasičnih metoda optimizacije pri upravljanju DC portovima jeste potreba za uvođenjem dodatnih relaksacija kako bi se postupkom optimizacije obuhvatila nekonveksna ograničenja [5]. Ovaj problem se ne pojavljuje kod algoritama zasnovanih na metaheurističkim metodama optimizacije [6]. Ipak, metaheurističke metode optimizacije susreću se sa drugim problemom, tzv. pojavom lokalnih optimuma [7] koji mogu ograničiti primenu pojedninih metaheurističkih metoda optimizacije. Prethodno navedena istraživanja poslužila su kao osnova za kompletiranje upravljačkog okvira za regulaciju rada DC portova u normalnim uslovima rada.

Blagodati primene DC portova u distributivnim mrežama istraživane su i objavljene u nekoliko aktuelnih studija. U [8] i [9] višestruke korisiti integracije DC portova manifestovane su kroz balans opterećenja distributivnih fidera, poboljšanje naponskog profila u mreži i smanjenje sumarnih gubitaka aktivne snage u mreži. Primena DC portova za povećanje penetracije distribuiranih generatora u mreži detaljno je istražena i opisana u [10] i [11]. Kao dodatak ovim radovima, integracija DC portova uz uvažavanje uticaja proizvodnje fotonaponskih postrojenja i mogućnosti regulacije upravljivih potrošača opisana je u [12] i [13].

Istraživanja u oblasti upravljanja DC portovima uglavnom su fokusirana na integraciju ovih uređaja u različite optimizacione postupke pri čemu se DC portovi tretiraju kao novi, potpuno upravljivi resursi u mreži. Na ovaj način postiže se veća fleksibilnost mreže koja za krajnji cilj ima postizanje željenog optimalnog stanja u mreži. Optimizacioni postupci koji podrazumevaju primenu DC portova obično su višekriterijumski te se upravljanje DC portovima razmatra uvažavajući i ostale regulacione elemente u distributivnoj mreži. U studijama [14] i [15] DC portovi korišćeni su u optimizacionom postupku definisanja optimalnog uklopnog stanja mreže - postupak rekonfiguracije mreže. Problematika opisana u ovim studijama prikazuje rekonfiguraciju mreže u novom svetlu, pri čemu se DC portovi u optimizacionom postupku razmatraju zajedno sa konvencionalnim normalno otvorenim prekidačima. Rezultati prikazani u [14] i [15] pokazuju da se primenom rekonfiguracije mreže sa integrisanim DC portovima mogu postići višestruke koristi u smislu balansiranja opterećenja u mreži i povećanja kapaciteta za integraciju novih distribuiranih generatora. Balans opterećenja distributivnih vodova i minimizacija gubitaka aktivne snage u mreži sa integrisanim DC portovima analizirani su i u [16]. Ovo istraživanje pokazalo je da integracija DC portova može značajno smanjiti gubitke aktivne snage u mreži i istovremeno poboljšati naponski profil u mreži u odnosu na slučaj radijalne mreže bez DC portova. Osim optimizacije pogonskog stanja u mreži u [17] kao i u [18] razmatrano je određivanje optimalnih lokacija DC portova i distribuiranih generatora u mreži. Ovaj problem predstavlja zasebnu celinu koja zahteva dodatne analize. Sa aspekta upravljanja DC portovima i projektovanja novih upravljačkih algoritama kao polazna pretpostavka podrazumeva se da su lokacija i broj DC portova i distribuiranih generatora u mreži već definisani i poznati. Shodno tome, problem optimalnih lokacija DC portova i distribuiranih generatora u mreži nije razmatran u nastavku disertacije te se ove lokacije apriori podrazumevaju kao definisane i poznate.

Optimizacioni postupci koji uvažavaju promene struja i napona u mreži sa promenama injektiranja aktivne i reaktvne snage DC porta razmatrani su u [19] i [20]. Slično kao i u većini ostalih studija, i u ovim radovima kao kriterijumi optimizacije uvažavani su minimizacija gubitaka aktivne snage i balans opterećenja u mreži dok je sam optimizacioni postupak baziran na analizi osetljivosti struja i napona u mreži u odnosu na promene snaga injektiranja iz DC porta. Dodatno, u [19] razmatrana je i unapređena topologija DC porta koja je takođe detaljnije opisana u [21] i [22]. Validacija rezultata prethodno navedenih istraživanja uglavnom je vršena na različitim IEEE test sistemima (IEEE 33 ili IEEE 69 test mreža) prilagođenim da oslikavaju stanje nekog od realnih distributivnih sistema. Simulacija primene DC portova u stvarnim distributivnim mrežama različitog karaktera opisana je u [23]. Rezultati objavljeni u [23] ukazuju i na prednosti DC portova u odnosu na ostale regulacione resurse kao što su statički kompenzatori reaktivne snage i regulacioni transformatori. Istovremeno, analize opisane u ovom radu naglašavaju koristi primene DC portova u sadejstvu sa postojećim (konvencionalnim) regulacionim resursima u mreži.

S obzirom na tendencije u modernim distributivnim mrežama i značaj integracije distribuiranih generatora u postojeće distributivne sisteme, DC portovi razmatrani su i kao dodatni alat za rasterećenje postojećih kapaciteta sistema tj. za oslobađanje kapaciteta koji bi omogućili

integraciju dodatnih distribuiranih generatora. Posebna pažnja ovoj problematici posvećena je u [3], [24-26]. Rezultati prikazani u [24] pokazuju opravdanost integracije DC portova s ciljem povećanja kapaciteta dostupnih za integraciju distribuiranih generatora. Problematika interminentnosti proizvodnje fotonaponskih postrojenja uvažena je u [25] dok je u [26] razmatrana i integracija DC portova sa više priključaka.

Osim normalnih radnih režima, rad DC porta moguć je i u uslovima kvara te u uslovima restauracije napajanja nakon izolacije mesta kvara. Analize rada DC porta pri restauraciji napajanja nakon kvara prezentovane su u [27-30]. Rad DC porta tokom i nakon simetričnih kvarova u mreži opisan je u [27] dok se u [28] obrađuju i dinamičke performanse celokupne mreže sa integrisanim DC portom. U [29] razmatrana je restauracija napajanja nakon kvara uvažavajući podelu distributivnih sistema na više manjih celina dok je u [31] analizirana restauracija napajanja u mreži sa integrisanim većim brojem jednosmernih portova. Restauracija napajanja nakon kvara zasnovana na ostrvskom radu i koordinaciji rada DC portova i distribuiranih generatora analizirana je u [32].

Pored tehničkih performansi DC portova, aktuelna istraživanja obuhvataju i analize isplativosti integracije DC portova i ekonomske pokazatelje eksploatacije ovih uređaja. Finansijski aspekti integracije DC portova u konvencionalne distributivne mreže opisani su u [33-35]. U ovim radovima detaljno je izložen uticaj integracije DC portova na ukupne godišnje troškove u mreži. Optimizacija ukupnih troškova, shodno metodologiji predloženoj u ovim radovima, vršena je indirektno, minimizacijom ukupnih troškova gubitaka aktivne snage u mreži primenom DC portova.

Problematika upravljanja DC portovima posebno dolazi do izražaja u kritičnim uslovima rada pri kojima se javlja neraspoloživost ulaznih podatka ili nemogućnost izvršavanja proračuna optimalnih tokova snaga. Kritični uslovi rada DC portova najčešće se događaju pri prekidima komunikacionih kanala kada nije moguće vršiti prenos ulaznih podataka (merenja) ili upravljačkih signala (referentne vrednosti) DC porta. U ovim slučajevima upravljanje DC portom neophodno je vršiti lokalno. Za lokalno upravljanje DC portom moguće je korisitit algoritme koji se zasnivaju na metodama veštačke inteligencije [36] ili na logici fazi brojeva [37], [38].

Kao što je već prethodno spomenuto, komunikaciona infrastruktura igra veoma važnu ulogu u upravljanju DC portovima i generalno u upravljanju celokupnom distributivnom mrežom. Različiti vidovi i arhitekture komunikacionih mreža koje se koriste u savremenim distributivnim sistemima opisani su u [39]. Komunikaciona infrastruktura opisana u ovom radu predstavlja osnovni preduslov za automatizaciju distributivnog sistema i implementaciju koncepta inteligentnih mreža na distributivnom nivou. Uvažavajući različite tipove fizičkih komunikacionih medijuma, različite arhitekture komunikacionih mreža kao i različite tipove prekida komunikacije razvijani su i različiti algoritmi za lokalno upravljanje DC portovima. Obrazloženje rada DC porta u uslovima različitih tipova prekida komunikacije dato je u [40]. U ovom radu opisan je i algoritam za lokalno upravljanje DC portom zasnovan na obrascima promena napona ili aktivnih i reaktivnih snaga u mreži. Kontroler koji omogućava lokalnu regulaciju toka aktivne i reaktivne snage kroz DC port razvijen je u studijama [41] i [42]. Pristup opisan u ovim radovima je prilično jednostavan i već testiran u stvarnoj 6 kV mreži. Uprkos tome, primenjivost ovog kontrolera je relativno ograničena iz razloga što se upravljanje DC portom zasniva samo na merenjima napona u poveznim čvorovima DC porta (interne promenjive DC porta) dok se sva ostala merenja koja bi mogla biti dostupna tokom prekida komunikacije (eksterne promenjive) u potpunosti zanemaruju. Slično prethodno spomenutom lokalnom kontroleru razvijen je i algoritam opisan u [43]. Ovaj algoritam takođe podrazumeva upravljanje bazirano na internim promenjivim DC porta a njegova primena predviđena je u slučajevima kratkotrajnih prekida komunikacije tj. kao rezervno upravljanje u slučajevima smetnji. Kao dodatak gore navedenim algoritmima može se razmatrati i upravljačka strategija opisana u [44] koja kombinuje centralizovano i decentralizovano upravljanje jednosmernim portovima. U ovoj strategiji definisana je podela mreže na manje celine sa zajedničkom regulacijom napona i reaktivnih snaga. Efikasan rad ovako projektovanog upravljačkog okvira u svojoj osnovi ipak podrazumeva dostupnost komunikacionih kanala između regulacionih celina te problematika rada DC portova u slučajevima prekida ovih komunikacionih linija i dalje ostaje aktuelna.

Najnovija istraživanja osim integracije DC portova u simetrične distributivne sisteme razmatraju i integraciju DC portova u nesimetrične mreže. Ova problematika je prilično kompleksna i donosi niz novih izazova koji se prevashodno odnose na nove funkcionalnosti DC portova u nesimetričnim sistemima. Efikasna primena jednosmernih portova u nesimetričnim sistemima osim osnovnih funkcionalnosti regulacije tokova snaga zahteva i dodatne funkcionalnosti uspostavljanja simetrije u nesimetričnim sistemima [45], [46]. U ovom slučaju DC portovi bi trebalo da se ponašaju i kao aktivni filtri u mreži što dodatno usložnjava njihovu strukturu te značajno utiče na finalnu cenu. Iz ovih razloga primena DC portova u nesimetričnim mrežama srednjeg napona još uvek nije isplativa. Shodno tome, primena jednosmernih portova u nesimetričnim distributivnim mrežama nije razmatrana u sklopu istraživanja obuhvaćenog ovom disertacijom. Razvoj DC portova specijalizovanih za primenu u nesimetričnim mrežama definitivno predstavlja budućnost istraživanja u ovoj oblasti i tematiku kojom će se autor baviti u bliskoj budućnosti.

Kratak pregled aktuelnih istraživanja naveden u prethodnim paragrafima nedvosmisleno naglašava važnost pouzdane komunikacione infrastrukture bez koje je rad DC portova vrlo ograničen ili čak u nekim slučajevima neizvodiv. U nastavku disertacije opisani su algoritmi za lokalno upravljanje DC portovima koji rešavaju problem neraspoloživosti usled delimičnih prekida komunikacije. Preostala poglavlja organizovana su kako sledi. U drugom poglavlju detaljno su opisani modeli jednosmernih portova koji se koriste u proračunima tokova snaga i dalje u optimizacionim algoritmima korišćenim pri centralizovanom upravljanju DC portovima. Treće poglavlje posvećeno je upravljanju DC portovima u normalnim uslovima rada tj. centralizovanom upravljanju DC portovima. U ovom poglavlju definisan je kompletan upravljački okvir koji tretira DC portove kao potpuno kontrolabilne resurse u mreži. Rad jednosmernih portova u kritičnim uslovima prouzrokovanim prekidima komunikacija tema je četvrtog i petog poglavlja. U ovim poglavljima detaljno su opisani potpuno novi upravljački algoritmi razvijeni za lokalno upravljanje DC portovima pri prekidu komunikacije. Šesto poglavlje donosi poboljšanja predloženih algoritama implementirana kroz postupak minimizacije/optimizacije skupa dostupnih merenja koja učestvuju u lokalnom upravljanju jednosmernim portovima. Na prethodna poglavlja nadovezuje se sedmo poglavlje koje sadrži sve rezultate provedenih simulacija i parametre mreža razmatranih tokom testiranja razvijenih upravljačkih alogritama. Konačno, osmo poglavlje sadrži zaključke, završne komentare autora i smernice za budući naučnoistraživački rad u ovoj oblasti.

2. MODELOVANJE JEDNOSMERNIH (DC) PORTOVA

Prvi korak u razvoju algoritma za upravljanje jednosmernim portovima podrazumeva matematičko modelovanje samih portova. Adekvatni modeli DC porta trebaju što je moguće vernije predstavljati karakteristike DC portova i omogućiti njihovu integraciju u proračune tokova snaga. U paragrafima koji slede opisane su najčešće topologije DC porta – osnovni i opšti slučaj a posebna pažnja posvećena je i estimaciji gubitaka u pretvaračima koji čine osnovu DC portova.

2.1 Jednosmerni (DC) port za povezivanje dva distributivna voda

Bazična topologija DC porta omogućava povezivanje dva distributivna fidera pomoću DC međukola. Arhitektura DC porta koji povezuje dva distributivna fidera prikazana je na Slici 2.1.

Osnovu DC porta čine dva konvertora energetske elektronike (*Voltage Source Converters* - *VSC*) koji su međusobno povezani preko DC kola sa kondenzatorom. Svaki od VSC konvertora sastoje se od prekidačkih elemenata – par IGBT (*Insulated Gate Bipolar Transistor*) i dioda, povezanih u mosnu topologiju. S obzirom da je arhitektura simetrična (za svaki od fidera koristi se identičan broj i raspored prekidačkih elemenata) ovaj tip topologije u literaturi se naziva i *Back to Back* topologija. Zahvaljujući kontrolabilnosti prekidačkih komponenata (upravljanje IGBT tranzistorima uglavnom se vrši tehnikom impulsno-širinske modulacije) moguće je vršiti upravljanje tokom aktivne snage kroz DC port. Svaki od IGBT tranzistora je nezavisno upravljiv što omogućava regulaciju reaktivne snage DC porta kao i napona na priključcima DC porta. Suštinski, osnovna topologija DC porta koji povezuje dva distributivna fidera identična je topologiji HVDC sistema koji su široko rasprostranjeni u prenosnim mrežama. Za bolje razumevanje osnovnih principa rada DC porta kao i osnovnih regulacionih kontura uvaženih prilikom modelovanja, topologija DC porta detaljnije je objašnjena u nastavku.

2.1.1 Osnovna topologija i princip rada DC porta

Analogno topologiji HVDC sistema, osnovna topologija DC porta može se posmatrati kao kombinacija dva sistema zasnovana na VSC konvertorima, kao što je ilustrovano na slici 2.2. Uvažavajući notacije sa slike 2.2 prvi VSC sklop (VSC1) zadužen je za regulaciju tokova aktivne i reaktivne snage dok drugi VSC sklop (VSC2) ima ulogu regulisanja DC napona. Svaki od VSC sklopova na AC krajevima povezan je sa distributivnim fiderima (priključak na mrežu).

Slika 2.1 – Arhitektura DC porta – bazni slučaj

Slika 2.2 – Topologija DC porta – principijelna shema

Takođe, VSC sklopovi međusobno su povezani u jedinstvenu celinu tako što su im DC krajevi povezani u paralelnu vezu.

U razmatranoj topologiji sklop VSC1 vrši regulaciju aktivne i reaktivne snage na odgovarajućim AC priključcima tj. vrši regulaciju razmene aktivne/reaktivne snage (P_{s1} i Q_{s1}) između DC porta i distributivne mreže. Kako bi se zadovoljio balans aktivne snage sklop VSC1 zahteva podršku DC izvora. Neophodna DC podrška u opisanoj topologiji potiče od drugog sklopa, VSC2, koji i jeste zadužen za regulaciju napona na DC strani. U stacionarnim stanjima, koja se razmatraju pri upravljanju DC portovima u normalnim radnim uslovima, snaga na AC priključcima sklopa VSC1 jednaka je negativnoj vrednosti P_{ext} odnosno negativnoj vrednosti proizvoda $V_{DC}i_{ext}$. Pri analizi rada DC porta realizovanog na osnovu topologije sa slike 2.2 treba primetiti da ne dolazi do razmene reaktivne snage između distributivne mreže (AC priključak sklopa VSC1) i DC strane DC porta. Reaktivna snaga Q_{s1} rezultat je razmene reaktivne snage između faza sklopa VSC1 te je nezavisna od DC strane sklopa VSC1. Shodno tome, regulacija reaktivne snage na AC priključcima sklopa VSC1 vrši se nezavisno. Regulacija reaktivne snage može se vršiti pomoću dodatne povratne sprege ili pak na način da se napon na AC priključcima održava na nekoj konstatnoj vrednosti. Detaljna razmatranja nezavisne regulacije reaktivne snage mogu se pronaći u [38].

Sklop VSC2 u topologiji DC porta sa slike 2.2 prvenstveno je zadužen za regulaciju DC napona koji se dalje prosleđuje na kontroler aktivne/reaktivne snage tj. sklop VSC1. Regulacija DC napona vrši se regulacijom aktivne snage P_{s2} odnosno regulacijom razmene aktivne snage između sklopa VSC2 i odgovarajućeg distributivnog fidera. Uvažavajući oznake sa slike 2.2. lako se zaključuje da vrednost aktivne snage na AC priključcima sklopa VSC2, P_{s2} , mora biti jednaka vrednosti aktivne snage P_{ext} kako bi se DC napon održavao konstantnim. Kao krajnji rezultat dobija se da se negativna vrednost aktivne snage na AC priključcima sklopa VSC1, (P_{s1}) , preko sklopa za regulaciju DC napona, VSC2, prenosi na odgovarajuće AC priključke sklopa VSC2 odnosno injektira u distributivnu mrežu kao vrednost P_{s2} . Slično kao i kod sklopa VSC1, primetno je da reaktivna snaga na AC priključcima sklopa VSC2 (Q_{s2}) ne učestvuje u razmeni energije sa DC stranom konvertora VSC2. Analogno regulaciji vrednosti reaktivne snage Q_{s1} i regulacija vrednosti reaktivne snage Q_{s2} vrši se nezavisno bilo da se ova vrednost održava konstantnom ili pak uvođenjem dodatne povratne sprege kako bi se napon na AC priključcima sklopa VSC2 održavao na nekoj željenoj vrednosti [47].

Na osnovu prethodno izloženih principa rada te uvažavajući notacije sa slike 2.2, funkcionisanje DC porta u normalnim uslovima rada može se sažeti u sledećim tačkama:

Regulacija razmene aktivne snage između distributivnih fidera povezanih pomoću DC porta reguliše se na način da se reguliše vrednost snage P_{s1}čija je referentna vrednost P_{sref1}. Pri tome znak vrednosti P_{s1} određuje i smer toka aktivne snage. Sa druge strane,

vrednost snage P_{s2} nije eksplicitno kontrolabilna već se ova vrednost dobija posredno, nakon regulacije DC napona DC porta.

• Regulacija reaktivne snage na oba priključka DC porta (Q_{s1} i Q_{s2}) vrši se nezavisno od regulacije aktivne snage, uz uvažavanje ograničenja VSC sklopova DC porta.

2.1.2 Interne regulacione konture DC porta

Upravljanje VSC konvertorima unutar jednosmernog porta moguće je vršiti na različite načine. Kako se u nastavku disertacije razmatra upravljanje celokupnom distributivnom mrežom, detaljne analize internih upravljačkih petlji VSC konvertora nisu u fokusu interesovanja već se podrazumeva korišćenje neke od standardnih i dobro poznatih metoda za regulaciju rada VSC konvertora. Paragrafi koji slede donose samo osnovna razmatranja ove problematike. Detaljni opisi različitih upravljačkih strategija i internih upravljačkih petlji VSC konvertora mogu se pronaći u [38].

Zbog mnogobrojnih prednosti u pogledu brzine odziva, robusnosti i široke primenjivosti, pri razvoju algoritama za upravljanje DC portovima u poglavljima koja slede razmatrano je strujnokontrolisano upravljanje VSC konvertorima [38], [48] koje omogućava regulaciju injektiranja aktivnih i reaktivnih snaga u poveznim čvorovima DC porta. Ukoliko se DC port posmatra kao jedinstvena upravljačka celina, što u pogledu upravljanja celokupnom distributivnom mrežom on i jeste, regulacija rada DC porta obuhvata tri upravljačke petlje prikazane na slici 2.3: vanjsku petlju za regulaciju snaga, unutrašnju petlju za regulaciju struja i fazno zaključanu petlju koja se koristi pri sinhronizaciji AC izlaza DC porta sa distributivnom mrežom.

Slika 2.3 – Upravljačke konture DC porta

Vanjska upravljačka petlja obuhvata dve konture. Regulacija prvog VSC-a zasniva se na P-Q konturi pomoću koje se, korišćenjem PI regulatora, razlike između referentnih i stvarnih vrednosti injektiranja snaga transformišu u odgovarajuće strujne signale u d-q koordinatnom sistemu. Druga kontura, VDC-Q kontura, koristi se za upravljanje drugim VSC-om zaduženim za regulaciju DC napona. Slično kao i u P-Q konturi, u VDC-Q konturi signali grešaka istosmernog napona i reaktivne snage pomoću PI regulatora transformišu se u odgovarajuće strujne signale tj. d i q komponente struja. U obe konture petlje regulacije snaga figurišu i limiteri struja koji poboljšavaju dinamičke performanse i omogućavaju ograničavanje struja u uslovima kvara [49].

Unutrašnja petlja koristi se za regulaciju struja i karakteristična je za svaki od VSC sklopova unutar DC porta. U ovoj petlji na osnovu signala grešaka struja i_d i i_q određuju se odgovarajuće d i q komponente napona. U narednom koraku komponente napona u d-q referentnom sistemu pomoću Parkove transformacije transformišu se u fazne napone VSC-a. Ove vrednosti dalje se koriste za dobijanje upravljačkih (gate) signala pomoću impulsno-širinske modulacije (PWM).

Fazno zaključana petlja (PLL) koristi se za sinhronizaciju napona na AC priključcima DC porta sa odgovarajućim naponima mreže. Fazno zaključana petlja takođe je karakteristična za svaki od VSC sklopova unutar DC porta. Funkcionalnost fazno zaključane petlje zasniva se na pq teoriji [50]. Kao što je prikazano na slici 2.3, odstupanje ugaone frekvencije $\Delta \omega$ dobija se sumiranjem proizvoda povratnih signala (f_{α}, f_{β}) i odgovarajućih komponenti napona mreže u α - β koordinatnom sistemu. Konačno, izlaz fazno zaključane petlje predstavlja vrednosti ugla θ koja se dobija pomoću PI regulatora i integratora uz uvažavanje kompenzacije osnovne ugaone frekvencije ω_b .

Prethodno opisane upravljačke konture DC porta predstavljaju osnovni i istovremeno upravljački okvir koji je najzastupljeniji u praksi, u HVDC sistemima prilagođenim za primenu u distributivnim mrežama srednjeg napona. Osim ovih regulacionih kontura primenjuju se i neke naprednije upravljačke šeme koje su prilagođene specifičnim topologijama konvertora energetske elektronike [51]. Kao što je već prethodno navedeno, interna regulacija samih konvertora nije u fokusu istraživanja pretočenog u ovu disertaciju. Regulacione konture opisane u ovom poglavlju date su samo kako bi se sagledao širi kontekst u smislu određivanja referentnih vrednosti koje su neophodne za efikasno upravljanje DC portovima. Detaljni opisi internih regulacionih kontura DC porta kao i dodatni detalji vezani za topološke varijacije DC portova mogu se pronaći u [52]. U nastavku disertacije DC port je razmatran kao jedinstvena upravljačka celina modelovana za potrebe proračuna tokova snaga na način kako je to opisano u sledećem paragrafu.

2.1.3 Model DC porta u proračunima tokova snaga

Uvažavajući izlaganja data u prethodnim paragrafima, u proračunima tokova snaga moguće je usvojiti model DC porta ilustrovan na slici 2.4. Model prikazan na slici 2.4 ilustruje modelovanje DC porta korišćenjem nezavisnih injektiranja aktivnih i reaktivnih snaga u poveznim čvorovima porta. Pri tome, aktivne snage injektiranja u poveznim čvorovima DC porta nisu nezavisne. Balans aktivnih snaga DC porta, koji mora biti zadovoljen u svakom trenutku, može se opisati relacijom (1):

Slika 2.4 – Blok shema DC porta – bazni slučaj

$$P_m^{DCSOP} + P_l^{DCSOP} + P_{mloss}^{DCSOP} + P_{lloss}^{DCSOP} = 0, \qquad (1)$$

gde P_m^{DCSOP} and P_l^{DCSOP} predstavljaju injektiranja aktivne snage u poveznim čvorovima DC porta (*m* i *l*), sa usvojenim smerovima od DC porta ka mreži. Osim snaga injektiranja u jednačini (1) figurišu i gubici aktivne snage u konvertorima, P_{mloss}^{DCSOP} i P_{lloss}^{DCSOP} . Estimacija gubitaka aktivne snage u konvertorima DC porta detaljnije je razmatrana u odeljku 2.2.

Zahvaljujući DC međukolu, karakteristikama VSC konvertora i mogućnosti nezavisnog upravljanja svakim od konvertora u portu, injektiranja reaktivnih snaga u poveznim čvorovima DC porta međusobno su nezavisna. Kao poveznica između injektiranja aktivnih i reaktivnih snaga DC porta javljaju se termička ograničenja konvertora koja se mogu izraziti relacijom (2):

$$\sqrt{\left(P_l^{DCSOP} + P_{lloss}^{DCSOP}\right)^2 + \left(Q_l^{DCSOP}\right)^2} \le S_l^n;$$

$$\sqrt{\left(P_m^{DCSOP} + P_{mloss}^{DCSOP}\right)^2 + \left(Q_m^{DCSOP}\right)^2} \le S_m^n,$$
(2)

gde S_l^n i S_m^n označavaju nominalnu prividnu snagu konvertora u čvorovima *l* i *m* respektivno. U slučaju dozvoljenih preopterećenja konvertora umesto nominalnih vrednosti u relaciji (2) figurisaće vrednosti maksimalnih trajno dozvoljenih prividnih snaga razmatranih konvertora.

Analizirajući jednačine (1) i (2) očigledno je da osnovni model DC porta podrazumeva tri nezavisne promenjive (jedno nezavisno injektiranje aktivne snage i dva nezavisna injektiranja reaktivnih snaga) dok je četvrta promenjiva koja opisuje rad DC porta (injektiranje aktivne snage) zavisna i određuje se iz jednačine (1). Vektor upravljačkih promenjivih DC porta koji povezuje 2 distributivna fidera može se zapisati pomoću (3):

$$x = \begin{bmatrix} P_l^{DCSOP} \\ Q_l^{DCSOP} \\ Q_m^{DCSOP} \end{bmatrix}.$$
 (3)

Model DC porta opisan izrazima (1) i (2) moguće je dalje inkorporirati u neki od algoritama za proračune tokova snaga te dalje u postupak optimizacije. Uvažavajući vektor upravljačkih promenjivih opisan u (3), DC port se razmatra kao potpuno kontrolabilan resurs u mreži. Određivanje referentnih vrednosti ovog vektora pokazalo se kao ključni zadatak pri razvoju centralizovanih upravljačkih algoritama za optimizaciju rada distributivnih mreža sa DC portovima.

2.2 Modelovanje gubitaka u DC portu

Optimizacija rada i povećanje efikasnosti distributivnih mreža postavlja se kao jedan od ključnih ciljeva pri integraciji DC portova. Sa tog aspekta neophodno je razmotriti i gubitke u samim DC portovima i uvažiti ih pri postupku modelovanja i dalje u razvoju upravljačkih algoritama.

Precizno određivanje gubitaka aktivne snage i energije u DC portovima predstavlja kompleksan zadatak koji zahteva značajne resurse. Fizički posmatrano, gubici u DC portovima nastaju usled prirode rada prekidačkih komponenti VSC konvertora. Kako bi se ovaj zadatak određivanja gubitaka prekidačkih elemenata pojednostavio koriste se različite metode procene među kojima se izdvajaju eksperimetalni pristup, simulacioni modeli i analitički odnosno matematički modeli gubitaka. Eksperimentalni pristup podrazumeva merenje gubitaka za određeni uređaj energetske elektronike u različitim uslovima rada. Ograničenje ovog pristupa jeste to što zahteva izvođenje skupih eksperimenata koji se moraju ponoviti za različite vrste uređaja kao i za različite radne uslove. Prednost eksperimentalnog pristupa pri proceni gubitaka ogleda se u preciznosti

izmerenih vrednosti koje su opet karakteristične za laboratorijske uslove rada prekidačkih elemenata. Sa druge strane, simulacioni modeli okarakterisani su širim spektrom primenjivosti. U praksi najčešće se koriste simulacioni modeli fizičkih karakteristika prekidačkih elemenata i parametarski modeli. Fizički modeli podrazumevaju detalino modelovanje i simulacije svih fizičkih karakteristika prekidačkih komponenti. Izvođenje ovakvih simulacije je dugotrajno i zahteva značajne resurse. Primena fizičkih modela ograničena je na faze projektovanja konkretnih uređaja. Primena fizičkih modela u upravljaju prekidačkim elementima u realnom vremenu još uvek nije izvodiva s obzirom na trajanje simulacija i neophodne računarske resurse. Parametarski modeli predstavljaju kompromis između tačnosti (karakteristične za fizičke modele) i neophodnih resursa za izvođenje simulacija. Parametarski modeli zasnivaju se na različitim koeficijentima i aproksimacijama obezbeđenim od strane proizvođača prekidačkih komponenti. Ova vrsta modela gubitaka prekidačkih elemenata najčešće je rezultat niza eksperimenata i simulacija fizičkih modela u kombinaciji sa različitim aproksimacionim metodama. Matematički modeli gubitaka u prekidačkim elementima predstavljaju dalje pojednostavljenje parametarskih modela. Sa aspekta upravljanja DC portom, matematičko modelovanje gubitaka u DC portu predstavlja dovoljno tačnu procenu gubitaka koju je moguće realizovati uz prihvatljive resurse (i računarske i vremenske u pogledu trajanja proračuna). Iz ovog razloga u nastavku disertacije razmatrani su i opisani matematički (analitički) modeli gubitaka u DC portu.

Uvažavajući arhitekturu DC porta, prikazanu na slici 2.1, sumarni gubici aktivne snage/energije u DC portu posledica su gubitaka u pojedinim prekidačkim elementima (IGBT i diode). Gubici prekidačkih elemenata mogu se razvrstati u tri grupe, zavisno od režima rada prekidačkog elementa. Prvu grupu čine gubici prekidanja koji nastaju usled promene stanja (uključenja) prekidačkog elementa. Gubici prekidanja direktna su posledica činjenice da promena stanja prekidačkog elementa nije trenutna već ima neku inerciju. Detaljna specifikacija i modeli gubitaka prekidačkog elementa nije trenutna već ima neku inerciju. Detaljna specifikacija i modeli gubitaka prekidačkog u [53]. Drugu grupu gubitaka prekidačkih elemenata čine kondukcioni gubici odnosno gubici prekidačkih elemenata u stanju vođenja tj. u uključenom stanju. Kondukcioni gubici nastaju iz razloga što u stanju vođenja prekidački elementi imaju neku malu otpornost koja prouzrokuje pad napona i gubitke na prekidačkim elementima [54]. Treća grupa gubitaka u prekidačim elementima obuhvata gubitke koji nastaju u periodima kada su prekidački elementi isključeni. Ovi gubici često se nazivaju i gubici curenja [55]. U poređenju sa gubicima prekidanja i vođenja, gubici curenja su višestruko manji pa ih je u većini slučajeva moguće zanemariti.

Matematičko modelovanje gubitaka u DC portu najčešće se vrši na osnovu podataka dostavljenih od strane proizvođača (tehnički listovi/karakteristike) i podataka dobijenih na osnovu niza merenja. Rezultati merenja uglavnom se dostavljaju u formatu različitih grafika koji se dalje koriste za formiranje matematičkih modela. Za estimaciju gubitaka prekidanja koriste se grafici srednjih gubitaka u zavisnosti od struje prekidanja dok se za estimaciju kondukcionih gubitaka mogu koristiti strujno-naponske karakteristike prekidačkih elemenata [56]. Kao rezultat matematičkog modelovanja dobijaju se analitički modeli koji sa zadovoljavajućom tačnošću predstavljaju vezu između gubitaka u prekidačkim elementima, njihovih konstrukcionih karakteristika i samog opterećenja. Matematički modeli korišćeni pri izvođenju simulacija opisanih u nastavku disertacije navedeni su u sledećim paragrafima.

2.2.1 Kvadratni model gubitaka aktivne snage u konvertorima DC porta

Kvadratni model gubitaka aktivne snage prekidačkog para IGBT i dioda opisan je relacijom (4):

$$P_{grane}^{gubitaka} = aI^2 + bI + c, \tag{4}$$

gde *a*, *b* i *c* predstavljaju koeficijente izvedene iz podataka dostupnih u tehničkim listovima prekidačkih elemenata. Iz relacije (4) vidljiva je i struktura modelovanih gubitaka. Ukupni gubici sastoje se od gubitaka koji zavise od opterećenja (struje kroz prekidačke elemente) i gubitaka

nezavisnih od opterećenja prekidačkih elemenata. Relacija (4) obuhvata gubitke u jednom paru prekidačkih elemenata pa primena ovog modela na VSC konvertor zahteva jednostavno proširenje:

$$P_{konvertora}^{gubitaka} = 6 \left(aI^2 + bI + c \right), \tag{5}$$

Model opisan relacijom (4) odnosno (5) ujedno je i aproksimacija gubitaka aktivne snage u DC portu koja se najčešće koristi u različitim praktičnim proračunima i simulacijama. Široka primenjivost ovog modela postignuta je zahvaljujući kompromisu postignutom između tačnosti aproksimacije (modela) i računarskih resursa neophodnih za implementaciju ovog modela u simulacijama ili proračunima u realnom vremenu.

