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Dissertation title: Semi-Fredholm operators on Hilbert C*-modules

Abstract: In the first part of the thesis, we establish the semi-Fredholm theory on Hilbert C*-
modules as a continuation of the Fredholm theory on Hilbert C*-modules which was introduced
by Mishchenko and Fomenko. Starting from their definition of C*-Fredholm operator, we give
definition of semi-C*-Fredholm operator and prove that these operators correspond to one-sided
invertible elements in the Calkin algebra. Also, we give definition of semi-C*-Weyl operators
and semi-C*-B-Fredholm operators and obtain in this connection several results generalizing
the counterparts from the classical semi-Fredholm theory on Hilbert spaces. Finally, we consider
closed range operators on Hilbert C*-modules and give necessary and sufficient conditions for
a composition of two closed range C*-operators to have closed image. The second part of
the thesis is devoted to the generalized spectral theory of operators on Hilbert C*-modules.
We introduce generalized spectra in C*-algebras of C*-operators and give description of such
spectra of shift operators, unitary, self-adjoint and normal operators on the standard Hilbert C*-
module. Then we proceed further by studying generalized Fredholm spectra (in C*-algebras) of
operators on Hilbert C*-modules induced by various subclasses of semi-C*-Fredholm operators.
In this setting we obtain generalizations of some of the results from the classical spectral
semi-Fredholm theory such as the results by Zemanek regarding the relationship between the
spectra of an operator and the spectra of its compressions. Also, we study 2 x 2 upper triangular
operator matrices acting on the direct sum of two standard Hilbert C*-modules and describe
the relationship between semi-C*-Fredholmness of these matrices and of their diagonal entries.

Keywords: Hilbert C*-module, semi-C*-Fredholm operator, semi-C*-Weyl operator, semi-C*-
B-Fredholm operator, essential spectrum, Weyl spectrum, perturbation of spectra, compression
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HacsioB muceprammje: Ilony-®peixonmoBu oreparopu Ha XujabeprouM C*-MogyInMa

Pesume: VY npsowm jeiy tese ycrocrapibaMo 1osy-DOpeixosmoBy Teopujy wHa Xuadbeprosum C*-
Moy InMa Kao HactaBak Ppenxonmose Teopuje Ha XuadbeproBum C*-MOyIIMa KOjy Cy yBeJIn
Murrgenko n Pomenxko. [lorazehn o mwuxose pedpunummje C*-OpexoIMOBIX OIIEpATOPA, JIaje-
MO gedurIIm]y moay-C*-OpenxoaIMoBOT oIepaTopa 1 J0Ka3yjeMo 1a TH OIepaTOPHU OAroBapajy
jeanocTpano nHBepTHOMIHUM ejieMentuMa y Kanmkunosoj aiareopu. Takobhe, majemo jnedunuriu-
jy momy-C*-BajioBux oneparopa u noiay-C*-5-DpeaxoaMoBUX orepaTopa U JI00HjaMoO ¢ TUM
y BE3W BUIIE Pe3yJITaTa KOju T'eHepan3yjy NaHIaHe U3 KiacudHe 1moxy-PpeaxoaMoBe Teopuje
Ha XwmjibeproBuM mpocrtopuma. Ha Kpajy, pazmarpamo olneparope ca 3aTBOPEHOM CJIMKOM Ha
Xwibeproum C*-MomynMa 1 JajeMo MoTpedHe U JIOBOJbHE YCJIOBE Ja KoMmiosuiuja jaBa C*-
orepaTopa ca 3aTBOPEHOM CJIMKOM MMa 3aTBopeHy ciauky. Ipyru jeo Teze nocsehen je renepa-
JIN30BAHO]j CIIEKTPAJIHOj TEOpUju omeparopa Ha Xuadbepropum C*-momynmuma. 3a C*-omeparope
nedUHUIIIEMO TeHepan3oBaHe crekTpe y C*-anrebpu n j1ajeMo OIMNC TaKBUX CIIEKTapa y KOH-
KPETHOM CJIy4ajy OolepaTopa IMoMaKa, YHUTAPHUX, CAMOA/[JOHIOBAHUX U HOPMAaJIHUX OllepaTopa
Ha crangapgaaoM XuiabeproBoM C*-MOysry. 3aTHM HaCTaB/baMO Jla/be MpoydaBajyhu renepa-
muzoBane Ppenxonmore criekrpe (y C*-anrebpama) oneparopa Ha Xuabeprosum C*-Moryinma
MHIyKOBAHUM Pa3/JINIATHM THojKaacama mory-C*-OpenxoMoBux ormepatopa. ¥ OBOM KOHTEK-
cTy J106MjaMo yOIIITehe HEKUX Pe3y/ITaTa U3 KJIaCUIHe ClIeKTpaJsTHe oJry-PpeJIXoIMOBE TeopH-
je, Kao o cy 3eMaHeKOBH Pe3yJITaTU y Be3U pesaliija u3Mely crieKrapa ornepaTopa u ClieKTapa
ILUXOBUX KoMIpecrja. Takohe, mpoydasamo 2 X 2 ropibe TpHUjanryiapHe orepaTopcKe MaTpPHUIIe
KOje JIeJTyjy Ha JIMPEeKTHO] CyMu JiBa cTanjap/iHa XujadbeproBa C*-Mojy/aa U OMHUCYjeMO OJIHOC
u3Mmelhy mosry-C*-OpeIXoIMHOCTH OBUX MATPHUIA U IbUXOBUX JUjarOHAJTHAX €JIeMeHAaTa.

Kipyune peun: Xunbepros C*-momyi, moay-C*-OpeaxoaMoB onepaTop, mnoay-C*-Bajios ome-
patop, noxy-C*-B-Opeixo/MOB ollepaTop, eCeHNuja Hn creKTap, Bajaos crekrap, neprypba-
1uje cruekTpa, KOMIIpecuje.

Hayuna obsiacT: Maremaruka

VYika Hay4dHa obJact: AHajim3a, Teopuja omeparopa u ajarebpe omeparopa



Contents

1 Introduction 1
2 Preliminaries 6
3 Semi-C*-Fredholm operators 18
3.1 Adjointable semi-C*-Fredholm operators . . . . . ... ... ... ... ..... 18
3.2 Generalized Schechter characterization . . . . . .. .. ... ... ... ..... 31
3.3 Openness of the set of semi-C*-Fredholm operators . . . . ... .. .. ..... 33
3.4 Adjointable semi-C*-Weyl operators . . . . . . .. .. ... ... L. 36
3.5 Non-adjointable semi-C*-Fredholm operators . . . . ... ... ... ... ... 47
3.6 Non-adjointable semi-C*-Weyl operators . . . . . ... ... ... ... ..... 58
3.7 Examples of semi-C*-Fredholm operators . . . . . ... ... ... ... ..... 63
4 Semi-Fredholm operators over I/ *-algebras 68
5 Generalizations of semi-C*-Fredholm operators 76
5.1 Generalized semi-C*-Weyl operators . . . . . . . ... .. ... ... ...... 76
5.2  Semi-C*-B-Fredholm operators . . . . . .. .. .. ... ... ... .. ... 85
6 Closed range operators over (*-algebras 92
7 Generalized spectra of operators over (C*-algebras 100
7.1 Generalized spectra of shift operators, unitary, self-adjoint and normal operators 101
7.2 Generalized Fredholm spectra of operators over C*-algebras . . . . . ... ... 110
8 Perturbations of generalized spectra of operators over C'*-algebras 117
8.1 Basicresults . . . . . . . . e 117
8.2  Perturbations of generalized spectra of operator 2 x 2 matrices over C*-algebras 121
9 Compressions and generalized spectra of operators over C*-algebras 133
9.1 Relations between generalized spectra of operator and its compressions . . . . . 133
9.2 Examples of semi-C*-Weyl operators . . . . .. .. ... ... ... ... .... 140

10 Final remarks 144



Chapter 1

Introduction

The Fredholm and semi-Fredholm theory on Hilbert and Banach spaces started by studying the
integral equations introduced in the pioneering work by Fredholm in 1903 in [12]. After that
the abstract theory of Fredholm and semi-Fredholm operators on Banach spaces was further
developed in numerous papers and books such as [2], [3] and [50]. Some recent results in the
classical semi-Fredholm theory can be found in [55]. Now, Fredholm theory on Hilbert C*-
modules as a generalization of Fredholm theory on Hilbert spaces was started by Mishchenko
and Fomenko in [10]. They have introduced the notion of a Fredholm operator on the standard
module and proved the generalization of the Atkinson theorem. Our aim is to study more
general operators than the Fredholm ones, namely a generalization of semi-Fredholm operators.
In this thesis we give the definition of those and establish several properties as an analogue or
a generalized version of the properties of the classical semi-Fredholm operators on Hilbert and
Banach spaces.

Recall that if H is a Hilbert space, then F' is a semi-Fredholm operator on H, denoted by
Fed, (H)if F e B(H) and ImF is closed, that is, if there exists a decomposition

H = (ket F)* @ker F -5 ImF @ (ImF)* = H
. . : F, 0 . . ) i
with respect to which F' has the matrix 0 ol where F} is an isomorphism, and either

dimker F' < 0o or dim(ImF)* < oo.

If dimker I/ < oo, then F is called an upper semi-Fredholm operator on H, denoted by
F € ®,(H), whereas if dim(ImF)* < oo, then F is called a lower semi-Fredholm opera-
tor on H, denoted by F' € ®_(H). If F' is both an upper and a lower semi-Fredholm operator
on H, then F is said to be a Fredholm operator on H, denoted by F' € ®(H). In the case when
F € ®(H), the index of F is defined as index F' = dim ker F' — dim(ImF)*.

Now, Hilbert C*-modules are a natural generalization of Hilbert spaces when the field of
scalars is replaced by an arbitrary C*-algebra. Some recent results in the theory of Hilbert
C*-modules can be found in [ 1], [16], [34], [11]. In [10] Mishchenko and Fomenko consider a
standard Hilbert C*-module over a unital C*-algebra A, denoted by H 4, and they define an
A-Fredholm operator F on H 4 as a generalization of a Fredholm operator on Hilbert space H
in the following way ( see [10, Definition|): A (bounded .A—linear) operator F': Hy — H 4 is
called A-Fredholm if
1) it is adjointable;

2) there exists a decomposition of the domain H4 = M;@®N;, and the range, H4 = My®Ns,
where M, My, N1, Ny are closed A-modules and Ny, N5 have a finite number of generators in
algebraic sense, such that [’ has the matrix form

1



Chapter 1. Introduction

F, 0
0 F
with respect to these decompositions and Fj : M; — M, is an isomorphism.
It is then proved in [10] that some of the main results from the classical Fredholm theory on

Hilbert spaces also hold when one considers this generalization of Fredholm operator on H 4.
The idea in this thesis is to go further in this direction, to give, in a similar way, a definition
of semi-Fredholm operators on Hilbert C*-modules over unital C*-algebras, to investigate and
prove generalized version in this setting of significantly many results from the classical semi-
Fredholm theory on Hilbert and Banach spaces.

Let us mention a few words on the motivation for studying semi-Fredholm operators on
Hilbert C*-modules.

People have over long time been interested in solving equations of the form Ax =y for x € X,
y € Y when X and Y are Banach spaces and A € B(X,Y’). The simplest case is when A is
invertible and the fomula for A~! is known. In this case the solution is unique and is given by
x = A~ly. Unfortunately, A is in general not invertible in such equations. Therefore, people
have studied more general situations in which A can happen to be non-invertible, but still
regular, i.e. ImA is closed in Y and ker A and ImA are complementable in the respective
Banach spaces or, in other words, A admits generalized inverse. In these situations we can
still solve the equations of the form Ax = y, although not uniquely. More precisely, if A is
regular, then we have decompositions X = (ker A)° @ ker A and Y = ImA & (ImA)°, where
(ker A)° and (ImA)° denote the complements ker A, and I'mA, respectively. Let M denote the
projection onto ImA along (ImA)° ( that is M(u+ v) = u for all u € ImA,v € (ImA)° ). The
equation Axr = y has a solution if and only if My = y and in this case the solutions are given
by © = A’y + z, where z € ker A and A’ is generalized inverse of A. So, in the situation when
A is regular, it is still possible to handle the equations of the form Axr =y, x € X,y € Y.
Now, a natural generalization of linear operators on Hilbert spaces are A-linear operators on
Hilbert modules over a C*-algebra A. One of the reasons for studying .A-linear operators is
that sometimes they may give a better description of non-linear phenomena in the real life
than ordinary linear operators. Indeed, it is well known that the motivation for linear analysis
comes partly from studying local linear approximations of non-linear phenomena. In the case
of Hilbert spaces, the equation Az = y induces a (possibly infinite) system of equations in C
when z and y are represented as coordinate vectors with respect to an orthonormal basis for
the respective Hilbert space and A is given by a matrix with respect to this basis. For more
details we refer to [51]. However, if F'is an A-linear, bounded operator on the standard module
H 4 over a C*-algebra A, then the equation Fx = y,z,y € Hj4 induces an infinite system
of equations in A. Since A is an arbitrary unital C*-algebra, thus it could be an algebra of
functions or operators, such system of equations may sometimes give a better description of
non-linear phenomena in the real life than the system of equations with constant coefficients.
Therefore, we may sometimes obtain more information by studying A-linear operators than by
just studying classical linear operators. On the other hand it turns out that A-linear operators,
especially adjointable ones, still keep many of the "nice" properties of the classical bounded,
linear operators on Hilbert spaces. All this together gives one of the reasons for studying
A-linear, bounded operators on H4 (where A is a unital C*-algebra ).

We may hence consider regular, A-linear, bounded operators on H 4 for solving the equations
of the form Fax =y, where x,y € H 4. It turns out that if F' is adjointable and ImF" is closed,
then F'is automatically regular, since ImF' and ker F' are orthogonally complementable in this
F

0 0 } with respect to the decomposition

case. Thus, in this case I’ has the matrix [

Hy= (ker F)* @ ker F -5 ImF & (ImF)* = Hy,

2



Chapter 1. Introduction

where [} is an isomorphism. If (ImF)* is finitely generated, then it is easily checked (even
without computing the explicit formula for the orthogonal projection onto Im#F') whether the
equation F'x = y has a solution. Indeed, this equation has a solution if and only if y is orthogo-
nal to all generators of (ImF)*, which are finitely many in this case. On the other hand, if ker F
is finitely generated and we have an explicit formula for F; ', then we can also give an explicit
expression for solutions. Namely, the solutions in this case are given by z = F: 1_1y+ZZ:1 2k Qg
where the set {21, ..., z,} generates ker F' and v, . . . , o, are arbitrary elements of A. Therefore,
we are in particular interested in those regular, A-linear, bounded operators on H 4 for which
either complement of the kernel or complement of the image is finitely generated. This leads us
to study more general class of operators than regular ones, namely the class of those A-linear,

bounded operators F' for which there exists a decomposition H 4 = M;®N; LN My®Ny = H 4
F, 0
0 Fy
Ny or N is finitely generated. We denote this class by semi A-Fredholm operators. The inspi-
ration for considering such operators comes from the definition of A-Fredholm operators given
by Mishchenko and Fomenko .

with respect to which F' has the matrix [ , where F) is an isomorphism and either

In fact we are in particular interested in operators that arise from natural cases, e.g. (pseudo)
differential operators acting on manifolds. The classical theory works nice for compact man-
ifolds, but not for general ones. Even operators on Euclidean spaces are hard to study, e.g.
Laplacian is not Fredholm. However, they can become Fredholm when we look at them as
operators on a torus with coefficients in the group C*-algebra of the integers (as the torus is
the quotient of the Euclidean space modulo the action of integers). Kernels and cokernels of
many operators are infinite-dimensional as Banach spaces, but become finitely generated viewed
as Hilbert modules. This is the most important reason for studying semi-.A-Fredholm operators.

Let us give an overview of the main results in each of the chapters in the thesis.

In the second chapter we recall the results from the general theory of Hilbert C*-modules
and from A-Fredholm theory on H4 that are needed in the rest of the thesis.

In the third chapter we define adjointable upper and lower semi-.A-Fredholm operators and
prove that they correspond to one-sided invertible elements modulo compact operators. We
establish several properties of these operators as an analogue of the properties of classical semi-
Fredholm operators given in [56], such as openess of the set of proper semi-.A-Fredholm operators
and Schechter characterization. Moreover, we consider various new classes of operators on
Hilbert C*-modules as generalizations of the class of semi-Weyl operators on Hilbert spaces.
We prove that these new classes are open, invariant under compact perturbations and several
other results generalizing in this setting the results from [56, Section 1.9]. Such operators will
be called semi-.A-Weyl operators.

Next, in addition to adjointable semi-.A-Fredholm operators, we consider also non-adjointable
semi-A-Fredholm operators in the third chapter as a continuation of Mishchenko’s work on non-
adjointable A-Fredholm operators in [17].

One of the challenges with working with non-adjointable operators is that one does not
necessarily have complementability of the kernel and the image of the closed range operators
as one has for adjointable operators where the kernel and the image of a closed range operator
are even orthogonally complementable (we recall that not all closed submodules of a Hilbert
C*- modules are complementable, which is one of the big differences between Hilbert spaces
and Hilbert C*-modules in general). Moreover, in the case of adjointable operators on Hilbert
C*-modules, one can sometimes easily obtain a symmetric version of certain results simply by
taking the adjoint, while it is not possible to do that with non-adjointable operators. Because
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of all these facts, the theory of non-adjointable operators sometimes differs from the theory of
adjointable operators and is more challenging. Therefore, it is interesting to investigate non-
adjointable operators in addition to adjointable operators and this is the reason why in this
thesis sometimes we treat separately the case of non-adjointable operators. Moreover, non-
adjointable operators occur more often in applications than adjointable ones, so this is also one
of the reasons why we are especially interested in non-adjointable operators.

Finally, at the end of the third chapter we introduce examples of semi-A-Fredholm operators.

