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Application of artificial intelligence for kinematic signal processing in diagnostics of Parkinson’s 

disease and atypical parkinsonisms 

 

Abstract: Clinical diagnosis of Parkinson’s disease (PD) and atypical parkinsonisms remains a 

challenging and time-consuming task. This study sought to utilize AI to provide quick support in 

differential diagnostics, relying on kinematic data obtained from two modalities: repetitive finger tapping 

and gait.  

The main study focus was on finger tapping data obtained by a custom low-weight, low-cost inertial 

sensor setup. Three groups of patients were recruited, including individuals suffering from PD, 

Progressive Supranuclear Palsy (PSP), and Multiple System Atrophy (MSA), and a group of healthy 

controls (HC) without neurological disorders. Statistical analysis of obtained signals showed differences 

in certain trends between the tested groups, and the utilization of AI models allowed the PD group to be 

discerned from the controls with accuracy of 92%, whereas all participant groups discerned in a 

multiclass setting with overall accuracy of 85.18%. 

This work also tackled PD diagnostics through the use of AI in analysis of gait, using a sensorized 

electronic walkway. De novo PD patients and a HC group were tested in a series of dual-task tests, where 

the interference task was of motor or mental type. We were able to programmatically select a subset of 

gait parameters that best help in PD diagnostics and use the selected parameters to classify PD vs HC 

group with accuracy of 85%. 

Future work should tackle the effect of possible noise in the labels (non-autopsy-confirmed diagnoses), 

and standardized multi-center data collection that would allow further refinement of the system’s 

predictive power. Recruitment of patients with atypical parkinsonisms for gait-based tests should assess 

the ability of the proposed analyses to aid in differential diagnostics among these neurological disorders 

with similar clinical presentations. 

 

 

Key words: Parkinson’s disease, atypical parkinsonisms, kinematic analysis, artificial intelligence, 

machine learning, finger tapping, analysis of gait 

Scientific field: Biomedical engineering  

 

  



Примена алгоритама вештачке интелигенције за обраду кинематичких сигнала у 

дијагностици Паркинсонове болести и атипичних паркинсонизама 

 

Сажетак: Клиничка дијагностика Паркинсонове болести (ПД) и атипичних паркинсонизама и 

даље је изазован задатак и изискује доста времена. Циљ ове студије је да кроз употребу вештачке 

интелигенције понуди брзу потпору у диференцијалној дијагностици, ослањајући се на 

кинематичке податке прикупљене кроз два модалитета: репетитивно тапкање прстима и ход. 

Главни фокус студије су снимци тапкања прстима прибављени помоћу лаганог и јефтиног 

система инерцијалних сензора. Регрутоване су три групе пацијената, укључујући особе које пате 

од Паркинсонове болести, прогресивне супрануклеарне парализе (ПСП) и мулти системске 

атрофије (МСА), као и група здравих контрола без неуролошких обољења. Статистичка анализа 

прикупљених сигнала је показала разлике у одређеним трендовима у тапкању између тестираних 

група, а употреба модела вештачке интелигенције омогућила је разликовње ПД пацијената од 

контрола са ташношћу од 92%, док је све регрутоване групе било могуће класификовати са 

тачношћу од 85,18%. 

Рад се такође бави дијагностиком ПД кроз примену вештачке интелигенције у анализи хода, 

користећи електронску сензорску стазу.  De novo ПД пацијенти и група здравих контрола снимани 

су у серији тестова са двоструким задатком, где је додатни задатак био моторног или менталног 

типа. Програмски је било могуће одабрати подскуп параметара хода који понајвише доприносе 

дијагностици ПД, и употребити те параметре за класификацију ПД групе и контрола са тачношћу 

од 85%. 

Будући рад би требало да се бави ефектима евентуалног шума у обележеним дијагнозама јер оне 

нису потврђене аутопсијом, а прикупљање додатних података стандардизованим протоколом у 

више клиничких центара омогућило би додатно побољшање предиктивне моћи система. 

Регрутација пацијената са атипичним паркинсонизмима за тестове базиране на ходу потребна је 

да се процени способност предложених анализа да помогну у дијагностици поменутих 

неуролошких обољења. 

 

Кључне речи: Паркинсонова болест, атипични паркинсонизми, кинематичка анализа, вештачка 

интелигенција, машинско учење, тапкање прстима, анализа хода 

 

Научна област: Биомедицинско инжењерство  
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1. INTRODUCTION 

Parkinson’s disease (PD) is a widespread progressive neurodegenerative disease with a gradual onset, 

characterized by bradykinesia, rigidity, tremor, and postural instability as major symptoms, the degree 

of which varies among patients and changes over time [1]. Apart from movement impairment, PD also 

presents with nonmotor symptoms that comprise neuropsychiatric features and autonomic dysfunction. 

The disease can be influenced by certain genetic factors, but can also be sporadic, with no obvious 

inheritance path [2].  

Some descriptions reminiscent of PD have been found in traditional Indian texts from 1000 BC, but it 

was first medically described by a British doctor, James Parkinson in 1817, who called it the “Shaking 

palsy” [3]. His descriptions read: “Involuntary tremulous motion, with lessened muscular power, in parts 

not in action and even when supported; with a propensity to bend the trunk forward, and to pass from a 

walking to a running pace: the senses and intellects being uninjured.” 

PD is a disease of aging, with a prevalence of 1903 per 100,000 in people older than 80 [4], which is 10 

times greater than for people in their 50s. Its burden is expected to grow as the world population ages [5] 

– the ratio of people over the age of 65 in developed countries is 17.6%, which is a steep climb from 

7.7%, the number reported in 1950 [6]. Some reports have already found a 2.5-fold increase in prevalence 

of PD over the last 30 years [7]. 

Regardless of the presence of certain identifying characteristics and elaborate clinical criteria, differential 

clinical diagnosis of Parkinson’s disease is still a challenge. When PD clinical diagnoses were contrasted 

with post-mortem findings, it was found that clinical diagnoses of PD had 88% sensitivity and 68% 

specificity [8], and when diagnoses were determined in early stages, they were shown to only be correct 

in 26% of patients who were not treated or were not responding well to treatment. In treatment responsive 

patients this percentage was 53%. A systematic review paper reported that the overall accuracy of PD 

clinical diagnosis barely improved in the last 25 years [9], and concluded that new objective biomarkers 

for in vivo diagnosis were urgently required. This high misclassification rate stems from the fact that 

other conditions have a similar clinical presentation to that of PD, particularly early in the course of the 

disease. 

Getting a diagnosis in early stages could contribute to improved quality of life for the patients by allowing 

timely introduction of proper therapy and slowing down the progression of the symptoms. Early 

diagnostics would also be important for clinical trials, allowing patient assignment to the correct group 

and more robustness in results interpretation. This thesis seeks to contribute to this cause, exploring the 

role of sensors and algorithms of artificial intelligence in detecting Parkinson’s disease in early stages, 

and assisting differential diagnostics in contrast with similarly presenting neurological disorders. 

The thesis will be structured as follows: first an overview will be given in Chapter 1 on Parkinson’s 

disease and atypical parkinsonisms, their hallmarks and differences and similarities in clinical 

presentations, giving us a peak into the challenges faced in differential diagnostics. Chapter 2 will 

describe current tests employed in clinical diagnostics, as well as present some approaches using 

technology, sensors, and algorithms, particularly algorithms of artificial intelligence to try and aid with 

the diagnostic process. Main hypotheses will be defined in Chapter 3, which we will aim to test in 

Chapters 4 and 5. Chapter 4 will present efforts on aiding diagnostics through the analysis of kinematic 

data obtained from the fingers, while Chapter 5 will analyze kinematics of gait. We conclude the work 

in Chapter 6 and give guidelines for future work.  
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1.1. Parkinson’s disease 
 

Parkinson’s disease is reflected in pathological features seen in neuronal tissues, as well as a heap of 

clinical symptoms, which will be described in this chapter.  

1.1.1. Histopathological biomarkers 
 

Histopathological characteristic of Parkinson’s disease is a loss of dopaminergic neurons of the 

substantia nigra projecting to the putamen. These are parts of the basal ganglia, more than half a billion-

year-old subcortical brain structure [10] primarily responsible for selection and implementation of 

purposeful movement, which heavily relies on the release of dopamine. Reduction of dopamine release 

seen in PD inhibits thalamocortical transmission and results in global movement reduction [11]. The 

basal ganglia include several interconnected nuclei (Figure 1): the subthalamic nucleus (STN), the 

striatum (composed of the putamen and caudate nucleus), globus pallidus with internal and external 

segments, and substantia nigra (consisting of pars compacta – SNc, and pars reticulata - SNr). These 

segments are densely interconnected, involving direct and indirect pathways, and consisting of excitatory 

glutamatergic and inhibitory GABAergic projections [12]. These pathways are modulated by dopamine 

released from the SNc. The SNc is the main source of dopaminergic neurons projecting to other basal 

ganglia, although there are also dopaminergic neurons spread throughout the striatum. Input from the 

neocortex gets projected to the thalamic nuclei, which are then projected to the frontal cortex, meaning 

that the basal ganglia can influence executive functions of the forebrain [13]. Outputs are also sent to the 

brainstem nuclei involved in motor control. The STN is responsible for receiving input from various 

brain regions and is thus a good target for deep brain stimulation [14], which was shown to remarkably 

reduce the motor symptoms in select PD patients. Deep brain stimulation is also delivered to the 

pallidum, which receives most of the input from the striatum, while the striatum receives the bulk of the 

input from the cortex. Abnormalities in the basal ganglia pathways lead to loss of movement in 

parkinsonisms while also being responsible for example for excess movements in Huntington’s disease 

[13]. 

Apart from their notable role in motion, the basal ganglia also have implications in reward processing, 

mood regulation and more. Points in this area light up in fMRI scans of people being shown pictures of 

their object of romantic love [15] and show signs of accelerated aging in those suffering from major 

depression [16]. Metabolic abnormalities have been observed in basal ganglia in fMRI brain imaging of 

patients with Tourette syndrome and obsessive-compulsive disorder [13]. 
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Figure 1 The basal ganglia (Adapted from [13]) 

 

Another notable characteristic of parkinsonian disorders is pathologic accumulation of protein tangles 

within neurons and often glial cells, which happens early in the course of the disease. Neuronal inclusions 

in PD consist of α-synuclein and are also called Lewy bodies. Lewy bodies are mostly found in SNpc, 

but also in other brain areas, as well as in the peripheral nervous system, such as the neurons of the 

enteric plexus of the gastrointestinal tract [17]. A staging system has been proposed for tracking Lewy 

inclusions from the enteric and autonomic system to the brainstem, and higher parts of the neuraxis [18].  

In physiologically normal conditions, α-synuclein is a neuronal protein, widely expressed in the nervous 

system, and found predominantly in pre-synaptic terminals. Its main role seems to be the control of 

neurotransmitter release. The misfolded α-synuclein tangles are thought to contribute to PD pathology 

mainly through aberrant soluble oligomeric conformations – protofibrils – which disrupt cellular 

homeostasis and affect neuronal death, via different intracellular targets. It also appears to affect its 

neighboring cells, prompting the spread of the aggregation and progression of the pathology. In a subset 

of PD cases, a genetic basis of the disease has been identified in a defective SNCA gene coding for α-

synuclein [19]. The inheritance of the mutation is autosomal dominant, and generally results in early 

onset PD. The onset is affected in dose-dependent manner, where the higher number of gene 

multiplications lead to earlier disease onset. 

1.1.2. Clinical features 
 

A common clinical feature of PD is difficulty performing movements, reflected notably in gait, which 

worsens over the course of the disease. Speed is typically reduced, stride length shortened, double support 

phase is prolonged, and hesitation is present on start [20]. Walking and standing are complex motor 

behaviors influenced by mental processes [21], and PD patients are known to have a difficulty performing 

dual tasks, whether the interference task is motor or cognitive, meaning the problem is not only of motor 

nature. Inability to deal with simultaneous tasks may be due to central processing becoming too limited, 

or patients failing to prioritize tasks by importance, not placing balance control over secondary tasks 

[22]. Basal ganglia, together with multiple other brain areas are thought to contribute to movement 

automation, serving as the automatic link to other motor areas, connecting sub-movements into automatic 

skilled motion.  This is in line with the observation that voluntary movement is more preserved in PD 

than automatic movement [23]. Patients can perform normal walking, but they need to direct active 

attention to it, and external cueing is found to help. This is due to the automatic movement ability being 

affected, and these attentional strategies allow the motion to rely more on attentional rather than 

automatic motor control.  
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Early in the course of PD, when gait alterations may not yet be apparent to the eye, technology can be of 

help to detect some issues. Spatiotemporal analysis of gait in early-stage PD and healthy controls found 

that the gait of PD patients is slower, with shorter strides, increased stride duration and double support 

time, and shorter swing times. Left to right swing asymmetry is also increased and there are 

inconsistencies in the timing and rhythmicity of gait [24].  

Patients with Parkinson’s disease experience episodes of sudden and brief inability to produce effective 

forward stepping, feeling that their feet are glued to the floor. This phenomenon, named freezing of gait 

(FoG), usually lasts under 30s but some cases may leave patients stuck for several minutes [25]. The 

occurrence of FoG episodes significantly contributes to falls, which are a frequent event in patients 

suffering from PD. A study on a cohort of 300 patients with PD in Serbia found that 60% of the patients 

had had a fall within 6 months prior to testing [26]. 

Apart from gait, the pervasive motor impairment in PD can be seen as general slowness (bradykinesia) 

in performing daily activities and delayed reaction times. Patients may have difficulties buttoning their 

shirts or using utensils; impaired swallowing can lead to drooling [1]. 

Spontaneous movements such as blinking or arm swinging while walking can be reduced, gesturing can 

be lost, including loss of facial expressions (hypomimia). This gradually leads to a “mask-like” 

appearance, which reduces the patients’ levels of emotional expressiveness [27] and causes others to 

misinterpret their emotional state. Embodied simulation theory states that our understanding of the 

emotions of others is facilitated by facial mimicry. This may also help explain why people with 

Parkinson's disease have difficulties in recognizing other people's emotions - because of the way the 

disease affects the contractility of their facial muscles, leading to facial masking [28]. It’s been shown 

that apart from affected expression of emotions, PD patients exhibit impairments in decoding emotional 

expressions from the faces of others [29]. "The fundamental mechanism that allows us a direct 

experiential grasp of the mind of others is not conceptual reasoning but direct simulation of the observed 

events through the mirror mechanism" [30] - says Vittorio Gallese, Italian professor known for the 

discovery of mirror neurons - neurons that were found to fire in monkeys observing another animal 

performing an action, just as they fired when the monkey performed the actual action. Indirect evidence 

points to existence of such neurons in humans too [31].  

Abnormalities in handwriting become visible, notably micrographia, where patients write with 

abnormally small letters. Digital technologies drew the attention to not only micrographia, but also other 

disturbances in handwriting in PD, including speed, fluency, and acceleration, together known as PD 

dysgraphia [32]. 

To assess bradykinesia, clinicians usually use tests which involve rapid, repetitive movements of the 

hand and foot, such as finger tapping [33], and look for slowness of movement, pauses, and changes over 

time. 

Rigidity is seen in increased resistance to passive movement of a limb, either proximally or distally, and 

may be accompanied by pain. Rigidity of the neck and trunk may result in abnormal posture and postural 

deformities, usually late in the disease. Loss of postural reflexes as the disease progresses, together with 

freezing of gait, contributes to falls and the risk of hip fracture [1]. 

Tremor in rest is yet another recognizable symptom of PD. It occurs at frequencies between 4 and 6 Hz 

and hand tremor is of pronation-supination type and resembles the pill-rolling motion [1]. Tremor can 

be also seen in the legs, lips, chin, but rarely affects the neck and head like essential tremor does. 

At the onset of motor symptoms, however, up to 70% of dopaminergic neurons may already be lost. PD 

often presents with a number of non-motor symptoms first, which may include sleep disorders, 
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constipation, anxiety, and depression. As the disease progresses, cognitive impairment, dementia, and 

orthostatic hypotension have been reported [6].  

As we will see in the following chapter, PD shares a lot of overlapping symptoms and even some 

histological features with other movement disorder, which makes differential diagnostics an elusive task.,  
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1.2. Atypical parkinsonisms 
 

Neurodegenerative disorders in which the degeneration spreads outside of substantia nigra and is more 

extensive than in Parkinson’s disease are categorized as atypical parkinsonisms [2]. Their manifestations 

resemble PD, but are usually more complex. As in PD, Lewy pathology is also seen in Multiple System 

Atrophy (MSA), while Progressive Supranuclear Palsy (PSP) is considered a tauopathy, presenting with 

tangles of tau protein, alongside Cortico-Basal Degeneration, Guam Parkinson-Dementia Complex and 

Chronic Traumatic Encephalopathy. A category of parkinsonisms associated with TDP-43 proteinopathy 

has also been recognized [34].  

1.2.1. Progressive supranuclear palsy  
 

Progressive supranuclear palsy (PSP) is a disorder of tau protein aggregation, first described in 1964 by 

Steele, Richardson and Olszewski [35], prior to which it was commonly misdiagnosed as Parkinson’s 

disease. PSP is assessed to be present in 5 to 6 out of 100 000 people [36], making it much less common 

than PD. It is a progressive neurological disease notable for supranuclear ophthalmoplegia mainly in 

vertical gaze, pseudobulbar palsy, dysarthria, and dysphagia that leads to aspiration, dystonic rigidity of 

the neck and upper trunk, severe gait disturbances and balance impairment, but also less commonly or 

less constantly sleep disturbances, depression, urinary incontinence, constipation, apraxia, tremor, and 

more [36].  

Particularly in earlier stages, the characteristics of PSP, especially the parkinsonian subtype, resemble 

those of idiopathic PD [37]. It is common that this diagnosis is given after 3 to 4 years from onset, once 

the typical manifestations of the condition - supranuclear gaze palsy and falling – come to light [38]. PSP 

patients have a poorer response to levodopa, with this treatment being effective in only 26% of cases 

[39], and these differences in medication response have been themselves used to aid diagnostics, although 

with limited success [40]. 

1.2.2. Multiple system atrophy 
 

Another condition with some overlapping symptoms with PD is Multiple System Atrophy (MSA). When 

134 patients with clinically diagnosed MSA were analyzed, it was found that for 83 of them (62%) the 

diagnosis was confirmed post-mortem [41]. For the remaining subjects, the disease was mostly confused 

with dementia with Lewy bodies, followed by PSP and PD. 

MSA is a rare parkinsonism, involving pathologic accumulation of aggregated α-synuclein as glial 

cytoplasmic inclusions [42]. Main features of this disease are parkinsonism or cerebellar ataxia with 

autonomic failure. Two phenotypes are recognized: MSA with predominant parkinsonism (MSA-P) and 

MSA with predominant cerebellar ataxia (MSA-C). Other clinical signs include early postural instability, 

dysphagia, orthostatic hypotension, and urinary incontinence [42].  There are other conditions that may 

sometimes be confused with PD, including dementia with Lewy bodies, Alzheimer’s disease, 

postencephalitic parkinsonism and essential tremor [43], but those disorders are out of scope of this work. 
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2. DIAGNOSTICS OF PARKINSON’S DISEASE AND ATYPICAL PARKINSONISMS 

 

PD and atypical parkinsonisms, as well as some other neurological disorders, manifest often with an 

overlapping palette of symptoms. Frequency of occurrence of these symptoms can be and is used in 

clinical practice for differential diagnostics: e.g. asymmetry in motor signs is almost always present in 

PD, but only sometimes in MSA and PSP. Autonomic disfunction is always present in MSA, but only 

sometimes in PD and almost never in PSP. Dementia is almost always seen in PD and PSP, but rarely in 

MSA. Treatment with levodopa can also be used as a differentiating marker, as PD patients almost always 

respond to treatment, while PSP and MSA patients are less responsive [34]. Some of these features are 

represented as clinical diagnostic criteria in the UK PD Brain Bank criteria [43]. Clinimetric rating scales 

have been developed for staging and progress assessment of parkinsonian disorders, the most prevalent 

of which are the UPDRS and Hoehn & Yahr scales, described briefly in Chapter 2.1. In Chapter 2.2. we 

give an overview of approaches utilizing technology and artificial intelligence to aid in differential 

diagnostics of PD. 

2.1. Clinical motor impairment, disease staging and diagnostic tests 
 

UK Parkinson’s Disease Society Brain Bank lists PD diagnostic criteria in three steps. Step one 

includes bradykinesia, and one or more of the following: muscular rigidity, 4-6Hz rest tremor, postural 

instability not associated with other known dysfunctions of the visual, vestibular, cerebellar, or 

proprioceptive system [43]. Step two lists the exclusion criteria for the diagnosis of PD, and these include 

a history of repeated strokes, head injury and definite encephalitis, oculogyric crises, use of neuroleptic 

medications at presentation, more than one relative affected, sustained remission, features remaining 

unilateral after 3 years, supranuclear gaze palsy, cerebellar signs, early autonomic involvement, severe 

dementia, Babinski sign, cerebral tumors, negative response to high doses of levodopa, MPTP exposure. 

Step three involves supportive criteria for PD diagnosis, where three or more are required to confirm PD: 

unilateral onset, progression, persistent asymmetry, very responsive to levodopa, responsive for at least 

5 years, clinical course of 10+ years, and severe levodopa-induced chorea.  

Unified Parkinson’s Disease Rating Scale (UPDRS) is the most widely used clinical rating scale for 

PD. It was originally developed in 1980s and revised in 2008 [44] by the International Parkinson and 

Movement Disorder Society (MDS) [45].  The scale includes 4 parts: Part I - Non-motor Aspects of 

Experiences of Daily Living; Part II – Motor Aspects of Experiences of Daily Living; Part III – Motor 

Examination; Part IV – Motor Complications;  

Part I is a questionnaire assesses the patient’s complex behavior, including cognitive impairment, 

hallucinations and psychosis, depressed or anxious mood, apathy, features of dopamine dysregulation 

syndrome (detected through the presence of unusually strong and hard-to-control urges, e.g. towards 

gambling), sleep problems, daytime sleepiness, pains and aches, urinary and constipation problems, light 

headaches on standing, fatigue. All items are scored by intensity and frequency of occurrence on the 

scale from 0 (none) to 4 (severe). 

Part II is a questionnaire that examines speech problems, drooling, chewing and swallowing, troubles 

eating (such as weakness while holding utensils) or dressing, hygiene, handwriting, engaging in hobbies 

and other activities, turning in bed, presence of tremor, getting out of bed or a chair, walking and balance, 

freezing of gait.  
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Part III is a motor examination administered by a specialist of neurology. The patient is asked to perform 

a number of motor tasks and the examiner rates what they see on a scale from 0 (normal), through 1 

(slight), 2 (mild), 3 (moderate), to 4 (severe). This part involves speech examination, where the examiner 

listens to the patient freely talking, and pays attention to the volume, prosody and clarity, slurring, 

palilalia (repetition of syllables), and tachyphemia (fast speech, squashing syllables together). The next 

on the examination list are facial expressions, both while talking and while being quiet, looking for signs 

of masking. Rigidity is judged by slowly moving the patient’s neck and limbs, while they are instructed 

to keep limp. 

Finger tapping is the fourth test in the motor part of the scale. The patient is instructed to tap their index 

finger against the thumb repeatedly as quickly and as widely as they can. Motor performance degrades 

much more easily during sequential motions in case of individual finger opposition than non-individual 

finger oppositions, and it is therefore standard to perform this test with index-thumb oppositions [46]. 

Both hands are assessed, and attention is paid to speed, amplitude, hesitations or halts and decrements in 

amplitude. Hand movements are tested on both hands separately, by having the patient clench and open 

their fist repeatedly, and watching the speed, amplitude, hesitations or halts, and decrements in 

amplitude. Pronation and supination of hands are also tested by having the patient extend their arms, and 

repeatedly turn the palm upwards and downwards alternately, trying to achieve maximal speed and 

extent. Finger tapping has been shown to better correlate with the overall UPDRS scores than hand 

pronation and supination or hand opening and closing [46].  

Tapping of toes is tested by having the patient sit with their feet on the floor, and then tap their toes on 

each foot separately as fast and with as large an amplitude as they can, evaluating speed, amplitude, 

hesitations or halts and decrements in amplitude. 

Agility of the legs is tested on each foot separately, by having the patient sit with their feet on the floor 

and then repeatedly raise and stomp. Arising from the chair is tested next, by having the patients stand 

up from the chair while having their arms crossed on their chest, observing difficulties while doing so, 

as well as posture after standing up. Gait and freezing of gait are tested by having the patient walk back 

and forth from the examiner for at least 30m, assessing stride length, speed, level of foot lifting, heel 

strike, turning, arm swinging, and presence of hesitation, stuttering, and freezing of gait – particularly at 

turning points and end of the task. Postural stability is tested by observing the response to abrupt pull on 

the shoulders in standing position, and posture is assessed during standing, getting up from a chair and 

walking. Body bradykinesia rating is given based on slow, hesitant movement and lack of movement in 

general during spontaneous activity. Postural hand tremor is rated for each hand separately, by watching 

the patient stretch out their hands in front of them for 10s, palms facing down. Kinetic hand tremor is 

tested by having the patient touch their nose and then the examiner’s finger. The patient is observed for 

rest tremor during the exam, for all limbs separately, and lips and jaw. Consistency of rest tremor is also 

rated. Presence of dyskinesia, such as chorea and dystonia are noted. This part also includes noting the 

Hoehn and Yahr stage [47], which is a scale that defines broad categories of motor function. The stages 

are defined from 0 to 5, given as follows: 

0 – Asymptomatic 

1 – Unilateral involvement 

2 – Bilateral involvement without balance impairment  

3 – Mild to moderate bilateral involvement; some postural instability; physically independent; assistance 

required to recover from the pull test 

4 – severe disability; still able to walk or stand unassisted 
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5 – wheelchair bound or bedridden unless aided 

Modified Hoehn and Yahr scale [48] adds also 1.5 – Unilateral and axial involvement and 2.5 – Mild 

bilateral disease with recovery on pull test.  

Part IV of the MDS-UPDRS scale deals with motor complications, based on historical and objective 

information, assessing dyskinesias and their prevalence during the patient’s waking day, and their 

functional impact on daily activities. Time spent in the OFF state (on PD treatment but experiencing 

some hours of slowness, shaking or similar) is rated as well, from no off time to more than 75% of the 

day spent in off time. The scale rates the impact these motor fluctuations on the patient’s daily 

functioning, and their predictability. For patients with motor fluctuations, the scale rates the percentage 

of OFF time that includes painful dystonia. 
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2.2. Technology and artificial intelligence in aid of diagnostics 
 

There have been numerous approaches to employing technology to aid in detecting and differentiating 

PD [39], perhaps most famously neuroimaging. Applications of kinematic analyses of gait or hand 

movements have been increasing, both for diagnostic support and for disease stage monitoring. Other 

sensing modalities, such as EEG or facial analysis, have also found a use case in assisting PD diagnostics. 

Artificial intelligence (AI) and machine learning (ML) algorithms have been vastly relied on to build 

upon the various sensors and help offer diagnostic predictions on an individual level. ML algorithms 

have been shown to give a significant contribution to improvements in classification between patients 

with PD and people without neurological disorders, compared to results obtained in the clinical practice 

alone, although published studies involved varying numbers of participants, stages of the disease, 

particular analysis and instrumentation used, and demonstrate better results when the PD participants are 

in more advanced stages of the disease. Larger numbers of recruited participants also lead to better 

results. 

 

2.2.1. Neuroimaging 
 

Many studies have turned to neuroimaging methods to find group level differences between 

neurodegenerative conditions [49], and have deepened our understanding of the pathophysiology. 

