УНИВЕРЗИТЕТ У БЕОГРАДУ РУДАРСКО-ГЕОЛОШКИ ФАКУЛТЕТ

Филип М. Милетић

# УТИЦАЈ ПОХАБАНОСТИ РЕЗНИХ ЕЛЕМЕНАТА РОТОРНОГ БАГЕРА НА НИВО ВИБРАЦИЈА ПОГОНА ЗА КОПАЊЕ

Докторска дисертација

Београд, 2023.

UNIVERSITY OF BELGRADE FACULTY OF MINING AND GEOLOGY

Filip M. Miletić

# INFLUENCE OF CUTTING ELEMENTS WEARNESS OF THE BUCKET WHEEL EXCAVATOR TO BUCKET WHEEL DRIVE VIBRATION LEVEL

**Doctoral Dissertation** 

Belgrade, 2023

# КОМИСИЈА

#### Ментори:

др Милош Танасијевић, редовни професор Универзитет у Београду, Рударско-геолошки факултет Ужа научна област: Елементи машинских и енергетских система

др Предраг Јованчић, редовни професор Универзитет у Београду, Рударско-геолошки факултет Ужа научна област: Механизација у рударству и енергетици

#### Чланови комисије:

др Дејан Ивезић, редовни професор Универзитет у Београду, Рударско-геолошки факултет Ужа научна област: Елементи машинских и енергетских система

др Драган Игњатовић, редовни професор Универзитет у Београду, Рударско-геолошки факултет Ужа научна област: Механизација у рударству и енергетици

др Милош Милованчевић, ванредни професор Универзитет у Нишу, Машински факултет Ужа научна област: Машинске конструкције

Датум одбране:\_\_\_\_\_

# УТИЦАЈ ПОХАБАНОСТИ РЕЗНИХ ЕЛЕМЕНАТА РОТОРНОГ БАГЕРА НА НИВО ВИБРАЦИЈА ПОГОНА ЗА КОПАЊЕ

#### Сажетак

У докторској дисертацији је анализиран утицај похабаности резних елемената роторног багера на потрошњу електричне енергије и ниво амплитуде вибрација погона за копање. Креиран је модел који у функцији стања резних елемената дефинише зависност разматраних физичких феномена. За развој модела примењене су једначине теорије осцилација и Ватметарска метода [1] којом се одређује потрошња електричне енергије.

За верификацију модела извршена су мерења на роторном багеру SRs2000.32/5+VR ангажованом на откопавању откривке на површинском копу Тамнава–Западно поље. Обављено је пет мерења. Резни елементи су били нови и потпуно похабани. Међумерења су рађена за случај похабаности 25 %, 50 % и 75 %. Степен похабаности дефинисан је применом ручног мерног алата. Утврђени су микротехнолошки параметри блока који су били исти при сваком мерењу.

Ниво амплитуде је одређен мерењем вибрација на улазном пару вратила редуктора погона за копање. Истовремено је мерена јачина струје при истом процесу. Добијени резултати су представљали улаз у Ватметарску методу [1].

Модел интегрише два методолошка приступа. Првим се пореде амплитуда вибрација и потрошња електричне енергије. Другим се амплитуда представља преко поремећајне силе добијене од процеса копања. У областима мање похабаности, модел је имао мањи степен сагласности излазних резултата. За веће степене похабаности, разлика оба приступа је мање изражена, што доказује исправност модела.

Утицај похабаности на ниво амплитуде потврђен је DIN ISO 10 816–3 [2] стандардом примењеним за мерење вибрација. Према нивоу амплитуде, опште стање погона се класификује у групе од А до D. У областима мање похабаности, погон се налази у нижим групама (групе A и B). Са повећањем похабаности, ниво амплитуде је већи. Анализом стандарда, може се извести закључак да рад у дужем периоду повећава ризик по настанак хаварија на погонској групи.

Предложени модел је унапређен адаптивним неуро-фази системом закључивања (ANFIS) [3], [4]. Циљ је предикција потрошње електричне енергије. Добијени су нови улазни подаци генерисани у основни модел (зависност похабаности зуба, потрошње електричне енергије и амплитуде вибрација), без директног мерења на багеру. Поређење резултата измерене потрошње електричне енергије и резултата ANFIS [3], [4] модела извршено је одговарајућим статистичким показатељима и потврђена највећа сагласност у случају *Bellove* функције припадности са осам функција по атрибуту.

Кључне речи: роторни багер, резни елементи, хабање, вибрације, потрошња електричне енергије

Научна област: Рударско инжењерство

Ужа научна област: Елементи машинских и енергетских система

**UDK број:** 622.539:621.649.6:620.178.16(043.3)

# INFLUENCE OF CUTTING ELEMENTS WEARNESS OF THE BUCKET WHEEL EXCAVATOR TO BUCKET WHEEL DRIVE VIBRATION LEVEL

#### Abstract

In the doctoral dissertation is analysed the influence of the wear of cutting elements to energy consumption and bucket wheel drive amplitude level. Created model defines the dependence of the considered physical phenomens as a function of the cutting elements state. For model development were applied equations of the oscillations theory and Wattmeter method [1] to determines the energy consumption. Measurements were made on the bucket wheel excavator SRs2000.32/5+VR to verify the model. Bucket wheel excavator is engaged to overburden excavation at the Tamnava–West field open cast mine. Five measurements were carried out. The cutting elements were new and completely worn. Intermediate measurements were made for wear cases of 25 %, 50 % and 75 %. The degree of worn was defined using a manual measuring tool. The microtechnological parameters of the block were determined, which are were the same at each measurements.

The amplitude level is determined by vibrations measuring on the input shafts pair of bucket wheel excavator drive. At the same time was measured the current for the cutting process. The obtained results were the input to the Wattmeter method.

The model integrates two methodological approaches. The first compares the vibration amplitude and the electricity energy consumption. With the other, the amplitude is represented by the disturbance force obtained from the cutting process. In less wear areas, the model had lower agreement degree with the output results. For higher wear levels, the difference between both approaches is less pronounced, which proves the correctness of the model. The effect of wear on the amplitude level is confirmed by the DIN ISO 10 816–3 [2] standard applied for vibration measurement. According to the amplitude level, the general condition of the drive is classified into groups from A to D. In areas of less wear, the drive is in the lower groups (group A and B). With wear increasing, the amplitude level is higher. By analyzing the standards, it can be concluded that working for a long period of time increases the risk of damage to the drive.

The proposed model is improved by the adaptive neuro-fuzzy inference system (ANFIS) [3], [4]. The goal is to predict electricity consumption. New input data generated in the basic model (dependence of tooth wear, electricity consumption and vibration amplitude) were obtained, without direct measurement on the excavator. The comparison of the results of the measured energy consumption and the results of the ANFIS [3], [4] model was carried out with the appropriate statistical indicators and was confirmed the highest agreement in the case of *Bell's* membership function with eight functions per attribute.

Key words: bucket wheel excavator, cutting elements, wear, vibration, energy consumption

Scientific field: Mining engineering

Scientific subfield: Elements of mechanical and energy systems

**UDC:** 622.539:621.649.6:620.178.16(043.3)

# Садржај:

| 1. УВОДНА РАЗМАТРАЊА                                                                                   | 1          |
|--------------------------------------------------------------------------------------------------------|------------|
| 1.1 Предмет и циљ истраживања                                                                          | 2          |
| 1.2 Научне хипотезе истраживања                                                                        | 3          |
| 1.3 Научне методе истраживања                                                                          | 3          |
| 1.4 Научни допринос дисертације                                                                        | 3          |
| 1.5 Структура дисертације са кратким прегледом поглавља                                                | 4          |
| 2. АНАЛИЗА ДОСАДАШЊИХ ИСТРАЖИВАЊА                                                                      | 6          |
| 2.1 Системски приступ анализи радних перформанси техничких система приме модела вештачке интелигенције | ном<br>б   |
| 2.2 Резни елементи и процес хабања резних елемената                                                    | 8          |
| 2.3 Мерење струје на роторним багерима и другим погонима великих снага                                 | 9          |
| 2.4 Мерење вибрација на роторним багерима и другим погонима великих снага                              | 11         |
| 2.5 Динамика и интегритет конструкције роторних багера                                                 | 13         |
| 2.6 Примена DIN ISO 10 816–3 стандарда при мерењу вибрација                                            | 14         |
| 3. РОТОРНИ БАГЕРИ                                                                                      | 15         |
| 3.1 Конструкција роторних багера                                                                       | 16         |
| 3.2 Радни орган роторних багера                                                                        | 16         |
| 3.3 Резни елементи роторних багера                                                                     | 19         |
| 3.3.1 Технолошки поступци израде резних елемената                                                      | 21         |
| 3.3.2 Материјали за израду резних елемената                                                            | 22         |
| 3.3.3 Хабање резних елемената                                                                          | 24         |
| 4. ВИБРАЦИЈЕ КАО ПАРАМЕТАР СТАЊА СИСТЕМА                                                               | 26         |
| 4.1 Параметри вибрација                                                                                | 27         |
| 4.2 Динамички и механички системи                                                                      | 29         |
| 4.3. Мерење амплитуде вибрација                                                                        | 30         |
| 4.4 Сложене вибрације                                                                                  | 32         |
| 4.5 Енергија и снага                                                                                   | 33         |
| 4.6 Природне фреквенције. Појам резонанце                                                              | 33         |
| 4.7 Анализа фреквенције                                                                                | 34         |
| 4.8 Узроци вибрација и утицај на машине и опрему                                                       | 36         |
| 4.9 Вибродијагностички параметри и норме                                                               | 38         |
| 4.9.1 DIN ISO стандарди у вибродијагностици                                                            | 40         |
| 4.9.2 Испитивање вибрационих параметара у току и након старта машине                                   | 42         |
| 5. СПЕЦИФИЧНИ ОТПОР МАТЕРИЈАЛА НА КОПАЊЕ                                                               | 43         |
| 6. АДАПТИВНИ НЕУРО-ФАЗИ СИСТЕМ ЗАКЉУЧИВАЊА                                                             | 46         |
| 7. МОДЕЛ ЗАВИСНОСТИ СПЕЦИФИЧНЕ ПОТРОШЊЕ ЕНЕРГИЈЕ И НИВ                                                 | <b>SOA</b> |
| ВИБРАЦИЈА ПОГОНА ЗА КОПАЊЕ РОТОРНОГ БАГЕРА                                                             | 51         |

| 7.1 Мерење похабаности резних елемената                                                                                         | 51            |
|---------------------------------------------------------------------------------------------------------------------------------|---------------|
| 7.3 Мерење амплитуде брзине вибрација на погону за копање                                                                       | 53            |
| 7.4 Зависност потрошње електричне енергије процеса копања и амплитуде (<br>вибрација погона за копање                           | 5рзине<br>53  |
| 8. ИЗВЕДЕНА МЕРЕЊА НА РОТОРНОМ БАГЕРУ SRs2000.32/5+VR                                                                           | 55            |
| 8.1 Резултати мерења специфичног отпора материјала на копање                                                                    | 58            |
| 8.1.1 Резултати мерења за случај нових резних елемената                                                                         | 58            |
| 8.1.2 Резултати мерења за случај похабаних резних елемената 25 %                                                                | 63            |
| 8.1.3 Резултати мерења за случај похабаних резних елемената 50 %                                                                | 68            |
| 8.1.4 Резултати мерења за случај похабаних резних елемената 75 %                                                                | 73            |
| 8.1.5 Резултати мерења за случај похабаних резних елемената 100 %                                                               | 78            |
| 8.2 Резултати мерења вибрација                                                                                                  | 83            |
| 8.2.1 Резултати мерења за случај нових резних елемената                                                                         | 84            |
| 8.2.2 Резултати мерења за случај похабаних резних елемената 25 %                                                                | 85            |
| 8.2.3 Резултати мерења за случај похабаних резних елемената 50 %                                                                | 88            |
| 8.2.4 Резултати мерења за случај похабаних резних елемената 75 %                                                                | 91            |
| 8.2.5 Резултати мерења за случај похабаних резних елемената 100 %                                                               | 92            |
| 9. ВЕРИФИКАЦИЈА МОДЕЛА ЗАВИСНОСТИ СПЕЦИФИЧНЕ ПОТРО                                                                              | ШЊЕ           |
| ЕЛЕКТРИЧНЕ ЕНЕРГИЈЕ И НИВОА ВИБРАЦИЈА ПОГОНА ЗА КОПАЊЕ                                                                          | 295           |
| 9.1 Компаративна анализа резултата мерења специфичне потрошње електричне ен и нивоа амплитуде брзине вибрација погона за копање | ергије<br>105 |
| 9.2 Препорука за коришћење DIN ISO 10 816-3 стандарда за мерење вибрација                                                       | 110           |
| 10. ANFIS МОДЕЛ ЗА ПРЕДИКЦИЈУ ПОТРОШЊЕ ЕЛЕКТРИЧНЕ ЕНЕРГІ<br>ПРОЦЕСУ КОПАЊА                                                      | ЛЈЕ У<br>113  |
| 10.1 Дефинисање улазних и излазних скупова података                                                                             | 113           |
| 10.2 Развој ANFIS модела                                                                                                        | 113           |
| 10.3 Индекс тачности                                                                                                            | 118           |
| 10.4 Резултати примене ANFIS модела                                                                                             | 119           |
| 10.5 Компаративна анализа измерене потрошње електричне енергије и преда<br>ANFIS модела                                         | икције<br>138 |
| 11. ЗАКЉУЧАК                                                                                                                    | 139           |
| ЛИТЕРАТУРА                                                                                                                      | 142           |
| СПИСАК ПРИЛОГА                                                                                                                  | I             |
| Прилог 1 – Формулар коришћен при мерењу струје на роторном багеру [91]                                                          | II            |
| Прилог 2 – Формулар коришћен при мерењу вибрација на роторном багеру                                                            | III           |
| прилог 5 – улазни подаци за ANF15 модел                                                                                         | IV<br>vv      |
| прилог 4 – гезултати Амгіз модела                                                                                               | λλ            |

#### Списак слика:

| Слика 1.1.        | Алгоритам истраживања                                                          | 5      |  |  |
|-------------------|--------------------------------------------------------------------------------|--------|--|--|
| Слика 3.1.        | Пресипна места на роторним багерима [6]                                        | 15     |  |  |
| Слика 3.2.        | Основне компоненте роторних багера [5]                                         | 16     |  |  |
| Слика 3.3.        | Приказ трапезних и лучних ведрица и изглед одрезака [5]                        |        |  |  |
| Слика 3.4.        | Изведбе ведрица: а – затворено дно; b – отворено дно са ланцима                |        |  |  |
| Слика 3.5.        | Конструкција радног органа роторних багера [5]                                 | 18     |  |  |
| Слика 3.6.        | Елементи роторног точка [5]                                                    |        |  |  |
| Слика 3.7.        | Оптерећење зуба у процесу копања [81]                                          | 19     |  |  |
| Слика 3.8.        | Зуб роторног багера SRs2000.32/5+VR                                            | 20     |  |  |
| Слика 3.9.        | Лијаграм промене температуре са временом [82]                                  | 21     |  |  |
| Слика 3.10.       | Микроструктура Č.3160 у гашеном стању $(a)$ и након отврдњавања $(b)$ [82]     | 22     |  |  |
| Слика 3.11.       | Располела тврлоће у површинском слоју [82]                                     | 22     |  |  |
| Слика 3.12.       | Наічешћи нелостаци зуба                                                        | $24^{$ |  |  |
| Слика 3.13.       | Фазе хабања зуба [85]                                                          | 25     |  |  |
| Спика 4-1         | Пафициали а станаци слобо на кратан а [86]                                     | 26     |  |  |
| Слика 4.1.        | дефинисање степени слоооде кретања [60]                                        | 20     |  |  |
| Слика 4.2.        | Једноставно хармонијско кретање [86]                                           | 21     |  |  |
| Слика 4.3.        | Зависност времена и померања – дефинисање периода и амплитуде [86], [89]       | 28     |  |  |
| Слика 4.4.        | Систем крутост-маса са пригушењем [86]                                         | 29     |  |  |
| Слика 4.5.        | Природа вибрација [86], [89]                                                   | 30     |  |  |
| Слика 4.6.        | Начини изражавања амплитуде [86]                                               | 31     |  |  |
| Слика 4.7.        | Дефинисање <i>RMS</i> [86]                                                     | 31     |  |  |
| Слика 4.8.        | Лефинисање сложених вибрација [86]                                             | 32     |  |  |
| Слика 4.9.        | Периолично хармонијско кретање [86]                                            | 32     |  |  |
| Слика 4.10.       | Помен времена у домен фреквенција: први нацин приказивања [86]                 | 34     |  |  |
| Спика 4 11        | Домен времена у домен фреквенција: приги нанин приказивања [00]                | 34     |  |  |
| Слика 1.11.       | Домен времена у домен фреквенција: други начин приказивања [00]                | 35     |  |  |
| Слика 4.12.       | Домен времена у домен фреквенција. Трепи начин приказивања [60]                | 25     |  |  |
| Слика 4.13.       | ГИПОВИ СИГНАЛА [00]                                                            | 33     |  |  |
| Слика 4.14.       | Основни разлози неуравнотежености [90]                                         | 30     |  |  |
| Слика 4.15.       | I рафички приказ зона квалитета [2], [88]                                      | 39     |  |  |
| Слика 4.16.       | мерне тачке на издвојеним лежајним и прируоничким ослонцима [2]                | 42     |  |  |
| Слика 5.1.        | Блок шема процеса копања [81]                                                  | 43     |  |  |
| Слика 5.2.        | Укупни отпор материјала на копање [39], [5]                                    | 43     |  |  |
| Слика 6.1.        | ANFIS слојеви [4]                                                              | 46     |  |  |
| Слика 6.2.        | ANFIS архитектура [99], [100], [94], [105]                                     | 48     |  |  |
| Слика 6.3.        | Хибридни алгоритам обуке ANFIS модела [100], [3]                               | 48     |  |  |
| Слика 7.1.        | Мере зуба и дефинисање степена похабаности                                     | 51     |  |  |
| $C_{\rm HHR}$ 7.2 | Развијен аналитички модел – алгоритам зависности похабаности резних елемената, | 51     |  |  |
| Слика 7.2.        | потрошње енергије и нивоа амплитуде вибрација погона за копање                 | 54     |  |  |
| Слика 8.1.        | Електронско снимање података на багеру SRs2000.32/5+VR [92]                    | 56     |  |  |
| Слика 8.2.        | Роторни точак багера SRs2000.32/5+VR у раду [37]                               | 56     |  |  |
| Слика 8.3.        | Блок у којем су вршена мерења [4], [92]                                        | 56     |  |  |
| Слика 8.4.        | Нивои похабаности резних елемената у току мерења                               | 57     |  |  |
| Слика 8.5.        | Струја коју доњи погон копања повлачи из мреже – нови резни елементи           | 58     |  |  |
| Слика 8.6.        | Струја коју горњи погон копања повлачи из мреже – нови резни елементи          | 58     |  |  |
| Слика 8.7.        | Струја коју доњи погон копања повлачи из мреже – похабаност 25 %               | 63     |  |  |
| Слика 8.8.        | Струја коју горњи погон копања повлачи из мреже – похабаност 25 %              | 63     |  |  |
| Слика 8.9.        | Струја коју доњи погон копања повлачи из мреже – похабаност 50 %               | 68     |  |  |
| Слика 8.10.       | Струја коју горњи погон копања повлачи из мреже – похабаност 50 %              | 68     |  |  |
|                   |                                                                                |        |  |  |

| Слика 8.11.           | Струја коју доњи погон копања повлачи из мреже – похабаност 75 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
| Слика 8.12.           | Струја коју горњи погон копања повлачи из мреже – похабаност 75 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73  |  |
| Слика 8.13.           | Струја коју доњи погон копања повлачи из мреже – похабаност 100 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 78  |  |
| Слика 8.14.           | Струја коју горњи погон копања повлачи из мреже – похабаност 100 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 78  |  |
| Слика 8.15.           | Референтни правци за мерење вибрација [92]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83  |  |
| G 0.16                | Измерене вибрације са новим зубима (мерење у лево и десно 0.25 [m] у H и V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |  |
| Слика 8.16.           | правцу – вредност амплитуде карактеристичне фреквенције на 1000 [min <sup>-1</sup> ]) [92]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 84  |  |
| 0 0 17                | Измерене вибрације са новим зубима (мерење у лево и десно 0,4 [m] у Н и V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 04  |  |
| Слика 8.17.           | правцу – вредност амплитуде карактеристичне фреквенције на 1000 [min <sup>-1</sup> ]) [92]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 84  |  |
| C 0.10                | Измерене вибрације са новим зубима (мерење у лево и десно 0,5 [m] у Н и V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 04  |  |
| Слика 8.18.           | правцу – вредност амплитуде карактеристичне фреквенције на 1000 [min <sup>-1</sup> ]) [92]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 84  |  |
| G 0.10                | Измерене вибрације за похабаност зуба 25 % (мерење у лево и десно 0,25 [m] у Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 05  |  |
| Слика 8.19.           | и V правцу – вредност амплитуде карактеристичне фреквенције на 1000 [min <sup>-1</sup> ])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85  |  |
| G 0.00                | Измерене вибрације за похабаност зуба 25 % (мерење у лево и десно 0,4 [m] у Н и                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.6 |  |
| Слика 8.20.           | V правцу – вредност амплитуде карактеристичне фреквенције на 1000 [min <sup>-1</sup> ])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 86  |  |
| G 0.01                | Измерене вибрације за похабаност зуба 25 % (мерење у лево и десно 0,5 [m] у Н и                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 07  |  |
| Слика 8.21.           | V правцу – вредност амплитуде карактеристичне фреквенције на 1000 [min <sup>-1</sup> ])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87  |  |
| ~ ~ ~ ~ ~             | Измерене вибрације за похабаност зуба 50 % (мерење у лево и десно 0.25 [m] у Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |
| Слика 8.22.           | и V правиу – врелност амплитуле карактеристичне фреквенције на 1000 [min <sup>-1</sup> ])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88  |  |
| ~ ~ ~ ~               | Измерене вибрације за похабаност зуба 50 % (мерење у лево и лесно 0.4 [m] у Н и                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~ ~ |  |
| Слика 8.23.           | V правиу – врелност амплитуле карактеристичне фреквенције на 1000 [min <sup>-1</sup> ])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 89  |  |
|                       | Измерене вибрације за похабаност зуба 50 % (мерење у лево и лесно 0.5 [m] у Н и                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |  |
| Слика 8.24.           | V правиу – врелност амплитуле карактеристичне фреквенције на 1000 [min <sup>-1</sup> ])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90  |  |
|                       | Измерене вибрације за похабаност зуба 75 % (мерење у лево и лесно 0.25 m] у Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |
| Слика 8.25            | и V правиу – вредност амплитуле карактеристичне фреквенције на 1000 [min <sup>-1</sup> ])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 91  |  |
| 0.201                 | [92]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1   |  |
|                       | Измерене вибрације за похабаност зуба 75 % (мерење у лево и лесно 0.4 [m] у Н и                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |  |
| Слика 8 26            | V marking – pre-information and introduction of the state of the st | 91  |  |
| Ciiiiku 0.20.         | [92]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 71  |  |
|                       | Измерене вибрације за похабаност зуба 75 % (мерење у лево и лесно 0.5 [m] у Н и                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |  |
| Спика 8 27            | V magniv – pre-uport annutry te kanakteriu cruute drek penine y sebo n decito 0,5 [m] y 11 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91  |  |
| CJIIIKa 0.27.         | [92]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 71  |  |
|                       | [72]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |  |
| Слика 8.28.           | и V правиу – вредност амплитуле карактеристичне фреквенције на 1000 $[min^{-1}]$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92  |  |
|                       | Измерене вибрације за похабаност зуба 100 % (мерење у цево и цесно 0.4 [m] у Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |
| Слика 8.29.           | и V правиу – вредност амплитуле карактеристицие фреквенције на $1000  [min^{-1}]$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93  |  |
|                       | Измерене вибрације за похабаност зуба 100 % (мерење у цево и цесно 0.4 [m] у Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |
| Слика 8.30.           | V In a pre-subject and $V$ is a non-additional system of the pre-spectrum of the pr | 94  |  |
|                       | и v правцу – вредност амплитуде карактеристичне фреквенције на 1000 [mm ])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |  |
| Слика 0 1             | Доказ креираног модела зависности похабаности резних елемената, специфичне                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 105 |  |
|                       | потрошње електричне енергије и нивоа амплитуде брзине вибрација                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 105 |  |
| Слика 9.2.            | Тренд специфичне потрошње електричне енергије у односу на стање зуба                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 106 |  |
| Слика 9.3.            | Предикција специфичне потрошње електричне енергије                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 107 |  |
| Слика 9.4.            | Разлика измерених и предвиђених вредности потрошње електричне енергије                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108 |  |
| Слика 9.5.            | Тренд нивоа амплитуде брзине вибрација у вертикалном правцу                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 108 |  |
| Слика 9.6.            | Предикција нивоа амплитуде брзине вибрација                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110 |  |
| Слика 9.7.            | Разлика измерених и предвиђених нивоа амплитуде брзине вибрација                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110 |  |
| Слика 9.8.            | Корекција амплитуде вибрација за различита стања резних елемената                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 112 |  |
| Слика 9.9.            | Корекција амплитуде за похабаност 25 % у односу на нове зубе                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112 |  |
| Слика 9.10.           | Корекција амплитуде за похабаност 50 % у односу на нове зубе                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 113 |  |
| Слика 9.11.           | Корекција амплитуде за похабаност 75 % у односу на нове зубе                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 113 |  |
| Слика 9.12.           | Корекција амплитуде за похабаност 100 % у односу на нове зубе                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 113 |  |
| Слига 10.1            | Enadulity united to pullitative designation of [111]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 114 |  |
| $C_{\rm IIIKa} 10.1.$ | трафизки приказ коришнених функција принадности [111]<br>Лијаграм тока ANEIS моледа [112] [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110 |  |
| CJINKA 10.2.          | дијаграм тока ли по модола [112], [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110 |  |

| Слика 10.3.  | Подаци за тренинг – $Q_{ost}$ , $I_{max}$ , $N_{max}$ ; $E_{max}$ .                     | 120 |
|--------------|-----------------------------------------------------------------------------------------|-----|
| Слика 10.4.  | Фази систем закључивања                                                                 | 120 |
| Слика 10.5.  | Грешка процеса тренирања и средња грешка ANF1 модела                                    | 121 |
| Слика 10.6.  | Грешка процеса тренирања и средња грешка ANF2 модела                                    | 121 |
| Слика 10.7.  | Грешка процеса тренирања и средња грешка ANF3 модела                                    | 121 |
| Слика 10.8.  | Грешка процеса тренирања и средња грешка ANF4 модела                                    | 122 |
| Слика 10.9.  | Грешка процеса тренирања и средња грешка ANF5 модела                                    | 122 |
| Слика 10.10. | Грешка процеса тренирања и средња грешка ANF6 модела                                    | 122 |
| Слика 10.11. | Грешка процеса тренирања и средња грешка ANF7 модела                                    | 123 |
| Слика 10.12. | Грешка процеса тренирања и средња грешка ANF8 модела                                    | 123 |
| Слика 10.13. | Грешка процеса тренирања и средња грешка ANF9 модела                                    | 123 |
| Слика 10.14. | ANFIS структура – варијанта са три и шест функција припадности по атрибуту              | 124 |
| Слика 10.15. | ANFIS структура – варијанта са осам функција припадности по атрибуту                    | 124 |
| Слика 10.16. | Функције припадности улазне променљиве <i>I<sub>max</sub></i> за моделе ANF1 и ANF2     | 125 |
| Слика 10.17. | Функције припадности улазне променљиве <i>I<sub>max</sub></i> за модел ANF3             | 125 |
| Слика 10.18. | Функције припадности улазне променљиве <i>I<sub>max</sub></i> за моделе ANF4 и ANF5     | 125 |
| Слика 10.19. | Функције припадности улазне променљиве <i>I<sub>max</sub></i> за модел ANF6             | 126 |
| Слика 10.20. | Функције припадности улазне променљиве <i>I<sub>max</sub></i> за моделе ANF7 и ANF8     | 126 |
| Слика 10.21. | Функције припадности улазне променљиве <i>I<sub>max</sub></i> за модел ANF9             | 126 |
| Слика 10.22. | Максимална специфична потрошња електричне енергије <i>E</i> <sub>max</sub> – ANF1 модел | 127 |
| Слика 10.23. | Максимална специфична потрошња електричне енергије <i>E</i> <sub>max</sub> – ANF2 модел | 127 |
| Слика 10.24. | Максимална специфична потрошња електричне енергије <i>E</i> <sub>max</sub> – ANF3 модел | 127 |
| Слика 10.25. | Максимална специфична потрошња електричне енергије <i>E</i> <sub>max</sub> – ANF4 модел | 128 |
| Слика 10.26. | Максимална специфична потрошња електричне енергије <i>E</i> <sub>max</sub> – ANF5 модел | 128 |
| Слика 10.27. | Максимална специфична потрошња електричне енергије <i>E</i> <sub>max</sub> – ANF6 модел | 128 |
| Слика 10.28. | Максимална специфична потрошња електричне енергије <i>E</i> <sub>max</sub> – ANF7 модел | 129 |
| Слика 10.29. | Максимална специфична потрошња електричне енергије <i>E</i> <sub>max</sub> – ANF8 модел | 129 |
| Слика 10.30. | Максимална специфична потрошња електричне енергије <i>E</i> <sub>max</sub> – ANF9 модел | 129 |
| Слика 10.31. | Предикција потрошње електричне енергије ANF1 модела – <b>тренинг скуп</b>               | 130 |
| Слика 10.32. | Предикција потрошње електричне енергије ANF1 модела – тест скуп                         | 130 |
| Слика 10.33. | Предикција потрошње електричне енергије ANF2 модела – <b>тренинг скуп</b>               | 131 |
| Слика 10.34. | Предикција потрошње електричне енергије ANF2 модела – тест скуп                         | 131 |
| Слика 10.35. | Предикција потрошње електричне енергије ANF3 модела – <b>тренинг скуп</b>               | 131 |
| Слика 10.36. | Предикција потрошње електричне енергије ANF3 модела – тест скуп                         | 132 |
| Слика 10.37. | Предикција потрошње електричне енергије ANF4 модела – <b>тренинг скуп</b>               | 132 |
| Слика 10.38. | Предикција потрошње електричне енергије ANF4 модела – тест скуп                         | 132 |
| Слика 10.39. | Предикција потрошње електричне енергије ANF5 модела – <b>тренинг скуп</b>               | 133 |
| Слика 10.40. | Предикција потрошње електричне енергије ANF5 модела – тест скуп                         | 133 |
| Слика 10.41. | Предикција потрошње електричне енергије ANF6 модела – <b>тренинг скуп</b>               | 133 |
| Слика 10.42. | Предикција потрошње електричне енергије ANF6 модела – тест скуп                         | 134 |
| Слика 10.43. | Предикција потрошње електричне енергије ANF/ модела – <b>тренинг скуп</b>               | 134 |
| Слика 10.44. | Предикција потрошње електричне енергије ANF / модела – тест скуп                        | 134 |
| Слика 10.45. | Предикција потрошње електричне енергије ANF8 модела – <b>тренинг скуп</b>               | 135 |
| Слика 10.46. | Предикција потрошње електричне енергије АNF8 модела – тесг скуп                         | 135 |
| Слика 10.47. | предикција потрошње електричне енергије АМРУ модела – тренинг скуп                      | 133 |
| Слика 10.48. | предикција потрошње електричне енергије АМРУ модела – тест скуп                         | 130 |
| Слика 10.49. | показательи кизе и мае – тренинг скуп                                                   | 15/ |
| Слика 10.50. | Показанстви $MAE - Teur скуп$                                                           | 13/ |
| Слика 10.51. | у поредни приказ показатеља <i>кијъе</i> за тренинг и тест скуп                         | 13/ |
| Слика 10.32. | у поредни приказ показательа к за тренинг и тест скуп                                   | 120 |
| Слика 10.33. | э поредни приказ показательа <i>МАГЕ</i> за тренинг и тест скуп                         | 130 |
|              |                                                                                         |     |

# Списак таблица:

| Таблица 3.1.                                 | Карактеристике челика за зубе на откривци [82] 2                                                                                                                                         |                |  |  |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|
| Таблица 4.1.<br>Таблица 4.2.<br>Таблица 4.3. | Преглед узрока и карактеристика вибрација механичких система [88]<br>Кључни елементи вибродијагностике [88]<br>Области квалитета према DIN ISO вибродијагностичким стандардима [2], [88] | 37<br>38<br>39 |  |  |
| Таблица 8.1.                                 | Основне техничке карактеристике багера SRs2000.32/5+VR [4], [92]                                                                                                                         | 55             |  |  |
| Таблица 8.2.                                 | Очитане вредности пикова струје – доњи погон копања, нови зуби                                                                                                                           | 59             |  |  |
| Гаолица 8.3.                                 | Очитане вредности пикова струје – горњи погон копања, нови зуои                                                                                                                          | 39             |  |  |
| Таблица 8.4.                                 | Специфични отпор материјала на копање за случај нових резних елемената,                                                                                                                  | 60             |  |  |
| Таблица 8.5.                                 | Специфични отпор материјала на копање за случај нових резних елемената,<br>горњи погон.                                                                                                  | 61             |  |  |
| Таблица 8.6.                                 | Збирна вредност специфичног отпора материјала на копање за цео погон, случај нових резних елемената                                                                                      | 62             |  |  |
| Таблица 8.7.                                 | Очитане вредности пикова струје – доњи погон, похабаност 25 %                                                                                                                            | 64             |  |  |
| Таблица 8.8.                                 | Очитане вредности пикова струје – горњи погон, похабаност 25 %                                                                                                                           | 64             |  |  |
| Таблица 8.9.                                 | Специфични отпор материјала на копање за случај похабаних резних елемената 25 % доњи погон                                                                                               | 65             |  |  |
| Таблица 8.10.                                | Специфични отпор материјала на копање за случај похабаних резних елемената 25 %, горњи погон                                                                                             | 66             |  |  |
| Таблица 8.11.                                | Збирна вредност специфичног отпора материјала на копање за цео погон,<br>случај похабаних резних елемената 25 %                                                                          | 67             |  |  |
| Таблица 8.12.                                | Очитане вредности пикова струје – доњи погон, похабаност 50 %                                                                                                                            | 69             |  |  |
| Таблица 8.13.                                | Очитане вредности пикова струје – горњи погон, похабаност 50 %                                                                                                                           | 69             |  |  |
| Таблица 8.14.                                | Специфични отпор материјала на копање за случај похабаних резних елемената 50 %, доњи погон                                                                                              | 70             |  |  |
| Таблица 8.15.                                | Специфични отпор материјала на копање за случај похабаних резних елемената 50 %, горњи погон                                                                                             | 71             |  |  |
| Таблица 8.16.                                | Збирна вредност специфичног отпора материјала на копање за цео погон,<br>случај похабаних резних елемената 50 %                                                                          | 72             |  |  |
| Таблица 8.17.                                | Очитане вредности пикова струје – доњи погон, похабаност 75 %                                                                                                                            | 74             |  |  |
| Таблица 8.18.                                | Очитане вредности пикова струје – горњи погон, похабаност 75 %                                                                                                                           | 74             |  |  |
| Таблица 8.19.                                | Специфични отпор материјала на копање за случај похабаних резних елемената 75 %, доњи погон                                                                                              | 75             |  |  |
| Таблица 8.20.                                | Специфични отпор материјала на копање за случај похабаних резних елемената 75 %, горњи погон                                                                                             | 76             |  |  |
| Таблица 8.21.                                | Збирна вредност специфичног отпора материјала на копање за цео погон, случај похабаних резних елемената 75 %                                                                             | 77             |  |  |
| Таблица 8.22.                                | Очитане вредности пикова струје – доњи погон, похабаност 100 %                                                                                                                           | 79             |  |  |
| Таблица 8.23.                                | Очитане вредности пикова струје – горњи погон, похабаност 100 %                                                                                                                          | 79             |  |  |
| Таблица 8.24.                                | Специфични отпор материјала на копање за случај похабаних резних елемената 100 %, доњи погон                                                                                             | 80             |  |  |
| Таблица 8.25.                                | Специфични отпор материјала на копање за случај похабаних резних елемената 100 %, горњи погон                                                                                            | 81             |  |  |
| Таблица 8.26.                                | Збирна вредност специфичног отпора материјала на копање за цео погон,<br>случај похабаних резних елемената 100 %                                                                         | 82             |  |  |
| Таблица 9.1.                                 | Резултати мерења потрошње енергије ( $h = 7$ [m]; $v_h = 21$ [m/min]) [92]                                                                                                               | 95             |  |  |
| Таблица 9.2.                                 | Упоредне вредности амплитуда на фреквенцији 16.67 [Hz] (1000 [min <sup>-1</sup> ])                                                                                                       | 96             |  |  |
| Таблица 9.3.                                 | Упоредни приказ односа амплитуде А и потрошње електричне енергије Е                                                                                                                      | 96             |  |  |
| Таблица 9.4.                                 | Амплитуда брзине вибрација, изрази (7.6) и (7.7), <i>s</i> = 0,25 [m], лево                                                                                                              | 96             |  |  |
| Таблица 9.5.                                 | Амплитуда брзине вибрација, изрази (7.6) и (7.7), $s = 0,25$ [m], десно                                                                                                                  | 97             |  |  |
| Таблица 9.6.                                 | Амплитуда брзине вибрација, изрази (7.6) и (7.7), <i>s</i> = 0,4 [m], лево                                                                                                               | 97             |  |  |

| Таблица 9.7.                  | Амплитуда брзине вибрација, изрази (7.6) и (7.7), <i>s</i> = 0,4 [m], десно                                                   | 97      |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------|
| Таблица 9.8.                  | Амплитуда брзине вибрација, изрази (7.6) и (7.7), <i>s</i> = 0,5 [m], лево                                                    | 97      |
| Таблица 9.9.                  | Амплитуда брзине вибрација, изрази (7.6) и (7.7), <i>s</i> = 0,5 [m], десно                                                   | 97      |
| Таблица 9.10.                 | Збирни однос похабаног 25 % и новог резног елемента                                                                           | 97      |
| Таблица 9.11.                 | Резултати мерења потрошње енергије $(h = 7 \text{ [m]}; v_b = 21 \text{ [m/min]})$                                            | 98      |
| Таблица 9.12.                 | Упоредне вредности амплитуда на фреквенцији 16,67 [Hz] (1000 [min <sup>-1</sup> ])                                            | 98      |
| Таблица 9.13.                 | Упоредни приказ односа амплитуде А и потрошње електричне енергије Е                                                           | 98      |
| Таблица 9.14.                 | Амплитуда брзине вибрација, изрази (7.6) и (7.7), $s = 0.25$ [m], лево                                                        | 99      |
| Таблица 9.15.                 | Амплитуда брзине вибрација, изрази (7.6) и (7.7), <i>s</i> = 0,25 [m], десно                                                  | 99      |
| Таблица 9.16.                 | Амплитуда брзине вибрација, изрази (7.6) и (7.7), <i>s</i> = 0,4 [m], лево                                                    | 99      |
| Таблица 9.17.                 | Амплитуда брзине вибрација, изрази (7.6) и (7.7), $s = 0,4$ [m], десно                                                        | 99      |
| Таблица 9.18.                 | Амплитуда брзине вибрација, изрази (7.6) и (7.7), <i>s</i> = 0,5 [m], лево                                                    | 99      |
| Таблица 9.19.                 | Амплитуда брзине вибрација, изрази (7.6) и (7.7), <i>s</i> = 0,5 [m], десно                                                   | 99      |
| Таблица 9.20.                 | Збирни однос похабаног 50 % и новог резног елемента.                                                                          | 100     |
| Таблица 9.21.                 | Резултати мерења потрошње енергије $(h = 7 \text{ [m]}; v_b = 21 \text{ [m/min]})$ [92]                                       | 100     |
| Таблица 9.22.                 | Упоредне вредности амплитуда на фреквенцији 16,67 [Hz] (1000 [min <sup>-1</sup> ])                                            | 100     |
| Таблица 9.23.                 | Упоредни приказ односа амплитуде А и потрошње електричне енергије Е                                                           | 101     |
| Таблица 9.24.                 | Амплитуда брзине вибрација, изрази (7.6) и (7.7), $s = 0.25$ [m], лево                                                        | 101     |
| Таблица 9.25.                 | Амплитуда брзине вибрација, изрази (7.6) и (7.7), <i>s</i> = 0,25 [m], десно                                                  | 101     |
| Таблица 9.26.                 | Амплитуда брзине вибрација, изрази (7.6) и (7.7), <i>s</i> = 0,4 [m], лево                                                    | 101     |
| Таблица 9.27.                 | Амплитуда брзине вибрација, изрази (7.6) и (7.7), <i>s</i> = 0,4 [m], десно                                                   | 101     |
| Таблица 9.28.                 | Амплитуда брзине вибрација, изрази (7.6) и (7.7), <i>s</i> = 0,5 [m], лево                                                    | 102     |
| Таблица 9.29.                 | Амплитуда брзине вибрација, изрази (7.6) и (7.7), <i>s</i> = 0,5 [m], десно                                                   | 102     |
| Таблица 9.30.                 | Збирни однос похабаног 75 % и новог резног елемента                                                                           | 102     |
| Таблица 9.31.                 | Резултати мерења потрошње енергије $(h = 7 \text{ [m]}; v_b = 21 \text{ [m/min]})$                                            | 102     |
| Таблица 9.32.                 | Упоредне вредности амплитуда на фреквенцији 16,67 [Hz] (1000 [min <sup>-1</sup> ])                                            | 103     |
| Таблица 9.33.                 | Упоредни приказ односа амплитуде А и потрошње електричне енергије Е                                                           | 103     |
| Таблица 9.34.                 | Амплитуда брзине вибрација, изрази (7.6) и (7.7), <i>s</i> = 0,25 [m], лево                                                   | 103     |
| Таблица 9.35.                 | Амплитуда брзине вибрација, изрази (7.6) и (7.7), <i>s</i> = 0,25 [m], десно                                                  | 103     |
| Таблица 9.36.                 | Амплитуда брзине вибрација, изрази (7.6) и (7.7), <i>s</i> = 0,4 [m], лево                                                    | 103     |
| Таблица 9.37.                 | Амплитуда брзине вибрација, изрази (7.6) и (7.7), <i>s</i> = 0,4 [m], десно                                                   | 104     |
| Таблица 9.38.                 | Амплитуда брзине вибрација, изрази (7.6) и (7.7), <i>s</i> = 0,5 [m], лево                                                    | 104     |
| Таблица 9.39.                 | Амплитуда брзине вибрација, изрази (7.6) и (7.7), <i>s</i> = 0,5 [m], десно                                                   | 104     |
| Таблица 9.40.                 | Збирни однос похабаног 100 % и новог резног елемента                                                                          | 104     |
| Таблица 9.41.                 | Потрошња електричне енергије – линеарни тренд                                                                                 | 106     |
| Таблица 9.42.                 | Потрошња електричне енергије – експоненцијални тренд                                                                          | 107     |
| Таблица 9.43.                 | Амплитуда вибрација на основу дефинисаног линеарног тренда                                                                    | 109     |
| Таблица 9.44.                 | Амплитуда вибрација на основу дефинисане полиномне регресије                                                                  | 109     |
| Тоблино 10.1                  | ANEIS NOTOTI Ballova dyukuwia populatiootu                                                                                    | 117     |
| Таблица 10.1.                 | АNTIS модел $1 - Bellova$ функција припадности.                                                                               | 117     |
| Таблица 10.2.                 | АNTIS модел 2 – Гроугласта функција принадности.                                                                              | 117     |
| Таблица 10.3.                 | Вредности грешака трешана и среди их грешака (ANE1 ANE6)                                                                      | 11/12/1 |
| Таблица 10.4.<br>Таблица 10.5 | Вредности грешака гренирања и средњих грешака (АНТТ-АНТО)<br>Вредности грешака тренирана и средн их грешака (АНТТ-АНТО).      | 124     |
| таблица 10.3.<br>Таблица 10.4 | Бредности прешака препирања и средњих прешака (АМГ/-АМГУ)                                                                     | 124     |
| Таблица 10.0.<br>Таблица 10.7 |                                                                                                                               | 120     |
| Таблица 10.7.<br>Таблица 10.8 | J лазни подаци у основни модел – измерено/АГАТАТА.<br>Резултати $MAPE = $ удаз у основни модел (измерена потронна $3/4$ NFIS) | 139     |
| таолица 10.0.                 |                                                                                                                               | 157     |

#### УВОДНА РАЗМАТРАЊА

# 1. УВОДНА РАЗМАТРАЊА

Континуална површинска експлоатација минералних сировина изводи се путем БТО система (багер-транспортер са гуменом траком-одлагач) и БТД (багер-транспортер са тракомдробилана/депонија) система [5]. Основна улога ових система је откопавање, транспорт и депоновање/одлагање угља или откривке. Примарну улогу у систему има роторни багер. Роторни багери представљају машине великог јединичног капацитета. Изложени су променљивим климатским и геолошким факторима [6]. Структура материјала који се откопава је различита.

Резни елементи представљају једине елементе багера у контакту са откопаваним материјалом. Зависно од његове врсте, хабање резних елемената може бити изражено у мањој или већој мери.

При откопавању откривке и међуслојне јаловине у материјала се могу наћи компоненте које изазивају хабање резних елемената. Хабање утиче на ефикасност рада роторних багера, од чега је најважније истаћи:

- повећану потрошњу електричне енергије; и
- више нивое амплитуде вибрација.

Синтеза потрошње електричне енергије, амплитуде вибрација и похабаности резних елемената представља предмет разматрања докторске дисертације. Циљ је креирање модела који дефинише корелациону везу између потрошње енергије и амплитуде вибрација, зависно од степена похабаности. За развој модела примењује се Ватметарска метода [1], којом се израчунава потрошња електричне енергије процеса копања и једначине теорије осцилација за дефинисање нивоа амплитуде.

Процес верификације модела се спроводио на роторном багеру SRs2000.32/5+VR који ради на површинском копу Тамнава–Западно поље у оквиру I ВТО система. Мерења су обављена за следећа стања резних елемената:

- нови резни елементи;
- похабани резни елементи 25 %;
- похабани резни елементи 50 %;
- похабани резни елементи 75 %; и
- похабани резни елементи 100 %.

Истовремено је мерена јачина струје процеса копања и амплитуда вибрација на улазном пару вратила редуктора. Фреквенција побуде је дефинисана бројем обртаја вратила електромотора. Постављени услови су исти при сваком мерењу. На овај начин се омогућава компаративна анализа утицаја похабаности резних елемената на разматране показатеља рада роторног багера.

Хибридни карактер модела остварен је применом адаптивног неуро-фази система закључивања (*eng. Adaptive neuro-fuzzy inference system* – ANFIS) [3], [4] развијеног коришћењем програмског пакета MATLAB [7]. ANFIS [3], [4] модел има емпиријски карактер заснован на улазним подацима добијеним мерењем. Фази логика представља битан сегмент модела због структуре података у којима доминира хетерогеност, некохерентност и нејасност, док неуронске мреже пружају могућност предикције.

ANFIS [3], [4] омогућава добијање нових улазних података без директних мерења. Подаци могу да омогуће итеративни процес верификације модела зависности похабаности резних елемената, потрошње електричне енергије и нивоа амплитуде погона за копање.

#### 1.1 Предмет и циљ истраживања

Предмет истраживања представља технолошки процес копања роторног багера SRs2000.32/5+VR. Са апсекта технолошких могућности, овај роторни багер представља једну од најзначајних откопних машина у Електропривреди Србије. За потребе израде докторске дисертације врше се *in situ* мерења за различита стања резних елемената.

Основни циљ истраживања је креирање аналитичког модела који дефинише међусобну зависност потрошње електричне енергије, амплитуде вибрација и похабаности резних елемената. Такође, дата методологија има корективни утицај на коришћење стандарда DIN ISO 10816–3 [2], што се може сматрати јединственим приступом у пракси. Методологија се заснива на две врсте мерења.

Мерењем струје за процес копања одређује се потрошња електричне енергије. Истовремено се мере вибрације на улазном пару вратила редуктора. Предуслов за мерење представља дефинисање микротехнолошких параметара откопаваног блока:

- висине подетаже;
- дебљине реза (наступа багера);
- брзине кружног кретања; и
- угаони положај стреле роторног точка.

Вибрације су мерене у три референтна правца: аксијалном, хоризонталном и вертикалном. Амплитуда се бележи у тренутку када се стрела роторног тачка налази у обртној оси.

Мерење јачине струје и вибрација се изводи са променом три дебљине реза: 0,25 [m], 0,40 [m] и 0,50 [m] и истом брзином кружног кретања (70 % од максималне брзине). Циљ је могућност поређења резултата у односу на степен похабаности резних елемената.

Откопавање блока се најчешће изводи дефинисаним дебљинама реза и брзинама кружног кретања. Корекција параметара се врши при откопавању материјала са већим интензитетом отпора на копање.

Степен похабаности је утврђен ручним мерним алатом. Називна мера зуба која одговара стању потпуне похабаности је 100 [mm]. Мера новог зуба износи 200 [mm]. Степен похабаности 25 %, 50 % и 75 % дефинише димензије: 175 [mm], 150 [mm] и 125 [mm].

Потрошња електричне енергије се представља као kWh по m<sup>3</sup> откопаног материјала. Производња роторних багера износи више милиона m<sup>3</sup> откривке на годишњем нивоу. У основи, мале процентуалне разлике потрошње енергије за стање новог и потпуно похабаног зуба, имају велики значај са аспекта уштеде енергије у дужем периоду.

Стандард DIN ISO 10 816–3 [2] се примењује за мерење вибрација на погонима великих снага. Погонска група се, према нивоу амплитуде сврстава у групе од А–D (таблица 4.3.). Дефинисање утицаја похабаности резних елемената на вредност амплитуде вибрација представља примарни задатак.

Рад погона у дужем временском периоду са недозвољеним нивоом амплитуде (групе C, D) повећава ризик од настанка већих последица по рад машине. Правовременом заменом резних елемената проблем се отклања.

# 1.2 Научне хипотезе истраживања

Истраживање које ће бити обављено кроз израду докторске дисертације заснива се на неколико полазних поставки и ставова које треба доказати:

- већи степен похабаности резних елемената роторног багера генерише већу потрошњу електричне енергије и више нивое амплитуде вибрација (анализирани феномени);
- дати феномени се представљају преко модела извршеног рада (енергије) у радном процесу. Роторни багери имају милионску производњу (откривке или корисне минералне сировине), па се развојем одговарајућег аналитичког модела зависности специфичне потрошње електричне енергије и амплитуде вибрација ствара простор за знатне енергетске уштеде;
- похабаност резних елемената утиче на тренд потрошње електричне енергије и амплитуде вибрација са потенцијалном променом, линеарног у експоненцијални или неки други тренд;
- стање резних елемената одређује групу вибрација у коју се погон класификује према DIN ISO 10816–3 [2] стандарду. Полазна хипотеза је да се погон из "више групе" вредности амплитуде вибрација (С,D група) може превести у "нижу" (А,В група) благовременом заменом резних елемената; и
- примена ANFISA омогућава одређивање потрошње електричне енергије без извођења нових теренских мерења.

#### 1.3 Научне методе истраживања

У докторској дисертацији ће бити коришћене следеће научне методе:

- статистичка обрада резултата мерења, анализа и адаптација дијаграма јачине струје погона за копање (подаци преузети из диспечерског центра површинског копа) идентификација улазних параметара;
- Ватметарска метода [1] за одређивање специфичне потрошње електричне енергије (директно мерење параметара струје за погон роторног точка);
- вибродијагностичка метода за анализу нивоа вибрација (амплитуда брзине), користећи основне постулате из теорије осцилација;
- метода регресије за дефинисање међусобне зависности похабаности резних елемената, специфичне потрошње електричне енергије и нивоа амплитуде вибрација; и
- Адаптивни неуро-фази модел за предикцију потрошње електричне енергије.

#### 1.4 Научни допринос дисертације

У докторској дисертацији је представљен нови методолошки приступ, где се први пут на роторним багерима дефинише међусобна зависност између измерених величина – потрошње електричне енергије и амплитуде брзине вибрација у односу на стање резних елемената. Научни допринос докторске дисертације је у следећим научним областима:

• *системске науке* – дефинисање процедура при мерењу похабаности резних елемената (корекција укупног угла клина/зуба, угла резања, леђне и грудне површине, итд.), јачине струје и вибрација погона за копање;

# УВОДНА РАЗМАТРАЊА

- *техничка дијагностика* утврђивање стања и понашања погонских група роторног багера и његове носеће конструкције; антиципација стања система и давање прогнозе о будућем раду; периодичност спровођења мерења у зависности од степена значајности групе градње багера; давање препоруке да се сходно степену похабаности резних елемената са високим нивоом тачности може утврдити потрошња енергије и ниво амплитуде;
- вештачка интелигенција дефинисање оптималног ANFIS [3], [4] модела за предикцију потрошње електричне енергије у процесу копања; и
- одржавање техничких система повећање ефективности и сигурности рада роторних багера применом дијагностичких метода – идентификација оптималног времена рада резних елемената – интервал линеарног тренда потрошње енергије и нивоа амплитуде вибрација; дефинисање концепта управљања и одржавања рударском механизацијом.

#### 1.5 Структура дисертације са кратким прегледом поглавља

Докторска дисертација садржи 11 целина које прате логичан след дефинисан кроз предмет и циљеве истраживања, односно, полазне хипотезе.

Прво поглавље обухвата уводна разматрања, предмет и циљ истраживања, научне хипотезе истраживања, научне методе и допринос, са освртом на структуру дисертације.

Друго поглавље садржи преглед литературе, усмерене ка системском приступу анализи радних перформанси техничких система применом модела вештачке интелигенције, резним елементима и процесу хабања резних елемената, мерењима струје и вибрација на роторним багерима и другим погонима великих снага, динамици и интегритету конструкције роторних багера и примени DIN ISO 10 816–3 [2] стандарда при мерењу вибрација.

**Треће поглавље** се односи на роторне багере, њихову конструкцију и радни орган. Даље су дефинисани резни елементи, поступци израде, примењени материјали и процес хабања.

**Четврто поглавље** дефинише појам вибрација и основних параметара, дефинисање и мерење амплитуде, енергију и снагу, природне фреквенције и резонанцију, анализу фреквенције, узроке вибрација и вибродијагностичке параметре и норме при мерењу вибрација. Посебно је обрађен DIN ISO 10 816–3 [2] стандард, са утврђеним зонама квалитета и дефинисаним мерним местима.

Пето поглавље уводи појам специфични отпор материјала на копање, са алгоритмом Ватметарске методе, на основу које се израчунава специфична потрошња електричне енергије процеса копања.

У оквиру **шестог поглавља** обрађен је Адаптивни неуро-фази систем закључивања (ANFIS) [3], [4]. Дефинисани су слојеви ANFIS [3], [4] модела, фази правила и архитектура мреже, процес тренирања и процена грешке.

Седмо поглавље интегрише теоријске поставке процеса хабања резних елемената, анализе вибрације, специфичне потрошње електричне енергије и адаптивног неуро-фази система закључивања у нумерички модел који дефинише зависност анализираних физичких величина.

**Осмо поглавље** представља студију случаја којом је тестиран модел. Описана је процедура мерења струје и вибрација погона за копање роторног багера SRs2000.32/5+VR и приказани резултати који чине улазне податке за верификацију модела и компаративну анализу.

У деветом поглављу извршена је верификација модела, компаративна анализа резултата и дата препорука за коришћење DIN ISO 10 816–3 [2] стандарда при мерењу вибрација. Посебно је разматран утицај похабаности резних елемената на нивое амплитуде брзине и утврђене групе у којима се погон класификује, сходно измереним вредности.

# УВОДНА РАЗМАТРАЊА

Десето поглавље обухвата резултате примене ANFIS [3], [4] модела, који за циљ има добијање нових улазних података (резултата мерење) на основу којих се може поново извршити тестирање модела и дефинисати степен сагласности са експерименталним подацима. Креирано је девет парцијалних модела. Провера перформанси извршена је применом показатеља *RMSE*, *MAE* [9], *R* и *MAPE* [7].

**Једанаесто поглавље** даје закључна разматрања и правце даљег истраживања. Након закључних разматрања, наведен је списак коришћене литературе и прилог дисертације садржан од формулара за мерење струје и вибрација, улазних података за ANFIS [3], [4] модел и резултата предикције.



Слика 1.1. Алгоритам истраживања

У наставку је дат списак релевантне литературе, подељене у следеће области:

- системски приступ анализи радних перформанси техничких система применом модела вештачке интелигенције;
- резни елементи и процес хабања резних елемената;
- мерење струје и вибрација на роторним багерима и другим погонима великих снага;
- динамика и интегритет конструкције роторних багера; и
- примена стандарда DIN ISO 10 816-3 [2] при мерењу вибрација.

# 2.1 Системски приступ анализи радних перформанси техничких система применом модела вештачке интелигенције

Đenadić и остали [10] креирали су модел за одређивање расположивости машина помоћне механизације (студија случаја – булдозери). Модел је заснован на примени фази логике и AHP [11] методе (*eng. Analytic Hierarchy Process*). Парцијални индикатори који утичу на расположивост (поузданост, погодност одржавања и подршка одржавању) дефинисани су експертским оцењивањем. Анализом су обухваћене машине које се налазе у гарантном периоду (две године рада) и машине пред расходовањем (седам година рада). Модел је верификован компаративном анализом са класичним математичким приступом за одређивање расположивости.

Ðenadić и остали [12], [6] креирали су хибридни модел за оцену ризика који је базиран на примени фази логике и две методе вишекритеријумског одлучивања AHP [11] и TOPSIS [13] (*eng. Technique for Order of Preference by Similarity to Ideal Solution*). AHP је коришћен за дефинисање међусобног односа парцијалних индикатора, док је улога TOPSIS методе смањење расипања излазних резултата. Верификација модела извршена је на роторном багеру SRs2000.32/5+VR.

Tanasijević [14] је у докторској дисертацији креирао модел за одређивање сигурности фукционисања механичких компоненти роторног багера. Модел је заснован на теорији фази логике. Представља синтезу поузданости, погодности одржавања, логистичке подршке одржавању, конструкцијских и логистичких карактеристика техничког система. Модел комбинује квалитативне показатеље рада засноване на експертској оцени и квантитативне показатеље. Модел је применљив и код осталих техничких система.

Tanasijević и остали [15] развили су модел сигурности функционисања техничког система који се заснива на парцијалним индикаторима поузданост, погодност одржавања и логистичка подршке одржавању. За одређивање сигурности функционисана коришћена је max-min композиција.

Tanasijević и остали [16] приказали су могућност синтезне анализе сигурности функционисања применом теорије фази скупова. Бенефит оваквог приступа је анализа података који се односе на радне перформансе рударских машина. Студијом случаја обухваћен је роторни багер, као машина значајне инвестиционе вредности и остварених радних учинака. Модел је применљив и код осталих техничких система.

Gomilanović и остали [3] креирали су модел за израчунавање фази оцена парцијалних индикатора расположивости континуалних система површинске експлоатације. Модел је заснован на примени ANFIS [3], [4] методологије.

Улазни подаци у модел представљају реалне податке прикупљене током досадашњег рада система. Расположивост се одређује на бази експертских оцена у одређеном временском интервалу. Применом статистичких показатеља *RMSE* и *MAE* [9] утврђен је оптималан предиктивни модел заснован на фазификацији улазних променљивих Гаусовом функцијом припадности.

Gomilanović и остали [17] развили су модел за израчунавање расположивости континуалних система површинске експлоатације применом теорије фази логике. Модел представља синтезу индикатора расположивости (поузданост и погодност одржавања). Интеграција наведених индикатора изведена је композицијама max-min и min-max.

Petrović и остали [18] су извршили процену ризика отказа елемената рударских машина применом теорије фази логике. Парцијални индикатори ризика представљени су у RPN [19] облику, али исказани на лингвистички начин. Студија случаја обухвата транспортере са гуменом траком [6]. Ризик је процењен са два аспекта: одређивањем RPN [19] и коришћењем фази логике.

Wang и остали [20] предлажу модел за анализу ризика техничких система базиран на теорији фази логике. Структура система се декомпонује на хијерархијске нивое. Анализа отказа се разматра преко следећих параметара: вероватноћа појаве отказа, озбиљност и могућност детекције [6]. Субјективност при оцени ризика отклоњена је применом EG методе (*eng. Evidential Reasoning*).

Bowles & Peláez [21] имплементирали су фази логику у FMECA методу [22] (*eng. Failure Mode, Effects & Criticality Analysis*) за процену ризика. Парцијални индикатори ризика (вероватноћа појаве отказа, озбиљност и могућност детекције) функцијом припадности се пресликавају у фази скупове [6]. Интеграција је извршена применом min-max композиције. Процесом дефазификације одређене су нумеричке вредности ризика.

Bevilacqua и остали [23] предлажу комбинацију FMECA [22] и симулације Monte Carlo [24] за процену ризика. Одређивање RPN [19] (*eng. The Risk Priority Number*) унапређено је разматрањем већег броја парцијалних индикатора ризика [6]. Узети су у обзир радни услови, трошкови одржавања, учесталост појаве отказа, значај машине, безбедност и приступ месту отказа [6].

Wang и остали [25] су у оквиру свог истраживања предложили фази FMEA [26] методу којом се омогућава лингвистички начин процене парцијалних индикатора ризика. Фази лингвистичке променљиве се користе за анализу парцијалних индикатора. Модел узима у обзир релативни значај узмеђу парцијалних индикатора [6]. Фази RPN [19] је представљен пондером геометријске средине фази оцена парцијалних индикатора. Ранг је одређен дефазификацијом методом *centroid* [6].

Balaraju и остали [27] истичу да је императив повећање продуктивности рударске индустрије са циљем остваривања планиране производње. Примењене машине су склоне отказима елемената. Класичан приступ процене ризика FMEA [26] методом има низ недостатака. Аутори предлажу комбинацију фази логике и FMEA [26] методе. Студија случаја се односи на механизацију у подземној експлоатацији. Дефинисано је 16 потенцијалних ризика [6], са највећом вредношћу на електро систему.

#### 2.2 Резни елементи и процес хабања резних елемената

Virag & Szirbik [28] представили су нови дизајн резних елемената багера ведричара. Анализа резних елемената је извршена применом методе коначних елемената, са дефинисаним линеарним повећањем бочне компоненте отпора на копање. Симулацијом је добијена расподела напона и померање карактеристичних тачака. Резултати показују да се максимални напони смањују са повећањем бочне силе.

Golubović и остали [29] дефинисали су концепт кашике и резних елемената роторних багера. Спроведено истраживање је засновано на одређивању силе копања у односу на механичке карактеристике откопаваног материјала, нови дизајн резне ивице кашике, брзине резања и вертикалних вибрација погона роторног точка. Сила копања у првом реду зависи од специфичног отпора материјала на копање и дужине резне ивице. Динамички модел роторног багера у вертикалној равни омогућио је дефинисање функције промене дужине резне ивице у времену. Бенефити оваквог приступа су побољшање продуктивности, енергетске ефикасности и поузданости система.

Alabdullah и остали [30] извршили су мерење профила резне ивице алата са циљем добијања одзива геометрије резне ивице са аспекта хабања у односу на дефинисане параметре резања. Урађено је осам проба, са променом две брзине резања, два корака и две дубине резања. За преглед резних ивица коришћен је скенирајући електронски микроскоп. Резултати су показали присуство различитих типова хабања на грудој и бочним странама алата. Адхезионо хабање представља формирање надограђене ивице, док абразивно хабање представља трошење бокова. Оптималан век трајања алата, дефинисан је према минималној дужини и дубини хабања.

Chuangwen и остали [31] су снимали сигнале силе резања, убрзање вибрација и дубину хабања на бочној страни резног алата. Истраживање је обухватало посматрање морфологије хабања алата коришћењем скенирајућег електронског микроскопа и дистрибуције површинских елемената на оштећеним алатима, анализом енергетског спектра. Дефинисање механизама хабања алата, омогућило је даље проучавање утицаја параметара резања и хабања алата на силу резања и вибрације.

Резултати су показали да се оксидационо, адхезионо и дифузионо хабање углавном појављују на грудној површини алата, док се на бочној површини јавља адхезивно и дифузионо хабање. Правилно повећање брзине и дубине резања, може побољшати продуктивност и контролисати силу резања и вибрације.

Brinas и остали [32] указују да у процесу откопавања материјала роторним багерима, на процес резања утичу силе супростављене радном органу и резном алату. Одређују избор машине, њене параметре и начин рада. Студије рађене за потребе утврђивања узрока механичких кварова багера, показале су да систем копања и утовара узрокује највећу стопу отказа, око 32 % од свих забележених механичких кварова.

Shi и остали [33] наводе да тачна процена морфологије хабања алата пружа прилику да се истражи утицај хабања алата на перформансе резања, што позитивно утиче и на трошкове производње. У раду је развијена методологија за симулацију стварног формирања струготине и развоја хабања кроз 3D модел коначних елемената.

Како би се побољшала тачност добијених резултата, разматран је утицај похабаности алата, расподеле напона и температуре на брзину хабања. Експериментални и симулациони резултати показује висок ниво сагласности што доказује тачност предложеног модела у предвиђању хабања алата.

Kritski Dmitri и остали [34] извршили су модификацију једначина за праћење абразивног хабања зуба, разјаснивши константе у једначинама. Појашњење је направљено на основу експерименталних података уз коришћење доступне литературе и препорука стручњака. Анализирани су реални подаци о степену хабања.

Yoon и остали [35] су развили приступ за уштеду енергије код процеса троосног глодања који се састоји у праћењу и процени потрошње енергије. Од укупне потрошње енергије чак 68 % одлази на снагу потребну за уклањање материјала и она се повећава трошењем алата са бочне стране. Разлика између снаге у условима јаког и благог хабања емпиријски је моделирана коришћењем методологије површинске реакције.

Meena & Mansori [36] истраживали су утицај услова резања на морфологију и површинску храпавост. Експериментални резултати показали су да веће брзине резања доводе до знатних механичких оптерећења резне ивице алата, што резултира вишим специфичним вредностима силе резања.

# 2.3 Мерење струје на роторним багерима и другим погонима великих снага

Miletić и остали [37] вршили су мерење специфичне потрошње електричне енергије погона за копање и амплитуде брзине вибрација у радном технолошком процесу роторног багера SRs2000.32/5+VR, са циљем утврђивања утицаја стања резних елемената на рад погона. Резултати су показали да са порастом похабаности, расте специфична потрошња електричне енергије и амплитуда брзине вибрација.

Miletić и остали [4] развили су модел процене понашања погона за копање роторног багера SRs2000.32/5+VR са аспекта специфичне потрошње електричне енергије и нивоа амплитуде брзине вибрација у односу на похабаност резних елемената. Рад је заснован на примени ANFIS [3], [4] модела, применом вештачких неуронских мрежа и фази логике. Резултати показују да је са порастом похабаности резних елемената присутан тренд раста специфичне потрошње електричне енергије и амплитуде брзине вибрација, што неповољно утиче на рад погона за копање.

Јакоvljević и остали [38] пратили су утицај односа ширине према дебљини одреска на специфични отпор материјала копања на копање. Мерења су извршена на багеру SRs2000.32/5+VR на површинском копу Тамнава–Западно поље, за две висине одреска; h = 6,3 [m] и h = 2,8 [m]. Максимална вредност специфичног отпора на копање за обе висине одреска била је за однос s/b = 1,3. За висину одреска h = 2,8 [m] највећа вредност специфичног отпора на копање је за однос s/b = 1,3; док је за висину одреска h = 6,3 [m] највећа вредност специфичног отпора на копање је за однос s/b = 1,3; док је за висину одреска h = 6,3 [m] највећа вредност специфичног отпора на копање је за однос s/b = 1,3; док је за висину одреска h = 6,3 [m]

Воšković [39] је у докторској дисертацији за дефинисане микротехнолошке параметре блока дошао до закључка да су ангажована снага (струја) за процес копања и потрошња електричне енергије веће при откопавању хоризонталним у односу на вертикалне резове. Убрзање вибрација је такође веће у свим правцима и неповољно утиче на структуру багера. Побуда изазвана хоризонталним резом је израженија и неповољнија од побуде изазване вертикалним резом. Код појединих мерења са вертикалним резом појављују се већа убрзања само у бочном правцу. Разлог томе су лоше пројектовани резни елементи који материјал откопавају бочном страном зуба.

Brinas и остали [40] предлажу модел за прорачун снаге мотора погона за копање роторног багера који је заснован на рачунарском моделирању. Метода се базира на дефинисању запремине откопаног материјала за један пролаз стреле роторног точка, времена потребног за пролаз и геометрије блока који се откопава.

Други део обухвата утврђивање специфичне потрошње електричне енергије у процесу копања, која је одређена у лабораторијским условима, на узорку материјала са анализираног површинског копа. Недостатак оваквог приступа је што не узима у обзир похабаност резних елемената роторног багера.

András и остали [41] развили су графо-нумеричку методу за одређивање снаге за процес копања роторних багера. Метода се заснива на моделирању параметара одреска, како би се смањила потрошња електричне енергије, уз повећање количине откопане масе, истовремено користећи минималну снагу за процес копања.

Li & Yuan [42] изложили су нови приступ процене потрошње електричне енергије којим се врши оптимизација процеса машинске обраде. Представљен је нумерички модел који процењује потрошњу енергије процеса обраде на основу снаге вретена и брзине уклањања материјала. Валидација модела је извршена експерименталним подацима.

Zhou и остали [43] разматрали су значај енергетске ефикасности алатних система као предуслова за уштеду енергије у производњи. Обавили су детаљан преглед литературе, након чега је истакнуто да се потрошња електричне енергије односи на мапирање односа потрошње енергије и параметара обраде, што одражава енергетску ефикасност машина из перспективе ефикасног улаза и излаза. Тачност модела тренутне потрошње електричне енергије може се побољшати увођењем корелацијске анализе машинских алата, делова и стања обраде.

Carvalho и остали [44] развили су методологију која је смањила време обраде лица блока мотора са унутрашњим сагоревањем. Поступак утрђивања параметара обраде заснивао се на минимизирању потрошње електричне енергије и вибрација резног алата, узимајући у обзир путању и дубину резања алата. Имплементирана нова методологија је драстично продужила животни век резног алата, што је додатни допринос развијене методологије.

Рорезси и остали [45] развили су графо-аналитичку методу за одређивање снаге мотора погона за копање роторног багера. Виртуелни модел је креиран у програмском пакету Solidworks [46]. Предност примене виртуелних модела за анализу рада компоненти роторних багера је позитиван утицај на специфичну потрошњу електричне енергије, повећање производње и утовара материјала.

Ladányi & Sümegi [47] су анализирали потрошњу електричне енергије погона за копање роторног багера. Мерења са новим кашикама, обликом резних елемената и обновљеним резним ивицама наваривањем, уз употребу материјала отпорног на хабање, доводе до мање потрошње електричне енергије у процесу копања.

Не и остали [48] развили су модел за предикцију потрошње енергије механичких процеса који је заснован на емпиријским моделима и компјутерски потпомогнутој производњи [49] (*eng. Computer Aided Manufacturing*). Извори потрошње енергије подељени су на енергију кретања помоћних уређаја и енергију унутрашњих кретања. Резултати показују да је предложени модел ефикасан у предвиђању потрошње енергије механичких процеса са високим нивоом тачности.

Не и остали [50] истичу значај потрошње енергије у процесима машинске обраде. У раду је дефинисана корелација између нумерички управљаних кодова и компоненти машине алатке које троше енергију. Свака компонента се процењује узимањем у обзир њених техничких карактеристика и параметара преузетих из нумеричких контролних кодова. Развијен је модел за процену потрошње енергије рачунањем укупне потрошње енергије компоненти преко NC [51] (*eng. Numerical Control*) програма.

#### 2.4 Мерење вибрација на роторним багерима и другим погонима великих снага

Chinchusak & Pannawan [52] доказали су да се са *повећањем амплитуде вибрација, повећава и потрошња електричне енергије.* Почетна хипотеза кроз развијену једначину у потпуности одговара експерименталним истраживањима са великим нивоом поверења.

Atmaca A. & Atmaca N. [53] су у оквиру свог истраживања пратили кретање вибрација на моторима млина у индустрији цемента у зависности од брзине пуњена куглица, садржаја влаге и величине сировине за пуњење. Резултат истраживања указује на чињеницу да је *величина вибрација у директној вези са потрошњом енергије*. Предузимање одговарајућих активности (смањење величине сировине и садржаја влаге) генерисало је нижи ниво вибрација за 12 %, а самим тим и потрошње енергије за 2,16 %, у односу на вредности пре спроведених корективних мера, што је донело *уштеду енергије* по *тони произведене сировине*.

Elkhatib [54] је развио методологију за израчунавање *изгубљене енергије услед вибрација*. Извршено је поређење са стварно измереним губицима енергије. Из овог поређења се предлаже рационална методологија за предвиђање губитака енергије за вибрационе машине.

Zuber и остали [55] су истакли да се развојем информационих технологија створио простор за примену тзв. удаљеног надгледање стања опреме. Аутори су у раду изнели читав низ предности овог приступа које се заснива на мерењима оптерећења и вибрација.

Czmochowski и остали [56] су извршили анализу вибрација издувног вентилатора у блоку електране. Током експлоатације вентилатора уочене су прекомерне вибрације које су онемогућавале правилан рад. Да би се идентификовали узроци прекомерних вибрација, извршени су FEM [57] (*eng. Finite Element Method*) прорачуни вибрација канала за димне гасове, склопа вратила и мерења на објекту истраживања.

На основу анализе вибрација, уочена је појава резонантних вибрација канала за димне гасове и склопа вратила. Прорачуни извршени помоћу ласерског виброметра потврдили су појаву вибрација са фреквенцијама сличним фреквенцији изазваној кретањем ротора издувног вентилатора. Резултати су допринели модификацији склопа вратила и додатног укрућења зидова усисних и потисних канала димних гасова.

Więckowski и остали [58] приказују поступак мерења вибрација и анализу добијених података који се акумулирају у кабину руковаоца роторног багера. У првом делу, дати су подаци о избору и локацији мерних места. Пример се односи на роторни багер SchRs1200, који је ангажован на површинском копу у Пољској. Услови радне средине дефинисани су у описима мерних серија. Добијени подаци се приказују на два начина. Први показује временске таласне облике за сваки мерни канал. Други представља спектре FFT [59] (*eng. Fast Fourier Transform*) након филтрирања сигнала. Добијени подаци се користе за развој алгоритма за контролу вибрација.

Więckowski и остали [60] су приказали алгоритам за идентификацију и контролу вибрација кабионе руковаоца роторним точком. Аутори предлажу полуактиван систем пригушења вибрација који се заснива на магнето-реолошким пригушивачима и на наменском алгоритму контроле учења (ILC) [61] (eng. Iterative Learning Control).

Ghazali & Rahiman [62] наводе да анализа вибрација представља ефикасну методу за праћење стања и перформанси машине јер садржи информације које се односе на извор (узрок) отказа и његову озбиљност. Правовремена реакција радника на одржавању може спречити појаву неравнотеже, хабања и других оштећења елемената.

У раду је дат преглед најсавременијих метода мерења и анализе вибрација, са освртом на предности и недостатке приказаних метода, као и технике за препознавање грешака применом вештачке интелигенције.

Vishwakarma [63] и остали истичу анализу вибрација као ефикасну методу за праћење стања ротационих машина. Технике издвајања сигнала вибрација имају битну улогу у дијагностици ротирајућих машина. Кроз рад је дат преглед најчешће примењених метода издвајања вибрационих карактеристика примењених на различите ротационе машине.

Graja и остали [64] су у оквиру свог истраживања поставили пиезоелектрични сензор на индустријски планетарни редуктор у вертикалном правцу, да би се добили сигнали у временском домену. Рад представља нов приступ одређивања динамичког понашања редуктора у временском домену. Извршена анализа указује на карактеристичне фреквенције, што представља иновативно решење.

Dziedziech и остали [65] су представили хибридни приступ анализе вибрација, комбиновањем резултата две оперативне модалне анализе и експерименталне модалне анализе са циљем унапређења квалитета модела. Предложени приступ је тестиран на подацима добијеним од турбогенератора, снаге 215 [MW]. Овакав приступ омогућава дијагностиковање прекомерних нивоа вибрација машине и корективни утицај на излазне перформансе турбогенератора.

