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Determination of the reference height surfaces
in the regions with sparse gravity data

SUMMARY

The research aims to create a methodology that would lead to a mathematical model of
referent surfaces and apply that created model in areas where it is not possible to provide a large
number of observations, Global geopotential models, digital models of topographic masses, and
available observations were used to model the Earth's potential field parameters to be distributed
appropriately and be sufficient in the relevant area.

Then, the reference surfaces (geoid and quasi-geoid) are determined from observations and newly
modeled parameters of the Earth's gravity potential.

The research methods that were used are the method of analysis and synthesis of existing results,
mathematical modeling (interpolation, extrapolation, prediction, ...), the process of experiments, the
technique of comparing the obtained results, the theory of Earth's gravitational potential, through
statistical methods and collocations.

The experimental part of the research was performed in two steps using already existing and well-
distributed data called Area 01 as the first step, while in the second step, Area 02 was used for sparse
data region or the rest area of Egypt territory.

The results conclude that it is possible to model the Earth's gravity potential parameters in Area 02,
with small numbers and irregular spatial distribution of observation results, in sufficient numbers and
with sufficient accuracy.

The obtained accuracy for Area 02 geoid was + 0,479 cm as internal accuracy in terms of Standard
deviation compared with 162 GPS/H points.

Based on Area 01 results, geoid solutions for Area 01 have been fitted using 80 GPS/leveling stations.
In comparison, 100 GPS/leveling stations were used as an external check; the obtained internal
accuracy by the LSC technique in terms of the standard deviation was +0.338 m of the differences,
which is considered rather satisfactory. In contrast, external check accuracy was +0.262 m,
considered adequately related to the poor distribution of the available GPS/leveling data in this area.

Evidently, from the two obtained Area 01 and Area 02 geoid accuracies, Area 01 geoid has better
accuracy, nearly 30%, than Area 02 geoid as an internal check.

Key words:
EGYPT geoid determinations; geoid determination for sparse data regions; least square collocation
for geoid solution; geoid; a few centimetres geoid for EGYPT; sparse gravimetric data.
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Preface

Geodesy is the science of accurately measuring and understanding three fundamental
properties of the Earth; its geometric shape, its orientation in space, and its gravity field, as well as
the changes of these properties with time. Calculating position with repeatable accuracy is the central
problem for the geographical reference of terrestrial information and the principal function of
geodesy.

The geographical location on the Earth's surface can be determined by a mathematically defined
reference surface instead of the Earth's physical surface (very close to the rotational ellipsoid).
Reference surfaces should have two fundamental characteristics:

e they could be mathematically defined,;
e they closely fit the physical surface.

Reference surfaces used are very often are:

e the ellipsoid of rotation,
e the geoid.

Reference surface (ellipsoid) has an arithmetical definition. It is used for horizontal positioning, while
the geoid surface has a physical meaning and relationship with the reference ellipsoid for
height/separation value. A three-dimensional position is defined by two horizontal coordinates and a
vertical component, the height above the reference surface (Fig. 1).

to p':nd apn /
- s

geocentre| *

ellipsoid

Figure 1 The general relationship between geoid, ellipsoid, and the physical shape of the Earth.
https://kartoweb.itc.nl/geometrics/Reference%20surfaces/refsurf.html

1.1 Thesis Objectives

Solving the positioning problem involves using three surfaces: the physical surface of the
Earth, the rotational ellipsoid, and the geoid (Moritz 1990).

By defining and determining the mentioned surfaces within an adopted geodetic reference system,
the problem of positioning is reduced by combining the geometric parameters associated with the
mentioned surfaces.


https://kartoweb.itc.nl/geometrics/Reference%20surfaces/refsurf.html

Up to date, definitions of these surfaces are the result of international cooperation (IERS, 2010)
through activities carried out by the International Association of Geodesy (IAG), one of the eight
current associations of the International Union of Geodesy and Geophysics (IUGG) (Yearbook,
2021).

On the other hand, determining the mentioned surfaces in principle differs according to the territory
under consideration, so they are most often differentiated: global, regional, and local determinations.
Regardless of the region (area) under consideration, each determination implies the disposal of many
observation results of almost all quantities observed in geodesy, collected on the physical surface of
the Earth, inside its body, or in space outside it.

By applying modern geodetic techniques such as Long Basis Interferometry - Very Long
Basis Interferometry (VLBI), Lunar Laser Ranging (LLR) (Williams et al., 2006), Satellite Laser
Ranging (SLR) (Otsubo et al., 2016), Doppler observations (DORIS — Doppler Orbitography and
Radio-positioning Integrated by Satellite) (Willis et al., 2016) and final observations of Global
Navigation Satellite Systems (GNSS) (Beutler et al. 2009), the results of observations necessary for
the creation of the International Reference Geodetic Framework (ITRF) are taken over. Within the
system, continuous monitoring of the movement of tectonic plate masses (Bosy, 2014) makes it
possible to determine geocentric rectangular coordinates or geodetic coordinates of relevant points
using the most economical GNSS technique.

It is necessary to pre-determine the geoid to transform specific coordinates into coordinates within
the Earth's gravitational field.

Nowadays, the possibility to determine the geoid with a centimeter level of accuracy that, may be
achieved if the relevant area has ( Sanso and Sideris 2013):
* Global Geopotential Models (GGM),

« digital models of topographic masses (masses of the Earth's crust above the geoid),
« digital models of the mass density of the Earth's crust, and

« the results of observations of the parameters of the Earth's gravitational potential (in the following

part of the text, referred to as the results of observations).

Alongside geoid, it is possible to use a quasi-geoid (Molodensky, 1958) determined from the same
data for transformation. Still, its determination does not imply a reduction in the results of observed
parameters of the Earth's gravitational potential (Forsberg and Tscherning, 1997). Moreover,
nowadays, geoid and quasi-geoid are usually determined simultaneously. However, the International
Height Reference System (IHRS) is based on the geoid (Ihde et al., 2017); nevertheless, it should be
noted that the quasi-geoid is not the equipotential surface of the Earth's gravitational potential.

The subject of this research is the determination of geoid and quasi-geoid in areas where only
the irregular spatial distribution of observation results is available, and among other things, includes
the following:

* the number of observation results is too small concerning the area under consideration,

* observation results are grouped in only one part of the relevant area and very rarely in other regions,

and especially



 the results of observations cannot be taken over by classical geodetic methods due to the

inaccessibility or continuous change of the Earth’s physical surface of the relevant area.

1.2 Research goal

The research aims to create a methodology that would lead to a mathematical model through
which, in areas where it is not possible to provide a large number of observations, the following
would be possible:

« economical survey using GNSS in terms of homogeneous height,

» preliminary data for a large number of local geophysical surveys,

* providing preliminary data for all future projects in the field of gravitational field determination and
geodetic reference systems, and

» monitoring changes in the Earth’s physical surface in the relevant areas.

1.3 Research methods

The research methods that will be used are the method of analysis and synthesis of existing
results, mathematical modeling (interpolation, extrapolation, prediction, ...), the process of
experiments, the technique of comparing the obtained results, the theory of Earth's gravitational
potential, through statistical methods and collocations (Moritz, 1980). The experimental part of the
research will be performed using existing data from Egypt.

1.4 Historical research

Previous research in this area is numerous; it has intensified significantly since the middle of
the last century, when work on establishing modern geodetic reference systems and mass gravimetric
and astrogeodetic surveys began in almost all countries (Torge, 1989, 2001).

Then, the reference systems were established, and the collected observation results enabled the
determination of reference surfaces to the level of accuracy from a few meters to a few decimetres,
most often in relation to ellipsoids that were adopted for cartographic representations.

In the next seventy years, advances in technology, especially in satellite geodesy and the production
of terrestrial relative gravimeters, have led to the determination of reference height surfaces with an
accuracy of several dec centimeters. A detailed overview of all these achievements is in the
publication ( Sanso and Sideris 2013) by IAG. The cited research implies that it is necessary to
obtain the results by observing the parameters of the Earth's potential at the level of at least one point
per one, two, to five square kilometers. In areas where this is not the case, the techniques listed in
(Sanso and Sideris, 2013) are only theoretically directly applicable.

There are numerous ways to determine reference surfaces in areas with small numbers of irregularly
spatially distributed observation results. Only some of them are given in (Ulotu, et al. 2009), (Agren
etal. 2008), (Tierra and de Freitas, 2005), (Rabah and Kaloop, 2013), (Chen et al., 2003), (Bjelotomi¢
et al. 2015).

The above determinations used the techniques described in ( Sanso and Sideris 2013) or the KTH
method (Agren et al., 2008; Ulotu et al., 2009). The quality of these determinations can be checked
by calculating the differences from conditionally correct values (discrete values of undulations or
height anomalies) or by determining the range of these differences. In all works, the reference
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surfaces were determined in the range of differences of approximately 1 m (Ulotu et al., 2009) up to
21 cm (Bjelotomic¢ et al., 2015).

1.5 The framework structure of the dissertation

The structure of this thesis is presented in seven chapters, the first of which is the Preface. The
contents of the remaining six chapters will be summarized below.

Chapter two reviews some aspects of the gravity field and its geodetic implementations. Firstly, the
basic concepts of the Earth’s gravity field are reviewed. The gravitational and centrifugal potentials
have been discussed. Laplace’s equation and the potential in terms of spherical harmonics were
described. Then, the different types of gravity anomalies and terrain reductions were highlighted.
After that, the standard approaches and methods for modeling the outer gravity field of the Earth are
discussed. Finally, the various sources of errors in gravimetric geoid determination are outlined.

Chapter three illustrates an overview of Global Geopotential Models (GGMs), digital models of
topographic masses, and observations of the Earth's gravitational potential parameters, whereas; the
first part is GGMs which contains background about the disturbing potential as a harmonic function.

Afterward, the statistical and mathematical properties of Spherical Harmonic Computations (SHC)
and the spectral meaning inherent to spherical harmonic coefficients, and a detailed review of the
concepts of the spherical harmonic analysis and spherical harmonic synthesis techniques are
discussed. Recent and proposed satellite missions for recovering the global gravity field signals are
mentioned. The global harmonic analysis using various global gravity field data sources and the
different classes of the derived global harmonic models are presented. After that, the concept of
tailored geopotential harmonic models is clarified. Thenceforth, in the second part, a brief
explanation of the DEM concept of calculations and modeling.

Chapter four presents a detailed review of the existing world geoid determination attempts and a
detailed historical timeline of the Egyptian geoid determinations attempts.

Chapter five contains a proposed methodology to create mathematical models for determining
reference surfaces.

Chapter six describes the numerical research as:

a. Creating a mathematical model,
b. Determination of reference surfaces,
c. Internal and external quality control of the obtained solutions.

Chapter seven summarizes the main topics studied in this thesis. It also outlines the main conclusions
based on the obtained results. In addition, the appropriate recommendations are drawn.



2. Basic Concepts And Background Of The Earth’s Gravitational Field

Overview

Most importantly, geoid modeling is a vital tool for determining the figure of the Earth, and
it helps define and refine the mean Earth ellipsoid, which best fits the geoid globally. The geoid is
the main issue in establishing the best fitting relative datum for a specific region on a local and
regional basis.

This chapter reviews some aspects of the gravity field and its geodetic implementations. Firstly, the
basic concepts of the Earth’s gravity field are reviewed. The gravitational and centrifugal potentials
have been discussed. Laplace’s equation and the potential in terms of spherical harmonics were
described. Then, the different types of gravity anomalies and terrain reductions were described, and
the potential in terms of spherical harmonics. Then, the different types of gravity anomalies and
terrain reductions are highlighted. After that, the standard approaches and methods for modeling the
outer gravity field of the Earth are discussed. Finally, the various sources of errors in gravimetric
geoid determination are outlined.

2.1  Basic Concepts of The Earth’s Gravitational Field

The total force on a body at rest on the Earth's surface results from gravitational force,
and the centrifugal force of the Earth's rotation (Fig. 2) is called gravity (Wellenhof and Moritz,
2005).

A fundamental quantity that describes the Earth’s gravity field is the gravity potential W, which is
given at a certain point p as

W=V+V, (2.1)

where V is the gravitational potential that results from the attraction of the Earth’s mass and is
expressed

V=G]ﬂew dx dy dz,
(2.2)

where the integration is carried out over the entire Earth, | is the distance between the computation
point p and the running point q (X,y,z), p(X,y,z) is the mass density at q, dxdydz is the infinitesimal
volume element at g, G is the Newtonian gravitational constant,

G=6.672+10""1m3s kg1,

and Vc is the potential of the centrifugal force given by

Ve=% w2 (X2 +Y2), (2.3)
where ® is the mean angular velocity of the Earth’s rotation, and X, and Y are the geocentric

rectangular coordinates of point p, relative to the (right-handed) average terrestrial reference frame
having the Z-axis coincident with the mean Earth rotation axis (Wellenhof and Moritz, 2005).
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Figure 2 Attraction and Centrifugal Force.
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The gravity vector g is the spatial gradient of W (Heiskanen and Moritz, 1967),

g =grad W= (dw/0x ow/dy 0w/0dz) = (wWx wy Wwz), (2.4a)
The magnitude (or norm) of the gravity vector g is the gravity (acceleration) g,

g= gl (2.4b)

which is conventionally expressed in the units of Gals, derived from Galileo,
where 1 Gal = 1 cm/s? = 1x1072 m/s?

The direction of the gravity vector is the direction of the actual vertical or plumb line. The gravity
acceleration shows a systematic increase as one departs from the equator to the poles’ direction due
to the centrifugal force’s decrease and the geocentric radius of the point of interest. Also, the Earth’s
gravity decreases systematically with height due to the increase of the geocentric vector.

In modeling the gravity field of an ellipsoid, one must consider an appropriate mass for that
(geocentric) ellipsoid and assume that the ellipsoid rotates with the Earth. Furthermore, the ellipsoid’s
surface is defined as an equipotential surface of its own (theoretical) gravity field using mathematical
conditions. Such an ellipsoid is the mean Earth ellipsoid or the absolute ellipsoid (Nassar et al. 1993).
In general, surfaces with constant theoretical potential

are denoted as the sphero-potential (or normal level) surfaces, everywhere perpendicular to the
normal gravity vector. The magnitude of that vector is the normal gravity, vy, which is longitude
independent. The gravity field of the ellipsoid is called the normal gravity field, and the reference
ellipsoid itself is sometimes referred to as the level ellipsoid (Fig. 3).


http://shop04004.uygkjhg.ru/content?c=centrifugal%20acceleration%20of%20earth&id=2

Soh
€r¢
0,0019,7 iy
Sy,

-
i i a
Mean Earth Rotation Axis Ceatp

Ellipsoidal

Geodetic meridian of P Normal

(Longitude =)

Spheropotential Surface

Geodetic Equator

Figure 3 Level Ellipsoid and normal gravity vector (Nassar et al. 1993).

Regarding the model of the Earth, it can be shown that the normal gravity potential and its spatial
derivatives are entirely specified by four defining constants, which are briefly expressed as

U=1f(a, b, GM, w)

where

(a, b) are the semi-major and semi-minor axes of the ellipsoid, respectively,

® is the mean angular velocity of the Earth,

GM s the product of Newton’s gravitational constant and the mass of the mean Earth ellipsoid.

As a practical matter, the constants of the normal ellipsoid are defined by continuous research in
geodesy and related fields and are adopted by international conventions. Most popular is the WGS84
reference ellipsoid, which simultaneously works as the geometric reference frame of the GPS
geodetic observations

Simple mathematical formulas can express functions of the normal gravity field. For example, the
normal gravity on the ellipsoid surface, defined to be the magnitude of the gradient of the normal
gravity potential, is given by Somigliana’s closed formula

Y = (ayecos2@ + by,sin2 @) / (aZ cos? ¢ + bZ sinZ )1/2, (2.5)

where ¢ is the geodetic latitude, ye and yp are the normal gravity at the equator and pole, respectively,
and are uniquely determined from the four parameters defining the normal potential Eq. (2.5). The
normal gravity above the ellipsoid, (Fig. 3) is given as (Heiskanen and Moritz, 1967),

yh = y[1-2/a(1+f+ m-2fsin2 ¢) h+ (3 /a2) h2], (2.6)

where f is the geometric flattening of the ellipsoid, h is the height above the ellipsoid, and m =
(0?a’b/GM) is the geodetic parameter of the reference ellipsoid, which is equal to the ratio of the
centrifugal acceleration and normal gravity at its equator. Finally, y is the relevant normal gravity
on the ellipsoid.



If pn denotes the hypothetical ellipsoidal mass density, which generates the normal gravitational
potential, it follows that

Vo = G [ff, 22522 dx dy dz, 2.7)
U=V, +V,, (2.8)
T=W-U=V-V, (2.9)

where U, Vn, V¢, and T denote the normal gravity potential, the normal gravitational potential, the
centrifugal potential, and the disturbing (or anomalous) potential, respectively. Again, as with the
actual gravity field, the normal gravity field determination does not necessitate the knowledge of the
normal density distribution (Heiskanen and Moritz, 1967). The disturbing potential is the slight
difference between the gravity potential W of the Earth and the normal gravity potential U.

In other words, this anomalous quantity carries the spatially random nature of the Earth’s actual
gravity field deviation from the model field induced by the reference ellipsoid. It can be considered
as being produced by a disturbing density dp = (p - pn) as follows

T =G [ff,2%*2 dx dy dz, (2.10)

If V2 denotes the Laplacian operator, it can be proved that (Heiskanen and Moritz, 1967),

0 outside the Earth’s surface,
vy = {
4nGp inside the Earth'’s surface, (2.11)
2w2 outside the Earth’s surface,
vaw = {
-4nGp + 2w?2 inside the Earth’s surface, (2.12)
0 outside the ellipsoid’s surface,
VZVn = {
41tGpn inside the ellipsoid’s surface, (2.13)
2w2 outside the ellipsoid’s surface,
ViU =
-4nGpn + 2w2  inside the ellipsoid’s surface, (2.14)
VT = 0 outside the Earth’s surface. (2.15)

Mathematically, if the Laplacian operator of a specific function vanishes, this function is harmonic.

Eq. (2.15) is Laplace’s equation for the anomalous potential. From the above, it is clear that the outer

gravitational, normal, and anomalous potential are generally harmonic and can be expanded in

spherical harmonic series. The harmonicity condition is one of the fundamental properties satisfied

by the Earth’s outer gravitational and anomalous fields. In (Egs. 2.11 and 2.13), the inner and normal
8



gravitational fields, respectively, VZ is not zero. In this case, they are said to obey Poisson’s equation,
not Laplace’s condition. Fortunately, the geodetic applications only need to determine the outer
(harmonic) gravity field elements.

All the gravity field elements are related to the disturbing potential and each other by closed
functional relationships. These observable gravimetric quantities, which are also harmonic functions
in outer space, are geoidal heights, deflections of the vertical, gravity anomalies, and gravity
disturbances.

These elements are considered residual quantities, are supposed to be unique and smooth, and are
mathematically referred to as signals. The geoid undulation (Fig. 4), defined as the geodetic height
of the geoid over the reference ellipsoid, is related to the anomalous potential T, at the geoid, via the
well-known Bruns’ equation (Hotine, 1969).

Earth's surface

Equipotential = - W=H,
Surface of P

Teluroid Um L'u
Equipotential \
Surface of Q U,=W,

Geoid — 4 - ——
_,..--"".-—-___-—

Quasi geoid N f—

y

Elipsoide — U=U

Figure 4 Geoidal height

https://www.earthdoc.org/content/papers/10.3997/2214-4609.201702624#dataandmedia

N = h—H=(Wp—Up)/yQ=% (2.16)

The above expression is based on the assumption that the potential of the normal ellipsoid Uo equals
the potential of the geoid Wo.


https://www.earthdoc.org/content/papers/10.3997/2214-4609.201702624#dataandmedia

The locus of such points is (as the terrain) a non-equipotential surface, which is usually referred to
as the telluroid (or terroid) (Fig. 5). The telluroid could be considered the first approximation of the
Earth's physical surface or crudely called the “normal” topography. The height anomaly ( is the
separation between that surface and the topographic surface, measured along the normal plumb line.
On the other hand, the height of the telluroid above the ellipsoid, measured along the normal plumb
line, is usually called the normal height Hy;, thus.

PHYSICAL SURFACE

e - B oy S Wp=UQ
Yo H SURFACE OF TELLUROID

N Po I

W=W,
d g SURFACE OF GEOID
o
N

Pt -~ SURFACE OF QUASIGEOID
¢ —___ U=U,
N4

ELLIPSOIDAL SURFACE

Figure 5 Telluroid and height anomaly

https://www.scielo.br/j/bcg/a/xPcsrP6g8T4AHMdrQMbbqjSQ/?lang=en#ModalFigfl

If the height anomalies are plotted above the reference ellipsoid, one obtains the so-called quasi-
geoid surface, a non-level surface (El-Fatairy, 1983) that closely approximates the geoid, particularly
in relatively moderate topography. Considering (Fig. 5), Bruns’ equation gives the height anomaly
(or quasi-geoid) as follows

{=h—Hy=Me=0) _Te (2.17)
YQ YQ

where Ty is referred to as the disturbing potential at the surface point, P and yq is the normal gravity

at the telluroid point Q (having geodetic height h = Hy). Hence, the terrain point P is said to

correspond to a height anomaly (quasi-geoidal height) £ and has a normal height Hyabove the

quasi-geoid, all measured along the ellipsoidal normal.

10


https://www.scielo.br/j/bcg/a/xPcsrP6g8T4HMdrQMbbqjSQ/?lang=en#ModalFigf1

The angular misalignment (or the relative slope) of the geoid concerning the reference ellipsoid
is the deflection of the vertical ®. The two components, &

and m, of the deflection angle ©®, are expressed as the spatial gradients of the geoid, at P,, in both
directions as follows:

- 0%--0)% @)
n=- (rsilne) Z_l?\f - (rysline) Z_I' (2'19)

where r, 6, and A are the geocentric radii till the geoidal point P,, the spherical co-latitude and
geodetic longitude, respectively, and y is the normal gravity at the point Q, on the ellipsoid. One
distinguishes between the deflection angle ® at the geoidal foot point P, and @, which is the relative
slope of the equipotential surface at the surface point P relative to the spheropotential surface at the
relevant telluroid point Q (Fig. 5). The difference between the two angles, which is usually small,
depends on the curvature of both the actual and normal plumb lines and the height of the surface
point.

The negative gradient of the anomalous potential at the geoidal point P, along the direction of the
normal plumb line, is referred to as the gravity disturbance dg, which is given as

aT
0y = ~an 8P VP (2.20)

At the Earth’s surface, the gravity disturbance becomes

aT,
6gt = _a_ht = gPt - yPt' (221)
Another important anomalous element is the gravity anomaly, which is given at the geoidal point P
as

10 oT
Agzgp—sz;i.T—g (2.22)

Similarly, one obtains the gravity anomaly at the surface point Pt as follows

_ 1 6yt aTt

Age =TT~ 2 (2.23)

2.2 The disturbing potential and derived gravity field functional

With the introduction of the reference ellipsoid and its physical parameterization, the actual
gravity field is linearized and split up into a first approximation represented by the normal gravity
field and a remaining and comparably small residual part. In terms of potential, these deviations are
denoted as the disturbing potential or anomalous potential T.

The difference between the normal potential U and the actual gravity potential W is beneficial in
physical geodesy (Heiskanen and Moritz, 1967):

T=W-U. (2.24)
11



By building this difference, we can see that the centrifugal part, which is the same in W and U,
cancels and thus does not have to be considered. Therefore, the disturbing potential T still satisfies
the Laplace equation AT = 0 outside the Earth’s masses so that it can also be expanded into a spherical
harmonic’s series.

The function T is a harmonic outside the Earth, i.e., it satisfies the Laplace’s equation (Heiskanen
and Moritz, 1967):

AT = 92T /0x2 + 02T /dy2 + 02T /9z2 = 0. (2.25)

Furthermore, this is used to determine the Geoid by introducing some substantial functional, i.e., the
gravity anomaly, the gravity disturbance, the geoid height, and the height anomaly.

Assume the point P on the geoid is projected onto the point Q of a reference ellipsoid along the
ellipsoidal normal in (Fig. 6).

n  ellipsoidal normal

plumb line 1;_

Figure 6 Geoid and reference ellipsoid (e.g., Moritz, 1980).

The previously mentioned anomalous quantities are defined as follows:

The gravity anomaly Ag: the difference between the gravity gr value at point P on the equipotential
surface W) (in particular, the geoid) and the normal gravity y¢ at point Q on the corresponding
ellipsoidal potential at its surface U(g) such that Uw) = W)and Q is an orthogonal projection of P
onto U (in particular the ellipsoid)

Ag=gr—vyo; (2.26)

The gravity disturbance 8g: the difference between the gravity value gp at point P and the normal
gravity yp at the same point

Sg=gr—yr; (2.27)

12



The geoid height N: the separation distance PQ between the geoid surface and the reference ellipsoid
measured along the ellipsoidal normal. It is also called geoid undulation. The mathematical
relationship between the disturbing potential T, which is a purely physical quantity, and the geoid
height N, which is a purely geometrical quantity, according to Bruns’ formula (Wellenhof and Moritz,
2005):

N = Trlyg (2.28)

where Tp is the disturbing potentials at the geoid surface, and yq is the normal gravity values at the
reference ellipsoid.

The fundamental equation of physical geodesy can be derived regarding the Bruns’ formula (Eq.
2.28) and the definition of the gravity anomaly (Eq.2.26). It describes the relationship between the
gravity anomaly which can be measured and the disturbing potential (Heiskanen and Moritz, 1967)

JoT 10y _
Some merits exist when the sphere is considered an approximation of the Earth’s shape instead of a
reference ellipsoid. The differences are minute and in terms of flattening. In many problems, it is an
acceptable approximation. Then, this boundary condition takes the form (Moritz, 1989):

oT 2 _

E+E+Ag_0 (230)
or

oT = 28 _

where R is the mean radius of the Earth, g is the mean value of gravity over the Earth, /04 and d/or
are partial differentials along the ellipsoidal normal and the radial, respectively. This is a fundamental
property in geodesy since it implies that harmonic functions can represent the gravitational potential.

2.3 The Gravitational Potential Into Spherical Harmonics

For global problems, expanding the gravitational potential into spherical harmonics is useful
(Torge, 1989), which is a unique solution of Laplace’s equation (Eq. 2.11).

In the exterior space, a representation in terms of spherical coordinates (r, 6, A) is:

GM w [a1™ .

V(6,AT) =— [1 + Y, H n=0(Chm€os mA + S, sin mA)an(COSG)] (2.32)
where:
a the equatorial radius of the Earth,
Cnm and Spm the conventional unitless Spherical Harmonic Coefficients (SHC) of

the Earth’s Gravitational potential of degree n and order m,
Pnm(c0s0) the conventional associated Legendre function of degree n and

order m,
with

13



Pnm(cos6) = (1/2" n!) (1- cos?0)™? [d "*™/d cos® ™™ (cos?0 —1 )" ]

= (1- cos?0)™? [d ™/d cosd ™ (Pn(cos0)) ], (2.33)

P, cos® = —n! (1 — cos? 9)? [ dnm ] (2.33a)
nm T oon dcos O1+M(cos2 f—1)1 )

where Pn(cos0) is the conventional Legendre polynomial of degree n, which is given as

Pn(c0s0) = Pro(cos0) = (1/2" n!) [d"/d cos® " (cos?0 —1)" ]. (2.33b)

dn
P, cos® = P,,(cos0) = Zinn! [d Yo e—1)n] (2.33c)
The Cnm and Snm are spherical harmonics coefficients given by (Torge, 2001),
1 r\"

Cno = 5 [Mearth (;) Pnm(cos6) dm m=0 (2.33d)
Cnm)_2 , (n-m). I (E)n Pnm(cos0) Com) 4m m # 0 (2.33e)
Som) M (n+m)! “Hearth \a Sum )

Here dm is a mass element, and M is the Earth's mass.

2.4 Height System

Earth surface Heights can be defined in several ways. Two specifications are necessary to
define a local height reference system (Marti and Schlatter 2002).

2.4.1 Geopotential Numbers
The difference between the potential at the geoid and the potential at the points on the earth
are the Geopotential numbers, they can be computed by integration of those differences along a

leveling line from the reference point O located on the geoid to a corresponding point P on the earth
surface (Wellenhof and Moritz, 2005),

P
Cp=Wo-Wp= J, gdn ~ 5 gon. (2.34)

Where g is the gravity, &n is the vertical levelling increment,
Ano. the height differences from sprit levelling without gravity measurments on the path of
integration:

ANop= f(l; gdn~ Y g én. (2.35)

14



The advantage of the geopotential numbers is that they can be determined by a combination of spirit
leveling and gravity measurements without making any hypotheses.

2.4.2  Dynamic Heights
The dynamic heights is obtained by dividing the geopotential number C by the normal gravity

value y. computed on the Geodetic Reference System of 1980 (GRS 80) ellipsoid at 45 degrees
latitude (Marti and Schlatter, 2002).

Hon = £ (2-36)

Yo

where y,= y45= 9.806199203 ms = 980.6199203 gal. To convert the measured height differences
Anag between two surface points A and B directly into a difference of dynamic heights Hé»ag , a so-
called dynamic correction DCag has to be added:

AH{Y" = Angp + DCpp = [, £L dn, (2-37)

2.4.3 Orthometric Heights

Orthometric heights are defined as the heights above the geoid.. They can be obtained by
dividing the geopotential number by a mean gravity (Heiskanen and Moritz, 1967),

H =

i |-

(2.38)

where, gzé f:" gdH is the mean gravity along the plumb-line between points P and Po (Fig. 7).

...... ‘t.ﬁﬁpamd o~
._.:.:::::::' '''''' = ol

Oceans Orthometric Ellipsoidal Height Geoid
Height from GPS Height

Figure 7 Orthometric height (el shouny et al., 2017)

The orthometric heights cannot determine exactly and base on a hypothesis, this disadvantage
because the mean gravity cannot be measured within the earth.

There are some basic approaches for approximating the gravity within the crust as the Prey-reduction
approach:
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With this approach, the orthometric height H results in the Helmert height (Wellenhof and Moritz
2005, Jekeli 2000)

H = ;m(ml (239)

g+0.0424——H
m

where C in kilo gal*m, g in gal and H in km.

The measured height difference Anag between two surface points A and B can be converted to a
difference in orthometric height AHag by adding an orthometric correction OCag (Vanicek et al.
1986).

AHpp = Anpp, 0Cap = TEEXS, + %HA - gBy‘f Hpg (2.40)

where

ga and gs are the mean values of gravity along the plumb lines at A and B, y.= yss is the normal
gravity at a latitude of 45°, Ha and Hg are the orthometric heights of A and B and &, is the leveling
increment.

2.4.4 Normal Heights

Normal height is a physical height system introduced by (Heiskanen and Moritz 1967)
Instead of the orthometric heights, which can be determined without any hypotheses, normal heights
denoted by HJY can be obtained as follows (Vanicek, 1986):

HY =%p (2.41)

where
Cpr=Uo-Up=Wo-Wp.
The abovementioned formula eq. 2.41 means that HY specifies a point P*, which lies on the plumb-

line through the surface point P. These kinds of points P’, for which eq. 2.41 is fulfilled and lies on
a surface called the telluroid. Its form is similar to the physical surface of the Earth.

Sea lewvel

o — — — ]

-~ Ellipsoid

Figure 8 Normal height (Vanicek, 1986).
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On the other hand, if we are going from any surface point along the plumb-line with the length of the
normal height, we obtain a surface called the quasi-geoid, which is close to the geoid and coincides
with the geoid at sea (Wellenhof and Moritz 2005).

2.4.5 Ellipsoidal Heights
Ellipsoidal Height or geodetic height of that the same point on the earth surface and its

corresponding point on the typical reference ellipsoid is the World Geodetic System 1984 (WGS84),
which is defined by the four parameters given in Table 1 and Fig. 9 (Featherstone and Kuhn, 2006).

Table 1 Parameters of the World Geodetic System 1984.

Parameter value Description
a 6378137 m semi-major axis
GM 3.986004418 - 10¥*m3s2 | the geocentric gravitational constant of the Earth

the dynamical form factor of the Earth (excluding

.10-3
2 1.081874-10 the permanent tidal deformation)

o) 7.292115 - 10°rad s angular velocity of the Earth

Semi-minor axis

=
2
g
i}
=
ot

Semi-mapor axis

Minor axis

Figure 9 Parameters of the World Geodetic System 1984 (Featherstone and Kuhn, 2006).