Distinguishing macroscopic features in neuroimaging have been discovered between MSA, PD and PSP, 

such as atrophy of the pontine base in MSA, but not in PD and PSP, or marked atrophy in the superior 

cerebellar peduncle which is not present in the other two disorders [34]. MRI is a frequently used imaging 

technique, particularly the t1-weighted modality [50]–[58], although computer aided diagnostics relying 

on diffusion tensor imaging (DTI) [59], [60] and susceptibility weighted imaging (SWI) [61] can also be 

found in literature1. Some effort has been put into leveraging multimodal data for more reliable computer 

aided diagnostics, combining t1-weighted, t2-weighted and DTI [62]–[65][62]–[65]. While t1-weighted 

imaging has had some trouble discerning PD from healthy controls [51], [54], as the brains of those with 

early and mid-stage PD usually appear normal, Planetta et al [60] achieve perfect separation using DTI, 

although having also included clinical data. 

To improve the predictive power of neuroimaging methods when it comes to the clinical outcome of 

individuals, machine learning algorithms coupled with large neuroimaging databases have achieved 

some quite exciting results, reaching accuracies over 90% [50], [58], [59], [66]–[71], and discerning PD 

from PSP and MSA [54], [60], [63]–[65].  

The most widely used classification algorithm is the support vector machine (SVM) (More on SVMs can 

be found in Chapter 4.5.1). SVM papers report very good, or even perfect results for binary classifiers, 

but sadly multiclass classification does not match those numbers.  Gong et al [72] believe that the road 

to better SVM performance is through optimized kernel selection. They expand on the large margin 

distribution machine (LDM) algorithm, introduced by Zhang & Zhou [73], based on the notion that not 

 
1 MRI (magnetic resonance imaging) is an imaging technique that uses a powerful magnetic field to polarize protons in 
scanned tissues parallel to the field, and a transverse radiofrequency pulse that pushes the protons out of the equilibrium. 
To construct an image, T1-weighted imaging uses the tissue-specific time it takes for protons to realign with the magnetic 
field once the RF field is off (longitudinal relaxation time), while T2-weighted imaging relies on the duration of proton 
precession (transverse relaxation time) in response to the RF signal. DTI measures diffusion of water molecules in tissues in 
various directions, and SWI exploits substance differences in magnetic susceptibility. 
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only is maximizing the minimal margin important, but also taking into consideration the distribution of 

the margin – its mean and variance. They employ a deep neural network for kernel mapping, pre-training 

it with a Restricted Boltzmann Machine (RBM) and then fine tuning in a supervised manner, to finally 

employ an LDM for classification. They illustrate the efficiency of this approach on the problem of 

discerning PD from controls on two datasets: MRI and transcranial sonography (TCS), in both cases 

outperforming classical SVM and LDM approaches. 

Others try to improve SVM classification accuracy through selection or extraction of different features. 

The go-to are often volumetric measures derived from regions of interest (ROI) [56], incorporating thus 

a-priori knowledge on the manifestations of the disease. The input dimensions are sometimes reduced 

through PCA [50], [52], [58]. Morisi et al [65] include features generated through a graph-based method. 

Similarly, Peng et al [57] use multilevel features – low level volume and thickness, and high-level 

correlative features. Amoroso et al [70] use connectivity features and further filter them through a random 

forest. Adeli et al [67] focus on selecting features that best benefit the classification scheme in the kernel 

space, unlike conventional techniques that select features based on their performance in the original input 

feature space. They have, however, combined MRI with SPECT (Single Photon Emission Tomography) 

data, and SPECT turned out to be the main carrier of discriminative information. Including clinical data 

has been demonstrated to improve results [60], [70], and interestingly, so has addition of information on 

gender and age [55]. 

The issue with imaging analyses is that they require a lot of time and money, and the modalities that offer 

the highest reliability expose the patient to ionizing radiation and cannot be used in people who are 

hypersensitive to the radioactive dye. While MRI has the advantage of not (necessarily) using radioactive 

substances, dopaminergic images obtained by SPECT can detect Parkinson’s Disease at an early stage 

and have demonstrated superior classification ability in discerning PD from healthy subjects. When 

SPECT images were employed in combination with deep learning methods, concretely a convolutional 

neural network (CNN), a stunning 100% accuracy was achieved by Esmaeilzadeh et al [71] on validation 

and test sets.  

This and other studies using deep learning algorithms [66], [68], [69] have been greatly facilitated by the 

mass collection of data, basing their research on medical images obtained across continents by the 

Parkinson’s Progression Markers Initiative (PPMI) [74]. PPMI is a large-scale, international public study 

with the aim of identifying PD progression biomarkers. They make SPECT and MRI recordings, together 

with clinical and biological data, available to the research community, on condition they provide reports 

on their findings.  The work by Kim et al [69] is interesting because it shows that it is possible to have a 

limited set of SPECT images and still come to decently accurate PD vs controls classification, through 

transfer learning from an abundant set of non-medical images. 

 

 

2.2.2. Kinematic analysis 

 

Although neuroimaging offers superior results in terms of diagnosing PD, its downsides such as higher 

time consumption, price and limited availability in less urban areas, as well as exposure to ionizing 

radiation in some modalities, have prompted the development of alternative technological approaches to 

diagnosing and monitoring PD and other movement disorders, in particular the use of various sensors to 

track movement of the body or its parts. Kinematic analysis has proven to be useful in diagnostic aid and 

motor function assessment, through recording and analyzing motion from upper or lower extremities, or 
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a multitude of sensors capturing whole body motions. In upper extremities, particularly bradykinesia and 

hand tremor have been analyzed [75], [76]. Diagnosis has relied on hand motions, captured by computer 

keyboards [77]–[79], wearable inertial sensors [80] or sensors integrated in smartphones [81]–[83], 

electromagnetic sensors [84], and cameras [85], by which researchers sought to build upon traditional 

tests performed in clinical settings for diagnosis of PD. This primarily encompasses finger tapping and 

tremor tasks (action/rest) that are a part of the standardized UPDRS battery of tests, part III [86], as 

described in Chapter 2.1.  Although UPDRS is an indispensable tool for rating PD, it is still prone to 

examiner subjectivity and inter-rater variability. Motor dynamics in repetitive finger tapping have thus 

been quantified in research through the utilization of sensors such as accelerometers and gyroscopes, to 

try and make the motor progression tracking more objective [46]. Concerning lower extremities, analysis 

has relied on data collected using force sensors inside the shoes or integrated into a walkway [87]–[89]. 

Electronic walkways, such as GAITRite, although expensive and tied to a laboratory setting, have proved 

to be reliable and have often been used to analyze gait in parkinsonisms, due to a large number of sensors 

they contain and abundance of spatio-temporal variables they offer, as well as the possibility of analyzing 

individual footsteps [90]. Infrared cameras, Kinect or motion capture with markers have also been used 

[91]–[94], as well as inertial sensors placed on the legs, waist or feet or smartphone integrated sensors 

[95]–[101]. As inertial sensors are of particular importance for this thesis, let us dedicate some extra 

attention to them. Inertial sensors are a widely adapted means of recording movement of an object in an 

inertial reference frame. Though they may come as single sensors, they are usually packed into an inertial 

system, an inertial motion unit (IMU) that contains an accelerometer, a gyroscope and potentially a 

magnetometer, each measuring motion on 3 axes. They could be manufactured in different technologies, 

such as mechanical, quartz or MEMS (Micro electromechanical systems) technology, spanning a large 

range of prices, with the navigation grade sensors used for military purposes reaching prices of over $100 

000, while consumer IMUs, such as those built into smartphones, tablets or gaming systems can cost less 

than $10 [102]. The recent steep reduction in price driven by highly integrated MEMS technologies, 

prompted wide adoption of inertial sensors in various consumer products, but also health monitoring 

applications. 

The basis of MEMS systems is a proof mass suspended on a spring km, as shown In Figure 2.  
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Figure 2 Electromechanical spring/mass system in MEMS sensors (Image adapted from [103]) 

 

The input force acting on the mass, i.e. the quantity to be measured, displaces the mass, and this 

displacement is used as a proxy to measure the input force. This displacement can be measured using a 

variable capacitor Cs(x), one side of which is attached to the proof mass, and the other is fixed. A change 

in the position of the mass causes a change in charge as described by Equation 1 [103], where Vb is a 

fixed bias voltage. 

𝛥𝑄(𝛥𝑥) =  
𝑑𝐶𝑠(𝑥)

𝑑𝑥
𝑉𝐵𝛥       (1) 

 

Accelerometers use this sort of simple spring/mass system to measure linear acceleration, typically given 

in gees, where 1g = 9.81m/s2, representing acceleration due to gravity of the Earth. The input force to 

be measured is a result of gravity  (which is why accelerometers are used in mobile phones for sceen 

orientation) or linear acceleration. Gyroscopes, on the other hand, require a more complex system (Figure 

3). Gyroscopes measure angular velocity in degrees/second or radians/second. They require the proof 

mass to be vibrating, and detect the Coriolis acceleration proportional to rotational velocity along an axis 

orthogonal on the axis of vibration. The amplitude of this oscillation must be regulated so that the speed 

is maintained stable and known. The system has two springs and has two degrees of freedom – sensing 

(x) and drive(y). A constant speed of rotation results in a proportional amplitude of periodic displacement 

of the proof mass, phase shifted by 90 degrees from the drive position, as the Coriolis acceleration is 

proportional to its derivative, the drive velocity. This produces an amplitude-modulated flow of charge 

in the sensing capacitor. 
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  Figure 3 A MEMS gyroscope schematic (Image adapted from [103]) 

Similar hardware components are nowadays embedded in smartphones and other smart devices, opening 

a window to the utilization of already available hardware for aid in diagnosis and progression monitoring 

in PD and other disorders. In combinations with signal processing and custom applications, smartphone 

built-in sensors have been used, although somewhat awkwardly, to quantify certain PD symptoms, e.g. 

bradykinesia [104].  
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2.2.2.1. Upper extremities  
 

Technology-assisted diagnostics and disease monitoring based on kinematic data obtained from upper 

extremities focus particularly on bradykinesia and hand tremor, the assessment of which may include 

motion tracking from video captures or inertial motion units, but can also rely on smartphones and the 

analysis of typing on a virtual or physical keyboard2. Machine learning approaches have been of help in 

these analyses, as illustrated in Figure 4, with the upper panel displaying the success of ML applications 

in diagnostics, and the lower panel pertaining to disease monitoring applications. A specific marker is 

given to each study, where instrumentation used is coded in marker shape, number of patients in marker 

size, and color representing reported performance metrics (sensitivity – Se, specificity – Sp, and accuracy 

- Ac). The figure presents the most frequently used or the most successful ML algorithms based on 

reported performance, rather than all of them. The columns show different ML algorithms, sorted in the 

alphabetical order: ANN – Artificial Neural Network, ENS – Ensemble of different classifiers, EVOL – 

Evolutionary algorithm, kNN – k Nearest Neighbours, LR – Logistic Regression, NB – Naïve Bayes, 

SVM – Support Vector Machine and TREE – Tree based algorithms.  

If we look at the sensitivity and specificity of the algorithms used for diagnostic aid using smartphones, 

we see that the ratio of Se/Sp for NB, SVM and LR are respectively: 56%/100%, 56%/100% and 

74/100%, meaning that high confidence can be put into identifying healthy participants, but detections 

of persons with the disease are often missed [83]. BAG DT, AdaBoost and C4.5 approaches had a 

mutually similar performance, showing better sensitivity, but lower specificity compared to the 

previously mentioned algorithms, with Se/Sp ratios of 82%/90%, 83%/85% and 83%/75% respectively. 

Accuracy of 95% was reported for early diagnostics based on tremor analysis via ANN and a smartphone 

[81]. Sensitivity and specificity of 96% and 97% was reported using an ensemble of eight different ML 

algorithms used on top of keyboard typing data [78]. Giancardo et al. [77] and Arroyo-Gallego et al [79], 

who also used a keyboard, but opted for SVR algorithms for early diagnostics, report Se/Sp ratio of 

71%/84% and 77%/72% respectively. It should be noted that these measurements were taken by a 

standard smartphone or regular PC keyboard, suggesting that implementation of test procedures is 

possible with globally available and affordable equipment.  

 

 
2 A survey of AI applications in PD diagnostics has been published in [105] 
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Figure 4 Performance measures of different ML algorithms applied on kinematics of upper extremities 

[Published in [105]] 

Intelligent algorithms have also been used to assess and track symptoms of motor impairment, with the 

purpose of providing a more objective and automated means of assessment of symptom severity than 

what is achieved by tests in the clinical settings alone. Researchers have used tasks such as those used in 

clinical testing: tremor, finger tapping, or other repetitive movements, and extracted features such as 

tremor frequency [106] or amplitude and frequency of repetitive motions [104]. The results of these 

algorithms are presented in Figure 4, in the lower panel, and include the most used supervised machine 

learning algorithms based on upper body measurements in PD.  

Stamate et al [107] have developed a mobile application, CloudUPDRS, which helps in recording 

UPDRS motor tasks, and employs a deep learning model to discern between high quality and low-quality 

recordings. Machine learning has also been deployed in applications that aim to extract useful 

information from everyday activities of PD patients and use them to provide meaningful insight into how 

well a patient is responding to therapy and what the next course of action should be [108], [109]. Fisher 

et al [109] used ANN on data from an accelerometer mounted on the wrist to automatically detect 

sleeping states, ON and OFF states and dyskinesia in home settings. They found that ON/OFF states and 

dyskinesia can be detected with sensitivity and specificity above 80%. Hammerla et al [108] achieve 

comparable results using deep learning. Detection and classification of dyskinesia and bradykinesia have 

been tackled using both traditional machine learning [110], [111] and deep learning [111] to achieve high 

accuracy (84 to 90%).  
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2.2.2.2. Lower extremities  

 

Analysis of gait has been the staple of studying, monitoring and diagnosing PD. Some studies have relied 

on infrared motion capture systems, others on sensorized electronic walkways. Inertial sensors have also 

emerged as a cheaper and lighter alternative, with a varied number of sensor units mounted on the legs, 

with effort put towards simplification of the setup and sensor number reduction [112]. Artificial 

intelligence has often been used in development of systems for diagnostic and monitoring aid based on 

the data describing motion of lower extremities [75]. A study that focused on early PD diagnostics and 

used a kNN classifier [101] achieved accuracy of 85.5%. Using SVM also reached 85% accuracy or 

higher, as shown by a couple of studies [88], [113]. LDA (Linear discriminant analysis) used in this 

context provided Se/Sp of 88%/86% for diagnosing early PD, where early was considered to have a 

UPDRS score below 15, and this was done using gait data from three different tests [97]. Sensitivity and 

specificity increased to 100% in the same study when considering UPDRS scores above 20. Se, Sp and 

Ac achieved by an RBF NN applied on a PhysioBank dataset of 93 PD patients in the early to moderate 

stage, were 96.77%, 95.89% and 96.39% respectively [89]. Most used supervised machine learning 

algorithms for diagnostics on lower extremity data are shown in the upper panel of Figure 5, while the 

lower panel displays results obtained for assessment using kinematic data. The results are presented 

similarly to Fig 4. 

 

 
Figure 5 Performance measures of different ML algorithms applied on kinematics of lower extremities 

[Published in [105]] 

A major niche for applications of artificial intelligence is freezing of gait (FoG) and falls, and wearable 

sensors have found their way to detecting and predicting these states [114], due to their ability to be used 

for home monitoring, where they can track gait during walking along complex paths with a lot of stops 

and turns. Commonly, the sensors are attached on the legs and waist [115]–[117], with some studies 

including wrist and chest wearables [118], [119]. Smartphones [120], with their integrated IMUs, and 
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smartwatches [121], have also been used as a means of unobtrusive FoG detection and gait-based 

diagnostic aid.  

To detect FoG, scientists have often employed the SVM algorithm. SVM with a polynomial kernel 

achieved Se/Sp of 89%/91% for FoG detection, and 75%/88% for FoG prediction [117]. The same study 

tested other ML algorithms as well, including ANN, NB, RF, kNN, linear kernel SVM and Extreme 

Gradient Boosting, but the Polynomial SVM outperformed them. In another paper [116], the researchers 

designed personal and generalized FoG detection models, using SVM, and reported that the personalized 

model with Se/Sp of 88.1%/ 80.1 % performed better than the generalized one with Se/Sp of 74.7%/ 

79%. Introducing nonlinear SVM kernels slightly improved FoG detection accuracy compared to the 

linear SVM (Ac=95.4% compared to 94.2%) [115]. In order to predict incoming FoG episodes, Mazilu 

et al [122]used unsupervised learning to identify patterns in kinematic data and derive features for 

predictions. The lower panel of Fig 5 summarizes the results for the most used machine learning 

algorithms on gait data for FoG detection.  

The problem of frequent falls in PD has been addressed using smart wearable devices and camera-based 

systems, and here machine learning algorithms used for this purpose have shown to have better prediction 

rates than threshold-based approaches [123]. 

Jane et al [124] automated detection of severity of gait impairment, in accordance with the H&Y scale, 

with the help of wearable sensors and a Q-backpropagated time-delay neural net, achieving accuracy of 

about 90%. Se and Sp of over 90% were also achieved using an SVM classifier on accelerometer data 

[125]. Machine learning was also employed to assess the effects of deep brain stimulation (DBS) on 

ground reaction force data, specifically LR, SVM and PNN (Probabilistic Neural Network), and a 

positive effect of DBS was shown on walking patterns [126]. 
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2.2.2.3. Upper and lower extremities 
 

Motion analysis using data collected from upper and lower extremities combined has been performed 

with the aim of helping PD diagnostics [92], [96], [99], staging [99], [100], detection and assessment of 

dyskinesia [127], bradykinesia [128], [129], tremor [127], [129], [130], and FoG [118]. 

A combination of sensors has been used to collect data from everyday activities to try and discern healthy 

controls from patients with PD, either with cognitive impairments or without them, and a group of 

patients suffering from cognitive impairment due to disorders other than PD [92]. It was shown that these 

four categories can be classified with 86% accuracy using AdaBoost DT algorithm. Comparing only the 

healthy controls with PD patients, using inertial sensors mounted on the upper and lower body, separation 

accuracy ranges between 79.62% and 84.1% for NB, kNN, LDA, SVM and DT, with an ensemble of 

classifiers surpassing 90% [100]. When SVM was employed for healthy vs PD classification, splitting 

patients into groups with H&Y stage I, II or III, achieved accuracy was 94.5%, 87.75%, 93.63% 

respectively. In other studies, EML (Extreme machine learning), PNN and kNN were used for 

diagnostics [99], and HMM (Hidden Markov model) for estimation of tremor severity based on upper 

and lower limbs, with an accuracy of 87% [130]. SVM[129] and DNN (Dynamic neural network) [127] 

helped to assess bradykinesia, tremor, and dyskinesia with over 90% certainty. Similar results were 

achieved for FoG detection with NB, RF, DT and RT classifiers. Figure 6 presents the most often used 

or most successful ML approaches used to assess and diagnose PD using a combination of sensors on 

the upper and lower extremities.  

 
Figure 6 Performance measures of different ML algorithms applied on kinematics of combined upper 

and lower extremities [Published in [105]] 

Table 1shows a summary of papers that achieved promising results using machine learning for diagnosis 

and assessment of patients with PD. Using different systems gave comparable results, although cameras 

and motion capture systems have a limited use, due to their price as well as requirements for a dedicated 

recording space, while wearable sensors have a much lower price range and can be used for monitoring 
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in various environmental conditions. Smartphones with their integrated sensors are also used often since 

they are globally available and relatively affordable and have an integrated capability of wireless data 

transmission [131]. Wearable devices appear to have a large potential for use in telemonitoring of PD. 

We’ve seen machine learning algorithms employed to help in two main streams: offering diagnostic aid 

and disease assessment and monitoring. The algorithms commonly used are SVM, kNN, NB, ANN, 

LDA, DT, RF, although others have been used too. A notable number of studies have shown that simple 

wearable sensors combined with machine learning algorithms can form a powerful support tool for PD 

diagnostics and assessment. Neural networks have been used less often, possibly due to them being data-

greedy, and medical data is not always easy to come by, so some studies used simulated data (e.g. falls) 

[123]. A potential issue with wearable sensors and machine learning is the need for data annotation in 

home environment scenarios, and potential errors in data labelling based on clinical evaluation in early 

stages, limiting the use of strictly supervised machine learning approaches.  

Table 1 A selection of papers providing promising results for different applications based on 

movements of different body parts, using different instrumentation, protocols, and algorithms. 

Ref. Goal 

Type of 

observed 

motion 

Bod

y 

part 

Instrumentatio

n 
Subjects 

Algorith

m 

Best performance 

[%] 

Sp Se Ac 

[132] Diagnosis  
Finger 

tapping 
Up EM tracking 

107 PD, 

49 HC 
EVOL 91.8 94.6 93.5 

[78] Diagnosis Typing Up Keyboard 

20 PD 

(mild), 

33 HC 

ENS 97 96  

[81] Diagnosis 

Arm 

movements at 

rest, waving 

and walking 

Up Smartphone 

21 PD 

(>1 

year), 21 

HC 

ANN 95 95 95 

[85] 
UPDRS 

scoring 
FT Up Video 

13 PD 

(UPDRS: 

0-3) 

SVM   88 

[106] 
UPDRS 

scoring 
Hand tremor Up Smartphone 52 PD NB   97 

[132] 
UPDRS 

scoring 
FT Up EM tracking 

107 PD, 

49 HC 
EVOL   ≥89.7 

[89] Diagnosis Gait Low Force sensor 

93 PD 

(mild and 

early), 73 

HC 

ANN 95.9 96.8 96.38 

[95] Diagnosis Gait, Posture Low Smartphone 
10 PD, 

10 HC 
RF 

97.6 98.5 98.0 

[101] Diagnosis Gait Low IMU 
156 PD, 

424 HC 
kNN   85.51 

[115] 
FoG 

detection 
Gait Low IMU 

20 PD 

(H&Y>2

) 

Linear 

SVM 
95.6 82.2 95.4 
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[94] Diagnosis Gait Low 
Camera system 

& Force plate 

23 PD 

(H&Y: 

2), 26 

HC 

RF 90 96 92.6 

[52] 

Classificati

on of 

severity of 

motor 

disorders  

Unconstraine

d activity 
All Multimodal 

19 PD, 4 

non-PD 
ANN 97.1 94.9  

[129] Assessment 

FtN, FT, 

HOC, HT, 

SIT, HA 

All IMU 

12 PD 

(H&Y: 

2-3) 

SVM   >95 

[128] Diagnosis 
Gait, Posture, 

FT, RT 
All Smartphone 

10 PD, 

10 HC 
RF 96.9 96.2  

[100] 

Diagnosis 

(PD - H&Y 

I)  

Gait All IMU 

27 PD 

(H&Y:1-

3), 27 

HC 

SVM   94.5 

PD – Parkinson’s disease; HC – Healthy controls; UPDRS – Unified Parkinson’s disease Rating Scale; H&Y – Hoen and 

Yahr scale; ANN – Artificial Neural Network; EVOL - Evolutinary; ENS – Ensemble; kNN – k-Nearest Neighbours; NB – 

Naïve Bayes; SVM – Support Vector Machine; RF – Random Forest; Ac – Accuracy; Se – Sensitivity; Sp – Specificity; IMU 

– Inertial Measurement Unit; EM – Electromagnetic tracking; FtN – Finger to nose; FT – Finger tapping; HOC – Hand 

opening/closing; HT – Heel tapping; SIT – Sitting; HA – Hand alternating; RT – Reaction time. 
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2.2.3. Other modalities 
 

Apart from a large pool of research papers presenting the use of neuroimaging and kinematic analyses to 

help manage and understand parkinsonisms, a number of studies have attempted to utilize technology to 

capture other features of PD, among which is the use of EEG to detect and potentially predict episodes 

of freezing of gait, and visual analysis of the face to quantify emotional expressiveness. This list of 

various technological approaches in PD is not comprehensive [133], but going wider into this topic would 

take away from the main focus of this work. On the other hand, it should be noted that the focus of this 

work is on kinematics, and the overview of other modalities is given as illustration of the richness of 

approaches that benefit from AI. 

2.2.3.1. EEG 

 

A larger bulk of work dealing with detection of FoG has focused on direct measures of gait, derived from 

inertial sensors or cameras, but gait measures are mainly used to detect FoG as it happens, while EEG 

has demonstrated a decent ability to predict an incoming episode a few seconds before its onset. Ardi 

Handojoseno et al [134] use connectivity measures derived from surface EEG and, by means of a 

multilayer perceptron, manage to predict FOG with 78% accuracy. They further improve on these results 

by preprocessing data via directed transfer function and independent component analysis [135]. These 

results are still achieved offline but show potential for real-time applications that would allow adaptive 

cueing in devices intended for FoG management and prevention. Scarcity of studies on EEG-based FoG 

prediction likely stems from the impracticality of setting up EEG equipment in everyday life, but this 

might change with improvements in the field of mobile EEG devices.  

Though predominantly a movement disorder, PD is known to present with non-motor symptoms too, one 

of which is mild cognitive impairment. Identification of mild cognitive decline is clinically relevant, 

because it may progress to dementia, but this task is demanding, as it displays wide heterogeneity. 

Bertouni et al [136] used machine learning algorithms (SVM and kNN) on high density resting EEG data 

to identify the severity of cognitive impairment in PD patients, splitting them into five groups, with 

overall accuracy of 84% and 88% for the respective algorithms.  

There has been an attempt to diagnose PD from EEG recordings, using state-of-the-art deep learning 

transformer model borrowed from text processing – BERT [137]. Their protocol included performing 

finger tapping with both hands for five intervals of 30s. The EEG recordings taken during tapping on 80 

PD patients and 24 healthy controls combined with the BERT model showed overall accuracy of 86%. 

 

2.2.3.2. Facial analysis 

 

Quantification of emotional expressiveness could thus help in progression monitoring, but also facilitate 

research on the aspects of this complex disease that we do not yet fully understand.  

Several groups have worked on developing a methodology for automatically analyzing affect and 

quantifying facial expressivity in PD from video recordings [27], [138]–[141]. They mainly rely on the 

concept of action units (AU), which refer to the movement of one or more facial muscles, whose different 

combinations can be used to describe a particular expression. Geometric features are derived from the 

recordings, and a classification model (or a set of binary classifiers) is then used to recognize action units. 

A measure of distance from the neutral face can be calculated for each expression [139], and expressivity 

can be estimated based on measures of intensity, duration and frequency of several types of facial 

expressive behavior. 



23 
 

 

3. AIM AND WORKING HYPOTHESES 

The main goal of this thesis is to examine the applicability of kinematic analysis of repetitive finger 

tapping using a system of wearable inertial sensors in discriminating between groups of patients suffering 

from Parkinson’s disease and atypical parkinsonisms, and a control group of patients without 

neurological conditions, and subsequently to show the usefulness of algorithms of artificial intelligence 

applied on kinematic signals for individual patient diagnostics. Given that clinical diagnosis of the tested 

groups of movement disorders is not an easy task, utilizing measurement data and machine learning 

algorithms could be called upon to aid in this endeavor. 

Hypothesis 1.  Through analysis of kinematic data collected during the test of repetitive finger tapping, 

statistically significant differences can be observed between the control group and patient groups 

suffering from PD, MSA and PSP, as well as differences among the specific disorders. 