Gottvald [66] је извршио експерименталну анализу мерења природних фреквенција роторног багера и упоредио добијене резултате са креираном нумеричком симулацијом применом софтверског пакета Ansys [67]. Разлог оваквог приступа је чест случај да нумеричке симулације приликом пројектовања не одговарају реалним структурама.

Gursky и остали [68] направили су синтезу пројектних параметара двофреквенцијског инерцијског вибрационог система према наведеним карактеристикама снаге. На основу математичког модела, изведени су параметри променљиве периодичне силе за две угаоне брзине 157 и 314 [rad/s] и њихови односи 0,5 и 2. У случају односа тренутних угаоних брзина 0,5 резултујући вектор силе је 2,0–3,5 пута већи него за однос 2.

Утврђено је да при односу угаоних брзина 0,5, други хармоник убрзања преовлађује на 50 [Hz], док у односу 2, први хармоник има већу амплитуду на 25 [Hz]. За прву варијанту, снага не зависи од почетног угла између дебаланса, а код друге варијанте варира. Угао ротације од неравнотеже утиче на путању центра масе и фазе хармоника, али не утичу на њихову амплитуду. Због таквих динамичких карактеристика, инерцијални погон са два мотора омогућава вибрационим машинама да раде на ширем опсегу фреквенција и амплитуде.

Milovančević и остали [69] извршили су анализу вибрација пумпног агрегата. У оквиру система, постоје четири позиције које могу имати штетан утицај на рад пумпног агрегата. Модел чине методе меког рачунарства јер наведени приступ не подразумева познавање модела вибрација, већ је довољно да се скупе парови улазних и излазних података кроз извршено експериментално мерење. Извршено је рангирање утицаја вибрација на мерним позицијама пумпног агрегата за три различите методе меког рачунарства и дата дискусија о добијеним резултатима.

#### 2.5 Динамика и интегритет конструкције роторних багера

Gnjatović и остали [70] развили су методологију за одређивање броја кашика на роторном точку на основу динамичког одзива горње градње роторног багера. На основу граничних вертикалних и бочних убрзања средишта кашике, прописаних DIN 22261–2 стандардом, одбачено је 14 од 16 анализираних варијанти дизајна, чиме се смањује сет могућих решења на два; пројектовану варијанту са 17 кашика и варијанту са 20 кашика. Закључци о валидности дизајна изведени су на основу анализе динамичког одзива референтних тачака.

Агзіć и остали [71] извршили су анализу динамичког оптерећења заварене конструкције стреле роторног точка багера SchRs  $650/5 \times 24$  са променљивом амплитудом вибрација, добијеном експерименталним истраживањем са циљем утврђивања чврстоће конструкције. Спољашња оптерећења одређена су на основу измерених вредности јачине струје погона за копање, чиме су добијена променљива излазна оптерећења. Корелација између снаге мотора погона за копање и производње багера зависно од специфичног отпора материјала на копање одређује напрезање на кашици. У првом делу рада дати су резултати теоријски и експеримнтално одређених природних и принудних осцилација носеће конструкције за различите експлоатационе услове. Деформације  $\varepsilon_i$  које су одређене тензометријским мерењима на вратилу роторног точка, претворене су у тангенцијалне напоне увођењем модула еластичности и *Poissonovog* односа, који, уз поларни момент инерције попречног пресека, дефинише момент ротације на вратилу роторног точка.

Рореѕси и остали [72] бавили су се модалном анализом и анализом фреквентног одзива стреле роторног багера добијене симулацијом на основу виртуелног модела постојеће стреле. Стрела роторног багера је подвргнута великим радним оптерећењима које карактерише изражена циклична, динамичка и стохастичка варијабилност. Класични приступ који препоручују стандарди и норме не може предвидети појаву отказа изазваних вибрацијама, које стварају замор услед променљивог оптерећења у времену и деформације које настају резонантним вибрацијама неких конструктивних елемената. Спољашње оптерећење представљају силе које делују на роторни точак у току рада багера. На овај начин могу се узети у обзир конструктивне карактеристике – код модалне анализе и вибрациони режим – код анализе фреквентног одзива. Модел је применљив, како у фази пројектовања нових конструкција стреле роторног точка, тако и у фазама модернизације постојећих конструкција.

Andruszko и остали [73] су анализирали недостатке носеће конструкције роторног точка роторног багера SchRs4600. Аутори су разматрали случајеве оштећења ове врсте конструкција која су се дешавала у току периода коришћења. Са циљем утврђивања оштећења носеће конструкције роторног багера, изведена су недеструктивна испитивања визуелним и магнетним методама. Утврђена су оптерећења у раду машине која доводе до појаве замора материјала. Мерења су изведена због верификације нумеричког модела. Анализа чврстоће је спроведена коришћењем методе коначних елемената [57]. Узрок заморних пукотина је утврђен мерењима и нумеричким прорачунима.

Petrović и остали [74] извршили су анализу динамичког понашања стреле роторног багера SchRs740. Дужина стреле је повећана за један до десет метара, са кораком промене од једног метра. Највећи продужетак је дефинисан са аспекта структурне изведбе, динамичког понашања и поља напрезања. Метода коначних елемената [57] је коришћена са циљем одређивања сопствене фреквенце осциловања, померања и напрезања конструкције.

# 2.6 Примена DIN ISO 10 816-3 стандарда при мерењу вибрација

Deore & Khandekar [75] применили су модел заснован на фази логици са LabVIEW алатом, како би класификовали стање машине коришћењем DIN ISO 10816–3 [2] стандарда. Развијени модел је способан да класификује стање машина као, "машине новопуштене у рад", "неограничено операција", "ограничено операција" и "дошло је до оштећења". Модел се односи на електричне машине које имају широку примену као извори механичке енергије погона који се користе у различитим индустријама.

Robichaud [76] у оквиру рада даје преглед референтних стандарда који се користе при мерењу вибрација. Постоје бројни стандарди за вођење или управљање праћењем и анализом вибрација, укључујући неке који успостављају класификације како треба да се врше мерења и како анализирати добијене податке.

Tomaszewski & Rusinsky [77] наводе да се компресори према стандарду VDI 3836 који је подржан стандардом DIN ISO 10816–3 [2] деле у четири групе. У раду је извршена процена техничког стања појединих уређаја на основу регистрованих дијагностичких симптома који су упоређени са дозвољеним границама. Дијагностика је обављена помоћу бежичног система WiViD. Овај систем је јединствено дизајнерско решење, у коме је неколико функција подељено и обављају их по два одвојена уређаја. Поменуте функције уређаја су руковање подацима, обрада, њихова анализа и презентација.

Osada и остали [78] анализирали су применљивост предложених критеријума вибрација на пумпама датих у оквиру DIN ISO 10816–3 [2] стандарда. Применљивост ISO критеријума за процену нивоа вибрација пумпи доказана је теренским истраживањима. Утврђено је да су границе евалуационих зона задовољавајуће и прихватљиве за дугорочан рад пумпи.

## 3. РОТОРНИ БАГЕРИ

Роторни багери су самоходне машине континуалног дејства које се на површинским коповима користе за откопавање отривке и корисне минералне сировине [5]. Материјал се откопава ведрицама које су причвршћене на ободу роторног точка. Добијање одреска из масива омогућено је истовременим обртањем роторног точка у вертикалној и стреле роторног точка, заједно са платформом у хоризонталној равни [5].

Обртањем роторног точка, ведрице наилазе у зону истоварног сектора, где се материјал празни на пријемни транспортер са гуменом траком [5]. Материјал иде на друго пресипно место у обртној оси и даље редом, зависно од броја пресипних места предаје истоварном транспортеру [5]. Континуалан рад роторних багера огледа се у томе да се са откопавањем материјала истовремено врши његов транспорт и утовар у средства транспорта. На слици 3.1 приказана су пресипна места на роторним багерима [5].



Слика 3.1. Пресипна места на роторним багерима [6]

Роторни багери остварују капацитете који се налазе у широком интервалу. На површинским коповима Електропривреде Србије, теоријски капацитети роторних багера су од 1260-6600  $m^{3}$ /h. Капацитет роторног багера из студије случаја – SRs2000.32/5+VR износи 6600  $m^{3}$ /h. Представља машину највећег јединичног капацитета.

За копање материјала, примењују се ведрице са резном ивицом, ведрице са допунским резним елементима (зубима) и ведрице са међурезачима [5]. Отпор материјала на копање зависи од радне средине у којој машина ради. Креће се у границама између 600 и 1000 N/cm (по дужини резне ивице). У специфичним случајевима, вредност отпора на копање може имати такав интензитет да доведе до лома резних елемената.

У зависности од отпора материјала на копање, сила копања по јединици површине може имати интензитет од 0,7  $[N/mm^2]$  до 2  $[N/mm^2]$  и више.

За погон роторног точка у примени су један или више мотора. Роторни багер SRs2000.32/5+VR за погон користи два мотора, инсталисане снаге по 670 [kW].

# 3.1 Конструкција роторних багера

Конструкција роторних багера зависи од захтеваног капацитета, начина утовара материјала и услова рада [5]. Од значаја су и нагиби етажних косина, чврстоћа материјала који се откопава и дозвољени специфични притисак на тло. Облик и конструкција роторних багера морају се прилагодити условима ефикасног одржавања [5].

Роторне багере чине основни и помоћни уређаји [5]. У основне уређаје сврставају се радни, погонски уређај и уређај за управљање. Помоћни уређаји су уређаји за подмазивање, загревање, расвету, потребе техничког одржавања, ремонта, итд. На слици 3.2 приказане су основне компоненте роторних багера [5].



1 – гусенични транспортни механизам;

- 2 доња градња;
- 3 ослоно-обртни део;
- 4 горња градња са противтегом;
- 5 стрела роторног точка;
- 6 роторни точак;

7 – систем за дизање и спуштање стреле роторног точка; и

8 – истоварна стрела.

Слика 3.2. Основне компоненте роторних багера [5]

Роторни багери су састављени од низа подсистема, при чему сваки извршава одређену функцију. Основни подсистеми су [5]:

- подсистем за копање;
- подсистем за окретање горње градње;
- подсистем за кретање багера;
- подсистем за подизање/спуштање стреле; и
- подсистем транспорта материјала.

#### 3.2 Радни орган роторних багера

Радни орган роторних багера је *стрела роторног точка* и *роторни точак* са припадајућим елементима и погоном (погонски мотор, редуктор, спојница, тело точка, ведрице, склизнице, итд.) [5]. Основни показатељи рада роторних багера (капацитет багера, специфична потрошња електричне енергије, тежина, итд.) одређују се на основу димензијама роторног точка. Основни параметри роторног точка, поред теоретског капацитета Q су [5]:

- број ведрица z;
- запремина ведрица q;
- угаоно растојање између ведрица β<sub>z</sub>;
- угаона брзина  $\omega$ ;
- пречник роторног точка по резним ивицама D; и
- пречник роторног точка по омотачу  $D_o$ .

# РОТОРНИ БАГЕРИ

*Роторни точак* чини заварени безћелијски точак са хабајућим лимовима. Налази се на вратилу које је улежиштено на стрели котрљајним лежајевима. По ободу роторног точка су причвршћене ведрице. Према облику, ведрице могу бити: трапезне, лучне и правоугаоне (ретко у употреби). На слици 3.3 приказан је изглед трапезне и лучне ведрице и облик формираног одреска [5].



Слика 3.3. Приказ трапезних и лучних ведрица и изглед одрезака [5]

Ведрице могу имати затворено или отворено дно које је израђено са ланчастом мрежом. На слици 3.4 приказане су изведбе дна ведрица роторних багера [5].





Слика 3.4. Изведбе ведрица: а – затворено дно; b – отворено дно са ланцима

Најчешћи недостаци ведрица у експлоатацији су следећи [79]:

- појава напрслина у зони ушке;
- појава напрслина на телу ведрице;
- пуцање отвора за чауре на ушкама;
- интензивно хабање ланчасте завесе и пуцање ланаца;
- просипање откопаног материјала;
- лоше пражњење ведрица; и
- хабање ножа ведрице услед неадекватног положаја и распореда "џепова" за зубе.

Све наведено узрокује непланиране застоје услед замена ведрица и пад коефицијента временског искоришћења багера [79].

#### РОТОРНИ БАГЕРИ

Стрела роторног точка представља најоптерећенији део конструкције роторних багера и припада главној носећој конструкцији [5]. Технолошки процес рада роторних багера састоји се од главних и помоћних кретања. Главно кретање чине обртање роторног точка и кружно кретање горње градње [5]. Под помоћним кретањем подразумева се кретање багера у правцу наступа и промена положаја роторног точка у вертикалној равни, промену подетаже или маневрисања роторним точком код обављања послова одржавања (замена ведрица, резних елемената, итд.) [5]. Дизањем и спуштањем стреле врши се заузимање жељеног положаја роторног точка. Елементи за копање и транспорт материјала уграђени су на основној конструкцији стреле, као и одговарајуће помоћне конструкције (конструкција газишта, пресипних места, конструкција за вешање кабине багеристе, инсталације и уређаји неопходни за рад багера) [5]. На слици 3.5 приказана је конструкција радног органа роторних багера [5].



Слика 3.5. Конструкција радног органа роторних багера [5]

Основни елементи роторног точка су [5]:

- носећа конструкција (1);
- вратило роторног точка са лежајевима (2); и
- ведрице са резним елементима (3).

Погонски механизам роторног точка чине:

- извор механичке енергије, електромотор (6);
- редуктор за погон роторног точка (4); и
- спојница за везу електоромора и редуктора (5).

Слика 3.6. Елементи роторног точка [5]

 1 – основна (носећа) челична конструкција;
 2 – помоћна челична конструкција (газишта);
 3 – роторни точак;
 4 – погон роторног точка;
 5 – кабина руковаоца;
 6 – затеге (ламеле);
 7 – покретни стуб;
 8 – транспортер на стрели роторног точка; и

9 – трака за отпадни материјал (прљава трака).

#### 3.3 Резни елементи роторних багера

У зависности од врсте материјала који се откопава роторним багерима, ведрице се опремају различитим резним елементима [5]:

- ножевима;
- угаоним сечивима; и
- зубима.

Када се откопава материјал мањег отпора на копање, као резни елементи користе се *ножеви*. Ивице ножа се ојачавају наваривањем тврдим електродама чиме се штите од хабања. Виши степен хабања присутан је код откопавања песка, као материјала са израженим абразивним дејством [5].

Правилним избором материјала продужава се радни век зуба. Зуб се може заштитити наваривањем, уметањем плочице од тврдог метала [80], [5]. Ради постизања задовољавајућег квалитета, зуби се израђују ливењем, квалитетним ливовима отпорним на хабање. Врста материјала која се откопава има знатан утицај на радни век зуба [5], [80]. Из тог разлога се врше испитивања материјала на конкретном површинском копу где ће багер радити. Тело зуба мора имати одговарајућу чврстоћу и жилавост јер је зуб у току рада изложен силама које у првом реду настају услед отпора материјала копању. Тело зуба се ломи или савија у случају лоше изабраног материјала од кога се зуб прави [5], [80].

За откопавање чвршћих материјала ведрице се опремају *зубима* на местима која су посебно оптерећена [5], [80]. Зуб као елемент склопа ведрице има двоструку функцију. Прва је разарање материјала, друга његов ископ из масива. Код примене зуба као резних елемената, резна сила се концентрише на малу дужину што омогућава лакше продирање ведрице у масив. Најважнији захтеви који се постављају пред зубе су [5], [80]:

- висока чврстоћа и отпорност на хабање;
- релативно лака замена; и
- повољна геометрија са аспекта резања.

Геометријски параметри зуба су: дужина резне ивице, слободан угао  $\alpha$ , угао оштрице  $\beta$ , предњи угао  $\gamma$ . Угао резања чини збир слободног угла  $\alpha$  и углова оштрице  $\beta$ . Угао резања се обично креће у границама од 28 до 33<sup>0</sup>, уз слободан угао резања од 5 до 12<sup>0</sup> [5], [80]. Веће вредности слободног угла резања односе се на тврђе материјале. Мањи углови резања позитивно утичу на отпор копању, али се истовремено зуб брже хаба. На слици 3.7 приказано је оптерећење зуба у процесу копања [5], [80].



Слика 3.7. Оптерећење зуба у процесу копања [81]

Геометријска идентификација димензија резних елемената представља комплексан процес [81]. Неопходно је познавање спољашњег оптерећења које потиче од карактеристичних делова роторног точка (ведрице, зуби, нож, итд.) [81]. За дефинисање оптерећења по једном зубу, потребно је установити како се оптерећење ведрице дели на резне елементе, имајући у виду да не учествују сви подједнако у процесу резања [81].

3D моделирање у великој мери олакшава процес конструисања резних елемената [81]. Методом коначних елемената [57] могуће је задавање спољашњег оптерећења, сличног експлоатационом у каквом ће зуб радити, чиме се врши провера слабих места и њихово отклањање пре пуштања у рад.

Применом савремених метода конструисања смањују се трошкови, у фази тестирања се користи рачунар, уместо тестирања у процесу експлоатације [81]. Процес се одвија брзо јер се могу одбацити концепти који нису задовољавајући, чиме се смањује број циклуса развоја производа [81].

Метода коначних елемената [57] омогућава да се из низа варијантних решења одабере оптимално [81]. Одабрана структура финалног производа се верификује у експлоатацији. На тај начин се добија повратна информација о развијеном производу, чиме је могуће направити корекције према радним условима [81].

Због честог лома зуба и ремонта ведрица у раду потребно је да се замена зуба врши лако. Тело зуба се ставља у "џеп" који се налази на ведрици и учвршћује клином, ређе завртањском везом [5]. Лом зуба генерише велике трошкове. Приликом њихове замене стоји комплетан експлоатациони систем. Повећана учесталост лома зуба среће се у ситуацијама када се у масиву нађу камени самци или заостали делови конструкције машина [5]. На слици 3.8 приказан је зуб роторног багера SRs2000.32/5+VR.



Слика 3.8. Зуб роторног багера SRs2000.32/5+VR

#### 3.3.1 Технолошки поступци израде резних елемената

Зуби роторних багера се најчешће израђују технолошким поступком ливења у пешчаним калупима са додатном термичком обрадом. Зависно од материјала за израду зуба, технолошких и механичких особина, користе се следећи поступци термичке обраде [82]:

- каљење и средње или ниско отпуштање (у случајевима када се користи високолегирано ливено гвожђе или високолегирани челик легиран хромом или неким другим елементима); и
- *побољшање* (у случајевима када се зуби израђују од нисколегираног V, Mo, Cr и Мп челика или неких других врста челика).

Зуби се ливењем израђују на тај начин што се течни метал улива у одговарајући простор – калуп. Након процеса кристализације метал задржава облик калупа. Очврснути метал се назива одливак. Ливење може бити кокилно, центрифугално, гравитационо, ливење под притиском и ливење у пешчаним калупима [83]. Подела је формирана у зависности од начина уливања течног метала у калуп (центрифугално, гравитацијом, под притиском) и врсте калупа (метални, шкољкаст, пешчани) [82], [83].

Циљ накнадне термичке обраде је побољшање једног или више својстава материјала. Поступак се састоји од загревања материјала на одређену температуру, задржавања на тој температури и хлађења, претходно дефинисаном брзином. За хлађење се користе следећа средства [82]:

- *уље*, за средње легиране челике;
- вода и водени раствори, за угљеничне и нисколегиране челике;
- гасови (ваздух или заштитни гасови) за брзорезне челике; и
- хладне металне плоче, које делују додиром.

Након процеса термичке обраде, својства материјала су таква да је он у стању да издржи радна оптерећења без оштећења. Врста термичке обраде бира се тако да не дође до већих промена мера и облика предмета. Термичка обрада зуба роторних багера за крајни циљ има повећање отпорности на хабање и жилавости. На слици 3.9 дат је дијаграм промене температуре са временом [82].





#### 3.3.2 Материјали за израду резних елемената

Зуби се израђују од следећих материјала [82]:

- високолегираних манганских челика отпорних на хабање (Č.3160 и други);
- нисколегираних манганских челика отпорних на хабање (Č.3134 и други); и
- високолегираних хромираних челика.

Када се у раду зуба јављају удари, за израду се користе високолегирани мангански челици аустенитне структуре, нпр. челик Č.3160, који се састоји од 1,2 % С и 12,5 Мп. Структура челика Č.3160 након процеса ливења састоји се од аустенита и знатне количине мешовитих карбида који су распоређени по границама аустенитских зрна, чиме се смањује жилавост и чврстоћа. Већа количина карбида захтева да се ливени делови накнадно термички обраде растворним жарењем на температурама од 1050–1100<sup>0</sup> С са хлађењем у води. Хлађење у води доводи до разлагања карбида и добијања потпуно аустенитне структуре челика. Обрада резањем оваквих челика је врло тешка [82].

Процесом експлозије постиже се отврдњавање површинског слоја високолегираних аустенитских челика. Микроструктура челика, пре и након отврдњавања приказана је на слици 3.10, док је на слици 3.11 дата расподела тврдоће у површинском слоју [82].



Слика 3.10. Микроструктура Č.3160 у гашеном стању (а) и након отврдњавања (b) [82]



У ситуацијама када је примена високолегираних манганских челика неекономична, као материјали за израду зуба користе се нисколегирани челици, нпр. Č.3132 са 0,5 % С и 1,8 % Мп. Њихова отпорност на хабање заснива се на отпорности фаза, насталих отпуштањем мартензита. Код оваквих челика, манган делом улази у карбид гвожђа, а делом у чврсти раствор. Поред отпорности на хабање, ова врста челика у каљеном и отпуштеном стању има и високу пластичност [82].

Високолегирани хромирани челици своју отпорност на абразију заснивају на структури, која у саставу има висок садржај карбидне фазе, високолегираног мартензита, уз учешће заосталог аустенита. Добри резултати код израде висококвалитетних зуба за откопавање откривке, постижу се применом челика са више од 1,65 % С и више од 12 % Сг. Овакви челици припадају групи ледебуритних. Одликује их висока отпорност на хабање, постојаност резне ивице, облика и димензија. Постојаност резне ивице постигнута је учешћем до 30 % карбидне фазе (карбида хрома и легираног цементита) у структури. Ови челици се, поред хрома, неретко легирају са W, Мо и V, што додатно повећава способност резања и отпорност на хабање [82].

За израду зуба роторних багера ангажованих на откопавању откривке на површинском копу Тамнава–Западно поље користи се више врста челика, зависно од препоруке произвођача и резултата изведених истраживања. У таблици 3.1 приказани су челици који су показали најбоље резултате у експлоатацији [82].

Меродавни критеријуми су отпорност на хабање (дефинисана материјалом), геометрија зуба и положај на ведрици. Отпорност на хабање омогућава ефикасан рад багера у дужем временском интервалу. Највећи капацитет багера, најмањи отпор материјала на копање и потрошња електричне енергије су у случају нових резних елемената.

| Таблица 3.1. Карактеристике челика за зубе на откривци [82] |                                                                                              |                      |                                                                                                                         |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------|
| Зуби од челика Č.4782 (DIN ознака: 42CrMoS4)                |                                                                                              |                      |                                                                                                                         |
| XEMIJCKI<br>CACTAB                                          | 2–2,5 % C<br>0,5–0,6 % Si<br>0,6–0,75 % Mn<br>14,8–15,7 % Cr<br>max 0,02 % S<br>max 0,02 % P | МЕХАНИЧКЕ<br>ОСОБИНЕ | $R_m = 950 \text{ [N/mm^2]}$ $R_{eH} \ge 700-800 \text{ [N/mm^2]}$ $A = 7-8 \%$ $Z = 20-22 \%$ $KV = 24-25 \text{ [J]}$ |
| Pez                                                         | жим термичке обраде:                                                                         | нормал               | изација и отпуштање                                                                                                     |
| 3                                                           | уби од челика С.4757                                                                         | (DIN 03F             | ака: X50CrVMo51)                                                                                                        |
| XEMNJCKN<br>CACTAB                                          | 2,4–2,5 % C<br>0,4–0,45 % Si<br>0,54–0,56 % Mn<br>14,5–15,5 % Cr<br>1,9–2 % Mo               | МЕХАНИЧКЕ<br>ОСОБИНЕ | $R_m = 955 \text{ [N/mm2]}$ $R_{eH} = 720 \text{ [N/mm2]}$ $A = 8 \%$ $Z = 20-22 \%$ $KV = 24-25 \text{ [J]}$           |
| Нормализација и отпуштање на тврдоћу од 60–62 [HRc]         |                                                                                              |                      |                                                                                                                         |

#### 3.3.3 Хабање резних елемената

Резни елементи су у процесу копања изложени абразивном хабању комбинованим са динимачким оптерећењем [84]. Конструкција резних елемената је сложена, имајући у виду да оптерећење и његова расподела нису познати у довољној мери. Интензитет хабања зависи од карактеристика материјала који се копа, режима рада багера и отпорности на хабање материјала од којег су резни елементи направљени [81].

Абразивно хабање у комбинацији са ударним оптерећењем зуба доводи до појаве прогресивног трошења. Резни елементи не могу правилно да обављају своју функцију, што има директан или индиректан утицај на *потрошњу енергије процеса копања* и *специфични отпор материјала на копање* [81].

Абразивно хабање резултира одношењем материјала са површине зуба. Након "скидања" једног слоја, утицају хабања се излаже наредни слој, чиме се он "скида", итд. Абразивне честице на хабајућим површинама изазивају огреботине у виду бразди које су праћене пластичним деформацијама и течењем материјала [81].

Све наведено има за последицу смањење расположивости због честих замена резних елемената, што се одражава на повећање трошкова услед стајања комплетног система. Трошкове услед хабања материјала зуба није могуће елиминисати, али се могу значајно смањити. Основни недостаци зуба у процесу рада су (слика 3.12.) [81]:

- неадекватна геометрија резног дела (углови резног клина су погрешно усвојени или је ширина оштрице неодговарајућа);
- неадекватан начин на који је зуб постављен на ведрицу (број и распоред зуба на ведрици, осигурање и фиксирање, итд.);
- последица процеса израде зуба (лоша технологија израде, пропусти у процесу ливења и хлађења); и
- неадекватан облик зуба (дужина зуба је превелика, мали отпорни момент критичних пресека, гомилање материјала са једне, што индукује слабљење зуба са друге стране, превелика кртост, жилавост и хабање).



Слика 3.12. Најчешћи недостаци зуба

а – велики интензитет трења леђне површине зуба (раван А–А)
 b – неравномерно трошење бочних страница зуба (I–I, II–II)
 c – неадекватан положај зуба на ножу (Δα)
Истраживања су показала да се повећањем похабаности резних елемената *специфични отпор материјала на копање* повећава за 30 % [80]. Са апсекта геометрије зуба у току процеса копања, хабање се манифестује на начин приказан на слици 3.13 [85].



Слика 3.13. Фазе хабања зуба [85]

Позиција 0 (слика 3.13.) представља почетну контуру врха зуба пре почетка хабања. Позицијама од 1-6 дате су контуре зуба у односу на време хабања у раду. Након одрађених 200–250 сати, изглед геометрије зуба представљен је линијом 6, што одговара величини  $h_b$  када је похабаност између 30 и 40 [mm]; [85].

Хабање се не може спречити ни обављањем одговарајућих превентивних мера. Ипак се може утицати на ову појаву, ако се препозна механизам њеног настанка. Подмазивање мастима има ограничен утицај на обим трошења. Утицај масти на успоравање процеса хабања је присутан само у периоду прилагођавања површина које су у међусобном контакту. У каснијој експлоатацији, незнатан утицај на ублажавање абразивног дејства ситних делова страног тела могу имати уља, тако што задржавају део нечистоћа у фино диспергованом стању. Од наведених начина, квалитетнији ефекат могу имати металуршке и технолошке мере које се огледају у повећању отпорности површина у контакту према абразивном хабању [85].

Повећана похабаност резних елемената утиче на капацитет роторних багера. Капацитет је највећи када су зуби нови [85]. Услед абразивног хабања, са протоком времена, похабаност је већа, што директно утиче на скок специфичног отпора материјала на копање и специфичне потрошње електричне енергије [85]. Све наведено, у коначном, утиче на промену режима рада багера и економске ефекте производног процеса [85].

Вибрације се дефинишу као осцилације или кретање објекта које се понавља око неког равнотежног положаја. Положај у којем објекат остаје ван утицаја спољашњих сила назива се равнотежни положај. Имајући у виду да се сваки део тела заједно креће у истом правцу и смеру, овај тип вибрација је познат под термином "кретање целог система" [86].

Динамичке силе у машинама са покретним деловима и машинским структурама уопште генеришу вибрације, које настају као динамички ефекти производних толеранција, дебаланса код машина са обртним кретањем, клизних и котрљајућих контаката међу елементима, итд [87].

Неретко се дешава да у почетку мале и безначајне вибрације побуде резонанцу других делова структуре. Вибрације могу бити одговорне за отказ машине, изазивајући при томе хабање и замор. У одговарајућем контексту, вибрације могу бити корисне. Сита, разбијачи камена, бетонски компактори и сличне машине и уређаји, своју функцију заснивају на вибрацијама [87].

Вибрационо кретање целог тела у потпуности се може описати комбинацијом појединачних кретања и то као транслација и ротација око *x*, *y* и *z* осе. Комбинацијом ових шест једноставних типова кретања могуће је представити свако сложено кретање тела. Тело поседује шест степени слободе (слика 4.1.) [86].



Слика 4.1. Дефинисање степени слободе кретања [86]

Механичке вибрације подразумевају осцилаторно кретање крутог тела у односу на равнотежни положај. Поремећајна сила је узрочник принудног вибрационог кретања и по својој природи може бити случајна или детерминисана. Из тог разлога се кретања која она изазива називају принудним вибрацијама. Слободне вибрације представљају периодично кретање тела по престанку деловања поремећајне силе [88].

Вибрације објекта изазива сила побуде (ексцитације). На објекат може деловати спољна сила или сила која настаје у самом објекту [86]. Кретање се представља хармонијском временском функцијом. Основни параметри за идентификацију поремећајне силе су, поред фреквенције осциловања [87] (броја циклуса у јединици времена) још и амплитуда осциловања, брзина, односно убрзање [88]. Фреквенција и величина вибрације објекта одређена је [86]:

- силом побуде;
- правцем; и
- фреквенцијом.

Анализа вибрација се примењује за одређивање силе побуде у току рада машине [86]. Сила побуде зависи од стања машине, познавања њених карактеристика и могућности дијагностиковања проблема у раду [86]. Једноставно хармонијско кретање представља најједноставније вибрационо кретање. Представља се кретањем масе у једном правцу, контролисано опругом (слика 4.2.) [86].



Слика 4.2. Једноставно хармонијско кретање [86]

Овакав механички систем представља систем са једним степеном слободе кретања [86]. Померањем масе на сигурну удаљеност од равнотежног положаја и њеним отпуштањем, опруга се враћа у равнотежни положај. У том случају, маса има кинетичку енергију на основу које прелази преостали део пута и може скренути са путање у супротном правцу [86]. Брзина се полако смањује, до заустављања, када поново иде ка равнотежном положају [86]. Процес се понавља, при чему се кинетичка енергија претвара у потенцијалну [86].

Ако у систему не постоји трење, осцилације се понављају, истим интензитетом и амплитудом. Овакав вид идеалног хармонијског кретања није присутан код механичких система. Присуство трења индукује амплитуду вибрација до постепеног смањења, где се енергија претвара у топлоту [86].

# 4.1 Параметри вибрација

Основни параметри који се разматрају при вибрационом кретању су [88], [86]:

- период;
- фреквенција;
- елонгација;
- амплитуда;
- брзина; и
- убрзање.

Период представља време потребно за један циклус [89]. Изражава се у секундама или милисекундама, зависно од брзине промене [86]. Реципрочна вредност периода је *фреквенција*. Фреквенција је број понављања циклуса у јединици времена. Осим у техници (електротехника, акустика) фреквенција је присутна у медицини (број откуцаја срца), саобраћају (број пролазака возила делом града), итд. Математички облик фреквенције:

$$f = \frac{1}{T} \tag{4.1}$$

где је: f-фреквенција, [Hz].



На слици 4.3 дата је зависност време/померање, дефинисање периода и амплитуде [86].

Слика 4.3. Зависност времена и померања – дефинисање периода и амплитуде [86], [89]

Растојање тела које осцилује од равнотежног положаја представља *елонгацију*. Највећа елонгација, тј. највеће растојање тела од равнотежног положаја сматра се *амплитудом* [86]. Приказана крива је синусоида за случај једноставног хармонијског кретања објекта. Описује се следећом једначином [86]:

$$d = D \cdot \sin\left(\omega \cdot t\right) \tag{4.2}$$

где је:

*d* – тренутно померање;

*D* – максимум или врх померања; и

t – време.

*Брзина кретања* представља меру помераја у јединици времена [86]. Износ промене се представља изводом [86]:

$$v_t = \frac{dD}{dt} = \omega \cdot D \cdot \cos\left(\omega \cdot t\right) \tag{4.3}$$

где је:

*v*<sub>*t*</sub> – тренутна брзина, [mm/s, m/s].

Убрзање представља меру промену брзине [86]:

$$a_t = \frac{dv_t}{dt} = \frac{d^2D}{dt^2} = -\omega^2 D\sin\left(\omega \cdot t\right)$$
(4.4)

где је:

 $a_t$  – тренутно убрзање, [mm/s<sup>2</sup>, m/s<sup>2</sup>].

#### 4.2 Динамички и механички системи

Материјална тачка, као пример компактне физичке структуре сматра се једноставном масом [86]. Њено кретање генерише спољашња сила. Положај материјалне тачке одређује Њутнов закон. Убрзање материјалне тачке је пропорционално дејству спољашње силе. Механички системи су доста комплекснији. Није неопходно њихово кретање под дејством спољашње силе [86].

Ротационе машине нису бескрајно крути механички системи. Имају различите степене флексибилности на различитим фреквенцијама [86]. Кретање система представља реакцију на дејство спољашње силе. Зависи од њене природе и динамичких карактеристика механичке структуре [86]. Научне дисциплине, *модална анализа* [63] и *метода коначних елемената* [57] проучавају реакцију структура на дејство силе [86].

Вибрације представљају периодично хармонијско кретање дискретног система крутостмаса при одговору на спољашње оптерећење [86]. На слици 4.4 приказан је систем крутостмаса са пригушењем.



Слика 4.4. Систем крутост-маса са пригушењем [86]

Динамичка једначина принудних пригушених вибрација има облик [86]:

$$m \cdot x + C \cdot x + K \cdot x = m \cdot a + C \cdot v + K \cdot d = F(t)$$

$$(4.5)$$

где су:

*m* – маса, [kg];

 $\ddot{x}$ , *a* – убрзање, [mm/s<sup>2</sup>, m/s<sup>2</sup>];

C – пригушење, [Nm/s];

K – крутост, [N/m];

 $\dot{x}$ , v – брзина, [m/s, mm/s]; и

*х, d* – деформација, [mm, µm].

Лева страна израза 4.5, тј. решења слободних непригушених осцилација представљају сопствене (слободне, природне) осцилације [86]. Главне облике осциловања на тим фреквенцијама представља амплитуда осциловања. Уколико принудна сила осцилује или изазива осцилације блиске некој сопственој осцилацији конструкције, долази до резонантног понашања. На слици 4.5 приказана је природа вибрација.



## 4.3. Мерење амплитуде вибрација

Амплитуда представља показатељ интензитета поремећајне силе. Величина амплитуде показује [86]:

- да ли машина ради мирно или не;
- какво је опште динамичко стање машине; и
- да ли се рад може толерисати или треба зауставити њен рад.

Стање машине се мења са променом амплитуде вибрација. Најчешћи случај је промена стања у смеру повећања амплитуде. Комплексне вибрације садрже низ компонентни различитих фреквенција, па укупна амплитуда одговара векторском збиру парцијалних компоненти [86].

Амплитуда укупних вибрација зависи од величине амплитуде сваке од компоненти и односа фазних углова [86]. Амплитуда укупних вибрација се може смањити повећањем амплитуде компоненте која је фазно супротна са векторском резултантом [86]. Амплитуда вибрација зависи од два фактора [86]:

$$A = \frac{F}{c} \tag{4.6}$$

где су:

*F* – величина амплитуде побудне (поремећајне) силе; и

При математичком разматрању осцилаторних процеса, амплитуда вибрација представља највећи помак од почетног (равнотежног) положаја до неког крајњег положаја (у негативном или позитивном смеру) [86]. Амплитуда је изражена као *нула–врх*. Начини изражавања амплитуде вибрација су следећи (слика 4.6.) [86]:

- Врх амплитуде pk је максимална вредност од нуле до равнотежног положаја;
- *Нула–врх* (*Zero-to-peak; pk* се примењује при мерењу вибрација кућишта система, тачније код мерења амплитуде вибрацијске брзине и вибрацијског убрзања;

- Врх-врх (Peak-to-peak; pp); при мерењу вибрацијског померања вратила; и
- *RMS* (*root mean square*) у случају синусоидалног облика вибрација одговара 0,707 вредности амплитуде *нула–врх*. За сложене сигнале, сачињене од више хармонијски повезаних компоненти, *RMS* амплитуда представља други корен аритметичке средине квадрата парцијалних компоненти.



Слика 4.6. Начини изражавања амплитуде [86]

За израчунавање амплитуде врши се квадрирање тренутне вредности амплитуде, чиме се одређује просечна вредност стварног времена [86]. Квадрати су увек позитивни. На крају се извлачи квадратни корен просечне вредности, на основу чега се добија *RMS* вредност [86]:

$$A_{RMS} = \sqrt{\frac{A_1^2 + A_2^2 + \dots + A_n^2}{n}}$$
(4.7)

Графички приказ дефинисања RMS вредности амплитуде дат је на слици 4.7.



Слика 4.7. Дефинисање RMS [86]

Средња вредност амплитуде одговара 0,637 амплитуде *pk* [86]. Амплитуда вибрација се изражава у следећим јединицама [86]:

- вибрацијско померање, [µm] (*pp*, *pk*);
- вибрацијска брзина, [mm/s] (*pk*, *RMS*); и
- вибрацијско убрзање, [m/s<sup>2</sup>] или *g* (гравитацијска константа).

#### 4.4 Сложене вибрације

Карактеристика линеарних механичких система је да све компоненте система егзистирају заједно, при чему ниједна не утиче на ону другу. Код нелинеарних система, компоненте вибрација реагују и креирају нове компоненте које немају функцију силе [86].

Код линеарних механичких система, фреквенција вибрације је исто што и фреквенција силе [86]. У случају да постоји више фреквенција сила које делују истовремено, резултујућа вредност вибрација представља суму вибрација сваке фреквенције [86]. Резултујући график има сложен изглед и не представља синусоиду (слика 4.8.) [86].



Слика 4.8. Дефинисање сложених вибрација [86]

Машине које раде на нижим обртајима генеришу вибрације које се једноставно итерпретирају. На графичком приказу, ниска и висока фреквенција се представљају заједно. У једноставном случају попут овог, релативно је лако наћи фреквенције и амплитуде двеју компоненти испитивањем облика таласа [86]. Већина вибрација су знатно сложеније. Код ротационих машина, теже се долази до података о унутрашњем раду, са аспекта облика вибрација [86].

Решење диференцијалне једначине представља периодично хармонијско кретање (померање, деформација) еластичног система у синусоидном облику (слика 4.9.) [86]:



Слика 4.9. Периодично хармонијско кретање [86]

## 4.5 Енергија и снага

Енергија је потребна да би се произвела вибрација [86]. Код машинских вибрација, енергија стиже од извора. На погонима роторних багера извор механичке енергије (снаге, обртног момента) је електромотор. Механички рад представља производ силе и одговарајућег растојања на којем сила делује. Јединица за енергију у изведеном SI систему је Џул [J], (*eng. Joule*) [86].

*Снага* се дефинише као износ урађеног рада или преноса енергије у јединици времена [86]. Јединица за снагу је Џул по секунди [J/s] или Ват [W], (*eng. Watt*). Снага је пропорционална квадрату амплитуде вибрација, као што је електрична енергија пропорционална квадрату напона или квадрату струје [86].

Енергија се преноси од извора енергије вибрација до енергије пригушивача, где се претвара у топлоту. Најважнији апсорбер енергије је трење код машина, вискозно трење и трење клизања. Ако машина има мало трење, амплитуда вибрација тежи да буде прилично висока [86].

## 4.6 Природне фреквенције. Појам резонанце.

Било која физичка структура се може представити преко одређеног броја еластичности, масе и пригушивача [86]. За разлику од пригушивача, еластичност и маса не апсорбују енергију [86]. Ако се енергија примењује на систем еластичност-маса, вибрације су *природне*. Ниво вибрација зависи од снаге извора енергије. Природне фреквенције су представљене једначином [86]:

$$f_n = \frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{k}{m}} \tag{4.9}$$

где су:

*f*<sub>n</sub> – природна фреквенција;

*m* – маса; и

*k* – константа еластичности, односно крутости.

Закључак је да када крутост расте, расте и природна фреквенција [86]. Уколико маса расте, природна фреквенција опада [86]. Код пригушеног система, какав је углавном случај, природна фреквенција је нешто нижа од масе и зависи од количине пригушења [86].

Овакви системи довели су до појаве механичких система са одређеним бројем степени слободе. Зависно од степена слободе, природне фреквенције, пригушења и фреквенције извора енергије зависи како се дистрибуира енергија вибрација [86].

Дистрибуција вибрација машине није униформна. Код машина где је извор механичке енергије електромотор, основни извор енергије вибрација представља неуравнотеженост ротора. Тиме се омогућава мерење вибрација на лежајевима мотора [86].

Када се процењује ниво вибрација машине, локација максималног нивоа не сме да буде близу извора енергије [86]. Енергија вибрација фреквентно прелази велике путање дуж структуре и може да изазове озбиљне хаварије, у случају да наиђе на удаљену структуру са природном фреквенцијом у близини њеног извора [86]. Резонанца представља појаву када се фреквенција побуде налази у близини природне фреквенције машинске структуре или када се оне изједначе [86]. Тада настају високи нивои вибрација који су углавном опасни [86].

#### 4.7 Анализа фреквенције

*Анализа фреквенције* или *анализа спектра* је методологија којом се долази до ограничења анализе на основу сигнала вибрација [86]. Талас је у домену графика, док је спектар у домену фреквенције [86].

Анализа спектра представља аналогну трансформацију сигнала временског домена у фреквентни домен [86]. Веза између времена и фреквенције дефинисана је једначинама:

$$t = \frac{1}{f} \tag{4.10}$$

$$f = \frac{1}{t} \tag{4.11}$$

Чест случај примене фреквентне анализе је тај што су појединачне компоненте фреквенције одвојене и јасне у спектру, чиме се њихови нивои могу једноставно идентификовати [86]. Из домена таласа (времена) подаци се тешко читају.



Слика 4.10. Домен времена у домен фреквенција: први начин приказивања [86]

Таласи вибрација садрже одређени број података који нису очигледни. Неки од њих су представљени ниским компоментама чија величина може бити мања од ширине линије таласа [86]. Иако ниске, ове компоненте могу имати битну улогу у решавању проблема који се односе на неисправност лежајева. Способност препознавања малих вредности сигнала вибрација омогућава детекцију почетних неисправности [86].



Слика 4.11. Домен времена у домен фреквенција: други начин приказивања [86]



Слика 4.12. Домен времена у домен фреквенција: трећи начин приказивања [86]

Анализа фреквенције изводи се на основу типа сигнала [86]. Сигнали садрже информације, које је потребно пренете од места настанка на одређено место. Настоји се да облик сигнала остане веродостајан месту настанка. Вредности који се не могу унапред прецизно знати представљају *случајне сигнале*. Постоје две групе сигнала: *аналогни* и *дискретни* [86].

Уколико је сигнал континуална функција независне променљиве (углавном време) реч је о *аналогном сигналу*. Континуални су по вредностима и у времену [86]. Представљају се континуалним временским функцијама  $f_x(t)$  [86]. Дискретни сигнали су дефинисани у дискретним временским тренуцима, нпр. сваке секунде или у неком другом интервалу времена [86]. Може се представити функцијом f(n), n – цео број из интервала  $(n_1, n_2)$  осе  $(-\infty \le n_1 \le n_2 \le +\infty)$ . Типови сигнала приказани су на слици 4.13 [86].



Слика 4.13. Типови сигнала [86]

Основна подела сигнала је на *сталне* и *несталне* [86]. Стални сигнали су константни у времену. Ротационе машине производе овакве сигнале. Даље се деле на *детерминисане* и *случајне*. Ниво амплитуде и фреквенција случајних сигнала нису предвидиви. Примери су: бука машине, кавитација, турбуленција пумпе [86]. Детерминисани сигнали имају релативно константну фреквенцију током времена. Представљају најважнију врсту сигнала за анализу вибрација [86]. Стварају их музички инструменти, ротационе машине. Деле се на две подгрупе: *периодичне* и *квази–периодичне*. Периодични сигнали се понављају у једнаким временским интервалима, за разлику од квази–периодичних, који изгледом подсећају на периодичне [86].

*Нестални сигнали* могу бити: *константни* и *пролазни* [86]. *Пролазни сигнали* почињу и завршавају се на нултом нивоу [86]. Примери пролазних сигнала су ударци чекића, бука при стартовању, заустављању мотора и слично [86].

## 4.8 Узроци вибрација и утицај на машине и опрему

Механички системи у свом саставу имају низ ротационих компоненти (вратила, осовине, зупчасти преносници, лежајеви, итд.) [90]. Најчешћи откази система настају услед неуравнотежености унутар ротационих компоненти [90]. Овај проблем је у индустрији све више изражен због великих обимних брзина [90]. На слици 4.14 представљени су основни узроци неуравнотежености [90].



Слика 4.14. Основни разлози неуравнотежености [90]

Неуравнотеженост изазива низ потешкоћа у раду система [90]. Неки од њих су: оштећења на склоповима, истрошеност, хабање, итд. Неуравнотежена ротациона компонента може се уравнотежити додавањем или смањењем масе [90]. Основни циљ овог процеса представља спречавање извора вибрација [90]. У таблици 4.1 приказани су неки од извора вибрација механичких система.

| Случај | Узрок појаве вибрација                                                                                  | Амплитуда вибрација | Фаза                    |
|--------|---------------------------------------------------------------------------------------------------------|---------------------|-------------------------|
| Ι      | Несаосност спојених вратила<br>Несаосност осе рукавца и осе лежаја<br>Угиб вратила<br>Недовољна крутост | Константна          | Константна              |
| II     | Повећан зазор у клизном лежају<br>Неодговарајући уљни вискозитет                                        | Константна          | Променљива              |
| III    | Силе трења у клизним лежајевима                                                                         | Променљива          | Постепено<br>променљива |
| IV     | Лоше озубљење у редуктору<br>Оштећен клизни лежај<br>Неисправан каишни преносник                        | Променљива          | Неправилна              |

Таблица 4.1. Преглед узрока и карактеристика вибрација механичких система [88]

Утицај вибрација на делове машина и уређаја огледа се у следећем [86]:

- на местима са израженом концентрацијом напона долази до појаве еластичних и пластичних деформација, ломова, хаварија; и
- кроз енергетске губитке што резултира мањим радним учинцима.

Вибрације су са аспекта функционалности машина штетне. Машине и уређаји, према нивоу амплитуде и фреквенције морају одговарати утврђеним граничним вредностима. У противном се јавља неправилан рад и грешке у функционисању, генеришући следеће проблеме [86]:

- лежишта турбине услед прекомерних вибрација раде при већим оптерећењима што за последицу има краћи радни век;
- прекомерне вибрације доводе до физичког контакта и промене карактеристика електричних кола код електронске опреме; и
- услед прекомерних вибрација долази до неправилног рада електромотора и генератора.

#### 4.9 Вибродијагностички параметри и норме

Превенција оштећења или хаварија машине може се спречити правилним надзором вибрација, чиме се благовремено детектује проблем и предузимају одговарајуће мере заштите. Циљ је оптималан приступ праћења стања и понашања система. Најзначајнији елементи вибрационог надзора приказани су у таблици 4.2 [88].

|                                            | Вибрације неротирајућих делова      |  |  |  |  |  |  |
|--------------------------------------------|-------------------------------------|--|--|--|--|--|--|
| Мерне методе                               | Вибрације ротирајућих делова        |  |  |  |  |  |  |
| M                                          | Апсолутне вибрације                 |  |  |  |  |  |  |
| мерни параметри                            | Релативне вибрације                 |  |  |  |  |  |  |
| П                                          | Апсолутни                           |  |  |  |  |  |  |
| Давачи                                     | Релативни                           |  |  |  |  |  |  |
| Мерне тачке                                | Лежајни блокови                     |  |  |  |  |  |  |
| Постављање давача                          | Вертикално, хоризонтално, аксијално |  |  |  |  |  |  |
|                                            | Амплитуда                           |  |  |  |  |  |  |
| Релевантни прикупљени подаци о вибрацијама | Учестаност                          |  |  |  |  |  |  |
|                                            | Фаза                                |  |  |  |  |  |  |
| Режим рада машине                          | Растерећен или под оптерећењем      |  |  |  |  |  |  |
| Конфигурација мониторинг система           | Стабилни или преносни               |  |  |  |  |  |  |
| Кондиционирање изворних сигнала            | Појединачно или у блоку             |  |  |  |  |  |  |
| Mamana mustan a                            | Континуално                         |  |  |  |  |  |  |
| метода прапења                             | Периодично                          |  |  |  |  |  |  |
| Mama na ana ma                             | У интервалима                       |  |  |  |  |  |  |
| метода анализе                             | По догађају                         |  |  |  |  |  |  |

Таблица 4.2. Кључни елементи вибродијагностике [88]

Мерење апсолутних вибрација стационарне структуре углавном се мери се тако што се прати *брзина вибрација. Помаком* се прате релативне вибрације покретних делова. *Мерење убрзања* препоручљиво је код специфичних мерења, каква су мерења на редуктору, котрљајним лежајевима и оштећења која карактеришу високе фреквенције [88].

Амплитудни опсег мерења се у ситуацијама када не постоје препоруке произвођача одређује према вредностима које су садржане у нормама стандарда DIN ISO 7919 и DIN ISO 10816 [2]. Према овим стандардима, примењена опрема за мерење вибрација мора имати сопствени шум за најмање 10 [dB] нижи од мерних сигнала, док горња маргина мерног опсега мора бити виша за најмање 10 [dB] од очекиваних максималних вредности [88].

Да би подаци о вибрацијама система били поуздани, није довољно да опрема покрива основне и пар виших хармоника, већ је неопходно обухватити спектралне компоненте и пратећих елемената (зупчаника, лежајева, итд.) [88].

За оцену тренда вибрација користе се три врсте критеријума: укупна вредност вибрација, промена укупне вредности и градијент промене вибрација. За процену вибрација користе се два стандарда [88]:

- DIN ISO 7919 за релативне вибрације обртних делова; и
- DIN ISO 10816 за апсолутне вибрације стабилне структуре.

Оба стандарда за процену вибрација одређују четири квалитативне зоне (таблица 4.3.). Према DIN ISO 10816 [2] стандарду као меродавна величина за оцену квалитета рада већине машина користе се укупне вибрације (*RMS* вредност). За одређени опсег  $f_x$ - $f_y$  гранична зона је дефинисана константном брзином вибрација. Зоне квалитета су оборене ка нижим вредностима у граничном простору ниских и високих режима (слика 4.15.) [88].

| <i>RMS</i> брзина вибрација,<br>[mm/s] | Класа I | Класа II | Класа III | Класа IV |
|----------------------------------------|---------|----------|-----------|----------|
| 0,28<br>0,45                           | А       | А        |           |          |
| 0,71<br>1,12<br>1.8                    | В       |          | Α         | Α        |
| 2,8<br>4,5                             | С       | B        | В         |          |
| 7,1                                    |         | C        | С         | В        |
| 11,2<br>18                             | D       | D        |           | С        |
| 28                                     |         |          | U         | D        |

Таблица 4.3. Области квалитета према DIN ISO вибродијагностичким стандардима [2], [88]

Према нормама стандарда DIN ISO 10816 [2] све машине су подељене у следеће класе [88]:

- I класа машине мале величине, снаге до 15 [kW];
- II класа машине средње величине, 15–75 [kW] без посебног фундамента или са постољем, до 300 [kW];
- III класа велике машине на чврстом фундаменту; и
- IV класа велике машине на посебном фундаменту, турбоагрегати изнад 10 [MW].



Слика 4.15. Графички приказ зона квалитета [2], [88]

#### 4.9.1 DIN ISO стандарди у вибродијагностици

ISO (*Међународна организација за стандардизацију*) представља светску федерацију националних тела за стандардизацију [2]. Припрема међународних стандарда обавља се путем ISO техничких комитета [2]. Усвојени нацрт међународних стандарда се доставља члановима на гласање. Процес усвајања стандарда завршава се одобрењем од стране 75 посто чланова [2].

Технички комитет ISO/TC 108 припремио је ISO 10816–3 стандард са аспекта удара, праћења стања система и механичких вибрација. Подкомитет SC 2 даје још мерење и евалуацију механичких вибрација и удара примењену на возила, машине и конструкције [2].

Важећи ISO 10816–3 [2] стандард у односу на првобитну верзију из 1998. године не узима у обзир пумпе, које су део ISO 10816–7 стандарда. ISO 10816 [2] стандард чине следећи делови, који се генерално сврставају под Механичке вибрације – евалуација вибрација машина мерењем на неротирајућим деловима [2]:

- део 1 опште смернице;
- део 2 парне турбине и генератори преко 50 [MW] са радним брзинама од 1500 [min<sup>-1</sup>], 1800 [min<sup>-1</sup>], 3000 [min<sup>-1</sup>] и 3600 [min<sup>-1</sup>];
- део 3 индустријске машине са номиналном снагом изнад 15 [kW] и бројем обртаја између 120 [min<sup>-1</sup>] и 15000 [min<sup>-1</sup>] при мерењима на терену (*in situ*);
- део 4 гасно турбинске гарнитуре;
- део 5 машине за производњу хидрауличке енергије и пумпна постројења;
- део 6 клипне машине са номиналном снагом изнад 100 [kW]; и
- део 7 турбо пумпе у индустрији, са мерењима на ротирајућим вратилима.

Према DIN ISO 10816 стандарду јачина вибрација подељена је на основу [2]:

- типа машине;
- називне снаге или висине вратила; и
- врсте постоља на коме се машина налази.

Разлике са аспекта типа, дизајна, врсте лежајева и конструкције на којој се машина налази, намећу потребу да се машине класификују у две различите групе (висина вратила *h* дефинисана је ISO 496 стандардом). Ове две групе машина могу имати нагнута, вертикална или хоризонтална вратила и могу бити монтиране на еластичним или крутим постољима [2].

- група 1: велике машине, снаге погона изнад 300 [kW]; електричне машине са вратилом висине *h* ≥ 315 [mm]. На овим машинама обично су клизни лежајеви, са широким опсегом бројева обртаја од 120 [min<sup>-1</sup>] до 15 000 [min<sup>-1</sup>]; и
- група 2: машине средње величине са снагом погона изнад 15 [kW] до 300 [kW] са висином вратила *h* ≤ 315 [mm]. Користе котрљајне лежајеве са бројевима обртаја изнад 600 [min<sup>-1</sup>].

Висина вратила *h* дефинисана је ISO 496 стандардом и представља растојање између осе вратила и основне равни машине [2]. Висина вратила машине без стопа, машина са подигнутим стопама или било које вертикалне машине треба да буде узета као висина вратила у истом основном оквиру [2]. Када оквир није познат треба користити половину пречника машине. Подела постоља у односу на флексибилност извршена је на [2]:

- круто постоље; и
- еластично постоље.

Да ли је постоље круто или еластично зависи од међусобног односа еластичности машине и постоља [2]. У случају да је најнижа фреквенција у правцу мерења већа од фреквенције побуде (углавном је то фреквенција обртања) онда се постоље сматра крутим. У осталим варијантама постоље је еластично [2].

Крута постоља се примењују код средњих и великих електромотора са малим бројевима обртаја, док се еластична постоља користе код компресора, турбогенератора, итд [2].

У неким ситуацијама постоље може бити круто у једном, а еластично у другом правцу мерења [2]. Најнижа сопствена фреквенција у вертикалном правцу може бити далеко изнад фреквенције силе побуде, а у хоризонталном правцу испод. Тада би систем био крут у вертикалној, а еластичан у хоризонталној равни [2]. Вибрације се даље процењују сходно врсти постоља која одговара правцу мерења [2].

# 4.9.1.1 Мерење вибрација на ротирајућим деловима машине

Када се мерење вибрација врши на вратилу машине, један од основних захтева је да мерење буде широкопојасно (нефилтрирано). Препоручени мерни опсег инструмента је од 2–1000 [Hz]. Постоје два, у основи различита поступка мерења вибрација [2]:

- *мерење релативних вибрација* изводи се бесконтактним давачем који региструје релативну промену растојања између мерног места и стабилне структуре; и
- мерење апсолутних вибрација које се изводи на један од два начина:

Први начин, клизним давачем радијално ослоњеним на обртну површину вратила, док је на супротном крају фиксиран апсолутни давач вибрација [2]. Други начин, комбинацијом два давача, бесконтактног и апсолутног. Бесконтактни давач мери релативни помак вратила у односу на референтну структуру [2]. Са друге стране, апсолутни давач мери вибрације референтне структуре; збир два сигнала представља апсолутне вибрације вратила [2].

# 4.9.1.2 Мерење вибрација на неротирајућим деловима машине

Као и код мерења вибрација на вратилу машине (ротирајућем делу), код мерења на неротирајућим машинским деловима, неопходно је да мерење буде широкопојасно. Мерни опсег инструмента мора бити у опсегу од 2–1000 [Hz]; [2].

На неротирајућим машинским деловима мери се брзина вибрација, као *RMS* вредност [mm/s]; [2]. Допуштено је мерити и помак [µm] или убрзање [mm/s<sup>2</sup>], меродавна вредност се прерачунава у *брзину вибрација*, према препорукама ISO 10816–3 стандарда [2].

Код мерења на неротирајућим машинским деловима, посебно је значајан избор мерних места [2]. Мерење вибрација се изводи на кућишту лежаја машине или што је могуће ближе тој позицији. Мерење је могуће извршити у три референтна правца: *хоризонталном*, *вертикалном* и *аксијалном* [2].

Мерења амплитуде вибрација у аксијалном правцу ретко кад имају значајнији карактер, стога се често избацују из даљих разматрања [2]. На слици 4.16 приказане су мерне тачке и референтни правци мерења [2].



Слика 4.16. Мерне тачке на издвојеним лежајним и прирубничким ослонцима [2]

Мерење треба вршити у номиналном режиму рада машине. У случају да машина има више радних режима, неопходно је назначити при ком режиму су изведена мерења. Режим рада са највећим нивоом вибрација прихвата се као меродаван [2].

За процену прихватљивости подједнако се користе резултати који су добијени испитивањем вибрација неротирајућих машинских делова, према DIN ISO 10816–3 [2] стандарду и вибрација вратила према DIN ISO 7919–2 стандарду. Референтним се сматра стандард који прописује оштрије услове у случају да су доступни резултати оба мерења [2].

Приоритет у односу на друге критеријуме за оцену прихватљивости динамичког стања машине свакако имају препоруке произвођача. У недостатку истих користе се интерне или препоруке DIN ISO стандарда [2].

#### 4.9.2 Испитивање вибрационих параметара у току и након старта машине

Значај мерења параметара вибрација у току и након старта је следећи [88]:

- могућ је надзор динамичког стања при залетању, где се у циљу заштите машине врши обустава процедуре, ако се примети прекорачење допуштених вредности; и
- у случају обуставе процедуре, могуће је накнадно анализирати механичке утицаје и открити извор нерегуларности.

Анализира се динамика залетања (временске секвенце и карактеристичне тачке у режиму  $0-n_{nominalno}$ ) као и вредност допуштених вибрација у свакој тачки режима, са посебним освртом на резонантно подручје [88].

Ако не постоји упутство произвођача опреме, мерење се врши радијално на свим лежајним блоковима једновремено, док се на аксијалним лежајевима врши мерење и аксијално, посебно, за сваку тачку режима [88].

Мерења се изводе када се достигне номинална брзина, почевши од растерећеног стања, 0 %, а ако су остали услови задовољени, врши се сукцесивно повећање до пуне снаге, 100 % [88]. Препоручљиво је да се скок врши постепено, по 25 %, тј. да се мерења врше за 0, 25, 50, 75 и 100 %. Мерење вибрација се врши на вратилу машине или на неротирајућим машинским деловима [88].

# 5. СПЕЦИФИЧНИ ОТПОР МАТЕРИЈАЛА НА КОПАЊЕ

Процес откопавања материјала роторним багерима је сложен [38]. Ефикасност процеса зависи од низа утицајних фактора. Посебно се издвајају усвојени технолошки параметри блока (висина подетаже, наступ багера, брзина кружног кретања), физичко-механичке карактеристике материјала, геометрија и стање резних елемената [38].

Да би ефикасност рада роторних багера била на задовољавајућем нивоу, потребно је усагласити конструктивне параметре, технологију рада и параметре резних елемената са карактеристикама радне средине [38]. Значајан утицај огледа се у правилном избору багера, тј. степену усаглашености резне силе и очекиваних отпора који зависе од врсте материјала. На слици 5.1 приказана је блок шема процеса копања [5], [81].



Слика 5.1. Блок шема процеса копања [81]

Укупни отпор материјала на копање при димензионисању погона роторних багера разликује се у односу на багере са једним радним елементом [5]. Поред тангентне  $P_t$  и нормалне  $P_n$  компоненте отпора на копање, код роторних багера се јавља још и бочна компонента  $P_b$  јер се процес откопавања врши истовременим окретањам стреле роторног точка и самог роторног точка [5]. Тангентна компонента отпора савлађује се снагом погона за транспорт багера, нормална снагом за дизање и спуштање стреле роторног точка, а бочна компонента снагом за кружно кретање горње градње. На слици 5.2 дате су компоненте укупног отпора материјала на копање [39], [5].



Слика 5.2. Укупни отпор материјала на копање [39], [5]

При откопавању материјала, ободна сила на роторном точку мора да савлада следеће отпоре [38], [5], [39]:

- *P<sub>rez</sub>* отпор на резања материјала у масиву, укључујући отпор трења резних елемената о чело блока;
- *P*<sub>pod</sub> отпор подизања материјала у ведрици до висине пражњења;
- *P*<sub>punj</sub> отпор пуњења ведрица материјалом;
- *P*<sub>tr</sub> отпор трења између материјала у ведрици и кружне склизнице роторног точка при подизању материјала до висине пражњења; и
- *P<sub>kin</sub>* отпор на саопштење кинетичке енергије материјала у ведрици, тј. убрзање материјала до брзине ведрице.

Ободна сила на роторном точку се дефинише једначином [38]:

$$P_{t} = P_{rez} + P_{pod} + P_{punj} + P_{tr} + P_{kin}$$
(5.1)

Произвођачи роторних багера при одређивању ободне силе на роторном точку користе следећи приступ [38]:

$$P_t = P_k + P_{pod} \tag{5.2}$$

При чему је:

$$P_k = P_{rez} + P_{punj} + P_{tr} + P_{kin}$$
(5.3)

где је:

 $P_k$ - сила копања.

Постоји више алгоритама за одређивање специфичног отпора материјала на копање. Најширу примену има Ватметарска метода [1] (*eng. Wattmeter method*). Метода се заснива на мерењу снаге мотора погона роторног точка, помоћу које се израчунава специфични отпор материјала на копање [38], [91].

Средња моментна струја  $I_m$  коју погон повлачи из мреже представља средњу вредност максималних и минималних пикова струје који се очитавају са електронског снимача података. Ефективна струја се одређује према једначини [38], [91]:

$$I_{ef} = \frac{I_m}{\sqrt{2}} \tag{5.4}$$

где су:

 $I_{ef}$ ,  $I_m$  – ефективна (очитана вредност), % и тренутна јачина струје мотора (прерачуната), [A]. Снага потребна за процес откопавања рачуна се на основу једначине [38], [91]:

$$N_s = \sqrt{3} \cdot U \cdot I_{ef} \cdot \cos \varphi \cdot 10^{-3} \tag{5.5}$$

где су:

 $N_S$  – снага која се троши у процесу копања, [kW];

*η* – коефицијент корисног дејства погона;

*U*-номинални напон, [V]; и

 $\cos \varphi$  – фактор снаге мотора.

Снага која се предаје мотору за погон роторног точка [38], [91]:

$$N_p = N_s \cdot \eta \tag{5.6}$$

Утрошена снага на процес копања представља разлику предате снаге и снаге потребне за подизање материјала до висине пражњења [38], [5], [92]:

$$N_k = N_p - N_{pod} \tag{5.7}$$

Сила потребна за откопавање материјала израчунава се на основу снаге копања и ободне брзине роторног точка [38], [5], [92]:

$$P_k = \frac{N_k}{\nu} \tag{5.8}$$

где је:

*v* – ободна брзина роторног точка, [m/s].

Однос утрошене снаге на процес копања и укупне дужине резних ивица у контакту са материјалом  $\sum L_i$ , представља *специфични отпор материјала на копање по дужини резних ивица* [38], [5], [92]:

$$K_L = \frac{P_k}{\sum_{i=1}^m L_i}$$
(5.9)

Однос утрошене снаге за процес копања и укупне површине попречних пресека свих ведрица у контакту са материјалом  $\sum F_i$  представља *специфични отпор маеријала на копање по површини попречних пресека* [38], [5]:

$$K_F = \frac{P_k}{\sum_{i=1}^m F_i}$$
(5.10)

Потрошња електричне енергије потребна за откопавање 1 m<sup>3</sup> материјала (*специфична потрошња*) [38] израчунава се као разлика предате снаге и снаге празног хода мотора према тренутном капацитету багера [38], [5], [92]:

$$E = \frac{N_p - N_{ph}}{Q_{ost}} \tag{5.11}$$

где су:

 $N_{ph}$  – снага празног хода мотора за погон роторног точка, [kW]; и  $Q_{ost}$  – остварени капацитет роторног багера у датом тренутку, [m<sup>3</sup>/h].

# 6. АДАПТИВНИ НЕУРО-ФАЗИ СИСТЕМ ЗАКЉУЧИВАЊА

ANFIS [7] (*eng. Adaptive Neuro–Fuzzy Inference System*) представља технику машинског учења која интегрише правила адаптивне неуронске мреже и теорију фази логике за формирање логичког односа између улазних и излазних величина [93], [94], [4], [95], [96]. Детаљна поставка модела неуронских мрежа и фази логике дата је у оквиру литературе [14], [97], [6], [98], [99]. У склопу ANFIS [7] модела, неуронске мреже омогућавају процедуре учења, док фази логика омогућава доношење закључака о релацијама код којих доминира неизвесност и вишезначност. Процес тренирања (обучавања) заснива се на одређивању вредности параметара, подешених према подацима за обуку [100]. *Back–propagation method* [101] (алгоритам простирања грешке уназад) представља основни начин обучавања система. Настоји да грешку између мрежног и жељеног излаза сведе на минимум. Недостаци овог алгоритма су нешто веће време потребно за обучавање и склоност "заборављању" у локалном минимуму [96]. Да би се отклонили недостаци *back–propagation* алгоритма, развијен је хибридни модел учења [102], који се заснива на комбинацији *back–propagation* алгоритма са методом најмањих квадрата [103] (*eng. Least squares method*). Примена ANFISA је погодна за нелинеарне узорке података [4], [104].

ANFIS [7] структура има пет слојева (слика 6.1.). Фази систем закључивања (FIS) представља језгро ANFIS [7] мреже [4]. Први слој (*Layer*) прима улазне сигнале и помоћу функције припадности претвара их у фази вредности. Други слој умножава фази сигнале из улазног слоја, на основу чега се обезбеђује покретање правила. У оквиру трећег слоја дефинишу се правила над нормализованим сигналима који долазе из другог слоја [100]. Четвртим слојем долази се до закључка о дефинисаним правилима, сигнали се преводе у јасне вредности. Пети слој сумира све сигнале и даје вредност излазној величини [4].



Слика 6.1. ANFIS слојеви [4]

ANFIS [7] може да имплементира следећа фази правила [100]:

- укупан излаз представља пондерисани просек прецизног излаза појединачног правила, добијен снагом правила (минимум степена припадности премисе) и функције припадности излаза (монотоно неопадајућа) [100]; и
- излаз према Sugeno фази IF-THEN правилима; излаз сваког правила представља линеарну комбинацију улазних променљивих, док је укупан излаз њихова пондерисана средина [100].

#### АДАПТИВНИ НЕУРО-ФАЗИ СИСТЕМ ЗАКЉУЧИВАЊА

Sugeno фази модел првог типа са два улаза x и y има облик [100]:

Правило 1: АКО је  $x A_1$  и y је  $B_1$  ОНДА је  $f_1 = p_1 x_1 + q_1 y + r_1$ Правило 2: АКО је  $x A_2$  и y је  $B_2$  ОНДА је  $f_2 = p_2 x_2 + q_2 y + r_2$ 

где су:

*A*<sub>1</sub>, *A*<sub>2</sub>, *B*<sub>1</sub>, *B*<sub>2</sub> – фази скупови улаза *x* и *y*, респективно; и

*p*<sub>1</sub>, *q*<sub>1</sub>, *r*<sub>1</sub>, *p*<sub>2</sub>, *q*<sub>2</sub>, *r*<sub>2</sub> – параметри излазних функција.

Први слој ANFIS [7] структуре садржи функције припадности, којима се нумерички улазни подаци претварају у фази променљиве. Параметри првог слоја одговарају параметрима премисе фази модела [94], [100]. Једначинама (6.1) и (6.2) одређује се излаз из сваког чвора  $O_{ij}$ , док  $\mu_{xi}$  и  $\mu_{yi-2}$  представљају функције припадности премисе [100].

 $O_{1i} = \mu_x, (x), \quad i = 1, 2$  (6.1)

$$O_{1i} = \mu_x, (y), \quad i = 3, 4$$
 (6.2)

где су:

х, у – улази у чвор; и

*A*<sub>1</sub>, *B*<sub>1</sub> – фази скупови унутар анализираног чвора дефинисани обликом функције припадности (најчешће се користе *Bellova* функција, троугласта, трапезна, итд.).

Други слој чине чворови означени са П. Улазни сигнали се множе, чиме се добија излаз из чвора *О*<sub>2,*i*</sub> који представља утицајни фактор *i*-тог правила *w<sub>i</sub>* [100]:

$$O_{2i} = w_i = \mu_{Ai}(x) \cdot \mu_{Bi}(y) \quad i = 1, 2, ...n$$
(6.3)

У трећем слоју, чворови су означени са N. Рачунају однос снаге (утицај) *i*-тог правила и суме снага осталих правила, чиме се израчунава нормализована снага *i*-тог правила [100]:

$$O_{3,i} = \overline{w_i} = \frac{w_i}{\sum_{i=1}^{n} w_i} \qquad i = 1, 2, \dots n$$
(6.4)

У оквиру четвртог слоја, рачуна се допринос дефинисаних правила излазу система, са функцијом чвора, која има облик [100]:

$$O_{4,i} = \overline{w_i} \cdot f_i = \overline{w_i} \cdot \left( p_i \cdot x + q_i \cdot y + r_i \right) \quad i = 1, 2, \dots n$$
(6.5)

где су:

*W<sub>i</sub>* – излаз из трећег слоја; и

 $p_i, q_i, r_i$  – скуп параметара који одговарају параметрима консеквенци.

У петом слоју рачуна се укупан излаз из ANFIS [7] модела. Слој се састоји од само једног чвора, означеним ∑.

$$O_{5,i} = \sum_{i=1}^{n} \overline{w_i} \cdot f_i = \frac{\sum_{i=1}^{n} w_i \cdot f_i}{\sum_{i=1}^{n} w_i}$$
(6.6)

На слици 6.2 приказана је архитектура ANFIS [7] модела.

#### АДАПТИВНИ НЕУРО-ФАЗИ СИСТЕМ ЗАКЉУЧИВАЊА



Слика 6.2. ANFIS архитектура [99], [100], [94], [105]

ANFIS [7] архитектура садржи два адаптивна слоја, први и четврти. У првом слоју се подешавају параметри који су у вези са функцијом припадности улаза. У четвртом слоју, подешавани параметри се односе на полином првог степена ( $p_i$ ,  $q_i$ ,  $r_i$ ) и то су параметри последице [100].

Тренирање неуро-фази система углавном се врши применом хибридног алгоритма (слика 6.3.). Суштина овог приступа огледа се у простирању унапред до четвртог слоја, где се методом најмањих квадрата врши процена последичних параметара. При простирању уназад, до првог слоја, врши се пренос податка о величини грешке, чиме се ажурирају параметри премисе, методом по правцу пада градијента (*eng. Gradient descent*) [100].



Слика 6.3. Хибридни алгоритам обуке ANFIS модела [100], [3]

Када су постављени параметри улазних функција припадности, излаз из ANFIS [7] модела израчунава се на следећи начин [100]:

$$f = \frac{w_1}{w_1 + w_2} \cdot f_1 + \frac{w_2}{w_1 + w_2} \cdot f_2 = \overline{w_1} \cdot f_1 + \overline{w_2} \cdot f_2$$
$$f = \left(\overline{w_1} \cdot x\right) \cdot p_1 + \left(\overline{w_1} \cdot y\right) \cdot q_1 + \left(\overline{w_1}\right) \cdot r_1 + \left(\overline{w_2} \cdot x\right) \cdot p_2 + \left(\overline{w_2} \cdot y\right) \cdot q_2 + \left(\overline{w_2}\right) \cdot r_2$$
(6.7)

Процес обуке ANFIS [7] модела почиње одређивањем фази скупова, броја скупова улазних променљивих и облика њихове функције припадности. Сви подаци о обуци пролазе кроз неуронске мреже, подешавањем улазних параметара, на основу којих се налази најбољи однос између улазних и излазних величина, чиме се грешке своде на минимум [100].

Пре усвајања модела потребно је утврдити његова генерализацијска својства [106]. Тачност модела се оцењује применом различитих статистичких критеријума [106]. Најчешће се за оцену квалитета користи корен средње квадратне грешке *RMSE* [9] (*eng. Root Means Square Error*), средња апсолутна грешка *MAE* (*eng. Mean Absolute Error*), Пирсонов (*eng. Pearson' Linear Correlation Coefficient*) линеарни коефицијент корелације (*R*) и средња апсолутна процентуална грешка *MAPE* (*eng. Mean Absolute Percentage Error*) [106].

*RMSE* [9] је представљен обрасцем [102], [107]:

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (P_i - O_i)^2}{N}}$$
(6.8)

где су:

*P<sub>i</sub>*, *O<sub>i</sub>* – експерименталне и предвиђене вредности [107]; и

*N* – укупан број података.

*МАЕ* критеријум представља меру апсолутне тачности модела. Користи се за приказ средње апсолутне грешке [106]:

$$MAE = \frac{1}{N} \cdot \sum_{i=1}^{N} |P_i - O_i|$$
(6.9)

Пирсонов коефицијент R представља релативни показатељ тачности. Дефинише се на следећи начин [107]:

$$R = \frac{N \cdot \left(\sum_{i=1}^{N} O_i \cdot P_i\right) - \left(\sum_{i=1}^{N} O_i\right) \cdot \left(\sum_{i=1}^{N} P_i\right)}{\sqrt{\left(N \cdot \sum_{i=1}^{N} O_i^2 - \left(\sum_{i=1}^{N} O_i\right)^2\right) \cdot \left(N \cdot \sum_{i=1}^{N} P_i^2 - \left(\sum_{i=1}^{N} P_i\right)^2\right)}}$$
(6.10)

Средња апсолутна процентуална грешка *МАРЕ* (често се назива средњи апсолутни проценат девијације *МАРD*) представља меру тачности предвиђања модела [106]:

$$MAPE = \frac{100}{N} \cdot \sum_{i=1}^{N} \left| \frac{P_i - O_i}{P_i} \right|$$
(6.11)

# АДАПТИВНИ НЕУРО-ФАЗИ СИСТЕМ ЗАКЉУЧИВАЊА

ANFIS [3], [4] методологија се примењује код скупова података у којима је присутна нелинеарна форма. За примену ANFISA није непоходно познавање функционалне везе између улазних и излазне променљиве. У односу на предиктивне моделе засноване на неуронским мрежама, ANFIS [3], [4] има следеће предности:

- комбинација неуронских мрежа и фази логике омогућава ефикасније закључивање код непотпуних и нејасних скупова података;
- боље разумевање проблема, применом лингвистичких променљивих које су лако разумљиве експертима при решавању различитих проблема;
- скалабилност, могућност скалирања без губитка прецизности модела;
- *висока прецизост*, комбинацијом информација из различитих извора, укључујући експертска знања што омогућава боље закључивање;
- способност учења, лако се адаптира променама података. Ова карактеристика чини ANFIS [3], [4] флексибилним и применљивим у различитим случајевима;
- *транспарентност*, ANFIS [3], [4] модели су транспарентни у смислу да је могуће пратити процес доношења одлука;
- *робустност*, ANFIS [3], [4] модели су робустни и отпорни на шум у подацима, што их чини погодним за коришћење код података у којима доминира неизвесност и неодлучност;
- *мања осетљивост на пренаученост*, мања склоност пукотинама у подацима и боље резоновање на новим подацима; и
- *једноставна имплементација*, краће време потребно за развој модела и примена у различитим научним дисциплинама.