2.5 Different Types of Gravity Anomalies and Terrain Reductions

The topographical effect is one of the most important components in solving the geodetic
Boundary Value Problem (BVP). It should be adequately treated in the determination of a precise
geoid. Therefore, the gravity acceleration value g, at the terrain surface, is not directly comparable
with normal gravity (y), referring to the ellipsoid's surface. A reduction of gravity (g) to sea level
(geoid) is necessary. Since there are masses above sea level, the reduction methods differ depending
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on how to deal with these topographic masses (Heiskanen and Moritz, 1967). Gravity anomalies
reveal rock density variations, with the anomaly amplitude proportional to the density contrast and
thickness of the anomalous body. Consequently, the problem of investigating the anomalous gravity
field can be reduced to comparing actual gravity field parameters at the geoid and the corresponding
normal gravity field parameters at the mean Earth ellipsoid. The basic elements of the anomalous
gravity field include: gravity anomalies, height anomalies, disturbing potential, deflection of the
vertical, geoid undulations, etc. (Nassar, 1976)

"(\\\ g p
K \\
\\ N \\
N N N
. \ !

. : N\ ' sarth's enrface
\ 3 . \}.mh urface

X N N N
\\\ \\ N ] 1 \\\ \\\

N S

geoid

Figure 10 Gravity reductions (Nassar, 1976)

It should be noted that two conditions should be achieved to use Stokes' formula (Wellenhof and
Moritz, 2005). The first condition is that the gravity Th station is lowered from the Earth's surface
(gp) to the geoid surface (gpo) as shows in Fig. 10. The second condition is that there must be no
masses outside the geoid .

Molodensky’s solution is the other fundamental solution to the geodetic BVP. This modern solution
gives the quasi-geoid but not a level surface (geoid) as in Stokes’s solution.

The following sections present some of the gravity reduction methodologies.

There are several types of gravity anomalies based on treating the masses between the terrain and the
geoid. The most important gravity anomalies are the free-air anomaly, the Bouguer anomaly, and the
isostatic anomaly. The remainder of this section will give the simple formulas of those gravity
anomalies without derivations (P. Vanicek, 1975).

2.5.1  The free-air gravity anomalies

The free-air reduction is based on a simple assumption: there are no masses above the
ellipsoid, so the observation station is imagined to be hanging free in the air.
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Figure 11 Free-air reduction (Wellenhof and Moritz, 2005).

We need the vertical gradient of gravity for a theoretically correct reduction of gravity to the geoid.
gp. refer to the gravity value on the geoid, according to Taylor expansion (Wellenhof and Moritz,
2005), is equal to:

= og H 2.42
gPo - gP aH ( * )

where H is the orthometric height and g—ﬁH is the vertical gradient.

Suppose there are no masses above the geoid, we have:

gp. = 8p + F (243)

where F = — g—fIH is the free-air reduction.

For practical purposes, it is sufficient to use normal gradient of gravity az instead of g—ﬁ

oh
(Heiskanen and Moritz, 1967):

F=—2EH=-2h=-03086h (mGal), hinmeters. (2.44)

Then, from (Fig. 11), the free-air gravity anomalies (Agr ) are given by the following formula
(Heiskanen and Moritz, 1967):

AQF = 8p. —Yq, (2.45)
where point (Qo ) is on the ellipsoid. Theoretical normal gravity (y,_), the magnitude of the gradient

of the normal potential function U, is given at the surface of the ellipsoid by the closed formula of
Somigliana given by (Torge, 2001):
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_ 1+ksinZ¢ . _byp
YQ, = Ye Gersmie)s with k= - (2.46)
Where
a, b semi-major and semi-minor axes of the ellipsoid, respectively,
Ypr Ye theoretical normal gravity at the poles and equator, respectively,
e? square of the first ellipsoidal eccentricity,
© geodetic latitude.

In this study, we used the World Geodetic System 1984 (WGS-84), , as shown in Table 2.

Table 2 WGS 84 Ellipsoid Derived Geometric and Physical Constants
https://www.icao.int/NACC/Documents/Meetings/2014/ECARAIM/REF08-Doc9674.pdf

Parameters Notation Value Unit
Semi-major axis a 6378137.0 m
Semi-minor AXis b 6356752.3142 m

First  Eccentricity | e? 0.00669437999014 | unitless
Squared

Normal gravity at the | y, 9.7803253359 m S?
equator

Normal gravity at the | y, 9.8321849378 M S
Poles

Formula Constant K | K 0.00193185265241 | unitless

2.5.2 The simple and complete Bouguer reduction

The Bouguer reduction removes all the topographic masses above the geoid contained in the
Bouguer plate, which can be expressed in an analogous way as the topographic vertical attraction
using the following integral equations (Wellenhof and Moritz, 2005):

BC=GJ, fy fOHp p (Hp—H)(Hp-2) - dydyd, . (2.47)
(Gop=2)"+(yp=y)*+(Hp-2)°)

In Bouguer reduction (Fig. 12), the area around the gravity station is assumed as completely flat, and
so-called Bouguer plate approximates the topography masses with radius r — oo, which is represented
by a horizontal cylinder of thickness equal to Hp and constant density p (p = 2670 kg m™3). Hence,
the simple (or incomplete) Bouguer reduction BC

is computed as (Heiskanen and Moritz, 1967):

BC = 2nGpH~0.1119H,, [mGal] . (2.48)

and the simple Bouguer gravity anomaly reads

Agg =g—v— BC. (2.49)
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Furthermore, the terrain effect refines the Bouguer plate attraction concerning the deviation of actual
topography from the Bouguer plate. In this case, the corresponding gravity anomaly is called the
refined (or complete) Bouguer anomaly. The classical terrain correction C at the computation point
P(xp, Vp, Hp) is given by an integral over the irregularities of the topographic mass relative to a
Bouguer plate, i.e. Am* and Am~,

(I. N. Tziavos and Sideris, 2013) as:

(Hp-H)(Hp-2)
C=G[ [ [ i A — ddd,. (2.50)
L (T T o L

A T topography
AA

‘Am'| H-Hp
B P N Bouguer

N \_\ l plate
K\m "

’\\\‘ /
H

H,

A4

reoid
- geoi

Figure 12 The geometry of the planar Bouguer reduction and the terrain correction (I. N. Tziavos and Sideris, 2013).
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2.5.3 Isostatic Reduction

In the general concept of isostasy, the topographic mass excesses (mountains) and
deficiencies (waters) are compensated by a corresponding mass distribution in the interior of the
Earth (Torge, 2001).There are two main theories about the isostatic compensation applications, one
following the Airy-Heiskanen model and another following the Pratt-Hayford model.

2.5.3.1 Airy-Heiskanen Isostatic Model

According to this model, the mountains are floating on some kind of higher density fluid,
meaning that there is a mass deficit (roots) below the mountains and mass surpluses (anti-roots)
below the oceans (Sanso and Sideris 2013). The Airy-Heiskanen model (Fig. 13) is based on the
assumptions that the isostatic compensation is complete and local, the density of the mountains is
constant and equal to (p. = 2.67gcm™3). The density of Earth’s mantle is equal to (py =
3.27gcm™3) and the normal crust thickness T. is equal to 30 km (Wellenhof and Moritz, 2005),
assuming a constant density of (pyy = 1.027gcm™3) for the ocean water. The condition of floating
equilibrium can be written as ( Sanso and Sideris 2013) for the continental cases:

(pm — p-) d = p-H (2.51)

and for the oceanic areas

(pm — po)d’ = (po — pw)H’ (2.52)
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where ,

d n thickness of the root,

d thickness of the anti-root,

H height of the topography and

H'  height of the ocean, i.e., the depth.

Given the density values for the crust, the mantle, and ocean water mentioned above, Eq. (2.51) and
Eq. (2.52) can be written as (Wellenhof and Moritz, 2005)
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Figure 13 Airy-Heiskanen Isostatic Compensation Model (Sanso and Sideris 2013).

2.5.3.2 Pratt-Hayford Isostatic Model

This compensation system was outlined by Pratt and put into a mathematical form by
Hayford. The principle is illustrated in (Fig. 14).
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Figure 14 Pratt-Hayford Isostatic Compensation Model (Sanso and Sideris 2013).

According to (Wellenhof and Moritz, 2005) and, the Pratt-Hayford isostatic reduction considers that
the level of compensation has a constant and uniform depth D assumed equal to 100 km measured
from sea level (Fig. 14). The topographic masses are delineated into columns of the cross-section
with height H that allowing changes in density to obtain isostatic equilibrium. Considering that a
normal column (H = 0) has constant density p., the continental columns generate densities smaller
than p- while the oceanic columns are denser. The equilibrium conditions for the continental column
of height D+H (H representing the height of the topography) with density p . Satisfies the equation
(Sanso and Sideris 2013):

(D + H)pcont = Dp- (2-54)

D
Apcont = P> — Pcont = Poorm: (2.55)
In the ocean area with density p,.can, the density is increased. It is given by

(D - H’)pocean + H’pW = Dp- (2-56)

HI
Apocean = Pocean — Po = (p" - pW)ﬁ (2-57)

The topographic isostatic reduction is the difference in the attraction between the topographic masses
At and the compensated masses A (Wellenhof and Moritz, 2005):

Finally, the topographic-isostatically reduced gravity on the geoid becomes:
AgTI = Agp - AT + AC . (258)

Where,
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At  equals the attraction of Bouguer plate combined with terrain correction At = Ag — Atc

Ac is the attraction of the compensation masses given by Airy-Heiskanen and Pratt-Hayford
isostatic model.

2.6  The residual terrain modelling (RTM) reduction

In the Residual Terrain Modelling (RTM) reduction, as shown in (Fig. 15), two topography
surfaces, the detailed surface and the reference surface, are used. The detailed surface represents the
actual topography obtained from a high-resolution digital elevation model (DEM). The reference
surface may be any smooth surface representing mean elevations of the area, usually obtained by
applying a suitable low-pass filter to the detailed surface. The topography potential induced by the
residual between these two surfaces is considered within the reduction process. The topography
effect on gravity in the RTM reduction dgrrm is approximated as (Forsberg, 1984):

dgrrm = 2nGp(H — Hyep) — C (2.59)

where C is the classical terrain correction given by Eq. (2.50), H presents the topographic height of
the gravity point an H,¢ is the height of the mean elevation surface.

Topography
P Mean elevation surface
Quasigeoid
P,
I
[
Ellipsoid

Qo

Figure 15 The residual terrain model (RTM) method (Forsberg, 1984).

The RTM anomaly Aggrwmis given by (Forsberg, 1984):

Agrrm = g —dgrrm —F— v (2.60)

where F is obtained from (eq. 2.60
The RTM effects on the geoid are expressed in planar approximation as:

Gp ([ (" 1 Gp(H —Hrep) ((* 1
CRTM = 7 jj_oo jH T dxdde = %Jj_mzddedH

ref

~ Gp(H - Href) l

(2.61)
Y re

where 19 is the planar distance.
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2.7  Common Approaches for Representing the Outer Gravity Field

There is a wide range of geodetic methods which are used or have been proposed for the
representation of the gravity field. These methods may be generally regarded as belonging to one of
the two approaches of physical geodesy, namely, the model approach and the operational approach.
In the first approach, a mathematical model is set up and determines the required quantity from a
given set of data. The problem is then to obtain the data. On the other hand, the operational approach
starts with the available data and asks how these data can be combined in the best way to obtain the
required quantity. In a certain sense, the two approaches are complementary (C. C. Tscherning,
1981).

2.7.1 The Model Approach

The known relationships between the anomalous potential T and the different types of gravity
field observables are used in the model approach. Presupposing the harmonicity of T in outer space
and its regularity at infinity, an estimate of T (or any of its functions) will be the solution of different
geodetic boundary value problems. The solutions manifest themselves as integral formulas; examples
are Stokes, Vening Meinesz, and Hotine formulas. The data necessary for such numerical evaluations
must be available in a regular grid around the computational point. The grid values are generally
determined from irregularly spaced data by reliable interpolation techniques (Amin 1983, EI-Sagheer
1995). In what follows, a review of the relevant methods is outlined.

2.7.1.1 Astrogeodetic Leveling

The technique of astrogeodetic geoid determination also belongs to the model approach (C.
C. Tscherning, 1981). The model is very simple, and harmonicity or regularity of the disturbing
potential is not required. The anomalous potential restricted to the reference ellipsoid is regarded as
a function of the latitude and longitude only. The vertical deflections are then associated simply with
the geoidal height through the horizontal derivatives. Then, the geoidal height is determined through
numerical integration. However, this model requires that the vertical deflections are somehow
reduced to the geoid. The method has the drawback that the two-dimensional numerical integration
may break down if only one component of the vertical deviation is available. Only geoid profiles can
be determined in this situation, or the one-component stations are left out.

2.7.1.2 Geodetic Boundary Value Problems (GBVPs)

GBVPs represent the well-established scientific basis of the analysis of terrestrial geodetic
measurements for modeling the Earth's gravity field as well as the geoid or quasi-geoid (Lehmann,
1999). They can be defined mathematically as finding the disturbing potential T, so that

T =T(S)
B(T) =F, (2.62)

where the boundary surface S is the topographic surface, outside which the mass density is zero and
on which the input data F is given, and B, which corresponds to F, is a zero or first-order derivative
operator or a combination of them. After a relevant reduction of the anomalous potential, S can be
the telluroid, the geoid, the reference ellipsoid or the mean terrestrial sphere, centered at the center
with radius R. Hence, according to the type of input data, there exist various kinds of geodetic
boundary value problems (GBVPs).
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In the third GBVP, the input data are the orthometric height H or the normal height H* and the
gravity g on the topographic surface. Such data can be obtained via leveling and gravimetry. The
output is the geoidal height, quasi-geoid (the ellipsoidal height h and topographic surface), and the
external gravity potential. Hence, if F in (Eq. 2.62) is the gravity anomaly data Ag on the topographic
surface Stp. and B is a combination of the first and zero-order derivative operators, thus, the
mathematical expression of the third GBVP is

T =T(Stop.)
1 dy oT _ .
Ty T - o= Ag on the topographic surface, (2.63)

where the derivatives are taken along the normal plumb line. The above expressions are called the
Molodensky’s problem (Heiskanen and Moritz, 1967). After transforming the disturbing potential, it
reduces to the ordinary Stokes’ problem, in which the boundary surface S is the geoid.

Regarding the second GBVP, the input data are the topographic surface of the Earth (the
geodetic height h) and the gravity g on it, which GPS and gravity observations can obtain. The outputs
are the geoid undulation or the quasi-geoid (hence the orthometric height H or the normal height H)
and the external gravity potential. Thus, if F in (Eg. 2.62) is the gravity disturbance data &g on the
topographic surface and B is the first-order derivative operator, the associated mathematical
expression is given as

T= T(Stop,)
T/0h = -89 on the topographic surface. (2.64)

The second GBVP is called the Hotine problem if the boundary surface is the geoid. The first GBVP,
also regarded as the Dirichlet’s problem, has the disturbing potential TO and the topographic surface
as input. The output is the value of gravity on the Earth’s physical surface. Thus, F in (Eq. 2.62) is
the disturbing potential data (expressed by the geoidal height or quasi-geoid) on the topographic
surface, obtained by leveling and GPS observations on land or via satellite altimetry over the ocean.
These (space) methods of geoid determination are called the “geometric” methods. The relevant
mathematical expression reduces to

T= T(Stop_)
T=To. on the topographic surface. (2.65)

From the solution of the above problem gravity anomaly and gravity disturbance can be computed
by Egs. (2.26) and (2.27), respectively. The determination of the gravity anomaly or gravity
disturbance on the geoid, based on the geoidal height data, is referred to as the inverse Stokes or
inverse Hotine problem.

The geodetic data situation on land and sea differs according to the kinds of data, the data
accuracy, and coverage. When formulating GBVPs, the differences should be taken into account,
arriving at what is called the altimetry-gravimetry problems (AGP). Problems of this kind are usually
formulated as mixed GBVP. The relevant B operator will be a composite operator that depends on
the data type and its location, whether on land or sea. More about the mixed GBVP can be found in
(Lehmann, 1999) and (Lehmann, 2000).

2.7.1.3 Integral Formulas

There are two fundamentally different approaches to solving geodetic boundary value
problems. The first (and most common) approach is the analytical solution, which aims at a
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reformulation of the situation in such a way that they become analytically solvable, e.g., by integral
formulas (or numerical integrations), in which the disturbing potential (or its functions) is generally
expressed directly as an analytic function of the observed gravity, as will be seen below. The second
approach is the numerical solution using finite differences, finite elements, boundary elements,
wavelets, and other methods (Lehmann and Klees, 1999).

From the definitions of the GBVPs, it is clear that these problems are non-linear with respect to the

geopotential since the relevant observable elements are non-linear functions of the generating
potential. This ambiguity is solved by using the mean gravity GM/R?, denoted as a spherical
approximation in gravity space (Moritz, 1980). The corresponding approximation in the geometry
space is that the geoid is assumed to form the mean terrestrial sphere, with mean radius R, and that
it encloses all masses (Heiskanen and Moritz 1967, Martinec 1998).

In spherical approximation, assuming that the reference ellipsoid is an absolute one, the geoidal
height can be computed from the well-known Stokes’ formula as follows

N=(R/4ny) [[s S(P) Agdo, (2.66)

where R is the earths radius and vy is the relevant normal gravity on the level ellipsoid, Ag the gravity
anomaly at the running point, y the spherical distance between the computation point and the
integration point, do the element of the unit sphere o at the running point and S(y) is the Stokes’
function (or kernel), which is given by

S(P)= cosec(t) - 6sin(t) + 1 - 5cos(2t) - 3cos(2t) In[sin(t) + sin?(t)], (2.67)
with t = y/2. The above integration is taken over the unit sphere, and the gravity anomalies refer to

the geoid. Similarly, the relevant deflection of the vertical components, & and n, are given by the
Vening-Meinesz integral formula (1. N. Tziavos and Andritsanos, 1997),

{E} = (5y) 1, 88 VO { Gy o} o (2.68)

1 ATy

where a is the azimuth (at the computational point) of the geodesic line between the computation
point and the running point and V() is the Vening-Meinesz function, which is given by

V() = (1-s2)05{-1/2s2+ 165 - 6 + 3(s-1)/(2s5(1-s2)) + 65 In(s + s2)}, (2.69)
with s = sin(y/2). Stock’s and Vening-Meinesz problems are two complementary issues that solve

the third GBVP on the geoid. The Hotine formula represents a solution for the second GBVP (or

Neumann’s GBVP). Particularly, it computes the geoidal height in terms of gravity disturbances
(Zhang, 1998)

N=(R/4nYy) [[s H{) 8g do, (2.70)
where H(y) is the Hotine kernel, which is given as

H() = 1/sin(t) - In (1 + 1/sin(t)), (2.71)
again with t = y/2.

A new integral formula, derived by (Hwang 1998), is the deflection-geoid formula, which solves the
geoid undulation in terms of the deflections of the vertical, as follows
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dC(‘P)
N===_[] =2 0,do, (2.72)

where @, is the component of deflection of the vertical in the direction (of azimuth a) connecting the
computation point and the integration point, and C(y) is the associated kernel that is given by

C(y) =-2logsin(t) - 1.5 cos (2t) -1, (2.73)
and
dC(y)/dy = -cot (t) + 1.5 sin (2t). (2.74)

The above-stated integral formulas have the common drawback of demanding a homogeneous data
type and distribution, as shown below. It should be mentioned that the Stokes, Vening Meinesz, and
Hotine formulas have well-developed inverse versions, which have reversed input and output items.
More about such inverse formulations can be found in (Hwang, 1998) and (Wang, 1999).

2.7.1.4 Space Domain and Spectral Domain Evaluation of Integral Formulas

Theoretically, the integral formulas for the various problems presuppose that the entire
boundary surface should be continuously covered with observed gravity field quantities. This
fictitious data coverage is impossible, and the integration is practically carried out over a limited
spherical cap of an appropriate radius yo around each computational point. Taking Stokes’ formula
as an example, the integral in (Eq. 2.66) will be given as

N = (FRV) f:ﬂ foﬂS(LIJ)Ag siny dy da =

(m y) Js o Jy PO S(y)ag sing dy do + Js - fwo S(Y)Ag siny dy da. (2.75)

The first term in Eq.(2.75) is regarded as the inner (or near zone) contribution to the geoidal height.
This near-zone term corresponds to the gravitational observations in the limited integration cap. The
second term is the far (or remote) zone contribution, induced by the gravity field data outside the
integration cap and is in principle extended to cover the rest of the Earth.

In modern geoid determination approaches, the geoidal height is spectrally decomposed into
three components, according to the relevant wavelengths or spatial frequency, via the so-called
remove-restore technique. Particularly, the far zone (long-to-medium wavelength) contribution is
supposed to be provided by an adequate high-resolution global geopotential harmonic model. The
local (or regional) gravity data provides the medium-to-short wavelength component. Finally, the
short and very short detailed features are accounted for through the effect of the local topographic
features (Featherstone et al. 1996; Higgins et al. 1996). Accordingly, the second term in the above
integral is provided by the geoid (Neem) computed from a suitable harmonic global geopotential
model, as will be discussed later. On the other hand, the detailed high-frequency features (Nn) are
generally implied by a high-resolution digital elevation model for the area under study, whereas the
intermediate component is modeled via the integral formula as follows

N = Nggm + NIntegral + Ny,

= Nepm + (= )fz“ [P0 S(u)AgT siny dy doc+ Ny, (2.76)
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were Ag" are the residual gravity anomalies (after being reduced for the reference geopotential model
and the topographic effect). In other words, the gravity anomalies resulting from the removal
procedure,

Agr = Agobs -AgceM - Agh. (2.77)

The above integral is the modified (or spheroidal) Stokes’ formula (Featherstone and Olliver, 1993;
Vanicek and Featherstone, 1998). Due to the discontinuous coverage of the gravitational observations
even within the integration cap, the integral in Eq.(2.76) is replaced by discrete summations as
follows (Kirby et al. 1997)

Nintegrar = 20 Bg” (W) F(b) 84, (2.78)

where F(y) = %2 S(y) sin y. The Ag'(y) are the mean residual gravity anomalies, averaged over the
annulus bounded by v and (y+3y), as follows

Ag"(W) = (5;) 28" Ag" 8, (2.79)

da. and Sy being appropriately chosen discrete intervals of azimuth and spherical distance,
respectively. It should be emphasized that efficient computer software exists for manipulating the
above ring-integration procedure. (Higgins et al., 1997; Kearsley et al., 1998)

It is well known that the discrete summation can be more efficiently carried out over a
rectangular grid (with equal spacing A and AX ) around the computation point, with the mean
residual data predicted at the grid nodes. In this case, the discrete summations in (Egs. 2.78 and 2.79)
will be given as:

R [
Nintegral = m Z(p ZAAgrS(LIJ) cosp ApAl (2.80)

The above space domain numerical integral procedures and the remove-restore technique are
applicable for all the integral formulas, considering the appropriate modifications according to the
handled items. It should be mentioned that the singularity of the kernels at the computation points
should be taken into account. In addition, the kernel functions should be weighted in such a way to
account for their rapid change in the vicinity of the computation point (Featherstone and Olliver,
1994). Furthermore, some trends exist according to which the integration kernels are modified to be
compatible with the size of the integration cap or equivalently with the resolution of the reference
geopotential field. More about the modification methods can be found in (Featherstone et al. 1998;
Featherstone and Sideris 1998; Nsombo 1998).

If the numerical integration, e.g., Eq. (2.55), is computationally tedious (e.g., by large data
organizations), then the Fast Fourier Transform (FFT) technique would be an efficient alternative.
The FFT methods are referred to as the spectral domain methods, as both the gravitational data and
the relevant kernels are transformed from the space domain into the spectral (or frequency) domain
(Dahl and Forsberg 1998; Tsuei et al. 1994; Tziavos and Andritsanos 1997).

The FFT technique is applicable to all numerical integration algorithms encountered in physical
geodesy, including topographic reductions. FFT methods include the spherical 1D-FFT, the planar
2D-FFT, the spherical 2D-FFT, and the spherical multi-band FFT method. Regarding Stokes
formula, for a given parallel of latitude op, the application of the spherical 1D-FFT gives

Ny, ) = (%) F%{Z(pp F; (qu cos (pq)F1 [S(p (Ap - Aq)]}. (2.81)
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where F1 and F1 stand for the discrete 1D Fourier transform and its inverse, respectively. Eq. (2.81)
can be repeated for all parallels of latitudes for the area of interest. It should be mentioned that the
results obtained by this 1D-FFT are precisely the same as those obtained by direct numerical
integration on the sphere. On the other hand, the spherical multi-band FFT is a generalization of the
spherical 2D-FFT, and both methods are approximations of the numerical integration. Details about
the FFT methods can be found in (Dahl and Forsberg, 1998; Tsuei et al., 1994; I. N. Tziavos and
Andritsanos, 1997). Finally, the FFT technique evaluates geodetic integrals over rectangular grids
only.

2.7.1.5 Downward Continuation

In the standard Stokes formulation of the geodetic boundary value problem, the solution, T, is
sought above the boundary, the geoid, while the observed gravity values are available on the surface
of the Earth. The observations thus have to be reduced from the Earth’s surface onto the geoid to
obtain the boundary values, and this reduction is referred to as the downward continuation. The
downward continuation may be applied to the observed gravity anomaly values, gravity disturbances,
the disturbing potential T, or combinations of these quantities. Once one knows how to continue T
downward, the downward continuation of the other quantities can be derived ( p Vanicek etal., 1986).

Mountainous topography affects gravity field modeling, in two possibilities, a strong gravity
signal is due to the gravitational attraction of the topographic mass itself or the second possibility
implies that the terrain corrections are applied to regularize the problem. (Forsberg and Tscherning,
1997).

One of the impacts of local terrain reductions is to remove the correlation of free air anomalies
with height (Forsberg and Tscherning, 1997). There are different methods of terrain reduction for
gravitational quantities. In all forms, the topographic masses between the terrain and the geoid are
computationally removed at the considered point so that the Earth’s mass and the geocenter are
unchanged (Heiskanen and Moritz, 1967). The removal of masses is followed by the downward
continuation of the observed elements as if in free air, using the relevant vertical gradient. This
downward continuation is thus theoretically valid since the harmonicity of the continuation zone is
formally guaranteed.

The reduction methods are different according to how the removed topographic masses are
dealt with. In Helmert’s second condensation method, the removed masses are computationally
condensed as a single layer on the geoid, the effect of which is added to the reduced observations.
During the masses’ restoration, that layer's effect is subtracted (Veronneau, 1996). As an
approximation of the Helmert’s reduced anomalies, the Faye anomalies are usually used, in which
the effect of local terrain irregularities concerning a Bouguer plate at the considered point (classical
terrain correction, TC) is added to the free air anomalies (Veronneau, 1996; Wang, 1993). In the
complete (Bouguer) topographic reduction, the removed masses are assumed to be shifted inside the
geoid. This reduction amounts to removing a Bouguer plate and then accounts for the classical TC
effect relative to that plate. Ideally, such reduction should be accompanied by a relevant model of
isostasy. In such a case, the masses are removed along with their isostatic compensation, and
subsequently, the same features are restored.

2.7.1.6 Ellipsoidal Corrections

Stokes’ formula for the gravimetric determination of the geoid requires, besides other
assumptions, that the input gravity anomalies are referred to as a sphere in geometry and gravity
space. According to Heiskanen and Moritz (1967), the relative error introduced by that approximation
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is of the order of 3 x 103, Such an error level is not acceptable at a time when the “1 cm geoid”, or
even a few centimeter geoid, is the target. Hence, developing the theory of geoidal height
determination as precisely as possible is a step towards obtaining the geoid with a relative accuracy,
which would be compatible with the achievable relative accuracy of ellipsoidal heights via the GPS
technique (Martinec and Grafarend, 1997).

Some partially enhanced computational trends have appeared in the geodetic literature. The
mean radius in the “spherical” Stokes’ formula is replaced by the rigorous ellipsoidal geocentric
radius, r, of the foot point on the reference ellipsoid. However, Martinec and Grafarend (1997) have
proceeded much more precisely. They have solved the Stokes’ boundary value problem for gravity
anomalies distributed on an ellipsoid of revolution in the geometry and gravity space. The ellipsoidal
approximation of the geoid reflects a reality, which is much better than the spherical approximation
since the actual shape of the geoid deviates from an ellipsoid of revolution by about 100 m at the
most.

The formulation of the ellipsoidal Stokes’ formula encounters the treatment of the GBVP in
ellipsoidal coordinates and the usage of the complex Legendre functions of the 2" type (Martinec
and Grafarend, 1997). In this formulation, the “spherical” Stokes’ function had a correction in terms
of the ellipsoidal Stokes’ function, which described the ellipticity of the boundary, up to the order of
the square of the first eccentricity of the reference ellipsoid (i.e. (e)). Hence, treating the geoid
concerning an ellipsoid of revolution in an appropriate normal gravity field, particularly as a
boundary condition prescribed on the approximate geoid surface (the reference ellipsoid of
revolution), may cause relative errors in the order of 1.5x10°. The absolute error, relevant to that
“ellipsoidal approximation”, in the geoidal heights computed from the ellipsoidal Stokes’ integral
does not exceed 2 mm and 0.2 mGal in the gravity (anomaly) space (Martinec, 1998). A preliminary
numerical application of the ellipsoidal integral showed that the near-zone ellipsoidal correction term,
concerning the spherical integral, is as high as 10 cm. Accordingly, the ellipsoidal Stokes’ integral
seems unavoidable (Ardestani and Martinec, 2000).

2.7.2 The Operational Approach

Generally speaking, the methods of the operational approach are more capable than those of
the model approach. Notably, the input data types can freely be heterogeneous and should not
necessarily be observed on the surface of the terrain (or sea). For example, the data could be
heterogeneous, non-homogeneous, and observed at airborne or satellite altitudes. Moreover, the
output of the operational techniques has the same general optional scheme of the input data, i.e.,
predictions of any type could be estimated everywhere. A typical characteristic of the relevant
methodologies is that they require estimating intermediate (auxiliary) parameters from the input data
via the solution of a system of normal equations (or an integral equation). In general, such methods
follow a space domain fashion. In what follows, a review is outlined for the common techniques
belonging to the operational approach.

2.7.2.1 Spherical Harmonic Synthesis

Spherical harmonic synthesis amounts to expanding the various gravimetric quantities in
spherical harmonic series. The relevant “intermediate” parameters are the unitless spherical
harmonics of global geopotential in spherical harmonic representations. The most straightforward
spherical harmonic formulation is generally given as
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fQ, ) = X0 anZO(CHmCOS mA + Spp,sin m}\)ﬁnm(Sinqﬂ)' (2.82)

where
V' the geocentric latitude,
A the geodetic longitude,
Cm the fully normalized spherical harmonic C - coefficients of degree n and order m,
Som the fully normalized spherical harmonic S-coefficients of degree n and order m,
Enm(Sin\V') the fully normalized associated Legendre function of degree n and order m.

According to the above equation, the “synthesized” function f(y', 1) can be computed at any point
on the unit sphere. Belonging to the operational approach (C. C. Tscherning, 1981), the spherical
harmonic synthesis can predict any kind of gravitational field functions, provided the global
geopotential coefficients are previously known via the functional relationships among the various
gravimetric quantities. In that sense, spherical harmonic synthesis could be a tool for transforming
the gravimetric elements from the Fourier frequency domain into the space domain. The harmonic
coefficients themselves can be estimated from any type of (heterogeneous) data via spherical
harmonic analysis.

2.7.2.2 Runge-Krarup’s Theorem

Runge-Krarup’s theorem is the theoretical basis for the operational approach, or equivalently,
for the discrete boundary value problem. There is a very close connection between the problem of
the Bjerhammar sphere and the convergence of spherical harmonics, or better, the question of
approximation of the geopotential by spherical harmonic series (Bjerhammar, 1973; Moritz, 1980).
Runge-Krarup’s theorem states that: “Any harmonic function T, regular outside the Earth’s surface,
may be uniformly approximated by harmonic functions T* regular outside an arbitrarily given sphere
inside the Earth, in the sense that for any given € > 0, the relation

|T-T* <e (2.83)

holds everywhere outside and on any closed surface surrounding the Earth’s surface”. This sphere,
enclosed inside the Earth (Fig. 2.16), is referred to as the Bjerhammar sphere. The number € may be
arbitrarily small, and the surrounding surface may be arbitrarily close to the Earth’s surface.

Moreover, if the Earth’s surface is sufficiently regular (e.g., continuously differentiable), this
outer surface may even be taken to coincide with the Earth’s surface. In this case, one gets the
Keldysh-Lavrentiev theorem (Moritz, 1980): “Any function T, harmonic outside the Earth’s surface
and continuous outside and on it, may be uniformly approximated by harmonic functions T* regular
outside an arbitrarily given sphere inside the Earth, in the sense that for any given € > 0, the relation.

| T-T*| <e
holds everywhere outside and on the Earth’s surface”.
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Since € can be chosen arbitrarily, one may consider a sequence
€1> 2> €3 vvrinnnnnn - 0.
and find a function T" for each ex. In this way, one obtains a sequence of harmonic functions T 1,

T2, T"s... regular in the whole space outside the given Bjerhammar sphere, that converges uniformly
to the given function T on and outside the Earth’s surface.

Berhammar
sphere

Figure 16 Bjerhammar sphere (Bjerhammar 1973).