Hypothesis 2. With the help of artificial intelligence, patients with PD can be discerned on the individual 

level from persons without neurological disorders 

Hypothesis 3. With the help of artificial intelligence, patients with PD and atypical parkinsonisms can 

be discerned on the individual level 

Hypothesis 4. It is possible to programatically choose a subset of relevant features extracted from 

kinematic signals which increase the performance of classification among the observed disorders 

We will also test the applicability of artificial intelligence in analysis of gait, as recorded by a senzorized 

walkway, testing Hypothesis 2 from a different angle. Gait data will also be used to touch on Hypothesis 

4, automatically extracting gait parameters for detection of PD. 
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3.1 Published scientific papers related to the doctoral thesis 

 

The author of this doctoral dissertation has co-authored the following scientific papers in the area of the 

doctoral thesis, i.e., computer-aided diagnostics of Parkinson’s disease and towards testing the above 

listed hypotheses: 

 

1. Belić M, Bobić V, Badža M, Šolaja N, Đurić-Jovičić M, Kostić VS. Artificial intelligence for 

assisting diagnostics and assessment of Parkinson’s disease—A review. Clinical neurology and 

neurosurgery. 2019 Sep 1;184:105442. (M23) 

2. Belić M, Djurić-Jovičić M, Ječmenica Lukić M, Petrović I, Radovanović S, Popović M, Kostić V, 

Implementation of discrete wavelet transformation in repetitive finger tapping analysis for patients 

with Parkinson’s disease, IcETRAN, Zlatibor 2016. (CONFERENCE) 

3. Djurić-Jovičić M, Petrović I, Ječmenica-Lukić M, Radovanović S, Dragašević-Mišković N, Belić 

M, Miler-Jerković V, Popović MB, Kostić VS. Finger tapping analysis in patients with 

Parkinson’s disease and atypical parkinsonism. Journal of Clinical Neuroscience. 2016 Aug 

1;30:49-55. (M23) 

4. Đurić-Jovičić M, Jovičić NS, Radovanović SM, Ječmenica-Lukić M, Belić M, Popović M, Kostić 

VS. Finger and foot tapping sensor system for objective motor assessment. Vojnosanitetski 

pregled. 2018;75(1):68-77. 

5. Miler-Jerković V, Djurić-Jovičić M, Perović-Belić M, Ječmenica-Lukić M, Petrović IN, 

Radovanović SM, Kostić VS, Popović MB. Multiple regression analysis of repetitive finger 

tapping parameters. In 2014 22nd Telecommunications Forum Telfor (TELFOR) 2014 Nov 25 

(pp. 537- 540). IEEE. (CONFERENCE) 

6. Djurić-Jovičić M, Belić M, Stanković I, Radovanović S, Kostić VS. Selection of gait parameters 

for differential diagnostics of patients with de novo Parkinson’s disease. Neurological research. 

2017 Oct 3;39(10):853-61. (M22) 

7. Accepted for publication in Heliyon journal as of March 2023: Belić M, Radivojević Z, Bobić V, 

Kostić V, Djurić-Jovičić M, Quick computer aided differential diagnostics based on repetitive 

finger tapping in Parkinson’s disease and atypical parkinsonisms (M22) 
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4. ANALYSIS OF REPETITIVE FINGER TAPPING 

This section will present the work aimed at utilization of kinematic signals recorded from the fingers by 

a cheap, lightweight, and simple to use custom-made system. The goal is to analyze the recordings 

obtained by participants suffering from PD and atypical parkinsonisms, and rely on artificial intelligence 

for help in search for parameters that would reflect differences between these disorders. The system 

should contribute to clinical evaluation by providing a quick diagnostic suggestion in the face of rather 

similar phenotypes of several degenerative neurological disorders. The chosen solution expands on a 

repetitive finger tapping test routinely used in assessment of motor decline, as part of the UPDRS-III test 

battery. The test traditionally relies on the examiner’s experience without quantitative measures, whereas 

the presented system utilizes consumer grade inertial sensors that capture the motion of the fingers during 

tapping and can provide a form of objective quantification.  

The system components are described in Instrumentation. Participant groups and their demographics are 

given in Participants chapter, followed by a description of the protocol used for testing.  

The data obtained through this system will be analyzed with the goal of testing the hypotheses posed in 

Chapter 3. In Chapter 4.4, statistical differences between finger tapping parameters on the group level 

will be assessed among four tested participant groups, with the aim of testing Hypothesis 1. We describe 

the processing steps and statistical analyses used to process and compare parameters of individual taps, 

then present the obtained results and discuss the findings which point to certain kinematic differences 

among the tested groups. 

Chapter 4.5 describes an approach to discern healthy participants from those with PD using the obtained 

finger tapping signals, as a test for Hypothesis 2. We describe the analysis based on discrete wavelet 

transform, feature extraction and classification, then present the results and discuss the findings. 

Chapter 4.6 tackles a more demanding task of multi-class classification, aiming to pinpoint differences 

in kinematic signals among the four participant groups, for the test of Hypothesis 3. Two approaches 

were used for this purpose – one relying on deep learning, and the other involving traditional machine 

learning methods. We first reach for deep learning analysis in Chapter 4.6.2, describing the method of 

classification and data augmentation using variants of convolutional neural networks, and presenting the 

obtained results. Chapter 4.6.3 dives into the analyses used to transform the obtained kinematic signals, 

extract and select relevant features and use them as input to a traditional machine learning models for 

discerning the tested groups. This also tests the Hypothesis 4. Finally, we discuss the obtained results in 

Chapter 4.6.4.  
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4.1. Instrumentation 
 

The system used in this study consisted of two IMUs, each containing a triaxial MEMS accelerometer 

(LIS3DH) and a triaxial MEMS gyroscope (L3G4200, STMicroelectronics, USA) [110], although 

analysis will be perfomed only on the gyroscope output. One IMU is mounted on the fingernail of the 

forefinger, and the other on the fingernail of the thumb. Each of the two IMUs are connected via a small 

flat cable to a sensor control unit attached to the patient’s forearm (Figure 13). The signals collected from 

the SCU are sent wirelessly to a remote personal computer for processing. The PC also has a user-friendly 

GUI, built in LabView (National Instruments, USA) that enables initiation and stopping of data 

acquisition, together with real time plotting of the acquired signals.  The light weight and small size allow 

for uninterrupted test performance. 

  
 

 

Figure 7 Wearable system used to record kinematic data (Image adapted from [110]) 
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4.2. Participants 
The recordings were performed at the Neurology Clinic, Clinical Centre of Serbia, Belgrade. The study 

was performed in accordance with the ethical standards of the Declaration of Helsinki. All the 

participants gave informed written consent prior to participation in the study. Fifty-six participants were 

enrolled from the Movement Disorders Unit at the Clinic of Neurology, Belgrade, including 13 patients 

with MSA of predominantly parkinsonian type, 14 patients with PD, 16 patients with PSP and 11 healthy 

controls (HC) with no history of neurological or psychiatric disease. The controls were age- and sex-

matched with the overall patient group. For all patients the right-side was predominantly affected by the 

disorder. Clinical and demographic data are given in Table 2. The groups were compared using one-way 

ANOVA and Kruskal-Wallis one-way analysis as a non-parametric test. Where indicated, the groups 

were compared in a pairwise manner using t test or Mann-Whitney U test with Holm-Bonferroni 

correction for multiple comparisons, or chi square test for categorical variables.  

 

Exclusion criteria included dystonia or any other condition that might interfere with the ability to perform 

the motor test, a score of under 26 on the Mini Mental Status Examination scale, or smaller than 15 on 

the Frontal Assessment Battery of tests, a score above 14 on the Hamilton Depression Rating Scale, a 

history of psychosis or a more serious condition. The patients were tested in the „off“ phase and examined 

by specialists of neurology with abundant experience  in treatment of involuntary movements. UPDRS 

III (Unified Parkinson’s Disease Rating Scale) was used to assess the level of motor impairment, as well 

as disease stage according to the Hoehn & Yahr system. 

 

Table 2 Demographic and clinical features of patients with MSA (n = 13), PD (n=14), PSP (n = 16) 

and HC (n = 11) 

 Age [years] Gender 

[F/M] 

Disease 

duration 

[years] 

Hoehn & 

Yahr stage 

UPDRS total UPDRS III 

MSA 58.4 ± 4.8 9/4 3.47 ± 1.5 3.2 ± 0.7 77.2 ± 12.7 45.4 ± 8.6 

PD 62.1 ± 9.4 4/10 4.9 ± 4.5 2.2 ± 0.8 48.1 ± 18.7 27.0 ± 9.8 

PSP 67.1 ± 8.9 5/11 5.23 ± 2.3 3.8 ± 0.8 79.9 ± 17.2 45.7 ± 10.4 

HC 55 ± 8.4 8/3 - - - - 

HC-MSA - - - - - - 

HC-PD - - - - - - 

HC-PSP p=0.02 - - - - - 

MSA-PD - p=0.05 - p<0.01 - - 

MSA-PSP - p=0.02 - - - - 

PD-PSP - - - p<0.001 - - 

Data are presented as mean± standard deviation. P values are given only where significant group differences 

were found. 

UPDRS – Unified Parkinson’s Disease Rating Scale, UPDRS III - Unified Parkinson’s Disease Rating Scale, 

Part III: Motor Examination, MSA – Multiple system atrophy, PD - Parkinson’s disease, PSP – Progressive 

supranuclear palsy, HC – Healthy controls. 

 

Demographic data is shown graphically on figures 7 through 12. 
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Figure 8 Mean participant age per group 

 

Figure 9 Gender distribution by group 
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Figure 10 Mean patient disease duration at testing time per group 

 

Figure 11 Mean patient Hoehn & Yahr score per group 
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Figure 12 Mean patient UPDRS total score per group 

  

 

Figure 13 Mean UPDRS III score per patient group 
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4.3. Test protocol 
 

The participants were instructed to sit comfortably and to tap the index finger against the thumb of the 

right hand repeatedly, as rapidly and as widely as they can for 15 seconds, and a 1 min pause was given 

between trials. Six trials were taken per patient, although some were later discarded based on data quality 

and any irregularities that were noticed in the videos that were recorded in parallel. The participants were 

verbally instructed when to start and stop tapping. Several seconds of variation in duration were allowed, 

based on experimenter’s estimation whether the subject was too fatigued to continue. In the majority of 

cases, the instructions were understood and followed immediately, since the patients had already been 

given the traditional finger tapping test for motor assessment prior to the recording session. The patients 

were recorded on one of their scheduled visits to the clinic, and the total data collection period lasted for 

a year and a half. 
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4.4. STATISTICAL ANALYSIS OF BETWEEN GROUP DIFFERENCES IN TAPPING 
PERFORMANCE 

This chapter aims to assess Hypothesis 1 and find out whether statistical analysis can find significant 

differences among the finger tapping recordings of the tested participant groups. 

4.4.1. Analysis 

The gyroscope signals were integrated to obtain the tapping angle. Since this introduces drift error, 

compensatory correction was performed by finding the beginning of each tap, and then subtracting a 5th 

order polynomial curve that was fitted through the tap-start points. The stating points were determined 

through bandpass filtering of the index finger signal using a 4th order Butterworth filter between 0.4 and 

5 Hz,after which the signals were squared and peak finding perfomed. Angle amplitude, cycle duration, 

and speed were measured for each tap, from one separation of index finger and thumb to the next. 

Tapping amplitude was taken to be the angle between the index finger and the thumb with reference to 

the long axes. The mean speed was calculated as the mean rate of aperture change, where opening and 

closing were both taken into calculation. Closing and opening speeds were taken to be the peak velocity 

of closing and opening within a tap, respectively. Coefficients of variation of speed, amplitude and tap 

duration over all taps within a recording were also calculated. Linear regression was used to get the best 

fit for the values of amplitude and speed over time, and the slope of the best fit line was used as a measure 

of progressive slowing of the tapping motion.  

The calculated parameters were compared between groups using ANOVA, or Welch ANOVA for non 

equal group variances, and Kruskal-Wallis as a non-parametric equivalent. Where significant differences 

were found, multiple comparisons were done between pairs of groups (Tukey, Games-Howell and Holm 

test within ANOVA, Welch-ANOVA and Kruskal-Wallis, respectively). Speed and amplitude slopes 

were compared through univariate analysis of covariance (ANCOVA) with sex, age and disease duration 

as covariates.  

4.4.2. Results 
 

Significant differences were found by ANOVA for all parameters except for the slope of tap duration.  

The results are summed up in Table 3 below3.  

The largest cadence was found in patients with PSP, although it was only significantly different from 

MSA, which had the lowest cadence. Statistically significant differences could also be seen between the 

MSA group and the HC group. Mean tap cycle duration was found not to be meaningfully different from 

that of the control group, but was notably shorter in comparison with PD and MSA. Analysis of 

coefficients of variation of tap cycle duration found significant irregularities for PD and MSA groups 

compared to HC. Duration slopes were not significantly different between HC, PD, PSP and MSA. The 

higher cadence in PSP, with a relatively stable amplitude (S=-0.12) and speed (S=-0.64) slopes appears 

to be related to the shorter tap duration.  

The mean amplitude was the lowest in the PSP group, while MSA had the highest number among the 

patient groups, though the differences were only significant between each patient group and HC, but not 

among the patient subgroups. The HC group had the heighest amplitude overall, together with the 

smallest coefficient of variation, which was also significantly different from each individual patient 

 
3 An adaptation of the presented results has been published in [143].  
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group. As for the amplitude slope, PSP (S=-0.12) was similar to HC (-0.21), but the PSP slope was 

significantly less negative than that of PD (S=-0.56) and MSA (S=-1.48). The significance came to light 

after adjusting for mean amplitude as a covariate. Overall, the MSA group had the steepest negative 

slope, as shown in Fig 14. Velocity parameters (mean, opening and closing velocity) were also 

significantly different between HC and each individual patient group, but did not differ among the patient 

groups, although the coefficient of variation of opening and closing velocity did significantly differ for 

PSP and PD, as well as PSP and MSA, with PSP having the lower value, i.e. being more regular. Slopes 

of the velocity parameters were significantly different between HC and MSA, and HC and PD, but not 

between HC and PSP. On the other hand, there were significant differences between PSP and MSA, as 

well as PSP and PD on all velocity slopes, with the PSP slopes being smaller than in the other patient 

groups. PSP patients also had almost no amplitude decrement over time, reflected in the smallest 

amplitude slope of all the patient groups.  

Table 3 Analysis of kinematic parameters during the finger tapping task in HC and patients with MSA, 

PD and PSP 

 

Compared to the mean amplitude of the HC group, 86.6% of finger tapping trials of the PSP group had 

an amplitude that was smaller by 50% (hypokinesia). This percentage was 85% in PD group, and 50% 

in MSA group. The majority of PSP patients (66%) presented with hypokinesia without decrement, i.e. 

hypokinesia in combination with the absolute slope being less than 0.1. No such patients were identified 

in the MSA group, while 27.3% of the PD group corresponded to these criteria. 

Kinematic 

parameter 

HC MSA PD PSP All 

groups p 

value 

HC-

MSA 

HC-PD HC-

PSP 

MSA-

PD 

MSA-

PSP 

PSP-PD 

Cadence [n/15s] 47.8 ± 12.6 27.2±16.9 42.3 ± 18.4 57.6±9.6 p<0.001 p=0.006 - - - p<0.001 - 

Duration [ms] 331.7±76.8 808.4±562.6 435.8±211.5 268±53.9 p=0.001 p=0.008 - - - p<0.001 p=0.039 

Duration CV [%] 14.5±6.9 24.8±11.4 22.4±6.5 18.8±5.1 p=0.005 p=0.044 p=0.035 - - - - 

Duration slope 

[ms/cycle] 

0.04±1.15 9.87±21.03 2.27±5.58 -0.3±1.24 p=0.144 - - - - - - 

Amplitude [°] 81.8±33.9 40.6±21.2 33.8±11.9 31.4±15.1 p<0.001 p=0.004 p<0.001 p<0.001 - - - 

Amplitude CV 
[%] 

12.3±5.4 37.2±16.5 32.4±7.8 26.3±7.3 p<0.001 p<0.001 p<0.001 p<0.001 - - - 

Amplitude slope 

[°/cycle] 

-0.21±0.46 -1.48±1.13 -0.56±0.48 -0.12±0.26 p<0.001 p=0.001 p=0.012 p=0.032 p=0.03 p=0.003 p=0.001 

Speed [°/s] 516.6±213.9 143.0±86.5 194.5±91.4 244.8±107 p<0.001 p<0.001 p=0.001 p=0.006 - - - 

Speed CV [%] 16.1±6.7 36.3±16.0 32.5±8.4 24.4±6.5 p<0.001 p=0.002 p<0.001 p=0.026 - - - 

Speed slope 

[°/s/cycle] 

-1.88±3.89 -3.99±2.6 -2.89±2.21 -0.64±0.93 p=0.022 p=0.018 p=0.014 - - p=0.01 p<0.001 

Open velocity 

[°/s] 

1148.1±499 369.6±201.5 458.8±188.9 544.3±206 p<0.001 p<0.001 p=0.002 p=0.008 - - - 

Open velocity CV 

[%] 

13.2±4.5 34.9±14.7 31.6±8.3 20.9±4.6 p<0.001 p<0.001 p<0.001 p=0.005 - p<0.001 p=0.001 

Open velocity 

slope [°/s/cycle] 

-8.19±12.24 -11.5±11.4 -7.07±4.29 -1.86±2.82 p=0.057 p=0.021 p=0.081 - - p=0.002 p=0.003 

Close velocity 

[°/s] 

-1602.7 

±503.1 

-72.9±256.7 -32.7±287.3 -784.8±346 p<0.001 p<0.001 p<0.001 p>0.001 - - - 

Close velocity 

CV [%] 

-13.8±5.5 -40.3±15.6 -34.0±9.8 -21.6±3.8 p<0.001 p<0.001 p<0.001 p=0.006 - p<0.001 p<0.001 

Close velocity 

slope [°/s/cycle] 

8.36±9.34 14.84±11.0 10.63±9.65 2.74±3.46 p=0.012 p=0.021 p=0.018 - - p=0.003 p=0.013 

Data are presented as mean ± standard deviation. 

Statistical significance is expressed as p values for the comparisons of parameter values. 

CV = coefficients of variation, HC = healthy controls, MSA = multiple system atrophy of parkinsonian type, PD = Parkinson’s disease, 

PSP = progressive supranuclear palsy. 
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Figure 14 Progression of kinematic parameters over time during a period of 15s, shown for one 

representative patient per group. Slope was denoted as S, and the linear regression line drawn through 

the data points (published in [143]) 
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4.4.3. Discussion 
 

Statistically significant differences in certain parameters were found among the tested groups, confirming 

thus Hypothesis 1. 

Statistical analysis of kinematic finger tapping parameters showed as the most notable finding the lack 

of progressive temporal reduction in tapping amplitude for the majority of PSP patients and HC, which 

was not the case for PD and MSA groups. This was in line with a previous study that found hypokinesia 

without decrement in PSP patients (87%) but not in PD (12%) [144]. In our study, hypokinesia without 

or with minimal decrement (abs(S)<0.1) was found in 66% of PSP patients and 23% of PD patients.  The 

mean amplitude slope in the PSP group (-0.12°/cycle) was even smaller than that of HC (-0.21°/cycle), 

and notably smaller than PD (-0.56°/cycle), and MSA(-1.48°/cycle). This could mean that this temporal 

progression may be a characteristic of the disease and can potentially be used to discern types of atypical 

parkinsonisms. Similar patterns were seen for speed slopes, indicative of fatigue during the test. PSP and 

HC had similar velocity slopes, while the velocity decrement was more prominent in PD (-2.89°/s/cycle) 

and MSA (-3.99°/s/cycle), compared to PSP (-0.64°/s/cycle).  

The mean tapping amplitude was significantly different between HC and each patient group, although 

not between the patient groups. Contrary to Ling et al [144], we did not find a significant difference in 

tapping amplitude between PSP and PD groups. The study protocol may have played a role in this, as 

the mentioned study used recordings acquired from both hands, whereas here we were only dealing with 

the dominantly affected right hand.  

Morphological abnormalities behind the progressive decrement in amplitude and speed of repetitive 

actions in PSP have not yet been identified, but several options have been proposed, including differences 

in basal ganglia [145], [146], premotor cortex, supplementary motor area, sensorimotor cortex [114], and 

the cerebellum [23]. Lee et al. [148] found a connection of the anterior cingulate cortex [147] and the 

cerebellar inferior semilunar lobule with the severity of this sequence effect in de novo PD patients. The 

cingulate cortex appears to be moderately affected in PD, but not in PSP-R [34]. 
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4.5. CLASSIFICATION: PARKINSON’S DISEASE VS HEALTHY CONTROLS 

Hypothesis 2 states that with the help of artificial intelligence, patients with PD can be discerned on the 

individual level from persons without neurological disorders (healthy controls). To test this hypothesis, 

we first transform the gyroscope signals of finger tapping using discrete wavelet transform, and then use 

a neural network to classify PD patients vs healthy controls. 

 

4.5.1. Analysis 
In this chapter, discrete wavelet transformation is applied to the gyroscope recordings of finger taping, 

and used to extract features, which are then passed to the support vector machine algorithm for 

classification into PD and HC groups. The overall algorithm used is illustrated in Fig. 15 and will be 

explained in the text below. 

 

 
Figure 15 Functional model of the presented algorithm, resulting in classification between patients 

with Parkinson’s disease (PD) and healthy controls (HC) (Published in [162]) 

 

Discrete Wavelet Transformation 
 

Wavelet transformation (WT) is a type of time-frequency analysis useful for non-stationary signals, i.e. 

signals whose frequency content varies over time, which is often the case with biological signals. WT 

has an advantage over short-time Fourier transform in that it can preserve information with high 

resolution in time for higher frequencies and frequency resolution in lower frequencies. Apart from its 

well-established uses in image compression and noise reduction, WT has found application in signal 

processing for analyzing heart rate variability [149], and discerning healthy individuals from those with 

cardiac pathology [150]. Several research studies [151]–[153] suggest that the application of discrete 

WT is suitable for extracting the features that can be used effectively to compare and classify data 

obtained by inertial sensors. Triaxial accelerometer data recorded during walking [151] were used in 

combination with a multilayer perceptron neural network (NN) and features extracted with discrete WT 

(DWT) to recognize 5 different walking patterns, including walking in a straight corridor, up and down 

a flight of stairs, or up and down a slope. DWT extracted features from leg-mounted gyroscope signals 

were also used as input to a multi-layer feed forward artificial NN to achieve near perfect classification 

of leg motion types, such as knee bending, squatting, moving the leg forward or backward and more 

[154]. Abnormal gait patterns were detected using DWT and a convolutional neural network applied to 
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data gathered from two inertial sensors in a group of children with cerebral palsy and a group of healthy 

children. This work showed superior performance of the DWT approach compared to classification 

without DWT preprocessing [155]. To address threats of falls and postural instability, DWT was used 

for postural sway classification, achieving 100% sensitivity and 96% specificity [156]. Another variant 

of wavelet decomposition, namely continuous wavelet decomposition has proven to be an effective 

method of extracting information from gyroscope measurements for classification of repetitive finger 

tapping [80], however this type of wavelet transform is more computationally expensive than the 

proposed DWT. 

Wavelet transformation transforms a signal by convolving it with a set of mathematical, basis functions 

– wavelets, which has the effect of decomposing the input into different components with different 

frequency contents. Continuous wavelet transform is described by equation (1) [157]: 

𝐻(𝑥) =  
1

|√𝜁|
∫ 𝑥(𝑡) · 𝜓 ∗ (

𝑡− 𝜏

𝜁
)𝑑𝑡    (1) 

Where H(x) is the wavelet transformation of the input x(t) as a function of time, ζ denotes the scale, τ 

stands for time, and ψ is the basis function, the mother wavelet, while operation * is the complex 

conjugate. The scale parameter is the inverse of frequency. The time parameter moves along the signal 

and gives temporal information.  DWT uses sub-band coding to compute the transformation, by 

effectively filtering the signal through high-pass and low-pass filters, recursively down-sampling the 

signal by a factor of two, resulting in approximation and detail coefficients, represented by Mallat’s 

decomposition tree (Figure 16) [158] It is then possible to reconstruct the original signal from the wavelet 

coefficients by up-sampling by two, passing through high and low pass synthesis filters and summing 

them. Noise reduction can be done by reconstructing only the desired decomposition levels and 

discarding the others. 

 
Figure 16 Mallat’s decomposition tree showing how a signal gets passed through a high pass filter H, 

and low pass filter L, and thus decomposed into a coarser resolution approximation A and signal detail 

D. This is repeated in a cascade up to a desired level of d (Adapted from [158]) 

For this analysis, signals recorded from the sensors were transformed using discrete wavelet 

transformation and Daubechies 4 mother wavelet (Figure 17 and Figure 18). The analysis was performed 

up to the 7th level of decomposition, yielding coefficients that correspond to frequencies from 100Hz to 

approximately 1Hz.  Processing was done using custom-made software written in Matlab (The 

Mathworks Ltd, USA). 
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Figure 17 Daubechies 4 wavelet function (Adapted from [159]) 

 
Figure 18 Daubechies 4 wavelet scaling function (Adapted from [159]) 

 

The scales and their corresponding frequency bands in the signal are presented in Table 4. 

 

Table 4 Dwt scales and their corresponding frequency bands 

Scale 

Frequencies [Hz] 

From To 

1 50 100 

2 25 50 

3 12.5 25 

4 6.25 12.5 

5 3.125 6.25 

6 1.56 3.125 

7 0.78 1.56 
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Feature extraction 

 

Once the signal was decomposed using DWT, several features were calculated from the obtained 

coefficients on each scale. This included wavelet energy, root mean square and standard deviation of 

wavelet coefficients, calculated according to the formulas (2), (3) and  (4): 
 

𝑊𝑒(𝑚) = ∑ 𝐷𝑚,𝑛(𝑠)2𝑁
𝑛=1       (2) 

 

𝑅𝑀𝑆(𝑚) = [
1

𝑁
∑ 𝐷𝑚,𝑛(𝑠)2𝑁

𝑛=1 ]

1

2
     (3) 

 

𝑆𝑇𝐷(𝑚) = [
1

𝑁
∑ [𝐷𝑚,𝑛(𝑠) − 〈𝐷𝑚,𝑛(𝑠)〉]

2𝑁
𝑛=1 ]

1

2
    (4) 

 

where N is the number of wavelet coefficients on scale m, and Dm,n is the value of DWT details, related 

to the scale and translation n, for each subject s. In addition to the above features extracted on the whole 

signal, the recordings were split into five equal temporal windows (each containing approximately 3s of 

the finger tapping sequence) and the features described above were calculated from each window. 

Features were not taken from the first two levels of decomposition, since their corresponding frequency 

bands were not expected to contain useful information but rather to contain noise. Subtracting the wavelet 

energy, RMS and STD calculated on the last signal window from the corresponding values obtained for 

the first window in the signal yielded additional features that were taken into consideration. We will call 

this group the “delta” features. The inclusion of this group of features was motivated by the observation 

that characteristics of the disorder can be reflected not only in the statistics derived from the signal as a 

whole, but also in their temporal progression, as it was found that a progressive reduction in amplitude 

and speed over repeated sequences is a feature that distinguishes PD from PSP [144].  Difference in 

means between the control and PD groups was tested using unpaired student’s t test for all features, and 

only those features that showed a significant difference between the two groups at alpha level of 0.05 

were kept for further processing. This resulted in 65 features which were then passed to the classifier. 

 

Support vector machine 
 

The extracted features were fed to a support vector machine with radial basis kernel (using the caret 

library in R). To assess the contribution of delta features, classifier was also trained without these 

features, i.e. it only contained whole signal parameters. The classification goal was to discern PD patients 

from healthy controls. The accuracy of the classifier was assessed using 4-fold cross validation repeated 

10 times.  

Sensitivity and specificity were also calculated according to the formulas (5)and (6): 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑁𝑜 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑜 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
∗ 100%    (5) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑁𝑜 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑁𝑜 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
∗ 100%     (6) 

 

Sensitivity refers to the ability of the classifier to identify patients with the disease, while specificity 

represents the ability to correctly identify persons without the disease. 