2.2.2 Linearizovani model gubitaka aktivne snage u konvertorima DC porta

Osim kvadratnog modela gubitaka aktivne snage u konvertorima DC porta, u praksi se vrlo često koristi i njegova dalja aproksimacija dobijena postupkom linearizacije. Linearizovan model gubitaka aktivne snage u konvertorima DC porta može se prikazati jednačinom (6):

$$P_{konvertora}^{gubitaka} = kI + c, \tag{6}$$

gde je

$$k = \left(P_{konvertora}^{gn} - c\right) / I_n, \tag{7}$$

i gde se parametar *c* korisiti za modelovanje gubitaka aktivne snage koji ne zavise od opterećenja konvertora. U prethodnoj jednačini $P_{konvertora}^{gn}$ označava nominalnu vrednost gubitaka konvertora dok *I* i *I*_n označavaju trenutno i nazivno opterećenje konvertora. Poređenjem linearizovanog modela gubitaka aktivne snage u konvertorima DC porta sa prethodno opisanim kvadratnim modelom, lako se zaključuje kako je linearizovani model zapravo dalje pojednostavljenje kvadratnog modela koje se vrši najčešće u slučajevima kada je neophodno rasteretiti računarske resurse korišćene za izvođenje proračuna a da pri tome gubitak tačnosti usled linearizacije nije od ključnog značaja. Odstupanje linearizovanog modela od njegovog kvadratnog pandana prikazano je na Slici 2.5.

Prethodno opisani modeli gubitaka aktivne snage u konvertorima DC porta su modeli koji se najčešće koriste ne samo pri izvođenju različitih simulacija već i u proračunima u realnom vremenu. S obzirom na oblasti u kojima se primenjuju (upravljanje celokupnom distributivnom mrežom) njihova tačnost je zadovoljavajuća. Istovremeno, implementacija kvadratnog i linearnog modela gubitaka moguća je uz minimalne računarske resurse. Na taj način estimacija gubitaka u DC portu vrši se uporedo sa "glavnim" upravljačkim proračunima bez potrebe za dodatnim računarskim kapacitetima. Razvoj detaljnih modela gubitaka [57], njihova kompleksnost i područja primene, prevazilaze obim ove disertacije. Primena složenih modela gubitaka uglavnom je ograničena na

Slika 2.5 – Odstupanje između linearizovanog i kvadratnog modela gubitaka DC porta

eksperimetalne slučajeve te njihova realizacija u oblasti upravljanja u proširenom realnom vremenu vrlo često nije ni moguća.

2.3 Jednosmerni (DC) port za povezivanje proizvoljnog broja distributivnih vodova

Osnovni model DC porta (koji podrazumeva povezivanje dva distributivna voda), zajedno sa modelom gubitaka aktivne snage u konvertorima DC porta moguće je proširiti. U opštem slučaju, pomoću DC porta moguće je izvršiti povezivanje proizvoljnog broja (k) čvorova u mreži. Analogno baznom slučaju prikazanom na Slici 2.1, arhitektura DC porta, u opštem slučaju povezivanja proizvoljnog broja čvorova u mreži prikazana je na Slici 2.6a dok je odgovarajuća blok shema prikazana na Slici 2.6b. Uvažavajući razmatranja obrazložena pri formiranju osnovnog modela DC porta (sekcija 2.1) te imajući u vidu relacije (1) i (2), model DC porta koji povezuje proizvoljan broj, k, čvorova u mreži može se opisati pomoću (8):

$$\sum_{h=1}^{k} \left(P_{h}^{DCp} + P_{hg}^{DCp} \right) = 0, \qquad (8)$$

gde $P_h^{DC_p}$ označava injektiranje aktivne snage u smeru od DC porta ka mreži (u čvoru h=1,2,...,k) i $P_{hg}^{DC_p}$ označava gubitke u uređajima (konvertorima) energetske elektronike povezanim u čvor h.

Očigledno, relacija (8) predstavlja proširenje jednačine (1). Kako bi opšti model DC porta bio potpun neophodno je izvršiti i proširenje relacije (2) koja modeluje termička ograničenja DC porta.

Primenom relacje (2) na svaki od konvertora u DC portu dobija se (9):

$$\sqrt{\left(P_h^{DCp} + P_{hloss}^{DCp}\right)^2 + \left(Q_h^{DCp}\right)^2} \le S_h^r;$$
(9)

gde S_h^r označava nominalnu prividnu snagu VSC konvertora povezanog u čvor h=1,2,...,k.

Relacije (8) i (9), zajedno sa odgovarajućim modelom gubitaka aktivne snage u konvertorima DC porta, predstavljaju opšti model DC porta. Ovaj model dalje je razmatran, inkorporiran u proračune tokova snaga i implementiran pri izvođenju simulacija. Model opisan relacijama (8) i (9) ujedno definiše i vektor upravljačkih promenjivih DC porta. Analogno relaciji (3), u opštem slučaju vektor upravljačkih promenjivih može se izraziti kao:

Slika 2.6 – Opšt model DC porta: (a) arhitektura; (b) blok shema

$$x = \begin{bmatrix} P_1^{DCp} \\ \vdots \\ P_{k-1}^{DCp} \\ Q_1^{DCp} \\ \vdots \\ Q_k^{DCp} \end{bmatrix}.$$
(10)

U opštem slučaju, u vektoru upravljačkih promenjihvih DC porta koji povezuje k čvorova u mreži figuriše ukupno k-1 nezavisno injektiranje aktivne snage i k nezavisnih injektiranja reaktivne snage sa usvojenim referentnim smerovima od DC porta ka mreži. Shodno tome, dimenzionalnost vektora upravljačkih promenjivih DC porta (koji povezuje k čvorova u mreži) iznosi 2k-1.

3. UPRAVLJANJE DC PORTOM U NORMALNIM RADNIM USLOVIMA

U normalnim radnim uslovima upravljanje DC portom bazirano je na rezultatima proračuna optimalnih tokova snaga. Preciznije rečeno, referentne vrednosti neophodne za adekvatan rad DC porta obezbeđuju se na osnovu optimizacionog postupka koji obuhvata DC port kao kontrolabilan resurs u distributivnoj mreži. Ovakvo upravljanje radom DC porta predstavlja centralizovan pristup koji podrazumeva potpunu dostupnost ulaznih podataka (merenja duž celokupne mreže) te dostupnost kompletne komunikacione infrastrukture neophodne za prenos ulaznih podataka kao i upravljačkih komandi (referentne vrednosti izlaza DC porta). Definisanje optimizacionog okvira, koji čini osnovu za proračune optimalnih tokova snaga u distributivnoj mreži sa integrisanim DC portovima obuhvata tri ključna koraka: definisanje skupa upravljačkih promenjivih, definisanje kriterijuma optimizacije i uvažavanje svih ograničenja u postupku optimizacije.

3.1 Vektor upravljačkih promenjivih u mreži

Pri definisanju optimizacionog okvira DC port se tretira kao potpuno kontrolabilan resurs u mreži. S obzirom na usvojeni model DC porta, vektor upravljačkih promenjivih koje se koriste u postupku optimizacije opisan je relacijom (3) u najjednostavnijem slučaju jednog DC porta koji povezuje dva čvora u mreži odnosno relacijom (10) u slučaju DC porta koji povezuje proizvoljan broj čvorova u mreži. U slučaju većeg broja DC portova u mreži, rezultantni vektor upravljačkih promenjivih dobija se kao unija vektora upravljačkih promenjivih svih DC portova u mreži. U opštem slučaju N_{DCp} različitih DC portova u mreži, vektor upravljačkih promenjivih je sledećeg oblika:

$$x = \begin{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\ \vdots \\ \begin{bmatrix} x_{NDCp} \end{bmatrix} \end{bmatrix},$$
(11)

gde $x_1, x_2, ..., x_{NDCp}$ predstavljaju vektore upravljačkih promenjivih svakog od DC portova $(1,2,...,N_{DCp})$ u mreži opisane relacijom (10).

Veoma važno je naglasiti da vektor upravljačkih promenjivih, posmatrano sa šireg aspekta celokupne mreže, mora obuhvatiti i sve ostale upravljive resurse u mreži. Dodatni upravljački resursi samo povećavaju fleksibilnost upravljanja celokupnom mrežom i ne utiču na razvoj algoritama specijalizovanih za upravljanje DC portovima. U paragrafima koji slede definisan je optimizacioni okvir koji podrazumeva DC portove kao jedine potpuno kontrolabilne resurse u mreži. Na ovaj način daje se jasnija slika integracije DC portova u postojeće upravljačke okvire široko rasprostranjene u konvencionalnim centralizovanim sistemima upravljanja u distributivnim mrežama. Dodaci u pogledu integracije drugih upravljačkh resursa u mreži predstavljaju samo proširenje izložene upravljačke strategije i ne utiču na primenjivost i opštost upravljačkog okvira formiranog kako bi se realizovalo upravljanje DC portovima u mreži.

3.2 Kriterijum optimizacije

Adekvatno upravljanje u distributivnoj mreži kao krajnji cilj ima uspostavljanje željenog stanja u mreži pri čemu se ovaj pojam željenog stanja može različito definisati – npr. u odnosu na naponski profil mreže, opterećenje pojedinih vodova, regulaciju tokova snaga itd. U slučaju upravljanja zasnovanog na postupku optimizacije definisanje željenog (optimalnog) stanja u mreži vrši se definisanjem odgovarajućeg kriterijuma optimizacije.

Različito definisani kriterijumi optimizacije omogućavaju uspostavljanje različitih stanja u mreži. S obzirom na krajnji cilj optimizacionog postupka, odnosno s obzirom na to šta se konkretno želi postići upravljanjem u mreži, vrši se i definisanje kriterijuma optimizacije. Kriterijum koji se najčešće koristi u praktičnim slučajevima je kriterijum minimizacije ukupnih gubitaka aktivne snage u mreži koji se može definisati kao:

$$\min(P_{loss}) = \min\left(P_{loss}^{network} + P_{loss}^{DCSOP}\right).$$
(12)

Kriterijum minimalnih gubitaka, opisan relacijom (12), obuhvata gubitke aktivne snage u konvertorima DC porta (P_{loss}^{DCSOP}) kao i gubitke aktivne snage u ostatku distributivne mreže ($P_{loss}^{network}$). Navedeni kriterijum minimalnih gubitaka razmataran je i pri simulacijama opisanim u nastavku disertacije. Osim kriterijuma minimalnih gubitaka akitvne snage u praksi se još vrlo često koristi i kriterijum balansa opterećenja vodova u mreži. Kriterijum balansa opterećenja vodova moguće je definisati na sledeći način. Najpre se za svaki od vodova u mreži definiše indeks opterećenja kao:

$$LI_{k} = \left(S_{k} / S_{k}^{\text{rated}}\right)^{2}, \qquad (13)$$

gde k=1,2,3,...,n označava redni broj voda u mreži (od ukupno *n* vodova/grana u mreži) dok S_k^{rated} označava nominalnu prividnu snagu razmatranog voda. Nakon izračunavanja indeksa opterećenja svakog od vodova u mreži, kriterijum balansa opterećenja vodova u mreži može se definisati kao:

$$\min\left(\sum_{k=1}^{n} U_{k}\right). \tag{14}$$

Pored prethodno navedenih kriterijuma (minimizacija gubitaka aktivne snage i balans opterećenja vodova u mreži) optimizacionim postupkom moguće je uvažiti i neki drugi kriterijum, zavisno od toga šta se konkretno želi postići postupkom optimizacije. Opciono, moguće je formirati i hibridne kriterijume optimizacije koji bi kombinovali više nezavisnih kriterijuma. Kriterijumi opisani relacijama (12) i (14) navedeni su zbog njihove česte upotrebe u praksi. Iz istog razloga ovi kriterijumi optimizacije uvažavani su i pri izvođenju simulacija opisanim u polgavljima koja slede.

3.3 Ograničenja optimizacije

Postupak optimizacije mora uvažiti sva ograničenja postavljena kako bi se osigurao nesmetan rad distributivne mreže u normalnim radnim uslovima. Ograničenja optimizacije obuhvataju ograničenja mreže i njenih elemenata u pogledu balansa snaga, termičkih ograničenja elemenata i ograničenja vrednosti napona u čvorovima mreže. Ograničenja optimizacije mogu se podeliti u dve osnovne grupe: ograničenja tipa jednakosti i ograničenja tipa nejednakosti.

3.3.1 Ograničenja tipa jednakosti

Osnovna ograničenja tipa jednakosti definisana su jednačinama balansa aktivnih i reaktivnih snaga u čvorovima mreže:

$$P_i^G - P_i^L = V_i \sum_j \left(V_j G_{ij} \cos(\theta_{ij}) + V_j B_{ij} \sin(\theta_{ij}) \right), \tag{15}$$

$$Q_i^G - Q_i^L = V_i \sum_j \left(V_j G_{ij} \sin\left(\theta_{ij}\right) - V_j B_{ij} \cos\left(\theta_{ij}\right) \right), \tag{16}$$

gde *i*, *j* =1, 2, 3, ...*n*_{bus} označavaju čvorove u razmatranoj mreži. P_i^G označava generisanje aktivne snage u čvoru *i* (generisanja iz distribuiranih generatora i/ili generisanje iz krute mreže). Generisanje reaktivne snage u čvoru *i* tj. generisanja reaktivne snage iz distribuiranih generatora ili bilo kojih drugih regulacionih uređaja povezanih u čvoru *i* označeno je sa Q_i^G . P_i^L, Q_i^L označavaju potrošnju aktivne i reaktivne snage povezanu u razmatranom čvoru *i*. Oznake G_{ij}, B_{ij} , odnose se na odgovarajuće elemente matrice admitansi (<u>Y</u>) na odgovarajućim pozicijama *ij*. $\theta_{ij} = \theta_i - \theta_j$ označava razliku faznih stavova u čvorovima *i* i *j*.

Relacije (15) i (16) moraju biti zadovoljene za sve čvorove u mreži uključujući i čvorove koji su povezani pomoću DC porta. U najjednostavnijem slučaju, DC porta koji povezuje dva čvora *l* i *m*, jednačine (15) i (16) dobijaju sledeći oblik:

$$P_l^G + P_l + P_{lloss} - P_l^L = V_l \sum_j \left(V_j G_{lj} \cos\left(\theta_{lj}\right) + V_j B_{lj} \sin\left(\theta_{lj}\right) \right), \tag{17}$$

$$Q_l^G + Q_l^G - Q_l^L = V_l \sum_j \left(V_j G_{lj} \sin\left(\theta_{lj}\right) - V_j B_{lj} \cos\left(\theta_{lj}\right) \right), \tag{18}$$

$$P_m^G + P_m + P_{mloss} - P_m^L = V_m \sum_j \left(V_j G_{mj} \cos(\theta_{mj}) + V_j B_{mj} \sin(\theta_{mj}) \right), \tag{19}$$

$$Q_m^G + Q_m - Q_i^L = V_m \sum_j \left(V_j G_{mj} \sin\left(\theta_{mj}\right) - V_j B_{mj} \cos\left(\theta_{mj}\right) \right), \tag{20}$$

gde su sve usvojene notacije kao u relacijama (15) i (16) odnosno (1) i (2).

U opštem slučaju, proizvoljnog broja DC portova koji povezuju proizvoljan broj čvorova u mreži jednačine balansa snaga mogu se izraziti u matričnom obliku kao:

$$\left[P_{inj}\right] = \left[V\right]^* \left(\left[V\right]^T \times \left(G_{\cos}^T + B_{\sin}^T\right)\right)^T,\tag{21}$$

$$\left[\mathcal{Q}_{inj}\right] = \left[V\right]^* \left(\left[V\right]^T \times \left(G_{\sin}^T - B_{\cos}^T\right)\right)^T,\tag{22}$$

gde * i \times označavaju množenje elemenata i vektorsko množenje. U relacijama (21) i (22) takođe vrede i sledeće notacije:

$$\begin{bmatrix} P_{inj} \end{bmatrix} = \begin{bmatrix} P_1^G + P_1^{SOP} - P_1^L \\ P_2^G + P_2^{SOP} - P_2^L \\ \vdots \\ P_m^G + P_m^{SOP} - P_m^L \end{bmatrix}, \quad \begin{bmatrix} Q_{inj} \end{bmatrix} = \begin{bmatrix} Q_1^G + Q_1^{SOP} - Q_1^L \\ Q_2^G + Q_2^{SOP} - Q_2^L \\ \vdots \\ Q_m^G + Q_m^{SOP} - Q_m^L \end{bmatrix}, \\ \begin{bmatrix} G_{11} & G_{12}\cos(\theta_1 - \theta_2) & \cdots & G_{1m}\cos(\theta_1 - \theta_m) \\ G_{21}\cos(\theta_2 - \theta_1) & G_{22} & \cdots & G_{2m}\cos(\theta_2 - \theta_m) \\ \vdots & \vdots & \ddots & \vdots \\ G_{m1}\cos(\theta_m - \theta_1) & G_{m2}\cos(\theta_m - \theta_2) & \cdots & G_{mm} \end{bmatrix},$$

$$\begin{bmatrix} G_{\sin} \end{bmatrix} = \begin{bmatrix} 0 & G_{12}\sin(\theta_1 - \theta_2) & \cdots & G_{1m}\sin(\theta_1 - \theta_m) \\ G_{21}\sin(\theta_2 - \theta_1) & 0 & \cdots & G_{2m}\sin(\theta_2 - \theta_m) \\ \vdots & \vdots & \ddots & \vdots \\ G_{m1}\sin(\theta_m - \theta_1) & G_{m2}\sin(\theta_m - \theta_2) & \cdots & 0 \end{bmatrix},$$

$$\begin{bmatrix} B_{11} & B_{12}\cos(\theta_1 - \theta_2) & \cdots & B_{1m}\cos(\theta_1 - \theta_m) \\ B_{21}\cos(\theta_2 - \theta_1) & B_{22} & \cdots & B_{2m}\cos(\theta_2 - \theta_m) \\ \vdots & \vdots & \ddots & \vdots \\ B_{m1}\cos(\theta_m - \theta_1) & B_{m2}\cos(\theta_m - \theta_2) & \cdots & B_{mm} \end{bmatrix},$$

$$\begin{bmatrix} B_{\sin} \end{bmatrix} = \begin{bmatrix} 0 & B_{12}\sin(\theta_1 - \theta_2) & \cdots & B_{1m}\sin(\theta_1 - \theta_m) \\ B_{21}\sin(\theta_2 - \theta_1) & 0 & \cdots & B_{2m}\sin(\theta_2 - \theta_m) \\ \vdots & \vdots & \ddots & \vdots \\ B_{m1}\sin(\theta_m - \theta_1) & B_{m2}\sin(\theta_m - \theta_2) & \cdots & 0 \end{bmatrix},$$

pri čemu su sve oznake definisane analogno oznakama u relacijama (15) i (16) i *m* označava ukupan broj čvorova u mreži.

3.3.2 Ograničenja tipa nejednakosti

Ograničenja tipa nejednakosti obuhvataju ograničenja napona u čvorovima mreže kao i termička ograničenja vodova u meži. Ograničenja napona u čvorovima mreže mogu se opisati relacijom (23):

$$V_i^{\min} \le V_i \le V_i^{\max} , \tag{23}$$

gde V_i^{\min} , V_i^{\max} označavaju granične vrednosti napona u razmatranom čvoru i=1,2,...,m. Termička ograničenja za svaki od vodova u mreži mogu se opisati relacijom (24):

$$I_{ij} \le I_{ij}^{\max} , \qquad (24)$$

pri čemu *i, j,* označavaju čvorove koje povezuje razmatrani vod i I_{ij}^{\max} označava maksimalnu dozvoljenu struju voda između čvorova *i* i *j*.

U ograničenja tipa nejednakosti takođe se svrstavaju i termička ograničenja konvertora DC porta opisana relacijom (2). Za razliku od ograničenja tipa jednakosti koja se u optimizacionom postupku uvažavaju direktno pri proračunu tokova snaga u distributivnoj mreži, ograničenja tipa nejednakosti u optimizacionom postupku figurišu indirektno – uključivanjem penalnih funkcija u kriterijumsku funkciju o čemu će biti više reči u narednom odeljku.

3.4 Kriterijumska funkcija

Kako bi se definsani kriterijum optimizacije i ograničenja optimizacije uvažili u optimizacionom postupku, formira se kriterijumska funkcija. Pojam kriterijumske funkcije najlakše je objasniti kao matematički alat koji se dalje koristi za rangiranje potencijalnih rešenja postupka optimizacije. Poređenjem vrednosti kriterijumske funkcije za različita potencijalna rešenja optimizacionog postupka moguće je identifikovati optimalno rešenje pa se shodno tome vrednost kriterijumske funkcije za neko potencijalno rešenje vrlo često naziva i kvantifikator optimalnosti potencijalnog rešenja. Zavisno od optimizacionog problema koji se rešava (minimizacija ili maksimizacija) optimalno rešenje razmatranog problema zapravo je ono rešenje čija je vrednost kirterijumske funkcije minimalna odnosno maksimalna. Kriterijumi optimizacije opisani u odeljku

3.1 podrazumevaju postupak minimizacije te se iz tog razloga razmatrani optimizacioni postupak može matematički opisati kao postupak minimizacije odgovarajuće kriterijumske funkcije.

Osim kriterijuma optimizacije kroz kriterijumsku funkciju moguće je uvažiti i ograničenja optimizacije tipa nejednakosti. S obrzirom da razmatrani postupak optimizacije podrazumeva minimizaciju kriterijumske funkcije, ograničenja optimizacije tipa nejednakosti moguće je uvažiti uvođenjem penalnih funkcija u kriterijumsku funkciju. Na ovaj način vrši se eliminacija potencijalnih rešenja pri kojima je narušeno neko od definisanih ograničenja tipa nejednakosti. Kako bi se formirala odgovarajuća kriterijumska funkcija, u početnom koraku vrši se formiranje penalnih funkcija za svako od definisanih ograničenja tipa nejednakosti.

3.4.1 Penalizaciona funkcija za termička ograničenja vodova u mreži

Na osnovu termičkih ograničenja vodova u mreži opisanih relacijom (24) moguće je formirati odgovarajuću penalizacionu funkciju opisanu relacijom (25):

$$PF_I = \lambda_I \sum_{k=1}^n \Delta I_k , \qquad (25)$$

gdje je

$$\Delta I_k = \begin{cases} I_k - I_k^{\max}, & I_k > I_k^{\max} \\ 0, & I_k \le I_k^{\max} \end{cases},$$
(26)

i λ_I označava faktor penalizacije kojim se vrši prioritetizacija narušavanja termičkih ograničenja vodova u mreži u odnosu na ostala definsana ograničenja.

3.4.2 Penalizaciona funkcija za ograničenja vrednosti napona u čvorovima mreže

Penalizaciona funkcija korišćena za modelovanje narušavanja ograničenja vrednosti napona u čvorovima mreže može se opisati relacijom (27):

$$PF_V = \lambda_V \sum_{i=1}^m \Delta V_i , \qquad (27)$$

gde je:

$$\Delta V_{i} = \begin{cases} V_{i} - V_{i}^{\max} & V_{i} > V_{i}^{\max} \\ V_{i}^{\min} - V_{i} & V_{i}^{\min} > V_{i} \\ 0 & \text{za ostale vrednosti } V_{i} \end{cases}$$
(28)

pri čemu λ_V označava odgovarajući faktor penalizacije kojim se definiše prioritet naponskih ograničenja u odnosu na ostala ograničenja u postupku optimizacije.

3.4.3 Penalizaciona funkcija za termička ograničenja konvertora DC porta

Uvažavajući usvojeni model DC porta opisan u poglavlju 2 te imajući u vidu relaciju (2) koja opisuje termička ograničenja konvertora DC porta, penalizacionu funkciju kojom se modeluje narušavanje ovih ograničenja, za svaki od DC portova u mreži, moguće je definisati pomoću relacije (29):

$$PF_{DCSOP} = \lambda_c \sum_{h=1}^{p} \Delta S_h , \qquad (29)$$

gde je:

$$\Delta S_h = \begin{cases} S_h - S_h^{\text{rated}} & S_h > S_h^{\text{rated}} \\ 0 & S_h \le S_h^{\text{rated}} \end{cases}, \tag{30}$$

pri čemu p označava ukupan broj konvertora koji čine razmatrani DC port i λ_c označava odgovarajući faktor penalizacije.

Na osnovu penalizacionih funkcija za svako od definisanih ograničenja tipa nejednakosti moguće je formirati sumarnu penalizacionu funkciju koja će dalje figurisati u kriterijumskoj funkciji. Sumarna penalizaciona funkcija dobija se sumiranjem pojedinačnih penalizacionih funkcija:

$$PF = PF_I + PF_V + PF_{DCSOP}.$$
(31)

Konačno, kriterijumska funkcija u slučaju da je za kriterijum optimizacije usvojena minimizacija ukupnih gubitaka akivne snage u mreži može se izraziti relacijom (32):

$$F_1 = \left(P_{loss}^{network} + P_{loss}^{DCSOP}\right) + PF.$$
(32)

Ukoliko se za kriterijum optimizacije usvoji balans opterećenja vodova u mreži kriterijumska funkcija dobija oblik opisan relacijom (33):

$$F_2 = \sum_{k=1}^n LI_k + PF.$$
 (33)

Kriterijumska funkcije opisane relacijama (32) i (33) korišćene su i pri izvođenju simulacija odnosno pri implementaciji optimizacionog postupka za proračun optimalnih tokova snaga u mreži. Alat korišćen za realizaciju postupka optimizacije detaljnije je opisan u odeljku 3.5.

3.5 Realizacija postupka optimizacije – algoritam sivih vukova

Optimizacioni okvir opisan u prethodnim odeljcima moguće je realizovati korišćenjem neke od klasičnih metoda optimizacije ili pak upotrebom metaheurističkih metoda. Pored niza prednosti klasičnih metoda optimizacije [58], koje se ogledaju u jednostavnosti i širokoj primenjivosti, primena klasičnih metoda optimizacije na razmatranom problemu može biti ograničena. Naime, opisana ograničenja optimizacije su ograničenja nelinearnog tipa te je za njihovo uvažavanje i integraciju unutar klasičnih metoda optimizacije neophodno uvesti dodatne relaksacije [59]. Osim toga, primena klasičnih metoda optimizacije na probleme velikih dimenzija može iziskivati značajno procesorsko vreme a samim tim i značajne računarske resurse. Sa druge strane, metode optimizacije zasnovane na metaheursitičkim algoritmima ne suočavaju se sa gore spomenutim problemima. Potencijalni problem koji se može javiti pri implementaciji metaheurističkih algoritama jeste pojava takozvanih lokalnih optimuma. S obzirom na veliki broj različitih metaheurističkih metoda pojava lokalnih optimuma može se izbeći adekvatnim izborom metode za svaki od konkretnih slučajeva.

U nastavku poglavlja detaljno je opisana metaheuristička metoda optimizacije zasnovana na emulaciji ponašanja sivih vukova. Ova metoda izabrana je kao kompromis između tačnosti sa jedne i jednostavnosti odnosno resursa neophondnih za realizaciju optimizacionog postupka sa druge strane. Izbor metode optimizacije korišćene za proračune optimalnih tokova snaga ne utiče na performanse predloženih algoritama za upravljanje DC portovim pri prekidu komunikacije. Shodno tome, umesto opisane metode sivih vukova moguće je koristiti neku drugu metaheurističku ili klasičnu metodu optimizacije bez umanjenja opštosti zaključaka koji se odnose na novorazvijene algoritme opisane u poglavljima četiri i pet.

3.5.1 Metoda sivih vukova (eng. Grey Wolf Optimizer – GWO)

Algoritam sivih vukova predstavlja metodu optimizacije zasnovanu na oponašanju hijerarhije čopora sivih vukova u pogledu socijalne organizacije i sistema lova. Sivi vukovi široko su poznati kao odlični lovci. Obično žive u čoporima/grupama od 5 do 12 jediniki. Čopori se odlikuju izuzetno jakom društvenom hijerarhijom. Na vrhu hijerarhije nalazi se Alfa par – mužijak i ženka. Njihovi podređeni dalje su podeljeni u tri grupe: Beta vukove, Delta vukove i Omega vukove. Alfa par kao najviši hijerarhijski nivo isključivo je zadužen za donošenje važnih odluka u ime celog čopora. Odluke Alfa vukova za ostatak čopora tretriaju se kao komande koje se bezuslovno izvršavaju. Ipak, dugotrajnim posmatranjem ponašanja sivih vukova uočeni su neki slučajevi kada Alfa vukovi prate ponašanje ostatka čopora što se u nekoj meri može okarakterisati kao postojanje određene doze demokratičnosti unutar samog čopora. Važno je napomenuti da Alfa vukovi nisu nužno najjače jedinke u čoporu već su to jedinke sa najizraženijim organizacionim sposobnositma tj. jedinke koje su dominantne u smislu koordinacije i upravljanja celokupnom grupom. Ova osobina Alfa vukova još jednom pokazuje kako je u hijerarhijskoj organizaciji čopora sivih vukova dobrobit grupe daleko ispred individualnih karakteristika jedinke. U drugu hijerarhijsku grupu spadaju Beta vukovi. Ove jedinke zadužene su za dosledno provođenje odluka Alfa vukova i njihovo učvršćivanje unutar grupe. Treći hijerarhijski nivo unutar grupe čine Delta vukovi zaduženi za različite zadatke: lovci, izviđači, negovatelji, vukovi stražari itd. Poslednja grupa vukova, Omega vukovi, predstavlja najniži hijerarhijski nivo unutar čopora. Kao takvi, Omega vukovi podređeni su svim ostalim hijerarhijskim grupama/nivoima.

Metoda sivih vukova zasniva se na direktnom oponašanju postupaka čopora sivih vukova pri lovu plena. Pri lovu ponašanje sivih vukova može se podeliti u dve faze: opkoljavanje plena i napad [60]. Faza opkoljavanja plena može se matematički opisati korišćenjem vektorskih zapisa:

.

$$D = |CX_{p}(t) - X(t)|,$$

$$X(t+1) = |X_{p}(t) - AD|,$$
(34)

gde *t* označava trenutnu iteraciju i *A* i *C* su vektori koeficijenata. X_p označava poziciju plena dok *X* označava poziciju vukova tokom razmatrane iteracije. Vektori koeficijenata *A* i *C* mogu se izračunati pomoću relacije (35):

$$A = 2ar_1 - a,$$

$$C = 2r_2,$$
(35)

pri čemu parametar *a* linearno opada i r_1, r_2 su nasumični vektori iz opsega [0,1]. Polazna pretpostavka pri modelovanju kretanja i lova čopora sivih vukova jeste to da su informacije o poziciji plena koje imaju Alfa, Beta i Delta vukovi uvek tačnije od informacija kojim raspolaže ostatak čopora (Omega vukovi). Shodno tome, odgovarajuća matematička formulacija može se opisati relacijama (36)-(38):

.

$$D_{\alpha} = |C_1 X_{\alpha} - X|, \ D_{\beta} = |C_2 X_{\beta} - X|,$$

$$D_{\delta} = |C_3 X_{\delta} - X|,$$
(36)

$$X_{1} = |X_{\alpha} - A_{1}D_{\alpha}|, X_{2} = |X_{\beta} - A_{2}D_{\beta}|,$$

$$X_{3} = |X_{\delta} - A_{3}D_{\delta}|,$$
(37)

$$X(t+1) = (X_1 + X_2 + X_3)/3.$$
(38)

U prethodnim relacijama X_{α} , X_{β} , X_{δ} označavaju pozicije Alfa, Beta i Delta vuka dok D_{α} , D_{β} , D_{δ} predstavljaju udaljenost Alfa, Beta i Delta vuka od plena. Na osnovu pozicije plena estimirane od strane Alfa, Beta i Delta vukova - relacija (38), ostatak čopora se približava plenu te nasumično opkoljava plen.
Sivi vukovi napadaju plen onog momenta kada plen prestane da se kreće tj. kada je plen opkoljen. Kako bi se modelovalo opkoljavanje plena parametar *a* linearno opada od vrednosti dva ka nula. Posledično, vrednosti elementa vektora *A* takođe opadaju. Vekor *A* u suštini obuhvata nasumične vrednosti iz intervala [-2*a*, 2*a*] pri čemu *a* linearno opada. Modul vektora *A* koristi se kao kriterijum koji determiniše da li će plen biti napadnut ili ne. U slučaju kada je |A|>1 ne dolazi do napada na plen, čopor odustaje i pokušava pronaći drugi, prikladniji plen. Kada je |A|<1 čopor se približava plenu i kreće u napad. Pribiližavanje plenu kao i dodatne komplikacije koje se mogu dogoditi prilikom pronalaska i prilaska plenu modelovane su vektorom *C* koji figuriše u prethodnim relacijama. Vektor *C* se ne smanjuje linearno tokom iteracija. Na ovaj način pretraga je omogućena u svim fazama algoritma. Ovako formiran vektor *C* takođe pomaže da se izbegnu lokalni optimumi tokom pretrage [61].

Na osnovu prethodno opisanog postupka lova sivih vukova te uvažavajući relacije (34)-(38) metoda optimizacije zasnovana na ponašanju sivih vukova može se ukratko opisati na sledeći način. Pretraga započinje kreiranjem nasumične populacije potencijalnih rešenja – plen. Alfa, Beta i Delta vukovi vrše estimaciju pozicije plena (potencijalnih rešenja) te se pozicije plena ažuriraju na svakoj iteraciji. Parametar *a* uveden je u algoritam kako bi se modelovalo pretraživanje i prilazak plenu. Na osnovu vrednosti modula vektora *A* donosi se odluka da li je plen/potencijalno rešenje prikladno/optimialno ili se pretraga nastavlja i traži se bolje rešenje/prikladniji plen. Pretraga se završava nakon zadovoljavanja nekog predefinisanog kriterijuma – najčešće je to ograničenje broja iteracija. Dijagram toka algoritma sivih vukova prikazan je na slici 3.1.

Slika 3.1 – Algoritam sivih vukova – dijagram toka

Na osnovu dijagrama prikazanog na slici 3.1, algoritam sivih vukova implementiran je i prilagođen konkretnom problemu proračuna optimalnih tokova snaga. Pri tome, "populaciju" čine vektori koji sadrže izlazne promenjive DC porta. Kao fitnes funkcija (udaljenost vuka od plena) korišćene su kriterijumske funkcije definisane u odeljku 3.3. Kako su penalizacioni faktori inkorporirani direktno u kriterijumsku funkciju, vukovi koji su "blizu" plena ali narušavaju neko od ograničenja automatski bivaju eliminisani. Na svakoj iteraciji, za svakog od vukova iz populacije, odnosno za svaki vektor potencijalnih rešenja, vrši se proračun tokova snaga u mreži. Proračun tokova snaga može se implementirati nekom od standardnih metoda [62] kao što je to slučaj i pri izvođenju simulacija opisanih u poglavlju 6 gde su tokovi snaga u mreži izračunavani upotrebom metoda zasnovanog na matrici impedansi mreže [63]. Ukupna populacija vukova kao i ukupan broj iteracija pri izvođenju optimizacionog algoritma ograničeni su na neke razumne vrednosti kako bi realizacija celokupnog postupka bila moguća u laboratorijskim uslovima – korišćenjem dostupnih računarskih resursa.