The generalized versions in the setting of Hilbert C*-modules of the results from the classical
semi-Fredholm theory on Banach and Hilbert spaces, which are presented here in this thesis,
usually demand different proofs from the classical ones. However, the techniques used in these
proofs are to a certain extent inspired by the techniques used in the proofs of some of the
results in [10]. In the last section of the third chapter we also show how these techniques can
be applied to the special class of operators on infinite-dimensional Hilbert spaces, so called
generalized Fredholm operators on Hilbert spaces, which are the operators with image that
contains a closed, infinite-dimensional subspace.

Several special properties of A-Fredholm operators in the case of WW*-algebra were described
in [38, Section 3.6]. The idea in the fourth chapter of the thesis is to go further in this
direction and establish more special properties of A-Fredholm operators defined in [10] and of
semi—A-Fredholm operator in the case when A is a W*-algebra, the properties that are closer
related to the properties of the classical semi-Fredholm operators on Hilbert spaces than in
the general case, when A is an arbitrary C*-algebra. Using the assumption that A is a W*-
algebra (and not an arbitrary C*-algebra) we obtain various results such as a generalization
of Schechter-Lebow characterization of semi-Fredholm operators and a generalization of the
"punctured neighbourhood" theorem, as well as some other results that generalize their classical
counterparts. We consider both adjointable and non-adjointable semi-Fredholm operators over
W*-algebras. At the end of this chapter we consider the special case of self-dual Hilbert WW*-
modules and prove that the set of semi-A-Fredholm operators and the set of semi-A-Weyl
opertors on self-dual Hilbert A-modules form semigroups under the multiplication.

Various generalizations of classical semi-Fredholm operators such as generalized Weyl oper-
ators defined by Dordevi¢ in ] and semi-B-Fredholm operators defined by Berkani in 1] and
[5] have been considered earlier. In the fifth chapter we construct in a similar way generaliza-
tions of semi-A-Fredholm operators and investigate some of their properties. Those operators
will be called generalized A-Weyl operators and semi-.A-B-Fredholm operators. We prove that
these classes of operators are under certain conditions closed under the multiplication and in-
variant under the finitely generated perturbations. Again, we consider both adjointable and
non-adjointable operators. Moreover, we apply also the techniques from our proofs in this
chapter to extend the results from [3| to the case of regular operators on Banach spaces and
give thus partly an answer to the open question from [3| regarding whether the results from
[3] could be extended from the case of operators on Hilbert spaces to the case of operators
on Banach spaces. At the end of this chapter we give an example of a semi-A-B-Fredholm
operator.

The main technique in the proofs in this chapter is application of exact sequences which allows
us not only to obtain new results for operators on Hilbert C*-modules, but also to provide
generalizations and extensions of the classical results for operators on Banach spaces.

It turns out that closed range operators are very important in semi-Fredholm theory on
Hilbert C*-modules. In the sixth chapter we present equivalent conditions for a composition
of two closed range adjointable operators to have closed image. We also give a simplification
of the results by Sharifi in [19] and we give a sufficient condition in terms of Dixmier angle
for a composition of two non-adjointable closed range A-Fredholm operators to have closed
image. One of the main differences between classical Fredholm operators on Hilbert spaces and
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A-Fredholm operators in general is that A-Fredholm operators may happen to have non-closed
image, whereas classical Fredholm operators always have closed image. In the sixth chapter we
give examples of A-Fredholm operators with non-closed image. We also give an example of an
A-Fredholm operator F satisfying that ImF is closed and ImF? is not closed.

Next, given an A-linear, bounded, adjointable operator F' on H 4, we consider the operators
of the form F'— al as a varies over A, and this gives rise to a different kind of spectra of F'in A
as a generalization of ordinary spectra of F' in C. The aim of the seventh chapter is to provide
basic results regarding generalized spectra in A of operators on Hilbert A-modules and hence
make first step into a new spectral theory of operators on Hilbert C*-modules in the setting
of generalized spectra in C*-algebras. It turns out that some of the results in this context are
valid only in the case of commutative C*-algebras, so we provide counterexamples in the case
when A = B(H). At the end of the seventh chapter we also show by an example how these
results can be applied on operators on the Hilbert space L?((0,1)) by considering the spectra
in C([0,1]) or in L>((0,1)).

In the eighth chapter of the thesis we study perturbations of the generalized spectra in A.
However, the main topic of the eighth chapter are upper triangular operator 2 x 2 matrices
acting on two copies of H 4. We describe the relationship between semi-.A-Fredholmness of such
matrices and their diagonal entries. Also, we consider the perturbations of the spectra in A of
such matrices, generalizing thus the results from |7].

In the ninth chapter we define several special subclasses of semi-A-Weyl operators and we
provide examples of such operators at the end of the thesis. As already observed in the third
chapter, this shows that the class of classical semi-Weyl operators on Hilbert spaces has several
different generalizations in the setting of operators on Hilbert C*-modules. We consider then
generalized spectra in A of operators on H 4 induced by these special subclasses of semi-.A-
Weyl operators, and give a description of such spectra in A in terms of the intersection of the
A-valued spectra of the compressions of operators. Thus, we generalize in this setting the well
known results by Zemanek in [51]. Moreover, we show by an example how our proofs can be
applied to operators on infinite-dimensional Hilbert spaces in order to extend Zemanek’s results.

Semi-A-Fredholm operators have been considered in 1] and [15]. In [I| semi-.A-Fredholm
operators are defined to be those that are one-sided invertible modulo compact operators.
However, in this thesis, inspired by the definition of A—Fredholm operator on H4 given by
Mishchenko and Fomenko, we define semi-A- Fredholm operators in terms of decompositions,
as explained above. It turns out that these operators are exactly those that are one-sided
invertible modulo compact operators when we consider the standard module H 4, so in this
case our definition coincide with the definition given in [I]. However, this does not need to
hold in the case of arbitrary Hilbert C*-modules. In the last chapter we give an overview of
the results from the thesis that are valid in the case of arbitrary Hilbert C*-modules (and not
just the standard module).

At the end we would like to recall that a unital C*-algebra is a Hilbert module over itself
and left multipliers on this algebra are examples of bounded operators that are linear with
respect to this C*-algebra. Thus, our results should be of interest also in this particular case.



Chapter 2

Preliminaries

Throughout this thesis we always assume that A is a unital C*-algebra. The material in this
chapter is mainly taken from [35].

For a right module M over a unital C*-algebra A, we shall denote an action of an element
a € Aon M by x-a where xz € M. As a generalization of the classical inner product on Hilbert
spaces, an A-valued inner product on an A-module M is constructed as follows.

Definition 2.0.1. 38, Definition 1.2.1.] A pre-Hilbert A-module is a (right) .A-module M
equipped with a sesquilinear form (-,-) : M x M — A with the following properties:
(1)(z,z) > 0 for any x € M,
(17)(x,x) = 0 implies that x = 0;
(1ii)(y, x) = (z,y)* for any x,y € M;
(iv)(z,ya) = (x,y)a for any z,y € M and any a € A.
The map (-, ) is called an A-valued inner product.

Below are some examples.

Example 2.0.2. |38, Example 1.2.2] Let J C A be a right ideal. Then J can be equipped with
the structure of a pre-Hilbert .A-module with the inner product of elements x,y € J defined by

(x,y) := x*y.

Example 2.0.3. [38, Example 1.2.3] Let {J;} be a countable set of right ideals of a unital
C*-algebra A and let M be the linear space of all sequences (z;),z; € J; satisfying the con-
dition >, || @; [|*< oo. Then M becomes a right A-module if the action of A is defined by
(x;) - a := (z;a) for (x;) € M,a € A, and becomes a pre-Hilbert A-module if the inner product
of elements (z;), (v;) € M is defined by ((x;), (vi)) == >, ;i

In the similar way as in the case of Hilbert spaces, the A-valued inner product on M induces
. 1
a norm on M given by || z |m=]|| (z, ) ||2 for all x € M.

Proposition 2.0.4. [/3] [35, Proposition 1.2.4] The function || - ||xm is a norm on M and
satisfies the folloving properties:

(@) |- allm<llzllac-[[all for any z € M,a € A;

(i) (z, y)(y, x) <y [ (z, x) for any x,y € M;

(@id) || (=, 9) I @ [l v [[ag for any 2,y € M.

Note that the properties (i7) and (éii) generalize Cauchy—Bunyakovsky—Schwarz inequality
for inner product on Hilbert spaces.

Definition 2.0.5. [38, Definition 1.3.2] A pre-Hilbert A-module M is called a Hilbert C*-
module if it is complete with respect to the norm || - || -



Chapter 2. Preliminaries

Below are some examples.

Example 2.0.6. |38, Example 1.3.3] If J C A is a closed right ideal, then the pre-Hilbert
module J is complete with respect to the norm | - [[;=|| - || . In particulaar, the unital
C*-algebra A itself is a free Hilbert A-module with one generator.

Example 2.0.7. [38, Example 1.3.4] If {M,} is a finite set of Hilbert .A-modules, then
one can define the direct sum @©M;. The inner product on &M; is given by the formula
(x,y) == > (x;,y;) where v = (z;),y = (y;) € ®M,;. We denote the direct sum of n copies of a
Hilbert module M by M" or L,,(M).

In the case when M = A, we will simply denote L,,(A) by L, in the rest of the thesis.

Example 2.0.8. [38, Example 1.3.5] If {M;},7 € N, is a countable set of Hilbert .A-modules,
then one can define their direct sum @M, to be the set of all sequences x = (x;) : x; € M,
such that the series ) .(x;,¥;) is norm-convergent in the C*-algebra A. Then we define the
inner product by

<I7y> = Z(Iwy’b> for €,y € @MZ

(2

With respect to this inner product &M, is a Hilbert A-module. If each M; = A, then we will
denote ®M; by H 4. This module is called the standard module over A. So, in other
words Hy = 12(A). If A is unital, then H4 = [*(A) has natural orthonormal basis {e;}en.

There are also some other interesting examples of C*-modules. We can for example consider
L*(Q, i, B(H)), for more details we refer to [26] and [27].

Let N C M be a closed submodule of a Hilbert C*-module M. In the same way as for
Hilbert spaces, we define the orthogonal complement N+ by the formula

Nt={yeM:(z,y) =0 forall z € N'}.

By Proposition 2.0.4 part (i) it follows that Nt is a closed submodule of the Hilbert C*-
module M. However, the important difference from Hilbert spaces is that the equality M =
N @ Nt does not always hold, as the following example shows.

Example 2.0.9. [38, Example 1.3.7] Let A = C]0,1] be the C*-algebra of all continuous
function on the segment [0, 1]. Consider, in the Hilbert A-module M = A, the submodule
N = Cy(0,1) of functions that vanish at the end points of the segment. Then, obviously,

Nt =0.

By the symbol & we denote the direct sum of modules as given in [35].

Thus, if M is a Hilbert C*-module and M;, M, are two closed submodules of M, we write
M = My®M, if My N My = {0} and M; + My, = M. If, in addition M; and M, are mutually
orthogonal, then we write M = My & M.

If M and N are two Hilbert C*-modules over a unital C*-algebra A, then amap T : M — N
is called an A-linear operator if T'(x - «) = T'(z) -  for all z € M and o € A. In particular this
means that 7" is linear because

TAx)=T(x-A)=Tzx- A\l =\Tx

for all A € C. The set of all bounded, A-linear operators from M into N will be denoted by
B(M, N).

To simplify notation, for F' € B(M, N) we will throughout this thesis simply write ImF~*
and ker F1 instead of (ImF)* and (ker F')*, respectively.

7
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Lemma 2.0.10. Let M be a Hilbert C*— module and suppose that M = M,®M, for some
Hilbert submodules My and M,. Then M = My & My, where we consider the direct sum of M;
and M in the sense of Example 2.0.7.

Proof. We define in a natural way the map ¢ : M — M; & M, given by «(x) = (Mz, (I —M)(x))
where M denotes the projection of M onto M; along M,. This map is well defined and bijective
since M = M,®M, by assumption. Moreover, it is A—linear. It remains to show that ¢ is
bounded. However, by the definition of direct sum of Hilbert modules given in Example 2.0.7,
for all x € M, we have

o) 7=l (M2, P) + (I = M)z, (I = M)z) |

<[l (M, May) [| + | (I = M)z, (I = M)z) ||
=[P P+ 1=z P< A0+ 1= = ]*.
0

An operator T € B(M, N) is said to be adjointable if there exists an .A-linear operator
T* : N — M such that

(Tx,y) = (z, T"y) for all x € M,y € N.

It turns out that in this case T™ is also bounded. The set of all adjointable, bounded, A-linear
operators from M into N will be denoted by B*(M,N). It can be shown that B*(M) is a
C*-algebra, for more details see [38, Section 2.2].

The next example shows that there exist non-adjointable operators on Hilbert C*-modules.

Example 2.0.11. 38, Example 2.1.2] Let A be a unital C*-algebra. As above, the standard
basis of the Hilbert module H 4 consists of the elements e; = (0,---,0,1,0,---), where 1 is the
i-th entry. To each operator T' € B(H,4) one can associate an infinite matrix with respect to
this basis,
[tij) tig = (ei, Tej).
Then the adjoint operator, if it exists, has the matrix [t} ,].
Let A = C([0,1]) and let the functions ¢; € A,i =1,2,--- , be defined by the formula

( 1 1

0 on O,,— and —,,]_ s
1+ 1 7

=<1 at the point x; = 2 1+ !
901 - p 7 9 'l Z+ 1 )
- 1 1
is linear  on |- co; | and |x;, —|.
L 1+ 1 ?

Let T be the operator which has the matrix

Y1 P2 P3
0 0 0
0 0 0

(actually it is an operator from the module H4 to A, thus an A-functional). It is easy to verify
that T is bounded. However, the operator T* is not well defined since it should have the matrix

g 00
g 00

w3 0 0
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and the image of the basis element e; should be an element of H 4 having the first column as
its coordinates and it has to be an element of H 4, which is impossible since the series > ;¢!
is not norm-convergent in the C*-algebra A.

Definition 2.0.12. [38, Definition 1.4.1] Hilbert C*-module M is called finitely generated if
there exists a finite set {x;} C M such that M equals the linear span (over C and A) of this set.
A Hilbert C*-module M is called countably generated if there exists a countable set {z;} C M
such that M equals the norm-closure of the linear span (over C and A) of this set.

Theorem 2.0.13. (Kasparov stabilization theorem) [29] [35, Theorem 1.4.2] Let A be a C*-
algebra and M a countably generated Hilbert A-module. Then M @ H4 = H 4.

Definition 2.0.14. [38, Definition 1.4.4] A Hilbert A-module M is called a finitely generated
projective A-module if there exists a Hilbert .A-module A such that M ®N = L, (.A) for some
n.

As explained in [38, Section 1.4] an element z of a Hilbert C*-module N is called nonsingular
if (x,x) is invertible in the respective C*-algebra.

Theorem 2.0.15. ( Dupré - Fillmore, [9] [78, Theorem 1.4.5] ) Let A be a unital C*-algebra
and let M be a finite-dimensional projective A-submodule in the standard Hilbert A-module
Hy,. Then

(i) The nonsingular elements of the module M* are dense in M=;

(it) Hy = M & M*;

(i) M+ = H 4.

Theorem 2.0.16. [9/, [78, Theorem 1.4.6] Let A be a unital C*-algebra and let M be a
finitely generated projective Hilbert submodule in an arbitrary Hilbert A-module N'. Then N =
Mo M.

Let M be a Hilbert C*—module over a unital C*—algebra A. We set K*(M) to be the
closure in the norm topology of the linear span of the operators 6, ,, where z,y € M and
0,4(2) =x <y,z>forall z€ M. In [38, Section 2.2| the operators 0, , are called elementary
operators. The set K*(M) is a closed, two sided self-adjoint ideal in the C*-algebra B*(M),
see |38, Section 2.2].

Proposition 2.0.17. /35, Proposition 2.2.1] Let H 4 be the standard Hilbert module over a uni-
tal C*-algebra A and let L,(A) C H4 be the free submodule generated by the first n elements of
the standard basis. An operator K € B®(H 4) is compact if and only if the norms of restrictions
of K onto the orthogonal complements L,(A)* of the submodules L, (A) vanish as n — oc.

Definition 2.0.18. [38, Definition 2.3.1] A closed submodule A in a Hilbert C*-module M
is called (topologically) complementable if there exists a closed submodule £ in M such that
N+L=MNNL=O.

The following example shows that there exist topologically complementable submodules
that are not orthogonally complementable, which again illustrates the difference from Hilbert
spaces.

Example 2.0.19. [38, Example 2.3.2] Let J C A be a closed ideal such that the equality
Ja =0,a € A implies that a = 0. Put M := A& J,
N :={(b,b):be J}.
Then
N+ :={(c,—c):cec J}.

9



Chapter 2. Preliminaries

Therefore N ® N+ = J @ J # M. However, the submodule
L=A{(a,0):a€ A} C M

is a topological complement to N in M.

The next theorem is going to be one of the main tools in our proofs. Moreover, this theorem
has several useful corollaries given below.

Theorem 2.0.20. [77] [38, Theorem 2.3.3] Let M, N be Hilbert A-modules and T € B*(M,N)
an operator with closed image. Then

(1) ker T is an orthogonally complementable submodule in M

(i) ImT is an orthogonally complementable submodule in N .

From the proof of Theorem 2.0.20 it follows that ImT is closed if and only if ImT™ is closed.
This fact will be used in several proofs later.

Remark 2.0.21. If M and N are two Hilbert C*-modules and F' € B*(M, N) with the property
that F is invertible, then F~! is also adjointable. In order to see this, we use that, by the
observation above, ImF* is closed since ImF is closed. Moreover, ker F* = ImF+ = {0} and
ImF*+ = ker F = {0}, hence, by Theorem 2.0.20, ImF* = M since ImF* is closed. Thus, F*
is invertible by the Banach open mapping theorem. For any x € M and y € N we have then

(Fly, o) = (Fly, FY(F") ) = (FF 7y, (F7) ") = (y, (F7) ),
so F~! is adjointable and (F~1)* = (F*)~L.