From the above, it is obvious that the disturbing potential T, which is harmonic and regular outside
the Earth’s surface, can be very well approximated outside the Earth’s surface by another potential
T, which is harmonic and regular outside the Bjerhammar sphere. The sphere's radius, Rp, is
theoretically supposed to be less than or equal to the semi-minor axis of the mean Earth ellipsoid.
The appropriate requirement is that any point on the Earth’s surface lies in the exterior of that
(geocentric) sphere (Bjerhammar, 1973). According to Runge and Keldysh theorems, the anomalous
potential, T, on or outside the surface of the Earth can be analytically continued downward onto the
geoid or onto the Bjerhammar sphere, which is referred to as the harmonic downward continuation.
Of course, if the observed gravitational elements are previously reduced to the geoid, such theorems
are still valid in the sense of the classical GBVPs. This is guaranteed since, in such a case, the
disturbing potential T will be harmonic and regular outside the geoid; hence, T~ will approximate T
very well on and outside the geoid (Moritz, 1980).

2.7.2.3 Discrete Boundary Value Problem and Least-Squares Collocation

Bjerhammar problem can be summarized as follows: “4 finite number of gravity data is given
for a non-spherical surface, and it is required to find such a solution that the boundary values for
the data are satisfied in all given points” (reference). For example, suppose gravity anomalies are
known from gravity observations at discrete points of known orthometric heights at the Earth’s
surface. In that case, the problem is determining a gravity field that is consistent with these
observations. This problem is regarded as the discrete boundary value problem (Bjerhammar, 1973).
This formulation is more realistic than the usual formulation in terms of the classical GBVPs since
the observations are taken at discrete points in reality. The solution of this problem is not unique, the
additional requirement restricts that the computed gravity field should be as smooth as possible.
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The non-uniqueness of the solution of Bjerhammar problem corresponds to the non-uniqueness of
the interpolation problem. Thus, in the sense of the least standard error, one expects that the optimum
interpolation corresponds to an optimum solution for that problem, in the sense of an optimally
smooth gravity field (Moritz, 1974). The solution to that problem corresponds to the least-squares
prediction in physical geodesy, in which the input data and the predictions are of the same type, e.g.,
gravity anomalies (Heiskanen and Moritz, 1967). The principle is so flexible that it was generalized
so that the input and output items could be of any heterogeneous nature. In such a case, one deals
with the least-squares collocation technique, which represents the most capable and flexible
prediction technique in geodesy, particularly for modeling the outer gravity field of the Earth. The
least-squares collocation (LSC) method combines adjustment, filtering, and prediction in its more
general scheme. A key role in this method is estimating the covariance function and the relevant
modeling parameters.

2.7.2.4 Least-Squares Collocation and Integrated Geodesy

Any geodetic measurement, without exception, may (after linearization) be split into three
components. The first constitutes a systematic part AX, which comprises effects of the ellipsoidal
reference system, station coordinates and other geometric parameters, and systematic measuring
errors. The second component is a random signal part, t, which expresses the effect of the anomalous
gravity field on the observed quantity. The last part is the random observational errors, n, inherent in
any measurement. Hence, each geodetic observation can be represented by the general mathematical
model of the (LSC) technique, given as

I=AX +t+n, (2.83)

which is regarded as the general observation equation for physical geodesy (Moritz, 1980).

Thus, the (LSC) principle is so flexible that it could incorporate all terrestrial geodetic observations,
observed elements of the gravity field, and GPS observations into a unified adjustment, filtering, and
prediction scheme. Particularly, besides all observable gravimetric elements and GPS measurements,
observed horizontal and zenith angles, spatial distances, astronomic azimuths and coordinates,
orthometric heights, geopotential differences, etc., all these data can be efficiently handled in an
(LSC) algorithm (Moritz, 1974). This general computational trend is regarded as the integrated
geodesy adjustment.

The principle of integrated geodesy allows for simultaneous processing of all possible geodetic data,
which have a two-fold output. One output is the adjusted station geodetic coordinates relative to the
reference ellipsoid and the relevant orthometric heights. The second output is the desired elements
of the disturbing potential, such as geoidal heights, vertical deflections, and gravity anomalies or
disturbances. In summary, the integrated geodesy implicitly accounts for all reductions of terrestrial
observations to the reference ellipsoid, performs 2D or 3D adjustment of control stations (Shaker,
1982), models the anomalous gravity field, and performs GPS height and any eventual datum
parameters estimation (Hein et al. 1989). More about the geometrical applications of collocation can
be found in (Moritz, 1980).

2.7.3 The Combined Methods

Regarding both the operational (LSC) and model approaches, the use of an appropriate high-
resolution model of global geopotential as a reference field provides the long-wavelength
contribution and results in a smooth residual field, which is a theoretical property treating the
anomalous elements as signals (with possibly zero mean and standard deviation). On the other hand,
subtracting the terrain effects should smooth the input data more while accounting for the short-
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wavelength component of the field (C. C. Tscherning and Forsberg, 1986a). Thus, in both
approaches, local terrestrial gravity and Digital Terrain Model (DTM) data are combined with a
harmonic model of global geopotential, originally constructed from satellite dynamics analysis.

It is well known that the (LSC) technique may be computationally tedious when the number
of data points and predicted signals is very large. Hence, another alternative is to use the collocation
method as a technique for gridding the data, and then the FFT techniques may be used. Furthermore,
the Fast collocation method, discussed in the following chapter, can also be used.

The astro-gravimetric method (or astro-gravimetric leveling) uses the main advantages and
avoids the fundamental defects of both the astro-geodetic method and the gravimetric one to compute
a better geoid. Particularly, the astro-geodetic (as well as the GPS-leveling method) can determine
the fine structure of the geoid. However, using this method, the position of the (local) datum origin
with respect to the geocenter will be unknown. In addition, the observed astro-deflections could be
poorly distributed. On the contrary, the gravimetric method deals with a geocentric datum, but some
factors could affect its long wavelength components, particularly the zero degree term (Heiskanen
and Moritz, 1967). As the densification of deflections by astronomical observations is laborious and
uneconomic, it is more efficient to predict the deflections gravimetrically at the wanted new positions.
Amin (1983) gives a comparison among some methods for Astro-gravimetric leveling.

2.8 General Sources of Errors in Gravimetric Geoid Determination

Keeping in mind that the Remove-Compute-Restore (RCR)technique has been the standard
tool for gravity field modeling, the gravimetric geoid encounters many sources of errors, which could
be of a random or systematic nature. While the random errors are unavoidable, the systematic errors
can be a consequence of the practical approximations in theory, not properly accounting for
reductions, or the lack of global and local data coverage. In this sense, according to the available
information and computational techniques, the systematic errors could be completely or partially
accounted for.

The basic sources of random errors are the random observational errors inherent in the input gravity
data and the uncertainty in the used geopotential spherical harmonic models. The noise inherent in
the geopotential coefficients, up to a specific degree and order, is usually called the commission error.
Such error is best described in terms of the error degree variances of the harmonic model, which will
be discussed in the proceeding chapters.

On the other hand, there are many sources of non-random errors. Obviously, the input gravity
observations should be efficiently corrected for tidal effects, drift, etc., via appropriate mathematical
models or special observational techniques (G. Dawod, 1998). A significant error could be due to the
used Earth’s constants. If the best updated Earth’s constants are considered, then no error will be
committed regarding the Earth’s defining parameters. Otherwise, an error of the order of about one
meter could be the consequence (Featherstone and Olliver, 1993). Moreover, as was previously
mentioned, the spherical approximation yields a considerable error in geoid computation.
Fortunately, the remove-restore technique is acknowledged to significantly decrease the effect of
spherical approximation (Martinec, 1998).

Regarding the classical GBVPs, discretization error is another problem (Rapp, 1973). This error
typically results from gravity data's non-continuous coverage of the far and near zone (integration
cap) areas. The discretization error is thus the amount of information lost when replacing the integrals
with discrete numerical summations regarding the near zone computations. On the other hand, the
far zone component of that error is the amount of the lost features due to the construction of
geopotential coefficients from global discrete data. The improvement of global data coverage can
only reduce such errors. Theoretically, if a continuous global data coverage were achieved, this would
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correspond to a (fully determined) global geopotential model with a maximal degree of infinity, and
a statistical treatment of the Earth’s gravity field would have no sense.

It is well known that the objective of the remove-restore technique is to account for the
truncation error (or the omission error), which is the error resulting from neglecting the information
outside the limited integration cap. This amounts to the long-to-medium wavelength contribution.
However, the used geopotential model could have no data contribution from the investigated area.
Consequently, it would not recover the long and intermediate wavelength features for that region in
a reliable manner. In particular, residual long wavelength features would result (Stewart and Hipkin,
1989) and a long wavelength error in the computed local geoid will be the consequence. This
shortcoming can be considered as a partial removal of the truncation error by the geopotential
harmonic model. Finally, another source of gravimetric geoid errors is the neglection or improper
modeling of the topographic gravitational signal in a remove-restore fashion.
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3. Global geopotential models, digital models of topographic masses

Overview

This chapter introduced the statistical and mathematical properties of the spherical harmonic
functions and discussed the spectral meaning of the spherical harmonic coefficients. Then, the
principles of spherical harmonic analysis and spherical harmonic synthesis are clarified. The global
harmonic analysis using various global gravity field data sources and the different classes of the
derived global harmonic models are presented. After that, the concept of tailored geopotential
harmonic models is clarified. A theoretical review of the various applications of global harmonic
models is then presented. After then, the concept of DEM is introduced.

3.1 Global geopotential models

The global Geopotential Model is a mathematical function that describes the Earth’s gravity
field in 3-dimensional space. The determination of the Earth’s global gravity field is one of the main
tasks of geodesy: it serves as a reference for geodesy itself, and it provides essential information
about the Earth, its interior, and its fluid envelope for all geosciences. from such gravity potential all
related gravity field functionals can be obtained (Barthelmes, 2014).

As mentioned in chapter two, section 2.2. that the gravitational potential of the Earth, V, when
calculating the effects of Earth’s gravity on a satellite we need to solve for the geopotential at a
specific location outside of the Earth by integrating the geopotential over a series of

Mass elements dM that comprise the Earth (Fig. 17)

V=6l T - (3.1)

where no attracting masses exist (outer space), the gravitational potential is a harmonic function and
satisfies Laplace’s equation, which is given as:

V2V = (3.2)

Figure 17 The potential V at a point at distance | from an attracting mass is the summation of the potential due to all
mass elements dM (adapted from Wellenhof and Moritz 2005)
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It can be easily shown that the reciprocal distance (1/1) is primarily a harmonic function, which can
be looked upon as the gravitational potential of a point mass of m = 1/G. This is the only reason why
the outer gravitational potentials of homogeneous spherical masses, point masses, surface mass
layers, and even non-homogeneous solid bodies (such as the Earth) are harmonic outside the
attracting masses. Furthermore, the non-harmonicity inside the attracting body is easily interpreted
by the singularity of the reciprocal distance in such domains.

Analogously, the normal gravitational potential,

dMp,
Vo =G [[foprn (3.3)
is harmonic in the outer space of the relevant level ellipsoid and obeys Laplace’s condition, that is
V2V, =0 . (3.4)

It follows immediately that applying the Laplacian operator on disturbing potential, T = V-V, which
is harmonic outside the attracting masses, gives

V2T =, (3.5)

It can be shown that the Laplacian condition (Eq.3.2), for the gravitational potential of the
Earth, can be expressed in spherical coordinates as follows (Heiskanen and Moritz, 1967)

r? 92V/or? + 2r dV/er + 02V/00? + cotd oV/o0 + (1/sin%0) 6°V/oa? =0, (3.6)
, 0%V v 9%V iAY ( 1 62V> B

4 — g
R Rl TP O il eyl v

where r is the geocentric radius,
0 is the co-latitude (or the compliment of the geocentric latitude ') and, A is the geodetic longitude.

The general solution of the above differential equation yields the well-known infinite spherical
harmonic expansion of the Earth’s gravitational potential into a series of spherical harmonic functions
of degree n and order m, which is expressed by

n
V(6,Ar) = (GTM) [1 + (%) Ym=0(Chm cosmA + S, sin mA)P,, (cos 9)], (3.7)
where:
a the equatorial radius of the Earth,
Cnhmand Spm the conventional unitless spherical harmonic coefficients of

the Earth’s gravitational potential of degree n and order m,
Pnm(c0s0) the conventional associated Legendre function of degree n and

order m.
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However, it is common practice in physical geodesy to replace both the conventional spherical
harmonic coefficients and the relevant associated Legendre functions by their fully normalized
versions, as follows

— Cn

@9)
(_:nm _ (n+m)! 1/2 (Cnm)

<§Hm> N [(2(2n+1)(n—m)!) Som/ m # 0 (3.9)

and

P,o(cosB) = (2n + 1)/2. P,y (cosh),

_ _m)n /2
P,y (cos®) = [W} . Pym(cosB), m # 0 (3.10)
Where:
Com and S, are the fully normalized unitless spherical harmonic coefficients
of the Earth’s potential of degree n and order m,
ﬁ,m(cose) is the fully normalized associated Legendre function of degree n

and order m.

Hence, Eq. (3.7) is usually expressed as

V(0,Ar1) = (ﬂ) [1 + ¥, (%)n D —0(Cam cOs mA + S, sin mA) Py, (cos 6)], (3.11)

r

where both S, and S,,, are by definition equal to zero, since sin0A=0.

Similar to the actual gravitational field of the Earth, Laplace’s differential equation (3.4), as applied
to the normal gravitational field, can be expressed in ellipsoidal coordinates (B, A, u) and solved for
Vn(B, A, u) (Hobson, 1931). In this case, the solution would be the expansion of the normal
gravitational field in ellipsoidal harmonics, which utilizes, besides the ellipsoidal coordinates, the
complex second type of associated Legendre functions Qnm, in addition to the above-mentioned
associated Legendre functions, Pnm. Nevertheless, exploiting the relationships among the ellipsoidal
and spherical coordinates, the normal gravitational field is usually expressed in the following zonal
spherical harmonic expansions (Hirvonen, 1960)

Va(8,1) = (22 [1 - 252 (%) ConPon (cos0) (3.12)
where:

P, (cos9) is the fully normalized Legendre polynomial of degree 2n,

Con is the fully normalized zonal spherical harmonic coefficient, of

degree 2n and order 0, of the normal gravitational potential,
M, is the mass of the reference ellipsoid and

ae is the respective equatorial radius.
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The even zonal coefficients of the normal field are given by

Cpp = —20_ (3.13)

"~ (2n+1)1/2

Based on the above, it is clear that the disturbing potential can be expanded in spherical harmonic
series, via the subtraction of the expansion (3.12) from (3.11), as follows (Kirby and Featherstone,
1997; Smith, 1998)

_ n — — —
T, A1) = 2 rGMe + % [2?{3:1 (%) 0 o(Chm cosmA + S, sinmA) Py, (cos 9)] (3.14)
— — ny _
Cho = Cpho — [GGTAe : (%e) ] Sor m=0 and n even, (3.14a)
Cim = Cum otherwise, (3.14b)

where C¢, are the relevant even zonal coefficients of the normal gravitational potential, as given in
Egs. (3.12) and (3.13). The first term of Eq. (3.14) is the zero-degree term of the anomalous potential.
If the mass of the normal ellipsoid equals that of the Earth, then that term would equal zero. Moreover,
if the center of the reference ellipsoid coincides with the geocenter, then the first-degree terms would
vanish. In such a case, and assuming an equal equatorial radius of both the Earth and the normal
ellipsoid, one simply obtains

n _ — —
T(O,A1) = g [Z;‘{;z G) m=o(Chim cosmA + S, sinmA) P, (cos 6)], (3.15)
with
Cio = Cho — C& m = 0 andn even. (3.15a)

In spherical approximation, the equatorial radius, a, will be replaced by the mean radius of the Earth,
R, in the harmonic expansions of the anomalous features. Moreover, the geocentric latitude will be
replaced by geodetic latitude.

The harmonic expansion is practically truncated at a maximum degree N, the maximum
resolution of a given global geopotential harmonic model. Utilizing the functional relationships
between the anomalous potential and the various gravimetric quantities, these quantities can be
similarly expanded in spherical harmonic series, as given by Eq. (3.16) through (3.17)

n _ — j—
N(B,A.1) = (ﬂ) N, (3) n _o(Cim cosmA + S, sinmA) Py, (cos 6), (3.16)
ry r
n _ — —
Ag(6,A.1) = (i_z\le) YN ,.(n—1) (%) n —0(Chm cOs MA + Sy, sinmA) Py, (cos 6), (3.17)
with the zero- and first-degree terms taken equal to zero,
where:
N, Ag, are the relevant computed, geoidal height, gravity anomaly,
0 the geocentric latitude,
A the geodetic longitude,
r the geocentric radius to the geoid,
v(6, 1) the normal gravity implied by the reference ellipsoid,
GM the product of the Earth-mass by the gravitational constant,
a the equatorial radius,

40



Chm the fully normalized spherical harmonic C-coefficients of degree
n and order m, reduced for the even zonal harmonics of the reference ellipsoid,

Shm the fully normalized spherical harmonic S-coefficients of degree n and order m,

P,y cos O the fully normalized associated Legendre function of degree n and order m.

It should be emphasized that “a” in the above expressions is sometimes referred to as the equatorial
radius scale factor of the given geopotential harmonic model. Also, GM is the geocentric gravitational
constant pertaining to the model (Smith and Small, 1999). These constants can be taken from the
determined Earth constants, during the construction of the respective harmonic model (Rapp, 1982).
Particularly, the value of “a” is looked upon as the sphere's radius, down to which the relevant
harmonic expansion is assumed to be convergent (Smith, 1998). Of course, the convergence can also
be guaranteed below that radius, provided the evaluation point does not lie in the topographic masses.
Nevertheless, the regularization via the topographic reductions and the concept of Bjerhammar
sphere supplements the evaluation of the harmonic series down to the geoidal surface (Moritz, 1980).

3.1.1 Statistical and Mathematical Properties of Spherical Harmonics

Recall that the outer anomalous field and its observable functions can be expanded in spherical
harmonic series. Such expansions are based on common orthogonal base functions (or
eigenfunctions), which are usually referred to as the (fully normalized) spherical harmonic functions
(or spherical harmonics). According to where the harmonic expansion is evaluated, one deals with
either solid or surface harmonics.

Particularly, when the evaluation point lies on the surface of a sphere of radius a, representing the
boundary surface, one speaks of the surface harmonics. Thus, any function (8, A), which is defined
on the surface of a sphere of radius a, can be expanded in surface harmonic series as follows

f(e,2) = 2?1():0 Xm=-n Knm ?nm(e' L), (3.18)

where

= = cos mA >0

Y. (0,0) = P, (cos ) (sinlml }\) , m=0 (3.19)

are the fully normalized surface harmonics of degree n and order m, and

Ry = (Com m=0 (3.19)
nm gnm ’ m<0 )

are the unitless fully normalized spherical coefficients, relevant to the expanded function f. On the
other hand, if the function is harmonic in outer space of the sphere, whose radius equals a, which is
the case relevant to the geopotential, then it can be expanded in terms of solid spherical harmonic
series as given in Eq.(3.15), or formulated as follows

f(8, 4,10 = Zio Xh=-n (3) 1+ 1 Ko Yam(8,2), (3.20)

and if such function is harmonic inside the same sphere (such as in mass layers), one obtains
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0,4, 1); = 270 Zh=-n (5) 1 Koun Y (6,2, (3.200)

a

where both {(;) n+1.Y,,(0,1) and G) nY,m (6, )\)} are referred to as the fully normalized
solid spherical harmonics.

In the sense of the above, the spherical harmonic coefficients are considered constants, which
should be determined for the harmonic function under consideration. Essential for their
determination is the orthogonality relations among the surface harmonics. These remarkable
relations mean that the integral over the unit sphere of the product of any two different surface
harmonic functions is zero. Particularly, one obtains

15, Yom (8,)Yi (8,)d0 == [ _ [ Yum(8,)Yics (6,2) sin 0ddA = (3.21)
_(0) n#+korm#+1,
1 n=kandm = 1.

Thus, globally, the average of the squares of the same surface harmonic equals unity, whereas the
products of different harmonics average up to zero. Hence, in a statistical sense, the surface
harmonics could be considered as spatially uncorrelated. Mathematically, they are said to be
orthogonal. This property is essential for the applicability of spherical harmonics in physical geodesy,
as will be shown in the subsequent sections.

The harmonics with m=0 (or Legendre polynomials) are polynomials of degree n in cos0, so that they
have n real zeros in the interval (0 < 0 < x), which means that they change their sign n times in this
interval, and hence, divide the sphere into zones along the parallels of latitude (Fig. 18a).

On the other hand, associated Legendre functions change their sign (n-m) times in the interval
(0 <6 <m), while the functions cos mA and sin mA have 2m zeros in the interval (0 <A < 2m). So, the
longitude dependent non-zonal harmonics (m # 0) divide the sphere into compartments that are
positive and negative in a staggered fashion. So, they are called tesseral harmonics (Fig.18 c). In
particular, for n = m, the non-zonal harmonics have no zeros in the meridian directions. Therefore,
they degenerate into functions, dividing the sphere into positive and negative sectors (Fig. 18b), and
are referred to as sectorial harmonics.

Figure 18 (a) Geometric representation of zonal harmonics (m = 0) (b) sectorial harmonics (m = n), (c ) tesseral
harmonics (m # 0). (Skiba, 2017)

Thus, the surface harmonics provide the spatial periodicity (or frequency) of the disturbing
potential, according to the respective degrees and orders.
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3.1.2 Spectral Meaning inherent to Spherical Harmonic Coefficients

The zero-degree term in any harmonic expansion represents the average value of the relevant
harmonic function over the evaluation sphere. The succeeding terms for higher degrees describe the
harmonic deviations from that mean value. Each harmonic term has two parts. The first is the
trigonometric part, represented by the surface harmonic, and it controls the frequency of the spatial
oscillations of the function. The second part is a constant multiplier, represented by the respective
spherical harmonic coefficient, and it controls the amplitude of these oscillations. Regarding the
geopotential as a harmonic function, the power of the harmonic coefficients generally has a damping
trend as the degree increases, therefore, the amplitudes of the lower degree terms are relatively larger
than those of, the higher frequency ones.

The zero-degree term of the geopotential is simply the average performance of the whole Earth as a
point mass, which is relevant to the planetary behaviour of the Earth in the Solar system. On the other
hand, the zero-degree term of the disturbing potential expresses the discrepancy between the Earth's
mass (represented by an appropriate global geopotential model) and that of the reference ellipsoid.

The first-degree terms correspond to the non-geocentricity of the normal ellipsoid and vanish when
a geocentric ellipsoid is considered.

The zonal second-degree term of the disturbing potential, which is the dominant term in the expansion
of the anomalous field, is a function of the discrepancy between the difference between the polar and
mean equatorial mass moments of inertia of the Earth and the polar and equatorial moments relevant
to the normal datum. In this sense, that second-degree zonal term is a measure of the difference
between the flattening of the Earth and that of the ellipsoid.

Moreover, the second-degree tesseral terms and the sectorial S-term of the Earth’s potential
express the first product moments of inertia of the Earth with respect to the axes of the average
terrestrial system, and thus they represent the anti-symmetry of the Earth with respect to such axes.
On the other hand, the second-degree sectorial C-term is a function of the difference between the two
equatorial mass moments of inertia; hence, it is a measure of the ellipticity of the equatorial plane of
the Earth (Heiskanen and Moritz, 1967).

All harmonic contributions of degrees higher than zero are super-positioned with the zero-degree
term to describe the disturbing masses’ dependent structure of the anomalous field (Eq. 3.14). For
example, Fig. 19 illustrates a schematic representation of the global geoid, computed from a global
spherical harmonic model of the Earth’s geopotential.
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Figure 19 Spherical harmonic representation of the global geoid (Heiskanen and Moritz, 1967).

The coefficients can be viewed, in a general sense, as weighted mean values of the anomalous
potential in the frequency domain, the weights being the spherical harmonics. Loosely speaking, a
mean gravity anomaly field will represent an amount of information contained in a set of potential
coefficients of degrees less than or equal to a specific degree, N. The magnitude of N depends on the
size of the grid cells, over which the mean anomaly is computed.

The finer the grid resolution is, the higher is the maximum degree of the coefficients, which can be
extracted, and vice versa. If the Earth were continuously covered with point gravity data, a
geopotential model of maximum degree infinity could have been theoretically assessed. The second
limiting case is obviously when one deals with the Earth as a whole (a point mass or a sphere of
homogeneous mass), which corresponds to a zero-degree coefficient, where the potential would vary
with the radial vector-only (C. C. Tscherning, 1974).

A mean data grid having resolution 6 in both latitude and longitude directions on the Earth’s surface
generally produces a set of harmonic coefficients of maximal degree N=180° 6° (Rapp, 1977).

This rule connects the space domain resolution, 0, with the resolution, N, relevant to the spectral
domain. Resolution 0 is then referred to as the half-wavelength, which is inversely interrelated with
the spectral frequency N (Groten, 1981).

Thus, a GGM with a maximum of degree/ order N can recover the anomalous field with a spatial
resolution, corresponding to a grid of spacing 180°/N (Rapp, 1972a, 1972b).

Recall that, via the remove-restore technique in modern local geoid modeling, the geoid is
usually spectrally decomposed into long - medium, medium - short and short - very short wavelength
components. These components correspond to the geoid's global, regional, and residual local trends,
respectively, as shown in Fig. 20. The first trend is derived from an appropriate potential harmonic
model, the second part is supposed to be provided from the local gravitational data, and the third
trend is represented by the very short gravity signal derived from an appropriately high-resolution
digital terrain model.

Accordingly, the resolution of the low-frequency information will be compatible with that of
the geopotential model. In contrast, the resolutions of the local gravity data and the digital terrain
model will govern the resolution of the final detailed local geoid solution.
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Figure 20 Reference ellipsoid

3.1.3 Spherical Harmonic Analysis and Synthesis

Spherical harmonics are among the standard mathematical tools for analysis and synthesis
on the Earth and in the neighboring space. For example, geopotential models in the spherical
harmonic series synthesize most of the available observational information from gravity surveys,
satellite orbit tracking, and topographical height data.

The gravity anomaly (Ag) expression becomes in spherical harmonics as equations 3.16 and 3.17.

All band-limited functions on the surface of a sphere, which are square-integrable, can be expanded
into a series of spherical harmonics,

f(8,2) = YXN_ >0 _ (Cym cos mA + S,y sinmA) Py, (cos ) . (3.22)

A band-limited function does not contain any power in the frequencies above a certain degree,
N. Equation (3.18) is known as global spherical harmonic synthesis (GSHS), as the function f(6,)) is
composed (or synthesized) of the harmonic coefficients. Such coefficients are referred to as the true
ones because they represent the function. The upper bound, N, tends to infinity for a non-band-limited
function, such as the potential of the Earth. The above equation can evaluate the function from a
given set of coefficients in the space domain. Conversely, it is possible to compute these coefficients,
if the function values are given on the sphere as follows

1 2 T = .
Com = o= fx:o fe:o f(8,A) cosmA P, (cos 6)sin 6 d6 dA, (3.23)

2 . = :
Shm = ﬁijo feﬂzo f(0,2) sinmA P, (cos0)sinB® do da, . (3.23a)

The computation of the coefficients of a function defined on the sphere is known as Global
Spherical Harmonic Analysis (GSHA). Hence, the spherical harmonic analysis is the inverse
algorithm of the spherical harmonic synthesis. Both algorithms belong to the Global Spherical
Harmonic Computations (GSHC).
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The GSHC are usually performed more efficiently by splitting them into longitude and a latitude-
dependent part. This is achieved by the interchange of the summations in Eq. (3.18) over n and m, as
follows

ZZ >y

n=0 m= m=0 n=m

which is the same summation. This summation swap yields the so-called two-step GSHS, which is
given as (Sneeuw, 1996),

am(0) = Zrl¥=m ?nm(COS 0) Cnm ) (3.24)
bm(6) = Zrl¥=m ?nm(COS 0) gnm (3.24a)
£f(8,1) = YN _o(@m () cosmA + by, (8) sinmA) . (3.25)

Furthermore, the corresponding two-step GSHA is defined as

2
ay,(0) = m "~ f(8,) cosmA da, (3.26)
2
b,,(6) = (1+ o = I, " f(6,1)sinmA dA, (3.26a)
Com = 212 [ 0, () B (c0s 6) sin 6 ), (3.27)
- (14+6m0) (7 — ,
Snm = =% Jg—o Pm(8) Py (cos ) sin 6 d, (3.27a)
where
8mk =1 m = k,
8mk =0 m # k

Splitting the information and unknowns makes the two-step trend powerful. The order-degree swap
leads to more efficient computations due to two reasons. Firstly, as can be shown by the above
equations, they can be (optionally) treated by fast Fourier transformation over single parallels, in
which the am(0) and bm(0) coefficients represent the 1D-Fourier coefficients (Fig. 21). Secondly, the
above relations can be evaluated for separate orders m, which is very easy to handle in computer
programming (C. C. Tscherning et al., 1983).

However, the input for harmonic analysis usually consists of function values at discrete points
(samples) of a continuous function. Hence, the SHA must be performed based on a set of discrete
(e.g. gridded) data accompanied by relevant discrete versions of Legendre functions. In a subsequent
SHS, the coefficients should represent the continuous function, not merely the function values at the
data points previously input for the harmonic analysis. In this respect, the main difficulty is caused
by the non-orthogonality of the discretized surface harmonics. Due to the absence of orthogonality
relations, the GSHA cannot yield a unique expression for the spherical harmonic coefficients. This
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leads to different methods for discrete spherical harmonic analysis, instead of one unique “exact”
solution, as in the case of continuous data coverage. Three practical problems occur, resulting in
sampling, data noise, smoothing, and approximation errors (C. C. Tscherning et al., 1983).

Space lD-{gol_lriir Frequency
Aetitasts coefficients ot
Harmonic synthsis
T T e —
am(0:) Chm

(0, 24) i
> bu(®) | =]  Som

E———
Harmonic analysis
Figure 21 Principle of the two-step GSHC (Tscherning, Rapp, and Goad 1983)

Assuming a band-limited continuous signal f(6,A) with maximum frequency N is sampled on
a grid by taking measurements, such measurements are usually contaminated with noise. These data
can be called gridded point data or block averaged mean data. The considered gridding in both
latitude and longitude directions is assumed to be equiangular. Let N, and No be the numbers of
meridians and parallels containing data. The sampling interval in longitude directions is thus AA =
27/ Ny. In case the poles are included, equiangular gridding in latitude direction yields a sampling
interval A0 = 7t/ (No-1), whereas the interval for block means is equal to A8 = @/ Np. If the data were
errorless, then the function would be perfectly sampled on a grid.

Moreover, if the sampling is dense enough to expand up to degree N, then this discrete function is
transformed from the space domain to the frequency domain using the discrete GSHA, which
different methods can accomplish. One should remember that in such methods, the samples are
represented in different ways, resulting in different sets of coefficients with respect to different base
functions. This implies that it is possible to transform a discrete function forth and back between
these representations without any loss of information. But what is more interesting is that the
coefficients of the discrete function are the same as the (true) coefficients of the continuous function.
So, the continuous signal can be retrieved from its samples if the errorless data sampling is dense
enough, i.e. the data resolution is finer than or equal to the Nyquist half-wavelength (Groten, 1981).

In practice, however, there exist some problems, such as aliasing, data noise, scattered data
coverage and the different GSHA methods. These problems make the computed coefficients differ
from the desired true coefficients, which are the best estimates of the continuous signal. An aliasing
error (or sampling error) is caused by under-sampling or under-developing. In both cases, aliasing
errors result in the continuous signal because the degree of expansion of the discrete function, Nmax,
is smaller than the maximum frequency, N. The problem of aliasing generally exists if the signal is
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not band-limited (such as the gravitational potential), because, for practical reasons, its development
has to obey a truncated fashion. Furthermore, if a band-limited continuous signal is dealt with,
aliasing can also occur if the density of observations is too small to estimate all coefficients up to the
band limitation. The principle of aliasing is that the high frequencies present in the signal, but not in
the developed expansion (i.e. Nmaxt+1 .... N) will be erroneously mapped into the estimated
coefficients. The higher estimated coefficients will be affected more than the lower degree ones.
Therefore, regarding the aliasing effect, the coefficients are less trusted with increasing degree n.
This effect depends on the used prediction technique.

The predicted coefficients are also affected by the input gravity data noise. These errors in the
data are of high frequency by nature, which is reflected in the form of an increasing coefficient error
spectrum with the degree. On the other hand, it is well-known that the sampled signal is relatively
smooth and has a decreasing power spectrum, according to Kaula’s rule for signal decay. Usually,
the power and error spectra will have an intersection point at some degree, referred to as the degree
of resolution. Logically, beyond this degree, the coefficients’ estimates should no longer be trusted
because the estimates contain as much noise information as the signal. The GSHS model becomes
inconsistent in the apace domain due to such errors. In the GSHA model, the data noise will be
mapped into the relevant functional model, which again depends on the used GSHA technique.