4. UPRAVLJANJE DC PORTOM U KRITIČNIM USLOVIMA RADA – ALGORITAM PRETRAGE

Sa aspekta upravljanja DC portovima u realnom i proširenom realnom vremenu kritični uslovi rada mogu se definisati na različite načine. Jedan od faktora koji dovodi do kritičnih uslova rada jeste nedostupnost ulaznih podataka neophodnih za realizaciju centralizovanog upravljanja DC portovima opisanog u trećem poglavlju. U nastavku disertacije pod pojomom "kritični uslovi rada" DC porta podrazumeva se rad DC porta pri nedostupnosti ulaznih podataka i/ili nedostupnosti komunikacione infrastrukture neophodne za prenos izmerenih vrednosti, statusa DC porta i komandi. Kako centralizovano upravljanje DC portovima nije moguće, tokom kritičnih uslova rada upravljanje DC portovima mora se vršiti lokalno, korišćenjem uskog skupa dostupnih podataka. U paragrafima koji slede detaljno je opisan algoritam pretrage koji omogućava efikasno upravljanje DC portovima i tokom kritičnih uslova rada kada proračuni optimalnih tokova snaga u mreži iz bilo kog razloga nisu dostupni.

Lokalno upravljanje radom DC porta najčešće predstavlja proceduru estimacije tokom koje se vrši procena vrednosti izlaznih varijabli DC porta. Na ovaj način može se okarakterisati i algoritam pretrage opisan u ovom poglavlju. Polazna pretpostavka, uvažena pri razvoju algoritma pretrage, podrazumeva da tokom prekida komunikacije određeni deo ulaznih podataka ipak ostaje dostupan. Ovaj slučaj najčešći je tokom parcijalnog prekida komunikacije kada DMS sistemu nije dostupan veliki broj merenja u sistemu no određena merenja i tokom prekida komunikacije ostaju raspoloživa i validna. Delimičnu dostupnost ulaznih podataka moguće je obezbediti i korišćenjem alternativnog komunikacionog kanala koji bi služio za nezavisan prenos užeg skupa podataka ili se u krajnjem slučaju dostupni podaci mogu manuelno uneti kao ulazni parametri lokalnog kontrolera DC porta. Pokazuje se kako delimični skup ulaznih podataka (dostupnih merenja) zajedno sa odgovarajućom istorijom merenja i istorijom vrednosti izlaznih promenjivh DC porta može biti dovoljan za efikasno upravljanje jednosmernim portovima tokom privremenih prekida komunikacije.

Kao što je već spomenuto, baza istorijskih podataka, uz skup dostupnih merenja, čini osnovni resurs neophodan za lokalno upravljanje DC portom. Baza istorijskih podataka trebalo bi da sadrži istorijske vrednosti svih merenja u mreži (vrednosti prikupljene tokom normalnih uslova rada) za određeni vremenski period – obično je to nekoliko nedelja ili meseci, zavisno od dostupnih memorijskih kapaciteta, ukupnog broja merenja u mreži i perioda diskretizacije sa kojim se prikupljaju izmerene vrednosti. Kasnije će se pokazati da je optimizacija baze istorijskih podataka moguća u smislu da se njen sadržaj ograniči na određeni "minimalni" skup merenja neophodnih za estimaciju izlaznih varijabli. Detaljniji opisi ovog postupka dati su u šestom poglavlju. Uz istoriju merenja u mreži (izmerene vrednosti) baza istorijskih podataka trebalo bi da sadrži i istoriju izlaznih varijabli DC porta. Adekvatnom obradom istorijskih podataka i njihovim poređenjem sa setom trenutno dostupnih merenja moguće je formirati algoritam za lokalno upravljanje DC portom u kritičnim uslovima rada. Opisi algoritamskih koraka kao i odgovarajuće matematičke formulacije predloženog algoritma pretrage dati su u odeljku 4.1.

4.1 Opis algoritma pretrage

Izvršavanje algoritma pretrage započinje detektovanjem prekida komunikacije. Ovaj inicijalni korak sadrži informaciju da centralizovano upravljanje (OPF) iz nekog razloga nije raspoloživo te da je neophodno izvršiti prelazak na lokalni režim upravljanja DC portom. U narednom algoritamskom

koraku vrši se detektovanje skupa dostupnih merenja. Ukoliko se skup svih merenja u mreži formuliše kao:

$$M_{all} \in \{M_1, M_2, M_3, ..., M_n\},\tag{39}$$

gde $M_1, M_2, M_3, ..., M_n$, označavaju svako od ukupno *n* merenja u mreži (naponi čvorova, potrošnja/generisanje i/ili tokovi aktivnih i reaktivnih snaga), skup merenja dostupnih tokom prekida komunikacije može se definisati kao:

$$M_{available} \in \{M_{a1}, M_{a2}, M_{a3}, ..., M_{ak}\}.$$
(40)

U relaciji (40) *ak* označava ukupan broj dostupnih merenja tokom prekida komunikacije pri čemu važi $M_{available} \subseteq M_{all}$ i $\{a1, a2, a3, ..., ak\} \subseteq \{1, 2, 3, ..., n\}$.

Na osnovu prethodnih relacija vrši se formiranje vektora dostupnih merenja:

$$m_{available} = \begin{bmatrix} M_{a1} \\ M_{a2} \\ M_{a3} \\ \vdots \\ M_{ak} \end{bmatrix}.$$
(41)

Nakon formiranja vektora dostupnih merenja izvršavanje algoritma se nastavlja kroz obradu podataka iz istorijske baze podataka. Analogno setu dostupnih merenja (i vektoru dostupnih merenja), iz baze istorijskih podataka vrši se ekstrahovanje podataka i formiraju se odgovarajući setovi istorije dostupnih merenja. Setovi istorije dostupnih merenja zapravo predstavljaju vremensku seriju izmerenih vrednosti koje korespondiraju sa detektovanim skupom dostupnih merenja. Za svaki od setova iz vremenske serije formira se i odgovarajući vektor:

$$m_{dh}^{(t)} = \begin{bmatrix} M_{a1}^{(t)} \\ M_{a2}^{(t)} \\ M_{a3}^{(t)} \\ \vdots \\ M_{ak}^{(t)} \end{bmatrix}.$$
 (42)

Istovremeno, postupak formiranja vremenske serije i odgovarajućih vektora vrši se i za vrednosti izlaznih promenjivih DC porta. Na osnovu vrednosti iz istorijske baze podataka formiraju se vektori izlaznih promenjivih DC porta:

$$x^{(t)} = \begin{bmatrix} P_l^{DCSOP(t)} \\ Q_l^{DCSOP(t)} \\ Q_m^{DCSOP(t)} \end{bmatrix},$$
(43)

pri čemu $t=1, 2, 3,...,t_{max}$ u prethodnim relacijama označava trenutak iz vremenske serije – istorije merenja pre momenta detektovanja prekida komunikacije.

Jedan od ključnih elemenata algoritma pretrage jeste definisanje kriterijuma pretrage te samo izvršavanje pretrage. Tokom postupka pretraživanja vektor dostupnih merenja upoređuje se sa odgovarajućim vektorima setova merenja ekstrahovanih iz istorijske baze podataka. Upoređivanje se vrši na osnovu nekog predefinisanog kriterijuma kojim se kvantifikuje sličnost vektora dostupnih merenja sa vektorima odgovarajućih setova iz istorijske baze podataka. Pojednostavljeno rečeno, na osnovu nekog definisanog kriterijuma algoritam iz istorijske baze podataka identifikuje stanje u mreži koje je najsličnije stanju nastalom tokom prekida komunikacije.

Uvažavajući formulacije koje se odnose na skup dostupnih merenja, istorijske setove dostupnih merenja ekstrahovane iz istorijske baze podataka kao i odogovarajuće vektore formirane pomoću relacija (39)-(43), moguće je formirati vektore odstupanja koji definišu odstupanje vektora dostupnih merenja od vektora odgovarajućih istorijskih setova. U tu svrhu korišćene su standardne vektorske norme. U opštem slučaju vektorsku normu moguće je definisati kao:

$$\|m\|_{p} = \left(\sum_{i=1}^{n} |m_{i}|^{p}\right)^{1/p}, \quad p \ge 1,$$
(44)

gde p predstavlja stepen (vektorske) norme. Konačno, kao kriterijum pretrage može se koristiti apsolutna vrednost odstupanja norme vektora dostupnih merenja od normi odgovarajućih vektora iz vremenske serije iz istorijske baze podataka. Matematička formulacija kriterijuma pretrage opisana je relacijom (45):

$$d^{(t)} = \left\| m_{available} \right\|_{p} - \left\| m_{dh}^{(t)} \right\|_{p} \right|.$$
(45)

Primenom relacija (44) i (45) na sve vektore/setove iz vremenske serije formira se skup apsolutnih odstupanja:

$$D \in \left\{ d^{(1)}, d^{(2)}, d^{(3)}, \dots, d^{(t_{\max})} \right\},\tag{46}$$

čiji najmanji element $d^{(q)}$ zapravo opisuje stanje u mreži koje je najsličnije stanju u mreži u trenutku prekida komunikacije.

Tokom poslednje faze algoritma, set izmerenih vrednosti iz vremenske serije (istorijske baze podataka) koji je najsličniji setu dostupnih merenja proglašava se za kvazi-optimalno stanje u mreži:

$$\min(D) = d^{(q)} \Longrightarrow m^{(q)} = m^*, \tag{47}$$

i algoritam ulazi u poslednji korak izvršavanja. U poslednjem algoritamskom koraku na bazi prethodno identifikovanog kvazi-optimalnog stanja u mreži vrši se pretraga istorije izlaza DC porta i identifikuju se vrednosti izlaznih varijabli DC porta koje odgovaraju kvazi-optimalnom stanju u mreži:

$$x^* = x^{(q)}.$$
 (48)

Pretraga i identifikacija kvazi-optimalnih vrednosti izlaznih promenjivih DC porta može se vrlo jednostavno implementirati primenom mehanizma indeksiranja zapisa unutar baze podataka ili primenom neke druge metode karakteristične za rad sa relacionim bazama podataka [64].

S obzirom na razmatranu topologiju DC porta tj. uvažavajući mogućnost da se estimacija izaznih varijabli DC porta vrši nezavisno za svaku od izlaznih varijabli, prethodno opisani algoritam pretrage izvršava se onoliko puta koliko ima izlaznih varijabli razmatranog DC porta. Takođe, u slučaju proizvoljnog broja DC portova, izvršavanje algoritma pretrage vrši se nezavisno za svaki od portova uvažavajući toplogiju pojedinačnih DC portova te potencijalne razlike koje se mogu javiti u skupovima dostupnih merenja za svaki od DC portova. Dijagram toka predloženog algoritma pretrage prikazan je na slici 4.1.

Slika 4.1 – Algoritam pretrage – dijagram toka

5. UPRAVLJANJE DC PORTOM U KRITIČNIM USLOVIMA RADA – POLYFIT ALGORITAM

Lokalno upravljanje jednosmernim portom, u slučajevima kada centralizovano upravljanje bazirano na OPF proračunima nije dostupno, može se implementirati nekom od tehnika estimacije. Pri tome, zahvaljujući topologiji DC porta i raspregnutoj regulaciji aktivnih/reaktivnih snaga kroz DC port, estimacija svake od nezavisnih/izlaznih promenjivih DC porta se vrši nezavisno. U nastavku poglavlja predložena je estimacija izlaznih promenjivih DC porta bazirana na estimaciji polinomnom funkcijom više promenjivih.

Slično kao i u slučaju algoritma pretrage, lokalno upravljanje DC portom bazirano na Polyfit algoritmu podrazumeva da tokom perioda nedostupnosti centralizovanog upravljanja DC portom deo skupa ulaznih podataka (merenja u mreži) ipak ostaje dostupan te se može koristiti pri upravljanju DC portom. Osim merenja dostupnih tokom prekida komunikacije osnovne resurse za implementaciju Polyfit algoritma čini i istorijska baza izmerenih vrednosti koja korespondira sa skupom trenutno dostupnih merenja. Implementacija Polyfit algoritma, koji omogućava lokalno upravljanje DC portom, obuhvata tri celine: formiranje seta podataka za obuku (tzv. trenažni skup podataka), postupak obuke (izračunavanje polinomnih koeficijenata) i izračunavanje estimiranih vrednosti izlaznih promenjivih DC porta.

5.1 Formiranje trenažnog skupa podataka

Prva faza Polyfit algoritma podrazumeva formiranje skupa podataka na osnovu kojih će se u daljim algoritamskim koracima vršiti estimacija izlaznih promenjivih DC porta. Suštinski, formiranje adekvatnog trenažnog skupa podataka vrši se tokom normalnih uslova rada kada se upravljanje DC portom vrši na bazi rezultata OPF proračuna. Procedura formiranja trenažnog skupa podataka može se ukratko opisati kroz sledeće korake:

- U normalnim uslovima rada DC porta vrše se proračuni optimalnih tokova snaga (OPF) koji podrazumevaju DC port kao upravljački resurs u mreži. Rezultati ovih proračuna dalje će se koristiti kao osnova u postupku obuke.
- Rezultate proračuna optimalnih tokova snaga iz prethodnog koraka neophodno je čuvati u istorijskoj bazi podataka tokom određenog/predefinisanog vremenskog perioda. Obično ovaj period varira u zavisnosti od topologije mreže tj. količine podatka koje je neophodno čuvati i dostupnog memorijskog kapaciteta. Minimalan vremenski period tokom koga je neophodno čuvati rezultate OPF-a zavisi i od perioda disktetizacije sa kojim se vrši ažuriranje baze podataka npr. 24 h sa satnom ili petnaestominutnom diskretizacijom.
- Rezultati OPF-a smešteni u istorijsku bazu podataka se klasifikuju, sortiraju i preslaguju u memoriji kako bi se njihovo ekstrahovanje moglo izvršiti na najjednostavniji i najbrži mogući način. U ovom koraku faktički se vrši primarna obrada podataka koja podrazumeva grupisanja, normalizaciju itd.

Iz prethodno navedenih koraka evidentno je da se celokupna procedura formiranja trenažnog skupa podataka zasniva na proračunima optimalnih tokova snaga. Podaci koji sačinjavaju trenažni skup podataka zapravo predstavljaju izmerene vrednosti napona/snaga u mreži tokom normalnih uslova rada. U izuzetnim slučajevima trenažni skup podataka može sadržavati i virtuelna merenja (estimirane vrednosti). Osim izmerenih vrednosti napona i snaga u mreži trenažni sup podataka

trebalo bi da sadrži i meteorološke podatke koji opisuju period tokom koga je vršeno formiranje trenažnog seta podataka (npr. periodi vedrog ili oblačnog neba, brzina vetra itd.) Značaj meteoroloških informacija posebno dolazi do izražaja u slučajevima mreža sa značajnim udelom distribuiranog generisanja. U ovim slučajevima meteorološki podaci se takođe indirektno uvode i u postupak obuke te se na taj način, posredno, poboljšava kvalitet estimacije.

5.2 Postupak obuke – izračunavanje polinomnih koeficijenata

Tokom perioda nedostupnosti centralizovanog upravljanja DC portom, usled prekida komunikacije ili nekog drugog razloga, neki od ulaznih podataka (merenja u mreži) i dalje ostaju dostupna bilo putem alternativnih komunikacionih kanala ili u krajnjem slučaju putem manuelnih unosa podataka direktno u lokalni kontroler. Shodno tome estimacija polinomnom funkcijom više promenjivih, gde su te promenjive upravo merenja dostupna tokom prekida komunikacije, čini se kao logičan odabir alata za implementaciju lokalnog upravljanja DC portom.

Zahvaljujući mnoštvu koeficijenata koji se javljaju u polinomnoj funkciji više promenjivih kao i mogućnosti odabira maksimalnog stepena svake od varijabli unutar polinoma očekuje se da će rezultantna polinomna funkcija pratiti promene vrednosti izlaznih promenjivih DC porta i omogućiti estimaciju prihvatljive tačnosti. Zbog dominantnih nelinearnosti izlaznih promenjivih DC porta usvojena je estimacija polinomnom funkcijom više promenjivih. Pri tome, osnovni slučaj polinomne estimacije – estimacija linearnom funkcijom jedne promenjive nije razmatrana pri daljim analizama.

Uvažavajući usvojeni model DC porta te činjenicu da se estimacija svake od nezavisnih izlaznih promenjivih DC porta može vršiti nezavisno, estimacija izazne promenjive DC porta može se razmatrati kao statički sistem sa jednim izlazom i više upravljačkih promenjivih. Matematički model ovakvog sistema može se opisati relacijom (49):

$$y = g(x_1, x_2, x_3, \dots, x_{am}).$$
(49)

U relaciji (49) y označava nezavisnu izlaznu promenjivu DC porta koja se estimira a $x_1, x_2, ..., x_{am}$ su upravljačke promenjive. U razmatranom slučaju upravljačke promenjive zapravo su merenja u sistemu (izmerene vrednosti) koja su dostupna tokom perioda neraspoloživosti centralizovanog upravljanja DC portom. Relacija (49) može se dalje aproksimirati ukoliko se uvaži da je funkcija g polinomna funkcija stepena p [65]:

$$\Pi_{p} = \beta_{0} + \sum_{l_{1}=1}^{am} \beta_{l_{1}} x_{l_{1}} + \sum_{l_{1}=1}^{am} \sum_{l_{2}=l_{1}}^{am} \beta_{l_{1}l_{2}} x_{l_{1}} x_{l_{2}} + \dots + \sum_{l_{1}=1}^{am} \sum_{l_{2}=l_{1}}^{am} \cdots \sum_{l_{p}=l_{p-1}}^{am} \beta_{l_{1}l_{2}} \cdots x_{l_{p}} x_{l_{1}} x_{l_{2}} \cdots x_{l_{p}},$$
(50)

gde je *p* nenegativan ceo broj i β_0 , β_1 , β_{l1l2} , ..., $\beta_{l1l2,...lp}$ predstavljaju odgovarajuće polinomne koeficijente. Posmatrano u odnosu na polinomne koeficijente, funkcija (50) je linearna funkcija te je za estimaciju polinomnih koeficijenata moguće koristiti metodu najmanjih kvadrata.

U opštem slučaju istorijska baza podataka formira se na osnovu OPF proračuna realizovanih N puta (za N perioda diskretizacije) tj. istorijska baza podataka sadrži y_i (i=1,2, ..., N) vrednosti izlaznih promenjivih DC porta i $x_{i1}, x_{i2}, ..., x_{iam}$ vrednosti dostupnih merenja. Uvažavajući $x_{l2}, ..., x_{lj}$ (j=1,2,3...) funkcija više promenjivih (Π_p) može se predstaviti u vektorskoj formi kao:

$$Y = \Phi\Theta + \mathbf{E},\tag{51}$$

gde je $\mathbf{Y} = \begin{bmatrix} \mathbf{y}_1 & \mathbf{y}_2 & \cdots & \mathbf{y}_N \end{bmatrix}^T$ vektor rezultata (izlaznih promenjivih DC porta), $\boldsymbol{\Theta} = \begin{bmatrix} \beta_0 & \beta_1 & \cdots & \beta_{am} & \cdots & \beta_{11\cdots 11} & \beta_{11\cdots 12} & \cdots & \beta_{amam\cdots am} \end{bmatrix}^T$ je parametarski vektor (vektor čije elemente određujemo) i $\mathbf{E} = \begin{bmatrix} \varepsilon_1 & \varepsilon_2 & \cdots & \varepsilon_N \end{bmatrix}^T$ označava vektor greške. Matrica $\boldsymbol{\Phi}$ označava matricu koeficijenata koja se može izraziti kao:

$$\Phi = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1am} & \cdots & x_{11}^p & x_{11}^{p-1}x_{12} & \cdots & x_{1am}^p \\ 1 & x_{21} & \cdots & x_{2am} & \cdots & x_{21}^p & x_{21}^{p-1}x_{22} & \cdots & x_{2am}^p \\ \vdots & \vdots \\ 1 & x_{N1} & \cdots & x_{Nam} & \cdots & x_{N1}^p & x_{N1}^{p-1}x_{N2} & \cdots & x_{Nam}^p \end{bmatrix}.$$

Ukoliko je matrica $\Phi^{T}\Phi$ invertibilna, za proračun traženih polinomnih koeficijenata može se iskoristiti estimacija metodom najmanjih kvadrata:

$$\Theta^* = (\Phi^T \Phi)^{-1} \Phi^T Y.$$
(52)

Ukoliko je matrica Φ velike dimenzionalnosti QR faktorizacija može se iskoristiti kako bi se proračuni ubrzali odnosno kako bi se izbeglo direktno invertovanje matrice $\Phi^{T}\Phi$ [66]. U slučajevima kada matrica $\Phi^{T}\Phi$ nije invertibilna za estimaciju traženih polinomnih koeficijenata moguće je koristiti metodu redukovanih najmanjih kvadrata (*eng. Truncated Least Square Estimation –TLSE*) [67], [68]. S obzirom da se estimacija vrši zasebno za svaku od nezavisnih izlaznih promenjivih DC porta, postupak obuke tj. određivanja polinomnih koeficijenata potrebno je izvršiti za svaku od nezavisnih izlaznih promenjivih DC porta. Osim toga, broj, priroda kao i stepen svake od nezavisnih varijabli unutar rezultantnog polinoma (dostupna merenja) mogu varirati te se i iz tog razloga procedura obuke vrši nezavisno za svaki od nezavisnih izlaza DC porta.

5.3 Izračunavanje vrednosti izlaznih promenjivih DC porta

Nakon izračunavanja polinomnih koeficijenata ispunjeni su svi preduslovi za izračunavanje estimiranih vrednosti izlaznih varijabli DC porta tokom perioda prekida komunikacije (nedostupnosti OPF proračuna). Vrednost svake od nezavisnih izlaznih promenjivih DC porta (nezavisne aktivne/reaktivne snage) tokom perioda neraspoloživosti centralizovanog upravljanja može se izračunati kao:

$$y^* = g(x_1, x_2, x_3, \dots, x_{am}),$$
(53)

gde y^* označava izlaznu promenjivu DC porta a $x_1, x_2, ..., x_{am}$ označavaju vrednosti dostupnih merenja izmerene neposredno nakon prekida komunikacije (registrovanja neraspoloživosti OPF-a). Funkcija g je polinomna funkcija opisana koeficijentima izračunatim pomoću (52). Slično kao i u slučaju trenažnog skupa podataka i skupu dostupnih merenja obično se pridružuju meteorološki podaci (opisani pomoću nekoliko faktora) koji omogućavaju određena poboljšanja kvaliteta estimacije.

Uvrštavanjem polinomnih koeficijenata (Θ^*) izračunatih pomoću relacije (52) dobija se rezultantni polinom (Π_p^*) pomoću kojeg je moguće estimirati vrednosti izlazne promenjive DC porta za bilo koje vrednosti nezavisnih varijabli (dostupnih merenja). Dijagram toka algoritma opisanog u odeljcima 5.1 – 5.3 prikazan je na slici 5.1.

Algoritam opisan u prethodnim odeljcima omogućava lokalno upravljanje DC portom zasnovano na istorijskoj bazi podataka i korišćenju samo osnovnih računskih operacija. Osnovna prednost ovog algoritma je njegova jednostavnost i široka primenjivost – estimacija se vrši nezavisno za svaku od izlaznih promenjivih DC porta. Potencijalni nedostatak predloženog algoritma mogao bi biti izbor nezavisnih varijabli (dostupnih merenja) koja će figurisati u rezultantnoj polinomnoj funkciji. Definisanje skupa dostupnih merenja nije jednostavno ni jednoznačno već zavisi od niza faktora kao što su: topologija mreže, pozicija DC porta u mreži, kapacitet i karakteristike generatora i potrošača u mreži itd. Iz ovih razloga definisanje skupa dostupnih merenja (nezavisnih varijabli) koja će figurisati u rezultantnom polinomu ne može biti uopšteno. Postupak optimizacije skupa nezavisnih varijabli podrazumeva i analizu korelacija između pojedinačnih merenja u sistemu kao i faktore vezane za tačnost izmerenih vrednosti. Metode koje se mogu koristiti pri optimizaciji skupa dostupnih merenja opisane su u poglavlju 6.

Slika 5.1 – Polyfit algoritam– dijagram toka

6. OPTIMIZACIJA SKUPA DOSTUPNIH MERENJA

Nedostupnost proračuna optimalnih tokova snaga (OPF) u većini slučajeva prouzrokovana je prekidima komunikacije. U praksi, prekidi komunikacije dovođe do nedostupnosti ulaznih podataka neophodnih za izvođenje OPF proračuna, njihove nekozinstentnosti ili pak do nemogućnosti prenosa zadanih (referentnih) vrednosti od centra upravljanja ka jednosmernim portovima raspoređenim duž mreže.

Uvažavajući karakter potencijalnih prekida komunikacije i uzimajući u obzir posledice do kojih ovi prekidi dovode, većina algoritama za lokalno upravljanje jednosmernim portovima projektovana je tako da je za njihov efikasan rad neophodno obezbediti bar neke ulazne podatke odnosno merenja karakterističnih veličina u mreži. Naime, pri parcijalnim prekidima komunikacije dolazi do delimične nedostupnosti ulaznih podataka pri čemu deo ulaznih podataka ipak ostaje dostupan i može se iskoristiti za lokalno upravljanje DC portovima. Takođe, pri potpunim prekidima komunikacije između DMS-a i jednosmernih portova ulazni podaci neophodni za lokalno upravljanje mogu se preneti alternativnim komunikacionim kanalima ili pak u krajnoj liniji uneti ručno kao ulazni parametri lokalnih kontrolera.

Distributivni sistemi su vrlo često sistemi sa velikim brojem čvorova i grana u mreži (sistemi visoke dimenzionalnosti). Posledično, i broj merenja u ovakvim sistemima, a samim tim i broj ulaznih podataka neophodnih za OPF proračune, takođe je jako veliki. U mrežama velikih dimenzija pri prekidu komunikacije skup dostupnih merenja može biti jako velikih dimenzija što potencijalno može predstavljati poteškoću za izvršavanje predloženih lokalnih upravljačkih strategija ili značajnije uticati na njihove performanse. Da bi se ovaj problem izbegao potrebno je optimizovati skup merenja dostupnih tokom prekida komunikacije. Optimizacija skupa dostupnih merenja zapravo podrazumeva filtriranje njegovog sadržaja i ograničenje dimenzionalnosti ovog skupa na osnovu nekog predefinisanog kriterijuma. U nastavku poglavlja predložena je optimizacija skupa dostupnih merenja na bazi modela (funkcija) merenja u razmatranoj mreži.

6.1 Model mreže

Pri modelovanju mreže uvažava se nekoliko olakšica koje omgućavaju jednostavnije formiranje modela mreže a da pri tome značajnije ne umanjuju primenjivost i opštost izvednog modela. Kao prvo, usvaja se da razmatrani sistem (mreža) radi u stacionarnom stanju pri čemu je ostvarena potpuna simetrija sistema. Ova pretpostavka dalje znači da su svi potrošači/generatori u mreži simetrični. Takođe, podrazumeva se da su vodovi u mreži kao i svi uređaji povezani na njih simetrični (transponovani) tako da su i tokovi snaga po vodovima razmatrane mreže trofazni i simetrični. Usvajanje navedenih pretpostavki omogućava formiranje modela mreže zasnovanog na ekvivalentoj šemi direktne simetrične komponente. Postupak modelovanja mreže podrazumeva formiranje pojedinačnih modela komponenti mreže te njihovo kombinovanje koje u konačnci daje jedinstveni model celokupne mreže. U paragrafima koji slede ukratko su opisani korišćeni i opšte poznati modeli komponenti mreže. Detaljni modeli kao i postupci njihovog izvođenja mogu se pronaći u [69].

6.1.1 Modelovanje potrošača i generatora u mreži

Potrošači i generatori u mreži modelovani su pomoću ekvivalentnih kompleksnih injektiranja snaga u odgovarajućim čvorovima. Ovaj model zapravo podrazumeva modelovanje generatora koji rade u P/Q režimu rada i potrošača konstantne snaga (najčešći slučaju praksi). Zahvaljujući ovako

usvojenom modelu (injektiranja snaga) generatori i potrošači u mreži ne utiču na model mreže. Ukoliko su u mreži prisutni potrošači konstantne impedanse njihovo modelovanje vrši se uvažavanjem otočne admitanse povezane u razmatranom čvoru.

6.1.2 Modelovanje vodova u mreži

Vodovi u mreži modeluju se korišćenjem ekvivalentnog π modela čiji parametri odgovaraju parametrima direktne komponente razmatranog voda. Usvojeni model voda prikazan je na slici 6.1 pri čemu R+jX predstavlja impedansu voda dok vrednost j2B modeluje ukupnu susceptansu voda.

Slika 6.1 – Ekvivalentni model voda

6.1.3 Modelovanje regulacionih transformatora u mreži

Transformatori koji imaju promenjiv prenosni odnos modeluju se kao serijska veza idealnog transformatora i impedanse, kao što je to ilustrovano na slici 6.2.

Slika 6.2 – Ekvivalentni model regulacionog transformatora

Jednačine čvorova za kolo sa slike 6.2 dobijaju se ukoliko se izraze struje kroz impedansu (i_{lm} i i_m). Ako admitansu celokupne grane označimo sa y, dobijaju se jednačine čvorova kao:

$$\begin{bmatrix} i_{lm} \\ i_m \end{bmatrix} = \begin{bmatrix} y & -y \\ -y & y \end{bmatrix} \cdot \begin{bmatrix} v_l \\ v_m \end{bmatrix}.$$
(54)

Uvažavajući prenosni odnos idealnog transformatora odnosno relacije:

$$i_{lm} = a \cdot i_k$$

$$v_l = v_k / a,$$
(55)

dobija se konačni oblik jednačina čvorova izražen relacijom (56):

$$\begin{bmatrix} i_k \\ i_m \end{bmatrix} = \begin{bmatrix} y/a^2 & -y/a \\ -y/a & y \end{bmatrix} \cdot \begin{bmatrix} v_k \\ v_m \end{bmatrix}.$$
(56)

Model opisan relacijom (56) važi za regulacione transformatore koji prilikom transformacije ne unose fazni pomeraj. Za transformatore koji regulišu i fazni pomeraj prenosni odnos (*a*) je kompleksna vrednost te je model neophodno modifkovati u skladu sa relacijom (57):

$$\begin{bmatrix} i_k \\ i_m \end{bmatrix} = \begin{bmatrix} y/|a|^2 & -y/a^* \\ -y/a & y \end{bmatrix} \cdot \begin{bmatrix} v_k \\ v_m \end{bmatrix}.$$
(57)

6.1.4 Formiranje modela mreže

Na osnovu prethodno opisanih modela pojedinih elemenata sistema moguće je formirati model celokupne razmatrane mreže. Postupak izgradnje modela mreže zapravo predstavlja proces ispisivanja jednačina čvorova, na osnovu Kirhofovog zakona, za sve čvorove u mreži. Ukoliko se vektor strujnih injektiranja označi sa *I* a vektor napona čvorova sa *V* model mreže može se predstaviti jednačinom (58):

$$I = \begin{bmatrix} i_{1} \\ i_{2} \\ \vdots \\ i_{N} \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} & \cdots & Y_{1N} \\ Y_{21} & Y_{22} & \cdots & Y_{2N} \\ \vdots & \vdots & \vdots & \vdots \\ Y_{N1} & Y_{N2} & \cdots & Y_{NN} \end{bmatrix} \cdot \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = Y \cdot V ,$$
(58)

gde i_k označava fazor ukupnog strujnog injektiranja u čvoru k (injektiranje je pozitivno ukoliko ulazi u čvor a negativno ukoliko izlazi iz čvora), v_k je fazor napona u čvoru k i Y_{km} označava element matrice admitansi čvorova (Y) na poziciji k,m. Jednačina (61) predstavlja dobro poznat model koji verno predstavlja topologiju mreže i koji se široko koristi u analizi elektroenergetskih sistema. Više detalja o formiranju modela za sisteme velikih dimenzija kao i ilustrativne primere formiranja modela za neke test sisteme moguće je pronaći u [70].

6.2 Model merenja u mreži

Distributivni sistemi i uopšte elektroenergetski sistemi okarakterisani su velikim brojem merenja u mreži. Veličine od značaja koje se najčešće mere u elektroenergetskim mrežama su naponi u čvorovima mreže i tokovi snaga/struja po granama mreže. Koristeći notacije iz jednačina stanja [71], skup (z) koji se sastoji od ukupno *m* merenja u mreži moguće je opisati kao:

$$z = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_m \end{bmatrix} = \begin{bmatrix} h_1(x_1, x_2, \dots, x_n) \\ h_2(x_1, x_2, \dots, x_n) \\ \vdots \\ h_m(x_1, x_2, \dots, x_n) \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_m \end{bmatrix} = h(x) + e,$$
(59)

pri čemu $x^T = [x_1, x_2, ..., x_n]$ označava vektor promenjivih stanja, $h_i(x)$ je nelinearna funkcija koja povezuje odogvarajuće merenje sa vektorom stanja a $e^T = [e_1, e_2, ..., e_m]$ je vektor koji sadrži greške merenja. Relacija (59) je dobro poznata jednačina iz estimacije stanja elektroenergetskih sistema i predstavlja osnovni, model u ovoj oblasti [72].

Uz relaciju (59) pri modelovanju merenja neophodno je uvažiti i sledeće pretpostavke koje se odnose na statističke osobine grešaka merenja. Za greške merenja pretpostavlja se da imaju normalnu (Gausovu) statističku raspodelu okarakterisanu parametrima μ i σ . Očekivana vrednost grešaka merenja je nula odnosno $E(e_i)=0$, i=1, 2, ..., m. Za greške merenja smatra se da su međusobno nezavisne ($E[e_ie_j]=0$) pa se kovarijansa grešaka merenja može izraziti kao:

$$Cov(e) = E\left[ee^{T}\right] = R = diag\left\{\sigma_{1}^{2}, \sigma_{1}^{2}, \dots, \sigma_{m}^{2}\right\},$$
(60)

gde su vrednosti σ_i zapravo vrednosti standardnih devijacija koje predstavljaju tačnost pojedinačnih merenja u sistemu.

Pri estimaciji stanja elektroenergetskih sistema, i uopšteno pri modelovanju bilo kakvih merenja, teži se ka minimizaciji greške merenja. Koristeći relacije (59) i (60) zadatak minimizacije grešaka merenja matematički se opisuje kao minimizacija funkcije:

$$J(x) = \sum_{i=1}^{m} (z_i - h_i(x))^2 / R_{ii} = [z - h(x)]^T R^{-1} [z - h(x)].$$
(61)

Uvažavajući uslov da je u ekstremu funkcije vrednost njenog prvog izvoda jednaka nuli dobija se:

$$g(x) = \frac{\partial J(x)}{\partial x} = -H^T R^{-1} [z - h(x)] = 0, \qquad (62)$$

gde $H(x) = \left[\frac{\partial h(x)}{\partial x}\right]$ označava matricu Jakobiana merenja. Upravo ova matrica je od izuzetnog značaja za optimizaciju skupa dostupnih merenja. Detaljan postupak izračunavanja elemenata matrice

značaja za optimizaciju skupa dostupnih merenja. Detaljan postupak izračunavanja elemenata matrice Jakobiana merenja dat je u paragrafima u nastavku.