Corollary 2.0.22. [35, Corollary 2.3.4] If P € B*(M) is an idempotent, then its image ImP
18 an orthogonally complementable submodule in M.

Corollary 2.0.23. [78, Corollary 2.3.5] Let M, N be Hilbert A-modules and let F : M — N
be a topologically injective (i.e. || Fx ||>d || x || for some 6 > 0 and for all x € M) adjointable
A-homomorphism. Then F(M) @ F(M)+ = N.

Corollary 2.0.24. [78, Corollary 2.5.6] Let M be a Hilbert A-module and let J be a selfadjoint
topologically injective A-homomorphism. Then J is an isomorphism.

Lemma 2.0.25. [77] [78, Lemma 2.3.7] Let M be a finitely generated Hilbert submodule in a
Hilbert module N over a unital C*-algebra. Then M is an orthogonal direct summand in N.

Corollary 2.0.26. Let A be a unital C*-algebra. Suppose that My and Ny are closed submodules
of H such that Hy = Mi®N,. If Ny is finitely generated, then M; = H 4.

Proof. If Ny is finitely generated, then by Lemma 2.0.25 we have H4 = N; & Ni-. Now, by the
Dupre-Filmore Theorem 2.0.15. we get Ni- = H 4. Hence

M, = Ni- = Hy.
O

As explained in the beginning of |38, Section 2.5], for a Hilbert .A-module M we denote by
M’ the set of all bounded A-linear maps from M to A. The formula

(f -a)(z) = a" f(x),

where a € A, introduces the structure of right A-module on M’. This module is complete with
respect to the norm || f ||= sup{|| f(x) ||:]|  ||< 1}. Such modules are called dual (Banach)
modules. The elements of the module M’ are called functionals on the Hilbert module M.
Note that there is an obvious isometric inclusion M C M, which is defined by the formula
r— (z,-) =17.

10
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Definition 2.0.27. [38, Definition 2.5.1] A Hilbert module M is called self-dual if M = M’.

Proposition 2.0.28. [/3] [75, Proposition 2.5.2] Let M be a self-dual Hilbert A-module, N
an arbitrary Hilbert A-module and T € B(M,N). Then there exists an operator T* : N' — M
such that the equality (x,T*y) = (Tx,y) holds for allz € M,y € N.

Corollary 2.0.29. /75, Corollary 2.5.8] Let M be a self-dual Hilbert A-module. Then B*(M) =
B(M).

Lemma 2.0.30. Let M be a self-dual Hilbert C*-module and suppose that M = M,®M, for
some Hilbert submodules My and Ms. Then, both My and My are self-dual.

Proof. We have that M; and M, are the kernels of the bounded, A-linear projections. By
combining Corollary 2.0.29 and Theorem 2.0.20 it follows that M; and M, are orthogonally
complementable in M. Let P denote the orthogonal projection onto M;. If ¢ € M, then
@ o P € M'. Hence there exists an y € M such that (¢ o P)(x) = (y,z) for all x € M. In
particular, ¢(z) = (p o P)(z) = (y,2) for all z € M since z = Pz in this case. Thus, for all
z € My we have ¢(2) = (y,z) = (Py, z).

O

Lemma 2.0.31. Let Mand N be two Hilbert modules over a C*-algebra A. Suppose that M is
self-dual and M = N. Then N is self-dual as well.

Proof. Let U : M — N be an isomorphism. If ¢ € N’ then ¢ o U € M’. Hence there exists an
xg € M such that o(U(x)) = (z, ) for all x € M. This gives p(y) = p(UU'y) = (xo, U y)
for all y € N. Since M is self-dual by assumption, U is adjointable by Proposition 2.0.28.
Moreover, by Remark 2.0.21 we have that U~! is then adjointable and (U~')* = (U*)~!. Hence
we get ¢(y) = (zo, U ty) = ((U*)'zg,y) for all y € N. Since ¢ € N’ was chosen arbitrary, it
follows that N is self-dual. O

Proposition 2.0.32. [78, Proposition 2.5.4] Let M be a self-dual Hilbert A-module and let
MCN. Then N = M & M+

Lemma 2.0.33. Let M be a Hilbert C*-module and suppose that M = M,® M, where M, and
My are self-dual. Then M is self-dual as well.

Proof. By Proposition 2.0.32 we have M = M, & Mi-. Clearly, Mi- = M, hence, by Lemma
2.0.31, Mi- is also self-dual. Let P denote the orthogonal projection onto M;. If ¢ € M’, then
¢ =poP+po(l—P). Since p|,, € Mj, there exists an x; € M, such that ¢(z) = (zy,z) for
all x € M;. Hence ¢(P(y)) = (w1, Py) for all y € M. Similarly, there exists an z{ € M- such
that o((I — P)(y)) = (a1, (I — P)y) for all y € M. Therefore, for all y € M we get

o(y) = o(P(y)) + »((I = P)y)

= <:L'1,Py> + <l‘i‘, (I - P>y> = <l’1,y> + <£Ci_,y> = <£IZ‘1 +xf,y>.

The next theorem is originally given in [10].

Theorem 2.0.34. [75, Theorem 2.7.5] Let H = M®N where M and N are closed A-modules
and N has a finite number of generators a,,--- ,as. Then N is a projective A-module of finite

type.

This theorem has several consequences and is also going to be one of the main tools in our
proofs.

11
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Corollary 2.0.35. Let P € B%(H 4) and suppose that P is projection onto a finitely generated
closed submodule. Then P € K*(H 4).

Proof. Let M = ImP, then M is finitely generated. By Lemma 2.0.25 we have H4 = M & M*.
Then, by Theorem 2.0.34 there exists an n € N such that p,,, is an isomorphism onto p,(M),
where p,, stands for the orthogonal projection onto L,,.

Now, since M is orthogonaly complementable in H4, we have p,, € B*(M,p,(M)). Hence
(Pny,,)~" € B*(pa(M), M) by Remark 2.0.21. Moreover, since M is orthogonally comple-
mentable, we have Jy, € B*(M, H,) where Jy; stands for the inclusion of M. Next, since M
is finitely generated, by Remark 2.0.68 p, (M) is finitely generated, hence it is orthogonally
complementable by Lemma 2.0.25. Let @) denote the orthogonal projection onto p,(M). Then
we obtain

P = JM(p"|M)_1Qpn|MP = JM(p”|M)_1QpnP'

By Proposition 2.0.17 it follows that p, € K*(H4), hence P € K*(H,) since K*(H,4) is a
two-sided ideal in B*(H ). O

Next, we recall the definition of the K-group of a C*-algebra A.

Definition 2.0.36. [30] [38, Definition 2.7.1] Let M be an abelian monoid. Consider the
Cartesian product M x M and its quotient monoid with respect to the equivalence relation

(m,n) ~ (m',n') < Ip,q: (m,n) + (p,p) = (M, n’) + (q,q).

This quotient monoid is a group, which is denoted by S(M) and is called the symmetrization
of M. Consider now the additive category P(A) of projective modules over a unital C*-algebra
A and denoted by [M)] the isomorphism class of an object M from P(A). The set ¢(P(A)) of
these classes has the structure of an Abelian monoid with respect to the operation [M]+ [N] =
[M @ NT. In this case the group S(¢(P(A))) is denoted by K(A) or Ky(A) and is called the
K-group of A or the Grothendieck group of the category P(.A).

As regards the K-group Ky(A), it is worth mentioning that it is not true in general that
[M] = [N] implies that M = N for two finitely generated Hilbert modules M, N over A. If
Ko(A) satisfies the property that [N] = [M] implies that N = M for any two finitely generated,
Hilbert modules M, N over A, then Ky(.A) is said to satisfy "the cancellation property", see
[53, Section 6.2].

Finally we are ready to recall the definition of a Fredholm operator on a Hilbert C*-module
originally given by Mishchenko and Fomenko in [10].

Definition 2.0.37. [38, Definition 2.7.4] A (bounded A-linear) operator F' : Hyq — Hy4 is
called (adjointable) A-Fredholm if

(1) it is adjointable;

(ii) there exists a decomposition of the domain, H4 = M;®N, and the range H4 = My®N,
(where My, My, N7, N3 are closed A-modules and N7, N5 have a finite number of generators),

such that I’ has the matrix form F = [ Fol ]g
2
B = F\Ml

Theorem 2.0.38. [72], [958, Theorem 2.7.6] In the decomposition mentioned in the Definition
2.0.37 one always can assume that the modules My and My are orthogonally complementable.
More precisely, there exist decompositions for F,

o0
0 Fy

} with respect to these decompositions and

: M1 — M is an isomorphism.

} c Hy = VodWy — VidW, = Hy
such that VOL@VO = H 4 or such that projections Vo@Wy — Vi and Vi®OW, — V; are adjointable.

12



Chapter 2. Preliminaries

Proof. Although the proof of this theorem is already given in [38], we will provide here a

slightly different proof. Let Hy = My®Ny — M@SN, = H4 be a Fredholm decomposition
for F. Observe first that, since Ny is orthogonally complementable by Lemma 2.0.25, then

Hy = My®Ny = Ny & Ny,

so My, is an isomorphism from N onto M, where My, stands for the projection onto M
Oyt 0 ’ Oyt
0 0

along Nj restricted to Ng-. Observe next that, since FI(My) = M; and F(Ny) C N;, we have
I_IJ\/hF|Nl = F|_|M0| K where My, stands for the projection onto M, along NV;. Since EMO is
0 N,

0
an isomorphism, it follows that My, F|

v = Fpg, . is an isomorphism as a composition of
0 Ng

isomorphisms. Hence, with respect to the decomposition

H.A = Né‘ D NQLMléNl - HA,

Fy 0
Fs Fy |’

where Fy = M1F|N | Is an isomorphism. Using the technique of diagonalization as in the proof

F has the matrix

of [38, Lemma 2.7.10|, we deduce that there exists an isomorphism V' such that
Hy=Ni & Ny -5 V(M)EV(Ny) = Hy

is a Fredholm decomposition of F. Moreover, by the construction of V' we have V(N;) = Nj.

Hence
Hy = F(N3)®N;.

]

Definition 2.0.39. |38, Definition 2.7.8] Let the conditions of Definition 2.0.37 hold. We define
the index of F' by
index F' = [ 1] — [ 2] S KO(A)

Theorem 2.0.40. /75, Theorem 2.7.9] The index is well defined.

Proof. Although the proof of this theorem is already given in [35], we will provide here a slightly
different proof. As in the proof of |38, Theorem 2.7.5| we can find an n € N such that

Ln = Pépnu\fl) = Plépn(N{)7pn(Nl> = Nla
pn(N)) 2 N{,P=MNL,, P =M NL,,
where
H.A = MléaNl i) MQ@NQ — HA,
Hy=M&N - MYGN, = Hy,

are two Fredholm decompositions of F' and P, P' are finitely generated. We obtain new Fred-
holm decompositions for F),

Hy = LE&(PEN,) -5 F(LHE(F(P)HV ™ (Ny)) = Ho,

13
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Ha = Ly&(P'ON]) = F(Ly)S(F(P)SV'(N3)) = Ha,
where V, V' are isomorphisms. Moreover,
Ly = F(Ly),P= F(P), F(P') =P
This works as in the proof of [38, Lemma 2.7.11]. Since
Ha = F(L,)OF(P)OV ™ (N2) = F(Ly)DF(P)V' ™ (Ny),

we deduce that

(F(P)BVTH(N2)) 2= (F(P)V'™ (Ng)),

hence
[F(P)] + [N2] = [F(P)] + [N3].
Moreover,
[P]+ [N1] = [P'] + [Vy] = [Ln)]
and
[F(P)] = [P],[F(P)] = [P].
Therefore, [N7] — [No] = [N]] — [N5]. O

In order to generalize the sign of the index when the index takes values in the K-group, we
are going to introduce the following definition and notation.

Definition 2.0.41. [21, Definition 2| For two closed submodules Ny, N5 of a Hilbert C*-module
M we write N7 =< Ny when N is isomorphic to a closed submodule of N,.

The idea for this concept is originally taken from [7] where this concept was introduced in
connection with Banach spaces. More precisely, our Definition 2.0.41 is inspired by |7, Definition

4.2].
Next we recall some important properties of A-Fredholm operators.

Lemma 2.0.42. /78, Lemma 2.7.10] Let an operator F' : Hy — H 4 be adjointable A-Fredholm.
Then there exists a number € > 0 such that any adjointable operator D satisfying the condition

| F — D ||< € is an A-Fredholm operator and
index D = index F.
Lemma 2.0.43. [75, Lemma 2.7.11] Let F' and D be A-Fredholm operators,
F:Hy—H, D:Hy— Hy
Then DF : Hq — Hy4 is an A-Fredholm operator and
index DF' = index D + index F.

Lemma 2.0.44. [75, Lemma 2.7.12] Let K : Hq — Hy belong to K € K*(Hy). Then I + K
is an A-Fredholm operator and index (I + K) = 0.

Lemma 2.0.45. /78, Lemma 2.7.13] Consider an A-Fredholm operator F : Hy — H 4 and let
K € K*(H4). Then the operator F + K is A-Fredholm and index (F' 4+ K) = index F.

These results regarding .A-Fredholm operators are originally given in [10].
Now we are going to recall some special properties of Hilbert W*-modules.

14
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Theorem 2.0.46. [/5], [75, Theorem 3.2.1] Let M be a Hilbert A-module where A is a
W*-algebra. An A-valued inner product (-,-) admits an extension to the Banach module M,
making it a self-dual Hilbert A-module. In particular, the extended inner product satisfies the

equality (f,x) = f(x) for allx € M, f € M.
The next results are originally given in [10)].

Lemma 2.0.47. [78, Lemma 3.6.1] Let M be a self-dual Hilbert C*-module over a W*-algebra
A. For each closed submodule N' C M the biorthogonal set N+ C M is a Hilbert A-submodule
and is a direct summand of M, as well as its orthogonal complement N'*.

Lemma 2.0.48. [75, Lemma 3.6.2] Let ¢ be a bounded A-module morphism of a self-dual
module M over a W*-algebra A. Then the kernel ker(¢) of the map ¢ is a direct summand in
M and satisfies the equality ker ¢ = ker(¢p)*+.

Example 2.0.49. |38, Example 3.6.3] Note that the kernel of a bounded .A-linear operator on a
Hilbert A-module over an arbitrary C*-algebra A need not be a direct summand. For example,
consider the C*-algebra A = C([0,1]) of all continuous functions on the segment [0, 1] as a
Hilbert A-module over itself equipped with the standard inner product (a,b)4 = a*b. Define
the mapping ¢, by the formula ¢,(f) = g - f for the fixed function

—2r+1 ifzx<
g(z) =
0 if & >

| N | =

and for every f € A. Then ker ¢, equals the Hilbert A-submodule and the (left) ideal

{fGA:f(z):Ofoer[O,%]}

is not a direct summand of A, but coincides, nevertheless, with its bi-orthogonal complement

in A.

Corollary 2.0.50. [75, Corollary 3.6.4] Let ¢ : M — N be a bounded A-linear mapping of
self-dual modules over a W*—algebra A. Then the kernel of ¢ is a direct summand of M and
has the property ker ¢ = ker(¢p)L+.

Remark 2.0.51. The assumption in Corollary 2.0.50 that NV is self-dual may be omitted. Indeed,
we recall that there is an isometric inclusion from N into N'. Let J denote this isometry and
consider the map J o : M — N’. By Theorem 2.0.46 N’ is a self-dual Hilbert W*-module,
hence, by Corollary 2.0.50, ker J o ¢ is a direct summmand in M. However, ker J o ¢ = ker ¢
since J is an isometry. Therefore, throughout the thesis whenever we apply Corollary 2.0.50
we will not assume that N is self-dual.

The next lemma is a modified version of |38, Corollary 3.6.7].

Lemma 2.0.52. Let M and N be self-dual Hilbert A-modules (where A is a W*-algebra ). If
there exists an injective module mapping o from M into N, then there exists a Hilbert A-module
isomorphism between M and a direct summand of N.

Proposition 2.0.53. [10], [38, Proposition 3.6.8], Let M and N be countably generated Hilbert
A-modules over a W*—algebra A and let F : M — N be an A-Fredholm operator. Then ker F
and (ImF)* are projective finitely generated A-submodules and index F = [ker F] — [(ImF)"]
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This proposition shows that Fredholm operators over a W *-algebra behave more similarly
to the classical Fredholm operators on Hilbert spaces than in the general C*-algebra case.

Now we are going to recall the results on non-adjointable compact and Fredholm operators
on Hilbert C*-modules. We start with the following definition.

Definition 2.0.54. |17, Definition 1| An A-operator K : H4 — H 4 is called a finitely generated
A-operator if it can be represented as a composition of bounded A-operators f; and f:

K:Ha D M2 1y,

where M is a finitely generated Hilbert C*-module. The set FG(A) C B(H4) of all finitely
generated A-operators forms a two sided ideal. By definition, an A-operator K is called compact
if it belongs to the closure

K(Ha) = FG(A) C B(Ha),

which also forms two sided ideal.

As observed in [17], in general, the set FG(A) C B(H4) is not a closed subset. For example,
in classical case, when A = C the set FG(A) consists of all finite rank operators, while not all
compact operators are finite rank operators if the space is infinite-dimensional.

Lemma 2.0.55. [/7, Lemma 1] The ideal IC(H ) is a proper ideal.

Theorem 2.0.56. [17, Theorem 2] A bounded A-operator K : Hy — Hy is a compact A-
operator iff for any € > 0 there exists a number N such that for any m > N we have || ¢, K ||< e,
where q,, denotes the orthogonal projection onto L.

Corollary 2.0.57. [17, Corollary 1/]Let K : Hy — H 4 be a compact A-operator. Then for any
€ > 0 there exists a number N such that for any m > N we have || ¢, Kqn ||< €.

Definition 2.0.58. |17, Definition 2| A bounded A-operator H4 — H 4 is called a Fredholm
A-operator if there exists a bounded A-operator G such that

id — FG € K(H,),id — GF € K(H,).