Support vector machine (SVM) is a supervised machine learning method of classification. Its core is the 

search for the parameters of a hyperplane that would best separate the given data set into two semi-

spaces. Le the dataset be given as {xi, yi}, i = 1..m, where where m is the number of observations, xi is 
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the i-th sample represented as an n-dimensional vector and the labels yi are paired with each xi sample, 

denoting its belonging to either semi space. In our case, xi would be a 65-dimensional feature vector and 

yi would be either -1 or 1, signifying HC and PD respectively. The hyperplane is searched for in such a 

manner that minimizes the upper bound of the generalization error via maximizing the margin between 

the decision boundary, i.e. the hyperplane, and the data points closest to the boundary [160]. The data 

points that are the nearest to the separating hyperplane are termed “the support vectors”, hence the name 

of the algorithm. The SVM algorithm aims to solve the optimization problem of maximizing the margin, 

which is the projection of the support vectors onto the normal of the hyperplane w. This makes the 

optimization problem equal to the following: 

 

arg 𝑚𝑖𝑛
1

2
‖𝒘‖2      (7) 

 

This minimization of the hyperplane parameters should be done while under the constraint that [161]: 

 

𝑦𝑛(𝒘 ∙ 𝜑(𝑥𝑛) + 𝑏) ≥ 1      (8) 

 

where w is a vector of weights or parameters of the hyperplane, φ (x) denotes a fixed feature-space 

transformation of the known data, and b is bias. The term in the brackets corresponds to the separating 

hyperplane. This equation is the result of the initial aim: if yi is 1 for a given xi, then we would like the 

inclusion of xi into the hyperplane expression to be greater than some margin γ, and if yi is -1 then we 

would like the hyperplane expression for xi to be smaller than -γ. It was shown that replacing γ with 1 

does not lead to loss of generality. So, by taking the product of the two elements, we get to the equation 

(8).  

Splitting the vector space into two subspaces by a hyperplane, implies that the data are linearly 

separable, which may not originally be the case. To address this, a mapping function φ is chosen to 

project the data onto a high-dimensional (ideally infinite-dimensional) space F = RN (N>>m) in which it 

would be linearly separable. However, performing this would be computationally overwhelming, thus a 

kernel function K(x,x’) is employed to transform the data. It can be shown that it now becomes 

unnecessary to directly calculate the mapped pattern φ(x), but instead only use dot products. The radial 

basis function (RBF) kernel, or Gaussian kernel, is a common choice for SVM implementations, and is 

defined as: 

 

K(x, x′) = exp (−
||𝑥−𝑥′||

2

2𝜎2
)     (9) 

 

Where ||𝑥 − 𝑥′||
2
 denotes Euclidian distance between two feature vectors, and σ is a kernel parameter 

that is tuned for a specific application. Plugging this into the hyperplane expression, the decision function 

becomes: 

 

𝑓(𝑥) = 𝑠𝑔𝑛(∑ 𝛼𝑖𝑦𝑖 exp (−
||𝑥−𝑥′||

2

2𝜎2
)𝑚

1 + 𝑏)    (10) 
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4.5.2. Results 
 

A sample of a raw gyro signal recorded from a healthy subject is shown in Fig 19 and its corresponding 

discrete wavelet decomposition can be seen in Fig 20. The figure shows DWT details for scales 1 

through 7 (denoted as S1-S7)4.  

 
Figure 19 Raw gyroscope signal recorded from the index finger of a healthy participant: full recorded 

sequence (black solid line) and one isolated tap (red dashed line). (Published in [162]) 

 

 

 
Figure 20 DWT decomposition of the gyroscope signal shown in previous figure (Published in [162]) 

Wavelet energy, RMS and STD of wavelet detail coefficients extracted for each scale on the whole signal 

 
4 Parts of these results have been adapted and presented at IcEtran conference 2016 [162].  
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are shown in Figure 21. Different colored lines on each graph shows the calculated features from different 

subjects in the given group (PD or Healthy participants). The subplots alternately depict results obtained 

for healthy subjects and Parkinson’s disease patients for a particular feature. 
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Figure 21 Graphical representation of whole signal features shown alternately for healthy subjects and 

PD patients (Wavelet energy, RMS, STD) for all subjects in the respective groups (Published in [162]). 

We see from observing the graphs that wavelet energy is largely focused on the 5th scale (3.125-6.25 Hz) 

for healthy participants and notably less on the 4th, wavelet energy on the 4th (6.25 – 12.25 Hz) and 6th 

(1.56 – 3.125Hz) scales is comparable to that on the 5th scale, implicating both lower tapping cadence 

and high frequency tremor. The 7th (0.78 – 1.56 Hz) scale is nearly completely absent in healthy 

participants but it quite prominent for the PD group. 

RMS coefficient values for healthy subjects are much higher in absolute values (up to 60) than PD 

patients (not exceeding 40). Peak values in both healthy and PD participants are seen on the 5th and 6th 

scale, although the peaks for the healthy group are more prominent, and fall sharply on scale 7, while for 

certain participants in PD group there is a rise in RMS up to the 7th scale. 

STD values similarly peak on the 5th scale for both groups, but consistently fall on the 7th for the control 

group, and rise on the 7th for the PD group, in some cases above all others, suggesting large variability 

in the presence of low frequency content, suggesting that the tapping is not consistent but is interspersed 

with slowing or pauses in the sequence. 

Figure 22 shows a sample delta feature, the difference between RMS values calculated for the first and 

the last window of the fifth level of DWT where RMS peaks (deltaRMS5) for all subjects. There is a 

clear tendency of RMS on this scale to drop over time for PD patient, seen in deltaRMS values being 

larger than zero, meaning the RMS was higher at start than at the end of the tapping sequence. This is 

not the case for healthy controls, where this difference stays close below zero or even drops significantly, 

meaning that in most cases the energy exerted in the end of the tapping sequence is somewhat higher 

than at the start, showing a sort of a warm-up effect.   
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Figure  22 Difference between RMS values on the 5th scale of discrete wavelet decomposition 

calculated for the first and the last temporal window shown for all subjects (Published in [162]) 

Feeding the selected features into the SVM RBF algorithm resulted in accurate classification of the data 

into PD and HC groups with 92% mean accuracy (Table 5) and 11% standard deviation over cross 

validation trials. Specificity was found to be equal to 100% without variation, meaning that all data points 

that correspond to healthy participants were classified properly. Sensitivity was 82.5%, which means 

82.5% of patients with Parkinson’s disease were classified correctly, although this metric had a large 

variability of 26%. 

When the delta features which characterize temporal progression of extracted features were omitted from 

the classifier, a significant drop in classification accuracy was observed, from 92% down to 86%. Metrics 

of sensitivity and specificity also dropped, from 82.5% down to 74% for sensitivity and from 100% 

specificity to 95%, showing positive contribution of the delta features to the algorithm performance.  

Table 5 Classification results including accuracy, sensitivity and specificity given as mean±std 

calculated over cross validation trials 

 Accuracy [%] Sensitivity [%] Specificity [%] 

All features 92±11 82.5±26 100±0 

Without delta features 86.1±12 74±29 95±13 
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4.5.3. Discussion 

Discrete wavelet decomposition was used to transform gyroscope signals recorded from healthy 

participants and PD patients. From this transform, 65 features were extracted, some pertaining to the 

entire signal, and some as a result of subtracting the last fifth of the signal in time from the first one. 

Some difference in extracted features could be observed between the control and PD groups. For 

instance, notable is the presence of the 7th level component of wavelet energy for PD patients, and its 

absence in the control group. Wavelet energy in PD group is generally more dispersed than that of HC 

group, where it is neatly focused on the 5th scale, corresponding to frequency band 3.125-3.25 Hz, and 

to a lesser extent the 6th scale (1.56 – 3.125Hz). The values of RMS and STD of wavelet coefficients are 

largely smaller for PD patients than for the healthy participants. Difference between RMS calculated for 

the first and the last window of the 5th DWT level has a value that is in almost all cases larger than zero 

for PD patients and below zero for healthy participants.  

Support vector machine with RBF kernel was used in conjunction with the DWT-extracted features and 

was successful at discriminating healthy subjects from patients with Parkinson’s disease, showing overall 

success rate of 92%, and specificity of 100%, suggesting that all data points corresponding to healthy 

controls were consistently classified correctly, while mean sensitivity was 82.5%. When comparing the 

classification model was built on all features excluding the delta features, which denoted temporal 

differences between the feature values, all obtained metrics had a poorer performance – 86.1% accuracy, 

95% specificity and 74% sensitivity. This shows the positive contribution of temporal progression 

parameters during repetitive finger tapping in identification of Parkinson’s disease. 
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4.6. CLASSIFICATION: MULTICLASS SETTING (HC, MSA, PD, PSP) 

Previous chapter showed the usefulness of gyroscope recordings during repetitive finger tapping paired 

with machine learning in detecting the presence of PD in a pool of healthy participants and patients with 

PD. This chapter tries to extend these findings to possibly discern not only between healthy controls and 

PD patients, but also individuals with atypical parkinsonisms, namely multiple system atrophy (MSA) 

and progressive supranuclear palsy (PSP). 

This aims to test Hypothesis 3, which states that artificial intelligence can help discern patients with PD 

and atypical parkinsonisms on the individual level. To this end, we employed two approaches: deep 

learning and traditional machine learning.  

 

4.6.1. Finger tapping data for multiclass classification 
 

Data was collected from triaxial gyroscopes, at 200 Hz sampling rate in 12-bit resolution. The data set 

consisted of 268 recordings: 52 recordings from healthy controls, 72 recordings from MSA patients, 68 

from PD patients and 76 from patients with PSP. Example signal segments of 4s long raw gyroscope are 

given as illustration for each patient group in Figure 23.  
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Figure 23 Example gyroscope signals recorded for each participant group. Angular velocities from the 

thumb gyroscope are presented in the left-hand column, whereas the index gyroscope signals are 

shown in the right-hand column.  
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4.6.2. Analysis - Deep learning approaches 
 

4.6.2.1. Classification 
 

Given the immense success of deep learning approaches – recently the most recognizable and celebrated 

representatives of artificial intelligence - when used on neuroimaging data, we anticipated it would yield 

superior results in case of tapping signals too. The main concept was to feed the raw gyroscope data into 

a convolutional neural network, resembling the classic LeNet 5 architecture [163]. Convolutional neural 

networks have shown the most astonishing results in computer vision problems but have also been used 

on inertial motion data. For instance, in gesture recognition, which typically uses data from inertial 

motion sensors, this is the most commonly employed method [164]. The network used here performs 1D 

convolutions on each of the 6 channels (3 axes from two gyroscopes) through 6 convolutional layers, 

each followed by batch normalization and a max pooling layer. The network topology is shown in Figure 

24.  

 

Figure 24 Convolutional neural network containing six layers of one-dimensional convolutions, with 

the number of filters increasing with depth from 32 to 128. Input data contained 6 channels of 8s long 

raw gyroscope data sampled at 200Hz. 

 

In recent works, batch normalization has been frequently relied on, since it not only speeds up the 

complex modern architectures but also acts as a regularizer [165]. It refers to normalizing each input 

dimension of a layer in a mini batch so that it has a mean of 0 and variance of 1[166]. Max pooling is a 

pooling operation commonly used after a convolutional layer, in which a kernel of size 2x2 (or larger) is 

moved in strides of 2 (or other) over the feature map selecting and keeping only the maximal value in 

that patch. This has the effect of down-sampling the layer output, as well as stabilizing the classification 

slightly as small translational changes to the image will not significantly affect the outcome. The number 

of filters used in a single layer increased from 32 in the first two layers, through 64 in the second two 

layers to 128 in the last two layers. Dropout [167] was added prior to introducing a fully connected layer 

of 128 units and once again before the output layer (dropout rates of 0.5 and 0.7 respectively). Li et al 

[168] show that dropout and batch normalization have a detrimental effect if used simultaneously, more 
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specifically, if dropout layers are found anywhere before batch normalization layers. Therefore, in the 

presented model no dropout layers are found before the last batch normalization. The weights in all layers 

of the model had their norm constrained to a value that was tuned as one of the hyperparameters.  

The weights were initialized randomly, using He normal initialization [169] as it was expected to be 

more compatible with here used rectified linear unit activations, compared to another common 

initialization suggested by X. Glorot [170]. Initialization by weights obtained via a pretrained 

autoencoder was also tested [171]. The encoder part corresponds to the convolutional part of the classifier 

network, while the decoder is an inverse of it, where convolutional layers were replaced by 

deconvolutions, so that the input signal is matched to itself, teaching the model to learn the most 

important features for signal reconstruction. This method of initialization is sometimes used when a 

significant amount of data is available, but only a fraction of it is labelled. The autoencoder is then trained 

on all available data, but classification is performed using the labelled subset only. The use of 

autoencoders for pretraining has been found to contribute to classification accuracy even when the same 

data is used for pre-training and classification training, as the autoencoder is expected to summarize the 

information in the input, as it is forced to recreate it from a small dimensional aggregate. Medical image 

analysis has seen benefits of this sort of pretraining on the same dataset [172]. High-level representation 

of the used autoencoder is shown in Figure 25. For validation of succinct representation learning, the 

flattened layer at the end of the encoder part was used as input to an unsupervised algorithm, namely k-

means clustering [173], which assigns each datapoint to a specific cluster based on the shortest Euclidean 

distance from the cluster centroids. If the most important characteristics of a disease are distilled during 

pre-training, clustering should be expected to roughly divide the input data into 4 disjunct clusters. 

 

Figure 25 Autoencoder was used for pre-training the classification model. High-level representation 

Adaptive moment estimation optimizer (Adam) [174] was used for training, with initial learning rate of 

0.001. This nominal learning rate was decayed by a factor of 0.1 once the validation accuracy plateaued 

for 8 epochs. The model was trained with early stopping, patience set to 20, allowing the learning rate to 

be decimated twice before abandoning further training. Categorical cross-entropy was taken as the loss 

function. 

Hyperparameters were optimized using the grid search approach. 
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Apart from feeding raw unprocessed gyroscope data to the network, the signals were also transformed 

into spherical coordinates using the standard formulae: 

𝑅 =  √𝜔𝑥
2 + 𝜔𝑦

2 + 𝜔𝑧
2   (11) 

𝜃 =  𝑎𝑟𝑐𝑐𝑜𝑠(
𝜔𝑧

 √𝜔𝑥
2 +𝜔𝑦

2 +𝜔𝑧
2
)   (12) 

𝜑 = arccos (
𝜔𝑥

 √𝜔𝑥
2 +𝜔𝑦

2
)   (13) 

Such transformations could possibly make classification more robust to possible changes in hand 

orientation during tapping.  

The model was trained on the training set with the validation set used to assess the generalization efficacy 

and to guide premature stopping of network training to avoid overfitting. The test set was used for 

assessment once the best topology had been chosen based on performance achieved on the validation set. 

This was repeated 5 times, in 5-fold cross validation paradigm, each time taking a different subset of data 

for training, while the remaining part was held out for testing. Model accuracy was calculated as the 

number of test instances classified correctly divided by the total number of test instances, expressed in 

percentages, and averaged over the 5 folds. 

 

4.6.2.2. Data augmentation 
 

Given that deep learning approaches notoriously require large datasets to train, data augmentation was 

attempted by means of generating synthetic data based on the existing dataset, using a generative 

adversarial network (GAN). GANs are dual neural networks consisting of the generator and the 

discriminator (sometimes called critic), where two agents compete against each other. The generator’s 

aim is to use a random noise vector to create synthetic data that would serve as input to the discriminator, 

alongside genuine data, and fool the discriminator into recognizing generated data as genuine, whereas 

the discriminator’s aim is the opposite – to learn to better distinguish between genuine and synthetic 

inputs. The two agents are trained concurrently, ideally at the same rate. GANs have been used in image 

synthesis, semantic image editing, style transfer, image super-resolution and more [175]. Synthetic data 

generated via GANs was successfuly used to improve segmentation of CT [176] and MRI images [177], 

by augmenting the available medical data set, which is usually hard to come by and costly to label.  

In this study, the input noise dimension was varied exponentially between 128 and 2048. The generator 

consisted of a number of generator blocks, the number being dependent on input dimension and other 

hyperparameters used, each comprising a transposed 1D convolution layer, batch normalization and 

linear rectifier unit (ReLU) activation, with the exception of the last layer which only contained a 

transposed convolution. Finishing up with a tanh activation combined with scaling the genuine signals 

in the range [-1,1] was also tested. The number of blocks was varied to find the best fit, alongside kernel 

sizes and stride. Label smoothing was added to discriminator labels to prevent mode collapse, which 

involved randomly assigning a number between 0 and 0.3 to fake signals and 0.7 and 1 for genuine 

signals.  
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The discriminator was a fully convolutional neural network, consisting of five convolutional blokcs, each 

containing a 1D convolutional layer, batch normalization and ReLU activation, except for the last layer 

that only contained a convolution. Kernel sizes were varied to find the best fit. High level topology of 

the GAN is shown in Figure 26. 

Wasserstein loss with gradient penalty was used for training, as this was shown to help prevent trouble 

with converging and lead to more stable training [178]. 

 

Figure 26 High level diagram of the GAN used for data augmentation 

 

4.6.2.3. Results 

 

Employed convolutional network model achieved unsatisfactory results, with accuracy on raw signals of 

41.5% and 33.1% on spherical transform of the signals. Varying hyperparameters of the network, such 

as number of layers, number of filters per layer, kernel size, or rate of dropout resulted in no significant 

improvement of the results. There was a negative correlation (rho = -0.56) of kernel size and accuracy, 

meaning that larger kernels are less appropriate for this purpose. This may be due to the summation over 

the kernel destroying potentially useful information in higher frequency details. There was also a 

negative correlation (rho = -0.43) between utilized training batch size and accuracy, wich implies that 

larger variance in small batches contributed to model regularization. There was no correlation between 

the network depth reflected in the number of layers and accuracy, nor between accuracy and the number 

of neurons present in the dense classification layer of the network nor the number of filters used per 

layer. Initializing weights with pre-trained autoencoder did not improve the results either. 

The trained convolutional GAN exibited failure to converge, irrespective of hyperparameters and tweaks 

to model topology, and in spite of measures taken to prevent this. The generator and the discriminator 

loss would fall briefly initially, after which it would stagnate, oscillate, or increase (Figure 27). 
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Figure 27 Discriminator (disc) and generator (gen) loss over epochs. 

The images generated in the process did not sufficiently resemble the original data, although they did 

display periodic behaviour. Furthermore, the network would fall into mode collapse, generating only one 

type of signal at a time, as illustrated in Figure 28 and 29. The synthetic data could therefore not be used 

to supplement the original dataset.  

 

Figure 28 Example of mode collapse during GAN training, random initialization 1 
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Figure 29 Example of mode collapse during GAN training, random initialization 2 

 

It is most likely that the available data was insufficient for the deep learning approach, which was 

reflected in both the inability to obtain a good prediction on the original data, and the failure to generate 

satisfactory synthetic data to augment the initial dataset. This was also seen in the inability of the 

autoencoder based clustering to divide the data into meaningful clusters, as the clusters obtained had very 

low homogenity, suggesting that the autoencoder did not manage to capture the features that were most 

representative of each disease. Deep neural networks normally require hundreds to thousands of unique 

samples, and the variance in the existing data combined with the low amount of data did not allow the 

models to learn the correct mapping functions. 

The performed tests were unable to confirm nor deny Hypothesis 3. What is clear though, is that the 

number of tested patients in this study was not enough for deep learning approaches to perform their 

best.  
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4.6.3. Analysis - Traditional machine learning approaches 
 

Another branch of artificial intelligence are traditional machine learning algorithms. Unlike deep 

learning, which usually accepts raw or minimally pre-processed input data, and is relied upon to 

automatically extract useful features, traditional models accept features that were specifically designed 

by the researchers. In this chapter, we had a dual aim -  to assess Hypothesis 3, and utilize traditional 

machine learning models to discern among groups of patients and healthy controls in a multi-class setup, 

as well as to test Hypothesis 4, and use artificial intelligence to choose the best set of features for 

discriminating among the participant groups. Although the feature extraction will be done by known 

formulas given by the researchers in advance, the selection of the best subset of those features will be 

left to an algorithm5. 

 

4.6.3.1. Feature extraction 

 

The right hand signals collected from the participants were processed by handling each axis separately, 

as well as calculating the norm of all three sensor rotation axes to represent the intensity. The signals 

were subjected to the following five transformations: 1) no transformation (raw signal), representing 

angular velocity, 2) integration, yielding the finger excursion angle, 3) differentiation, resulting in 

angular acceleration, 4) squaring, representing the power of the signal, and 5) Fourier transform, giving 

the signal frequency content. To compensate for the drift error introduced by integration, the beginning 

of each tap was determined, and a 5th order polynomial curve was fitted through the tap start points and 

this curve was subtracted from the integrated signal. The approach to finding tap start times was signal 

filtering with a 4th order bandpass Butterworth filter, with pass frequencies between 0.4 and 5 Hz. The 

filter parameters were decided on empirically. The filtered signal was squared to enhance the large 

changes and suppress the smaller ones, and the last step was negative peak finding. All tap-start positions 

were then manually checked and corrected where necessary, using a Python script that displayed a 

visualization of each recording with the automatically determined splits, and allowed user input to 

remove or add tap start points. (Example tap given in Figure 30). 

 
5 Parts of the presented analysis have been adapted to be published in Heliyon as of March 2023 (Belic M, Radivojevic Z, 
Bobic V, Kostic V, Djuric-Jovicic M, Quick computer aided differential diagnostics based on repetitive finger tapping in 
Parkinson’s disease and atypical parkinsonisms) 
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Figure 30 Random example of a single tap extracted from a recorded gyroscope sequence 

Six features were extracted from each transformed signal, apart from the Fourier transform. These 

features included the mean, standard deviation, median, root mean square (RMS), and minimal and 

maximal values. Besides calculating the statistics from the whole signals, the same features were also 

extracted individual taps, or more specifically from their maximal values. Linear regression line was 

fitted through these individual taps’ maxima, and the slope of the obtained line was taken as an additional 

parameter. This was to capture the potential amplitude decrements in the tapping sequence over time. 

Fourier transform was used to extract the maximal frequency and the spectral centroid, which was 

defined as the frequency point that divides the spectrum into two halves, so that the frequencies below 

this point account for half of the total spectral power. In total, 216 features were obtained per sensor. The 

features were then scaled to the range between 0 and 1, as this is expected to help the machine learning 

algorithms. A summary of extracted features is given in Table 6. 

Table 6 Preliminary features extracted from tapping signals 

Transformation Whole signal Individual taps 

No transformation (raw signal) mean, std, RMS, min, 

and max of the signal 

mean, std, RMS, min, max and 

regression slope of tap maxima Integration 

Differentiation 

Squaring 

Fourier transform max frequency, spectral 

centroid 

 

* Std = Standard deviation, RMS = root mean square, min = minimum, max = maximum 
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4.6.3.2. Feature selection 

The number of features was reduced through a semi-greedy feature selection algorithm (Appendix, 

Algorithm 1). Model classification accuracy was used as a performance measure, and the fitness of a 

subset of features was rated according to accuracy. The algorithm relied on the broad semi-greedy 

concept [179]. A full greedy approach would always take the locally optimal solution and add more 

features in a way the current set of features is the best possible up to that point. In the semi-greedy 

concept, a broader set of options in allowed, and some randomization is introduced, acknowledging that 

locally optimal set of features may not be globally optimal too. The algorithm consisted of an expansion 

phase and a reduction phase, which were repeated multiple times. The expansion phase would generally 

speaking expand the current feature set but would more precisely modify the current best set by either 

adding, subtracting, or substituting a feature in a random manner. Whether to use the add, subtract, or 

modify operation was also decided at random. This was repeated M times, where M was taken randomly 

to be 2, 3 or 4. Then K feature sets with best performance were saved (K was chosen at random to be 5, 

6 or 7) and their union was taken to be the input for the reduction phase. In the reduction phase the aim 

was to make the feature set smaller, which was done by subsetting and testing all subset combinations of 

features for their accuracy. The one that gave the best results was then singled out. This process was 

scheduled to run for 24h on an Intel® Core™ i9 CPU operating at 3.10GHz with 64 GB of RAM. 
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4.6.3.3. Classification 

In this section, artificial intelligence reflected in traditional machine learning algorithms was used on top 

of the extracted features to classify the collected recordings into 4 diagnostic groups. A k-nearest 

neighbors (kNN) classifier [180] was found in preliminary tests to perform the best out of the tested set 

of algorithms that included random forest, naïve bayes, logistic regression and support vector machine. 

In kNN, a feature vector is assigned to a specific class, based on the plurality vote of the k vectors in the 

available training data that are the nearest to the one in question, as measured by the Euclidian distance. 

Each neighbor point’s contribution is weighted by the inverse of its Euclidian distance to the current 

point. In this work particularly, k is chosen to be 5, that is the class of each recording is determined based 

on 5 nearest neighbors. Furthermore, since multiple recordings were obtained for each patient, the final 

decision for each patient was decided as the diagnosis that was predicted most frequently among all 

corresponding patient’s recordings. 

 

4.6.3.4. Model evaluation 

 

To assess the performance of the model, leave-one-out paradigm was. This involved training the model 

on all but one patient, making sure that all recordings belonging to that particular patient are held out for 

the test set. The same trained model was then used to predict the diagnosis for the patient that was left 

out. This was done for each participant and the results were aggregated to obtain overall performance.  

Overall accuracy, precision and recall were calculated for each diagnosis according to the formulas (1), 

(2) and (3).  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
∗ 100%                (14) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑐𝑙𝑎𝑠𝑠 𝑖

𝐴𝑙𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑐𝑙𝑎𝑠𝑠 𝑖
∗ 100%                   (15) 

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑐𝑙𝑎𝑠𝑠 𝑖

𝐴𝑙𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑙𝑎𝑠𝑠 𝑖
∗ 100%                         (16) 

 

For example, if we take the PD group, then precision describes how many of all cases that were suggested 

to have PD belong to the patients that were clinically diagnosed as PD, while recall describes what 

percentage of people who were clinically found to have PD will be correctly assigned the PD diagnosis 

by the algorithm. 

All modeling was done using Python 3.7.7 (Python Software Foundation) and scikit-learn package 

version 0.22.2. 
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4.6.3.5. Results 

After feature extraction, the semi-greedy feature selection algorithm yielded six features listed in Table 

7 as the best combination based on achieved classification results.  

Feature 1 is a measure of how much the index finger leans left and right from the path on average. 

Features 2 and 3 provide information on the sustained finger opening during tapping, with the y-axis 

rotation being the most dominant one during the finger tapping test. Feature 4 gives insight into the 

frequency content of the signal, and indirectly the tapping cadence. Feature 5 stands for the maximal 

rotation of the thumb to left or right, and Feature 6 captures the variability of the thumb’s excursion to 

left and right.  

Selected features per group can be found in Table 8, given as the mean value and inter-quartile range. 
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Table 7 Selected feature set 

Feature Sensor 

position 

Axis of 

rotation 

Signal transformation  Statistic  

Feature 1 Index finger X Angular velocity RMS  

Feature 2 Index finger Y Angular velocity average of maxima of individual taps  

Feature 3 Index finger Y Angular acceleration 

  

RMS  

Feature 4 Index finger Vector Fourier transformation of 

angular velocity  

spectral centroid  

Feature 5 Thumb X Angular velocity maximum  

Feature 6 Thumb Z Angular acceleration STD of the maxima of individual taps  

 
* RMS - Root Mean Square, STD - Standard Deviation, vector =√𝑥2 + 𝑦2 + 𝑧2 
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Table 8 Values of features per group given as mean (interquartile range) 

Feature HC MSA  PD  PSP 

Feature 1 

[
𝒓𝒂𝒅𝟐

𝒔𝟐 ] 

7.38  

(3.89 - 9.87) 

0.98  

(0.26 - 1.07) 

1.96 

(1.03 - 2.59) 

2.27 

(0.59 - 3.50) 

Feature 2  

[
𝒓𝒂𝒅

𝒔
] 

21.06  

(16.50 - 24.94) 

8.74 

(3.74 - 13.15) 

13.24 

(8.31 - 15.32) 

11.42 

(7.31 - 14.43) 

Feature 3 

[
𝒓𝒂𝒅

𝒔𝟐 ] 

2.91  

(2.47 - 3.38) 

0.77 

(0.25 - 1.21) 

1.46 

(0.68 - 1.93) 

1.39 

(0.92 - 1.58) 

Feature 4 

[𝑯𝒛] 

12.39  

(10.98 - 13.72) 

9.11 

(7.66 - 10.18) 

9.81 

(7.68 - 11.49) 

11.35 

(8.78 - 13.84) 

Feature 5 

[
𝒓𝒂𝒅

𝒔
] 

0.60  

(0.40 - 0.71) 

0.20 

(0.08 - 0.23) 

0.51 

(0.24 - 0.81) 

0.26 

(0.13 - 0.37) 

Feature 6 

[
𝒓𝒂𝒅

𝒔𝟐 ] 

0.89 

 (0.57 - 1.22) 

0.43 

(0.16 - 0.64) 

0.86 

(0.53 - 0.1.21) 

0.67 

(0.23 – 1.12) 

* HC – Healthy Controls, MSA – Multiple System Atrophy, PD – Parkinson’s Disease, PSP – Progressive 

Supranuclear Palsy 

 

The distribution of features over groups is shown graphically in Figure 31. 
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Figure 31 Distribution of selected features over participant groups. The lines above the boxplots 

denote significant differences between corresponding groups 

Accuracy, precision and recall of the model trained on the selected features are given in Table 9. Figure 

32 shows the confusion matrix that resulted from cross validation on each separate recording (i.e. prior 

to plurality vote on each patient’s multiple recordings). The values and the color coding represent the 

number of cases in a corresponding category scaled to the total number of true cases for the class in 

question (row sums). The values in brackets show absolute numbers of cases.  