Предности ANFIS [3], [4] модела у односу на регресионе предиктивне моделе:

- способност прилагођавања нелинеарним односима између података, док је примена регресионих модела ограничена на линеарне релације;
- отпорност на шум и нејасноће у скупу података; и
- примена за анализу великог броја проблема (предикција, класификација, контрола и идентификација система).

# 7. МОДЕЛ ЗАВИСНОСТИ СПЕЦИФИЧНЕ ПОТРОШЊЕ ЕНЕРГИЈЕ И НИВОА ВИБРАЦИЈА ПОГОНА ЗА КОПАЊЕ РОТОРНОГ БАГЕРА

Модел је базиран на зависности следећих величина [92]:

- нивоа похабаности резних елемената;
- потрошње електричне енергије; и
- нивоа амплитуде брзине вибрација.

Заснован је на две врсте мерења. Прво је мерење потрошње електричне енергије при радном процесу, а друго мерење вибрација које се приказује преко амплитуде брзине. Постоји међусобни утицај између поменутих физичких феномена. Повећањем потрошње електричне енергије, повећава се вредност амплитуде брзине вибрација. У наставку се даје теоријска анализа физичких величина које чине модел [92].

#### 7.1 Мерење похабаности резних елемената

Процес рада роторних багера карактерише континуалан рад. Радни орган је роторни точак на коме се налазе ведрице, чији број зависи од пречника роторног точка, броја обртаја истог и задатог капацитета. По ободу ножа сваке ведрице налазе се резни елементи који су једини у контакту са масивом који се откопава. Радни елемент се при пролазу кроз материјал, креће по резултанти ободне брзине при окретању роторног точка око своје осе и ободне брзине окретања роторне стреле око вертикалне осе багера [92].

Расположива сила резања зуба/ведрице се концентрише на малу дужину и на тај начин се олакшава продирање ведрице у материјал. Последица рада зуба је његово хабање, које у зависности од материјала који се откопава, може бити мање или више изражено. Услед хабања долази до брзе промене геометрије (рад у песку). Похабаност зуба условљава повећање потрошње електричне енергије. Коначно, повезаност између похабаности зуба, потрошње електричне енергије и амплитуде брзине вибрација је очигледна [92].

За утврђивање нивоа похабаности коришћен је ручни мерни алат [92]. Када је резни елемент нов, номинална мера износи 200 [mm]. Максимална похабаност одговара граничној мери зуба која износи 100 [mm]. На слици 7.1 дат је опсег мера зуба од новог до стања максималне похабаности и дефинисан степен похабаности према мери зуба.



#### 7.2 Мерење потрошње електричне енергије у процесу копања

Електрична енергија је погонска енергија за рад роторног багера [92]. Електромотором се претвара у механичку енергију и даље користи за обављање корисног рада. Ниво потрошње електричне енергије директно зависи од ефикасности рада машине. У моделу се користи специфична потрошња у односу на остварени капацитет копања као индикатор потрошње [92].

$$E = \frac{N_p - N_{ph}}{Q_{ost}} \tag{7.1}$$

Предата снага мотора за погон роторног точка [92], [38]:

$$N_{p} = N_{s} \cdot \eta = \sqrt{3} \cdot U \cdot I_{ef} \cdot \cos \varphi \cdot 10^{-3} \cdot \eta = \sqrt{3} \cdot U \cdot \frac{I_{m}}{\sqrt{2}} \cdot \cos \varphi \cdot 10^{-3} \cdot \eta$$
(7.2)

Снага празног хода мотора зависи од модела багера. За пример из студиј е случаја износи 35 [kW]. Остварени капацитет багера израчунава се помоћу једначине [92]:

$$Q_{ost} = 60 \cdot h \cdot s \cdot v_b \cdot \left(\cos\frac{\varphi_L + \varphi_D}{2}\right) \cdot \frac{\pi}{2}$$
(7.3)

где су:

h, s – висина подетаже и наступ багера (дебљина реза), [m];

*v*<sub>b</sub> – брзина кружног кретања багера, [m/min]; и

 $\varphi_{L,D}$  – угао окретања стреле роторног точка у лево и десно у односу на уздужну осу, [°]. Сила потребна за процес копања, односно, савладавање отпора на копање [92]:

$$F = \frac{N_p - N_d}{v} \tag{7.4}$$

где су:

*v* – ободна брзина роторног точка, [m/s]; и

 $N_d$  – снага потребна за подизање материјала до висине пражњења, [kW].

Снага за подизање материјала до висине пражњења [92]:

$$N_d = \frac{Q_{ost} \cdot \gamma \cdot g \cdot h_d}{3600} \tag{7.5}$$

где су:

γ- специфична маса материјала, [t/m<sup>3</sup>]; и

*h*<sub>d</sub> – висина подизања материјала до висине пражњења (конструктивна величина), [m].

Анизотропија материјала који се откопава захтева посебан режим континуалног мерења помоћу електронског снимача струје [91], [92]. Електронски снимач региструје тренутну струју, помоћу које се израчунава укупна ефективна снага за процес копања [91]. Преко ефективне снаге израчунава се ангажована снага, односно предата снага. Величине које дефинишу потрошњу електричне енергије одређују се мерењем тренутне струје, а остале величине (h, s,  $v_b$  и углови окретања стреле) помоћу инструмената на багеру [91].

# АНАЛИТИЧКИ МОДЕЛ ЗАВИСНОСТИ ИЗМЕРЕНИХ ВЕЛИЧИНА

#### 7.3 Мерење амплитуде брзине вибрација на погону за копање

Електромотори током рада стварају вибрације које представљају утрошену енергију. Виша амплитуда изазива већу потрошњу енергије. Вибрације електромотора обично ствара сила побуде (ексцитације) [92]. Силу побуде–поремећајну силу изазива сила копања (спољашња сила) чији интензитет зависи од стања резних елемената. Фреквенција и величина вибрација електромотора одређена је правцем и фреквенцијом силе побуде. Из тог разлога се анализа вибрација користи за одређивање сила побуде када је машина у раду. Амплитуда вибрација *А* зависи од вредности поремећајне силе и крутости, тј. отпорности конструкције према деформацији коју изазива поремећајна сила: маса односно инерција, пригушење) [92].

$$A = \frac{F}{c} \tag{7.6}$$

Амплитуда се може повећати услед повећања интензитета поремећајне силе или услед смањења крутости [86], [92]. Обрнуто, може се смањити услед смањења интензитета поремећајне силе или повећања крутости. Повећање крутости може се постићи смањењем амплитуде, повећањем масе, дефинисањем геометрије (меродавне површине дела), начина и места ослањања, што утиче на повећање прве сопствене фреквенције [92].

# 7.4 Зависност потрошње електричне енергије процеса копања и амплитуде брзине вибрација погона за копање

Сила копања коју развија погон роторног точка користи се за савлађивање специфичног отпора материјала на копање, односно омогућава процес откопавања [92]. Похабаност зуба има директан утицај на силу копања. Ако се претпостави да је ова сила у ствари и сила побуде (поремећајна сила која директно утиче на погон роторног точка), може се поставити директна зависност између израза (7.6) и израза (7.4). Друга претпоставка је да је крутост c = const. при сваком мерењу (мала је вероватноћа да ће се променити при блиским мерењима). Узевши у обзир поменуте претпоставке, долази се до релације [92]:

$$A = \frac{F}{c} = \frac{\frac{N_p - N_d}{v}}{c} = \frac{N_p - N_d}{c \cdot v}$$
(7.7)

Да би се измерене амплитуде вибрација у хоризонталном и вертикалном правцу упоредиле са специфичном потрошњом електричне енергије, неопходно је извршити њихово слагање. Слагање међусобно нормалних амплитуда (хармонијско осцилаторно кретање) изводи се према једначини [92], [108]:

$$A = \sqrt{A^2_{HOR} + A^2_{VER}} \tag{7.8}$$

где су:

Анок – хоризонтална компонента амплитуде вибрација, [mm/s]; и

Aver – вертикална компонента амплитуде вибрација, [mm/s].

Надградња предложеног модела реализована је применом ANFIS [7] методологије за предикцију потрошње електричне енергије. Примена ANFISA је погодна за скупове података у којима је присутна хетерогеност, нејасност и нелинеарна форма. ANFIS [7] пружа могућност поновног тестирања <u>основног модела</u> (зависност похабаности, потрошње енергије и амплитуде) добијањем нових улазних података у модел, без мерења на багеру. Графички приказ развијеног модела дат је на слици 7.2.



Слика 7.2. Развијен аналитички модел – алгоритам зависности похабаности резних елемената, потрошње енергије и нивоа амплитуде вибрација погона за копање

# 8. ИЗВЕДЕНА МЕРЕЊА НА РОТОРНОМ БАГЕРУ SRs2000.32/5+VR

Мерењем ангажоване снаге мотора за погон роторног точка и применом Ватметарске методе [1] одређен је специфични отпор материјала на копање [91]. Истовремено је вршено мерење вибрација и утврђивање степена похабаности резних елемената, као битних утицајних параметара на рад погона за копање. Припремни радови на багеру односили су се на планирање планума и монтажу мерне опреме на багер [91]. Мерења су извођена у реалном времену рада система, откопавањем вертикалним резовима, са претходно дефинисаним микротехнолошким параметрима блока [91].

Прво мерење је вршено у тренутку када је похабаност резних елемената износила 75 % од стања новог зуба. Након извршеног сервиса багера, мерење је рађено са потпуно новим резним елементима. Наредња мерења су вршена за стања резних елемената која одговарају похабаности од 25 %, 50 % и 100 %. На тај начин, створена је могућност за креирање модела који дефинише утицај похабаности резних елемената на тренд потрошње електричне енергије и ниво амплитуде вибрација.

На багеру SRs2000.32/5+VR на погону за копање ангажована су два мотора инсталисане снаге по 670 [kW]. Ови мотори раде паралелно, па је за одређивање специфичног отпора материјала на копање неопходно сабрати парцијалне вредности струје коју мотори повлаче из мреже. Специфични отпор материјала на копање је у функцији микротехнолошких параметара блока, од којих су најзначајнији [91], [92]:

- висина подетаже;
- дебљина реза;
- брзина кружног кретања (окретања горње градње); и
- угаони положај стреле роторног точка (мерено од уздужне осе багера).

Техничке карактеристике багера SRs2000.32/5+VR су у таблици 8.1.

**Таблица 8.1.** Основне техничке карактеристике багера SRs2000.32/5+VR [4], [92]

| Површински коп Тамнава–Западно поље – Баге       | ep SRs2000.32 | 2/5+VR  |
|--------------------------------------------------|---------------|---------|
| Инсталисана снага мотора за погон роторног точка | 2•670         | [kW]    |
| Запремина ведрице са прстенастим простором       | 2000          | [1]     |
| Број ведрица                                     | 20            | ком.    |
| Брзина кружног кретања горње градње              | 30            | [m/min] |
| Угаоно растојање између ведрица                  | 18            | [°]     |
| Пречник роторног точка                           | 12            | [m]     |
| Напон мотора                                     | 6000          | [V]     |
| Ободна брзина роторног точка                     | 2,7           | [m/s]   |
| Специфична резна сила                            | 1000          | [N/cm]  |

Приликом мерења, промена параметара одреска вршена је тако да се за константну висину одреска:  $h_1 = 7$  [m] врши промена три дебљине одреска:  $s_1 = 0.25$  [m],  $s_2 = 0.40$  [m] и  $s_3 = 0.50$  [m], док је брзина кружног кретања горње градње багера била фиксирана и износила 70 % од максималне брзине [92], а то је  $v_1 = 21$  [m/min].

На сликама 8.1 и 8.2 приказано је електронско снимање података током мерења и роторни точак у раду. На слици 8.3 дат је изглед блока у ком су вршена мерења, док су на слици 8.4 представљени резни елементи багера SRs2000.32/5+VR за одговарајуће степене похабаности. Формулар коришћен при мерењу струје налази се у прилогу 1.



Слика 8.1. Електронско снимање података на багеру SRs2000.32/5+VR [92]



Слика 8.2. Роторни точак багера SRs2000.32/5+VR у раду [37]



Слика 8.3. Блок у којем су вршена мерења [4], [92]



Слика 8.4. Нивои похабаности резних елемената у току мерења

#### 8.1 Резултати мерења специфичног отпора материјала на копање

#### 8.1.1 Резултати мерења за случај нових резних елемената

Резултати мерења специфичног отпора материјала на копање биће приказани парцијално. Прво резултати мерења за доњи мотор погона за копање (слика 8.5, таблица 8.2) и његова специфична потрошња електричне енергије (таблица 8.4.), затим исти резултати за горњи мотор (слика 8.6, таблице 8.3 и 8.5.) и на крају збирне вредности за цео погон (таблица 8.7.) (два мотора погона за копање, инсталисане снаге по 670 [kW]), помоћу којих се долази до укупног специфичног отпора материјала на копање. Микротехнолошки параметри блока задржани су код свих мерења, са одступањима који немају утицај на могућност поређења добијених резултата.

За одређивање специфичног отпора материјала на копање коришћена је Ватметарска метода [1], по алгоритму представљеном у поглављу 5. Извештаји на основу којих се ушло у анализу јачине струје коју погон за копање повлачи из мреже преузети су из диспечерског центра површинског копа Тамнава–Западно поље за роторни багер SRs2000.32/5+VR.



Слика 8.5. Струја коју доњи погон копања повлачи из мреже – нови резни елементи





Дијаграми се обрађују према дефинисаним микротехнолошким параметрима блока. Дебљина реза имала је три промене: 0,25 [m], 0,4 [m] и 0,5 [m]. При мерењу, багер је за једну дебљину реза ишао у леву (L) и десну (D) страну. Бележена су времена уласка и изласка роторног точка из реза.

Дијаграм је подељен на одговарајуће секције; 1L, 1D за дебљину реза 0,25 [m], 2L, 2D, за дебљину 0,4 [m] и 3L, 3D за дебљину 0,5 [m]. У оквиру једног пролаза, у односу на ширину блока и углове окретања стреле роторног точка, једна секција редукована је на четири дела (1L1, 1L2, 1L3, 1L4,...). За сваку секцију очитава се *минимална, средња* и *максимална вредност струје*. Пикови струје су дати у процентима. За примену Ватметарске методе [1] процентуалне вредности се преводе у јачину струје (Ампере), према обрасцу који представља препоруку електро службе одржавања [92]:

$$I_m = \frac{79 \cdot I, \%}{100}$$
(8.1)

У таблицама 8.2 и 8.3 приказане су вредности очитаних пикова струје за доњи и горњи погон роторног точка за мерење са новим резним елементима. Погон је за дебљину реза 0,5 [m] и кретање у десно избацио. Мерење је настављено, али је код анализе резултата узет у обзир период од уласка у рез до првог избацивања.

|     |         | 1     | %0 | 1 m    | [A] |     |         | 1     | %0 | 1 m    | [A] |          |         | 1     | %0 | 1 m     | [A] |
|-----|---------|-------|----|--------|-----|-----|---------|-------|----|--------|-----|----------|---------|-------|----|---------|-----|
| _   | MIN     | 45    |    | 35,55  |     | _   | MIN     | 65    |    | 51,35  |     | _        | MIN     | 70    |    | 55,3    |     |
| - 3 | SREDNJA | 47,25 |    | 37,328 |     | E   | SREDNJA | 75,75 |    | 59,843 |     | 3        | SREDNJA | 75,75 |    | 59,8425 |     |
| -   | MAX     | 49,5  |    | 39,105 |     |     | MAX     | 86,5  |    | 68,335 |     |          | MAX     | 81,5  |    | 64,385  |     |
|     | MIN     | 44    |    | 34,76  |     |     | MIN     | 62    |    | 48,98  |     |          | MIN     | 65    |    | 51,35   |     |
| 8   | SREDNJA | 47,25 |    | 37,328 |     |     | SREDNJA | 66    |    | 52,14  |     | 1        | SREDNJA | 71,75 |    | 56,6825 |     |
|     | MAX     | 50,5  |    | 39,895 |     |     | MAX     | 70    |    | 55,3   |     |          | MAX     | 78,5  |    | 62,015  |     |
| ~   | MIN     | 41,5  |    | 32,785 |     | ~   | MIN     | 46    |    | 36,34  |     | ~        | MIN     | 54,5  |    | 43,055  |     |
| Ē   | SREDNJA | 44,25 |    | 34,958 |     | - A | SREDNJA | 48,75 |    | 38,513 |     | Ĩ        | SREDNJA | 59    |    | 46,61   |     |
|     | MAX     | 47    |    | 37,13  |     |     | MAX     | 51,5  |    | 40,685 |     |          | MAX     | 63,5  |    | 50,165  |     |
| -   | MIN     | 39,5  |    | 31,205 |     | -   | MIN     | 39,5  |    | 31,205 |     | -        | MIN     | 54    |    | 42,66   |     |
| È   | SREDNJA | 40    |    | 31,6   |     | I   | SREDNJA | 41,75 |    | 32,983 |     | Ĩ        | SREDNJA | 58,75 |    | 46,4125 |     |
|     | MAX     | 40,5  |    | 31,995 |     |     | MAX     | 44    |    | 34,76  |     |          | MAX     | 63,5  |    | 50,165  |     |
| _   | MIN     | 40    |    | 31,6   |     | 2D1 | MIN     | 45,5  |    | 35,945 |     | _        | MIN     | 44    |    | 34,76   |     |
| ē   | SREDNJA | 42    |    | 33,18  |     |     | SREDNJA | 47,25 |    | 37,328 |     | ē        | SREDNJA | 49    |    | 38,71   |     |
|     | MAX     | 44    |    | 34,76  |     |     | MAX     | 49    |    | 38,71  |     |          | MAX     | 54    |    | 42,66   |     |
| 2   | MIN     | 44    |    | 34,76  |     | 2   | MIN     | 50    |    | 39,5   |     | 2        | MIN     | 50,5  |    | 39,895  |     |
| Ë   | SREDNJA | 45,5  |    | 35,945 |     | â   | SREDNJA | 52,5  |    | 41,475 |     | <u> </u> | SREDNJA | 53    |    | 41,87   |     |
|     | MAX     | 47    |    | 37,13  |     |     | MAX     | 55    |    | 43,45  |     |          | MAX     | 55,5  |    | 43,845  |     |
| ~   | MIN     | 49,5  |    | 39,105 |     | ~   | MIN     | 63    |    | 49,77  |     | ~        | MIN     | 64    |    | 50,56   |     |
| Ë   | SREDNJA | 50    |    | 39,5   |     | Ä   | SREDNJA | 60    |    | 47,4   |     | ĕ        | SREDNJA | 69,5  |    | 54,905  |     |
|     | MAX     | 50,5  |    | 39,895 |     |     | MAX     | 57    |    | 45,03  |     |          | MAX     | 75    |    | 59,25   |     |
| +   | MIN     | 52    |    | 41,08  |     | -   | MIN     | 60    |    | 47,4   |     |          | MIN     | 65    |    | 51,35   |     |
| è   | SREDNJA | 54,25 |    | 42,858 |     | Å   | SREDNJA | 70    |    | 55,3   |     | ě        | SREDNJA | 81,25 |    | 64,1875 |     |
| -   | MAX     | 56,5  |    | 44,635 |     |     | MAX     | 80    |    | 63,2   |     |          | MAX     | 97,5  |    | 77,025  |     |

Таблица 8.2. Очитане вредности пикова струје – доњи погон копања, нови зуби

Таблица 8.3. Очитане вредности пикова струје – горњи погон копања, нови зуби

|   |         | Ι     | % | $I_m$  | [A] |          |         | Ι     | % | $I_m$  | [A] |          |         | Ι     | % | $I_m$   | [A] |
|---|---------|-------|---|--------|-----|----------|---------|-------|---|--------|-----|----------|---------|-------|---|---------|-----|
| _ | MIN     | 45,5  |   | 35,945 |     | _        | MIN     | 60    |   | 47,4   |     | _        | MIN     | 64,5  |   | 50,955  |     |
| 3 | SREDNJA | 47,25 |   | 37,328 |     |          | SREDNJA | 67,75 |   | 53,523 |     | 1        | SREDNJA | 72,25 |   | 57,0775 |     |
| - | MAX     | 49    |   | 38,71  |     |          | MAX     | 75,5  |   | 59,645 |     |          | MAX     | 80    |   | 63,2    |     |
|   | MIN     | 44,5  |   | 35,155 |     |          | MIN     | 63,5  |   | 50,165 |     |          | MIN     | 65,5  |   | 51,745  |     |
| 8 | SREDNJA | 47    |   | 37,13  |     |          | SREDNJA | 75    |   | 59,25  |     | 1        | SREDNJA | 71    |   | 56,09   |     |
|   | MAX     | 49,5  |   | 39,105 |     |          | MAX     | 86,5  |   | 68,335 |     |          | MAX     | 76,5  |   | 60,435  |     |
| ~ | MIN     | 41    |   | 32,39  |     |          | MIN     | 58,5  |   | 46,215 |     | ~        | MIN     | 53    |   | 41,87   |     |
| Ë | SREDNJA | 43,25 |   | 34,168 |     | - A      | SREDNJA | 66,75 |   | 52,733 |     | 1        | SREDNJA | 56,5  |   | 44,635  |     |
|   | MAX     | 45,5  |   | 35,945 |     |          | MAX     | 75    |   | 59,25  |     |          | MAX     | 60    |   | 47,4    |     |
| - | MIN     | 38,5  |   | 30,415 |     | -        | MIN     | 40,5  |   | 31,995 |     | -        | MIN     | 42,5  |   | 33,575  |     |
| È | SREDNJA | 40,5  |   | 31,995 |     | Ì        | SREDNJA | 42,75 |   | 33,773 |     | Ĩ        | SREDNJA | 45,5  |   | 35,945  |     |
|   | MAX     | 42,5  |   | 33,575 |     |          | MAX     | 45    |   | 35,55  |     |          | MAX     | 48,5  |   | 38,315  |     |
| _ | MIN     | 41    |   | 32,39  |     | _        | MIN     | 40    |   | 31,6   |     | _        | MIN     | 39    |   | 30,81   |     |
| ē | SREDNJA | 44,25 |   | 34,958 |     | <u>e</u> | SREDNJA | 41,5  |   | 32,785 |     | <u>G</u> | SREDNJA | 40,25 |   | 31,7975 |     |
|   | MAX     | 47,5  |   | 37,525 |     | 7        | MAX     | 43    |   | 33,97  |     |          | MAX     | 41,5  |   | 32,785  |     |
| ~ | MIN     | 40    |   | 31,6   |     | ~        | MIN     | 48,5  |   | 38,315 |     | ~        | MIN     | 54,5  |   | 43,055  |     |
| ë | SREDNJA | 42,75 |   | 33,773 |     | ä        | SREDNJA | 52,25 |   | 41,278 |     | ë        | SREDNJA | 55,75 |   | 44,0425 |     |
|   | MAX     | 45,5  |   | 35,945 |     |          | MAX     | 56    |   | 44,24  |     |          | MAX     | 57    |   | 45,03   |     |
| ~ | MIN     | 47,5  |   | 37,525 |     | ~        | MIN     | 54,5  |   | 43,055 |     | ~        | MIN     | 58,5  |   | 46,215  |     |
| Ë | SREDNJA | 51,25 |   | 40,488 |     | Ĩ        | SREDNJA | 61,5  |   | 48,585 |     | Ĩ        | SREDNJA | 69,5  |   | 54,905  |     |
|   | MAX     | 55    |   | 43,45  |     |          | MAX     | 68,5  |   | 54,115 |     |          | MAX     | 80,5  |   | 63,595  |     |
| 4 | MIN     | 53,5  |   | 42,265 |     | +        | MIN     | 60,5  |   | 47,795 |     | +        | MIN     | 81,5  |   | 64,385  |     |
| ĝ | SREDNJA | 55,5  |   | 43,845 |     | ĝ        | SREDNJA | 72,75 |   | 57,473 |     | Ő        | SREDNJA | 98,75 |   | 78,0125 |     |
|   | MAX     | 57,5  |   | 45,425 |     |          | MAX     | 85    |   | 67,15  |     |          | MAX     | 116   |   | 91,64   |     |

| Р.бр. | $\varphi_L$ | $\varphi_D$ | правац | h | S    | V <sub>b</sub> | $Q_{ef}$ | I <sub>sr</sub> | Imax  | Imin  | N <sub>sr</sub> | N <sub>max</sub> | N <sub>min</sub> | $P_{k,sr}$ | $P_{k,max}$ | $E_{sr}$ | Emax  | L    | F <sub>sr</sub> | k <sub>w</sub> | K <sub>L,sr</sub> | K <sub>L,max</sub> | K <sub>F,sr</sub> | $K_{F,max}$ | K <sub>L</sub> | $K_{F}$ |
|-------|-------------|-------------|--------|---|------|----------------|----------|-----------------|-------|-------|-----------------|------------------|------------------|------------|-------------|----------|-------|------|-----------------|----------------|-------------------|--------------------|-------------------|-------------|----------------|---------|
| 1.    | -33         | -11         | L      | 7 | 0,25 | 21             | 2044     | 37,33           | 39,11 | 35,55 | 251,8           | 263,8            | 239,8            | 52,9       | 89,8        | 0,097    | 0,102 | 4,33 | 0,23            | 1,64           | 122,4             | 207,5              | 14,2              | 24,1        | 165,0          | 19,1    |
| 2.    | -11         | 13          | L      | 7 | 0,25 | 21             | 2157     | 37,33           | 39,90 | 34,76 | 251,8           | 269,1            | 234,5            | 51,1       | 91,6        | 0,092    | 0,099 | 4,33 | 0,23            | 1,64           | 118,2             | 211,8              | 13,7              | 24,6        | 165,0          | 19,1    |
| 3.    | 13          | 37          | L      | 7 | 0,25 | 21             | 1998     | 34,96           | 37,13 | 32,79 | 235,8           | 250,5            | 221,2            | 48,2       | 85,2        | 0,092    | 0,098 | 4,33 | 0,23            | 1,64           | 111,5             | 197,1              | 12,9              | 22,9        | 154,3          | 17,9    |
| 4.    | 37          | 62          | L      | 7 | 0,25 | 21             | 1432     | 31,60           | 32,00 | 31,21 | 213,2           | 215,8            | 210,5            | 49,7       | 73,4        | 0,113    | 0,115 | 4,33 | 0,23            | 1,64           | 114,9             | 169,8              | 13,3              | 19,7        | 142,3          | 16,5    |
| 5.    | 62          | 37          | D      | 7 | 0,25 | 21             | 1432     | 33,18           | 34,76 | 31,60 | 223,8           | 234,5            | 213,2            | 53,3       | 79,8        | 0,120    | 0,127 | 4,33 | 0,23            | 1,64           | 123,3             | 184,5              | 14,3              | 21,4        | 153,9          | 17,9    |
| 6.    | 37          | 13          | D      | 7 | 0,25 | 21             | 1998     | 35,95           | 37,13 | 34,76 | 242,5           | 250,5            | 234,5            | 50,5       | 85,2        | 0,095    | 0,098 | 4,33 | 0,23            | 1,64           | 116,8             | 197,0              | 13,5              | 22,9        | 156,9          | 18,2    |
| 7.    | 13          | -11         | D      | 7 | 0,25 | 21             | 2157     | 39,50           | 39,90 | 39,11 | 266,5           | 269,1            | 263,8            | 56,1       | 91,6        | 0,098    | 0,099 | 4,33 | 0,23            | 1,64           | 129,8             | 211,7              | 15,1              | 24,6        | 170,7          | 19,8    |
| 8.    | -11         | -33         | D      | 7 | 0,25 | 21             | 2044     | 42,86           | 44,64 | 41,08 | 289,1           | 301,1            | 277,1            | 65,7       | 102,5       | 0,114    | 0,119 | 4,33 | 0,23            | 1,64           | 152,0             | 236,9              | 17,6              | 27,5        | 194,4          | 22,6    |
| 9.    | -33         | -11         | L      | 7 | 0,4  | 21             | 3271     | 59,84           | 68,34 | 51,35 | 403,7           | 461,0            | 346,4            | 85,0       | 157,0       | 0,103    | 0,120 | 4,89 | 0,36            | 1,64           | 173,7             | 320,8              | 14,2              | 26,3        | 247,2          | 20,3    |
| 10.   | -11         | 13          | L      | 7 | 0,4  | 21             | 3451     | 52,14           | 55,30 | 48,98 | 351,7           | 373,0            | 330,4            | 64,3       | 127,0       | 0,084    | 0,090 | 4,89 | 0,36            | 1,64           | 131,3             | 259,5              | 10,8              | 21,3        | 195,4          | 16,0    |
| 11.   | 13          | 37          | L      | 7 | 0,4  | 21             | 3197     | 38,51           | 40,69 | 36,34 | 259,8           | 274,5            | 245,1            | 36,9       | 93,4        | 0,064    | 0,068 | 4,89 | 0,36            | 1,64           | 75,4              | 190,9              | 6,2               | 15,7        | 133,1          | 10,9    |
| 12.   | 37          | 62          | L      | 7 | 0,4  | 21             | 2291     | 32,98           | 34,76 | 31,21 | 222,5           | 234,5            | 210,5            | 38,9       | 79,8        | 0,075    | 0,079 | 4,89 | 0,36            | 1,64           | 79,5              | 163,1              | 6,5               | 13,4        | 121,3          | 9,9     |
| 13.   | 62          | 37          | D      | 7 | 0,4  | 21             | 2291     | 37,33           | 38,71 | 35,95 | 251,8           | 261,1            | 242,5            | 48,9       | 88,9        | 0,086    | 0,090 | 4,89 | 0,36            | 1,64           | 100,0             | 181,6              | 8,2               | 14,9        | 140,8          | 11,5    |
| 14.   | 37          | 13          | D      | 7 | 0,4  | 21             | 3197     | 41,48           | 43,45 | 39,50 | 279,8           | 293,1            | 266,5            | 43,7       | 99,7        | 0,070    | 0,074 | 4,89 | 0,36            | 1,64           | 89,4              | 203,9              | 7,3               | 16,7        | 146,6          | 12,0    |
| 15.   | 13          | -11         | D      | 7 | 0,4  | 21             | 3451     | 47,40           | 45,03 | 49,77 | 319,8           | 303,8            | 335,7            | 53,3       | 103,3       | 0,076    | 0,071 | 4,89 | 0,36            | 1,64           | 108,9             | 211,1              | 8,9               | 17,3        | 160,0          | 13,1    |
| 16.   | -11         | -33         | D      | 7 | 0,4  | 21             | 3271     | 55,30           | 63,20 | 47,40 | 373,0           | 426,3            | 319,8            | 74,5       | 145,2       | 0,095    | 0,110 | 4,89 | 0,36            | 1,64           | 152,2             | 296,7              | 12,5              | 24,3        | 224,5          | 18,4    |
| 17.   | -33         | -11         | L      | 7 | 0,5  | 21             | 4089     | 59,84           | 64,39 | 55,30 | 403,7           | 434,3            | 373,0            | 71,7       | 147,8       | 0,083    | 0,090 | 5,27 | 0,45            | 1,64           | 135,9             | 280,5              | 9,6               | 19,8        | 208,2          | 14,7    |
| 18.   | -11         | 13          | L      | 7 | 0,5  | 21             | 4314     | 56,68           | 62,02 | 51,35 | 382,4           | 418,3            | 346,4            | 60,7       | 142,4       | 0,074    | 0,082 | 5,27 | 0,45            | 1,64           | 115,1             | 270,2              | 8,1               | 19,1        | 192,6          | 13,6    |
| 19.   | 13          | 37          | L      | 7 | 0,5  | 21             | 3997     | 46,61           | 50,17 | 43,06 | 314,4           | 338,4            | 290,4            | 42,6       | 115,2       | 0,064    | 0,070 | 5,27 | 0,45            | 1,64           | 80,8              | 218,5              | 5,7               | 15,4        | 149,6          | 10,6    |
| 20.   | 37          | 62          | L      | 7 | 0,5  | 21             | 2864     | 46,41           | 50,17 | 42,66 | 313,1           | 338,4            | 287,8            | 60,6       | 115,2       | 0,089    | 0,097 | 5,27 | 0,45            | 1,64           | 114,9             | 218,5              | 8,1               | 15,4        | 166,7          | 11,8    |
| 21.   | 62          | 37          | D      | 7 | 0,5  | 21             | 2864     | 38,71           | 42,66 | 34,76 | 261,1           | 287,8            | 234,5            | 42,8       | 98,0        | 0,072    | 0,081 | 5,27 | 0,45            | 1,64           | 81,2              | 185,8              | 5,7               | 13,1        | 133,5          | 9,4     |
| 2.2   | 37          | 13          | D      | 7 | 0.5  | 21             | 2864     | 55 50           | 60.80 | 52.50 | 330.2           | 3373             | 328.5            | 48.5       | 105.4       | 0.085    | 0.097 | 5 27 | 0.45            | 1 64           | 90.5              | 195 5              | 64                | 143         | 137.5          | 11.2    |

Таблица 8.4. Специфични отпор материјала на копање за случај нових резних елемената, доњи погон
|       |             |             | · 1    |   |      | 1              | 1 5      |                 |       |       | 2 3      |                  | 1                |            |             | ļ        | 1                |      |                 |                |                   |                    |            |             |                |         |
|-------|-------------|-------------|--------|---|------|----------------|----------|-----------------|-------|-------|----------|------------------|------------------|------------|-------------|----------|------------------|------|-----------------|----------------|-------------------|--------------------|------------|-------------|----------------|---------|
| Р.бр. | $\varphi_L$ | $\varphi_D$ | правац | h | S    | v <sub>b</sub> | $Q_{ef}$ | I <sub>sr</sub> | Imax  | Imin  | $N_{sr}$ | N <sub>max</sub> | N <sub>min</sub> | $P_{k,sr}$ | $P_{k,max}$ | $E_{sr}$ | E <sub>max</sub> | L    | F <sub>sr</sub> | k <sub>w</sub> | K <sub>L,sr</sub> | K <sub>L,max</sub> | $K_{F,sr}$ | $K_{F,max}$ | K <sub>L</sub> | $K_{F}$ |
| 1.    | -33         | -11         | L      | 7 | 0,25 | 21             | 2044     | 37,33           | 38,71 | 35,95 | 251,8    | 261,1            | 242,5            | 52,9       | 88,9        | 0,097    | 0,101            | 4,33 | 0,23            | 1,64           | 122,4             | 205,4              | 14,2       | 23,8        | 163,9          | 19,0    |
| 2.    | -11         | 13          | L      | 7 | 0,25 | 21             | 2157     | 37,13           | 39,11 | 35,16 | 250,5    | 263,8            | 237,2            | 50,7       | 89,8        | 0,091    | 0,097            | 4,33 | 0,23            | 1,64           | 117,1             | 207,6              | 13,6       | 24,1        | 162,3          | 18,8    |
| 3.    | 13          | 37          | L      | 7 | 0,25 | 21             | 1998     | 34,17           | 35,95 | 32,39 | 230,5    | 242,5            | 218,5            | 46,4       | 82,5        | 0,089    | 0,095            | 4,33 | 0,23            | 1,64           | 107,3             | 190,8              | 12,4       | 22,1        | 149,0          | 17,3    |
| 4.    | 37          | 62          | L      | 7 | 0,25 | 21             | 1432     | 32,00           | 33,58 | 30,42 | 215,8    | 226,5            | 205,2            | 50,6       | 77,1        | 0,115    | 0,122            | 4,33 | 0,23            | 1,64           | 117,0             | 178,2              | 13,6       | 20,7        | 147,6          | 17,1    |
| 5.    | 62          | 37          | D      | 7 | 0,25 | 21             | 1432     | 34,96           | 37,53 | 32,39 | 235,8    | 253,1            | 218,5            | 57,4       | 86,2        | 0,128    | 0,139            | 4,33 | 0,23            | 1,64           | 132,8             | 199,2              | 15,4       | 23,1        | 166,0          | 19,3    |
| 6.    | 37          | 13          | D      | 7 | 0,25 | 21             | 1998     | 33,77           | 35,95 | 31,60 | 227,8    | 242,5            | 213,2            | 45,5       | 82,5        | 0,088    | 0,095            | 4,33 | 0,23            | 1,64           | 105,1             | 190,8              | 12,2       | 22,1        | 148,0          | 17,2    |
| 7.    | 13          | -11         | D      | 7 | 0,25 | 21             | 2157     | 40,49           | 43,45 | 37,53 | 273,1    | 293,1            | 253,1            | 58,4       | 99,8        | 0,101    | 0,109            | 4,33 | 0,23            | 1,64           | 135,1             | 230,6              | 15,7       | 26,8        | 182,9          | 21,2    |
| 8.    | -11         | -33         | D      | 7 | 0,25 | 21             | 2044     | 43,85           | 45,43 | 42,27 | 295,8    | 306,4            | 285,1            | 68,0       | 104,3       | 0,117    | 0,122            | 4,33 | 0,23            | 1,64           | 157,2             | 241,1              | 18,2       | 28,0        | 199,2          | 23,1    |
| 9.    | -33         | -11         | L      | 7 | 0,4  | 21             | 3271     | 53,52           | 59,65 | 47,40 | 361,1    | 402,4            | 319,8            | 70,4       | 137,0       | 0,091    | 0,103            | 4,89 | 0,36            | 1,64           | 143,8             | 280,0              | 11,8       | 23,0        | 211,9          | 17,4    |
| 10.   | -11         | 13          | L      | 7 | 0,4  | 21             | 3451     | 59,25           | 68,34 | 50,17 | 399,7    | 461,0            | 338,4            | 80,7       | 157,0       | 0,097    | 0,113            | 4,89 | 0,36            | 1,64           | 164,9             | 320,8              | 13,5       | 26,3        | 242,9          | 19,9    |
| 11.   | 13          | 37          | L      | 7 | 0,4  | 21             | 3197     | 52,73           | 59,25 | 46,22 | 355,7    | 399,7            | 311,8            | 69,8       | 136,1       | 0,092    | 0,105            | 4,89 | 0,36            | 1,64           | 142,6             | 278,1              | 11,7       | 22,8        | 210,3          | 17,3    |
| 12.   | 37          | 62          | L      | 7 | 0,4  | 21             | 2291     | 33,77           | 35,55 | 32,00 | 227,8    | 239,8            | 215,8            | 40,7       | 81,6        | 0,077    | 0,082            | 4,89 | 0,36            | 1,64           | 83,2              | 166,8              | 6,8        | 13,7        | 125,0          | 10,3    |
| 13.   | 62          | 37          | D      | 7 | 0,4  | 21             | 2291     | 32,79           | 33,97 | 31,60 | 221,2    | 229,2            | 213,2            | 38,4       | 78,0        | 0,074    | 0,077            | 4,89 | 0,36            | 1,64           | 78,5              | 159,4              | 6,4        | 13,1        | 119,0          | 9,8     |
| 14.   | 37          | 13          | D      | 7 | 0,4  | 21             | 3197     | 41,28           | 44,24 | 38,32 | 278,5    | 298,4            | 258,5            | 43,3       | 101,6       | 0,070    | 0,075            | 4,89 | 0,36            | 1,64           | 88,5              | 207,6              | 7,3        | 17,0        | 148,0          | 12,1    |
| 15.   | 13          | -11         | D      | 7 | 0,4  | 21             | 3451     | 48,59           | 54,12 | 43,06 | 327,7    | 365,1            | 290,4            | 56,0       | 124,3       | 0,078    | 0,088            | 4,89 | 0,36            | 1,64           | 114,5             | 254,0              | 9,4        | 20,8        | 184,3          | 15,1    |
| 16.   | -11         | -33         | D      | 7 | 0,4  | 21             | 3271     | 57,47           | 67,15 | 47,80 | 387,7    | 453,0            | 322,4            | 79,5       | 154,3       | 0,099    | 0,117            | 4,89 | 0,36            | 1,64           | 162,5             | 315,3              | 13,3       | 25,9        | 238,9          | 19,6    |
| 17.   | -33         | -11         | L      | 7 | 0,5  | 21             | 4089     | 57,08           | 63,20 | 50,96 | 385,0    | 426,3            | 343,7            | 65,3       | 145,1       | 0,079    | 0,088            | 5,27 | 0,45            | 1,64           | 123,8             | 275,3              | 8,8        | 19,5        | 199,6          | 14,1    |
| 18.   | -11         | 13          | L      | 7 | 0,5  | 21             | 4314     | 56,09           | 60,44 | 51,75 | 378,4    | 407,7            | 349,1            | 59,3       | 138,8       | 0,073    | 0,079            | 5,27 | 0,45            | 1,64           | 112,5             | 263,2              | 8,0        | 18,6        | 187,9          | 13,3    |
| 19.   | 13          | 37          | L      | 7 | 0,5  | 21             | 3997     | 44,64           | 47,40 | 41,87 | 301,1    | 319,8            | 282,5            | 38,0       | 108,8       | 0,061    | 0,065            | 5,27 | 0,45            | 1,64           | 72,1              | 206,4              | 5,1        | 14,6        | 139,3          | 9,8     |
| 20.   | 37          | 62          | L      | 7 | 0,5  | 21             | 2864     | 35,95           | 38,32 | 33,58 | 242,5    | 258,5            | 226,5            | 36,4       | 88,0        | 0,066    | 0,071            | 5,27 | 0,45            | 1,64           | 69,0              | 166,9              | 4,9        | 11,8        | 118,0          | 8,3     |
| 21    | 62          | 37          | D      | 7 | 0,5  | 21             | 2864     | 31,80           | 32,79 | 30,81 | 214,5    | 221,2            | 207,8            | 26,8       | 75,3        | 0,057    | 0,059            | 5,27 | 0,45            | 1,64           | 50,9              | 142,8              | 3,6        | 10,1        | 96,8           | 6,8     |
| 22.   | 37          | 13          | D      | 7 | 0,5  | 21             | 2864     | 45,50           | 50,00 | 42,50 | 327,5    | 249,7            | 325,2            | 38,5       | 102,5       | 0,082    | 0,065            | 5,27 | 0,45            | 1,64           | 65,2              | 152,7              | 4,8        | 13,2        | 105,2          | 8,8     |

Таблица 8.5. Специфични отпор материјала на копање за случај нових резних елемената, горњи погон

# РЕЗУЛТАТИ МЕРЕЊА ОТПОРА НА КОПАЊЕ

Електромотори погона за копање (доњи и горњи) раде паралелно. Укупна вредност очитаних пикова струје, за дефинисање отпора на копање добија се сабирањем парцијалних вредности струје за доњи и горњи погон:

$$I_{uk} = I_d + I_g \tag{8.2}$$

где је:

*I*<sub>*uk*</sub> – укупна вредност јачине струје коју погон повлачи из мреже, [A].

| Рбр | Øı  | Øp  | правац | h | s    | V  | 0    | L             | Ĩ      | I in   | N     | N     | N     | $P_{hm}$ | P       | <i>E</i> | <i>E</i> | L    | <i>F</i> | <i>k</i> | K     | Kiman | KEm  | K    | K ,   | Kr   |
|-----|-----|-----|--------|---|------|----|------|---------------|--------|--------|-------|-------|-------|----------|---------|----------|----------|------|----------|----------|-------|-------|------|------|-------|------|
| 1   | 7 L | 11  | I      | 7 | 0.25 | 21 | 2044 | - sr<br>74.66 | - max  | 71.50  | 503.6 | 524 Q | <br>  | 130.2    | - ĸ,max | 0.211    | - max    | 4.33 | 0.23     | 1.64     | 321.0 | 413 0 | 37.3 | 47 Q | 367.4 | 12.6 |
| -1. | -55 | -11 | L      | 7 | 0,25 | 21 | 2044 | 74,00         | 70.00  | 60.02  | 503,0 | 522.0 | 402,5 | 139,2    | 1914    | 0,211    | 0,220    | 4,33 | 0,23     | 1,04     | 216.6 | 410.2 | 267  | 47,5 | 268.0 | 42,0 |
| 2.  | -11 | 13  |        | 7 | 0,25 | 21 | 2157 | /4,46         | 79,00  | 69,92  | 502,5 | 532,9 | 4/1,6 | 136,9    | 181,4   | 0,199    | 0,212    | 4,33 | 0,23     | 1,64     | 316,6 | 419,3 | 36,7 | 48,6 | 368,0 | 42,7 |
| 3.  | 13  | 37  | L      | / | 0,25 | 21 | 1998 | 69,13         | /3,08  | 65,18  | 466,3 | 493,0 | 439,7 | 127,2    | 167,8   | 0,198    | 0,211    | 4,33 | 0,23     | 1,64     | 294,1 | 387,9 | 34,1 | 45,0 | 341,0 | 39,6 |
| 4.  | 37  | 62  | L      | 7 | 0,25 | 21 | 1432 | 63,60         | 65,57  | 61,62  | 429,0 | 442,3 | 415,7 | 123,6    | 150,5   | 0,253    | 0,261    | 4,33 | 0,23     | 1,64     | 285,8 | 348,0 | 33,2 | 40,4 | 316,9 | 36,8 |
| 5.  | 62  | 37  | D      | 7 | 0,25 | 21 | 1432 | 68,14         | 72,29  | 63,99  | 459,6 | 487,6 | 431,7 | 134,1    | 165,9   | 0,272    | 0,291    | 4,33 | 0,23     | 1,64     | 310,1 | 383,7 | 36,0 | 44,5 | 346,9 | 40,2 |
| 6.  | 37  | 13  | D      | 7 | 0,25 | 21 | 1998 | 69,72         | 73,08  | 66,36  | 470,3 | 493,0 | 447,7 | 128,6    | 167,7   | 0,200    | 0,211    | 4,33 | 0,23     | 1,64     | 297,2 | 387,8 | 34,5 | 45,0 | 342,5 | 39,7 |
| 7.  | 13  | -11 | D      | 7 | 0,25 | 21 | 2157 | 79,99         | 83,35  | 76,63  | 539,6 | 562,2 | 516,9 | 149,7    | 191,3   | 0,215    | 0,225    | 4,33 | 0,23     | 1,64     | 346,1 | 442,3 | 40,2 | 51,3 | 394,2 | 45,7 |
| 8.  | -11 | -33 | D      | 7 | 0,25 | 21 | 2044 | 86,70         | 90,06  | 83,35  | 584,9 | 607,5 | 562,2 | 167,1    | 206,7   | 0,248    | 0,258    | 4,33 | 0,23     | 1,64     | 386,2 | 478,0 | 44,8 | 55,4 | 432,1 | 50,1 |
| 9.  | -33 | -11 | L      | 7 | 0,4  | 21 | 3271 | 113,37        | 127,98 | 98,75  | 764,7 | 863,3 | 666,2 | 208,7    | 293,9   | 0,206    | 0,233    | 4,89 | 0,36     | 1,64     | 426,5 | 600,8 | 35,0 | 49,3 | 513,6 | 42,1 |
| 10. | -11 | 13  | L      | 7 | 0,4  | 21 | 3451 | 111,39        | 123,64 | 99,15  | 751,4 | 834,0 | 668,8 | 201,2    | 283,9   | 0,191    | 0,213    | 4,89 | 0,36     | 1,64     | 411,2 | 580,3 | 33,7 | 47,6 | 495,7 | 40,7 |
| 11. | 13  | 37  | L      | 7 | 0,4  | 21 | 3197 | 91,25         | 99,94  | 82,56  | 615,5 | 674,2 | 556,9 | 158,8    | 229,5   | 0,167    | 0,184    | 4,89 | 0,36     | 1,64     | 324,5 | 469,0 | 26,6 | 38,5 | 396,8 | 32,5 |
| 12. | 37  | 62  | L      | 7 | 0,4  | 21 | 2291 | 66,76         | 70,31  | 63,20  | 450,3 | 474,3 | 426,3 | 116,9    | 161,4   | 0,167    | 0,176    | 4,89 | 0,36     | 1,64     | 239,0 | 329,9 | 19,6 | 27,1 | 284,4 | 23,3 |
| 13. | 62  | 37  | D      | 7 | 0,4  | 21 | 2291 | 70,11         | 72,68  | 67,55  | 473,0 | 490,3 | 455,7 | 124,7    | 166,8   | 0,176    | 0,183    | 4,89 | 0,36     | 1,64     | 254,9 | 341,0 | 20,9 | 28,0 | 297,9 | 24,4 |
| 14. | 37  | 13  | D      | 7 | 0,4  | 21 | 3197 | 82,75         | 87,69  | 77,82  | 558,2 | 591,5 | 524,9 | 139,1    | 201,3   | 0,151    | 0,160    | 4,89 | 0,36     | 1,64     | 284,4 | 411,5 | 23,3 | 33,7 | 347,9 | 28,5 |
| 15. | 13  | -11 | D      | 7 | 0,4  | 21 | 3451 | 95,99         | 99,15  | 92,83  | 647,5 | 668,8 | 626,2 | 165,6    | 227,6   | 0,163    | 0,169    | 4,89 | 0,36     | 1,64     | 338,4 | 465,1 | 27,8 | 38,2 | 401,8 | 33,0 |
| 16. | -11 | -33 | D      | 7 | 0,4  | 21 | 3271 | 112,77        | 130,35 | 95,20  | 760,8 | 879,3 | 642,2 | 207,3    | 299,4   | 0,204    | 0,238    | 4,89 | 0,36     | 1,64     | 423,7 | 612,0 | 34,8 | 50,2 | 517,8 | 42,5 |
| 17. | -33 | -11 | L      | 7 | 0,5  | 21 | 4089 | 116,92        | 127,59 | 106,26 | 788,7 | 860,7 | 716,8 | 203,6    | 293,0   | 0,170    | 0,186    | 5,27 | 0,45     | 1,64     | 386,2 | 555,8 | 27,3 | 39,3 | 471,0 | 33,3 |
| 18. | -11 | 13  | L      | 7 | 0,5  | 21 | 4314 | 112,77        | 122,45 | 103,10 | 760,8 | 826,0 | 695,5 | 190,3    | 281,2   | 0,155    | 0,169    | 5,27 | 0,45     | 1,64     | 361,1 | 533,4 | 25,5 | 37,7 | 447,2 | 31,6 |
| 19. | 13  | 37  | L      | 7 | 0.5  | 21 | 3997 | 91.25         | 97.57  | 84.93  | 615.5 | 658.2 | 572.9 | 145.7    | 224.0   | 0.134    | 0.144    | 5.27 | 0.45     | 1.64     | 276.5 | 425.0 | 19.5 | 30.0 | 350.7 | 24.8 |
| 20. | 37  | 62  | L      | 7 | 0.5  | 21 | 2864 | 82.36         | 88.48  | 76.24  | 555.6 | 596.9 | 514.3 | 143.7    | 203.1   | 0.167    | 0.181    | 5.27 | 0.45     | 1.64     | 272.5 | 385.4 | 19.3 | 27.2 | 329.0 | 23.3 |
| 21  | 62  | 37  | D      | 7 | 0.5  | 21 | 2864 | 70.51         | 75.45  | 65.57  | 475.6 | 508.9 | 442.3 | 116.3    | 173.2   | 0.141    | 0.152    | 5.27 | 0.45     | 1.64     | 220.6 | 328.6 | 15.6 | 23.2 | 274.6 | 19.4 |
| 22  | 37  | 13  | D      | 7 | 0.5  | 21 | 2864 | 101.00        | 110.80 | 95.00  | 680.5 | 747.2 | 650.7 | 180.5    | 254.4   | 0.169    | 0.229    | 5.27 | 0.45     | 1 64     | 354.2 | 485.4 | 17.5 | 25.2 | 289.5 | 21.2 |

Таблица 8.6. Збирна вредност специфичног отпора материјала на копање за цео погон, случај нових резних елемената

### 8.1.2 Резултати мерења за случај похабаних резних елемената 25 %

По истој аналогији биће приказани резултати мерења за случај похабаности резних елемената 25 %, 50 %, 75 % и 100 %.



Слика 8.7. Струја коју доњи погон копања повлачи из мреже – похабаност 25 %



Слика 8.8. Струја коју горњи погон копања повлачи из мреже – похабаност 25 %

|   |         | Ι      | % | $I_m$  | [A] |   |         | Ι      | % | $I_m$  | [A] |          |         | Ι      | % | $I_m$   | [A] |
|---|---------|--------|---|--------|-----|---|---------|--------|---|--------|-----|----------|---------|--------|---|---------|-----|
| _ | MIN     | 50,6   |   | 39,974 |     | _ | MIN     | 70,35  |   | 55,577 |     | _        | MIN     | 74,55  |   | 58,8945 |     |
| Ξ | SREDNJA | 53,328 |   | 42,129 |     | E | SREDNJA | 81,988 |   | 64,77  |     | 1        | SREDNJA | 81,413 |   | 64,3159 |     |
|   | MAX     | 56,055 |   | 44,283 |     |   | MAX     | 93,625 |   | 73,964 |     |          | MAX     | 88,275 |   | 69,7373 |     |
|   | MIN     | 47,25  |   | 37,328 |     | • | MIN     | 67,2   |   | 53,088 |     |          | MIN     | 69,3   |   | 54,747  |     |
|   | SREDNJA | 51,178 |   | 40,43  |     |   | SREDNJA | 71,585 |   | 56,552 |     | 1        | SREDNJA | 77,183 |   | 60,9742 |     |
|   | MAX     | 55,105 |   | 43,533 |     |   | MAX     | 75,97  |   | 60,016 |     |          | MAX     | 85,065 |   | 67,2014 |     |
| ~ | MIN     | 44,625 |   | 35,254 |     | ~ | MIN     | 50,925 |   | 40,231 |     | ~        | MIN     | 58,275 |   | 46,0373 |     |
| Ē | SREDNJA | 47,993 |   | 37,914 |     |   | SREDNJA | 53,55  |   | 42,305 |     | E.       | SREDNJA | 63,645 |   | 50,2796 |     |
|   | MAX     | 51,36  |   | 40,574 |     |   | MAX     | 56,175 |   | 44,378 |     |          | MAX     | 69,015 |   | 54,5219 |     |
| - | MIN     | 42,525 |   | 33,595 |     | - | MIN     | 43,575 |   | 34,424 |     | -        | MIN     | 57,75  |   | 45,6225 |     |
| È | SREDNJA | 56,538 |   | 44,665 |     | 1 | SREDNJA | 45,863 |   | 36,231 |     | Ĩ        | SREDNJA | 63,383 |   | 50,0722 |     |
|   | MAX     | 70,55  |   | 55,735 |     |   | MAX     | 48,15  |   | 38,039 |     |          | MAX     | 69,015 |   | 54,5219 |     |
| _ | MIN     | 43,05  |   | 34,01  |     | _ | MIN     | 48,825 |   | 38,572 |     | _        | MIN     | 47,25  |   | 37,3275 |     |
| ē | SREDNJA | 45,6   |   | 36,024 |     | ē | SREDNJA | 51,163 |   | 40,418 |     | <u>e</u> | SREDNJA | 53,05  |   | 41,9095 |     |
| - | MAX     | 48,15  |   | 38,039 |     |   | MAX     | 53,5   |   | 42,265 |     |          | MAX     | 58,85  |   | 46,4915 |     |
| 0 | MIN     | 47,25  |   | 37,328 |     | 2 | MIN     | 53,55  |   | 42,305 |     | 6        | MIN     | 54,075 |   | 42,7193 |     |
| ê | SREDNJA | 49,305 |   | 38,951 |     | ä | SREDNJA | 56,735 |   | 44,821 |     | ê        | SREDNJA | 57,265 |   | 45,2394 |     |
|   | MAX     | 51,36  |   | 40,574 |     |   | MAX     | 59,92  |   | 47,337 |     |          | MAX     | 60,455 |   | 47,7595 |     |
| ~ | MIN     | 53,025 |   | 41,89  |     | ~ | MIN     | 67,2   |   | 53,088 |     | ~        | MIN     | 68,25  |   | 53,9175 |     |
| Ä | SREDNJA | 54,065 |   | 42,711 |     | Ä | SREDNJA | 64,63  |   | 51,058 |     | ĕ        | SREDNJA | 74,785 |   | 59,0802 |     |
|   | MAX     | 55,105 |   | 43,533 |     |   | MAX     | 62,06  |   | 49,027 |     |          | MAX     | 81,32  |   | 64,2428 |     |
| + | MIN     | 55,65  |   | 43,964 |     | 4 | MIN     | 66,15  |   | 52,259 |     | +        | MIN     | 71,4   |   | 56,406  |     |
| Õ | SREDNJA | 58,588 |   | 46,284 |     | Å | SREDNJA | 76,41  |   | 60,364 |     | Č        | SREDNJA | 89,468 |   | 70,6793 |     |
| _ | MAX     | 61,525 |   | 48,605 |     |   | MAX     | 86,67  |   | 68,469 |     | (*)      | MAX     | 107,54 |   | 84,9527 |     |

Таблица 8.7. Очитане вредности пикова струје – доњи погон, похабаност 25 %

Таблица 8.8. Очитане вредности пикова струје – горњи погон, похабаност 25 %

|   |         |        |   | 1 '    | 1   |          |         | 1 2 3  | 1 |        |     |          |         |        |   |         |     |
|---|---------|--------|---|--------|-----|----------|---------|--------|---|--------|-----|----------|---------|--------|---|---------|-----|
|   |         | Ι      | % | $I_m$  | [A] |          |         | Ι      | % | $I_m$  | [A] |          |         | Ι      | % | $I_m$   | [A] |
|   | MIN     | 51,15  |   | 40,409 |     |          | MIN     | 69,3   |   | 54,747 |     |          | MIN     | 72,05  |   | 56,9195 |     |
| Ξ | SREDNJA | 53,75  |   | 42,463 |     | E        | SREDNJA | 78,638 |   | 62,124 |     | 3        | SREDNJA | 80,98  |   | 63,9742 |     |
| - | MAX     | 56,35  |   | 44,517 |     | 2        | MAX     | 87,975 |   | 69,5   |     |          | MAX     | 89,91  |   | 71,0289 |     |
|   | MIN     | 50,05  |   | 39,54  |     |          | MIN     | 70,95  |   | 56,051 |     |          | MIN     | 73,15  |   | 57,7885 |     |
| 1 | SREDNJA | 53,488 |   | 42,255 |     | 12       | SREDNJA | 84,475 |   | 66,735 |     | 12       | SREDNJA | 79,975 |   | 63,1803 |     |
| - | MAX     | 56,925 |   | 44,971 |     |          | MAX     | 98     |   | 77,42  |     |          | MAX     | 86,8   |   | 68,572  |     |
| ~ | MIN     | 46,2   |   | 36,498 |     | *        | MIN     | 66,55  |   | 52,575 |     | ~        | MIN     | 59,4   |   | 46,926  |     |
| Ë | SREDNJA | 49,263 |   | 38,917 |     | EL.      | SREDNJA | 76,395 |   | 60,352 |     | E.       | SREDNJA | 64,775 |   | 51,1723 |     |
|   | MAX     | 52,325 |   | 41,337 |     |          | MAX     | 86,24  |   | 68,13  |     |          | MAX     | 70,15  |   | 55,4185 |     |
| _ | MIN     | 43,45  |   | 34,326 |     |          | MIN     | 47,85  |   | 37,802 |     | -        | MIN     | 47,85  |   | 37,8015 |     |
| Ē | SREDNJA | 46,738 |   | 36,923 |     | I        | SREDNJA | 50,375 |   | 39,796 |     | I        | SREDNJA | 52,388 |   | 41,3861 |     |
|   | MAX     | 50,025 |   | 39,52  |     |          | MAX     | 52,9   |   | 41,791 |     |          | MAX     | 56,925 |   | 44,9708 |     |
| _ | MIN     | 46,2   |   | 36,498 |     | _        | MIN     | 47,3   |   | 37,367 |     | _        | MIN     | 44     |   | 34,76   |     |
| B | SREDNJA | 50,988 |   | 40,28  |     | <u> </u> | SREDNJA | 48,95  |   | 38,671 |     | <u> </u> | SREDNJA | 46,438 |   | 36,6856 |     |
|   | MAX     | 55,775 |   | 44,062 |     |          | MAX     | 50,6   |   | 39,974 |     |          | MAX     | 48,875 |   | 38,6113 |     |
| 2 | MIN     | 45,1   |   | 35,629 |     | 2        | MIN     | 54,45  |   | 43,016 |     | 2        | MIN     | 61,05  |   | 48,2295 |     |
| Ë | SREDNJA | 49,288 |   | 38,937 |     | â        | SREDNJA | 60     |   | 47,4   |     | <u> </u> | SREDNJA | 63,875 |   | 50,4613 |     |
|   | MAX     | 53,475 |   | 42,245 |     |          | MAX     | 65,55  |   | 51,785 |     |          | MAX     | 66,7   |   | 52,693  |     |
| ~ | MIN     | 53,35  |   | 42,147 |     | ~        | MIN     | 61,05  |   | 48,23  |     | ~        | MIN     | 67,65  |   | 53,4435 |     |
| ē | SREDNJA | 58,875 |   | 46,511 |     | Ĩ        | SREDNJA | 70,488 |   | 55,685 |     | Ĩ        | SREDNJA | 79,465 |   | 62,7774 |     |
|   | MAX     | 64,4   |   | 50,876 |     |          | MAX     | 79,925 |   | 63,141 |     |          | MAX     | 91,28  |   | 72,1112 |     |
| 4 | MIN     | 59,95  |   | 47,361 |     | +        | MIN     | 66,42  |   | 52,472 |     | +        | MIN     | 92,95  |   | 73,4305 |     |
| È | SREDNJA | 63,613 |   | 50,254 |     | ĝ        | SREDNJA | 80,94  |   | 63,943 |     | Ê        | SREDNJA | 107,32 |   | 84,7789 |     |
|   | MAX     | 67,275 |   | 53,147 |     |          | MAX     | 95,46  |   | 75,413 |     |          | MAX     | 121,68 |   | 96,1272 |     |

| Р.бр. | $\varphi_L$ | $\varphi_D$ | правац | h | S    | v <sub>b</sub> | Qef  | Isr   | I max | I <sub>min</sub> | $N_{sr}$ | $N_{max}$ | $N_{min}$ | $P_{k,sr}$ | $P_{k,max}$ | E <sub>sr</sub> | E <sub>max</sub> | L    | F <sub>sr</sub> | k <sub>w</sub> | $K_{L,sr}$ | $K_{L,max}$ | $K_{F,sr}$ | $K_{F,max}$ | $K_L$ | $K_F$ |
|-------|-------------|-------------|--------|---|------|----------------|------|-------|-------|------------------|----------|-----------|-----------|------------|-------------|-----------------|------------------|------|-----------------|----------------|------------|-------------|------------|-------------|-------|-------|
| 1.    | 15          | 30          | L      | 7 | 0,25 | 21             | 2037 | 42,46 | 44,52 | 40,41            | 286,4    | 300,3     | 272,6     | 64,9       | 102,2       | 0,113           | 0,119            | 4,33 | 0,23            | 1,64           | 150,1      | 236,3       | 17,4       | 27,4        | 193,2 | 22,4  |
| 2.    | 0           | 15          | L      | 7 | 0,25 | 21             | 2186 | 42,26 | 44,97 | 39,54            | 285,0    | 303,4     | 266,7     | 62,0       | 103,2       | 0,105           | 0,112            | 4,33 | 0,23            | 1,64           | 143,4      | 238,7       | 16,6       | 27,7        | 191,1 | 22,2  |
| 3.    | -15         | 0           | L      | 7 | 0,25 | 21             | 2186 | 38,92 | 41,34 | 36,5             | 262,5    | 278,9     | 246,2     | 54,3       | 94,9        | 0,095           | 0,102            | 4,33 | 0,23            | 1,64           | 125,6      | 219,4       | 14,6       | 25,5        | 172,5 | 20,0  |
| 4.    | -30         | -15         | L      | 7 | 0,25 | 21             | 2037 | 36,92 | 39,52 | 34,33            | 249,1    | 266,6     | 231,6     | 52,1       | 90,7        | 0,096           | 0,104            | 4,33 | 0,23            | 1,64           | 120,5      | 209,8       | 14,0       | 24,3        | 165,2 | 19,2  |
| 5.    | -15         | 0           | D      | 7 | 0,25 | 21             | 2186 | 40,28 | 44,06 | 36,5             | 271,7    | 297,2     | 246,2     | 57,5       | 101,2       | 0,099           | 0,110            | 4,33 | 0,23            | 1,64           | 132,8      | 233,9       | 15,4       | 27,1        | 183,4 | 21,3  |
| 6.    | 0           | 15          | D      | 7 | 0,25 | 21             | 2186 | 38,94 | 42,25 | 35,63            | 262,7    | 285,0     | 240,3     | 54,4       | 97,0        | 0,095           | 0,105            | 4,33 | 0,23            | 1,64           | 125,7      | 224,3       | 14,6       | 26,0        | 175,0 | 20,3  |
| 7.    | 15          | 30          | D      | 7 | 0,25 | 21             | 2037 | 46,51 | 50,88 | 42,15            | 313,8    | 343,2     | 284,3     | 74,3       | 116,8       | 0,125           | 0,139            | 4,33 | 0,23            | 1,64           | 171,8      | 270,1       | 19,9       | 31,3        | 220,9 | 25,6  |
| 8.    | 15          | 30          | D      | 7 | 0,25 | 21             | 2037 | 50,25 | 53,15 | 47,36            | 339,0    | 358,5     | 319,5     | 82,9       | 122,0       | 0,137           | 0,146            | 4,33 | 0,23            | 1,64           | 191,8      | 282,1       | 22,2       | 32,7        | 236,9 | 27,5  |
| 9.    | 0           | 15          | L      | 7 | 0,4  | 21             | 3498 | 62,12 | 69,5  | 54,75            | 419,1    | 468,8     | 369,3     | 86,6       | 159,6       | 0,101           | 0,114            | 4,89 | 0,36            | 1,64           | 176,9      | 326,2       | 14,5       | 26,8        | 251,6 | 20,6  |
| 10.   | -15         | 0           | L      | 7 | 0,4  | 21             | 3498 | 66,74 | 77,42 | 56,05            | 450,2    | 522,3     | 378,1     | 97,2       | 177,8       | 0,109           | 0,128            | 4,89 | 0,36            | 1,64           | 198,7      | 363,5       | 16,3       | 29,8        | 281,1 | 23,1  |
| 11.   | -30         | -15         | L      | 7 | 0,4  | 21             | 3259 | 60,35 | 68,13 | 52,57            | 407,1    | 459,6     | 354,7     | 86,4       | 156,5       | 0,105           | 0,120            | 4,89 | 0,36            | 1,64           | 176,5      | 319,8       | 14,5       | 26,2        | 248,2 | 20,4  |
| 12.   | -30         | -15         | L      | 7 | 0,4  | 21             | 3259 | 39,8  | 41,79 | 37,8             | 268,5    | 281,9     | 255,0     | 38,8       | 95,9        | 0,065           | 0,069            | 4,89 | 0,36            | 1,64           | 79,4       | 196,1       | 6,5        | 16,1        | 137,7 | 11,3  |
| 13.   | -15         | 0           | D      | 7 | 0,4  | 21             | 3498 | 38,67 | 39,97 | 37,37            | 260,9    | 269,7     | 252,1     | 32,4       | 91,8        | 0,059           | 0,061            | 4,89 | 0,36            | 1,64           | 66,1       | 187,5       | 5,4        | 15,4        | 126,8 | 10,4  |
| 14.   | -15         | 0           | D      | 7 | 0,4  | 21             | 3498 | 47,4  | 51,78 | 43,02            | 319,8    | 349,3     | 290,2     | 52,5       | 118,9       | 0,075           | 0,082            | 4,89 | 0,36            | 1,64           | 107,4      | 243,0       | 8,8        | 19,9        | 175,2 | 14,4  |
| 15.   | 0           | 15          | D      | 7 | 0,4  | 21             | 3498 | 55,69 | 63,14 | 48,23            | 375,6    | 425,9     | 325,4     | 71,7       | 145,0       | 0,089           | 0,103            | 4,89 | 0,36            | 1,64           | 146,5      | 296,4       | 12,0       | 24,3        | 221,5 | 18,2  |
| 16.   | 15          | 30          | D      | 7 | 0,4  | 21             | 3259 | 63,94 | 75,41 | 52,47            | 431,4    | 508,7     | 354,0     | 94,6       | 173,2       | 0,112           | 0,134            | 4,89 | 0,36            | 1,64           | 193,5      | 354,1       | 15,9       | 29,0        | 273,8 | 22,5  |
| 17.   | 15          | 30          | L      | 7 | 0,5  | 21             | 4074 | 63,97 | 71,03 | 56,92            | 431,6    | 479,2     | 384,0     | 81,4       | 163,1       | 0,089           | 0,100            | 5,27 | 0,45            | 1,64           | 154,5      | 309,5       | 10,9       | 21,9        | 232,0 | 16,4  |
| 18.   | 0           | 15          | L      | 7 | 0,5  | 21             | 4372 | 63,18 | 68,57 | 57,79            | 426,2    | 462,6     | 389,8     | 74,7       | 157,4       | 0,082           | 0,090            | 5,27 | 0,45            | 1,64           | 141,8      | 298,7       | 10,0       | 21,1        | 220,3 | 15,6  |
| 19.   | -15         | 0           | L      | 7 | 0,5  | 21             | 4372 | 51,17 | 55,42 | 46,93            | 345,2    | 373,8     | 316,6     | 47,0       | 127,2       | 0,065           | 0,071            | 5,27 | 0,45            | 1,64           | 89,2       | 241,4       | 6,3        | 17,1        | 165,3 | 11,7  |
| 20.   | -30         | -15         | L      | 7 | 0,5  | 21             | 4074 | 41,39 | 44,97 | 37,8             | 279,2    | 303,4     | 255,0     | 29,2       | 103,3       | 0,055           | 0,060            | 5,27 | 0,45            | 1,64           | 55,5       | 195,9       | 3,9        | 13,8        | 125,7 | 8,9   |
| 21.   | -30         | -15         | D      | 7 | 0,5  | 21             | 4074 | 36,69 | 38,61 | 34,76            | 247,5    | 260,5     | 234,5     | 18,4       | 88,6        | 0,048           | 0,051            | 5,27 | 0,45            | 1,64           | 34,9       | 168,2       | 2,5        | 11,9        | 101,5 | 7,2   |
| 22.   | -15         | 0           | D      | 7 | 0,5  | 21             | 4372 | 50,46 | 52,69 | 48,23            | 340,4    | 355,5     | 325,4     | 45,4       | 121,0       | 0,064           | 0,067            | 5,27 | 0,45            | 1,64           | 86,0       | 229,5       | 6,1        | 16,2        | 157,8 | 11,2  |

Таблица 8.9. Специфични отпор материјала на копање за случај похабаних резних елемената 25 %, доњи погон

| Р.бр. | $\varphi_L$ | $\varphi_D$ | правац | h | S    | v <sub>b</sub> | Qef  | Isr   | I max | I <sub>min</sub> | $N_{sr}$ | N <sub>max</sub> | $N_{min}$ | $P_{k,sr}$ | P <sub>k,max</sub> | $E_{sr}$ | $E_{max}$ | L    | $F_{sr}$ | k <sub>w</sub> | $K_{L,sr}$ | $K_{L,max}$ | $K_{F,sr}$ | $K_{F,max}$ | K <sub>L</sub> | $K_F$ |
|-------|-------------|-------------|--------|---|------|----------------|------|-------|-------|------------------|----------|------------------|-----------|------------|--------------------|----------|-----------|------|----------|----------------|------------|-------------|------------|-------------|----------------|-------|
| 1.    | 15          | 30          | L      | 7 | 0,25 | 21             | 2037 | 42,13 | 44,28 | 39,97            | 284,2    | 298,7            | 269,7     | 64,2       | 101,7              | 0,112    | 0,118     | 4,33 | 0,23     | 1,64           | 148,3      | 235,0       | 17,2       | 27,3        | 191,7          | 22,2  |
| 2.    | 0           | 15          | L      | 7 | 0,25 | 21             | 2186 | 40,43 | 43,53 | 37,33            | 272,7    | 293,7            | 251,8     | 57,8       | 99,9               | 0,099    | 0,108     | 4,33 | 0,23     | 1,64           | 133,6      | 231,1       | 15,5       | 26,8        | 182,4          | 21,2  |
| 3.    | -15         | 0           | L      | 7 | 0,25 | 21             | 2186 | 37,91 | 40,57 | 35,25            | 255,8    | 273,7            | 237,8     | 52,0       | 93,2               | 0,092    | 0,100     | 4,33 | 0,23     | 1,64           | 120,2      | 215,4       | 13,9       | 25,0        | 167,8          | 19,5  |
| 4.    | -30         | -15         | L      | 7 | 0,25 | 21             | 2037 | 44,66 | 55,73 | 33,59            | 301,3    | 376,0            | 226,6     | 70,0       | 128,1              | 0,120    | 0,154     | 4,33 | 0,23     | 1,64           | 161,9      | 296,1       | 18,8       | 34,4        | 229,0          | 26,6  |
| 5.    | -15         | 0           | D      | 7 | 0,25 | 21             | 2186 | 36,02 | 38,04 | 34,01            | 243,0    | 256,6            | 229,4     | 47,6       | 87,3               | 0,087    | 0,093     | 4,33 | 0,23     | 1,64           | 110,1      | 201,9       | 12,8       | 23,4        | 156,0          | 18,1  |
| 6.    | 0           | 15          | D      | 7 | 0,25 | 21             | 2186 | 38,95 | 40,57 | 37,33            | 262,8    | 273,7            | 251,8     | 54,4       | 93,1               | 0,095    | 0,100     | 4,33 | 0,23     | 1,64           | 125,7      | 215,3       | 14,6       | 25,0        | 170,5          | 19,8  |
| 7.    | 15          | 30          | D      | 7 | 0,25 | 21             | 2037 | 42,71 | 43,53 | 41,89            | 288,1    | 293,7            | 282,6     | 65,5       | 99,9               | 0,114    | 0,116     | 4,33 | 0,23     | 1,64           | 151,5      | 231,0       | 17,6       | 26,8        | 191,2          | 22,2  |
| 8.    | 15          | 30          | D      | 7 | 0,25 | 21             | 2037 | 46,28 | 48,6  | 43,96            | 312,2    | 327,9            | 296,6     | 73,8       | 111,6              | 0,125    | 0,132     | 4,33 | 0,23     | 1,64           | 170,5      | 258,0       | 19,8       | 29,9        | 214,3          | 24,9  |
| 9.    | 0           | 15          | L      | 7 | 0,4  | 21             | 3498 | 64,77 | 73,96 | 55,58            | 436,9    | 499,0            | 374,9     | 92,7       | 169,9              | 0,106    | 0,122     | 4,89 | 0,36     | 1,64           | 189,4      | 347,2       | 15,5       | 28,5        | 268,3          | 22,0  |
| 10.   | -15         | 0           | L      | 7 | 0,4  | 21             | 3498 | 56,55 | 60,02 | 53,09            | 381,5    | 404,9            | 358,1     | 73,7       | 137,8              | 0,091    | 0,097     | 4,89 | 0,36     | 1,64           | 150,6      | 281,6       | 12,4       | 23,1        | 216,1          | 17,7  |
| 11.   | -30         | -15         | L      | 7 | 0,4  | 21             | 3259 | 42,3  | 44,38 | 40,23            | 285,4    | 299,4            | 271,4     | 44,6       | 101,9              | 0,070    | 0,074     | 4,89 | 0,36     | 1,64           | 91,2       | 208,2       | 7,5        | 17,1        | 149,7          | 12,3  |
| 12.   | -30         | -15         | L      | 7 | 0,4  | 21             | 3259 | 36,23 | 38,04 | 34,42            | 244,4    | 256,6            | 232,2     | 30,6       | 87,3               | 0,059    | 0,062     | 4,89 | 0,36     | 1,64           | 62,6       | 178,5       | 5,1        | 14,6        | 120,5          | 9,9   |
| 13.   | -15         | 0           | D      | 7 | 0,4  | 21             | 3498 | 40,42 | 42,27 | 38,57            | 272,7    | 285,1            | 260,2     | 36,4       | 97,0               | 0,062    | 0,065     | 4,89 | 0,36     | 1,64           | 74,4       | 198,3       | 6,1        | 16,3        | 136,3          | 11,2  |
| 14.   | -15         | 0           | D      | 7 | 0,4  | 21             | 3498 | 44,82 | 47,34 | 42,3             | 302,4    | 319,3            | 285,4     | 46,6       | 108,7              | 0,070    | 0,074     | 4,89 | 0,36     | 1,64           | 95,2       | 222,1       | 7,8        | 18,2        | 158,6          | 13,0  |
| 15.   | 0           | 15          | D      | 7 | 0,4  | 21             | 3498 | 51,06 | 49,03 | 53,09            | 344,4    | 330,7            | 358,1     | 61,0       | 112,5              | 0,081    | 0,077     | 4,89 | 0,36     | 1,64           | 124,6      | 229,9       | 10,2       | 18,9        | 177,3          | 14,5  |
| 16.   | 15          | 30          | D      | 7 | 0,4  | 21             | 3259 | 60,36 | 68,47 | 52,26            | 407,2    | 461,9            | 352,5     | 86,4       | 157,3              | 0,105    | 0,120     | 4,89 | 0,36     | 1,64           | 176,6      | 321,4       | 14,5       | 26,4        | 249,0          | 20,4  |
| 17.   | 15          | 30          | L      | 7 | 0,5  | 21             | 4074 | 64,32 | 69,74 | 58,89            | 433,9    | 470,4            | 397,3     | 82,2       | 160,1              | 0,090    | 0,098     | 5,27 | 0,45     | 1,64           | 156,0      | 303,8       | 11,0       | 21,5        | 229,9          | 16,3  |
| 18.   | 0           | 15          | L      | 7 | 0,5  | 21             | 4372 | 60,97 | 67,2  | 54,75            | 411,3    | 453,3            | 369,3     | 69,7       | 154,3              | 0,079    | 0,088     | 5,27 | 0,45     | 1,64           | 132,1      | 292,8       | 9,3        | 20,7        | 212,5          | 15,0  |
| 19.   | -15         | 0           | L      | 7 | 0,5  | 21             | 4372 | 50,28 | 54,52 | 46,04            | 339,2    | 367,8            | 310,6     | 44,9       | 125,2              | 0,064    | 0,070     | 5,27 | 0,45     | 1,64           | 85,2       | 237,5       | 6,0        | 16,8        | 161,4          | 11,4  |
| 20.   | -30         | -15         | L      | 7 | 0,5  | 21             | 4074 | 50,07 | 54,52 | 45,62            | 337,8    | 367,8            | 307,8     | 49,3       | 125,2              | 0,068    | 0,075     | 5,27 | 0,45     | 1,64           | 93,6       | 237,5       | 6,6        | 16,8        | 165,5          | 11,7  |
| 21.   | -30         | -15         | D      | 7 | 0,5  | 21             | 4074 | 41,91 | 46,49 | 37,33            | 282,7    | 313,6            | 251,8     | 30,4       | 106,8              | 0,056    | 0,063     | 5,27 | 0,45     | 1,64           | 57,8       | 202,6       | 4,1        | 14,3        | 130,2          | 9,2   |
| 22.   | -15         | 0           | D      | 7 | 0,5  | 21             | 4372 | 45,24 | 47,76 | 42,72            | 305,2    | 322,2            | 288,2     | 33,3       | 109,6              | 0,057    | 0,060     | 5,27 | 0,45     | 1,64           | 63,2       | 208,0       | 4,5        | 14,7        | 135,6          | 9,6   |