Definition 2.0.59. |17, Definition 3] We say that a bounded A-operator F' : Hy — Hy
admits an inner (Noether) decomposition if there is a decomposition of the preimage and the
image Hy = My, & Ny, Hy = My ® N,, respectively, where C*-modules N; and N, are finitely
generated Hilbert C*-modules and if F' has the following matrix form

F:[Fl P

0 F4]1M1@N1—>M2@N27

where I} : M7 — M, is an isomorphism.

Definition 2.0.60. |17, Definition 4] We put by definition index F' = [Ny] — [N;] € Ko(A).

Definition 2.0.61. |17, Definition 5| We say that a bounded A-operator F' : Hy — Hy
admits an external (Noether) decomposition if there exist two finitely generated C*-modules

X7 and X5 and two bounded A-operators Fs, F5 such that the matrix operator

F, = { g %2 } : Hy ® X1 — Hy @ Xo, is an invertible operator.
3

Theorem 2.0.62. [17, Theorem 3] A bounded A-operator F : Hq — H4 admits an external
(Noether) decomposition iff it admits an inner (Noether) decomposition.

16



Chapter 2. Preliminaries

Corollary 2.0.63. /17, Corollary 2] The index constructed by inner or external decomposition
does not depend on the method of decomposition.

Theorem 2.0.64. [/7, Theorem 4] Let K : Hq — H4 be a compact operator in the sense of
definition 2.0.54. Then the operator id + K admits an inner (Noether) decomposition.

Theorem 2.0.65. [/7, Theorem 5] Any Fredholm operator in the sense of Definition 2.0.58
admits both the inner and external (Noether) decomposition.

At the end of this chapter we introduce the following auxiliary technical lemma which will
be useful later in the proofs.

Lemma 2.0.66. Let M be a Hilbert C*-module and My, My be closed submodules of M such
that My C My and M = M,®M] for some Hilbert submodule M. Then My = M@ (M, N M,).

Proof. Since M = M;®M] by assumption and My C M, any z € M, can be written as z = x+y
for some z € M; and y € M]. Now, since M; C M, by assumption, we have y = z — x € M.
Thus, y € M| N M. O

Remark 2.0.67. Lemma 2.0.66 is a slightly modifed version of [19, Lemma 2.6].

Remark 2.0.68. Note that a direct summand in a finitely generated Hilbert module is also
finitely generated. Indeed, if M is a finitely generated Hilbert C*-module and M = M;®N;,
let M denote the projection onto M; along Ny. If {xy,...,2,} is a generating set of M, then,
clearly, {Mzq,...,Mx,} is a generating set of M; as Mx = x for all € My, so M; is finitely
generated. In general, it F' is any A-linear operator on M, it follows that {Fzy,..., Fz,}
is a generating set for F'(M). We are going to use these properties frequently in the proofs
throughout the thesis.

Remark 2.0.69. |21, Remark 8 | If M is a countably generated Hilbert C*-module, then by the
Kasparov stabilization Theorem 2.0.13, M & H,4 = H4. Given an operator F' € B*(M), we

may consider the induced operator F' € B*(M @ H 4) given by the operator matrix [ £0 } .

0 I

It is then clear that if M = M;&N, —— My@&N, = M is a decomposition with respect to which
/

F" has the matrix 10 , where Fj is an isomorphism, then F” has the matrix ! O,

with respect to the decomposition

M®HL = (M ® H)S(N, © {0}) 2 (Mo ® HA)S(N2 @ {0}) = M @ Ho,

where F] is an isomorphism. It follows then that any .A-Fredholm decomposition for F' gives
rise in a natural way to an A-Fredholm decomposition of F’. Moreover, I’ can be viewed as
an operator in B*(H ), as M & H4 = Hy. It follows easily that index F is well defined, since
index F” is so, and in this case index F' = index F”. Thus, Theorem 2.0.40 holds for F. Similarly,
Lemma 2.0.43 also holds for F.

17
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Semi-C*-Fredholm operators

3.1 Adjointable semi-C*-Fredholm operators

In this section we define adjointable semi-.A-Fredholm operators on the standard module H 4
and prove some of the main properties and results concerning these operators. Most of the
results in this section are generalizations of the results in |50, Section 1.2] and |50, Section 1.3]
in the setting of operators on H 4.

Definition 3.1.1. |18, Definition 2.1] Let F' € B%(H4). We say that F' is an upper semi-.A-
Fredholm operator if there exists a decomposition

Hi= MEN, 2 My&N, = Hy

with respect to which F' has the matrix

Fi. 0
0 Fy |’
where F} is an isomorphism, M, My, Ny, Ny are closed submodules of H4 and N; is finitely

generated. Similarly, we say that F' is a lower semi-A-Fredholm operator if all the above
conditions hold except that in this case we assume that N, (and not N7 ) is finitely generated.

Set

MO, (Hy) ={F € B*(H4) | F is upper semi-A-Fredholm },
MO_(Hy) ={F € B*(H,) | F is lower semi-A-Fredholm },
MO(Hy) ={F € B*(H4) | F is A-Fredholm operator on H4}.

Then, obviously, M®(H,) € MO (Hy) N MP_(H,) . We are going to show later in this
section that actually "=" holds.

Next we set MPL(Hy ) = MP,(Hy ) U MP_(Hy). Notice that if M, N are two arbi-
trary Hilbert modules C*-modules, the definition above could be generalized to the classes
MO, (M,N) and MP_(M,N).

Theorem 3.1.2. [18, Theorem 2.2] Let F' € B*(H 4). The following statements are equivalent.
1) F e MO, (Hy).
2) There exists D € B*(H ) such that DF = I + K for some K € K*(H ).

18
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Proof. 2)=- 1) If 2) holds, then DF € M®(H,4) by Lemma 2.0.44. Let
~ DF ~
Hp= M®N, — My®N; = Hy

be a decomposition with respect to which DF has the matrix

(DF), 0
0 (DF) |’

where (DF); is an isomorphism and Ny, Ny are finitely generated. We wish to show that F'(M)
is closed and we will do it by showing that Fj,, is bounded below. Suppose that this is not the
case. Then there exists a sequence {x,} C M; such that ||z,|| = 1 for all n and Fz, — 0 as
n — oo. Since D is bounded, we must have that DFz, — 0 as n — +o00. However, this would
mean that DF is not bounded below on M as ||x,|| = 1 for all n. This is a contradiction since
DEF,, is an isomorphism. Hence we must have that £ is bounded below on M, which means
that F'(M;) is closed.

Now, by Theorem 2.0.38, we may assume that M; is orthogonally complementable in H 4. Hence
F|M1 is adjointable, so, by Theorem 2.0.20, mF|M1 is orthogonally complementable in H 4.

Hence Hy = F(M,) ® F(M;)*. With respect to the decomposition
Hy= M&N, -5 F(My) & F(M)*" = Hy,

F has the matrix [ By P

, where I} is an isomorphism. If we let
0 Fy

1 -RT'R
o=lo "]

with respect to the decomposition
~ U ~
HA = Ml@Nl — Ml@Nl = HA;
then U is an isomorphism and with respect to the decomposition

Hy = U(M)BU(Ny) - F(My) @ F(M,)* = Hy

F' has the matrix 01 ]:9 } . Since N is finitely generated, U(N7) is finitely generated also,
4
hence F' € MO (Hy).
1)=2)
Let
HA == Mlé;Nl i) MQ@NQ — HA
be a decomposition with respect to which F' has the matrix 01 ]g , where F} is an iso-
4

morphism and N, is finitely generated. Since [V; is finitely generated, it is orthogonally com-

plementable in H4 by Lemma 2.0.25. Then, by the proof of Theorem 2.0.38 | we can deduce

that F| | is an isomorphism onto F(N;h). Now, F(Ny™) = ImF Py, ., where Py, 1 denotes the
1

orthogonal projection onto Ni*. Since FPy 1 € B*(H4) and F(N;™) is closed as Fl | isan
1

isomorphism, by Theorem 2.0.20 it follows that F(N;») is orthogonally complementable. With
respect to the decomposition

Hy=N"a@ N, -5 F(NY @ F(NYDY = Hy
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F' has the matrix };1 ?2 ] , where Fy is an isomorphism. Clearly, Fl,Z:} and F, are then
4
adjointable.
—1
Let D be the operator which has the matrix [ F(l) 8 } with respect to the decomposition

Hy=F(NyY) @ F(NY)Y 25Nt @ Ny = Hy.

Then D € B4(H,) and DF = [ 0 0

1 with respect to the decomposition

Hi=NtonN 25 NteonN =H,
0 -1
by Corollary 2.0.35 we have Py, € K*(H4), where Py, denotes the orthogonal projection

onto N;. Now, since KPy, = K and K € K*(H4) is a two-sided ideal in B*(H 4), we have
K € K*(H_4). Moreover, DF =1 + K. ]

LetK:[

} with respect to the same decomposition. Since [V, is finitely generated,

Lemma 3.1.3. Let M be a Hilbert C*-module and F € B(M). Suppose that

M = My&N, 5 My®N, = M

0

18 a decomposition with respect to which F' has the matriz { 01 r } , where Fy is an isomor-
4

phism. Then Ny = F~1(Ny).

Proof. Obviously, Ny C F~*(N,). Assume now that x € F~'(N,). Then # = m; + n; for some
my € My and ny € Ni. We get Fx = Fmy+Fn; € N,. Since Fmy, € My and Fny; € Ny, we must
have F'm; = 0. As F|M1 is an isomorphism, we deduce that m; = 0. Hence x = ny € N;. O

Notice that Lemma 3.1.3 also holds if we consider arbitrary Banach spaces and not just
Hilbert C*-modules.

Theorem 3.1.4. [15, Theorem 2.3] Let D € B*(H 4). Then the following statements are equiv-
alent.

]) D e M(I)_(HA).

2) There exist F' € B*(Ha), K € K*(H4) such that DF =1 + K.

Proof. 2) = 1)
Let
~ I+K ~
HA = M ®N; — Ms®B N, = HA.
be an M®-decomposition for I + K. As in the proof of Theorem 3.1.2, we deduce that F(M)
is closed and orthogonally complementable in H 4.

With respect to the decomposition

Hy = F(M)®F(M)" 25 My®N, = Hy,

D has the matrix [ Dy Dy

0 D } , where D; is an isomorphism. As in the proof of Theorem
4

D
3.1.2, part 2) = 1), we deduce then that D has the matrix [ 01 lg } with respect to the
4
decomposition
Hy = UF(M)EU(F(M)Y) 25 Mo®Ny = Hoy,
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where U is an isomorphism. Since N, is finitely generated, it follows that
D e MCI)_(H A).
1)=2)
Let )
Ha= M/&N, 25 MyENy = Hoy
be an M®_-decomposition for D ( so that N} is finitely generated ). Since N is finitely
generated, it is orthogonally complementable by Lemma 2.0.25. Now, since

Ha = My®N, = Ny &N,

we have that PNéJ_‘ is an isomorphism from M} onto N}*, where P+ denotes the orthogonal
Mj

D, 0

with respect to the decomposition
0 Dy

projection onto NQL. Since D has the matrix [

Hy = M/®&N, 25 M)BN, = Hy,
where D; is an isomorphism, by Lemma 3.1.3 it follows that D~'(Nj) = N;. Therefore,
ker Py,.D = D YNjy) = Nj

and moreover, ImPy,. D = Py, (Mj) = N} which is closed. By Theorem 2.0.20, ker Py D =

N7 is orthogonally complementable, so Hy = ]V{L @ N7. Hence M My, is an isomorphism from
Nyt

N{l onto Mj, where My denotes the projection onto Mj along Nj. Therefore, PNéL Dn M},

N+

is an isomorphism from N{l onto NQL as a composition of isomorphisms. However, since

ker Py,. D = Nj and H4 = M]&Nj, it follows that

Hence

PNQLD|N{L = NélD HM{‘N/L
1

Therefore, PNéL D‘N, | is an isomorphism from N{L onto NéL, so with respect to the decompo-
sition 1 b
Hi= N> &N = Nyt @ Ny = Hy,
[ D1 0 < :
D has the matrix b D, | where D; is an isomorphism.
3 Dy
(D1)~!

LetF:[ 0

8 } with respect to the decomposition

Hi=NSaN, 5 NtaN = H,.

1

Then F' € B*(Hy) and DF = | ~ ~_, with respect to the decomposition
DDt 0

Hi=Na N, 25 NP o N, = Hy.

Since NV}, is finitely generated, it follows that if we let the operator K be given by the operator

matrix [ D (l% )1 01 } with respect to the decomposition above, then K € K*(Hy). This
3(1 -

is because Py; K = K, where Py; is the orthogonal projection onto N, and Py; € K*(Hy4) by

Corollary 2.0.35. Moreover, DF' = [ + K. O]
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Lemma 3.1.5. [22, Lemma 2.2] Let M, N,W be Hilbert C*-modules over a unital C*-algebra
A If F € B*(M,N),D € B*(N,W) and DF € M®(M,W), then there exists a chain of
decompositions

M=Mo M -5 F(My)e R -2 WidW, =W
F F Dy D
0 F 1 ! { 0 Dy
Fy, Dy are isomorphisms, F(M3) & R = N and in addition

with respect to which F, D have the matrices [ } , respectively, where

M = M@ My, 25 wiaw, =w
is an M®P-decomposition for DF'.
Proof. By the proof of Theorem 2.0.38 applied to the operator
DF € MO®(M, W),
there exists an M®-decomposition
M = M@ My 25 Waw, =W

for DF. This is because the proof of Theorem 2.0.38 also holds when we consider arbitrary
Hilbert C*-modules M and W over a unital C*-algebra A and not only the standard module
H 4. Then we can proceed as in the proof of Theorem 3.1.2, part 2) implies 1). O]

Lemma 3.1.6. [22, Lemma 2.3] Let M be a Hilbert C*-module over a unital C*-algebra A. If
D e M®_(M), then there exists an M®P_-decomposition for D

M =N*a& N 2 M®N, = M.
Similarly, if FF € M®, (M), then there exists an M® -decomposition for F
M = My®N, =5 Ni @ N, = M.

Proof. From the proof of Theorem 3.1.2 part 1) implies 2) it follows that if F' € M (M),
then there exists a decomposition

M =N{ &N, -5 F(NS) @ F(NS): =M

F F

with respect to which F' has the matrix [ 0 F
4

} , where Fj is an isomorphism and Nj is
finitely generated. Hence
M = N{&U(Ny) -5 F(NS) @ F(NF): =M

is an M®_ -decomposition for F, where U is an isomorphism of M.
Similarly, if D € M®_(M), then, from the proof of Theorem 3.1.4 part 1) implies 2), we
get that there exists a decomposition

M=N'oN N eoN =M

with respect to which D has the matrix [ Dy 0

1 . . . .
, where D; is an isomorphism and N is
D3 Dy

finitely generated. It follows that
M=N>a&N 2 V(N)&N, =M

is an M®-decomposition for D where V' is an isomorphism of M.
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Lemma 3.1.7. Let F € B*(M), where M is a Hilbert C*-module over a unital C*-algebra A.
Suppose that F € M®, (M) and let M = M, N, £, M>®Ny = M be an M -decomposition
for F. Then M = Nj- & Ny - F(NL)®N, = M is also an M®_ -decomposition for F.

Proof. This can be shown by exactly the same arguments as in the proof of Theorem 2.0.38. [J
The key lemma for proving the next results is the following lemma.

Lemma 3.1.8. Let M be a Hilbert C*-module and F € B(M). Suppose that there are decom-
positions
M - MléBNl i) MQ@NQ - M,

M = M&N, L MLEN, = M,

1 0 F|
R A
isomorphisms and Ny, N& are finitely generated. Then Ny and Ni are finitely generated as well.

with respect to which F has matrices , respectively, where Fy, F| are

Proof. We show first that Vs is finitely generated. Let I denote the projection onto N, along
M, and consider the direct sum of modules N;@® N} in the sense of Example 2.0.7. We claim
that the map ¢ : Ny®N) — Ny given by «(z,y') = Fx + My’ is an epimorphism. To see
this, let y € Ny. Then y = y; + v, for some y; € M) and y, € Nj. Since F|Miis an iso-
morphism onto M, there exists an m) € Mj such that F'm] = y;. We can write m) as
m) = my + ny for some m; € M; and n; € Ny. Then we obtain y = Fm; + Fny + ). Hence we
get y =My = MFmy + MNFny + Ny, = Fny + My). Since y € Ny was chosen arbitrary, it follows
that ¢ is an epimorphism. However, N;@® N/ is finitely generated since both Ny and N/ are so
by assumption, hence, by Remark 2.0.68, we must have that N, is finitely generated as well.

Next we show that Nj is finitely generated. Let My, Mgy, My and My, denote the pro-
jections onto M, along N, onto M along Nj, onto Nj along M{ and onto V) along M),
respectively. We claim that the map ¢/ : NJ®&N; — Ny given by

L’(n’z,nl) = HN{Ffl |_|]\42 (TLIQ — |_|M£Fn1) + |_|N{77,1

is an epimorphism. In order to show this, let y = Nj. Then y = my + n; for some m; € M,
and ny € Ni. Set mgo = Fmy, then m; = Fflmg. We get F'y = my+ F'ny. Now, since Nyvy =y
and FMy; = Ny F, we get

Fy=Fny;y ="y Fy =Tyma + Ny, Fng.

Hence mo + F'ny = |_|Né(m2 + F'ny) which gives |_|M2’(m2 + Fny) =0, s0 Mayme = — Mgy Fng.
Therefore, we get
mo = |_|Ném2 + |_|Mém2 = |_|Ném2 — |_|M5F’n,1

So we derive that
Yy =1m; +ny = Fflmg +ny = F1_1(|_|Ném2 - I_IMéFnl) —+ ny

= Fl_l |—]]\42 (HNémz - I_IMéFnl) +ny = Fl_l |—]]\42 (n’2 - I_IMéFnl) —1—n1,

where we put ny = My;ms. Recalling that My;y =y, we obtain that y can be written as
Yy = |_|N{F1_1 |_|M2 (’n,/2 — |_|M5Fn1) + |_|N{’n,1,

where n, € Nj and ny € Nj. Since y € N; was chosen arbitrary, it follows that ./ is an
epimorphism from NJ @& N; onto N{, hence, by Remark 2.0.68, Nj is finitely generated. H
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Remark 3.1.9. From the proof of Lemma 3.1.8 it follows that there exist epimorphisms from
N; @ NJ onto Ny and onto Nj also in the case when N; and N/ are not finitely generated.
Moreover, this holds in the case of arbitrary Banach spaces and not just Hilbert C*-modules.