On the other hand, averaging observations over blocks implies a smoothing of the data, which affects
the estimates. The real data will mostly be irregularly distributed (scattered), where data gaps are
likely to exist. Such data are transformed into a grid by some interpolation or averaging technique.
Finally, the errors associated with the mathematical algorithm and numerical features of each GSHA
method could be referred to as approximation errors.

The determination of the geopotential from space has been successful via precise orbit determination
(POD) for the so-called low-Earth orbit (LEO) satellites. Such LEO satellites orbit the Earth at
altitudes of a few hundred kilometers.

A satellite orbit is a manifestation of the Earth’s gravitational pull exerted on the satellite; hence, it
contains information about the gravity field.

On the other hand, satellite altimetry provides a powerful tool for the determination of marine geoidal
heights and deflection components of relatively higher resolutions, which could be easily used to
predict any other function of the anomalous field over marine areas.

Precise orbit determination of an LEO satellite relies on optical or radio tracking of the satellite from
ground-based and/or space-borne platforms, whose positions themselves are well determined.

One newer technique that involves no ground tracking and has been proposed as especially suited for
gravity signal recovery applications is the satellite-to-satellite tracking (SST) technique. SST is
accomplished through the range and/or range rate observations between a pair of satellites. The two
satellites may be orbiting in tandem and separated by several hundreds of kilometers in the same
orbit, referred to as low-low SST. Another possibility is that one satellite is an LEO and the other is
a GPS high-orbiting satellite, which constitutes the so-called high-low SST (Hwang 2001). As the
gravitational signal attenuates with altitude, the lower orbit of an LEO is more efficient regarding
gravity field recovery. Such measurements, representing satellite dynamics (perturbations) data,
could be effectively supplemented by satellite gravity gradiometry (SGG).

Some recent satellite altimetry missions, usually of medium satellite altitudes, are GEOSAT,
ERS1-GM, ERS-ERM, ERS2, Topex/Poseidon (T/P), and JASON-1. In particular, the (T/P)
altimetry mission was launched in 1992 with a lifetime of six years. The (T/P) follow-on mission,
JASON-1, was launched by the end of 2000. The missions LAGEOS-1 and LAGEQOS-2 (1992-1998)
represent passive target satellites (equipped with laser retro-reflectors) and are tracked via the satellite
laser ranging (SLR) technique. Similar (SLR) missions are STARLETTE, AJISAI, STELLA,
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ETALON-1, ETALON-2 and GFZ-1. The GFZ-1 mission was launched in 1995 with an altitude of
390 kms, an orbital inclination of 52°, and a lifetime of 5 years. On the other hand, some missions,
which lean on the SST technique, were recently proposed, namely the CHAMP, GRACE, COSMIC,
and GOCE gravity field missions (Fig. 22).

Figure 22 CHAMP-, GRACE-, GOCE-Satellite Projects

https://link.springer.com/referenceworkentry/10.1007/978-3-319-02370-0 29-1?noAccess=true#Figl

CHAMP is a German-led mission to determine, among other things, the static and time-varying
global gravity field. The LEO (454 km altitude) CHAMP satellite is tracked using the high-Earth
orbiting (~ 20,000 km altitude) GPS satellites relative to a network of ground stations. The benefit of
using high-low SST is that the LEO satellite will “see” many GPS satellites with good geometry
relative to the entire low orbit.

The orthogonal accelerometers on board the CHAMP satellite estimate the non-gravitational
perturbations. CHAMP was launched in 2000, and the mission was scheduled to run for five years.
The LEO satellite was placed in a near-circular orbit at an inclination angle of 87° to the equatorial
plane. This allows for a near-global coverage of observations, with data gaps only at the poles. The
CHAMP mission allowed the determination of the global gravity field at a spatial resolution of about
500 km full-wavelength at the Earth’s surface. The accuracy of a derived satellite-only geopotential
model had been improved by one order of magnitude.

The Gravity Recovery and Climate Experiment, or GRACE, mission flew twin spacecraft in tandem
around Earth to study key changes in the planet's waters, ice sheets, and the solid Earth.

GRACE is a USA-German-led mission which followed the CHAMP mission. The mission consists
of two CHAMP-identical LEO satellites following one another in nearly the same orbit (~448 km
initial altitude), separated by a distance of about 170-270 km.

The low-low SST is measured using two microwave instruments, which provide very accurate
observations of the inter-satellite range and the relevant rate of change. This is combined with the
high-low GPS-based SST of both satellites. The low-low SST expresses the differences between the
orbital perturbations of the two LEO satellites. This enables to recovery the higher resolution features
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of the Earth’s gravity field. Moreover, the orbital inclination angle is about 88.5°, with respect to the
equator.

This five-year mission was launched in 2002, GRACE mission improved upon the CHAMP
determination of the global gravity field at low frequencies and also increased the spatial resolution,
up to degree and order 120.

COSMIC is ajoint Taiwan-US satellite mission primarily oriented toward atmospheric studies.
Besides, such mission will also recover the Earth’s gravitational signal. This mission was launched
in 2004 which comprised a constellation of eight micro-satellites. The satellites altitude ranging from
300 to 700 km, with an inclination angle of about 80° (Hwang, 2001).

GRACE Follow-On (GRACE-FO) continues GRACE’s legacy of tracking Earth’s water movement
across the planet. Monitoring changes in ice sheets and glaciers, underground water storage, the
amount of water in large lakes and rivers, and changes in sea level provides a unique view of Earth’s
climate. https://gracefo.jpl.nasa.gov/

The Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) measures Earth's gravity
field and model the geoid with extremely high accuracy. It was launched on 17 March 2009. GOCE
is often cited as one of ESA's most elegant space probes due to its sleek shape. The mission ended
on 11 November 2013 . GOCE is a European-led mission to determine, among others, the global
gravity field of the Earth. GOCE used an LEO satellite (~260 km altitude) in a nearly circular orbit,
a three-axis gradiometer (SGG), and a high-low GPS-based SST. This allowed the determination of
the static and time-varying components of the global gravity field up to a resolution of degree and
order 200, with a global accuracy of 1-cm and 1-mGal, for the computed geoid and gravity anomaly,
respectively (Tscherning et al., 2000).

3.1.3.1 Global Harmonic Analysis using Satellite Dynamics, Gravimetry and Altimetry Data

Depending on the type and resolution of the gravitational data, which are input to a spherical
harmonic analysis algorithm, three categories of global geopotential harmonic models exist in
principle. These are satellite-only low-degree, combined low-degree and high, and ultra-high
resolution harmonic models. In what follows, a general discussion regarding those models is
presented.

3.1.3.2 Satellite-Only Global Geopotential Models

The processing of LEO satellite data in terms of global gravitational harmonic coefficients
yields the so-called satellite-only global geopotential models. A satellite-only harmonic model for
global geopotential is usually the outcome of processing a number of different LEO satellite data,
regardless of their observational technique. Harmonic analysis from satellite data is based on the
satellite orbit perturbations.

The orbital perturbations are primarily gravitational, which are induced by the Earth’s mass
anomalies and are important for gravity field recovery from LEO satellites. Whereas such
gravitational perturbations could be at the sub-decimetre level for T/P mission, they could reach
several tens of meters for LEO satellites (Visser and IJssel, 2000).

3.1.3.3 Combined Low, High, and Ultra-High Degree Global Harmonic Models

Due to the attenuation of the gravitational signal with altitude, not all solved-for coefficients
are fully sensed by the satellites. Therefore, to enhance the resolution of the low-degree satellite-only
harmonic models, they are usually combined with global low-resolution surface gravity and altimetry
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data. Such an algorithm greatly reduces the satellite-only models' commission errors (Gruber et al.,
1997). These combined solutions are accomplished via the use of a satellite-only model as a reference
field for the low-resolution surface data in a GSHA algorithm. The resulting models are referred to
as combined low-frequency harmonic models.

To obtain global geopotential harmonic models of higher resolutions, the satellite-only or the
combined low-frequency models are usually augmented by global high-resolution altimetry and
terrestrial gravity data, in a GSHA process.

3.1.3.4 Tailored Geopotential Harmonic Models

Using a GGM in local geoid solutions via the remove-restore technique, the respective low-
frequency features would only be reliable if the model contains local gravity data from the region
under consideration (Marsh et al., 1989). Global geopotential models can be refined by a process,
which is referred to as tailoring. In such a process, the existing spherical harmonic coefficients, under
refinement, are adapted and often extended to higher degrees, using gravity field data that may not
necessarily have been used in the global solution for the geopotential model. Tailored geopotential
models can be developed either globally or over a particular region. For global geopotential model
tailoring, the same concept is valid, recognizing that in such case, one uses a global data set as input.

3.2 Digital elevation model

As a gravimetric quantity, the geoid undulation can be expanded in terms of global spherical
harmonic coefficients as follows

n _ — —
N(6,A.1) = (ﬂ) o (%) m=0(Chm cosmA + S, ., sinmA) P, (cos 0). (3.28)

ry

In spherical approximation, the geoid and the reference ellipsoid are geometrically represented by
the mean terrestrial sphere of radius R = 6371 km. So, the equatorial radius a is replaced by the mean
radius of the Earth R, the point of normal gravity y by the mean Earth gravity GM/R?, the rigorous
geocentric radius r (at the geoid) is replaced by R, and the geocentric latitude 8 by the geodetic
latitude @ (Heiskanen and Moritz, 1967). Hence, substituting these values in Eq. (3.28), the geoidal
height can be expanded in the following surface harmonics

n _ —_ J—
N(p,A.) = (G—M) il G (%) n=0(Chm cosmA + S, sin mA) Py, (sin ). (3.29)

ry

The height of the Earth topography can also be expanded in surface harmonic series in analogy to the
geoid in Eq. (3.29) (Bursa, 1971; C. C. Tscherning and Forsberg, 1986a). This is based on the
assumption that the Earth's physical surface is smooth enough to be treated as if it were a gravimetric
quantity. Namely, the height H of the topography above mean sea level can be expressed as

H(p,A.) = RYRMaxyD _(Apm cos mA + By, sinmA) Py, (sin @), (3.30)

where 4,,,,, and B,,,,, are the fully normalized (unitless) harmonic coefficients (of degree n and order
m) of the Earth's topographic height above mean sea level, P,,sin¢ is the usual fully normalized
associated Legendre function, and nmax is the maximum degree of the global topographic harmonic
model. Eq. (3.30) can be rearranged as follows

H(p,A.) = RYpmaxyn (D m cos mA + E,p, sinmA) Py, (sin @), (3.31)
with
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So, both D,,, and E,,, are still fully normalized harmonic coefficients but now have meter
dimension. This reformulation is intuitively useful since the topographic height harmonic coefficients
are computed in practice directly in meter units as will be clarified below.

Theoretically, if the Earth terrain height (or bathymetry in marine areas) H(p,A) is continuously
available over the whole globe, then the corresponding fully normalized harmonic coefficients can
be determined by (Bursa, 1971),

1
41tR2

Dy = JI,H(®,2) cosmA P,psing. R? cos @ de dA (3.32)

Enm 4ﬂ1R2 JI,H(@,2) sinmA P,psing.R? cos @ dep dA . (3.32a)

Practically, however, the formal global terrain height data is often global mean terrain heights of a
specific resolution, say I x 21 global equiangular grid cells. Then, the integrals in Eq. (3.32 and 3.32a)
will be replaced with discrete summations as follows (Fan, 1998),

[— 1 _ .
Dom = — i=1 ,2=11 H(pi,Ai) cosmA Py, (sing;). R? cos ¢; Agp A (3.33)
p— 1 i _ .

nm = 5 Zi=1 Lje1 H(@1, &) sinmdj Py (sing;). R? cos @; Ag A (3.33a)

where (@;, A;) are the geodetic coordinates of the running block center and A@, A\ are the (equal)
latitude and longitude grid intervals.

On the other hand, the immediate output of the spherical harmonic analysis of global mean sea
surface height data is a set of harmonic sea surface coefficients. Such input data can be obtained from
oceanic altimetry data and an oceanic geoid model, which a global geopotential model can represent.
It should be mentioned that such global SSH coefficients could be predicted simultaneously during
GSHA procedures for high-degree geopotential models, which utilize, among other data, global
altimetry data. For instance, during the solution for the EGM96 geopotential model, a global SSH
model, up to degree and order 20, was solved simultaneously, based on T/P and GEOSAT altimetry
data (Lemoine et al., 1996). Being more related to oceanographic applications, the SSH harmonic
models are considered outside the scope of the current investigation.
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4. Detailed review of existing research

Overview

This chapter illustrated a historical narrative of Gravimetric, hybrid, or Geoid-quasi-geoid
determination attempts for most countries the worldwide, with an explanation of whether the
calculated geoid solution is based on only gravity observations or gravity and geometrical
observations as GPS/dh, in addition to all the available geoid solutions for Egypt with more details
and continuous-time frame from the pioneer geoid solutions in 1960 up to this time. It also lists in
more detail the attempts to calculate the geoid with an indication of the resolution and spatial
distribution of the gravity observations in the MENA region.

4.1 African geoid solutions attempt

The African Geoid Project was initially established as a Committee for Developing Countries
of the IAG. After the General Assembly of the IAG in Sapporo in July 2003, the project was taken
over as a project of Commission Il (Gravity Field Commission) of the IAG. The project is driven by
a small working group of African geodesists who collaborate to obtain data and investigate
appropriate models. Ideally, there would be near-continuous data coverage at a station spacing of the
order of 5-10 km. These data could then be used to interpolate gravity anomalies on a regular 5'
(about 8 km) grid, from which a geoid model can be calculated. The first attempt to compute a
preliminary geoid model for Africa was achieved in 2003 (Merry, 2003) . In this model, the gaps in
the 5' terrestrial data set (Fig. 23) were filled using the EGM96 geopotential model (Lemoine et al.,
1998), and the geoid was computed in several steps:

The African Geoid Project was initially established as a Committee for Developing Countries
of the IAG. The pioneer attempt for the Africa geoid model computation was achieved in 2003
(Merry, 2003). EGM96 was used to fill the severe gaps in the available terresterial data at that time,
and the geoid was computed in several steps:

e EGM96 was used to comput the long wavelength of the height anomalies quasi- geoid,

e The short-wavelength component was computed using reduced gravity anomalies in a
two-dimensional convolution representation of the Stokes' integration,

e DEM was used to compute the terrain effect (Molodensky term) (Hastings and Dunbar, 1998).

The height anomalies were converted to geoidal heights using (Rapp, 1997) spherical harmonic
representation of the separation between the two surfaces.
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Figure 23 The terrestrial Gravity data set of Africa (Merry, 2003)

Terrestrial data sets were produced by the Universities of Leeds and Cape Town (Fairhead, 1988;
Gysen and Merry, 1987). As shown in Fig. 24, there are many regions suffering from spars and poor
distribution of data coverage (e.g., in the interior of Angola, Egypt) .

GPS/leveling data were used to validate the obtained geoid model (AGP2003), Data were obtained
from Algeria, Egypt, and South Africa (Fig. 24). the obtained results showed significant biases
existed among the three countries, Table 3 summarized those comparisons.

There is a multiplicity of potential sources for these biases:

e errors in the long-wavelength components of the EGM96 geopotential model,
e differences in the GPS reference frame used,
e biases in the vertical datums used in the different countries,

e cumulative systematic errors in the levelling networks.
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Figure 24 GPS/levelling data points (Merry 2003).

Table 3 Comparison of GPS/levelling - AGP2003 (Merry 2003)

Region No. Pts. | Bias (cm) Std. Dev. (cm)
Algeria 13 -17 48
Egypt 8 +124 80
South Africa 42 -63 9

A 5"« 5" mean gravity anomaly grid developed at Leeds University was used to compute that geoid
model. We regret that this data set has never become available since then again. For the geoid
computed by Merry et al. (2005), the remove-restore method was employed based on the EGM96
geopotential model (Lemoine et al. 1998).

Another geoid model for Africa (Fig. 25) has been computed by (H. A. Abd-Elmotaal et al.,
2020) . This geoid model employed the window remove restore technique with the EGM2008
geopotential model (Pavlis et al., 2012), up to degree and order 2160, and a tailored reference model
(computed through an iterative process), up to degree and order 2160, to fill in the data gaps, the
values of the AFRge02019 African geoid range between -55:34 and 57.34 m with an average of 11.73
m.

55



S

-20 -10 0 10 20 30 40 50

Figure 25 The AFRge02019 African de-trended geoid. (Abd-Elmotaal et al. 2020)

4.1.1. Egypt Geoid determination attempts

All the previous attempts to determine the geoid in Egypt from 1980 to the present have
severe shortage, which reached to scarcity, in the distribution, density, and accuracy of the geoid
data, as well as GPS/H data points.

Egyptian Geodetic Datum (EGD) was defined in 1907 with Helmert 1906 ellipsoid as a reference
ellipsoid. Mean Sea Level (MSL) was adopted as Egypt’s geoid (Cole, 1944).

The first pioneering attempt to determine the geoid of Egypt was Al- Naggar's attempt, through which
he was able to determine the first geoid of Egypt using the LSC technique and heterogeneous data
with an accuracy of 3.3 m in terms of RMS ( Dawod, 2009).

Three attempts were carried out in 1993, EI-Tokhey and Nassar et al. (1993), had developed a geoid
of Egypt, while , Saad (1993) has investigated the accuracy improvements and redefinition of the
Egyptian vertical control networks.

In 1995 EI-Shazly (1995) continued to investigate the redefinition of Egypt’s vertical datum while,
El-Sagheer (1995) established a DTM called DTM-95 which was used to predict the geoid with an
accuracy of 3.71 m in terms of RMS, In the same year The Egyptian Survey Authority established
two national GPS geodetic control networks called HARN and NACN ( Dawod, 2009).
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In 1997, an accurate gravity framework for Egypt was established through the Egyptian National
Gravity Standardization Network 1997 (ENGSN97). The ENGSN97 150 gravity points (plus another
100 stations) have been utilized by (Dawod, 1998).

The accuracy of the geoid began to improve relatively with the beginning of the year 2000, when the
University of Ain Shams University developed a geoid called (ASU2000) with an accuracy of 0.6 m
and 1m as internal and external accuracy respectively, Tscherning et al. (2001)continued for
developing by computing geoid for the area of Lake Nasser with an accuracy of 0.26 m in RMS Saad
and Dawod (2002).

Numerous attempts were carried out in the period between 2007 to 2015, and we mention
that, for example, but not limited to, (H. Abd-Elmotaal, 2006), who developed a geoid by combining
gravity anomalies with EGM96, as well as Dawod (2008) attempt for computing a precise geoid for
Egypt.(Dawod, 2009), and also (Al-Krargy et al., 2014) attempt was developed with an accuracy of
+18.4 cm.

(El-Ashquer et al., 2017) had improved Egypt's hybrid local geoid model, with hybrid residual height
anomalies ranging from —1.5 m to +0.9 m.

On December 20 (Gad et al., 2020) were checked the possibility of determining the geoid of Egypt
using the LSC technique, but due to data lack and irregular distribution, a data window was selected
for computing the geoid, and the obtained accuracy for this area was 11 cm in terms of standard
deviation.

Although during the past two decades, more data were collected for the gravity field of Egypt, as the
Fig. 26 shows, there is a heterogeneity data distribution over the entire area of Egypt, as well as a
few numbers, and sparsely data in some regions, as it is obvious from Fig. 26 there are no data in the
western and eastern desert.
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Figure 26 Spatial distribution of the available gravimetric data utilized up to the year 2017 ( Dawod and Hosny,
2017)
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4.1.2. Libya Geoid determination attempts

The first attempt, a geoid map based on 19 levelled Doppler, was computed by IGN - French
Mapping Agency (Institut Géographique National). In that attempt, IGN database have been used, as
the only source of data, the vertical deflections obtained from the comparison of the astronomical
coordinates and their respective WGS72 to the levelled Doppler points above the same ellipsoid.
From these computations, IGN drew the map (Fig. 28) of Libyan geoidal undulations (Swassi, 2000).

Aero - Service Corporation (ASC) computed a second geoidal map. Two geoidal maps related to two
different datums were added, one concerning the local datum, European Libyan datum 1979
(ELD79), and the other one with relation to the WGS72 datum (Swassi, 2000).

In 1997 the third attempt to determine gravimetric geoid for the area of Libya was achieved using
data as: (a) 5'x 5' gridded value of Bouguer anomalies (onshore) and free-air anomalies (offshore)
based on the African Gravity Project, and released for geoid computation by Geophysical Exploration
Technology University of Leeds (GETECH), (b) global (5'x5") Terrain Base digital terrain model and
(c) the OSU91A and EGM96 geopotential models. Two geoid/quasigeoid models have been
computed. The first model is OSU91A and the second one is the EGM96 global model (Lyszkowicz
and Wahiba, 1998).

Due to the lack of appropriate data, a rough estimation of the computed geoid/ quasigeoid model
(Fig. 27) have been inevitable, and the accuracy of geoidal height difference depends on the accuracy
of the three components: ANgem, ANpg ANropo,

That average error in ppm for contribution from the geopotential model is below two ppm. The other
two contributions are relatively small, which were below one ppm. Thus the total relative accuracy
of these geoid/quasigeoid models is estimated on a few ppm (about two ppm) (Lyszkowicz and
Wahiba, 1998).
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Figure 27 Geoid (quasi geoid) for the area of Libya (Lyszkowicz and Wahiba 1998)
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The fourth geoid determination for Libya, by A. M. Swassi, was conducted in 2000. He used a method
based on the remove-restore technique to 360 x 360 spherical harmonic reference model OSU91A
with the terrain effect consideration (Fig. 28) (Swassi, 2000).
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Figure 28 The geoidal undulation map with 1 m interval (Swassi 2000)

4.1.3. Sudan Geoid determination attempts

The first geoid model for the area of Sudan was developed by Adam (1967) at Cornell
University, USA. This geoid model was based on deflections of the vertical determined on 46
astrogeodetic stations. Due to a lack of data, the accuracy of this model has not been estimated. The
next gravimetric geoid model based on terrestrial gravity data, topography data, and the Goddard
Earth Model (i.e., GEM-T1) was developed by Fashir (1991) using a modified Stokes' kernel. The
accuracy of the following geoid model developed by Fashir et al. (1997) using the same method, the
same terrestrial and topography data, and the EGM96 (Earth Gravitational Model 1996) was
estimated to be 1.43 m using Doppler/levelling data. The latest geoid model for the area of Sudan
was developed by Abdalla (2009). His model is based on terrestrial gravity data and the GRACE-
based GGM (i.e., EIGEN-GRACEO02S) up to d/o 120 using the least-squares modification of Stokes
integration formula, developed at the Royal Institute of Technology (KTH), Stockholm, Sweden. The
fit of this model to the available GNSS/levelling data is 30 cm in terms of the standard deviation of
differences.

In 2014, The Sudanese SUD-GM2014 gravimetric geoid model was computed from the available
terrestrial mean free-air gravity anomalies and TIM-R4 GOCE-only global geopotential model, and
the high-resolution SRTM30_PLUS global digital elevation model; the computation has been
performed by using the remove-compute-restore procedure and the least-squares collocation method.
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The SUD-GM2014 model (Fig. 29) has been evaluated using geoid heights at 19 GNSS/levelling
points distributed over the country, showing an overall accuracy of 30 cm (Godah and Krynski,
2014).

latitude [degree]

longitude [degree]
Figure 29 The gravimetric geoid model SUD-GM2014 [m] (Godah and Krynski 2014)

4.1.4. Algeria Geoid determination attempts

The first determination of a preliminary geoid in a small zone in the north of Algeria was
done in 1997 (Benahmed Daho and Kahlouche, 1998), using the Least Squares Collocation (LSC)
method and the Gravsoft software.

In the second gravimetric solution over the whole of Algeria territory, the BGI gravity data and
topographic information were included (Benahmed Daho, 2000).

In 2004 Algerian quasi-geoid was computed via Fast Fourier Transformation using the Remove-
Restore procedure by integrating the new gravity data supplied by GETECH through the agreement
between the National Centre of Space Techniques/Geodetic Laboratory and the University of
Leeds/GETECH.
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The comparisons of the new quasi-geoid with GPS/Levelling data provide, after fitting, RMS
differences of about £ 11 cm for the north part of Algeria (Fig. 30) (Mammar 2019)et al. 2019).

Figure 30 Maps of the Residual quasi-geoid (left picture) and the quasi-geoid solution (right picture) in Algeria. The
statistics of the total quasi-geoid values are ranging from 17.69 to 60.65, with mean value 35.15 and standard deviation
8.83 m. (Mammar et al. 2019)

4.1.5. Morocco Geoid determination attempts

Several studies have taken geoid computations in Morocco and the surrounding area as an
objective (Benaim 1995; Benaim et al. 1998; Groten and Roehrich 1989; Sevilla 1995, 1997).
Unfortunately, only MGG97 (Benaim et al., 1998) covers Morocco completely; the other geoids
partially cover the northern part. MGG97 is the official geoid model used in Morocco to calculate
the geoid undulations. These calculated geoid and previous geoids existing for this study area
(MGG97 and EIGEN-CGO01C) are compared to the geoid undulations corresponding to Morocco's 6
GPS/levelling points. The Moroccan geoid (MORGEQ) improves precision and reliability, fitting the
geoidal heights of these 6 GPS/levelling points with more accuracy than the previous geoids.

The Moroccan geoid (MORGEO) shows a minor discrepancy (Fig. 31) with the observed geoid
undulations obtained for the 6 GPS/levelling points available in Morocco compared to previous
geoids. This improvement is most remarkable when we compare this new geoid with the official
geoid model for Morocco (MGG97) because that geoid has a standard deviation of 29.5 cm instead
of the 41.3 cm corresponding to MGG97 (Corchete et al., 2007).
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Figure 31 Spatial distribution of the GPS/levelling points used as control data set projected on Moroccan geoid
(MORGEO). Contour interval: 1.0 m(Corchete et al. 2007)

An attempt for Morocco Geoid determination was recently calculated in 2020 by “Moroccan Geoid
Determination from Spatial Gravity Using Recent GGM,” (El Hassan, 2020). Depending on the
considered area, we notice that the amplitude of the differences changes and remains between 10 and
15 cm for the best cases. We also note a variable value of bias that reaches 50 cm in certain areas.
This shows the need to apply a model for fitting geoid grid to GPS levelling measurements and many
more points to use this model properly.

The reset of African attempts for geoid determinations is listed in Table 4 hereafter below.

Table 4 The list of historical attempts for geoid determination of African continent

NO. Country Model Name |Model Type| Data Used Year References
South Africa SAGEOID10 Hybrid better than 2010 | (Chandler and
1 Geoid 10cm Merry, 2010)
ETH- Gravimetric 2021 (Belay et al.,
Ethiopia GM21/ETH- | Geoid and 2021)
2 P QM21 Quasi-Geoid
N/A Gravimetric 2007 | (Olliver, 2007)
3 Tanzania Geoid
TZG08 2008 | (Ulotu, 2009)
Nideria- N/A Gravimetric| 2.37 cm of 2016 | (Odumosu et al.,
4 g Geoid RMS 2016)
Lagos State
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No. | Country Model Name |Model Type| DataUsed | Year References
Zambi d 2G201 Gravimetric |7 cm of 2016 (Saka, 2019)
ambia '
5 Geoid RMS
Madacascar Hybrid | 0.7 mof RMS | 1998 |(Bonneville et al.
6 g Geoid 1988)
Botswana - Geometric 2016 | (Manisaetal.,
7 Geoid 2016)
- Geometric | about 1 cm of | 2014 (Odera et al.
8 Kenya Geoid |RMSand STD. 2014)
dev.
c CGMO05 Gravimetric| About 11cm | 2005 | (Kamguiaetal.,
ameroon -
9 Geoid STD. dev. 2007)
. - Gravimetric N/A 1997 | (Nyamangunda,
10 | Zimbabwe Geoid 1997)
PNG94 Gravimetric N/A 1994
Geoid
e0! (Kearsley and
Papua New Ahmad, 1996)
11 Guinea
PNGO08 Gravimetric 0.2m 2011 |(Stanaway, 2012)
Quasi-Geoid STD.dev.
GGG2017  |Gravimetric 45.7 cm 2017
12 Ghana Geoid STD.dev. (Yakubu et al.
2017)
Usand UGG2014 |Gravimetric 7.0cm 2014 | (Ssengendo et al.
ganda '
13 Geoid STD.dev 2015)
TNG Gravimetric 1.64 cm 2018 | (Ismail, 2016)
. Geoid
14 Tunisia e0! STD.dev
Ben - Gravimetric 0.412m (Olujimi et al.
enin -
15 Geoid RMS 2019)

4.2. Attempts for geoid determination of the Australian continent

Many regional models of the geoid /quasi-geoid have been available for the Australian
continental since 1967. These models were historically used to reduce geodetic surveying
measurements to the non-geocentric Australian National Spheroid (ANS)(Mccubbine et al., 2021).
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While the first geoid-ANS separation model, published by Fischer and Slutsky (1967), was computed
from ~600 astrogeodetic deflection observations, the latest model (AUSGeo0id2020) was calculated
by Featherstone et al. (2018) with an accuracy (of one sigma) of 50-60 mm across most of the
Australian landmass, increasing to ~100 mm in regions of steep horizontal gravity gradients or the
mountains.

The most recently released official model for GPS/GNSS surveyors, AUSGeo0id2020, was explicitly
calculated to determine Australian Height Datum heights from Geocentric Datum of Australia 2020
ellipsoidal heights in a more direct manner without the need for post-surveying adjustments.

Most of the historical attempts for Australian continental are listed in Table 5 to describe the models
with their development and accuracy from 1993 to 2020.

Table 5 The list of historical attempts for geoid determination of the Australian continent

Model Name Model Data Used Year References
No. | Country T
ype
(AUSGEOID93) N/A 1993 (Steed and
1 . . Holtznagel, 1994)
Gravimetric
(AUSGEOID98) | Geoid 0.364 m 1998 | (Featherstone et
Australia
2 RMS al., 2001)
(AUSGEOQOID09) N/A 2009 | (Featherstone et
3 al., 2010)
(AUSGEOID2020)| Hybrid 27 mm 2018 | (Featherstone et
Quasi- al., 2018)
(NZGEQIDO05) 8cm 2005 | (Amos, 2007)
S STD.dev
(NZGeoid09) [Gravimetric 6cm 2009 | (Claessens et al.,
uasi- 2011
New Zealand 17 <15610) 7em 2010 | (Abdalla and
7 STD dev Tenzer, 2011)
8 (NZGe0id2016) 3cm 2016 | (Amos, 2016)
STD.dev
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C Model Name Model Data Used Year References
NO. ountry T
ype
(NZGeo0id2017) +48 mm 2017 | (McCubbine et
[, 201
5 STD.dev al., 2018)
(PNG94) Gravimetric N/A 1994
Geoid (Kearsley and
10 | Papua New Ahmad, 1996)
Guinea - -
(PNGO08) Gravimetric 0.2m 2011 |(Stanaway, 2012)
Quiasi-
Geoid STD.dev

4.3. Attempts for geoid determination of Asian continent

Many Asian and Asia-Pacific (AP) region countries have invested various sources in
improving the accuracy of the geoid models. They have increased the use of new satellite gravity
data and remote sensing satellite data to update the accuracy of digital elevation models, which are
essential for geoid calculation. Other countries increase GPS/levelling observations used to evaluate
and control the computed gravimetric geoid; all these efforts lead to the enhancement geoid for Asian
countries. In the following, several of these attempts have been listed and placed in Table 6 to give

a historical overview of all these attempts with the type and accuracy of the calculated geoid.

Table 6 The list of historical attempts for geoid determination of the Asian continent

Countr Model Name Model Data Used | Year References
No. y Type
(RGG-2003)  |Gravimetric N/A 2003 | (Medvedev and
1 Russia Quasi- Nepoklonov,
Geoid 2003)
Kazakh (KazGM2015) |Gravimetricl 0.177 m 2015 |(Shoganbekova et
azakhstan i
2 Geoid STD.dev al. 2015)
(IRG2016) Gravimetric 23 cm 2016 | (S. A. Saadat,
and Hybrid 2016)
3 Geoid RMS
(Saadat et al.
2018)
Iran
(IRG2018) 24 cm 2018 | (Ramouz et al.,
4 STD.dev 2019)
(IRLG2020_Tehran)|Gravimetric, 8.9 cm. 2020 | (Ramouz and
5 Geoid Safari, 2020)
STD.dev
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C Model Name Model Data Used | Year References
NO. ountry T
ype
(Ramouz et al.,
2020)
chi Xinjiang and Tibet |Gravimetric 18 cm 2013 | (Shen and Han,
ina i
6 Geoid STD dev 2013)
(JGEOID93)  |Gravimetric 8.6 cm 1993 | (Kuroishi, 1995)
Geold | srp gev
(GSIGEO96) Hybrid 7cm 1996 | (Fukudaetal.,
Geoid RMS 1997)
(JGEOID98)  |Gravimetric| Improved by | 1998 | (Kuroishi, 2001)
Geoid 29 %
than
JGEOID93
(GSIGEO2000) Hybrid 4cm 2000 | (Kuroishi et al.
Geoid throughout 2002)
nearly the
; Japan whole region
(Nakagawa et al.,
2003)
(JGEQID2000) |Gravimetric| 14.3 cm. 2000 | (Kuroishi, 2001)
Geold | srp gev
(JGEOID2004) |Gravimetric 9.2cm 2004 | (Kuroishi and
Geoid STD.dev Keller, 2005)
(JGEOID2008) |Gravimetric 10 cm. 2008 | (Kuroishi, 2009)
Geold | srp gev
(GSIGEO2011) Hybrid 1.8 cm. 2011 | (Miyahara et al.
Geoid STD dev 2014)
South-East Gravimetric N/A 1999 (Kadir et al.
South-East Geoid 1999)
8 of Asia
5 _ - Gravimetricic, +0.3m. (Lyszkowicz et al.
runei i
o Geold | grpgev | 2014 2014)
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Table 6 summarizes Asian countries' attempts for geoid determination with their accuracies and the
types of obtained geoid solutions during the period from 2003 up to 2020. We can note that many
countries in the region have invested considerable resources in improved geoid models where these
investments have achieved some of their goals for determining the geoid and introduced alternative
height references for these countries with incredible accuracies as a few centimeters in Japan and
sub-decimeter in Iran while unfortunately, the rest countries of Asian region are still suffering from
insufficient of terrestrial gravity field data coverages.