The model assigned the correct diagnosis in a multiclass setting with overall accuracy of 76.11% of cases 

when inspecting all recordings individually. Out of all control samples, 94.23% were correctly classified, 

while out of all samples classified as controls, 76.56% were truly controls. The greatest confusion was 

seen between MSA and PSP groups, where 17.65% of those classified as MSA in fact belonged to the 

PSP group, and inversely 10.13% of those classified as PSP were diagnosed with MSA. 
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Table 9 Precision and recall obtained on the test set for each class based on each single recording 

 Precision 

[%] 

Recall 

[%] 

HC 76.56 94.23 

MSA 73.42 80.50 

PD 80.70 67.65 

PSP 75.00 67.10 

Total accuracy      76.11% 

   

 

Figure 32 Confusion matrix when observed for each single recording separately. The values on the 

main diagonal correspond to recall for the associated class. 

When only the final predicted diagnosis for each patient is taken into consideration (final diagnosis being 

the most frequent one among the corresponding person’s recordings), the overall accuracy becomes 

85.18%. All 13 MSA patients were predicted to have the correct diagnosis, whereas 2 out of 16 PSP 

patients were incorrectly assigned to the MSA diagnosis. All healthy controls were properly recognized 

as well, with 3 out of 16 PSP patients falsely classified as healthy. Out of 14 PD patients, 11 were 

predicted to have the PD diagnosis, while 3 were wrongly found to carry the PSP diagnosis. In the set of 

patients that the algorithm classified as the PD group, all patients were clinically diagnosed with PD. 

Accuracy, precision and recall are given in percentages in Table 10. PSP was the most difficult diagnosis 

for the model to deal with, with recall of 68.75%, while MSA and HC groups were significantly different 

from the others, as reflected in the fact that 100% of them were properly classified. 
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Table 10 Precision and recall obtained on the test set for each class based on a single diagnosis per 

patient 

 Precision 

[%] 

Recall 

[%] 

MSA 86.67 100 

PD 100 78.57 

PSP 78.57 68.75 

HC 78.57 100 

Accuracy [%]  85.18 

   

 

Figure 33 Confusion matrix expressed in absolute numbers of participants, when a single diagnosis 

was considered per patient 
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4.6.4. Discussion 

After a preliminary test of several traditional machine learning algorithms, a kNN classifier was used to 

detect the presence of a neurodegenerative disorder of parkinsonian type and to output the most likely 

diagnosis based on gyroscope recordings of the thumb and the index finger during repetitive finger 

tapping.  The algorithm was able to distinguish controls and three diagnoses on the patient level in 

76.11% of cases on the level of single recordings, and 85.18% on patient level, demonstrating the 

potential of the used IMU-based system to contribute to the differential diagnostics of Parkinson’s 

disease and atypical parkinsonisms. When one patient per diagnosis was considered, the breakdown of 

the results per group showed that MSA and HC diagnoses were most easily discerned (100%), whereas 

PSP was the hardest one (68.75%), due to some of these participants being incorrectly classified as MSA 

or HC groups. 

The set of features that was found to be best able to tell apart the tested subject groups consisted of two 

features extracted from the gyroscope mounted on the thumb, and four features from the gyroscope on 

the index finger. Two of the features came from the most dominant finger opening axis (the rotation 

around the y-axis has the largest angles during tapping), concretely the root mean square of the index 

finger angular velocity and angular acceleration. One feature pertained to the mean left and right rotation 

of the index finger, i.e., how much the index finger leaned to the side while tapping, and one feature - 

spectral centroid of the vector of the index finger angular velocity - described the frequency content of 

the signal. This feature is determined by the tapping cadence but will also be influenced by other 

frequencies present in the signal, that could move the centroid up or down. For instance, the cadence of 

two recordings can be the same, but if higher frequencies are present in one of them, as would be the 

case if tremor is present, then this will be reflected in a greater centroid value.  The features taken from 

the thumb gyroscopes included maximal rotation to the left or right, and variability of the maximal 

angular acceleration in each individual tap, taken as the standard deviation. The appearance of left-right 

rotation in the features is suggestive of pronation-supination hand tremor that is in PD described as “pill-

rolling” [1]. 

Tests with deep learning approaches showed that the available tapping data was insufficient for these 

methods to demonstrate their potential. Collecting more data would make a better substrate for utilizing 

these approaches, where the system could leverage the pattern seeking abilities of deep learning rather 

than hand crafting the features. The scientific community would reap benefits from joint efforts to collect 

and analyze motion data in neurodegenerative disorders using a system like the one described, not only 

to improve the predictive power of machine learning approaches, but also to potentially use it to derive 

nuanced biomarkers that may have evaded our knowledge so far.  We have seen the benefits of global 

collaboration on imaging, genomic and clinical data collected through the Parkinson’s Progression 

Markers Initiative [181], which involves a large open database that has produced many scientific papers.  

The system used here for recording the motion during finger tapping based on miniature gyroscope 

sensors is low cost, lightweight and easy to mount on a patient’s hand. Though the system we used 

originally consisted of both accelerometers and gyroscopes, using just one modality for our analysis 

further reduced the cost of the system by reducing the hardware requirements. It also limited the system’s 

storage demands and processing power requirements. Gyroscope recordings were chosen rather than 

accelerometer since the movements of interest during tapping were of rotational nature. It cannot be 

disregarded, however, that perhaps the addition of recordings from accelerometers and force sensors 

would further increase the predictive capability of the classification model.  

So far, there have been no studies utilizing kinematic analysis of repetitive finger tapping for discerning 

Parkinson’s disease and atypical parkinsonisms, although some studies have successfully used some 

form of finger tapping to detect the presence of Parkinson’s disease against a group of healthy 
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participants [84], [182]. Keyboard typing has been used in a number of studies as a proxy for performing 

this test and collecting data for artificial intelligence algorithms to detect Parkinson’s disease [77]–[79], 

[182]. The approach to diagnostic aid that was used in our work has the advantage of relying on a 

standardized clinical test, which may give it a head start regarding its adoption in clinical settings. Other 

modalities have been used to try and discern Parkinson’s disease and atypical parkinsonisms, such as 

gait [183], [184] and speech [185], [186], and in the future perhaps a combination into a multi-modal 

approach would outperform single modality solutions. 

It is of note that the groups of patients who participated in this study were a bit heterogeneous concerning 

their disability levels (mean Hoehn & Yahr group scores between 2.2 and 3.8). The best use of the system 

would be to recruit as many early-stage participants as possible, as this is the time when clinical diagnosis 

is the most elusive. This would however require a more complex, sort of a longitudinal study, where de-

novo patients would be tested and recorded using the proposed system but would then go on to be 

followed for a number of years to make sure the correct diagnosis is reached with enough certainty to be 

useful for training the computer assistant and its machine learning algorithm. Although the diagnoses in 

our data set were carefully determined by clinical experts of clinical neurology, they were not confirmed 

at autopsy, and this may have affected the results. Given the imperfection of the reference diagnoses, 

another approach to the analysis would be to treat it as a weakly supervised problem [187], or even to 

develop algorithms which would draw conclusions in an unsupervised manner, but this would again 

require a larger amount of data than was collected for this study. 

Future work should include collection of additional recordings from different patients, particularly in the 

early stages of the disease.Solutions for damping the effect of possible noise in the labels (non-autopsy-

confirmed diagnoses) is also a point to be addressed, and so is turning the presented analysis into a user-

friendly application that could be adopted in the clinical settings, through working closely with experts 

of clinical neurology.   

 

Proposed technology in light of recent events 

Healthcare systems and health services were put under tremendous stress by the Covid-19 pandemic that 

started early in 2020 and in the moment of writing in 2022 has somewhat subsided but is still very much 

affecting the processes, making already complex systems and procedures even more complicated. 

Frequent rotation of the medical staff was required, breaking continuity in care provided to patients by 

their assigned doctors, elective procedures were put on hold, non-critical patients were dedicated a 

minimal amount of time, some were rerouted to different institutions, and others were told to wait. Some 

other new infections have also recently disturbed the public, such as the appearance of monkey pox, and 

certain pharmaceutical companies have started working on producing a vaccine for the nipah virus, as 

there has been some suggestion that nipah is what may bring on the next great pandemic. It is much 

deadlier than Covid, the spread of which may be taken as a drill for potentially something more dangerous 

to come. Either way, it seems that some measures of precaution and changes in operation of healthcare 

institutions are here to stay. Technology has recognized this to a large extent, putting more effort into 

coming up with solutions for telemedicine, contactless sensors, computer assistants, and more. In June 

2022, papers wrote about the amount of seed stage funding in Europe that was brought in by industry 

and reported that health tech was leading the charts (118 million euros), surpassing fintech (77 million 

euros) which used to dominate the seed funding landscape up until this point [188]. In that light, a system 

such as the one described here could be a timely assistance to help take some of the burden off the 

medical staff and speed up the diagnostic process. It could enable interdisciplinary teams of engineers 

and clinical doctors to apply the same or similar system for diagnostic aid and share recordings and 
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possibly draw deeper insights into the subtle differences between the pathologies, made possible by 

polling of multi-center open data. A review on submitted papers focusing on machine learning 

applications in health research emphasized the importance of well-annotated data that is easily accessed, 

combined with increased involvement of clinical staff in the application development process [189]. 
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5. ANALYSIS OF GAIT IN PARKINSON’S DISEASE IN DUAL-TASK PARADIGM 

This chapter aims to use gait kinematic data and artificial intelligence to answer the questions posed in 

Hypothesis 2 and Hypothesis 4 from a different angle. Hypothesis 2 assumes that with the help of 

artificial intelligence, patients with PD can be discerned on the individual level from persons without 

neurological disorders, and Hypothesis 4 states that is possible to programatically choose a subset of 

relevant features extracted from kinematic signals which increase the performance of classification 

among the observed disorders, or in this case -  between healthy controls and patients with Parkinson’s 

disease.  

 

We will use methods of artificial intelligence to identify the subset of spatio-temporal parameters which 

are the most useful for discerning de novo PD patients from participants with no neurological disorders 

and build on top of these parameters a classification model as a means of assistance in PD diagnostics.  

 

Gait analyses will not be used to test Hypothesis 1 and Hypothesis 3, as they pertain to multi-group 

differences and involve patients suffering from atypical parkinsonisms, for which no gait data is available 

at this time. This section describes kinematic data describing gait in healthy controls and participants 

with PD.  
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5.1. Participants 
 

Forty de novo, drug naive patients were consecutively recruited at the Neurology Clinic, Clinical Centre 

of Serbia, Belgrade. Inclusion criteria included Step I and Step II criteria of the UK Parkinson’s Disease 

Society Brain Bank (PDSBB) Diagnostic Criteria [43]6. The study included participants with unilateral 

presentation of disease with or without axial involvement (H&Y stages 1 or 1.5), without regard for 

disease duration. MDS UPDRS Part III [33] and H&Y [48] staging systems were used for clinical 

evaluation, and mental status was rated through the Hamilton Depression Rating Scale (HAM-D) [190], 

Beck Depression Inventory (BDI) [191], Hamilton Anxiety Rating Scale (HAM-A) [192] and the Apathy 

Scale (AS) [193]. Cognitive screening was done using the Mini-Mental State Examination [194], and 

more deeply assessed, using the Addenbrooke’s Cognitive Examination Revised (ACE-R) [195]. The 

control group was composed of forty healthy, age and gender balanced participants (Table 11). Exclusion 

criteria included any condition that could interfere with motor activity, be it of neurological, orthopedic, 

or other medical nature. The study was performed in accordance with the ethical standards of the 

Declaration of Helsinki and its later amendments. Medical Ethics Committee of Clinical Centre of Serbia 

approved the research protocol, and written informed consent was obtained from each participant. 

 

 

Table 11 Demographic and clinical data for the tested participants 

 PD patients (n=40) Controls (n=40) P 

Age (years) 59.83±10.57 59.79±11.85 0.989 

Sex (females) 16(40%) 19(47.5%) 0.712 

Sex (males) 24(60%) 21(52.5%)  

Education (years) 13.63±2.71 12.98±2.96 0.302 

Disease duration (years) 1.38±1.16 / / / 

MDS-UPDRS Part III 15.8±5.49 / / / 

Gait item from MDS-UPDRS  0.68±0.53 / / / 

H&Y 1.16±0.24 / / / 

HAM-A 4.45±5.12 5.79±5.71 0.264 

HAM-D 5.23±5.92 2.60±3.28 0.016* 

BDI 7.43±6.96 3.79±4.02 0.005* 

AS 10.65±7.17 5.60±6.02 0.001* 

MMSE 28.7±1.20 29.47±0.98 0.476 

ACE-R 91.6±5.47 91.95±6.90 0.737 
Values are given as mean ± standard deviation; MDS-UPDRS- Movement Disorder Society Unified Parkinson's Disease 

Rating Scale; H&Y - Hoehn and Yahr Staging system; HAM-A - Hamilton Anxiety Rating Scale; HAM-D - Hamilton 

Depression Rating Scale; BDI - Beck Depression Inventory; AS - Apathy Scale; MMSE - Mini Mental State Examination; 

ACE-R - Addenbrooke's Cognitive Examination Revised 

  

 
6 Parts of the analysis presented in this chapter have been adapted and published in [113]. 
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5.2. Instrumentation and protocol 
 

Instrumentation used in this chapter involved the GAITRite portable electronic walkway (CIR Systems, 

Haverton, PA), mat of 5.5m active area with built-in pressure sensors with 1.27cm spatial resolution and 

maximum sampling rate of 240Hz. The walkway is intended to provide spatial and temporal information 

on the subject’s gait. The dedicated system software uses physics and mathematics to calculate gait 

parameters (e.g., velocity). Participants were recorded walking up and down the corridor in comfortable 

shoes for 6 passes in each of the following three scenarios: (1) basic walking, pacing at the subject’s 

comfortable speed, (2) motor task, during which the subjects walked on the mat while holding a glass of 

water and trying not to spill it, and (3) mental task, during which the participants were asked to 

recursively subtract 7 starting from 100 [196]. Each task amounted to roughly 50m of walking.  
 

5.3. Gait data 
 

The data used for analysis comprised the 37 parameters obtained from the GAITRite walkway system, 

grouped by participant and task, and averaged over 6 recorded passes. The initial parameters are listed 

in Table 12. Three tasks with 37 parameters resulted in 111 variables total per participant. 
Table 12 List of initial spatio-temporal gait parameters obtained from the GAITRite system 

1 Velocity 20 Heel Off On Time 

2 Normalized Velocity 21 Heel Off On % 

3 Cadence 22 Double Support Load Time 

4 *Step Time Differential 23 Double Support Load % of Cycle  

5 Step Length Differential 24 Double Support Unload Time 

6 *Stride Time Differential 25 Double Support Unload of Cycle 

7 Step Time 26 Stride Velocity 

8 Step Length 27 Step Length CV 

9 #Stride Time 28 *Step Time CV 

10 #Stride Length 29 #*Stride Length CV 

11 Heel To Heel Base Support 30 #Stride Time CV 

12 #Swing Time 31 #Swing Time CV 

13 Stance Time 32 Stance Time CV 

14 *Single Support Time 33 *Stride Velocity CV 

15 #Double Support Time 34 *Single Support Time CV 

16 Swing % of Cycle 35 #Double Support Time CV 

17 Stance % of Cycle 36 Heel Off On CV 

18 Single Support Time % of Cycle  37 *Heel-to-Heel Support Base CV 

19 Double Support Time % of Cycle   

 
* CV –Coefficient of variation 

 

Normalized velocity refers to velocity divided by the average leg length. Heel off/on time represents the time between heel-

off and heel-on points of two consecutive steps made by the same foot. Heel-to-heel base support illustrates the perpendicular 

distance between the center of the heel on one foot and the line of progression that the opposite foot forms. Step and stride 

time differential illustrate asymmetry through the difference seen in the step and stride times respectively between the left 

and the right foot. Step length differential represents the difference in step lengths between the left and the right foot.  



70 
 

5.4. Classification: Parkinson’s disease vs healthy controls  
 

Given that high data dimensionality, as reflected in 111 parameters per subject, often negatively impacts 

classification algorithms, and also makes model interpretation more difficult [197], we sought to reduce 

the number of parameters that would be used to detect the presence of PD. We started with pair-wise 

cross-correlating all variables using Pearson’s correlation, with the aim of excluding highly correlated 

variables. Since simply ranking the correlation coefficients and eliminating the highest ones would bring 

into question which of the highly correlated features should we keep, an alternative approach was 

employed. Namely, the pair-wise correlation was taken to be the similarity metric between two variables, 

and using this similarity as input, the features were clustered via affinity propagation. The exemplars of 

the obtained clusters were then passed to the next step of the algorithm, which involved ranking the 

features by importance using random forests [198], and relying on mean decrease in accuracy which 

illustrates how much the model accuracy suffers when out-of-bag data for the variables are randomly 

permuted. The higher the accuracy drop for permuting a particular variable, the more important that 

variable is in discerning PD from healthy participants. Highest ranked features were then used as input 

to the classification step. The flowchart of the processing pipeline is given in Figure 34. The reason for 

including the correlation-based clustering step prior to random forest is that random forest feature 

selection method is known to suffer from correlation bias [199], i.e., correlated groups of features lose 

in their assigned weights as the size of the mutually correlated group grows, so the importance attributed 

to these variables does not reflect their true value to the model.  

Affinity propagation is a clustering method focused on finding a subset of representative points, 

exemplars. In the famous k-means clustering this would be an analogue of cluster centroids, although a 

centroid can be a point that does not exist in the dataset, but an exemplar is a real data point. K-means 

starts by randomly choosing the centroids and then iteratively improving the split, whereas affinity 

propagation takes into consideration the pair-wise similarity metrics given at input [200]. And while k-

means requires the number of desired clusters to be specified in advance, affinity propagation does not. 

This may mean that the clustering in k-means will be dependent on initial conditions, while affinity 

propagation tries to remedy this. Affinity propagation does, however, require other input parameters, 

namely “preferences”, s(k,k). These are real numbers given for each data point, so that larger values make 

the datapoints more likely to be chosen as exemplars. These preferences can be set to a common value 

to indicate that all datapoints are equally valid choices of exemplars, as was done in this work. Affinity 

propagation observes all data points simultaneously and regards them to be nodes in a network, the edges 

of which exchange real-valued messages. The messages are recursively updated, and their magnitude 

describes the affinity of data points to one another. There are two kinds of messages exchanged, 

“responsibility” r(i,k) and “availability” a(i,k), the first one representing how well point k is suited to be 

the exemplar for point i, and the second one tells the point i how appropriate it would be for it to take 

point k as its exemplar. Responsibilities and availabilities are updated as: 

 

𝑟(𝑖, 𝑘) ≔ 𝑠(𝑖, 𝑘) − max
𝑘`≠𝑘

{𝑎(𝑖, 𝑘`) + 𝑠(𝑖, 𝑘`)}      (17) 

𝑎(𝑘, 𝑖) ≔ min {0, 𝑟(𝑘, 𝑘)  +  ∑ max {0, 𝑟(𝑖`, 𝑘)}𝑖`≠𝑖,𝑖`≠𝑘 }  (18) 

 

With self-availability a(k,k) updated as: 

 

𝑎(𝑘, 𝑘) ≔  ∑ max {0, 𝑟(𝑖`, 𝑘)}𝑖`≠𝑘     (19) 
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These messages are combined to decide the exemplars and clusters. Implementation of affinity 

propagation in R package ‘apcluster’ was used in this study. 

 

Random forest is a machine learning model that combines many weak predictors – decision trees – to 

make an ensemble strong predictor. Each tree node tests the input data against a threshold and determines 

if it passes or not. The subregion created after such a split can then again be divided based on some 

threshold-based criterion. Each decision tree’s prediction is considered a vote and the one that takes the 

majority (or plurality) vote wins. The trees are constructed on a random subset sampled with replacement 

from the set of learning samples, but also from the set of features. This property allows the assessment 

of importance of variables for the given model [201], and this approach has been used in various fields, 

such as psychology [202] or bioinformatics, for instance to decide on a subset of genetic markers that 

contribute most to a certain disease [203]–[205].  Consider there are N input variables and m data points 

x1, x,…,xm. Having constructed the forest, the out-of-bag values of the k-th variable are randomly 

permuted and such a permuted dataset is used for inference in the corresponding trees, and the predictions 

are saved. This is repeated for k = 1,2,…,N. The plurality vote is then found for each xi and compared to 

the true class label to obtain a misclassification rate. The measurement of interest that is then used to sort 

variables is the increase in misclassification rate when the data are permuted compared to when they are 

left as is [201]. 

 

 

Figure 34 High level flowchart of the performed analyses (Adapted from [113]) 

 

A support vector machine (SVM) model (see Chapter 4.5.1.) was built on input data with selected 

variables to discern healthy participants from PD patients. A parallel SVM model was build on the same 

dataset but using a different set of variables, namely 8 parameters commonly used in gait analysis: mean 

values for stride time, stride length, swing time, double support time and their corresponding standard 

deviations [24], [196], [206]. The results of the two models were compared for the three test tasks: base, 

motor and mental, as well as for their combination. Classification performance was assessed using 10-

fold cross validation. Metrics of interest were sensitivity, specificity, positive predictive value (PPV) and 

negative predictive value (NPV). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑁𝑜 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑜 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
∗ 100%    (20) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑁𝑜 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑁𝑜 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
∗ 100%     (21) 

𝑃𝑃𝑉 =
𝑁𝑜 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑜 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑖𝑛𝑡𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
∗ 100%    (22) 



72 
 

𝑁𝑃𝑉 =
𝑁𝑜 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑁𝑜 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑖𝑛𝑡𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
∗ 100%     (23) 

 

Variable importance was also assessed on a 10-fold basis.  

The analyses and plotting were performed using R v. 3.2.2. 

 

5.5. Results 
 

Pair-wise cross-correlation showed certain groups of variables were highly correlated with each other, 

as illustrated in Figure 35. For instance, double support time was found to be highly negatively correlated 

with cadence, with correlation coefficient of -0.876. Correlation persisted through all three tasks, as well 

as when all tasks were analyzed combined (Figure 36). 

 

 

Figure 35 Correlation matrix shows high correlation between some groups of variables 
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Figure 36 High negative correlation between cadence and double support time 

When pair-wise cross-correlation was passed to affinity propagation clustering as the similarity metric, 

19 clusters were obtained, and their exemplars were kept for further processing (Table 13). This reduced 

the number of features from the initial 37 to 19.  

 

Table 13 Parameters kept for further processing after clustering 

Normalized velocity Step length CV 

Step time differential Step time CV 

Step length differential Stride length CV 

Stride time differential Stance time CV 

Stride time Stride velocity CV 

Stride length Single support time CV 

Single support time Double support time CV 

Double support time Heel off on CV 

Heel off on time Heel-to-heel support base CV 

Double support load % of cycle  

 

The 19 exemplars established by affinity propagation were passed to a random forest algorithm for 

feature ranking, which yielded the final eight most relevant parameters: stride length and its coefficient 

of variation (CV), stride time and stride time CV, swing time and swing time CV, step type asymmetry 

and the CV of heel-to-heel base support. The boxplots of these eight parameters are shown in Figure 38, 

split by group and by task type, and a corresponding table is given containing mean values and inter-

quartile range (Table 14). The importance ranking showed however that one and the same parameter 

may be more prominent in one task over another. Stride time CV was ranked highly for motor and mental 

tasks, but not for the base task. We can see from the boxplots that the values for stride time CV are 

largely overlapping between groups for the base task, as opposed to the dual tasks.  Swing time CV in 

the base task was ranked relatively low, while in the mental task it was found to be among the 5 most 



74 
 

important features. Stride length CV during performance of the mental task was found to be the most 

important variable that stood out among all others. Figure 37 shows the 10 most important features as 

ranked by the random forest algorithm. 

Table 14 Selected parameters grouped by task and test group, given as median (interquartile range) 

Parameter Base Task Motor Task Mental Task 
 

HC PD HC PD HC PD 

Step Time Asymmetry 

[s] 

0.008 

(0.004-0.013) 

0.018 

(0.007-0.027) 

0.008 

(0.003-0.012) 

0.018 

(0.006-0.033) 

0.012 

(0.005-0.017) 

0.023 

(0.009-0.037) 

Stride Time [s] 1.064 

(1.017-1.105) 

1.091 

(1.058-1.184) 

1.056 

(1.01-1.116) 

1.110 

(1.055-1.183) 

1.129 

(1.075-1.202) 

1.215 

(1.135-1.304) 

Stride Time CV 0.026 

(0.021-0.035) 

0.029 

(0.024-0.037) 

0.023 

(0.02-0.028) 

0.031 

(0.023-0.035) 

0.032 

(0.025-0.042) 

0.051 

(0.035-0.084) 

Stride Length [cm] 129.39 

(115.74-

137.85) 

122.12 

(112.56-

132.53) 

122.29 

(112.35-

132.38) 

119.47 

(107.69-

125.31) 

119.78 

(108.96-

131.85) 

111.344 

(100.35-

121.89) 

Stride Length CV 0.026 

(0.021-0.036) 

0.035 

(0.028-0.043) 

0.026 

(0.021-0.027) 

0.035 

(0.027-0.043) 

0.039 

(0.03-0.048) 

0.058 

(0.042-0.082) 

Swing Time [s] 0.377 

(0.359-0.396) 

0.393 

(0.378-0.419) 

0.368 

(0.356-0.394) 

0.394 

(0.375-0.411) 

0.394 

(0.369-0.411) 

0.416 

(0.392-0.444) 

Swing Time CV 0.058 

(0.046-0.08) 

0.045 

(0.037-0.058) 

0.052 

(0.044-0.064) 

0.046 

(0.038-0.055) 

0.064 

(0.054-0.136) 

0.066 

(0.052-0.082) 

H-H Base Support CV 0.183 

(0.15-0.227) 

0.163 

(0.143-0.182) 

0.201 

(0.161-0.244) 

0.17 

(0.148-0.196) 

0.203 

(0.17-0.23) 

0.155 

(0.135-0.189) 

*CV – coefficient of variation; HC – healthy controls; PD – Parkinson’s Disease 

The chosen set of parameters differs from the standard set found in literature in that it does not feature 

double support time and its CV, but instead contains step time asymmetry and CV of heel-to-heel base 

of support. Our data did not show significant between group differences in double support time and its 

variation, as shown in Figure 39, and variable importance ranking suggested that the inclusion of these 

parameters would in fact decrease the classification accuracy. 

When the obtained 8 features were fed to an SVM classifier combining all performed tasks, the mean 

classification accuracy was 85%, sensitivity and specificity both 85%, PPV 86% and NPV 89%, meaning 

the predictions of the classifier could be roughly equally trusted for the PD and the control groups. The 

SVM model performed worse when it was fed with the standard set of parameters, achieving 80% in 

accuracy, sensitivity and specificity, 82% PPV and 78% NPV (Table 15). 