Corollary 3.1.10. For any Hilbert C*-module M, we have
MO(M) =MD (M)NMD_(M).
Proof. 1t suffices to show ” O 7. However, if F' € M®, (M)NM®P_(M) and
M = My&N, = My®N, = M,

M = M{&N] 5 MyENy = M
are an M®, -decomposition and an M®_-decomposition for F, respectively, then from Lemma
3.1.8 it follows that both these decompositions are M®-decompositions for F. n

Recall from preliminaries that B*(H4) is a C*-algebra and KC*(H4) is a closed two sided
ideal in B*(H 4). Hence B*(H 4)/K*(H 4) is also a C*-algebra, equipped with the quotient norm.
We will call this algebra the Calkin algebra.

Remark 3.1.11. From Theorem 3.1.2, Theorem 3.1.4 and Corollary 3.1.10 it follows that A-Fred-
holm operators on H 4 are exactly those that are invertible in the Calkin algebra B*(H 4)/K*(H 4),
which is well known from before and given in |38, Theorem 2.7.14]. However, notice that Lemma
3.1.8 and Corollary 3.1.10 hold for arbitrary Hilbert C*-modules and not just the standard mod-
ule.

Corollary 3.1.12. Let M be a Hilbert C*-module and F' € M®(M). Then any M® . -decompo-
sition or M®_-decomposition for F' is an M®P-decomposition for F.

Proof. Let
M = My®N, 25 My®N, = M

be an M®_-decomposition for F. Since F' € M®(M) by assumption, there exists an MP-
decomposition for F

M = M&N, 25 MLBN, = M.
In particular, Ny and N/ are finitely generated. We may hence apply Lemma 3.1.8 on these

two decompositions for I’ and deduce that N is finitely generated. The proof of the second
statement is similar. O]

The next lemma is a generalization of [50, Lemma 2.10.1|, originally given in [11].

Lemma 3.1.13. [20, Lemma 1], [21, Lemma 13] Let F' € B(H 4) and suppose that P € B(H 4)
is an adjointable projection such that ker P is finitely generated. Then F € M®P(H,) if and
only if PF}, . € M®(ImP) and in this case

index PFj, , = index F.

Proof. Observe that, since ker P is finitely generated and H4 = ImPO®ker P, it follows by
Corollary 2.0.26 that I'mP = H 4. Hence the index of PFj, , is well defined.

Suppose first that F' € M®P(H ). Since ker P is finitely generated, we have P € M®(H )
also. Hence PFP € M®(H 4) by Lemma 2.0.43.
Let

Hi=MON L MEN = Hy
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be a decomposition with respect to which PF P has the matrix

(PFP), 0
0 (PFP), |’

where (PF'P); is an isomorphism and N, N’ are finitely generated. By the proof of Theorem
3.1.2 part 2) = 1) we know that P(M) is closed. Moreover, by Theorem 2.0.38 we may
assume that M is orthogonally complementable. Hence P~ could be viewed as an adjointable
operator from M into ImP with closed image. By Theorem 2.0.20 P(M) is then orthogonallly
complementable in ImP, that is P(M) ® N = ImP for some closed submodule N . With
respect to the decomposition

Hy=M&N - P(M)&(N&ker P) = Hy,
P P

0 P
with respect to the decomposiotion

P has the matrix

} , where P; is an isomorphism. Hence P, has the matrix [ ];1 12 }
4

Hy=U(M)®U(N) 25 P(M)®(Ndker P) = Hy,

where U is an isomorphism. Since P € M®(H4) and U(N) is finitely generated, by Corollary
3.1.12 it follows that N® ker P is finitely generated. Hence N is finitely generated by Remark
2.0.68.

Next, PFy, ,,, is an isomorhism from P(M) onto M’ . Since P(M) is closed, P(M) is then also
orthogonally complementable in H4 by Theorem 2.0.20 (because P, =€ B*(M, Hy), as M is
orthogonally complementable in H 4 and P is adjointable ). It follows again that PFj () CAI be
viewed as an adjointable operator from P(M) into ImP, so M' is orthogonally complementable
in ImP by Theorem 2.0.20 (since M" = Im(PF, ). Thus, M'@® N’ = ImP for some closed

submodule N’. Now, .

Hy= M&N = M'GN'G ker P,
so it follows that (N'@ker P) = N’. Since N’ is finitely generated, we get that N’ is finitely
generated also. With respect to the decomposition

ImP=PM)oNIZ5 M @ N = ImP,

(PF); (PF),
0 (PF)

ImP

PF has the matrix
IImP

(PF); 0
0 (PF)

] , where (PF); is an isomorphism. Then PF,  has

the matrix [ } with respect to the decomposition
4

ImP =U(P(M)&UN) 25 M @ N' = ImP,

where U is an isomorphism of ImP onto ImP. Since N, N’ and thus also U(N) are finitely
generated, it follows that PF| € M®(ImP).
Conversely, suppose that PF| € M®(ImP). Let

ImP = M&N 25 M'GN' = ImP
be a decomposition with respect to which PFj,  has the matrix

T e
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where N, N’ are finitely generated and (PF);, is an isomorphism. It follows that with respect
to the decomposition

Hy = M&(N&ker P) - M'G(N'@ker P) = Hy,

. F1 F2
F has the matrix [ PR

Fy = My Fj,,, where My denotes the projection onto M’ along N’ ® ker P. However, since
PF maps M isomorphically onto M’ and ImP = M'®N’ , it follows that PF = NwkF,,.
Therefore, Fy = My Fj,, = PF| is an isomorphism from M onto M’. Using the technique of
diagonalization from the proof of Lemma 2.0.42 and the fact that N ker P and N'® ker P are
finitely generated, we deduce that F' € M®(Hy).

It remains to show that index PFj, , = index F. Now, since P € M®(Hy), from Lemma
2.0.43 we get index PFP = index P +index F'+index P = index F| as index P = 0. We recall

that by the above arguments there exists a decomposition

] , where F} is an isomorphism, as F; = (PF'); . Indeed, we have

ImP=PM)®» N5 M @ N' = ImP
with respect to which PF' has the matrix

k|

where (PF); is an isomorphism and N, N’ are finitely generated Hilbert submodules. In addi-

P P

tion, it also follows that P has the matrix { 0 P
4

1 with respect to the decomposition

Hy=M&N -2 P(M)&(N&ker P) = Hy,

where P, is an isomorphism and N is a finitely generated Hilbert submodule. Moreover,

Hy=MON L MaN = Hy
is an M®-decomposition for PFP and N’ = N’ ker P.
Since index PFP = index F, it follows that [N] — [N'] = index F' in K{(A). Next, by
P P

0 P } as in the proof of Lemma 2.0.42, it is easily seen that
4

diagonalizing the matrix {

[N] = [N] — [ker P] = [N] — [N& ker P] = index P = 0.

(PF); (PF)s

0 (PF), } , we obtain that

Similarly, by diagonalizing the matrix [

index (PF, ,)=[N] - [N'].

Finally, [N'] 4 [ker P] = [N'] since N'@ ker P = N’. Combining all this facts together, we obtain
that

index (PF}, ,)=[N]—[N'] = [N] + [ker P] — [N] — [ker P]
— [Ndker P] — [N'@ker P] = [N] — [N'] = index F.
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Chapter 3. Semi-C*-Fredholm operators

From Theorem 3.1.2 and Theorem 3.1.4 we get nice algebraic descriptions of the classes
MP, (Hy) and MP_(H,) in terms of the left and the right invertible elements in the Calkin
algebra B*(H 4)/K*(H 4), respectively. This directly leads to several useful corollaries, as given
below.

Corollary 3.1.14. /18, Corollary 2.5] M®,(H4) and MP_(Hy) are semigroups under the
multiplication.

Proof. The statement follows directly from Theorem 3.1.2 and Theorem 3.1.4, as M®, (H )
consists of all elements that are left invertible in the Calkin algebra whereas M®, (H 4) consists
of all elements that are right invertible in the Calkin algebra. [

Corollary 3.1.15. [18, Corollary 2.6/ Let F,D € B*(Hu). If DF € M®,(Hy,), then F €
MO, (H4). If DF € M®_(Hy), then D € M®_(H.).

Proof. Suppose that DF' € M®(H,). By Theorem 3.1.2 there exists some C' € B*(H4) and
K € K*(H4) such that CDF = [+ K. Again, by Theorem 3.1.2 it follows that F' € M®_ (H 4).
The proof of the second statement of Corollary 3.1.15 is similar. m

Corollary 3.1.16. [/5, Corollary 2.7 Let F,D € B*(H,). If DF € M®,(Hy) and F €
MOP(H,), then D € MO (Hy). If DF € M®_(Hy) and D € M®P(Hy), then F € M®P_(Hy).

Proof. Suppose that DF € M®_(H,4) and F € M®(H4). By Theorem 3.1.2 there exist some
C € B*(Hy),K € K*(H,4) such that CDF = I + K, as DF € M®_(H4) by assumption.
Moreover, since F' € M®(H 4), by Theorem 3.1.4 there exist some F' € B*(Hy), K' € K*(H )
such that FF' = I + K'. Hence

CDFF' = (CDF)F' = (I + K)F' = F + KF,

CDFF' =CD(FF')=CD(I+K')=CD+ CDK'.
Therefore, FF' + FKF' = FCD + FCDK'. So we get that

FCD=FF +FKF —FCDK'=1+ K'+ FKF' — FCDK'.

Since K' + FKF' — FCDK' € K*(H4), by Theorem 3.1.2 it follows that D € M®, (H4).
The proof of the second statement of Corollary 3.1.16 is similar. O

Corollary 3.1.17. [18, Corollary 2.8] Let F,D € B*(Hu). If D € M®,.(H4) and DF €
M®(H ), then D € M®(H.4). If F € M®_(H,) and DF € M®(H.4), then F € M®(H.4).

Proof. Let D € M®(H,) and DF € M®(H,). Since DF € M®(H4), by Theorem 3.1.4
there exist some C' € B*(H4), K € K*(H_,4), such that DFC' = I + K. By Theorem 3.1.4, we
have then that D € M®_(H4). So D € M, (HA ) NMP_(H4). However, by Corollary 3.1.10,
MCI)(HA) = M(I)+(HA) N MCI)_(HA), so D e M@(HA)

The proof of the second statement of Corollary 3.1.17 is similar. O

Corollary 3.1.18. [18, Corollary 2.9/ If D € M®(H4) and DF € M®(H,), then F €
MO(Hy). If F € M®(H4) and DF € M®(H.4), then D € M®(H.).

Proof. Suppose that D € M®(H ) and DF € M®(H,). Since DF € M®P(H 4), by Theorem
3.1.4 there exist some C € B*(Hy), K € K*(H,4) such that DFC = I + K. Moreover, since
D € M®(H,), by the Theorem 3.1.2 there exist some D' € B*(H,4), K' € K*(H4) such that
D'D =1+ K'. Hence

D'DFC = D'(DFC) = D'(I + K) = D' + D'K,
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D'DFC = (D'D)FC = (I + K'YFC = FC + K'FC.

Thus D'+ D'K = FC+K'FC. Hence D'D+D'KD = FCD+K'FCD. However, D'D = [+ K,
so we obtain [+ K'+ D'KD = FCD+ K'FCD. So, FCD =1+ K'+D'KD — K'FCD. Since
(K'+ D'KD — K'FCD) € K*(Ha), by Theorem 3.1.4 we have that ' € M®_(H4). Now,
since DFF € M®(H,4) € M, (Hy), by Corollary 3.1.15 it follows that F' € M®, (H,4) also.
Hence F' € MO (HA) NMP_(Hy) = MP(H,4) by Corollary 3.1.10.

The proof of the second statement of Corollary 3.1.18 is similar. n

Corollary 3.1.19. /18, Corollary 2.10] It holds that
M. (H) \ MO(H.) and M_(H.1)\ MB(H,)

are two sided ideals in M®P(Hy) and MP_(H,), respectively. In particular, they are semi-
groups under the multiplication.

Proof. Let F,D € M®,(H,) and suppose first that FF € M®, (Hy) \ MP(H,). Since
MO, (H ) is closed under the multiplication by Corollary 3.1.14, it follows that DF' € M®, (Hy).
Now, if DFF € M®(H,), by Corollary 3.1.17 we have D € M®(H,). Then, by Corollary
3.1.18, it would follow that F' € M®(H 4), which is a contradiction. Thus we must have that
DF € MCI)+(HA) \ M‘I’(HA)

Suppose next that D € M®, (Hy) \ M®P(Hy). Again, if DFF € M®(Hy), then, since
D € M®,(H,), by Corollary 3.1.17 we would have that D € M®(H 4), which is impossible.
So, also in this case, we must have that DF' € M® (Hy) \ M®P(Hy).

Similarly, one can prove the statement for M®_(H,4) \ M®(H4). O

In the corollaries above we give pure algebraic proofs by using that semi-.A—Fredholm oper-
ators on H 4 correspond to one-sided invertible elements in the Calkin algebra B*(H 4)/K*(H 4).
It is also possible to give direct proofs of these corollaries by only using the definition of semi-.A-
Fredholm operators and Lemma 3.1.8. We provide these proofs in Section 3.5. The advantage
of such approach is that it can also be applied to the case of arbitrary Hilbert C*-modules and
not just H 4.

Corollary 3.1.20. /78, Corollary 2.11] Let F € B*(M,N) where M and N are Hilbert C*-
modules over a unital C*-algebra. Then F € M®, (M, N) if and only if F* € MP_(N, M).
Moreover, if F € M®(H4), then F* € M®(H4) and index F = —index F*.

Proof. From the proof of Theorem 3.1.2 part 1) = 2) it follows that if I € M®, (M, N), then
for F' and consequently for F™* there exist decompositions

M =M &M+ L5 My My = N,
N=Ma®M+ 5 Mo M- =M,

with respect to which F and F™* have matrices
F F Ff 0
[ 0 F4]’ [FQ* Fj]’

respectively, where Fy, F are isomorphisms and M- is finitely generated. Using the technique
of diagonalization as in the proof of Lemma 2.0.42, we deduce that F* € M®_(N, M) since
Mji is finitely generated. The proof is analogue when F € M®_(N, M), only in this case
My is finitely generated and we apply the proof of Theorem 3.1.4 part 1) = 2) instead of
the proof of Theorem 3.1.2 part 1) = 2). If in addition F is in M®(H ), then both Mi" and
Mj are finitely generated. Using again the technique of diagonalization, one deduces easily
that F* € M®(H,) in this case and index F = [M{] — [My], index F* = [M;] — [M{], so
index F' = —index F™. O
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Chapter 3. Semi-C*-Fredholm operators

Closed range semi-A-Fredholm operators can be described in a more similar way as classical
semi-Fredholm operators on Hilbert spaces than arbitrary semi-A-Fredholm operators, as the
following lemma shows.

Lemma 3.1.21. [2], Lemma 12] Let F € B*(M) where M is a Hilbert C*-module and suppose
that ImF' is closed. Then the following statements hold:

a) F € M®P (M), if and only if ker F' is finitely generated;

b) F € M®_(M), if and only if ImF* is finitely generated.

Proof. a) Let

M = MM, = M{&My = M
be an M®_ -decomposition for F. By Lemma 3.1.3 we have that ker FF C F~1(M}) = M,. Now,
by Theorem 2.0.20, ker F' is orthogonally complementable in M. Hence, ker F' is orthogonally
complementable in My, since ker F' C M. This follows from Lemma 2.0.66. Since M, is finitely

generated, it follows that ker F' is finitely generated, being a direct summand in M,.
Conversely, if ker I is finitely generated, then

Hi=ker FX @ ker F - ImF @ ImF* = H,

is an M®,-decomposition for F. Here we use that ImF is closed, which by Theorem 2.0.20
gives
Hy=ImF & ImFt =ker F+ @ ker F.

b) This can be shown by passing to the adjoints and using a). Use that ImF™* is closed if and
only if ImF is closed by the proof of Theorem 2.0.20 part ii). Moreover, F' € M®_(M) if and
only if F* € M®_ (M) by Corollary 3.1.20 and ImF+ = ker F*. O

Lemma 3.1.22. [15, Lemma 2.12] Let M be a closed submodule of H 4 such that Hy = M&N
for some finitely generated Hilbert submodule N. Let ' € B*(H,) , Jy be the inclusion map
from M into H, and suppose that FJy € M®, (M, Hy). Then F € M®,(Hy).

Proof. Consider a decomposition
M - MléMQ Fﬂg MléMQ - HA

with respect to which

(FJu) 0
FJy = ,
M [ 0 (FJa)a
where (F'Jy/); is an isomorphism and M, is finitely generated. Then F' has the matrix
B F
0 Fy

with respect to the decomposition
Hy = My®(Mp&N) — MMy = Hay,
where F} is an isomorphism. Using the technique of diagonalization as in the proof of Lemma

2.0.42 and the fact that My®N is finitely generated since both M, and N are so, we deduce
that F' € M®(Hy). m
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Lemma 3.1.23. [/8, Corollary 2.18] Let F € M®(H ) and let
Ha= M®N, - My®N, = Hy,
HA - MléNl i} MQ@NQ = H_A,

be two M® , -decompositions for F. Then there exist some finitely generated Hilbert submodules
P and P such that (N2 & P) = (Ny & P).