6.2.1 Funkcija merenja, h(x)

Relacija (59) opisuje univerzalni model primenjiv za različite vrste merenja. U slučaju elektroenergetskih mreža razmatrana merenja najčešće su naponi u čvorovima mreže, injektiranja snaga u čvorovima mreže i tokovi struje/snage po granama mreže. Primena modela opisanog relacijom (59) zahteva i definisanja vektora promenjivih stanja. U slučaju mreže od N čvorova vektor promenjivih stanja sadrži N efektivnih vrednosti napona u čvorovima mreže i N-1 vrednosti faznih stavova napona u čvorovima mreže (jedan fazni stav se uzima kao referentna vrednost). Ovako definisan vektor promenjivih stanja može se izraziti relacijom (63):

$$x^{T} = \left[\theta_{2}\theta_{2}\dots\theta_{N}V_{1}V_{2}V_{3}\dots V_{N}\right].$$
(63)

Koristeći ekvivalentni π model voda (grane u mreži) funkcije koje povezuju merenja sa promenjivim stanja mogu se izraziti za svaki tip merenja kao što sledi:

• Injektiranja aktivne i reaktivne snage u čvoru *i*:

$$P_{i} = V_{i} \sum_{j \in N_{i}} V_{j} \left(G_{ij} \cos \theta_{ij} + B_{ij} \sin \theta_{ij} \right),$$

$$Q_{i} = V_{i} \sum_{j \in N_{i}} V_{j} \left(G_{ij} \sin \theta_{ij} + B_{ij} \cos \theta_{ij} \right).$$
(64)

• Tokovi aktivne i reaktivne snage od čvora *i* ka čvoru *j*:

$$P_{ij} = V_i^2 (g_{si} + g_{ij}) - V_i V_j (g_{ij} \cos \theta_{ij} + b_{ij} \sin \theta_{ij}),$$

$$Q_{ij} = -V_i^2 (b_{si} + b_{ij}) - V_i V_j (g_{ij} \sin \theta_{ij} - b_{ij} \cos \theta_{ij}).$$
(65)

• Efektivna vrednost struje od čvora *i* ka čvoru *j*:

$$I_{ij} = \frac{\sqrt{P_{ij}^2 + Q_{ij}^2}}{V_i} \,. \tag{66}$$

U relacijama (63)-(66) V_i i θ_i označavaju magnitudu i fazni stav napona u čvoru *i*, $G_{ij}+jB_{ij}$ je element matrice admitansi čvorova na poziciji *ij*, $g_{ij}+jb_{ij}$ označava admitansu grane koja povezuje

čvorove *i* i j a $g_{si}+jb_{si}$ označava otočno povezanu admitansu u čvoru *i*. Skup N_i označava skup čvorova koji su direktno povezani sa razmatranim čvorom *i*.

6.2.2 Jakobian merenja, H

Nakon formiranja funkcije merenja matrica Jakobian merenja ima sledeću strukturu:

$$H = \begin{bmatrix} \frac{\partial P_{inj}}{\partial \theta} & \frac{\partial P_{inj}}{\partial V} \\ \frac{\partial P_{tok}}{\partial \theta} & \frac{\partial P_{tok}}{\partial V} \\ \frac{\partial Q_{inj}}{\partial \theta} & \frac{\partial Q_{inj}}{\partial V} \\ \frac{\partial Q_{tok}}{\partial \theta} & \frac{\partial Q_{tok}}{\partial V} \\ \frac{\partial I_{mag}}{\partial \theta} & \frac{\partial I_{mag}}{\partial V} \\ 0 & \frac{\partial V_{mag}}{\partial V} \end{bmatrix}.$$
 (67)

Elementi matrice H koji figurišu u relaciji (67) izračunavaju se na sledeći način:

• Elementi matrice *H* koji se odnose na merenja injektiranja aktivne snage u čvorovima:

$$\frac{\partial P_{i}}{\partial \theta_{i}} = \sum_{j=1}^{N} V_{i} V_{j} \left(-G_{ij} \sin \theta_{ij} + B_{ij} \cos \theta_{ij} \right) - V_{i}^{2} B_{ii} ,$$

$$\frac{\partial P_{i}}{\partial \theta_{j}} = V_{i} V_{j} \left(G_{ij} \sin \theta_{ij} - B_{ij} \cos \theta_{ij} \right),$$

$$\frac{\partial P_{i}}{\partial V_{i}} = \sum_{j=1}^{N} V_{j} \left(G_{ij} \cos \theta_{ij} + B_{ij} \sin \theta_{ij} \right) + V_{i} G_{ii} ,$$

$$\frac{\partial P_{i}}{\partial V_{i}} = V_{i} \left(G_{ij} \cos \theta_{ij} + B_{ij} \sin \theta_{ij} \right).$$
(68)

• Elementi matrice *H* koji se odnose na merenja injektiranja reaktivne snage u čvorovima:

$$\frac{\partial Q_i}{\partial \theta_i} = \sum_{j=1}^N V_i V_j \Big(G_{ij} \cos \theta_{ij} + B_{ij} \sin \theta_{ij} \Big) - V_i^2 G_{ii} ,$$

$$\frac{\partial Q_i}{\partial \theta_j} = V_i V_j \Big(-G_{ij} \cos \theta_{ij} + B_{ij} \sin \theta_{ij} \Big),$$

$$\frac{\partial Q_i}{\partial V_i} = \sum_{j=1}^N V_j \Big(G_{ij} \sin \theta_{ij} - B_{ij} \cos \theta_{ij} \Big) - V_i B_{ii} ,$$

$$\frac{\partial Q_i}{\partial V_i} = V_i \Big(G_{ij} \sin \theta_{ij} - B_{ij} \cos \theta_{ij} \Big).$$
(69)

• Elementi matrice *H* koji se odnose na merenja tokova aktivne snage po granama mreže:

$$\frac{\partial P_{ij}}{\partial \theta_i} = V_i V_j \Big(g_{ij} \sin \theta_{ij} - b_{ij} \cos \theta_{ij} \Big),
\frac{\partial P_{ij}}{\partial \theta_j} = -V_i V_j \Big(g_{ij} \sin \theta_{ij} - b_{ij} \cos \theta_{ij} \Big),$$
(70)

$$\frac{\partial P_{ij}}{\partial V_i} = -V_j \Big(g_{ij} \cos \theta_{ij} + b_{ij} \sin \theta_{ij} \Big) + 2(g_{ij} + g_{si})V_i ,$$
$$\frac{\partial P_{ij}}{\partial V_j} = -V_i \Big(g_{ij} \cos \theta_{ij} + b_{ij} \sin \theta_{ij} \Big).$$

• Elementi matrice *H* koji se odnose na merenja tokova reaktivne snage po granama mreže:

$$\frac{\partial Q_{ij}}{\partial \theta_{i}} = -V_{i}V_{j}\left(g_{ij}\cos\theta_{ij} + b_{ij}\sin\theta_{ij}\right), \\
\frac{\partial Q_{ij}}{\partial \theta_{j}} = V_{i}V_{j}\left(g_{ij}\cos\theta_{ij} + b_{ij}\sin\theta_{ij}\right), \\
\frac{\partial Q_{ij}}{\partial V_{i}} = -V_{j}\left(g_{ij}\sin\theta_{ij} - b_{ij}\cos\theta_{ij}\right) - 2(b_{ij} + b_{si})V_{i} , \\
\frac{\partial Q_{ij}}{\partial V_{j}} = -V_{i}\left(g_{ij}\sin\theta_{ij} - b_{ij}\cos\theta_{ij}\right).$$
(71)

• Elementi matrice *H* koji se odnose na merenja efektivnih vrednosti napona u čvorovima mreže:

$$\frac{\partial V_i}{\partial V_i} = 1, \frac{\partial V_i}{\partial V_j} = 0, \frac{\partial V_i}{\partial \theta_i} = 0, \frac{\partial V_i}{\partial \theta_j} = 0.$$
(72)

• Elementi matrice *H* koji se odnose na merenja efektivnih vrednosti struja po granama mreže:

$$\frac{\partial I_{ij}}{\partial \theta_i} = \frac{g_{ij}^2 + b_{ij}^2}{I_{ij}} V_i V_j \sin \theta_{ij},$$

$$\frac{\partial I_{ij}}{\partial \theta_j} = -\frac{g_{ij}^2 + b_{ij}^2}{I_{ij}} V_i V_j \sin \theta_{ij},$$

$$\frac{\partial I_{ij}}{\partial V_i} = \frac{g_{ij}^2 + b_{ij}^2}{I_{ij}} (V_i - V_j \cos \theta_{ij}),$$

$$\frac{\partial I_{ij}}{\partial V_j} = \frac{g_{ij}^2 + b_{ij}^2}{I_{ij}} (V_j - V_i \cos \theta_{ij}).$$
(73)

6.2.3 Matrica pojačanja (Gain matrica), G

U proračunima, proisteklim iz relacija (59)-(73) jako često se korisiti matrica pojačanja, G, dobijena iz matrica Jakobiana merenja i kovarijanse grešaka merenja kao:

$$G(x) = H^T R^{-1} H. ag{74}$$

Matrica pojačanja je simetrična i retka matrica. Takođe, matrica G je i nenegativno definitna matrica tj. sve sopstvene vrednosti ove matrice su nenegativne vrednosti. Ove osobine matrice G široko se koriste za izračunavanje, čuvanje i dalje računske operacije nad matricom G [72].

6.3 Korelacije između merenja u mreži

Linearizacijom jednačina (59) dobija se linearizovan model merenja u mreži:

$$\Delta z = H \Delta x + e \,, \tag{75}$$

pri čemu i dalje važe pretpostavke $E(e_i)=0$ i cov(e)=R odnosno važi relacija (60). Postupak estimacije stanja, primenom metode najmanjih kvadrata [73] za ovako linearizovan model može se opisati relacijom:

$$\Delta \hat{x} = \left(H^T R^{-1} H \right)^{-1} H^T R^{-1} \Delta z = G^{-1} H^T R^{-1} \Delta z, \qquad (76)$$

dok se esitmirane vrednosti mogu predstaviti kao:

$$\Delta \hat{z} = H \Delta \hat{x} = K \Delta z . \tag{77}$$

U relaciji (77) figuriše matrica K definisana kao:

$$K = HG^{-1}H^{T}R^{-1}, (78)$$

koju je moguće iskoristiti za procenu korelacija između pojedinih merenja u mreži. Matrica *K* još se naziva i "kapa"matrica kako bi se jasno označila namena ove matrice u izračunavanju estimiranih vrednosti skupa merenja. Za matricu *K* pokazuje se da ima sledeće osobine [72]:

$$K \cdot K \cdot K \cdots K = K ,$$

$$K \cdot H = H ,$$

$$(I - K) \cdot H = 0.$$
(79)

Poznavajući relacije (75)-(79) formiraju se reziduali merenja koje je moguće formulisati kao:

$$r = \Delta z - \Delta \hat{z} = (I - K)\Delta z = (I - K)(H\Delta x + e) = (I - K)e = Se,$$
(80)

gde je *S* matrica koja se još naziva i matrica osetljivosti reziduala merenja. Ova matrica reprezentuje osetljivost reziduala merenja u odnosu na greške merenja. Matrica *S* nije simetrična matrica osim u specifičnom slučaju kada su kovarijanse grešaka jednake odnosno kada važi R=kI gde je *k* proizvoljan skalar. Za matricu *S* važe i sledeće osobine [72]:

$$S \cdot S \cdot S \cdots S = S,$$

$$S \cdot R \cdot S^{T} = S \cdot R.$$
(81)

Konačno, ukoliko se vratimo na polaznu pretpostavku da su greške merenja statistički raspodeljene u skladu sa normalnom (Gausovom) raspodelom i ukoliko se uvaži linearna zavisnost reziduala merenja i grešaka merenja (relacija (80)), raspodela reziduala merenja može se izraziti kao:

$$E(r) = E(S \cdot e) = S \cdot E(e) = 0.$$
(82)

Posledično, matrica kovarijansi reziduala merenja izračunava se kao:

$$Cov(r) = \Omega = E[rr^{T}].$$
(83)

Korišćenjem osobina matrice S relacija (83) transformiše se u:

$$\Omega = S \cdot E[rr^T] \cdot S = SRS^T = SR.$$
(84)

Iz relacija (82)-(84) može se zaključiti da za reziduale merenja važi normalna raspodela tj.

$$r \cong N(0,\Omega) \,. \tag{85}$$

Matrica kovarijansi reziduala merenja (Ω) koristi se za određivanje korelacija između pojedinih merenja u mreži. Nedijagonalni elementi matrice Ω opisuju korelaciju između određenih merenja. Ukoliko je:

$$\Omega_{ij} \ge \xi \,, \tag{86}$$

za merenja *i* i *j* kažemo da su u korelaciji tj da promena vrednosti merenja *i* značajno utiče na promenu vrednosti merenja *j*. Vrednost ξ predstavlja predefinisanu vrednost praga korelacije koja se usvaja na osnovu niza faktora kao što su topologija razmatrane mreže i stepen selektivnosti koji se želi postići (veći prag vrednosti korelacije vodi ka užem skupu merenja koja međusobno korelišu).

6.3.1 Primena korelacija između merenja u mreži za optimizaciju skupa dostupnih merenja

Prethodno opisani modeli koji rezultuju vrednostima korelacija između merenja u mreži mogu se iskoristiti za postupak optimizacije skupa dostupnih merenja tj. za formiranje optimalnog skupa merenja koji će se koristiti za lokalno upravljanje jednosmernim portom u slučajevima nedostupnosti OPF proračuna. Ovaj postupak zapravo predstavlja proces određivanja podskupa skupa dostupnih merenja koji se može opisati u nekoliko koraka:

- Na osnovu topologije mreže, lokacije DC porta, željenih performansi algoritma za lokalno upravljanje DC portom definiše (fiksira) se maksimalni broj merenja koja će učestvovati u lokalnom upravljanju jednosmernim portom. Takođe, u ovom koraku neophodno je definisati i prag vrednosti korelacija između merenja.
- Uvažavajući topologiju, tip i broj merenja u mreži kao i parametare mreže formira se model mreže, model merenja i izračunavaju se vrednosti elemenata matrice kovarijansi reziduala merenja. Izračunavanje elemenata matrice kovarijansi reziduala merenja ne mora se vršiti za sva merenja u mreži već je dovoljno da se izračunaju vrednosti kolona/vrsta koji odgovaraju čvorovima u kojima su povezani jednosmerni portovi. Ovi proračuni izvršavaju se samo jednom kao aktivnosti koje prethode izvršavanju algoritma za lokalno upravjanje DC portom.
- Vrednosti proračuna korelacija se čuvaju u memoriji i koriste pri izvršavanju algortima (pri optimizaciji skupa dostupnih merenja) sve dok je validna topologija mreže i karakteristike merenja u mreži.

Kao ilustrativni primer postupka optimizacije skupa dostupnih merenja na osnovu modela mreže i merenja u mreži, izvršeni su proračuni elemenata matrice korelacije reziduala merenja za modifikovani IEEE 33 test sistem. Rezultati proračuna odnosno vrednosti korelacija između dostupnih merenja i izlaza DC porta prikazani su u tabeli 6.1. Pri interpretaciji vrednosti korelacija iz tabele 6.1 usvojen je prag vrednosti korelacije od 0.05*10⁻⁴. Vrednosti niže od ovog praga ukazuju na nizak stepen korelacije između merenja ili pak nepostojanje korelacije između odgovarajućih merenja i izlaza DC porta. Sa druge strane, što je vrednost stepena korelacije veća od usvojenog praga to je interakcija između merenja i izlaza DC porta jača.

Vodeći se opisanom logikom i uvažavajući rezultate iz tabele 6.1 može se zaključiti da su injektriranje iz fotonaponskog postrojenja i vrednost napona u čvoru 11 u značajnoj interakciji sa aktivnom snagom DC porta.

		P ₁₂	Q12	Q22
P ₁₀		-0.650650	0.432790	-0.001441
Q_{30}		0.028353	-0.056466	0.012462
$ ilde{U}_{11}$	10-4	1.581500	-2.115200	-0.002878
U 17	10 ·×	0.082405	-0.056959	-0.000018
U_{21}		0.001022	-0.000787	-0.035921
U_{33}		0.009773	-0.029633	0.005762

Tabela 6.1 – Rezultati proračuna vrednosti korelacija između dostupnih merenja i snaga DC porta (modifikovani IEEE 33 test sistem)

Intereakcija između vrednosti aktivne snage DC porta i ostalih vrednosti iz skupa dostupnih merenja je značajno manja ili čak zanemariva (npr. korelacija napona u čvoru 21 i aktivne snage DC porta). Na sličan način može se izvršiti i analiza korelacija dostupnih merenja i reaktivnih snaga jednosmernog porta.

Predloženi postupak optimizacije skupa dostupnih merenja (proračun stepena korelacije) primenjiv je bez obzira na broj jednosmernih portova u mreži i izvršava se nezavisno za svaku od izlaznih (nezavisnih) promenjivih jednosmernih portova. S obzirom da se opisani proračuni stepena korelacija (elemenata matrice Ω) izvršavaju kao određeni vid predprocesiranja ulaznih podataka, postupak optimizacije skupa dostupnih merenja ne utiče na vreme izvršavanja algoritama za lokalno upravljanje jednosmernim portovima. Sa druge strane, optimizacijom skupa dostupnih merenja i ograničavanjem broja njegovih elemenata moguće je postići značajne uštede neophodnih računarskih resursa što u mnogome olakšava primenu predloženih algoritama u stvarnim lokalnim kontrolerima jednosmernih portova.

7. REZULTATI SIMULACIJA

Algoritmi opisani u poglavljima četiri i pet implementirani su u programskom paketu *Matlab*. Istovremeno, sa algoritmima za lokalno upravljanje jednosmernim portovima implemeniran je i optimizacioni postupak opisan u poglavlju 3 kao i algoritam za proračune tokova snaga baziran na matrici impedansi mreže [63]. Na ovaj način vršene su simulacije rada DC porta ne samo u normalnim uslovima rada već i u kritičnim radnim uslovima tokom kojih OPF proračuni nisu dostupni.

Simulacije su realizovane za različite test sisteme, uvažavajući različite scenarije u pogledu topologije mreže, broja i konfiguracije DC portova te uvažavajući stohastičku prirodu generisanja iz distribuiranih generatora zasnovanih na obnovljivim izvorima energije. Simulacije su vršene na tri distributivna sistema od čega su dva test sistema (IEEE 33 i IEEE 69) dok treći sistem predstavlja stvarni distributivni fider (20 kV distributivni fider DV Autoput, Laktaši, Republika Srpska). Detaljna diskusija performansi predloženih algoritama data je na osnovu rezultata simulacija za modifikovani IEEE 33 test sistem. Rezultati simulacija za preostala dva analizirana sistema prezentovani su kako bi se dao širi kontekst primenjivosti i proširivosti predložene upravljačke strategije. Sistemi na kojima su vršene simulacije, testirani scenariji kao i rezultati simulacija prikazani su u paragrafima koji slede.

7.1 Test sistemi

Svi sistemi na kojima su vršene simulacije tj. testiranje predloženih upravljačkih algoritama su simetrični trofazni sistemi. Razlozi za ovakav izbor su višestruki. Kao prvo, srednjenaponski simetrični sistemi su najčešći slučaj u realnim distributivnim mrežama. Drugi ključni razlog za izbor simetričnog sistema leži u činjenici da je ugradnja jednosmernih portova, zasnovanih na trenutno dostupnim komponentama, opravdana u simetričnim sistemima i sa tehničko-tehnološkog i sa ekonomskog aspekta. U ovom delu važno je spomenuti da postoji i niz istraživanja koja se odnose na primenu DC portova u nesimetričnim sistemima. Primena jednosmernih portova u nesimetričnim sistemima još uvek nije isplativa iz razloga što u slučaju nesimetričnih sistema DC portovi dobijaju i dodatnu ulogu osiguranja simetričnosti sistema te se faktički ponašaju kao aktivni filtri sa nezavisnom upravljačkom logikom [74]. Posledično, DC portovi namenjeni za nesimetrične sisteme su znatno skuplji te je s obzirom na komponente trenutno dostupne na tržištu njihova isplativost jako upitna.

Iz ovih razloga nesimetrični sistemi nisu razmatrani u sklopu izrade doktorske disertacije. Razvoj uređaja specijalizovanih za primenu u nesimetričnim sistemima svakako predstavlja budućnost istraživanja u ovoj oblasti a samim tim i tematiku kojom će se autor baviti u budućnosti.

7.1.1 Modifikovani IEEE 33 test sistem

Osnovno testiranje predložene upravljačke strategije vršeno je na IEEE 33 distributivnoj test mreži nominalnog naponskog nivoa 12,66 kV. Jednopolna šema opisanog test sistema prikazana je na slici 7.1. Potrošnja u mreži modelovana je kao koncentrisana potrošnja pri čemu je uvažena zavisnost potrošnje od promene napona (korišćenjem ZIP modela). Potrošači u mreži klasifikovani su u nekoliko različitih grupa: domaćinstva, komercijalna potrošnja i industrijska potrošnja. Za svaku od grupa potrošača usvojeni su normalizovani dijagrami potrošnje tokom perioda od 24 časa sa

Slika 7.1 – IEEE 33 distributivna test mreža sa integrisanim DC portom i distribuiranim generatorom

satnom diskretizacijom. Osnovni, normalizovani dijagrami potrošnje za svaku od grupa potrošača prikazani su na slici 7.2.

Kako bi se generisali ulazni podaci za testiranje predloženih algoritama, potrošnja u mreži varirana je u opsegu od -20% do +25% u odnosu na osnovne dijagrame potrošnje, uvažavajući normalnu statističku raspodelu.

Kako bi se uvažio i analizirao uticaj distribuiranih generatora, u razmatranu mrežu (čvor 10) integrisano je fotonaponsko postrojenje ukupne instalisane snage 5 MWp. Bazni dijagram proizvodnje fotonaponskog postrojenja, prikazan na slici 7.2, definisan je na bazi izmerenih vrednosti inslolacije na području Beograda (geografske koordinate 44.7866 ° N, 20.4489 ° E).

Slično variranju potrošnje, kako bi se dobili neophodni ulazni podaci, i proizvodnja fotonaponskog postrojenja varirana je u opsegu od $\pm 20\%$ u odnosu na bazni dijagram proizvodnje. U proračunima tokova snaga distribuirani generatori modelovani su kao PQ čvorovi. Ovaj slučaj je i najčešći u praksi uzimajući u obzir da najčešći mod rada distribuiranih generatora podrazumeva plasiranje maksimalne dostupne snage direktno u mrežu. U razmatranu mrežu integrisan je i DC port koji povezuje čvorove 2 i 12. Nominalna prividna snaga konvertora DC porta iznosi 3 MVA a

Slika 7.2 – Normalizovani dijagrami potrošnje/proizvodnje u mreži

parametri konvertora korišćeni pri estimaciji gubitaka DC porta usvojeni su u skladu sa kataloškim vrednostima za konvertore različitih proizvođača [75]. Numeričke vrednosti potrošnje u mreži, vrednosti normalizovane potrošnje kao i parametri razmatrane mreže prikazani su u tabelama 7.1, 7.2 i 7.3 respektivno.

Čver			N	lodel	Čuar			М	odel
Cvor	PN[KVV]	Qn [kvar]	ZIP	Grupa	- Cvor	Pn[kw]	Qn [kvar] -	ZIP	Grupa
1	0	0	-	-	20	90	40	I	D2
2	100	60	Z	D1	21	90	40	Р	D2
3	90	40	Z	D1	22	90	40	Z	D1
4	120	80	Z	D1	23	90	50	Р	D2
5	60	30	Р	I	24	420	200	Z	D3
6	60	20	Р	I	25	420	200	I	К
7	200	100	Р	I	26	60	25	I	D2
8	200	100	Р	I	27	60	25	Р	D1
9	60	20	Р	I	28	60	20	I	D2
10	60	20	I	К	29	120	70	I	К
11	45	30	I	D2	30	200	600	Р	К
12	60	35	Z	D1	31	150	70	I	К
13	60	35	I	D3	32	210	100	I	D3
14	120	80	Р	К	33	60	40	Z	D1
15	60	10	Z	D1	34	0	0	-	-
16	60	20	I	D2	35	0	0	-	-
17	60	20	Z	D2	36	0	0	-	-
18	90	40	Р	D3	37	0	0	-	-
19	90	40	Z	D1	38	0	0	-	-

Tabela 7.1 – Nominalne vrednosti potrošnje u mreži i usvojeni model potrošnje

Tabela 7.2 – Vrednosti normalizovanih dijagrama potrošnje

Cat		Nor	malizovane v	rednosti potroš	nje po grupama		
Sat	D1	D2	D3	IND	К –Р	K – Q	PV
1	0.96	1.08	1.08	1.01	0.58	0.5	0
2	0.82	0.8	0.92	1.01	0.54	0.4	0
3	0.74	0.6	0.84	1.1	0.51	0.37	0
4	0.72	0.52	0.8	1.1	0.5	0.4	0
5	0.7	0.6	0.8	0.9	0.5	0.3	0.0060872
6	0.79	0.75	0.75	1	0.49	0.25	0.049489
7	0.89	0.95	0.79	0.9	0.5	0.3	0.11277
8	1.06	1.22	0.96	1	0.5	0.4	0.23029
9	1.03	1.05	1.04	1	0.7	0.3	0.37056
10	1	1.05	1	0.98	0.83	1.15	0.51118
11	1.1	1	0.96	1	1.1	1.28	0.61451
12	1.05	1.1	1.01	1.01	1.26	1.15	0.69274
13	1	1.13	1	1.1	1.27	1.23	0.71321
14	0.92	1.08	0.96	1.05	1.3	1.18	0.68343
15	1.18	1.04	0.98	0.95	1.33	1.3	0.59185
16	1.18	1.01	0.98	1	1.33	1.3	0.45599
17	1.22	1.082	1.01	0.98	1.335	1.65	0.25843
18	1.18	1.08	1	0.92	1.4	1.82	0.10642
19	1.2	1.08	1.02	0.9	1.4	2	0.024039
20	1.21	1.25	1.16	1.01	1.4	1.56	0.000858
21	1.27	1.3	1.24	1.05	1.45	1.6	0
22	1.23	1.24	1.4	1.09	1.42	1.6	0
23	1.1	1.16	1.36	1.07	1.4	1.55	0
24	1.04	0.99	1.25	0	0.88	0.7	0

Od čvora	Ka čvoru	R [ohm]	X [ohm]	lmax [kA]	Od čvora	Ka čvoru	R [ohm]	X [ohm]	Imax [kA]
1	2	0.0922	0.047	2*0.379147	17	18	0.732	0.574	0.379147
2	3	0.493	0.2511	0.379147	2	19	0.164	0.1565	0.118483
3	4	0.366	0.1864	0.379147	19	20	1.5042	1.3554	0.118483
4	5	0.3811	0.1941	0.379147	20	21	0.4095	0.4784	0.118483
5	6	0.819	0.707	0.379147	21	22	0.7089	0.9373	0.118483
6	7	0.1872	0.6188	0.379147	3	23	0.4512	0.3083	0.189573
7	8	0.7114	0.2351	0.379147	23	24	0.898	0.7091	0.189573
8	9	1.03	0.74	0.379147	24	25	0.896	0.7011	0.189573
9	10	1.044	0.74	0.379147	6	26	0.203	0.1034	0.157978
10	11	0.1966	0.065	0.379147	26	27	0.2842	0.1447	0.157978
11	12	0.3744	0.1238	0.379147	27	28	1.059	0.9337	0.157978
12	13	1.468	1.155	0.379147	28	29	0.8042	0.7006	0.157978
13	14	0.5416	0.7129	0.379147	29	30	0.5075	0.2585	0.157978
14	15	0.591	0.526	0.379147	30	31	0.9744	0.963	0.157978
15	16	0.7463	0.545	0.379147	31	32	0.3105	0.3619	0.157978
16	17	1.289	1.721	0.379147	32	33	0.341	0.5302	0.189573

Tabela 7.3 – Parametri IEEE 33 distributivne mreže

7.1.2 Modifikovani IEEE 69 test sistem

Slika 7.3 – IEEE 69 distributivna test mreža – osnovna (radijalna) topologija

Da bi se ispitala primenjivost predložene upravljačke strategije na distributivne sisteme veće dimenzionalnosti (mreže sa više čvorova i grana) izvršene su simulacije na IEEE 69 distributivnom test sistemu. Pri izvođenju simulacija potrošnja u mreži modelovana je na isti način kao i u slučaju IEEE 33 test sistema (ZIP model potrošnje). Simulacije su izvršene za nekoliko različitih scenarija koji obuhvataju različit broj jednosmernih portova u mreži kao i različit broj grana koje povezuju pojedini jednosmerni portovi. Osnovna topologija razmatrana kao bazni slučaj podrazumeva radijalnu mrežu, bez integrisanih jednosmernih portova. Jednopolna šema osnovnog (radijalnog) IEEE 69 distributivnog test sistema prikazana je na slici 7.3. Parametri mreže i nominalne vrednosti potrošnje date su u tabelama 7.4 i 7.5.

Tabela 7.4 –	Nominal	lne vrednost	i potrošnje i	u mreži	(IEEE	69	test sistem)
--------------	---------	--------------	---------------	---------	-------	----	--------------

Čvor	Pn[kW]	Qn [kvar]	Čvor	Pn [kW]	Qn [kvar]	Čvor	Pn [kW]	Qn [kvar]
1	0	0	24	28	20	47	0	0
2	0	0	25	0	0	48	79	56.4
3	0	0	26	14	10	49	384.7	274.5

Čvor	Pn[kW]	Qn [kvar]	Čvor	Pn [kW]	Qn [kvar]	Čvor	Pn [kW]	Qn [kvar]
4	0	0	27	14	10	50	384.7	274.5
5	0	0	28	26	18.6	51	40.5	28.3
6	2.6	2.2	29	26	18.6	52	3.6	2.7
7	40.4	30	30	0	0	53	4.35	3.5
8	75	54	31	0	0	54	26.4	19
9	30	22	32	0	0	55	24	17.2
10	28	19	33	14	10	56	0	0
11	145	104	34	19.5	14	57	0	0
12	145	104	35	6	4	58	0	0
13	8	5	36	26	18.55	59	100	72
14	8	5.5	37	26	18.55	60	0	0
15	0	0	38	0	0	61	1244	888
16	45.5	30	39	24	17	62	32	23
17	60	35	40	24	17	63	0	0
18	60	35	41	1.2	1	64	227	162
19	0	0	42	0	0	65	59	42
20	1	0.6	43	6	4.3	66	18	13
21	114	81	44	0	0	67	18	13
22	5	3.5	45	39.22	26.3	68	28	20
23	0	0	46	39.22	26.3	69	28	20

Tabela 7.5 – Parametri IEEE 69 distributivne mreže

<u> </u>					- I X				
Od čvora	Ka čvoru	R [ohm]	X [ohm]	lmax [kA]	Od čvora	Ka čvoru	R [ohm]	X [ohm]	lmax [kA]
1	2	0.0005	0.0012	0.758294	3	36	0.0044	0.0108	0.379147
2	3	0.0005	0.0012	0.379147	36	37	0.064	0.1565	0.118483
3	4	0.0015	0.0036	0.379147	37	38	0.1053	0.123	0.118483
4	5	0.0251	0.0294	0.379147	38	39	0.0304	0.0355	0.118483
5	6	0.366	0.1864	0.379147	39	40	0.0018	0.0021	0.118483
6	7	0.381	0.1941	0.379147	40	41	0.7283	0.8509	0.189573
7	8	0.0922	0.047	0.379147	41	42	0.31	0.3623	0.189573
8	9	0.0493	0.0251	0.379147	42	43	0.041	0.0478	0.189573
9	10	0.819	0.2707	0.379147	43	44	0.0092	0.0116	0.157978
10	11	0.1872	0.0619	0.379147	44	45	0.1089	0.1373	0.157978
11	12	0.7114	0.2351	0.379147	45	46	0.0009	0.0012	0.157978
12	13	1.03	0.34	0.379147	4	47	0.0034	0.0084	0.157978
13	14	1.044	0.345	0.379147	47	48	0.0851	0.2083	0.157978
14	15	1.058	0.3496	0.379147	48	49	0.2898	0.7091	0.157978
15	16	0.1966	0.065	0.379147	49	50	0.0822	0.2011	0.157978
16	17	0.3744	0.1238	0.379147	8	51	0.0928	0.0473	0.189573
17	18	0.0047	0.0016	0.379147	51	52	0.3319	0.1114	0.118483
18	19	0.3276	0.1083	0.118483	9	53	0.174	0.0886	0.118483
19	20	0.2106	0.069	0.118483	53	54	0.203	0.1034	0.118483
20	21	0.3416	0.1129	0.118483	54	55	0.2842	0.1447	0.118483
21	22	0.014	0.0046	0.118483	55	56	0.2813	0.1433	0.189573
22	23	0.1591	0.0526	0.189573	56	57	1.59	0.5337	0.189573
23	24	0.3463	0.1145	0.189573	57	58	0.7837	0.263	0.189573
24	25	0.7488	0.2475	0.189573	58	59	0.3042	0.1006	0.157978
25	26	0.3089	0.1021	0.157978	59	60	0.3861	0.1172	0.157978
26	27	0.1732	0.0572	0.157978	60	61	0.5075	0.2585	0.157978
3	28	0.0044	0.0108	0.157978	61	62	0.0974	0.0496	0.118483
28	29	0.064	0.1565	0.157978	62	63	0.145	0.0738	0.118483
29	30	0.3978	0.1315	0.157978	63	64	0.7105	0.3619	0.189573
30	31	0.0702	0.0232	0.157978	64	65	1.041	0.5302	0.189573
31	32	0.351	0.116	0.157978	11	66	0.2012	0.0611	0.189573

Od čvora	Ka čvoru	R [ohm]	X [ohm]	Imax [kA]	Od čvora	Ka čvoru	R [ohm]	X [ohm]	Imax [kA]
32	33	0.839	0.2816	0.189573	66	67	0.0047	0.0014	0.157978
33	34	1.708	0.5646	0.379147	12	68	0.7394	0.2444	0.157978
34	35	1.474	0.4873	0.379147	68	69	0.0047	0.0016	0.157978

7.1.3 Distributivni fider 20 kV DV Autoput, Laktaši, Republika Srpska

Primenjivost predloženih upravljačkih algoritama u stvarnim distributivnim mrežama ilustrovana je izvođenjem simulacija na delu distributivne mreže – 20 kV DV Autoput, Laktaši, Republika Srpska. Jednopolna šema ovog distributivnog sistema prikazana je na slici 7.4. Parametri mreže prikazani su u tabelama 7.6 i 7.7.

Slika 7.4 – Distributivni fider 20 kV DV Autoput, Laktaši – osnovna (radijalna) topologija

Ulazni podaci neophodni za izvođenje simulacija (merenja) obezbeđeni su uvidom u bazu podataka AMM sistema (*eng. Automatic Metering Management*) nadležnog operatora distributivnog sistema ZP Elektrokrajina a.d. Banja Luka. Podaci korišćeni za izvođenje simulacija očitavani su u periodu septembar/oktobar 2018. godine.