Classification was also performed when the input parameters were selected for one single task at a time 

(base, motor, or mental), rather than their combination. The combination of all tasks had the best 

performance both for the standard features and those selected in our work. The selected features showed 

a decrease in classification performance in the base task compared to the motor and mental tasks, while 

this was not the case for the standard set of parameters, where the base task even had a slight advantage 

over the others.  
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Figure 37 Permutation-based variable importance normalized to 1. The 10 highest ranked parameters 

are shown (Printed in [113]). 
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Figure 38 Selected gait parameters used to build classification models, shown as boxplots for healthy controls 

and PD patients, in three tested gait scenarios: base, motor and mental tasks (Adapted from [113]) 
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Table 15 Classification performance obtained for the standard and the suggested set of parameters in 

base, motor, mental and combined tasks 

 Standard set of parameters Suggested set of parameters 

All 3 tasks Base Motor Mental All 3 tasks Base Motor Mental 

Accuracy  0.80±0.11 0.75±0.16 0.74±0.12 0.74±0.12 0.85±0.10 0.75±0.14 0.79±0.14 0.82±0.13 

Range 0.62-1.00 0.50-1.00 0.50-0.87 0.62-0.87 0.75-1.00 0.50-1.00 0.62-1.00 0.62-1.00 

Sensitivity  0.80±0.16 0.90±0.13 0.75±0.17 0.60±0.24 0.85±0.13 0.77±0.18 0.80±0.20 0.82±0.21 

Range 0.50-1.00 0.75-1.00 0.50-1.00 0.25-1.00 0.75-1.00 0.50-1.00 0.50-1.00 0.50-1.00 

Specificity  0.80±0.20 0.60±0.21 0.72±0.22 0.87±0.13 0.85±0.13 0.72±0.22 0.77±0.18 0.82±0.17 

Range 0.50-1.00 0.25-1.00 0.50-1.00 0.75-1.00 0.75-1.00 0.25-1.00 0.50-1.00 0.50-1.00 

PPV 0.82±0.13 0.85±0.20 0.77±0.16 0.71±0.14 0.86±0.12 0.77±0.18 0.81±0.17 0.85±0.16 

Range  0.60-1.00 0.50-1.00 0.50-1.00 0.57-1.00 0.75-1.00 0.50-1.00 0.60-1.00 0.60-1.00 

NPV  0.74±0.21 0.70±0.20 0.65±0.11 0.78±0.22 0.89±0.16 0.72±0.18 0.73±0.15 0.82±0.17 

Range   0.40-1.00 0.40-1.00 0.50-0.80 0.40-1.00 0.57-1.00 0.50-1.00 0.57-1.00 0.60-1.00 

* PPV – Positive Predictive Value, NPV – Negative Predictive Value 

 

 

 

Figure 39 Boxplots for double support time and its coefficient of variation (CV). P stands for P-value 

obtained using unpaired t-test (Adapted from [113]). 
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5.6. Discussion 
 

In this chapter we analyzed data on gait collected using an electronic walkway which provides a plethora 

of spatio-temporal features of gait, however without clear standardization on feature selection for 

detection of PD pathology. The goal was to identify the parameters that contribute the most to 

differentiating early PD from healthy controls on the patient level, and subsequently utilize them as input 

to a classification algorithm that would suggest whether an individual is suffering from PD. The walkway 

and data manipulation allow for quantification of gait parameters whose subtle differences between 

healthy persons and those with a neurological disorder could be captured when they are not so easily 

observed by the naked eye.  

The performed analysis yielded the following eight parameters as the most relevant for classification: 

stride length and stride length CV, stride time and stride time CV, swing time and swing time CV, step 

time asymmetry, and heel-to-heel base support CV. When these parameters were used as input to an 

SVM classifier, the achieved accuracy was 85%, which was higher than when the same classifier was 

used with input parameters which were handpicked to correspond to those commonly found in literature 

(78%), and which include: stride time, stride length, swing time and double support time, along with 

their CVs. Authors in [207] assessed the gait of PD in comparison to healthy individuals and found 

significant differences between the groups in parameters including stride length, cadence, stance time 

and double support time. Using these features, they built a classifier which provided 80.4% accuracy. 

The choice of parameters used in this analysis has a notable overlap with those commonly found in 

literature, confirming their relevance, albeit with some differences. While previous studies found double 

support time to be significantly different between PD and control groups, our findings failed to reproduce 

that finding, although there was a tendency of group means for double support time and its variance to 

differ if observing the mental task specifically, though the difference did not reach statistical significance. 

This may mean that double support time may be a more reliable predictor later in the disease progression 

than it is in early stages. As one of the highly relevant features this analysis introduces step time 

asymmetry, which stands for difference in step duration between the left and the right legs, as an indicator 

of asymmetric involvement in PD. Increased gait variability was found to be characteristic of PD, 

reflected in the observation that multiple selected parameters were coefficients of variation. This 

confirms the findings of earlier research work [24]. 

The feature ranking algorithm showed the single most important variable for detecting de novo PD from 

gait was stride length variation during the mental task, suggesting impairment of gait automation as an 

early sign of PD. Another relevant parameter that emerged in this analysis was the coefficient of variation 

of heel-to-heel base support, which was found to be smaller in PD than in healthy controls. Patients with 

PD are known to walk with a wider base of support than healthy persons possibly to counteract the fear 

of falling [208]. Although out data did not corroborate this finding, as we saw no significant differences 

in base of support, it is possible that the detected reduction in the variability of the support base has the 

same roots as a compensation strategy in the face of the risk of falls.   

High predictive power of the performance on the mental task was seen in the results of training the 

classifier on data describing one gait task at a time, where the mental task only provided the highest 

results of all three (82% accuracy), followed closely by the motor task (81%) and the lowest for the base 

task (76%), although the combination of all three tasks outperformed each task taken individually (85%). 

This deterioration of performance when walking with a competing dual task reflect the difficulties that 

PD patients face in dividing attentional resources [22], and is in line with the findings of a meta-analysis 

which observed deterioration of gait in PD when a dual task is introduced, regardless of the baseline 

level, and irrespective of the type of the interference task, whether motor, arithmetic, or other [209]. This 
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superiority of the mental or motor task in detecting early PD however was not apparent when the 

classifier was trained using the standard hand-picked set of features. In this case all three tasks 

individually had a comparable accuracy (74-75%), while the combination of all three tasks gave the best 

results (80% accuracy). 

The gait parameters identified as the most important in this study emphasize gait variability and left/right 

asymmetry, particularly in the mental task, reflecting difficulties in attention resource management in 

early PD. The variable ranking and task importance may change over the course of the disease, which 

could be tested through comparison with a later-stage group of patients that would be recruited and 

recorded in the same protocol. There are indications in literature that dual task walking may provide 

clues for differential diagnostics too. A study used gait analysis with a cognitive task for discerning PD 

from PSP patients and found that PSP gait was poorer than PD already in early stages, showing a greater 

reduction in gait speed, and increased cadence and length of cycle in comparison with PD [210].  

These results support Hypothesis 4, showing that AI can be used to programmatically select parameters 

informative for PD diagnostics, and Hypothesis 2, demonstrating that AI can offer help in discerning 

patients with PD from neurologically healthy individuals. This group of tests did not involve patients 

with atypical parkinsonisms, so the hypotheses that pertain to differentiation of PD from atypical 

parkinsonisms were not tested using gait kinematics, but only through finger motion. 

Future work should include recruiting patients with atypical parkinsonisms and using the described 

analysis of gait to test Hypothesis 1 and Hypothesis 4, i.e. whether statistical analyses and artificial 

intelligence can help guide differential diagnostics between PD and atypical parkinsonisms on group and 

patient level. 
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6. CONCLUSION 

Clinical diagnosis of Parkinson’s disease and atypical parkinsonisms remains a challenging and time-

consuming task. Recent advances in neuroimaging have made this modality a powerful ally in clinical 

practice, however the price, required time, limited availability in hospitals and the use of radioactive 

agents in some cases do not make this a ubiquitous solution, and quicker and cheaper options are desired. 

Kinematic analyses provide a plausible alternative, particularly when combined with the perks brought 

in by algorithms of artificial intelligence and machine learning. We hypothesize that this synergy 

between motion sensors and artificial intelligence can positively contribute to improving the speed and 

accuracy of obtaining a correct diagnosis, which would in turn allow better treatment adjustment and 

facilitate participant selection in clinical trials, which would particularly be of interest in early stages of 

the disease.  

As its main focus, this study sought to utilize artificial intelligence combined with kinematic finger 

tapping data obtained by a low-weight, low-cost inertial sensor setup. Repetitive finger tapping is a 

simple task, borrowed from the UPDRS battery of tests, and shown to correlate better with the overall 

UPDRS score than other forms of repetitive motions. 

Three groups of patients have been recruited, namely individuals suffering from PD, PSP, and MSA, as 

well as a group of controls without neurological disorders. We tested whether certain parameters can be 

determined through such a system that would point to group level differences in finger tapping between 

the examined groups (Hypothesis 1), whether using the finger tapping signals AI can help detect PD and 

differentiate it from healthy controls (Hypothesis 2), if AI can help differentiate PD not only from 

controls, but also from atypical parkinsonisms (Hypothesis 3) and whether particular features can be 

extracted programmatically that would offer the most information useful for PD diagnostics (Hypothesis 

4). 

Statistical analysis of finger tapping parameters showed certain differences in trends between the tested 

groups, thus confirming Hypothesis 1 of this thesis. The most notable finding was the lack of progressive 

temporal reduction in tapping amplitude for the majority of PSP patients and HC, which was not the case 

for PD and MSA groups.  

When time-frequency analysis was applied as a preprocessing step to the gyrposcope signals recorded 

from healthy individuals and PD patients, and used as input to a multi-layer perceptron neural network, 

the patient group was well discerned from the controls, with accuracy of 92%, showing that AI teamed 

with kinematic processing can indeed help discern PD patients from healthy controls, as posed in 

Hypothesis 2.  

When other patient groups were included in the analysis, a kNN model was trained on programmatically 

selected features extracted from gyroscope finger tapping data and discerned patients with PD and 

atypical parkinsonisms and healthy controls in a multiclass setting with overall accuracy of 85.18% in a 

leave-one-out cross validation paradigm, confirming Hypothesis 3. Given that the input to the kNN 

model comprised a set of features selected algorithmically through a semi-greedy approach (two features 

extracted from the gyroscope mounted on the thumb, and four features from the gyroscope on the index 

finger) and giving some insight into the inner workings of the decision model, we also confirm 

Hypothesis 4.  

Deep learning approaches, although state-of-the-art in the field of artificial intelligence, delivered subpar 

performance in classifying the observed neurological disorders, most likely due to insufficient amounts 

of data, even when supplemented with synthetically generated samples, and could not be used to support 

Hypothesis 3.  
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The described methodology using gyroscope-based kinematic analysis could be easily applied in 

laboratories world-wide for standardization of data collection protocols, opening the door to creating a 

large multi-center finger tapping kinematics database, which could be used to further refine the predictive 

power of artificial intelligence algorithms, and gaining new insights into the nature of motion 

disturbances, thus providing medical doctors with a quick clinical aid in differential diagnostics of the 

selected neurodegenerative disorders. The best use of the system would be to recruit as many early-stage 

participants as possible, as this is the time when clinical diagnosis is the most elusive in a more complex, 

longitudinal study, where de novo patients would be tested and recorded using the proposed system but 

would then go on to be followed for a number of years to make sure the correct diagnosis is reached with 

high certainty, damping the effect of possible noise in the labels (non-autopsy-confirmed diagnoses). 

Future work should also include turning the presented analyses into a user-friendly application that could 

be adopted in the clinical settings, through working closely with experts of clinical neurology.   

As a support test for the posed hypotheses, this work also tackled PD diagnostics through the use of 

artificial intelligence in kinematic analysis of gait, using a sensorized electronic walkway, which 

provides a plethora of spatio-temporal features of gait, however without clear standardization on feature 

selection for detection of PD pathology. De novo PD patients and a healthy control group were recruited 

for this study and tested in a series of dual-task tests, where the interference task was of motor or mental 

type. Analyses relying on machine learning have been done on this set of gait data to test whether this 

modality can be used to aid in discerning PD patients from healthy controls (Hypothesis 2) and if a set 

of relevant parameters can be obtained programmatically that would be the most informative in aiding 

PD diagnostics (Hypothesis 4). This group of tests did not involve patients with atypical parkinsonisms, 

so the hypotheses that pertain to differentiation of PD from atypical parkinsonisms were not tested using 

gait kinematics, but only through finger motion. 

With the help of clustering performed on GAITRite-provided features with inter-correlation as similarity 

metrics, and random forest feature importance ranking for further dimensionality reduction, we were able 

to programmatically select a subset of parameters that best help in PD diagnostics, and thus confirm 

Hypothesis 4, in the scope of differentiating PD from healthy controls. This subset of features included 

stride length and stride length CV, stride time and stride time CV, swing time and swing time CV, step 

time asymmetry, and heel-to-heel base support CV. The feature ranking algorithm showed the single 

most important variable for detecting de novo PD from gait was stride length variation during the mental 

task, emphasizing gait variability, particularly in the mental task, suggesting impairment of gait 

automation as an early sign of PD. 

When the selected parameters were used as input to an SVM classifier, the achieved accuracy was 85%, 

confirming Hypothesis 2, that is, showing that AI and kinematic gait analysis can be used to help discern 

de novo PD patients from healthy controls on an individual level. High predictive power of the 

performance on gait in dual tasks was seen in the classifier results, where the mental task alone provided 

the highest results of all three (82% accuracy), followed closely by the motor task (81%) and the lowest 

scores were obtained for the base task (76%), although the combination of all three tasks outperformed 

each task taken individually (85%). 

Future work should include recruiting patients with atypical parkinsonisms and using the described 

analysis of gait to test Hypothesis 1 and Hypothesis 4, i.e. whether statistical analyses of gait and artificial 

intelligence can help guide differential diagnostics between PD and atypical parkinsonisms on group and 

patient level. 

This work shows the ability of artificial intelligence algorithms combined with motion sensors to aid in 

differential diagnostics of Parkinson’s disease when compared to healthy individuals, as well as with 
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selected atypical parkinsonisms, contributing to the diagnostic arsenal used in clinical practice. Apart 

from giving blind diagnostic suggestions, artificial intelligence can be used to select a subset of features 

that bear the most predictive power in discerning PD from other pathologies, potentially adding weight 

to previous findings, or even pointing to new parameters of interest that have so far eluded the scientific 

efforts. 
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7.  APPENDIX 

 

7.1. Algorithm 1: Semi-greedy feature selection algorithm 
 

Selected_set = {} 

best_performance = 0 

while running time < Y do 

 //expansion phase 

Current_set = Selected_set 

 for i = 1: N do 

  //Change M features in Selected_set 

  for j = 1: M do  

   Randomly pick action from set {add, remove, swap} 

   if 'add' do 

Randomly select without replacement a feature from Remaining_features 

and add to Current_set 

   else if 'remove' do 

    randomly remove a feature from Current_set 

   else //'substitute'  

Randomly replace a feature from Current_set with a feature from 

Remaining_features     

   end 

  end 

  test and save performance of Current_set 

 end 

 Expanded_set = union(K best performing sets) 

  

 //reduction phase 

 Reduced_set = {}  

 for i = 1: Nmax do 

Feature_set_list = select combinations of 
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exactly i features from Expanded_set 

  for Feature_set in Feature_set_list do 

   test performance of Feature_set 

   if performance > best_performance do 

    Reduced_set = Feature_set 

    best_performance = performance 

   end 

  end  

 end  

 Selected_set = Reduced_set 

end 

 

  



85 
 

7.2. Code structure: multiclass classification 
 

The code for feature extraction and classification of tapping data based on traditional machine learning 

approaches was written in Python 3.7.7. in an object-oriented paradigm, and relies on several major parts: 

• Signal 

• Artefact 

• ArtefactExtractor 

• ArtefactNormalizer 

• ArtefactSelectorGenerator 

• ArtefactFilter 

• ArtefactTestGenerator 

• ArtefactEvaluatorGenerator 

• ArtefactEvaluator 

• Parameters 

• Utility functions 

 

Signal is the class containing a recording and its metadata, including clinical diagnosis, date and time of 

recording, participant code, time of the first and last tap in the signal and other. Its methods allow for 

signal plotting, transformation into spherical coordinates, copying, and outputting a summary info. 

All signals are loaded into their respective Signal objects. Then the ArtefactExtractor module is called to 

extract features from each measurement. It first applies a transformation function to the signal, and then 

extracts the features, as described in chapter 3.nestonesto.  

ArtifactNormalizer is called to normalize each feature to the range [0,1]. 

Artefacts are optionally filtered by ArtefactFilter module, based on a manually chosen subset of features, 

and ArtefactSelectorGenerator handles the feature selection process.  

ArtefactTestGenerator yields folds for leave-one-out cross validation. 

ArtefactEvaluatorGenerator chooses the machine learning algorithm (or a number of algorithms) to fit 

and test, and provides a means to combine evaluations from all crossvalidation folds. 

ArtefactEvaluator is called to evaluate the extracted features on all folds and give final results. 
 

 

  



86 
 

List of figures 

Figure 1 The basal ganglia (Adapted from [13]) ..................................................................................................... 3 

Figure 2 Electromechanical spring/mass system in MEMS sensors (Image adapted from [103]) ........................ 13 

Figure 3 A MEMS gyroscope schematic (Image adapted from [103]) ................................................................. 14 

Figure 4 Performance measures of different ML algorithms applied on kinematics of upper extremities ........... 16 

Figure 5 Performance measures of different ML algorithms applied on kinematics of lower extremities ........... 17 

Figure 6 Performance measures of different ML algorithms applied on kinematics of combined upper and lower 

extremities ............................................................................................................................................................. 19 

Figure 7 Wearable system used to record kinematic data (Image adapted from [110]) ........................................ 26 

Figure 8 Mean participant age per group............................................................................................................... 28 

Figure 9 Gender distribution by group .................................................................................................................. 28 

Figure 10 Mean patient disease duration at testing time per group ....................................................................... 29 

Figure 11 Mean patient Hoehn & Yahr score per group ....................................................................................... 29 

Figure 12 Mean patient UPDRS total score per group .......................................................................................... 30 

Figure 13 Mean UPDRS III score per patient group ............................................................................................. 30 

Figure 14 Progression of kinematic parameters over time during a period of 15s, shown for one representative 

patient per group. Slope was denoted as S, and the linear regression line drawn through the data points 

(published in [142]) ............................................................................................................................................... 34 

Figure 15 Functional model of the presented algorithm, resulting in classification between patients with 

Parkinson’s disease (PD) and healthy controls (HC) ............................................................................................ 36 

Figure 16 Mallat’s decomposition tree showing how a signal gets passed through a high pass filter H, and low 

pass filter L, and thus decomposed into a coarser resolution approximation A and signal detail D. This is 

repeated in a cascade up to a desired level of d (Adapted from [157]) ................................................................. 37 

Figure 17 Daubechies 4 wavelet function (Adapted from [158]) .......................................................................... 38 

Figure 18 Daubechies 4 wavelet scaling function (Adapted from [158]) ............................................................. 38 

Figure 19 Raw gyroscope signal recorded from the index finger of a healthy participant: full recorded sequence 

(black solid line) and one isolated tap (red dashed line). ...................................................................................... 41 

Figure 20 DWT decomposition of the gyroscope signal shown in previous figure (Published in [161]) ............. 41 

Figure 21 Graphical representation of whole signal features shown alternately for healthy subjects and PD 

patients (Wavelet energy, RMS, STD) for all subjects in the respective groups (Published in [161]). ................ 43 

Figure  22 Difference between RMS values on the 5th scale of discrete wavelet decomposition calculated for the 

first and the last temporal window shown for all subjects (Published in [161]) ................................................... 44 

Figure 23 Example gyroscope signals recorded for each participant group. Angular velocities from the thumb 

gyroscope are presented in the left-hand column, whereas the index gyroscope signals are shown in the right-

hand column. ......................................................................................................................................................... 47 

Figure 24 Convolutional neural network containing six layers of one-dimensional convolutions, with the number 

of filters increasing with depth from 32 to 128. Input data contained 6 channels of 8s long raw gyroscope data 

sampled at 200Hz. ................................................................................................................................................. 48 

Figure 25 Autoencoder was used for pre-training the classification model. High-level representation ................ 49 

Figure 26 High level diagram of the GAN used for data augmentation ................................................................ 51 

Figure 27 Discriminator (disc) and generator (gen) loss over epochs. .................................................................. 52 

Figure 28 Example of mode collapse during GAN training, random initialization 1 ........................................... 52 

Figure 29 Example of mode collapse during GAN training, random initialization 2 ........................................... 53 

Figure 30 Random example of a single tap extracted from a recorded gyroscope sequence ................................ 55 



87 
 

Figure 31 Distribution of selected features over participant groups. The lines above the boxplots denote 

significant differences between corresponding groups ......................................................................................... 61 

Figure 32 Confusion matrix when observed for each single recording separately. The values on the main 

diagonal correspond to recall for the associated class. .......................................................................................... 62 

Figure 33 Confusion matrix expressed in absolute numbers of participants, when a single diagnosis was 

considered per patient ............................................................................................................................................ 63 

Figure 34 High level flowchart of the performed analyses (Adapted from [112]) ................................................ 71 

Figure 35 Correlation matrix shows high correlation between some groups of variables .................................... 72 

Figure 36 High negative correlation between cadence and double support time .................................................. 73 

Figure 37 Permutation-based variable importance normalized to 1. The 10 highest ranked parameters are shown 

(Printed in [112]). .................................................................................................................................................. 75 

Figure 38 Selected gait parameters used to build classification models, shown as boxplots for healthy controls 

and PD patients, in three tested gait scenarios: base, motor and mental tasks (Adapted from [112]) ................... 76 

Figure 39 Boxplots for double support time and its coefficient of variation (CV). P stands for P-value obtained 

using unpaired t-test (Adapted from [112]). .......................................................................................................... 77 

 

  



88 
 

List of tables 

Table 1 A selection of papers providing promising results for different applications based on movements of 

different body parts, using different instrumentation, protocols, and algorithms. ................................................ 20 

Table 2 Demographic and clinical features of patients with MSA (n = 13), PD (n=14), PSP (n = 16) and HC (n = 

11) .......................................................................................................................................................................... 27 

Table 3 Analysis of kinematic parameters during the finger tapping task in HC and patients with MSA, PD and 

PSP ........................................................................................................................................................................ 33 

Table 4 Dwt scales and their corresponding frequency bands .............................................................................. 38 

Table 5 Classification results including accuracy, sensitivity and specificity given as mean±std calculated over 

cross validation trials ............................................................................................................................................. 44 

Table 6 Preliminary features extracted from tapping signals ................................................................................ 55 

Table 7 Selected feature set ................................................................................................................................... 59 

Table 8 Values of features per group given as mean (interquartile range) ............................................................ 60 

Table 9 Precision and recall obtained on the test set for each class based on each single recording .................... 62 

Table 10 Precision and recall obtained on the test set for each class based on a single diagnosis per patient ...... 63 

Table 11 Demographic and clinical data for the tested participants ...................................................................... 68 

Table 12 List of initial spatio-temporal gait parameters obtained from the GAITRite system ............................. 69 

Table 13 Parameters kept for further processing after clustering .......................................................................... 73 

Table 14 Selected parameters grouped by task and test group, given as median (interquartile range) ................. 74 

Table 15 Classification performance obtained for the standard and the suggested set of parameters in base, 

motor, mental and combined tasks ........................................................................................................................ 77 

 

  



89 
 

Used abbreviations 

ACE-R - Addenbrooke's cognitive examination revised 

Adam - Adaptive moment estimation optimizer 

ANN - Artificial neural network 

ANOVA - Analysis of variance 

AS - Apathy scale 

AU - Action unit 

BDI - Beck Depression Inventory 

BERT - Bidirectional Encoder Representations from Transformers 

CNN - Convolutional neural network 

CT - Computed tomography 

CV - Coefficient of variation 

DBS - Deep brain stimulation 

DNN - Dynamic neural network 

DT - Decision tree 

DTI - Diffusion tensor imaging 

DWT - Discrete wavelet transformation 

EEG - Electro-encephalogram 

EML - Extreme machine learning 

ENS - Ensemble of classifiers 

EVOL - Evolutionary algorithm 

fMRI - functional magnetic resonance imaging 

FoG - Freezing of gait 

GABA - Gamma-aminobyturic acid 

GAN - Generative adversarial network 

GUI - Graphical user interface 

H&Y - Hoehn and Yahr scale 

HAM-A - Hamilton anxiety rating scale 

HAM-D - Hamilton depression rating scale 

HC - Healthy controls 

H-H - Heel-to-heel  



90 
 

HMM - Hidden Markov model 

IMU - inertial motion unit 

kNN - k nearest neighbours 

LDA - Linear Discriminant analysis 

LDM - large margin distibution machine 

LR - Logistic regression 

MDS - Movement disorder society 

MEMS - Micro electromechanical system 

ML - Machine learning 

MRI - Magnetic resonance imaging 

MSA - Multiple System Atrophy 

MSA-C -  Multiple System Atrophy with predominant cerebellar ataxia 

MSA-P - Multiplse System Atrophy with predominant parkinsonism 

NB - Naive Bayes 

NN - Neural network 

NPV - negative predictive value 

PC - Personal computer 

PCA - Principal component analysis 

PD - Parkinson's Disease 

PDSBB - Parkinson's Disease Society Brain Bank 

PNN - Probabilistic neural network 

PPMI - parkinson's progression markers initiative 

PPV - Positive predictive value 

PSP - Progressive Supranuclear Palsy 

RBM - Restricted Boltzman machine 

ReLU - rectified linear unit 

RF - Random forest 

RMS - Root mean square 

ROI - Region of interest 

Se - Sensitivity 

SNc - Substantia nigra pars compacta 

SNr - Substantia nigra pars reticulata 

Sp - Specificity 

SPECT - Single photon emission tomography 

STD - Standard deviation 

STN - Subthalamic nucleus 

SVM - Support vector machine 

SVM RBF - Support vector machine with Radial basis kernel 

SWI - Susceptibility weighted imaging 

TCS - transcranial sonography 

TREE - Tree based algorithms 

UPDR - Unified Parkinson's Disease Rating Scale 

WT - Wavelet transformation 



91 
 

References      

[1] J. Jankovic, “Parkinson’s disease: clinical features and diagnosis,” J Neurol Neurosurg Psychiatry, vol. 79, 

no. 4, pp. 368–376, 2008, doi: 10.1136/JNNP.2007.131045. 

[2] ICD-11, “Parkinsonism,” 2022. https://icd.who.int/browse11/l-

m/en#/http%3a%2f%2fid.who.int%2ficd%2fentity%2f2024168133 (accessed Feb. 17, 2022). 

[3] C. G. Goetz, “The History of Parkinson’s Disease: Early Clinical Descriptions and Neurological Therapies,” 

Cold Spring Harb Perspect Med, vol. 1, no. 1, Sep. 2011, doi: 10.1101/CSHPERSPECT.A008862. 

[4] T. Pringsheim, N. Jette, A. Frolkis, and T. D. L. Steeves, “17. The prevalence of Parkinson’s disease: A 

systematic review and meta-analysis,” Movement Disorders, 2014, doi: 10.1002/mds.25945. 

[5] A. Rossi, K. Berger, H. Chen, D. Leslie, R. B. Mailman, and X. Huang, “Projection of the prevalence of 

Parkinson’s disease in the coming decades: Revisited,” Movement Disorders, 2018, doi: 

10.1002/mds.27063. 

[6] J. Ebina, S. Ebihara, and O. Kano, “Similarities, differences and overlaps between frailty and Parkinson’s 

disease,” Geriatr Gerontol Int, Mar. 2022, doi: 10.1111/GGI.14362. 

[7] E. Tolosa, A. Garrido, S. W. Scholz, and W. Poewe, “Challenges in the diagnosis of Parkinson’s disease,” 

Lancet Neurol, vol. 20, no. 5, pp. 385–397, May 2021, doi: 10.1016/S1474-4422(21)00030-2. 