4.4. Attempts for geoid determination of the European continent

The Institute of Geodesy (IfE) stated European geoid and quasi-geoid calculations in the early
1980s using mean gravity values. After the 1980s, a combination of point gravity values with digital
topography models and global satellite gravity field solutions was introduced. Based on local to
regional research, corresponding continental calculations for Europe were carried out from the
beginning of the 1990s. This work has been carried out since 1990 with the support of the
International Association for Geodesy (IAG).

With the support of the 1AG, gravity and topographic data were regularly updated and computed in
combination with current satellite gravity field models into high-resolution geoid- and quasi-geoid
models, as shown in Fig. 32 (https://www.ife.uni-hannover.de/en/).

The following gravimetric solutions became more important, while the detailed historical attempts
for geoid determination for the European continent have been listed hereafter in table 7

e EGG1997 (European Gravimetric (Quasi) Geoid 1997), (Denker and Torge, 1998),

o EGG2008, (Denker, 2013),

« EGG2015, (Denker et al., 2018).

-40°  -20° 0’ 20° 40° 60°

Figure 32 EGG2015 - Gravity field data (left picture, black: terrestrial; blue: altimetric; grey: global fill values), and
EGG2015 — European Gravimetric (Quasi)Geoid 2015 (right picture), (https://www.ife.uni-hannover.de/en/)
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Table 7 The list of historical attempts for geoid determination of the Asian continent

No. Country Model Name iModel Type; Data Used | Year References
(UFM/UFMC) |Gravimetric 1995 |(Marchenko et al.
Geoid 1995
1 Ukraine N/A )
(UGG2013) N/A 2013 |(Corchete, 2013b)
(UQG2006) 8cm 2006 |(Marchenko et al.
STD .dev 2007)
Ukraine and (UQG2007) Gravimetric 4cm 2007 | (Marchenko and
2 | Moldova Quasi-Geoid|  RMS Kuicher, 2008)
(UQG2011) smaller than | 2011 |(Marchenko et al.
2015)
4 cm
STD .dev
(QGF96) Gravimetric| 12.8cm 1996 | (H. Duquenne,
Quasi-Geoid STD dev 1997b)
(RAF96) Hybrid standard 1996 | (H. Duquenne,
Quasi-Geoid| deviation of 1997a)
2.5cmanda
bias at the 1
cm level
(GGF97) Gravimetric| STD.dev | 1997
Geold | fom 100 15 (L.G.N., 1998, p.
cm in plain 97)
areas and .
France from 30 to 50 ¢ (Kadaj o0
3 cm on the wicton, )
reliefs
(QGF98) Gravimetric| 10.9cm 1998 |(Duquenne, 1998)
Quasi-Geoid STD. dev
(RAF98) Hybrid the overall | 1998 | (Duquenne 1998)
Quasi-Geoid| precision of 2
to3cm,
degrading to 4
cmin
mountain
areas.
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No. Country Model Name {Model Type; Data Used | Year References

(RAF09) Hybrid | between one | 2009 | (F. Duquenne,

Quasi-Geoid| and two 2010)
centimeters.
(.G.N., 2010)

(QGF16) Gravimetric 6.7 cm 2016 | (L’Ecu, 2017)

Quasi-Geoid
(RAF18/RAF18B)| Hybrid 1cm. 2018 | (I.G.N., 2018)
Quasi-Geoid STD. dev
Iberian Peninsula 1.0 ppm. 1995 | (Sevilla, 1995)
(IBERGEO95) STD. dev
Iberian Peninsula N/A 2005 | (Corchete et al.
(1GG2005) 2005)

- . Gravimetric .
I::);E%nGPEeglznosgéa Geoid 0.62 ppm. | 2006 | (Sevilla, 2006)
( ) STD. dev

Iberia and overall 2007 | (Catalao et al.

Macaronesia precision of 8- 2007)
ICAGMO7 1
(ICAGMO7) 0 cm (Catalao and
4 Spain Sevilla, 2009)
Iberian Peninsula| Hybrid N/A 2008 | (Sevilla, 2006)
(IBERGEO2008) | Geoid
Northern 5cm. 2001 |(Lacy etal., 2001)
Andalusia STD. dev
North Iberia | Gravimetric N/A 2008 | (Corchete, 2008)
(NIBGEO) Geoid
South Spain and N/A 2008 | (Corchete et al.,
the Gibraltar Strait 2008)
Area (SOSGIS)
Baltic Region |Gravimetric N/A 1995 | (Vermeer, 1995)
Geoid
Baltic Region and The model | 1996 | (Forsberg et al.
5 SWEDEN Nordic Area shows a fit at 1997)
(NKG96) the level of
10 cm
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No. Country Model Name {Model Type; Data Used | Year References
Baltic Region and | Gravimetric| 9.0 cm. 2004 | (Forsberg et al.
Nordic Area |Quasi-Geoid 2004)
Sweden The standard | 2008 (Agrenetal.,
(SWENO08_RH70) . uncertainty 2008)
Hyb(ld has been
Geoid
10-15 mm
NMA2013v22 |Gravimetric|an accuracy of| 2013 | (Borge, 2013)
6 Norway .
Geoid 5.6cm
(GCG2011- Hybrid |about 1-2 cm | 2010 (Rulke et al.,
NORTH) Geoid 2012)
7 Germany (GCG2016) The overall | 2016 | (Schwabe et al.
2016)
accuracy
about 1 cm
FIN2005NO0 |Gravimetric 2cm 2010 | (Bilker-Koivula,
8 Finland Geoid STD. dev 2010)
(quasi09c) Gravimetric| Between 2010 | (Lyszkowicz,
Quasi-Geoid 3.2 cm and 2010)
1.8cm
STD. dev
(PL-geoid-2011) | Hybrid N/A 2011 | (Kadajand
9 Poland Quasi-Geoid Swieton, 2016)
(KTH-PL- Gravimetric 2.cm. 2015 (Kuczynska-
GEOID2015) Geoid Siehien et al.
STD. dev 2016)
(PL-quasi- Hybrid 1.9cm 2021 | (Geodesy and
geoid2021)  |Quasi-Geoid Cartography,
STD. dev 2021)
(ITALGEOS83) 0.5m 1983 | (Benciolini et al.,
. . 1984
Quasi-Geoid RMS )
10 Italy (ITALGEQO90) The precision| 1990

is of the order
of meter in
absolute and

(Barzaghi et al.
2002)
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No.

Country

Model Name

Model Type

Data Used

Year

References

(ITALGEO99)

(ITALGEOOQO5)

about 5 ppm
in relative.

sub-
decimetric
precision

1999

(Barzaghi et al.,
2002)

Overall
precision of
around 3 cm

over the entire
Italian area.

2005

(Barzaghi et al.,
2007)

(ITG2009)

11

Northwest
Italy and
Switzerland

(GISGEO2012)

Gravimetric
Geoid

N/A

2009

(Corchete, 2010)

N/A

2012

(Gilardoni et al.
2013)

12

Great Britain

(OSGM02)

(OSGM15)

Hybrid
Geoid

2cm RMS in
the UK and

\3-4 cm RMS
in other areas

2002

(Iliffe et al., 2003)

The estimated
accuracy is of
1 cm RMS for
Mainland GB,
Outer
Hebrides and
Scilly Isles,

2 cm for
Orkney and
Shetland, and
3 cm for Isle
of Man, while
itis 2.3 cm std
for Republic
of Ireland and
1.4 cm std for
Northern
Ireland.

2015

(Greaves et al.
2016)

13

Romania

Gravimetric
Quasi-Geoid

8.5¢cm
STD. dev

2018

(Avramiuc et al.,
2019)

14

Greece

(GreekGeoid2010
)

The mean
accuracy of
the geoid
model is

2010

(Tziavos et al.
2010)
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No. Country Model Name {Model Type; Data Used | Year References
3-5¢cm
Attica Basin .| (GEC1D2015) Gravimetric 2015 | (Georgopoulos
15 Greece Geoid NIA and Telioni,
2015)
Buloaria (QBGO01) Gravimetric N/A 2010 | (Peneva, 2001)
16 g (HGG2013)  |Quasi-Geoid
\celand (ICEGEOID2011)| Hybrid 1.7 cm. 2011 | (Sigurdsson and
celan i
17 Geoid STD. dev Valsson, 2014)
y (HGG2013) |Gravimetric| 3.6 .cm. 2013 |(Corchete, 2013a)
ungary i
18 Geold | s1p gy
Hybrid | the estimated (Catalao, 2008)
19 Portugal (GEODPT08) Geoid accuracy is
4 cm. 2008
- Geoid and 1996 (Erker et al.,
Quasi-Geoid 1996)
(GV_GEOID) Hybrid | Anestimated | 2008 | (Pail et al., 2009)
. Geoid accuracy of
20 Austria the order of 2-
3 cm over the
whole
Austrian
territory.
(CR2000) 3.4 cm. 2000 |(Kostelecky et al.,
Czech Quasi-Geoid| STD. dev 2004)
21 | Republic
(CR2005) N/A 2005 |(Kostelecky et al.,
2004)
Serbi Gravimetric| 7.7 cm. 2003 | (Odalovi¢, 2006)
erbia i
22 Geold 1 51, dev
- Quasi-Geoid|less than 1 m.| 1980 | (Olliver, 1980)
23 Ireland
STD. dev
Gravimetric 4.2 cm 2004 | (Ellmann, 2004)
24 Lithuania Geold STD. dev
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No. Country Model Name {Model Type; Data Used | Year References
(LVv98) Gravimetric| the estimated | 1998 | (Kaminskis and
Geoid accuracy of Forsberg, 1996)
about 6-8 cm.
25 Latvia - Gravimetric 5.6 2004 | (Ellmann, 2004)
Geold | s1p gy
Croati (HRG2009) |Gravimetric 3.5cm 2009 (Basic and
roatia i i i
26 Geoid STD. dev Bjelotomic, 2014)
Slovaki (DVRMO05) Hybrid 34 mm 2005 | (Droscak, 2014)
ovakia i
27 Geoid RMSE
Estoni (EST- Hybrid 4.2 mm 2017 |(Ellmann et al.
stonia i-Geoi
28 GEOID2017) |Quasi-Geoid STD. dev 2019)
(DKGEOID12) Hybrid 5cm 2012 |(Forsberg, 2016a)
Geoid RMS
29 Denmark
(DKGEOQID12A) 6 mm 2012 |(Forsberg, 2016b)
STD. dev
(CHGEQO98) Hybrid +8 cm. 1998 | (Marti, 2002)
30 | Switzerland Geoid and
Quasi-Geoid STD. dev
Switzerland |[(CHGEO2004/CH| Geoid and N/A 2004 | (Marti, 2007)
31 and GEO2004Q) |Quasi-Geoid
Liechtenstein
Northwest | (GISGEO2012) |Gravimetric N/A 2012 | (Gilardoni et al.,
32 Italy and Geoid 2013)
Switzerland
(NLGEO2004) Hybrid N/A 2004 | (Crombaghs and
Quasi-Geoid Bruijne, 2004)
33 | Netherlands
(NLGEO2018) N/A 2018 | (Slobbe et al.,
2019)
(MOLDGEO2004| Hybrid Accuracy is | 2004 | (Marchenko and
A) Quasi-Geoid| better than 10 Monin, 2004)
cm.
34 | Moldova (GM2005) 5cm. | 2005
STD. dev (Kucher et al.

2005)
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No. Country Model Name {Model Type; Data Used | Year References
(BGO3) an accuracy of| 2003 | (Barzaghi et al.,
. .| about 3 cm. 2003)
Gravimetric
(hBG03) Quasi-Geoid| The estimated| 2003 | (Duquenne et al.
Belaium accuracy o_f 2005)
35 g this model is
about 2 cm.
(hBG18) N/A 2018 | (Slobbe et al.,
2018)
(Turkey- Gravimetric|The estimated| 2021 | (Hirt etal., 2019)
ITUGRG2021) Geoid accuracy is
10.1 cm
36 Turkey (before-fit)
and 8.6 cm
(after 7-
parameter fit).
Hybrid The inner | 2000 |(Pribicevic, 2000)
(SLOAMG2000) Geoid accuracy of
37 Slovenia the heights is
on average of
3 cm.
Quasi-Geoid] 1-3cmin | 2015 |(Ameti and Jager,
most of the 2016)
territory and
KOSOVO the mountains
38 the standard
deviation
occurs from 4
to 7 cm.
Switzerland Geoid and N/A 2004 | (Lobianco et al.,
39 and (CHGEO2004/CH|Quasi-Geoid 2004)
Liechtenstein| GEO02004Q)
- Gravimetric +0.054 (I. Tziavos et al.,
40 Cyprus Geoid AMS 2017)

A great effort has been made in European countries to determine the geoid, with used the whole
available observations as inaccurate observations of the Earth’s gravitational field in those countries,
in addition to using gravity satellite observations as the Gravity Field and Steady-State Ocean
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Circulation Explorer (GOCE) satellite, which enabled scientists to determine the long wavelength of
the Earth’s gravitational field with high accuracy.

These efforts have paid off for achieving geoid with incredible accuracy, as evident from Table 7,
which describes the most geoid attempts for European countries as in Denmark, Italy, Slovakia,
Estonia, and Spain they succeeded in determining the geoid with a precision of a few millimeters,
while in France and Great Britain it has reached to 1 cm accuracy, in the other countries the rang of
accuracies are between 2 cm and sub-decimeters.

4.5. Attempts for geoid determination of the South American continent

Despite a strong effort that is being carried out in several countries to improve the distribution
of gravity information, to organize the gravity measurements in the continent, and validate the
available gravity measurements, the obtained geoid of the content has a low accuracy, which reached
up to 50 cm in terms of standard deviation.

According to The Sub Commission 2.4b of IAG commission 2 entitled Gravity and Geoid in South
America held on Oct 02, 2021, for a new project established for improving the distribution of gravity
information, to organize the gravity measurements in the continent to enhance the accuracy of the
geoid, the main objectives of the project are:

o to re-measure existent absolute gravity stations and encourage the establishment of new
stations;

« to validate fundamental gravity networks from different countries to establish a single and
common gravity network for South America;

« to adjust national gravity networks and link them together;

o to obtain and maintain files with data necessary for the geoid computation like gravity
anomalies, digital terrain models, geopotential models, and satellite observations (GPS) on
the levelling network of different countries;

o to provide a link between the different countries and the IGFS to ensure access to proper
software and geopotential models for local geoid computation;

e to compute a global geoid model for South and Central America using the available data;

e to encourage countries to cooperate by releasing data for this purpose;

« toencourage and eventually support local organizations in different countries to increase the
gravity data coverage, improve the existing digital terrain models, carry out GPS observations
on the levelling network, and compute a high-resolution geoid;

« to organize and encourage the organization of workshops, symposia, or seminars on gravity

and geoid determination in South America (https://com2.iag-aig.org/sub-commission-24).

Summarized historical attempts for geoid determination are listed in Table 6 below for south
American countries and it is indisputable that the accuracy of geoid for all countries except
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Uruguay ranges from 12 to 50 cm. This accuracy needs more effort to consider geoid as a

reference for the height system in South America.

Table 8 The list of historical attempts for geoid determination of the South American continent

c Model Name Model Data Used | Year References
ype
(MAPGEO2004) +0.5m 2004 | (Lobianco et al.
Gravimetric RMS 2004)
Geoid
Brazil (MAPGEO2010) +0.28 m 2010 (Matos et al.,
razi
1 RMS 2012)
(MAPGEOQO2015) 17 .cm 2015 | (Blitzkow et al.,
RMS 2016)
Gravimetric 50 cm. 2004 | (Sanchez, 2003)
, | Colombia | (QGEOCOL2004) Gg’dgs?_”d STD. dev
Geoid
(GAR) N/A 2007 | (Corchete and
. . Pacino, 2007)
Gravimetric
(GEOIDEAR16) Geoid  |An accuracy of| 2016 | (Pifi6n etal.,
3 | Argentina less than 10 2016)
cm
Santa Fe Province 0.221 m. 2018 | (Cornero et al.,
RMS 2018)
v | GEOID2010 Gravimetric[,  0.64 m. 2010 (Matos et al.,
enezuela i
4 Geoid RMS 2012)
_ 1.21m.
5 Chile
RMS
2.17 m.
g | Ecuador
RMS
Bolivia (BOLGEO) Gravimetric N/A 2006 | (Corchete et al.
7 Geoid 2006)
(URUGEOIDE2000)|Gravimetricjaccuracy of 13 | 2000 | (Pifia et al. 2001)
Geoid |cm
8 Uruguay
(URUGEOIDE2007) accuracy of 2 | 2007 | (Militar, 2007)
cm
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4.6. Attempts for geoid determination of North and Central America continent

The primary objective of the Sub Commission 2.4b of IAG commissions 2, entitled Gravity
and Geoid in North America, held on Oct 02, 2021, the regional geoid model covers the region of
north America and central America by 2022 to achieve a common vertical datum. This model will
serve as the official implementation of vertical datum for countries that want to adopt it.

The intention is to ensure that a suitable North American Geoid is developed to serve as a common
datum for everyone in the region (https://com2.iag-aig.org/sub-commission-24).

In 2014, the United States National Geodetic Survey (NGS) started producing annual experimental
gravimetric geoid models, the xGEOID models, for the upcoming vertical datum modernization in
2022, the North American-Pacific Geopotential Datum of 2022 (NAPGD2022).

For the upcoming North American-Pacific Geopotential Datum of 2022, the National Geodetic
Survey (NGS), the Canadian Geodetic Survey (CGS), and the National Institute of Statistics and
Geography of Mexico (INEGI) computed the first joint experimental gravimetric geoid model
(xGEOID) on 1°x1’ grids that cover a region bordered by latitude 0 to 85-degree, longitude 180 to
350 degree east.

XGEOID20 models are computed and then evaluated against the independent GPS/levelling data sets.
The geoid comparisons with the most accurate Geoid Slope Validation Surveys (GSVS) from 2011,
2014, and 2017 indicate that the relative geoid accuracy could be around 1-2 cm baseline lengths up
to 300 km for these GSVS lines in the United States (Wang et al., 2021).

Table 9 The list of historical attempts for geoid determination of the North American continent

No.| Country Model Name Model Type| Data Used Year References
(GEOID93) Gravimetric 10 cm 1993 | (Milbert, 1993)
Geold | 1p gev
(G96SSS/GEOID96) 55cm 1996 (Smith and
RMS Milbert, 1999)
United |(USGG2003/GEOID 2.4cm 2003 | (Roman etal.,
1 States 03) Gravimetric RMS 2004)
and Hybrid
(USGG2009/GEQID |  Geoid 1.4 cm 2009 | (Wangetal.,
09) RMS 2012)
(XGEOID19B/GEOI 1.39cm 2019 | (Lietal., 2019)
D18) RMS
(ColSCA- the accuracy of| 2019 (Jiang et al.
Colorado - CASM2019) the quasi-geoid 2020)
21 USA and geoid
models
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https://com2.iag-aig.org/sub-commission-24

No.| Country Model Name Model Type| Data Used Year References
is equal to 3.1
cmand 3.5 cm,
respectively
(ColUNBSH2019) the accuracy of| 2019 (Matsuo and
the quasi-geoid Forsberg, 2019)
Gravimetric and geoid
3 Geoid and models
Quasi-Geoid|is both equal to
2.9cm
(ColFFTWG2020) The mean 2020 |(Grigoriadis and
4 accuracy is 2.5 Vergos, 2020)
cm
(ColLSMHA2021) the accuracy of| 2021 |(Isik et al., 2021)
the quasi-geoid
and geoid
5 models
are 2.7 cm and
2.6 cm,
respectively
(GSD91) 69.5 cm 1991 | (Veronneau and
STD. dev Mainville, 1992)
(GSD95) 1995 | (Veronneau,
1996)
(CGG2000) 8.7cm 2000 (Veronneau,
STD. dev 2001)
(CGG2005) Gravimetric 8.4cm 2005 | (Veronneau and
Geoid STD. dev Huang, 2007)
(CGG2010) 7.4 cm 2010 (Huang and
6 Canada Veronneau,
(CGG2013/CGG2013 7.3cm 2013 (Huang and
a) Véronneau,
STD. dev 2016)
(MEXICO97) Gravimetric N/A 1997 (Smith and
Geoid Milbert, 1999)
7 | Mexico (GGMO4) 58cm | 2004 | (Naranjo, 2004)
RMS
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No.| Country Model Name Model Type| DataUsed | Year References
(GGMO05) 36 cm, 2005 | (Naranjo etal.
RMS 2006)
(GGMO06) 35 cm, 2006 | (Naranjo etal.
RMS 2007)
(GGM10) Its estimated | 2010 |(Avalos Naranjo
absolute et al. 2010)
accuracy in
geoidal height
values is 20
cm.
Caribb (CARIB97) Gravimetric 62 cm. 1997 (Smith and
aribbean i
8 Geoid RMS Small, 1999)
(ALASKA94) an accuracy of | 1994 | (Milbert, 1993)
about 20 cm
over length
Gravimetric| scales of 100
Geoid km.
(GEOID96) N/A 1996 (Smith and
Milbert, 1999)
(GEOID99) N/A 1999 (Smith and
9 Alaska Roman, 2001)
(USGG2003/GEOID N/A 2003 | (Roman etal.,
03) 2004)
(USGG2009/GEOID |Gravimetric 0.6 cm 2009 | (Roman etal.,
09) ancé; I:g/izrld STD. dev 2009)
(USGG2012/GEOID 2012 | (Wangetal.,
12B) 2012)
- Gravimetric N/A 1996 | (Forsberg et al.
Geoid 2002)
10 | Greenland (GGEOID16) 3.7cm, 2016 (Forsberg,
RMS 2016a)

79




Table (9) illustrates the previous attempts for geoid determination for North American countries, and
we can note that the geoid accuracy ranges from 1.4 cm up to 70 cm, except for Alaska, that has a
sub-millimeter solution.

Mexico and the Caribbean need more attempts with new data coverage to obtain a better accuracy
where the accuracy is 20 and 62 cm, respectively.

4.7. Antarctic Geoid attempts

In 2008 an attempt for quasi-geoid determination for Antarctica was performed by
Marchenko, he had to find solutions for the insuffeciant of the local gravity data coverage to
overcome this problem and used GGMs, for filling the gap with EGM96 synthesized data
(Marchenko et al. 2012).

A gravimetric quasi-geoid for the Antarctic region limited by 50° S in latitude (Fig. 33) is based on
marine and land gravity anomalies from BGI and ADGRAYV databases and on gravity anomalies
computed by KMS from the inversion of satellite altimetry.

A remove-restore procedure is then applied by using the EIGEN-CGO01C global gravity model up to
degree 360 and the GEBCO DTM topography model. The quasi-geoid solution is based on the
Sequential Multipole Analysis (SMA) technique approximating the gridded reduced mean gravity
anomalies by 20152 radial multipoles with an accuracy of 5 mGal. The obtained quasi-geoid and the
corresponding SST model have been assessed by comparison with independent data from 5 tide-
gauges stations (Mawson, Davis, Casey, Macquarie Island, Heard Island) of the Australian levelling
network, leading to an estimated accuracy of 10 cm (Marchenko et al., 2012).

180°

Figure 33 Gravimetric quasi-geoid [m] solution based on the KMS, BGI, and ADGRAYV free air anomalies Ag
(Marchenko et al. 2012)
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5. Proposed methodology to create mathematical models for determining reference surfaces

Overview

This chapter discussed the statistical background and the mathematical model for the least-
squares collocation (LSC) algorithm. Then, the definitions of the covariance functions and the spatial
covariance function and its role are outlined. An overview of the numerical estimation of the
empirical covariance function and the explanations of the degree variances and error degree variances
is then presented. After that, the concept of the analytical covariance function and its role and the
principle of the local covariance function, which is consistent with the remove-compute-restore
technique, are discussed. Finally, the Ellipsoidal Collocation was discussed.

51 Background and Mathematical Expressions

The least-squares collocation (LSC) technique was firstly advocated in its general form by
(Krarup, 1969). Then, it was widely investigated and applied by (Moritz, 1980) and further treated
by Tscherning (C. C. Tscherning, 1994a). This method is a vital tool for gravity field modeling.
Besides, being flexible in dealing with heterogeneous input and output features yields optimal results
based on a particular data set. Hence, the LSC will be the standard technique used for gravity field
modeling in Egypt throughout the current work. So, this chapter outlines the various aspects of local
gravity field modeling by least-squares collocation.

The gravity potential, as well as the respective observable quantities, represents a spatial stochastic
phenomenon. The irregularity of the gravity field is caused by the visible and invisible mass
anomalies, i.e., the non-even distributions of the Earth’s mass. The mass anomalies could have
regular (or systematic) patterns, such as mountainous chains extending regularly. After removing
such (known) systematic trends, the residuals will be somewhat irregular.

Rather, randomly distributed mass anomalies cause the residual gravitational features. In this sense,
the residual gravity field elements may also be said to be spatially random (Fig. 34). The randomness
exists not for time (as observational errors) but for space (the measurements are considered
simultaneously but at different points).

The random behavior is theoretically independent of the position on the sphere and the direction, that
is, homogeneous and isotropic (Moritz, 1978).

Usually, the least-squares collocation technique is considered a general methodology that combines
least-squares adjustment and least-squares prediction (or kriging) in a unified mathematical algorithm
(Heiskanen and Moritz, 1967; Moritz, 1972). In particular, the LSC technique has found many
applications in physical geodesy. The most general form of the collocation model (in matrix
notation),

I = AX +t+n, (5.1)

illustrated in Fig. 35. The term AX represents a simple, regular, and slowly varying curve. Itis a
linear (or linearized) function of several parameters, X. Another function, s, called the signal and is
irregularly oscillating about zero, is superimposed, giving the function AX +s. The problem is to
determine the function (AX + s) using discrete observations, I, which are furthermore affected by
observational errors (or noise), n. Denoting the signal part at the observational (or data) points by t,
one arrives at EQ. (5.1). Thus, the curve AX+s, to be interpolated, consists of a “systematic part” AX,
representing the general trend of the physical feature, and a “random part” s, representing continuous
irregular fluctuations of the feature. In contrast to the signal s, the other random quantity n (the
observational error) occurs only at the data points and is thus discrete. If the determination of the
parameters X is viewed as adjustment, the (partial) removal of the noise as filtering, and the
estimation of s at points other than the measuring points as prediction, one may say that the LSC
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technique combines adjustment, filtering, and prediction (Moritz, 1972). An insight into Eq. (5.1)
shows that the main difference between LSC and least-squares adjustment is the existence of the
random signal part, t.

Figure 34 Spatial random rotation of a function defined on a sphere
around its center

AX+ S

AR

Figure 35 The collocation model

In general, the LSC solution amounts to predicting the desired signals s and the unknown
parameters X, along with their uncertainties. In all geodetic applications of the collocation theory,
the signal s (or t at the data point) always reflects the effect of the irregularity of the actual gravity
field of the Earth, which is supposed to possess a random behavior on the geodetic measurements.
Regarding gravity field modeling by collocation, the vector of observations I could comprise of any
combination of heterogeneous anomalous elements at scattered data points, for example, gravity
anomalies, geoidal heights, vertical deflections, airborne gravity anomalies, and 2" order derivatives,
etc. Moreover, (dynamic) satellite-tracking measurements could also be used as input (Moritz, 1972).
Similarly, the signals to be estimated could be a combination of any heterogeneous features, such as
discrete geoidal heights, gravity disturbances, and geopotential coefficients. In this sense, the
collocation technique belongs to the space domain trend for geoid determination. On the other hand,
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the vector of unknown parameters X could represent modeled systematic observational errors, a
mathematical trend surface, a set of geodetic datum transformation parameters, or even a local
vertical datum offset (C. Tscherning et al., 2001). The LSC solution yields the best linear unbiased
estimates, based on the model (5.1), subject to the following minimum condition (Moritz, 1980),

s" Cssts+nT Con™t n = minimum, (5.2)

where Css and Cnn are the auto-covariance matrix of the signals to be predicted and the error variance-
covariance matrix of the input observations, respectively. Of course, if there is no correlation among
the random observational errors, then Cnn should be a diagonal matrix. In the above condition, the
signals are supposed to have pure random behavior about zero; in other words, these quantities are
assumed to be centered. The well-known remove-compute-restore technique of the long and short
wavelength features, using appropriate high-resolution geopotential and topographic models,
primarily aims at residual “centered” data of a random smooth nature. The smoothness is practically
reflected by the (possibly) minimal mean and standard deviation of the input data. While removing
a global harmonic model eliminates a slowly varying part of a long-wavelength nature, the
topographic reduction would suppress the frequent oscillating features that could have large
amplitudes (Vanicek et al., 1996).

The above minimization implies the optimal prediction accuracy and the smoothest
gravitational field, which is compatible with the given data. This allows a smooth harmonic
downward continuation till the Bjernammar sphere (Tscherning 1993). Particularly, while Cnnt
represents the classical error weight matrix, the matrix Css* carries the meaning of signal roughness
(weighting) based on the variations of the treated field. In the general theory of collocation, while the
observational noise has a zero expected average in the probability space, the gravity field signals are
regarded as having an expected spatial mean equal to zero globally. Moreover, the random measuring
errors are assumed to be uncorrelated with the random field signals. If there were no signal term in
Eq. (5.2), the above minimum would reduce to the usual least-squares adjustment principle. On the
other hand, if there were no observational noise, one would deal with errorless collocation.

Based on the above, it can be proved that the LSC solution is given by

X =[ATDTA]L. [ATD1]], (5.3)
S=Cy D (I-AX), (5.4)
with

D = (Cu+Cn), (5.5)

where Cy is the auto-covariance matrix relevant to the input observations, S is the vector of predicted
signals, D is denoted as the “total” covariance matrix, and Cs iS the cross-covariance matrix between
the predicted signals and the input observations. On the other hand, the associated error estimates are
expressed by

Ex= [ATDT ALY, (5.6)
Ess = Css— Cst D Cis + HA Exx ATHT, (5.7)
with

H= Cu«D?, (5.8)

Exx and Ess are the estimated error variance-covariance matrices of the estimated parameters and the
predicted signals, respectively, and Cis (or Cs') is the cross-covariance matrix between the input
observations and the predicted signals. The covariance matrices Css, Cit, and Cst, have the relevant
analytical covariances between any possible pairs of input and output gravimetric elements in the
solution under consideration. These covariances are computed according to a basic covariance
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function model for the anomalous potential, based on the input data and utilizing the law of
covariance propagation.

On the other hand, if no parameters are needed, which is the most common case, then the LSC
solution for the signals and their uncertainties reduce to

S=C«D*l, (5.9)
Ess = Css — Cst D Cs, (5.10)

where the impact of the parameters X (and their uncertainties) has disappeared altogether. In Egs.
(5.9) and (5.10), it can be shown that the signals (and their error estimates) can be independently
predicted one by another, which means that no restrictions are imposed on the size of the vector S or
the matrix Ess. The only restriction may be the size of the D matrix to be inverted, which is equal to
the number of the input observations. An insight into Eq. (5.10) shows that the first term reflects the
“a-priori” roughness of the field, expressed by Css, Whereas the second term represents the gain
inaccuracy due to the user input data. Furthermore, in the above expressions, the input data variance
(or roughness) and the noise variance are balanced in the total covariance matrix, D (C. C.
Tscherning, 1994b).