Proof. Since N; and N;’ are finitely generated, by Theorem 2.0.34 there exists an n € N such
that

L, = P@pn(Nl), P =M, N L, p,(Ny)= N and
L, = P’@pn(N{) , P = M{ NnL,, pn(N{) & Nl’,

where p,, denotes the orthogonal projection onto L,,.
Then
Hy= L-®&PON, = L-GP'ON].

and MMy are isomorphisms from L#@P onto M; and from
(L &P) (L&P)
L@ P’ onto M;, respectively, where M My | and MMy, denote the restrictions of pro-
(L &P) (L& P

jections onto M; and M| along N; and Nj restricted to L& P and LE&P’, respectively. Since

Consequently, My,

F(M;) = Ms, F(N;) C Ny and Hq = Mi®Ny,

it follows that
Meaflyy6p) = F[—IMl‘(L#e‘aP)’

where M,/ denotes the projection onto M, along N,. Hence I M2F|(L s is an isomorphism as

P)

a composition of isomorphisms. Similarly, My is an isomorphism, where M7, denotes

F'(L%ésm

the projection onto M along Nj. We get then that F' has the matrices

Fi 0 Fl 0
Fs F, || F} F,
with respect to the decompositions
Ha= (LLtEP)EN, — My&Ny = Ha,

Hy = (L-&P)ON, 5 M)GN, = H y,

respectively, where F,=n o F and Fl’ = My F are isomorphisms. As in the proof

of Lemma 2.0.43, we let

(L &P) (L ®P')

1 0
V= O | L Vi=
-3 1
with respect to the decompositions
Hu = My®Ny 55 Myd Ny = Hoy,
Hy = M)DN, N My®N, = H 4, respectively.

Then F' has the matrices
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Fy 0
0 £,

with respect to the decompositions
Hi= (L-:&P)EN, -5 VI (My)EV Y (Ny) = Hoa,
Hy = (L-&P)ON, 5 v (M)SV' T (NL) = Hy,
respectively, where ]51, }%1’ are isomorphisms. Since
Ha= F(Ly)®(F(P)BV (Vo)) = F(L)S(F(P)EV'™ (Ny)) = Ha,

clearly, we have
(F(P)&V 1 (No)) = (F(P)EV'™ (Ny)).

Hence P @& N, = F(P)&V-Y(N,) = F(P)&V'~L(N}) = P' & N, 0

Remark 3.1.24. The proof of Corollary 3.1.23 is similar to the proof of [18, Lemma 2.16].

3.2 Generalized Schechter characterization

In this section, we describe the set of upper semi-.A-Fredholm operators in terms of some equiv-
alent conditions, generalizing in this settings Schechter characterization of the classical upper
semi-Fredholm operators given in [17] and [50, Section 1.4].

Lemma 3.2.1. [/8, Lemma 3.1] Let F' € B*(M, N) where M and N are Hilbert modules over
a unital C*-algebra A. Then F € M®, (M, N) if and only if there exists a closed, orthogo-
nally complementable submodule M" C M such that F , is bounded below and M'™* is finitely
generated.

Proof. 1f such M’ exists, then F'(M’) is closed in N. Moreover, since M’ is orthogonally com-
plementable, F] , is adjointable. By Theorem 2.0.20, F'(M') is orthogonally complementable
in N. Then, with respect to the decomposition

M=MaeM* L F(M)e F(M')" =N,

i F

0 F, |’
where Fj is an isomorphism.Using the technique of diagonalization as in the proof of Lemma
2.0.42 and the fact that M’ is finitely generated, we deduce that F € M (M, N). On the

other hand, if F € M®, (M, N), then by the similar arguments as in the proof of Theorem
2.0.38 we may assume that there exists a decomposition

F has the matrix

M=MaoM*" L NEN” = N,

with respect to which F has the matrix

Fy 0
0 Fy |’
where F} is an isomorphism and M'* is finitely generated. O]
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Lemma 3.2.2. [/8, Lemma 3.2] Let F € B*(H) \ M®,(Hy). Then there exists a sequence
{zx} € Hy4 and an increasing sequence {ny} C N such that

x € L, N L | 2 [|=1

Ng—17
and
| Fay, ||< 272% for all k € N.

Proof. If F = 0, then the lemma follows trivially.

Suppose that F' € B*(H4) \ M®, (Hy) and F # 0. If I € B*(Hy) \ M®,(H4), then
F is not bounded below by Lemma 3.2.1, hence we may in fact find an #; € Hy4 such that
| Z1 ||= 1+ 4”1F” and || F%l < 5. As || PLyJL_,%l |— 0 when n — oo, there exists an n; € N

such that || Pry Iy II< hence, for ; := PLnla:cl, we have

4HFll
N ~ ~ ~ 1 1 1
| Fay =1 FPy, 3 <1 o+ | PPy 1< 242 = 1
Now,
ENE AN - L
I ||=Z] 1 — L L1 ||= — = 1.
"1 4 Fl 4l F
Set w1 = 1. Then |21 [|=1and || Fay ||= 77 || FZy [[<]| F21 [|< 5 i

Hff [ IIétl\

Suppose next that there exists xq,...,x2p € Hy, n1 < ng < --- S n; that satisfy the
hypotthesis of the lemma. Since F' is not bounded below on L}lk by Lemma 3.2.1, we can

actually find some 9:ck+1 € L,ﬁk such that

- 1 ~
I Fnr =14 2 &7 and | P <2726,

We choose an ny,1 € N such that ng,, > ny and

~ 1
| Pre g || 27 20FD,
" | F

k+1
Then, if we set Ty 1= PLnkH:ikH, by the same a arguments as above we deduce that

| Zy1 [|> 1 and || FZge ||< 9l=2(k+1)

hence, for xpy 1 = Tpe1, we get || zx41 ||= 1 and in addition

1
&gl
| Fapp [|<|| Fips [|< 287200,

Moreover, zp.1 € L N L#k. By induction, the lemma follows. O]

Nk+1

The next lemma is a generalization of [25, Chapter XI, Theorem 2.3(d)].

Lemma 3.2.3. Let FF € M®(H,). Then there is no sequence of unit vectors {x,} in Hu
such that (e, z,) — 0 as n — oo for all k € N and lim,,_,, || Fz, ||=0

Proof. Let D € M®_(H,4) and K € K*(H4) be such that DF = I + K. If K = 0, then
DF = I, which in particularly means that F' is bounded below. Since || z,, ||= 1 for all n € N,
it follows that Fx,, 4 0 as n — oc.

Suppose next that K # 0. Then

A= DFzy | [ = [ 2n || = [| DFzy || | <[[ (I = DF)ay [|=|] Kan || -
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Here we have applied the same arguments as in the proof of |25, Chapter XI, Theorem 2.3]
part (a) = (d). Given € > 0, there exists an N € N such that || K| , [|< % for all n > N, since

n—oo

K € K*(H4). This follows from Proposition 2.0.17. If (e, z,) — 0 for all k € {1,2,--- | N},

then we may choose an M € N such that || {ex, z,) ||< W for all n > M and for all

ke {l,...,N}. Let Py denote the orthogonal projection onto L}VH. Then, for all n > M, we
have

N N

€

| K <1 K Py |+ || Kei {ewza) 1< 5+ D I E N | (er ) [I<e
k=1 k=1

Thus, || Kz, ||— 0, so from the above calculations it follows that || DFz, ||— 1 as n — oo.
Therefore we can not have that || Fx, [|[— 0 as n — oc. O
Corollary 3.2.4. If FF € M®, (H,), then Fe, /4 0 as n — oo.

Corollary 3.2.5. Let F' € B*(H4). Then F € M®_(H_,) if and only if there is no sequence
of unit vectors {xy}ren in Ha satisfying the conditions of Lemma 3.2.2.

Proof. The implication in one direction follows from Lemma 3.2.2. Let us prove the implication
in the other direction. To this end, suppose that F' € B*(H4) and that there exists a sequence
of unit vectors {x, },en C H 4 satisfying the conditions of Lemma 3.2.2. By these conditions, it

follows then that lim, . (ex, z,) = 0 for all £ € N and moreover, lim,_,, || Fz, ||= 0. Hence,
by Lemma 3.2.3, we deduce that F' € B*(H4) \ M®_(H 4), which shows the implication in the
other direction. O

Example 3.2.6. If we consider A as a Hilbert module over itself, then, in general, we can find
closed submodules of A that are not finitely generated. As an example, if A = C([0,1]), then
Co([0,1]) is a Hilbert submodule of A that is not finitely generated. Similarly, if A = B(H)
where H is a Hilbert space, then the closed ideal of compact operators on H is an example of a
Hilbert submodule that is not finitely generated. Let P denote the orthogonal projection onto
Li. Then P € M®(H 4) and ker P = L;. It follows that ker P contains a Hilbert submodule that
is not finitely generated in the case when A = C([0, 1]) or when A = B(H). Compared to [25,
Chapter XI, Theorem 2.3|, this illustrates that .A-Fredholm operators may behave differently
from the classical Fredholm operators on Hilbert spaces.

In chapter 6 we shall give some examples of A-Fredholm operators with non-closed im-
age, which once again illustrates the difference between classical Fredholm operators and A-
Fredholm operators in general.

3.3 Openness of the set of semi-C*-Fredholm operators

In this section we prove that the set of proper semi A-Fredholm operators is open in the norm
topology, as an analogue of the result in [16]. Also, we derive some consequences. The results
in this section generalize the results from |50, Section 1.6].

Recall that M®(H 4) is open in the norm topology by Lemma 2.0.42.

Theorem 3.3.1. [18, Theorem 4.1] The sets M® (H4) \ MP(H), MP_(Hy) \ MP(H4)
are open in B(H 4), where B*(H ) is equipped with the norm topology.

Proof. Let F € M®(H4) \ M®P(H,4). Then there exists a decomposition
HA = MléNl i) MQENBNQ - H_A

with respect to which F' has the matrix
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0

0 Fy |’
where F} is an isomorphism, N; is closed, finitely generated, and N, is closed, but not finitely
generated. If D € B%(H4) such that || D ||< €, then for e small enough we may (by the same

arguments as in the proof of Lemma 2.0.42) find isomorphisms Uj, Uy such that F'+ D has the
matrix

i)

with respect to the decomposition

HA = Ul(Ml)@Ul(Nl) FiD) U;l(Mg)éUg_l(Nz) - HA,

where (F'+ D); is an isomorphism. Since Us is an isomorphism and N is not finitely generated,
it follows that U, *(Ny) is not finitely generated. Now, as F' + D has the matrix

(F+ D), 0
0 (F+ D),

with respect to the above decomposition, where(F + D); is an isomorphism, Uy (V) is finitely
generated whereas U, '(Ns) is not finitely generated, it follows by Corollary 3.1.12 that

(F'+ D) € M (Hy) \ MO(Hy)

(because, by Corollary 3.1.12, if F + D was A-Fredholm, then U, '(N,) would be finitely
generated, which is a contradiction). The first part of the theorem follows, whereas the second
part can be proved in the analogue way or can be deduced directly from the first part by passing
to the adjoints and using Corollary 3.1.20. m

Remark 3.3.2. We recall from Theorem 3.1.2 and Theorem 3.1.4 that the sets
My (Hy) \ MP(H4) and MP_(Hy) \ MP(H,)

can be identified with the set of left invertible, but not invertible elements and with the set of
right invertible, but not invertible elements in the Calkin algebra B*(H,) / K*(H,), respec-
tively.

More precisely,

MO (Ha) \ MO(Hy) = 7~ H(Gi(B*(Ha) / K*(Ha)) \ G(B*(Ha) / K*(Ha)))
and
MO _(Ha) \ MO(Hy) =77 H(Gr(B*(Ha) / K*(Ha)) \ G(B*(Ha) / K*(Ha))),

where 7 : B4(H4) — B*(H4) / K*(H4) denotes the quotient map and Gy, G, and G denotes
the sets of left invertible , right invertible and invertible elements, respectively. Recalling that
G; \ G and G, \ G are open in Banach algebras, and that 7 is continuous, we can deduce
Theorem 3.3.1 also by these arguments. However, our proof of Theorem 3.3.1 can be applied
to arbitrary Hilbert C*-modules and not just H 4, so Theorem 3.3.1 holds also in the case of
arbitrary Hilbert C*-modules.

Corollary 3.3.3. [18, Corollary 4.2] If F € B*(H ) belongs to the boundary of M®(H4) in
BG(HA), then F ¢ M(I):t(HA)
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Proof. The statement follows by the same arguments as in the proof of [56, Corollary 1.6.10]
since

MO, (Ha) \ MP(Ha) = (MP4(Ha) \ MO(Ha)) U(MP_(Ha) \ MP(Ha))
is open in B%(H4) by Theorem 3.3.1. O

Remark 3.3.4. By exactly the same arguments as in the proof of Lemma 2.0.42 it can be shown
that M®, (M) and M®_ (M) are open (where M is a Hilbert C*-module).
Next recall that M®(M) = MP (M) N MP_(M) by Corollary 3.1.10. It follows that

M (M) \ MO_(M) = MB. (M) \ MB(M),
ML(M) \ M, (M) = MS_(M)\ MB(M),

which are both open by Theorem 3.3.1, hence we can in a similar way as in the proof of Corollary
3.3.3 deduce that

OMD, (M) N MPL(M) =0 and OMS_(M) N Mby (M) = 0.

Corollary 3.3.5. [18, Corollary 4.3] Let f : [0,1] — B*(H4) be continuous and assume that
f([0,1]) C MPL(H ). Then the following statements hold.

1) 17 £(0) € MO, (H4)\ MO(HLy), then f(1) € M, (H4)\ MD(HLy).

2) 1F 7(0) € M®_(H.1) \ ME(H.L). then f(1) € M. (H)\ MP(Hy)

3) If f(0) € MP(H4), then f(1) € MP(H,4) and index f(0) = index f(1).

Proof. We have that M®_(H,) is a disjoint union of M®, (H4) \ M®P(H,), MP(H,) and
MO_(H,)\ MP(H4). The first two sets are open by Theorem 3.3.1, whereas M®(H 4) is open
by Lemma 2.0.42. By assumption in the corollary, we have that f([0,1]) € M®L(Hy). Since
f is continuous by assumption, f([0, 1]) must be connected in B*(H 4), hence f(]0,1]) must be
completely contained in one of these three sets M®, (H4) \ MP(H4), MP_(H4) \ MP(H 4)
or M®(H 4)(otherwise we would get a separation of f([0,1]) which is impossible). Thus 1),2)
and the first part of 3) follows.

For the second part of 3), use the additional fact that the index is locally constant on M®(H 4)
by Lemma 2.0.42 . Again, since f([0,1]) is connected and f(0) € MP(H 4) by assumption, it
follows that f([0,1]) € M®(H4) and index f(t) = index f(0) for all ¢ € [0, 1]. O

Recall Definition 2.0.41 from Preliminaries. The next lemma is a generalization of [50,
Theorem 1.6.8|.

Lemma 3.3.6. [19, Lemma 3.22] Let F' € M®(M) be such that ImF is closed, where M is a
Hilbert C*-module. Then there exists an € > 0 such that for every D € B*(M) with || D ||< e,

we have
ker(F' + D) < ker F' and Im(F + D)* < ImF*.

Proof. Since F' € M®(M) has closed image, by Theorem 2.0.20 F' has the matrix [ 181 8 ]
with respect to the decomposition
M = ker Ft&ker F 25 ImF&ImF: = M,

where [} is an isomorphism. By the proof of Lemma 2.0.42, there exists an € > 0 such that if
| F— D ||< € for some D € B*(M), then D has the matrix

Dlp
0 D,
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with respect to the decomposition

M = Uy (ker FH&U, (ker F) 25 Uy (ImF)&U; {(ImF*Y) = M,
where Uy, U; and Dl are isomorphisms. Then, by Lemma 3.1.3 it follows that
ker D C U (ker F) = ker F.

Set D=D — F, then D = F + D. Hence ker(F' + D) < ker F.

Next, by the proof of Theorem 2.0.20, ImF™ is closed if ImF is closed. Hence, by the same
arguments as above, we can choose € > 0 sufficiently small such that if || D* ||< €, then it holds
that ker(F* + D*) < ker F*. However, we have

ker(F™* + D*) = Im(F + D)* , ker F* = ImF* and || D ||=| D* || .
Therefore, it suffices to choose a sufficiently small € > 0 such that if | D ||=|| D* ||< ¢, then

ker(F' + D) < ker F' and ker(F™ + D*) < ker F™*.

3.4 Adjointable semi-C*-Weyl operators

In this section we construct certain classes of operators on H 4 as a generalization of upper and
lower semi-Weyl operators on Hilbert spaces. Then we investigate and prove several properties
concerning these new classes of operators. The results in this section generalize the results from
[56, Section 1.9].

Definition 3.4.1. [18, Definition 5.1] Let F' € M®(H ). We say that F € M®7(H,) if there
exists a decomposition

H.A == MléNl i) MQ@NQ - HA

F, 0
0 F, |’
where F} is an isomorphism, Ni, Ny are closed, finitely generated and N; < N,, that is N;

is isomorphic to a closed submodule of Ny. We define similarly the class ./\;l(I)lL(H A), the only
difference in this case is that Ny < N;. Then we set

with respect to which F' has the matrix

ME(Hy) = (MPL(Ha)) U (MO (Ha) \ MP(Hy))

and

MO (H 4) = (MPT(HA)) U (MP_(Hy) \ MP(Hoy)).

Further, we define M®,(H ) to be the set of all FF € M®(H4) for which there exists an
MP-decomposition
Ha=MGN, - My®N, = Hy,

where N; =& Ns.
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Remark 3.4.2. Notice that Definition 3.4.1 can be extended to the case when F' € B*(M, N)
and M, N are two arbitrary Hilbert C*-modules.

Lemma 3.4.3. [/5, Lemma 5.2] Suppose that Ko(A) satisfies the cancellation property. If
F e M@;(HA), then for any decomposition

Hy= M&N, - MYGN, = Hy
with respect to which I has the matriz
Fl 0
0 F; |’

where FY is an isomorphism_and Ny, Ny are finitely generated, we have Ni < Nj.
Similarly, Ny < N{ if F € M®*(Hy,).