Таблица 8.10. Специфични отпор материјала на копање за случај похабаних резних елемената 25 %, горњи погон

| Р.бр. | $\varphi_L$ | $\varphi_D$ | правац | h | S    | v <sub>b</sub> | Qef  | Isr   | I max | I <sub>min</sub> | N <sub>sr</sub> | $N_{max}$ | $N_{min}$ | P <sub>k,sr</sub> | P <sub>k,max</sub> | $E_{sr}$ | E <sub>max</sub> | L    | F <sub>sr</sub> | k <sub>w</sub> | K <sub>L,sr</sub> | $K_{L,max}$ | $K_{F,sr}$ | $K_{F,max}$ | K <sub>L</sub> | $K_F$ |
|-------|-------------|-------------|--------|---|------|----------------|------|-------|-------|------------------|-----------------|-----------|-----------|-------------------|--------------------|----------|------------------|------|-----------------|----------------|-------------------|-------------|------------|-------------|----------------|-------|
| 1.    | 15          | 30          | L      | 7 | 0,25 | 21             | 2037 | 84,59 | 88,8  | 80,38            | 570,6           | 599,0     | 542,3     | 162,3             | 203,8              | 0,242    | 0,255            | 4,33 | 0,23            | 1,64           | 375,2             | 471,3       | 43,5       | 54,7        | 423,3          | 49,1  |
| 2.    | 0           | 15          | L      | 7 | 0,25 | 21             | 2186 | 82,69 | 88,5  | 76,87            | 557,8           | 597,0     | 518,5     | 155,5             | 203,2              | 0,220    | 0,237            | 4,33 | 0,23            | 1,64           | 359,4             | 469,8       | 41,7       | 54,5        | 414,6          | 48,1  |
| 3.    | -15         | 0           | L      | 7 | 0,25 | 21             | 2186 | 76,83 | 81,91 | 71,75            | 518,3           | 552,6     | 484,0     | 141,9             | 188,1              | 0,203    | 0,218            | 4,33 | 0,23            | 1,64           | 328,2             | 434,8       | 38,1       | 50,4        | 381,5          | 44,3  |
| 4.    | -30         | -15         | L      | 7 | 0,25 | 21             | 2037 | 81,59 | 95,25 | 67,92            | 550,4           | 642,6     | 458,2     | 155,4             | 218,8              | 0,233    | 0,275            | 4,33 | 0,23            | 1,64           | 359,2             | 505,9       | 41,7       | 58,7        | 432,5          | 50,2  |
| 5.    | -15         | 0           | D      | 7 | 0,25 | 21             | 2186 | 76,3  | 82,1  | 70,51            | 514,7           | 553,8     | 475,6     | 140,7             | 188,5              | 0,202    | 0,218            | 4,33 | 0,23            | 1,64           | 325,3             | 435,8       | 37,7       | 50,6        | 380,6          | 44,2  |
| 6.    | 0           | 15          | D      | 7 | 0,25 | 21             | 2186 | 77,89 | 82,82 | 72,96            | 525,4           | 558,7     | 492,2     | 144,4             | 190,1              | 0,206    | 0,220            | 4,33 | 0,23            | 1,64           | 333,8             | 439,6       | 38,7       | 51,0        | 386,7          | 44,9  |
| 7.    | 15          | 30          | D      | 7 | 0,25 | 21             | 2037 | 89,22 | 94,41 | 84,04            | 601,9           | 636,9     | 566,9     | 173,0             | 216,7              | 0,256    | 0,272            | 4,33 | 0,23            | 1,64           | 400,0             | 501,1       | 46,4       | 58,1        | 450,5          | 52,3  |
| 8.    | 15          | 30          | D      | 7 | 0,25 | 21             | 2037 | 96,54 | 101,8 | 91,32            | 651,2           | 686,4     | 616,1     | 189,9             | 233,6              | 0,279    | 0,294            | 4,33 | 0,23            | 1,64           | 439,1             | 540,1       | 50,9       | 62,7        | 489,6          | 56,8  |
| 9.    | 0           | 15          | L      | 7 | 0,4  | 21             | 3498 | 126,9 | 143,5 | 110,3            | 856,0           | 967,8     | 744,2     | 236,3             | 329,5              | 0,216    | 0,246            | 4,89 | 0,36            | 1,64           | 482,9             | 673,4       | 39,6       | 55,2        | 578,2          | 47,4  |
| 10.   | -15         | 0           | L      | 7 | 0,4  | 21             | 3498 | 123,3 | 137,4 | 109,1            | 831,7           | 927,1     | 736,2     | 227,9             | 315,6              | 0,210    | 0,235            | 4,89 | 0,36            | 1,64           | 465,8             | 645,1       | 38,2       | 52,9        | 555,5          | 45,6  |
| 11.   | -30         | -15         | L      | 7 | 0,4  | 21             | 3259 | 102,7 | 112,5 | 92,81            | 692,5           | 759,0     | 626,1     | 184,1             | 258,3              | 0,186    | 0,205            | 4,89 | 0,36            | 1,64           | 376,3             | 528,0       | 30,9       | 43,3        | 452,2          | 37,1  |
| 12.   | -30         | -15         | L      | 7 | 0,4  | 21             | 3259 | 76,03 | 79,83 | 72,23            | 512,9           | 538,5     | 487,2     | 122,6             | 183,3              | 0,135    | 0,142            | 4,89 | 0,36            | 1,64           | 250,5             | 374,6       | 20,5       | 30,7        | 312,5          | 25,6  |
| 13.   | -15         | 0           | D      | 7 | 0,4  | 21             | 3498 | 79,09 | 82,24 | 75,94            | 533,5           | 554,8     | 512,3     | 125,8             | 188,8              | 0,131    | 0,137            | 4,89 | 0,36            | 1,64           | 257,1             | 385,8       | 21,1       | 31,6        | 321,4          | 26,4  |
| 14.   | -15         | 0           | D      | 7 | 0,4  | 21             | 3498 | 92,22 | 99,12 | 85,32            | 622,1           | 668,7     | 575,6     | 156,1             | 227,6              | 0,155    | 0,167            | 4,89 | 0,36            | 1,64           | 319,1             | 465,1       | 26,2       | 38,2        | 392,1          | 32,2  |
| 15.   | 0           | 15          | D      | 7 | 0,4  | 21             | 3498 | 106,7 | 112,2 | 101,3            | 720,1           | 756,7     | 683,5     | 189,7             | 257,5              | 0,180    | 0,190            | 4,89 | 0,36            | 1,64           | 387,7             | 526,3       | 31,8       | 43,2        | 457,0          | 37,5  |
| 16.   | 15          | 30          | D      | 7 | 0,4  | 21             | 3259 | 124,3 | 143,9 | 104,7            | 838,6           | 970,6     | 706,5     | 234,2             | 330,5              | 0,227    | 0,265            | 4,89 | 0,36            | 1,64           | 478,6             | 675,5       | 39,3       | 55,4        | 577,1          | 47,3  |
| 17.   | 15          | 30          | L      | 7 | 0,5  | 21             | 4074 | 128,3 | 140,8 | 115,8            | 865,4           | 949,6     | 781,3     | 230,1             | 323,2              | 0,188    | 0,207            | 5,27 | 0,45            | 1,64           | 436,5             | 613,2       | 30,9       | 43,4        | 524,9          | 37,1  |
| 18.   | 0           | 15          | L      | 7 | 0,5  | 21             | 4372 | 124,2 | 135,8 | 112,5            | 837,5           | 915,9     | 759,2     | 215,7             | 311,8              | 0,169    | 0,186            | 5,27 | 0,45            | 1,64           | 409,2             | 591,5       | 28,9       | 41,8        | 500,3          | 35,4  |
| 19.   | -15         | 0           | L      | 7 | 0,5  | 21             | 4372 | 101,5 | 109,9 | 92,96            | 684,4           | 741,6     | 627,1     | 163,2             | 252,4              | 0,137    | 0,149            | 5,27 | 0,45            | 1,64           | 309,6             | 478,9       | 21,9       | 33,9        | 394,3          | 27,9  |
| 20.   | -30         | -15         | L      | 7 | 0,5  | 21             | 4074 | 91,46 | 99,49 | 83,42            | 617,0           | 671,2     | 562,8     | 145,0             | 228,4              | 0,131    | 0,144            | 5,27 | 0,45            | 1,64           | 275,0             | 433,4       | 19,4       | 30,6        | 354,2          | 25,0  |
| 21.   | -30         | -15         | D      | 7 | 0,5  | 21             | 4074 | 78,6  | 85,1  | 72,09            | 530,2           | 574,1     | 486,3     | 115,2             | 195,4              | 0,112    | 0,122            | 5,27 | 0,45            | 1,64           | 218,6             | 370,7       | 15,5       | 26,2        | 294,7          | 20,8  |
| 22.   | -15         | 0           | D      | 7 | 0,5  | 21             | 4372 | 95,7  | 100,5 | 90,95            | 645,6           | 677,6     | 613,5     | 149,9             | 230,6              | 0,129    | 0,135            | 5,27 | 0,45            | 1,64           | 284,4             | 437,5       | 20,1       | 30,9        | 360,9          | 25,5  |

Таблица 8.11. Збирна вредност специфичног отпора материјала на копање за цео погон, случај похабаних резних елемената 25 %





Струја коју доњи погон повлачи из мреже

Слика 8.9. Струја коју доњи погон копања повлачи из мреже – похабаност 50 %



# Струја коју горњи погон повлачи из мреже

Слика 8.10. Струја коју горњи погон копања повлачи из мреже – похабаност 50 %

|          |         | Ι      | % | $I_m$  | [A] |    |         | Ι      | % | $I_m$  | [A] |          |         | Ι      | % | $I_m$   | [A] |
|----------|---------|--------|---|--------|-----|----|---------|--------|---|--------|-----|----------|---------|--------|---|---------|-----|
| _        | MIN     | 50,49  |   | 39,887 |     | _  | MIN     | 69,615 |   | 54,996 |     | _        | MIN     | 74,97  |   | 59,2263 |     |
| Ξ        | SREDNJA | 53,816 |   | 42,515 |     | 3  | SREDNJA | 82,936 |   | 65,52  |     | 1        | SREDNJA | 82,832 |   | 65,437  |     |
| -        | MAX     | 57,143 |   | 45,143 |     |    | MAX     | 96,257 |   | 76,043 |     |          | MAX     | 90,693 |   | 71,6476 |     |
|          | MIN     | 47,124 |   | 37,228 |     |    | MIN     | 66,402 |   | 52,458 |     |          | MIN     | 69,615 |   | 54,9959 |     |
|          | SREDNJA | 51,66  |   | 40,812 |     |    | SREDNJA | 72,149 |   | 56,998 |     |          | SREDNJA | 78,485 |   | 62,0031 |     |
|          | MAX     | 56,196 |   | 44,395 |     |    | MAX     | 77,896 |   | 61,538 |     |          | MAX     | 87,355 |   | 69,0103 |     |
| ~        | MIN     | 44,447 |   | 35,113 |     | \$ | MIN     | 49,266 |   | 38,92  |     | ~        | MIN     | 58,37  |   | 46,1119 |     |
| Ē        | SREDNJA | 48,374 |   | 38,215 |     | F  | SREDNJA | 53,288 |   | 42,097 |     | 1        | SREDNJA | 64,516 |   | 50,9678 |     |
|          | MAX     | 52,302 |   | 41,318 |     |    | MAX     | 57,309 |   | 45,274 |     |          | MAX     | 70,663 |   | 55,8236 |     |
| -        | MIN     | 42,305 |   | 33,421 |     | -  | MIN     | 42,305 |   | 33,421 |     | -        | MIN     | 57,834 |   | 45,6889 |     |
| 1        | SREDNJA | 56,954 |   | 44,994 |     | I  | SREDNJA | 45,634 |   | 36,051 |     | I.       | SREDNJA | 64,248 |   | 50,7562 |     |
|          | MAX     | 71,604 |   | 56,567 |     |    | MAX     | 48,963 |   | 38,681 |     |          | MAX     | 70,663 |   | 55,8236 |     |
|          | MIN     | 42,84  |   | 33,844 |     |    | MIN     | 48,731 |   | 38,497 |     |          | MIN     | 47,124 |   | 37,228  |     |
| ā        | SREDNJA | 45,902 |   | 36,262 |     | ā  | SREDNJA | 51,629 |   | 40,787 |     | ē        | SREDNJA | 53,608 |   | 42,35   |     |
| _        | MAX     | 48,963 |   | 38,681 |     |    | MAX     | 54,527 |   | 43,076 |     |          | MAX     | 60,091 |   | 47,472  |     |
| ~        | MIN     | 47,124 |   | 37,228 |     |    | MIN     | 53,55  |   | 42,305 |     |          | MIN     | 54,086 |   | 42,7275 |     |
| <u> </u> | SREDNJA | 49,713 |   | 39,273 |     | â  | SREDNJA | 57,377 |   | 45,328 |     | <u> </u> | SREDNJA | 57,923 |   | 45,7591 |     |
|          | MAX     | 52,302 |   | 41,318 |     |    | MAX     | 61,204 |   | 48,351 |     |          | MAX     | 61,76  |   | 48,7907 |     |
| ~        | MIN     | 53,015 |   | 41,881 |     | 3  | MIN     | 67,473 |   | 53,304 |     | ~        | MIN     | 68,544 |   | 54,1498 |     |
| Ä        | SREDNJA | 54,605 |   | 43,138 |     | Ä  | SREDNJA | 65,451 |   | 51,707 |     | <u> </u> | SREDNJA | 76,002 |   | 60,0416 |     |
|          | MAX     | 56,196 |   | 44,395 |     |    | MAX     | 63,43  |   | 50,109 |     |          | MAX     | 83,46  |   | 65,9334 |     |
| -        | MIN     | 55,692 |   | 43,997 |     | -  | MIN     | 64,26  |   | 50,765 |     | -        | MIN     | 69,615 |   | 54,9959 |     |
| Õ        | SREDNJA | 59,283 |   | 46,833 |     | Å  | SREDNJA | 76,642 |   | 60,547 |     | <u>Ö</u> | SREDNJA | 89,057 |   | 70,3546 |     |
| _        | MAX     | 62,873 |   | 49,67  |     |    | MAX     | 89,024 |   | 70,329 |     |          | MAX     | 108,5  |   | 85,7134 |     |

Таблица 8.12. Очитане вредности пикова струје – доњи погон, похабаност 50 %

Таблица 8.13. Очитане вредности пикова струје – горњи погон, похабаност 50 %

|         |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |                                                        |                                                        | -                                                      |                                                        |                                                        |                                                         |                                                        |                                                         |                                                         |                                                         |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
|         | Ι                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $I_m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [A]                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        | Ι                                                      | %                                                      | $I_m$                                                  | [A]                                                    |                                                        |                                                         | Ι                                                      | %                                                       | $I_m$                                                   | [A]                                                     |
| MIN     | 51,051                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MIN                                                    | 67,32                                                  |                                                        | 53,183                                                 |                                                        | _                                                      | MIN                                                     | 72,369                                                 |                                                         | 57,1715                                                 |                                                         |
| SREDNJA | 54,828                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43,314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SREDNJA                                                | 78,809                                                 |                                                        | 62,259                                                 |                                                        | E                                                      | SREDNJA                                                 | 82,361                                                 |                                                         | 65,0648                                                 |                                                         |
| MAX     | 58,604                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46,297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAX                                                    | 90,298                                                 |                                                        | 71,335                                                 |                                                        |                                                        | MAX                                                     | 92,352                                                 |                                                         | 72,9581                                                 |                                                         |
| MIN     | 49,929                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39,444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MIN                                                    | 71,247                                                 |                                                        | 56,285                                                 |                                                        |                                                        | MIN                                                     | 73,491                                                 |                                                         | 58,0579                                                 |                                                         |
| SREDNJA | 54,566                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43,107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SREDNJA                                                | 86,001                                                 |                                                        | 67,941                                                 |                                                        | 12                                                     | SREDNJA                                                 | 81,299                                                 |                                                         | 64,2263                                                 |                                                         |
| MAX     | 59,202                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46,77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAX                                                    | 100,76                                                 |                                                        | 79,597                                                 |                                                        |                                                        | MAX                                                     | 89,107                                                 |                                                         | 70,3947                                                 |                                                         |
| MIN     | 46,002                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36,342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MIN                                                    | 65,637                                                 |                                                        | 51,853                                                 |                                                        | ~                                                      | MIN                                                     | 59,466                                                 |                                                         | 46,9781                                                 |                                                         |
| SREDNJA | 50,21                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39,666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | Ĥ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SREDNJA                                                | 76,499                                                 |                                                        | 60,434                                                 |                                                        | Ĩ                                                      | SREDNJA                                                 | 65,613                                                 |                                                         | 51,8343                                                 |                                                         |
| MAX     | 54,418                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42,99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAX                                                    | 87,36                                                  |                                                        | 69,014                                                 |                                                        |                                                        | MAX                                                     | 71,76                                                  |                                                         | 56,6904                                                 |                                                         |
| MIN     | 43,197                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34,126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MIN                                                    | 45,441                                                 |                                                        | 35,898                                                 |                                                        | -                                                      | MIN                                                     | 47,685                                                 |                                                         | 37,6712                                                 |                                                         |
| SREDNJA | 47,014                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37,141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | ILA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SREDNJA                                                | 49,631                                                 |                                                        | 39,208                                                 |                                                        | Ĩ                                                      | SREDNJA                                                 | 52,846                                                 |                                                         | 41,7479                                                 |                                                         |
| MAX     | 50,83                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40,156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAX                                                    | 53,82                                                  |                                                        | 42,518                                                 |                                                        |                                                        | MAX                                                     | 58,006                                                 |                                                         | 45,8247                                                 |                                                         |
| MIN     | 46,002                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36,342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MIN                                                    | 44,88                                                  |                                                        | 35,455                                                 |                                                        |                                                        | MIN                                                     | 43,758                                                 |                                                         | 34,5688                                                 |                                                         |
| SREDNJA | 51,406                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40,611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SREDNJA                                                | 48,154                                                 |                                                        | 38,042                                                 |                                                        | <u>e</u>                                               | SREDNJA                                                 | 46,696                                                 |                                                         | 36,8898                                                 |                                                         |
| MAX     | 56,81                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44,88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAX                                                    | 51,428                                                 |                                                        | 40,628                                                 |                                                        |                                                        | MAX                                                     | 49,634                                                 |                                                         | 39,2109                                                 |                                                         |
| MIN     | 44,88                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35,455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MIN                                                    | 54,417                                                 |                                                        | 42,989                                                 |                                                        | ~                                                      | MIN                                                     | 61,149                                                 |                                                         | 48,3077                                                 |                                                         |
| SREDNJA | 49,649                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39,223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | ä                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SREDNJA                                                | 60,697                                                 |                                                        | 47,95                                                  |                                                        | ĕ                                                      | SREDNJA                                                 | 64,661                                                 |                                                         | 51,0818                                                 |                                                         |
| MAX     | 54,418                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42,99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAX                                                    | 66,976                                                 |                                                        | 52,911                                                 |                                                        |                                                        | MAX                                                     | 68,172                                                 |                                                         | 53,8559                                                 |                                                         |
| MIN     | 53,295                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42,103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MIN                                                    | 61,149                                                 |                                                        | 48,308                                                 |                                                        | ~                                                      | MIN                                                     | 65,637                                                 |                                                         | 51,8532                                                 |                                                         |
| SREDNJA | 59,538                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47,035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SREDNJA                                                | 71,538                                                 |                                                        | 56,515                                                 |                                                        | <u> </u>                                               | SREDNJA                                                 | 79,702                                                 |                                                         | 62,9643                                                 |                                                         |
| MAX     | 65,78                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51,966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAX                                                    | 81,926                                                 |                                                        | 64,722                                                 |                                                        |                                                        | MAX                                                     | 93,766                                                 |                                                         | 74,0755                                                 |                                                         |
| MIN     | 60,027                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47,421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MIN                                                    | 66,647                                                 |                                                        | 52,651                                                 |                                                        | +                                                      | MIN                                                     | 91,443                                                 |                                                         | 72,24                                                   |                                                         |
| SREDNJA | 64,399                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50,875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | Õ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SREDNJA                                                | 82,385                                                 |                                                        | 65,084                                                 |                                                        | Ğ                                                      | SREDNJA                                                 | 108,45                                                 |                                                         | 85,6789                                                 |                                                         |
| MAX     | 68,77                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54,328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAX                                                    | 98,124                                                 |                                                        | 77,518                                                 |                                                        |                                                        | MAX                                                     | 125,47                                                 |                                                         | 99,1178                                                 |                                                         |
|         | IIN<br>REDNJA<br>IAX<br>IIN<br>REDNJA<br>IAX<br>IIN<br>REDNJA<br>IAX<br>IIN<br>REDNJA<br>IAX<br>IIN<br>REDNJA<br>IAX<br>IIN<br>REDNJA<br>IAX<br>IIN<br>REDNJA<br>IAX | I           IIN         51,051           REDNJA         54,828           IAX         58,604           IIN         49,929           REDNJA         54,566           IAX         58,604           IIN         49,929           REDNJA         54,566           IAX         54,516           REDNJA         50,21           IAX         54,418           IIN         43,197           REDNJA         47,014           IAX         50,83           IIN         46,002           REDNJA         51,406           IAX         56,81           IIN         44,88           REDNJA         59,418           IIN         53,295           REDNJA         59,538           IAX         65,78           IIN         60,027           REDNJA         64,399           IAX         68,77 | I         %           IIN         51,051           REDNJA         54,828           IAX         58,604           IIN         49,929           REDNJA         54,566           IAX         58,604           IIN         49,929           REDNIA         54,566           IAX         58,604           IIN         46,002           REDNIA         50,21           IAX         54,418           IIN         43,197           REDNJA         47,014           IAX         50,83           IIN         46,002           REDNJA         51,406           IAX         56,81           IIN         40,649           IAX         54,418           IIN         49,649           IAX         54,418           IIN         53,295           REDNIA         59,538           IIN         60,027           REDNJA         64,399           IAX         68,77 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | I         % $I_m$ [A]           IIN         51,051         40,33         [A]           IIN         51,051         40,33         [A]           REDNJA         54,828         43,314         [A]           IAX         58,604         46,297         [IIN         49,929         39,444           REDNJA         54,566         43,107         [AX         59,202         46,77           IIN         46,002         36,342         [REDNJA         50,21         39,666           IAX         54,418         42,99         [IIN         43,197         34,126           REDNJA         50,21         36,342         [REDNJA         50,83         40,156           IIN         43,197         34,126         [AX         54,418         42,99           IIN         46,002         36,342         [REDNJA         50,81         44,88           IIN         46,002         36,342         [REDNJA         [A]         [A]           IIN         46,02         36,342         [REDNJA         [A]         [A]           IIN         44,88         35,455         [REDNJA         [A]         [A]         [A]         [A] | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |

| Р.бр. | $\varphi_L$ | $\varphi_D$ | правац | h | S    | v <sub>b</sub> | $Q_{ef}$ | Isr   | I max | I <sub>min</sub> | N <sub>sr</sub> | $N_{max}$ | $N_{min}$ | P <sub>k,sr</sub> | P <sub>k,max</sub> | $E_{sr}$ | $E_{max}$ | L    | F <sub>sr</sub> | k <sub>w</sub> | K <sub>L,sr</sub> | $K_{L,max}$ | $K_{F,sr}$ | $K_{F,max}$ | K <sub>L</sub> | $K_F$ |
|-------|-------------|-------------|--------|---|------|----------------|----------|-------|-------|------------------|-----------------|-----------|-----------|-------------------|--------------------|----------|-----------|------|-----------------|----------------|-------------------|-------------|------------|-------------|----------------|-------|
| 1.    | 15          | 30          | L      | 7 | 0,25 | 21             | 2037     | 43,31 | 46,3  | 40,33            | 292,2           | 312,3     | 272,1     | 66,9              | 106,3              | 0,115    | 0,125     | 4,33 | 0,23            | 1,64           | 154,7             | 245,8       | 17,9       | 28,5        | 200,2          | 23,2  |
| 2.    | 0           | 15          | L      | 7 | 0,25 | 21             | 2186     | 43,11 | 46,77 | 39,44            | 290,8           | 315,5     | 266,1     | 64,0              | 107,4              | 0,107    | 0,117     | 4,33 | 0,23            | 1,64           | 148,0             | 248,3       | 17,2       | 28,8        | 198,1          | 23,0  |
| 3.    | -15         | 0           | L      | 7 | 0,25 | 21             | 2186     | 39,67 | 42,99 | 36,34            | 267,6           | 290,0     | 245,2     | 56,0              | 98,7               | 0,097    | 0,107     | 4,33 | 0,23            | 1,64           | 129,6             | 228,2       | 15,0       | 26,5        | 178,9          | 20,8  |
| 4.    | -30         | -15         | L      | 7 | 0,25 | 21             | 2037     | 37,14 | 40,16 | 34,13            | 250,5           | 270,9     | 230,2     | 52,6              | 92,2               | 0,097    | 0,106     | 4,33 | 0,23            | 1,64           | 121,7             | 213,2       | 14,1       | 24,7        | 167,4          | 19,4  |
| 5.    | -15         | 0           | D      | 7 | 0,25 | 21             | 2186     | 40,61 | 44,88 | 36,34            | 274,0           | 302,8     | 245,2     | 58,2              | 103,1              | 0,100    | 0,112     | 4,33 | 0,23            | 1,64           | 134,6             | 238,3       | 15,6       | 27,6        | 186,4          | 21,6  |
| 6.    | 0           | 15          | D      | 7 | 0,25 | 21             | 2189     | 39,22 | 42,99 | 35,46            | 264,6           | 290,0     | 239,2     | 55,0              | 98,7               | 0,096    | 0,107     | 4,33 | 0,23            | 1,64           | 127,1             | 228,2       | 14,7       | 26,5        | 177,7          | 20,6  |
| 7.    | 15          | 30          | D      | 7 | 0,25 | 21             | 2037     | 47,03 | 51,97 | 42,1             | 317,3           | 350,6     | 284,0     | 75,5              | 119,3              | 0,127    | 0,142     | 4,33 | 0,23            | 1,64           | 174,6             | 275,9       | 20,3       | 32,0        | 225,2          | 26,1  |
| 8.    | 15          | 30          | D      | 7 | 0,25 | 21             | 2037     | 50,87 | 54,33 | 47,42            | 343,2           | 366,5     | 319,9     | 84,4              | 124,7              | 0,139    | 0,149     | 4,33 | 0,23            | 1,64           | 195,1             | 288,4       | 22,6       | 33,5        | 241,7          | 28,0  |
| 9.    | 0           | 15          | L      | 7 | 0,4  | 21             | 3498     | 62,26 | 71,34 | 53,18            | 420,0           | 481,2     | 358,8     | 86,9              | 163,8              | 0,101    | 0,117     | 4,89 | 0,36            | 1,64           | 177,6             | 334,9       | 14,6       | 27,5        | 256,2          | 21,0  |
| 10.   | -15         | 0           | L      | 7 | 0,4  | 21             | 3498     | 67,94 | 79,6  | 56,29            | 458,3           | 537,0     | 379,7     | 100,0             | 182,8              | 0,111    | 0,132     | 4,89 | 0,36            | 1,64           | 204,4             | 373,7       | 16,8       | 30,7        | 289,1          | 23,7  |
| 11.   | -30         | -15         | L      | 7 | 0,4  | 21             | 3259     | 60,43 | 69,01 | 51,85            | 407,7           | 465,6     | 349,8     | 86,5              | 158,5              | 0,105    | 0,121     | 4,89 | 0,36            | 1,64           | 176,9             | 324,0       | 14,5       | 26,6        | 250,4          | 20,5  |
| 12.   | -30         | -15         | L      | 7 | 0,4  | 21             | 3259     | 39,21 | 42,52 | 35,9             | 264,5           | 286,8     | 242,2     | 37,5              | 97,6               | 0,064    | 0,071     | 4,89 | 0,36            | 1,64           | 76,6              | 199,5       | 6,3        | 16,4        | 138,1          | 11,3  |
| 13.   | -15         | 0           | D      | 7 | 0,4  | 21             | 3498     | 38,04 | 40,63 | 35,46            | 256,6           | 274,1     | 239,2     | 30,9              | 93,3               | 0,058    | 0,062     | 4,89 | 0,36            | 1,64           | 63,2              | 190,6       | 5,2        | 15,6        | 126,9          | 10,4  |
| 14.   | -15         | 0           | D      | 7 | 0,4  | 21             | 3498     | 47,95 | 52,91 | 42,99            | 323,5           | 356,9     | 290,0     | 53,8              | 121,5              | 0,076    | 0,084     | 4,89 | 0,36            | 1,64           | 110,0             | 248,3       | 9,0        | 20,4        | 179,2          | 14,7  |
| 15.   | 0           | 15          | D      | 7 | 0,4  | 21             | 3498     | 56,51 | 64,72 | 48,31            | 381,2           | 436,6     | 325,9     | 73,6              | 148,7              | 0,091    | 0,105     | 4,89 | 0,36            | 1,64           | 150,4             | 303,8       | 12,3       | 24,9        | 227,1          | 18,6  |
| 16.   | 15          | 30          | D      | 7 | 0,4  | 21             | 3259     | 65,08 | 77,52 | 52,65            | 439,1           | 522,9     | 355,2     | 97,3              | 178,1              | 0,114    | 0,138     | 4,89 | 0,36            | 1,64           | 198,8             | 364,0       | 16,3       | 29,9        | 281,4          | 23,1  |
| 17.   | 15          | 30          | L      | 7 | 0,5  | 21             | 4074     | 65,06 | 72,96 | 57,17            | 438,9           | 492,2     | 385,7     | 84,0              | 167,6              | 0,091    | 0,103     | 5,27 | 0,45            | 1,64           | 159,3             | 317,9       | 11,3       | 22,5        | 238,6          | 16,9  |
| 18.   | 0           | 15          | L      | 7 | 0,5  | 21             | 4372     | 64,23 | 70,39 | 58,06            | 433,3           | 474,9     | 391,7     | 77,2              | 161,6              | 0,084    | 0,092     | 5,27 | 0,45            | 1,64           | 146,4             | 306,7       | 10,3       | 21,7        | 226,5          | 16,0  |
| 19.   | -15         | 0           | L      | 7 | 0,5  | 21             | 4372     | 51,83 | 56,69 | 46,98            | 349,7           | 382,4     | 316,9     | 48,5              | 130,2              | 0,066    | 0,073     | 5,27 | 0,45            | 1,64           | 92,1              | 247,0       | 6,5        | 17,5        | 169,5          | 12,0  |
| 20.   | -30         | -15         | L      | 7 | 0,5  | 21             | 4074     | 41,75 | 45,82 | 37,67            | 281,6           | 309,1     | 254,1     | 30,1              | 105,2              | 0,055    | 0,062     | 5,27 | 0,45            | 1,64           | 57,1              | 199,6       | 4,0        | 14,1        | 128,3          | 9,1   |
| 21.   | -30         | -15         | D      | 7 | 0,5  | 21             | 4074     | 36,89 | 39,21 | 34,57            | 248,9           | 264,5     | 233,2     | 18,8              | 90,0               | 0,048    | 0,051     | 5,27 | 0,45            | 1,64           | 35,8              | 170,8       | 2,5        | 12,1        | 103,3          | 7,3   |
| 22.   | -15         | 0           | D      | 7 | 0,5  | 21             | 4372     | 51,08 | 53,86 | 48,31            | 344,6           | 363,3     | 325,9     | 46,8              | 123,6              | 0,065    | 0,069     | 5,27 | 0,45            | 1,64           | 88,8              | 234,6       | 6,3        | 16,6        | 161,7          | 11,4  |

Таблица 8.14. Специфични отпор материјала на копање за случај похабаних резних елемената 50 %, доњи погон

| Р.бр. | $\varphi_L$ | $\varphi_D$ | правац | h | S    | v <sub>b</sub> | $Q_{ef}$ | Isr   | I max | I <sub>min</sub> | N <sub>sr</sub> | N <sub>max</sub> | $N_{min}$ | P <sub>k,sr</sub> | $P_{k,max}$ | $E_{sr}$ | $E_{max}$ | L    | $F_{sr}$ | k <sub>w</sub> | K <sub>L,sr</sub> | $K_{L,max}$ | $K_{F,sr}$ | $K_{F,max}$ | $K_L$ | $K_F$ |
|-------|-------------|-------------|--------|---|------|----------------|----------|-------|-------|------------------|-----------------|------------------|-----------|-------------------|-------------|----------|-----------|------|----------|----------------|-------------------|-------------|------------|-------------|-------|-------|
| 1.    | 15          | 30          | L      | 7 | 0,25 | 21             | 2037     | 42,51 | 45,14 | 39,89            | 286,8           | 304,5            | 269,1     | 65,1              | 103,6       | 0,113    | 0,121     | 4,33 | 0,23     | 1,64           | 150,4             | 239,6       | 17,4       | 27,8        | 195,0 | 22,6  |
| 2.    | 0           | 15          | L      | 7 | 0,25 | 21             | 2186     | 40,81 | 44,4  | 37,23            | 275,3           | 299,5            | 251,1     | 58,7              | 101,9       | 0,100    | 0,111     | 4,33 | 0,23     | 1,64           | 135,7             | 235,7       | 15,7       | 27,3        | 185,7 | 21,5  |
| 3.    | -15         | 0           | L      | 7 | 0,25 | 21             | 2186     | 38,22 | 41,32 | 35,11            | 257,8           | 278,7            | 236,9     | 52,7              | 94,9        | 0,093    | 0,102     | 4,33 | 0,23     | 1,64           | 121,8             | 219,3       | 14,1       | 25,4        | 170,6 | 19,8  |
| 4.    | -30         | -15         | L      | 7 | 0,25 | 21             | 2037     | 44,99 | 56,57 | 33,42            | 303,5           | 381,6            | 225,5     | 70,8              | 130,0       | 0,121    | 0,156     | 4,33 | 0,23     | 1,64           | 163,6             | 300,6       | 19,0       | 34,9        | 232,1 | 26,9  |
| 5.    | -15         | 0           | D      | 7 | 0,25 | 21             | 2186     | 36,26 | 38,68 | 33,84            | 244,6           | 260,9            | 228,3     | 48,2              | 88,8        | 0,087    | 0,094     | 4,33 | 0,23     | 1,64           | 111,4             | 205,3       | 12,9       | 23,8        | 158,4 | 18,4  |
| 6.    | 0           | 15          | D      | 7 | 0,25 | 21             | 2186     | 39,27 | 41,32 | 37,23            | 264,9           | 278,7            | 251,1     | 55,1              | 94,9        | 0,096    | 0,102     | 4,33 | 0,23     | 1,64           | 127,5             | 219,3       | 14,8       | 25,4        | 173,4 | 20,1  |
| 7.    | 15          | 30          | D      | 7 | 0,25 | 21             | 2037     | 43,14 | 44,4  | 41,88            | 291,0           | 299,5            | 282,5     | 66,5              | 101,9       | 0,115    | 0,119     | 4,33 | 0,23     | 1,64           | 153,7             | 235,6       | 17,8       | 27,3        | 194,7 | 22,6  |
| 8.    | 15          | 30          | D      | 7 | 0,25 | 21             | 2037     | 46,83 | 49,67 | 44               | 315,9           | 335,1            | 296,8     | 75,0              | 114,0       | 0,126    | 0,135     | 4,33 | 0,23     | 1,64           | 173,5             | 263,6       | 20,1       | 30,6        | 218,6 | 25,4  |
| 9.    | 0           | 15          | L      | 7 | 0,4  | 21             | 3498     | 65,52 | 76,04 | 55               | 442,0           | 513,0            | 371,0     | 94,4              | 174,7       | 0,107    | 0,126     | 4,89 | 0,36     | 1,64           | 193,0             | 357,0       | 15,8       | 29,3        | 275,0 | 22,6  |
| 10.   | -15         | 0           | L      | 7 | 0,4  | 21             | 3498     | 57    | 61,54 | 52,46            | 384,5           | 415,1            | 353,9     | 74,7              | 141,3       | 0,092    | 0,100     | 4,89 | 0,36     | 1,64           | 152,7             | 288,8       | 12,5       | 23,7        | 220,7 | 18,1  |
| 11.   | -30         | -15         | L      | 7 | 0,4  | 21             | 3259     | 42,1  | 45,27 | 38,92            | 284,0           | 305,4            | 262,6     | 44,2              | 103,9       | 0,070    | 0,076     | 4,89 | 0,36     | 1,64           | 90,3              | 212,5       | 7,4        | 17,4        | 151,4 | 12,4  |
| 12.   | -30         | -15         | L      | 7 | 0,4  | 21             | 3259     | 36,05 | 38,68 | 33,42            | 243,2           | 260,9            | 225,5     | 30,2              | 88,8        | 0,058    | 0,063     | 4,89 | 0,36     | 1,64           | 61,7              | 181,5       | 5,1        | 14,9        | 121,6 | 10,0  |
| 13.   | -15         | 0           | D      | 7 | 0,4  | 21             | 3498     | 40,79 | 43,08 | 38,5             | 275,1           | 290,6            | 259,7     | 37,2              | 98,9        | 0,063    | 0,067     | 4,89 | 0,36     | 1,64           | 76,1              | 202,1       | 6,2        | 16,6        | 139,1 | 11,4  |
| 14.   | -15         | 0           | D      | 7 | 0,4  | 21             | 3498     | 45,33 | 48,35 | 42,3             | 305,8           | 326,2            | 285,4     | 47,7              | 111,0       | 0,071    | 0,076     | 4,89 | 0,36     | 1,64           | 97,6              | 226,9       | 8,0        | 18,6        | 162,2 | 13,3  |
| 15.   | 0           | 15          | D      | 7 | 0,4  | 21             | 3498     | 51,71 | 50,11 | 53,3             | 348,8           | 338,0            | 359,6     | 62,5              | 115,0       | 0,082    | 0,079     | 4,89 | 0,36     | 1,64           | 127,7             | 235,0       | 10,5       | 19,3        | 181,3 | 14,9  |
| 16.   | 15          | 30          | D      | 7 | 0,4  | 21             | 3259     | 60,55 | 70,33 | 50,77            | 408,4           | 474,4            | 342,5     | 86,8              | 161,5       | 0,105    | 0,124     | 4,89 | 0,36     | 1,64           | 177,4             | 330,2       | 14,6       | 27,1        | 253,8 | 20,8  |
| 17.   | 15          | 30          | L      | 7 | 0,5  | 21             | 4074     | 65,44 | 71,65 | 59,23            | 441,4           | 483,3            | 399,5     | 84,8              | 164,5       | 0,092    | 0,101     | 5,27 | 0,45     | 1,64           | 160,9             | 312,1       | 11,4       | 22,1        | 236,5 | 16,7  |
| 18.   | 0           | 15          | L      | 7 | 0,5  | 21             | 4372     | 62    | 69,01 | 55               | 418,3           | 465,5            | 371,0     | 72,0              | 158,5       | 0,080    | 0,090     | 5,27 | 0,45     | 1,64           | 136,7             | 300,7       | 9,7        | 21,3        | 218,7 | 15,5  |
| 19.   | -15         | 0           | L      | 7 | 0,5  | 21             | 4372     | 50,97 | 55,82 | 46,11            | 343,8           | 376,6            | 311,1     | 46,5              | 128,2       | 0,065    | 0,072     | 5,27 | 0,45     | 1,64           | 88,3              | 243,2       | 6,2        | 17,2        | 165,7 | 11,7  |
| 20.   | -30         | -15         | L      | 7 | 0,5  | 21             | 4074     | 50,76 | 55,82 | 45,69            | 342,4           | 376,6            | 308,2     | 50,9              | 128,2       | 0,069    | 0,077     | 5,27 | 0,45     | 1,64           | 96,6              | 243,2       | 6,8        | 17,2        | 169,9 | 12,0  |
| 21.   | -30         | -15         | D      | 7 | 0,5  | 21             | 4074     | 42,35 | 47,47 | 37,23            | 285,7           | 320,2            | 251,1     | 31,5              | 109,0       | 0,056    | 0,064     | 5,27 | 0,45     | 1,64           | 59,7              | 206,8       | 4,2        | 14,6        | 133,3 | 9,4   |
| 22.   | -15         | 0           | D      | 7 | 0,5  | 21             | 4372     | 45,76 | 48,79 | 42,73            | 308,7           | 329,1            | 288,2     | 34,5              | 112,0       | 0,057    | 0,062     | 5,27 | 0,45     | 1,64           | 65,4              | 212,5       | 4,6        | 15,0        | 139,0 | 9,8   |

Таблица 8.15. Специфични отпор материјала на копање за случај похабаних резних елемената 50 %, горњи погон

| Р.бр. | $\varphi_L$ | $\varphi_D$ | правац | h | s    | v <sub>b</sub> | $Q_{ef}$ | Isr   | I max | I <sub>min</sub> | N <sub>sr</sub> | N <sub>max</sub> | $N_{min}$ | P <sub>k,sr</sub> | $P_{k,max}$ | $E_{sr}$ | E max | L    | $F_{sr}$ | k <sub>w</sub> | K <sub>L,sr</sub> | $K_{L,max}$ | $K_{F,sr}$ | $K_{F,max}$ | K <sub>L</sub> | $K_F$ |
|-------|-------------|-------------|--------|---|------|----------------|----------|-------|-------|------------------|-----------------|------------------|-----------|-------------------|-------------|----------|-------|------|----------|----------------|-------------------|-------------|------------|-------------|----------------|-------|
| 1.    | 15          | 30          | L      | 7 | 0,25 | 21             | 2037     | 85,83 | 91,44 | 80,22            | 579,0           | 616,8            | 541,1     | 165,2             | 209,9       | 0,246    | 0,263 | 4,33 | 0,23     | 1,64           | 381,8             | 485,4       | 44,3       | 56,3        | 433,6          | 50,3  |
| 2.    | 0           | 15          | L      | 7 | 0,25 | 21             | 2186     | 83,92 | 91,16 | 76,67            | 566,1           | 615,0            | 517,2     | 158,3             | 209,3       | 0,224    | 0,244 | 4,33 | 0,23     | 1,64           | 366,0             | 484,0       | 42,5       | 56,1        | 425,0          | 49,3  |
| 3.    | -15         | 0           | L      | 7 | 0,25 | 21             | 2186     | 77,88 | 84,31 | 71,45            | 525,4           | 568,7            | 482,0     | 144,4             | 193,6       | 0,206    | 0,225 | 4,33 | 0,23     | 1,64           | 333,8             | 447,6       | 38,7       | 51,9        | 390,7          | 45,3  |
| 4.    | -30         | -15         | L      | 7 | 0,25 | 21             | 2037     | 82,13 | 96,72 | 67,55            | 554,1           | 652,5            | 455,7     | 156,6             | 222,2       | 0,234    | 0,279 | 4,33 | 0,23     | 1,64           | 362,1             | 513,7       | 42,0       | 59,6        | 437,9          | 50,8  |
| 5.    | -15         | 0           | D      | 7 | 0,25 | 21             | 2186     | 76,87 | 83,56 | 70,19            | 518,6           | 563,7            | 473,5     | 142,0             | 191,9       | 0,203    | 0,223 | 4,33 | 0,23     | 1,64           | 328,4             | 443,6       | 38,1       | 51,5        | 386,0          | 44,8  |
| 6.    | 0           | 15          | D      | 7 | 0,25 | 21             | 2186     | 78,5  | 84,31 | 72,68            | 529,5           | 568,7            | 490,3     | 145,8             | 193,6       | 0,208    | 0,225 | 4,33 | 0,23     | 1,64           | 337,1             | 447,5       | 39,1       | 51,9        | 392,3          | 45,5  |
| 7.    | 15          | 30          | D      | 7 | 0,25 | 21             | 2037     | 90,17 | 96,36 | 83,98            | 608,3           | <u>650,0</u>     | 566,6     | 175,2             | 221,2       | 0,259    | 0,278 | 4,33 | 0,23     | 1,64           | 405,1             | 511,5       | 47,0       | 59,3        | 458,3          | 53,2  |
| 8.    | 15          | 30          | D      | 7 | 0,25 | 21             | 2037     | 97,71 | 104   | 91,42            | 659,1           | 701,6            | 616,7     | 192,6             | 238,8       | 0,282    | 0,301 | 4,33 | 0,23     | 1,64           | 445,3             | 552,0       | 51,7       | 64,0        | 498,7          | 57,9  |
| 9.    | 0           | 15          | L      | 7 | 0,4  | 21             | 3498     | 127,8 | 147,4 | 108,2            | 862,0           | 994,2            | 729,8     | 238,3             | 338,5       | 0,218    | 0,253 | 4,89 | 0,36     | 1,64           | 487,1             | 691,9       | 39,9       | 56,8        | 589,5          | 48,4  |
| 10.   | -15         | 0           | L      | 7 | 0,4  | 21             | 3498     | 124,9 | 141,1 | 108,7            | 842,8           | 952,1            | 733,6     | 231,7             | 324,1       | 0,213    | 0,242 | 4,89 | 0,36     | 1,64           | 473,6             | 662,5       | 38,8       | 54,3        | 568,1          | 46,6  |
| 11.   | -30         | -15         | L      | 7 | 0,4  | 21             | 3259     | 102,5 | 114,3 | 90,77            | 691,7           | 771,0            | 612,3     | 183,8             | 262,5       | 0,186    | 0,208 | 4,89 | 0,36     | 1,64           | 375,7             | 536,4       | 30,8       | 44,0        | 456,1          | 37,4  |
| 12.   | -30         | -15         | L      | 7 | 0,4  | 21             | 3259     | 75,26 | 81,2  | 69,32            | 507,7           | 547,8            | 467,6     | 120,8             | 186,4       | 0,133    | 0,145 | 4,89 | 0,36     | 1,64           | 246,9             | 381,0       | 20,3       | 31,3        | 314,0          | 25,8  |
| 13.   | -15         | 0           | D      | 7 | 0,4  | 21             | 3498     | 78,83 | 83,7  | 73,95            | 531,8           | 564,7            | 498,9     | 125,2             | 192,2       | 0,131    | 0,139 | 4,89 | 0,36     | 1,64           | 255,8             | 392,8       | 21,0       | 32,2        | 324,3          | 26,6  |
| 14.   | -15         | 0           | D      | 7 | 0,4  | 21             | 3498     | 93,28 | 101,3 | 85,29            | 629,2           | 683,1            | 575,4     | 158,6             | 232,5       | 0,156    | 0,171 | 4,89 | 0,36     | 1,64           | 324,1             | 475,2       | 26,6       | 39,0        | 399,7          | 32,8  |
| 15.   | 0           | 15          | D      | 7 | 0,4  | 21             | 3498     | 108,2 | 114,8 | 101,6            | 730,0           | 774,6            | 685,5     | 193,1             | 263,6       | 0,183    | 0,195 | 4,89 | 0,36     | 1,64           | 394,7             | 538,8       | 32,4       | 44,2        | 466,7          | 38,3  |
| 16.   | 15          | 30          | D      | 7 | 0,4  | 21             | 3259     | 125,6 | 147,8 | 103,4            | 847,5           | 997,4            | 697,6     | 237,2             | 339,6       | 0,230    | 0,272 | 4,89 | 0,36     | 1,64           | 484,9             | 694,2       | 39,8       | 56,9        | 589,5          | 48,4  |
| 17.   | 15          | 30          | L      | 7 | 0,5  | 21             | 4074     | 130,5 | 144,6 | 116,4            | 880,4           | 975,5            | 785,2     | 235,2             | 332,1       | 0,191    | 0,213 | 5,27 | 0,45     | 1,64           | 446,2             | 630,0       | 31,5       | 44,5        | 538,1          | 38,0  |
| 18.   | 0           | 15          | L      | 7 | 0,5  | 21             | 4372     | 126,2 | 139,4 | 113,1            | 851,5           | 940,4            | 762,6     | 220,5             | 320,1       | 0,172    | 0,191 | 5,27 | 0,45     | 1,64           | 418,3             | 607,3       | 29,6       | 42,9        | 512,8          | 36,3  |
| 19.   | -15         | 0           | L      | 7 | 0,5  | 21             | 4372     | 102,8 | 112,5 | 93,09            | 693,5           | 759,0            | 628,0     | 166,3             | 258,4       | 0,139    | 0,153 | 5,27 | 0,45     | 1,64           | 315,5             | 490,1       | 22,3       | 34,6        | 402,8          | 28,5  |
| 20.   | -30         | -15         | L      | 7 | 0,5  | 21             | 4074     | 92,5  | 101,6 | 83,36            | 624,0           | 685,7            | 562,3     | 147,4             | 233,4       | 0,133    | 0,147 | 5,27 | 0,45     | 1,64           | 279,6             | 442,8       | 19,8       | 31,3        | 361,2          | 25,5  |
| 21.   | -30         | -15         | D      | 7 | 0,5  | 21             | 4074     | 79,24 | 86,68 | 71,8             | 534,5           | 584,8            | 484,3     | 116,7             | 199,0       | 0,113    | 0,124 | 5,27 | 0,45     | 1,64           | 221,4             | 377,6       | 15,7       | 26,7        | 299,5          | 21,2  |
| 22.   | -15         | 0           | D      | 7 | 0,5  | 21             | 4372     | 96,84 | 102,6 | 91,04            | 653,3           | 692,4            | 614,1     | 152,5             | 235,6       | 0,130    | 0,138 | 5,27 | 0,45     | 1,64           | 289,4             | 447,1       | 20,5       | 31,6        | 368,2          | 26,0  |

Таблица 8.16. Збирна вредност специфичног отпора материјала на копање за цео погон, случај похабаних резних елемената 50 %

# 8.1.4 Резултати мерења за случај похабаних резних елемената 75 %



Струја коју горњи погон повлачи из мреже Резултати мерења струје - горњи погон копања 70 I, % 60 50 40 30 20 10 0 *t*, [min]



|     |         | 1      | % | $I_m$ | [A] |     |         | 1     | % | 1 m  | [A] |          |         | 1     | % | 1 m   | [A] |
|-----|---------|--------|---|-------|-----|-----|---------|-------|---|------|-----|----------|---------|-------|---|-------|-----|
|     | MIN     | 33,18  |   | 42    |     | _   | MIN     | 41,48 |   | 52,5 |     | _        | MIN     | 56,80 |   | 71,9  |     |
| 3   | SREDNJA | 35,234 |   | 44,6  |     | E   | SREDNJA | 47,72 |   | 60,4 |     | 1        | SREDNJA | 62,09 |   | 78,6  |     |
| _   | MAX     | 38,71  |   | 49    | 1   | 2   | MAX     | 53,01 |   | 67,1 | 1   |          | MAX     | 70,55 |   | 89,3  |     |
|     | MIN     | 31,837 |   | 40,3  |     |     | MIN     | 48,98 |   | 62   |     |          | MIN     | 61,78 |   | 78,2  |     |
| 1   | SREDNJA | 35,866 |   | 45,4  |     |     | SREDNJA | 53,33 |   | 67,5 |     | 12       | SREDNJA | 66,44 |   | 84,1  |     |
| -   | MAX     | 39,342 |   | 49,8  | 1   |     | MAX     | 56,80 |   | 71,9 | 1   |          | MAX     | 75,21 |   | 95,2  |     |
| ~   | MIN     | 31,205 |   | 39,5  |     | ~   | MIN     | 48,66 |   | 61,6 |     | \$       | MIN     | 60,28 |   | 76,3  |     |
| Ē   | SREDNJA | 40,527 |   | 51,3  |     | I T | SREDNJA | 53,96 |   | 68,3 |     | EL.      | SREDNJA | 65,57 |   | 83    |     |
|     | MAX     | 36,182 |   | 45,8  |     |     | MAX     | 60,20 |   | 76,2 |     |          | MAX     | 72,68 |   | 92    |     |
| -   | MIN     | 29,309 |   | 37,1  |     | -   | MIN     | 46,77 |   | 59,2 |     | -        | MIN     | 59,25 |   | 75    |     |
| - I | SREDNJA | 32,785 |   | 41,5  |     | I   | SREDNJA | 51,82 |   | 65,6 |     | 1 d      | SREDNJA | 63,36 |   | 80,2  |     |
|     | MAX     | 36,182 |   | 45,8  |     |     | MAX     | 61,15 |   | 77,4 |     |          | MAX     | 68,97 |   | 87,3  |     |
| _   | MIN     | 35,55  |   | 45    |     |     | MIN     | 48,35 |   | 61,2 |     |          | MIN     | 59,65 |   | 75,5  |     |
| ē   | SREDNJA | 38,078 |   | 48,2  |     | Q   | SREDNJA | 53,33 |   | 67,5 |     | <u>e</u> | SREDNJA | 63,36 |   | 80,2  |     |
| _   | MAX     | 41,475 |   | 52,5  |     | 2   | MAX     | 61,15 |   | 77,4 |     |          | MAX     | 70,55 |   | 89,3  |     |
| ~   | MIN     | 33,101 |   | 41,9  |     | 2   | MIN     | 45,58 |   | 57,7 |     | 2        | MIN     | 65,41 |   | 82,8  |     |
| Ë   | SREDNJA | 39,026 |   | 49,4  |     | Q   | SREDNJA | 54,27 |   | 68,7 |     | Ő        | SREDNJA | 68,45 |   | 86,65 |     |
|     | MAX     | 43,371 |   | 54,9  |     |     | MAX     | 61,15 |   | 77,4 |     |          | MAX     | 71,50 |   | 90,5  |     |
| ~   | MIN     | 29,941 |   | 37,9  |     | ~   | MIN     | 47,40 |   | 60   |     | ~        | MIN     | 68,34 |   | 86,5  |     |
| Ë   | SREDNJA | 34,918 |   | 44,2  |     | Ĩ   | SREDNJA | 54,91 |   | 69,5 |     | ĕ        | SREDNJA | 71,61 |   | 90,65 |     |
|     | MAX     | 40,527 |   | 51,3  |     |     | MAX     | 59,57 |   | 75,4 |     |          | MAX     | 74,89 |   | 94,8  |     |
| -   | MIN     | 28,045 |   | 35,5  |     |     | MIN     | 43,69 |   | 55,3 |     | -+       | MIN     | 72,21 |   | 91,4  |     |
| Õ   | SREDNJA | 32,785 |   | 41,5  |     | Õ   | SREDNJA | 52,77 |   | 66,8 |     | Ő        | SREDNJA | 75,29 |   | 95,3  |     |
| _   | MAX     | 35,866 |   | 45,4  |     | 1   | MAX     | 59,25 |   | 75   |     |          | MAX     | 78,37 |   | 99,2  |     |

Таблица 8.17. Очитане вредности пикова струје – доњи погон, похабаност 75 %

Таблица 8.18. Очитане вредности пикова струје – горњи погон, похабаност 75 %

|          |         | I      | % | <i>I</i> | [A]  |            |         | I     | % | • I  | [A]  |                                       |         | I     | % | I     | [A]   |
|----------|---------|--------|---|----------|------|------------|---------|-------|---|------|------|---------------------------------------|---------|-------|---|-------|-------|
|          | MIN     | 28 677 |   | 36.3     | 1993 |            | MIN     | 37.13 |   | 47   | 1.00 |                                       | MIN     | 43.69 |   | 55.3  | 10-10 |
| 5        | SREDNIA | 30 573 |   | 38.7     |      | 5          | SREDNIA | 40.53 |   | 51.3 |      | 5                                     | SREDNIA | 49.93 |   | 63.2  |       |
| Ŧ        | MAX     | 32,153 |   | 40.7     |      | 5          | MAX     | 44.00 |   | 55.7 |      | 3                                     | MAX     | 56.49 |   | 71.5  |       |
|          | MIN     | 28.44  |   | 36       |      |            | MIN     | 36.81 |   | 46.6 |      |                                       | MIN     | 46.85 |   | 59.3  |       |
| 12       | SREDNJA | 30,573 |   | 38.7     |      | 12         | SREDNJA | 42.42 |   | 53.7 |      | 17                                    | SREDNJA | 54.04 |   | 68,4  |       |
| 1        | MAX     | 31,837 |   | 40,3     |      | 6          | MAX     | 47,80 |   | 60,5 |      | 3                                     | MAX     | 61,54 |   | 77,9  |       |
|          | MIN     | 28,44  |   | 36       |      |            | MIN     | 37,45 |   | 47,4 |      |                                       | MIN     | 46,22 |   | 58,5  |       |
| T3       | SREDNJA | 33,733 |   | 42,7     |      | <b>I</b> 3 | SREDNJA | 42,74 |   | 54,1 |      | 13                                    | SREDNJA | 52,77 |   | 66,8  |       |
| -        | MAX     | 30,889 |   | 39,1     |      | 1          | MAX     | 47,80 |   | 60,5 |      | 6)                                    | MAX     | 59,33 |   | 75,1  |       |
|          | MIN     | 28,045 |   | 35,5     |      |            | MIN     | 38,08 |   | 48,2 |      |                                       | MIN     | 44,32 |   | 56,1  |       |
| 1        | SREDNJA | 29,941 |   | 37,9     |      | I.         | SREDNJA | 40,53 |   | 51,3 |      | 14                                    | SREDNJA | 50,24 |   | 63,6  |       |
|          | MAX     | 31,521 |   | 39,9     |      | 2          | MAX     | 43,69 |   | 55,3 |      | (°)                                   | MAX     | 55,85 |   | 70,7  |       |
| _        | MIN     | 28,44  |   | 36       |      | _          | MIN     | 37,45 |   | 47,4 |      |                                       | MIN     | 42,42 |   | 53,7  |       |
| ē        | SREDNJA | 31,205 |   | 39,5     |      | l Q        | SREDNJA | 40,92 |   | 51,8 |      | l l l l l l l l l l l l l l l l l l l | SREDNJA | 50,24 |   | 63,6  |       |
|          | MAX     | 34,365 |   | 43,5     |      |            | MAX     | 45,27 |   | 57,3 |      |                                       | MAX     | 61,54 |   | 77,9  |       |
| 2        | MIN     | 28,045 |   | 35,5     |      | 2          | MIN     | 36,58 |   | 46,3 |      | 2                                     | MIN     | 46,14 |   | 58,4  |       |
| ë        | SREDNJA | 31,837 |   | 40,3     |      | i Q        | SREDNJA | 41,16 |   | 52,1 |      | Ĩ                                     | SREDNJA | 47,60 |   | 60,25 |       |
|          | MAX     | 36,814 |   | 46,6     |      |            | MAX     | 45,27 |   | 57,3 |      |                                       | MAX     | 49,06 |   | 62,1  |       |
|          | MIN     | 26,228 |   | 33,2     |      |            | MIN     | 37,45 |   | 47,4 |      | 3                                     | MIN     | 50,32 |   | 63,7  |       |
| <u> </u> | SREDNJA | 29,941 |   | 37,9     |      | 5D         | SREDNJA | 40,29 |   | 51   |      | 30                                    | SREDNJA | 51,15 |   | 64,75 |       |
|          | MAX     | 32,153 |   | 40,7     |      |            | MAX     | 42,74 |   | 54,1 |      |                                       | MAX     | 51,98 |   | 65,8  |       |
| 4        | MIN     | 26,544 |   | 33,6     |      | 4          | MIN     | 37,76 |   | 47,8 |      | 4                                     | MIN     | 54,67 |   | 69,2  |       |
| 9        | SREDNJA | 28,045 |   | 35,5     |      | 5D         | SREDNJA | 39,66 |   | 50,2 |      | 30                                    | SREDNJA | 55,18 |   | 69,85 |       |
|          | MAX     | 30,573 |   | 38,7     |      |            | MAX     | 41,16 |   | 52,1 |      |                                       | MAX     | 55,70 |   | 70,5  |       |

|       |             |             |        |   |      |     | 1 1      |                 |        |           |          | 3     |                  |            |             |          |           |      |          |                |                   |                    |            |             |                |       |
|-------|-------------|-------------|--------|---|------|-----|----------|-----------------|--------|-----------|----------|-------|------------------|------------|-------------|----------|-----------|------|----------|----------------|-------------------|--------------------|------------|-------------|----------------|-------|
| Р.бр. | $\varphi_L$ | $\varphi_D$ | правац | h | S    | V b | $Q_{ef}$ | I <sub>sr</sub> | Imax   | $I_{min}$ | $N_{sr}$ | Nmax  | N <sub>min</sub> | $P_{k,sr}$ | $P_{k,max}$ | $E_{sr}$ | $E_{max}$ | L    | $F_{sr}$ | k <sub>w</sub> | K <sub>L,sr</sub> | K <sub>L,max</sub> | $K_{F,sr}$ | $K_{F,max}$ | K <sub>L</sub> | $K_F$ |
| 1.    | 19          | 38          | L      | 7 | 0,25 | 21  | 1938     | 44,60           | 49,00  | 42,00     | 300,9    | 330,5 | 283,3            | 71,5       | 112,5       | 0,126    | 0,140     | 4,33 | 0,23     | 1,64           | 165,3             | 260,1              | 19,2       | 30,2        | 212,7          | 24,7  |
| 2.    | 0           | 19          | L      | 7 | 0,25 | 21  | 2175     | 45,40           | 49,80  | 40,30     | 306,3    | 335,9 | 271,9            | 69,5       | 114,4       | 0,114    | 0,127     | 4,33 | 0,23     | 1,64           | 160,6             | 264,4              | 18,6       | 30,7        | 212,5          | 24,7  |
| 3.    | -23         | 0           | L      | 7 | 0,25 | 21  | 2161     | 45,80           | 51,30  | 39,50     | 309,0    | 346,1 | 266,5            | 70,6       | 117,8       | 0,116    | 0,132     | 4,33 | 0,23     | 1,64           | 163,3             | 272,4              | 18,9       | 31,6        | 217,8          | 25,3  |
| 4.    | -46         | -23         | L      | 7 | 0,25 | 21  | 1817     | 41,50           | 45,80  | 37,10     | 280,0    | 309,0 | 250,3            | 66,3       | 105,2       | 0,123    | 0,138     | 4,33 | 0,23     | 1,64           | 153,3             | 243,2              | 17,8       | 28,2        | 198,2          | 23,0  |
| 5.    | -46         | -23         | D      | 7 | 0,25 | 21  | 1817     | 48,20           | 52,50  | 45,00     | 325,2    | 354,2 | 303,6            | 81,8       | 120,5       | 0,146    | 0,161     | 4,33 | 0,23     | 1,64           | 189,1             | 278,7              | 21,9       | 32,3        | 233,9          | 27,1  |
| 6.    | -23         | 0           | D      | 7 | 0,25 | 21  | 2161     | 49,40           | 54,90  | 41,90     | 333,2    | 370,3 | 282,7            | 78,9       | 126,1       | 0,126    | 0,142     | 4,33 | 0,23     | 1,64           | 182,5             | 291,5              | 21,2       | 33,8        | 237,0          | 27,5  |
| 7.    | 0           | 19          | D      | 7 | 0,25 | 21  | 2175     | 44,20           | 51,30  | 37,90     | 298,2    | 346,1 | 255,7            | 66,7       | 117,8       | 0,111    | 0,131     | 4,33 | 0,23     | 1,64           | 154,2             | 272,5              | 17,9       | 31,6        | 213,3          | 24,7  |
| 8.    | 19          | 38          | D      | 7 | 0,25 | 21  | 1938     | 41,50           | 45,40  | 35,50     | 280,0    | 306,3 | 239,5            | 64,3       | 104,2       | 0,116    | 0,128     | 4,33 | 0,23     | 1,64           | 148,7             | 241,0              | 17,3       | 28,0        | 194,9          | 22,6  |
| 9.    | 19          | 38          | L      | 7 | 0,4  | 21  | 3100     | 60,40           | 67,10  | 52,50     | 407,5    | 452,6 | 354,2            | 89,1       | 154,1       | 0,110    | 0,124     | 4,89 | 0,36     | 1,64           | 182,0             | 314,9              | 14,9       | 25,8        | 248,5          | 20,4  |
| 10.   | 0           | 19          | L      | 7 | 0,4  | 21  | 3480     | 67,50           | 71,90  | 62,00     | 455,3    | 485,0 | 418,2            | 99,3       | 165,1       | 0,111    | 0,119     | 4,89 | 0,36     | 1,64           | 202,9             | 337,4              | 16,6       | 27,7        | 270,2          | 22,2  |
| 11.   | -23         | 0           | L      | 7 | 0,4  | 21  | 3457     | 68,30           | 76,20  | 61,60     | 460,7    | 514,0 | 415,5            | 101,5      | 175,0       | 0,113    | 0,127     | 4,89 | 0,36     | 1,64           | 207,5             | 357,7              | 17,0       | 29,3        | 282,6          | 23,2  |
| 12.   | -46         | -23         | L      | 7 | 0,4  | 21  | 2908     | 65,60           | 77,40  | 59,20     | 442,5    | 522,1 | 399,4            | 104,2      | 177,8       | 0,129    | 0,154     | 4,89 | 0,36     | 1,64           | 213,0             | 363,4              | 17,5       | 29,8        | 288,2          | 23,6  |
| 13.   | -46         | -23         | D      | 7 | 0,4  | 21  | 2908     | 67,50           | 77,40  | 61,20     | 455,3    | 522,1 | 412,8            | 108,6      | 177,8       | 0,133    | 0,154     | 4,89 | 0,36     | 1,64           | 222,0             | 363,4              | 18,2       | 29,8        | 292,7          | 24,0  |
| 14.   | -23         | 0           | D      | 7 | 0,4  | 21  | 3457     | 68,70           | 77,40  | 57,70     | 463,4    | 522,1 | 389,2            | 102,4      | 177,8       | 0,114    | 0,130     | 4,89 | 0,36     | 1,64           | 209,3             | 363,3              | 17,2       | 29,8        | 286,3          | 23,5  |
| 15.   | 0           | 19          | D      | 7 | 0,4  | 21  | 3480     | 69,50           | 75,40  | 60,00     | 468,8    | 508,6 | 404,8            | 103,9      | 173,1       | 0,115    | 0,125     | 4,89 | 0,36     | 1,64           | 212,4             | 353,8              | 17,4       | 29,0        | 283,1          | 23,2  |
| 16.   | 19          | 38          | D      | 7 | 0,4  | 21  | 3100     | 66,80           | 75,00  | 55,30     | 450,6    | 505,9 | 373,0            | 103,8      | 172,2       | 0,123    | 0,140     | 4,89 | 0,36     | 1,64           | 212,2             | 352,0              | 17,4       | 28,9        | 282,1          | 23,1  |
| 17.   | 19          | 38          | L      | 7 | 0,5  | 21  | 3876     | 78,60           | 89,30  | 71,90     | 530,2    | 602,4 | 485,0            | 118,5      | 205,1       | 0,118    | 0,135     | 5,27 | 0,45     | 1,64           | 224,8             | 389,1              | 15,9       | 27,5        | 306,9          | 21,7  |
| 18.   | 0           | 19          | L      | 7 | 0,5  | 21  | 4350     | 84,10           | 95,20  | 78,20     | 567,3    | 642,2 | 527,5            | 123,5      | 218,6       | 0,113    | 0,129     | 5,27 | 0,45     | 1,64           | 234,2             | 414,8              | 16,6       | 29,3        | 324,5          | 22,9  |
| 19.   | -23         | 0           | L      | 7 | 0,5  | 21  | 4321     | 83,00           | 92,00  | 76,30     | 559,9    | 620,6 | 514,7            | 121,4      | 211,3       | 0,112    | 0,125     | 5,27 | 0,45     | 1,64           | 230,3             | 400,8              | 16,3       | 28,3        | 315,6          | 22,3  |
| 20.   | -46         | -23         | L      | 7 | 0,5  | 21  | 3634     | 80,20           | 87,30  | 75,00     | 541,0    | 588,9 | 505,9            | 126,1      | 200,5       | 0,128    | 0,140     | 5,27 | 0,45     | 1,64           | 239,3             | 380,3              | 16,9       | 26,9        | 309,8          | 21,9  |
| 21    | -46         | -23         | D      | 7 | 0,5  | 21  | 3634     | 83,00           | 89,30  | 75,50     | 559,9    | 602,4 | 509,3            | 132,6      | 205,0       | 0,133    | 0,144     | 5,27 | 0,45     | 1,64           | 251,5             | 389,0              | 17,8       | 27,5        | 320,3          | 22,6  |
| 22    | -23         | 0           | D      | 7 | 0.5  | 21  | 3634     | 107 50          | 115.80 | 102.50    | 770.2    | 890.5 | 720.5            | 240.2      | 310.2       | 0.169    | 0.275     | 5 27 | 0.45     | 1 64           | 275 5             | 398.2              | 18.2       | 28.1        | 325.5          | 24.1  |

Таблица 8.19. Специфични отпор материјала на копање за случај похабаних резних елемената 75 %, доњи погон

|       | ,           |             | ,      | 1 |      | 1              | 1 5      |                 |       |       | 2        | 3                |           |            |             |          |                  |      | 1        |                |                   |                    |                   |             |                |       |
|-------|-------------|-------------|--------|---|------|----------------|----------|-----------------|-------|-------|----------|------------------|-----------|------------|-------------|----------|------------------|------|----------|----------------|-------------------|--------------------|-------------------|-------------|----------------|-------|
| Р.бр. | $\varphi_L$ | $\varphi_D$ | правац | h | S    | v <sub>b</sub> | $Q_{ef}$ | I <sub>sr</sub> | Imax  | Imin  | $N_{sr}$ | N <sub>max</sub> | $N_{min}$ | $P_{k,sr}$ | $P_{k,max}$ | $E_{sr}$ | E <sub>max</sub> | L    | $F_{sr}$ | k <sub>w</sub> | K <sub>L,sr</sub> | K <sub>L,max</sub> | K <sub>F,sr</sub> | $K_{F,max}$ | K <sub>L</sub> | $K_F$ |
| 1.    | 19          | 38          | L      | 7 | 0,25 | 21             | 1938     | 38,70           | 40,70 | 36,30 | 261,1    | 274,6            | 244,9     | 57,9       | 93,4        | 0,107    | 0,113            | 4,33 | 0,23     | 1,64           | 133,8             | 216,0              | 15,5              | 25,1        | 174,9          | 20,3  |
| 2.    | 0           | 19          | L      | 7 | 0,25 | 21             | 2175     | 38,70           | 40,30 | 36,00 | 261,1    | 271,9            | 242,9     | 54,0       | 92,5        | 0,095    | 0,100            | 4,33 | 0,23     | 1,64           | 124,8             | 213,9              | 14,5              | 24,8        | 169,4          | 19,6  |
| 3.    | -23         | 0           | L      | 7 | 0,25 | 21             | 2161     | 39,10           | 42,70 | 36,00 | 263,8    | 288,0            | 242,9     | 55,1       | 98,0        | 0,097    | 0,107            | 4,33 | 0,23     | 1,64           | 127,5             | 226,7              | 14,8              | 26,3        | 177,1          | 20,5  |
| 4.    | -46         | -23         | L      | 7 | 0,25 | 21             | 1817     | 37,90           | 39,90 | 35,50 | 255,7    | 269,2            | 239,5     | 58,0       | 91,6        | 0,111    | 0,118            | 4,33 | 0,23     | 1,64           | 134,0             | 211,8              | 15,5              | 24,6        | 172,9          | 20,1  |
| 5.    | -46         | -23         | D      | 7 | 0,25 | 21             | 1817     | 39,50           | 43,50 | 36,00 | 266,5    | 293,4            | 242,9     | 61,7       | 99,9        | 0,116    | 0,130            | 4,33 | 0,23     | 1,64           | 142,6             | 231,0              | 16,5              | 26,8        | 186,8          | 21,7  |
| 6.    | -23         | 0           | D      | 7 | 0,25 | 21             | 2161     | 40,30           | 46,60 | 35,50 | 271,9    | 314,4            | 239,5     | 57,9       | 107,0       | 0,100    | 0,118            | 4,33 | 0,23     | 1,64           | 133,9             | 247,5              | 15,5              | 28,7        | 190,7          | 22,1  |
| 7.    | 0           | 19          | D      | 7 | 0,25 | 21             | 2175     | 37,90           | 40,70 | 33,20 | 255,7    | 274,6            | 224,0     | 52,1       | 93,4        | 0,093    | 0,101            | 4,33 | 0,23     | 1,64           | 120,6             | 216,0              | 14,0              | 25,1        | 168,3          | 19,5  |
| 8.    | 19          | 38          | D      | 7 | 0,25 | 21             | 1938     | 35,50           | 38,70 | 33,60 | 239,5    | 261,1            | 226,7     | 50,5       | 88,9        | 0,096    | 0,107            | 4,33 | 0,23     | 1,64           | 116,7             | 205,5              | 13,5              | 23,8        | 161,1          | 18,7  |
| 9.    | 19          | 38          | L      | 7 | 0,4  | 21             | 3100     | 51,30           | 55,70 | 47,00 | 346,1    | 375,7            | 317,1     | 68,0       | 127,9       | 0,092    | 0,101            | 4,89 | 0,36     | 1,64           | 139,0             | 261,4              | 11,4              | 21,4        | 200,2          | 16,4  |
| 10.   | 0           | 19          | L      | 7 | 0,4  | 21             | 3480     | 53,70           | 60,50 | 46,60 | 362,3    | 408,1            | 314,4     | 67,4       | 138,9       | 0,086    | 0,098            | 4,89 | 0,36     | 1,64           | 137,7             | 284,0              | 11,3              | 23,3        | 210,9          | 17,3  |
| 11.   | -23         | 0           | L      | 7 | 0,4  | 21             | 3457     | 54,10           | 60,50 | 47,40 | 365,0    | 408,1            | 319,8     | 68,7       | 138,9       | 0,088    | 0,099            | 4,89 | 0,36     | 1,64           | 140,4             | 284,0              | 11,5              | 23,3        | 212,2          | 17,4  |
| 12.   | -46         | -23         | L      | 7 | 0,4  | 21             | 2908     | 51,30           | 55,30 | 48,20 | 346,1    | 373,0            | 325,2     | 71,2       | 127,0       | 0,098    | 0,107            | 4,89 | 0,36     | 1,64           | 145,5             | 259,5              | 11,9              | 21,3        | 202,5          | 16,6  |
| 13.   | -46         | -23         | D      | 7 | 0,4  | 21             | 2908     | 51,80           | 57,30 | 47,40 | 349,4    | 386,5            | 319,8     | 72,3       | 131,6       | 0,099    | 0,111            | 4,89 | 0,36     | 1,64           | 147,8             | 268,9              | 12,1              | 22,1        | 208,4          | 17,1  |
| 14.   | -23         | 0           | D      | 7 | 0,4  | 21             | 3457     | 52,10           | 57,30 | 46,30 | 351,5    | 386,5            | 312,3     | 64,1       | 131,6       | 0,084    | 0,093            | 4,89 | 0,36     | 1,64           | 130,9             | 268,9              | 10,7              | 22,1        | 199,9          | 16,4  |
| 15.   | 0           | 19          | D      | 7 | 0,4  | 21             | 3480     | 51,00           | 54,10 | 47,40 | 344,0    | 365,0            | 319,8     | 61,1       | 124,2       | 0,081    | 0,087            | 4,89 | 0,36     | 1,64           | 125,0             | 253,9              | 10,3              | 20,8        | 189,4          | 15,5  |
| 16.   | 19          | 38          | D      | 7 | 0,4  | 21             | 3100     | 50,20           | 52,10 | 47,80 | 338,6    | 351,5            | 322,5     | 65,5       | 119,6       | 0,090    | 0,094            | 4,89 | 0,36     | 1,64           | 133,8             | 244,4              | 11,0              | 20,0        | 189,1          | 15,5  |
| 17.   | 19          | 38          | L      | 7 | 0,5  | 21             | 3876     | 63,20           | 71,50 | 55,30 | 426,3    | 482,3            | 373,0     | 82,9       | 164,2       | 0,093    | 0,106            | 5,27 | 0,45     | 1,64           | 157,3             | 311,5              | 11,1              | 22,0        | 234,4          | 16,6  |
| 18.   | 0           | 19          | L      | 7 | 0,5  | 21             | 4350     | 68,40           | 77,90 | 59,30 | 461,4    | 525,5            | 400,0     | 87,2       | 178,9       | 0,090    | 0,104            | 5,27 | 0,45     | 1,64           | 165,4             | 339,4              | 11,7              | 24,0        | 252,4          | 17,8  |
| 19.   | -23         | 0           | L      | 7 | 0,5  | 21             | 4321     | 66,80           | 75,10 | 58,50 | 450,6    | 506,6            | 394,6     | 83,9       | 172,5       | 0,088    | 0,100            | 5,27 | 0,45     | 1,64           | 159,3             | 327,2              | 11,3              | 23,1        | 243,2          | 17,2  |
| 20.   | -46         | -23         | L      | 7 | 0,5  | 21             | 3634     | 63,60           | 70,70 | 56,10 | 429,0    | 476,9            | 378,4     | 87,7       | 162,4       | 0,100    | 0,112            | 5,27 | 0,45     | 1,64           | 166,5             | 308,0              | 11,8              | 21,8        | 237,2          | 16,8  |
| 21    | -46         | -23         | D      | 7 | 0,5  | 21             | 3634     | 66,00           | 77,90 | 53,70 | 445,2    | 525,5            | 362,3     | 93,3       | 179,0       | 0,104    | 0,124            | 5,27 | 0,45     | 1,64           | 177,0             | 339,5              | 12,5              | 24,0        | 258,3          | 18,3  |
| 22    | -23         | 0           | D      | 7 | 0.5  | 21             | 3634     | 55 20           | 58 40 | 52.10 | 450.2    | 540.4            | 380.1     | 95.4       | 185.2       | 0 107    | 0.128            | 5 27 | 0.45     | 1 64           | 180.1             | 345.4              | 133               | 25.1        | 259.4          | 19.2  |