Čvor	Sn [kVA]	Opis	Čvor	Sn [kVA]	Opis
1	0	TS BL 8 110/20 kV, ćelija 7	20	160	STS Jablan polje 3
2	160	STS Autoput	21	0	Prolazni čvor
3	0	Prolazni čvor	22	160	STS Mastergard
4	160	STS Trn Jezero	23	160	STS Juze 2
5	250	STS Omladinska	24	250	STS Juze 1
6	0	Prolazni čvor	25	160	STS Jablan polje
7	160	STS Omladinska 2	26	0	Prolazni čvor
8	0	Prolazni čvor	27	100	STS Pojilo
9	0	Prolazni čvor	28	0	Prolazni čvor
10	0	Prolazni čvor	29	250	STS Glamočani Petrovići
11	160	STS Trn Aerodrom	30	160	ASTS Glamočani Novo naselje
12	0	Prolazni čvor	31	630	TS Peštan Glamočani
13	0	TS BL 4, 110/20 kV ćelija 14, NO prekidač	32	630	MBTS Kesten
14	160	STS Strašek	33	2000	TS Breza

Tabela 7.6 – Nominalne vrednosti potrošnje u mreži (Distributivni fider 20 kV DV Autoput, Laktaši)

Čvor	Sn [kVA]	Opis	Čvor	Sn [kVA]	Opis
15	0	Prolazni čvor	34	400	MBTS Naplatne kućice Glamočani
16	100	STS Jablan polje 2	35	0	Prolazni čvor
17	160	STS Bukovica škola	36	160	ASTS Glamočani Tatići
18	0	Prolazni čvor	37	250	TS Glamočani
19	0	Prolazni čvor	38	100	ASTS Glamočani spomenik

Tabela 7.7 – Parametri distributivne mreže 20 kV DV Autoput, Laktaši

Od čvora	Ka čvoru	R [ohm]	X [ohm]	Imax [kA]	Od čvora	Ka čvoru	R [ohm]	X [ohm]	lmax [kA]
1	2	0.3255	0.1852	0.3500	19	21	0.2422	0.1015	0.1580
2	3	0.1921	0.0805	0.1580	21	22	0.0124	0.0070	0.3500
3	4	0.1670	0.0700	0.1580	21	23	0.0668	0.0280	0.1580
3	5	0.2673	0.1120	0.1580	23	24	0.2422	0.1015	0.1580
5	6	0.2297	0.0963	0.1580	18	25	0.3717	0.1558	0.1580
6	7	0.2673	0.1120	0.1580	18	26	0.4385	0.1838	0.1580
6	8	0.3424	0.1435	0.1580	26	27	0.5679	0.2380	0.1580
8	9	0.2464	0.1033	0.1580	26	28	0.3090	0.1295	0.1580
9	10	0.6348	0.2660	0.1580	28	29	0.2840	0.1190	0.1580
10	11	0.0919	0.0385	0.1580	28	30	0.3675	0.1540	0.1580
10	12	0.3842	0.1610	0.1580	30	31	0.2046	0.0858	0.1580
12	13	0.4427	0.1855	0.1580	31	32	0.0350	0.0199	0.3500
12	14	0.2004	0.0840	0.1580	32	33	0.1837	0.0770	0.1580
9	15	0.3007	0.1260	0.1580	33	34	0.0288	0.0164	0.3500
15	16	0.3007	0.1260	0.1580	31	35	0.0459	0.0193	0.1580
15	17	0.7976	0.3343	0.1580	35	36	0.5930	0.2485	0.1580
8	18	0.3341	0.1400	0.1580	35	37	0.1044	0.0438	0.1580
18	19	0.0251	0.0105	0.1580	37	38	1.2862	0.5390	0.1580
19	20	0.0082	0.0047	0.3500	19	21	0.2422	0.1015	0.1580

7.2 Rezultati simulacija – Algoritam pretrage

Detaljne analize performansi predloženog Algoritma pretrage vršene su na osnovu rezultata simulacija izvršenih na modifikovanom IEEE 33 distributivnom test sistemu (mreža sa slike 7.1). U odeljcima koje slede analiziran je rad jednosmernog porta u normalnim i kritičnim uslovima rada, uvažavajući specifične parametre koji mogu uticati na primenjivost i performanse predloženog algoritma.

7.2.1 Rad DC porta u normalnim uslovima rada (modifikovani IEEE 33 test sistem)

U normalnim uslovima rada, upravljanje DC portom je centralizovano, zasnovano na proračunima optimalnih tokova snaga tj. na optimizacionom okviru opisanom u poglavlju 3. Rezultati simulacija koje obuhvataju rad DC porta u normalnim uslovima rada tokom perioda od 48 h prikazani su na slici 7.5. Analizom rezultata prikazanih na slici 7.5 lako se uočavaju prednosti integracije DC porta (zatvaranja petlji) u radijalnu mrežu. Integracija DC porta značajno doprinosi smanjenju ukupnih gubitaka aktivne snage u mreži. Tokom razmatranog perioda od 48 h, maksimalno smanjenje ukupnih gubitaka aktivne snage, koje se može postići zatvaranjem petlje u mreži pomoću DC porta, iznosi čak 45,31 %.

Slika 7.5 – Rad DC porta u normalnim uslovima rada – ukupni gubici aktivne snage u mreži

7.2.2 Rad DC porta u kritičnim uslovima rada (modifikovani IEEE 33 test sistem)

U slučaju prekida komunikacije ili nedostupnosti OPF proračuna iz bilo kog drugog razloga upravljanje jednosmernim portom vrši se lokalno, na bazi algoritma pretrage. Istorijska baza podataka korišćena pri testiranju algoritma obuhvata vremenski period od 31 dan (744 časa). Unosi u istorijsku bazu podataka vršeni su sa satnom diskretizacijom. Maksimalni skup dostupnih merenja tokom trajanja prekida komunikacije usvojen je u skladu sa tabelom 7.8.

Dostupno merenje	Opis
U ₃₃	Napon u čvoru 33 – jedan od dva najniža napona u mreži
U ₁₇	Napon u čvoru 17 – jedan od dva najniža napona u mreži
U ₁₁	Napon u čvoru 11 – napon u čvoru koji je "električmo" najbliži priključku <i>l</i> DC porta
<i>U</i> ₂₁	Napon u čvoru 21 – Napon u čvoru 11 – napon u čvoru koji je "električmo" najbliži priključku <i>m</i> DC porta
Q ₃₀	Potrošnja reaktivne snage u čvoru 30 – najdominantnija potrošnja reaktivne snage u mreži
P_{DG10}	Generisanje aktivne snage iz distribuiranog generatora priključenog u čvor 10

Tabela 7.8 – Skup dostupnih merenja tokom trajanja prekida komunikacije

Rezultati simulacija tj. ukupni gubici aktivne snage u mreži prikazani su na slici 7.6. Estimirane vrednosti izlaznih varijabli DC porta prikazani su na slici 7.7.

Uvidom u rezultate simulacija i poređenjem sa prethodnim slučajem – rad DC porta u normalnim uslovima rada, lako se može zaključiti da u slučaju prekida komunikacije estimirane vrednosti izlaznih promenjivih DC porta vrlo dobro prate vrednosti koje bi se dobile u slučaju da su rezultati OPF-a dostupni (odstupanja su primetnija u estimaciji reaktivnih snaga DC porta što je i očekivano s obzirom na značajnije varijacije reaktivnih snaga u rezultatima OPF-a). Shodno tome, i ukupni gubici aktivne snage u mreži u slučaju nedostupnosti OPF-a (kritični uslovi rada) približni su vrednostima ukupnih gubitaka aktivne snage u mreži koje bi se dobile primenom OPF proračuna. Maksimalna razlika između ukupnih gubitaka aktivne snage u mreži pri radu DC porta na bazi algoritma pretrage i pri radu jednosmernog porta na bazi OPF proračuna ne prelazi vrednost od 5%.

Pri analizi rezultata prikazanih na slikama 7.6 i 7.7 važno je napomenuti da je u ovom slučaju estimacija izlaznih promenjivih DC porta vršena korišćenjem "najpovoljnijeg" podskupa skupa dostupnih merenja i korišćnjem Euklidove vektorske norme (p=2) pri matematičkoj formulaciji postupka pretrage. S obzirom da ovi parametri (stepen norme i skup merenja korišćenih pri estimaciji) mogu uticati na performanse algoritma pretrage, detaljnija diskusija uticaja gore spomenutih parametara prezentovana je u nastavku poglavlja.

Slika 7.6 – Rad DC porta u kritičnim uslovima rada – ukupni gubici aktivne snage u mreži

Slika 7.7 – Rad DC porta u kritičnim uslovima rada – izlazne promenjive DC porta

Rezultati prethodno analiziranih simulacija dati su i numerički, u tabelama 7.9 i 7.10. U tabelarnom prikazu rezultata simulacija uvažena je numerička preciznost softvera korišćenog za izvršavanje simulacija (proračuni standardne numeričke preciznosi 10⁻⁴).

Vreme [h]	Pg BAZNI SLUČAJ [kW]	Pg OPF [kW]	Pg SEARCH [kW]
1	129.3400	92.8482	92.8487
2	108.9900	79.6836	79.6840
3	86.9700	64.4659	64.4778
4	86.1760	63.3797	63.4273
5	77.0520	58.6420	58.6893
6	63.7870	51.7014	51.7178
7	50.7890	43.9627	44.1580
8	73.4120	56.9879	58.3781
9	118.2700	78.1373	78.1560
10	274.9200	150.3423	155.6377
11	307.1900	179.4119	186.8543
12	241.1500	152.8089	152.9206
13	291.1900	173.6423	178.5439
14	231.6700	146.4453	146.8621
15	204.4700	137.0044	137.2736
16	166.2900	125.3197	125.4403
17	188.0100	146.4240	146.5648
18	256.2500	190.7493	190.7688
19	330.4600	235.8472	235.8478
20	304.7300	211.7080	211.7170
21	325.9700	225.9733	225.9815
22	325.2900	225.1643	225.1664
23	288.4600	202.0393	202.0457
24	141.6200	101.8452	101.8887
25	176.7500	127.1584	127.4331
26	88.1270	65.7384	65.7914
27	88.1290	65.4790	65.4801
28	73.2980	54.1841	54.2899
29	61.4010	46.7328	46.8319
30	50.4880	40.6769	40.6850
31	60.7790	54.7136	56.3310
32	82.1830	62.1690	62.1728
33	113.0900	71.1541	72.3068
34	211.2100	132.3757	132.4161
35	332.9800	209.1919	210.2270
36	265.9200	175.0846	175.7529
37	324.0500	189.0982	194.9186
38	294.7500	176.2199	183.0337
39	246.7700	166.0633	166.3902
40	140.3000	104.8269	105.5278
41	234.4600	171.4284	172.4189

Tabela 7.9 – Algoritam pretrage - rezultati simulacija za modifikovani IEEE 33 test sistem: ukupni gubici aktivne snage u mreži

Vreme [h]	Pg BAZNI SLUČAJ [kW]	Pg OPF [kW]	Pg SEARCH [kW]
42	338.5100	250.3842	250.8810
43	336.8700	242.8528	242.9969
44	374.5500	255.3883	255.9940
45	394.0500	264.4419	266.1386
46	269.2000	186.9414	186.9455
47	285.0700	203.0221	203.8692
48	161.5100	115.3131	115.6502

Tabela 7.10 – Algoritam pretrage - rezultati simulacija za modifikovani IEEE 33 test sistem: estimirane vrednosti izlaznih promenjivih DC porta

	OPF		SEARCH					
Vreme [h]	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]
1	620.3905	602.6250	121.9228	-637.0171	621.0197	605.6424	122.6697	-637.6563
2	584.6245	498.5221	95.1610	-600.8267	584.9136	494.6957	95.6379	-601.1102
3	505.1295	455.7509	79.2624	-520.8054	504.8994	438.0480	78.5204	-520.5387
4	507.1604	460.0470	75.8850	-522.8541	505.7428	494.9610	78.5204	-521.5016
5	467.4966	396.7926	73.7770	-482.8492	465.6538	431.8190	72.3531	-481.0655
6	321.5080	405.5522	79.6329	-336.1284	320.2855	425.8068	81.6070	-334.9495
7	-9.9371	429.4307	24.6038	-3.4331	-7.9059	497.5349	62.2757	-5.7805
8	-275.4086	574.6559	107.6986	260.6525	-118.8990	582.2497	110.6729	104.6697
9	-757.0003	536.9139	124.5342	740.0125	-740.2528	527.8955	132.4017	723.3665
10	-1336.245	872.9061	82.9264	1319.2081	-1412.623	966.0671	129.0224	1391.5059
11	-1213.219	1109.3889	125.4288	1195.9117	-1134.206	998.4503	145.0977	1114.4893
12	-1127.080	922.0642	164.8434	1107.4733	-1105.347	872.4689	169.9431	1085.9407
13	-1134.407	1087.3072	135.5036	1117.2869	-1139.661	960.8693	86.0944	1119.9898
14	-1123.964	882.4672	150.9906	1104.4553	-1037.739	911.8164	158.8001	1018.6302
15	-831.8704	926.6541	144.8617	813.7247	-763.8268	952.0305	141.0232	745.9624
16	-412.1714	924.1419	124.8415	395.9070	-369.1387	902.3086	114.7261	353.1177
17	131.0433	1031.5848	107.4403	-146.7406	133.5813	1093.6392	113.7399	-149.4785
18	522.6066	1122.3445	153.6148	-540.0961	504.8994	1121.4885	154.2547	-522.3143
19	821.4709	1159.8509	164.9862	-840.4621	824.8570	1161.4156	164.9545	-843.8678
20	913.7961	1022.5602	172.4501	-932.9363	925.8292	1025.4173	182.5602	-945.0409
21	953.9413	1044.9387	172.0133	-973.3443	953.7649	1033.6396	186.1534	-973.1495
22	917.1694	1101.4187	177.6016	-936.5108	922.2474	1100.1063	171.2955	-941.6076
23	878.5587	996.1330	155.8792	-897.4403	878.9502	983.5596	163.8535	-897.8098
24	666.8367	592.5934	122.9454	-683.6937	666.7638	559.3847	127.5903	-683.5582
25	780.9624	582.4056	124.6887	-798.4355	844.5971	563.7989	164.0417	-862.4064
26	513.9557	434.2919	81.4126	-529.6388	542.3059	451.7735	79.8513	-558.1725
27	513.8194	443.2451	78.2517	-529.5166	517.2681	440.6215	77.8693	-532.9783
28	440.5931	461.2398	74.1854	-455.9363	439.4184	514.1616	68.6683	-454.8706
29	368.5921	430.8354	76.1468	-383.5003	330.0204	447.3976	80.6724	-344.7840
30	220.1774	434.0403	78.6170	-234.4003	217.2800	439.3860	94.4744	-231.5216
31	56.2588	396.0037	50.6908	-69.7294	221.0874	396.6609	87.4062	-235.2132
32	-330.0598	615.6601	119.2663	314.9582	-324.6561	616.3256	108.6509	309.5866
33	-657.8534	700.8250	92.1237	642.6934	-667.6241	609.4813	189.8992	650.9422
34	-1105.549	785.5186	139.0114	1086.3075	-1084.823	801.6678	161.4165	1065.6581
35	-1172.880	1203.5189	192.6881	1152.4720	-1255.193	1064.0404	165.7295	1234.6326

Marana [h]	OPF			SEARCH				
vreme [n]	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]
36	-1069.794	928.8430	161.7140	1050.4578	-1167.876	863.1483	154.0945	1148.1346
37	-1204.482	1231.0604	132.3900	1186.9174	-1199.871	1051.8339	111.5609	1179.7141
38	-1039.219	1299.8532	110.4429	1021.8950	-963.5234	1121.2024	112.5341	944.3991
39	-891.1958	1033.0239	159.3750	872.5211	-967.4609	1014.0872	141.0232	948.4520
40	-480.3420	792.4280	110.7982	464.1532	-373.1343	830.8941	135.9002	357.2873
41	69.6938	1283.6274	123.2303	-86.0284	109.1110	1137.3826	68.1257	-124.9984
42	705.9473	1204.9392	173.9047	-724.5105	629.1276	1137.3826	163.3811	-647.1716
43	885.5265	1072.8274	157.0583	-904.6281	886.7340	1133.6300	165.8543	-905.9855
44	982.3280	1212.0759	203.2927	-1002.288	990.3540	1088.9500	185.6029	-1010.069
45	955.6305	1347.2392	212.8792	-975.7895	942.6912	1137.3826	173.7598	-962.2752
46	803.8234	1045.4957	164.1343	-822.4405	811.1749	1044.1516	168.4880	-829.8266
47	928.3105	859.4026	140.9757	-947.1521	930.6109	1006.9630	169.3044	-949.7847
48	721.6417	627.8939	131.7946	-738.8748	792.1138	607.6553	172.9023	-809.7073

7.2.3 Uticaj skupa ulaznih podataka (merenja) na performanse algoritma pretrage

Kao što je opisano u odeljku 4.1, tokom algoritma pretrage vrši se poređenje određenog seta dostupnih merenja sa odgovarajućim setom/zapisom iz istorijske baze podataka. Potencijalni problem pri implementaciji algoritma može se javiti u slučaju velikog skupa podataka dostupnih tokom prekida komunikacije tj. neraspoloživosti centralizovanog upravljanja na bazi OPF proračuna. Pokazuje se da je estimacija izlaznih promenjivih DC porta u nekim slučajevima moguća bez da se u algoritmu pretrage koriste sva merenja dostupna tokom prekida komunikacije. Štaviše, u određenim slučajevima estimacija korišćenjem potpunog skupa dostupnih merenja može biti slabijeg kvaliteta od estimacije koja bi se vršila pomoću redukovanog skupa dostupnih merenja.

Kako bi se ova mogućnost i pokazala, tokom izvođenja simulacija razmatrani su svi mogući podskupovi skupa dostupnih merenja (tabela 7.8). Estimacije izlaznih promenjivih DC porta pomoću različitih podskupova skupa dostupnih merenja ilustrovane su na slikama 7.8 – 7.10. Kao ilustrativni primer može se razmotriti estimacija aktivne snage DC porta (PL) prikazana na slici 7.8. U ovom

 $QL^* \in \{U_{17}, U_{11}, U_{33}, U_{21}, Q_{30}\}; QL^{**} \in \{U_{17}, U_{33}, Q_{30}\}; QL^* \in \{P_{DG10}, U_{11}\}; QL^* \in \{U_{21}, U_{33}\}$ Slika 7.9 – Estimacija reaktivne snage DC porta (QL) pomoću različitih setova ulaznih promenjivih

Slika 7.10 – Estimacija reaktivne snage DC porta (QM) pomoću različitih setova ulaznih promenjivih

slučaju, implementacija algoritma pretrage korišćenjem svih dostupnih merenja ne rezultuje estimacijom zadovoljavajućeg kvaliteta. Sa druge strane, uključivanjem redukovanih skupova u algoritam pretrage moguće je estimirati vrednosti aktivne snage tako da one budu vrlo bliske vrednostima koje bi se dobile primenom OPF proračuna.

Sa slike 7.8 uočljivo je da estimacija korišćenjem tri merenja iz skupa dostupnih merenje (P_{DG10} , U_{17} i U_{11}) daje najbolje rezultate. Pri izvođenju simulacija kvalitet estimacije kvantifikovan je računanjem srednjeg kvadratnog odstupanja na razmatranom periodu od 48h za svaku od estimacija. Kako pokazni primer obuhvata relativno mali skup dostupnih merenja, simulacije/estimacije su izvršene za sve moguće podskupove skupa dostupnih merenja. U realnom okruženju, skup dostupnih merenja može biti jako velikih dimenzija. Iz tog razloga izvođenje

simulacija za sve moguće podskupove skupa dostupnih merenja nije praktično te je neophodno izvršiti minimizaciju/optimizaciju skupa merenja neophodnih za izvršavanje algoritma pretrage. Postupak minimizacije/optimizacije skupa dostupnih merenja neopohodnih za realizaciju algoritma pretrage predložen je u poglavlju 6.

7.2.4 Uticaj norme vektora (kriterijuma pretrage) na performanse algoritma pretrage

Sličnost vektora dostupnih merenja sa odgovarajućim vektorima iz istorijske baze podataka poredi se pomoću usvojene norme vekora. Shodno tome, stepen norme vektora, kako je definisano u relaciji (44), predstavlja još jedan parametar koji može uticati na kvalitet estimacije. Različite vektorske norme mogu dovesti do različitih estimacija izlaznih varijabli DC porta i posledično do značajnijih odstupanja vrednosti kriterijumske funckije (u slučaju rada DC porta na bazi algoritma pretrage i u slučaju rada DC porta na bazi rezultata OPF-a).

Na slici 7.11 prikazani su rezultati simulacija tj. ukupni gubici aktivne snage u mreži za slučajeve kada jednosmerni port radi u kritičnim uslovima rada a estimacije izlaznih varijabli se vrše pomoću predloženog algoritma pretrage, korišćenjem različitih vektorskih normi. U razmatranom slučaju estimacija korišćenjem Euklidove vektorske norme (p=2) daje rezultate koji su najpribližniji rezultatima dobijenim pomoću OPF proračuna (u slučaju da su OPF proračuni dostupni). Osim Euklidove norme u praksi se najčešće koriste i norme stepena tri i beskonačno. Izbor norme koja će se korisititi pri estimaciji izlaznih varijabli DC porta nije jednoznačan već zavisi i od samih elemenata vektora dostupnih merenja i njihovih međusobnih korelacija. U praktičnim slučajevima izbor odgovarajuće norme moguće je izvršiti na osnovu analize konkretne mreže, lokacije DC porta i minimalnog skupa dostupnih merenja. Izbor dogovarajuće norme takođe može biti potpomognut rezultatima simulacija za određena karakteristična stanja u mreži.

7.2.5 Rezultati simulacija – modifikovani IEEE 69 test sistem

Kako bi se ispitala primenjivost opisanog algoritma pretrage u sistemima većih dimenzija (sa više čvorova/grana u mreži) izvršene su simulacije na modifikovanoj IEEE 69 test mreži. Modifikacije u odnosu na osnovnu, radijalnu topologiju (slika 7.3) odnose se na dodavanje jednosmernih portova i distribuiranih generatora u razmatranu mrežu. S ciljem analize robusnosti predloženog algoritma pri izvođenju simulacija usvojen je scenario (topologija mreže) koji podrazumeva dva jednosmerna porta i tri distribuirana generatora u mreži. Jednopolna šema modifikovanog IEEE 69 test sistema koja uvažava gore navedene modifikacije prikazana je na slici 7.12.

Slika 7.11 – Rezultati simulacija - estimacije pomoću različitih vektorskih normi u algoritmu pretrage

Slika 7.12 – IEEE 69 distributivna test mreža – topologija sa 2 DC porta i 3 distribuirana generatora

Analogno simulacijama za IEEE 33 test sistem, u normalnim uslovima rada upravljanje jednosmernim portom vršeno je na bazi OPF proračuna (GWO metoda optimizacije) dok je rad DC porta u kritičnim uslovima rada baziran na algoritmu pretrage.

U kritičnim uslovima rada, kada rezultati OPF-a nisu dostupni, lokalno upravljanje jednosmernim portom, bazirano na algoritmu pretrage, razmatrano je uvažavajući skup dostupnih merenja dat u tabeli 7.11. Skup prikazan u tabeli 7.11 zapravo predstavlja jedan od mogućih podskupova skupa svih merenja u mreži. Na ovaj način, slično kao i u slučaju IEEE 33 test sistema, simuliran je delimičan prekid komunikacije pri čemu deo ulaznih podataka pri prekidu komunikacije ipak ostaje dostupan, što je i najčešći slučaj u praksi.

Grafički prikaz rezultata simulacija (ukupni gubici aktivne snage u mreži i izlazne promenjive jednosmernih portova) za test sistem sa slike 7.12 dat je na slikama 7.13 i 7.14. Numerički rezultati simulacija dati su u tabelama 7.12 - 7.14.

Rezultati simulacija u ovom slučaju nedvosmisleno ukazuju na primenjivost predloženog algoritma pretrage u sistemima veće dimenzionalnosti tj. na proširivost ovog algoritma na proizvoljan broj jednosmernih portova i distribuiranih generatora u mreži.

Dostupno merenje	Opis
$oldsymbol{U}_{27}$	Napon u čvoru 27 – jedan od dva najniža napona u mreži
U_{65}	Napon u čvoru 65 – jedan od dva najniža napona u mreži
U_{49}	Napon u čvoru 49 – čvor koji je električno najbliži priključku <i>l</i> DC porta 1
U_{58}	Napon u čvoru 58 – čvor koji je električno najbliži priključku <i>m</i> DC porta 1
U_{14}	Napon u čvoru 14 – čvor koji je električno najbliži priključku <i>l</i> DC porta 1
$oldsymbol{U}_{45}$	Napon u čvoru 45 – čvor koji je električno najbliži priključku <i>l</i> DC porta 1
Q_{61}	Potrošnja reaktivne snage u čvoru 61 – najdominantniji potrošač reaktivne snage u mreži
P DG7	Generisanje fotonaponskog postrojenja u čvoru 7
P DG17	Generisanje fotonaponskog postrojenja u čvoru 17
P DG41	Generisanje fotonaponskog postrojenja u čvoru 41

Tabela 7.11 – Algoritam pretrage - rezultati simulacija za modifikovani IEEE 69 test sistem: dostupna merenja

Slika 7.13 – Algoritam pretrage - rezultati simulacija za modifikovani IEEE 69 test sistem: ukupni gubici aktivne snage u mreži i izlazne promenjive DC porta 1

Slika 7.14 – Algoritam pretrage - rezultati simulacija za modifikovani IEEE 69 test sistem: ukupni gubici aktivne snage u mreži i izlazne promenjive DC porta 2

Vreme [h]	Pg BAZNI SLUČAJ [kW]	Pg OPF [kW]	Pg SEARCH [kW]
1	234.13	77.96	78.84
2	240.00	79.35	79.68
3	267.06	84.37	84.94
4	262.57	86.46	87.22
5	233.61	77.93	78.06
6	264.87	84.24	84.62
7	190.81	71.67	75.29
8	217.19	114.05	121.80
9	266.70	172.12	173.90
10	301.34	203.74	204.60
11	405.50	277.50	282.48
12	440.88	305.68	312.34
13	326.46	217.36	218.07
14	292.77	196.86	198.79
15	230.88	131.36	132.76
16	216.86	104.77	106.18
17	209.78	80.35	90.92
18	191.82	67.30	67.86
19	273.64	85.87	87.39
20	258.68	84.06	84.71
21	257.15	83.23	83.30
22	225.38	75.41	76.21
23	206.81	71.36	71.41
24	272.03	86.06	87.91
25	217.95	74.63	75.38
26	227.19	75.40	75.97
27	248.11	82.59	83.55
28	256.44	81.66	82.26
29	234.27	77.89	78.55
30	221.95	72.88	73.25
31	192.15	70.80	82.49
32	198.07	91.81	113.00
33	239.66	148.08	148.26
34	385.12	264.05	264.18
35	394.44	277.49	280.09
36	348.14	232.18	235.35
37	403.38	273.34	274.49
38	322.73	219.36	220.31
39	281.45	179.18	181.69
40	218.11	124.76	124.82
41	201.70	79.57	86.33
42	224.96	75.76	86.55
43	250.69	79.36	80.95
44	232.96	77.16	77.59
45	247.32	82.12	82.56
46	215.76	74.15	75.78
47	247.87	79.11	79.57
48	267.44	85.97	111.91

Tabela 7.12 – Algoritam pretrage - rezultati simulacija za modifikovani IEEE 69 test sistem: ukupni gubici aktivne snage u mreži
Vreme		OP	F		SEARCH			
[h]	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]
1	380.3097	330.9415	66.5642	-406.5132	399.7817	329.2687	50.4755	-414.6043
2	386.0968	330.5346	63.4714	-366.9552	419.0918	336.5460	19.3670	-434.0239
3	407.4012	381.1736	33.2113	-425.2195	375.2112	364.5361	63.6442	-389.9857
4	428.7333	328.7157	-45.9492	-432.1846	277.1886	308.1881	-15.9435	-291.3288
5	368.5304	321.8145	-34.3307	-402.1617	406.3594	323.4262	25.3908	-421.1976
6	308.2859	347.7465	-4.8410	-306.9823	388.8555	356.4323	25.3778	-403.6591
7	67.6466	362.2860	35.1997	-180.0672	130.9204	331.5191	-17.1274	-144.4167
8	-401.4258	313.5901	-6.9811	-19.3646	-28.0592	349.0680	9.5202	14.9800
9	-733.9161	347.9796	7.3931	331.2518	-622.2383	359.7754	-21.3352	608.0181
10	-910.6885	348.1245	35.5424	631.9354	-922.2730	341.1972	39.5885	907.2041
11	-1120.031	382.9488	26.9244	875.7774	-1308.517	338.9279	38.0577	1292.3481
12	-1192.274	389.4882	-40.5338	1005.1786	-1420.3010	333.2334	37.0630	1403.8132
13	-944.7185	377.9339	13.9424	1047.7208	-915.6076	376.2348	6.4532	900.6186
14	-863.6602	341.6148	-10.4030	971.5065	-717.6438	373.9416	30.5445	703.1245
15	-532.3029	322.4935	-18.3280	783.8581	-387.5316	357.9623	2.6375	373.9410
16	-306.7936	317.4462	-18.4199	488.3621	-154.8482	336.4287	3.6428	141.7262
17	4.6913	324.7655	48.1568	106.5950	386.8891	352.6428	21.4999	-400.5240
18	108.8819	336.3553	50.3988	-144.4276	356.6605	362.1360	-26.7182	-370.2655
19	370.9204	386.9019	36.7112	-329.7479	270.5891	356.2951	59.0661	-284.8207
20	410.7028	342.5136	51.1637	-368.7122	395.8041	328.6035	68.4239	-410.6151
21	407.5555	344.0613	86.4754	-374.8893	422.1203	345.7757	31.4164	-437.0903
22	369.2889	330.1715	-15.5095	-387.3428	410.1095	337.2127	26.3550	-424.9938
23	353.7533	316.4715	40.9739	-444.3721	360.3946	315.4276	28.3081	-374.9740
24	434.1889	367.4640	38.0727	-365.8286	369.6453	356.7368	61.3283	-384.3755
25	361.2261	318.6661	-22.4166	-419.6294	338.9698	312.8638	32.6339	-353.4339
26	366.3627	336.7635	-0.8209	-388.8620	324.2522	335.4414	57.9164	-338.6989
27	410.3949	312.6068	-62.7087	-396.2211	348.3054	307.0634	35.4982	-362.8122
28	392.9859	367.6223	100.8775	-369.9982	353.2175	362.6823	43.1336	-367.8672
29	372.1811	323.7232	50.8901	-439.6162	426.3070	348.1213	86.1259	-441.3197
30	240.8874	365.5566	21.5747	-332.8509	287.1134	367.7420	2.9880	-301.4229
31	86.7422	358.3998	25.6796	-127.9764	418.2988	373.2820	-42.5508	-432.1083
32	-239.7244	308.8559	-6.1945	-98.5633	350.6292	371.5471	-3.1520	-364.1713
33	-611.2854	337.7640	17.7123	40.1805	-585.4889	342.2621	-15.5303	571.4077
34	-1053.3541	363.0290	-22.1810	252.3073	-1020.4442	377.6330	0.4708	1005.1786
35	-1117.8148	338.3538	-14.8022	778.9683	-1213.9779	322.7950	14.1077	1198.1671
36	-955.8497	373.0747	-32.5705	1168.2698	-1105.7634	349.3612	7.6927	1090.2614
37	-1083.6131	389.7169	29.0016	1249.0850	-1162.0034	366.4505	7.7155	1146.3250
38	-938.7984	350.7053	-22.0696	1057.7367	-1024.1987	328.3314	-27.8292	1008.8885
39	-723.5399	350.8548	25.5434	718.6084	-864.0036	325.5556	-17.7082	849.1805
40	-515.9543	320.7542	-8.5757	324.8159	-511.2532	327.9017	5.9349	497.4133
41	-72.8634	332.0048	-9.9942	29.7076	179.0093	368.7827	-16.5421	-192.2887
42	156.0410	346.4913	48.9848	-118.0291	-149.0251	313.9489	6.0176	135.5605
43	334.6194	375.7853	57.8123	-348.3306	167.3040	354.6969	-14.1823	-181.0416
44	375.3065	338.0734	44.4790	-392.5667	406.4320	335.6028	17.9431	-421.2935
45	406.5531	314.8348	75.0267	-456.8300	333.2806	311.5678	13.3617	-347.7128

Tabela 7.13 – Algoritam pretrage - rezultati simulacija za modifikovani IEEE 69 test sistem: estimirane vrednosti izlaznih promenjivih DC porta 1

Vreme		OP	F			SEAF	СН	
[h]	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]
46	364.4209	313.1172	-13.4326	-402.2966	406.9093	315.8399	-43.8234	-421.7409
47	376.2282	369.3480	79.2280	-395.0755	412.7137	385.8666	23.8225	-427.7101
48	414.4995	376.0515	-62.1622	-373.5846	-155.5503	301.4551	-11.4237	142.0706

Tabela 7.14 – Algoritam pretrage - rezultati simulacija za modifikovani IEEE 69 test sistem: estimirane vrednosti izlaznih promenjivih DC porta 2

Vreme	OPF			SEARCH				
[h]	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]
1	-1507.8998	415.1007	1197.8855	1517.7273	-1573.6773	-25.5020	1204.7311	1554.9638
2	-1534.2714	394.9222	1208.6690	1371.9621	-1619.0133	431.7754	1198.4808	1599.9133
3	-1534.7618	-7.7523	1304.0192	1534.6676	-1489.8944	433.5614	1342.8701	1471.1572
4	-1638.8763	-15.4911	1172.5296	1568.3981	-1554.5518	377.8492	1162.0319	1535.8591
5	-1519.0869	385.6508	1187.7266	1550.1167	-1578.2899	367.7265	1195.1498	1559.4549
6	-1572.8085	415.3009	1257.8750	1489.5055	-1527.5664	458.4702	1309.1268	1508.6807
7	-1418.3300	44.6219	1203.2664	1460.3927	-1281.2569	-0.3583	1248.1029	1264.0060
8	-1176.0716	316.4828	1091.0058	1463.4581	-1180.8197	395.6714	1282.8609	1165.2351
9	-1002.5699	249.3539	1168.5869	1141.5398	-1170.1973	352.1225	1238.1176	1154.8169
10	-808.4539	313.8632	1175.5702	1016.8157	-932.9081	59.5678	1129.3906	918.7155
11	-909.6285	354.3166	1286.8855	854.5557	-674.2121	301.4690	1112.2058	660.6599
12	-909.8922	-15.2169	1294.3555	931.8178	-607.1686	269.5271	1089.7140	593.9066
13	-844.5508	29.4479	1272.2163	918.6828	-978.6186	0.6362	1273.9217	963.8609
14	-881.3837	294.5427	1157.1195	964.0638	-950.5309	331.2046	1295.0771	935.6259
15	-1072.9851	306.9064	1127.1332	1027.7195	-1015.5678	359.3629	1253.6832	1000.5750
16	-1248.9160	345.0169	1125.2510	1155.9598	-1249.9904	360.8895	1221.1809	1234.4237
17	-1454.3360	323.9664	1141.6926	1206.5106	-1537.4596	422.6614	1295.5086	1520.7896
18	-1273.9390	397.3723	1277.3310	1264.0036	-1411.9302	384.7680	1324.0046	1395.5680
19	-1561.7898	391.6201	1271.8593	1413.1407	-1443.7504	434.7788	1318.7390	1425.2743
20	-1608.5480	371.5833	1212.5263	1390.1299	-1562.1862	35.6292	1220.2422	1543.4823
21	-1579.9186	420.5211	1247.1951	1404.4828	-1594.0807	288.6782	1231.1097	1575.1257
22	-1457.7161	399.5079	1213.7229	1446.8240	-1599.8132	403.9354	1224.0368	1580.8030
23	-1393.2325	350.9772	1151.3786	1637.2870	-1429.1401	370.8605	1153.5815	1411.1713
24	-1564.4589	403.7510	1269.2865	1380.1816	-1440.7475	-18.7066	1312.3079	1422.4860
25	-1438.8861	49.9055	1161.4703	1536.7122	-1527.0180	362.6644	1162.0697	1508.5244
26	-1445.5802	397.1561	1244.5315	1466.4813	-1468.0590	400.5717	1241.1117	1449.6880
27	-1605.2938	398.7357	1140.9081	1484.0648	-1448.6000	349.2880	1133.1322	1430.5421
28	-1523.1268	440.2631	1314.0725	1387.2915	-1411.6574	424.7909	1322.6041	1393.3641
29	-1518.6219	390.3082	1199.7126	1620.1524	-1628.5122	439.0529	1186.7081	1609.3830
30	-1385.4961	-2.6122	1350.9550	1547.6647	-1372.2586	428.8502	1354.8719	1354.1192
31	-1327.6177	305.8811	1241.0542	1269.8403	-1537.9780	370.0027	1300.5320	1521.3308
32	-1213.6637	335.2334	1109.8840	1336.4091	-1389.1200	441.4851	1359.5422	1372.6686
33	-1069.6934	301.1279	1160.9657	1372.5652	-1127.4987	356.5392	1181.9010	1112.4055
34	-997.9413	353.6366	1224.3233	1141.2725	-946.7192	384.5366	1278.6233	931.8178
35	-932.6139	208.6389	1148.5545	1004.3457	-701.1643	95.7855	1080.3008	687.8003
36	-964.0717	347.2991	1271.4323	774.1343	-754.3317	261.2040	1160.9858	740.4539
37	-953.2751	338.9745	1314.2314	767.7041	-917.7714	-33.4062	1242.9956	903.2872
38	-901.3772	322.5409	1177.1565	772.0718	-797.5020	270.3874	1107.2202	783.6541
39	-1107.7934	350.5559	1199.3959	919.2992	-923.9213	292.8388	1103.7061	909.7026

Vreme		OI	PF		SEARCH			
[h]	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]
40	-1029.9834	280.6355	1109.4962	1081.4839	-968.5588	319.0019	1124.5207	954.1260
41	-1270.4313	383.0882	1204.0938	1350.5299	-1510.5916	444.1599	1331.7564	1493.8728
42	-1464.0209	411.0678	1293.6759	1248.5736	-1143.0629	330.5123	1136.0691	1126.5616
43	-1504.5318	456.3098	1338.7538	1530.1715	-1456.8023	421.0663	1330.1145	1438.2708
44	-1485.9097	395.7940	1231.1330	1469.0714	-1587.7932	402.3799	1237.1735	1568.8145
45	-1593.6916	377.5495	1160.6853	1616.7580	-1532.7939	383.7694	1149.0441	1514.2488
46	-1453.0815	291.5865	1134.8750	1511.3035	-1663.2772	355.7939	1132.1829	1644.1310
47	-1485.2121	468.0553	1347.7843	1481.4146	-1525.7165	171.3060	1314.5000	1507.0215
48	-1557.1850	-65.5412	1277.9579	1400.3418	-1194.2089	316.7046	1094.5796	1177.5170

7.2.6 Rezultati simulacija – distributivni fider 20 kV DV Autoput, Laktaši, Republika Srpska

Primenjivost predložene upravljačke strategije u stvarnim distributivnim sistemima ispitana je izvođenjem simulacija za modifikovani sistem 20 kV DV Autoput, Laktaši, Republika Srpska. U odnosu na osnovnu topologiju sa slike 7.4 usvojene su modfikacije nastale dodavanjem jednosmernog porta i distribuiranih generatora u mrežu. Jednopolna šema modifikovanog sistema 20 kV DV Autoput, Laktaši prikazana je na slici 7.15. Lokacije distribuiranih generatora usvojene su na osnovu dostupnih idejnih projekata za pojedine lokacije fotonaponskih postrojenja (čvor 22 i 34) za koje je u toku i izrada lokacijskih uslova i glavne projektne dokumentacije.