[8] C. H. Adler et al., “Low clinical diagnostic accuracy of early vs advanced Parkinson disease: 

Clinicopathologic study,” Neurology, 2014, doi: 10.1212/WNL.0000000000000641. 

[9] G. Rizzo, M. Copetti, S. Arcuti, D. Martino, A. Fontana, and G. Logroscino, “Accuracy of clinical diagnosis 

of Parkinson disease,” Neurology, vol. 86, no. 6, pp. 566–576, Feb. 2016, doi: 

10.1212/WNL.0000000000002350. 

[10] S. Grillner, B. Robertson, and M. Stephenson-Jones, “The evolutionary origin of the vertebrate basal 

ganglia and its role in action selection,” J Physiol, vol. 591, no. 22, pp. 5425–5431, Nov. 2013, doi: 

10.1113/JPHYSIOL.2012.246660. 

[11] T. Wichmann, H. Bergman, and M. R. DeLong, “Basal ganglia, movement disorders and deep brain 

stimulation: advances made through non-human primate research,” Journal of Neural Transmission 

2017 125:3, vol. 125, no. 3, pp. 419–430, Jun. 2017, doi: 10.1007/S00702-017-1736-5. 

[12] K. Simonyan, “Recent advances in understanding the role of the basal ganglia,” F1000Res, vol. 8, 2019, 

doi: 10.12688/F1000RESEARCH.16524.1. 

[13] A. M. Graybiel, “The basal ganglia,” Current Biology, vol. 10, no. 14, pp. R509–R511, Jul. 2000, doi: 

10.1016/S0960-9822(00)00593-5. 

[14] E. M. Adam, E. N. Brown, N. Kopell, and M. M. McCarthy, “Deep brain stimulation in the subthalamic 

nucleus for Parkinson’s disease can restore dynamics of striatal networks,” Proc Natl Acad Sci U S A, vol. 

119, no. 19, p. e2120808119, May 2022, doi: 

10.1073/PNAS.2120808119/SUPPL_FILE/PNAS.2120808119.SAPP.PDF. 

[15] A. Bartels and S. Zeki, “The neural basis of romantic love,” NeuroReport, vol. 11, no. 17, pp. 3829–3834, 

Nov. 2000. 



92 
 

[16] M. D. Sacchet, M. C. Camacho, E. E. Livermore, E. A. C. Thomas, and I. H. Gotlib, “Accelerated aging of 

the putamen in patients with major depressive disorder,” Journal of Psychiatry and Neuroscience, vol. 

42, no. 3, pp. 164–171, May 2017, doi: 10.1503/JPN.160010. 

[17] D. W. Dickson et al., “Neuropathological assessment of Parkinson’s disease: refining the diagnostic 

criteria,” Lancet Neurol, vol. 8, no. 12, pp. 1150–1157, Dec. 2009, doi: 10.1016/S1474-4422(09)70238-8. 

[18] H. Braak, R. A. I. de Vos, J. Bohl, and K. del Tredici, “Gastric α-synuclein immunoreactive inclusions in 

Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology,” 

Neurosci Lett, vol. 396, no. 1, pp. 67–72, Mar. 2006, doi: 10.1016/J.NEULET.2005.11.012. 

[19] L. Stefanis, “α-Synuclein in Parkinson’s Disease,” Cold Spring Harb Perspect Med, vol. 2, no. 2, 2012, doi: 

10.1101/CSHPERSPECT.A009399. 

[20] M. E. Morris, R. Iansek, T. A. Matyas, and J. J. Summers, “The pathogenesis of gait hypokinesia in 

Parkinson’s disease,” Brain, vol. 117 ( Pt 5), no. 5, pp. 1169–1181, Oct. 1994, doi: 

10.1093/BRAIN/117.5.1169. 

[21] G. Yogev-Seligmann, J. M. Hausdorff, and N. Giladi, “The role of executive function and attention in 

gait,” Mov Disord, vol. 23, no. 3, pp. 329–342, Feb. 2008, doi: 10.1002/MDS.21720. 

[22] B. R. Bloem, Y. A. M. Grimbergen, J. G. van Dijk, and M. Munneke, “The ‘posture second’ strategy: A 

review of wrong priorities in Parkinson’s disease,” J Neurol Sci, vol. 248, no. 1–2, pp. 196–204, Oct. 

2006, doi: 10.1016/j.jns.2006.05.010. 

[23] T. Wu and M. Hallett, “A functional MRI study of automatic movements in patients with Parkinson’s 

disease,” Brain, vol. 128, no. 10, pp. 2250–2259, Oct. 2005, doi: 10.1093/BRAIN/AWH569. 

[24] R. Baltadjieva, N. Giladi, L. Gruendlinger, C. Peretz, and J. M. Hausdorff, “Marked alterations in the gait 

timing and rhythmicity of patients with de novo Parkinson’s disease,” European Journal of Neuroscience, 

vol. 24, no. 6, pp. 1815–1820, Sep. 2006, doi: 10.1111/J.1460-9568.2006.05033.X. 

[25] C. Gao, J. Liu, Y. Tan, and S. Chen, “Freezing of gait in Parkinson’s disease: pathophysiology, risk factors 

and treatments,” Translational Neurodegeneration 2020 9:1, vol. 9, no. 1, pp. 1–22, Apr. 2020, doi: 

10.1186/S40035-020-00191-5. 

[26] T. Gazibara et al., “Fall frequency and risk factors in patients with Parkinson’s disease in Belgrade, 

Serbia: A cross-sectional study,” Geriatr Gerontol Int, 2015, doi: 10.1111/ggi.12300. 

[27] P. Wu et al., “Objectifying facial expressivity assessment of parkinson’s patients: Preliminary study,” 

Comput Math Methods Med, vol. 2014, 2014, doi: 10.1155/2014/427826. 

[28] M. T. M. Prenger and P. A. Macdonald, “Problems with Facial Mimicry Might Contribute to Emotion 

Recognition Impairment in Parkinson’s Disease,” Parkinsons Dis, vol. 2018, 2018, doi: 

10.1155/2018/5741941. 

[29] S. Argaud, M. Vérin, P. Sauleau, and D. Grandjean, “Facial emotion recognition in Parkinson’s disease: A 

review and new hypotheses,” Movement Disorders, vol. 33, no. 4, pp. 554–567, Apr. 2018, doi: 

10.1002/MDS.27305. 

[30] P. Jacob, “A Philosopher’s Reflections on the Discovery of Mirror Neurons,” Top Cogn Sci, vol. 1, no. 3, 

pp. 570–595, Jul. 2009, doi: 10.1111/J.1756-8765.2009.01040.X. 



93 
 

[31] P. Molenberghs, R. Cunnington, and J. B. Mattingley, “Brain regions with mirror properties: A meta-

analysis of 125 human fMRI studies,” Neurosci Biobehav Rev, vol. 36, no. 1, pp. 341–349, Jan. 2012, doi: 

10.1016/J.NEUBIOREV.2011.07.004. 

[32] M. Thomas, A. Lenka, and P. Kumar Pal, “Handwriting Analysis in Parkinson’s Disease: Current Status 

and Future Directions,” Mov Disord Clin Pract, vol. 4, no. 6, pp. 806–818, Nov. 2017, doi: 

10.1002/MDC3.12552. 

[33] C. G. Goetz et al., “Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease 

Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results,” Movement Disorders, vol. 

23, no. 15, pp. 2129–2170, Nov. 2008, doi: 10.1002/MDS.22340. 

[34] D. W. Dickson, “Parkinson’s Disease and Parkinsonism: Neuropathology,” Cold Spring Harb Perspect 

Med, vol. 2, no. 8, p. a009258, Aug. 2012, doi: 10.1101/CSHPERSPECT.A009258. 

[35] J. C. Steele, J. C. Richardson, and J. Olszewski, “Progressive Supranuclear Palsy: A Heterogeneous 

Degeneration Involving the Brain Stem, Basal Ganglia and Cerebellum With Vertical Gaze and 

Pseudobulbar Palsy, Nuchal Dystonia and Dementia,” Arch Neurol, vol. 10, no. 4, pp. 333–359, Apr. 

1964, doi: 10.1001/ARCHNEUR.1964.00460160003001. 

[36] L. I. Golbe, “Progressive supranuclear palsy,” Semin Neurol, vol. 34, no. 2, pp. 151–159, Jun. 2014, doi: 

10.1055/S-0034-1381736/ID/JR00925-38. 

[37] H. C. Shi et al., “Gray matter atrophy in progressive supranuclear palsy: meta-analysis of voxel-based 

morphometry studies,” Neurological Sciences, vol. 34, no. 7, pp. 1049–1055, 2013. 

[38] G. U. Höglinger et al., “Clinical diagnosis of progressive supranuclear palsy: The movement disorder 

society criteria,” Movement Disorders, 2017, doi: 10.1002/mds.26987. 

[39] A. E. Lang, “Treatment of progressive supranuclear palsy and corticobasal degeneration,” Mov Disord, 

vol. 20, no. S12, pp. S83--S91, 2005. 

[40] R. Constantinescu, I. Richard, and R. Kurlan, “Levodopa responsiveness in disorders with parkinsonism: 

A review of the literature,” Movement Disorders. 2007. doi: 10.1002/mds.21578. 

[41] S. Koga et al., “When DLB, PD, and PSP masquerade as MSA: an autopsy study of 134 patients.,” 

Neurology, 2015, doi: 10.1212/WNL.0000000000001807. 

[42] W. G. Meissner et al., “Multiple System Atrophy: Recent Developments and Future Perspectives,” 

Movement Disorders, vol. 34, no. 11, pp. 1629–1642, Nov. 2019, doi: 10.1002/MDS.27894. 

[43] A. J. Hughes, S. E. Daniel, L. Kilford, and A. J. Lees, “Accuracy of clinical diagnosis of idiopathic 

Parkinson’s disease: a clinico-pathological study of 100 cases,” J Neurol Neurosurg Psychiatry, vol. 55, 

no. 3, pp. 181–184, 1992, doi: 10.1136/JNNP.55.3.181. 

[44] C. G. Goetz et al., “Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease 

Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results,” Movement Disorders, vol. 

23, no. 15, 2008, doi: 10.1002/mds.22340. 

[45] “MDS-UPDRS.” https://www.movementdisorders.org/MDS/MDS-Rating-Scales/MDS-Unified-

Parkinsons-Disease-Rating-Scale-MDS-UPDRS.htm (accessed Jul. 15, 2022). 



94 
 

[46] C. C. Lainscsek et al., “Finger tapping movements of Parkinson’s disease patients automatically rated 

using nonlinear delay differential equations,” Chaos: An Interdisciplinary Journal of Nonlinear Science, 

vol. 22, no. 1, p. 013119, Feb. 2012, doi: 10.1063/1.3683444. 

[47] R. Bhidayasiri and D. Tarsy, “Parkinson’s Disease: Hoehn and Yahr Scale,” Current Clinical Neurology, vol. 

36, pp. 4–5, 2012, doi: 10.1007/978-1-60327-426-5_2/COVER/. 

[48] C. G. Goetz et al., “Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: 

status and recommendations,” Mov Disord, vol. 19, no. 9, pp. 1020–1028, Sep. 2004, doi: 

10.1002/MDS.20213. 

[49] C. P. Weingarten, M. H. Sundman, P. Hickey, and N. kuei Chen, “Neuroimaging of Parkinson’s disease: 

Expanding views,” Neuroscience and Biobehavioral Reviews. 2015. doi: 

10.1016/j.neubiorev.2015.09.007. 

[50] C. Salvatore et al., “Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease 

and Progressive Supranuclear Palsy,” J Neurosci Methods, 2014, doi: 10.1016/j.jneumeth.2013.11.016. 

[51] N. K. Focke et al., “Individual voxel-based subtype prediction can differentiate progressive supranuclear 

palsy from idiopathic Parkinson syndrome and healthy controls,” Hum Brain Mapp, 2011, doi: 

10.1002/hbm.21161. 

[52] S. Duchesne, Y. Rolland, and M. Vérin, “Automated Computer Differential Classification in Parkinsonian 

Syndromes via Pattern Analysis on MRI,” Acad Radiol, 2009, doi: 10.1016/j.acra.2008.05.024. 

[53] C. Scherfler et al., “Diagnostic potential of automated subcortical volume segmentation in atypical 

parkinsonism,” Neurology, 2016, doi: 10.1212/WNL.0000000000002518. 

[54] A. F. Marquand et al., “Automated, High Accuracy Classification of Parkinsonian Disorders: A Pattern 

Recognition Approach,” PLoS One, 2013, doi: 10.1371/journal.pone.0069237. 

[55] S. Soltaninejad, I. Cheng, and A. Basu, “Towards the identification of Parkinson’s Disease using only T1 

MR Images,” arXiv preprint arXiv:1806.07489, 2018. 

[56] B. Rana et al., “Regions-of-interest based automated diagnosis of Parkinson’s disease using T1-weighted 

MRI,” Expert Syst Appl, 2015, doi: 10.1016/j.eswa.2015.01.062. 

[57] B. Peng et al., “A multilevel-ROI-features-based machine learning method for detection of 

morphometric biomarkers in Parkinson’s disease,” Neurosci Lett, 2017, doi: 

10.1016/j.neulet.2017.04.034. 

[58] G. Singh, M. Vadera, L. Samavedham, and E. C. H. Lim, “Machine Learning-Based Framework for Multi-

Class Diagnosis of Neurodegenerative Diseases: A Study on Parkinson’s Disease,” IFAC-PapersOnLine, 

2016, doi: 10.1016/j.ifacol.2016.07.331. 

[59] S. Haller, S. Badoud, D. Nguyen, V. Garibotto, K. O. Lovblad, and P. R. Burkhard, “Individual detection of 

patients with Parkinson Disease using support vector machine analysis of diffusion tensor imaging data: 

Initial results,” American Journal of Neuroradiology, 2012, doi: 10.3174/ajnr.A3126. 

[60] P. J. Planetta et al., “Free-water imaging in Parkinson’s disease and atypical parkinsonism,” Brain, 2016, 

doi: 10.1093/brain/awv361. 



95 
 

[61] S. Haller et al., “Differentiation between Parkinson disease and other forms of Parkinsonism using 

support vector machine analysis of susceptibility-weighted imaging (SWI): Initial results,” Eur Radiol, 

2013, doi: 10.1007/s00330-012-2579-y. 

[62] A. Cherubini et al., “Magnetic resonance support vector machine discriminates between Parkinson 

disease and progressive supranuclear palsy,” Movement Disorders, vol. 29, no. 2, pp. 266–269, 2014. 

[63] P. Péran et al., “MRI supervised and unsupervised classification of Parkinson’s disease and multiple 

system atrophy,” Movement Disorders, 2018, doi: 10.1002/mds.27307. 

[64] H. J. Huppertz et al., “Differentiation of neurodegenerative parkinsonian syndromes by volumetric 

magnetic resonance imaging analysis and support vector machine classification,” Movement Disorders, 

2016, doi: 10.1002/mds.26715. 

[65] R. Morisi et al., “Multi-class parkinsonian disorders classification with quantitative MR markers and 

graph-based features using support vector machines,” Parkinsonism Relat Disord, 2018, doi: 

10.1016/j.parkreldis.2017.11.343. 

[66] H. Choi, S. Ha, H. J. Im, S. H. Paek, and D. S. Lee, “Refining diagnosis of Parkinson’s disease with deep 

learning-based interpretation of dopamine transporter imaging,” Neuroimage Clin, 2017, doi: 

10.1016/j.nicl.2017.09.010. 

[67] E. Adeli, G. Wu, B. Saghafi, L. An, F. Shi, and D. Shen, “Kernel-based Joint Feature Selection and Max-

Margin Classification for Early Diagnosis of Parkinson’s Disease,” Sci Rep, 2017, doi: 10.1038/srep41069. 

[68] M. Rumman, A. N. Tasneem, S. Farzana, and others, “Early detection of Parkinson’s disease using image 

processing and artificial neural network,” BRAC University, 2018. 

[69] D. H. Kim, H. Wit, and M. Thurston, “Artificial intelligence in the diagnosis of Parkinson’s disease from 

ioflupane-123 single-photon emission computed tomography dopamine transporter scans using 

transfer learning,” Nucl Med Commun, vol. 39, no. 10, pp. 887–893, 2018. 

[70] N. Amoroso, M. la Rocca, A. Monaco, R. Bellotti, and S. Tangaro, “Complex networks reveal early MRI 

markers of Parkinson’s disease,” Med Image Anal, 2018, doi: 10.1016/j.media.2018.05.004. 

[71] S. Esmaeilzadeh, Y. Yang, and E. Adeli, “End-to-End Parkinson Disease Diagnosis using Brain MR-Images 

by 3D-CNN,” arXiv preprint arXiv:1806.05233, 2018. 

[72] B. Gong et al., “Neuroimaging-based diagnosis of Parkinson’s disease with deep neural mapping large 

margin distribution machine,” Neurocomputing, 2018. doi: 10.1016/j.neucom.2018.09.025. 

[73] T. Zhang and Z. H. Zhou, “Large margin distribution machine,” Proceedings of the ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining, pp. 313–322, 2014, doi: 

10.1145/2623330.2623710. 

[74] K. Marek et al., “The Parkinson Progression Marker Initiative (PPMI),” Prog Neurobiol, vol. 95, no. 4, pp. 

629–635, Dec. 2011, doi: 10.1016/J.PNEUROBIO.2011.09.005. 

[75] E. Rovini, C. Maremmani, and F. Cavallo, “How wearable sensors can support parkinson’s disease 

diagnosis and treatment: A systematic review,” Frontiers in Neuroscience. 2017. doi: 

10.3389/fnins.2017.00555. 



96 
 

[76] C. Ahlrichs and M. Lawo, “Parkinson’s Disease Motor Symptoms in Machine Learning: A Review,” Health 

Informatics - An International Journal, vol. 2, no. 4, pp. 1–18, Dec. 2013, doi: 10.5121/hiij.2013.2401. 

[77] L. Giancardo et al., “Computer keyboard interaction as an indicator of early Parkinson’s disease,” Sci 

Rep, 2016, doi: 10.1038/srep34468. 

[78] W. R. Adams, “High-accuracy detection of early Parkinson’s Disease using multiple characteristics of 

finger movement while typing,” PLoS One, 2017, doi: 10.1371/journal.pone.0188226. 

[79] T. Arroyo-Gallego et al., “Detecting Motor Impairment in Early Parkinson’s Disease via Natural Typing 

Interaction With Keyboards: Validation of the neuroQWERTY Approach in an Uncontrolled At-Home 

Setting,” J Med Internet Res, 2018, doi: 10.2196/jmir.9462. 

[80] M. D. Djurić-Jovičić et al., “Implementation of continuous wavelet transformation in repetitive finger 

tapping analysis for patients with PD,” in 2014 22nd Telecommunications Forum, TELFOR 2014 - 

Proceedings of Papers, 2014. doi: 10.1109/TELFOR.2014.7034466. 

[81] L. Fraiwan, R. Khnouf, and A. R. Mashagbeh, “Parkinsons disease hand tremor detection system for 

mobile application,” J Med Eng Technol, 2016, doi: 10.3109/03091902.2016.1148792. 

[82] D. Iakovakis, S. Hadjidimitriou, V. Charisis, S. Bostantzopoulou, Z. Katsarou, and L. J. Hadjileontiadis, 

“Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage Parkinson’s 

disease,” Sci Rep, 2018, doi: 10.1038/s41598-018-25999-0. 

[83] N. Kostikis, D. Hristu-Varsakelis, M. Arnaoutoglou, and C. Kotsavasiloglou, “A smartphone-based tool for 

assessing parkinsonian hand tremor,” IEEE J Biomed Health Inform, 2015, doi: 

10.1109/JBHI.2015.2471093. 

[84] M. A. Lones et al., “Evolving classifiers to recognize the movement characteristics of parkinson’s disease 

patients,” IEEE Transactions on Evolutionary Computation, 2014, doi: 10.1109/TEVC.2013.2281532. 

[85] T. Khan, D. Nyholm, J. Westin, and M. Dougherty, “A computer vision framework for finger-tapping 

evaluation in Parkinson’s disease,” Artif Intell Med, 2014, doi: 10.1016/j.artmed.2013.11.004. 

[86] C. G. Goetz et al., “Movement disorder society-sponsored revision of the unified Parkinson’s disease 

rating scale (MDS-UPDRS): Process, format, and clinimetric testing plan,” Movement Disorders, vol. 22, 

no. 1, pp. 41–47, Jan. 2007, doi: 10.1002/MDS.21198. 

[87] Y. Nancy Jane, H. Khanna Nehemiah, and K. Arputharaj, “A Q-backpropagated time delay neural 

network for diagnosing severity of gait disturbances in Parkinson’s disease,” J Biomed Inform, 2016, doi: 

10.1016/j.jbi.2016.01.014. 

[88] M. R. Daliri, “Chi-square distance kernel of the gaits for the diagnosis of Parkinson’s disease,” Biomed 

Signal Process Control, 2013, doi: 10.1016/j.bspc.2012.04.007. 

[89] W. Zeng, F. Liu, Q. Wang, Y. Wang, L. Ma, and Y. Zhang, “Parkinson’s disease classification using gait 

analysis via deterministic learning,” Neurosci Lett, 2016, doi: 10.1016/j.neulet.2016.09.043. 

[90] I. Arcolin, S. Corna, M. Giardini, A. Giordano, A. Nardone, and M. Godi, “Proposal of a new conceptual 

gait model for patients with Parkinson’s disease based on factor analysis,” Biomed Eng Online, vol. 18, 

no. 1, pp. 1–18, Jun. 2019, doi: 10.1186/S12938-019-0689-3/TABLES/3. 



97 
 

[91] C. Tucker et al., “A data mining methodology for predicting early stage Parkinson’s disease using non-

invasive, high-dimensional gait sensor data,” IIE Trans Healthc Syst Eng, 2015, doi: 

10.1080/19488300.2015.1095256. 

[92] D. J. Cook, M. Schmitter-Edgecombe, and P. Dawadi, “Analyzing activity behavior and movement in a 

naturalistic environment using smart home techniques,” IEEE J Biomed Health Inform, 2015, doi: 

10.1109/JBHI.2015.2461659. 

[93] A. Procházka, O. Vyšata, M. Vališ, O. u͖pa, M. Schätz, and V. Mařík, “Bayesian classification and analysis 

of gait disorders using image and depth sensors of Microsoft Kinect,” Digital Signal Processing: A Review 

Journal, 2015, doi: 10.1016/j.dsp.2015.05.011. 

[94] F. Wahid, R. K. Begg, C. J. Hass, S. Halgamuge, and D. C. Ackland, “Classification of Parkinson’s disease 

gait using spatial-temporal gait features,” IEEE J Biomed Health Inform, vol. 19, no. 6, pp. 1794–1802, 

Nov. 2015, doi: 10.1109/JBHI.2015.2450232. 

[95] S. Arora, V. Venkataraman, S. Donohue, K. M. Biglan, E. R. Dorsey, and M. A. Little, “High accuracy 

discrimination of Parkinson’s disease participants from healthy controls using smartphones,” in ICASSP, 

IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2014. doi: 

10.1109/ICASSP.2014.6854280. 

[96] Q. W. Oung, M. Hariharan, H. L. Lee, S. N. Basah, M. Sarillee, and C. H. Lee, “Wearable multimodal 

sensors for evaluation of patients with Parkinson disease,” in Proceedings - 5th IEEE International 

Conference on Control System, Computing and Engineering, ICCSCE 2015, 2016. doi: 

10.1109/ICCSCE.2015.7482196. 

[97] J. Barth et al., “Biometric and mobile gait analysis for early diagnosis and therapy monitoring in 

Parkinson’s disease,” in Proceedings of the Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society, EMBS, 2011. doi: 10.1109/IEMBS.2011.6090226. 

[98] J. Klucken et al., “Unbiased and Mobile Gait Analysis Detects Motor Impairment in Parkinson’s Disease,” 

PLoS One, 2013, doi: 10.1371/journal.pone.0056956. 

[99] Q. W. Oung, H. Muthusamy, S. N. Basah, H. Lee, and V. Vijean, “Empirical Wavelet Transform Based 

Features for Classification of Parkinson’s Disease Severity,” J Med Syst, vol. 42, no. 2, p. 29, 2018. 

[100] C. Caramia et al., “IMU-Based Classification of Parkinson’s Disease From Gait: A Sensitivity Analysis on 

Sensor Location and Feature Selection,” IEEE J Biomed Health Inform, vol. 22, no. 6, pp. 1765–1774, 

2018. 

[101] F. Cuzzolin et al., “Metric learning for Parkinsonian identification from IMU gait measurements,” Gait 

Posture, 2017, doi: 10.1016/j.gaitpost.2017.02.012. 

[102] VectorNav, “Inertial sensors,” Feb. 17, 2022. https://www.vectornav.com/resources/inertial-navigation-

primer/theory-of-operation/theory-inertial (accessed Feb. 17, 2022). 

[103] D. K. Shaeffer, “MEMS inertial sensors: A tutorial overview,” IEEE Communications Magazine, vol. 51, 

no. 4, pp. 100–109, 2013, doi: 10.1109/MCOM.2013.6495768. 

[104] B. P. Printy et al., “Smartphone application for classification of motor impairment severity in Parkinson’s 

disease,” in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology 

Society, EMBC 2014, 2014. doi: 10.1109/EMBC.2014.6944176. 



98 
 

[105] M. Belić, V. Bobić, M. Badža, N. Šolaja, M. Đurić-Jovičić, and V. S. Kostić, “Artificial intelligence for 

assisting diagnostics and assessment of Parkinson’s disease—A review,” Clin Neurol Neurosurg, 2019, 

doi: 10.1016/j.clineuro.2019.105442. 

[106] O. Bazgir, S. A. H. Habibi, L. Palma, P. Pierleoni, and S. Nafees, “A Classification System for Assessment 

and Home Monitoring of Tremor in Patients with Parkinson’s Disease,” J Med Signals Sens, vol. 8, no. 2, 

p. 65, 2018. 

[107] C. Stamate et al., “Deep learning Parkinson’s from smartphone data,” in 2017 IEEE International 

Conference on Pervasive Computing and Communications, PerCom 2017, 2017. doi: 

10.1109/PERCOM.2017.7917848. 

[108] N. Y. Hammerla, J. M. Fisher, P. Andras, L. Rochester, R. Walker, and T. Plötz, “PD Disease State 

Assessment in Naturalistic Environments using Deep Learning,” Aaai, 2015, doi: 10.1007/s00128-007-

9129-3. 

[109] J. M. Fisher, N. Y. Hammerla, T. Ploetz, P. Andras, L. Rochester, and R. W. Walker, “Unsupervised home 

monitoring of Parkinson’s disease motor symptoms using body-worn accelerometers,” Parkinsonism 

Relat Disord, 2016, doi: 10.1016/j.parkreldis.2016.09.009. 

[110] M. Memedi et al., “Automatic Spiral Analysis for Objective Assessment of Motor Symptoms in 

Parkinson’s Disease,” Sensors (Basel), 2015, doi: 10.3390/s150923727. 

[111] B. M. Eskofier et al., “Recent machine learning advancements in sensor-based mobility analysis: Deep 

learning for Parkinson’s disease assessment,” Proceedings of the Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society, EMBS, vol. 2016-October, pp. 655–658, Oct. 2016, doi: 

10.1109/EMBC.2016.7590787. 

[112] B. Sijobert, M. Benoussaad, J. Denys, R. Pissard-Gibollet, C. Geny, and C. A. Coste, “Implementation and 

Validation of a Stride Length Estimation Algorithm, Using a Single Basic Inertial Sensor on Healthy 

Subjects and Patients Suffering from Parkinson’s Disease,” ElectronicHealthcare, vol. 07, no. 06, pp. 

704–714, 2015, doi: 10.4236/HEALTH.2015.76084. 