Таблица 8.20. Специфични отпор материјала на копање за случај похабаних резних елемената 75 %, горњи погон

|       |             |             | 1      | <b>1</b> ' |      |                |          |                 | 1      |        | 3        |                  |           |            |             | /        | 3                |      | 1               |                |                   |             |            |             |                |       |
|-------|-------------|-------------|--------|------------|------|----------------|----------|-----------------|--------|--------|----------|------------------|-----------|------------|-------------|----------|------------------|------|-----------------|----------------|-------------------|-------------|------------|-------------|----------------|-------|
| Р.бр. | $\varphi_L$ | $\varphi_D$ | правац | h          | S    | V <sub>b</sub> | $Q_{ef}$ | I <sub>sr</sub> | Imax   | I min  | $N_{sr}$ | N <sub>max</sub> | $N_{min}$ | $P_{k,sr}$ | $P_{k,max}$ | $E_{sr}$ | E <sub>max</sub> | L    | F <sub>sr</sub> | k <sub>w</sub> | K <sub>L,sr</sub> | $K_{L,max}$ | $K_{F,sr}$ | $K_{F,max}$ | K <sub>L</sub> | $K_F$ |
| 1.    | 19          | 38          | L      | 7          | 0,25 | 21             | 1938     | 84,50           | 91,60  | 75,50  | 570,0    | 617,9            | 509,3     | 163,7      | 210,3       | 0,254    | 0,277            | 4,33 | 0,23            | 1,64           | 378,5             | 486,3       | 43,9       | 56,4        | 432,4          | 50,2  |
| 2.    | 0           | 19          | L      | 7          | 0,25 | 21             | 2175     | 80,60           | 88,50  | 73,10  | 543,7    | 597,0            | 493,1     | 150,8      | 203,2       | 0,215    | 0,238            | 4,33 | 0,23            | 1,64           | 348,7             | 469,9       | 40,5       | 54,5        | 409,3          | 47,5  |
| 3.    | -23         | 0           | L      | 7          | 0,25 | 21             | 2161     | 86,10           | 92,40  | 80,50  | 580,8    | 623,3            | 543,0     | 163,8      | 212,1       | 0,232    | 0,251            | 4,33 | 0,23            | 1,64           | 378,6             | 490,5       | 43,9       | 56,9        | 434,6          | 50,4  |
| 4.    | -46         | -23         | L      | 7          | 0,25 | 21             | 1817     | 88,90           | 98,40  | 77,90  | 599,7    | 663,8            | 525,5     | 175,8      | 226,0       | 0,286    | 0,319            | 4,33 | 0,23            | 1,64           | 406,5             | 522,4       | 47,2       | 60,6        | 464,5          | 53,9  |
| 5.    | -46         | -23         | D      | 7          | 0,25 | 21             | 1817     | 84,50           | 97,90  | 73,40  | 570,0    | 660,4            | 495,1     | 165,7      | 224,9       | 0,271    | 0,317            | 4,33 | 0,23            | 1,64           | 383,0             | 519,9       | 44,4       | 60,3        | 451,5          | 52,4  |
| 6.    | -23         | 0           | D      | 7          | 0,25 | 21             | 2161     | 79,40           | 86,10  | 68,70  | 535,6    | 580,8            | 463,4     | 148,3      | 197,7       | 0,213    | 0,232            | 4,33 | 0,23            | 1,64           | 342,8             | 457,1       | 39,8       | 53,0        | 400,0          | 46,4  |
| 7.    | 0           | 19          | D      | 7          | 0,25 | 21             | 2175     | 95,90           | 105,80 | 86,10  | 646,9    | 713,7            | 580,8     | 186,2      | 243,0       | 0,259    | 0,287            | 4,33 | 0,23            | 1,64           | 430,5             | 561,7       | 49,9       | 65,2        | 496,1          | 57,6  |
| 8.    | 19          | 38          | D      | 7          | 0,25 | 21             | 1938     | 118,80          | 127,60 | 109,00 | 801,4    | 860,8            | 735,3     | 243,0      | 293,0       | 0,364    | 0,393            | 4,33 | 0,23            | 1,64           | 561,8             | 677,3       | 65,2       | 78,6        | 619,6          | 71,9  |
| 9.    | 19          | 38          | L      | 7          | 0,4  | 21             | 3100     | 122,00          | 136,70 | 108,20 | 823,0    | 922,2            | 729,9     | 231,4      | 313,9       | 0,234    | 0,264            | 4,89 | 0,36            | 1,64           | 473,0             | 641,7       | 38,8       | 52,6        | 557,3          | 45,7  |
| 10.   | 0           | 19          | L      | 7          | 0,4  | 21             | 3480     | 119,70          | 137,90 | 106,60 | 807,5    | 930,3            | 719,1     | 219,9      | 316,7       | 0,205    | 0,237            | 4,89 | 0,36            | 1,64           | 449,5             | 647,4       | 36,9       | 53,1        | 548,5          | 45,0  |
| 11.   | -23         | 0           | L      | 7          | 0,4  | 21             | 3457     | 118,80          | 132,70 | 109,40 | 801,4    | 895,2            | 738,0     | 218,2      | 304,7       | 0,204    | 0,229            | 4,89 | 0,36            | 1,64           | 446,0             | 622,9       | 36,6       | 51,1        | 534,4          | 43,8  |
| 12.   | -46         | -23         | L      | 7          | 0,4  | 21             | 2908     | 120,50          | 134,70 | 105,10 | 812,9    | 908,7            | 709,0     | 231,1      | 309,3       | 0,247    | 0,277            | 4,89 | 0,36            | 1,64           | 472,3             | 632,3       | 38,7       | 51,9        | 552,3          | 45,3  |
| 13.   | -46         | -23         | D      | 7          | 0,4  | 21             | 2908     | 121,60          | 132,70 | 106,30 | 820,3    | 895,2            | 717,1     | 233,6      | 304,7       | 0,249    | 0,273            | 4,89 | 0,36            | 1,64           | 477,5             | 622,8       | 39,2       | 51,1        | 550,2          | 45,1  |
| 14.   | -23         | 0           | D      | 7          | 0,4  | 21             | 3457     | 117,80          | 129,10 | 102,70 | 794,7    | 870,9            | 692,8     | 215,9      | 296,4       | 0,202    | 0,223            | 4,89 | 0,36            | 1,64           | 441,3             | 605,9       | 36,2       | 49,7        | 523,6          | 42,9  |
| 15.   | 0           | 19          | D      | 7          | 0,4  | 21             | 3480     | 128,80          | 141,40 | 119,70 | 868,9    | 953,9            | 807,5     | 241,0      | 324,7       | 0,221    | 0,244            | 4,89 | 0,36            | 1,64           | 492,5             | 663,6       | 40,4       | 54,4        | 578,1          | 47,4  |
| 16.   | 19          | 38          | D      | 7          | 0,4  | 21             | 3100     | 147,30          | 166,70 | 133,50 | 993,7    | 1124,5           | 900,6     | 289,9      | 382,9       | 0,285    | 0,324            | 4,89 | 0,36            | 1,64           | 592,5             | 782,5       | 48,6       | 64,2        | 687,5          | 56,4  |
| 17.   | 19          | 38          | L      | 7          | 0,5  | 21             | 3876     | 151,40          | 169,90 | 135,60 | 1021,3   | 1146,1           | 914,7     | 286,7      | 390,2       | 0,235    | 0,265            | 5,27 | 0,45            | 1,64           | 544,0             | 740,3       | 38,5       | 52,3        | 642,1          | 45,4  |
| 18.   | 0           | 19          | L      | 7          | 0,5  | 21             | 4350     | 147,00          | 162,40 | 133,50 | 991,6    | 1095,5           | 900,6     | 268,8      | 372,9       | 0,203    | 0,225            | 5,27 | 0,45            | 1,64           | 510,0             | 707,5       | 36,1       | 50,0        | 608,8          | 43,0  |
| 19.   | -23         | 0           | L      | 7          | 0,5  | 21             | 4321     | 146,60          | 160,00 | 131,60 | 988,9    | 1079,3           | 887,8     | 268,4      | 367,4       | 0,204    | 0,223            | 5,27 | 0,45            | 1,64           | 509,1             | 697,0       | 36,0       | 49,3        | 603,1          | 42,6  |
| 20.   | -46         | -23         | L      | 7          | 0,5  | 21             | 3634     | 66,00           | 169,10 | 53,70  | 445,2    | 1140,7           | 362,3     | 93,3       | 389,7       | 0,104    | 0,281            | 5,27 | 0,45            | 1,64           | 177,0             | 739,4       | 12,5       | 52,3        | 458,2          | 32,4  |
| 21    | -46         | -23         | D      | 7          | 0,5  | 21             | 3634     | 149,00          | 167,20 | 129,20 | 1005,1   | 1127,9           | 871,6     | 285,1      | 384,0       | 0,246    | 0,277            | 5,27 | 0,45            | 1,64           | 540,9             | 728,5       | 38,2       | 51,5        | 634,7          | 44,9  |
| 22.   | -23         | 0           | D      | 7          | 0.5  | 21             | 3634     | 168.50          | 174.20 | 159.40 | 1115.4   | 1175.1           | 1065.7    | 320.5      | 400.1       | 0.265    | 0.289            | 5.27 | 0.45            | 1.64           | 550.2             | 735.7       | 39.8       | 54.2        | 638.4          | 46.5  |

Таблица 8.21. Збирна вредност специфичног отпора материјала на копање за цео погон, случај похабаних резних елемената 75 %

#### 8.1.5 Резултати мерења за случај похабаних резних елемената 100 %



Слика 8.13. Струја коју доњи погон копања повлачи из мреже – похабаност 100 %



# Струја коју горњи погон повлачи из мреже

Слика 8.14. Струја коју горњи погон копања повлачи из мреже – похабаност 100 %

| 1 40        | лица о  | •==• < | / 11110 | me bp | однос | 111 11 | mobu    | erpjje | ⁄д. | JIDII II | 01 011, | none     | iounoe  | 1 100 | /0 |        |     |
|-------------|---------|--------|---------|-------|-------|--------|---------|--------|-----|----------|---------|----------|---------|-------|----|--------|-----|
|             |         | Ι      | %       | $I_m$ | [A]   |        |         | Ι      | %   | $I_m$    | [A]     |          |         | Ι     | %  | $I_m$  | [A] |
|             | MIN     | 43,924 |         | 55,6  |       |        | MIN     | 57,99  |     | 73,4     |         |          | MIN     | 69,84 |    | 88,4   |     |
| E           | SREDNJA | 46,136 |         | 58,4  |       | E      | SREDNJA | 60,91  |     | 77,1     |         |          | SREDNJA | 72,52 |    | 91,8   |     |
| -           | MAX     | 48,348 |         | 61,2  |       | 2      | MAX     | 63,83  |     | 80,8     |         |          | MAX     | 75,21 |    | 95,2   |     |
|             | MIN     | 42,186 |         | 53,4  |       |        | MIN     | 59,33  |     | 75,1     |         |          | MIN     | 71,18 |    | 90,1   |     |
|             | SREDNJA | 46,531 |         | 58,9  |       |        | SREDNJA | 62,53  |     | 79,15    |         |          | SREDNJA | 73,67 |    | 93,25  |     |
|             | MAX     | 50,876 |         | 64,4  |       |        | MAX     | 65,73  |     | 83,2     |         |          | MAX     | 76,16 |    | 96,4   |     |
| ~           | MIN     | 45,978 |         | 58,2  |       | ~      | MIN     | 61,07  |     | 77,3     |         | ~        | MIN     | 72,05 |    | 91,2   |     |
| Ē           | SREDNJA | 50,165 |         | 63,5  |       | 1      | SREDNJA | 64,19  |     | 81,25    |         | E E      | SREDNJA | 74,93 |    | 94,85  |     |
|             | MAX     | 54,352 |         | 68,8  |       |        | MAX     | 67,31  |     | 85,2     |         |          | MAX     | 77,82 |    | 98,5   |     |
| -           | MIN     | 47,558 |         | 60,2  |       | -      | MIN     | 62,57  |     | 79,2     |         | -        | MIN     | 73,79 |    | 93,4   |     |
| Ē           | SREDNJA | 51,469 |         | 65,15 |       | Ì      | SREDNJA | 65,81  |     | 83,3     |         | L 1      | SREDNJA | 76,31 |    | 96,6   |     |
|             | MAX     | 55,379 |         | 70,1  |       |        | MAX     | 69,05  |     | 87,4     |         |          | MAX     | 78,84 |    | 99,8   | L   |
| _           | MIN     | 50,086 |         | 63,4  |       | _      | MIN     | 63,28  |     | 80,1     |         |          | MIN     | 75,21 |    | 95,2   |     |
| 9           | SREDNJA | 53,799 |         | 68,1  |       | 9      | SREDNJA | 66,48  |     | 84,15    |         | <u> </u> | SREDNJA | 78,05 |    | 98,8   |     |
|             | MAX     | 57,512 |         | 72,8  |       |        | MAX     | 69,68  |     | 88,2     |         |          | MAX     | 80,90 |    | 102,4  |     |
| 2           | MIN     | 52,693 |         | 66,7  |       | 2      | MIN     | 65,10  |     | 82,4     |         | 2        | MIN     | 76,95 |    | 97,4   |     |
| <u> </u>    | SREDNJA | 56,051 |         | 70,95 |       | â      | SREDNJA | 68,14  |     | 86,25    |         | l Ö      | SREDNJA | 79,63 |    | 100,8  |     |
|             | MAX     | 59,408 |         | 75,2  |       |        | MAX     | 71,18  |     | 90,1     |         |          | MAX     | 82,32 |    | 104,2  |     |
| ~           | MIN     | 54,747 |         | 69,3  |       |        | MIN     | 66,68  |     | 84,4     |         | ~        | MIN     | 78,45 |    | 99,3   |     |
| <u> </u>    | SREDNJA | 58,223 |         | 73,7  |       | 9      | SREDNJA | 69,99  |     | 88,6     |         | Ĩ        | SREDNJA | 81,25 |    | 102,85 |     |
|             | MAX     | 61,699 |         | 78,1  |       |        | MAX     | 73,31  |     | 92,8     |         |          | MAX     | 84,06 |    | 106,4  |     |
| <del></del> | MIN     | 55,458 |         | 70,2  |       | 4      | MIN     | 68,49  |     | 86,7     |         | -        | MIN     | 79,63 |    | 100,8  |     |
| <u> </u>    | SREDNJA | 58,065 |         | 73,5  |       | 50     | SREDNJA | 71,46  |     | 90,45    |         | <u>B</u> | SREDNJA | 82,71 |    | 104,7  |     |
|             | MAX     | 60,672 |         | 76,8  |       |        | MAX     | 74,42  |     | 94,2     |         |          | MAX     | 85,79 |    | 108,6  |     |

# Таблица 8.22. Очитане вредности пикова струје – доњи погон, похабаност 100 %

Таблица 8.23. Очитане вредности пикова струје – горњи погон, похабаност 100 %

|          | ,       |        |   | 1     | <i>,</i> , |          |         | 1 2 3 |   | L     |     | ,          |         |       |   |       |     |
|----------|---------|--------|---|-------|------------|----------|---------|-------|---|-------|-----|------------|---------|-------|---|-------|-----|
|          |         | Ι      | % | $I_m$ | [A]        |          |         | Ι     | % | $I_m$ | [A] |            |         | Ι     | % | $I_m$ | [A] |
| _        | MIN     | 31,758 |   | 40,2  |            |          | MIN     | 43,53 |   | 55,1  |     | _          | MIN     | 57,20 |   | 72,4  |     |
| - 3      | SREDNJA | 35,274 |   | 44,65 |            | 8        | SREDNJA | 47,12 |   | 59,65 |     |            | SREDNJA | 60,95 |   | 77,15 |     |
| -        | MAX     | 38,789 |   | 49,1  |            | 2        | MAX     | 50,72 |   | 64,2  |     |            | MAX     | 64,70 |   | 81,9  |     |
|          | MIN     | 33,338 |   | 42,2  |            |          | MIN     | 45,66 |   | 57,8  |     |            | MIN     | 58,70 |   | 74,3  |     |
| 1        | SREDNJA | 36,656 |   | 46,4  |            | 12       | SREDNJA | 49,06 |   | 62,1  |     |            | SREDNJA | 62,21 |   | 78,75 |     |
| -        | MAX     | 39,974 |   | 50,6  |            | 1        | MAX     | 52,46 |   | 66,4  |     | <b>"</b>   | MAX     | 65,73 |   | 83,2  |     |
|          | MIN     | 35,076 |   | 44,4  |            |          | MIN     | 47,24 |   | 59,8  |     |            | MIN     | 60,59 |   | 76,7  |     |
| E        | SREDNJA | 37,802 |   | 47,85 |            | I.3      | SREDNJA | 50,84 |   | 64,35 |     | I 3        | SREDNJA | 64,11 |   | 81,15 |     |
| -        | MAX     | 40,527 |   | 51,3  |            | 2        | MAX     | 54,43 |   | 68,9  |     |            | MAX     | 67,62 |   | 85,6  |     |
|          | MIN     | 36,972 |   | 46,8  |            |          | MIN     | 49,06 |   | 62,1  |     |            | MIN     | 61,78 |   | 78,2  |     |
| T .      | SREDNJA | 39,461 |   | 49,95 |            | E I      | SREDNJA | 52,26 |   | 66,15 |     | 1          | SREDNJA | 65,29 |   | 82,65 |     |
| -        | MAX     | 41,949 |   | 53,1  |            | 1        | MAX     | 55,46 |   | 70,2  |     | <b>"</b>   | MAX     | 68,81 |   | 87,1  |     |
| _        | MIN     | 37,841 |   | 47,9  |            |          | MIN     | 50,88 |   | 64,4  |     |            | MIN     | 63,12 |   | 79,9  |     |
| ā        | SREDNJA | 40,725 |   | 51,55 |            | ā        | SREDNJA | 54,19 |   | 68,6  |     | ē          | SREDNJA | 66,68 |   | 84,4  |     |
| -        | MAX     | 43,608 |   | 55,2  |            | 1        | MAX     | 57,51 |   | 72,8  |     | <b>"</b>   | MAX     | 70,23 |   | 88,9  |     |
|          | MIN     | 38,868 |   | 49,2  |            |          | MIN     | 52,85 |   | 66,9  |     |            | MIN     | 64,62 |   | 81,8  |     |
| <u>p</u> | SREDNJA | 42,502 |   | 53,8  |            | <u>ã</u> | SREDNJA | 55,97 |   | 70,85 |     | i i        | SREDNJA | 67,94 |   | 86    |     |
| -        | MAX     | 46,136 |   | 58,4  |            | 2        | MAX     | 59,09 |   | 74,8  |     | <b>"</b> " | MAX     | 71,26 |   | 90,2  |     |
| ~        | MIN     | 40,685 |   | 51,5  |            | ~        | MIN     | 54,27 |   | 68,7  |     | ~          | MIN     | 65,89 |   | 83,4  |     |
| Ä        | SREDNJA | 44,28  |   | 56,05 |            | Ĩ        | SREDNJA | 57,63 |   | 72,95 |     | e e        | SREDNJA | 69,60 |   | 88,1  |     |
| -        | MAX     | 47,874 |   | 60,6  |            | 2        | MAX     | 60,99 |   | 77,2  |     |            | MAX     | 73,31 |   | 92,8  |     |
| -        | MIN     | 42,107 |   | 53,3  |            | -        | MIN     | 55,46 |   | 70,2  |     | -          | MIN     | 68,41 |   | 86,6  |     |
| Õ        | SREDNJA | 45,82  |   | 58    |            | Ď        | SREDNJA | 59,37 |   | 75,15 |     | Č.         | SREDNJA | 71,61 |   | 90,65 |     |
| -        | MAX     | 49,533 |   | 62,7  |            | ~        | MAX     | 63,28 |   | 80,1  |     | (1)        | MAX     | 74,81 |   | 94,7  |     |
|          |         |        |   |       |            |          |         |       |   |       |     |            |         |       |   |       |     |

| Р.бр. | $\varphi_L$ | $\varphi_D$ | правац | h | S    | v <sub>b</sub> | Qef  | Isr   | I max | I <sub>min</sub> | $N_{sr}$ | N <sub>max</sub> | $N_{min}$ | P <sub>k,sr</sub> | $P_{k,max}$ | $E_{sr}$ | E <sub>max</sub> | L    | F <sub>sr</sub> | $k_w$ | K <sub>L,sr</sub> | $K_{L,max}$ | $K_{F,sr}$ | $K_{F,max}$ | $K_L$ | $K_F$ |
|-------|-------------|-------------|--------|---|------|----------------|------|-------|-------|------------------|----------|------------------|-----------|-------------------|-------------|----------|------------------|------|-----------------|-------|-------------------|-------------|------------|-------------|-------|-------|
| 1.    | -33         | -11         | L      | 7 | 0,25 | 21             | 2044 | 58,4  | 61,2  | 55,6             | 394,0    | 412,8            | 375,1     | 101,6             | 140,5       | 0,161    | 0,170            | 4,33 | 0,23            | 1,64  | 235,0             | 324,8       | 27,3       | 37,7        | 279,9 | 32,5  |
| 2.    | -11         | 13          | L      | 7 | 0,25 | 21             | 2157 | 58,9  | 64,4  | 53,4             | 397,3    | 434,4            | 360,2     | 101,0             | 147,9       | 0,154    | 0,170            | 4,33 | 0,23            | 1,64  | 233,4             | 341,9       | 27,1       | 39,7        | 287,7 | 33,4  |
| 3.    | 13          | 37          | L      | 7 | 0,25 | 21             | 1998 | 63,5  | 68,8  | 58,2             | 428,4    | 464,1            | 392,6     | 114,2             | 158,0       | 0,181    | 0,197            | 4,33 | 0,23            | 1,64  | 264,0             | 365,2       | 30,6       | 42,4        | 314,6 | 36,5  |
| 4.    | 37          | 62          | L      | 7 | 0,25 | 21             | 1432 | 65,15 | 70,1  | 60,2             | 439,5    | 472,9            | 406,1     | 127,2             | 160,9       | 0,259    | 0,281            | 4,33 | 0,23            | 1,64  | 294,2             | 372,1       | 34,1       | 43,2        | 333,1 | 38,6  |
| 5.    | 62          | 37          | D      | 7 | 0,25 | 21             | 1432 | 68,1  | 72,8  | 63,4             | 459,4    | 491,1            | 427,7     | 134,0             | 167,1       | 0,272    | 0,293            | 4,33 | 0,23            | 1,64  | 309,9             | 386,4       | 36,0       | 44,8        | 348,2 | 40,4  |
| 6.    | 37          | 13          | D      | 7 | 0,25 | 21             | 1998 | 70,95 | 75,2  | 66,7             | 478,6    | 507,3            | 450,0     | 131,4             | 172,6       | 0,204    | 0,217            | 4,33 | 0,23            | 1,64  | 303,8             | 399,2       | 35,2       | 46,3        | 351,5 | 40,8  |
| 7.    | 13          | -11         | D      | 7 | 0,25 | 21             | 2157 | 73,7  | 78,1  | 69,3             | 497,2    | 526,9            | 467,5     | 135,2             | 179,3       | 0,197    | 0,210            | 4,33 | 0,23            | 1,64  | 312,5             | 414,5       | 36,3       | 48,1        | 363,5 | 42,2  |
| 8.    | -11         | -33         | D      | 7 | 0,25 | 21             | 2044 | 73,5  | 76,8  | 70,2             | 495,8    | 518,1            | 473,6     | 136,5             | 176,3       | 0,207    | 0,217            | 4,33 | 0,23            | 1,64  | 315,7             | 407,6       | 36,6       | 47,3        | 361,7 | 42,0  |
| 9.    | -33         | -11         | L      | 7 | 0,4  | 21             | 3271 | 77,1  | 80,8  | 73,4             | 520,1    | 545,1            | 495,1     | 124,9             | 185,5       | 0,136    | 0,143            | 4,89 | 0,36            | 1,64  | 255,2             | 379,1       | 20,9       | 31,1        | 317,2 | 26,0  |
| 10.   | -11         | 13          | L      | 7 | 0,4  | 21             | 3451 | 79,15 | 83,2  | 75,1             | 533,9    | 561,3            | 506,6     | 126,7             | 191,0       | 0,133    | 0,140            | 4,89 | 0,36            | 1,64  | 258,9             | 390,4       | 21,2       | 32,0        | 324,6 | 26,6  |
| 11.   | 13          | 37          | L      | 7 | 0,4  | 21             | 3197 | 81,25 | 85,2  | 77,3             | 548,1    | 574,8            | 521,5     | 135,7             | 195,6       | 0,148    | 0,155            | 4,89 | 0,36            | 1,64  | 277,3             | 399,7       | 22,7       | 32,8        | 338,5 | 27,8  |
| 12.   | 37          | 62          | L      | 7 | 0,4  | 21             | 2291 | 83,3  | 87,4  | 79,2             | 561,9    | 589,6            | 534,3     | 155,2             | 200,6       | 0,212    | 0,223            | 4,89 | 0,36            | 1,64  | 317,1             | 410,1       | 26,0       | 33,6        | 363,6 | 29,8  |
| 13.   | 62          | 37          | D      | 7 | 0,4  | 21             | 2291 | 84,15 | 88,2  | 80,1             | 567,7    | 595,0            | 540,3     | 157,1             | 202,5       | 0,214    | 0,225            | 4,89 | 0,36            | 1,64  | 321,2             | 413,8       | 26,3       | 33,9        | 367,5 | 30,1  |
| 14.   | 37          | 13          | D      | 7 | 0,4  | 21             | 3197 | 86,25 | 90,1  | 82,4             | 581,8    | 607,8            | 555,9     | 147,2             | 206,8       | 0,157    | 0,165            | 4,89 | 0,36            | 1,64  | 300,9             | 422,7       | 24,7       | 34,7        | 361,8 | 29,7  |
| 15.   | 13          | -11         | D      | 7 | 0,4  | 21             | 3451 | 88,6  | 92,8  | 84,4             | 597,7    | 626,0            | 569,4     | 148,5             | 213,0       | 0,150    | 0,158            | 4,89 | 0,36            | 1,64  | 303,5             | 435,4       | 24,9       | 35,7        | 369,5 | 30,3  |
| 16.   | -11         | -33         | D      | 7 | 0,4  | 21             | 3271 | 90,45 | 94,2  | 86,7             | 610,2    | 635,5            | 584,9     | 155,7             | 216,2       | 0,162    | 0,169            | 4,89 | 0,36            | 1,64  | 318,3             | 442,0       | 26,1       | 36,2        | 380,1 | 31,2  |
| 17.   | -33         | -11         | L      | 7 | 0,5  | 21             | 4089 | 91,8  | 95,2  | 88,4             | 619,3    | 642,2            | 596,3     | 145,5             | 218,5       | 0,132    | 0,137            | 5,27 | 0,45            | 1,64  | 276,1             | 414,6       | 19,5       | 29,3        | 345,3 | 24,4  |
| 18.   | -11         | 13          | L      | 7 | 0,5  | 21             | 4314 | 93,25 | 96,4  | 90,1             | 629,1    | 650,3            | 607,8     | 145,2             | 221,3       | 0,127    | 0,131            | 5,27 | 0,45            | 1,64  | 275,5             | 419,8       | 19,5       | 29,7        | 347,6 | 24,6  |
| 19.   | 13          | 37          | L      | 7 | 0,5  | 21             | 3997 | 94,85 | 98,5  | 91,2             | 639,8    | 664,5            | 615,2     | 154,1             | 226,1       | 0,139    | 0,145            | 5,27 | 0,45            | 1,64  | 292,3             | 428,9       | 20,7       | 30,3        | 360,6 | 25,5  |
| 20.   | 37          | 62          | L      | 7 | 0,5  | 21             | 2864 | 96,6  | 99,8  | 93,4             | 651,7    | 673,2            | 630,1     | 176,6             | 229,1       | 0,198    | 0,205            | 5,27 | 0,45            | 1,64  | 335,0             | 434,6       | 23,7       | 30,7        | 384,8 | 27,2  |
| 21.   | 62          | 37          | D      | 7 | 0,5  | 21             | 2864 | 98,8  | 102,4 | 95,2             | 666,5    | 690,8            | 642,2     | 181,7             | 235,0       | 0,203    | 0,211            | 5,27 | 0,45            | 1,64  | 344,6             | 445,9       | 24,4       | 31,5        | 395,3 | 27,9  |
| 22.   | 37          | 13          | D      | 7 | 0,5  | 21             | 3997 | 100,8 | 104,2 | 97,4             | 680,0    | 702,9            | 657,1     | 167,8             | 239,2       | 0,149    | 0,154            | 5,27 | 0,45            | 1,64  | 318,4             | 453,8       | 22,5       | 32,1        | 386,1 | 27,3  |

Таблица 8.24. Специфични отпор материјала на копање за случај похабаних резних елемената 100 %, доњи погон

| Р.бр. | $\varphi_L$ | $\varphi_D$ | правац | h | s    | v <sub>b</sub> | Qef  | Isr   | I max | $I_{min}$ | $N_{sr}$ | N <sub>max</sub> | $N_{min}$ | P <sub>k,sr</sub> | P <sub>k,max</sub> | $E_{sr}$ | E <sub>max</sub> | L    | $F_{sr}$ | k <sub>w</sub> | $K_{L,sr}$ | $K_{L,max}$ | $K_{F,sr}$ | $K_{F,max}$ | $K_L$ | $K_F$ |
|-------|-------------|-------------|--------|---|------|----------------|------|-------|-------|-----------|----------|------------------|-----------|-------------------|--------------------|----------|------------------|------|----------|----------------|------------|-------------|------------|-------------|-------|-------|
| 1.    | -33         | -11         | L      | 7 | 0,25 | 21             | 2044 | 44,65 | 49,1  | 40,2      | 301,2    | 331,2            | 271,2     | 69,9              | 112,7              | 0,119    | 0,133            | 4,33 | 0,23     | 1,64           | 161,5      | 260,7       | 18,7       | 30,2        | 211,1 | 24,5  |
| 2.    | -11         | 13          | L      | 7 | 0,25 | 21             | 2157 | 46,4  | 50,6  | 42,2      | 313,0    | 341,3            | 284,7     | 72,1              | 116,2              | 0,118    | 0,130            | 4,33 | 0,23     | 1,64           | 166,7      | 268,6       | 19,3       | 31,2        | 217,6 | 25,2  |
| 3.    | 13          | 37          | L      | 7 | 0,25 | 21             | 1998 | 47,85 | 51,3  | 44,4      | 322,8    | 346,1            | 299,5     | 78,0              | 117,8              | 0,132    | 0,143            | 4,33 | 0,23     | 1,64           | 180,4      | 272,3       | 20,9       | 31,6        | 226,3 | 26,3  |
| 4.    | 37          | 62          | L      | 7 | 0,25 | 21             | 1432 | 49,95 | 53,1  | 46,8      | 337,0    | 358,2            | 315,7     | 92,1              | 121,9              | 0,193    | 0,207            | 4,33 | 0,23     | 1,64           | 212,9      | 281,9       | 24,7       | 32,7        | 247,4 | 28,7  |
| 5.    | 62          | 37          | D      | 7 | 0,25 | 21             | 1432 | 51,55 | 55,2  | 47,9      | 347,8    | 372,4            | 323,1     | 95,8              | 126,7              | 0,200    | 0,216            | 4,33 | 0,23     | 1,64           | 221,5      | 293,0       | 25,7       | 34,0        | 257,3 | 29,8  |
| 6.    | 37          | 13          | D      | 7 | 0,25 | 21             | 1998 | 53,8  | 58,4  | 49,2      | 362,9    | 394,0            | 331,9     | 91,8              | 134,1              | 0,150    | 0,165            | 4,33 | 0,23     | 1,64           | 212,2      | 310,0       | 24,6       | 36,0        | 261,1 | 30,3  |
| 7.    | 13          | -11         | D      | 7 | 0,25 | 21             | 2157 | 56,05 | 60,6  | 51,5      | 378,1    | 408,8            | 347,4     | 94,4              | 139,1              | 0,146    | 0,159            | 4,33 | 0,23     | 1,64           | 218,2      | 321,7       | 25,3       | 37,3        | 270,0 | 31,3  |
| 8.    | -11         | -33         | D      | 7 | 0,25 | 21             | 2044 | 58    | 62,7  | 53,3      | 391,3    | 423,0            | 359,6     | 100,7             | 144,0              | 0,160    | 0,174            | 4,33 | 0,23     | 1,64           | 232,9      | 332,8       | 27,0       | 38,6        | 282,9 | 32,8  |
| 9.    | -33         | -11         | L      | 7 | 0,4  | 21             | 3271 | 59,65 | 64,2  | 55,1      | 402,4    | 433,1            | 371,7     | 84,5              | 147,4              | 0,103    | 0,112            | 4,89 | 0,36     | 1,64           | 172,8      | 301,3       | 14,2       | 24,7        | 237,0 | 19,4  |
| 10.   | -11         | 13          | L      | 7 | 0,4  | 21             | 3451 | 62,1  | 66,4  | 57,8      | 418,9    | 447,9            | 389,9     | 87,3              | 152,4              | 0,102    | 0,110            | 4,89 | 0,36     | 1,64           | 178,4      | 311,6       | 14,6       | 25,6        | 245,0 | 20,1  |
| 11.   | 13          | 37          | L      | 7 | 0,4  | 21             | 3197 | 64,35 | 68,9  | 59,8      | 434,1    | 464,8            | 403,4     | 96,6              | 158,2              | 0,115    | 0,124            | 4,89 | 0,36     | 1,64           | 197,4      | 323,3       | 16,2       | 26,5        | 260,4 | 21,4  |
| 12.   | 37          | 62          | L      | 7 | 0,4  | 21             | 2291 | 66,15 | 70,2  | 62,1      | 446,2    | 473,6            | 418,9     | 115,5             | 161,2              | 0,165    | 0,176            | 4,89 | 0,36     | 1,64           | 236,1      | 329,4       | 19,4       | 27,0        | 282,8 | 23,2  |
| 13.   | 62          | 37          | D      | 7 | 0,4  | 21             | 2291 | 68,6  | 72,8  | 64,4      | 462,8    | 491,1            | 434,4     | 121,2             | 167,1              | 0,172    | 0,183            | 4,89 | 0,36     | 1,64           | 247,7      | 341,6       | 20,3       | 28,0        | 294,7 | 24,2  |
| 14.   | 37          | 13          | D      | 7 | 0,4  | 21             | 3197 | 70,85 | 74,8  | 66,9      | 477,9    | 504,6            | 451,3     | 111,6             | 171,7              | 0,127    | 0,135            | 4,89 | 0,36     | 1,64           | 228,1      | 351,0       | 18,7       | 28,8        | 289,6 | 23,8  |
| 15.   | 13          | -11         | D      | 7 | 0,4  | 21             | 3451 | 72,95 | 77,2  | 68,7      | 492,1    | 520,8            | 463,4     | 112,3             | 177,2              | 0,122    | 0,129            | 4,89 | 0,36     | 1,64           | 229,6      | 362,2       | 18,8       | 29,7        | 295,9 | 24,3  |
| 16.   | -11         | -33         | D      | 7 | 0,4  | 21             | 3271 | 75,15 | 80,1  | 70,2      | 507,0    | 540,3            | 473,6     | 120,4             | 183,9              | 0,133    | 0,142            | 4,89 | 0,36     | 1,64           | 246,0      | 375,9       | 20,2       | 30,8        | 310,9 | 25,5  |
| 17.   | -33         | -11         | L      | 7 | 0,5  | 21             | 4089 | 77,15 | 81,9  | 72,4      | 520,4    | 552,5            | 488,4     | 111,7             | 188,0              | 0,109    | 0,116            | 5,27 | 0,45     | 1,64           | 211,8      | 356,7       | 15,0       | 25,2        | 284,3 | 20,1  |
| 18.   | -11         | 13          | L      | 7 | 0,5  | 21             | 4314 | 78,75 | 83,2  | 74,3      | 531,2    | 561,3            | 501,2     | 111,7             | 191,0              | 0,106    | 0,112            | 5,27 | 0,45     | 1,64           | 211,9      | 362,4       | 15,0       | 25,6        | 287,1 | 20,3  |
| 19.   | 13          | 37          | L      | 7 | 0,5  | 21             | 3997 | 81,15 | 85,6  | 76,7      | 547,4    | 577,4            | 517,4     | 122,4             | 196,5              | 0,118    | 0,125            | 5,27 | 0,45     | 1,64           | 232,2      | 372,8       | 16,4       | 26,4        | 302,5 | 21,4  |
| 20.   | 37          | 62          | L      | 7 | 0,5  | 21             | 2864 | 82,65 | 87,1  | 78,2      | 557,5    | 587,6            | 527,5     | 144,3             | 199,9              | 0,168    | 0,178            | 5,27 | 0,45     | 1,64           | 273,8      | 379,3       | 19,4       | 26,8        | 326,6 | 23,1  |
| 21.   | 62          | 37          | D      | 7 | 0,5  | 21             | 2864 | 84,4  | 88,9  | 79,9      | 569,4    | 599,7            | 539,0     | 148,4             | 204,1              | 0,172    | 0,181            | 5,27 | 0,45     | 1,64           | 281,5      | 387,2       | 19,9       | 27,4        | 334,3 | 23,6  |
| 22.   | 37          | 13          | D      | 7 | 0,5  | 21             | 3997 | 86    | 90,2  | 81,8      | 580,1    | 608,5            | 551,8     | 133,6             | 207,1              | 0,126    | 0,132            | 5,27 | 0,45     | 1,64           | 253,5      | 392,8       | 17,9       | 27,8        | 323,2 | 22,8  |

Таблица 8.25. Специфични отпор материјала на копање за случај похабаних резних елемената 100 %, горњи погон

| Р.бр. | $\varphi_L$ | $\varphi_D$ | правац | h | s    | v <sub>b</sub> | Qef  | Isr   | I max | I <sub>min</sub> | $N_{sr}$ | N <sub>max</sub> | $N_{min}$ | P <sub>k,sr</sub> | P <sub>k,max</sub> | $E_{sr}$ | E <sub>max</sub> | L    | $F_{sr}$ | k <sub>w</sub> | $K_{L,sr}$ | $K_{L,max}$ | $K_{F,sr}$ | $K_{F,max}$ | K <sub>L</sub> | $K_F$ |
|-------|-------------|-------------|--------|---|------|----------------|------|-------|-------|------------------|----------|------------------|-----------|-------------------|--------------------|----------|------------------|------|----------|----------------|------------|-------------|------------|-------------|----------------|-------|
| 1.    | -33         | -11         | L      | 7 | 0,25 | 21             | 2044 | 103,1 | 110,3 | 95,8             | 695,2    | 744,1            | 646,3     | 204,8             | 253,2              | 0,297    | 0,320            | 4,33 | 0,23     | 1,64           | 473,6      | 585,5       | 54,9       | 67,9        | 529,5          | 61,4  |
| 2.    | -11         | 13          | L      | 7 | 0,25 | 21             | 2157 | 105,3 | 115   | 95,6             | 710,3    | 775,8            | 644,9     | 208,2             | 264,1              | 0,288    | 0,316            | 4,33 | 0,23     | 1,64           | 481,4      | 610,5       | 55,8       | 70,8        | 546,0          | 63,3  |
| 3.    | 13          | 37          | L      | 7 | 0,25 | 21             | 1998 | 111,4 | 120,1 | 102,6            | 751,2    | 810,2            | 692,1     | 224,8             | 275,7              | 0,330    | 0,357            | 4,33 | 0,23     | 1,64           | 519,7      | 637,5       | 60,3       | 74,0        | 578,6          | 67,1  |
| 4.    | 37          | 62          | L      | 7 | 0,25 | 21             | 1432 | 115,1 | 123,2 | 107              | 776,5    | 831,1            | 721,8     | 242,7             | 282,9              | 0,477    | 0,512            | 4,33 | 0,23     | 1,64           | 561,1      | 654,0       | 65,1       | 75,9        | 607,5          | 70,5  |
| 5.    | 62          | 37          | D      | 7 | 0,25 | 21             | 1432 | 119,7 | 128   | 111,3            | 807,1    | 863,5            | 750,8     | 253,2             | 293,9              | 0,497    | 0,533            | 4,33 | 0,23     | 1,64           | 585,4      | 679,4       | 67,9       | 78,8        | 632,4          | 73,4  |
| 6.    | 37          | 13          | D      | 7 | 0,25 | 21             | 1998 | 124,8 | 133,6 | 115,9            | 841,6    | 901,3            | 781,8     | 255,7             | 306,7              | 0,372    | 0,400            | 4,33 | 0,23     | 1,64           | 591,3      | 709,2       | 68,6       | 82,3        | 650,2          | 75,4  |
| 7.    | 13          | -11         | D      | 7 | 0,25 | 21             | 2157 | 129,8 | 138,7 | 120,8            | 875,3    | 935,7            | 814,9     | 264,7             | 318,4              | 0,359    | 0,385            | 4,33 | 0,23     | 1,64           | 612,0      | 736,2       | 71,0       | 85,4        | 674,1          | 78,2  |
| 8.    | -11         | -11         | 13     | 7 | 0,25 | 21             | 2044 | 131,5 | 139,5 | 123,5            | 887,1    | 941,1            | 833,1     | 270,6             | 320,3              | 0,384    | 0,409            | 4,33 | 0,23     | 1,64           | 625,6      | 740,5       | 72,6       | 85,9        | 683,0          | 79,2  |
| 9.    | -33         | -11         | L      | 7 | 0,4  | 21             | 3271 | 136,8 | 145   | 128,5            | 922,5    | 978,2            | 866,8     | 262,7             | 332,9              | 0,250    | 0,266            | 4,89 | 0,36     | 1,64           | 537,0      | 680,4       | 44,0       | 55,8        | 608,7          | 49,9  |
| 10.   | -11         | 13          | L      | 7 | 0,4  | 21             | 3451 | 141,3 | 149,6 | 132,9            | 952,9    | 1009,2           | 896,5     | 270,2             | 343,4              | 0,245    | 0,260            | 4,89 | 0,36     | 1,64           | 552,2      | 702,0       | 45,3       | 57,6        | 627,1          | 51,4  |
| 11.   | 13          | 37          | L      | 7 | 0,4  | 21             | 3197 | 145,6 | 154,1 | 137,1            | 982,2    | 1039,5           | 924,9     | 284,4             | 353,8              | 0,273    | 0,290            | 4,89 | 0,36     | 1,64           | 581,2      | 723,1       | 47,7       | 59,3        | 652,2          | 53,5  |
| 12.   | 37          | 62          | L      | 7 | 0,4  | 21             | 2291 | 149,5 | 157,6 | 141,3            | 1008,2   | 1063,2           | 953,2     | 308,0             | 361,8              | 0,392    | 0,414            | 4,89 | 0,36     | 1,64           | 629,6      | 739,5       | 51,6       | 60,7        | 684,5          | 56,1  |
| 13.   | 62          | 37          | D      | 7 | 0,4  | 21             | 2291 | 152,8 | 161   | 144,5            | 1030,4   | 1086,1           | 974,8     | 315,7             | 369,6              | 0,401    | 0,423            | 4,89 | 0,36     | 1,64           | 645,2      | 755,4       | 52,9       | 62,0        | 700,3          | 57,4  |
| 14.   | 37          | 13          | D      | 7 | 0,4  | 21             | 3197 | 157,1 | 164,9 | 149,3            | 1059,8   | 1112,4           | 1007,2    | 311,0             | 378,5              | 0,296    | 0,311            | 4,89 | 0,36     | 1,64           | 635,6      | 773,7       | 52,1       | 63,5        | 704,6          | 57,8  |
| 15.   | 13          | -11         | D      | 7 | 0,4  | 21             | 3451 | 161,6 | 170   | 153,1            | 1089,8   | 1146,8           | 1032,8    | 317,1             | 390,3              | 0,282    | 0,297            | 4,89 | 0,36     | 1,64           | 648,1      | 797,6       | 53,2       | 65,4        | 722,9          | 59,3  |
| 16.   | -11         | -33         | D      | 7 | 0,4  | 21             | 3271 | 165,6 | 174,3 | 156,9            | 1117,1   | 1175,8           | 1058,4    | 329,4             | 400,1              | 0,305    | 0,322            | 4,89 | 0,36     | 1,64           | 673,3      | 817,8       | 55,2       | 67,1        | 745,5          | 61,2  |
| 17.   | -33         | -11         | L      | 7 | 0,5  | 21             | 4089 | 169   | 177,1 | 160,8            | 1139,7   | 1194,7           | 1084,7    | 323,8             | 406,5              | 0,249    | 0,262            | 5,27 | 0,45     | 1,64           | 614,3      | 771,3       | 43,4       | 54,5        | 692,8          | 49,0  |
| 18.   | -11         | 13          | L      | 7 | 0,5  | 21             | 4314 | 172   | 179,6 | 164,4            | 1160,3   | 1211,6           | 1109,0    | 327,2             | 412,3              | 0,241    | 0,252            | 5,27 | 0,45     | 1,64           | 620,8      | 782,2       | 43,9       | 55,3        | 701,5          | 49,6  |
| 19.   | 13          | 37          | L      | 7 | 0,5  | 21             | 3997 | 176   | 184,1 | 167,9            | 1187,3   | 1241,9           | 1132,6    | 341,6             | 422,6              | 0,266    | 0,279            | 5,27 | 0,45     | 1,64           | 648,1      | 801,8       | 45,8       | 56,7        | 724,9          | 51,2  |
| 20.   | 37          | 62          | L      | 7 | 0,5  | 21             | 2864 | 179,3 | 186,9 | 171,6            | 1209,2   | 1260,8           | 1157,6    | 367,6             | 429,0              | 0,378    | 0,395            | 5,27 | 0,45     | 1,64           | 697,4      | 813,9       | 49,3       | 57,5        | 755,7          | 53,4  |
| 21.   | 62          | 37          | D      | 7 | 0,5  | 21             | 2864 | 183,2 | 191,3 | 175,1            | 1235,8   | 1290,5           | 1181,2    | 376,7             | 439,1              | 0,387    | 0,405            | 5,27 | 0,45     | 1,64           | 714,7      | 833,1       | 50,5       | 58,9        | 773,9          | 54,7  |
| 22.   | 37          | 13          | D      | 7 | 0.5  | 21             | 3997 | 186.8 | 194,4 | 179.2            | 1260.1   | 1311.4           | 1208,9    | 366.6             | 446.2              | 0.283    | 0.295            | 5.27 | 0.45     | 1.64           | 695,4      | 846.6       | 49.2       | 59.8        | 771.0          | 54,5  |

Таблица 8.26. Збирна вредност специфичног отпора материјала на копање за цео погон, случај похабаних резних елемената 100 %

# 8.2 Резултати мерења вибрација

Упоредно са мерењем ангажоване струје у радном технолошком процесу, мерене су и вибрације на месту улазног пара вратила редуктора погона за копање роторног багера SRs2000.32/5+VR [92]. Мерења су вршена у три референтна правца: вертикалном (управно на улазни пар), хоризонталном (попречно на улазни пар) и аксијалном (уздужно на улазни пар) [92]. Мерење вибрација изводило се SKF Microlog CMXA80 уређајем, док су анализе спроводене у наменски пројектованом софтверу SKF @ptitude Analyst for Microlog [92]. На слици 8.15 приказани су правци у којима су извођена мерења.



Слика 8.15. Референтни правци за мерење вибрација [92]

Вибрација су мерене за дебљине реза: 0,25 [m], 0,4 [m] и 0,5 [m]. Са преузетих извештаја из диспечерског центра површинског копа Тамнава–Западно поље очитане су амплитуде на карактеристичној фреквенцији поремећајне силе за вертикални, хоризонтални и аксијални правац [92]. Карактеристична фреквенција је фреквенција побуде обртања вратила електромотора (1000 [min<sup>-1</sup>] = 16,67 [Hz]) и иста је за свако мерење (како би се омогућила компаративна анализа резултата) [92]. Вибрације у аксијалном правцу немају утицај на резултате анализе.

Вибрације су бележене у тренутку када се стрела багера налазила у обртној оси, са максималним одступањем до 5 [°]. Разлог томе је чињеница да се највеће вредности амплитуде вибрација очекују када се стрела налази у оси напредовања багера (максимална дебљина реза). Са циљем утврђивања утицаја похабаности резних елемената на вибрације погона за копање роторног багера, изведено је и нулто мерење, тзв. *мерење на празно*, како би се одредила вредност амплитуде у стању мировања, када се окреће роторни точак, без директног откопавања материјала. Формулар коришћен при мерењу вибрација дат је у прилогу 2.

Формулар садржи очитане вредности амплитуде брзине вибрација у аксијалном, хоризонталном и вертикалном правцу на фреквенцији обртања вратила електромотора. Резултати се бележе у односу на кретање стреле роторног точка (лево/десно) и промену дебљине реза. Дебљина реза је, као и код мерења струје, имала три варијације: 0,25 [m], 0,4 [m] и 0,5 [m].

Резултати мерења вибрација биће приказани на исти начин као резултати мерења струје, од стања новог зуба до стања потпуне похабаности, са кораком похабаности од 25 %.



#### 8.2.1 Резултати мерења за случај нових резних елемената

Слика 8.16. Измерене вибрације са новим зубима (мерење у лево и десно 0,25 [m] у Н и V правцу – вредност амплитуде карактеристичне фреквенције на 1000 [min<sup>-1</sup>]) [92]



Слика 8.17. Измерене вибрације са новим зубима (мерење у лево и десно 0,4 [m] у H и V правцу – вредност амплитуде карактеристичне фреквенције на 1000 [min<sup>-1</sup>]) [92]



Слика 8.18. Измерене вибрације са новим зубима (мерење у лево и десно 0,5 [m] у Н и V правцу – вредност амплитуде карактеристичне фреквенције на 1000 [min<sup>-1</sup>]) [92]

# 8.2.2 Резултати мерења за случај похабаних резних елемената 25 %



Слика 8.19. Измерене вибрације за похабаност зуба 25 % (мерење у лево и десно 0,25 [m] у Н и V правцу – вредност амплитуде карактеристичне фреквенције на 1000 [min<sup>-1</sup>])



Слика 8.20. Измерене вибрације за похабаност зуба 25 % (мерење у лево и десно 0,4 [m] у Н и V правцу – вредност амплитуде карактеристичне фреквенције на 1000 [min<sup>-1</sup>])



Слика 8.21. Измерене вибрације за похабаност зуба 25 % (мерење у лево и десно 0,5 [m] у Н и V правцу – вредност амплитуде карактеристичне фреквенције на 1000 [min<sup>-1</sup>])

# 8.2.3 Резултати мерења за случај похабаних резних елемената 50 %



Слика 8.22. Измерене вибрације за похабаност зуба 50 % (мерење у лево и десно 0,25 [m] у Н и V правцу – вредност амплитуде карактеристичне фреквенције на 1000 [min<sup>-1</sup>])



Слика 8.23. Измерене вибрације за похабаност зуба 50 % (мерење у лево и десно 0,4 [m] у Н и V правцу – вредност амплитуде карактеристичне фреквенције на 1000 [min<sup>-1</sup>])



Слика 8.24. Измерене вибрације за похабаност зуба 50 % (мерење у лево и десно 0,5 [m] у Н и V правцу – вредност амплитуде карактеристичне фреквенције на 1000 [min<sup>-1</sup>])



# 8.2.4 Резултати мерења за случај похабаних резних елемената 75 %

Слика 8.25. Измерене вибрације за похабаност зуба 75 % (мерење у лево и десно 0,25 [m] у Н и V правцу – вредност амплитуде карактеристичне фреквенције на 1000 [min<sup>-1</sup>]) [92]



Слика 8.26. Измерене вибрације за похабаност зуба 75 % (мерење у лево и десно 0,4 [m] у Н и V правцу – вредност амплитуде карактеристичне фреквенције на 1000 [min<sup>-1</sup>]) [92]





# 8.2.5 Резултати мерења за случај похабаних резних елемената 100 %



Слика 8.28. Измерене вибрације за похабаност зуба 100 % (мерење у лево и десно 0,25 [m] у Н и V правцу – вредност амплитуде карактеристичне фреквенције на 1000 [min<sup>-1</sup>])



Слика 8.29. Измерене вибрације за похабаност зуба 100 % (мерење у лево и десно 0,4 [m] у Н и V правцу – вредност амплитуде карактеристичне фреквенције на 1000 [min<sup>-1</sup>])



Слика 8.30. Измерене вибрације за похабаност зуба 100 % (мерење у лево и десно 0,4 [m] у Н и V правцу – вредност амплитуде карактеристичне фреквенције на 1000 [min<sup>-1</sup>])

# 9. ВЕРИФИКАЦИЈА МОДЕЛА ЗАВИСНОСТИ СПЕЦИФИЧНЕ ПОТРОШЊЕ ЕЛЕКТРИЧНЕ ЕНЕРГИЈЕ И НИВОА ВИБРАЦИЈА ПОГОНА ЗА КОПАЊЕ

Верификација модела зависности похабаности резних елемената, специфичне потрошње електричне енергије у процесу копања и нивоа амплитуде вибрација биће извршена на основу улазних података добијених *in situ* мерењима на објекту истраживања – роторном багеру SRs2000.32/5+VR.

Процес верификације подразумева компаративну анализу тренда специфичне потрошње електричне енергије и нивоа амплитуде вибрација за однос похабаности резних елемената 25 %, 50 %, 75 % и 100 % према резултатима мерења са новим резним елементима. На тај начин је могуће доказати почетну хипотезу да стање зуба, као јединог елемента на роторном багеру у директном контакту са материјалом који се откопава, има утицај на рад погона за копање, са аспекта оба облика енергије.

Улазни подаци о мерењима струје и вибрација у радном технолошком процесу представљени су у поглављу 8. Да би се применио модел, за различите промене дебљине реза и кретање стреле у леву (Л) и десну (Д) страну, узима се средња вредност максималне потрошње електричне енергије  $E_{max}$  која се, као таква, пореди са нивоом амплитуде брзине вибрација. Релевантни подаци са којима се ушло у верификацију модела приказани су у наставку.

На основу тренутне јачине струје која се троши у процесу копања  $I_m$  и применом Ватметарске методе [1]; једначине (7.1), (7.2), (7.3), (7.4) израчуната је специфична потрошња електричне енергије. За даље анализе референтне су максималне вредности за сва мерења и као такве представљене у таблици 9.1 [92].

| -   | $\varphi_L$ | φD   | $\varphi_L$ | φD  | h       | Правац  | Q    | ost              | In     | ıax    | $N_{p}$ | -max  | $F_{n}$ | nax   | $E_{i}$ | nax                |
|-----|-------------|------|-------------|-----|---------|---------|------|------------------|--------|--------|---------|-------|---------|-------|---------|--------------------|
| Бр. | Пох.        | 25 % | Но          | ви  | Исти па | раметри | Пох. | Нови             | Пох.   | Нови   | Пох.    | Нови  | Poh.    | Novi  | Poh.    | Novi               |
|     |             | [°]  |             |     | [m]     | Л/Д     | [m   | <sup>3</sup> /h] | [/     | 4]     | [k'     | W]    | [k      | N]    | [kWl    | h/m <sup>3</sup> ] |
| 1.  | 15          | 30   | -33         | -11 |         |         | 2037 | 2044             | 88,80  | 77,82  | 599     | 524,9 | 203,8   | 178,6 | 0,255   | 0,220              |
| 2.  | 0           | 15   | -11         | 13  | 0.25    | паро    | 2186 | 2157             | 88,50  | 79,0   | 597     | 532,9 | 203,2   | 181,4 | 0,237   | 0,212              |
| 3.  | -15         | 0    | 13          | 37  | 0,25    | лево    | 2186 | 1998             | 81,91  | 73,08  | 552,6   | 493,0 | 188,1   | 167,8 | 0,218   | 0,211              |
| 4.  | -30         | -15  | 37          | 62  |         |         | 2037 | 1432             | 95,25  | 65,57  | 642,6   | 442,3 | 218,8   | 150,5 | 0,275   | 0,261              |
| 5.  | -15         | 0    | 62          | 37  |         |         | 2186 | 1432             | 82,10  | 72,29  | 553,8   | 487,6 | 188,5   | 165,9 | 0,218   | 0,291              |
| 6.  | 0           | 15   | 37          | 13  | 0.25    | 70010   | 2186 | 1998             | 82,82  | 73,08  | 558,7   | 493,0 | 190,1   | 167,7 | 0,220   | 0,211              |
| 7.  | 15          | 30   | 13          | -11 | 0,23    | десно   | 2037 | 2157             | 94,41  | 83,35  | 636,9   | 562,2 | 216,7   | 191,3 | 0,272   | 0,225              |
| 8.  | 15          | 30   | -11         | -33 |         |         | 2037 | 2044             | 101,75 | 90,06  | 686,4   | 607,5 | 233,6   | 206,7 | 0,294   | 0,258              |
| 9.  | 0           | 15   | -33         | -11 |         |         | 3497 | 3271             | 143,46 | 127,98 | 967,8   | 863,3 | 329,5   | 293,9 | 0,246   | 0,233              |
| 10. | -15         | 0    | -11         | 13  | 0.4     | Паро    | 3497 | 3451             | 137,44 | 123,64 | 927,1   | 834,0 | 315,6   | 283,9 | 0,235   | 0,213              |
| 11. | -30         | -15  | 13          | 37  | 0,4     | лево    | 3259 | 3197             | 112,51 | 99,94  | 759     | 674,2 | 258,3   | 229,5 | 0,205   | 0,184              |
| 12. | -30         | -15  | 37          | 62  |         |         | 3259 | 2291             | 79,83  | 70,31  | 538,5   | 474,3 | 183,3   | 161,4 | 0,142   | 0,176              |
| 13. | -15         | 0    | 62          | 37  |         |         | 3497 | 2291             | 82,24  | 72,68  | 554,8   | 490,3 | 188,8   | 166,8 | 0,137   | 0,183              |
| 14. | -15         | 0    | 37          | 13  | 0.4     | лесио   | 3497 | 3197             | 99,12  | 87,69  | 668,7   | 591,5 | 227,6   | 201,3 | 0,167   | 0,160              |
| 15. | 0           | 15   | 13          | -11 | 0,4     | десно   | 3497 | 3451             | 112,17 | 99,15  | 756,7   | 668,8 | 257,5   | 227,6 | 0,190   | 0,169              |
| 16. | 15          | 30   | -11         | -33 |         |         | 3259 | 3271             | 143,88 | 130,35 | 970,6   | 879,3 | 330,5   | 299,4 | 0,265   | 0,238              |
| 17. | 15          | 30   | -33         | -11 |         |         | 4074 | 4089             | 140,77 | 127,59 | 949,6   | 860,7 | 323,2   | 293   | 0,207   | 0,186              |
| 18. | 0           | 15   | -11         | 13  | 0.5     | Паро    | 4372 | 4314             | 135,77 | 122,45 | 915,9   | 826,0 | 311,8   | 281,2 | 0,186   | 0,169              |
| 19. | -15         | 0    | 13          | 37  | 0,5     | лево    | 4371 | 3997             | 109,94 | 97,57  | 714,6   | 658,2 | 252,4   | 224   | 0,149   | 0,144              |
| 20. | -30         | -15  | 37          | 62  |         |         | 4074 | 2864             | 99,49  | 88,48  | 671,2   | 596,9 | 228,4   | 203,1 | 0,144   | 0,181              |
| 21. | -30         | -15  | 62          | 37  | 0.5     | 70010   | 4074 | 2864             | 85,10  | 75,45  | 574,1   | 508,9 | 195,4   | 173,2 | 0,122   | 0,152              |
| 22. | -15         | 0    | 37          | 13  | 0,5     | десно   | 4372 | 2864             | 100,45 | 110,8  | 677,6   | 747,4 | 230,6   | 254,4 | 0,135   | 0,229              |

**Таблица 9.1.** Резултати мерења потрошње енергије (h = 7 [m];  $v_b = 21$  [m/min]) [92]

У таблици 9.2 приказане су очитане вредности амплитуде брзине вибрација према сликама 8.19–8.21 за случај похабаних резних елемената 25 %, односно 8.16–8.18 за случај нових резних елемената. По истом принципу узети су и други улазни подаци [92].

|                                       |            |               | Дебљина       | реза, [m]                   |       |       |
|---------------------------------------|------------|---------------|---------------|-----------------------------|-------|-------|
| Итерације                             | C          | ,25           | 0             | ,4                          | 0     | ,5    |
| Кретање стреле                        | Лево       | Десно         | Лево          | Десно                       | Лево  | Десно |
| Фреквенција, [Hz]                     |            |               | 16,67 Hz ±1%  | (1000 [min <sup>-1</sup> ]) |       |       |
| Случа                                 | ј похабани | х резних еле  | мената – поха | баност 25 %                 |       |       |
| Хоризонтално, А <sub>НОВ</sub> [mm/s] | 2,320      | 2,200         | 1,770         | 1,800                       | 3,180 | 2,080 |
| Вертикално, A <sub>VER</sub> [mm/s]   | 1,135      | 1,910         | 1,860         | 2,030                       | 3,560 | 2,290 |
|                                       | Случ       | ај нових резн | них елемената | l                           |       |       |
| Хоризонтално, А <sub>НОВ</sub> [mm/s] | 1,8        | 1,883         | 1,750         | 0,508                       | 3,135 | 1,990 |
| Вертикално, A <sub>VER</sub> [mm/s]   | 1,883      | 1,173         | 1,561         | 1,236                       | 1,577 | 1,815 |

Таблица 9.2. Упоредне вредности амплитуда на фреквенцији 16,67 [Hz] (1000 [min<sup>-1</sup>])

Стављањем у релацију *средњих вредности специфичне потрошње електричне енергије* (таблица 9.1.) и *средњих вредности амплитуде* на карактеристичној фреквенцији (таблица 9.2.) добија се утицај стања резног елемента на рад погона за копање [92]. У таблици 9.3 дат је упоредни однос анализираних феномена. Слагање међусобно нормалних амплитуда изводи се на основу једначине (7.8); [92], [108].

| <b>Таблица 9.3.</b> Упо | редни приказ | односа амплитуд | це А и потрошњ | е електричне ен | ергије Е |
|-------------------------|--------------|-----------------|----------------|-----------------|----------|
| •                       | 1 ' ' 1      |                 | · 1            | 1               | 1 5      |

|                                                                   | Дебљина реза, [m] |       |       |       |       |       |  |
|-------------------------------------------------------------------|-------------------|-------|-------|-------|-------|-------|--|
| Итерације                                                         | 0,25              |       | 0,4   |       | 0,5   |       |  |
| Кретање стреле                                                    | Лево              | Десно | Лево  | Десно | Лево  | Десно |  |
| Случај похабаних резних елемената – похабаност 25 %               |                   |       |       |       |       |       |  |
| Амплитуда, А [mm/s], израз (7.8)                                  | 2,583             | 2,913 | 2,568 | 2,713 | 4,773 | 3,094 |  |
| Средња вредност потрошње енергије, <i>E</i> [kWh/m <sup>3</sup> ] | 0,246             | 0,251 | 0,207 | 0,190 | 0,171 | 0,129 |  |
| Однос А/Е                                                         | 10,50             | 11,59 | 12,41 | 14,31 | 27,86 | 24,07 |  |
| Случај нових резних елемената                                     |                   |       |       |       |       |       |  |
| Амплитуда, А [mm/s], израз (7.8)                                  | 2,605             | 2,218 | 2,345 | 1,336 | 3,509 | 2,693 |  |
| Средња вредност потрошње енергије, <i>E</i> [kWh/m <sup>3</sup> ] | 0,226             | 0,246 | 0,202 | 0,187 | 0,170 | 0,191 |  |
| Однос А/Е                                                         | 11,53             | 9,02  | 11,61 | 7,14  | 20,64 | 14,10 |  |

Релација *А/Е* дефинише однос између похабаних и нових резних елемената у вредности 73,50 %. Поменута релација представљена је изразом:

$$A/E = \frac{\sum A/E_{(novi)} = const.}{\sum A/E_{(pohabani)}} \cdot 100\%$$
(9.1)

Други методолошки приступ према једначинама (7.6) и (7.7) и подацима за роторни багер SRs2000.32/5+VR (v = 2,7 [m/s],  $\gamma = 1,6 \text{ [t/m^3]}$ ,  $h_d = 8 \text{ [m]}$ ) даје резултате приказане у таблицама 9.4–9.10. Резултати су представљени за различите дебљине реза и кретање стреле у леву и десну страну. Из интервала се усваја <u>средња вредност амплитуде брзине</u>.

| паотпца                        |        | Jaa opennie B | nopur               | uija, nopa | sn (710) n (71 | <i>, , , , , , , , , , , , , , , , , , , </i> |    |
|--------------------------------|--------|---------------|---------------------|------------|----------------|-----------------------------------------------|----|
| Похабани резни елементи – 25 % |        |               | Нови резни елементи |            |                |                                               |    |
| $N_p$                          | $N_d$  | Α             |                     | $N_p$      | $N_d$          | Α                                             |    |
| 593,1                          | 71,056 | 193,36        | Г                   | 524,9      | 71,295         | 168,01                                        | Г  |
| 591,3                          | 76,252 | 190,77        | 25                  | 532,9      | 75,236         | 169,51                                        | 25 |
| 546,9                          | 76,252 | 174,30        | O,                  | 493,0      | 69,690         | 156,78                                        | 0  |
| 627,4                          | 71,056 | 206,05        |                     | 442,3      | 49,949         | 145,32                                        |    |
|                                |        |               |                     |            |                |                                               |    |

**Таблица 9.4**. Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,25 [m], лево
|    |         |              | <u> </u> |    |               |               |       |
|----|---------|--------------|----------|----|---------------|---------------|-------|
|    | лементи | Нови резни е |          | )  | ементи – 25 % | бани резни ел | Поха  |
|    | Α       | $N_d$        | $N_p$    |    | Α             | $N_d$         | $N_p$ |
| Ω  | 162,09  | 49,949       | 487,6    | A  | 172,50        | 76,252        | 542,0 |
| 25 | 156,78  | 69,690       | 493,0    | 25 | 174,30        | 76,252        | 546,9 |
| 0, | 180,36  | 75,236       | 562,2    | 0, | 205,18        | 71,056        | 625,0 |
|    | 198,60  | 71,295       | 607.5    |    | 223.53        | 71,056        | 674.6 |

**Таблица 9.5.** Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,25 [m], десно

**Таблица 9.6.** Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,4 [m], лево

| Поха  | бани резни еле | ементи – 25 % | ,<br>) |       | Нови резни е | лементи |   |
|-------|----------------|---------------|--------|-------|--------------|---------|---|
| $N_p$ | $N_d$          | Α             |        | $N_p$ | $N_d$        | Α       |   |
| 956,0 | 122,004        | 308,87        | L      | 863,3 | 114,093      | 277,48  | د |
| 915,5 | 122,004        | 293,87        | 4      | 834,0 | 120,371      | 264,31  | 4 |
| 741,3 | 113,690        | 232,46        | 0      | 674,2 | 111,511      | 208,40  | 0 |
| 526,7 | 113,690        | 152,96        |        | 474,3 | 79,9100      | 146,07  |   |

**Таблица 9.7.** Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,4 [m], десно

| Поха  | бани резни еле | ементи – 25 % | ó |       | Нови резни | елементи |   |
|-------|----------------|---------------|---|-------|------------|----------|---|
| $N_p$ | $N_d$          | Α             |   | $N_p$ | $N_d$      | Α        |   |
| 542,9 | 122,004        | 155,90        | Q | 490,3 | 79,911     | 151,99   | A |
| 656,8 | 122,004        | 198,08        | 4 | 591,5 | 111,511    | 177,77   | 4 |
| 744,8 | 122,004        | 230,68        | 0 | 668,8 | 120,371    | 203,12   | 0 |
| 959,0 | 142,112        | 302,55        |   | 879,3 | 114,093    | 283,41   |   |

Таблица 9.8. Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,5 [m], лево

| Поха  | бани резни еле | менти – 25 % |    |       | Нови резни е | лементи |    |
|-------|----------------|--------------|----|-------|--------------|---------|----|
| $N_p$ | $N_d$          | A            |    | $N_p$ | $N_d$        | Α       |    |
| 938,0 | 142,112        | 294,76       | Г  | 860,7 | 142,624      | 265,95  | Г  |
| 904,2 | 152,505        | 278,42       | S. | 826,0 | 150,472      | 250,12  | S. |
| 729,8 | 152,487        | 213,83       | 0  | 658,2 | 139,415      | 192,14  | 0  |
| 659,3 | 142,112        | 191,56       |    | 596,9 | 99,896       | 184,08  |    |

**Таблица 9.9.** Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,5 [m], десно

|                         |                             |                              | _     |                         |                           |                       |       |
|-------------------------|-----------------------------|------------------------------|-------|-------------------------|---------------------------|-----------------------|-------|
| Поха                    | бани резни еле              | менти – 25 %                 |       |                         | Нови резни е              | елементи              |       |
| $N_p$<br>562,3<br>665,8 | $N_d$<br>142,112<br>152,505 | <i>A</i><br>155,61<br>190,11 | 0,5 D | $N_p$<br>508,9<br>747,4 | $N_d$<br>99,896<br>99,896 | A<br>151,48<br>239,82 | 0,5 D |

Таблица 9.10. Збирни однос похабаног 25 % и новог резног елемента

|                                                            |       |       | Дебљина | реза, [m] |       |       |
|------------------------------------------------------------|-------|-------|---------|-----------|-------|-------|
| Итерације                                                  | 0,    | 25    | 0       | ,4        | 0,    | ,5    |
| Кретање стреле                                             | Лево  | Десно | Лево    | Десно     | Лево  | Десно |
| Однос (7.6) и (7.7) за похабане зубе, $A \cdot c = F$ [kN] | 191,1 | 193,9 | 247,0   | 221,8     | 244,6 | 172,9 |
| Однос (7.6) и (7.7) за нове зубе, $A \cdot c = F$ [kN]     | 159,9 | 174,5 | 224,1   | 204,1     | 223,1 | 195,7 |

*Резиме* I: Однос похабани/нови резни елементи, коришћењем израза (7.6) и (7.7) износи 92,93 %. Оваква зависност је добијена поређењем амплитуда применом израза (9.2):

$$A = \frac{\sum A_{sr(novi)} = const.}{\sum A_{sr(pohabani)}} \cdot 100\%$$
(9.2)

Поређењем оба приступа (први, на основу израза (9.1) и података из таблице 9.3 даје зависност 73,50 %), долази се до закључка да је за случај похабаних резних елемената 25 %, <u>степен</u> <u>сагласности</u> оба приступа низак.