Proizvodnja fotonaponskih postrojenja modelovana je uvažavajući procenjene vrednosti insolacija na razmatranim lokacijama. Lokacija jednosmernog porta usvojena je kao predlog koji uvažava karakteristike mreže i fizičku mogućnost instalacije DC porta odnosno povezivanja razmatranih čvorova 17 i 34.

Slika 7.15 – Distributivni fider 20 kV DV Autoput, Laktaši – modifikovana topologija

Pri simulacijama rada DC porta u kritičnim uslovima rada (prekid komunikacije) usvojen je skup dostupnih merenja u skladu sa tabelom 7.15. Rezultati simulacija za distributivni sistem 20 kV DV Autoput Laktaši prikazani su na slikama 7.16 - 7.18. Numerički rezultati simulacija dati su u tabelama 7.16 i 7.17.

Tabela 7.15 – Algoritam pretrage - rezultati simulacija za distributivni fider 20 kV DV Autoput Laktaši: dostupna merenja

Dostupno merenje	Opis
U_{33}	Napon u čvoru 33 – čvor koji je električno najbliži priključku <i>l</i> DC porta
U_{15}	Napon u čvoru 15 – čvor koji je električno najbliži priključku <i>m</i> DC porta
P ₃₄	Potrošnja aktivne snage u čvoru 5 – značajan potrošač aktivne snage u mreži
P 5	Potrošnja aktivne snage u čvoru 5 – značajan potrošač aktivne snage u mreži
Q 33	Potrošnja reaktivne snage u čvoru 33 – značajan potrošač reaktivne snage u mreži
Q_{24}	Potrošnja reaktivne snage u čvoru 24 – značajan potrošač reaktivne snage u mreži
Q_5	Potrošnja reaktivne snage u čvoru 5 – značajan potrošač reaktivne snage u mreži
PDG7	Generisanje fotonaponskog postrojenja u čvoru 7
$P_{\rm DG22}$	Generisanje fotonaponskog postrojenja u čvoru 22
P DG34	Generisanje fotonaponskog postrojenja u čvoru 34

Slika 7.16 – Algoritam pretrage - rezultati simulacija za distributivni fider DV 20 kV Autoput Laktaši: ukupni gubici aktivne snage u mreži

Slika 7.17 – Algoritam pretrage - rezultati simulacija za distributivni fider DV 20 kV Autoput Laktaši: ukupni gubici aktivne snage u mreži – OPF vs. Algoritam pretrage

Slika 7.18 – Algoritam pretrage - rezultati simulacija za distributivni fider DV 20 kV Autoput Laktaši: izlazne promenjive jednosmernog porta

Analizom rezultata simulacija (grafici 7.16 - 7.18) može se zaključiti da predloženi algoritam pretrage koji omogućava lokalno upravljanje DC portom može biti primenjen u stvarnim distributivnim sistemima. Rezultati simulacija pokazuju primenjivost predloženog algoritma i u relativno malim mrežama koje nisu preopterećene, kao što je to slučaj sa analiziranom mrežom DV 20 kV Autoput Laktaši. Lokalno upravljanje jednosmernim portovima bazirano na algoritmu pretrage daje rezultate koji su jako bliski rezultatima proračuna optimalnih tokova snaga (OPF). Slično kao i u test sistemima (IEEE 33 i IEEE 69), primenjivost predloženog algoritma pretrage u stvarnim sistemima ne zavisi od lokacija i broja jednosmernih portova u mreži. Takođe, na primenjivost algoritma ne utiču ni lokacije odnosno broj distribuiranih generatora integrisanih u razmatranu mrežu.

Simulacije izvršene na sistemu DV 20 kV Autoput Laktaši date su samo kao ilustrativni primer mogućnosti instalacije DC porta i implementacije lokalnog upravljanja korišćenjem predloženog algoritma pretrage. Integracija jednosmernih portova u postojeći sistem definitivno zahteva i dodatne analize kojima bi se definisale lokacije jednosmernih portova i njihova optimalna instalisana snaga a sve u zavisnosti od kriterijuma optimizacije koji se želi postići. Ove analize nisu bile predmet istraživanja u sklopu doktorske disertacije već se one rade nezavisno i zahtevaju posebnu pažnju i uvažavanje dodatnih parametara specifičnih za postojeću distributivnu mrežu u koju se integrišu jednosmerni portovi.

Vreme [h]	Pg BAZNI SLUČAJ [kW]	Pg OPF [kW]	Pg SEARCH [kW]
1	37.8606	33.4454	33.4509
2	39.6555	34.4514	34.4589
3	31.1210	26.6404	26.6431
4	28.0053	24.2014	24.2039
5	33.1153	28.4451	28.5511
6	26.5576	22.8055	22.8174
7	38.0215	31.5389	31.6381
8	36.5783	30.8207	30.8296
9	38.8015	32.8218	32.8355
10	36.0320	30.9829	30.9927
11	40.9980	35.2283	35.2635
12	52.6305	45.1386	45.1940
13	41.5364	35.8343	35.8445
14	36.0287	31.0166	31.0474
15	45.7654	39.1194	39.1469
16	55.0225	48.0821	48.1010
17	61.2624	53.4345	53.5343
18	54.1838	47.9446	47.9455
19	61.2263	54.5450	54.5544
20	69.7556	62.4378	62.4382
21	75.3385	67.0396	67.0510
22	91.5708	82.5715	82.5871
23	74.1081	66.1775	66.1885
24	59.1680	52.3794	52.3827

Tabela 7.16 – Algoritam pretrage - rezultati simulacija za DV 20 kV Autoput Laktaši: ukupni gubici aktivne snage u mreži

		OPF SEARCH					RCH	
vreme [n]	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]
1	-368.8328	145.7020	342.0591	364.1091	-378.9820	209.8028	330.8772	374.1480
2	-352.2551	234.1559	359.2000	347.4507	-345.9115	230.8108	365.3038	341.1284
3	-330.0018	234.3661	379.0863	325.2582	-332.0521	223.7880	376.4852	327.3234
4	-328.1681	200.7106	380.6405	323.4868	-327.3980	170.7480	381.6100	322.7624
5	-349.6131	228.6673	361.9889	344.8277	-341.8154	198.1044	369.1213	337.0985
6	-319.4582	159.4085	388.2668	314.8602	-345.9115	230.8108	365.3038	341.1362
7	-324.9841	260.2828	383.4772	320.2011	-375.5699	272.3842	334.5902	370.6431
8	-335.5319	242.5216	374.1548	330.7578	-349.0007	262.7160	361.2812	344.1590
9	-334.4667	252.9736	375.1343	329.6751	-331.6369	303.8075	378.1865	326.7524
10	-342.1745	181.7396	368.5936	337.4794	-354.3019	259.0738	357.3446	349.4513
11	-336.4158	246.6869	373.6258	331.6290	-331.5324	317.1220	378.4551	326.6190
12	-343.0484	303.7691	367.9191	338.1315	-316.0355	307.0661	389.6057	311.1752
13	-330.4303	225.5999	378.9435	325.6944	-333.6914	288.4788	375.4049	328.8335
14	-334.2640	223.9226	375.7911	329.5239	-350.6954	277.6736	359.9868	345.8212
15	-332.5112	290.7569	377.4400	327.6471	-337.9618	338.4434	372.4050	332.9879
16	-383.0943	267.2752	326.9957	378.1479	-358.0414	278.9424	353.5871	353.1359
17	-384.2225	277.9362	325.1661	379.2529	-340.0506	262.3785	370.7113	335.2162
18	-394.1224	279.2438	313.4712	389.1288	-395.6683	230.3777	310.4500	390.7527
19	-414.0227	201.9990	287.3390	409.0925	-409.1651	276.6578	293.5685	404.1357
20	-407.7411	251.5484	295.1676	402.7533	-409.1651	276.6578	293.5685	404.1319
21	-410.0533	254.7404	292.7537	405.0508	-410.1888	247.8964	291.8315	405.1981
22	-437.5631	149.3019	250.4291	432.6156	-402.5223	230.9557	302.6737	397.5710
23	-419.8246	262.9778	278.3195	414.7851	-408.8329	260.3105	293.7191	403.8265
24	-397.0163	269.3640	308.8788	392.0321	-392.3615	256.8878	315.9787	387.4075

Tabela 7.17 – Algoritam pretrage - rezultati simulacija za DV 20 kV Autoput Laktaši: estimirane vrednosti izlaznih promenjivih DC porta

7.3 Rezultati simulacija – Polyfit algoritam

Predloženi algoritam za lokalno upravljanje DC portom, koji se zasniva na polinomnoj estimaciji izlaznih promenjivih DC porta, implementiran je u programskom paketu *Matlab*. Testiranje algoritma izvršeno je na više različitih mreža: modifikovana IEEE 33 test mreža, modifikovana IEEE 69 test mreža i modifikovana mreža 20 kV DV Autoput Laktaši. Detaljna razmatranja predloženog Polyfit algoritma data su kroz rezultate simulacija za IEEE 33 test sistem dok su rezultati simulacija za preostala dva test sistema dati s ciljem testiranja primenjivosti i proširivosti predloženog algoritma. U odeljcima koji slede navedeni su rezultati simulacija za navedene mreže kao i bitni zaključci koji se odnose na performanse i područja primene predloženog algoritma.

Osnovni test sistem na kome su vršene simulacije i testiranje predloženog algoritma identičan je sistemu opisanom u paragrafu 7.1.1 (modifikovani IEEE 33 test sistem). Usvojeni modeli potrošača i generatora u mreži su takođe dati u odeljku 7.1.1 sa razlikom koja se odnosi na varijaciju proizvodnje i potrošnje. Pri testiranju Polyfit algoritma varijacija potrošnje u odnosu na usvojene bazne dijagrame za svaku od grupa potrošača iznosila je $\pm 5\%$. Na ovaj način simulirani scenariji približeni su realnim slučajevima sa očekivanom greškom prognoze potrošnje koja se kreće u navedenim granicama. Varijacija proizvodnje takođe je uvažena u granicama od $\pm 5\%$ u odnosu na usvojene bazne dijagrame. Pri tome, kako bi se testirali različiti secenariji određeni proizvodnjom fotonaponskog postrojenja

(dostupnim meteorološkim podacima) usvojeni su različiti dijagrami proizvodnje za vedre i oblačne dane.

S ciljem testiranja predloženog algoritma na što je moguće verodostojnijem skupu scenarija (koji oslikavaju realne slučajeve iz prakse) simulirani su različiti scenarji zavisno od meteoroloških prilika koje utiču na generisanje iz distribuiranog generatora. Tokom izvođenja simulacija usvojena su termička ograničenja za svaki od vodova u mreži. Takođe, ograničenja vrednosti napona u čvorovima mreže usvojena su u opsegu od 0,9 do 1,05 relativnih jedinica.

7.3.1 Rezultati simulacija: IEEE 33 modifikovani test sistem (Scenario 1) – obuka i estimacija tokom perioda sa sličnim meteorološkim prilikama

Prvi scenario analiziran pri testiranju predloženog algoritma podrazumeva da se formiranje trenažnog skupa podataka (nad kojim se vrši procedura obuke) i samo izračunavanje izlaznih promenjivih DC porta vrši tokom perioda sa sličnim meteorološkim prilikama. S obzirom da se u test sistemu razmatra generisanje iz fotonaponske elektrane, ovo bi značilo da period obuke i period izračunavanja/estimacije imaju slične vrednosti sunčevog zračenja (sličan indeks oblačnosti).

Tokom prekida komunikacije usvojen je maksimalni skup dostupnih podataka naveden u tabeli 7.18. Pri izvođenju simulacija istorijska baza podataka ograničena je tako da obuhvata period od 24h neposredno pre prekida komunikacije. Maksimalni stepen svake od nezavisnih varijabli (merenja dostupnih tokom prekida komunikacije) ograničen je na \leq 3. Simulacije su izvršene za svaki od mogućih polinomnih oblika.

Dostupno merenje	Oznaka u polinomu	Opis
P ₂₄	x_1	
P ₂₅	x_2	Tri dominantna potrošača aktivne snage u mreži
P ₃₂	<i>x</i> ₃	
Q ₃₀	x_4	
Q ₂₄	<i>X</i> 5	Tri dominantna potrošača reaktivne snage u mreži
Q32	χ_6	
P _{DG10}	<i>x</i> ₇	Generisanje aktivne snage iz distribuiranog generatora

Tabela 7.18 – Skup dostupnih merenja tokom trajanja prekida komunikacije

Za poređenje rezultata estimacije različitim polinomima korišćena je vrednost srednjeg kvadratnog odstupanja između estimiranih vrednosti i vrednosti koje bi se dobile pomoću proračuna OPF-a (slučaj kada se nije dogodio prekid komunikacije). Rezultati simulacija pokazuju da se najbolje estimacije izlaznih promenjivih dobijaju pomoću različitih polinomnih funkcija za svaku od nezavisnih izlaznih promenjivih (snaga) DC porta. Estimirane izlazne promenjive DC porta mogu se prikazati pomoću polinomnih oblika:

$$P_l^{SOP} = f(x_1, x_2, x_7) = a_7 x_7 + a_2 x_2 + a_{27} x_2 x_7 + a_1 x_1 + a_{17} x_1 x_7 + a_{12} x_1 x_2 + a_{127} x_1 x_2 x_7 + a_{11} x_1^2 + a_{117} x_1^2 x_7 + a_{112} x_1^2 x_2 + a_{10} + a_{111} x_1^3;$$
(87)

$$Q_{l}^{SOP} = f(x_{4}, x_{5}, x_{6}) = b_{6}x_{6} + b_{66}x_{6}^{2} + b_{5}x_{5} + b_{56}x_{5}x_{6} + b_{566}x_{5}x_{6}^{2} + b_{55}x_{5}^{2} + b_{556}x_{5}^{2}x_{6} + b_{4}x_{4} + b_{46}x_{4}x_{6} + b_{466}x_{4}x_{6}^{2} + b_{455}x_{4}x_{5} + b_{455}x_{4}x_{5}^{2} + b_{0} + b_{555}x_{5}^{3};$$
(88)

$$Q_m^{SOP} = f(x_2, x_4, x_5, x_6, x_7) = c_7 x_7 + c_6 x_6 + c_{67} x_6 x_7 + c_5 x_5 + c_{57} x_5 x_7 + c_{56} x_5 x_6 + c_{47} x_4 x_7 + c_{46} x_4 x_6 + c_{26} x_2 x_6 + c_{25} x_2 x_5 + c_{24} x_2 x_4 + c_0 + c_{22} x_2^2 + c_{44} x_4^2 + c_{55} x_5^2;$$
(89)

gde su $a_0,...a_{111}, b_0,...b_{555}, c_0,...c_{55}$ realni koeficijenti izračunati pomoću predloženog Polyfit algoritma. Navedeni koeficijenti su različiti za svaki od razmatranih 48h tokom kojih je simuliran prekid komunikacije (neraspoloživost centralizovanog upravljanja DC portom). Grafička interpretacija estimiranih vrednosti izlaza DC porta zajedno sa odgovarajućim vrednostima koje bi se dobile u slučaju da nije došlo do prekida komunikacije (da je OPF ostao dostupan) prikazana je na slici 7.19.

Slika 7.19 – Izlazne promenjive DC porta (scenario 1)

Slika 7.20 – Ukupni gubici aktivne snage u mreži (scenario 1)

Sa slike 7.19 evidentno je da su estimirane vrednosti izlaznih promenjivih DC porta jako bliske vrednostima koje bi se dobile u slučaju da nije došlo do prekida komunikacije tj. da je centralizovano upravljanje na bazi OPF-a ostalo dostupno. Ukupni gubici aktivne snage u mreži, u slučaju kada se upravljanje DC portom vrši pomoću Polyfit algoritma prikazani su na slici 7.20. Numeričke vrednosti rezultata simulacija (slike 7.19 i 7.20) za razmatrani period od 48h prikazane su u tabelama 7.19 i 7.20.

Analizom rezultata simulacija prikazanih na slici 7.20 dolazi se do sledećih zaključaka:

- Redukcija gubitaka aktivne snage u mreži najveća je u slučaju kada DC port radi na bazi rezultata proračuna OPF-a (slučaj potpune raspoloživosti kada nema prekida komunikacije). Nasuprot tome, maksimalni gubici u mreži javaljaju se u slučaju kada bi se DC port tokom trajanja prekida komunikacije u potpunosti isključio (mreža je ponovo potpuno radijalna).
- Vrednosti ukupnih gubitaka aktivne snage u mreži kada DC port radi na bazi Polyfit algoritma jako su bliske vrednostima koje bi se dobile da nije došlo do prekida komunikacije tj. da je centralizovano upravljanje bilo dostupno. Ukoliko se uvaže rezultati estimacija svake od izlaznih promenjivih DC porta ovi rezultati su i očekivani.
- Smanjenje gubitaka aktivne snage u mreži kada DC port radi na bazi Polyfit algoritma najznačajnije je u periodima kada je to i najpotrebnije tj. u periodima kada je injektiranje snage iz fotonaponske elektrane u mrežu najveće. Ova pojava je direktna posledica činjenice da vrednost generisanja aktivne snage iz distribuiranog generatora figuriše kao nezavisna promenjiva u polinomnoj funkciji kojom se estimira aktivna snaga DC porta. U poređenju sa slučajem kada je DC port u potpunosti isključen tokom prekida komunikacije, smanjenje gubitaka koje se postiže radom DC porta na bazi Polyfit algoritma tokom perioda intenzivne proizvodnje fotonaponskog postrojenja (10-18h) iznosi 24,44%

Poređenja radi, na slici 7.20 prikazani su i ukupni gubici aktivne snage u mreži u slučaju kada izlazi DC porta pri prekidu komunikacije ostaju fiksirani na poslednju poznatu vrednost. Ovakvo upravljanje vrlo je često u praksi i predstavlja najjednostavniji ali i izuzetno neefikasan način upravljanja DC portom tokom neraspoloživosti centralizovanog upravljanja. Ukoliko se pri prekidu komunikacije izlazne promenjive (snage) DC porta fiksiraju na poslednju poznatu vrednost, injektiranja DC porta ne mogu pratiti promene u injektiranju iz fotonaponske elektrane što u konačnici rezultuje značajnim rastom ukupnih gubitaka u mreži. Prethodno opisana pojava uočljiva je i na slici 7.20.

Vreme		0	PF			POL	YFIT	
[h]	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]
1	623.2358	599.8233	121.8608	-639.8717	599.4474	595.7089	121.4169	-615.9521
2	574.5780	502.5968	96.2094	-590.7342	582.0712	528.8647	96.1104	-598.3187
3	526.5887	465.1199	82.1717	-542.4009	515.6697	452.8554	84.2516	-531.4012
4	522.4892	464.2141	76.8453	-538.2744	552.1685	470.5638	82.4456	-568.1251
5	469.8326	405.9838	76.0325	-485.2168	474.6423	415.2884	78.8882	-490.0714
6	474.4568	404.1682	85.9570	-489.8697	459.1741	398.1550	81.9384	-474.4925
7	448.0031	447.6988	98.8351	-463.3747	465.0726	446.4428	95.2416	-480.5270
8	497.1395	560.1515	124.2231	-513.0361	475.7622	534.0321	117.7025	-491.4862
9	487.8807	505.5184	113.7385	-503.5990	429.1733	504.0053	113.7032	-444.5954
10	490.9935	822.5654	124.9698	-507.5075	487.6497	824.3891	115.2581	-504.1462
11	383.4135	914.8499	122.8687	-399.7025	393.7387	914.1222	123.7883	-410.0671

Tabela 7.19 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 33 test sistem: estimirane vrednosti izlaznih promenjivih DC porta – scenario 1

Vreme		OI	PF		POLYFIT			
[h]	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]
12	457.5125	862.3802	134.3492	-473.9890	469.4908	866.6686	131.1710	-486.0268
13	376.2412	877.4830	124.8149	-392.3987	380.1204	880.0655	120.9858	-396.2962
14	376.5731	878.1754	123.5043	-392.7309	423.1237	884.4511	126.1426	-439.4905
15	516.8964	905.8439	132.4937	-533.7556	544.7630	912.3948	125.8868	-561.7572
16	552.7730	896.5326	132.5444	-569.7740	514.0744	888.3516	134.3122	-530.8821
17	696.7378	1035.1612	151.8262	-714.7963	662.8356	1020.7721	152.5358	-680.7022
18	790.1837	1090.7483	163.9482	-808.8467	796.6193	1076.8226	163.9464	-815.2792
19	866.6407	1219.6783	174.4740	-886.0093	888.1447	1222.6132	172.8460	-907.6205
20	931.2035	1037.4338	176.4983	-950.4716	879.2911	1036.7590	171.9959	-898.2976
21	951.2841	1079.7400	177.6847	-970.7555	994.6094	1076.8734	176.8333	-1014.2910
22	949.7706	1105.1405	179.0365	-969.2920	933.1211	1103.6494	176.7977	-952.5558
23	919.9021	1063.2188	166.8750	-939.1620	933.4676	1067.1035	161.9891	-952.8011
24	553.3562	565.0626	118.8289	-569.5466	600.9789	574.5940	119.0265	-617.4335
25	636.9034	586.3132	120.5095	-653.5837	589.2255	586.9465	118.3184	-605.6594
26	557.0051	492.6816	93.9804	-573.0447	574.4675	518.1208	91.0177	-590.6480
27	537.3005	463.3856	82.5131	-553.1673	531.5190	445.9081	82.5909	-547.3213
28	528.2172	474.7503	79.9834	-544.0562	561.9467	479.9780	78.3744	-577.9731
29	473.3839	401.0899	75.5018	-488.7772	481.0544	411.6308	78.1119	-496.5100
30	478.5093	422.2298	90.1124	-493.9825	456.2096	420.4830	82.8440	-471.5588
31	454.6445	446.4673	99.0837	-470.0486	461.5136	444.1651	100.4919	-476.9489
32	502.4126	544.2619	121.6191	-518.2982	483.2866	526.1966	118.5400	-499.0308
33	492.7133	512.4327	115.6848	-508.4725	514.9444	500.5926	115.9643	-530.7916
34	455.6043	818.2727	123.2022	-471.9427	500.3528	822.3677	123.4233	-516.8994
35	493.4303	893.4957	127.5005	-510.1441	508.0089	913.8601	126.5185	-524.8377
36	447.1458	838.9838	128.6369	-463.5084	462.2057	831.1891	134.8486	-478.6170
37	349.4041	910.1004	126.9675	-365.5454	336.7378	896.7932	121.6132	-352.7865
38	358.7912	871.0246	121.0300	-374.8532	352.5550	881.1665	126.1664	-368.6241
39	524.3840	924.7134	135.6743	-541.3294	558.5587	917.7351	130.6647	-575.6337
40	596.9827	896.5472	134.8452	-614.1952	572.0725	896.2792	125.2446	-589.1634
41	740.6235	1021.9653	152.3988	-758.8629	740.8946	1016.2714	154.6371	-759.1224
42	773.0411	1090.0492	162.5261	-791.6158	797.7312	1084.4450	166.0310	-816.4104
43	835.3808	1213.0421	170.7540	-854.5752	838.2108	1215.4152	170.0327	-857.4236
44	904.8724	1055.0274	175.6781	-924.0419	836.7795	1060.1841	183.4989	-855.6326
45	958.2907	1054.4214	173.8325	-977.7389	1007.5766	1049.1525	168.9013	-1027.2602
46	972.7972	1125.1637	179.6509	-992.4873	971.0723	1126.5855	186.1972	-990.7603
47	891.1688	1028.7105	160.7152	-910.1947	874.3508	1037.1038	154.1614	-893.3094
48	560.9873	555.4181	118.4951	-577.1970	592.1669	577.3453	114.4595	-608.5801

Tabela 7.20 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 33 test sistem: ukupni gubici aktivne snage u mreži – scenario 1

Vreme [h]	Pg BAZNI SLUČAJ [kW]	Pg Fixed [kW]	Pg OPF [kW]	Pg Polyfit [kW]
1	129.8890	93.2942	93.2828	93.3153
2	106.9881	78.7054	78.1636	78.1919
3	92.6765	68.5187	68.3991	68.4128
4	89.7269	65.8388	65.8368	65.8871
5	76.5556	57.9667	57.7171	57.7181

Vreme [h]	Pg BAZNI SLUČAJ [kW]	Pg Fixed [kW]	Pg OPF [kW]	Pg Polyfit [kW]
6	79.0384	60.0510	60.0541	60.0630
7	81.5622	63.1217	62.7215	62.7770
8	106.4000	85.7326	80.7048	80.9724
9	108.2808	99.8850	85.6273	86.5792
10	155.9185	162.7642	117.0867	118.8604
11	174.9702	214.4107	136.0368	136.7685
12	172.4547	262.7527	133.3545	134.0492
13	173.8532	289.0602	137.8728	138.5568
14	164.8878	292.5636	128.6829	129.5883
15	192.7618	330.8996	147.2937	147.8416
16	198.6116	277.5809	151.6338	151.7999
17	255.6578	263.0612	186.4287	186.5525
18	291.9311	233.2269	207.8673	207.9418
19	350.2242	251.7964	245.2329	245.2427
20	314.0189	219.7601	217.7789	217.9365
21	331.6027	229.1304	228.9980	229.1070
22	339.7014	235.2653	235.2186	235.2334
23	318.9347	221.9932	221.8409	221.8535
24	124.1631	109.0278	94.2053	94.3364
25	132.5209	95.8271	95.4486	95.5811
26	101.8492	75.5815	74.6659	74.7079
27	94.5755	69.9451	69.7996	69.8121
28	91.6793	67.0535	67.0408	67.1068
29	76.6869	58.1402	57.8611	57.8662
30	80.7737	60.9834	60.9561	60.9614
31	83.1313	64.3958	64.0275	64.9619
32	105.4420	85.0296	80.0448	80.9073
33	106.4689	97.3706	83.1443	83.8201
34	147.5866	155.1023	110.9356	110.9764
35	180.2236	225.3856	136.8813	137.6533
36	167.4203	264.9096	130.4251	131.1286
37	179.1057	281.1871	141.9454	142.6144
38	166.7188	286.3955	131.8927	131.8989
39	195.4407	325.1510	147.9384	148.1526
40	204.4802	293.0858	153.7690	154.1023
41	257.1125	270.6467	184.3380	184.5249
42	284.7208	226.4744	202.3497	202.6669
43	336.7044	241.2607	235.9138	235.9699
44	306.5720	213.6221	212.0536	212.3292
45	329.1128	227.9773	227.9307	228.0829
46	354.7079	245.2871	245.2439	245.2446
47	300.2828	209.9719	209.5577	209.7795
48	125.4122	110.0760	95.3451	95.4157

7.3.2 Rezultati simulacija: IEEE 33 modifikovani test sistem (Scenario 2) – obuka tokom perioda vedrog neba, estimacija izlaznih promenjivih tokom oblačnih perioda

Drugi simulirani scenario obuhvata slučaj kada se prekid komunikacije (period kada je neophodno vršiti estimaciju izlaznih promenjivih DC porta) događa tokom oblačnog perioda a trenažni set podataka obuhvata podatke prikupljene u period tokom kojeg je nebo bilo vedro. Na ovaj način simulirane su razlike u proizvodnji fotonaponske elektrane pri čemu je proizvodnja fotonaponske elektrane značajno veća tokom trenažnog perioda nego tokom perioda kada se vrši estimacija izlaznih promenjivih DC porta. Slično kao i u prethodnom scenariju, istorijska baza podataka ograničena je da obuhvati period od 24h a maksimalni stepen nezavisnih varijabli unutar rezultujućeg polinoma ograničen je na vrednost ≤ 3 . Simulacije su vršene za period od 24h (sa satnom disktretizacijom) uvažavajući da prekid komunikacije traje jedan diskretizacioni period. Rezultati simulacija (izlazne promenjive DC porta) za prethodno opisan scenario prikazani su na slici 7.21.

Poređenjem rezultata prikazanih na slici 7.21 sa rezultatima za prethodni scenario (slika 7.19) evidentne su razlike između estimiranih vrednosti izlaznih varijabli DC porta i vrednosti koje bi se dobile u slučaju da se upravljanje DC portom vršilo centralizovano, pomoću OPF proračuna. Navedena odstupanja posledica su izraženih razlika, prevashodno u proizvodnji fotonaponskog postrojenja, između trenažnog i perioda kada se vršila estimacija. Uprkos tome rad DC porta zasnovan na Polyfit algoritmu i u ovom slučaju daje rezultate koji su sa aspekta minimizacije ukupnih gubitaka aktivne snage u mreži prihvatljivi. Ukupni gubici aktivne snage u mreži za scenario 2 prikazani su na slici 7.22. Kompletni rezultati simulacija za ovaj scenario dati su i tabelarno, u tabelama 7.21 i 7.22.