[113] M. Djurić-Jovičić, M. Belić, I. Stanković, S. Radovanović, and V. S. Kostić, “Selection of gait parameters 

for differential diagnostics of patients with de novo Parkinson’s disease,” Neurol Res, 2017, doi: 

10.1080/01616412.2017.1348690. 

[114] K. J. Kubota, J. A. Chen, and M. A. Little, “Machine learning for large-scale wearable sensor data in 

Parkinson’s disease: Concepts, promises, pitfalls, and futures,” Movement Disorders, vol. 31, no. 9, pp. 

1314–1326, Sep. 2016, doi: 10.1002/MDS.26693. 

[115] C. Ahlrichs et al., “Detecting freezing of gait with a tri-axial accelerometer in Parkinson’s disease 

patients,” Med Biol Eng Comput, 2016, doi: 10.1007/s11517-015-1395-3. 

[116] D. Rodríguez-Martín et al., “Home detection of freezing of gait using support vector machines through a 

single waist-worn triaxial accelerometer,” PLoS One, 2017, doi: 10.1371/journal.pone.0171764. 

[117] N. K. Orphanidou, A. Hussain, R. Keight, P. Lishoa, J. Hind, and H. Al-Askar, “Predicting Freezing of Gait in 

Parkinsons Disease Patients Using Machine Learning,” in 2018 IEEE Congress on Evolutionary 

Computation (CEC), 2018, pp. 1–8. 



99 
 

[118] E. E. Tripoliti et al., “Automatic detection of freezing of gait events in patients with Parkinson’s disease,” 

Comput Methods Programs Biomed, 2013, doi: 10.1016/j.cmpb.2012.10.016. 

[119] A. T. Tzallas et al., “Perform: A system for monitoring, Assessment and management of patients with 

Parkinson’s disease,” Sensors (Switzerland), 2014, doi: 10.3390/s141121329. 

[120] S. Arora et al., “Detecting and monitoring the symptoms of Parkinson’s disease using smartphones: A 

pilot study,” Parkinsonism Relat Disord, vol. 21, no. 6, pp. 650–653, Jun. 2015, doi: 

10.1016/J.PARKRELDIS.2015.02.026. 

[121] V. Sharma et al., “Spark: Personalized parkinson disease interventions through synergy between a 

smartphone and a smartwatch,” in Lecture Notes in Computer Science (including subseries Lecture Notes 

in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014. doi: 10.1007/978-3-319-07635-5_11. 

[122] S. Mazilu, A. Calatroni, E. Gazit, D. Roggen, J. M. Hausdorff, and G. Tröster, “Feature learning for 

detection and prediction of freezing of gait in Parkinson’s disease,” in Lecture Notes in Computer Science 

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2013. 

doi: 10.1007/978-3-642-39712-7_11. 

[123] R. Igual, C. Medrano, and I. Plaza, “Challenges, issues and trends in fall detection systems,” BioMedical 

Engineering Online. 2013. doi: 10.1186/1475-925X-12-66. 

[124] Y. Nancy Jane, H. Khanna Nehemiah, and K. Arputharaj, “A Q-backpropagated time delay neural 

network for diagnosing severity of gait disturbances in Parkinson’s disease,” J Biomed Inform, vol. 60, 

pp. 169–176, Apr. 2016, doi: 10.1016/J.JBI.2016.01.014. 

[125] A. Rodríguez-Molinero et al., “Validation of a Portable Device for Mapping Motor and Gait Disturbances 

in Parkinson’s Disease,” JMIR Mhealth Uhealth 2015;3(1):e9 https://mhealth.jmir.org/2015/1/e9, vol. 3, 

no. 1, p. e3321, Feb. 2015, doi: 10.2196/MHEALTH.3321. 

[126] A. M. S. Muniz et al., “Comparison among probabilistic neural network, support vector machine and 

logistic regression for evaluating the effect of subthalamic stimulation in Parkinson disease on ground 

reaction force during gait,” J Biomech, vol. 43, no. 4, pp. 720–726, Mar. 2010, doi: 

10.1016/J.JBIOMECH.2009.10.018. 

[127] S. H. Roy et al., “High-resolution tracking of motor disorders in Parkinson’s disease during unconstrained 

activity,” Movement Disorders, vol. 28, no. 8, pp. 1080–1087, Jul. 2013, doi: 10.1002/MDS.25391. 

[128] S. Arora et al., “Detecting and monitoring the symptoms of Parkinson’s disease using smartphones: A 

pilot study,” Parkinsonism Relat Disord, 2015, doi: 10.1016/j.parkreldis.2015.02.026. 

[129] S. Patel et al., “Monitoring motor fluctuations in patients with parkinsons disease using wearable 

sensors,” IEEE Transactions on Information Technology in Biomedicine, vol. 13, no. 6, pp. 864–873, Nov. 

2009, doi: 10.1109/TITB.2009.2033471. 

[130] G. Rigas et al., “Assessment of tremor activity in the parkinsons disease using a set of wearable 

sensors,” IEEE Transactions on Information Technology in Biomedicine, vol. 16, no. 3, pp. 478–487, 2012, 

doi: 10.1109/TITB.2011.2182616. 

[131] M. Ashfak Habib, M. S. Mohktar, S. Bahyah Kamaruzzaman, K. Seang Lim, T. Maw Pin, and F. Ibrahim, 

“Smartphone-based solutions for fall detection and prevention: Challenges and open issues,” Sensors 

(Switzerland). 2014. doi: 10.3390/s140407181. 



100 
 

[132] C. Gao et al., “Objective assessment of bradykinesia in Parkinson’s disease using evolutionary 

algorithms: Clinical validation,” Transl Neurodegener, 2018, doi: 10.1186/s40035-018-0124-x. 

[133] R. Deb, S. An, G. Bhat, H. Shill, and U. Y. Ogras, “A Systematic Survey of Research Trends in Technology 

Usage for Parkinson’s Disease,” Sensors (Basel), vol. 22, no. 15, Aug. 2022, doi: 10.3390/S22155491. 

[134] A. M. A. Handojoseno et al., “Prediction of freezing of gait using analysis of brain effective connectivity,” 

2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 

EMBC 2014, pp. 4119–4122, Nov. 2014, doi: 10.1109/EMBC.2014.6944530. 

[135] A. M. Handojoseno et al., “Prediction of Freezing of Gait in Patients with Parkinson’s Disease Using EEG 

Signals.,” Stud Health Technol Inform, vol. 246, pp. 124–131, 2018. 

[136] N. Betrouni et al., “Electroencephalography-based machine learning for cognitive profiling in 

Parkinson’s disease: Preliminary results,” Movement Disorders, 2018. 

[137] A. Nogales, A. J. Garcia-Tejedor, A. M. Maitin, A. Perez-Morales, M. D. del Castillo, and J. P. Romero, 

“BERT learns from electroencephalograms about Parkinson´s Disease: Transformer-based models for aid 

diagnosis,” IEEE Access, pp. 1–1, Aug. 2022, doi: 10.1109/ACCESS.2022.3201843. 

[138] A. Joshi, L. Tickle-Degnen, S. Gunnery, T. Ellis, and M. Betke, “Predicting active facial expressivity in 

people with Parkinson’s disease,” ACM International Conference Proceeding Series, vol. 29-June-2016, 

Jun. 2016, doi: 10.1145/2910674.2910686. 

[139] A. Bandini et al., “Analysis of facial expressions in parkinson’s disease through video-based automatic 

methods,” J Neurosci Methods, vol. 281, pp. 7–20, Apr. 2017, doi: 10.1016/J.JNEUMETH.2017.02.006. 

[140] A. Joshi, S. Ghosh, S. Gunnery, L. Tickle-Degnen, S. Sclaroff, and M. Betke, “Context-sensitive prediction 

of facial expressivity using multimodal hierarchical Bayesian neural networks,” Proceedings - 13th IEEE 

International Conference on Automatic Face and Gesture Recognition, FG 2018, pp. 278–285, Jun. 2018, 

doi: 10.1109/FG.2018.00048. 

[141] N. Vinokurov, D. Arkadir, E. Linetsky, H. Bergman, and D. Weinshall, “Quantifying Hypomimia in 

Parkinson Patients Using a Depth Camera,” Communications in Computer and Information Science, vol. 

604, pp. 63–71, 2015, doi: 10.1007/978-3-319-32270-4_7. 

[142] M. Djuric-Jovicic et al., “Finger and foot tapping sensor system for objective motor assessment,” 

Vojnosanit Pregl, 2018, doi: 10.2298/VSP150502323D. 

[143] K. V. S. Djurić-Jovičić Milica, Petrović Igor, Ječmenica-Lukić Milica, Radovanović Saša, Dragašević-

Mišković Nataša, Belić Minja, Miler-Jerković Vera, Popović Mirjana B., “Finger tapping analysis in 

patients with Parkinson’s disease and atypical parkinsonism,” Journal of Clinical Neuroscience, vol. 30, 

no. August 2016, pp. 49–55, 2016, doi: 10.1016/j.jocn.2015.10.053. 

[144] H. Ling, L. A. Massey, A. J. Lees, P. Brown, and B. L. Day, “Hypokinesia without decrement distinguishes 

progressive supranuclear palsy from Parkinson’s disease,” Brain, vol. 135, no. 4, pp. 1141–1153, Apr. 

2012, doi: 10.1093/BRAIN/AWS038. 

[145] S. Y. Kang et al., “Characteristics of the sequence effect in Parkinson’s disease,” Movement Disorders, 

vol. 25, no. 13, pp. 2148–2155, Oct. 2010, doi: 10.1002/MDS.23251. 



101 
 

[146] M. Desmurget, S. T. Grafton, P. Vindras, H. Gréa, and R. S. Turner, “The basal ganglia network mediates 

the planning of movement amplitude,” European Journal of Neuroscience, vol. 19, no. 10, pp. 2871–

2880, May 2004, doi: 10.1111/J.0953-816X.2004.03395.X. 

[147] M. M. Koop, B. C. Hill, and H. M. Bronte-Stewart, “Perceptual errors increase with movement duration 

and may contribute to hypokinesia in Parkinson’s disease,” Neuroscience, vol. 243, pp. 1–13, Jul. 2013, 

doi: 10.1016/J.NEUROSCIENCE.2013.03.026. 

[148] E. Lee et al., “Neural correlates of progressive reduction of bradykinesia in de novo Parkinson’s disease,” 

Parkinsonism Relat Disord, vol. 20, no. 12, pp. 1376–1381, Dec. 2014, doi: 

10.1016/J.PARKRELDIS.2014.09.027. 

[149] V. Pichot et al., “Wavelet transform to quantify heart rate variability and to assess its instantaneous 

changes,” J Appl Physiol, vol. 86, no. 3, pp. 1081–1091, 1999, doi: 

10.1152/JAPPL.1999.86.3.1081/ASSET/IMAGES/LARGE/JAPP05304008X.JPEG. 

[150] S. Thurner, M. C. Feurstein, and M. C. Teich, “Multiresolution Wavelet Analysis of Heartbeat Intervals 

Discriminates Healthy Patients from Those with Cardiac Pathology,” Phys Rev Lett, vol. 80, no. 7, p. 

1544, Feb. 1998, doi: 10.1103/PhysRevLett.80.1544. 

[151] N. Wang, E. Ambikairajah, N. H. Lovell, and B. G. Celler, “Accelerometry based classification of walking 

patterns using time-frequency analysis,” Annual International Conference of the IEEE Engineering in 

Medicine and Biology - Proceedings, pp. 4899–4902, 2007, doi: 10.1109/IEMBS.2007.4353438. 

[152] M. N. Nyan, F. E. H. Tay, K. H. W. Seah, and Y. Y. Sitoh, “Classification of gait patterns in the time–

frequency domain,” J Biomech, vol. 39, no. 14, pp. 2647–2656, Jan. 2006, doi: 

10.1016/J.JBIOMECH.2005.08.014. 

[153] S. J. Preece, J. Y. Goulermas, L. P. J. Kenney, and D. Howard, “A comparison of feature extraction 

methods for the classification of dynamic activities from accelerometer data,” IEEE Trans Biomed Eng, 

vol. 56, no. 3, pp. 871–879, Mar. 2009, doi: 10.1109/TBME.2008.2006190. 

[154] B. Ayrulu-Erdem and B. Barshan, “Leg Motion Classification with Artificial Neural Networks Using 

Wavelet-Based Features of Gyroscope Signals,” Sensors 2011, Vol. 11, Pages 1721-1743, vol. 11, no. 2, 

pp. 1721–1743, Jan. 2011, doi: 10.3390/S110201721. 

[155] J. Chakraborty and A. Nandy, “Discrete wavelet transform based data representation in deep neural 

network for gait abnormality detection,” Biomed Signal Process Control, vol. 62, p. 102076, Sep. 2020, 

doi: 10.1016/J.BSPC.2020.102076. 

[156] B. Ando et al., “A Wavelet-Based Methodology for Features Extraction in Postural Instability Analysis,” 

Conference Record - IEEE Instrumentation and Measurement Technology Conference, vol. 2021-May, 

May 2021, doi: 10.1109/I2MTC50364.2021.9459816. 

[157] P. Chaovalit, A. Gangopadhyay, G. Karabatis, and Z. Chen, “Discrete wavelet transform-based time series 

analysis and mining,” ACM Comput Surv, vol. 43, no. 2, 2011, doi: 10.1145/1883612.1883613. 

[158] S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE 

Trans Pattern Anal Mach Intell, vol. 11, no. 7, 1989, doi: 10.1109/34.192463. 

[159] “Daubechies 4 wavelet (db4) properties, filters and functions - Wavelet Properties Browser.” 

http://wavelets.pybytes.com/wavelet/db4/ (accessed Aug. 30, 2022). 



102 
 

[160] S. Amari and S. Wu, “Improving support vector machine classifiers by modifying kernel functions,” 

Neural Networks, vol. 12, no. 6, pp. 783–789, Jul. 1999, doi: 10.1016/S0893-6080(99)00032-5. 

[161] C. M. Bishop, Prml. 2006. Accessed: Mar. 10, 2022. [Online]. Available: 

https://link.springer.com/book/9780387310732 

[162] V. K. Minja Belić, Milica Djurić-Jovičić, Milica Ječmenica Lukić, Igor Petrović, Saša Radovanović, Mirjana 

Popović, “Implementation of discrete wavelet transformation in repetitive finger tapping analysis for 

patients with Parkinson’s disease,” 2016. 

[163] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document 

recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2323, 1998, doi: 10.1109/5.726791. 

[164] A. Jordao, A. C. Nazare Jr, J. Sena, and W. R. Schwartz, “Human Activity Recognition Based on Wearable 

Sensor Data: A Standardization of the State-of-the-Art,” arXiv preprint arXiv:1806.05226, 2018. 

[165] G. Sergey Ioffe and G. Christian Szegedy, “Batch Normalization,” Icml, 2015, doi: 10.1007/s13398-014-

0173-7.2. 

[166] “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.” 

http://proceedings.mlr.press/v37/ioffe15.html (accessed Jul. 14, 2022). 

[167] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A Simple Way to 

Prevent Neural Networks from Overfitting,” Journal of Machine Learning Research, 2014, doi: 

10.1214/12-AOS1000. 

[168] X. Li, S. Chen, X. Hu, and J. Yang, “Understanding the disharmony between dropout and batch 

normalization by variance shift,” arXiv preprint arXiv:1801.05134, 2018. 

[169] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on 

imagenet classification,” in Proceedings of the IEEE International Conference on Computer Vision, 2015. 

doi: 10.1109/ICCV.2015.123. 

[170] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” 

PMLR, 2010, doi: 10.1.1.207.2059. 

[171] M. Kohlbrenner, T. U. Berlin, R. Hofmann, S. Ahmmed, and Y. Kashef, “Pre-Training CNNs Using 

Convolutional Autoencoders,” Berlin, 2017. 

[172] L. Zhou, H. Liu, J. Bae, J. He, D. Samaras, and P. Prasanna, “Self Pre-training with Masked Autoencoders 

for Medical Image Analysis,” Mar. 2022, doi: 10.48550/arxiv.2203.05573. 

[173] A. Hartigan and M. A. Wong, “A K-Means Clustering Algorithm,” Journal of the Royal Statistical Society, 

vol. 28, no. 1, 1979. 

[174] D. P. Kingma and J. Lei Ba, “ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION.” 

[175] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath, “Generative 

Adversarial Networks: An Overview,” IEEE Signal Processing Magazine, vol. 35, no. 1. 2018. doi: 

10.1109/MSP.2017.2765202. 



103 
 

[176] V. Sandfort, K. Yan, P. J. Pickhardt, and R. M. Summers, “Data augmentation using generative 

adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks,” Scientific 

Reports 2019 9:1, vol. 9, no. 1, pp. 1–9, Nov. 2019, doi: 10.1038/s41598-019-52737-x. 

[177] H. C. Shin et al., “Medical image synthesis for data augmentation and anonymization using generative 

adversarial networks,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics), vol. 11037 LNCS, pp. 1–11, 2018, doi: 10.1007/978-3-

030-00536-8_1/COVER/. 

[178] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Improved training of wasserstein 

GANs,” in Advances in Neural Information Processing Systems, 2017, vol. 2017-December. 

[179] J. P. Hart and A. W. Shogan, “Semi-greedy heuristics: An empirical study,” Operations Research Letters, 

vol. 6, no. 3, pp. 107–114, Jul. 1987, doi: 10.1016/0167-6377(87)90021-6. 

[180] N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric regression,” American 

Statistician, vol. 46, no. 3, pp. 175–185, 1992, doi: 10.1080/00031305.1992.10475879. 

[181] K. Marek et al., “The Parkinson Progression Marker Initiative (PPMI),” Prog Neurobiol, vol. 95, no. 4, pp. 

629–635, Dec. 2011, doi: 10.1016/J.PNEUROBIO.2011.09.005. 

[182] V. Asanza, N. N. Sánchez-Pozo, L. L. Lorente-Leyva, D. H. Peluffo-Ordóñez, F. R. Loayza, and E. Peláez, 

“Classification of Subjects with Parkinson’s Disease using Finger Tapping Dataset,” IFAC-PapersOnLine, 

vol. 54, no. 15, pp. 376–381, Jan. 2021, doi: 10.1016/J.IFACOL.2021.10.285. 

[183] M. Mendonça et al., “Inertial sensor-based kinematics in the differential diagnosis of Parkinson’s 

disease and atypical parkinsonisms,” Movement Disorders, vol. 35, no. SUPPL 1, p. S646, 2020, [Online]. 

Available: 

https://www.embase.com/search/results?subaction=viewrecord&id=L633833076&from=export 

[184] J. Song et al., “Differential diagnosis between Parkinson’s disease and atypical parkinsonism based on 

gait and postural instability: Artificial intelligence using an enhanced weight voting ensemble model,” 

Parkinsonism Relat Disord, vol. 98, pp. 32–37, May 2022, doi: 10.1016/J.PARKRELDIS.2022.04.003. 

[185] K. Daoudi, B. Das, T. Tykalová, J. Klempir, and J. Rusz, “Speech acoustic indices for differential diagnosis 

between Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy,” NPJ 

Parkinsons Dis, 2022, Accessed: Aug. 24, 2022. [Online]. Available: https://hal.inria.fr/hal-03740038 

[186] R. Kowalska-Taczanowska, A. Friedman, and D. Koziorowski, “Parkinson’s disease or atypical 

parkinsonism? The importance of acoustic voice analysis in differential diagnosis of speech disorders,” 

Brain Behav, vol. 10, no. 8, 2020, doi: 10.1002/brb3.1700. 

[187] Z.-H. Zhou, “A Brief Introduction to Weakly Supervised Learning,” Natl Sci Rev, 2017, doi: 

10.1093/nsr/nwx106. 

[188] “Sifted - Seed rounds june investment .” https://sifted.eu/articles/seed-rounds-june-investment/ 

(accessed Aug. 24, 2022). 

[189] B. Beaulieu-Jones et al., “Trends and Focus of Machine Learning Applications for Health Research,” 

JAMA Netw Open, vol. 2, no. 10, 2019, doi: 10.1001/jamanetworkopen.2019.14051. 



104 
 

[190] D. Mood et al., “Hamilton M: A rating scale for depression,” J Neurol Neurosurg Psychiatry, vol. 23, 

1960. 

[191] A. T. Beck, C. H. Ward, M. Mendelson, J. Mock, and J. Erbaugh, “An Inventory for Measuring 

Depression,” Arch Gen Psychiatry, vol. 4, no. 6, pp. 561–571, Jun. 1961, doi: 

10.1001/ARCHPSYC.1961.01710120031004. 

[192] M. HAMILTON, “THE ASSESSMENT OF ANXIETY STATES BY RATING,” British Journal of Medical 

Psychology, vol. 32, no. 1, pp. 50–55, Mar. 1959, doi: 10.1111/J.2044-8341.1959.TB00467.X. 

[193] S. E. Starkstein, H. S. Mayberg, T. J. Preziosi, P. Andrezejewski, R. Leiguarda, and R. G. Robinson, 

“Reliability, validity, and clinical correlates of apathy in Parkinson’s disease,” 

https://doi.org/10.1176/jnp.4.2.134, vol. 4, no. 2, pp. 134–139, Apr. 2006, doi: 10.1176/JNP.4.2.134. 

[194] M. F. Folstein, S. E. Folstein, and P. R. McHugh, “‘Mini-mental state’: A practical method for grading the 

cognitive state of patients for the clinician,” J Psychiatr Res, vol. 12, no. 3, pp. 189–198, Nov. 1975, doi: 

10.1016/0022-3956(75)90026-6. 

[195] E. Mioshi, K. Dawson, J. Mitchell, R. Arnold, and J. R. Hodges, “The Addenbrooke’s Cognitive 

Examination revised (ACE-R): A brief cognitive test battery for dementia screening,” Int J Geriatr 

Psychiatry, vol. 21, no. 11, pp. 1078–1085, Nov. 2006, doi: 10.1002/GPS.1610. 

[196] S. Radovanović, M. Jovičić, N. P. Marić, and V. Kostić, “Gait characteristics in patients with major 

depression performing cognitive and motor tasks while walking,” Psychiatry Res, vol. 217, no. 1–2, pp. 

39–46, Jun. 2014, doi: 10.1016/J.PSYCHRES.2014.02.001. 

[197] A. Tsanas, M. A. Little, P. E. McSharry, and L. O. Ramig, “Nonlinear speech analysis algorithms mapped 

to a standard metric achieve clinically useful quantification of average Parkinson’s disease symptom 

severity,” J R Soc Interface, vol. 8, no. 59, pp. 842–855, Jun. 2011, doi: 10.1098/RSIF.2010.0456. 

[198] Y. Dupuis, X. Savatier, and P. Vasseur, “Feature subset selection applied to model-free gait recognition,” 

Image Vis Comput, vol. 31, no. 8, 2013, doi: 10.1016/j.imavis.2013.04.001. 

[199] L. Toloşi and T. Lengauer, “Classification with correlated features: unreliability of feature ranking and 

solutions,” Bioinformatics, vol. 27, no. 14, pp. 1986–1994, Jul. 2011, doi: 

10.1093/BIOINFORMATICS/BTR300. 

[200] B. J. Frey and D. Dueck, “Clustering by passing messages between data points,” Science (1979), vol. 315, 

no. 5814, pp. 972–976, Feb. 2007, doi: 10.1126/SCIENCE.1136800/SUPPL_FILE/FREY.SOM.PDF. 

[201] L. Breiman, “Random Forests,” Machine Learning 2001 45:1, vol. 45, no. 1, pp. 5–32, Oct. 2001, doi: 

10.1023/A:1010933404324. 

[202] I. Perunicic-Mladenovic and S. Filipovic, “Proneness to Alcohol use Disorder or Pathological Gambling as 

Differentially Determined by Early Parental and Personality Factors,” J Gambl Stud, pp. 1–21, Jan. 2022, 

doi: 10.1007/S10899-021-10095-2/TABLES/4. 

[203] Y. Qi, Z. Bar-Joseph, and J. Klein-Seetharaman, “Evaluation of different biological data and 

computational classification methods for use in protein interaction prediction,” Proteins: Structure, 

Function, and Bioinformatics, vol. 63, no. 3, pp. 490–500, May 2006, doi: 10.1002/PROT.20865. 



105 
 

[204] R. Díaz-Uriarte and S. Alvarez de Andrés, “Gene selection and classification of microarray data using 

random forest,” BMC Bioinformatics, vol. 7, no. 1, pp. 1–13, Jan. 2006, doi: 10.1186/1471-2105-7-

3/FIGURES/1. 

[205] K. L. Lunetta, L. B. Hayward, J. Segal, and P. van Eerdewegh, “Screening large-scale association study 

data: exploiting interactions using random forests,” BMC Genet, vol. 5, Dec. 2004, doi: 10.1186/1471-

2156-5-32. 

[206] M. Grajić, I. Stanković, S. Radovanović, and V. Kostić, “Gait in drug naïve patients with de novo 

Parkinson’s disease – altered but symmetric,” http://dx.doi.org/10.1179/1743132815Y.0000000043, 

vol. 37, no. 8, pp. 712–716, Aug. 2015, doi: 10.1179/1743132815Y.0000000043. 

[207] F. Wahid, R. K. Begg, C. J. Hass, S. Halgamuge, and D. C. Ackland, “Classification of Parkinson’s disease 

gait using spatial-temporal gait features,” IEEE J Biomed Health Inform, vol. 19, no. 6, pp. 1794–1802, 

Nov. 2015, doi: 10.1109/JBHI.2015.2450232. 

[208] S. A. Chatterjee, “Mediolateral stability during gait in people with Parkinson’s disease,” Graduate Theses 

and Dissertations. 11377., 2010. 

[209] T. E. Raffegeau et al., “A Meta-Analysis: Parkinson’s Disease and Dual-Task Walking,” Parkinsonism Relat 

Disord, vol. 62, p. 28, May 2019, doi: 10.1016/J.PARKRELDIS.2018.12.012. 

[210] M. Amboni et al., “Gait analysis may distinguish progressive supranuclear palsy and Parkinson disease 

since the earliest stages,” Sci Rep, vol. 11, no. 1, p. 9297, Dec. 2021, doi: 10.1038/S41598-021-88877-2. 

  

  



106 
 

Author biography 

Minja Belić was born on 16th May 1986 in Valjevo, Serbia, where she finished primary school and 

Valjevo Gymnasium, enrolled in a specialized mathematics class. In 2012 she graduated from the School 

of Electrical Engineering, department of Physical Electronics, sub-department Biomedical Engineering 

with a thesis exploring an image processing approach to Iris Recognition, under the guidance of prof. dr 

Irini Reljin. She obtained her master’s degree from the same institution in 2013, with the thesis titled 

“Surface electrical stimulation of afferent fibers of the forearm for sensory substitution” mentored by 

prof. dr Dejan Popović. She started her multidisciplinary PhD studies at the University of Belgrade in 

2014, at the department of Biomedical engineering and technologies. 

From 2013 to 2018 she worked with Tecnalia Serbia, a research and development oriented company, 

where she took part in several projects aiming to utilize surface electrical stimulation in rehabilitation 

(stroke rehabilitation), pain management (lower back), slowing the progression of osteoporosis (spine), 

and sensory substitution (using electrical stimulation to close the feedback loop from myoelectric hand 

prostheses for trans-radial amputees).  

She cooperated with the Innovation center of School of Electrical Engineering and Clinical Center of 

Serbia, while working on sensors and algorithms for diagnostic aid in Parkinson’s disease and atypical 

parkinsonisms. 

From 2019 to 2022 she worked in Novelic on radar solutions for human detection and contactless cardio-

respiratory monitoring, with a focus on automotive applications. She worked as an algorithm design 

engineer and subsequently technical and delivery project manager, and initiated the formation of a 

specialized machine learning team within the company. 

Since 2022 she has been employed as a data scientist in Daon Inc, where she works on image processing 

and machine learning algorithms for face biometrics. 

Minja Belić co-authored 7 scientific papers published in journals on the SCI list, 5 conference papers 

and 4 papers in national and other journals.  

  