Suppose the data are assumed to be errorless. In that case, they are exactly reproduced at the
data points after prediction with zero error estimates, which is the original mathematical idea of
collocation. Moreover, in this case, different choices of the basic model covariance function would
correspond to different possible gravitational fields, which would be compatible with the given data.
However, if the data are affected by random measuring errors, then the computed field matches the
data not exactly but in such a way that the effect of these errors is kept as small as possible (Moritz,
1980). In this latter case, the solution amounts to filtering the data; thus, one obtains

t=CuD?lI, (5.11)
Et=Cut—Cu D' Cu. (5.12)

This gives the optimal estimate for the signal part t of the observations | themselves along with its
accuracy. . In this way, the noise n is filtered out in the best possible way. One has no prediction if
no computations are performed at points other than the data points. From the above, it can be said
that the signal predictions at new points would be more sensitive to the field roughness, whereas the
filtration of the data is more sensitive to the quality of the input data.

A unique basic model for the covariance functions, which best describes the anomalous input
features, must be used throughout the collocation solution. This would guarantee a predicted field
consistent with the input (heterogeneous) data. Accuracy computations Eq. (5.10) presuppose good
estimates of the input covariances derived from the basic covariance model.This is much more critical
than predicting the signals or the parameters themselves. A similar fact is known from least-squares
adjustment, where the adjusted quantities are relatively insensitive concerning the choice of the prior
weights, whereas the a-posteriori accuracies strongly depend on them. Thus, in the collocation
solution, the covariances work as weights. Furthermore, Eq. (5.10) shows no dependency of the
estimated signal accuracy on the measurements themselves. Combining these two facts, the LSC
method can be used as a simulation tool to optimize gravimetric data types and configurations based
on an approximate covariance model (Lachapelle and Tscherning, 1978).

5.2 Covariance Functions

In probability theory and statistics, covariance measures how much two variables change
together. The covariance function describes the spatial covariance of a random variable process
which may be used as an analytical function to fit as covariance values. In studies of the Earth's
anomalous gravity field, covariance functions are of great interest. The behavior of the gravity field
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is reflected in these functions. The magnitude of the variations and the roughness of the field are
described. This information is essential and must be considered when gravity field-related quantities
are estimated from a set of observations. The method of least squares collocation (Moritz, 1980) is
widely used for this purpose; this method needs a covariance function to express the relations
between the observations and the estimated quantities. The best least-squares agreements with the
true potential are obtained when the empirical covariance function is used.

When conducting local studies of the gravity field, global covariance functions were estimated from
gravity observations by (C. C. Tscherning and Rapp, 1974b). They derived some covariance function
models, and an expression for the global covariance function was found. High-degree spherical
harmonic approximations are very important when conducting studies of the gravity field in local
areas. Estimations of gravity field-related quantities are carried out relative to the spherical harmonic
approximations using the residual observations and the local empirical covariance function. This
procedure corresponds to the stepwise collocation (Moritz, 1980).

Covariance functions are needed in estimation methods like least square collocation, and they have
to be consistent with the observations used. Unfortunately, the estimations of such functions are
hampered by the lack of data in the areas where the gravity field modeling is to take place.
Consequently, a covariance function model has to be chosen. It is, therefore, essential to understand
the variability of the local empirical covariance functions. This variability decreases remarkably
when the terrain effect is taken into account, where the residual gravity field becomes more
homogeneous, and choosing a covariance function model becomes easier. The basic covariance
function in least-squares collocation, usually used to derive all other covariance, is the covariance
function of the disturbing potential T.

If T(p) and T(q) are the disturbing potentials at two points p and q in space, then K(p,q) is
defined as

K(p,a) =M{T(p), T(a) }, (5.13)

where M is the spatial expectation operator, defined as the mean over the whole sphere and all
azimuths. It is assumed that both points lie on the surface of a sphere of radius R, representing the
mean terrestrial sphere that corresponds to the reference ellipsoid, or the geoid, in the spherical
approximation (Heiskanen and Moritz, 1967). Since the operator M is homogeneous (average over
the whole sphere) and isotropic (average over all azimuths), the covariance K(p,q) will be a function
of the spherical distance, v, between p and g. Hence, such function is denoted as the spherical
covariance function, which is given by

Kp,@) = K@) = M{T(p)T(Q)} =
L Sy S, T(8p, Ap)T(8g, A ) sin 6 dd dax (5.14)

where 0, A are the spherical co-latitude and the geodetic longitude, respectively, and a is the azimuth
of the arc PQ on the sphere. The spherical distance y can be expressed as (Heisken and Moritz 1967):
P = cos‘l(cos p cos By cos(p - Aq) + sin 0, sin Bq) . (5.15)

The covariance function is harmonic outside the Earth’s surface. It represents the average product of
the (harmonic) anomalous potential at all possible pairs of points with the same mutual spherical
distance (C. C. Tscherning, 1982). Consequently, the spherical harmonic expansion of Equation
(5.14) can be written as follows

K(p) = Xn=2 0n Pa(cos ) (5.16)
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where:
Pn Legendre polynomials,
o, degree variance of the potential.

In practice, treating the potential field, and hence the relevant covariance functions, as being
homogenous and isotropic requires the handled data to be as smooth as possible so that they behave
randomly. However, this could not be accurate due to eventual regular field trends (particularly on a
regional scale) or some unusual local topographic and/or geophysical variations. In particular, such
(non-random) features may force the field to be an-isotropic and inhomogeneous, azimuth, and
location-dependent (Tscherning 1982). Nevertheless, the modern remove-restore technique (of the
known low and high-frequency signal parts) would homogenize the residual (smoothed) input
information in such a manner that it could be safely considered homogenously random (D. Arabelos,
1989). A separate mathematical treatment of the an-isotropic covariance functions is required in
extreme abnormal cases. There should be a further dependence on the azimuths of the lines
connecting the pairs of points (C. C. Tscherning, 1999). Hence, , throughout the current investigation,
the treated covariance functions are assumed to be isotropic.

The extension of the covariance function (5.16) into the space outside the sphere r = R depends
mainly on the definition (5.14) of K (outside r an average product of T(P) and T(Q), since T is

assumed to be harmonic outside r = R. | well-known that the n™" degree spherical harmonic outside
—(n+1)

a sphere depends on the radius vector through rpr,,
Thus, K(P, Q) can be expressed in space into a series of solid spherical harmonics, and the spatial
covariance function of the anomalous potential will have the following form

RZ n+1

b ] P,(cos ) (5.17)

I'p IrqQ

K(P,Q) = K(¥, to1q) 5o 0n |

where:
Ry, radius of Bjerhammer (1973) sphere,
rprq geocentric radii to points of K(P, Q)

P spherical distance between (P, Q).

This is the general form of the homogeneous and isotropic spatial covariance function of the
disturbing potential, which is symmetric with respect to (P, Q) and harmonic outside the sphere r =
R, (Heiskanen and Moritz, 1967).

This approach uses heterogeneous sets of essential functions associated with point masses, where the
point masses are buried at varying depths covering the whole Earth (Vermeer, 1992).

The empirical covariance function cov (p, q) of the point gravity anomaly Ag has fundamental
characteristics because the gravity anomalies data form the main empirical material for the practical
determination of the other signal covariance (Heiskanen and Moritz 1967).

There consistency between the gravity anomaly covariance function covagag(p, q) has the form:

Rj

n+2
coVagag(P- @) = Ttz 0 (8g) [ | P (cos o) (5.18)

I'plq
with positive full power degree variances C,(Ag)
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(n-1)? - T
Ca(8g) = =T h=o(3hm + bim) (5.19)

where

C, rrefers to the conventional harmonics,

a2, and b2, are the coefficients of the fully normalized harmonics.

5.3 Empirical and Analytic Covariance Functions

In particular, gravity anomalies are most popular as the input data type to estimate covariance
function. Thus, the global covariance function of gravity anomalies is given by

Clp,q) = #f;:o szO f(::o Ag(0,,2,)Ag(04,q) sin 6 d6 dA da (5.20)
where:

@, A are the spherical co-latitude and longitude, respectively,

a is the azimuth between p and g on the sphere, which are separated by the spherical distance ().

The above integration gives the gravity anomaly covariance function, if the Earth were continuously
covered with observed point gravity anomaly data, We need a statistical treatment of the global
geopotential to make up for the shortfall in gravity field data. However, the terrestrial sphere is not
entirely covered with gravity field data. Hence, according to the handled data format, a covariance
function needs to express the relations between the observations and the estimated quantities.

The covariance of discrete point gravity anomalies on the sphere is empirically estimated, via a
discrete numerical integration, as follows,

cov(P) = - XML, Ag(p) Ag(q) (5.21)
where M is the number of products taken at a given spherical distance s .

Covariance what is called the empirical covariance function; when the gravity anomaly (Ag) is the
residual gravity anomaly (Ag,), and the points {P;} are taken from a local area A only, we have a
local empirical covariance function.

The empirical covariance function values are evaluated using a suitable y interval (Tscherning and
Rapp 1974).

AV AV
Vi sy <bi+ —

This interval should not be very small otherwise, a few points could be situated within that interval,
and consequently, the result would be statistically useless (Kraiger, 1988). The empirical covariance
function eq. (5.20) is estimated, based on the residual gravity anomaly data, after removing the long
and short wavelength information. In this manner, this residual anomaly covariance function would
reflect the local characteristics of the anomalous field. The input signal variance is the covariance
value at zero spherical distance (M. Amin et al., 2003), thus, eq. (5.21) reduces to

covy = ﬁZ?L Ag(P) (5.22)
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where M here equals the number of data points, the variance is simply the mean square of the
(residual) anomaly data. On the other hand, the correlation length is defined as the spherical distance,
which corresponds to a positive covariance value of % covo.

Of course, covo, &, and the first zero o of the function (Fig. 36) can be easily determined from the
data, whereas the curvature of the covariance function at yo is problematic since it depends on the
horizontal gradient of gravity data, which is difficult to estimate (Kraiger, 1988; Moritz, 1980).

C(v)
4

Co

Covariance 1s 50 % of Variance

s
81
g : ( ----------- '
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P 4 [
- i
|
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l !
l i
a X i
Py

Spherical distance
Figure 36 Schematic representation

There are three essential parameters for the local gravity anomaly covariance functions (M. Amin et
al., 2002; H. H. Fashir and Kadir, 1998). These are the covariance (Co), the correlation length (o),
and the first crossing zero-point (ys9).

a) The covariance (Co): This is the value of covariance function C (y) when the spherical distance
(v) between the point P and Q is equal to zero

C=C)=C(0)at y=0. (5.23)

The covariance defines the statistical correlation of gravity anomalies and the average product of the
anomalies at constant distances of 0", 2', 4', etc. For practical purposes, it’s the variance of the residual
gravity anomalies in square mGal at y = 0.

b) The correlation length (a): This is the value of the argument for which C (y) has decreased to
half of its value at y =0

Cle) =2Co (5.24)

The correlation length (o) is used to determine the most appropriate shape of the covariance function
of the residual field.
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¢) The first zero-crossing point (Y2): In theory, the first zero crossing point (Y9) of the empirical
covariance function of the reduced gravity anomalies up to degree N of geopotential harmonic model
should be located at a distance by the rule of thumb as (D. N. Arabelos and Tscherning, 2010):

180°
Uy = (2xN)

(5.25)

The variance and the correlation length of the empirical covariance function express the amount of
smoothness of the input residual data, hence, a more stable LSC solution.

The empirical covariance function has a damping oscillatory behavior of about zero. The variance
COVo IS an important quantity as it is a scale factor for the point gravity anomaly covariance function,
whereas the correlation length is regarded as the distance behind which the signals could be
considered weakly correlated. Finally, it is worth mentioning that the empirical covariance function
may be normalized via dividing all values by the variance covo. The resulting (unitless) curve is
called the correlation function, which has the same shape as the covariance function and a value of
unity at zero spherical distance.

54 Degree Variances and Error Degree Variances

The degree variance expresses how much signal power (content) is implied by all the
coefficients belonging to a specific degree in a global sense. The scaled signal and error degree
variances for the various quantities related to the gravity field can be computed as follows (Vergos
et al., 2006):

_1n2 n+1 3 B
od(8g) = () (L) Sho(Com + Sam) (5.26)
2 n+1
Boop = () () Theolot,,, +o%,) (5.27)

and for geoid undulation

GM 2 az n+1 2 2
€, = (E) (ﬁ) n-o(c: +03 ) (5.28)
where
GM the geocentric gravitational constant,
R mean Earth radius,
a stands for the scaling factor associated with the coefficients,

n, and m are the degree and order of the harmonic expansion.

55 Analytical Degree Variance Models

From the previous section, it is clear that both the power and error spectra of any function of
the disturbing potential can be easily computed empirically from GGMs, in terms of the relevant
(reduced) harmonic coefficients and their error estimates, respectively. This is, however, only
possible up to the maximum nominal resolution (or degree) of a given global harmonic model. On
the other hand, it is obvious from Egs. (5.16) and (5.17) that, theoretically, to completely describe
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the potential, or equivalently, the gravity anomaly covariance function, the relevant degree variances
are needed up to infinity. Practically, the maximal target degree is a function of the (global or local)
data coverage and resolution. Hence, some analytical degree variance models were proposed in the
geodetic literature, based on the available low degree geopotential models and/or the global gravity
anomaly data. The target was to derive appropriate mathematical expressions so that one could easily
assess the degree variance, in terms of

the degree n.

The anomaly degree variance model as follows (Rapp, 1972a),

(0%0)ag = ﬁ [mGal?] . (5.29)

On the other hand, Meissl (1971) proposed a degree variance model as follows

(0%n)ag = — [mGal2] . (5.30)

~ (n+250)2

Moreover, five analytic models for anomaly degree variance have been described by (Rapp 19723;
Tscherning and Rapp 1974), three of which are given by

(0%n)1ag = Al(z_l) [mGal?] n>1,
Ay;(n-1)

(Gzn)z Ag = % [mGalZ] n> 2,
Az(n-1)

(Gzn)3Ag = m [mGalZ] n> 2, (531)
where A are positive constants of dimension mGal? and B is a dimensionless constant, all of which
might be determined according to some condition. Among those models, the third model was
recommended for deriving closed expressions for the covariance function of the disturbing potential
and the other related gravimetric quantities. Best fitting that model with the variance of the available
global mean anomaly data and the empirically obtained anomaly degree variances from potential
coefficients, in a least-squares procedure, it was found that the positive integer number 24 was the
optimal estimate for B. In addition, a value for Az was estimated based on the available information.
The fitting to the global data variance (in the sense of Eq. 5.26) was performed up to an extremely
high degree (Tscherning and Rapp 1974). Hence, the analytical degree variance model will be given
as

(%) ag = A (n-1) / {(n-2) (n + B)} [mGal?], n>2 andB=24. (5.32)

Since its development, that degree variance model has been recommended and widely applied to
global and local gravity field modeling by collocation (C. C. Tscherning, 1994a). Hence, it will be
used throughout the current work for modeling the covariance function of the disturbing potential
and the related quantities. The use of that model in deriving an analytical closed expression for
covariance functions will be discussed in the next section.

5.6 Analytical Covariance Function Modeling

Recall from section 5.2 that, to obtain a consistent LSC solution, based on the available
heterogeneous data, a unique basic model for the covariance function, which best describes the
anomalous input features, must be used throughout the collocation solution. This is achieved in
practice by modeling the covariance function of the disturbing potential, or equivalently, gravity
anomalies and then deriving the needed covariances for the input and output features using the low
of covariance propagation.
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The covariance between gravity anomalies at two points p and g (having a spherical distance
v and geocentric radii r and r’, respectively), can be obtained as follows:

2 n+2

COb,1) = Eep(0hag (1) Palcos ). (5:33)

Using the model in expression 5.33 for the anomaly degree variance, one obtains

n+2

, o A(n-1)  (R§
CT) = B o pyime ) Palcos ). (5.34)

Using the relationship between the disturbing potential and the gravity anomaly degree variances,
which is given as

R
(n-1)

2
Ko = (D1 = {—=} (6})ag (5.35)

the corresponding expression for the disturbing potential covariance is expressed as

n+1

, o AR? R2
C(‘IJ' r,r ) = Zn=3 {(n—l)(n—Z)(n+B)} ( }3) Pn(COS llj) (536)

rr

As a practical matter, a closed expression was derived for the infinite expansion for the global
anomaly covariance function (Eg. 5.34) by (C. C. Tscherning and Rapp, 1974b). This expression is
given as

oty b5 = (23] [0+ 1) (52 S S Tacom) 6

and the relevant closed form for the covariance between the disturbing potentials at two points is
given as

_ AR} 3 Fp-S
cov (Tp, Tq ) = W(Em ((B + 1) F—Z - (B + 2)(F_1— S PZ(COSIIJ) + B
S*’cosy S P, cosy
B+1 B+2 ) (5.38)

Moreover, the closed expression for the covariance between the anomalous potential at p and the
gravity anomaly at q is given as

AR} Fg—S S?cosy S3 P, cosy
cov(Tp, Agq) _r(B+I;) {F‘Z_( BB "~ B+1 B2+2 )} (5:39)

where

s=(Ro?/ rr) and F.1, F-2 and Fg are functions of n, s and cosy, which are computed by recursion
algorithms.

Considering the disturbing potential analytical auto-covariance function (Eq. 5.38) as the basic
covariance model, the auto and cross-covariances between any functions of the disturbing potential
could be analytically derived and evaluated. For example, covariances can be assessed between any
configuration pattern of heterogeneous input and output features, such as geoidal heights, deflection
components, gravity anomalies and gravity disturbances. In particular, the disturbing potential
covariance function is looked upon as the reproducing kernel of the anomalous field, from which any
type of covariances can be easily derived, as the mutual relationships are well mentioned in chapter
two. In spherical approximation, these relations are given as
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Using the law of covariance propagation, the covariance between any two gravitational signals Sip
and Sjq at two points p and g, respectively, is given by

cov(Sip. Sjq) = Li (cov(Ty, Sjq) ) = Li (Licov(T,, Ty)) (5.41)

where Li and L; are the two linear functional operators, which, when applied to the disturbing
potential at p and q, yield the two signal types Sip and Sjq, respectively. For instance, denoting
covariance between the disturbing potentials at p(e,A,r) and q (¢',A',r") by K (Eq. 5.38), the
corresponding closed covariances between the gravimetric elements are computed from (C. C.
Tscherning and Rapp, 1974b)

cov(Np, Ty) = 1 K

cov(Np, Ng) =— K

1
Yy’

K-2K

rs/

cov(T,, Agq) = —ai
cov(Np, Agg) = ( ai —% K)

= ; cov(T,, Agq)

cov(g,, Ty) = —(ai, K)

cov(§p, Ng) = —— ﬁ( K)
6 5] 2
COV(EP’qu) - ry acp (_F K- . K)
= i % (cov(Tp,qu)) ,etc. (5.42)

This means that the functional operators, pertaining to the gravimetric elements, are applied
sequentially to the basic covariance function (K=cov(Tp,Tq)) and evaluated at the relevant positions.
Recognizing that A, Ry and B are constants, it is clear that the finally encountered derivatives
generally concern the spherical coordinates of both stations. Of course, any derivatives concerning ¢
and A are performed first concerning cosy, which is a function of them (Eq. 5.15). Details about the
derivatives of the Fjterms in the closed form (5.38), which have s and cosy as variables, are given in
(C. C. Tscherning and Rapp, 1974b). Applying the law of covariance propagation, as given above,
would yield closed forms (similar to those given by Egs. (5.37), (5.38) and (5.39)) for the covariances
between any quantities.
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The above expressions for the closed covariance functions can also be used in cases, where a
set of empirical degree variances up to a certain degree, N, are used in connection with the model
degree variances. For example, one can write the expression for the global covariance function of the
anomalous potential as follows

n+1
P,(cos ) +
n+1

o AR? RE
Zn=N+1 {(1’1—1)(1’1—2)(1’1+B)} (_) Pn (COS llj) (543)

rr/

KW, r,r) =¥N_,(62)r (R_ﬁ)

rrs/

where (o2)t are the empirically determined potential degree variances, which can be computed from
harmonic coefficients up to degree N (in spherical approximation) as follows

GM) 2 — =
(02)r = () Zho(Cia + Sam) - (5.44)

This specific formulation of the covariance function (Eq. 5.43) enabled the inclusion of the empirical
2"Y degree variance, thus avoiding the respective singularity inherent in the analytical degree variance
model. Eq. (5.43) can be rewritten as

n+1

, rz\2+1 AR? R2
KW ) = (@)1 (33)  Plcosw) + ZNorsi(oDr — fompimmommy () Palcosw) +
N ARZ R_% n+1
Zn=2+1{(n—1)(n—2)(n+B)} (rrr) En(cos ) . (5.45)

While the second term in Eq. (5.45) is a finite summation up to degree N, which can be evaluated
easily, it is clear that the third term can be simply replaced by the closed-form (5.38). Again, the
relevant functional operators are applied and evaluated for the three terms cumulatively to derive any
desired covariances based on the above basic covariance function. While the third term is treated as
the closed-form (5.38), the first and second terms are handled separately. Particularly, the respective
functional operators of the anomalous field will be applied (and evaluated) to the empirical and
analytical potential degree variances, from degree 2 up to degree N. It should be noted that applying
the functional relationships to the potential degree variance amounts to the determination of a degree
variance, which is consistent with the target covariance function, and may have mixed units. Namely,
if the target covariance is between geoidal height and gravity anomaly, this would imply a geoid-
anomaly degree variance.

So far, the modeling of an analytical global covariance function of the Earth’s gravity field has
been discussed. Anyway, whether one deals with only model degree variances or with a combination
of empirical and model degree variances, closed forms exist for the covariance functions relevant to
the various gravimetric elements. These analytical covariance models are usually modified to suit the
local applications, which is the subject of the following section.

5.7 Determination of a Local Covariance Function Consistent with the Remove-Restore
Technique

As the remove-restore technique has been widely adopted for local gravity field modeling, the
empirical local covariance function must have as input the residual local data, reduced to an
appropriate global geopotential model and to the topographic effect. Hence, a modeled local
covariance function, best fitted to the input residual anomaly empirical covariance, should be derived
and used. Generally, a local covariance function corresponds to a global covariance function, from
which the global signal power has been removed. Ideally, if a global harmonic model of maximum
degree and order N has been subtracted from the local data, it should remove N spectral degrees from
it. This would correspond to be an N degree model covariance function, which has zero-degree
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variances up to an inclusive degree N (Meissl, 1971; C. C. Tscherning and Rapp, 1974b). Such local
(potential) covariance function is derived from the global one (Eq.5.43), as follows

n+1

N _ w00 AR? Rf
K(Llj' LT ) - Zn=N+1 {(n-1)(n—2)(n+B)} (_) Pn (COS IIJ)

rrs/

n+1

= —§yN AR? R
- n=3{(n-1)(n-2)(n+B)} (rr,)+1 P, (cos ) +

N AR? R_IZ) n

n=3 {(n-1)(n-2)(n+B)} (rr,) P,(cos ) . (5.46)

However, according to the discussion in Section 5.4, regarding the dependence of the local empirical
covariance function on the regional accuracy of a harmonic model, there exist at least random errors
inherent in the geopotential model, which are represented by the global error estimates of the
respective harmonic coefficients. Thus, a procedure could be followed in which the removed
empirical potential degree variances in Eq. (5.46) (up to degree N) are replaced by the corresponding
empirical potential error degree variances, which can be generally scaled by a (unitless) positive scale
factor, ¢ (Meissl, 1971; Rapp, 1979; C. C. Tscherning, 1993; C. C. Tscherning and Forsberg, 1986b),
as follows

K@) = T (0 r (RB) T Py(cosy) +

rr/
n+1

o AR? RE
ZH=N+1 {(1’1—1)(1’1—2)(1’1+B)} (_) l:’1’1 (COS llj) (547)

rr/

where (o¢%)T are the empirically determined potential error degree variances, which can be computed
from the error estimates of the respective harmonic coefficients up to degree N (in spherical
approximation) as follows

GM\?
(02t = (5) Theo(0Fy +0%) - (5.48)
Recall from the previous section that, to exploit the available closed forms for the infinite covariance
expressions, the local covariance function in Eq. (5.47) can be rearranged as follows

) Ry 2+1
K, 1,1) = (02 ,)r (22)  Pulcos ) + ZNog [e(oZ)r —
n+1 AR2 n+1

AR? R o R2
{(n—l)(n—Z)(n+B)}]( ') Bo(cosp) + Zn=3{(n—1)(n—z)(n+13)}( ) By (cos ) (5.49)

Irr rr/

which is analogous to Eq. (5.45). Again, assessing the first and second terms is easy, and the closed-
form replaces the third term in Eq. (5.33). Of course, the same comments regarding applying the law
of variance propagation to Eq. (5.45) are still valid for the above expression, whose first and second
terms have a combination of empirical error degree variances and analytical degree variances.

It is worth mentioning that the scale factor, c, is a measure of how well a specific harmonic
model fits the local data low-frequency information. Thus, that scale factor describes the local
variations of the global accuracy of a geopotential model (D. Arabelos, 1989).
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Practically, the corresponding local covariance function of gravity anomalies is fitted to the residual
anomaly empirical covariance function via a nonlinear 3-parameter iterative least-squares
adjustment. The local isotropic anomaly covariance function model is given as

n+2

C(P,Q) = C 1) = TN, (02 n)ag (22)  Pulcos ) +

rr!
n+2

o A(n-1) R
ZH=N+1 [{(n—z)(n+B)} (_I) Pn (COS IIJ)

rr

2+2

RZ
= c(02,)ag (52)  Pulcosp) +
n+2

A(n-1) R}
Yh=3c(0Zn)ag — [m (—13) Py (cos ) +

rr
n+2

S o [2ED ] (5) B (cos ) (5.50)
where:
] the spherical distance between p and g (Eq. 3.15)
r the geocentric radial distance of point P = R+Hp,
r the geocentric radial distance of point Q = R+Hg,
R taken ~ 6371 km,
H orthometric height of the respective point,
(0e%n) Ag the n empirical anomaly error degree variance based on the

standard errors of the harmonic coefficients, as given by Eqg. (5.31).

The three parameters ¢, A (as implied by the residual data variance at H=0), and (Ry-R) are
given approximate values firstly. On the other hand, the residual anomaly empirical covariance
values are input and treated as observations, whereas a relevant set of “computed” observations are
assessed from the three input approximate parameters (using Eg. 5.50 and exploiting the closed
forms). The adjustment is then performed iteratively until the convergence is arrived, resulting in the
final three parameters ¢, A in mGal?, (Rp-R) in meters and the point gravity anomaly variance at MSL
as a by-product. Based on the local residual gravity anomaly data, these parameters are determined
via its empirical covariance function. The final values are then used, along with the previously
discussed closed forms, to compute all the elements of the auto-covariance matrix between the
observations, the auto-covariance matrix of the signals to be predicted, and the cross-covariance
matrix between the input observations and the unknown signals. This is done regarding the functional
types and the relevant positions. As stated in section 5.1, these covariance matrices are the backbone
of the collocation solution.

5.8 Stepwise Least-Squares Collocation for Large Data Sets

It is possible to split up the prediction by collocation into two steps. This may be done to reduce
the size of the matrices to be inverted. This procedure is referred to as stepwise least-squares
collocation. Particularly, in the case of collocation without parameters, the mathematical model is
divided into two parts as follows

11=t1+n1

11 = tz + n, (551&)
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[= G;) (5.51b)
and
A= (2;) (5.51c)

where |1 and I, are the vectors of the two groups of observations and A1 and A are the corresponding
matrices of parameter coefficients. Accordingly, the matrices D and Cs are partitioned as follows

(D11 D
D= (3 (5:510)
CSt:(Cst Cst) (5519)

where D11 and D2, are the total auto-covariance matrices of the two data groups, D12 and D»; are the
total covariance matrices between the two groups of observations and Cs1 and Csto are the cross-
covariance matrices between the unknown signals and the two data sets, respectively. According to
Egs. (5.9) and (5.10), the LSC solution for the signals and the relevant error estimates is given by

S=(Can C) (B252) () (5522
Eas = Cos = (ot Corr) (2222) (Cor Cor)T - (5.52b)
It can be shown that the above expressions reduce to (Moritz, 1980; C. C. Tscherning, 1974)
S = [CsaD™1l]+ [(Cst2- Cst1 D1 Di12) (D22 - Dot D11 D12)? (I2- D21 D1t 1h)]
= S+ Sy (5.53a)
Ess = Css- [Cst1 D1 Cst1"] - [Cstiz D122 Co2]
= Css - Ess1 - Ese2, (5.53b)

where S; and Sy are the contributions of the two data groups, I1 and I», to the predicted signals and
Ess1 and Ess2 are the respective gains in accuracy. Hence, it is clear that the inversion would be
necessary only for the diagonal blocks D11 and Do». If the second group contains one observation at
a time, then one deals with sequential collocation, where D22 would diminish to a single element.

Thus, the main advantage of using stepwise collocation is that the normal matrices inverted are
smaller than the original D matrix. Hence, the total storage requirements are not reduced. So, when
using PCs with a high storage capability, which are available nowadays, the stepwise solution of the
normal equations will be of no real advantage (C. C. Tscherning, 1974). However, such a technique
could be used to incorporate an additional set of new observations to improve a previous LSC
solution.

5.9 Fast Collocation

When using the (LSC) technique, the CPU time will vary depending on the number of
observations, the used covariance functions, the number of signals to be predicted, and their error
estimates. It is well known that the total covariance matrix D, to be inverted in the LSC, is symmetric
for any data distribution pattern.
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Particularly, for a data set of u observations, one obtains the total covariance matrix of the
observations as follows

dyy dyp o e e dyy
dyy dpz -+ o dyy
Dyu = ds3 d?u : (5.54)

\
Every off-diagonal element is the sum of the covariance function and the relevant error covariance

(if the data noise is correlated), whereas every diagonal element equals the sum of the variance and
the respective error variance.

Considering the arrangement of data in a planar grid and assuming homogeneous data types,
equal error variances, and uncorrelated data noise, it can be shown that the total covariance matrix D
will be a symmetric block Toeplitz matrix, and each block is itself a symmetric Toeplitz matrix. Thus,
one obtains a Toeplitz/Toeplitz structure (Barzaghi et al., 2003), which can be exploited to obtain a
fast collocation solution. Particularly, if a planar data grid has u = r . m observations, where r and m
are the number of rows (latitudes) and columns (longitudes), respectively, then the total covariance
matrix, D, will show the following symmetric block Toeplitz structure

k11 k12 kl,r—l klr
Kz ka3 oo o Kor
k k
Duu =| o C (5.55)

\ kr—l,r/
krr

where each Kjj block is an (m x m) matrix that carries the mutual covariances (plus the noise terms)
between the points along the i" and j" latitudes. It should be noted that the block Toeplitz structure

implies that Ki1=Ka=....=Ky, K12=K23=Kaa,.....=Kr.1, r, K13=K2s=Kzs=....= Kr2, r and Kz, r1= Kor.
Moreover, each block has its own symmetric Toeplitz structure as follows
kl kZ k3 km—l km
ki ko k3 o kpg
k; k k :
Kijmm) = S (5.56)
3
k;
ky
Combining Egs. (5.54) and (5.55), one obtains the total covariance matrix in the following form
di dy dz - dyg dy
dp d; dz - dy
d;, d d :
Deuu) = Sy (5.57)
3
d,
dy

It is clear that, due to that special structure, the storage of the covariance matrix is much
reduced since the knowledge of the first row is sufficient to construct the whole matrix. In the fast
collocation methodology, this very simple form of the total covariance matrix is combined with an
efficient inversion algorithm to reduce the CPU time required by collocation greatly. It should be
mentioned that the block Toeplitz structure (and not the Toeplitz structure within each block) is
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destroyed if the data grid is expressed in geodetic coordinates, as a consequence of the convergence
of meridians. Nevertheless, this drawback can be overcome by an iterative procedure (ibid.). The fast
collocation procedure could be optimally used to merge some existing national geoid solutions into
a unified regional solution (C. C. Tscherning et al., 1987). The main disadvantages of the fast
collocation algorithm are the approximations in the input data noise, the use of only homogeneous
data types, and the restriction on the data distribution, which greatly constrain the flexibility of the
collocation technique.

5.10 Ellipsoidal Collocation

The spherical approximation is used in gravity modelling because the surface to which a
boundary value problem is related is a sphere and is considered twofold. On the one hand, the position
of a point in terms of geocentric latitude, geodetic longitude, and radial distance is equal to the
geodetic latitude, geodetic longitude (unchanged) and the radial distance is set equal to R+h.
Frequently one further approximation is made, where the orthometric or normal height replaces the
ellipsoidal height h. This is referred to as a spherical approximation in geometry space. On the other
hand, the reference ellipsoid is approximated by a sphere of radius R. Furthermore, the relevant
normal gravity is replaced by the mean gravity (GM/R?) and the derivatives in the vertical direction
(in the functional relationships between the various gravitational quantities) are taken in the direction
of the radius vector. This is looked upon as a spherical approximation in the gravity space.

Using an ellipsoidal boundary surface (instead of the geoidal surface) will improve the
ellipsoidal approximation. In least-squares collocation, however, the use of an ellipsoidal boundary
leads to very complicated numerical procedures, making such a method an extremely heavy task. In
spherical approximation, the LSC solution is expressed as a linear combination of base functions,
which are harmonic outside the Bjerhammar sphere that is enclosed inside the Earth. The basic
covariance function is rotationally invariant on spheres which are harmonic outside the Bjerhammar
sphere, such as on the Earth’s mean surface. Furthermore, spherical approximation enables
representing a large class of covariance functions in simple closed expressions.