Slika 7.21 – Izlazne promenjive DC porta (scenario 2)

Slika 7.22 – Ukupni gubici aktivne snage u mreži (scenario 2)

Tabela 7.21 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 33 test sistem: estimirane vrednosti izlaznih promenjivih DC porta – scenario 2

	OPF			POLYFIT				
vreme [n]	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]
1	630.812	605.617	123.191	-647.502	634.447	579.649	117.220	-651.099
2	566.743	507.715	97.937	-582.868	568.748	512.402	103.619	-584.896
3	532.273	468.764	82.722	-548.124	537.057	477.170	91.031	-552.953
4	507.921	466.518	77.432	-523.633	514.558	469.128	95.195	-530.318
5	455.221	400.826	74.248	-470.516	484.629	431.429	78.805	-500.141
6	350.624	416.755	83.482	-365.418	353.016	416.236	78.220	-367.817
7	192.478	430.347	79.366	-206.578	176.318	440.611	86.163	-190.390
8	2.380	554.071	54.790	-16.226	-49.983	536.844	100.209	36.030
9	-354.547	531.180	107.298	339.569	-284.492	544.985	102.455	269.791
10	-777.505	885.604	139.806	759.713	-697.530	922.034	133.242	680.045
11	-991.197	965.795	152.630	972.191	-879.424	1014.897	135.909	860.878
12	-1179.847	898.027	165.122	1160.015	-1113.929	877.468	135.979	1094.482
13	-1086.801	1127.079	35.136	1069.999	-1221.857	969.570	134.849	1201.703
14	-973.719	1090.105	139.508	956.915	-1093.665	996.083	118.624	1074.126
15	-898.685	976.578	153.672	880.104	-804.683	1035.775	131.928	786.439
16	-431.784	970.590	130.778	415.309	-467.268	988.489	137.678	450.590
17	160.225	1057.576	115.370	-176.103	206.141	1070.200	142.452	-222.234
18	571.572	1073.024	151.074	-589.143	579.626	1080.350	139.831	-597.241
19	820.697	1190.510	169.940	-839.764	775.029	1201.086	174.701	-793.913
20	920.410	1010.614	170.341	-939.556	954.599	999.466	155.804	-973.887
21	963.722	1064.923	177.687	-983.226	969.362	1039.942	170.094	-988.836
22	940.303	1113.287	179.484	-959.795	878.737	1098.896	184.632	-897.898

Vreme [h]	OPF				POLYFIT			
	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]
23	888.866	1071.433	166.753	-907.983	961.596	1034.003	164.527	-980.991
24	563.857	553.761	117.490	-580.078	686.300	634.877	122.225	-703.322

Tabela 7.22 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 33 test sistem: ukupni gubici aktivne snage u mreži – scenario 2

Vreme [h]	Pg BAZNI SLUCAJ [kW]	Pg OPF [kW]	Pg Polyfit [kW]
1	132.3562	94.9258	94.9550
2	105.3460	76.9105	76.9128
3	93.9625	69.2687	69.2740
4	86.8664	63.7586	63.7676
5	74.3893	56.5783	56.6466
6	66.3892	53.2487	53.3566
7	59.1044	50.4933	51.3927
8	71.5368	60.2290	60.3916
9	81.2731	64.2496	64.2941
10	170.2538	113.3200	114.2044
11	228.7236	148.9920	151.5333
12	248.5703	152.1769	156.8355
13	285.8448	170.6544	173.3073
14	257.6287	157.1348	161.5479
15	221.5974	148.9571	149.2040
16	180.7976	135.4441	135.4410
17	201.0470	157.9678	157.9747
18	251.0404	188.1045	189.7417
19	333.4164	236.0274	237.9915
20	304.1260	211.6434	211.7200
21	334.5319	231.4119	231.4428
22	338.0308	233.8010	234.0330
23	307.9545	213.8482	214.2146
24	125.9728	95.8017	96.8582

7.3.3 Rezultati simulacija: IEEE 33 modifikovani test sistem (Scenario 3) – obuka tokom oblačnih perioda, estimacija izlaznih promenjivih tokom vedrih perioda

Slično kao i scenario broj 2 i treći razmatrani scenario uvažava razlike generisanja iz fotonaponske elektrane tokom trenažnog perioda i perioda tokom koga se vrši estimacija izlaznih promenjivih jednosmernog porta. Pri tome, generisanje iz fotonaponske elektrane je značajno veće u periodima tokom kojih se vrši estimacija nego što je to bio slučaj u trenažnom periodu. Estimirane vrednosti izlaznih promenjivih DC porta (za treći scenario) zajedno sa odgovarajućim vrednostima koje bi se dobile pomoću OPF-a prikazane su na slici 7.23.

Estimirane vrednosti izlaznih varijabli DC porta i u ovom slučaju prate vrednosti koje bi se dobile da se upravljanje DC portom vršilo na bazi OPF-a tj. da nije došlo do prekida komunikacije. Slično kao i u prethodnom scenariju, zbog razlika između trenažnog perioda i perioda tokom koga su vršene estimacije, primetna su odstupanja estimiranih vrednosti od njihovih OPF pandana. U poređenju sa rezultatima za scenario 2 (slika 7.21) ova odstupanja su manja. Štaviše, iz razloga što je generisanje fotonaponske elektrane dominantnije u periodima kada se vrši estimacija izlaznih promenjivih DC porta estimirane vrednosti bolje prate promene odgovarajućih vrednosti koje bi se dobile primenom OPF proračuna. Shodno tome, vrednosti ukupnih gubitaka aktivne snage u mreži koje se dobijaju kada DC port radi na bazi Polyfit algoritma jako su bliske vrednostima koje bi se imale u slučaju da je upravljanje DC portom vršeno pomoću OPF-a. Ukupni gubici aktivne snage u mreži za treći scenario prikazani su na slici 7.24. Kompletni rezultati simulacija za treći scenario dati su i tabelarno, u tabelama 7.23 i 7.24.

Slika 7.23 – Izlazne promenjive DC porta (scenario 3)

Slika 7.24 – Ukupni gubici aktivne snage u mreži (scenario 3)

	OPF			POLYFIT				
vreme [n]	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]	PL [kW]	QL[kvar]	QM[kvar]	PM[kW]
1	624.544	601.698	121.129	-641.191	589.786	585.765	116.216	-606.218
2	560.395	513.707	98.143	-576.498	558.790	504.790	98.633	-574.867
3	537.124	461.788	80.900	-552.986	529.429	455.641	76.164	-545.236
4	529.147	457.906	76.925	-544.956	528.898	413.777	81.188	-544.624
5	462.647	390.458	72.239	-477.960	469.872	398.567	58.437	-485.233
6	454.345	414.168	87.704	-469.671	438.051	374.690	63.188	-453.202
7	462.084	444.933	98.771	-477.524	463.955	397.330	82.105	-479.300
8	481.939	550.140	120.966	-497.734	428.737	502.674	104.458	-444.146
9	461.656	502.863	111.941	-477.231	462.421	465.502	114.103	-477.917
10	415.061	805.987	118.674	-431.182	403.974	810.244	122.872	-420.062
11	396.172	884.473	120.642	-412.428	386.427	923.100	109.785	-402.739
12	398.617	833.089	124.961	-414.748	412.533	800.162	133.992	-428.641
13	486.303	873.295	130.284	-502.935	490.026	887.741	119.461	-506.704
14	366.933	844.052	117.801	-382.950	377.554	886.025	117.540	-393.728
15	435.216	910.503	129.019	-451.720	466.882	902.513	122.594	-483.493
16	546.595	898.992	133.056	-563.574	523.654	881.414	124.154	-540.479
17	680.078	1048.345	154.568	-698.091	651.798	1027.286	133.587	-669.617
18	797.529	1063.160	161.173	-816.158	806.670	1065.553	143.642	-825.339
19	837.357	1173.484	168.163	-856.461	845.136	1203.173	173.908	-864.351
20	925.362	1042.492	175.419	-944.610	876.716	1015.888	164.459	-895.658
21	940.237	1092.979	178.020	-959.680	949.184	1053.937	174.750	-968.584
22	960.921	1134.827	185.936	-980.574	920.206	1125.169	185.149	-939.638
23	903.747	1070.857	167.696	-922.940	916.970	1055.629	165.290	-936.193
24	561.638	569.150	120.783	-577.882	633.333	668.130	122.778	-650.153

Tabela 7.23 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 33 test sistem: estimirane vrednosti izlaznih promenjivih DC porta – scenario 2

Tabela 7.24 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 33 test sistem: ukupni gubici aktivne snage u mreži – scenario 3

Vreme [h]	Pg BAZNI SLUČAJ [kW]	Pg OPF [kW]	Pg Polyfit [kW]
1	132.3562	94.9258	94.9550
2	105.3460	76.9105	76.9128
3	93.9625	69.2687	69.2740
4	86.8664	63.7586	63.7676
5	74.3893	56.5783	56.6466
6	66.3892	53.2487	53.3566
7	59.1044	50.4933	51.3927
8	71.5368	60.2290	60.3916
9	81.2731	64.2496	64.2941
10	170.2538	113.3200	114.2044
11	228.7236	148.9920	151.5333
12	248.5703	152.1769	156.8355
13	285.8448	170.6544	173.3073
14	257.6287	157.1348	161.5479
15	221.5974	148.9571	149.2040

Vreme [h]	Pg BAZNI SLUČAJ [kW]	Pg OPF [kW]	Pg Polyfit [kW]
16	180.7976	135.4441	135.4410
17	201.0470	157.9678	157.9747
18	251.0404	188.1045	189.7417
19	333.4164	236.0274	237.9915
20	304.1260	211.6434	211.7200
21	334.5319	231.4119	231.4428
22	338.0308	233.8010	234.0330
23	307.9545	213.8482	214.2146
24	125.9728	95.8017	96.8582

7.3.4 Područje primene i pokazatelji efikasnosti Polyfit algoritma

Algoritam opisan i testiran u prethodnim odeljcima podrazumeva nezavisnu estimaciju svake od (nezavisnih) izlaznih promenjivih DC porta. S obzirom na ovakvu postavku algoritma njegova primenjivost ne zavisi od broja fidera povezanih pomoću jednog DC porta kao ni od ukupnog broja DC portova integrisanih u distributivnu mrežu. Primenjivost predloženog Polyfit algoritma ograničena je jedino resursima neophodnim za njegovu implementaciju tj. sadržajem i dužinom istorijske baze podataka te skupom dostupnih merenja (nezavisnih mrežnih varijabli) koja se koriste u postupku estimacije.

Kao dodatak prethodno opisanim scenarijima ispitana je i efikasnost predloženog algoritma. Efikasnost algoritma ispitivana je korišćenjem optimizacionog kriterijuma (minimalnih gubitaka u mreži) tj. poređenjem ovog parametra za različite slučajeve kada DC port radi na bazi predloženog algoritma i kada DC port radi na bazi rezultata OPF proračuna (slučaj bez prekida komunikacije). Maksimalna relativna greška između vrednosti ukupnih gubitaka aktivne snage u mreži za gore spomenute slučajeve uvažena je kao merilo efikasnosti predloženog algoritma. Pregled parametara efikasnosti predloženog algoritma prikazan je u tabeli 7.25.

Vrednosti prikazane u tabeli 7.25 ukazuju na prihvatljiv stepen efikasnosti predloženog algoritma za svaki od testirana tri scenarija. Očekivano, efikasnost algoritma je najveća u slučajevima kada se estimacija i obuka vrše na skupovima podataka koje karakterišu slične meteorološke prilike (scenario 1). Sa druge strane, algoritam je najmanje efikasan u slučaju trećeg scenarija tj. u slučaju kada se obuka vrši tokom oblačnih perioda a estimacija izlaznih promenjivih DC porta se vrši tokom vedrih perioda. Ipak, i u ovom scenariju maksimalna relativna greška između vrednosti ukupnih gubitaka aktivne snage u mreži u slučaju rada DC porta na bazi predloženog algoritma i u slučaju rada DC porta na bazi OPF proračuna manja je od 5%. Ova vrednost prihvatljiva je za većinu praktičnih slučajeva pogotovo uzimajući u obzir realne greške prognoze potrošnje koje se takođe kreću u navedenom opsegu.

Osim parametara koji se odnose na efikasnost predloženog algoritma, za praktičnu implementaciju jako su važni i parametri koji pokazuju iskorišćenje računarskih resursa prilikom same implementacije predloženog algoritma. Kao što je opisano u odeljcima 5.1 - 5.3, implementacija predloženoga algoritma uz dostupnost odgovarajuće baze podataka zahteva primenu

	Scenario 1	Scenario 2	Scenario 3
Maksimalna relativna greška [%]	0.2322	0.6583	3.0613

Tabela 7.25 – Parametri efikasnoti predloženog algoritma (maksimalna relativna greška)

jedino osnovnih računskih operacija. Parametri koji pokazuju performanse algoritma odnose se na procesorsko vreme koje je neophodno za izvršavanje algoritma. Uvažavajući opisane sekvence predloženog algoritma ukupno vreme njegovog izvršavanja može se podeliti na dve komponente: vreme obuke i vreme izračunavanja (estimacije) izlaznih promenjivih DC porta. Oba navedena vremena zavise od stepena estimirajućeg polinoma. Stepen svake od nezavisnih varijabli (dostupnih merenja) u estimirajućem polinomu određuje i ukupan broj koeficijenata koji se određuju tokom trenažnog postupka (postupka obuke). Samim tim stepen svake od nezavisnih varijabli u estimirajućeg polinoma utiče na vreme izvršavanja trenažnog postupka. Takođe, stepen rezultujućeg polinoma utiče i na vreme izvršavanja sekvence izračunavanja izlaznih promenjivih DC porta. Ova korelacija je očigledna uzimajući u obzir da stepen svake od nezavisnih varijabli unutar estimirajućeg polinoma direktno određuje broj koeficijenata unutar polinomne funkcije kao i broj računskih operacija koje je neophodno izvršiti tokom postupka estimacije. Parametri efikasnosti (vremena izvršavanja sekvenci) predloženog algoritma ilustrovani su na slici 7.25.

Slika 7.25 – Vreme izvršavanja Polyfit algoritma

Na slici 7.25 prikazano je vreme obuke i vreme izračunavanja u zavisnosti od maksimalnog stepena estimirajućeg polinoma. Pri tome, razmatrani su polinomi do maksimalnog stepena 5. Polinomi višeg stepena nisu razmatrani iz praktičnih razloga tj. zbog velikog broja koeficijenata koji bi se određivali tokom perioda obuke i posledično, potrebe za istorijskom bazom podataka sa dužim vremenskim zapisima.

Sa slike 7.25 vidljivo je da se vreme neophodno za implementaciju sekvence obuke kreće u rasponu od 50 do 250 milisekundi dok je vreme izračunavanja znatno kraće i kreće se u opsegu do 4 milisekunde. S obzirom da se algoritam izvršava nezavisno za svaku od nezavisnih izlaznih promenjivih DC porta, ukupno vreme izvršavanja algoritma za osnovnu topologiju DC porta kreće se u opsegu do nekoliko sekundi. Ovi pokazatelji potvrđuju izvodivost predloženog algoritma u praksi – u sklopu lokalnih kontrolera DC porta. Navedena vremena ostvarena su pri simulacijama izvršavanim na standardnoj računarskoj konfiguraciji (i5-7300U CPU, 8GB RAM). U realnim slučajevima performanse lokalnih kontrolera su bolje od standardnih računara te se očekuje da ova vremena izvršavanja algoritma budu kraća.

7.3.5 Rezultati simulacija: IEEE 69 modifikovani test sistem (Scenario 1)

Robusnost predloženog Polyfit algoritma kao i njegova primenjivost u slučaju većih distributivnih sistema testirani su izvođenjem simulacija na modifikovanom IEEE 69 test sistemu. U

prvom scenariju osnovna IEEE 69 mreža modifikovana je dodavanjem dva jednosmerna porta i 3 distribuirana generatora u mrežu, kao što je ilustrovano na slici 7.26.

Pri prekidu komunikacije, kada se upravljanje jednosmernim portovima vrši lokalno, pomoću predloženog Polyfit algoritma, razmatran je skup dostupnih merenja prikazan u tabeli 7.26. Rezultati simulacija za navedeni scenario dati su na slikama 7.27 - 7.29, odnosno u tabelama 7.27 - 7.29.

Slika 7.26 – IEEE 69 distributivna test mreža – topologija sa 2 DC porta i 3 distribuirana generatora

Dostupno merenje	Opis
P ₄₉	Potrošnja aktivne snage u čvoru 49 – jedan od dominantnih potrošača aktivne snage u mreži
P ₅₀	Potrošnja aktivne snage u čvoru 50 – jedan od dominantnih potrošača aktivne snage u mreži
P ₆₁	Potrošnja aktivne snage u čvoru 61 – jedan od dominantnih potrošača aktivne snage u mreži
P ₆₄	Potrošnja aktivne snage u čvoru 64 – jedan od dominantnih potrošača aktivne snage u mreži
Q_{49}	Potrošnja reaktivne snage u čvoru 49 – jedan od dominantnih potrošača reaktivne snage u mreži
Q_{50}	Potrošnja reaktivne snage u čvoru $50 - j$ edan od dominantnih potrošača reaktivne snage u mreži
Q_{61}	Potrošnja reaktivne snage u čvoru 61 – jedan od dominantnih potrošača reaktivne snage u mreži
P DG7	Generisanje fotonaponskog postrojenja u čvoru 7
P DG17	Generisanje fotonaponskog postrojenja u čvoru 17
P _{DG41}	Generisanje fotonaponskog postrojenja u čvoru 41

Tabela 7.26 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 69 test sistem (scenario 1): dostupna merenja

Slika 7.27 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 69 test sistem (scenario 1): ukupni gubici aktivne snage u mreži

Slika 7.28 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 69 test sistem (scenario 1): izlazne promenjive DC porta 1

Slika 7.29 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 69 test sistem (scenario 1): izlazne promenjive DC porta 2

Tabela 7.27 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 69 test sistem (scenario 1): uku	upni
gubici aktivne snage u mreži	

Vreme [h]	Pg BAZNI SLUČAJ [kW]	Pg OPF [kW]	Pg POLYFIT [kW]
1	239.2097	75.1081	75.1260
2	211.4243	68.2749	67.5572
3	272.5774	83.2556	82.7288
4	257.1997	80.0560	79.7957
5	228.1814	74.6636	74.6974
6	235.0643	72.6946	72.6864
7	220.3851	71.8666	71.8010
8	219.6499	79.5979	82.3165
9	200.5797	98.9525	98.8204
10	250.9481	151.8886	151.5125
11	277.7664	189.0271	189.0963
12	379.3746	255.4841	255.3176
13	355.0075	249.9547	250.0935
14	332.8655	229.0838	228.7644
15	300.8073	192.2056	192.1976
16	248.6984	132.8210	132.7819
17	197.4663	77.1730	77.1461
18	188.9206	64.1725	63.4898
19	215.3586	68.9977	69.0731
20	220.9816	70.4648	69.3910

Vreme [h]	Pg BAZNI SLUČAJ [kW]	Pg OPF [kW]	Pg POLYFIT [kW]
21	219.3311	70.6567	70.3348
22	220.8709	72.4353	71.8531
23	269.6463	84.9739	85.0153
24	202.6475	66.4629	66.8135

Tabela 7.28 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 69 test sistem (scenario 1): estimirane vrednosti izlaznih promenjivih DC porta 1

	OPF			POLYFIT				
Vreme [h]	PL1 [kW]	QL1[kvar]	QM1[kvar]	PM1[kW]	PL 1[kW]	QL1[kvar]	QM1[kvar]	PM1[kW]
1	371.645	356.454	90.895	-382.386	398.956	353.350	25.389	-409.804
2	348.779	352.435	100.195	-359.400	344.056	353.439	26.191	-354.617
3	384.484	371.265	190.881	-395.424	445.081	376.413	19.916	-456.219
4	404.467	349.289	73.312	-415.354	418.437	352.590	56.632	-429.397
5	385.377	312.418	137.897	-396.139	392.252	308.174	50.174	-402.982
6	281.574	363.656	-30.359	-291.844	297.574	371.561	65.740	-307.955
7	194.495	338.590	125.927	-204.387	187.972	350.309	66.309	-197.792
8	62.196	336.935	56.515	-71.394	-26.092	340.299	79.072	16.832
9	-329.942	323.140	61.944	320.371	-366.632	321.923	12.297	357.132
10	-644.356	369.282	72.839	633.910	-646.790	362.060	18.901	636.510
11	-849.167	331.874	-37.400	838.320	-861.180	312.872	-25.366	850.355
12	-1048.409	397.832	95.897	1036.757	-1039.209	377.747	10.866	1027.859
13	-1039.764	324.211	48.700	1028.351	-1011.047	318.813	35.136	999.761
14	-966.413	328.626	-80.222	955.110	-948.440	338.234	11.226	937.386
15	-832.968	363.510	29.916	822.152	-807.202	374.327	22.850	796.464
16	-512.938	350.298	7.033	503.054	-525.334	356.718	41.359	515.304
17	-148.770	337.100	63.077	139.476	-161.406	360.551	26.318	152.142
18	130.732	333.145	10.643	-140.229	138.571	344.021	18.130	-148.132
19	311.583	354.170	107.208	-322.028	319.622	342.738	47.907	-330.040
20	342.132	364.826	-20.900	-352.708	338.836	362.058	38.578	-349.394
21	361.115	341.364	16.888	-371.738	359.625	342.999	47.156	-370.251
22	372.126	321.467	13.725	-382.767	380.594	328.497	41.209	-391.298
23	428.013	313.582	80.613	-438.964	462.729	325.267	120.006	-473.911
24	343.425	326.098	71.043	-353.943	342.256	329.642	9.341	-352.755

Tabela 7.29 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 69 test sistem (scenario 1): estimirane vrednosti izlaznih promenjivih DC porta 2

Vreme		0	PF			POL	YFIT	
[h]	PL2 [kW]	QL2[kvar]	QM2[kvar]	PM2[kW]	PL 2[kW]	QL[2kvar]	QM2[kvar]	PM2[kW]
1	-1526.182	377.376	1282.816	1507.442	-1499.224	309.234	1265.512	1480.697
2	-1367.731	-8.459	1279.259	1349.963	-1361.893	333.687	1285.655	1344.030
3	-1567.399	465.732	1261.075	1548.393	-1608.258	368.891	1319.329	1589.009
4	-1574.789	159.467	1243.149	1555.959	-1577.052	307.961	1259.491	1558.121
5	-1557.513	202.814	1129.899	1538.982	-1546.525	114.677	1123.434	1528.088
6	-1481.301	464.621	1329.999	1462.627	-1470.491	334.782	1317.008	1451.994
7	-1455.609	348.183	1257.107	1437.301	-1468.279	293.817	1238.032	1449.976
8	-1482.092	-99.623	1223.298	1465.966	-1451.014	263.751	1178.646	1432.932
9	-1121.461	153.590	1125.251	1106.689	-1157.215	184.084	1148.998	1142.253

Vreme		0	PF			POL	YFIT	
[h]	PL2 [kW]	QL2[kvar]	QM2[kvar]	PM2[kW]	PL 2[kW]	QL[2kvar]	QM2[kvar]	PM2[kW]
10	-1036.651	110.081	1252.667	1021.766	-1048.086	285.132	1254.676	1033.063
11	-882.762	250.258	1064.791	868.815	-887.571	126.409	1103.855	873.570
12	-899.466	358.694	1305.313	884.645	-900.604	271.649	1285.521	885.926
13	-976.418	350.963	1056.825	962.135	-961.650	108.145	1065.112	947.551
14	-966.199	233.546	1134.904	951.813	-955.440	214.570	1126.950	941.121
15	-1014.621	368.354	1281.184	999.539	-1001.331	297.222	1270.767	986.385
16	-1154.603	176.191	1229.472	1139.411	-1149.619	275.513	1228.087	1134.389
17	-1200.361	373.771	1254.755	1184.825	-1212.800	272.924	1279.506	1197.232
18	-1302.982	-36.397	1239.528	1285.631	-1306.607	261.694	1240.176	1289.168
19	-1428.607	391.320	1246.032	1410.438	-1425.026	216.022	1240.139	1406.991
20	-1380.913	-95.055	1344.151	1362.927	-1378.589	283.840	1321.502	1360.594
21	-1400.945	71.076	1256.499	1383.040	-1423.912	215.247	1249.417	1405.865
22	-1464.721	-41.003	1209.404	1446.575	-1474.008	177.509	1181.665	1455.841
23	-1656.976	383.736	1127.098	1637.797	-1700.091	230.268	1149.822	1680.726
24	-1365.984	356.472	1216.795	1348.227	-1369.761	90.844	1212.063	1352.115

7.3.6 Rezultati simulacija: IEEE 69 modifikovani test sistem (Scenario 2)

Pri simulacijama u drugom scenariju osnovna IEEE 69 mreža modifikovana je dodavanjem jednog jednosmernog porta sa tri priključka i 3 distribuirana generatora u mrežu. Jednopolna šema ovako modifikovanog test sistema prikazana je na slici 7.30.

Pri prekidu komunikacije, kada se upravljanje jednosmernim portom vrši lokalno, pomoću predloženog Polyfit algoritma, razmatran je skup dostupnih merenja prikazan u tabeli 7.30. Rezultati simulacija za navedeni scenario dati su na slikama 7.31 i 7.32, kao i u tabelama 7.31 i 7.32.

Slika 7.30 – IEEE 69 distributivna test mreža – topologija sa DC portom sa 3 priključka i 3 distribuirana generatora

Dostupno merenje	Opis
P ₄₉	Potrošnja aktivne snage u čvoru 49 – jedan od dominantnih potrošača aktivne snage u mreži
P_{50}	Potrošnja aktivne snage u čvoru 50 – jedan od dominantnih potrošača aktivne snage u mreži
P ₆₁	Potrošnja aktivne snage u čvoru 61 – jedan od dominantnih potrošača aktivne snage u mreži
P ₆₄	Potrošnja aktivne snage u čvoru 64 – jedan od dominantnih potrošača aktivne snage u mreži
Q_{49}	Potrošnja reaktivne snage u čvoru 49 – jedan od dominantnih potrošača reaktivne snage u mreži
Q_{50}	Potrošnja reaktivne snage u čvoru 50 – jedan od dominantnih potrošača reaktivne snage u mreži

Tabela 7.30 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 69 test sistem (scenario 2): dostupna merenja

Dostupno merenje	Opis
Q ₆₁	Potrošnja reaktivne snage u čvoru 61 – jedan od dominantnih potrošača reaktivne snage u mreži
P DG7	Generisanje fotonaponskog postrojenja u čvoru 7
P DG17	Generisanje fotonaponskog postrojenja u čvoru 17
P DG41	Generisanje fotonaponskog postrojenja u čvoru 41

Slika 7.31 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 69 test sistem (scenario 2): ukupni gubici aktivne snage u mreži

Slika 7.32 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 69 test sistem (scenario2) : izlazne promenjive DC porta

Vreme [h]	Pg BAZNI SLUČAJ [kW]	Pg OPF [kW]	Pg POLYFIT [kW]
1	240.1393	208.6812	208.6823
2	212.4741	184.9229	184.9230
3	273.4021	236.8551	236.8596
4	258.0587	224.0497	224.0133
5	230.8697	201.6152	201.6154
6	248.2859	217.2590	217.2608
7	244.4447	216.6292	216.6298
8	251.5854	227.3984	227.4002
9	201.6378	186.5385	186.5157
10	218.8055	203.5580	203.5582
11	180.3050	170.4207	170.4216
12	228.3166	214.1383	214.1403
13	208.6685	198.8461	198.8458
14	209.2197	198.1880	198.1887
15	226.8152	212.0582	212.0583
16	227.5005	211.2012	211.2024
17	217.2046	196.9468	196.9137
18	208.9076	185.4981	185.4988
19	222.3956	194.4744	194.4750
20	222.2322	193.1622	193.1234
21	220.3324	191.8094	191.8115
22	221.8381	193.3822	193.3831
23	270.4143	235.0711	235.0714
24	203.7005	177.7293	177.7314

Tabela 7.31 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 69 test sistem (scenario 2): ukupni gubici aktivne snage u mreži

Tabela 7.32 – Polyfit algoritam - rezultati simulacija za modifikovani IEEE 69 test sistem (scenario 2): estimirane vrednosti izlaznih promenjivih DC porta 1

Vreme			c	DPF					POL	YFIT		
[h]	PL [kW]	PR [kW]	QL [kvar]	QM[kvar]	QR [kW]	PM [kW]	PL [kW]	PR [kW]	QL [kvar]	QM [kvar]	QR [kW]	PM [kW]
1	399.89	212.49	398.41	57.58	171.84	-634.84	401.19	210.67	399.30	48.16	171.08	-634.32
2	357.43	189.80	397.97	55.69	171.99	-569.35	358.42	188.28	397.75	54.91	171.72	-568.82
3	435.98	229.70	422.82	62.31	180.32	-688.50	436.60	227.98	424.12	42.17	179.09	-687.39
4	424.26	224.85	401.97	0.25	171.65	-671.77	425.34	223.33	402.31	45.16	171.73	-671.33
5	404.91	218.42	349.87	51.97	152.99	-645.72	407.31	215.70	349.72	47.95	152.69	-645.39
6	388.71	195.59	422.16	58.16	177.47	-606.67	386.72	197.40	422.41	46.53	177.46	-606.50
7	375.19	182.27	399.11	55.00	166.00	-579.62	372.88	185.68	399.24	48.44	166.32	-580.73
8	354.36	154.21	390.55	50.32	156.00	-530.44	347.82	162.17	389.04	42.41	157.24	-531.85
9	237.88	84.97	372.40	-0.43	142.62	-343.71	233.96	90.87	369.27	40.41	146.10	-345.72
10	186.51	47.79	420.21	41.64	155.23	-254.95	185.52	49.27	417.91	38.70	157.64	-255.44
11	111.69	11.24	357.87	26.93	133.72	-142.89	114.28	7.19	358.50	26.11	133.43	-141.43
12	103.84	2.79	434.44	30.25	163.26	-126.85	112.73	-8.06	439.10	35.79	157.15	-124.90
13	122.06	0.17	360.33	26.69	129.52	-142.21	119.57	2.44	361.02	22.07	129.14	-141.98
14	123.76	11.45	378.38	29.87	138.60	-155.30	127.00	7.68	380.09	26.97	137.17	-154.78
15	159.91	29.00	428.60	38.63	156.37	-209.40	160.21	28.86	427.12	36.43	157.70	-209.57
16	226.89	69.01	410.86	43.75	152.31	-316.78	222.94	74.60	407.75	37.70	155.66	-318.42
17	277.74	113.63	414.06	-2.19	163.79	-412.73	273.29	119.88	412.15	45.94	166.12	-414.54
18	325.14	158.93	390.07	50.42	164.30	-505.84	323.09	161.64	389.67	44.71	164.28	-506.49
19	371.74	194.44	387.78	54.06	166.96	-588.36	371.80	194.32	387.99	47.69	166.66	-588.30

Vreme			c)PF			POLYFIT					
[h]	PL [kW]	PR [kW]	QL [kvar]	QM[kvar]	QR [kW]	PM [kW]	PL [kW]	PR [kW]	QL [kvar]	QM [kvar]	QR [kW]	PM [kW]
20	365.65	192.06	413.00	-0.74	177.87	-579.93	364.93	192.14	413.37	50.03	177.48	-579.28
21	374.00	200.23	388.17	56.58	168.32	-596.46	375.58	198.45	388.69	41.75	167.95	-596.26
22	386.15	207.56	367.52	53.16	160.32	-615.98	388.12	205.63	367.81	44.56	159.80	-616.03
23	455.10	243.53	366.39	55.41	158.22	-721.47	457.70	239.67	366.64	56.08	157.59	-720.20
24	355.89	191.11	371.38	52.88	162.41	-569.05	356.73	189.88	371.68	39.36	161.94	-568.64

7.3.7 Rezultati simulacija: Distributivni fider 20 kV DV Autoput Laktaši, Republika Srpska

Kao i u slučaju algoritma pretrage, primenjivost predloženog Polyfit algoritma u postojećim (stvarnim) distributivnim mrežama ilustrovana je izvođenjem simulacija na sistemu 20 kV DV Autoput Laktaši. Pri izvođenju simulacija bazna konfiguracija razmatranog distributivnog sistema modifikovana je identično modifikacijama opisanim u odeljku 7.2.6.

Takođe, pri lokalnom upravljanju jednosmerim portovima, na bazi Polyfit algoritma, razmatran je skup dostupnih merenja kao što je navedeno u tabeli 7.15. Rezultati simulacija prikazani su na slikama 7.33 – 7.35 kao i u tabelama 7.33 i 7.34.

Slika 7.33 – Polyfit algoritam - rezultati simulacija za distributivni fider DV 20 kV Autoput Laktaši: ukupni gubici aktivne snage u mreži

Slika 7.34 –Polyfit algoritam - rezultati simulacija za distributivni fider DV 20 kV Autoput Laktaši: ukupni gubici aktivne snage u mreži – OPF vs. Algoritam pretrage

Slika 7.35 – Polyfit algoritam - rezultati simulacija za distributivni fider DV 20 kV Autoput Laktaši: izlazne promenjive jednosmernog porta

Vreme [h]	Pg BAZNI SLUČAJ [kW]	Pg OPF [kW]	Pg Polyfit [kW]
1	37.8606	33.4454	33.4328
2	39.6555	34.4514	34.4664
3	31.1210	26.6404	26.6485
4	28.0053	24.2014	24.2019
5	33.1153	28.4451	28.4563
6	26.5576	22.8055	22.7890
7	38.0215	31.5389	31.4966
8	36.5783	30.8207	30.7991
9	38.8015	32.8218	32.8251
10	36.0320	30.9829	30.9834
11	40.9980	35.2283	35.2652
12	52.6305	45.1386	45.1913
13	41.5364	35.8343	35.8325
14	36.0287	31.0166	31.0312
15	45.7654	39.1194	39.1216
16	55.0225	48.0821	48.1296
17	61.2624	53.4345	53.4706
18	54.1838	47.9446	47.9747
19	61.2263	54.5450	54.5322
20	69.7556	62.4378	62.4307
21	75.3385	67.0396	67.0461
22	91.5708	82.5715	82.2444
23	74.1081	66.1775	66.1374
24	59.1680	52.3794	52.4062

Tabela 7.33 – Polyfit algoritam pretrage - rezultati simulacija za DV 20 kV Autoput Laktaši: ukupni gubici aktivne snage u mreži

Tabela 7.34 – Polyfit algoritam - rezultati simulacija za DV 20 kV Autoput Laktaši: estimirane vrednosti izlaznih promenjivih DC porta

Marana [h]		01	PF			POL	YFIT	
vreme [n]	PL [kW]	QL [kvar]	QM [kvar]	PM[kW]	PL [kW]	QL [kvar]	QM [kvar]	PM[kW]
1	-368.8328	145.7020	342.0591	364.1091	-365.7740	195.2033	340.6244	361.0058
2	-352.2551	234.1559	359.2000	347.4507	-361.6839	217.0633	346.3668	356.8901
3	-330.0018	234.3661	379.0863	325.2582	-342.8848	208.8703	367.3276	338.1516
4	-328.1681	200.7106	380.6405	323.4868	-340.6608	206.1487	369.8696	335.9384
5	-349.6131	228.6673	361.9889	344.8277	-338.6093	226.0058	370.6883	333.8593
6	-319.4582	159.4085	388.2668	314.8602	-332.3755	201.8153	379.3198	327.6774
7	-324.9841	260.2828	383.4772	320.2011	-328.9403	271.9507	385.3161	324.1138
8	-335.5319	242.5216	374.1548	330.7578	-332.3942	252.8644	380.3103	327.6015
9	-334.4667	252.9736	375.1343	329.6751	-337.3409	231.1979	373.3353	332.5789
10	-342.1745	181.7396	368.5936	337.4794	-338.3872	190.3444	370.3070	333.6936
11	-336.4158	246.6869	373.6258	331.6290	-346.1368	216.9919	362.6182	341.3807
12	-343.0484	303.7691	367.9191	338.1315	-355.6685	324.1384	349.9014	350.6949
13	-330.4303	225.5999	378.9435	325.6944	-338.4252	225.2048	372.4913	333.6686
14	-334.2640	223.9226	375.7911	329.5239	-332.3987	188.9819	378.1300	327.7171
15	-332.5112	290.7569	377.4400	327.6471	-335.7960	259.6747	374.2685	330.9844

Vromo [h]		0	PF			POL	YFIT	
vreme [n]	PL [kW]	QL [kvar]	QM [kvar]	PM[kW]	PL [kW]	QL [kvar]	QM [kvar]	PM[kW]
16	-383.0943	267.2752	326.9957	378.1479	-358.5530	235.3415	349.7920	353.7299
17	-384.2225	277.9362	325.1661	379.2529	-377.6881	272.3102	328.7359	372.7524
18	-394.1224	279.2438	313.4712	389.1288	-391.0290	200.3012	314.3458	386.1728
19	-414.0227	201.9990	287.3390	409.0925	-406.8579	207.2852	297.9669	401.9388
20	-407.7411	251.5484	295.1676	402.7533	-411.3041	221.2172	292.5472	406.3487
21	-410.0533	254.7404	292.7537	405.0508	-409.6466	245.8222	293.3268	404.6592
22	-437.5631	149.3019	250.4291	432.6156	-445.9964	272.9131	255.7077	440.8354
23	-419.8246	262.9778	278.3195	414.7851	-425.6445	242.4729	276.0750	420.6106
24	-397.0163	269.3640	308.8788	392.0321	-398.0150	223.6191	304.1741	393.1073

8. ZAKLJUČAK

Promene u energetskom sektoru, nastale kao posledica tranzicije ka održivim i ekološki prihvatljivijim izvorima energije, neizbežno se manifestuju i u elektrodistributivnim sistemima. Savremeni distributivni sistemi postaju aktivni kako u tehničkom smislu, zahvaljujući integraciji distribuiranih generatora i upravljive potrošnje, tako i u ekonomskim aspektima, uvažavajući formiranje i deregulaciju tržišta električne energije na distributivnom nivou. Kako bi se ove promene adekvatno ispratile, u poslednjih nekoliko decenija aktivno se razvijaju novi uređaji i prateći softver koji omogućavaju regulaciju tokova snaga u distributivnim mrežama i u mnogome olakšavaju integraciju distribuiranih generatora te osiguravaju optimalno iskorišćenje postojećih resursa. U ovu svrhu intenzivno se razmatraju i jednosmerni portovi, uređaji na bazi energetske elektronike, koji omogućavaju zatvaranje petlji u distributivnim mrežama i regulaciju tokova snaga u mreži ili njenom određenom delu.