Proof. Given F' € /\;lq)I_(HA), choose a decomposition for F'

HA = MléNl i) MQENBNQ - HA

as described in Definition 3.4.1. Then N; = Ny; < N, for some closed submodule Ny of Nj.
Since V; is finitely generated, so is N 1; therefore, Ny ; is orthogonally complementable in N
by Lemma 2.0.25. So Ny = Ny ; @ Ny o for some closed submodule Ny o of Ns.
Hence

index F' = [Ny] — [Na] = [Na1] — [Nag] — [Nag] = —[Naa).

If Hy = M{®&N| -5 MyBN, = Hy is any other M®-decomposition for F, then we must have
index F = [N{] — [N3] = —[Nap].
Taking the inverses on the both sides of the equality in Ky(A), we get
[Na] = [IV1] = [Naa,
SO
[N3] = [N{] + [Na].

Since
[N{] 4 [Nap] = [N] @ Nao| = [Ny,

it follows that
(N1 @ Nyp) = N,

as Ko(A) satisfies the cancellation property.

Let 7 : N{ & Ny —> Nj be an isomorphism, then, since Nj & {0} is a closed submodule of
the module Ni & Ny, it follows that i(N] @ {0}) is a closed submodule of Nj. Thus we get
(N7 @ {0}) = NJ. However, N; @ {0} = Nj, so N] = NJ. One treats analogously the case when
F € MO (Hy). O

Proposition 3.4.4. Let K € K*(H4) and T € B*(Hy). Suppose that T is invertible and that
Ko(A) satisfies the cancellation property. Then the equation (T + K)x =y has a solution for
every y € Hy if and only if T + K is bounded below. In this case the solution of the above
equation is unique.
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Proof. Since T is invertible, by Lemma 2.0.45 it follows that index (T + K) = 0. Now, if
the equation (T + K)xr = y has a solution for each y € H 4, this simply means that 7"+ K
is surjective. Then, by Theorem 2.0.20, ker(T + K) is orthogonally complementable in H 4.
Therefore, by Lemma 3.1.21 we have that

Hy =ker(T + K)" @ ker(T + K) =5 H, @ {0} = Hy

is also an M®-decomposition for 7'+ K and, thus, index (T'+ K) = [ker(T + K)|. However,
index (T'+ K) = 0. Since Ky(.A) satisfies the cancellation property by assumption, it follows
that ker(7' + K) = {0}, so T+ K is invertible, thus bounded below.
Conversely, if T'+ K bounded below, then, by Theorem 2.0.20, Im(T + K) is orthogonally
complementable in H 4. Thus, again by Lemma 3.1.21 we have that

Hi® {0} 8 Im(T+ K) @ Im(T + K)* = Hyu

is an M®-decomposition for 7'+ K. By the same argument as above, since index (T'+ K) =0
and Ky(A) satisfies the cancellation property, it follows that Im(T + K)* = {0}. O

Example 3.4.5. Let A = B(H), where H is an infinite-dimensional, separable Hilbert space.
If H, is any infinite-dimensional subspace of H, then there exists an isometric isomorphism U
of H onto H;. Set U to be the operator on A given by U(F) = JUF for all F € A where J is
the inclusion of H; into H. Then U € B*(A) and moreover, U is an isometry. Put T to be the

: . 1 0 ) o
operator with the matrix { 0T } with respect to the decomposition

Hi=LieL S LiaL =Hy
Then T' € B%(H,4) and T is bounded below. Moreover, ImT+ = Span4{(P,0,0,0,...)}, where
P is the orthogonal projection of H onto Hi-. However, T'= I + K where K = [ 8 U(i 1 }
with respect to the decomposition Li® Ly — Li @ Ly, hence K € K*(H 4). This shows that the
assumption that Ky(A) satisfies the cancellation property in Proposition 3.4.4 is really needed.

For a € A we may let al be the operator on H,4 given by
al(ry,za,...) = (axy,axs,...).

It is straightforward to check that o[ is an A-linear operator on H 4. Moreover, al is bounded
and || af ||=|| « || . Finally, af is adjointable and its adjoint is given by (al)* = a*1.

We give then the following generalization of the well known Fredholm alternative stated in
[28, Chapter VII, Corollary 7.10].

Corollary 3.4.6. Let K € K*(H4) and o € G(A). Suppose that K(A) satisfies the cancella-
tion property. Then the equation (K — al) x =y has a solution for every y € H 4 if and only
if K —al is bounded below. In this case the solution of the above equation is unique.

Next we present the following lemma.

Lemma 3.4.7. [18, Lemma 5.3] It holds that M®_(H,) and M(I)J_F(HA) are semigroups under
the multiplication.

Proof. Let F, D € M@;(H 4). Then there exist decompositions
H.A == Mlé;Nl i) MQ@NQ — HA,
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Hy= M&N, 2 MYEN, = Hy

131 }2 , { 131 lg 1 , respectively, where F}, Dy
4 4

are isomorphisms, Ny, Ny, N7, NJ are finitely generated and moreover Ny < Ny, N| < N;. By

the proof of Lemma 2.0.43, with respect to the decomposition

with respect to which F, D have matrices

Ha=M&N, 25 Mo&N, = Ha,
DF has the matrix (DE), 0 , where (DF); is an isomorphism,
0 (DP),

N, = U(F7Y(P)®N,), N, = D(P)EN), (PHN,) = (PHN]) = L,

for some n, D)., Fj,, and U are isomorphisms. Since N is isomorphic to a closed submodule of
Ny and FyH(P) = P, it follows that F, '(P)® N; is isomorphic to a closed submodule of P @ Ns.
However, since there are natural isomorphisms between ( (F, ' (P)®&N;)) and ((F; '(P)® Ny)),
between (PHN,) and (P @ N,), it follows that F; '(P)®N, is isomorphic to a closed submodule

of (PON,). As U is an isomorphism, it follows that Ny = U(F; '(P)®N,) is isomorphic to
a closed submodule of P&N,. Now, PN, is isomorphic to P'&N!, so N; is isomorphic to
a closed submodule of P’®N]. Next, using that P’ = D(P’) and that N is isomorphic to a

closed submodule of N, by the same arguments as above (considering direct sums of mod_ules),
we can deduce that (P’®N!) is isomorphic to a closed submodule of (D(P")&N,) = N}, so

N < (P'®N]) < Té Thus, DF € MCI)f(HA). Similarly one can show that /\;l(I)J_r(HA) is a
semigroup. O

Lemma 3.4.8. [15, Lemma 5.4] It holds that M® (H4) and M®*(H 4) are semigroups under
the multiplication.

Proof. Let F, D € M®(H,4). We consider four possible cases.

1) If F,D € M®3(H,), by Lemma 3.4.7 it follows that DF € M®Z(H).

2)If D, F e MP,(Hy)\ MP(Hy), then DF € MO, (H4) \ MP(H 4) by Corollary 3.1.19.

3) If F € MO, (Hy) \ MO(H,) and D € MdS(H,), then in particular D € M®(H )
as M (H4) € M®(H,) by definition. By Corollary 3.1.18, it follows that DF can not
be in M®(Hy) as ' ¢ MP(H,). Now, by definition, MO (H4) C MP,(Hy), so then
F,D € M®(H,). Hence, by Corollary 3.1.14 we have that DF € M®, (H 4) which gives that
DF € M@+(HA) \ M(I)(H_A)

NIt D e Mb (Hg)\ MP(Hy), it is clear that DF' can not be an element of M®(Hy).
Indeed, if DF € M®(H 4), then by Corollary 3.1.15 we would get that D € M®_(H 4) since
MP(H,)) € MP_(Hy). Hence D € MP_(Hy) N MP(Hy)) which is a contradiction as
MO_(H ) N MP,(Hy) = MP(Hy) by Corollary 3.1.10. Again, since DF € M (H,) by
Corollary 3.1.14. it follows that DF € M (H 1) \ MP(H 4).

Collecting all these arguments together, we deduce that M®7(H 4) is a semigroup under the
multiplication. Similarly one can show that M®*(H ) is a semigroup under the multiplication.

O]

Lemma 3.4.9. [18, Lemma 5.5] It holds that M®(H.,) and M®*(H,) are open.
Proof. Given F € M® (Hy), let

Hi= MEN, 25 My&N, = Hy
be a decomposition with respect to which
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[FR 0
-l n ]

where F7 is an isomorphism, Ny, Ns are finitely generated and N; < N,. By the proof of Lemma

2.0.42, there exists an € > 0 such that if | F' — D ||< ¢, then there exists a decomposition
Hy= M&N, 2 MYGN, = Hy

with respect to which

[Dy o
=7 nl

where D, is an isomorphism, and moreover,

M1 = M{,Nl = N{,Mg = Mé and N2 = Né
Let

UliN{ —>N1,U22N2—>Né

be these isomorphisms. Since N7 < Ny, there exists an isomorphism 7 from /N; onto some closed
submodule 7(N;) € Ny. Then UsiU; is an isomorphism from Nj onto (UstU;)(IN1) which is a
closed submodule of NJ. Thus, Nj < N} ( and also Nj, N} are finitely generated as Ny, Ny are
s0). Therefore, D € M®_ (H).

Similarly, we can show that ./\/~l<I>t(H 4) is open. m
Corollary 3.4.10. The sets M®(H,) and MO (H,) are open in the norm topology of
B*(Hy).

Proof. Combine Theorem 3.3.1 and Lemma 3.4.9. m

Definition 3.4.11. [18, Definition 5.6] Let F € M®, (H4). We say that F' € M® ' (H,) if
there exists a decomposition

H.A = MléNl i) MQ@NQ - HA

with respect to which

[FR 0
-l n ]

where F} is an isomorphism, /NV; is closed, finitely generated and N; < N,. Similarly, we define
the class M@fI(HA), only in this case F' € M®_(H,), N, is finitely generated and Ny < Nj.
Such operators will be called semi-A-Weyl operators throughout the thesis.

Proposition 3.4.12. [/8, Proposition 5.7 We have
MO (Hy) = MO (Ha) N MO(Hy) and MO (H ) = MO (H ) N MO(Hy).

Proof. By the definition of the class ./\;I(IDIF(H A), the inclusion ” C 7 is obvious. Let us show the
other inclusion. To this end, choose some D € M®'(H4) N MD(H ). Since D € M®'(H ),
there exists a decomposition

Hy=MON 25 MYON, = Hy

with respect to which D has the matrix [ 0 , where D is an isomorphism, V] is finitely

1
0 Dy
generated and N| =< NJ. On the other hand, since D € M®(H 4), by Corollary 3.1.12, N} must
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be then finitely generated. Hence D € M@:(H A)- Similarly, using Corollary 3.1.12, one can
show that 3
MO (H ) = MO (H, ) N MD(Hy).

Remark 3.4.13. |18, Remark 5.8] Notice that by Proposition 3.4.12 we get
M (Ha) = (MPT(H) N MP(H ) U (ME (Ha) \ MP(H.1)

= M} (Ha) U (MO, (Ha) \ MO (H 1))
C MO (Ha) U (M (Ha) \ MO(H ) = MET(H.1).

Similarly, we obtain that M®* (H4) € M®T(H ).

On Hilbert spaces "=" holds due to that given any finite dimensional subspace N; and
infinite-dimensional subspace N, then N; is isomorphic to a closed subspace of N,. Observe
also that Proposition 3.4.12 holds in the case of arbitrary Hilbert C*-modules and not just H 4.

Lemma 3.4.14. /15, Lemma 5.9] The sets M®Y (H4) and M®Z'(H4) are open. Moreover,
if F e M®, (Hy,) and K € K*(H,), then

(F+ K) € M3, (Hy).
If F e MO (Hy) and K € K*(H.,), then
(F+ K) € MO (Hy).
Proof. Suppose F' € MCDII(H 4) and choose a decomposition
Hi= M®N, = My®N, = H 4

such that N; < Ny as described in the Definition 3.4.11. Then, again by the proof of Lemma
2.0.42, there exists an € > 0 such that if | F'— D ||< ¢, then there exists a decomposition

Hy = M/®&N, 25 M)BN, = Hy,

with respect to which D has the matrix

Dy 0

0 Dy |’
where D; is an isomorphism and N = Ny, Nj = N,. Therefore, by the same arguments as in
the proof of Lemma 3.4.9, we have N| < N} since N; < N,. Thus, D is in MCD;(HA)/ also, so
MO (H,) is open.
Next, let K € K*(Hy4). By the proof of Lemma 2.0.45 we may without loss of generality assume
that there exists an n € N such that /' 4+ K has the matrix

]

with respect to the decomposition

Hu = Ul(LH&UL(PEN,) B8 U P(LY&UL,  (F(P)BN,) = Ha,
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where (F + K),,U;, U} are isomorphisms, L, = Ny®P, P = M; N L,,P = F(P) for some
closed, finitely generated submodule P (here F, Ny, Ny are as given above). Indeed, if

H.A = MléNl i) MQENBNQ - HA

is an M®'-decomposition for F, by Theorem 2.0.34 there exists an n € N such that we
have Hy = L-®PON; for some finitely generated Hilbert submodule P. Since it holds that

[—|M2F1|LJ-Q§P = FI‘IMl‘ B where My, and MMy, stand for the projections onto M; along N; and
n Ly@®P

onto M; along Ns, respectively, it follows easily that F' has the matrix [ Fl }?, } with respect
3 I'4

to the decomposition
Ha = (LE®P)BN, — My®Ny = Hy

where F) is an isomorphism, so there exists an isomorphism V' such that
Hy = (LEGP)EN, == V(My)&V (Ny) = Hoy

is an M®_ -decomposition for F. Then we have N; < Ny = V(N,), so this is actually an
M®'-decomposition for F. Hence we can proceed in the same way as in the proof of Lemma
2.0.45 to obtain the decomposition given above for the operator F'+ K. Now, since N; is iso-
morphic to a closed submodule of Ny, then clearly P®N; is isomorphic to a closed submodule
of F(P)®N, as P = F(P). Therefore, (P&N;) < (F(P)®N,). Since U;, U} are isomorphisms,
then U (PEN,) = Uy " (F(P)&N,), so (F + K) € M®:'(H,). Similarly one proves the state-
ments for M+ (H,). O
Remark 3.4.15. Lemma 3.4.8 follows also from Proposition 3.4.12 and the first statement in
Lemma 3.4.14.

All the results about the classes MQ);(HA),MCI{(HA),MCI):L/(HA),M@JII(HA) such as
Lemma 3.4.7, Lemma 3.4.8, Lemma 3.4.9 and Lemma 3.4.14 are also valid for the class
M®y(H 4) and can be proved in a similar way.

Lemma 3.4.16. The sets M®+(HA>\M®I_/(HA)7 MP_ (HA)\MCI)J_H(HA), M(I)(HA)\M(I)O(HA)
are open.

Proof. Let F € M®,(H,4) \ M®'(H,4) and
Hi=MEN, 2 My&N, = Hy

be an M®_ -decomposition for F. By the proof of Lemma 2.0.42 there exists an € > 0 such that
if || F — D ||< ¢, then D has an M®_ —decomposition

Hi= M&®N,’ 2 M)GN, = Hy,

where M; = M|, Ny = Ny, My = M} and Ny = Nj. Suppose that D € M®'(H 4). Then there
exists an M®'—decomposition for D,

Ha= M{GN] =5 MyON] = Ha,

which means in particular that N,” is finitely generated and N;” < N,”. By the proof of Lemma
2.0.43 there exists an n € N and finitely generated Hilbert submodules P’ P” such that

Hy= L:&(P'&N]) 2 D(LH)E(D(P)&V'(N}) = Ha
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and
Hy = Li®(P"&NY) =5 D(LE)&(D(P")&V"(N})) = Ha

are two M®_, —decompositions for D, where V and V" are isomorphisms. It follows that
P'&N] = P'&N! and D(P)&V'(N}) = D(P")&V"(NY).

Moreover, M| = LE&P, M] & L-&P", My = D(L)&D(P'), My = D(L)&D(P"), D(P') =
P’ and D(P") = P". Since Ny < Nj, we get that

P”@N{, j D(P//)évl/(Né/)
Hence we obtain that
P’éN{ & P”ETBN{’ < D(P”)éV”(Né’) — D(P’)éV’(N;).

Now, we have M} & M| = LL @ P and My, = M} = D(L-)OD(P') = L @ P'. Therefore,
there exist isomorphisms U; and U; such that

M, = U (LHYSUL(P), My = Uy(LH)DUy(P').
With respect to the decomposition

Ha= U (L) BU(PYEN) = F(UL(LY)E(F(UL(P')))ENs) = Ha,

the operator I has the matrix [ } where F} is an isomorphism and F(U;(P’")) = P'.
Hence, (F(Uy(P")®N,)) = D(P') GBV’ NJ) since
F(U(P)) = P~ D(P") and Ny = N, =2 V'(N,).

Moreover, U; (P")&N, = P'©&N] since Ny = N| and U, is an isomorphism. Since we have from
above that P’&N; < D(P")®V'(N}), we deduce that Uy (P")®&N; < F(U,(P"))®N,. So

Hy = Ui(LD)&(UI(P)EN,) —— F(UL(L)S(F(U(P')&Ny) = Hog

is an M®7'-decomposition for F. We get a contradiction since we assumed that F' ¢ M®'(H 4).
Thus, we must have that D ¢ M®.'(H ), which means that M® (H4) \ M®'(H,) is open.
The proofs of the other statements are similar. n

Corollary 3.4.17. Let f : [0,1] — B*(H ) be a continuous map such that f([0,1]) C MDL(H4).
Then

1) If f(0) € M®(H,), then f(l € MO (Hy).

2) I F(0) € M, (H) \ M(Ha). then f(1) € M, (H.) \ MO (H.).

3) If f(0) € M (Hy), then f(l) € MP'(Hy).

4) If f(0) € MCIDf'(HA) then f(1) € MO (Hy).

5) If f(0) € MP_(Hy) \ MO (Hy), then f(1) € MP_(H,) \ MO (Hy).