On the other hand, if no spherical approximation is used, the rotational invariance will be lost.
It is easy to notice that in the case of non-spherical approximation, the degree variances and
covariance functions would be dependent on the equatorial radius, a, and on r and vy of the evaluation
point, as it would generally be latitude dependent, thus violating the isotropy assumption (Colombo,
1980). This means that the LSC solution would depend on the latitude. One possible method to solve
this problem is to use an-isotropic covariance functions or covariance functions based on the complex
ellipsoidal harmonics. Such non-isotropic kernels would imply a harmonicity domain down to “a
Bjerhammar ellipsoid” with a semi-minor axis smaller than or equal to the semi-minor axis of the
Earth. However, closed expressions for such ellipsoidal covariance functions have not been
developed yet. Such closed forms should be the aim of theoretical gravity field research. Therefore,
throughout the current work, all the encountered collocation solutions will be performed in spherical
approximation. This seems admissible since the remove-restore technique is used (Martinec, 1998).
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6. Numerical research

The methodology, numerical research, creating a mathematical model, and determination of
reference surfaces are presented in this chapter.

The distribution of the available data over the entire territory of Egypt is inconsistent, as the data are
intense in some northern regions but sparse in the southern and western regions.

Data deficiency still exists at this time, therefore, it’s not adopted to use a prediction technique as
Least Square Collocation (LSC) for the determination of the geoid, whereas the essential conditions
are not suitable for the whole area of Egypt. Therefore, a selected “data window” called AREAO1
was chosen for applying the LSC technique in this research.

The outcome solution from the LSC technique will be used as a reference to assist the geoid solution
from the proposed mathematical model through areas where it is impossible to provide many
observations. The following would be possible:

* economical survey using GNSS in terms of homogeneous height,
* preliminary data for a large number of local geophysical surveys,

* providing preliminary data for all future projects in the field of gravitational field determination and
geodetic reference systems, and

* monitoring changes in the Earth's physical surface in the relevant areas.

The modified Stokes’ formula that combines local terrestrial data with a global geopotential model
(GGM) is often used nowadays. The optimum modification of Stokes’ formula, introduced by
(Sjoberg, 2003), is employed to minimize the expected mean square error of the combined geoid
height. According to this stochastic method, the approximate geoid height is first computed from the
modified Stokes’ formula using surface gravity data and a GGM. The precise geoid height is then
obtained by downward continuation and by adding topographic and ellipsoidal corrections to the
approximate geoid height.

The commonly adopted and applied approach to regional gravimetric geoid determination is the so-
called Remove-Compute-Restore (RCR) technique (Schwarz et al., 1990). The complete expansion
of GGM is used in conjunction with regional terrestrial gravity data via the spherical Stokes’ integral.
In principle, in the RCR technique, any a priori known signal features are first removed from the
observed data before the prediction process and then appropriately added back (restored) to the
predicted features. Moreover, a suitable (DTM) is usually used to account for local topographic
effects (Fig. 37).

The LSC algorithm is a flexible tool for combining all possible heterogeneous data in one unified
solution to solve any desired type of anomalous signals. The LSC estimated signals, which have
minimum error variance among all other solutions, could also be evaluated at any point (Moritz,
1978, 1980). This study’s main objective is whether it is possible to determine the geoid at the
centimeter level in the territory of Egypt by using LSC.

A schematic diagram of the general computation procedure, which is considered one of the possible
solutions, is depicted in Fig. 38.
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Figure 37 Overview of data processing steps for the remove-compute-restore procedure
The processing procedures consist of:
1. data collection,
2. data preparation,
3. formation of final data sets,
4. quality analysis and data selection, and then determination geoid for Data Window Selection Area

5. long-wave characteristics of anomalous potential functionals (free-air anomaly and anomalous
heights),

6. short-wave characteristics of the anomalous potential functional (free-air anomaly and anomalous
heights),

7. residual functionalities of anomalous potential (anomaly of free air and anomalous heights),
8. residual anomalous heights,

9. short-wave characteristics of anomalous heights,

10. long-wave characteristics of anomalous heights,

11. quasi-geoids,

12. differences between quasi-geoids and geoids,

13. geoid in the spherical approximation of ellipsoids by terrestrial sphere,

14. ellipsoidal corrections,

15. geoid,

16. translation parameters,

17. combined solution,
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18. assess the residual,

19. and finally, the surface of the transformation.
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Figure 38 Flowchart of the procedure of developing a precise geoid model for Egypt
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6.1. Available Data

6.1.1. Gravimetric Observation

The local gravity anomaly data used in this research was gathered from two sets. The first set
mostly consists of previously available free-air gravity anomalies gathered at 1000 points with -
4.57 mGal as mean (average) and 32.37 mGal as standard deviation. The sources of these data are
documented in previous works (M. Amin et al., 2002, 2003; EI-Tokhy, 1993). Besides, two sets of
free-air gravity anomaly values at 267 and 333 points were obtained from the Bureau Gravimetric
International (BGI), where the mean value is -6.09 mGal, and the standard deviation is 19.57 mGal.
The total number of points in the first set is 1600 data points.

The second set consists of 55,250 observational data points provided by Getech company and
obtained under the African Gravity Project (Fairhead, 1988) see (Fig. 39). Some of these data were
observed in the pre-GNSS/GPS era, therefore, the major sources of errors that contaminate the data
are the inaccurate estimates of the positions and heights of the stations, but the data provider
recommended an accuracy of 1.0 mgal. Getech did not provide enough information about the
methods of processing the data, but recommended the 1.0 mGal accuracy.
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Figure 39 The available local gravimetric data (black dots represent free-air gravity anomalies )and discrete GPS/dh
data points represent green dots.

6.1.2. Discrete Values of Anomalous Heights

This group contains 453 discrete values of anomalous heights from GPS/H data stations, and
their distribution as 7 discrete anomalous heights determined in relation to the system of orthometric
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height for National Egyptian vertical Datum and ellipsoidal heights values in fundamental
benchmarks of High Accuracy Reference Network (HARN) that covers the entire Egyptian territory
and consists of 30 stations with approximate separation of 200 km, the relative precision level of
HARN is 1:10,000,000.

In addition to 49 data points from the National Agricultural Cadastral Network (NACN), which
covers the Nile valley and the Delta, with relative a precision 1:1,000,000 ( Dawod and Ismail, 2005).

In addition to 83 data points of the reference Egyptian Surveying Authority ESA network, 138 from
old collections and 28 data points were obtained from the article published in the Arabian Journal of
Geosciences (Rabah and Kaloop, 2013) in addition to 148 stations from various national projection
(Fig. 40). Most of those data sources have been published in many researches (Amin et al., 2002,
2003; El-Tokhy, 1993).
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Figure 40 The available local GPS/dh data (green dots represent (Rabah and Kaloop (2013) data, blue dots
represent old collections data, dark red dots represent NACN data, light green dots represent HARN data, gray dots
represent data points collected from several projects, purple dots represent ESA GPS/H discrete data points)

6.1.3. Digital Elevation Model

Shuttle Radar Topography Mission (SRTM), with a resolution of three arc second in both
directions (Fig. 41), was used for determining the short-wave characteristics of the anomalous
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potential functional beyond those provided by the maximum degree/order GGM by computing the
so-called Residual Terrain Model (RTM) (Forsberg, 1984), Such data of SRTM are distributed for
free via the public web service (https://Ita.cr.usgs.gov/SRTM) (Farr and Kobrick, 2000).
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Figure 41 SRTM Digital Elevation model for whole Egypt territory which was used to calculate short wave length
effects, unitinm

6.1.4. Global Geopotential Model

Table 10 illustrates the three GGMs used for determining the long-wave characteristics of the
anomalous potential functional , the first one GOCOO05c¢ is a combined GGM up to degree and order
720 based on GOCOO05S and altimetric/terrestrial gravity anomaly data set also GOCOOQ5c is an
independent of EGM2008. (Fecher et al., 2016)

The second GGM is A High-Resolution Earth’s Gravity Field Model SGG-UGM-2 was developed
by combining the observations of the Gravity Field and Steady-State Ocean Circulation Explorer
(GOCE), the normal equation of the Gravity Recovery and Climate Experiment (GRACE), marine
gravity data derived from satellite altimetry data, and EGM2008-derived continental gravity data.
(Liang et al., 2020)

The third GGM XGM2019e is a combined global gravity field model, which included data from

GGM GOCO06s combined with a ground gravity grid which also covers the shorter wavelengths.
(Zingerle et al., 2020)
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Table 10 Global Geopotential Models (A is for altimetry, S is for satellite (e.g., GRACE, GOCE,
LAGEOQOS), G for ground data (e.g., terrestrial, shipborne, and airborne measurements), and T is for

topography)
Global
Geopotential Degree/order Data References
Model
GOCO05¢c 720 A G,S (Fecher et al., 2016)

i i 2190 A, (EGM2008, Grace), :

SGG-UGM-2 S(Goce) (Liang et al., 2020)
XGM2019e 2190 A, G, S(GOCO06s), T (Zingerle et al., 2020)

6.1.4.1. Evaluation of the Performance of the Chosen GGMs Over Egypt Territory

All models were downloaded from the website http://icgem.gfz-potsdam.de/home. However,
GGM models are compared to 56850 terrestrial gravity data points and 453 GPS/H data points to
choose the best performance GGM over Egypt, where GGM is necessary in determining the geoid
of Egypt.

The statistical computations show GGM XGM2019 has a superior precision of the residuals
deferences of free-air gravity anomalies and corresponding values computed from XGM2019e in
terms of Standard deviation than GoceO5c on the other hand, it has not same precision with respect
to residuals from GPS/H and height anomalies. Tables 11 and 12 summarize the numerical results of
the comparison operation.

Table 11 Statistical computation residuals of the free- air gravity anomaly data points and
corresponding from GGMs (unit: mgal)

Model Degree/order Min Max Mean [S)te(j/

8 Ag GOCO05¢ 720 -56.821 53.435 -0.232 9.713
[mGall | scG-ucm-2 2190 -97.865 |  41.159 0089 | 8681
XGM2019e 2910 -52.471 41.144 0.422 7.779

Table 12 Statistical computation residuals of discrete GPS/H data points and corresponding from
GGMs (unit: m)

Model Degree/order Min Max Mean Std'
ev.
5 N[m] GOCO005c 720 -1.904 0.893 -0.330 0.435
SGG-UGM-2 2190 -0.939 1.809 0.570 0.449
XGM2019e 2910 -2.036 0.837 -0.371 0.487
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We can notice from Tables 11, 12, and Figs. 42, 43, 44, 45, 46, and 47, the residual free air anomaly
difference between GOCOO05c and XGM2019e models is 1.9 mGal in terms of standard deviation,
while there is a 5 cm difference at discrete GPS/H data points in terms of standard deviation. That
means the two mentioned GGMs have almost the same accuracy regarding the free air gravity
anomaly residuals, but GOCOO05c is better by 5 cm less of the residuals from discrete GPS/H points
over Egypt. Therefore, GOCOO05c has been used as a reference model in this research .
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Figure 42 Free air gravity anomaly residuals obtained from GGM GOCOO05¢ and discrete Free air gravity anomaly
values over whole territory of Egypt. The histogram of residuals is shown on the below left corner of the map.
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Figure 43 Height anomaly residuals obtained from GGM GOCOO05¢ and discrete GPS/H over whole territory of Egypt.
The histogram of residuals shown on the below left corner of the map.
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Figure 44 Free air gravity anomaly residuals obtained from GGM SGG-UGM-2 and discrete Free air gravity anomaly
values over whole territory of Egypt. The histogram of residuals shown on the below left corner of the map.
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Figure 45 Height anomaly residuals obtained from GGM SGG-UGM-2 and discrete GPS/H over whole territory of
Egypt. The histogram of residuals shown on the below left corner of the map.
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Figure 46 Free air gravity anomaly residuals obtained from GGM XGM2019e and discrete Free air gravity anomaly
values over whole territory of Egypt. The histogram of residuals shown on the below left corner of the map.
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Figure 47 Height anomaly residuals obtained from GGM XGM2019e and discrete GPS/H over the whole territory of
Egypt. The histogram of residuals is shown on the below-left corner of the map.
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6.2 Geoid Determination for Data Window Selection Area 01

Good coverage and distribution of local gravimetric data are needed to determine a
centimeter's accurate geoid by applying the LSC. Unfortunately, this condition cannot be achieved
all over Egypt territory.

Therefore, an area with dense data was chosen as a window for calculations, as shown in Fig. 48.
Hence, 38150 data points of free-air gravity anomalies and 180 GPS/dh discrete values were used to
determine geoid solutions for this Area0l.

The data set window referred to the WGS84 and IGSN71 and extended 4 degrees in the south-north
direction and 7 degrees in the west-east direction, the statistical calculations for those values are
shown in Tables 13 and 14.

30

Figure 48 The location and contour map of available free air gravity anomaly data set with an interval of 5 mGal, and
discrete GPS/H points of the selected dense data Area01 (red dots represent GPS/H data points while light grey dots
represent Free Air gravity anomaly data points)
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6.2.1 Formation of Final Data Sets

The formation of final data sets refers to the determination of the anomalous potential
functional in accordance with theoretically defined relations:

Cp=hp -Gy (6.1)
Agy=g, - Vp (6.2)
where

Cp anomalous height,

Ag, Free air anomaly.

All the presented relations refer to the approximation of the ellipsoid by the terrestrial sphere, where
it is assumed that no reductions of the measurement results were applied. All quantities refer to the
point P, which is located on the Earth's physical surface, i.e., to the point Q, which is by definition
the point of the telluride.

6.2.2 Long-Wave Characteristics of The Anomaly Potential Functional

The long-wavelength characteristic of the functional was determined using the global
geopotential model GOCOO05c.

The basic expression for the value of long-wavelength characteristics of anomalous potential
functionals is the expression for anomalous potential as a function of (orthonormal) spherical
harmonics (Rapp, 1997):

n

T = kTM i (%)n Z [Jum — JUm) cos mA + K,y sin mA]P,,, (cos ) (6.3)
"= m=o

where

a the semi major-axis of the ellipsoid in the plane of the equator,

K Universal gravitational constant,

M the mass of the body of the Earth,

Jam> Kom orthonormal coefficients of spherical harmonic development of the

Earth's acceleration potential,
U orthonormal coefficients of spherical harmonic expansion of the
Earth's acceleration potential,

Pom orthonormal Legendre functions.

By replacing the sign oo in the previous equation with , Ny,a,, maximum degree of GGM as well as
unknown theoretical values of the coefficients, ], Kn,m coefficients of the global model, ',

K'm, We get an expression for determining the long-wave anomaly potential at any point:

Toam = S @" Zhzol ('am — Jim) cos mA + Ky, sin mA| Py, (cos6) . (6.4)
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Based on the previously presented expression and theoretically defined relations of the anomalous
potential and its linear functionals, the following expressions for long-wavelength characteristics of
the functional are given

- acceleration anomaly

n

Nmax _ — —
Agcom = 1;—1:[ Z (n—1)(§)n [(]‘nm — ]_Hm) cosmA + K',,,, sin m)\]an (cos©) (6.5)
n=z m=0
- anomalous height
Nmax n
Coant = l;_l;’[ > A" Z [(Fam — Jom) cos mA + Ky sin mA| Py, (cos 9) . (6.6)
n=2

m=0

The above expressions were applied to 38150 free air anomaly values and 180 discrete values of
anomalous heights, table 15 contains statistically computation of the terrestrial free air gravity
anomaly and the residuals from the comparison of those terrestrial data and the corresponding values
obtained from Goco0O5c, while table 14 illustrated statistical computations for observed anomaly
height GPS/H and the corresponding anomaly heights obtained from GOCOO05c model. The residuals
of these comparisons were represented by contour maps, as shown in Figs. 49 and 50.

Table 13 Residuals from the discrete gravity anomaly data points and corresponding points from
GGM for the selected Area 01 (unit: mgal)

Free air gravity Min Max Mean Std.

anomaly Dev.

Ag Terrestrial -58.844 | 64.639 -1.562 19.408
d Ag GOCOO05¢ -56.963 | 46.833 0.976 8.437

Table 13 Residuals from the discrete GPS/H data points and corresponding points from GGM for the

selected Area 01 (unit: m)

GPS/H and Height Min Max Mean Std.
anomaly Dev.

Observed GPS/H -123.936 658.419 62.458 83.805

dN GOCOO05¢c -0.939 1.809 0.570 0.449
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Figure 49 Free air gravity anomaly residuals obtained from GGM GOCOO05c¢ and discrete Free air gravity anomaly
values over Area 01

Figure 50 Height anomaly residuals obtained from GGM GOCOO05c¢ and discrete GPS/H over Area 01
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6.2.3 Determination of Short-Wave Characteristics of Anomalous Potential Functionals for the
Purpose of Determining the Geoid of Area 01

Short wave characteristics of the functional of anomaly potential were determined using
STRM 3 arc-sec in both directions (Fig. 51), which also plays an important role in the smoothing
strategy for the formation of final data sets. The DEM with this resolution has been chosen because
the selected area is generally flat, and this resolution is less demanding in terms of computation time
needed.

26 28 30 32

Figure 51 SRTM 3*3 arcsec DEM for the selected Area 01

6.2.3.1 Residual Terrain Model

The concept of RTM was introduced by (Forsberg and Tscherning, 1981), and the basic
settings of the model are as follows:

* one part of the influence of all topographic masses (topographic masses of the Earth's body), is
already contained in the long-wave characteristics determined by the application of the global
geopotential model;

« the part contained in the long-wave characteristics is "limited" to the surface called the reference or
mean elevation surface. Reference surface resolution corresponds to the resolution of the global
geopotential model, from which it follows that the reference surface "roughly" defines the
topographic masses (Fig. 52);

* topographic masses, around the point P where the short-wave characteristic is determined, are
divided into bodies of regular geometric shape t;, i =1,.....,n (bodies whose gravitational
influences are defined by closed-form equations);

« the part of the short-wavelength characteristic t;' of the observed functional that arises as a
consequence of each individual element t; is determined,
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* and then the overall shortwave characteristic of the observed functional through numerical
integration is determined as:

n

t, = Z . (6.7)

i=1

True elevation
surface g

Mean elevation
surface

vy Mean Sea Level

%RTM ={*+ |Terrain Corrections

Figure 52 Residual Terrain Model (RTM) and terrain corrections (Forsberg 1984)

The RTM terrain effect may be computed in a spherical cap around the computation point, provided
the cap is sufficiently large, so the remote residual topography has a negligible impact. In this study,
the mean elevation surface was determined from the DEM data by applying the moving average
method. The RTM gravity terrain effect in the planner approximation is given by a volume integral
(Bucha et al., 2019).

After the advent of electronic computers, the division of topographic masses was exclusively dictated
by the application of digital terrain models (DTM). The bodies t; reached by this division of masses
are prisms with the most common rectangular (quasi-rectangular) base, where the foreign bases are
defined by the steps of the digital model, AB and AL (Fig. 53).
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Figure 53 Division of topographic masses by applying a digital terrain model to prisms with a rectangular base

The heights of the prisms can be determined by the expression

4
Hp = Z HY — HiRef/4, (6.8)
i=1

where H? are the orthometric heights of the vertices of the upper base of the prism, HR® are
orthometric heights of the vertices of the lower base of the prism (orthometric heights of the points
of the reference surface).

where the reference surface is constant along the entire base of the prism therefore, Eg. 6.8 can be
written as follows:

4 HO
Hp = 2551 _ HRef, (6.9)
4
A digital terrain model defines all the data needed to determine the gravitational influence of the
prism, and thus the complete topographic influence. Namely, the heights of the reference surface
points are determined by using the heights of the digital terrain model by eliminating a certain number
of its species and columns or by linear (square) interpolation, collocation, and other methods.

6.2.3.2 Expressions for Determining Short-Wavelength Characteristics of Anomalous Potential
Functionals

After determining all parameters (parameters AB, AL and Hp) that define a constant density
prism in the geometric sense, it is possible to determine the expression for the acceleration potential
of the prism's gravitational force based on it the prism's gravitational influence on anomalous
potential functionals. If a rectangular coordinate system, with a coordinate origin in point P, is defined
as in Fig. 54, then the acceleration potential of the gravitational force of the prism, in rectangular
coordinates X, y, and z, is defined by the expression (Petrovi¢, 1996):

X2 ¥2 z=z(xy)
Z—Z

A810r0 = P f f f [CGez = x0)2 + (vz = y1)? + (22 — 21)%]3/2

X1 Y1 z=zm(x,y)

d.xz dyz dZZ (610)

where

z are the topographic heights.
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Figure 54 Prism of constant density with a rectangular base

6.2.4 Residual Anomalies and Residual Anomaly Heights

To determine the geoid of Area 01, short-wave characteristics were determined using a residual
terrain model for 38150 free air anomalies (Fig. 55 and Table 15) and 180 anomaly heights using the
following expressions:

Agr=Ag - Aggam - Aropo (6.11)

=6~ Caom ™ Croro (6.12)

and finally, before the prediction of residual anomaly heights, the value of atmospheric correction
(6aTm) Was added to the residual anomalies, which was determined based on the expression 6. 13
and the statistical computations results and summarized in Table16 and represented with a contour
map Fig. 56:

SaTv [ums—2] = 874 — 9.9 % 10™*H ) + 3.56 * 10 °H2 ) . (6.13)

Table 14 Basic statistical data for short-wave characteristics of free air anomalies (unit: mGal).

Parameter Num_b er Min Max Mean Std.
of points Dev.
Agrop0 38150 -58.844 64.639 -1.562 19.408
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Figure 55 The map of shortwave characteristics of free air anomalies (contour interval 5 mGal)
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Table 15 Basic statistical data for atmospheric correction of free air anomalies (unit: mGal).

Parameter Numl?er Min Max Mean Std.
of points Dev.
OATM 38150 0.810 0.886 -0.868 0.008
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Figure 56 The map of atmospheric correction of free air anomalies (contour interval 0.005 mGal)



Residual functionals were formed based on a series of determinations mentioned in the previous
section using Eq. 6. 11, Table 17 illustrated the statistical calculation of the residuals anomalies,
while represented by Fig. 57 as a counters map.

Table 16 Basic statistics of residual anomalies (unit: mGal).

Parameter Numt_>er Min Max Mean Std.
of points Dev.
Agy 38150 48.482 120.911 3.180 9.099

120
110
100

Figure 57 General surface shape of residual anomalies (in mGal)

6.2.5 Prediction of Residual Anomaly Heights

The prediction of residual anomalous heights was determined by applying collocation with
an adequate estimate of empirical covariances as well as the selection and determination of analytical
functions of covariances. The theoretical value of the covariance of any two anomalous potential
functionals s and t is defined by the covariance function on the surface of the sphere (Moritz, 1980):

T 21m 2T
CW) = .- j j f s(8,4) t( 6,1 sin 6dodadA (6.14)
0=0A=0 a=0

where
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s, t anomalous potential functionals,
v spherical distance.

Expression (6.14) implies that the functional ones are known in all points of the physical surface of
the Earth, i.e., the unit or terrestrial sphere.

In practical works, only a discrete set of results of observations s; andt;, i=1,....,n and

j=1,....,m functional of anomalous potential s and t, so it is necessary to apply numerical
integration when determining covariance.

Covariances determined by applying numerical integration from observation results are called
empirical covariances. In the process of determining empirical covariances, the physical surface of
the Earth is divided into blocks Ay ,k = 1, .....,k bounded by meridians and parallels, where the
"widths" and "heights" of blocks AB, and ALy are determined according to the distribution and
number of results of observations.

If the result of the observation s; is joined by the part of the physical surface of the Earth A; within
which the observation is located, and in the same way the observation t; is joined by the part of the
physical surface of the Earth A;, then empirical covariance can be calculated from the expression:

CW) = —————, 6.15
v Y AiA; (6.15)
where s is the spherical distance between the points to which the observations are s; and t; .

In practical applications, the value of the spherical distance is defined from the conditions

Ay Ay
LP—T <L|Ji]'<l.|J+7, (6.16)

where the interval Ay, as in the case of the intervals AB and AL, is adopted depending on the
distribution and number of observation results.

Several forms of covariance analytical functions have been proposed over time for geoid
determination. The 4™ model of (C. C. Tscherning and Rapp, 1974a) is almost exclusively used,
which defines the analytical function of covariances of anomalous potential

N Rz n+1 o R2 n+1
K(P,Q) = az €y (—E> P,(cosy) + Z oj <—B> P,(cosyy), (6.17)
rprQ l‘PrQ
n=2 n=N+1
scale factor,

N degree of global geopotential model used,
€ degree variance errors,
Rg radius of the terrestrial sphere,
Rp radius of the Bjerhammer sphere,
P, Legendre polynomials of degree and,
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where the degrees of variance o, are defined as functions of unknown parameters A and B:

_ A
T (n=-1Dm-2)(n+B)’

Once determined, the covariance function must satisfy a number of requirements: it must be defined
and continuous for the area for which it is determined, a real function whose variables are also from
the set of real numbers, harmonic at all points of definition, homogeneous-isotropic, positive definite
and also on the surface of the sphere represents the best approximation of empirical covariances.

On (6.18)

There are basically two types of covariance analytical functions: global and local covariance
functions.

Global covariance functions are determined by using the results of observations of anomalous
potential functionals that are properly distributed over the entire surface of the Earth, and local
covariance functions are determined by using observation results that cover the local area.

It can be said that almost all expressions for local covariance functions, which are used today in
determining the mid-wave characteristics of functionals, are only special forms of expressions
derived in determining global covariance functions.

The global covariance functions must meet the above conditions that are tough to achieve in practical
determinations. This is especially true for the homogeneity property, which depends on the
arrangement and number of results of the anomalous potential functional observations. In theoretical
considerations, only isotropic covariance functions are always discussed, and verifying the
homogeneity property is a special problem in determining global (or local) covariance functions.

The starting point for determining the global covariance functions is the spatial covariance function
of the Earth's acceleration anomalies:

2

© R n+2
CAgPAgQ= Z On <_Q> Pn (COSLP) ’ (619)

I'pI
n=2 P

and the first step is to define a series of models for degrees of variance of acceleration anomalies,
cn , I.€ a series of nonlinear functions through which degrees of variance are represented as functions
of degree n and unknown parameters A; i =1,.....,k

on =0on(nA;i=1,.....k).

After defining the model of power variances, the obtained covariance functions are analyzed on a
global level, which means the comparison of the values of modeled degrees of variance with the
values of empirical degrees of variance, i.e., variances that can be determined using the coefficients
of the global geopotential model through expression (Rapp, 1997):

5= () -2 Z (i + K2 (6.20)
m=0

a2
as well as comparing functions in terms of simplicity of closed forms.

Functions whose degrees of variance "follow the behavior" of empirically determined variants and
functions with a simpler closed form fit into empirically determined variants. Using the least-squares
method based on the function selected for the degrees of variance, unknown parameters are
determined for each model, where the empirical degrees of variance are considered "measured
quantities™.
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After determining the global covariance function of acceleration anomalies, the global covariance
function of anomalous potential and all other covariance functions necessary for collocation
application are determined, which follow from the application of "covariance transfer law" to
anomaly potential covariance function.

The fourth model, which was defined by (C. C. Tscherning and Rapp, 1974b), has been utilized in
this research:

_ Aln-1)
" (n=2)(n+B)’

and almost exclusively used in the application of collocation to determine the undulation of geoids /
anomalous heights.

C (6.21)

For the local covariance function of anomalous potential, the function is adopted which is obtained
when all members of the order from n = 2 ton = n; are subtracted from the global covariance
function, where the power n is called the order of the local covariance function (Chen and Schwarz,
1985; Schwarz and Lachapelle, 1980; C. C. Tscherning and Rapp, 1974b). The adoption of this
covariance function for the local follows from the fact that the first members of the order of the global
function are constant in the local area, and that subtracting the first members of the global function
leads to a function that describes the stochastic properties of residual observation results (Moritz,
1980).

The local function is considered determined when the order of local covariance function and
unknown parameters of the adopted analytical form, i.e., unknown parameters of the adopted model
of power variances, are determined from the results of observations from the local area (local
empirical covariances).

Determining the order of a local function and unknown parameters of the degree variance model is
the basic problem of collocation application in determining the anomalous potential functional, and
there are a number of proposals that indicate ways to determine the order of function and the fit
covariances (Odalovi¢, 2000)

All the expressions presented in this chapter were used to estimate the empirical covariances and fit
the fourth Tscherning and Rap model, and the obtained results are shown in Fig. 58 and Table 18.

Table 17 Parameters of the analytical function of covariances of residual anomalies

a Rg —Rg Ch=3.18 Co ¢
[—] [km] [mGal?] [mGal?] [arc minute]
0.154434 -1.1680 82.80 60.88 5.00
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Figure 58 Empirical covariances and analytical function of covariances

Prediction of residual anomalous heights was made using a predetermined analytical function of
covariance and expression

T (P)

Ceon(P) = Yo (6.22)
where

T (P) = cl(C+ D)X, (6.23)
and where they are
Cp matrix of cross covariances of anomalous potential and linear functionals,
C functional covariance matrix,
D matrix of variances of noise vector elements,
X vector of residual functionals of anomalous potential.

The values of residual anomalous heights (Table 19 and Fig. 59), were determined in 180 points
where discrete values of undulations are known, as well as in 93961 points correctly distributed on
the chosen AREAOL1 at a distance of 2 km (TG - geoid points), with heights determined based on
digital terrain model SRTM 3 arc-sec.

122



Figure 59 Residual anomalous heights (in m)

Table 18 Basic statistics of residual anomalous heights (unit: m).

Parameter Num_ber Min Max Mean Std.
of points Dev.
Cres 93961 -0.480 0.901 -0.001 0.110

6.2.6 Short Wave Characteristics of Anomaly Heights
The short-wave characteristic must be calculated using the terms shown in the aforementioned verse

6.2.3 based on the same digital terrain models and parameters applied in the remove phase in forming
residual functionalities of anomalous potential in all TG (Table 20 and Fig. 60).
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Figure 60 Shortwave characteristics of anomalous heights (unit: m).

Table 19 Basic statistics of short wave characteristics of anomalous heights (unit: m).

Parameter Num_ber Min Max Mean Std.
of points Dev.
Cropo 93961 -0.552 0.545 -0.000 0.071
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6.2.7 Long Wave Characteristics of Anomaly Heights

Long-wave characteristics are determined using Eq. 6.6 and global coefficients of the GOCO05c¢
geopotential model used in the remove phase in all TGs.

The statistical computations of the Area 01 grid TGs anomaly heights have been illustrated in Table
21, while the spatial representations show by the contour map Fig. 61.
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Figure 61 General shape of the surface of long-wave characteristics of anomalous heights (in m)

Table 20 Basic statistics of the long-wave characteristics of anomalous heights (unit: m).

Parameter Num_b € 1 Min Max Mean Std.
of points Dev.
Caam 93961 | 10.274 20.842 15.879 1.995

6.2.8 Total Anomaly Heights

Total anomalous heights are determined by summing the determination of the restore phase, where
it is necessary to form two groups of total anomalous heights:

* total anomalous heights in TG (93961 points)

TG_ +TG | +TG TG
C =G +CGGM+CTOPO ’ (6.24)

+ and total anomalous heights at points where discrete values of undulations / anomalous heights are
known (180 points)
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GPS/dh__ » GPS/dh GPS/dh GPS/dh
G - CR + z;GGM + z;TOPO (6.25)

At the end of this phase, the total anomalous heights at a grid TGs of 2 km spacing in each direction
were obtained, i.e., after this phase, a high-resolution quasi-geoid has been determined on the chosen
AREA 01, where it has a range from 10.264 to 20.820 with a mean value 1578 mand 2 m as a
standard deviation all these quantities listed in Table 22, while Fig.62 describe the spatial
representation of the obtained Quasi-geoid over Area 01.
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Figure 62 Quasi-geoid of the chosen AREAOL (in m)

Table 21 Basic statistical data for quasi-geoid of the chosen AREAOL (unit: m).

Parameter Num_b er Min Max Mean Std. Dev.
of points
¢ 93961 10.264 20.820 15.878 2.007

6.2.9 Difference Between Geoid and Quasi-Geoid

To determine geoid undulations based on previously determined values of anomalous heights, it is
necessary to determine the difference between geoid and quasi-geoid using the expression:

A
AN<=N-Z;=@ H°, (6.26)
Agy Bouguer Anomaly
Y the mean value of the normal acceleration along the normal height of the point at which

the difference between the geoid and the quasi-geoid is determined.
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Bouguer anomalies (Ag,) can be determined at all points where the acceleration of the Earth's gravity

is known, as well as their orthometric height and if the value of the density (p) of the Earth's crust
masses is adopted using the expression:

Agy= g -2nkpH+FH -y (6.27)
where

g’ - measured value of acceleration on the physical surface of the Earth,

F - vertical gradient of normal acceleration,

Y - the value of the normal acceleration on the geoid.