Ideja zatvaranje petlji u srednjenaponskim mrežama zapravo je stara više od pedeset godina. Međutim, zbog niza negativnih propratnih pojava (propagacija i povećanje struje kvara, komplikovanije zaštitne šeme itd.) koncept direktnog zatvaranja petlji nije zaživeo u konvencionalnim distributivnim mrežama. S razvojem uređaja energetske elektronike omogućava se posredno zatvaranje petlji, bez negativnih posledica, i slabo upetljana topologija distributivnih mreža ponovo postaje aktuelna.

Hardverski i topološki, jednosmerni portovi jako su slični HVDC uređajima koji su već široko rasprostranjeni u prenosnim mrežama. Primena ovakvih uređaja u distributivnim mrežama osim hardverskih modifikacija zahteva i razvoj posebnih upravljačkih algoritama (adekvatnog softvera) čija primena omogućava efikasan i pouzdan rad ne samo jednosmernih portova već i celokupne distributivne mreže sa svim svojim specifičnostima. Integracijom jednosmernih portova u distributivnu mrežu dobijaju se novi upravljački resursi koji uz odgovarajuće upravljačke strategije omogućavaju regulaciju tokova snaga i postizanje željenog odnosno optimalnog stanja u mreži. Za efikasan rad jednosmernih portova neophodno je određivanje referentnih vrednosti izlaznih promenjivih (snaga) DC porta što se upravo i postiže primenom odgovarajućeg upravljanja.

U normalnim uslovima rada, kada su svi neophodni ulazni podaci dostupni, regulacija rada jednosmernih portova vrši se centralizovano, na bazi rezultata proračuna optimalnih tokova snaga. Pojednostavljeno rečeno, u normalnim uslovima rada jednosmerni portovi se tretiraju kao dodatni, potpuno upravljivi resursi te se njihovo upravljanje zasniva na integraciji odgovarajućih modela u postojeće algoritme optimizacije. Na ovaj način, u normalnim uslovima rada, izlazne promenjive jednosmernih portova tretiraju se kao dodatne nezavisne promenjive u optimizacionom postupku. U kritičnim uslovima rada, do kojih dolazi pri potpunoj ili delimičnoj nedostupnosti ulaznih podataka, izvršavanje proračuna optimalnih tokova snaga nije moguće pa samim tim ni centralizovano upravljanje jednosmernim portovima. Ovakvi slučajevi najčešće su prouzrokovani prekidom komunikacije i zahtevaju dodatne upravljačke module (algoritme) koji omogućavaju lokalno upravljanje jednosmernim portovima.

Upravljački okvir opisan u ovoj doktorskoj disertaciji obuhvata i normalne i kritične uslove rada jednosmernih portova. U normalnim uslovima rada predloženo je centralizovano upravljanje na bazi metaheurističkog optimizacionog algoritma Sivih vukova pri čemu izlazne snage jednosmernih portova figurišu kao nezavisne promenjive u postupku optimizacije. Za upravljanje jednosmernim portovima u kritičnim uslovima rada, kada rezultati OPF proračuna nisu dostupni, razvijena su, implementirana i testirana dva potpuno nova upravljačka algoritma: Algoritam pretrage i Polyfit algoritam. Oba algoritma temelje se na primeni metoda veštačke inteligencije u kombinaciji sa istorijom rada jednosmernog porta i skupom merenja dostupnih tokom kritičnih perioda prekida komunikacije (nedostupnosti OPF-a).

Algoritam pretrage koncipiran je tako da se u momentu prekida komunikacije detektuje skup preostalih dostupnih merenja koja dalje učestvuju u formiranju kriterijuma pretrage. Na osnovu ovako formiranog kriterijuma vrši se pretraga baze podataka u kojoj su smešteni podaci o istoriji rada razmatranog jednosmernog porta. Iz baze istorijskih podataka identifikuje se kvazioptimalno stanje tj. ono stanje iz istorije koje je najsličnije stanju detektovanom u momentu prekida komunikacije. Izlazne promenjive jednosmernog porta postavljaju se na odgovarajuće vrednosti iz identifikovanog kvazioptimalnog stanja i algoritam se izvršava sve do ponovnog uspostavljanja komunikacije tj. do ponovne dostupnosti rezultata OPF proračuna.

Osnovu Polyfit algoritma čini polinomna estimacija izlaznih promenjivih DC porta koja se izvršava u slučajevima nedostupnosti rezultata OPF proračuna. Nakon detektovanja prekida komunikacije (momenat kada rezultati OPF-a postaju nedostupni) vrši se detekcija i obrada skupa preostalih dostupnih merenja. Obradom podataka koji opisuju rad DC porta u nekom prethodnom periodu za svaku od izlaznih promenjivih jednosmernog porta određuje se estimirajuća polinomna funkcija. Merenja dostupna pri prekidu komunikacije u ovoj funkciji figurišu kao nezavisne promenjive. Uvrštavanjem trenutno dostupnih vrednosti merenja u estimirajuće polinome vrši se procena vrednosti izlaznih promenjivih jednosmernh portova odnosno izlazi DC porta postavljaju se na estimirane vrednosti. Algoritam se izvršava za svaku od nezavinih promenjivih DC porta, sve do ponovne uspostave komunikacije tj. do povratka na centralizovano upravljanje.

Predloženi algoritmi su implementirani u programskom okruženju *Matlab* i testirani izvođenjem simulacija na ukupno tri distributivne mreže: IEEE 33, IEEE 69 i 20 kV DV Autoput Laktaši, Republika Srpska. Rezultati simulacija ukazuju na širok spektar primenjivosti predloženih algoritama. Oba algoritma pokazala su se primenjivim bez obzira na broj jednosmernih portova i distribuiranih generatora u mreži. Iako na prvi pogled slični, razvijeni algoritmi suštinski se razlikuju u načinu na koji tretiraju istorijsku bazu podataka i merenja dostupna tokom trajanja prekida komunikacije. Dok algoritam pretrage dostupna merenja koristi kao kriterijum pretrage istorijske baze podatka (svojevrsni trenažni postupak), u polinomnoj esitmaciji ove vrednosti direktno utiču na estimirane vrednosti izlaza jednosmernog porta. Rezultati simulacija takođe su pokazali i zadovoljavajuću tačnost estimacije korišćenjem oba razvijena algoritma. U oba slučaja greška estimacije ne prelazi 5% što je u rangu standardne greške prognoze potrošnje u distributivnim sistemima. Shodno tome, može se zaključiti kako bi razvijeni algoritmi bili primenjivi u praksi, pri implementaciji lokalnih kontrolera jednosmernih portova.

Prednosti algoritama razvijenih tokom izrade ove disertacije prvenstveno se ogledaju u njihovoj jednostavnosti i mogućnosti realizacije korišćenjem minimalnih resursa. Oba algoritma pri implementaciji zahtevaju identične resurse: memorijske kapacitete neophodne za čuvanje istorije rada jednosmernih portova i računarske resurse sposobne za izvršavanje osnovnih računskih operacija. Uvažavajući specifičnosti potrošnje u distributivnim mrežama kao i karakteristike savremenih DMS sistema, predloženi algoritmi mogu se koristiti i kao dopuna DMS sistemima koja omogućava nesmetan rad jednosmernih portova u kritičnim uslovima rada odnosno lokalno upravljanje jednosmernim portovima u proširenom realnom vremenu.

Nedostaci predloženih algoritama proizilaze iz specifičnosti kako jednosmernih portova tako i same distributivne mreže koja se razmatra. Primena predloženih algoritama zahteva dostupnost istorijske baze podataka što dalje implicira da je neophodno osigurati nesmetano izvršavanje OPF proračuna tokom određenog vremenskog perioda kako bi se početna baza podataka konzistentno popunila. Efikasnost oba algoritma zavisi od sadržaja istrorijske baze podataka (varijacije potrošnje i proizvodnje u mreži) pa je raznolikost istorijskih podataka osnovni preduslov za efkasan rad predloženih algoritama u različitim scenarijima. Lokalno upravljanje jednosmerim portovima, predloženo u ovoj disertaciji, takođe zavisi i od skupa podataka (merenja) dostupnih prilikom prekida komunikacije. U slučaju distributivnih sistema velikih dimenzionalnosti i ovaj skup dostupnih merenja može biti jako velikih dimenzija pa je problemu klasifikacije i izbora merenja koja će učestvovati u lokalnom upravljanju jednosmernim portovima neophodno posvetiti dodatnu pažnju.

Nastavak naučnoistraživačkog rada u oblasti upravljanja jednosmernim portovima biće usmeren prema dva glavna cilja. Prvi cilj jeste dopuna predloženih algoritama i njihovo prilagođenje kako bi postali primenjivi i u nesimetričnim distributivnim mrežama. Kao što je već rečeno, adaptacija upravljačkih strategija za primenu u nesimetričnim režimima rada zahteva i modelovanje dodatnih hardverskih komponenti što će svakako biti u fokusu interesovanja i istraživanja u budućnosti. Drugi cilj buduđeg rada odnosi se na formiranje fizičkih modela i primenu predloženih algoritama u praksi. Integracija jednosmernih portova već je zaživela u zemljama Eropske Unije kroz nekoliko aktuelnih pilot projekata koji obuhvataju integraciju DC portova (kapaciteta reda nekoliko MVA) i upravljanje njihovim radom na bazi OPF-a. Zahvaljujući rezultatima ovih studija očekuje se dodatni prostor i za usavršavanje algoritama za lokalno upravljanje jednosmernim portovima. Naime, nakon praktične implementacije DC portova kroz pilot projekte očekuje se respektabilan skup ulaznih podataka koji bi poslužio za pobolišanja postojećih i razvoj potpuno novih upravljačkih strategija. Konačno, upravljački algoritmi predloženi u ovoj disertaciji mogu poslužiti kao polazna osnova za budući razvoj dodatnih modula DMS-a. Na taj način, uporednim radom lokalnih kontrolera DC portova i DMS-a, radila bi se validacija predloženih algoritama, pokazale mogućnosti za dodatna poboljšanja i verifikovale performanse na osnovu primene predloženih algoritama u praksi.

LITERATURA

- J. Flottemesch and M. Rother, "Optimized energy exchange in primary distribution networks with dc links," in Proc. IEEE Int. Conf. Utility Dereg., Restruct. Power Technol., Apr. 5–8, 2004, vol. 1, pp. 108–116.
- [2] N. Okada, "A method to determine the distributed control setting of looping devices for active distribution systems", in Proc. IEEE Bucharest PowerTech, Bucharest, Romania, 2009, pp. 1–6.
- [3] C.Wang, G.Song, P.Li, et al., "Optimal Configuration of Soft Open Point for Active Distribution Network Based on Mixed-integer Second-order Cone Programming", Applied Energy Symposium and Forum, REM2016, Maldives, Apr. 2016.
- [4] C. Long, J. Wu, L. Thomas, N. Jenkins, "Optimal operation of soft open points in medium voltage electrical distribution networks with distributed generation". Appl. Energy vol. 184, pp: 427–437, Dec. 2016.
- [5] H. Ji, C. Wang, P. Li, J. Zhao, G. Song, J. Wu, "Quantified flexibility evaluation of soft open points to improve distributed generator penetration in active distribution networks based on difference-of-convex programming", Appl. Energy vol. 218, pp:338–348, May 2018.
- [6] E.Cuevas, E.B.Espejo, A.C.Enriquez, "Metaheuristics Algorithms in Power Systems", Springer 2019.
- [7] Q.Qi, J. Wu, C.Long, "Multi-objective operation optimization of an electrical distribution network with soft open point", Appl. Energy vol. 208, pp: 734–744, Dec. 2017.
- [8] Bloemink, J.M., Green, T.C., "Increasing distributed generation penetration using soft normally-open points", IEEE PES General Meeting, PES 2010, Minneapolis, Minnesota, USA, 2010, pp. 1–8
- [9] Bloemink, J.M., Green, T.C., "Increasing photovoltaic penetration with local energy storage and soft normally-open points", IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 2011, pp. 1–8
- [10] Bloemink, J.M., Green, T.C., "Benefits of distribution-level power electronics for supporting distributed generation growth", IEEE Trans. Power Deliv., vol .28, no.2, pp. 911–919, 2013.
- [11] Thomas, L.J., Burchill, A., Rogers, D.J., et al.: "Assessing distribution network hosting capacity with the addition of soft open points", IET Conf. Publications, 2016, 2016, (CP694), pp. 32 (6 .)–32 (6 .)
- [12] Ji, H., Wang, C., Li, P., et al.: "Robust operation of soft open points in active distribution networks with high penetration of photovoltaic integration", IEEE Trans. Sust. Energy, vol. 10, no.2, pp. 280–289, 2018.
- [13] Wang, Q., Liao, J., Su, Y., et al.: "An optimal reactive power control method for distribution network with soft normally-open points and controlled airconditioning loads", Int. J. Electr. Power Energy Syst., vol. 103, pp. 421–430, Dec. 2017.

- [14] Q. Qi, J. Wu, L. Zhang, and M. Cheng, "Multi-objective optimization of electrical distribution network operation considering reconguration and soft open points," Energy Procedia, vol. 103, pp. 141-146, Dec. 2016.
- [15] Q. Qi and J. Wu, "Increasing distributed generation penetration using network reconguration and soft open points," Energy Procedia, vol. 105, pp. 2169-2174, May 2017.
- [16] W. Cao, J. Wu, N. Jenkins, C. Wang, and T. Green, "Benefts analysis of soft open points for electrical distribution network operation," Appl. Energy, vol. 165, pp. 36-47, Mar. 2016.
- [17] C. Han, S. Song, Y. Yoo, J. Lee, G. Jang, and M. Yoon, "Optimal operation of soft-open points for high penetrated distributed generations on distribution networks," in Proc. 10th Int. Conf. Power Electron. ECCE Asia (ICPE ECCE Asia), Busan, South Korea, 2019, pp. 806-812.
- [18] M. B. Shafk, G. I. Rashed, H. Chen, M. R. Elkadeem, and S. Wang, "Reconguration strategy for active distribution networks with soft open points," in Proc. 14th IEEE Conf. Ind. Electron. Appl. (ICIEA), Xi'an, China, Jun. 2019, pp. 330-334.
- [19] Y. Zheng, Y. Song, and D. J. Hill, "A general coordinated voltage regulation method in distribution networks with soft open points," Int. J. Electr. Power Energy Syst., vol. 116, Mar. 2020, Art. no. 105571.
- [20] C. Long, J. Wu, L. Thomas, and N. Jenkins, "Optimal operation of soft open points in medium voltage electrical distribution networks with distributed generation," Appl. Energy, vol. 184, pp. 427-437, Dec. 2016.
- [21] S. Y. Hui, C. K. Lee, and F. F. Wu, "Electric springsA new smart grid technology," IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1552-1561, Sep. 2012.
- [22] C. Yao, C. Zhou, J. Yu, K. Xu, P. Li, and G. Song, "A sequential optimization method for soft open point integrated with energy storage in active distribution networks," Energy Procedia, vol. 145, pp. 528-533, Jul. 2018.
- [23] J. M. Bloemink and T. C. Green, "Increasing distributed generation penetration using soft normally-open points," in Proc. IEEE PES Gen. Meeting, Providence, RI, USA, Jul. 2010, pp. 1-8.
- [24] H. Ji, P. Li, C. Wang, G. Song, J. Zhao, H. Su, and J. Wu, "A strengthened SOCP-based approach for evaluating the distributed generation hosting capacity with soft open points," Energy Procedia, vol. 142, pp. 19471952, Dec. 2017.
- [25] H. Ji, C. Wang, P. Li, F. Ding, and J. Wu, "Robust operation of soft open points in active distribution networks with high penetration of photovoltaic integration," IEEE Trans. Sustain. Energy, vol. 10, no. 1, pp. 280289, Jan. 2019.
- [26] X. She, X. Yu, F.Wang, and A. Q. Huang, "Design and demonstration of a 3.6-kV120-V/10-kVA solid-state transformer for smart grid application, "IEEE Trans. Power Electron., vol. 29, no. 8, pp. 3982-3996, Aug. 2014.
- [27] Aithal, A., Long, C., Cao, W., et al.: "Impact of soft open point on feeder automation".2016 IEEE Int. Energy Conf., ENERGYCON 2016, Leuven, Belgium, 2016

- [28] Aithal, A., Li, G., Wu, J., et al.: "Performance of an electrical distribution network with soft open point during a grid side AC fault", Appl. Energy, vol. 227, pp. 262–272, Aug. 2018.
- [29] P. Li, G. Song, H. Ji, J. Zhao, C. Wang, and J. Wu, "A supply restoration method of distribution system based on soft open point," in Proc. IEEE Innov. Smart Grid Technol. Asia (ISGT-Asia), Melbourne, VIC, Australia, Nov. 2016, pp. 535539.
- [30] T. Ding, Z. Wang, W. Jia, B. Chen, C. Chen, and M. Shahidehpour, "Multiperiod distribution system restoration with routing repair crews, mobile electric vehicles, and soft-open-point networked microgrids," IEEE Trans. Smart Grid, vol. 11, no. 6, pp. 47954808, Nov. 2020, doi: 10.1109/TSG.2020.3001952.
- [31] P. Li, J. Ji, H. Ji, G. Song, C.Wang, and J.Wu, "Self-healing oriented supply restoration method based on the coordination of multiple SOPs in active distribution networks," Energy, vol. 195, Mar. 2020, Art. no. 116968.
- [32] H. Ji, C. Wang, P. Li, G. Song, and J. Wu, "SOP-based islanding partition method of active distribution networks considering the characteristics of DG, energy storage system and load," Energy, vol. 155, pp. 312325, Jul. 2018.
- [33] P. Li, H. Ji, C. Wang, J. Zhao, G. Song, F. Ding, and J. Wu, "Coordinated control method of voltage and reactive power for active distribution networks based on soft open point," IEEE Trans. Sustain. Energy, vol. 8, no. 4, pp. 1430-1442, Oct. 2017.
- [34] S. Zhang, L. Zhang, K. Li, H. Zhang, J. Lyu, and H. Cheng, "Multiobjective planning of soft open point in active distribution network based on bi-level programming," in Proc. IEEE Innov. Smart Grid Technol. Asia (ISGT Asia), Chengdu, China, May 2019, pp. 32513255.
- [35] L. Zhang, C. Shen, Y. Chen, S. Huang, and W. Tang, "Coordinated allocation of distributed generation, capacitor banks and soft open points in active distribution networks considering dispatching results," Appl. Energy, vol. 231, pp. 11221131, Dec. 2018.
- [36] S. Li, M. Fairbank, C.Johnson, D.C. Wunsch and E. Alonso, "Artifical Neural Networks for Control of a Grid-Connected Rectifier/Inverter under Disturbance, Dynamic and Power Converter Switching Conditions" IEEE Trans. Neural Netw.and Learn. Syst., Vol. 25, Issue 4, pp. 738-750, Apr. 2014.
- [37] A. Luo, C. Tang, Z. Shuai, J. Tang, X. Xu, and D. Chen, "Fuzzy-PI-Based Direct-Output-Voltage Control Strategy for the STATCOM Used in Utility Distribution Systems," IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2401-2411, July 2009.
- [38] A. Yazdani and R. Iravani, "Voltage-sourced Converters in Power Systems". Wiley-Blackwell, 2010.
- [39] M. Erol-Kantarci. H. T. Mouftah, "Energy-Efficient Information and Communication Infrastructures in the Smart Grid: A Survey on Interactions and Open Issues", IEEE Commun. Surv. Tutor. vol. 17, no.1, pp. 179-197, 2015.
- [40] A. Marano-Marcolini et al., "DC Link Operation in Smart Distribution Systems With Communication Interruptions", IEEE Trans. Smart Grid, vol. 7, pp.2962-2970, 2016.
- [41] N. Okada, "Verification of Control Method for a Loop Distribution System using Loop Power Flow Controller", IEEE PES Power Systems Conference and Exposition, Atlanta, GA, 2006, pp. 2116-2123.
- [42] N. Okada, "A method to determine the distributed control setting of looping devices for active distribution systems", IEEE Bucharest PowerTech, Bucharest, 2009, pp. 1-6.
- [43] H. Hafezi, H. Laaksonen, "Autonomous Soft Open Point Control for Active Distribution Network Voltage Level Management" IEEE Milan PowerTech, Milan, Italy, 2019, pp. 1-6.
- [44] P.Li, H.Ji, H.Yu, et al, "Combined decentralized and local voltage control strategy of soft open points in active distribution networks". Appl. Energy vol. 241, pp. 613–624, 2019.
- [45] IEEE Standard Test Procedure for Polyphase Induction Motors and Generators, IEEE Standard 112-1991, 1991.
- [46] H. Xiao, W. Pei, and K. Li, "Optimal sizing and siting of soft open point for improving the three phase unbalance of the distribution network," in Proc. 21st Int. Conf. Electr. Mach. Syst. (ICEMS), Jeju, South Korea, Oct. 2018, pp. 20802084.
- [47] R.W. Erickson, D. Maksimovic, "Fundamentals of Power Electronics", Soringer, Cham, 2020.
- [48] Branko Dokić, "Power Electronics converters and regulators Akademska misao, Belgrade 2007.
- [49] Espi Huerta JM, Castello-Moreno J, Fischer JR, Garcia-Gil R. A synchronous reference frame robust predictive current control for three-phase gridconnected inverters. IEEE Trans Ind. Electron. 2010;57:954–62.
- [50] Rolim LGB, da Costa DR, Aredes M. Analysis and software implementation of a robust synchronizing PLL circuit based on the pq theory. IEEE Trans Ind. Electron. 2006;53:1919–26.
- [51] M. Li, H.Yang, R. Zhao, T. Zheng, C. Si,Y. Lu, andY.Yang, "Comparative study on the operating area of M3C and B2B MMC for soft open point application," in Proc. 10th Int. Conf. Power Electron. ECCE Asia (ICPE ECCE Asia), Busan, South Korea, 2019, pp. 1205-1212.
- [52] S. Ouyang, J. Liu, Y. Yang, X. Chen, S. Song and H. Wu, "DC Voltage Control Strategy of Three-Terminal Medium-Voltage Power Electronic Transformer-Based Soft Normally Open Points," in IEEE Transactions on Industrial Electronics, vol. 67, no. 5, pp. 3684-3695, May 2020, doi: 10.1109/TIE.2019.2922915.
- [53] H. Hafezi and R. Faranda, "A New Approach for Power Losses Evaluation of IGBT/Diode Module," Electronics, vol. 10, no. 3, p. 280, Jan. 2021, doi: 10.3390/electronics10030280.
- [54] M. Fakharmanesh, C.M. Hackl, R. Perini, Instantaneous Conduction and Switching Losses in Two-level Voltage Source Inverters, Proceedings of the 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy, 6–9 June 2017; pp. 7–12.
- [55] D. Graovac, M. Pürschel, IGBT Power Losses Calculation Using the Data-Sheet Parameters. Infineon Application Note, Infineon Technologies AG: Neubiberg, Germany, 2009; pp. 1–12.

- [56] IEC-62751-2, Determination of Power Losses in Voltage Sourced Converter (VSC) Valves for HVDC Systems—Part 2: Modular Multilevel Converters, International Electrotechnical Commission, Geneva, Switzerland, 2014.
- [57] U. Nicolai, A. Wintrich, Application Note AN 1403, Determining Switching Losses of SEMIKRON IGBT Modules, SEMIKRON International GmbH, 2014. Available online: https://www.semikron.com/service-support/downloads/detail/semikron-application-notedetermining-switching-losses-of-semikron-igbt-modules-en-2014-08-19-rev-00.html (posećeno 11.12.2021.).
- [58] P. Panciatici et al., "Advanced optimization methods for power systems," 2014 Power Systems Computation Conference, 2014, pp. 1-18, doi: 10.1109/PSCC.2014.7038504.
- [59] H. Mataifa, S. Krishnamurthy and C. Kriger, "Volt/VAR Optimization: A Survey of Classical and Heuristic Optimization Methods," in IEEE Access, vol. 10, pp. 13379-13399, 2022, doi: 10.1109/ACCESS.2022.3146366.
- [60] W. Gai, C. Qu, J. Liu and J. Zhang, "An improved grey wolf algorithm for global optimization," 2018 Chinese Control And Decision Conference (CCDC), 2018, pp. 2494-2498, doi: 10.1109/CCDC.2018.8407544.
- [61] W. GU, "An improved multi-objective grey wolf optimization algorithm with dynamic chaos local search mechanism," 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 2020, pp. 2020-2024, doi: 10.1109/ITAIC49862.2020.9338760.
- [62] A. Garces, "A Linear Three-Phase Load Flow for Power Distribution Systems," in IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 827-828, Jan. 2016, doi: 10.1109/TPWRS.2015.2394296.
- [63] D. Ivic, D. Macanovic, D. Sosic and P. Stefanov, "Weakly meshed distribution networks with distributed generation — power flow analysis using improved impedance matrix based algorithm," 2016 International Symposium on Industrial Electronics (INDEL), 2016, pp. 1-6, doi: 10.1109/INDEL.2016.7797772.
- [64] Qi Su and J. Widom, "Indexing relational database content offline for efficient keywordbased search," 9th International Database Engineering & Application Symposium (IDEAS'05), 2005, pp. 297-306, doi: 10.1109/IDEAS.2005.36.
- [65] C. Villien and E. P. Ostertag, "A Polynomial Approximation Algorithm for Real-Time Maximum-Likelihood Estimation," in IEEE Transactions on Signal Processing, vol. 57, no. 6, pp. 2085-2095, June 2009, doi: 10.1109/TSP.2009.2016875.
- [66] A. -. van der Veen and P. Dewilde, "Large matrix inversion using state space techniques," Proceedings of IEEE Workshop on VLSI Signal Processing, 1993, pp. 406-414, doi: 10.1109/VLSISP.1993.404465.
- [67] S. Olmos, J. Garcia, R. Jane and P. Laguna, "Truncated orthogonal expansions of recurrent signals: equivalence to a linear time-variant periodic filter," in IEEE Transactions on Signal Processing, vol. 47, no. 11, pp. 3164-3172, Nov. 1999, doi: 10.1109/78.796456.
- [68] S. Uhlich and B. Yang, "Efficient Recursive Estimators for a Linear, Time-Varying Gaussian Model with General Constraints," in IEEE Transactions on Signal Processing, vol. 58, no. 9, pp. 4910-4915, Sept. 2010, doi: 10.1109/TSP.2010.2052048.

- [69] J.D. Glover, M.S. Sarma, T.J Overbye, Power Systems Analysis and Design Fifth edition, Cengage Learning, Stamford USA 2012.
- [70] N. Rajaković: "Analiza elektroenergetskih sistema 1", Beograd 2002
- [71] A. Garcia, A. Monticelli and P. Abreu, "Fast Decoupled State Estimation and Bad Data Processing", IEEE Trans. on Power Apparatus and Systems Vol. PAS-98, pp.1645-1652, September 1979.
- [72] A. Abur, A.G. Exposito, "Power System State Estimation Theory and Implementation", Dekker, New York, 2004.
- [73] T. Okon and K. Wilkosz, "Comparison of weighted-least-squares power system state estimation in polar and rectangular coordinate systems," 2010 9th International Conference on Environment and Electrical Engineering, 2010, pp. 140-143, doi: 10.1109/EEEIC.2010.5489955.
- [74] P. Li et al., "Optimal Operation of Soft Open Points in Active Distribution Networks Under Three-Phase Unbalanced Conditions," in IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 380-391, Jan. 2019, doi: 10.1109/TSG.2017.2739999.
- [75] J. Pérez-Olvera, T. C. Green and A. Junyent-Ferré, "Active network management in LV networks: a case study in the UK," 2020 IEEE Power & Energy Society General Meeting (PESGM), 2020, pp. 1-5, doi: 10.1109/PESGM41954.2020.9281406.

BIOGRAFIJA AUTORA

Dejan Ivić je rođen 22.04.1992. godine u Banjaluci. Banjalučku Gimnaziju završava 2011. godine sa odličnim uspehom. Iste godine upisuje osnovne studije na Elektrotehničkom fakultetu u Banjaluci, odsek elektroenergetski i industrijski sistemi. Osnovne studije završio je 2015. godine sa prosečnom ocenom na ispitima 8,13. Diplomski rad pod nazivom "Realizacija sistema za upravljanje i nadzor rada srednjenaponske transformatorske stanice" odbranio je u septembru 2015. godine sa ocenom 10 (deset).

Iste, 2015. godine upisao je master akademske studije na Elektrotehničkom fakuletu u Beogradu, modul Elektroenergetski sistemi. Master studije završio je 2016. godine sa prosečnom ocenom 9,60. Master rad pod nazivom "Analiza rada petljastih niskonaponskih mreža" odbranio je u septembru 2016. godine sa ocenom 10 (deset).

Doktorske studije je upisao 2016. na Elektrotehničkom fakultetu u Beogradu, modul Elektroenergetske mreže i sistemi, gde je položio sve ispite sa prosečnom ocenom 10,00.

Od aprila 2015. godine angažovan je kao saradnik-konsultant za distributivne elektroenergetske mreže i relejnu zaštitu pri internacionalnoj kompaniji Toshiba Transmission & Distribution Europe S.p.A. Genova. Od februara 2020. godine angažovan je takođe kao konsultant pri kompaniji PROINTER ITSS d.o.o. Banja Luka. Član je međunarodnog udruženja IEEE ogranak Srbija i Crna Gora.

Oblasti naučnog istraživanja i interesovanja Dejana Ivića su: regulacija tokova snaga u distributivnim mrežama, primena uređaja energetske elektronike u distributivnim mrežama, relejna zaštita i automatizacija u EES, inteligentne mreže, integracija obnovljivih izvora energije u EES i e-mobilnost u smislu infrastrukture neophodne za punjenje električnih vozila.

Autor je više radova publikovanih u međunarodnim i domaćim časopisima, kao i zbornicima međunarodnih, regionalnih i domaćih konferencija. Tečno govori engleski i nemački jezik.

образац изјаве о ауторству

Изјава о ауторству

Име и презиме аутора Агејан Швић Број индекса ______ 2016 / 5006

Изјављујем

да је докторска дисертација под насловом

Развој управлачких алторишана за управланое једносперним Поршовина у дистрибушив кип пренната са дистрибупранним ленераторита

- резултат сопственог истраживачког рада;
- да дисертација у целини ни у деловима није била предложена за стицање друге дипломе према студијским програмима других високошколских установа;
- да су резултати коректно наведени и
- да нисам кршио/ла ауторска права и користио/ла интелектуалну својину других лица.

Потпис аутора

У Београду, 28.04.2022.

Lexit Utr

образац изјаве о истоветности штампане и електронске верзије докторског рада

Изјава о истоветности штампане и електронске верзије докторског рада

Име и презиме аутора Дејан Швић	
Број индекса <u>5006/2016</u>	
Студијски програм <u>ЕТФ- 35</u> <u>Електроенергетске</u> преще и с Наслов рада <u>Развој управланих</u> алгортска за управлање је адабовника у дистрибутивник тренска са ди Ментор <u></u>	JILO CACPITUM appusyupayum Tettepanopwra

Изјављујем да је штампана верзија мог докторског рада истоветна електронској верзији коју сам предао/ла ради похрањивања у Дигиталном репозиторијуму Универзитета у Београду.

Дозвољавам да се објаве моји лични подаци везани за добијање академског назива доктора наука, као што су име и презиме, година и место рођења и датум одбране рада.

Ови лични подаци могу се објавити на мрежним страницама дигиталне библиотеке, у електронском каталогу и у публикацијама Универзитета у Београду.

Потпис аутора

У Београду, _28.04. 2022.

Leja H Wart

11

образац изјаве о коришћењу

Изјава о коришћењу

Овлашћујем Универзитетску библиотеку "Светозар Марковић" да у Дигитални репозиторијум Универзитета у Београду унесе моју докторску дисертацију под насловом:

Paylogi ytipolokay kux antoputiana za ynpolohoake jeg hoomepikum tigztudauna y gueripusytukakun mpetterra ca gueripuszupathum Terrepatropuna

која је моје ауторско дело.

Дисертацију са свим прилозима предао/ла сам у електронском формату погодном за трајно архивирање.

Моју докторску дисертацију похрањену у Дигиталном репозиторијуму Универзитета у Београду и доступну у отвореном приступу могу да користе сви који поштују одредбе садржане у одабраном типу лиценце Креативне заједнице (Creative Commons) за коју сам се одлучио/ла.

1. Ауторство (СС ВҮ)

2. Ауторство – некомерцијално (СС ВҮ-NС)

3. Ауторство – некомерцијално – без прерада (СС ВҮ-NC-ND)

4. Ауторство – некомерцијално – делити под истим условима (СС BY-NC-SA)

(5)Ауторство – без прерада (СС ВҮ-ND)

6. Ауторство – делити под истим условима (СС ВУ-SA)

(Молимо да заокружите само једну од шест понуђених лиценци. Кратак опис лиценци је саставни део ове изјаве).

Потпис аутора

У Београду, <u>28.04.2022</u>.

Lejan Retes

1. Ауторство. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце, чак и у комерцијалне сврхе. Ово је најслободнија од свих лиценци.

2. Ауторство – некомерцијално. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела.

3. Ауторство – некомерцијално – без прерада. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела. У односу на све остале лиценце, овом лиценцом се ограничава највећи обим права коришћења дела.

4. Ауторство – некомерцијално – делити под истим условима. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или сличном лиценцом. Ова лиценца не дозвољава комерцијалну употребу дела и прерада.

5. **Ауторство – без прерада**. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца дозвољава комерцијалну употребу дела.

6. Ауторство – делити под истим условима. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или сличном лиценцом. Ова лиценца дозвољава комерцијалну употребу дела и прерада. Слична је софтверским лиценцама, односно лиценцама отвореног кода.