# СЛУЧАЈ ПОХАБАНИХ РЕЗНИХ ЕЛЕМЕНАТА – 50 %

|     | <b>Таблица 9.11.</b> Резултати мерења потрошње енергије ( $h = 7 \text{ [m]}; v_b = 21 \text{ [m/min]}$ ) |      |             |     |         |         |      |                  |        |            |         |       |         |       |       |                    |
|-----|-----------------------------------------------------------------------------------------------------------|------|-------------|-----|---------|---------|------|------------------|--------|------------|---------|-------|---------|-------|-------|--------------------|
|     | $\varphi_L$                                                                                               | φD   | $\varphi_L$ | φd  | h       | Правац  | Q    | ost              | In     | ax         | $N_{p}$ | max   | $F_{i}$ | nax   | $E_n$ | nax                |
| Бр. | Пох.                                                                                                      | 50 % | Ho          | ви  | Исти па | раметри | Пох. | Нови             | Пох.   | Нови       | Пох.    | Нови  | Пох.    | Нови  | Пох.  | Нови               |
|     |                                                                                                           | [°]  | ]           |     | [m]     | Л/Д     | [m   | <sup>3</sup> /h] | [4     | <b>\</b> ] | [k'     | W]    | [k      | N]    | [kWl  | n/m <sup>3</sup> ] |
| 1.  | 15                                                                                                        | 30   | -33         | -11 |         |         | 2037 | 2044             | 91,44  | 77,82      | 616,8   | 524,9 | 209,9   | 178,6 | 0,263 | 0,220              |
| 2.  | 0                                                                                                         | 15   | -11         | 13  | 0.25    | TADO    | 2186 | 2157             | 91,16  | 79,0       | 615,0   | 532,9 | 209,3   | 181,4 | 0,244 | 0,212              |
| 3.  | -15                                                                                                       | 0    | 13          | 37  | 0,23    | ЛЕВО    | 2186 | 1998             | 84,31  | 73,08      | 568,7   | 493,0 | 193,6   | 167,8 | 0,225 | 0,211              |
| 4.  | -30                                                                                                       | -15  | 37          | 62  |         |         | 2037 | 1432             | 96,72  | 65,57      | 652,5   | 442,3 | 222,2   | 150,5 | 0,279 | 0,261              |
| 5.  | -15                                                                                                       | 0    | 62          | 37  |         |         | 2186 | 1432             | 83,56  | 72,29      | 563,7   | 487,6 | 191,9   | 165,9 | 0,223 | 0,291              |
| 6.  | 0                                                                                                         | 15   | 37          | 13  | 0.25    | -       | 2186 | 1998             | 84,31  | 73,08      | 568,7   | 493,0 | 193,6   | 167,7 | 0,225 | 0,211              |
| 7.  | 15                                                                                                        | 30   | 13          | -11 | 0,23    | десно   | 2037 | 2157             | 96,36  | 83,35      | 650,0   | 562,2 | 221,2   | 191,3 | 0,278 | 0,225              |
| 8.  | 15                                                                                                        | 30   | -11         | -33 |         |         | 2037 | 2044             | 104    | 90,06      | 701,6   | 607,5 | 238,8   | 206,7 | 0,301 | 0,258              |
| 9.  | 0                                                                                                         | 15   | -33         | -11 |         |         | 3497 | 3271             | 147,38 | 127,98     | 994,2   | 863,3 | 338,5   | 293,9 | 0,253 | 0,233              |
| 10. | -15                                                                                                       | 0    | -11         | 13  | 0.4     |         | 3497 | 3451             | 141,13 | 123,64     | 952,1   | 834,0 | 324,1   | 283,9 | 0,242 | 0,213              |
| 11. | -30                                                                                                       | -15  | 13          | 37  | 0,4     | Лево    | 3259 | 3197             | 114,29 | 99,94      | 771,0   | 674,2 | 262,5   | 229,5 | 0,208 | 0,184              |
| 12. | -30                                                                                                       | -15  | 37          | 62  |         |         | 3259 | 2291             | 81,20  | 70,31      | 547,8   | 474,3 | 186,4   | 161,4 | 0,145 | 0,176              |
| 13. | -15                                                                                                       | 0    | 62          | 37  |         |         | 3497 | 2291             | 83,70  | 72,68      | 564,7   | 490,3 | 192,2   | 166,8 | 0,139 | 0,183              |
| 14. | -15                                                                                                       | 0    | 37          | 13  | 0.4     | 700700  | 3497 | 3197             | 101,26 | 87,69      | 683,1   | 591,5 | 232,5   | 201,3 | 0,171 | 0,160              |
| 15. | 0                                                                                                         | 15   | 13          | -11 | 0,4     | десно   | 3497 | 3451             | 114,83 | 99,15      | 774,6   | 668,8 | 263,6   | 227,6 | 0,195 | 0,169              |
| 16. | 15                                                                                                        | 30   | -11         | -33 |         |         | 3259 | 3271             | 147,85 | 130,35     | 997,4   | 879,3 | 339,6   | 299,4 | 0,272 | 0,238              |
| 17. | 15                                                                                                        | 30   | -33         | -11 |         |         | 4074 | 4089             | 144,61 | 127,59     | 975,5   | 860,7 | 332,1   | 293   | 0,213 | 0,186              |
| 18. | 0                                                                                                         | 15   | -11         | 13  | 0.5     |         | 4372 | 4314             | 139,41 | 122,45     | 940,4   | 826,0 | 320,1   | 281,2 | 0,191 | 0,169              |
| 19. | -15                                                                                                       | 0    | 13          | 37  | 0,5     | Лево    | 4371 | 3997             | 112,51 | 97,57      | 759,0   | 658,2 | 258,4   | 224   | 0,153 | 0,144              |
| 20. | -30                                                                                                       | -15  | 37          | 62  |         |         | 4074 | 2864             | 101,65 | 88,48      | 685,7   | 596,9 | 233,4   | 203,1 | 0,147 | 0,181              |
| 21. | -30                                                                                                       | -15  | 62          | 37  | 0.5     |         | 4074 | 2864             | 86,68  | 75,45      | 584,8   | 508,9 | 199,0   | 173,2 | 0,124 | 0,152              |
| 22. | -15                                                                                                       | 0    | 37          | 13  | 0,5     | десно   | 4372 | 2864             | 102,65 | 110,8      | 692,4   | 747,4 | 235,6   | 254,4 | 0,138 | 0,229              |

# Таблица 9.12. Упоредне вредности амплитуда на фреквенцији 16,67 [Hz] (1000 [min<sup>-1</sup>])

|                                       |          |               | Дебљина       | реза, [m]                   |       |       |
|---------------------------------------|----------|---------------|---------------|-----------------------------|-------|-------|
| Итерације                             | (        | ),25          | 0             | ,4                          | 0     | ,5    |
| Кретање стреле                        | Лево     | Десно         | Лево          | Десно                       | Лево  | Десно |
| Фреквенција, [Hz]                     |          |               | 16,67 Hz ±1%  | (1000 [min <sup>-1</sup> ]) |       |       |
| Случа                                 | похабани | х резних елем | иената – поха | баност 50 %                 |       |       |
| Хоризонтално, А <sub>НОВ</sub> [mm/s] | 2,400    | 2,270         | 2,100         | 2,050                       | 3,250 | 2,080 |
| Вертикално, Aver [mm/s]               | 1,225    | 2,050         | 1,905         | 2,250                       | 4,540 | 2,320 |
|                                       | Случ     | ај нових резн | их елемената  | L                           |       |       |
| Хоризонтално, А <sub>НОВ</sub> [mm/s] | 1,8      | 1,883         | 1,750         | 0,508                       | 3,135 | 1,990 |
| Вертикално, A <sub>VER</sub> [mm/s]   | 1,883    | 1,173         | 1,561         | 1,236                       | 1,577 | 1,815 |

# Таблица 9.13. Упоредни приказ односа амплитуде А и потрошње електричне енергије Е

|                                                                   |          |          | Дебљин    | а реза, [m] | ]     |       |
|-------------------------------------------------------------------|----------|----------|-----------|-------------|-------|-------|
| Итерације                                                         | 0,25 0,4 |          |           |             |       |       |
| Кретање стреле                                                    | Лево     | Десно    | Лево      | Десно       | Лево  | Десно |
| Случај похабаних резних еле                                       | мената   | – похаба | ност 50 9 | /0          |       |       |
| Амплитуда, А [mm/s], израз (7.8)                                  | 2,695    | 3,059    | 2,835     | 3,044       | 5,583 | 3,116 |
| Средња вредност потрошње енергије, <i>E</i> [kWh/m <sup>3</sup> ] | 0,253    | 0,257    | 0,212     | 0,194       | 0,176 | 0,131 |
| Однос А/Е                                                         | 10,66    | 11,92    | 13,38     | 15,67       | 31,75 | 23,73 |
| Случај нових рез                                                  | них еле  | иената   |           |             |       |       |
| Амплитуда, А [mm/s], израз (7.8)                                  | 2,605    | 2,218    | 2,345     | 1,336       | 3,509 | 2,693 |
| Средња вредност потрошње енергије, <i>E</i> [kWh/m <sup>3</sup> ] | 0,226    | 0,246    | 0,202     | 0,187       | 0,170 | 0,191 |
| Однос А/Е                                                         | 11,53    | 9,02     | 11,61     | 7,14        | 20,64 | 14,10 |

|       |               |               | 1  | · J / 1 | ( ) (      |          | L ]/ |
|-------|---------------|---------------|----|---------|------------|----------|------|
| Поха  | бани резни ел | ементи – 50 % | Ď  |         | Нови резни | елементи |      |
| $N_p$ | $N_d$         | Α             |    | $N_p$   | $N_d$      | Α        |      |
| 616,8 | 71,06         | 202,14        | L  | 524,9   | 71,29      | 168,01   | L    |
| 615,0 | 76,25         | 199,53        | 25 | 532,9   | 75,24      | 169,51   | 25   |
| 568,7 | 76,25         | 182,40        | 0, | 493,0   | 69,69      | 156,78   | 0,   |
| 652,5 | 71,06         | 215,34        |    | 442,3   | 49,95      | 145,32   |      |

**Таблица 9.14.** Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,25 [m], лево

**Таблица 9.15.** Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,25 [m], десно

| Поха  | бани резни ел | ементи – 50 % | ,<br>D |       | Нови резни | елементи |    |
|-------|---------------|---------------|--------|-------|------------|----------|----|
| $N_p$ | $N_d$         | Α             |        | $N_p$ | $N_d$      | Α        |    |
| 563,7 | 76,25         | 180,53        | A      | 487,6 | 49,95      | 162,09   | D  |
| 568,7 | 76,25         | 182,40        | 25     | 493,0 | 69,69      | 156,78   | 25 |
| 650,0 | 71,06         | 214,44        | 0      | 562,2 | 75,24      | 180,36   | 0  |
| 701,6 | 71,06         | 233,52        |        | 607,5 | 71,30      | 198,60   |    |

**Таблица 9.16.** Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,4 [m], лево

| Поха  | бани резни ел | ементи – 50 % | ,<br>D |       | Нови резни | елементи |   |
|-------|---------------|---------------|--------|-------|------------|----------|---|
| $N_p$ | $N_d$         | Α             |        | $N_p$ | $N_d$      | Α        |   |
| 994,2 | 122,0         | 323,04        | L      | 863,3 | 114,10     | 277,48   | د |
| 952,1 | 122,0         | 307,44        | 4      | 834,0 | 120,38     | 264,31   | 4 |
| 771,0 | 113,69        | 243,44        | 0      | 674,2 | 111,51     | 208,40   | 0 |
| 547,8 | 113,69        | 160,77        |        | 474,3 | 79,91      | 146,07   |   |

**Таблица 9.17.** Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,4 [m], десно

|       |               |               | _                   |       |        |        |   |
|-------|---------------|---------------|---------------------|-------|--------|--------|---|
| Поха  | бани резни ел | ементи – 50 % | Нови резни елементи |       |        |        |   |
| $N_p$ | $N_d$         | A             |                     | $N_p$ | $N_d$  | Α      |   |
| 564,7 | 122,0         | 163,95        |                     | 490,3 | 79,92  | 151,99 | 0 |
| 683,1 | 122,0         | 207,82        | 4                   | 591,5 | 111,51 | 177,77 | 4 |
| 774,6 | 122,0         | 241,72        | 0                   | 668,8 | 120,37 | 203,13 | 0 |
| 997,4 | 113,69        | 327,29        |                     | 879,3 | 114,10 | 283,41 |   |

**Таблица 9.18.** Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,5 [m], лево

| Похабани резни елементи – 50 % |        |        |   |       | Нови резни елементи |        |     |  |  |
|--------------------------------|--------|--------|---|-------|---------------------|--------|-----|--|--|
|                                | $N_d$  | Α      |   | $N_p$ | $N_d$               | Α      |     |  |  |
| 5                              | 142,11 | 308,66 | د | 860,7 | 142,62              | 265,96 | د   |  |  |
| 4                              | 152,50 | 291,82 | Ń | 826,0 | 150,47              | 250,20 | ้บ้ |  |  |
| 0                              | 152,50 | 224,63 | 0 | 658,2 | 139,42              | 192,15 | 0   |  |  |
| 7                              | 142,11 | 201,33 |   | 596,9 | 99,90               | 184,08 |     |  |  |

**Таблица 9.19.** Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,5 [m], десно

| Похаб | бани резни еле | менти – 50 % | Нови резни елементи |       |       |        |         |
|-------|----------------|--------------|---------------------|-------|-------|--------|---------|
| $N_p$ | $N_d$          | A            | D                   | $N_p$ | $N_d$ | Α      | D       |
| 584,8 | 142,11         | 163,94       | ر<br>کر             | 508,9 | 99,90 | 151,49 | ر<br>کر |
| 692,4 | 152,50         | 199,98       | 0                   | 747,4 | 99,90 | 239,82 | 0       |

Таблица 9.20. Збирни однос похабаног 50 % и новог резног елемента

|                                                            | Дебљина реза, [m] |       |       |       |       |       |  |
|------------------------------------------------------------|-------------------|-------|-------|-------|-------|-------|--|
| Итерације                                                  | 0,                | 25    | 0     | ,4    | 0     | ,5    |  |
| Кретање стреле                                             | Лево              | Десно | Лево  | Десно | Лево  | Десно |  |
| Однос (7.6) и (7.7) за похабане зубе, $A \cdot c = F$ [kN] | 199,9             | 202,7 | 258,7 | 235,2 | 256,6 | 182   |  |
| Однос (7.6) и (7.7) за нове зубе, $A \cdot c = F$ [kN]     | 159,9             | 174,5 | 224,1 | 204,1 | 223,1 | 195,7 |  |

*Резиме* **II:** Зависност похабани/нови резни елементи према релацији *A/E* износи 69,13 %. Други методолошки приступ даје зависност од 88,5 %. Као и за случај похабаних резних елемената од 25 % сагласност оба приступа ја ниска, али је разлика мање изражена.

# СЛУЧАЈ ПОХАБАНИХ РЕЗНИХ ЕЛЕМЕНАТА – 75 %

| -<br>- | <b>Таблица 9.21.</b> Резултати мерења потрошње енергије ( <i>h</i> = 7 [m]; <i>v</i> <sub>b</sub> = 21 [m/min]) [92] |      |             |     |         |         |      |                  |       |        |        |       |         |       |       |                    |
|--------|----------------------------------------------------------------------------------------------------------------------|------|-------------|-----|---------|---------|------|------------------|-------|--------|--------|-------|---------|-------|-------|--------------------|
|        | $\varphi_L$                                                                                                          | φD   | $\varphi_L$ | φD  | h       | Pravac  | Q    | ost              | In    | nax    | Np-    | max   | $F_{n}$ | nax   | E     | nax                |
| Бр.    | Пох.                                                                                                                 | 75 % | Ho          | ви  | Исти па | раметри | Пох. | Нови             | Пох.  | Нови   | Пох.   | Нови  | Пох.    | Нови  | Пох.  | Нови               |
|        |                                                                                                                      | [°]  | ]           |     | [m]     | Л/Д     | [m   | <sup>3</sup> /h] | [4    | 4]     | [k\    | W]    | [k      | N]    | [kW]  | h/m <sup>3</sup> ] |
| 1.     | 19                                                                                                                   | 38   | -33         | -11 |         |         | 1938 | 2044             | 89,7  | 77,82  | 605,1  | 524,9 | 205,9   | 178,6 | 0,271 | 0,220              |
| 2.     | 0                                                                                                                    | 19   | -11         | 13  | 0.25    | TADO    | 2175 | 2157             | 90,1  | 79,0   | 607,8  | 532,9 | 206,9   | 181,4 | 0,242 | 0,212              |
| 3.     | -23                                                                                                                  | 0    | 13          | 37  | 0,25    | лево    | 2161 | 1998             | 94    | 73,08  | 634,1  | 493,0 | 215,9   | 167,8 | 0,255 | 0,211              |
| 4.     | -46                                                                                                                  | -23  | 37          | 62  |         |         | 1817 | 1432             | 85,7  | 65,57  | 578,1  | 442,3 | 196,8   | 150,5 | 0,275 | 0,261              |
| 5.     | -46                                                                                                                  | -23  | 62          | 37  |         |         | 1817 | 1432             | 96    | 72,29  | 647,6  | 487,6 | 220,4   | 165,9 | 0,310 | 0,291              |
| 6.     | -23                                                                                                                  | 0    | 37          | 13  | 0.25    | 70000   | 2161 | 1998             | 101,5 | 73,08  | 684,7  | 493,0 | 233,1   | 167,7 | 0,277 | 0,211              |
| 7.     | 0                                                                                                                    | 19   | 13          | -11 | 0,23    | десно   | 2175 | 2157             | 92    | 83,35  | 620,6  | 562,2 | 211,3   | 191,3 | 0,248 | 0,225              |
| 8.     | 19                                                                                                                   | 38   | -11         | -33 |         |         | 1938 | 2044             | 84,1  | 90,06  | 567,3  | 607,5 | 193,1   | 206,7 | 0,253 | 0,258              |
| 9.     | 19                                                                                                                   | 38   | -33         | -11 |         |         | 3100 | 3271             | 122,8 | 127,98 | 828,4  | 863,3 | 282     | 293,9 | 0,236 | 0,233              |
| 10.    | 0                                                                                                                    | 19   | -11         | 13  | 0.4     |         | 3480 | 3451             | 132,4 | 123,64 | 893,2  | 834,0 | 304     | 283,9 | 0,227 | 0,213              |
| 11.    | -23                                                                                                                  | 0    | 13          | 37  | 0,4     | Лево    | 3457 | 3197             | 136,7 | 99,94  | 922,2  | 674,2 | 313,9   | 229,5 | 0,237 | 0,184              |
| 12.    | -46                                                                                                                  | -23  | 37          | 62  |         |         | 2908 | 2291             | 132,7 | 70,31  | 895,2  | 474,3 | 304,8   | 161,4 | 0,273 | 0,176              |
| 13.    | -46                                                                                                                  | -23  | 62          | 37  |         |         | 2908 | 2291             | 134,7 | 72,68  | 908,7  | 490,3 | 309,4   | 166,8 | 0,277 | 0,183              |
| 14.    | -23                                                                                                                  | 0    | 37          | 13  | 0.4     | 70000   | 3457 | 3197             | 134,7 | 87,69  | 908,7  | 591,5 | 309,3   | 201,3 | 0,233 | 0,160              |
| 15.    | 0                                                                                                                    | 19   | 13          | -11 | 0,4     | десно   | 3480 | 3451             | 129,5 | 99,15  | 873,6  | 668,8 | 297,3   | 227,6 | 0,222 | 0,169              |
| 16.    | 19                                                                                                                   | 38   | -11         | -33 |         |         | 3100 | 3271             | 127,1 | 130,35 | 857,4  | 879,3 | 291,8   | 299,4 | 0,245 | 0,238              |
| 17.    | 19                                                                                                                   | 38   | -33         | -11 |         |         | 3876 | 4089             | 160,8 | 127,59 | 1084,7 | 860,7 | 369,3   | 293   | 0,250 | 0,186              |
| 18.    | 0                                                                                                                    | 19   | -11         | 13  | 0.5     | TODO    | 4350 | 4314             | 173,1 | 122,45 | 1167,7 | 826,0 | 397,6   | 281,2 | 0,240 | 0,169              |
| 19.    | -23                                                                                                                  | 0    | 13          | 37  | 0,5     | лево    | 4321 | 3997             | 167,1 | 97,57  | 1127,2 | 658,2 | 383,7   | 224   | 0,233 | 0,144              |
| 20.    | -46                                                                                                                  | -23  | 37          | 62  |         |         | 3634 | 2864             | 158   | 88,48  | 1065,9 | 596,9 | 362,8   | 203,1 | 0,262 | 0,181              |
| 21.    | -46                                                                                                                  | -23  | 62          | 37  | 0.5     |         | 3634 | 2864             | 167,2 | 75,45  | 1127,9 | 508,9 | 384     | 173,2 | 0,277 | 0,152              |
| 22.    | -23                                                                                                                  | 0    | 37          | 13  | 0,5     | десно   | 3634 | 2864             | 174,2 | 110,8  | 1175,1 | 747,4 | 400,1   | 254,4 | 0,289 | 0,229              |

# Таблица 9.22. Упоредне вредности амплитуда на фреквенцији 16,67 [Hz] (1000 [min<sup>-1</sup>])

|                                                     |       |               | Дебљина <sub>ј</sub> | реза, [m]                   |       |       |  |  |
|-----------------------------------------------------|-------|---------------|----------------------|-----------------------------|-------|-------|--|--|
| Итерације                                           | (     | ),25          | 0                    | ,4                          | 0,5   |       |  |  |
| Кретање стреле                                      | Лево  | Десно         | Лево                 | Десно                       | Лево  | Десно |  |  |
| Фреквенција, [Hz]                                   |       | 1             | 6,67 Hz ±1% (        | (1000 [min <sup>-1</sup> ]) |       |       |  |  |
| Случај похабаних резних елемената – похабаност 75 % |       |               |                      |                             |       |       |  |  |
| Хоризонтално, A <sub>HOR</sub> [mm/s]               | 4,307 | 3,680         | 2,570                | 3,420                       | 4,230 | 2,260 |  |  |
| Вертикално, A <sub>VER</sub> [mm/s]                 | 1,980 | 2,170         | 2,020                | 3,240                       | 5,181 | 3,960 |  |  |
|                                                     | Случ  | ај нових резн | их елеменат          | a                           |       |       |  |  |
| Хоризонтално, Анок [mm/s]                           | 1,8   | 1,883         | 1,750                | 0,508                       | 3,135 | 1,990 |  |  |
| Вертикално, Aver [mm/s]                             | 1,883 | 1,173         | 1,561                | 1,236                       | 1,577 | 1,815 |  |  |

# Таблица 9.23. Упоредни приказ односа амплитуде А и потрошње електричне енергије Е

|                                                                   |          |          | Дебљина   | а реза, [m] | ]     |       |
|-------------------------------------------------------------------|----------|----------|-----------|-------------|-------|-------|
| Итерације                                                         | 0,25     |          |           | 0,4         |       | ,5    |
| Кретање стреле                                                    | Лево     | Десно    | Лево      | Десно       | Лево  | Десно |
| Случај похабаних резних еле                                       | мената   | – похаба | ност 75 % | /0          |       |       |
| Амплитуда, А [mm/s], израз (7.8)                                  | 4,740    | 4,272    | 3,269     | 4,711       | 6,688 | 4,560 |
| Средња вредност потрошње енергије, <i>E</i> [kWh/m <sup>3</sup> ] | 0,261    | 0,272    | 0,243     | 0,244       | 0,246 | 0,283 |
| Однос А/Е                                                         | 18,16    | 15,71    | 13,45     | 19,31       | 27,19 | 16,11 |
| Случај нових резн                                                 | них елем | иената   |           |             |       |       |
| Амплитуда, А [mm/s], израз (7.8)                                  | 2,605    | 2,218    | 2,345     | 1,336       | 3,509 | 2,693 |
| Средња вредност потрошње енергије, <i>E</i> [kWh/m <sup>3</sup> ] | 0,226    | 0,246    | 0,202     | 0,187       | 0,170 | 0,191 |
| Однос А/Е                                                         | 11,53    | 9,02     | 11,61     | 7,14        | 20,64 | 14,10 |

|       |               | JF1 1         | 1  | 1 J / 1             | ( ) ( |        |    |  |  |
|-------|---------------|---------------|----|---------------------|-------|--------|----|--|--|
| Поха  | бани резни ел | ементи – 75 % | ó  | Нови резни елементи |       |        |    |  |  |
| $N_p$ | $N_d$         | Α             |    | $N_p$               | $N_d$ | Α      |    |  |  |
| 605,1 | 67,60         | 199,08        | Г  | 524,9               | 71,30 | 168,01 | Г  |  |  |
| 607,8 | 75,86         | 197,01        | 25 | 532,9               | 75,24 | 169,51 | 25 |  |  |
| 634,1 | 75,38         | 206,94        | o, | 493,0               | 69,69 | 156,78 | 0, |  |  |
| 578,1 | 63,38         | 190,64        |    | 442,3               | 49,95 | 145,32 |    |  |  |

**Таблица 9.24.** Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,25 [m], лево

**Таблица 9.25.** Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,25 [m], десно

| Поха  | бани резни ел | ементи – 75 % | Нови резни елементи |       |       |        |    |
|-------|---------------|---------------|---------------------|-------|-------|--------|----|
| $N_p$ | $N_d$         | Α             |                     | $N_p$ | $N_d$ | Α      |    |
| 647,6 | 63,38         | 216,38        | A                   | 487,6 | 49,95 | 162,09 | D  |
| 684,7 | 75,38         | 225,68        | 25                  | 493,0 | 69,69 | 156,78 | 25 |
| 620,6 | 75,86         | 201,75        | °,                  | 562,2 | 75,24 | 180,36 | 0, |
| 567,3 | 67,60         | 185,08        |                     | 607,5 | 71,30 | 198,59 |    |

**Таблица 9.26.** Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,4 [m], лево

| Поха  | бани резни ел | ементи – 75 % | Нови резни елементи |       |        |        |          |
|-------|---------------|---------------|---------------------|-------|--------|--------|----------|
| $N_p$ | $N_d$         | Α             |                     | $N_p$ | $N_d$  | Α      |          |
| 828,4 | 108,13        | 266,77        | <u>د</u>            | 863,3 | 114,10 | 277,48 | <u>د</u> |
| 893,2 | 121,38        | 285,86        | 4                   | 834,0 | 120,38 | 264,31 | 4        |
| 922,2 | 120,58        | 296,90        | 0                   | 674,2 | 111,51 | 208,40 | 0        |
| 895,2 | 101,43        | 293,99        |                     | 474,3 | 79,91  | 146,07 |          |

**Таблица 9.27.** Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,4 [m], десно

| Поха  | бани резни ело | ементи – 75 % | Нови резни елементи |       |        |        |   |
|-------|----------------|---------------|---------------------|-------|--------|--------|---|
| $N_p$ | $N_d$          | Α             |                     | $N_p$ | $N_d$  | Α      |   |
| 908,7 | 101,43         | 298,99        | 0                   | 490,3 | 79,92  | 151,99 | 0 |
| 908,7 | 120,58         | 291,90        | 4                   | 591,5 | 111,51 | 177,78 | 4 |
| 873,6 | 121,38         | 278,60        | 0                   | 668,8 | 120,38 | 203,13 | 0 |
| 857,4 | 108,13         | 277,51        |                     | 879,3 | 114,10 | 283,41 |   |

**Таблица 9.28.** Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,5 [m], лево

| Похаб  | ани резни еле | ементи – 75 % | Нови резни елементи |       |        |        |     |
|--------|---------------|---------------|---------------------|-------|--------|--------|-----|
| $N_p$  | $N_d$         | Α             |                     | $N_p$ | $N_d$  | Α      |     |
| 1084,7 | 135,20        | 351,67        | L                   | 860,7 | 142,62 | 265,95 | د   |
| 1167,7 | 151,73        | 376,29        | Ń                   | 826,0 | 150,47 | 250,20 | ้บ้ |
| 1127,2 | 150,72        | 361,66        | 0                   | 658,2 | 139,42 | 192,15 | 0   |
| 1065,9 | 126,76        | 347,84        |                     | 596,9 | 99,90  | 184,08 |     |

**Таблица 9.29.** Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,5 [m], десно

| Похаб  | ани резни еле | менти – 75 % | Нови резни елементи |       |       |        |             |  |
|--------|---------------|--------------|---------------------|-------|-------|--------|-------------|--|
| $N_p$  | $N_d$         | A            | D                   | $N_p$ | $N_d$ | Α      | D           |  |
| 1127,9 | 126,76        | 370,80       | ر<br>کر             | 508,9 | 99,90 | 151,49 | ر<br>د<br>آ |  |
| 1175,1 | 126,76        | 388,28       | 0                   | 747,4 | 99,90 | 239,82 | 0           |  |

Таблица 9.30. Збирни однос похабаног 75 % и новог резног елемента

|                                                            | Дебљина реза, [m] |       |       |       |       |       |  |  |
|------------------------------------------------------------|-------------------|-------|-------|-------|-------|-------|--|--|
| Итерације                                                  | 0,                | 25    | 0     | ,4    | 0     | ,5    |  |  |
| Кретање стреле                                             | Лево              | Десно | Лево  | Десно | Лево  | Десно |  |  |
| Однос (7.6) и (7.7) за похабане зубе, $A \cdot c = F$ [kN] | 198,4             | 207,2 | 285,9 | 286,7 | 359,4 | 379,5 |  |  |
| Однос (7.6) и (7.7) за нове зубе, $A \cdot c = F$ [kN]     | 159,9             | 174,5 | 224,1 | 204,1 | 223,1 | 195,7 |  |  |

*Резиме* III: Релација *A/E* за резултат даје зависност похабани/нови резни елементи у вредности 67,36 %. Према изразима (7.6) и (7.7) та зависност износи 68,8 %. У односу на претходне резултате, модел има знатно већи степен сагласности за оба методолошка приступа.

# СЛУЧАЈ ПОХАБАНИХ РЕЗНИХ ЕЛЕМЕНАТА – 100 %

| T   | абли        | ца 9. | <b>31.</b> Po | езулт | гати мер | ења потр | ошње | енерги           | 1je (h = | = 7 [m] | ; $v_b = 2$ | 1 [m/m | in])    |      |       |                    |
|-----|-------------|-------|---------------|-------|----------|----------|------|------------------|----------|---------|-------------|--------|---------|------|-------|--------------------|
|     | $\varphi_L$ | φD    | $\varphi_L$   | φD    | h        | Правац   | Q    | ost              | In       | uax     | $N_{p}$     | max    | Fmax    |      | $E_n$ | nax                |
| Бр. | 10          | 0 %   | Ho            | ови   | Исти па  | араметри | Пох. | Нови             | Пох.     | Нови    | Пох.        | Нови   | Пох. Н  | ови  | Пох.  | Нови               |
|     |             | [°    | ]             |       | [m]      | Л/Д      | [m   | <sup>3</sup> /h] | [/       | 4]      | [k'         | W]     | [kN]    |      | [kWl  | n/m <sup>3</sup> ] |
| 1.  | -33         | -11   | -33           | -11   |          |          | 2044 | 2044             | 110,3    | 77,82   | 744,1       | 524,9  | 253,2 1 | 78,6 | 0,320 | 0,220              |
| 2.  | -11         | 13    | -11           | 13    | 0.25     |          | 2157 | 2157             | 115,0    | 79,0    | 775,8       | 532,9  | 264,1 1 | 81,4 | 0,316 | 0,212              |
| 3.  | 13          | 37    | 13            | 37    | 0,23     | лево     | 1998 | 1998             | 120,1    | 73,08   | 810,2       | 493,0  | 275,7 1 | 67,8 | 0,357 | 0,211              |
| 4.  | 37          | 62    | 37            | 62    |          |          | 1432 | 1432             | 123,2    | 65,57   | 831,1       | 442,3  | 282,9 1 | 50,5 | 0,512 | 0,261              |
| 5.  | 62          | 37    | 62            | 37    |          |          | 1432 | 1432             | 128,0    | 72,29   | 863,5       | 487,6  | 293,9 1 | 65,9 | 0,533 | 0,291              |
| 6.  | 37          | 13    | 37            | 13    | 0.25     |          | 1998 | 1998             | 133,6    | 73,08   | 901,3       | 493,0  | 306,7 1 | 67,7 | 0,400 | 0,211              |
| 7.  | 13          | -11   | 13            | -11   | 0,23     | десно    | 2157 | 2157             | 138,7    | 83,35   | 935,7       | 562,2  | 318,4 1 | 91,3 | 0,385 | 0,225              |
| 8.  | -11         | -33   | -11           | -33   |          |          | 2044 | 2044             | 139,5    | 90,06   | 941,1       | 607,5  | 320,3 2 | 06,7 | 0,409 | 0,258              |
| 9.  | -33         | -11   | -33           | -11   |          |          | 3271 | 3271             | 145,0    | 127,98  | 978,2       | 863,3  | 332,9 2 | 93,9 | 0,266 | 0,233              |
| 10. | -11         | 13    | -11           | 13    | 0.4      |          | 3451 | 3451             | 149,6    | 123,64  | 1009,2      | 834,0  | 343,4 2 | 83,9 | 0,260 | 0,213              |
| 11. | 13          | 37    | 13            | 37    | 0,4      | лево     | 3197 | 3197             | 154,1    | 99,94   | 1039,5      | 674,2  | 353,8 2 | 29,5 | 0,290 | 0,184              |
| 12. | 37          | 62    | 37            | 62    |          |          | 2291 | 2291             | 157,6    | 70,31   | 1063,2      | 474,3  | 361,8 1 | 61,4 | 0,414 | 0,176              |
| 13. | 62          | 37    | 62            | 37    |          |          | 2291 | 2291             | 161,0    | 72,68   | 1086,1      | 490,3  | 369,6 1 | 66,8 | 0,423 | 0,183              |
| 14. | 37          | 13    | 37            | 13    | 0.4      | 70010    | 3197 | 3197             | 164,9    | 87,69   | 1112,4      | 591,5  | 378,5 2 | 01,3 | 0,311 | 0,160              |
| 15. | 13          | -11   | 13            | -11   | 0,4      | десно    | 3451 | 3451             | 170,0    | 99,15   | 1146,8      | 668,8  | 390,3 2 | 27,6 | 0,297 | 0,169              |
| 16. | -11         | -33   | -11           | -33   |          |          | 3271 | 3271             | 174,3    | 130,35  | 1175,8      | 879,3  | 400,1 2 | 99,4 | 0,322 | 0,238              |
| 17. | -33         | -11   | -33           | -11   |          |          | 4089 | 4089             | 177,1    | 127,59  | 1194,7      | 860,7  | 406,5   | 293  | 0,262 | 0,186              |
| 18. | -11         | 13    | -11           | 13    | 0.5      |          | 4314 | 4314             | 179,6    | 122,45  | 1211,6      | 826,0  | 412,3 2 | 81,2 | 0,252 | 0,169              |
| 19. | 13          | 37    | 13            | 37    | 0,5      | лево     | 3997 | 3997             | 184,1    | 97,57   | 1241,9      | 658,2  | 422,6 2 | 24,0 | 0,279 | 0,144              |
| 20. | 37          | 62    | 37            | 62    |          |          | 2864 | 2864             | 186,9    | 88,48   | 1260,8      | 596,9  | 429,0 2 | 03,1 | 0,395 | 0,181              |
| 21. | 62          | 37    | 62            | 37    | 0.5      | ROOMS    | 2864 | 2864             | 191,3    | 75,45   | 1290,5      | 508,9  | 439,1 1 | 73,2 | 0,405 | 0,152              |
| 22. | 37          | 13    | 37            | 13    | 0,5      | десно    | 3997 | 2864             | 194,4    | 110,8   | 1311,4      | 747,4  | 446,2 2 | 54,4 | 0,295 | 0,229              |

#### **Таблица 9.32.** Упоредне вредности амплитуда на фреквенцији 16,67 [Hz] (1000 [min<sup>-1</sup>])

|                                                      | Дебљина реза, [m] |       |       |       |       |       |  |
|------------------------------------------------------|-------------------|-------|-------|-------|-------|-------|--|
| Итерације                                            | (                 | 0,25  | 0     | ,4    | 0,5   |       |  |
| Кретање стреле                                       | Лево              | Десно | Лево  | Десно | Лево  | Десно |  |
| Фреквенција, [Hz]                                    |                   | 1     |       |       |       |       |  |
| Случај похабаних резних елемената – похабаност 100 % |                   |       |       |       |       |       |  |
| Хоризонтално, A <sub>HOR</sub> [mm/s]                | 4,980             | 5,170 | 6,250 | 4,380 |       |       |  |
| Вертикално, A <sub>VER</sub> [mm/s]                  | 3,150             | 3,740 | 3,450 | 4,650 | 8,600 | 5,250 |  |
| Случај нових резних елемената                        |                   |       |       |       |       |       |  |
| Хоризонтално, А <sub>НОR</sub> [mm/s]                | 1,8               | 1,883 | 1,750 | 0,508 | 3,135 | 1,990 |  |
| Вертикално, Aver [mm/s]                              | 1,883             | 1,173 | 1,561 | 1,236 | 1,577 | 1,815 |  |

#### Таблица 9.33. Упоредни приказ односа амплитуде А и потрошње електричне енергије Е

|                                                                   | Дебљина реза, [m]                  |        |       |       |       |       |  |  |
|-------------------------------------------------------------------|------------------------------------|--------|-------|-------|-------|-------|--|--|
| Итерације                                                         | 0,25 0,4                           |        |       |       |       | 0,5   |  |  |
| Кретање стреле                                                    | Лево                               | Десно  | Лево  | Десно | Лево  | Десно |  |  |
| Случај похабаних резних елем                                      | елемената – похабаност 100 %       |        |       |       |       |       |  |  |
| Амплитуда, А [mm/s], израз (7.8)                                  | 8,089 6,660 6,125 6,954 10,631 7,1 |        |       |       |       |       |  |  |
| Средња вредност потрошње енергије, <i>E</i> [kWh/m <sup>3</sup> ] | 0,376                              | 0,432  | 0,307 | 0,338 | 0,297 | 0,350 |  |  |
| Однос А/Е                                                         | 21,48                              | 15,43  | 19,92 | 20,56 | 35,82 | 20,52 |  |  |
| Случај нових резн                                                 | них елем                           | иената |       |       |       |       |  |  |
| Амплитуда, А [mm/s], израз (7.8)                                  | 2,605                              | 2,218  | 2,345 | 1,336 | 3,509 | 2,693 |  |  |
| Средња вредност потрошње енергије, <i>E</i> [kWh/m <sup>3</sup> ] | 0,226                              | 0,246  | 0,202 | 0,187 | 0,170 | 0,191 |  |  |
| Однос А/Е                                                         | 11,53                              | 9,02   | 11,61 | 7,14  | 20,64 | 14,10 |  |  |

|       |               |                | r-                  | <u></u> | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,, ~ .,=. | L], |  |
|-------|---------------|----------------|---------------------|---------|-----------------------------------------|-----------|-----|--|
| Похаб | бани резни ел | ементи – 100 9 | Нови резни елементи |         |                                         |           |     |  |
| $N_p$ | $N_d$         | Α              |                     | $N_p$   | $N_d$                                   | Α         |     |  |
| 744,1 | 71,31         | 249,17         | Г                   | 524,9   | 71,30                                   | 168,02    | Г   |  |
| 775,8 | 75,23         | 259,46         | 25                  | 532,9   | 75,24                                   | 169,51    | 25  |  |
| 810,2 | 69,70         | 274,25         | 0,                  | 493,0   | 69,69                                   | 156,78    | 0,  |  |
| 831,1 | 49,95         | 289,31         |                     | 442,3   | 49,95                                   | 145,32    |     |  |

**Таблица 9.34.** Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,25 [m], лево

Таблица 9.35. Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,25 [m], десно

| Похаб | бани резни еле | ементи – 100 % |    | Нови резни | елементи |        |    |
|-------|----------------|----------------|----|------------|----------|--------|----|
| $N_p$ | $N_d$          | Α              |    | $N_p$      | $N_d$    | Α      |    |
| 863,5 | 49,95          | 301,31         | A  | 487,6      | 49,95    | 162,09 | D  |
| 901,3 | 69,70          | 307,98         | 25 | 493,0      | 69,69    | 156,78 | 25 |
| 935,7 | 75,23          | 318,68         | 0  | 562,2      | 75,24    | 180,36 | 0  |
| 941,1 | 71,31          | 322,13         |    | 607,5      | 71,30    | 198,60 |    |

**Таблица 9.36.** Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,4 [m], лево

| Похаб  | ани резни еле | ементи – 100 9 |   | Нови резни | елементи |        |   |
|--------|---------------|----------------|---|------------|----------|--------|---|
| $N_p$  | $N_d$         | Α              |   | $N_p$      | $N_d$    | Α      |   |
| 978,2  | 114,09        | 320,02         | د | 863,3      | 114,10   | 277,48 | د |
| 1009,2 | 120,37        | 329,19         | 4 | 834,0      | 120,38   | 264,31 | 4 |
| 1039,5 | 111,53        | 343,71         | 0 | 674,2      | 111,51   | 208,40 | 0 |
| 1063,2 | 79,92         | 364,16         |   | 474,3      | 79,92    | 146,07 |   |

**Таблица 9.37.** Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,4 [m], десно

| Похаб  | ани резни еле | ементи – 100 % | Нови резни елементи |       |        |        |   |  |
|--------|---------------|----------------|---------------------|-------|--------|--------|---|--|
| $N_p$  | $N_d$         | Α              |                     | $N_p$ | $N_d$  | Α      |   |  |
| 1086,1 | 79,92         | 372,66         |                     | 490,3 | 79,92  | 151,99 | 0 |  |
| 1112,4 | 111,53        | 370,69         | 4                   | 591,5 | 111,51 | 177,78 | 4 |  |
| 1146,8 | 120,37        | 380,16         | 0                   | 668,8 | 120,38 | 203,13 | 0 |  |
| 1175,8 | 114,09        | 393,23         |                     | 879,3 | 114,10 | 283,41 |   |  |

**Таблица 9.38.** Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,5 [m], лево

| Похаба | ани резни еле | менти – 100 % | Нови резни елементи |       |        |        |    |
|--------|---------------|---------------|---------------------|-------|--------|--------|----|
| $N_p$  | $N_d$         | Α             |                     | $N_p$ | $N_d$  | Α      |    |
| 1194,7 | 142,62        | 389,66        | د                   | 860,7 | 142,62 | 265,95 | د  |
| 1211,6 | 150,46        | 393,01        | ົ້                  | 826,0 | 150,47 | 250,20 | ົ້ |
| 1241,9 | 139,41        | 408,34        | 0                   | 658,2 | 139,42 | 192,14 | 0  |
| 1260,8 | 99,90         | 429,97        |                     | 596,9 | 99,90  | 184,08 |    |

**Таблица 9.39.** Амплитуда брзине вибрација, изрази (7.6) и (7.7), *s* = 0,5 [m], десно

| Похаба  | ни резни еле | менти – 100 % | Нови резни елементи |       |       |        |   |
|---------|--------------|---------------|---------------------|-------|-------|--------|---|
| $N_p$   | $N_d$        | A             | D                   | $N_p$ | $N_d$ | Α      | D |
| 1290,49 | 99,90        | 440,96        | Ń                   | 508,9 | 99,90 | 151,49 | Ń |
| 1311,40 | 139,41       | 434,07        | 0                   | 747,4 | 99,90 | 239,82 | 0 |

Таблица 9.40. Збирни однос похабаног 100 % и новог резног елемента

|                                                            | Дебљина реза, [m] |       |       |       |       |       |  |  |
|------------------------------------------------------------|-------------------|-------|-------|-------|-------|-------|--|--|
| Итерације                                                  | 0,25              |       | 0,4   |       | 0,5   |       |  |  |
| Кретање стреле                                             | Лево              | Десно | Лево  | Десно | Лево  | Десно |  |  |
| Однос (7.6) и (7.7) за похабане зубе, $A \cdot c = F$ [kN] | 268,0             | 312,5 | 339,3 | 379,2 | 405,2 | 437,5 |  |  |
| Однос (7.6) и (7.7) за нове зубе, $A \cdot c = F$ [kN]     | 159,9             | 174,5 | 224,1 | 204,1 | 223,1 | 195,7 |  |  |

**Резиме IV:** Однос *A/E* за мерење са потпуно похабаним резним елементима је 55,37 %. Други приступ, на основу израза (7.6) и (7.7) даје зависност од 55,2 %. Применом оба модела, добијени су блиски резултати, што показује да са повећањем похабаности резних елемената, оба приступа генеришу сагласне резултате. Из свега наведеног, следи закључак да је могуће искористити или један или други приступ ради утврђивања утицаја похабаности резних елемената на рад погона за копање.

#### Закључни резиме:

Развијени модел представља нов методолошки приступ, креиран синтезом специфичне потрошње електричне енергије и амплитуде вибрација. На тај начин се дефинише њихов утицај на рад погона за копање, узимајући у обзир похабаност резних елемената.

Приметно је да модел има боље резултате са порастом похабаности, односно, утицај стања резних елемената на рад погона за копање је више изражен. Већа похабаност резних елемената индукује већу потрошњу електричне енергије и више нивое амплитуде. На основу наведеног, недвосмилено се потврђује почетна хипотеза дисертације и доказ модела. На слици 9.1 дат је графички приказ развијеног модела зависности степена похабаности резних елемената, специфичне потрошње електричне енергије и нивоа амплитуде вибрација.



Слика 9.1. Доказ креираног модела зависности похабаности резних елемената, специфичне потрошње електричне енергије и нивоа амплитуде брзине вибрација

#### Предности модела:

- иновативан приступ креиран синтезом похабаности резних елемената, потрошње електричне енергије и нивоа амплитуде брзине вибрација; и
- модел даје боље резултате за више степене похабаности резних елемената, чиме се може превентивно утицати на рад погона за копање, заменом резних елемената.

#### Недостаци модела:

• модел је осетљив на промену улазних података за нижи степен похабаности зуба.

*Напомена*: Утицај геомеханичких својстава материјала који се откопава узет је на бази запреминске тежине. Анализом литолошког стуба бушотине установљено је да у правцу напредовања багера нема изражених промена.

# 9.1 Компаративна анализа резултата мерења специфичне потрошње електричне енергије и нивоа амплитуде брзине вибрација погона за копање

Компаративна анализа резултата мерења изводи се са циљем утврђивања утицаја похабаности резних елемената на рад погона за копање. Дефинисан је тренд специфичне потрошње електричне енергије и нивоа амплитуде брзине вибрација у односу на похабаност резних елемената. На основу утврђеног тренда, могуће је предвидети међурезултате, за стања резних елемената за која нису вршена мерења. На слици 9.2 приказан је тренд специфичне потрошње потрошње електричне енергије код мерења са новим резним елементима и за похабаност од 25 %, 50 %, 75 % и 100 % од стања новог зуба.



Слика 9.2. Тренд специфичне потрошње електричне енергије у односу на стање зуба

На основу дијаграма, долази се до закључка да у интервалу похабаности од 0–50 % скок специфичне потрошње електричне енергије има *линеаран тренд*, са коефицијентом корелације  $R^2 = 0,9241$ . Једначина линеарне регресије (очитано са дијаграма) има облик:

 $y = 0,134 \cdot x + 0,2031$ 

Применом једначине линеарне регресије, могуће је предвидети међурезултате мерења, за било који степен похабаности у опсегу од 0–50 %. Резултати су у таблици 9.41.

| Похабаност зуба, | Специфична потрошња електричне енергије, |
|------------------|------------------------------------------|
| %                | $[kWh/m^3]$                              |
| 0                | измерено 0,2036; предикција 0,2031       |
| 5                | 0,2037                                   |
| 10               | 0,2044                                   |
| 15               | 0,2051                                   |
| 20               | 0,2052                                   |
| 25               | измерено 0,2054; предикција 0,2065       |
| 30               | 0,2071                                   |
| 35               | 0,2079                                   |
| 40               | 0,2085                                   |
| 45               | 0,2091                                   |
| 50               | измерено 0,2104; предикција 0,2098       |
|                  |                                          |

Таблица 9.41. Потрошња електричне енергије – линеарни тренд

Са порастом похабаности, специфична потрошња електричне енергије мења тренд из линеарног у *експоненацијални*. Промена тренда се дешава у тренутку похабаности резних елемената 50 %. Овај тренутак представља критичну тачку, где би нагли скок вредности јачине струје требао да укаже да у наредном периоду треба извршити замену резних елемената или дефинисати нову геометрију и положај на кашици. Ова претпоставка није занемарљива, имајући у виду милионску производњу коју остварују роторни багери. Правовременом заменом резних елемената могуће је створити простор за велике уштеде енергије, са становишта струје коју погон повлачи из мреже. Једначина експоненцијалне регресије има облик:

 $y = 0,1237 \cdot e^{1,0187 \cdot x}$ 

Применом једначине експоненцијалне регресије, могуће је предвидети међурезултате. У таблици 9.42 дата је предикција, за степене похабаности из оспега 50–100 %.

| Похаоаност зуба, | Специфична потрошња електричне енергије, |
|------------------|------------------------------------------|
| %                | [kWh/m <sup>3</sup> ]                    |
| 50               | измерено 0,2104; предикција 0,2149       |
| 55               | 0,2166                                   |
| 60               | 0,2279                                   |
| 65               | 0,2399                                   |
| 70               | 0,2524                                   |
| 75               | измерено 0,2544; предикција 0,2656       |
| 80               | 0,2794                                   |
| 85               | 0,2941                                   |
| 90               | 0,3094                                   |
| 95               | 0,3256                                   |
| 100              | измерено 0,3500; предикција 0,3426       |

Таблица 9.42. Потрошња електричне енергије – експоненцијални тренд

На слици 9.3 је графички приказана предикција специфичне потрошње електричне енергије (средње вредности максималне потрошње *E*<sub>max</sub>).





На основу измерених вредности специфичне потрошње електричне енергије и предикције резултата применом једначина линеарне и експоненцијалне регресије, могуће је одредити за који степен похабаности резних елемената је највеће одступање измерене и предвиђене вредности потрошње. На слици 9.4 примећује се да је највеће одступање за случај похабаности резних елемената од 75 %.



Слика 9.4. Разлика измерених и предвиђених вредности потрошње електричне енергије

На слици 9.5 приказан је тренд нивоа амплитуде брзине вибрација у вертикалном правцу у односу на стање резних елемената. Измерене вибрације у вертикалном правцу имају највећи утицај на рад погона за копање. Ниво амплитуде у аксијалном правцу нема утицај, док је хоризонтални правац мање изражен у односу на вертикални.





На основу дијаграма следи закључак да је за похабаност резних елемената у опсегу од стања новог зуба до стања похабаности од 50 % приметан *линеаран тренд* раста нивоа амплитуде. Једначина линеарне регресије има облик:

$$y = 5,296 \cdot x + 1,7442$$

Применом наведене једначине, могуће је извршити предикцију међурезултата. Добијени резултати представљени су у таблици 9.43.

| Таблица 9.43 | . Амплитуда | вибрација | на основу | дефинисаног | линеарног тренда |
|--------------|-------------|-----------|-----------|-------------|------------------|
|--------------|-------------|-----------|-----------|-------------|------------------|

| Похабаност зуба, | Амплитуда брзине вибрација,     |  |  |  |  |
|------------------|---------------------------------|--|--|--|--|
| %                | [mm/s]                          |  |  |  |  |
| 0                | измерено 1,577; предикција 1,74 |  |  |  |  |
| 5                | 2,04                            |  |  |  |  |
| 10               | 2,34                            |  |  |  |  |
| 15               | 2,63                            |  |  |  |  |
| 20               | 2,93                            |  |  |  |  |
| 25               | измерено 3,56; предикција 3,23  |  |  |  |  |
| 30               | 3,52                            |  |  |  |  |
| 35               | 3,82                            |  |  |  |  |
| 40               | 4,11                            |  |  |  |  |
| 45               | 4,41                            |  |  |  |  |
| 50               | измерено 4,54; предикција 4,71  |  |  |  |  |

У опсегу похабаности од 50–100 % тренд амплитуде вибрација се мења и прелази из линеарног облика у облик *полиномне регресије*, са једначином регресије полинома:

$$y = 22,224 \cdot x^2 + 25,21 \cdot x + 11,592$$

Предикција се изводи применом једначине полиномне регресије. Резултати су приказани у таблици 9.44.

| Похабаност зуба, | Амплитуда брзине вибрација,      |  |  |  |
|------------------|----------------------------------|--|--|--|
| %                | [mm/s]                           |  |  |  |
| 50               | измерено 4,54; предикција 4,54   |  |  |  |
| 55               | 4,45                             |  |  |  |
| 60               | 4,46                             |  |  |  |
| 65               | 4,59                             |  |  |  |
| 70               | 4,83                             |  |  |  |
| 75               | измерено 5,181; предикција 5,181 |  |  |  |
| 80               | 5,64                             |  |  |  |
| 85               | 6,22                             |  |  |  |
| 90               | 6,90                             |  |  |  |
| 95               | 7,69                             |  |  |  |
| 100              | измерено 8,6; предикција 8,6     |  |  |  |

| T Ø 0.44      | <i>ب</i>                | •         |          | 1          |           |      | •     |
|---------------|-------------------------|-----------|----------|------------|-----------|------|-------|
| Γοήπμπο 9 44  | $\Delta$ MULTATING DRUC | nauuua ua | A OCHODA | пефицисаце | попиномне | nern | ecuie |
| таолица 2.тт. | амплитуда вио           | рација по | и основу | дефинисанс | полиномне | perp | CONIC |
|               | 2                       |           | <i>.</i> | · · 1      |           |      |       |

На сликама 9.6 и 9.7 графички је приказана предикција нивоа амплитуде вибрација и одступање измерених и предвиђених вредности у односу на похабаност резних елемената. Највеће одступање је за случај похабаности 25 %.



Слика 9.6. Предикција нивоа амплитуде брзине вибрација



Слика 9.7. Разлика измерених и предвиђених нивоа амплитуде брзине вибрација

#### 9.2 Препорука за коришћење DIN ISO 10 816-3 стандарда за мерење вибрација

Утицај похабаности резних елемената на рад погона за копање биће доказан и са аспекта примене DIN ISO 10 816–3 [2] стандарда за мерење вибрација. За анализу су меродавни измерени нивои амплитуде у *вертикалном правцу* (више амплитуде у односу на аксијални и хоризонтални правац). Код мерења са новим резним елементима, измерена вредност износи:  $A_{VER} = 1,577$  [mm/s]. Ствара се простор за дефинисање разлике измерених вредности амплитуде вибрација за више промена степена похабаности у односу на почетно стање. Овакав начин зависности рада погона и похабаности резних елемената може довести до другачијег тумачења стандарда DIN ISO 10 816–3 [2].

Мерењем вибрација се углавном дефинише стање електромотора и елемената редуктора. Указује се на значај поремећајне силе (силе побуде) од процеса копања, односно од похабаности зуба на стање и понашање погона за копање. Измерена вредност амплитуде употребљава се за оцењивање стања машине [86]. Стандард је применљив за погонске групе и дели машине у различите категорије на основу којих се оне даље класификују. Подела се добија из односа еластичности машине и постоља на којој се налази [2]. За оцењивање се дефинишу 4 зоне [2]:

- Зона А: вибрације машине која је нова, налазе се углавном у овој зони;
- Зона В: вибрације које су у овој зони обично се сматрају прихватљивим, да без ограничења трају у континуитету;
- Зона С: вибрације које су у овој зони обично се сматрају неприхватљивим да трају у континуалном раду (дозвољено је да машина ради ограничено време); и
- Зона D: вибрације које се налазе у овој зони сматрају се опасним у мери да могу да проузрокују штете на машини.

Ниво амплитуде вибрација дефинише *граничне вредности аларма* када треба спровести одређене активности на машини. Вредности амплитуде погона за копање багера могу се кориговати у зависности од похабаности резних елемената [86].

Знајући да се на багеру зуби мењају од 4 до 6 пута годишње, није очекивано да се тако кратким интервалом замене, трајно мења и стање елемената електромотора и редуктора. На основу свега, могуће је дати препоруку за коришћење стандарда за већ дефинисане услове (мерења за различите степене похабаности). Према добијеним резултатима може се утврдити како похабаност резних елемената утиче на рад погона за копање.

На слици 9.8 дата је корекција амплитуде брзине вибрација за различита стања резних елемената (похабаност 25 %, 50 %, 75 % и 100 %, у односу на стање новог зуба). Са порастом похабаности, процентуално смањење амплитуде је веће. Виши степен похабаности индукује веће амплитуде вибрација и неповољан утицај на стање погона. На тај начин је у потпуности доказан утицај похабаности резних елемената на рад погона за копање. Заменом резних елемената у тренутку мање похабаности, може се превентивно деловати на ефикасност рада погона, са аспекта амплитуде брзине вибрација. Препорука истраживачима, надзорно-техничком особљу и оператерима дијагностике је да се приликом оваквих мерења на погону за копање не сме занемарити стање резних елемената. У односу на степен похабаности, може се оквирно предвидети у којим ће се границама наћи амплитуда.



Слика 9.8. Корекција амплитуде вибрација за различита стања резних елемената

Кориговањем вредности брзине вибрација, стање погона се може померити из виших група у ниже, са аспекта дозвољених амплитуда, чиме се позитивно утиче на опште стање машине. Висина вратила погона за копање је  $h \ge 315$  [mm], постоље је еластично [2].

Погонска група се за случај мерења са новим резним елементима налази у **групи A**, према DIN ISO 10 816–3 [2] стандарду, са дозвољеним амплитудама брзине у опсегу од 1,40–2,30 [mm/s]. Измерена вредност у вертикалном правцу је:  $A_{VER} = 1,577$  [mm/s]. Могуће је констатовати да не постоји опасност за рад погона у дужем временском периоду.

За мерење са похабаним резним елементима 25 % у односу на стање новог зуба, погонска група се налази у **групи В**, за коју су дозвољене вредности амплитуде брзине у опсегу 3,5–4,5 [mm/s], односно 4,5–7,10 [mm/s], када се погон приближава С групи. Измерена вредност амплитуде износи 3,560 [mm/s] и налази се у нижем опсегу дозвољених вредности у групи В. Према DIN ISO 10 816–3 [2], за измерену вредност амплитуде, погон може несметано да ради у континуитету. Вибрације се сматрају прихватљивим. Похабаност резних елемената од 25 % има утицај на промену групе у којој се машина налази, али је генерални утицај на рад погона за копање незнатан.



Слика 9.9. Корекција амплитуде за похабаност 25 % у односу на нове зубе

У случају мерења са похабаним резним елементима 50 %, погон се поново налази у **групи В**, с том разликом што је измерена вредност амплитуде у односу на претходни случај виша и износи 4,540 [mm/s]. На основу измерене вредности, погон се сврстава у виши опсег дозвољених амплитуда из ове групе.

Закључак је да машина за случај похабаности 50 %, теоријски може несметано да ради у дужем интервалу. Међутим, поузданост је знатно мања у односу на мерење са резним елементима похабаним 25 %. У односу на дефинисани тренд амплитуде брзине вибрација, очекивано је да се са даљим скоком похабаности, мења и група у коју ће се погон према општем стању класификовати.



Слика 9.10. Корекција амплитуде за похабаност 50 % у односу на нове зубе

За похабаност резних елемената 75 %, измерена вредност амплитуде брзине вибрација износи 5,181 [mm/s]. Погон се још једном класификује у **групу В**. Међутим, приметан је знатан скок амплитуде и приближавање С групи.



Слика 9.11. Корекција амплитуде за похабаност 75 % у односу на нове зубе

За случај похабаности 100 % измерена вредност амплитуде брзине вибрација износи 8,600 [mm/s]. Погон се класификује у **групу С**. Тумачењем стандарда, закључак је да се вибрације не могу сматрати прихватљивим и да машина не може да обавља своју функцију у дужем временском периоду. Наставак рада са амплитудом брзине из С групе, повећава ризик да стање погона пређе из С у D групу дозвољених амплитуда, уколико се не изврши замена резних елемената.





# 10. ANFIS МОДЕЛ ЗА ПРЕДИКЦИЈУ ПОТРОШЊЕ ЕЛЕКТРИЧНЕ ЕНЕРГИЈЕ У ПРОЦЕСУ КОПАЊА

#### 10.1 Дефинисање улазних и излазних скупова података

Улазни подаци за ANFIS [7] модел узимају у обзир:

- остварени капацитет багера  $Q_{ost}$  у тренутку мерења;
- очитане максималне пикове струје *I<sub>max</sub>* (мерења за стања резних елемената од нових до потпуно похабаних); за доњи погон копања, горњи и збирно; и
- максималну снагу за процес копања *N<sub>max</sub>*.

Излаз из модела представљен је преко:

• максималне специфичне потрошње електричне енергије *E*<sub>max</sub>.

Скупови улазних и излазних података дати су у прилогу 3.

# 10.2 Развој ANFIS модела

ANFIS [7] представља хибридни модел који се заснива на примени техника неуронских мрежа и фази логике за моделирање и предикцију [96]. Омогућава да се на основу познатих улазно/излазних скупова података генерише фази систем закључивања код кога се конфигурација параметара функција припадности изводи применом алгоритма повратног распростирања грешке или комбиновано, методом најмањих квадрата – тзв. хибридни метод [105]. Сви модели формирани су у програмском пакету MATLAB [7] који је погодан за развој алгоритама, моделирање, симулације, обраду и анализу података, визуелизацију модела, итд [105].

За креирање хибридног модела примењен је интерфејс *Anfis Editor* у оквиру *Fuzzy Logic Toolbox* модула који користи методолошки приступ неуронских мрежа за генерисање, тренирање и тестирање Sugeno фази система закључивања [105].

У процесу обуке ANFISA подаци се деле на две групе: подаци за тренирање и подаци за тестирање. Током обуке, ANFIS [7] се прилагођава скупу података за тренирање тако да грешку предвиђања своди на минимум. Након што је модел обучен, приступа се његовом тестирању на издвојеном скупу података. Поменути скуп не сме да буде исти као скуп за тренирање, да не би дошло до појаве *overfittinga*, односно прекомерног прилагођавања модела само тренинг скупу. Идеално је да тест подаци буду насумично одабрани из укупне расподеле, али да нису коришћени за обуку. Скуп података за тестирање не би требало да садржи екстремне вредности или податке који се у великој мери разликују од тренинг скупа. Најчешћа је подела 70/30, 80/20, где 70 % или 80 % података представља податке за обуку, док је остатак за тестирање модела.

За тренирање неуронске мреже изабрани су подаци добијени мерењем, који се односе на доњи погон копања и збирно за цео погон. За тестирање модела узети су подаци за горњи погон копања. Подаци за тренинг и тест налазе се у прилогу 3. Због специфичности базе података, из укупне расподеле 50 % података представља тест скуп.

За учење се користи алгоритам повратног распростирања грешке, док се излаз модела боље описује линеарним у односу на константне функције, број епоха (итерација) износи 100. Већи број епоха утиче на време потребно за учење модела.

Фазификација улазних променљивих може се извршити применом различитих функција припадности. За развој модела коришћене су *Bellova*, троугласта и трапезна функција, како би се омогућила компаративна анализа резултата предвиђања и утврдио оптималан модел. Укупан број функција припадности зависи од сложености проблема.

Код једноставнијих проблема у примени су једна до три функција припадности по атрибуту, код средње сложених четири до шест, односно седам и више код сложених. Њихов број се може мењати током процеса тренирања, да би се извршила оптимизација модела. Превелики број функција припадности доводи до преоптерећења модела и смањења његове генерализацијске способности. За развој модела, за сваку од функција припадности, усвојено је *три, шест* и *осам* функција по атрибуту. У наставку је дат аналитички и графички облик (слика 10.1.) примењених функција припадности.

Bellova функција припадности [109], [107]:

$$\mu(x) = bell(x; a_i, b_i, c_i) = \frac{1}{1 + \left[ \left( \frac{x - c_i}{a_i} \right)^2 \right]^{b^i}}$$
(10.1)

Троугласта функција припадности [99]:

$$\mu(x) = trimf(x; a_i, b_i, c_i) = \begin{cases} 0, x \le a_i \\ (x - a_i) / (b_i - a_i), a_i \le x \le b_i \\ (c_i - x) / (c_i - b_i), b_i \le x \le c_i \\ 0, c_i \le x \end{cases}$$
(10.2)

Трапезна функција припадности [99]:

$$\mu(x) = trapmf(x; a_i, b_i, c_i, d_i) = \begin{cases} 0, x \le a_i \\ (x - a_i) / (b_i - a_i), a_i \le x \le b_i \\ 1, b_i \le c_i \\ (d_i - x) / (d_i - c_i), c_i \le x \le d_i \\ 0, d_i \le x \end{cases}$$
(10.3)

где су:

{*a<sub>i</sub>*, *b<sub>i</sub>*, *c<sub>i</sub>*, *d<sub>i</sub>*} – постављени параметри; и *x* – улазна величина.

ANFIS [7] модел се састоји од пет слојева (*eng. Layer*). Први слој чине лингвистичке категорије улазних променљивих, које се идентификују фази скуповима [110]. Сваки чвор првог слоја је адаптиван и описује се функцијом припадности [110]. Фази правила су изражена у облику "АКО–услов ОНДА–последица" [110].

Чворови у другом слоју рачунају минималну вредност сваке улазне вредности адаптивне неуронске мреже [110]. Излазне вредности чворова другог слоја представљају значајности правила [100]:

$$O_{2i} = w_i = \mu_{Ai}\left(x\right) \cdot \mu_{Bi}\left(y\right)$$



Слика 10.1. Графички приказ коришћених функција припадности [111]

У трећем слоју, сваки *i*-ти чвор рачуна укупну тежину *i*-тог правила из базе правила, према једначини [110], [100]:

$$O_{3,i} = \overline{w_i} = \frac{w_i}{\sum_{i=1}^n w_i}$$

У четвртом слоју рачуна се допринос креираних правила излазу система [100]. Сваки чвор слоја рачуна пресек одговарајућег фази скупа са максималном вредношћу улазних значајности правила [110], [100].

$$O_{4,i} = w_i \cdot f_i = w_i \cdot \left( p_i \cdot x + q_i \cdot y + r_i \right)$$

Пети слој има само један чвор који је фиксан. У њему се рачуна излазни резултат адаптивне неуронске мреже [110]. То је фази скуп са одређеним степенима припадности могућих вредности критеријумске функције разматране алтернативе [110]. Поступак дефазификације изводи се у чвору петог слоја. Излазна вредност је реалан број [110], [100].

$$O_{5,i} = \sum_{i=1}^{n} \overline{w_i} \cdot f_i = \frac{\sum_{i=1}^{n} w_i \cdot f_i}{\sum_{i=1}^{n} w_i}$$

У наставку су анализирани креирани ANFIS [7] модели. У основи, постоје три модела. У првом је коришћена *Bellova* функција за фазификацију улазних променљивих. Фазификација се код другог модела изводи троугластом, односно трапезном функцијом припадности код трећег.

Модели се даље диференцирају на подмоделе. Модел заснован на примени *Bellove* функције чине три одвојена модела, који се разликују по броју функција припадности. Сходно теоријској поставци ANFISA, зависно од сложености проблема, усвојено је 3, 6 и 8 функција. На тај начин је интегрално анализиран проблем према скали једноставан, средње сложен и сложен. По истој аналогији, остала два основна модела мултипликују се на по три подмодела са истим бројем функција, како би се омогућила компаративна анализа излазних резултата.

Број чворова мреже, линеарних, нелинеарних и укупан број параметара очитава се у процесу обуке ANFIS [7] модела. База фази правила (IF–THEN) зависи од броја функција припадности сваког од подмодела. Креира се у оквиру FIS properties [105] картице. У таблицама 10.1, 10.2 и 10.3 дате су основне карактеристике ANFIS [7] модела.

|                               | спота функци   | ја принадност | 11        |
|-------------------------------|----------------|---------------|-----------|
| ANFIS модел                   | <b>ANFIS 1</b> | ANFIS 2       | ANFIS 3   |
| Број улазних скупова података |                | 3             |           |
| Тип функције припадности      | Bell           | Bell          | Bell      |
| Број функција припадности     | 3•3•3          | 6•6•6         | 8 • 8 • 8 |
| Број чворова                  | 78             | 474           | 1078      |
| Број линеарних параметара     | 27             | 216           | 512       |
| Број нелинеарних параметара   | 27             | 72            | 96        |
| Укупан број параметара        | 54             | 288           | 608       |
| Број епоха (итерација)        | 100            | 100           | 100       |
| Број фази правила             | 27             | 216           | 512       |

Таблица 10.1. ANFIS модел 1 – Bellova функција припадности

Таблица 10.2. ANFIS модел 2 – Троугласта функција припадности

| ANFIS модел                   | ANFIS 4    | ANFIS 5    | ANFIS 6    |
|-------------------------------|------------|------------|------------|
| Број улазних скупова података |            | 3          |            |
| Тип функције припадности      | Троугласта | Троугласта | Троугласта |
| Број функција припадности     | 3•3•3      | 6•6•6      | 8 • 8 • 8  |
| Број чворова                  | 78         | 474        | 1078       |
| Број линеарних параметара     | 27         | 216        | 512        |
| Број нелинеарних параметара   | 36         | 72         | 96         |
| Укупан број параметара        | 63         | 288        | 608        |
| Број епоха (итерација)        | 100        | 100        | 100        |
| Број фази правила             | 27         | 216        | 512        |

Таблица 10.3. ANFIS модел 3 – Трапезна функција припадности

| ANFIS модел                   | <b>ANFIS 7</b> | ANFIS 8  | ANFIS 9   |
|-------------------------------|----------------|----------|-----------|
| Број улазних скупова података |                | 3        |           |
| Тип функције припадности      | Трапезна       | Трапезна | Трапезна  |
| Број функција припадности     | 3•3•3          | 6•6•6    | 8 • 8 • 8 |
| Број чворова                  | 78             | 474      | 1078      |
| Број линеарних параметара     | 27             | 216      | 512       |
| Број нелинеарних параметара   | 36             | 72       | 96        |
| Укупан број параметара        | 63             | 288      | 608       |
| Број епоха (итерација)        | 100            | 100      | 100       |
| Број фази правила             | 27             | 216      | 512       |

На слици 10.2 приказан је дијаграм тока ANFIS [7] модела у оквиру програмског пакета MATLAB [7]. Тренинг и тест подаци се учитавају у радни простор. Опцијом "anfisedit" се покреће прозор у коме се учитавају тренинг и тест подаци. Да би се применио ANFIS [7] потребно је креирати фази систем закључивања. То се постиже одабиром функције припадности и њеног броја по променљивој и типа излазне функције. Након подешавања процеса тренинга (број епоха, толеранција грешке и алгоритма учења) и завршеног тренинга, преузима се грешка тренирања. Уколико вредност грешке није задовољавајућа, тренинг се понавља, све док се грешка не сведе на минимум. Даље се подешавају правила која дефинишу везу улазних са излазном променљивом и пореди излаз ANFIS [7] модела са актуелним резултатима. Пожељно је да се креирани модел тестира на издвојеном тест скупу, који није коришћен за учење ANFISA, како би се провериле његове перформансе на новим подацима.



#### 10.3 Индекс тачности

Индекс тачности је представљен следећим индикаторима [107]:

- средња квадратна грешка RMSE [9] (eng. Root Means Square Error);
- средња апсолутна грешка MAE [9] (eng. Mean Absolute Error);
- Пирсонов (eng. Pearson' Linear Correlation Coefficient) линеарни коефицијент корелације (R); и
- средња апсолутна процентуална грешка *MAPE* (eng. Mean Absolute Percentage Error) [106].

Средња квадратна грешка *RMSE* [9], [102], [107]:

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (P_i - O_i)^2}{N}}$$

Средња апсолутна грешка МАЕ [9], [107]:

$$MAE = \frac{1}{N} \cdot \sum_{i=1}^{N} \left| P_i - O_i \right|$$

Пирсонов коефицијент R [107]:

$$R = \frac{N \cdot \left(\sum_{i=1}^{N} O_i \cdot P_i\right) - \left(\sum_{i=1}^{N} O_i\right) \cdot \left(\sum_{i=1}^{N} P_i\right)}{\sqrt{\left(N \cdot \sum_{i=1}^{N} O_i^2 - \left(\sum_{i=1}^{N} O_i\right)^2\right) \cdot \left(N \cdot \sum_{i=1}^{N} P_i^2 - \left(\sum_{i=1}^{N} P_i\right)^2\right)}}$$

Средња апсолутна процентуална грешка МАРЕ [106]:

$$MAPE = \frac{100}{N} \cdot \sum_{i=1}^{N} \left| \frac{P_i - O_i}{P_i} \right|$$

Наведени индикатори указују на тачност креираног ANFIS [7] модела. Императив је да разлика измерене и предвиђене вредности буде што мања. Прве две грешке *RMSE* и *MAE* [9] зависе од скале у којој су подаци изражени [113]. За примену индикатора *MAPE* не постоји горње ограничење података. Што је вредност ових показатеља ближа нули, модел је квалитетнији [113]. Вредност Пирсоновог коефицијента корелације је скалирана од нула до један. Суштина је да буде што ближа јединици.

# 10.4 Резултати примене ANFIS модела

Резултати примене ANFIS [7] модела биће приказани интегрално. Укупан број модела износи девет. Модели су креирани на бази три основна модела (фазификација *Bellovom*, троугластом и трапезном функцијом). Битни сегметни модела ANF1–ANF3 су следећи:

- фазификација улазних променљивих је извршена *Bellovom* функцијом;
- број функција припадности по атрибуту износи три, шест и осам;
- број епоха (итерација) је 100; и
- за учење модела је коришћен алгоритам повратног распростирања грешке.

Модели ANF4–ANF6 за фазификацију улазних променљивих користе троугласту функцију припадности, ANF7–ANF9 трапезну. У наставку су приказани основни кораци у развоју хибридних модела. На слици 10.3 представљени су подаци за обуку. Тренинг подаци су исти за све моделе. На слици 10.4 приказан је фази систем закључивања са три улазне и једном излазном променљивом. Разлика између модела ANF1–ANF3, ANF4–ANF6 и ANF7–ANF9 је у типу функције припадности.



Слика 10.3. Подаци за тренинг –  $Q_{ost}$ ,  $I_{max}$ ,  $N_{max}$ ;  $E_{max}$ 



Слика 10.4. Фази систем закључивања

На сликама 10.5–10.13 дат је графички приказ грешке процеса тренирања са протоком епоха учења и средње грешке за моделе ANF1–ANF9. У случају да је грешка процеса тренирања велика, модел је недовољно научен. Када је грешка мала, али се на тест скупу драстично повећа, указује се на проблем претренирања модела. Проблем се решава променом броја епоха учења, фази правила и броја функција припадности.



Слика 10.5. Грешка процеса тренирања и средња грешка ANF1 модела



Слика 10.6. Грешка процеса тренирања и средња грешка ANF2 модела



Слика 10.7. Грешка процеса тренирања и средња грешка ANF3 модела



Слика 10.8. Грешка процеса тренирања и средња грешка ANF4 модела







Слика 10.10. Грешка процеса тренирања и средња грешка ANF6 модела

121







Слика 10.12. Грешка процеса тренирања и средња грешка ANF8 модела



Слика 10.13. Грешка процеса тренирања и средња грешка ANF9 модела

У таблицама 10.4 и 10.5 приказане су вредности грешака тренирања и средњих грешака очитаних са дијаграма. Најмања грешка тренирања је за модел ANF4 који је заснован на примени троугласте функције припадности са три функције по атрибуту. Иста аналогија важи и за средњу грешку.

| · · · ·             | 1           |             | 1 / 1       | 1 (         | ,         |
|---------------------|-------------|-------------|-------------|-------------|-----------|
| Модел               | ANF1        | ANF2        | ANF3        | ANF4        | ANF5      |
| Грешка тренирања    | 0,020049    | 0,025714    | 0,04827     | 0,009989    | 0,02662   |
| Средња грешка       | 0,019968    | 0,024938    | 0,04728     | 0,009882    | 0,02580   |
| Таблица 10.5. Вредн | ости грешан | а тренирања | и и средњих | грешака (АМ | NF7-ANF9) |
| Модел               | ANF6        | ANF7        | ANF8        | ANF9        |           |
| Грешка тренирања    | 0,049426    | 0,032586    | 0,02018     | 0,0361      |           |
| Средња грешка       | 0,047281    | 0,032565    | 0,01975     | 0,0353      |           |

Таблица 10.4. Вредности грешака тренирања и средњих грешака (ANF1-ANF6)

На сликама 10.14 и 10.15 дата је структура ANFIS модела. Број чворова у првом скривеном слоју неуронске мреже одговара броју функција припадности за сваку од улазних променљивих [105]. За три функције припадности по атрибуту, број чворова износи 9. Код шест функција, број чворова је 18, односно 27 код осам функција припадности. Број чворова у другом скривеном слоју одговара броју фази правила [105] и износи 27, 216 и 512, на основу таблица 10.1–10.3.



Слика 10.14. ANFIS структура – варијанта са три и шест функција припадности по атрибуту



Слика 10.15. ANFIS структура – варијанта са осам функција припадности по атрибуту

На сликама 10.16–10.21 дат је приказ функција припадности улазне променљиве, максимални пикови јачине струје очитани при мерењу *I<sub>max</sub>* за моделе ANF1–ANF9. Исти је принцип и за остале две улазне променљиве. Већим бројем функција припадности по атрибуту обухвата се ужи опсег података и креира прецизнији модел.



Слика 10.16. Функције припадности улазне променљиве Imax за моделе ANF1 и ANF2



Слика 10.17. Функције припадности улазне променљиве Imax за модел ANF3



Слика 10.18. Функције припадности улазне променљиве Imax за моделе ANF4 и ANF5



Слика 10.19. Функције припадности улазне променљиве Imax за модел ANF6



Слика 10.20. Функције припадности улазне променљиве Imax за моделе ANF7 и ANF8



Слика 10.21. Функције припадности улазне променљиве Imax за модел ANF9

На основу базе фази правила уочава се тренд излазне променљиве са променом улаза. На сликама 10.22–10.30 приказане су вредности максималне специфичне потрошње електричне енергије  $E_{max}$  за исте вредности улаза; модели ANF1–ANF9. За цео скуп података, излаз се на најбољи начин приказује површинским (*eng. Surface*) дијаграмом.