The value for the density of the Earth's crust of 2.67 g/cm? is most often used in determining Bouguer
anomalies, and the value of 0.3086.107> 1/s? is used for the value of the normal gradient.

As Bouguer anomalies are very suitable for interpolation, it is possible to estimate the value of
Bouguer anomaly at all points for which the total anomaly heights are determined, and thus, by using
expression (6.27). The differences between geoid and quasi-geodes were too small to represent in a
table or figure, but they have been considered in the calculations process. The standard deviation is
about 2 millimeters, therefore, it is obvious that Geoid/quasi-geoid separation is close to zero in the
chosen Area01 because this area is almost flat.

6.2.10 Geoid in Spherical Approximation

Using previously calculated differences between geoids and quasi-geoids at all points where the
differences between geoids and quasi-geoids are determined, it is necessary to calculate the values
of undulations of geoids in the spherical approximation using the expression:

N =+ 8NT.
6.2.11 Ellipsoid correction

To eliminate the introduced spherical approximation at all points where the differences between
geoids and quasi-geoids are determined, it is necessary to calculate ellipsoidal corrections using the
expression:

=e 172 sin , (6.28)
where
e? is the first numerical eccentricity,

B is the latitude of the point.

6.2.12 Geoid

The final values of geoid undulations should be determined by adding the values of certain ellipsoidal
corrections to the values of undulations at the spherical approximation:

Ng = N + EC. (6.29)
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Such undulations define the geoid, often called the scientific geoid and can be considered as the high-
resolution geoid of the chosen AREA 01 (Table 23 and Fig. 63).

Figure 63 General Surface of the high-resolution geoid of Area 01 (in m)

Table 22 Basic statistical data for the geoid of Area0O1 (unit: m).

Parameter Num_b er Min Max Mean Std.
of points Dev.
Ng 93961 10.268 20.824 15.883 2.007

6.2.13 Evaluation of Translation Parameters

After the finally determined undulations, it is necessary to fit the geoid into the national Egyptian
height system.

The first step is to eliminate the influence of hypotheses that are present in the process of determining
Nk undulations.

When creating global geopotential models and defining the analytical functions of covariances,
hypotheses are introduced that the reference system's center of mass coincide with the Earth's real
center of mass. As it is stated that the coincidence in practical works is very difficult to achieve in
the estimates of undulations Ng remain part of the above discrepancies.

Differences of undulation determined by expression:

t = Ng — Ngps/dn, (6.30)
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at points where discrete undulation values are known can be interpreted as a consequence of the
mismatch of the mentioned centers and presented in the form of a function of the position of the
points and unknown translation parameters AX, AY, AZ

t = cosBcosLAX + cosBsinL AY + sin LAZ. (6.31)

The previous expression refers to points whose coordinates are known. As the values of t can be
determined from (6.30), it follows that unknown translation parameters can be determined using the
least-squares method, for which is necessary to adopt:

* expression (6.31) for the connection function, i.e., the functional part of the mathematical model of
the least square’s method,

« and the same accuracy of determining differences by applying (6.31) as the starting point of the
stochastic part of the mathematical model of the least square’s method.

The above parameter evaluation procedure and the obtained parameter values are given in Table 24,

Table 23 Estimates of translation parameters (unit: m).

Parameter Value
AX 0.032
AY 4.597
AZ -4.731

Table 25 and Fig. 64 show the differences t for GPS/H in order to fit the obtained geoid Ng into the
national Egyptian height system.
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Figure 64 General surface of differences t for GPS/H (in m)
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Table 24 Basic statistical data of differences t (unit: m).

Parameter Num_b er Min Max Mean Std.
of points Dev.
t 180 -0.936 1.457 0.000 0.319

6.2.14 Combined Solution

After the estimated translation parameters, it is possible to determine the effect of the introduced
hypotheses at each point of the Grid of 2 km spacing (TG) and evaluate the differences (Table 26
and Fig. 65)

t = cos Bcos LAX + cos Bsin L AY + sin LAZ, (6.32)
and then a combined solution (Table 27 and Fig. 66) is obtained as
N.=Ng—t. (6.33)
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Figure 65 General Surface of differences £ (in m)
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Table 25 Basic statistical data of differences £ (unit: m).
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Figure 66 General Surface of the high-resolution geoid N, [l of Area 01 (in m)

Table 26 Basic statistical data of the high-resolution geoid N, of Area 01 (unit: m).

Parameter Num_b er Min Max Mean Std.
of points Dev.
N, 03961 10.686 21.202 16.235 2.012

6.2.15 Residual Assessment

The combined solution should be the last step in evaluating geoid undulations that can be used in
practical work to transform ellipsoidal heights into orthometric ones.

However, in differences
R = N¢ — Ngps/n (6.34)

which are formed at points where discrete undulations are known, in most cases, significant
deviations can be noticed and called residuals (Table 28 and Fig. 67).
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Figure 67 General surface of the residuals R for internal check (unit: m).

Table 27 Basic statistical data of the residuals R for internal check (unit: m).

Parameter Number Min Max Mean Std. Dev.
of points
R 180 -0.91947 1.649404 0.484733 0.338604

These residues at arbitrary points of the area under consideration are most often estimated by
collocation, where stochastic deviation properties are modeled using the Gaussian analytical function
of covariance:

C(p) = Coe™A"P%, (6.35)
or by applying the Hirvonen covariance analytical function

Co
Clp) = A +B2pHm’ (6.36)

where A, B, and m are unknown parameters of the above functions.

Unknown parameters of covariance functions can be estimated based on empirical covariances of
residuals R and residual values can be estimated in each TG.

To control the process of residual assessment in TG, it is necessary to divide the set of points where
discrete values of undulations are known into two parts:

» the first part consists of 80 GPS/dh discrete points to be used for the assessment of residues in TG
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« and the second part that will be used to control the residual assessment process - external verification
consists of 100 GPS/dh discrete points (Table 29 and Fig. 68).
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Figure 68 General surface the residuals R for external check (in m)

Table 28 Basic statistical data of the Residuals R for external check (unit: m).

Parameter Num_b € 1 Min Max Mean Std.
of points Dev.
R 100 -0.600 1.081 -0.005 0.262

After the external check, it is necessary to evaluate the residues in TG using all available residues.

The mentioned residual assessment procedure was applied for further calculations, where only the
values assessed in the fundamental benchmarks and points of the reference network of Egypt were
used for residual assessments.

6.2.16 Surface of Transformation

Finally, after adding the estimated residual values to the undulations determined in the combined
solution, there are undulations that define the surface of the transformation of ellipsoidal heights into
the national Egyptian height system for the chosen Area01l:

Ngr = N.—R. (6.37)

Table 30 and Fig 96 show the values of the Residuals R of the transformation of ellipsoidal heights
into the national Egyptian height system for the chosen Area01.
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Figure 69 General Surface of the residuals R of Surface of Transformation (in m)

Table 29 Basic statistical data of the Residuals R of the transformation of ellipsoidal heights into
the orthometric height system (unit: m).

Parameter Num_b er Min Max Mean Std.
of points Dev.
R 93961 -6.435 1.939 -0.605 1.320

Table 31 and Fig 71 show the obtained combined solution geoid after removing the residuals of the
surface of transformation of ellipsoidal heights into the national Egyptian height system for the
18.2

chosen Area0l.
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Figure 70 combined solution Geoid for Area 01 (in m)
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Table 30 Basic statistical data of the geoid of the chosen AREA 01 (unit: mGal).

Parameter Num_b er Min Max Mean Std.
of points Dev.
Ngr 93961 13.100 19.329 16.488 1.248

6.3  Concluding Remarks

Based on everything shown, and especially external controls (Fig. 71), the following can be
concluded:

* at 43% of points where discrete values of anomalous heights/undulations of geoids are known, the
remaining residues in the transformation of ellipsoidal heights into the system of orthometric
heights do not exceed 50 cm, as shown in (Fig. 71 A),

* in 52% of points, the residues are less than 80 cm shown in (Fig. 71 B), and
* in 68% of points, the residues are less than 1.20 m shown in (Fig. 71 C), and

* in 77% of points, the residuals do not exceed the value of 1.5 m shown in (Fig. 71 D).
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Figure 71 Residuals assessment for Area 01 geoid (Unit: m)

6.4 Geoid determination in the rest of EGYPT territory (Area 02)

As mentioned, there is sparse gravimetric data, especially in the rest of Egypt's territory
(Area02). These gabs were filled using the XGM2019e geopotential model, and the geoid was
computed in several steps similar to Area01 geoid computations:

e GGM-XGM2019e was used to comput the long wavelength of the height anomalies quasi-
geoid,

e The short-wavelength component was computed using reduced gravity anomalies in a
two-dimensional convolution representation of the Stokes' integration,

e DEM (SRTM 3arecsec) was used to compute the terrain effect (Molodensky term) (Hastings
and Dunbar, 1998).

The height anomalies were converted to geoidal heights using (Rapp, 1997) spherical harmonic
representation of the separation between the two surfaces.

6.4.1 The long-wavelength component of the height anomalies (quasi-geoid) of AREAOQ2

To determine the long-wavelength component, the evaluations of EGM 2008 and XGM2019¢e
(Table 32) were performed first and compared to all gravimetric data for Egypt territory. The
statistical results are summarised in Tables 33 and 34 and spatially represented in Figs. 46 and 72.
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Table 31 Global Geopotential Models used for Area02 (A is for altimetry, S is for satellite (e.g.,
GRACE, GOCE, LAGEOQOS), G for ground data (e.g., terrestrial, shipborne, and airborne
measurements), and T is for topography)

Global Geopotential Degree/order Data References

Model

EGM 2008 2190 A, G, S(Grace) (Pavlis, N.K. et al, 2012 )
2190 A G, .

XGM2019e S(GOCOO06s), T (Zingerle et al., 2020)
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Figure 72 Free air gravity anomaly residuals obtained from EGM2008 and discrete Free air gravity anomaly points

over whole territory of Egypt. The histogram of residuals shown on the below left corner of the map

Table 32 Statistical computation of the free air anomaly data sets computed from GGMs (unit:
mGal)

Free air gravity Min Max Mean Std.
5 Ag anomaly Dev.
[ mGal] | 2190 EGM2008 -103.601 | 104.387 -2.236 20.883
2190 XGM2019% |-52.471 41.144 0.422 7.779
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Table 33 Statistical computation of the residuals between height anomaly from GGMs and
corresponding discrete GPS/H data points (unit: m)

GPS/H and Height Min Max Mean Std.
anomaly Dev.
§ N[m] 2190 EGM2008 | -1.150 2.168 0.537 0.510
2190 XGM2019e | -2.036 0.837 -0.371 0.487

6.4.2 Determination of Short-Wave Characteristics of Anomalous Potential Functionals for the
Purpose of Determining the Geoid of Area 02

Expression 6.10 from section 6.2.3.2 was used to determine the short-wave length
characteristics of anomalous potential functionals to determine geoid in Area 02. The statistical
results are summarized in Table 35 and represented as a contour map (Fig. 73).

Table 34 Basic statistical data of short-wave characteristics of free air anomalies (unit: mGal)

Parameter Numbers | Min Max Mean Std.
Dev.
Agroro 15733 -48.370 13.180 -0.160 1.490
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Figure 73 The surface of shortwave characteristics of free air anomalies (contour interval 5 mGal) for Area 02.
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6.4.3 Residual Anomalies

Expression 6.11 was used for the calculation of residual anomalies. The results were summarized
hereafter in Table 36 and represented as a contour map shown in Fig. 74.

Table 35 Basic statistics of residual anomalies (unit: mGal).

Parameter Numbers | Min Max Mean Std.
Dev.
Agg, [mGal] 15733 -99.330 147.346 0.034 8.389

Area01

24 26 28 30 32 34 36

Figure 74 General surface shape of residual anomalies for Area 02 (in mGal)

6.4.4 Empirical covariances and analytical function of covariances for Area 02
Expressions from section 6.2.5 have been used to determine the empirical covariance function and
parameters of the analytical function, as shown hereafter in Fig. 75 and Table 37, respectively.
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Table 36 Parameters of the analytical function of covariances of residual anomalies
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Figure 75 Empirical covariances and analytical function of covariances for Area 02

1.5

0BS MODEL

o Rp — Rg CH=0.03 Co ¢
[—] [km] [mGal?] [mGal?] [arc minute]
-0.000009 -2.118 79.09 70.4 5.00

6.4.5 Anomalous I height residuals for GPS/H points

2.5

LSC method was used to predict anomaly height residuals for GPS/H points ., using

GEOCOL software from the Gravsoft package.

Table 38 and Fig. 76 show the statistical computation and spatial representation as contour map for
the obtained residual from collocation.
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Figure 76 Anomalous residual heights for GPS/H points located at Area 02

Table 37 Basic statistics of anomalous residual heights for GPS/H points (unit: m).

Parameter Numbers | Min Max Mean Std.
Dev.
Scon 162 -0.069 0.212 -0.004 0.028

6.4.6 Residual anomalous heights on (TG - geoid points)

Residual anomaly height prediction over a grid 5*5 arc-min generated from SRTM3 arc- sec,
considered similar to the previous section 6.4.5 but performed on grid 5*5 arc-min instead of GPS/H
points. Table 39 and Fig. 77 described the results as statically computation and spatially
representation using the contoured map.
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Figure 77 Residual anomaly height prediction over a grid 5*5 arcmin generated from SRTM 3 arcsec

Table 38 Basic statistics of residual Anomaly height prediction over a grid from SRTM 5*5 arcmin
(unit: m).

Parameter Numbers | Min Max Mean Std.
Dev.
Ceoll 15733 -0.536 0.981 -0.000 0.046

6.4.7 Short Wave Characteristics of Anomaly Heights

Short wave characteristics of the functional height anomaly were determined using STRM 3
arc-sec in both directions according to section 6.2.3, Table 40 and Fig. 78 show residual terrain
model over a grid from SRTM 5*5 arc-min over Area 02.
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Figure 78 Residual terrain model over a grid 5*5 arcmin from SRTM 3arcsec

Table 39 Basic statistics of residual terrain model over a grid from SRTM 5*5 arc-min (unit: m).

Parameter Numbers | Min Max Mean Std.
Dev.
CTOPO 15733 -0.331 0.381 -0.003 0.035

6.4.8 Height Anomaly over a grid 5*5 arc-min from EGM GOCE 05c

Expression 6.6 was used to compute height anomaly over a grid 5*5 arc-min for Area 02
the statistical computation and spatial representation are shown in Table 41 and Fig. 79.
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Figure 79 Height anomaly over a grid 5*5 arcmin from EGM GOCE 05c

Table 40 Basic statistics of height anomaly over a grid 5*5 arc-min (unit: m).

Parameter Numbers | Min Max Mean Std.
Dev.
Cooco0se [m] 15733 5.576 22 477 13.677 2.895

6.4.9 Total Anomaly Heights

Total anomalous heights are determined using expressions from section 6.2.8, Table 42 and
Fig. 80 describe total height anomaly over a grid 5*5 arc-min over Area 02.
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Figure 80 Total height anomaly over a grid 5*5 arcmin

Table 41 Basic statistics of total height anomaly over a grid 5*5 arc-min (unit: m).

Parameter Numbers | Min Max Mean Std.
Dev.
Caoco0se [m] 15733 5.507 22.673 13.680 2.900
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6.4.10 Quasi-geoid Corrections

The difference between geoid and quasi-geoid using the expression 6.26 mentioned in section
6.2.9, Table 43 and Fig. 81show geoid/quasi-geoid correction over a grid 5*5 arcmin for Area 02.

0.2

AREA 01 ah =

24 26 28 30 32 34 36

Figure 81 Geoid/Quasi-geoid correction over a grid 5*5 arcmin (Unit in cm)

Table 42 Basic statistics Geoid/Quasi-geoid correction over a grid 5*5 arc-min (unit: cm).

Parameter Numbers | Min Max Mean Std.
Dev.
CGeoid/Quasigeoid 15733 -4.774 0.105 0.041 0.104
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6.4.11 Ellipsoid correction

it is necessary to calculate ellipsoidal corrections using the expression 6.28 from the previous
section 6.2.11 to eliminate the introduced spherical approximation at all points where the differences
between geoids and quasi-geoids are determined, Table 44 and Fig. 82 illustrated values of the
ellipsoidal correction over a grid 5*5 arc-min for Area 02.
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Figure 82 Statistics ellipsoidal correction over a grid 5*5 arcmin (Unit in m)

Table 43 Basic statistics ellipsoidal correction over a grid 5*5 arc-min (unit: m).

Parameter Numbers | Min Max Mean Std.
Dev.
QEC [m] 15733 0.000 0.016 0.009 0.002
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6.4.12 Geoid for Area 02

Expression 6.29 was used from section 6.2.12 to add the values of certain ellipsoidal
corrections to the values of undulations at the spherical approximation:

Such undulations define the geoid, often called the scientific geoid, and can be considered as the
high-resolution geoid of the c AREA 01, Table 45 and Fig. 83 show the geoid over a grid 5*5 arcm

for Area 02.

AREA 01
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Figure 83 Area 02 geoid over a grid 5*5 arcmin (Unit in m)
Table 44 Basic statistics of Area 02 Geoid over a grid 5*5 arc-min (unit: m).
. Std.
Parameter Numbers | Min Max Mean
Dev.
Ng 15733 5.516 22.645 13.650 2.884
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6.4.13 Evaluation of Translation Parameters

Recall the expressions and the values of translation parameters from section 6.2.13 to fit the
geoid into the national Egyptian height system for Area 02, Table 47 and Fig. 84 show the values of
statistical data of differences ¢.
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Figure 84 General surface of differences £ (in m)

Table 45 Basic statistical data of differences £ (unit: m).

Parameter Numbers | Min Max Mean Std.
Dev.
t 15733 -0.816 -0.534 -0.640 0.068
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6.4.14 Combined Solution

Table 48 and Fig. 85 shown the combined solution which have been obtained as expressions
6.32 and 6.33 mentioned above in section 6.2.14

AREA 01 \ X | 21

24 26 28 30 32 34 36

Figure 85 General surface of the high-resolution geoid Ny of Area 02 (in m)

Table 46 Basic statistical data of the high-resolution geoid Ny of Area 02 (unit: m).

Parameter Numbers | Min Max Mean Std.
Dev.
N¢ 15733 6.054 23.461 14.289 2.930
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6.4.15 Residual Assessment

The combined solution should be the last step in evaluating geoid undulations that can be
used in practical work to transform ellipsoidal heights into orthometric ones.

Expression from section 6.2.15 and Eq. 6.34 have been used to determine the residuals R for the
internal check as shown hereafter in Fig. 86 and Table 49, respectively.
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Figure 86 Residuals R for internal check (in m).

Table 47 Basic statistical data of the Residuals R for internal check (unit: m).

Parameter Min Max Mean Std.
Numbers Dev.
R nemal chock [M] 162 -0.971 1.175 0.113 0.479
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7. Conclusions and Recommendations

The subject of this research is the determination of geoid and quasi-geoid in areas where only
the irregular spatial distribution of observations is available. Among other things, that includes the
following:

e the number of observation results is too small concerning the area under consideration
(sparse data),

e observation results are grouped in only one part of the relevant area and very rarely in other
parts,

and especially

e the results of observations cannot be taken over by classical geodetic methods due to the
inaccessibility or continuous change of the Earth's physical surface of the relevant area.

The appropriate approach implies

e the use of a global geopotential model (XGMZ2019e), digital models of topographic masses
(SRTM 3aresec), and available observation results to model the parameters of the Earth's
potential, this approach tries to distribute data in the relevant area, to be suitable and sufficient
for geoid solution attempt.

e Then, the reference surfaces (geoid and quasi-geoid) are determined from observations and
newly modeled parameters of the Earth's gravity potential.

Based on the studied Area 01 results, as outlined in Table 28 and shown in Fig. 67, the accuracy
obtained by the LSC technique in terms of the standard deviation is 0.338 m of the differences, and
it is considered rather satisfactory.

Geoid solution for Area 01 has been fitted using 80 GPS/H points, while 100 points were used for
external checking, the results show that.

The obtained accuracy in terms of the standard deviation of the differences at control points GPS/H,
given as the external check outlined in Table 29, and showed by Fig. 68, was 0.262 m.

To generalize this solution to Egypt's whole area, some alternative solutions were applied for the rest
of Egypt territory called Area 02, to obtain a geoid solution, especially in the eastern and northern
deserts. The data has inadequate and insufficient distribution all over Area 02, and it is recommended
to have new gravimetric measurements in Area 02. While these data are not available at present,
alternative methods were used to provide data for Area 02 as follows:

e GGMs GOCEO5c and XGM2019e were used for modelling Long-wavelength component for
Area 02 as qusi-geoid for this region.

e Used DEM (SRTM 3arcsec) for modelling Short-wavelength component for Area 02

The gravimetric and combined geoid solutions for Area 02 were computed using GGMs GOCEOQ05c¢
and XGM2019e in addition to DEM (SRTM 3arc-sec), in the RCR technique through 3D least-
squares collocation (3D LSC), geoid solutions for Area 02 have been fitted using 162 GPS/ data
points.

Finally, Table 49 and Fig. 86 show the internal check for the geoid model for Area 02, which has
+0,479 cm as internal accuracy in terms of the standard deviation of the residuals when compared to
162 GPS/H points.
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Evidently, from the two obtained Area 01 and Area 02 geoid accuracies, Area01 geoid has better
accuracy, nearly about 30%, than Area 02 geoid as an internal check.

Based on all of the above-mentioned conclusions we recommended the following recommendations
for the future producing a one-centimeter geoid model to replace the existing vertical reference for

Egypt.

It is advisable to use the satellite-only models of the GOCO series in combination with the available
local geodetic data for better modelling the Egyptian gravity field. It is also necessary to cooperate
actively between the Egyptian surveying authority representatives and the responsible organizations
dealing with GGM computations.

It is recommend to redefination the datums of the currently available gravity and GPS/H data, where
different organizations have collected this data set. Data will likely be affected with several types of
errors, e.g., datum errors (horizontal, vertical, and gravity datum).

We strongly recommend the creation of a new gravity network with 5*5 arc-min spacing for the
entire area of Egypt, as the current observations suffer from poor spatial distribution, as well as a
scarcity of data (cf. Fig.4.12), especially in areas that contain Egypt's reserves of raw materials, such
as the eastern and western deserts, Until this happens, it is recommended to fill the current gaps by
the following methods:

e airborne gravity surveys may contribute to filling the voids, especially in mountainous areas,
sand dunes, lagoons <and all areas where ground observations are difficult to perform;

e The Egyptian government should work on a unified project to collect observed gravity data
from all state institutions, public and private, especially the petroleum companies working in
Egypt, as well as making communication channels with the foreign countries and companies
that may have any information or data about the Egypt gravity field to integrate them with
the rest data collected from inside.

e the combination of the observations of three gravity field mapping missions (CHAMP,
GRACE, and GOCE) and available gravity data should be used for better gravity field
modelling in Egypt.

GPS/H stations should be increased as well as distributed all over egypt area to determine a precise
corrective surface to fit the geoid models to the Egyptian vertical datum.

Since the new GGMs often do not contain terrestrials gravity data from Egypt, therefore we
recommend tailoring/ integrating those GGMs with all the ground data obtained in a repetitive
process to be applied when a new GGM publishes or new terrestrial data is observed.

Based on the obtained result of the present research, it is recommended to re-develop the reference
geopotential model GOCEO5c¢ with the available and new observation of Egyptian gravity data.
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o0Opa3ail u3jaBe 0 ayTOPCTBY

M3jaBse o ayTopcTBY

Wme u npesume ayropa _Moamen Awad Habib Gad

bpoj unanekca_ 914 16

U3jaBmyjem

Jla je TOKTOpCKa JqrcepTalja Mo HaCJIOBOM

O,Z[Del'_)I/IBaHse Ded)eDeHTHI/IX HHMBOCKHMX IMOBPIIWM BMCHMHA Y HO,Z[DV‘{iI/IMa C¢a HCIIPpABUJIHUM
IOIPOCTOPHHUM pACIIOPE€AOM PE3VYJITATA OlldXKamha I1apamMeTapa HOTCHHI/IiaJIa 3eMJbHUHE TEKE

1. pe3ynrar CONCTBEHOT UCTPAXKUBAUKOT paja;

2. J&a amcepTalyja y IeJIMHU HY Y JeJIOBUMa HHje OWIa IpeyIokKeHa 3a CTULIAbE IPYTe
JTUTUIOME TIpeMa CTYAH]CKUM IporpaMuMa JIPYTuX BUCOKOIIKOJICKHAX YCTaHOBA;

3. Ja cy pe3yaTaTu KOPEKTHO HaBEeIEHU U

4. na HMCaM KpIIMO/Ja ayTOpCcKa MpaBa U KOPUCTHO/TIa HHTENEKTYaIHy CBOJUHY APYTUX
JM1A.

Y beorpagy, jyH 2022 [Tornic ayropa
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oOpa3ai n3jaBe 0 HICTOBETHOCTH IITAMIIAHE U €JIeKTPOHCKE Bep3HUje JOKTOPCKOr paja

M3jaBe O UCTOBETHOCTU WUITaMMNMaHEe U eNIEKTPOHCKe Bep3uje AOKTOPCKOTr paaa

Hme u npezume ayropa __Moamen Awad Habib Gad

bpoj unnekca _ 914 16

Crynamjcku porpam _ ['eonesuje u reonHPpopMaTHKE

Hacnos paaa OI[DGI'_)I/IBaer De(beDeHTHI/IX HHUBOCKHMX ITOBPIIHW BMCHHA Y HO,Z[DV‘IiI/IMa ca
HCIIPpaBUJIHHUM IMTPOCTOPHUM PACIOPCAOM PE3YJITaTa onaXama rnmapaMcrapa HOTCHHI/IiaHa 3eMJbHUHE

TCKC

Mentop _ npod. np. Oleg Odalovié

M3jaBspyjeM 1a je mTamiana Bep3uja MOT JOKTOPCKOT pajia MCTOBETHA EJIEKTPOHCKO] BEP3HUjH KOjy
caM Tpenao/la pamu ToXpamuBama y JIMIHTAJIHOM peno3uTOpUjyMy YHHBepP3UTETa Yy
beorpany.

Jo3BosbaBam 11a ce 00jaBe MOjH JIMYHU T0/1alld BE3aHU 3a JOoOHjamkhe akaJeMCKOT Ha3uBa JOKTOpa
HayKa, Kao IITO Cy UMe ¥ Mpe3nMe, TOANHA U MeCcTO poljera U 1aTyM of0paHe paja.

OBHM JIMYHM MOJALKM MOTY ce 00jaBUTH Ha MPEXHUM CTpaHUllaMa AUTUTalHe OMOIMOoTEKe, y
€JIEKTPOHCKOM KaTaJIory 'y myOnukanujama YHuBep3urera y beorpany.

Y beorpagay, jyH 2022 [Tornuc ayropa
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Oopa3an u3zjase 0 kopumhemwy

Usjase o Kopuwhery

Opnamhyjem VYHuUBep3uTeTcKy Oubmmoreky ,,CBeto3ap MapkoBuh na y JlururamHu
perno3uToprjyM YHuBep3uTeTa y beorpaay yHece Mojy JOKTOPCKY JUCEPTAIN]y MO HACIOBOM:

OZ[DGT)I/IBEIH:G Ded)eDeHTHI/IX HWBOCKHMX IMOBPIIIN BUCHHA Y HOI[DV‘IiI/IMa Cca HCIIpaBUJIIHUM
OPOCTOPHHUM pACIIOPEAOM PE3YJITaTa OlldaXKamka rmapaMerapa HOTCHHI/IiaJIa 3eMJBbHHE TECIKE

KOja je MOje ayTOPCKO Jelo.

Hucepranujy ca CBUM NPHIIO3UMAa IIPeao/ia caM y eJIeKTPOHCKOM (opMaTy OTOTHOM 3a TPajHO
apXUBHUPABE.

Mojy MOKTOpPCKY aUcCepTanujy MoXpameHy y JWrHTaaHOM peno3uTopujyMmy YHHUBEp3UTETa y
beorpany u JOCTYIHY y OTBOPEHOM MPHUCTYIy MOTY Ja KOPHUCTE CBU KOjH TOIITYjy oapende
cagpkane y ogadpanom tuiny Jauieniie Kpearusue 3ajennuie (Creative Commons) 3a kojy cam
Ce OJUTy4HO/TIa.

1. Ayropctso (CC BY)

N

AytopctBo — Hekomepuujaiaao (CC BY-NC)

=

AytopcTBo — HekomepuujaiaHo — 6e3 npepana (CC BY-NC-ND)
4. AyTOpcTBO — HeKOMepIHHujanHo — neaut noa uctuM ycnosuma (CC BY-NC-SA)
S. AyTtopctBo — 6e3 npepana (CC BY-ND)

6. AyTtopctBo — aenutu nox uctuM ycaosuma (CC BY-SA)

(Monnmo pa 3a0Kpy»KuUTe caMo jegHy oA WecT NoHyheHUxX nnueHum.
KpaTak onuc MUEeHUM je cacTaBHU Ae0 OBe M3jaBse).

Y beorpagay, jyH 2022 [Tornuc aytropa
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1. AytopcTBo. Jlo3BoJpaBaTe yMHOXKABAKE, TUCTPUOYIIHM]Y U jaBHO CAOMIITaBamkEe Aeia, U mpepaje,
aKo ce HaBeJlle MME ayTopa Ha Ha4yMH ojpeheH o]l CTpaHe ayTopa WM JaBaolla JHUIICHIE, YaK U Y
KoMmepuujaHe cBpxe. OBO je HajcJI000IHH]ja O CBUX JIUIICHIIH.

2. AyTopcTBO — HEKOMepIUjarHo. J[03BOJbaBaTe yMHOKABAKE, AUCTPUOYIIN]Y ¥ JABHO CAOIIIITABAKE
Jera, ¥ Tpepaje, ako Ce HaBele MME ayTopa Ha HayMH ojpel)eH Of cTpaHe ayTopa WM JlaBaolia
nuneHne. OBa JMICHIa He J03BOJbaBa KOMEPIUjaliHy YHOTpeOy aena.

3. AyTopcTBO — HEKOMepIIHjaTHO — Oe3 mpepana. J[o3BosbaBaTe YMHOKABAE,

JTUCTPUOYIIM]Y Y JaBHO CAOIIITaBame Jiesa, 0e3 mpoMeHa, MpeoOIuKoBama WIH YIoTpede nena y
CBOM JIEJTy, aKO C€ HaBeJle MMe ayTopa Ha HauWH ojjpel)eH o] cTpaHe ayTopa MM J1aBaolla JIMIEHIIE.
OBa nuIieHIIa He J03BOJbaBa KOMEpIHjallHy ynoTpely Aena. Y 0AHOCY Ha CBE OCTaJI€ JIULIEHIIE, OBOM
JUIEHIIOM ce orpaHnyaBa HajBehu oOuM mpaBa kopuithema iena.

4. AyTOpCTBO — HEKOMEPIIMjaTHO — JEIUTH IO UCTUM ycioBuMa. Jlo3BoJpaBaTe yMHOXKaBambe,
IUCTpUOYNIN]y U JaBHO CAOMIITaBambE Jeiia, U IIpepajie, ako ce HaBeIe MMe ayTopa Ha HauuH oxpeheH
O]l CTpaHe ayTopa MJIM J1aBaolia JMILEHIE U aKo ce Ipepaja AUCTpUOyupa 1o UCTOM WM CIMYHOM
muueHnoM. OBa JIHIIEHIA He J03B0JbaBa KOMEpLUjaJIHy yHIOTpeOy Aeia U npepaja.

5. AyropcTBo — 0e3 mpepana. Jlo3BosbaBare yMHOXKaBamwke, AUCTPUOYIIHMjY U jaBHO CAOIIITABAKE
nena, 6e3 mpoMeHa, MPeoOIMKOBamba WK yoTpeOe Jiesia y CBOM JIelTy, aKo Ce HaBeJle UMe ayTopa Ha
HauuH onpelheH ox cTpaHe ayTopa wiH JaBaona JjuieHie. OBa JUIEHIIa J03B0JbaBa KOMEPIIHjaTHY
ynoTpeOy naena.

6. AyTOpCTBO — JIETUTH T1OJ1 UCTUM ycioBUMa. J[03BoJbaBaTe yMHOXKaBambe, TUCTPUOYLIM]Y U jaBHO
caoImIlTaBame Jeja, U Ipepaje, ako ce HaBeJle UMe ayTopa Ha HauuH oJpel)eH o cTpaHe ayTopa Win
JlaBaolia JIMIEHIIE U aKO ce Mpepajia IMCTpUOyupa 1o i UCTOM WIIHM CAMYHOM JHIeHoM. OBa IuLeHIa
JI03BOJbaBa KOMEpLHMjalHy ymnoTpeOy nena u mpepaga. CiauuHa je coTBEpCKUM JUIEHLaMa,
OJIHOCHO JIMLIEHIIaMa OTBOPEHOT KOJa.
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