Слика 10.22. Максимална специфична потрошња електричне енергије *E*<sub>max</sub> – ANF1 модел



Слика 10.23. Максимална специфична потрошња електричне енергије *E*<sub>max</sub> – ANF2 модел



Слика 10.24. Максимална специфична потрошња електричне енергије *E*<sub>max</sub> – ANF3 модел



Слика 10.25. Максимална специфична потрошња електричне енергије *E*<sub>max</sub> – ANF4 модел



Слика 10.26. Максимална специфична потрошња електричне енергије *E*<sub>max</sub> – ANF5 модел



Слика 10.27. Максимална специфична потрошња електричне енергије *E*<sub>max</sub> – ANF6 модел



Слика 10.28. Максимална специфична потрошња електричне енергије *E*<sub>max</sub> – ANF7 модел



Слика 10.29. Максимална специфична потрошња електричне енергије *E*<sub>max</sub> – ANF8 модел



Слика 10.30. Максимална специфична потрошња електричне енергије *E*<sub>max</sub> – ANF9 модел

На сликама 10.31–10.48 приказана је предикција максималне специфичне потрошње електричне енергије  $E_{max}$  добијена применом ANFISA у односу на измерене вредности. ANFIS [7] модели су тестирани на засебном тест скупу података. Тест скуп је насумично одабран из укупне расподеле, али није коришћен у процесу учења. Излазни резултати тренинг и тест скупа дати су у прилогу 4.

Резултати су представљени за оба скупа података. На основу графичког приказа, приметно је да ANFIS [7] модел даје прецизније резултате за тренинг у односу на тест скуп података. Да би се са сигурношћу донели закључци о квалитету предикције креираних модела, потребно је израчунати индексе тачности – *RMSE*, *MAE* [9], *R* и *MAPE*.







Слика 10.32. Предикција потрошње електричне енергије ANF1 модела – тест скуп



Слика 10.33. Предикција потрошње електричне енергије ANF2 модела – тренинг скуп



Слика 10.34. Предикција потрошње електричне енергије ANF2 модела – тест скуп





130



Слика 10.36. Предикција потрошње електричне енергије ANF3 модела – тест скуп



Слика 10.37. Предикција потрошње електричне енергије ANF4 модела – тренинг скуп



Слика 10.38. Предикција потрошње електричне енергије ANF4 модела – тест скуп



Слика 10.39. Предикција потрошње електричне енергије ANF5 модела – тренинг скуп



Слика 10.40. Предикција потрошње електричне енергије ANF5 модела – тест скуп



Слика 10.41. Предикција потрошње електричне енергије ANF6 модела – тренинг скуп
#### ANFIS МОДЕЛ ЗА ПРЕДИКЦИЈУ ПОТРОШЊЕ ЕЛЕКТРИЧНЕ ЕНЕРГИЈЕ



Слика 10.42. Предикција потрошње електричне енергије ANF6 модела – тест скуп



Слика 10.43. Предикција потрошње електричне енергије ANF7 модела – тренинг скуп



Слика 10.44. Предикција потрошње електричне енергије ANF7 модела – тест скуп

#### ANFIS МОДЕЛ ЗА ПРЕДИКЦИЈУ ПОТРОШЊЕ ЕЛЕКТРИЧНЕ ЕНЕРГИЈЕ



Слика 10.45. Предикција потрошње електричне енергије ANF8 модела – тренинг скуп



Слика 10.46. Предикција потрошње електричне енергије ANF8 модела – тесг скуп



Слика 10.47. Предикција потрошње електричне енергије ANF9 модела – тренинг скуп

#### ANFIS МОДЕЛ 3А ПРЕДИКЦИЈУ ПОТРОШЊЕ ЕЛЕКТРИЧНЕ ЕНЕРГИЈЕ



Слика 10.48. Предикција потрошње електричне енергије ANF9 модела – тест скуп

У таблици 10.6 приказани су *индекси тачности* модела ANF1–ANF9 за тренинг и тест скуп података. Подаци из таблице биће приказани графички.

| ANF | Инлекс тачности | RMSF        | MAF   | R     | MAPE % |
|-----|-----------------|-------------|-------|-------|--------|
|     | т               | A A D D D D | 0.014 | R     | 7 150  |
| 1   | Тренинг подаци  | 0,020       | 0,014 | 0,973 | 7,152  |
|     | Тест подаци     | 0,013       | 0,009 | 0,922 | 8,717  |
| 2   | Тренинг подаци  | 0,007       | 0,005 | 0,996 | 3,138  |
| 4   | Тест подаци     | 0,008       | 0,006 | 0,967 | 6,306  |
| 2   | Тренинг подаци  | 0,006       | 0,004 | 0,997 | 2,429  |
| 3   | Тест подаци     | 0,010       | 0,005 | 0,960 | 5,155  |
| 4   | Тренинг подаци  | 0,010       | 0,006 | 0,994 | 2,779  |
| 4   | Тест подаци     | 0,006       | 0,003 | 0,986 | 2,851  |
| 5   | Тренинг подаци  | 0,026       | 0,017 | 0,958 | 8,048  |
| 5   | Тест подаци     | 0,011       | 0,008 | 0,944 | 6,991  |
| 6   | Тренинг подаци  | 0,048       | 0,029 | 0,859 | 14,002 |
| U   | Тест подаци     | 0,022       | 0,014 | 0,785 | 12,172 |
| 7   | Тренинг подаци  | 0,033       | 0,023 | 0,927 | 11,954 |
| /   | Тест подаци     | 0,017       | 0,013 | 0,842 | 12,184 |
| 0   | Тренинг подаци  | 0,020       | 0,014 | 0,974 | 7,595  |
| o   | Тест подаци     | 0,018       | 0,013 | 0,894 | 12,591 |
| 0   | Тренинг подаци  | 0,035       | 0,023 | 0,921 | 11,682 |
| 9   | Тест подаци     | 0,021       | 0,015 | 0,769 | 13,736 |

Таблица 10.6. Индекси тачности модела ANF1-ANF9

На сликама 10.49-10.53 представљен је:

- однос *RMSE* и *MAE* [9] одвојено за тренинг и тест скуп;
- упоредни приказ *RMSE* [9] тренинг и тест скуп;
- упоредни приказ *R* тренинг и тест скуп; и
- упоредни приказ *МАРЕ* тренинг и *МАРЕ* тест скуп.

На дијаграмима су означени модели у којима су примењене *Bellova*, троугласта и трапезна функција припадности, на основу чега се дефинише оптималан ANFIS [7] модел.









Слика 10.50. Показатељи RMSE и MAE – тест скуп

УПОРЕДНИ ПРИКАЗ ПОКАЗАТЕЉА RMSE ЗА ТРЕНИНГ И ТЕСТ СКУП ПОДАТАКА



Слика 10.51. Упоредни приказ показатеља RMSE за тренинг и тест скуп



Слика 10.52. Упоредни приказ показатеља *R* за тренинг и тест скуп







Теоријском анализом примењених индекса тачности, ANFIS [7] модел је квалитетнији, ако су вредности показатеља следећи:

- RMSE, MAE [9] и MAPE морају бити ближи нули; и
- коефицијент *R* мора бити ближи броју један.

На основу наведеног, следи закључак:

- ANFIS [7] модели у општем смислу боље предвиђају на тренинг скупу;
- RMSE и MAE [9] указују да оптималан ANFIS [7] модел користи Bellovu функцију; и
- *RMSE* се повећава код модела заснованих на троугластој и трапезној функцији, слично је и за показатеље *MAE* [9] и *MAPE*.

Оптималан ANFIS [7] модел се пореди са средњим вредностима максималне потрошње енергије  $E_{max}$  који представљају први улаз у модел зависности похабаности резних елемената, потрошње енергије и нивоа амплитуде вибрација.

# 10.5 Компаративна анализа измерене потрошње електричне енергије и предикције ANFIS модела

Модел који дефинише зависност похабаности резних елемената, специфичне потрошње електричне енергије и нивоа амплитуде вибрација (у даљем тексту *основни* модел), као сегмент улазних података садржи вредности потрошње енергије добијене мерењем на објекту истраживања – роторном багеру SRs2000.32/5+VR.

ANFIS [7] је предвидео нове улазне податке. Потребно је одредити степен сагласности ове две групе података. Код основног модела, као улаз су коришћене средње вредности максималне потрошње енергије  $E_{max}$ .

Индекси тачности ANFIS [7] модела показали су да је најмање одступање измерених и предвиђених вредности потрошње електричне енергије у варијанти ANF3 – *Bellova* функција припадности, осам функција по атрибуту.

У наставку су анализирани улазни подаци у основни модел за стање зуба од новог до потпуно похабаног, дебљину реза 0,25 [m], 0,40 [m] и 0,50 [m] и кретање стреле у леву и десну страну.

| Степен похабаности | Нови резни елементи |       |       |       |       |         |  |
|--------------------|---------------------|-------|-------|-------|-------|---------|--|
| Итерације          | 0,25                | [m]   | 0,4   | [m]   | 0,5   | 0,5 [m] |  |
| Кретање стреле     | Лево                | Десно | Лево  | Десно | Лево  | Десно   |  |
| Измерена потрошња  | 0,226               | 0,246 | 0,202 | 0,188 | 0,170 | 0,191   |  |
| ANFIS предикција   | 0,231               | 0,249 | 0,189 | 0,189 | 0,170 | 0,187   |  |
| Степен похабаности | ТИ                  |       |       | %     |       |         |  |
| Измерена потрошња  | 0,246               | 0,251 | 0,207 | 0,190 | 0,171 | 0,129   |  |
| ANFIS предикција   | 0,249               | 0,255 | 0,208 | 0,191 | 0,168 | 0,128   |  |
| Степен похабаности | 50 %                |       |       |       |       |         |  |
| Измерена потрошња  | 0,253               | 0,257 | 0,212 | 0,194 | 0,176 | 0,131   |  |
| ANFIS предикција   | 0,258               | 0,257 | 0,214 | 0,195 | 0,178 | 0,130   |  |
| Степен похабаности | 75 %                |       |       |       |       |         |  |
| Измерена потрошња  | 0,261               | 0,272 | 0,243 | 0,246 | 0,283 | 0,376   |  |
| ANFIS предикција   | 0,256               | 0,266 | 0,247 | 0,245 | 0,284 | 0,377   |  |
| Степен похабаности |                     |       | 100   | ) %   |       |         |  |
| Измерена потрошња  | 0,376               | 0,432 | 0,307 | 0,338 | 0,297 | 0,350   |  |
| ANFIS преликција   | 0.377               | 0.424 | 0.304 | 0.338 | 0.287 | 0.363   |  |

Таблица 10.7. Улазни подаци у основни модел – измерено/ANFIS

Статистичким показатељем *MAPE* извршена је анализа измерених улазних података у основни модел и ANFIS [7] предикције. Резултатом теста (таблица 10.8.) добија се потврда које од изведених мерења није требало радити, сходно вредности одступања.

Таблица 10.8. Резултати *MAPE* – улаз у основни модел (измерена потрошња/ANFIS)

| Степен похабаности | 0 %   | 25 %  | 50 %  | 75 %  | 100 % |
|--------------------|-------|-------|-------|-------|-------|
| Показатељ МАРЕ, %  | 1,325 | 0,841 | 0,825 | 1,448 | 1,673 |

Тест дефинише највећу сагласност улазних података у основни модел, за случај похабаних резних елемената 50 %. Општи закључак је да постоји мало одступање измерене потрошње и ANFIS [7] предикције за сва стања резних елемената. На тај начин се у потпуности потврђује почетна хипотеза о утицају похабаности резних елемената на индикатор потрошње електричне енергије погона за копање.

#### 11. ЗАКЉУЧАК

Роторни багери представљају машине велике инвестиционе вредности. Количине откопане откривке и корисне минералне сировине могу износити више хиљада метара кубних или тона по радном часу. У току технолошког процеса, резни елементи багера су изложени хабању. Интензитет хабања зависи од структуре материјала који се откопава.

У докторској дисертацији је анализиран утицај похабаности резних елемената на понашање погона за копање, са аспекта потрошње електричне енергије и нивоа амплитуде вибрација.

На бази изложених теоријских поставки из домена вибродијагностике, системских наука и инжењерских принципа рада роторних багера, формиран је синтезни модел који даје зависност похабаности резних елемената, потрошње енергије и амплитуде вибрација.

Верификација модела извршена је студијом случаја – експерименталним мерењима на роторном багеру SRs2000.32/5+VR. Мерења су рађена у тренуцима када су резни елементи били нови, похабани 25 %, похабани 50 %, похабани 75 % и потпуно похабани.

Модел интегрише Ватметарску методу за одређивање потрошње електричне енергије у процесу копања и једначине теорије осцилација за израчунавање нивоа амплитуде. Овај модел представља синтезу два методолошка приступа. У првом се пореде амплитуда брзине вибрација A и потрошња енергије E зависно од похабаности резних елемената. Другим се амплитуда вибрација посматра преко поремећајне силе F настале од процеса копања.

Зависност оба приступа дефинисана је односом A/E и амплитуде приказане преко силе копања F. У односу на похабаност резних елемената, добијени су следећи односи:

- <u>за похабан зуб 25 % према стању новог зуба</u>: однос *А/Е* износи 73,50 %, другим приступом зависност је 92,93 %;
- <u>за похабан зуб 50 % према стању новог зуба</u>: однос *А/Е* је 69,13 %, други приступ даје зависност 88,5 %;
- <u>за похабан зуб 75 % према стању новог зуба</u>: однос *А/Е* је 67,36 %, други приступ има зависност 68,8 %; и
- <u>за похабан зуб 100 % према стању новог зуба</u>: однос *А/Е* је 55,37 %, други приступ даје зависност 55,2 %.

Резултати показују да модел у областима мање похабаности има нижи степен сагласности (за случај похабаности 25 % и 50 % добијени су односи 73,50 % према 92,93 %, односно, 69,13 % према 88,5 %). Даљим растом похабаности, разлика оба приступа је мања.

Амплитуда вибрација је посматрана кроз референтни DIN ISO 10 816–3 [2] стандард за мерење вибрација. Опште стање погона се класификује у групе A–D зависно од нивоа амплитуде. За поређење је меродаван ниво амплитуде измерен у вертикалном правцу (у хоризонталном и аксијалном правцу вредности амплитуде су мање).

- <u>случај нових резних елемената</u>, измерена амплитуда: *A<sub>VER</sub>* = 1,577 [mm/s] погон се класификује у групу А. Према стандарду закључак је да не постоји опасност по рад машине;
- <u>случај похабаних резних елемената 25 %</u>, измерена амплитуда: A<sub>VER</sub> = 3,560 [mm/s]
  погон се класификује у нижи опсег дозвољених амплитуда групе В. Закључак је исти као за мерење са новим резним елементима;
- <u>случај похабаних резних елемената 50 %</u>, измерена амплитуда: *A<sub>VER</sub>* = 4,540 [mm/s] погон се класификује у виши опсег дозвољених амплитуда групе В;

- <u>случај похабаних резних елемената 75 %</u>, измерена амплитуда: *A<sub>VER</sub>* = 5,181 [mm/s] погон се класификује у групу В. Приметан је знатан скок амплитуде и приближавање С групи; и
- <u>случај похабаних резних елемената 100 %</u>, измерена амплитуда: *A<sub>VER</sub>* = 8,600 [mm/s] погон се класификује у групу С. Рад машине у дужем периоду представља ризик по прелазак амплитуде у групу D и настанак хаварија.

Корекцијом амплитуде брзине вибрација према степену похабаности резних елемената даје се препорука да се зависно од стања зуба може предвидети ниво амплитуде и дефинисати стање погона. Овакав концепт управљања опремом представља оптималан вибродијагностички приступ, где се на основу степена похабаности може пратити ниво амплитуде вибрација.

Развијени модел је хибридног карактера чему доприноси пропозиција улазних параметара у ANFIS. ANFIS [7] је коришћен за предикцију потрошње електричне енергије. Улазне променљиве које утичу на потрошњу анализиране су кроз:

- остварени капацитет багера у датом тренутку,  $Q_{ost}$ ;
- максималне пикове струје очитане при мерењима, Ітах; и
- максималну снагу за процес копања, *N<sub>max</sub>*.

Креирана су три базна ANFIS [7] модела:

- првим се фазификација улаза изводи *Bellovom* функцијом припадности, са *три функције* по атрибуту;
- другим се фазификација улаза изводи троугластом функцијом припадности, са *три функције* по атрибуту; и
- трећим се фазификација улаза изводи трапезном функцијом припадности, са *три функције* по атрибуту.

Базни модели се диференцирају додавањем *шест* и *осам функција* по атрибуту за сваку од примењених функција припадности. Коначан број модела износи девет.

Предикција ANFISA проверена је индексима тачности *RMSE*, *MAE* [9], *R* и *MAPE*. Установљено је да модел ANF3 заснован на *Bellovoj* функцији припадности има највећи степен сагласности измерених и предвиђених вредности потрошње електричне енергије.

Потрошња енергије ANF3 модела упоређена је са улазним подацима у основни модел. Показатељем *MAPE* потврђена је највећа сагласност измерене потрошње енергије и потрошње ANF3 модела за мерења са похабаним резним елементима 50 %. Измерена средња вредност потрошње електричне енергије код овог мерења износи 0,204 [kWh/m<sup>3</sup>], а предикција ANFIS [7] модела 0,205 [kWh/m<sup>3</sup>]. Не постоје већа одступања ни код осталих мерења.

Предложени модел је у потпуности иновативан. Синтеза потрошње електричне енергије, амплитуде вибрација и похабаности резних елемената представља јединствен приступ при мерењима на роторним багерима.

#### ЗАКЉУЧАК

На основу свега наведеног, закључна раматрања могу да се сведу на следећи начин:

- код погона великих снага радних машина значајан је утицај стања радних делова на погонске параметре;
- постоји јасно изражена и експлицитна корелација између нивоа похабаности радних делова, потрошње електричне енергије и амплитуде вибрација;
- математичка и концепцијска међузависност улазних и излазних параметара на најбољи начин се дефинише регресивним методама, уз примену фази логике због хибридног карактера, док се предиктивни карактер добија применом вештачких неуронских мрежа;
- квалитетна анализа утицајних параметара мора да садржи њихову адекватну пропозицију и мерење; и
- развијени модел има алгоритамску структуру и даје препоруке за дефинисање утицаја хабања резних елемената на рад погона за копање.

Препоруке за даља истраживања се односе на примену ANFIS [7] модела за предикцију нивоа амплитуде вибрација, чиме се у потпуности омогућава верификација <u>основног модела</u> (зависност похабаности резних елемената, потрошње електричне енергије и амплитуде вибрација) и компаративну анализу <u>основног модела</u> на роторним багерима истих или сличних техничких карактеристика.

- Z. Yan, F. Qiping, H. Jinlan, B. He, Z. Lin, "Considerations and guides of the wattmeter method for measuring output acoustical power of Langevin-type transducer systems II: Experiment" *Ultrasonics*, vol. 35, no. 7, pp. 543–546, 1997, doi: 10.1016/S0041-624X(97)00027-9.
- [2] ISO Organization for Standardization, "BS ISO 10816-3:2009 Mechanical vibration -Evaluation of machine vibration by measurements on nonrotating parts" 2009.
- [3] M. Gomilanović, M. Tanasijević, S. Stepanović, F. Miletić, "A Model for Determining Fuzzy Evaluations of Partial Indicators of Availability for High-Capacity Continuous Systems at Coal Open Pits Using a Neuro-Fuzzy" 2023.
- [4] Filip Miletić, Predrag Jovančić, Miloš Milovančević, Dragan Ignjatović "Adaptive neuro-fuzzy prediction of operation of the bucket wheel drive based on wear of cutting elements" *Adv. Eng. Softw.*, vol. 146, 2020.
- [5] D. Ignjatović, *Rudarske mašine*. Beograd: Univerzitet u Beogradu, Rudarsko-geološki fakultet, 2012.
- [6] Stevan Đenadić, Razvoj sinteznog modela upravljanja rizikom kod rotornih bagera, Univerzitet u Beogradu, Rudarsko-geološki fakultet, 2022.
- [7] M. Gaber, S. El-Banna, M. El-Dabah, M. Hamad, "Designing and Implementation of an Intelligent Energy Management System for Electric Ship power system based on Adaptive Neuro-Fuzzy Inference System (ANFIS)" Adv. Sci. Technol. Eng. Syst. J., vol. 6, no. 2, pp. 195–203, 2021, doi: 10.25046/aj060223.
- [8] G. Yanan, C. Xiaoqun, L. Bainian, K. Peng, "Chaotic Time Series Prediction Using LSTM with CEEMDAN" *Journal of Physics Conference Series.*, vol. 1617, no. 1, 2020, doi: 10.1088/1742-6596/1617/1/012094.
- T. Chai & R. R. Draxler, "Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature" *Geosci. Model Dev.*, vol. 7, no. 3, pp. 1247–1250, 2014, doi: 10.5194/gmd-7-1247-2014.
- [10] S. Đenadic, D. Ignjatović, M. Tanasijević, U. Bugarić, I. Janković, T. Šubaranović, "Development of the availability concept by using fuzzy theory with AHP correction, a case study: Bulldozers in the open-pit lignite mine" *Energies*, vol. 12, no. 21, 2019, doi: 10.3390/en12214044.
- [11] T. Atanasova-Pachemska, M. Lapevski, R. Timovski, "Analytical Hierarchical Process (AHP) Method Application in the process of selection and evaluation" *International Scientific Conference*, pp. 373–380, 2014.
- [12] S. Đenadic, M. Tanasijević, P. Jovančić, D. Ignjatović, D. Petrović, U. Bugarić, "Risk Evaluation: Brief Review and Innovation Model Based on Fuzzy Logic and MCDM" *Mathematics*, vol. 10, no. 5, 2022, doi: 10.3390/math10050811.
- [13] Z. Chen, P. Zhong, M. Liu, Q. Ma, G. Si, "A novel integrated MADM method for design concept evaluation" *Scientific Reports.*, vol. 12, no. 1, pp. 1–19, 2022, doi: 10.1038/s41598-022-20044-7.
- [14] Miloš Tanasijević, "Sigurnost funkcionisanja mehaničkih komponenti rotornog bagera" Univerzitet u Beogradu, Rudarsko-geološki fakultet, 2007.

- [15] Tanasijević M., Ivezić D., Jovančić P., Ćatić D., Zlatanović D. "Study of Dependability Evaluation for Multi-hierarchical Systems Based on Max–Min Composition" *Qual. Reliab. Eng.*, 2013, doi: 10.1002/qre.1383.
- [16] Miloš Tanasijević, Dejan Ivezić, Slobodan Ivković "Model analize i sinteze performansi sigurnosti funkcionisanja" pp. 15–24, 2007.
- [17] M. Gomilanović, M. Tanasijević, S. Stepanović, "Determining the Availability of Continuous Systems at Open Pits Applying Fuzzy Logic" *Energies*, vol. 15, no. 18, 2022, doi: 10.3390/en15186786.
- [18] Dejan Petrović; Miloš Tanasijević; Saša Stojadinović; Jelena Ivaz; Pavle Stojković, "Fuzzy Model for Risk Assessment o Machinery Failures" Symmetry (Basel)., vol. 12, no. 4, 2020.
- [19] N. Sellappan, D. Nagarajan, K. Palanikumar, "Evaluation of risk priority number (RPN) in design failure modes and effects analysis (DFMEA) using factor analysis" *Int. J. Appl. Eng. Res.*, vol. 10, no. 14, pp. 34194–34198, 2015.
- [20] J. Wang, J; Yang, J.B.; Sen P. "Safety analysis and synthesis using fuzzy sets and evidential reasoning" *Reliab. Eng. Syst. Saf.*, vol. 47, no. 2, pp. 103–118, 1995.
- [21] J.B. Bowles, Pelaez C.E. "Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis" *Reliab. Eng. Syst. Saf.*, vol. 50, no. 2, pp. 203–213, 1995.
- [22] R. Onofrio, F. Piccagli, F. Segato, "Failure Mode, Effects and Criticality Analysis (FMECA) for Medical Devices: Does Standardization Foster Improvements in the Practice" *Procedia Manuf.*, vol. 3, no. November, pp. 43–50, 2015, doi: 10.1016/j.promfg.2015.07.106.
- [23] Bevilacqua, M., Braglia, M., Gabbrielli M. "Monte Carlo simulation approach for a modified FMECA in a power plant" *Qual. Reliab. Eng. Int.*, vol. 16, no. 4, pp. 313–324, 2000.
- [24] P. L. Bonate, "A brief introduction to Monte Carlo simulation" *Clin. Pharmacokinet.*, vol. 40, no. 1, pp. 15–22, 2001, doi: 10.2165/00003088-200140010-00002.
- [25] Y. M. Wang, K. S. Chin, G. K. K. Poon, J. B. Yang, "Risk evaluation in failure mode and effects analysis using fuzzy weighted geometric mean" *Expert Syst. Appl.*, vol. 36, no. 2 PART 1, pp. 1195–1207, 2009, doi: 10.1016/j.eswa.2007.11.028.
- [26] P.S. Damanab, S.S. Alizadeh, Y. Rasoulzadeh, P. Moshashaie, S. Varmazyar, "Failure Modes and Effects Analysis (FMEA) Technique: A Literature Review" Sci. J. Rev., no. August, 2015, doi: 10.14196/sjr.v4i1.1805.
- [27] J. Balaraju, M. Govinda Raj, C. S. Murthy, "Fuzzy-FMEA risk evaluation approach for LHD machine-A case study" J. Sustain. Min., vol. 18, no. 4, pp. 257–268, 2019, doi: 10.1016/j.jsm.2019.08.002.
- [28] Z. Virág & S. Szirbik, "Analysis of a Replaceable Cutting Tooth of Bucket Chain Excavator" *Min. Rev.*, vol. 27, no. 4, pp. 28–32, 2022, doi: 10.2478/minrv-2021-0032.
- [29] Z. Golubović, Z. Lekić, S. Jović, "Influence of Bucket Wheel Vertical Vibration on Bucket-Wheel Excavator (BWE) Digging Force" *Tech. Gaz.*, vol. 4, no. 19, pp. 807– 812, 2012.

- [30] V. Gursky, P. Krot, V. Korendiy, R. Zimroz, "Dynamic Analysis of an Enhanced Multi-Frequency Inertial Exciter for Industrial Vibrating Machines" *Machines*, vol. 10, no. 2, 2022, doi: 10.3390/machines10020130.
- [31] X. Chuangwen, D. Jianming, C. Yuzhen, L. Huaiyuan, S. Zhicheng, X. Jing, "The relationships between cutting parameters, tool wear, cutting force and vibration" *Adv. Mech. Eng.*, vol. 10, no. 1, pp. 1–14, 2018, doi: 10.1177/1687814017750434.
- [32] I. Kertesz Brinas, N. I. Rebedea, I. L. Oltean, "Bucket wheel excavator cutting tooth stress and deformation analysis during operation using Finite Elements Method (FEM)" *Min. Informatics, Autom. Electr. Eng.*, vol. 4 (536), no. 1, p. 9, 2018, doi: 10.7494/miag.2018.4.536.9.
- [33] Z. Shi, X. Li, N. Duan, Q. Yang, "Evaluation of tool wear and cutting performance considering effects of dynamic nodes movement based on FEM simulation" *Chinese J. Aeronaut.*, vol. 34, no. 4, pp. 140–152, 2021, doi: 10.1016/j.cja.2020.08.003.
- [34] D. U. Kritskii, M. Pantelik, Petr A. Pobegailo, Irina V. Gadolina, L. Papić "Refinement of the formula for assessing the wear rate of the excavator teeth" Inżynieria Powierzchni, 2019.
- [35] H.S. Yoon, J.Y. Lee, M.S. Kim, S.H. Ahn, "Empirical power-consumption model for material removal in three-axis milling" J. Clean. Prod., 2014, doi: 10.1016/j.jclepro.2014.03.061.
- [36] A. Meena & M. El Mansori, "Specific cutting force, tool wear and chip morphology characteristics during dry drilling of austempered ductile iron (ADI)" Int. J. Adv. Manuf. Technol., vol. 69, 2013.
- [37] Filip Miletić; Stevan Đenadić; Predrag Jovančić; Dragan Novaković; Bojana Vasiljević, "Utvrđivanje uticaja reznih elemenata rotornog bagera na rad pogona rotora" OMC 2018, pp. 175–186.
- [38] I. Jakovljević, S. Stepanović, T. Šubaranović, "Logistic Approach To Investigation of Slice Thickness Height Ratio Effects on Excavation Resistance of Bucket Wheel Excavator" The International Journal of TRANSPORT & LOGISTICS.
- [39] Saša Bošković, "Optimizacija parametara reza rotornog bagera pri otkopavanju materijala sa povećanom čvrstoćom" Univerzitet u Beogradu, Rudarsko-geološki fakultet, 2016.
- [40] I. Brînaş *et al.*, "Determination of the bucket wheel drive power by computer modeling based on specific energy consumption and cutting geometry" *Energies*, vol. 14, no. 13, 2021, doi: 10.3390/en14133892.
- [41] J. András, J. Kovács, E. András, I. Kertész, O. B. Tomus, "A New Method for the Calculation of Energy and Power Requirements of Bucket Wheel Excavators" *Műszaki Tudományos Közlemények*, vol. 10, no. 1, pp. 15–20, 2019, doi: 10.33894/mtk-2019.10.01.
- [42] T. Li & C. Yuan, "Numerical Modeling of Specific Energy Consumption in Machining Process" 2013. doi: https://doi.org/10.1115/MSEC2013-1247.
- [43] L. Zhou, J. Li, F. Li, Q. Meng, J. Li, X. Xu, "Energy consumption model and energy efficiency of machine tools: A comprehensive literature review" *J. Clean. Prod.*, vol. 112, no. 2014, pp. 3721–3734, 2016, doi: 10.1016/j.jclepro.2015.05.093.

- [44] H. De Carvalho, J. De Oliveira Gomes, M. A. Schmidt, V. L. C. Brandão, "Vibration analysis and energy efficiency in interrupted face milling Processes" *Procedia CIRP*, vol. 29, no. March, pp. 245–250, 2015, doi: 10.1016/j.procir.2015.02.165.
- [45] F. D. Popescu, S. M. Radu, A. Andraş, I. Kertész, "A grafo-numeric method of determination of the operation power of the rotor of EsRc-1400 bucket wheel excavator using computer simulation in SolidWorks" *MATEC Web Conf.*, vol. 290, 2019, doi: 10.1051/matecconf/201929004007.
- [46] D. Wu, Z. Zhang, Z. Wang, "Application research of solidworks in modeling of straw carbonization preparation plant" J. Phys. Conf. Ser., vol. 1303, no. 1, 2019, doi: 10.1088/1742-6596/1303/1/012048.
- [47] G. Ladányi & I. Sümegi, "Bucket and Cutting Tooth Developments for the Bucket Wheel Excavators of Mátra Power Station Llc" Ann. Univ. Petrosani Mech. Eng., vol. 12, pp. 151–162, 2010.
- [48] K. He, R. Tang, Z. Zhang, W. Sun, "Energy Consumption Prediction System of Mechanical Processes Based on Empirical Models and Computer-Aided Manufacturing" J. Comput. Inf. Sci. Eng., vol. 16, no. 4, 2016, doi: 10.1115/1.4033921.
- [49] T. Feldhausen *et al.*, "Review of Computer-Aided Manufacturing (CAM) strategies for hybrid directed energy deposition" *Addit. Manuf.*, vol. 56, no. June, p. 102900, 2022, doi: 10.1016/j.addma.2022.102900.
- [50] Y. He, F. Liu, T. Wu, F. P. Zhong, B. Peng, "Analysis and estimation of energy consumption for numerical control machining" *Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.*, vol. 226, no. 2, pp. 255–266, 2012, doi: 10.1177/0954405411417673.
- [51] Y. Koren, J. Ben-Uri, T. J. Higgins, "Numerical Control of Machine Tools" *IEEE Trans. Syst. Man. Cybern.*, vol. 10, no. 3, pp. 175–175, 2008, doi: 10.1109/tsmc.1980.4308460.
- [52] A. Pannawan, "Investigation of Relationship between Mechanical Vibration and Energy Consumption of an Induction Motor" no. June, pp. 2–3, 2019, doi: 10.13140/RG.2.2.16707.45600.
- [53] A. Atmaca & N. Atmaca, "Determination of correlation between specific energy consumption and vibration of a raw mill in cement industry" no. December, 2017, doi: 10.18038/btda.11251.
- [54] A. Elkhatib, "Energy consumption and machinery vibrations" 2007.
- [55] N. Zuber, H. Ličen, A. Klašnja-Miličević, "Remote online condition monitoring of the bucket wheel excavator SR1300 – a case study" vol. 5, pp. 25–37, 2008.
- [56] Jerzy Czmochowski, Przemyslaw Moczko, Maciej Olejnik, Damina Pietrusiak "Vibration Analysis of an Exhaust Fan in the Exhaust Gas Duct of a Power Plant Unit" in *Proceedings* of the 14th International Scientific Conference: Computer Aided Engineering, 2019. doi: 10.1007/978-3-030-04975-1\_14.
- [57] A. Srirekha & K. Bashetty, "Infinite to finite: An overview of finite element analysis" *Indian J. Dent. Res.*, vol. 21, no. 3, pp. 425–432, 2010, doi: 10.4103/0970-9290.70813.
- [58] J. Więckowski, W. Rafajłowicz, P. Moczko, E. Rafajłowicz, "Data from vibration measurement in a bucket wheel excavator operator's cabin with the aim of vibrations damping" *Data Br.*, vol. 35, pp. 1–13, 2021, doi: 10.1016/j.dib.2021.106836.

- [59] G. Betta, M. D'Apuzzo, C. Liguori, A. Pietrosanto, "An intelligent FFT-Analyzer" *IEEE Trans. Instrum. Meas.*, vol. 47, no. 5, pp. 1173–1179, 1998, doi: 10.1109/19.746578.
- [60] J. S. Więckowski, D. Pietrusiak, W. Rafajłowicz, "Low frequency vibration in Heavy Machinery - Preliminary identification and control" *Proc. ISMA 2020 - Int. Conf. Noise Vib. Eng. USD 2020 - Int. Conf. Uncertain. Struct. Dyn.*, pp. 3261–3270, 2020.
- [61] M. Norrlof, Iterative Learning Control Analysis, Design, and Experiments, August. 2015.
- [62] M. H. Mohd Ghazali & W. Rahiman, "Vibration Analysis for Machine Monitoring and Diagnosis: A Systematic Review" *Shock Vib.*, vol. 2021, 2021, doi: 10.1155/2021/9469318.
- [63] F. Bin Zahid, O. Z. Chao, S. Y. Khoo, "A review of operational modal analysis techniques for in-service modal identification" *J. Brazilian Soc. Mech. Sci. Eng.*, vol. 42, no. 8, 2020, doi: 10.1007/s40430-020-02470-8.
- [64] O. Graja, K. Dziedziech, A. Jablonski, A. Ghorbel, F. Chaari M. Haddar, "Time Domain Identification of Multi-stage Planetary Gearbox Characteristic Frequencies Using Piezoelectric Strain Sensor" in *Modelling and Simulation of Complex Systems for Sustainable Energy Efficiency*, 2022. doi: 10.1007/978-3-030-85584-0\_12.
- [65] K. Dziedziech, K. Mendrok, P. Kurowski, T. Barszcz, "Multi-Variant Modal Analysis Approach for Large Industrial Machine" *Energies*, vol. 15, no. 5, 2022, doi: 10.3390/en15051871.
- [66] J. Gottvald, "The calculation and measurement of the natural frequencies of the bucket wheel excavator SchRs 1320/4x30" *Transport*, vol. 25, no. 3, pp. 269–277, 2010, doi: 10.3846/transport.2010.33.
- [67] S. N. Wang, "Static analysis and size optimization for the bed of gantry milling machine based on ANSYS workbench" *Curr. Trends Comput. Sci. Mech. Autom.*, vol. 2, pp. 298– 304, 2018, doi: 10.1515/9783110584998-033.
- [68] V. Gursky, P. Krot, V. Korendiy, R, Zimroz "Dynamic Analysis of an Enhanced Multi-Frequency Inertial Exciter for Industrial Vibrating Machines" pp. 1–17, 2022.
- [69] Miloš Milovančević, Vlastimir Nikolić, Dalibor Petković, Ljubomir Vračar, Emil Veg, Natalija Tomić, Srđan Jović "Vibration analyzing in horizontal pumping aggregate by soft computing" *Measurement*, vol. 125, pp. 454–462, 2018, doi: https://doi.org/10.1016/j.measurement.2018.04.100.
- [70] Nebojša Gnjatović, Srđan Bošnjak, Ivan Milenović, Aleksandar Stefanović "Bucket wheel excavators: Dynamic response as a criterion for validation of the total number of buckets" *Eng. Struct.*, 2020, doi: 10.1016/j.engstruct.2020.111313.
- [71] D. Arsić, N. Gnjatović, S. Sedmak, A. Arsić, M. Uhričik, "Integrity assessment and determination of residual fatigue life of vital parts of bucket-wheel excavator operating under dynamic loads" *Eng. Fail. Anal.*, vol. 105, no. June, pp. 182–195, 2019, doi: 10.1016/j.engfailanal.2019.06.072.
- [72] F. D. Popescu, S. M. Radu, A. Andraş, I. Kertesz Brînaş, "Simulation of the frequency response of the ERC 1400 Bucket Wheel Excavator boom, during the excavation process" *New Trends Prod. Eng.*, vol. 2, no. 1, pp. 153–167, 2019, doi: 10.2478/ntpe-2019-0016.

- [73] Jakub Andruszko, Przemysław Moczko, Damian Pietrusiak, Grzegorz Przybyłek, Eugeniusz Rusiński "Analysis of the Causes of Fatigue Cracks in the Carrying Structure of the Bucket Wheel in the SchRs4600 Excavator Using Experimental-Numerical Techniques" 2019.
- [74] B. Petrović, A. Petrović, D. Ignjatović, I. Grozdanović, D. Kozak, M. Katinić, "Assessment of the maximum possible extension of bucket wheel SchRs740 boom based on static and dynamic calculation" *Teh. Vjesn. - Tech. Gaz.*, vol. 23, no. 4, 2016, doi: 10.17559/tv-20151123152659.
- [75] K. S. Deore & M. A. Khandekar, "Design Machine Condition Monitoring System for ISO 10816-3 Standard using Fuzzy Logic" *Int. J. Eng. Res. Technol.*, vol. 4, no. 1, pp. 726–729, 2015, [Online]. Available: www.ijert.org
- [76] J. Robichaud & P. Eng, "Reference Standards for Vibration Monitoring and Analysis," *Bretech Eng. Ltd*, pp. 1–10, 2009, [Online]. Available: http://www.hdutil.com.br/site/arquivos/manutencao/analise de vibracoes/ReferenceStandardsforVibrationMonitoringandAnalysis.pdf
- [77] J. Tomaszewski & J. Rysinski, "Diagnostics of gears and compressors by means of advanced automatic system" Acta Mech. Autom., vol. 9, no. 1, p. 19, 2015, doi: 10.1515/ama-2015-0004.
- [78] Y. Osada, T. Kawakami, T. Yokoi, Y. Tsujimoto, "Field Study on Pump Vibration ans ISO's New Criteria" *J. Fluids Eng.*, vol. 121, no. 4, pp. 798–803, 1999.
- [79] *Studija Optimizacija konstrukcije vedrica bagera u cilju povećanja kapaciteta*, Univerzitet u Beogradu, Rudarsko-geološki fakultet, 2003.
- [80] M. Popović et al., "ABRAZIVNO HABANJE REZNIH ZUBA I POUZDANOST ROTORNOG BAGERA" pp. 1–2, 2009, UDK/UDC 621.879.48-192.
- [81] M. Popović, Z. Jugović, R. Slavković, INTEGRISANI PRISTUP KONSTRUISANJA HABAJUĆIH REZNIH ELEMENATA KOD ROTORNIH BAGERA, International Conference on Tribology and WORKSHOP 07" pp. 259–262.
- [82] Dragan Novaković, "Optimizacija reznih elemenata rotornog bagera SchRs630" Univerzitet u Beogradu, Rudarsko-geološki fakultet, 2007.
- [83] B. Nedić & M. Lazić, Obrada metala rezanjem, Mašinski fakultet, Kragujevac, 2007.
- [84] R. Slavković, S. Dragićević, I. Milićević, A. Jovičić, N. Dučić, M. Popović, "Integrisan proces proizvodnje abrazivnih reznih elemenata bagera u rudarskoj industriji" IMK-14, Istraživanje i razvoj, vol. 24, 2018.
- [85] Vojin Vukotić, Dragan Čabrilo, "Povećanje pouzdanosti podsistema kopanja rotornog bagera podešavanjem triboloških kar reznih elemenata" 2013.
- [86] Predrag Jovančić, *Tehnička dijagnostika*. Univerzitet u Beogradu, Rudarsko-geološki fakultet, 2020.
- [87] D. Cvetković & M. Praščević, Buka i vibracije, 2005.
- [88] Miloš Milovančević, "IZBOR OPTIMALNE KONFIGURACIJE VIBRODIJAGNOSTIČKOG SISTEMA ZASNOVANOG NA PIC TEHNOLOGIJI," Univerzitet u Nišu, Mašinski fakultet, 2010.
- [89] Oscilacije, link: https://aggf.unibl.org/uploads/attachment/vest/2289/Oscilacije2016.pdf"
- [90] D. Šaravanja & D. Petković, *Vibracijska dijagnostika teorija i praksa*. Fakultet strojarstva i računarstva Sveučilišta u Mostaru i Mašinski fakultet Univerziteta u Zenici, 2010.

- [91] Ivica Jakovljević, Određivanje optimalnih parametara odreska rotornih bagera u funkciji otpora na kopanje, Univerzitet u Beogradu, Rudarsko-geološki faultet, 2008.
- [92] Miletić Filip, Jovančić Predrag, Milovančević Miloš, Tanasijević Miloš, Đenadić Stevan "Determining the Impact of Cutting Elements State on the Bucket–Wheel Excavator Vibration and Energy Consumption" J. Vib. Eng. Technol., 2022.
- [93] L. Farah, A. Haddouche, A. Haddouche, "Comparison between proposed fuzzy logic and anfis for MPPT control for photovoltaic system" *Int. J. Power Electron. Drive Syst.*, vol. 11, no. 2, pp. 1065–1073, 2020, doi: 10.11591/ijpeds.v11.i2.pp1065-1073.
- [94] S. O. Sada & S. C. Ikpeseni, "Evaluation of ANN and ANFIS modeling ability in the prediction of AISI 1050 steel machining performance" *Heliyon*, vol. 7, no. 2, p. e06136, 2021, doi: 10.1016/j.heliyon.2021.e06136.
- [95] A. F. Mashaly & A. A. Alazba, "ANFIS modeling and sensitivity analysis for estimating solar still productivity using measured operational and meteorological parameters," *Water Sci. Technol. Water Supply*, vol. 18, no. 4, pp. 1437–1448, 2018, doi: 10.2166/ws.2017.208.
- [96] J.-S. R. Jang, "ANFIS: adaptive-network-based fuzzy inference system" *IEEE Trans. Syst. Man. Cybern.*, vol. 23, no. 3, pp. 665–685, 1993, doi: 10.1109/21.256541.
- [97] Мирослав Црногорац, "Оптимизација избора механичке методе експлоатације нафтних бушотина применом фази логике" Универзитет у Београду, Рударскогеолошки факултет, 2020.
- [98] Александар Маџаревић, "Методологија интегралне анализе сценарија енергетског развоја" Универзитет у Београду, Рударско-геолошки факултет, 2020.
- [99] Seyed Ali S. Razeghi, "Razvoj modela upravljanja cirkulacijom u postupku bušenja korišćenjem neuro fazi sistema" Univerzitet u Beogradu, Rudarsko-geološki fakultet, 2022.
- [100] Bojan Jovanović, "Upravljanje performansama redova čekanja u poštanskom saobraćaju" Univerzitet u Novom Sadu, Fakultet tehničkih nauka, 2015.
- [101] Ch. Sekhar & P. S. Meghana, "A Study on Backpropagation in Artificial Neural Networks" Asia-Pacific J. Neural Networks Its Appl., vol. 4, no. 1, pp. 21–28, 2020, doi: 10.21742/ajnnia.2020.4.1.03.
- [102] A. Al-Hmouz, J. Shen, R. Al-Hmouz, J. Yan, "Modeling and simulation of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for mobile learning" *IEEE Trans. Learn. Technol.*, vol. 5, no. 3, pp. 226–237, 2012, doi: 10.1109/TLT.2011.36.
- [103] K. Kumari & S. Yadav, "Linear regression analysis study" J. Pract. Cardiovasc. Sci., vol. 4, no. 1, pp. 33-36, 2018.
- [104] A. Toghroli, M. Mohammadhassani, M. Suhatril, M. Shariati, Z. Ibrahim, N.H.R. Sulong "Prediction of shear capacity of channel shear connectors using the ANFIS model" *Steel Compos. Struct.*, vol. 17, no. 5, pp. 623–639, 2014, doi: 10.12989/scs.2014.17.5.623.
- [105] Jovanović Ivana, "Model inteligentnog sistema adaptivnog upravljanja procesom prerade rude" Univerzitet u Beogradu, Rudarsko-geološki akultet, 2015.
- [106] Kovačević Miljan, "Model za prognozu i procenu troškova izgradnje armiranobetonskih drumskih mostova" Univerzitet u Beogradu, Građevinski fakultet, 2018.

- [107] Miloš Milovančević, Dalibor Petković, Adaptive neuro-fuzzy estimation of compressive strength of hollow concrete masonry prisms, IRMES 2022, pp. 264–268.
- [108] D. Rašković, Teorija Oscilacija. Naučna knjiga, Beograd, 1965.
- [109] Milovančević, Miloš, Petković Dalibor, Optimal predictors by adaptive neuro fuzzy logic for ablation depth in micromachining by excimer laser, IRMES 2022, pp. 259–263.
- [110] D. Pamučar, Primena fuzzy logike i veštačkih neuronskih mreža u procesu donošenja odluke organa saobraćajne podrške, VOJNOTEHNIČKI GLASNIK, str. 125-145.
- [111] Fazi logika, online materijal, link: http://tfzr.rs/Content/files/0/MR2020.pdf
- [112] P. Keikhosrokiani, A. B. Naidu Anathan, S. I. Fadilah, S. Manickam, Z. Li, "Heartbeat sound classification using a hybrid adaptive neuro-fuzzy inferences system (ANFIS) and artificial bee colony" *Digit. Heal.*, vol. 9, 2023, doi: 10.1177/20552076221150741.
- [113] Tijana Trninić, Predikcije i korelacije berzanskog indeksa FTSE 100, Univerzitet u Novom Sadu, Prirodno-matematički fakultet, 2018.

## СПИСАК ПРИЛОГА

Докторска дисертација садржи 4 прилога:

- Прилог 1 Формулар коришћен при мерењу струје на роторном багеру
- Прилог 2 Формулар коришћен при мерењу вибрација на роторном багеру
- Прилог 3 Улазни подаци за ANFIS модел
- Прилог 4 Резултати ANFIS модела

#### Прилог 1 – Формулар коришћен при мерењу струје на роторном багеру [91]



| Параметар                   |                  |                     |                   | Дебл             | ьина рез            | a, [m]            |                  |                     |                   |
|-----------------------------|------------------|---------------------|-------------------|------------------|---------------------|-------------------|------------------|---------------------|-------------------|
| Итерација                   |                  | 0,25 0,4 0,5        |                   |                  |                     |                   |                  |                     |                   |
| Кретање стреле              | ЛЕВС             | О Д                 | ECHO              | ЛЕВС             | ) Д                 | ECHO              | ЛЕВС             | ) Д                 | ECHO              |
| ОЧИТАНЕ<br>ВРЕДНОСТИ        | Аксијални правац | Хоризонтални правац | Вертикални правац | Аксијални правац | Хоризонтални правац | Вертикални правац | Аксијални правац | Хоризонтални правац | Вертикални правац |
| Фреквенција, [Hz]           |                  |                     |                   |                  |                     |                   |                  |                     |                   |
| Амплитуда, [mm/s]           |                  |                     |                   | Π-6-             |                     | - [m]             |                  |                     |                   |
| Параметар                   |                  | 0.25                |                   | деол             | $\frac{6}{0.4}$     | a, [m]            |                  | 0.5                 |                   |
| Иперација<br>Кретање стреле | ΠFBC             | <u>0,23</u><br>) Л  | FCHO              | ΠFBC             | <u>0,4</u><br>) Л   | FCHO              | ΠFBC             | <u>0,3</u>          | FCHO              |
|                             | JILDC            |                     |                   | JILDC            |                     |                   | JILDC            |                     |                   |
| ОЧИТАНЕ<br>ВРЕДНОСТИ        | Аксијални правац | Хоризонтални правац | Вертикални правац | Аксијални правац | Хоризонтални правац | Вертикални правац | Аксијални правац | Хоризонтални правац | Вертикални правац |
| Фреквенција, [Hz]           |                  |                     |                   |                  |                     |                   |                  |                     |                   |
| Амплитуда, [mm/s]           |                  |                     |                   |                  |                     |                   |                  |                     |                   |
| Параметар                   |                  |                     |                   | Дебл             | ьина рез            | a, [m]            | <b></b>          | 0.7                 |                   |
| Итерација                   |                  | 0,25                |                   |                  | $\frac{0,4}{1}$     |                   |                  |                     | CUO               |
| кретање стреле              | JEBC             | ј д                 | ECHU              | JEBC             | ј д                 | ECHO              | JEBC             | ј д                 | ECHO              |
| очитане<br>вредности        | Аксијални правац | Хоризонтални правац | Вертикални правац | Аксијални правац | Хоризонтални правац | Вертикални правац | Аксијални правац | Хоризонтални правац | Вертикални правац |
| Фреквенција, [Hz]           |                  |                     |                   |                  |                     |                   |                  |                     |                   |
| Амплитуда, [mm/s]           |                  |                     |                   |                  |                     |                   |                  |                     |                   |

# Прилог 2 – Формулар коришћен при мерењу вибрација на роторном багеру

# Прилог 3 – Улазни подаци за ANFIS модел

| Улазни скупови података |                            |             | Излазни скуп података | Степен         |
|-------------------------|----------------------------|-------------|-----------------------|----------------|
| $Q_{ost}$ ,             | $I_{max}$ ,                | $N_{max}$ , | $E_{max}$ ,           | похабаности    |
| $[m^3/h]$               | [A]                        | [kW]        | [kWh/m <sup>3</sup> ] | полаоаности    |
| 2044                    | 39,1                       | 263,8       | 0,102                 |                |
| 2157                    | 39.9                       | 269.1       | 0.099                 |                |
| 1998                    | 37.1                       | 250.5       | 0.098                 |                |
| 1432                    | 32.0                       | 215.8       | 0.115                 |                |
| 1432                    | 34.8                       | 234.5       | 0.127                 |                |
| 1998                    | 37.1                       | 250.5       | 0.098                 |                |
| 2157                    | 39.9                       | 269.1       | 0,099                 |                |
| 2044                    | 44.6                       | 301.1       | 0,119                 | а,             |
| 3271                    | 68.3                       | 461.0       | 0,119                 | aHf<br>attaile |
| 3451                    | 55.3                       | 401,0       | 0,120                 | 2116<br>EM(6   |
| 3431                    | <i>33,3</i><br><i>40,7</i> | 274.5       | 0,090                 | н Ко           |
| 2201                    | 40,7                       | 274,5       | 0,008                 | ГОН            |
| 2291                    | 34,0<br>29.7               | 254,5       | 0,079                 | II0]           |
| 2291                    | 38,7<br>42.5               | 201,1       | 0,090                 | ы р            |
| 5197                    | 45,5                       | 293,1       | 0,074                 | [OB            |
| 3451                    | 45,0                       | 303,8       | 0,071                 | $\dashv$ $\Xi$ |
| 32/1                    | 63,2                       | 426,3       | 0,110                 |                |
| 4089                    | 64,4                       | 434,3       | 0,090                 |                |
| 4314                    | 62,0                       | 418,3       | 0,082                 |                |
| 3997                    | 50,2                       | 338,4       | 0,070                 |                |
| 2864                    | 50,2                       | 338,4       | 0,097                 |                |
| 2864                    | 42,7                       | 287,8       | 0,081                 |                |
| 2864                    | 50,0                       | 337,3       | 0,097                 |                |
| 2044                    | 38,7                       | 261,1       | 0,101                 |                |
| 2157                    | 39,1                       | 263,8       | 0,097                 |                |
| 1998                    | 35,9                       | 242,5       | 0,095                 |                |
| 1432                    | 33,6                       | 226,5       | 0,122                 |                |
| 1432                    | 37,5                       | 253,1       | 0,139                 |                |
| 1998                    | 35,9                       | 242,5       | 0,095                 |                |
| 2157                    | 43,5                       | 293,1       | 0,109                 | <b>ч</b>       |
| 2044                    | 45,4                       | 306,4       | 0,122                 | НТИ            |
| 3271                    | 59,6                       | 402,4       | 0,103                 | мен            |
| 3451                    | 68,3                       | 461,0       | 0,113                 | ко             |
| 3197                    | 59,3                       | 399,7       | 0,105                 | он<br>и е      |
| 2291                    | 35,6                       | 239,8       | 0,082                 | IOI<br>3HI     |
| 2291                    | 34,0                       | 229,2       | 0,077                 | ре             |
| 3197                    | 44,2                       | 298,4       | 0,075                 | рњ             |
| 3451                    | 54,1                       | 365,1       | 0,088                 | Γo             |
| 3271                    | 67,2                       | 453,0       | 0,117                 |                |
| 4089                    | 63,2                       | 426,3       | 0,088                 |                |
| 4314                    | 60,4                       | 407,7       | 0,079                 |                |
| 3997                    | 47,4                       | 319,8       | 0,065                 |                |
| 2864                    | 38,3                       | 258,5       | 0,071                 |                |
| 2864                    | 32,8                       | 221,2       | 0,059                 |                |
| 2864                    | 37,0                       | 249,6       | 0,068                 |                |

Дефинисање улазних и излазних скупова података

| 2044 | 77,8  | 524,9 | 0,220 |             |
|------|-------|-------|-------|-------------|
| 2157 | 79,0  | 532,9 | 0,212 |             |
| 1998 | 73,1  | 493,0 | 0,211 |             |
| 1432 | 65,6  | 442,3 | 0,261 |             |
| 1432 | 72,3  | 487,6 | 0,291 |             |
| 1998 | 73,1  | 493,0 | 0,211 |             |
| 2157 | 83,3  | 562,2 | 0,225 | <b>Pa</b>   |
| 2044 | 90,1  | 607,5 | 0,258 | па          |
| 3271 | 128,0 | 863,3 | 0,233 | KO          |
| 3451 | 123,6 | 834,0 | 0,213 | OH          |
| 3197 | 99,9  | 674,2 | 0,184 | 10I<br>1 eJ |
| 2291 | 70,3  | 474,3 | 0,176 | 20 I<br>3HI |
| 2291 | 72,7  | 490,3 | 0,183 | be          |
| 3197 | 87,7  | 591,5 | 0,160 | 0 –<br>BH   |
| 3451 | 99,1  | 668,8 | 0,169 | оH          |
| 3271 | 130,4 | 879,3 | 0,238 | 364         |
| 4089 | 127,6 | 860,7 | 0,186 |             |
| 4314 | 122,5 | 826,0 | 0,169 |             |
| 3997 | 97,6  | 658,2 | 0,144 |             |
| 2864 | 88,5  | 596,9 | 0,181 |             |
| 2864 | 75,4  | 508,9 | 0,152 |             |
| 2864 | 110,8 | 747,4 | 0,229 |             |
| 2037 | 44,5  | 300,3 | 0,119 |             |
| 2186 | 45,0  | 303,4 | 0,112 |             |
| 2186 | 41,3  | 278,9 | 0,102 |             |
| 2037 | 39,5  | 266,6 | 0,104 |             |
| 2186 | 44,1  | 297,2 | 0,110 | %           |
| 2186 | 42,2  | 285,0 | 0,105 | 25 6        |
| 2037 | 50,9  | 343,2 | 0,139 | la 2        |
| 2037 | 53,1  | 358,5 | 0,146 | Ба,<br>На1  |
| 3498 | 69,5  | 468,8 | 0,114 | ме          |
| 3498 | 77,4  | 522,3 | 0,128 | коі         |
| 3259 | 68,1  | 459,6 | 0,120 | HC HC       |
| 3259 | 41,8  | 281,9 | 0,069 | OL (OL      |
| 3498 | 40,0  | 269,7 | 0,061 | и п         |
| 3498 | 51,8  | 349,3 | 0,082 | 0HJ         |
| 3498 | 63,1  | 425,9 | 0,103 | Данс        |
| 3259 | 75,4  | 508,7 | 0,134 | a6          |
| 4074 | 71,0  | 479,2 | 0,100 | lox         |
| 4372 | 68,6  | 462,6 | 0,090 |             |
| 4372 | 55,4  | 373,8 | 0,071 |             |
| 4074 | 45,0  | 303,4 | 0,060 |             |
| 4074 | 38,6  | 260,5 | 0,051 |             |
| 4372 | 52,7  | 355,5 | 0,067 |             |

| 2037 | 44,3  | 298,7 | 0,118 |            |
|------|-------|-------|-------|------------|
| 2186 | 43,5  | 293,7 | 0,108 |            |
| 2186 | 40,6  | 273,7 | 0,100 |            |
| 2037 | 55,7  | 376,0 | 0,154 |            |
| 2186 | 38,0  | 256,6 | 0,093 | %          |
| 2186 | 40,6  | 273,7 | 0,100 | 55 6       |
| 2037 | 43,5  | 293,7 | 0,116 | a 2        |
| 2037 | 48,6  | 327,9 | 0,132 | ња,<br>нат |
| 3498 | 74,0  | 499,0 | 0,122 | ме         |
| 3498 | 60,0  | 404,9 | 0,097 | KOI        |
| 3259 | 44,4  | 299,4 | 0,074 | он<br>Х є  |
| 3259 | 38,0  | 256,6 | 0,062 | ЮГОГО      |
| 3498 | 42,3  | 285,1 | 0,065 | и п<br>рез |
| 3498 | 47,3  | 319,3 | 0,074 | рњ         |
| 3498 | 49,0  | 330,7 | 0,077 | Гој        |
| 3259 | 68,5  | 461,9 | 0,120 | aõa        |
| 4074 | 69,7  | 470,4 | 0,098 | oXi        |
| 4372 | 67,2  | 453,3 | 0,088 | Ш          |
| 4372 | 54,5  | 367,8 | 0,070 |            |
| 4074 | 54,5  | 367,8 | 0,075 |            |
| 4074 | 46,5  | 313,6 | 0,063 |            |
| 4372 | 47,8  | 322,2 | 0,060 |            |
| 2037 | 88,8  | 599,0 | 0,255 |            |
| 2186 | 88,5  | 597,0 | 0,237 |            |
| 2186 | 81,9  | 552,6 | 0,218 |            |
| 2037 | 95,3  | 642,6 | 0,275 |            |
| 2186 | 82,1  | 553,8 | 0,218 | %          |
| 2186 | 82,8  | 558,7 | 0,220 | 25 0       |
| 2037 | 94,4  | 636,9 | 0,272 | ња<br>га 2 |
| 2037 | 101,8 | 686,4 | 0,294 | нал        |
| 3498 | 143,5 | 967,8 | 0,246 | l KC       |
| 3498 | 137,4 | 927,1 | 0,235 | ГОН        |
| 3259 | 112,5 | 759,0 | 0,205 | ЮП<br>IX ( |
| 3259 | 79,8  | 538,5 | 0,142 | e0<br>3HI  |
| 3498 | 82,2  | 554,8 | 0,137 | ре<br>ре   |
| 3498 | 99,1  | 668,7 | 0,167 | HO -       |
| 3498 | 112,2 | 756,7 | 0,190 | apt        |
| 3259 | 143,9 | 970,6 | 0,265 | 361<br>a6  |
| 4074 | 140,8 | 949,6 | 0,207 | [ox        |
| 4372 | 135,8 | 915,9 | 0,186 |            |
| 4372 | 109,9 | 741,6 | 0,149 |            |
| 4074 | 99,5  | 671,2 | 0,144 |            |
| 4074 | 85,1  | 574,1 | 0,122 |            |
| 4372 | 100,5 | 677,6 | 0,135 |            |

| 2037 | 46,3 | 312,3 | 0,125 |             |
|------|------|-------|-------|-------------|
| 2186 | 46,8 | 315,5 | 0,117 |             |
| 2186 | 43,0 | 290,0 | 0,107 |             |
| 2037 | 40,2 | 270,9 | 0,106 |             |
| 2186 | 44,9 | 302,8 | 0,112 | %           |
| 2189 | 43,0 | 290,0 | 0,107 | 5 O         |
| 2037 | 52,0 | 350,6 | 0,142 | a 5         |
| 2037 | 54,3 | 366,5 | 0,149 | ,а,<br>Нат  |
| 3498 | 71,3 | 481,2 | 0,117 | IaH         |
| 3498 | 79,6 | 537,0 | 0,132 | KOL         |
| 3259 | 69,0 | 465,6 | 0,121 | ин и<br>хе  |
| 3259 | 42,5 | 286,8 | 0,071 | OLC         |
| 3498 | 40,6 | 274,1 | 0,062 | 1 П<br>рез  |
| 3498 | 52,9 | 356,9 | 0,084 | 0HbH<br>CCT |
| 3498 | 64,7 | 436,6 | 0,105 | Дс          |
| 3259 | 77,5 | 522,9 | 0,138 | aбa         |
| 4074 | 73,0 | 492,2 | 0,103 | OX:         |
| 4372 | 70,4 | 474,9 | 0,092 | Ш           |
| 4372 | 56,7 | 382,4 | 0,073 |             |
| 4074 | 45,8 | 309,1 | 0,062 |             |
| 4074 | 39,2 | 264,5 | 0,051 |             |
| 4372 | 53,9 | 363,3 | 0,069 |             |
| 2037 | 45,1 | 304,5 | 0,121 |             |
| 2186 | 44,4 | 299,5 | 0,111 |             |
| 2186 | 41,3 | 278,7 | 0,102 |             |
| 2037 | 56,6 | 381,6 | 0,156 |             |
| 2186 | 38,7 | 260,9 | 0,094 | %           |
| 2186 | 41,3 | 278,7 | 0,102 | 20 6        |
| 2037 | 44,4 | 299,5 | 0,119 | la :        |
| 2037 | 49,7 | 335,1 | 0,135 | ња,<br>на   |
| 3498 | 76,0 | 513,0 | 0,126 | та          |
| 3498 | 61,5 | 415,1 | 0,100 | ко          |
| 3259 | 45,3 | 305,4 | 0,076 | HO.<br>XI   |
| 3259 | 38,7 | 260,9 | 0,063 | 10I<br>3HI  |
| 3498 | 43,1 | 290,6 | 0,067 | ре          |
| 3498 | 48,4 | 326,2 | 0,076 | рн          |
| 3498 | 50,1 | 338,0 | 0,079 | Го          |
| 3259 | 70,3 | 474,4 | 0,124 | a6          |
| 4074 | 71,6 | 483,3 | 0,101 | lox         |
| 4372 | 69,0 | 465,5 | 0,090 | L.          |
| 4372 | 55,8 | 376,6 | 0,072 |             |
| 4074 | 55,8 | 376,6 | 0,077 |             |
| 4074 | 47,5 | 320,2 | 0,064 |             |
| 4372 | 48,8 | 329,1 | 0,062 |             |

| 2037 | 91,4  | 616,8 | 0,263 |            |
|------|-------|-------|-------|------------|
| 2186 | 91,2  | 615,0 | 0,244 |            |
| 2186 | 84,3  | 568,7 | 0,225 |            |
| 2037 | 96,7  | 652,5 | 0,279 |            |
| 2186 | 83,6  | 563,7 | 0,223 | ~          |
| 2186 | 84,3  | 568,7 | 0,225 | ô          |
| 2037 | 96,4  | 650,0 | 0,278 | a S        |
| 2037 | 104,0 | 701,6 | 0,301 | HaT        |
| 3498 | 147,4 | 994,2 | 0,253 | ко         |
| 3498 | 141,1 | 952,1 | 0,242 | юн         |
| 3259 | 114,3 | 771,0 | 0,208 | IOF<br>X e |
| 3259 | 81,2  | 547,8 | 0,145 | 1 03 1     |
| 3498 | 83,7  | 564,7 | 0,139 | рез        |
| 3498 | 101,3 | 683,1 | 0,171 | - 0 -      |
| 3498 | 114,8 | 774,6 | 0,195 | нd         |
| 3259 | 147,8 | 997,4 | 0,272 | бби<br>аба |
| 4074 | 144,6 | 975,5 | 0,213 | E. OX6     |
| 4372 | 139,4 | 940,4 | 0,191 | Ц          |
| 4372 | 112,5 | 759,0 | 0,153 |            |
| 4074 | 101,6 | 685,7 | 0,147 |            |
| 4074 | 86,7  | 584,8 | 0,124 |            |
| 4372 | 102,6 | 692,4 | 0,138 |            |
| 1938 | 49,0  | 330,5 | 0,140 |            |
| 2175 | 49,8  | 335,9 | 0,127 |            |
| 2161 | 51,3  | 346,1 | 0,132 |            |
| 1817 | 45,8  | 309,0 | 0,138 |            |
| 1817 | 52,5  | 354,2 | 0,161 | %          |
| 2161 | 54,9  | 370,3 | 0,142 | 75 -       |
| 2175 | 51,3  | 346,1 | 0,131 | ي<br>ع     |
| 1938 | 45,4  | 306,3 | 0,128 | ња,<br>на: |
| 3100 | 67,1  | 452,6 | 0,124 | тан        |
| 3480 | 71,9  | 485,0 | 0,119 | кој        |
| 3457 | 76,2  | 514,0 | 0,127 | HO         |
| 2908 | 77,4  | 522,1 | 0,154 | 10L<br>3HI |
| 2908 | 77,4  | 522,1 | 0,154 | ре         |
| 3457 | 77,4  | 522,1 | 0,130 | OH         |
| 3480 | 75,4  | 508,6 | 0,125 | Д<br>анс   |
| 3100 | 75,0  | 505,9 | 0,140 | a6         |
| 3876 | 89,3  | 602,4 | 0,135 | Iox        |
| 4350 | 95,2  | 642,2 | 0,129 | П          |
| 4321 | 92,0  | 620,6 | 0,125 |            |
| 3634 | 87,3  | 588,9 | 0,140 |            |
| 3634 | 89,3  | 602,4 | 0,144 |            |
| 3634 | 92,5  | 608,5 | 0,156 |            |

| 1938 | 40,7  | 274,6  | 0,113 |                                       |
|------|-------|--------|-------|---------------------------------------|
| 2175 | 40,3  | 271,9  | 0,100 |                                       |
| 2161 | 42,7  | 288,0  | 0,107 |                                       |
| 1817 | 39,9  | 269,2  | 0,118 |                                       |
| 1817 | 43,5  | 293,4  | 0,130 | %                                     |
| 2161 | 46,6  | 314,4  | 0,118 | <sup>2</sup> 5 <sup>d</sup>           |
| 2175 | 40,7  | 274,6  | 0,101 | 'a 7                                  |
| 1938 | 38,7  | 261,1  | 0,107 | ьа,<br>нат                            |
| 3100 | 55,7  | 375,7  | 0,101 | ме                                    |
| 3480 | 60,5  | 408,1  | 0,098 | KOI                                   |
| 3457 | 60,5  | 408,1  | 0,099 | он<br>Х є                             |
| 2908 | 55,3  | 373,0  | 0,107 | ЮГО                                   |
| 2908 | 57,3  | 386,5  | 0,111 | и п<br>рез                            |
| 3457 | 57,3  | 386,5  | 0,093 | pHb                                   |
| 3480 | 54,1  | 365,0  | 0,087 | Гој                                   |
| 3100 | 52,1  | 351,5  | 0,094 | aõa                                   |
| 3876 | 71,5  | 482,3  | 0,106 | 0X6                                   |
| 4350 | 77,9  | 525,5  | 0,104 | Ш                                     |
| 4321 | 75,1  | 506,6  | 0,100 |                                       |
| 3634 | 70,7  | 476,9  | 0,112 |                                       |
| 3634 | 77,9  | 525,5  | 0,124 |                                       |
| 3634 | 81,5  | 528,6  | 0,157 |                                       |
| 1938 | 89,7  | 605,1  | 0,271 |                                       |
| 2175 | 90,1  | 607,8  | 0,242 |                                       |
| 2161 | 94,0  | 634,1  | 0,255 |                                       |
| 1817 | 85,7  | 578,1  | 0,275 |                                       |
| 1817 | 96,0  | 647,6  | 0,310 | %                                     |
| 2161 | 101,5 | 684,7  | 0,277 | , 15 %                                |
| 2175 | 92,0  | 620,6  | 0,248 | ња<br>Га                              |
| 1938 | 84,1  | 567,3  | 0,253 | нал                                   |
| 3100 | 122,8 | 828,4  | 0,236 | l KC<br>Me                            |
| 3480 | 132,4 | 893,2  | 0,227 | он                                    |
| 3457 | 136,7 | 922,2  | 0,237 | IOII<br>IX 6                          |
| 2908 | 132,7 | 895,2  | 0,273 | E O I                                 |
| 2908 | 134,7 | 908,7  | 0,277 | - це                                  |
| 3457 | 134,7 | 908,7  | 0,233 | - 00 -                                |
| 3480 | 129,5 | 873,6  | 0,222 | нdи<br>онт                            |
| 3100 | 127,1 | 857,4  | 0,245 | 361<br>a62                            |
| 3876 | 160,8 | 1084,7 | 0,250 | i i i i i i i i i i i i i i i i i i i |
| 4350 | 173,1 | 1167,7 | 0,240 | П                                     |
| 4321 | 167,1 | 1127,2 | 0,233 |                                       |
| 3634 | 158,0 | 1065,9 | 0,262 |                                       |
| 3634 | 167,2 | 1127,9 | 0,277 |                                       |
| 3634 | 174,2 | 1175,1 | 0,290 |                                       |

| 2044 | 61,2  | 412,8 | 0,170 |                        |
|------|-------|-------|-------|------------------------|
| 2157 | 64,4  | 434,4 | 0,170 |                        |
| 1998 | 68,8  | 464,1 | 0,197 |                        |
| 1432 | 70,1  | 472,9 | 0,281 |                        |
| 1432 | 72,8  | 491,1 | 0,293 | %                      |
| 1998 | 75,2  | 507,3 | 0,217 | 00                     |
| 2157 | 78,1  | 526,9 | 0,210 | a 10                   |
| 2044 | 76,8  | 518,1 | 0,217 | ,a,<br>laTi            |
| 3271 | 80,8  | 545,1 | 0,143 | la <del>H</del><br>AeH |
| 3451 | 83,2  | 561,3 | 0,140 | KOL                    |
| 3197 | 85,2  | 574,8 | 0,155 | ин и<br>Хе:            |
| 2291 | 87,4  | 589,6 | 0,223 | OLC                    |
| 2291 | 88,2  | 595,0 | 0,225 | 1 П<br>Эез             |
| 3197 | 90,1  | 607,8 | 0,165 | UBI<br>TT              |
| 3451 | 92,8  | 626,0 | 0,158 | Дс                     |
| 3271 | 94,2  | 635,5 | 0,169 | Gal                    |
| 4089 | 95,2  | 642,2 | 0,137 | уха                    |
| 4314 | 96,4  | 650,3 | 0,131 | Пс                     |
| 3997 | 98,5  | 664,5 | 0,145 |                        |
| 2864 | 99,8  | 673,2 | 0,205 |                        |
| 2864 | 102,4 | 690,8 | 0,211 |                        |
| 3997 | 104,2 | 702,9 | 0,154 |                        |
| 2044 | 49,1  | 331,2 | 0,133 |                        |
| 2157 | 50,6  | 341,3 | 0,130 |                        |
| 1998 | 51,3  | 346,1 | 0,143 |                        |
| 1432 | 53,1  | 358,2 | 0,207 |                        |
| 1432 | 55,2  | 372,4 | 0,216 | %                      |
| 1998 | 58,4  | 394,0 | 0,165 | 00                     |
| 2157 | 60,6  | 408,8 | 0,159 | a 1                    |
| 2044 | 62,7  | 423,0 | 0,174 | ња,                    |
| 3271 | 64,2  | 433,1 | 0,112 | иен                    |
| 3451 | 66,4  | 447,9 | 0,110 | ко                     |
| 3197 | 68,9  | 464,8 | 0,124 | он<br>хе               |
| 2291 | 70,2  | 473,6 | 0,176 | IOL                    |
| 2291 | 72,8  | 491,1 | 0,183 | I II<br>pe3            |
| 3197 | 74,8  | 504,6 | 0,135 | рњ                     |
| 3451 | 77,2  | 520,8 | 0,129 | Нο                     |
| 3271 | 80,1  | 540,3 | 0,142 | ıбa                    |
| 4089 | 81,9  | 552,5 | 0,116 | 0X6                    |
| 4314 | 83,2  | 561,3 | 0,112 | Ш                      |
| 3997 | 85,6  | 577,4 | 0,125 |                        |
| 2864 | 87,1  | 587,6 | 0,178 |                        |
| 2864 | 88,9  | 599,7 | 0,181 |                        |
| 3997 | 90,2  | 608,5 | 0,132 |                        |

| 2044 | 110,3 | 744,1  | 0,320 |             |
|------|-------|--------|-------|-------------|
| 2157 | 115,0 | 775,8  | 0,316 |             |
| 1998 | 120,1 | 810,2  | 0,357 |             |
| 1432 | 123,2 | 831,1  | 0,512 |             |
| 1432 | 128,0 | 863,5  | 0,533 | %           |
| 1998 | 133,6 | 901,3  | 0,400 | 00          |
| 2157 | 138,7 | 935,7  | 0,385 | ња.<br>а 1  |
| 2044 | 139,5 | 941,1  | 0,409 | Паl         |
| 3271 | 145,0 | 978,2  | 0,266 | ко          |
| 3451 | 149,6 | 1009,2 | 0,260 | он          |
| 3197 | 154,1 | 1039,5 | 0,290 | TOI<br>X e. |
| 2291 | 157,6 | 1063,2 | 0,414 | I OS        |
| 2291 | 161,0 | 1086,1 | 0,423 | - Ц(        |
| 3197 | 164,9 | 1112,4 | 0,311 | - 0 - L     |
| 3451 | 170,0 | 1146,8 | 0,297 | нді         |
| 3271 | 174,3 | 1175,8 | 0,322 | 36r<br>16a  |
| 4089 | 177,1 | 1194,7 | 0,262 | DXa         |
| 4314 | 179,6 | 1211,6 | 0,252 | Ш           |
| 3997 | 184,1 | 1241,9 | 0,279 |             |
| 2864 | 186,9 | 1260,8 | 0,395 |             |
| 2864 | 191,3 | 1290,5 | 0,405 |             |
| 3997 | 194,4 | 1311,4 | 0,295 |             |

| Улазни скупови података |              | Излазни скуп података | Степен                |             |
|-------------------------|--------------|-----------------------|-----------------------|-------------|
| $Q_{ost}$ ,             | $I_{max}$ ,  | $N_{max}$ ,           | $E_{max}$ ,           | похабаности |
| $[m^3/h]$               | [A]          | [kW]                  | [kWh/m <sup>3</sup> ] | полаоаности |
| 2044                    | 39,1         | 263.8                 | 0,102                 |             |
| 2157                    | 39.9         | 269.1                 | 0.099                 |             |
| 1998                    | 37.1         | 250.5                 | 0.098                 |             |
| 1432                    | 32.0         | 215.8                 | 0.115                 |             |
| 1432                    | 34.8         | 234.5                 | 0.127                 |             |
| 1998                    | 37.1         | 250.5                 | 0.098                 |             |
| 2157                    | 39.9         | 269.1                 | 0.099                 |             |
| 2044                    | 44.6         | $\frac{20}{11}$       | 0 119                 | а,          |
| 3271                    | 68.3         | 461.0                 | 0.120                 | ент         |
| 3451                    | 55 3         | 373.0                 | 0,090                 | 0118<br>eM  |
| 3107                    | 40.7         | 274.5                 | 0,050                 | ел          |
| 2201                    | 34.8         | 274,5                 | 0,008                 | ГОН         |
| 2291                    | 39.7         | 254,5                 | 0,079                 | 110<br>)e3] |
| 2291                    | 30,7<br>42.5 | 201,1                 | 0,090                 | ир          |
| 2451                    | 45,5         | 293,1                 | 0,074                 | [OB         |
| 5451<br>2271            | 43,0         | 505,8<br>426.2        | 0,071                 | Η           |
| 3271                    | 03,2         | 420,3                 | 0,110                 |             |
| 4089                    | 64,4         | 434,3                 | 0,090                 |             |
| 4314                    | 62,0         | 418,3                 | 0,082                 |             |
| 3997                    | 50,2         | 338,4                 | 0,070                 |             |
| 2864                    | 50,2         | 338,4                 | 0,097                 |             |
| 2864                    | 42,7         | 287,8                 | 0,081                 |             |
| 2864                    | 50,0         | 337,3                 | 0,097                 |             |
| 2044                    | 77,8         | 524,9                 | 0,220                 |             |
| 2157                    | 79,0         | 532,9                 | 0,212                 |             |
| 1998                    | 73,1         | 493,0                 | 0,211                 |             |
| 1432                    | 65,6         | 442,3                 | 0,261                 |             |
| 1432                    | 72,3         | 487,6                 | 0,291                 |             |
| 1998                    | 73,1         | 493,0                 | 0,211                 | ¢.          |
| 2157                    | 83,3         | 562,2                 | 0,225                 | Ъа          |
| 2044                    | 90,1         | 607,5                 | 0,258                 | ПТИ         |
| 3271                    | 128,0        | 863,3                 | 0,233                 | AeF         |
| 3451                    | 123,6        | 834,0                 | 0,213                 | OH<br>Ten   |
| 3197                    | 99,9         | 674,2                 | 0,184                 | 10I<br>1 e. |
| 2291                    | 70,3         | 474,3                 | 0,176                 | 3HI         |
| 2291                    | 72,7         | 490,3                 | 0,183                 | ре          |
| 3197                    | 87,7         | 591,5                 | 0,160                 | 0 —<br>ВИ   |
| 3451                    | 99,1         | 668,8                 | 0,169                 | нd          |
| 3271                    | 130,4        | 879,3                 | 0,238                 | [           |
| 4089                    | 127.6        | 860.7                 | 0.186                 | רים         |
| 4314                    | 122.5        | 826.0                 | 0.169                 |             |
| 3997                    | 97.6         | 658.2                 | 0.144                 |             |
| 2864                    | 88.5         | 596.9                 | 0.181                 |             |
| 2864                    | 75.4         | 508.9                 | 0.152                 |             |
| 2864                    | 110.8        | 747.4                 | 0,229                 |             |

# Подаци за тренирање ANFIS модела

| 2037 | 44,5  | 300,3 | 0,119 |             |
|------|-------|-------|-------|-------------|
| 2186 | 45,0  | 303,4 | 0,112 |             |
| 2186 | 41,3  | 278,9 | 0,102 |             |
| 2037 | 39,5  | 266,6 | 0,104 |             |
| 2186 | 44,1  | 297,2 | 0,110 | %           |
| 2186 | 42,2  | 285,0 | 0,105 | 55 6        |
| 2037 | 50,9  | 343,2 | 0,139 | a 2         |
| 2037 | 53,1  | 358,5 | 0,146 | ,a,<br>HaT  |
| 3498 | 69,5  | 468,8 | 0,114 | IaH         |
| 3498 | 77,4  | 522,3 | 0,128 | ког         |
| 3259 | 68,1  | 459,6 | 0,120 | и п         |
| 3259 | 41,8  | 281,9 | 0,069 | OLC         |
| 3498 | 40,0  | 269,7 | 0,061 | 1 П<br>рез  |
| 3498 | 51,8  | 349,3 | 0,082 | 0HJ<br>CT   |
| 3498 | 63,1  | 425,9 | 0,103 | Дс          |
| 3259 | 75,4  | 508,7 | 0,134 | aбa         |
| 4074 | 71,0  | 479,2 | 0,100 | oXa         |
| 4372 | 68,6  | 462,6 | 0,090 | Ш           |
| 4372 | 55,4  | 373,8 | 0,071 |             |
| 4074 | 45,0  | 303,4 | 0,060 |             |
| 4074 | 38,6  | 260,5 | 0,051 |             |
| 4372 | 52,7  | 355,5 | 0,067 |             |
| 2037 | 88,8  | 599,0 | 0,255 |             |
| 2186 | 88,5  | 597,0 | 0,237 |             |
| 2186 | 81,9  | 552,6 | 0,218 |             |
| 2037 | 95,3  | 642,6 | 0,275 |             |
| 2186 | 82,1  | 553,8 | 0,218 | %           |
| 2186 | 82,8  | 558,7 | 0,220 | 25 '        |
| 2037 | 94,4  | 636,9 | 0,272 | lњa<br>ra Ĵ |
| 2037 | 101,8 | 686,4 | 0,294 | на          |
| 3498 | 143,5 | 967,8 | 0,246 | I KG        |
| 3498 | 137,4 | 927,1 | 0,235 | ГОЕ         |
| 3259 | 112,5 | 759,0 | 0,205 | ПО<br>4Х    |
| 3259 | 79,8  | 538,5 | 0,142 | e0<br>3HI   |
| 3498 | 82,2  | 554,8 | 0,137 | ре<br>ре    |
| 3498 | 99,1  | 668,7 | 0,167 | - OH        |
| 3498 | 112,2 | 756,7 | 0,190 | анс         |
| 3259 | 143,9 | 970,6 | 0,265 | 361<br>:a6  |
| 4074 | 140,8 | 949,6 | 0,207 | Iox         |
| 4372 | 135,8 | 915,9 | 0,186 | H           |
| 4372 | 109,9 | 741,6 | 0,149 |             |
| 4074 | 99,5  | 671,2 | 0,144 |             |
| 4074 | 85,1  | 574,1 | 0,122 |             |
| 4372 | 100,5 | 677,6 | 0,135 |             |

| 2037 | 46,3  | 312,3 | 0,125 |                 |
|------|-------|-------|-------|-----------------|
| 2186 | 46,8  | 315,5 | 0,117 |                 |
| 2186 | 43,0  | 290,0 | 0,107 |                 |
| 2037 | 40,2  | 270,9 | 0,106 |                 |
| 2186 | 44,9  | 302,8 | 0,112 | %               |
| 2189 | 43,0  | 290,0 | 0,107 | 50 <del>6</del> |
| 2037 | 52,0  | 350,6 | 0,142 | a s             |
| 2037 | 54,3  | 366,5 | 0,149 | ы,<br>нат       |
| 3498 | 71,3  | 481,2 | 0,117 | IaH             |
| 3498 | 79,6  | 537,0 | 0,132 | KOL             |
| 3259 | 69,0  | 465,6 | 0,121 | и п<br>Х є      |
| 3259 | 42,5  | 286,8 | 0,071 | OLC             |
| 3498 | 40,6  | 274,1 | 0,062 | 1 П<br>рез      |
| 3498 | 52,9  | 356,9 | 0,084 | 0Hb1            |
| 3498 | 64,7  | 436,6 | 0,105 | Дс              |
| 3259 | 77,5  | 522,9 | 0,138 | aбa             |
| 4074 | 73,0  | 492,2 | 0,103 | oXi             |
| 4372 | 70,4  | 474,9 | 0,092 | Ш               |
| 4372 | 56,7  | 382,4 | 0,073 |                 |
| 4074 | 45,8  | 309,1 | 0,062 |                 |
| 4074 | 39,2  | 264,5 | 0,051 |                 |
| 4372 | 53,9  | 363,3 | 0,069 |                 |
| 2037 | 91,4  | 616,8 | 0,263 |                 |
| 2186 | 91,2  | 615,0 | 0,244 |                 |
| 2186 | 84,3  | 568,7 | 0,225 |                 |
| 2037 | 96,7  | 652,5 | 0,279 |                 |
| 2186 | 83,6  | 563,7 | 0,223 | %               |
| 2186 | 84,3  | 568,7 | 0,225 | 20 0            |
| 2037 | 96,4  | 650,0 | 0,278 | ња<br>Га 2      |
| 2037 | 104,0 | 701,6 | 0,301 | нал             |
| 3498 | 147,4 | 994,2 | 0,253 | Me              |
| 3498 | 141,1 | 952,1 | 0,242 | он              |
| 3259 | 114,3 | 771,0 | 0,208 | IOII            |
| 3259 | 81,2  | 547,8 | 0,145 | e0 ]            |
| 3498 | 83,7  | 564,7 | 0,139 | рес р           |
| 3498 | 101,3 | 683,1 | 0,171 | - 0]            |
| 3498 | 114,8 | 774,6 | 0,195 | ирн             |
| 3259 | 147,8 | 997,4 | 0,272 | 361<br>a62      |
| 4074 | 144,6 | 975,5 | 0,213 | , vo            |
| 4372 | 139,4 | 940,4 | 0,191 |                 |
| 4372 | 112,5 | 759,0 | 0,153 |                 |
| 4074 | 101,6 | 685,7 | 0,147 |                 |
| 4074 | 86,7  | 584,8 | 0,124 |                 |
| 4372 | 102,6 | 692,4 | 0,138 |                 |

| 1938 | 49,0  | 330,5  | 0,140 |             |
|------|-------|--------|-------|-------------|
| 2175 | 49,8  | 335,9  | 0,127 |             |
| 2161 | 51,3  | 346,1  | 0,132 |             |
| 1817 | 45,8  | 309,0  | 0,138 |             |
| 1817 | 52,5  | 354,2  | 0,161 | ~           |
| 2161 | 54,9  | 370,3  | 0,142 | 2 d         |
| 2175 | 51,3  | 346,1  | 0,131 | a J         |
| 1938 | 45,4  | 306,3  | 0,128 | ,a,<br>HaT  |
| 3100 | 67,1  | 452,6  | 0,124 | IaH         |
| 3480 | 71,9  | 485,0  | 0,119 | KOL         |
| 3457 | 76,2  | 514,0  | 0,127 | ин и<br>хе  |
| 2908 | 77,4  | 522,1  | 0,154 | OLC         |
| 2908 | 77,4  | 522,1  | 0,154 | 1 II<br>pe3 |
| 3457 | 77,4  | 522,1  | 0,130 | 0Hb1        |
| 3480 | 75,4  | 508,6  | 0,125 | Дс          |
| 3100 | 75,0  | 505,9  | 0,140 | aбa         |
| 3876 | 89,3  | 602,4  | 0,135 | oXi         |
| 4350 | 95,2  | 642,2  | 0,129 | Ш           |
| 4321 | 92,0  | 620,6  | 0,125 |             |
| 3634 | 87,3  | 588,9  | 0,140 |             |
| 3634 | 89,3  | 602,4  | 0,144 |             |
| 3634 | 92,5  | 608,5  | 0,156 |             |
| 1938 | 89,7  | 605,1  | 0,271 |             |
| 2175 | 90,1  | 607,8  | 0,242 |             |
| 2161 | 94,0  | 634,1  | 0,255 |             |
| 1817 | 85,7  | 578,1  | 0,275 |             |
| 1817 | 96,0  | 647,6  | 0,310 | %           |
| 2161 | 101,5 | 684,7  | 0,277 | , 15        |
| 2175 | 92,0  | 620,6  | 0,248 | Ъ.<br>Га    |
| 1938 | 84,1  | 567,3  | 0,253 | нал         |
| 3100 | 122,8 | 828,4  | 0,236 | I KO        |
| 3480 | 132,4 | 893,2  | 0,227 | ГОН         |
| 3457 | 136,7 | 922,2  | 0,237 | 100<br>1X   |
| 2908 | 132,7 | 895,2  | 0,273 | e0<br>3HI   |
| 2908 | 134,7 | 908,7  | 0,277 | ре<br>ре    |
| 3457 | 134,7 | 908,7  | 0,233 | HO -        |
| 3480 | 129,5 | 873,6  | 0,222 | анс         |
| 3100 | 127,1 | 857,4  | 0,245 | 361<br>a6;  |
| 3876 | 160,8 | 1084,7 | 0,250 | lox         |
| 4350 | 173,1 | 1167,7 | 0,240 |             |
| 4321 | 167,1 | 1127,2 | 0,233 |             |
| 3634 | 158,0 | 1065,9 | 0,262 |             |
| 3634 | 167,2 | 1127,9 | 0,277 |             |
| 3634 | 174,2 | 1175,1 | 0,290 |             |

| 2044 | 61,2  | 412,8  | 0,170 |             |
|------|-------|--------|-------|-------------|
| 2157 | 64,4  | 434,4  | 0,170 |             |
| 1998 | 68,8  | 464,1  | 0,197 |             |
| 1432 | 70,1  | 472,9  | 0,281 |             |
| 1432 | 72,8  | 491,1  | 0,293 | %           |
| 1998 | 75,2  | 507,3  | 0,217 | 00          |
| 2157 | 78,1  | 526,9  | 0,210 | a 1         |
| 2044 | 76,8  | 518,1  | 0,217 | a,<br>aTa   |
| 3271 | 80,8  | 545,1  | 0,143 | laH<br>feH  |
| 3451 | 83,2  | 561,3  | 0,140 | KOL         |
| 3197 | 85,2  | 574,8  | 0,155 | ин и<br>Ке  |
| 2291 | 87,4  | 589,6  | 0,223 | OLC         |
| 2291 | 88,2  | 595,0  | 0,225 | 4 П<br>Эез  |
| 3197 | 90,1  | 607,8  | 0,165 | льи<br>лтр  |
| 3451 | 92,8  | 626,0  | 0,158 | Дс          |
| 3271 | 94,2  | 635,5  | 0,169 | Qai         |
| 4089 | 95,2  | 642,2  | 0,137 | оха         |
| 4314 | 96,4  | 650,3  | 0,131 | Пс          |
| 3997 | 98,5  | 664,5  | 0,145 |             |
| 2864 | 99,8  | 673,2  | 0,205 |             |
| 2864 | 102,4 | 690,8  | 0,211 |             |
| 3997 | 104,2 | 702,9  | 0,154 |             |
| 2044 | 110,3 | 744,1  | 0,320 |             |
| 2157 | 115,0 | 775,8  | 0,316 |             |
| 1998 | 120,1 | 810,2  | 0,357 |             |
| 1432 | 123,2 | 831,1  | 0,512 |             |
| 1432 | 128,0 | 863,5  | 0,533 | %           |
| 1998 | 133,6 | 901,3  | 0,400 | ,<br>00     |
| 2157 | 138,7 | 935,7  | 0,385 | ња<br>а 1   |
| 2044 | 139,5 | 941,1  | 0,409 | ыпа         |
| 3271 | 145,0 | 978,2  | 0,266 | I KO<br>Meł |
| 3451 | 149,6 | 1009,2 | 0,260 | TOF         |
| 3197 | 154,1 | 1039,5 | 0,290 | ПО)<br>Хе   |
| 2291 | 157,6 | 1063,2 | 0,414 | ео          |
| 2291 | 161,0 | 1086,1 | 0,423 | - ц         |
| 3197 | 164,9 | 1112,4 | 0,311 | HO - CT ]   |
| 3451 | 170,0 | 1146,8 | 0,297 | Apt         |
| 3271 | 174,3 | 1175,8 | 0,322 | 361<br>a6a  |
| 4089 | 177,1 | 1194,7 | 0,262 | 0X8         |
| 4314 | 179,6 | 1211,6 | 0,252 | Π           |
| 3997 | 184,1 | 1241,9 | 0,279 |             |
| 2864 | 186,9 | 1260,8 | 0,395 |             |
| 2864 | 191,3 | 1290,5 | 0,405 |             |
| 3997 | 194,4 | 1311,4 | 0,295 |             |

# Подаци за тестирање ANFIS модела

| 2044 | 38,7 | 261,1 | 0,101 |            |
|------|------|-------|-------|------------|
| 2157 | 39,1 | 263,8 | 0,097 |            |
| 1998 | 35,9 | 242,5 | 0,095 |            |
| 1432 | 33,6 | 226,5 | 0,122 |            |
| 1432 | 37,5 | 253,1 | 0,139 |            |
| 1998 | 35,9 | 242,5 | 0,095 |            |
| 2157 | 43,5 | 293,1 | 0,109 |            |
| 2044 | 45,4 | 306,4 | 0,122 | Ба,<br>ТИ  |
| 3271 | 59,6 | 402,4 | 0,103 | Iar        |
| 3451 | 68,3 | 461,0 | 0,113 | KOI<br>Ten |
| 3197 | 59,3 | 399,7 | 0,105 | он<br>1 ел |
| 2291 | 35,6 | 239,8 | 0,082 | 3HF        |
| 2291 | 34,0 | 229,2 | 0,077 | ре         |
| 3197 | 44,2 | 298,4 | 0,075 | рњ         |
| 3451 | 54,1 | 365,1 | 0,088 | Hc         |
| 3271 | 67,2 | 453,0 | 0,117 |            |
| 4089 | 63,2 | 426,3 | 0,088 |            |
| 4314 | 60,4 | 407,7 | 0,079 |            |
| 3997 | 47,4 | 319,8 | 0,065 |            |
| 2864 | 38,3 | 258,5 | 0,071 |            |
| 2864 | 32,8 | 221,2 | 0,059 |            |
| 2864 | 37,0 | 249,6 | 0,068 |            |
| 2037 | 44,3 | 298,7 | 0,118 |            |
| 2186 | 43,5 | 293,7 | 0,108 |            |
| 2186 | 40,6 | 273,7 | 0,100 |            |
| 2037 | 55,7 | 376,0 | 0,154 |            |
| 2186 | 38,0 | 256,6 | 0,093 | %          |
| 2186 | 40,6 | 273,7 | 0,100 | 25 -       |
| 2037 | 43,5 | 293,7 | 0,116 | La ,       |
| 2037 | 48,6 | 327,9 | 0,132 | ња,        |
| 3498 | 74,0 | 499,0 | 0,122 | та         |
| 3498 | 60,0 | 404,9 | 0,097 | ко         |
| 3259 | 44,4 | 299,4 | 0,074 | HO<br>XI   |
| 3259 | 38,0 | 256,6 | 0,062 | 3Ht        |
| 3498 | 42,3 | 285,1 | 0,065 | ы I<br>pe  |
| 3498 | 47,3 | 319,3 | 0,074 | рн         |
| 3498 | 49,0 | 330,7 | 0,077 | Го         |
| 3259 | 68,5 | 461,9 | 0,120 | aõ         |
| 4074 | 69,7 | 470,4 | 0,098 | lox        |
| 4372 | 67,2 | 453,3 | 0,088 |            |
| 4372 | 54,5 | 367,8 | 0,070 |            |
| 4074 | 54,5 | 367,8 | 0,075 |            |
| 4074 | 46,5 | 313,6 | 0,063 |            |
| 4372 | 47,8 | 322,2 | 0,060 |            |

| 2037 | 45,1 | 304,5 | 0,121 |            |
|------|------|-------|-------|------------|
| 2186 | 44,4 | 299,5 | 0,111 |            |
| 2186 | 41,3 | 278,7 | 0,102 |            |
| 2037 | 56,6 | 381,6 | 0,156 |            |
| 2186 | 38,7 | 260,9 | 0,094 | °          |
| 2186 | 41,3 | 278,7 | 0,102 | 0 6        |
| 2037 | 44,4 | 299,5 | 0,119 | a 5        |
| 2037 | 49,7 | 335,1 | 0,135 | ња,<br>нат |
| 3498 | 76,0 | 513,0 | 0,126 | Шан<br>Меј |
| 3498 | 61,5 | 415,1 | 0,100 | ko         |
| 3259 | 45,3 | 305,4 | 0,076 | HO<br>IX 6 |
| 3259 | 38,7 | 260,9 | 0,063 | IOL        |
| 3498 | 43,1 | 290,6 | 0,067 | и г        |
| 3498 | 48,4 | 326,2 | 0,076 | рњ         |
| 3498 | 50,1 | 338,0 | 0,079 | Го         |
| 3259 | 70,3 | 474,4 | 0,124 | aбe        |
| 4074 | 71,6 | 483,3 | 0,101 | xo         |
| 4372 | 69,0 | 465,5 | 0,090 | Ш          |
| 4372 | 55,8 | 376,6 | 0,072 |            |
| 4074 | 55,8 | 376,6 | 0,077 |            |
| 4074 | 47,5 | 320,2 | 0,064 |            |
| 4372 | 48,8 | 329,1 | 0,062 |            |
| 1938 | 40,7 | 274,6 | 0,113 |            |
| 2175 | 40,3 | 271,9 | 0,100 |            |
| 2161 | 42,7 | 288,0 | 0,107 |            |
| 1817 | 39,9 | 269,2 | 0,118 |            |
| 1817 | 43,5 | 293,4 | 0,130 | %          |
| 2161 | 46,6 | 314,4 | 0,118 | 75 6       |
| 2175 | 40,7 | 274,6 | 0,101 | g          |
| 1938 | 38,7 | 261,1 | 0,107 | ња,        |
| 3100 | 55,7 | 375,7 | 0,101 | ме         |
| 3480 | 60,5 | 408,1 | 0,098 | ко         |
| 3457 | 60,5 | 408,1 | 0,099 | HO<br>XI   |
| 2908 | 55,3 | 373,0 | 0,107 | 10L<br>3HI |
| 2908 | 57,3 | 386,5 | 0,111 | ре         |
| 3457 | 57,3 | 386,5 | 0,093 | рњ         |
| 3480 | 54,1 | 365,0 | 0,087 | Го         |
| 3100 | 52,1 | 351,5 | 0,094 | a6ɛ        |
| 3876 | 71,5 | 482,3 | 0,106 | voj        |
| 4350 | 77,9 | 525,5 | 0,104 |            |
| 4321 | 75,1 | 506,6 | 0,100 |            |
| 3634 | 70,7 | 476,9 | 0,112 |            |
| 3634 | 77,9 | 525,5 | 0,124 |            |
| 3634 | 81,5 | 528,6 | 0,157 |            |

| 2044 | 49,1 | 331,2 | 0,133 |             |
|------|------|-------|-------|-------------|
| 2157 | 50,6 | 341,3 | 0,130 |             |
| 1998 | 51,3 | 346,1 | 0,143 |             |
| 1432 | 53,1 | 358,2 | 0,207 |             |
| 1432 | 55,2 | 372,4 | 0,216 | %           |
| 1998 | 58,4 | 394,0 | 0,165 | 00          |
| 2157 | 60,6 | 408,8 | 0,159 | a 1         |
| 2044 | 62,7 | 423,0 | 0,174 | Ьа,<br>laTt |
| 3271 | 64,2 | 433,1 | 0,112 | лен         |
| 3451 | 66,4 | 447,9 | 0,110 | KOJ         |
| 3197 | 68,9 | 464,8 | 0,124 | OH<br>X e.  |
| 2291 | 70,2 | 473,6 | 0,176 | IOL         |
| 2291 | 72,8 | 491,1 | 0,183 | И П<br>Эез  |
| 3197 | 74,8 | 504,6 | 0,135 | рњ          |
| 3451 | 77,2 | 520,8 | 0,129 | Го          |
| 3271 | 80,1 | 540,3 | 0,142 | 16a         |
| 4089 | 81,9 | 552,5 | 0,116 | ахс         |
| 4314 | 83,2 | 561,3 | 0,112 | Ш           |
| 3997 | 85,6 | 577,4 | 0,125 |             |
| 2864 | 87,1 | 587,6 | 0,178 |             |
| 2864 | 88,9 | 599,7 | 0,181 |             |
| 3997 | 90,2 | 608,5 | 0,132 |             |
# Прилог 4 – Резултати ANFIS модела

| ANF1  | ANF2     | ANF3       | ANF4      | ANF5      | ANF6       | ANF7                    | ANF8                    | ANF9  |
|-------|----------|------------|-----------|-----------|------------|-------------------------|-------------------------|-------|
|       | Предикци | ја специфи | чне потро | ошње елек | тричне ене | ергије Е <sub>тах</sub> | , [kWh/m <sup>3</sup> ] | ]     |
| 0,121 | 0,106    | 0,100      | 0,105     | 0,109     | 0,098      | 0,125                   | 0,105                   | 0,102 |
| 0,112 | 0,103    | 0,095      | 0,102     | 0,101     | 0,099      | 0,114                   | 0,105                   | 0,096 |
| 0,123 | 0,106    | 0,102      | 0,102     | 0,110     | 0,095      | 0,129                   | 0,105                   | 0,105 |
| 0,136 | 0,123    | 0,123      | 0,118     | 0,126     | 0,119      | 0,141                   | 0,122                   | 0,118 |
| 0,138 | 0,121    | 0,119      | 0,125     | 0,111     | 0,096      | 0,141                   | 0,122                   | 0,118 |
| 0,123 | 0,106    | 0,102      | 0,102     | 0,110     | 0,095      | 0,129                   | 0,105                   | 0,105 |
| 0,112 | 0,103    | 0,095      | 0,102     | 0,101     | 0,099      | 0,114                   | 0,105                   | 0,096 |
| 0,125 | 0,113    | 0,119      | 0,120     | 0,118     | 0,113      | 0,125                   | 0,109                   | 0,103 |
| 0,111 | 0,121    | 0,121      | 0,117     | 0,127     | 0,105      | 0,108                   | 0,123                   | 0,103 |
| 0,083 | 0,095    | 0,091      | 0,088     | 0,087     | 0,111      | 0,081                   | 0,118                   | 0,098 |
| 0,078 | 0,074    | 0,069      | 0,062     | 0,073     | 0,060      | 0,084                   | 0,075                   | 0,069 |
| 0,098 | 0,090    | 0,087      | 0,081     | 0,088     | 0,093      | 0,101                   | 0,091                   | 0,100 |
| 0,099 | 0,091    | 0,091      | 0,091     | 0,089     | 0,094      | 0,101                   | 0,091                   | 0,100 |
| 0,079 | 0,070    | 0,075      | 0,068     | 0,074     | 0,067      | 0,084                   | 0,065                   | 0,071 |
| 0,076 | 0,065    | 0,068      | 0,069     | 0,068     | 0,064      | 0,081                   | 0,058                   | 0,060 |
| 0,099 | 0,115    | 0,113      | 0,107     | 0,125     | 0,096      | 0,095                   | 0,123                   | 0,106 |
| 0,080 | 0,094    | 0,083      | 0,090     | 0,106     | 0,066      | 0,080                   | 0,094                   | 0,062 |
| 0,075 | 0,085    | 0,078      | 0,081     | 0,096     | 0,069      | 0,075                   | 0,082                   | 0,073 |
| 0,067 | 0,071    | 0,077      | 0,070     | 0,061     | 0,060      | 0,065                   | 0,065                   | 0,087 |
| 0,086 | 0,099    | 0,097      | 0,089     | 0,082     | 0,069      | 0,084                   | 0,095                   | 0,097 |
| 0,082 | 0,071    | 0,080      | 0,072     | 0,069     | 0,047      | 0,084                   | 0,067                   | 0,042 |
| 0,086 | 0,097    | 0,097      | 0,089     | 0,082     | 0,068      | 0,084                   | 0,092                   | 0,097 |
| 0,237 | 0,211    | 0,228      | 0,222     | 0,217     | 0,254      | 0,248                   | 0,197                   | 0,237 |
| 0,222 | 0,210    | 0,216      | 0,216     | 0,204     | 0,250      | 0,227                   | 0,203                   | 0,220 |
| 0,216 | 0,198    | 0,220      | 0,210     | 0,214     | 0,188      | 0,231                   | 0,182                   | 0,245 |
| 0,200 | 0,281    | 0,261      | 0,226     | 0,329     | 0,184      | 0,208                   | 0,282                   | 0,138 |
| 0,241 | 0,281    | 0,292      | 0,253     | 0,249     | 0,253      | 0,254                   | 0,282                   | 0,310 |
| 0,216 | 0,198    | 0,220      | 0,210     | 0,214     | 0,188      | 0,231                   | 0,182                   | 0,245 |
| 0,242 | 0,234    | 0,222      | 0,230     | 0,218     | 0,229      | 0,251                   | 0,234                   | 0,220 |
| 0,292 | 0,267    | 0,261      | 0,265     | 0,268     | 0,239      | 0,313                   | 0,271                   | 0,206 |
| 0,223 | 0,234    | 0,232      | 0,231     | 0,277     | 0,255      | 0,208                   | 0,247                   | 0,264 |
| 0,206 | 0,223    | 0,218      | 0,211     | 0,208     | 0,257      | 0,198                   | 0,243                   | 0,247 |
| 0,187 | 0,177    | 0,181      | 0,174     | 0,201     | 0,217      | 0,208                   | 0,176                   | 0,212 |
| 0,157 | 0,183    | 0,188      | 0,178     | 0,175     | 0,146      | 0,151                   | 0,188                   | 0,178 |
| 0,168 | 0,183    | 0,198      | 0,185     | 0,175     | 0,166      | 0,162                   | 0,188                   | 0,220 |
| 0,168 | 0,165    | 0,160      | 0,154     | 0,167     | 0,140      | 0,201                   | 0,176                   | 0,123 |
| 0,177 | 0,167    | 0,169      | 0,164     | 0,184     | 0,185      | 0,198                   | 0,167                   | 0,186 |
| 0,228 | 0,236    | 0,231      | 0,237     | 0,287     | 0,232      | 0,208                   | 0,247                   | 0,264 |
| 0,170 | 0,194    | 0,186      | 0,184     | 0,210     | 0,125      | 0,151                   | 0,209                   | 0,154 |
| 0,162 | 0,176    | 0,171      | 0,166     | 0,180     | 0,164      | 0,151                   | 0,188                   | 0,183 |
| 0,149 | 0,147    | 0,148      | 0,144     | 0,161     | 0,142      | 0,151                   | 0,147                   | 0,147 |
| 0,178 | 0,181    | 0,174      | 0,169     | 0,176     | 0,109      | 0,206                   | 0,201                   | 0,109 |
| 0,141 | 0,150    | 0,155      | 0,144     | 0,133     | 0,121      | 0,135                   | 0,155                   | 0,152 |
| 0,210 | 0,222    | 0,220      | 0,206     | 0,162     | 0,129      | 0,208                   | 0,159                   | 0,153 |

## Тренинг скуп података

| 0,125          | 0,113          | 0,119          | 0,120          | 0,118          | 0,112          | 0,125          | 0,109          | 0,102          |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 0,112          | 0,109          | 0,115          | 0,114          | 0,106          | 0,111          | 0,111          | 0,110          | 0,109          |
| 0,110          | 0,103          | 0,099          | 0,104          | 0,100          | 0,101          | 0,111          | 0,105          | 0,095          |
| 0,122          | 0,106          | 0,101          | 0,107          | 0,110          | 0,098          | 0,125          | 0,105          | 0,099          |
| 0,112          | 0,107          | 0,110          | 0,111          | 0,104          | 0,108          | 0,111          | 0,108          | 0,103          |
| 0,110          | 0,104          | 0,102          | 0,106          | 0,101          | 0,103          | 0,111          | 0,105          | 0,095          |
| 0,132          | 0,143          | 0,145          | 0,138          | 0,137          | 0,145          | 0,125          | 0,144          | 0,154          |
| 0,136          | 0,155          | 0,148          | 0,145          | 0,147          | 0,160          | 0,125          | 0,164          | 0,154          |
| 0,108          | 0,114          | 0,117          | 0,113          | 0,115          | 0,098          | 0,107          | 0,115          | 0,099          |
| 0.132          | 0.124          | 0.130          | 0.127          | 0.119          | 0.141          | 0.135          | 0.113          | 0.134          |
| 0.111          | 0.121          | 0.121          | 0.117          | 0.128          | 0.105          | 0.108          | 0.123          | 0.102          |
| 0.077          | 0.072          | 0.069          | 0.064          | 0.072          | 0.061          | 0.084          | 0.074          | 0.065          |
| 0.073          | 0.063          | 0.062          | 0.058          | 0.064          | 0.051          | 0.079          | 0.067          | 0.059          |
| 0.079          | 0.082          | 0.085          | 0.081          | 0.076          | 0.090          | 0.079          | 0.083          | 0.098          |
| 0.093          | 0.108          | 0.097          | 0.102          | 0.114          | 0.089          | 0.090          | 0.115          | 0.086          |
| 0.133          | 0.132          | 0.138          | 0.130          | 0.130          | 0.149          | 0.135          | 0.127          | 0.153          |
| 0.094          | 0.097          | 0.102          | 0.100          | 0.092          | 0.083          | 0.095          | 0.096          | 0.114          |
| 0.086          | 0.087          | 0.090          | 0.088          | 0.090          | 0.073          | 0.089          | 0.082          | 0.067          |
| 0.068          | 0.074          | 0.072          | 0.071          | 0.072          | 0.082          | 0.065          | 0.082          | 0,073          |
| 0.065          | 0.054          | 0.057          | 0.061          | 0.053          | 0.045          | 0.065          | 0.047          | 0.051          |
| 0.063          | 0.054          | 0.052          | 0.052          | 0.049          | 0.035          | 0.065          | 0.056          | 0.052          |
| 0,066          | 0.066          | 0.068          | 0.067          | 0.064          | 0,069          | 0.065          | 0.065          | 0.073          |
| 0,000          | 0,000          | 0,000          | 0,007          | 0,001          | 0,005          | 0,005          | 0,005          | 0,073          |
| 0,250          | 0,252          | 0.233          | 0,201<br>0,244 | 0,202          | 0,235          | 0,275          | 0,271          | 0,201          |
| 0,230          | 0,252          | 0.218          | 0,211          | 0,209          | 0,223          | 0,275          | 0,271          | 0,200          |
| 0,250          | 0,222<br>0,275 | 0,210          | 0,222          | 0,202          | 0,232<br>0,274 | 0,250          | 0,223          | 0,220          |
| 0,300          | 0,273          | 0,200          | 0,203          | 0,209          | 0,274<br>0,231 | 0,313          | 0,271<br>0,224 | 0,220          |
| 0,230          | 0,223          | 0,210          | 0,225          | 0,202          | 0,231          | 0,237          | 0,224<br>0,230 | 0,220          |
| 0,255          | 0,227<br>0,274 | 0,217          | 0,223          | 0,212          | 0,220          | 0,2+1<br>0 315 | 0,230          | 0,220          |
| 0,300          | 0,274          | 0,200          | 0,202          | 0,270          | 0,200          | 0,315          | 0,271          | 0,207          |
| 0,321          | 0,201<br>0.242 | 0,275          | 0,510          | 0,279          | 0,351          | 0,313<br>0.241 | 0,271          | 0,303          |
| 0,233          | 0,242<br>0,231 | 0,247<br>0,237 | 0,231          | 0,220          | 0,255          | 0,241          | 0,211<br>0,241 | 0,209          |
| 0,232          | 0,207          | 0,203          | 0,230          | 0,220          | 0,215          | 0,193          | 0,241<br>0.184 | 0,152          |
| 0,200          | 0,207          | 0,203          | 0,171          | 0,177          | 0,105          | 0,200          | 0,104          | 0,152          |
| 0,147<br>0.145 | 0,144          | 0,143          | 0,135          | 0,130          | 0,107          | 0,155          | 0,177<br>0.126 | 0,133          |
| 0,145<br>0.175 | 0,150          | 0,154          | 0,155          | 0,12)          | 0,132          | 0,197          | 0,120          | 0,134          |
| 0,175          | 0,103          | 0,100          | 0,103          | 0,151          | 0,151          | 0,193          | 0,102          | 0,130          |
| 0,105          | 0,104          | 0,100          | 0,105          | 0,150          | 0,151          | 0,175          | 0,149          | 0,155          |
| 0,275          | 0,205          | 0,274          | 0,270          | 0,230          | 0,230          | 0,270          | 0,230          | 0,276          |
| 0,100          | 0,203          | 0,199          | 0,203          | 0,173          | 0,131          | 0,102          | 0,185          | 0,200          |
| 0,173          | 0,105          | 0,101          | 0,173          | 0,175          | 0,140          | 0,151          | 0,100          | 0,127          |
| 0,134          | 0,140          | 0,140          | 0,132          | 0,127<br>0.147 | 0,120          | 0,151          | 0,120          | 0,122<br>0.147 |
| 0,149          | 0,143<br>0.120 | 0,140<br>0.120 | 0,143<br>0.122 | 0,147          | 0,105          | 0,131          | 0,143<br>0.112 | 0,147          |
| 0,129<br>0.147 | 0,120          | 0,120          | 0,122          | 0,105          | 0,105          | 0,157          | 0,112          | 0,123<br>0.147 |
| 0,147<br>0.127 | 0,133          | 0,137          | 0,130          | 0,130          | 0,130          | 0,131          | 0,137          | 0,147          |
| 0,127<br>0.114 | 0,116          | 0,129          | 0,123          | 0,122          | 0,120          | 0,123          | 0,113          | 0,122          |
| 0,114<br>0.111 | 0,110          | 0,125          | 0,110          | 0,111          | 0,117          | 0,111          | 0,117          | 0,123          |
| 0,111          | 0,105          | 0,105          | 0,100          | 0,102<br>0 111 | 0,105          | 0,111          | 0,100          | 0,098          |
| 0,122<br>0.112 | 0,100          | 0,102<br>0.114 | 0,100          | 0,111          | 0,100          | 0,123<br>0 111 | 0,105          | 0,095          |
| 0,112<br>0.111 | 0,109          | 0,114          | 0,115          | 0,100          | 0,110          | 0,111          | 0,110          | 0,108          |
| 0,111          | 0,103          | 0,103          | 0,108          | 0,102<br>0.142 | 0,103          | 0,111          | 0,100          | 0,098          |
| 0,134          | 0,149          | 0,140          | 0,141          | 0,142          | 0,152          | 0,123<br>0.125 | 0,133          | 0,134<br>0 154 |
| 0,130          | 0,100          | 0,149          | 0,140          | 0,132<br>0.115 | 0,109          | 0,123<br>0 112 | 0,177          | 0,134          |
| 0,113          | 0,113          | 0,122<br>0.122 | 0,110          | 0,113<br>0.122 | 0,103          | 0,112<br>0.145 | 0,115          | 0,131          |
| 0,130          | 0,129          | 0,132          | 0,130          | 0,123          | 0,142          | 0,143          | 0,110          | 0,134          |

| 0,113 | 0,122 | 0,123 | 0,118 | 0,127 | 0,108 | 0,111 | 0,123 | 0,112 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0,078 | 0,071 | 0,070 | 0,066 | 0,072 | 0,062 | 0,084 | 0,070 | 0,066 |
| 0,074 | 0,063 | 0,062 | 0,060 | 0,064 | 0,052 | 0,079 | 0,067 | 0,055 |
| 0,080 | 0,087 | 0,087 | 0,083 | 0,079 | 0,096 | 0,079 | 0,094 | 0,098 |
| 0,097 | 0,110 | 0,101 | 0,104 | 0,120 | 0,089 | 0,094 | 0,115 | 0,075 |
| 0,140 | 0,137 | 0,140 | 0,134 | 0,133 | 0,169 | 0,144 | 0,135 | 0,153 |
| 0,099 | 0,097 | 0,107 | 0,103 | 0,090 | 0,092 | 0,100 | 0,096 | 0,123 |
| 0,090 | 0,087 | 0,094 | 0,091 | 0,085 | 0,077 | 0,094 | 0,082 | 0,086 |
| 0,069 | 0,077 | 0,074 | 0,072 | 0,076 | 0,079 | 0,066 | 0,082 | 0,073 |
| 0,065 | 0,055 | 0,060 | 0,062 | 0,054 | 0,047 | 0,065 | 0,047 | 0,058 |
| 0,063 | 0,054 | 0,051 | 0,053 | 0,049 | 0,036 | 0,065 | 0,056 | 0,050 |
| 0,067 | 0,070 | 0,070 | 0,069 | 0,067 | 0,075 | 0,065 | 0,074 | 0,073 |
| 0,298 | 0,270 | 0,271 | 0,271 | 0,277 | 0,245 | 0,315 | 0,271 | 0,222 |
| 0,261 | 0,258 | 0,246 | 0,253 | 0,255 | 0,234 | 0,277 | 0,271 | 0,226 |
| 0,239 | 0,235 | 0,222 | 0,230 | 0,218 | 0,224 | 0,250 | 0,242 | 0,220 |
| 0,311 | 0,276 | 0,292 | 0,291 | 0,316 | 0,289 | 0,315 | 0,271 | 0,305 |
| 0,237 | 0,232 | 0,220 | 0,228 | 0,215 | 0,226 | 0,246 | 0,236 | 0,220 |
| 0,239 | 0,235 | 0,222 | 0,230 | 0,218 | 0,224 | 0,250 | 0,242 | 0,220 |
| 0,310 | 0,276 | 0,291 | 0,289 | 0,313 | 0,285 | 0,315 | 0,271 | 0,305 |
| 0,325 | 0,283 | 0,295 | 0,318 | 0,270 | 0,305 | 0,315 | 0,271 | 0,305 |
| 0,269 | 0,256 | 0,252 | 0,259 | 0,232 | 0,306 | 0,268 | 0,228 | 0,269 |
| 0,244 | 0,236 | 0,246 | 0,246 | 0,217 | 0,233 | 0,223 | 0,221 | 0,269 |
| 0,202 | 0,215 | 0,212 | 0,195 | 0,182 | 0,171 | 0,208 | 0,194 | 0,165 |
| 0,151 | 0,149 | 0,144 | 0,140 | 0,141 | 0,157 | 0,162 | 0,150 | 0,153 |
| 0,149 | 0,142 | 0,136 | 0,137 | 0,134 | 0,128 | 0,165 | 0,134 | 0,134 |
| 0,177 | 0,165 | 0,169 | 0,166 | 0,169 | 0,202 | 0,193 | 0,162 | 0,186 |
| 0,192 | 0,194 | 0,198 | 0,188 | 0,156 | 0,160 | 0,193 | 0,166 | 0,161 |
| 0,293 | 0,276 | 0,278 | 0,279 | 0,263 | 0,301 | 0,301 | 0,265 | 0,276 |
| 0,193 | 0,212 | 0,221 | 0,208 | 0,177 | 0,157 | 0,175 | 0,160 | 0,217 |
| 0,177 | 0,185 | 0,194 | 0,179 | 0,175 | 0,136 | 0,157 | 0,183 | 0,142 |
| 0,155 | 0,152 | 0,152 | 0,156 | 0,132 | 0,118 | 0,151 | 0,120 | 0,103 |
| 0,151 | 0,145 | 0,145 | 0,148 | 0,138 | 0,173 | 0,151 | 0,143 | 0,147 |
| 0,132 | 0,125 | 0,122 | 0,124 | 0,110 | 0,104 | 0,143 | 0,135 | 0,103 |
| 0,148 | 0,137 | 0,139 | 0,140 | 0,130 | 0,160 | 0,151 | 0,137 | 0,147 |
| 0,137 | 0,133 | 0,146 | 0,138 | 0,132 | 0,138 | 0,135 | 0,130 | 0,160 |
| 0,118 | 0,133 | 0,131 | 0,127 | 0,121 | 0,132 | 0,112 | 0,135 | 0,144 |
| 0,121 | 0,142 | 0,134 | 0,132 | 0,127 | 0,141 | 0,113 | 0,147 | 0,144 |
| 0,139 | 0,119 | 0,133 | 0,136 | 0,119 | 0,118 | 0,141 | 0,110 | 0,115 |
| 0,148 | 0,162 | 0,161 | 0,156 | 0,152 | 0,161 | 0,141 | 0,163 | 0,160 |
| 0,126 | 0,160 | 0,139 | 0,142 | 0,143 | 0,165 | 0,113 | 0,182 | 0,144 |
| 0,120 | 0,142 | 0,134 | 0,131 | 0,126 | 0,140 | 0,112 | 0,147 | 0,144 |
| 0,133 | 0,116 | 0,128 | 0,128 | 0,120 | 0,118 | 0,135 | 0,112 | 0,110 |
| 0,111 | 0,125 | 0,119 | 0,119 | 0,133 | 0,106 | 0,105 | 0,123 | 0,098 |
| 0,116 | 0,117 | 0,123 | 0,118 | 0,116 | 0,109 | 0,115 | 0,116 | 0,134 |
| 0,130 | 0,125 | 0,129 | 0,126 | 0,120 | 0,136 | 0,132 | 0,118 | 0,134 |
| 0,147 | 0,145 | 0,155 | 0,144 | 0,136 | 0,147 | 0,143 | 0,136 | 0,153 |
| 0,147 | 0,145 | 0,155 | 0,144 | 0,136 | 0,147 | 0,143 | 0,136 | 0,153 |
| 0,133 | 0,127 | 0,131 | 0,128 | 0,122 | 0,145 | 0,137 | 0,120 | 0,134 |
| 0,126 | 0,122 | 0,128 | 0,124 | 0,118 | 0,128 | 0,128 | 0,115 | 0,134 |
| 0,135 | 0,134 | 0,141 | 0,134 | 0,133 | 0,157 | 0,133 | 0,126 | 0,156 |
| 0,141 | 0,142 | 0,132 | 0,135 | 0,130 | 0,115 | 0,156 | 0,149 | 0,086 |
| 0,141 | 0,130 | 0,129 | 0,129 | 0,139 | 0,116 | 0,151 | 0,137 | 0,147 |
| 0,138 | 0,126 | 0,120 | 0,125 | 0,121 | 0,101 | 0,151 | 0,137 | 0,091 |
| 0,150 | 0,143 | 0,140 | 0,139 | 0,137 | 0,121 | 0,172 | 0,149 | 0,114 |

| 0,153          | 0,147          | 0,147          | 0,142          | 0,145          | 0,123          | 0,180          | 0,149          | 0,111          |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 0,156          | 0,150          | 0,156          | 0,146          | 0,154          | 0,128          | 0,180          | 0,149          | 0,126          |
| 0,311          | 0,274          | 0,270          | 0,276          | 0,251          | 0,244          | 0,340          | 0,271          | 0,199          |
| 0,261          | 0,257          | 0,242          | 0,250          | 0,250          | 0,230          | 0,280          | 0,271          | 0,214          |
| 0,275          | 0,265          | 0,258          | 0,265          | 0,278          | 0,253          | 0,284          | 0,271          | 0,282          |
| 0,309          | 0,276          | 0,254          | 0,273          | 0,214          | 0,237          | 0,338          | 0,231          | 0,240          |
| 0,344          | 0,303          | 0,297          | 0,316          | 0,249          | 0,275          | 0,356          | 0,245          | 0,308          |
| 0.289          | 0,273          | 0,267          | 0,291          | 0,263          | 0,336          | 0,284          | 0,271          | 0,299          |
| 0.266          | 0.261          | 0.250          | 0.257          | 0.262          | 0.239          | 0.280          | 0.271          | 0.239          |
| 0.288          | 0.253          | 0.249          | 0.255          | 0.229          | 0.241          | 0.312          | 0.241          | 0.249          |
| 0.219          | 0.239          | 0.243          | 0.226          | 0.226          | 0.271          | 0.208          | 0.247          | 0.268          |
| 0.220          | 0.228          | 0.225          | 0.229          | 0.240          | 0.213          | 0.195          | 0.241          | 0.229          |
| 0.233          | 0.233          | 0.235          | 0.239          | 0.227          | 0.211          | 0.197          | 0.243          | 0.184          |
| 0.247          | 0.278          | 0.286          | 0.266          | 0.237          | 0.153          | 0.208          | 0.251          | 0.189          |
| 0.253          | 0.275          | 0.263          | 0.272          | 0.226          | 0.145          | 0.208          | 0.251          | 0.139          |
| 0.228          | 0.231          | 0.229          | 0.235          | 0.234          | 0.209          | 0.197          | 0.243          | 0.189          |
| 0.214          | 0.226          | 0.222          | 0.222          | 0.258          | 0.228          | 0 195          | 0.241          | 0 247          |
| 0.227          | 0,220<br>0,242 | 0.243          | 0,238          | 0,266          | 0.274          | 0,208          | 0,247          | 0.268          |
| 0,251          | 0.257          | 0,245          | 0,250          | 0,200          | 0.161          | 0,200          | 0.282          | 0.165          |
| 0.246          | 0,237          | 0,243<br>0,251 | 0,231<br>0,228 | 0,302          | 0,101          | 0,240<br>0,258 | 0,202          | 0,103          |
| 0,210          | 0,235          | 0.228          | 0,220          | 0,217<br>0,244 | 0,204          | 0,230          | 0,211          | 0,257          |
| 0,232          | 0,255          | 0,220          | 0,221          | 0,244          | 0,204          | 0,240          | 0,200          | 0,237          |
| 0,204          | 0,203          | 0,292          | 0,200          | 0,297<br>0.287 | 0,175          | 0,200          | 0,202          | 0,174          |
| 0,301          | 0,271          | 0,272          | 0,203          | 0,207          | 0,200          | 0,303          | 0,202          | 0,292          |
| 0,507          | 0,202          | 0,270<br>0,154 | 0,290          | 0,242          | 0,271          | 0,500          | 0,220          | 0,252<br>0.154 |
| 0,154          | 0,170          | 0,154          | 0,100          | 0,100          | 0,133          | 0,152          | 0,182          | 0,104          |
| 0,192          | 0,101          | 0,150          | 0,170          | 0,177<br>0.214 | 0,120          | 0,150          | 0,182          | 0,100<br>0.147 |
| 0,172<br>0.226 | 0,190          | 0,191          | 0,170<br>0.244 | 0,214<br>0,273 | 0,14)          | 0,205          | 0,182          | 0,147          |
| 0,220          | 0,205          | 0,201          | 0,244          | 0,273<br>0.244 | 0,220          | 0,257          | 0,282          | 0,233          |
| 0,245          | 0,201          | 0,274<br>0.228 | 0,233          | 0,244<br>0,215 | 0,237          | 0,237          | 0,202          | 0,245          |
| 0,229          | 0,205          | 0,220<br>0.214 | 0,217          | 0,213          | 0,210          | 0,243          | 0,103          | 0,245          |
| 0,210          | 0,200          | 0,214<br>0,226 | 0,213          | 0,202          | 0,230          | 0,222<br>0 242 | 0,198          | 0,220          |
| 0,232          | 0,200          | 0,220          | 0,219          | 0,213          | 0,237          | 0,242          | 0,192          | 0,237          |
| 0,14)          | 0,147<br>0.146 | 0,145          | 0,139          | 0,135          | 0,130          | 0,100          | 0,140<br>0 142 | 0,132          |
| 0,150          | 0,140          | 0,150          | 0,130          | 0,155          | 0,132          | 0,100          | 0,142<br>0.167 | 0,154          |
| 0,102          | 0,101          | 0,155          | 0,149          | 0,137          | 0,144<br>0.211 | 0,185          | 0,107          | 0,150          |
| 0,227          | 0,228          | 0,223          | 0,229          | 0,210          | 0,211          | 0,242<br>0 247 | 0,248          | 0,205          |
| 0,229          | 0,251          | 0,220          | 0,231          | 0,222          | 0,212          | 0,247          | 0,240          | 0,203          |
| 0,172          | 0,100          | 0,100          | 0,150          | 0,170          | 0,143<br>0 141 | 0,200          | 0,170          | 0,122<br>0.147 |
| 0,109          | 0,102          | 0,101<br>0.174 | 0,154          | 0,174          | 0,141          | 0,198          | 0,107          | 0,147          |
| 0,177<br>0.144 | 0,171          | 0,1/4<br>0.1/3 | 0,102          | 0,195          | 0,138          | 0,208          | 0,170          | 0,194<br>0.147 |
| 0,144<br>0.143 | 0,139          | 0,143<br>0.132 | 0,137          | 0,130          | 0,125          | 0,151          | 0,142<br>0.127 | 0,147<br>0.147 |
| 0,143          | 0,132<br>0.147 | 0,132          | 0,152          | 0,149          | 0,123<br>0.140 | 0,151          | 0,137          | 0,147<br>0.147 |
| 0,130          | 0,147          | 0,140<br>0.211 | 0,140          | 0,155          | 0,149          | 0,151          | 0,147          | 0,147          |
| 0,190          | 0,202          | 0,211          | 0,100          | 0,209          | 0,105          | 0,208          | 0,201          | 0,220          |
| 0,199          | 0,203          | 0,215<br>0.142 | 0,195          | 0,191          | 0,197          | 0,208          | 0,201<br>0.147 | 0,220<br>0.147 |
| 0,133          | 0,150          | 0,145          | 0,155          | 0,150          | 0,141          | 0,131          | 0,147          | 0,147          |
| 0,332          | 0,300          | 0,200          | 0,342          | 0,270          | 0,221          | 0,313          | 0,230          | 0,220          |
| 0,309          | 0,333          | 0,525          | 0,339          | 0,208          | 0,199          | 0,205          | 0,272          | 0,109          |
| 0,333          | 0,384          | 0,572          | 0,370          | 0,304          | 0,234          | 0,525          | 0,399          | 0,381          |
| 0,408          | 0,309          | 0,320          | 0,472          | 0,415          | 0,471          | 0,330          | 0,322          | 0,310          |
| 0,414          | 0,333          | 0,319          | 0,473          | 0,344          | 0,413          | 0,330          | 0,322          | 0,310          |
| 0,575          | 0,404          | 0,382          | 0,390          | 0,430          | 0,210          | 0,525          | 0,399          | 0,204          |
| 0,330          | 0,377          | 0,383          | 0,381          | 0,327          | 0,232          | 0,285          | 0,399          | 0,349          |
| 0,377          | 0,382          | 0,414          | 0,396          | 0,339          | 0,212          | 0,306          | 0,380          | 0,207          |

| 0,279 | 0,263 | 0,275 | 0,272 | 0,251 | 0,263 | 0,279 | 0,243 | 0,275 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0,284 | 0,271 | 0,254 | 0,267 | 0,249 | 0,283 | 0,290 | 0,267 | 0,269 |
| 0,325 | 0,298 | 0,269 | 0,298 | 0,311 | 0,212 | 0,336 | 0,330 | 0,276 |
| 0,377 | 0,418 | 0,418 | 0,383 | 0,321 | 0,251 | 0,321 | 0,412 | 0,367 |
| 0,380 | 0,421 | 0,419 | 0,385 | 0,368 | 0,221 | 0,328 | 0,412 | 0,251 |
| 0,352 | 0,308 | 0,316 | 0,321 | 0,357 | 0,205 | 0,361 | 0,330 | 0,305 |
| 0,334 | 0,296 | 0,298 | 0,308 | 0,279 | 0,325 | 0,339 | 0,314 | 0,292 |
| 0,352 | 0,313 | 0,319 | 0,333 | 0,264 | 0,246 | 0,357 | 0,241 | 0,302 |
| 0,257 | 0,262 | 0,269 | 0,260 | 0,216 | 0,194 | 0,258 | 0,204 | 0,271 |
| 0,252 | 0,252 | 0,241 | 0,243 | 0,206 | 0,160 | 0,258 | 0,206 | 0,190 |
| 0,266 | 0,287 | 0,272 | 0,282 | 0,221 | 0,171 | 0,258 | 0,286 | 0,187 |
| 0,366 | 0,387 | 0,366 | 0,390 | 0,263 | 0,168 | 0,357 | 0,396 | 0,326 |
| 0,365 | 0,414 | 0,428 | 0,396 | 0,307 | 0,217 | 0,357 | 0,396 | 0,366 |
| 0,270 | 0,291 | 0,298 | 0,302 | 0,273 | 0,244 | 0,258 | 0,302 | 0,295 |

| ANF1  | ANF2      | ANF3       | ANF4       | ANF5      | ANF6       | ANF7                   | ANF8                     | ANF9  |
|-------|-----------|------------|------------|-----------|------------|------------------------|--------------------------|-------|
| ]     | Предикциј | ја специфи | ичне потро | ошње елек | тричне ене | ергије Е <sub>та</sub> | x, [kWh/m <sup>3</sup> ] | ]     |
| 0,121 | 0,105     | 0,100      | 0,104      | 0,109     | 0,097      | 0,125                  | 0,105                    | 0,104 |
| 0,111 | 0,103     | 0,094      | 0,099      | 0,100     | 0,097      | 0,114                  | 0,105                    | 0,099 |
| 0,123 | 0,105     | 0,101      | 0,099      | 0,110     | 0,094      | 0,129                  | 0,105                    | 0,105 |
| 0,137 | 0,122     | 0,121      | 0,122      | 0,116     | 0,105      | 0,141                  | 0,122                    | 0,118 |
| 0,139 | 0,118     | 0,113      | 0,132      | 0,102     | 0,080      | 0,141                  | 0,122                    | 0,118 |
| 0,123 | 0,105     | 0,101      | 0,099      | 0,110     | 0,094      | 0,129                  | 0,105                    | 0,105 |
| 0,114 | 0,107     | 0,108      | 0,111      | 0,106     | 0,107      | 0,114                  | 0,107                    | 0,100 |
| 0,126 | 0,115     | 0,123      | 0,122      | 0,120     | 0,116      | 0,125                  | 0,112                    | 0,111 |
| 0,092 | 0,109     | 0,113      | 0,100      | 0,109     | 0,100      | 0,088                  | 0,123                    | 0,120 |
| 0,107 | 0,116     | 0,113      | 0,112      | 0,118     | 0,097      | 0,105                  | 0,118                    | 0,085 |
| 0,093 | 0,110     | 0,117      | 0,101      | 0,111     | 0,103      | 0,088                  | 0,123                    | 0,125 |
| 0,098 | 0,090     | 0,088      | 0,083      | 0,088     | 0,093      | 0,101                  | 0,091                    | 0,100 |
| 0,098 | 0,090     | 0,087      | 0,079      | 0,089     | 0,094      | 0,101                  | 0,091                    | 0,100 |
| 0,079 | 0,069     | 0,079      | 0,070      | 0,075     | 0,069      | 0,084                  | 0,062                    | 0,075 |
| 0,082 | 0,091     | 0,090      | 0,086      | 0,084     | 0,104      | 0,081                  | 0,110                    | 0,098 |
| 0,108 | 0,120     | 0,117      | 0,115      | 0,128     | 0,101      | 0,105                  | 0,123                    | 0,094 |
| 0,078 | 0,093     | 0,083      | 0,088      | 0,101     | 0,065      | 0,077                  | 0,094                    | 0,073 |
| 0,073 | 0,084     | 0,077      | 0,079      | 0,089     | 0,071      | 0,072                  | 0,082                    | 0,073 |
| 0,066 | 0,062     | 0,069      | 0,066      | 0,057     | 0,053      | 0,065                  | 0,053                    | 0,076 |
| 0,080 | 0,072     | 0,078      | 0,061      | 0,068     | 0,038      | 0,084                  | 0,072                    | 0,040 |
| 0,078 | 0,075     | 0,080      | 0,047      | 0,071     | 0,033      | 0,084                  | 0,072                    | 0,040 |
| 0,080 | 0,073     | 0,079      | 0,058      | 0,068     | 0,037      | 0,084                  | 0,072                    | 0,040 |
| 0,125 | 0,112     | 0,118      | 0,120      | 0,118     | 0,111      | 0,125                  | 0,108                    | 0,100 |
| 0,111 | 0,106     | 0,108      | 0,110      | 0,103     | 0,106      | 0,111                  | 0,107                    | 0,100 |
| 0,109 | 0,102     | 0,096      | 0,102      | 0,099     | 0,099      | 0,111                  | 0,105                    | 0,095 |
| 0,140 | 0,166     | 0,151      | 0,152      | 0,159     | 0,171      | 0,125                  | 0,182                    | 0,154 |
| 0,108 | 0,101     | 0,092      | 0,095      | 0,097     | 0,096      | 0,111                  | 0,105                    | 0,100 |
| 0,109 | 0,102     | 0,096      | 0,102      | 0,099     | 0,099      | 0,111                  | 0,105                    | 0,095 |
| 0,124 | 0,110     | 0,113      | 0,117      | 0,116     | 0,109      | 0,125                  | 0,107                    | 0,095 |
| 0,129 | 0,130     | 0,139      | 0,132      | 0,129     | 0,131      | 0,125                  | 0,127                    | 0,154 |
| 0,121 | 0,118     | 0,126      | 0,121      | 0,116     | 0,118      | 0,122                  | 0,115                    | 0,134 |
| 0,088 | 0,104     | 0,094      | 0,096      | 0,101     | 0,093      | 0,084                  | 0,115                    | 0,098 |
| 0,079 | 0,068     | 0,077      | 0,070      | 0,073     | 0,068      | 0,084                  | 0,062                    | 0,074 |
| 0,076 | 0,077     | 0,068      | 0,056      | 0,072     | 0,054      | 0,084                  | 0,075                    | 0,078 |
| 0,074 | 0,063     | 0,061      | 0,063      | 0,064     | 0,055      | 0,079                  | 0,065                    | 0,050 |
| 0,076 | 0,067     | 0,075      | 0,072      | 0,069     | 0,070      | 0,079                  | 0,058                    | 0,084 |
| 0,077 | 0,071     | 0,080      | 0,076      | 0,071     | 0,077      | 0,079                  | 0,064                    | 0,098 |
| 0,112 | 0,122     | 0,122      | 0,11/      | 0,128     | 0,100      | 0,109                  | 0,123                    | 0,100 |
| 0,091 | 0,097     | 0,098      | 0,098      | 0,094     | 0,071      | 0,092                  | 0,090                    | 0,089 |
| 0,083 | 0,087     | 0,080      | 0,087      | 0,093     | 0,070      | 0,080                  | 0,082                    | 0,058 |
| 0,000 | 0,072     | 0,071      | 0,009      | 0,009     | 0,079      | 0,005                  | 0,080                    | 0,075 |
| 0,009 | 0,081     | 0,081      | 0,073      | 0,071     | 0,070      | 0,005                  | 0,094                    | 0,087 |
| 0,000 | 0,030     | 0,005      | 0,005      | 0,034     | 0,049      | 0,005                  | 0,048                    | 0,005 |
| 0,064 | 0,051     | 0,053      | 0,061      | 0,053     | 0,046      | 0,065                  | 0,043                    | 0,066 |

Тест скуп података

| 0,126          | 0,114 | 0,122          | 0,122          | 0,119          | 0,115 | 0,125              | 0,111          | 0,107          |
|----------------|-------|----------------|----------------|----------------|-------|--------------------|----------------|----------------|
| 0,112          | 0,108 | 0,112          | 0,112          | 0,105          | 0,109 | 0,111              | 0,109          | 0,105          |
| 0,110          | 0,103 | 0,099          | 0,104          | 0,100          | 0,101 | 0,111              | 0,105          | 0,095          |
| 0,142          | 0,168 | 0,151          | 0,155          | 0,164          | 0,163 | 0,127              | 0,182          | 0,154          |
| 0,108          | 0,101 | 0,092          | 0,097          | 0,097          | 0,097 | 0,111              | 0,105          | 0,100          |
| 0,110          | 0,103 | 0,099          | 0,104          | 0,100          | 0,101 | 0,111              | 0,105          | 0,095          |
| 0,125          | 0,112 | 0,118          | 0,120          | 0,118          | 0,112 | 0,125              | 0,109          | 0,101          |
| 0,131          | 0,136 | 0,142          | 0,135          | 0,133          | 0,137 | 0,125              | 0,134          | 0,154          |
| 0,128          | 0,121 | 0,129          | 0,124          | 0,117          | 0,131 | 0,130              | 0,113          | 0,134          |
| 0,091          | 0,106 | 0,095          | 0,099          | 0,107          | 0,090 | 0,087              | 0,115          | 0,098          |
| 0,079          | 0,068 | 0,082          | 0,071          | 0,074          | 0,070 | 0,084              | 0,060          | 0,081          |
| 0,076          | 0,076 | 0,068          | 0,058          | 0,072          | 0,055 | 0,084              | 0,075          | 0,078          |
| 0.074          | 0,063 | 0,062          | 0,064          | 0,065          | 0,057 | 0,079              | 0.061          | 0.051          |
| 0.077          | 0.069 | 0.078          | 0.074          | 0.070          | 0.074 | 0.079              | 0.061          | 0.098          |
| 0,078          | 0,076 | 0,082          | 0,078          | 0,073          | 0,082 | 0,079              | 0.070          | 0,098          |
| 0,117          | 0,124 | 0,128          | 0,121          | 0,127          | 0,114 | 0,115              | 0,123          | 0,131          |
| 0.095          | 0.097 | 0.104          | 0.101          | 0.091          | 0.086 | 0.097              | 0.096          | 0.123          |
| 0.087          | 0.087 | 0.091          | 0.089          | 0.089          | 0.074 | 0.090              | 0.082          | 0.070          |
| 0.068          | 0.075 | 0.073          | 0.071          | 0.073          | 0.081 | 0.065              | 0.082          | 0.073          |
| 0.070          | 0.085 | 0.082          | 0.077          | 0.075          | 0.076 | 0.065              | 0.096          | 0.087          |
| 0.066          | 0.058 | 0.067          | 0.065          | 0.056          | 0.051 | 0.065              | 0.049          | 0.077          |
| 0.065          | 0.053 | 0,057          | 0.062          | 0.055          | 0.050 | 0.065              | 0.045          | 0,073          |
| 0.129          | 0,000 | 0,007          | 0,002          | 0,033          | 0,000 | 0,005              | 0,015          | 0,073          |
| 0,129          | 0.102 | 0.096          | 0,102          | 0,100          | 0,099 | 0.112              | 0 105          | 0.095          |
| 0.113          | 0,102 | 0,090          | 0,102          | 0,100          | 0,099 | 0.112              | 0,105          | 0,095          |
| 0.134          | 0,100 | 0.107          | 0,109          | 0,107          | 0,101 | 0.141              | 0,100          | 0,097          |
| 0,137          | 0,110 | 0.118          | 0.129          | 0,107          | 0,090 | 0,141<br>0.141     | 0,107          | 0,097          |
| 0,137          | 0,115 | 0.123          | 0,129          | 0,113          | 0,100 | 0,113              | 0,100          | 0,073          |
| 0,110          | 0,110 | 0,097          | 0,117          | 0,112          | 0,117 | 0,113              | 0,110          | 0,125          |
| 0.128          | 0,103 | 0,097          | 0,105          | 0,100          | 0,100 | 0,112              | 0,105          | 0,095          |
| 0,120          | 0,107 | 0,104<br>0,117 | 0,110          | 0,109          | 0,027 | 0,133              | 0,103          | 0,100          |
| 0,009          | 0,105 | 0,095          | 0,090          | 0,090          | 0,110 | 0,004              | 0,125          | 0,125          |
| 0,000          | 0,100 | 0,095          | 0,027          | 0,104          | 0,093 | 0,000              | 0,110          | 0,090          |
| 0,090          | 0,100 | 0,095          | 0,090          | 0,105          | 0,095 | 0,000              | 0,110          | 0,090          |
| 0,091          | 0,123 | 0,105          | 0,077          | 0,078          | 0,095 | 0,085              | 0,158          | 0,107          |
| 0,095          | 0,100 | 0,103          | 0,103          | 0,100          | 0,005 | 0,005              | 0,130          | 0,107          |
| 0,082          | 0,100 | 0,075          | 0,092          | 0,075          | 0,102 | 0,082              | 0,110          | 0,098          |
| 0,082          | 0,091 | 0,007          | 0,085          | 0,005          | 0,103 | 0,080              | 0,100          | 0,020          |
| 0,005          | 0,000 | 0,113          | 0,000          | 0,000          | 0,105 | 0,004              | 0,071          | 0,123          |
| 0,099          | 0,105 | 0,107          | 0,100          | 0,097          | 0,090 | 0,098              | 0,109          | 0,123          |
| 0,109          | 0,085 | 0,102          | 0,102          | 0,078          | 0,103 | 0,114              | 0,034          | 0,101          |
| 0,102          | 0,080 | 0,101          | 0,099          | 0,079          | 0,094 | 0,100              | 0,072          | 0,101          |
| 0,100          | 0,109 | 0,110          | 0,111<br>0.124 | 0,108          | 0,090 | 0,105              | 0,109          | 0,119          |
| 0,127<br>0.122 | 0,113 | 0,120          | 0,124<br>0.127 | 0,112          | 0,139 | 0,130              | 0,093          | 0,134          |
| 0,132          | 0,120 | 0,130          | 0,127<br>0.122 | 0,110          | 0,134 | 0,136              | 0,091          | 0,154          |
| 0,129          | 0,152 | 0,140          | 0,155          | 0,150          | 0,134 | 0,123<br>0.114     | 0,150          | 0,134          |
| 0,121          | 0,156 | 0,135          | 0,131<br>0.142 | 0,123<br>0.141 | 0,157 | 0,114<br>0.120     | 0,141<br>0.147 | 0,144          |
| 0,150          | 0,140 | 0,149          | 0,142          | 0,141          | 0,130 | 0,129              | 0,147          | 0,130          |
| 0,137<br>0.162 | 0,208 | 0,237          | 0,100          | 0,109          | 0,100 | 0,141<br>0 1 $1$ 1 | 0,210          | 0,130          |
| 0,102          | 0,233 | 0,203          | 0,16/          | 0,194          | 0,117 | 0,141<br>0.142     | 0,282          | 0,150          |
| 0,130          | 0,174 | 0,130          | 0,103          | 0,170          | 0,131 | 0,142              | 0,182          | 0,138          |
| 0,140          | 0,173 | 0,143          | 0,139          | 0,1/4          | 0,152 | 0,133              | 0,102          | 0,144<br>0 140 |
| 0,139          | 0,100 | 0,130          | 0,1/3<br>0.100 | 0,200          | 0,132 | 0,100              | 0,102          | 0,140          |
| 0,101          | 0,110 | 0,115          | 0,109          | 0,130          | 0,090 | 0,097              | 0,123          | 0,097          |
| 0,102          | 0,114 | 0,107          | 0,109          | 0,120          | 0,093 | 0,099              | 0,118          | 0,073          |

| 0,114 | 0,123 | 0,124 | 0,120 | 0,131 | 0,111 | 0,110 | 0,123 | 0,113 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0,157 | 0,183 | 0,188 | 0,178 | 0,175 | 0,145 | 0,151 | 0,188 | 0,174 |
| 0,168 | 0,183 | 0,198 | 0,185 | 0,175 | 0,167 | 0,162 | 0,188 | 0,220 |
| 0,132 | 0,132 | 0,139 | 0,131 | 0,133 | 0,150 | 0,132 | 0,125 | 0,156 |
| 0,133 | 0,128 | 0,130 | 0,128 | 0,122 | 0,144 | 0,137 | 0,121 | 0,134 |
| 0,147 | 0,145 | 0,142 | 0,138 | 0,137 | 0,163 | 0,157 | 0,145 | 0,152 |
| 0,121 | 0,106 | 0,117 | 0,116 | 0,096 | 0,112 | 0,127 | 0,080 | 0,122 |
| 0,122 | 0,099 | 0,104 | 0,111 | 0,087 | 0,093 | 0,131 | 0,075 | 0,101 |
| 0,131 | 0,128 | 0,123 | 0,125 | 0,110 | 0,110 | 0,139 | 0,126 | 0,119 |
| 0,175 | 0,175 | 0,171 | 0,166 | 0,169 | 0,109 | 0,197 | 0,199 | 0,120 |
| 0,179 | 0,182 | 0,175 | 0,169 | 0,178 | 0,110 | 0,208 | 0,201 | 0,108 |
| 0,139 | 0,139 | 0,132 | 0,132 | 0,128 | 0,111 | 0,151 | 0,147 | 0,087 |
|       |       |       |       |       |       |       |       |       |

#### БИОГРАФИЈА

Филип Милетић, мастер инжењер рударства и мастер инжењер машинства, рођен је 30.10.1994. године у Београду. Техничку школу у Лазаревцу завршио је 2013. године, одличним успехом.

Основне академске студије на Рударско-геолошком факултету, Универзитета у Београду, студијски програм Рударско инжењерство, модул Површинска експлоатација лежишта минералних сировина завршио је 2017. године, просечном оценом 9,66. Мастер академске студије на модулу Механизација у рударству завршио је 2018. године, просечном оценом 10.

Носилац је награде најбољег студента Мастер академских студија.

Мастер академске студије на Машинском факултету, Универзитета у Нишу, студијски програм Машинско инжењерство, модул Машинске конструкције, развој и инжењеринг завршио је 2021. године, просечном оценом 9,33.

Докторске академске студије на Рударско-геолошком факултету, Универзитета у Београду уписао је 2018. године. Положио је све испите просечном оценом 10.

Током студија био је добитник стипендије Министарства просвете, науке и технолошког развоја за просечну оцену изнад 9,0, градске општине Лазаревац за просечну оцену изнад 9,50 и стипендије Доситеја која се додељује из Фонда за младе таленте Републике Србије за 800 најбољих студената у држави.

У звање Асистента за ужу научну област Елементи машинских и енергетских система на Катедри за опште машинство и термодинамику Рударско-геолошког факултета изабран је 2020. године.

Коаутор је помоћног уџбеника "Машински елементи – приручник".

Објавио је 36 радова, међу којима 5 у часописима са SCI листе. Учествовао је у изради више стручних и научно–истраживачких пројеката. У оквиру програма *Erasmus*, одржао је предавање на Универзитету у Леобену. Члан је Савеза инжењера рударства и геологије Србије и DIVK.

Ожењен супругом Маријаном Милетић. Живи у Београду.

## Изјава о ауторству

Име и презиме аутора <u>Филип М. Милетић</u>

Број индекса <u>Р701/18</u>

#### Изјављујем

да је докторска дисертација под насловом

Утицај похабаности резних елемената роторног багера на ниво вибрација погона за копање

- резултат сопственог истраживачког рада;
- да дисертација у целини ни у деловима није била предложена за стицање друге дипломе према студијским програмима других високошколских установа;
- да су резултати коректно наведени; и
- да нисам кршио/ла ауторска права и користио/ла интелектуалну својину других лица.

Потпис аутора

У Београду, \_\_\_\_\_

# Изјава о истоветности штампане и електронске верзије докторског рада

Име и презиме аутора <u>Филип М. Милетић</u>

Број индекса <u>Р701/18</u>

Студијски програм \_\_\_\_ Рударско инжењерство

Наслов рада <u>Утицај похабаности резних елемената роторног багера на ниво вибрација</u> погона за копање

Ментор \_\_\_\_\_др Милош Танасијевић, редовни професор \_\_\_\_\_

др Предраг Јованчић, редовни професор

Изјављујем да је штампана верзија мог докторског рада истоветна електронској верзији коју сам предао ради похрањена у **Дигиталном репозиторијуму Универзитета у Београду.** 

Дозвољавам да се објаве моји лични подаци везани за добијање академског назива доктора наука, као што су име и презиме, година и место рођења и датум одбране рада.

Ови лични подаци могу се објавити на мрежним страницама дигиталне библиотеке, у електронском каталогу и у публикацијама Универзитета у Београду.

Потпис аутора

У Београду, \_\_\_\_\_

# Изјава о коришћењу

Овлашћујем Универзитетску библиотеку "Светозар Марковић" да у Дигитални репозиторијум Универзитета у Београду унесе моју докторску дисертацију под насловом:

## <u>Утицај похабаности резних елемената роторног багера на ниво вибрација</u> погона за копање

која је моје ауторско дело.

Дисертацију са свим прилозима предао сам у електронском формату погодном за трајно архивирање.

Моју докторску дисертацију похрањену у Дигиталном репозиторијуму Универзитета у Београду и доступну у отвореном приступу могу да користе сви који поштују одредбе садржане у одабраном типу лиценце Креативне заједнице (Creative Commons) за коју сам се одлучио/ла.

- 1. Ауторство (СС ВҮ)
- 2. Ауторство некомерцијално (СС ВҮ-NС)

(3) Ауторство – некомерцијално – без прерада (CC BY-NC-ND)

- 4. Ауторство некомерцијално делити под истим условима (СС ВУ-NC-SA)
- 5. Ауторство без прерада (СС ВУ-ND)
- 6. Ауторство делити под истим условима (СС ВУ-SA)

(Молимо да заокружите само једну од шест понуђених лиценци.

Кратак опис лиценци је саставни део ове изјаве).

#### Потпис аутора

У Београду, \_\_\_\_\_

1. Ауторство. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце, чак и у комерцијалне сврхе. Ово је најслободнија од свих лиценци.

**2.** Ауторство – некомерцијално. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела.

**3.** Ауторство – некомерцијално – без прерада. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела. У односу на све остале лиценце, овом лиценцом се ограничава највећи обим права коришћења дела.

**4. Ауторство** – **некомерцијално** – **делити под истим условима.** Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или сличном лиценцом. Ова лиценца не дозвољава комерцијалну употребу дела и прерада.

**5.** Ауторство – без прерада. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца дозвољава комерцијалну употребу дела.

**6.** Ауторство – делити под истим условима. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или сличном лиценцом. Ова лиценца дозвољава комерцијалну употребу дела и прерада. Слична је софтверским лиценцама, односно лиценцама отвореног кода.