6) If f(0) € MPy(HA), then f(1) € MPy(H,).

7) If f(0) € MP(H4) \ MPo(Ha), then f(1) € MP(H4) \ MPo(H.).

Proof. By applying Lemma 3.4.16 we can proceed in the same way as in the proof of Corollary
3.3.5. 0

Theorem 3.4.18. [/8, Theorem 5.10] Let F' € B*(H4). The following statements are equiva-
lent:

1) F e MO, (Hy),

2) There exist D € B*(H4), K € K*(H4) such that D is bounded below and F = D + K.
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Proof. 1) — 2)
Let F € M®.'(H,) and let

Hi=MEN, 2 My&N, = Hy

be a decomposition as given in the Definition 3.4.11, so that N; is finitely generated, N; < Ns,
and Fj,, is an isomorphism onto M. Since Ny is finitely generated, by the proof of Theorem
2.0.38 we may assume that M; = Ni-. Let ¢ be the isomorphism from N; onto a closed sub-
module ¢(Ny) C Ny. Set D = F' + (1 — F') Py,, where Py, is the orthogonal projection onto NVj.
Note that ¢Py, is adjointable. Indeed, since ¢ : Ny — «(N;) € Ny and N; is self-dual being
finitely generated, then by Proposition 2.0.28, ¢ is adjointable. Moreover, since ¢(/N7) is finitely
generated being isomorphic to Ny, it follows that ¢(/NV7) is an orthogonal direct summand in
H, by Lemma 2.0.25. Hence the inclusion J,(n,) : ¢(N1) — H, is adjointable. Also, Py,
is adjointable, so tPy, = JyntPn, € B*(H4). Then (1 — F)Py, is in K € K*(Hy4) and, in
addition, D = F'+ (1 — F') Py, = F Py, + Py, . Since Fj,, is an isomorphism from M; onto My,
¢ is an isomorphism from N; onto t(N;) C Ny and Hy = My®No, it follows that D is bounded
below as an isomorphism of H 4 onto Mo@e(Ny), which is a closed submodule of H 4. Moreover,
F =D+ (F — )Py, and (F — )Py, is compact.

2) = 1)
If D € B%(H,) is bounded below, then it follows from Theorem 2.0.20 that D € M®Z'(H ).
Since K € K*(H.4), by Lemma 3.4.14 we get that (D + K) € M®;'(H,). O

Proposition 3.4.19. [/8, Proposition 5.11] We have the following:
1)F € MO (H,) & F* € MO (Hy),
2) Fe MO, (Hy) < F* € M® (Hy),
8) F € MO (Hy) & F* € MOt (Hy,).

Proof. 1) Let F € M®Z'(H,) and choose a decomposition

Hi=MEN, 2 My&N, = Hy

i 0

0 Fy |’
where F} is an isomorphism, N; < N, and NV; is finitely generated. Again, by the proof of
Theorem 2.0.38, we may assume that M; = Ni-. With respect to the decomposition

with respect to which F' has the matrix

Hi=N'e N 5 F(ND) @ F(NSY = Hy,

F has the matrix

B B
0 F, |’

where F} is an isomorphism and F, F, F are adjointable, so
O
Fy By
with respect to the decomposition

Hy=F(NY e F(NDY 5 Nyt e Ny = Hy.
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This follows from the proof of Theorem 3.1.2 part 1) implies 2). Since
M, = F(M,) = F(N;{*) and Hyq = F(N{) @ F(N{)*t = ModN,,

we clearly have that F(N{)t = N,. Therefore, Ny < F(N{)*. Moreover, since F¥ is an
isomorphism, ™ has the matrix

Fro0
0 Ff

with respect to the decomposition

Ha=F(N{) & F(N{)E = VNSV (V) = Ha,
where V' is an isomorphism and also, ]*21* is an isomorphism. Now, since V' is an isomorphism
and there exists an isomorphism ¢ : N; — ((N;) C F(Ni{)* (as Ny < F(N{H)4), we get that

Vo VIYNY) — o(Ny) € F(Ni)?t is an isomorphism, so V~}(N;) =< F(Ni-)t. Moreover,
V~=1(N,) finitely generated as Ny is so. Therefore, F* € M®T'(H ).

Conversely, if F' € MCDf/(HA), let

HA = MléNl i> MQ@NQ — HA

be an M(I)f/—decomposition for I, then Ny < N; and Ns is finitely generated. By the proof of
Theorem 3.1.4 part 1) = 2) F has the matrix

PO
Py, F,

Hi=Ni"a N -5 Nyt @ Ny = Hy,

with respect to the decomposition

where Fy, Fy, Fy are adjointable and F} is an isomorphism. Then F* has the matrix
Fy Fy
0 Ff
with respect to the decomposition
Hy=No* &Ny =5 Ni* & N, = Hy,
and F is an isomorphism. Hence

Fr o0

F* = .
0 F;

with respect to the decomposition
Ha=U(NYBU(N;) 25 Nt @ Ny = Hy,

where U is an isomorphism.

If © : Ny = ((Ny) C N is an isomorphism, then (U~! : U(Ny) — «(Ny) € N; is also an
isomorphism, so U(N,) < N;. Thus, F* € M®7'(Hy).

2) Use 1) together with the fact that

FEM(I)(HA)@F*EMCD(HA)
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by Corollary 3.1.20 and the fact that
MOT(Hy) = MO (Hy) N MO(Hy),

MO (H ) = MO (Ha) N ME(Hy)
by Proposition 3.4.12.
3) Use 2) together with the fact that
FeMP (Hy) \ MP(Hy) & F* € MP_(Hy) \ MP(Hy)
by Corollary 3.1.20 and the fact that
MO (Hy) = MP(Ha) UMD (Ha) \ ME(Hy)),

MO (Hy) = MOT(HL) U (MD_(H,) \ MO(Hy))
by Definition 3.4.1. [

Definition 3.4.20. |18, Definition 5.12] We set

M*(Hs) ={F € B*(H4) | F is bounded below },

Q*(Ha) ={D € B*(H4) | D is surjective }.

Lemma 3.4.21. [18, Lemma 5.13] Let B*(H,). Then F € M®(Hy,) if and only if F* €
Q*(Ha).

Proof. Let F' € M®(Hy). By the proof of Theorem 2.0.20, as ImF' is closed in this case, we
have that ImF™ is also closed. Moreover, by the proof of Theorem 2.0.20, since ImF™ is closed,
we also have Hy = ker F' @ ImF™. Since ker F' = {0}, it follows that H4 = ImF*.

Conversely, if F* € Q*(Hy), then ker F' = ImF*+ = {0}, so F is injective. Moreover, since
ImF* = H 4, which is closed, then ImF is closed also, (again by the proof of Theorem 2.0.20).
By the Banach open mapping theorem, it follows that F' is an isomorphism from H 4 onto its
image. Thus, F' is bounded below. O

Corollary 3.4.22. [18, Corollary 5.14] Let D € B*(Hy). The following statements are equiv-
alent:

1) D € MO (Hy),

2) There exist Q € Q*(Ha), K € K*(H_4) such that D = Q + K.

Proof. Follows from Theorem 3.4.18, Proposition 3.4.19 part 1) and Lemma 3.4.21 by passing
to the adjoints. O

Corollary 3.4.23. M@:(HA) and MOT (H,) are semigroups under the multiplication.

Proof. By using the fact that a composition of two operators that are bounded below is an
operator that is bounded below and a composition of two surjective operators is a surjective
operator, together with the fact that *(H4) is a two sided ideal in B*(H ), we deduce the
statement from Theorem 3.4.18 and Corollary 3.4.22. [

Remark 3.4.24. By using Corollary 3.4.23 together with Proposition 3.4.12 and with the fact
that M®(H 4) is also a semigrop under the multiplication, we can directly deduce Lemma 3.4.7
without proving it separately.
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Recalling that the sets M*(H 4) and Q*(H 4) are open in the norm topology, it follows from
Theorem 3.3.1 that the sets

M (Ha) \ MP_(Hy) = M*(Ha) N (MO (Ha) \ MP_(Hy)),

Q" (Ha) \ MP_(H4) = Q"(Ha) N (MP_(Ha) \ MP,(Ha))

are also open in the norm topology, which is an analogue of [0, Lemma 1.6.6] in the setting of
operators on Hilbert C*-modules. Moreover, this holds for arbitrary Hilbert C*-modules and
not just Hy4.

The next theorem can be proved in a similar way as Theorem 3.4.18.

Theorem 3.4.25. Let B*(H ). Then the following statements are equivalent:
1) F e Mdy(H,),
2) There exist an invertible D € B*(Hy) and K € K*(H4) such that F = D + K.

Proposition 3.4.26. Let F € M7 (HA)NMOT (H,). Then there exists an M®-decomposition
HA = MléNl i> MQ@NQ - HA

for F with the property that Ny < Ny and Ny < Nj.

Proof. Let

H.A = MléaNl i) MQ@NQ — HA,

Hy= M®N, 2 MEN, = Hy
be an M@I/ and an M®T -decomposition for F, respectively. By Corollary 3.1.12 it follows
that both these decompositions are actually M®-decompositions for F. Hence, both N; and
Nj are finitely generated. Therefore, by Theorem 2.0.34 there exists an n € N such that
Hjy= L-OPON, = LEOGP'®ON]. By the proof of Lemma 2.0.43 given in [35], there exists then
isomorphisms V' and V’ such that

Hy= L:&(PEN,) 5 F(LYB(F(P)EV(No) = Hoy,

Ha= LEE(P'EN]) 1 F(LHS(F(P)EV'(Ny) = Ha
are two M®-decompositions for F' and moreover, P = F(P), P = F(P’). Since N; = Ny,
we get that (PON;) < (F(P)®V(Ny)). Similarly, we have (F(P)®V'(N})) < (P'®N;) since
N; < Nj. Finally,
PON, =2 P'ON,, F(P)DV(Ny) = F(P)OV'(N,).

Hence, (F(P)®V (Ny)) = (PSN). O
3.5 Non-adjointable semi-C*-Fredholm operators

We define now general, (not necessarily adjointable) semi-.A-Fredholm operators in exactly the
same way as adjointable semi-A-Fredholm operators, only without assuming adjointablity.
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Definition 3.5.1. Let F' € B(H,), where B(H 4) is the set of all bounded, ( not necessarily
adjointable ) A-linear operators on H 4. We say that F' is an upper semi-.A-Fredholm operator
if there exists a decomposition

Hy = My&N, = My&N, = Hy

with respect to which F' has the matrix

0
0 Fy |’
where F} is an isomorphism, M, My, Ny, Ny are closed submodules of H4 and N; is finitely

generated. Similarly, we say that F' is a lower semi-A-Fredholm operator if all the above
conditions hold except that in this case we assume that Ny (and not NV; ) is finitely generated.

Set
]\//l\q)l(HA) ={F € B(H4) | F is upper semi-A-Fredholm },
/T/l\@r(HA) ={F € B(H,) | F is lower semi-A-Fredholm },
/\//I\CP(HA) ={F € B(H4) | F is A-Fredholm operator on H4}.
Then, by definition we have
M (Ha) = M®(H4) N B (Ha),

M _(Hy) = M®,(H ) N B (Hy)

and
MO(H 1) = MB(H,) N B*(Hy).

Remark 3.5.2. Recall Definition 2.0.59. If
HA = M1®N1 L MQ@Nz = H.A7

is an inner (Noether) decomposition for the operator F'in B(H ), it follows from the proof of

Lemma 2.0.42 that F' has the matrix [ }81 i } with respect to the decomposition
4
Hy = UM)SU(N,) -5 Myd N, = Hy,

where I} and U are isomorphisms. Obviously, such operators are invertible in B(H 4)/K(H 4).
Set

/\//l\q),(HA) = {G € B(H4) | there exist closed submodules M, N, M" of H 4

such that H4 = M®N, N is finitely generated and G),,, is an isomorphism onto M }.

We have the following lemma.

—

Lemma 3.5.3. It holds that M®_(H4) = M®,(H.,).
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Proof. Obviously, we have ./\//lTI)r(HA) - /\//lTIL(H 4), so it suffices to prove the opposite inclu-

sion. Let G € M®_(H ) and choose Hilbert submodules M, N and M’ such that H4 = M®N,
N is finitely generated and G|, is an isomorphism onto M. We wish to show that

Hy= M'®&GY(N).

To this end, choose an € H 4. Since H4 = M®N, there exist some m € M and n € N such
that Gz = m + n. Now, since G|, , is an isomorphism onto M, there exists an m’ € M’ such
that Gm’ = m. So, we have Gx = Gm' + n. On the other hand, Gx = Gm’ + G(z — m/),
hence n = G(z — m’). It follows that x —m’ € G™Y(N) and = m’/ + (x — m’), which gives
Hy=M'+G7'(N). Finally, M'NG~'(N) = {0} because G(M') = M, MNN = {0} and G|,

is an isomorphism, thus injective.

Therefore, G has the matrix [ Gy 0

! } with respect to the decomposition
0 Gy

Hi= M&GC(N) -5 MEN = Hy,
where G is an isomorphism. O

Clearly, any operator F' € ./T/I\CDZ(H ) is also left invertible in B(H4)/KC(H 4), whereas any
operator G € M®,.(H4) is right invertible in B(H4)/K(H 4). The converse also holds.

Proposition 3.5.4. [19, Proposition 2.3] We have the following.
1) If F is left invertible in B(H4)/K(Hy), then F € M®;(H ).

—

2) If F is right invertible in B(HA)/KC(H.,), then € M®,.(Hy).
Proof. Suppose that GF = I + K for some G, F € B(H,4) and K € K(Hy). Let

Hy= M&EN, %5 MyEN, = Hy

be an ./\//l\(ID—decomposition for GF. Since GF|y, is an isomorphism onto My, it is readily verified
that Fjy;, is an isomorphism onto F(M;) and G|p,) is an isomorphism onto M,. From the

proof of Lemma 3.5.3 it follows that H4 = F(M;)®G~1(N,). Since MO N, G ML®N, is an

0 } with respect to the

./\//l\cb—decomposition for GF, we must have that [’ has the matrix 01 r
4

decomposition H,4 = M&N, _F, F(M)®G Y(N,y) = Hy and G has the matrix { %1 GO }
4

with respect to the decomposition
Hy = F(M)BG(N,) -5 MydN, = Hoy,
where F} and (G; are isomorphisms. O

Corollary 3.5.5. [19, Corollary 2.4] The sets ./\//l\CIDl(HA) and /\//l\q)r(HA) are closed under the
multiplication.

The next lemma can be proved in the similar way as Proposition 3.5.4.

Lemma 3.5.6. Let M be a Hilbert C*-module and F,G € B(M). Suppose that there exists a
decomposition

M = M,®N, 5 M,&N, = M
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(GF)r 0
0 (GF
Then we have M = F(M,)®G ' (Ny) and moreover, with respect to the decompositions

with respect to which GF' has the matrix [ ) } , where (GF')y is an isomorphism.
4

M = Mi®N;, -5 F(M)@G(N,) = M,
M = F(M)&G(N;) -5 MydNy = M,

the operators F' and G have the matrices A and Gy 0 , respectively, where F}
0 F4 0 G4

and Gy are isomorphisms.

We recall now that Lemma 3.1.8, Corollary 3.1.10 and Corollary 3.1.12 are also valid in
the case of non-adjointable operators. Moreover, Lemma 3.5.6 is valid in the case of general
bounded linear operators on arbitrary Banach spaces.

Corollary 3.5.7. The analogue of Corollary 3.1.15 holds in the case of non-adjointable oper-
ators on arbitrary Hilbert C*-modules.

Proof. Suppose that M is a Hilbert C*-module and DF' € /\//lTI)l(M) If
~ DF ~
M = M1®N1 — MQ@NQ =M

is an ./\//l?bl—decomposition for DF, then, by Lemma 3.5.6 , ' has the matrix [ OFl (;7 } with
4

respect to the decomposition
M = Mi®N, - F(M)SD ™ (N,) = M,

Dy

whereas D has the matrix [ 0 D,

} with respect to the decomposition

M = F(M;)&D Y (Ny) - My®N, = M,

where F) and D, are isomorphisms. Since [V, is finitely generated, the first statement follows.
The proof of the second statement is similar. n

Corollary 3.5.8. The analogue of Corollary 5.1.16 holds in the case of non-adjointable oper-
ators on arbitrary Hilbert C*-modules.

Proof. Let M be a Hilbert C*-module and DF € ./\//ITIDZ(M) Suppose that F' € /%(M) and
let
M = My&N, 25 My&N, = M

be an /\//l\q)l—decomposition for DF. By Lemma 3.5.6 we have that
M = Mi@&N;, -5 F(My)ED(Ny) = M

D,

is an /\//lTbl—decomposition for F' and D has the matrix [ 0 D
4

} with respect to the decom-

position
M = F(M)&D Y (Ny) -2 My®N, = M,

where D, is an isomorphism. Now, since
M = Mi&N, - F(M;)&D Y (Ny) = M
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is an /\//l\CIDZ—decomposition for F, from Corollary 3.1.12 it follows that D~'(N,) must be finitely
generated since F' € M®(M). Hence,

M = F(M)®D Y (Ny) 2 My@ Ny = M

is an /\//l\@l—decomposition for D,so D € ./\//lTIDI(M ). By applying Corollary 3.1.12 on the operator
D instead of F' and using the similar arguments, we obtain the second statement in the corollary.
O

Corollary 3.5.9. The analogue of Corollary 5.1.17 holds in the setting of non-adjointable
operators on arbitrary Hilbert C*-modules.

Proof. Let M be a Hilbert C*-module and D, F € B(M). Suppose that D € ml(M) and
DF € Mo(M). If
M = My®N;, 25 My®N, = M

is an /\//l\CD-decomposition for DF, then, by Lemma 3.5.6, we have that
M = F(M)&D Y (Ny) -2 Mo®Ny = M
is an mr-decomposition for D. Hence, by Corollary 3.1.10 we get that
D € M®, (M) N MD,(M) = MI(M).
In the similar way we can deduce the second statement of Corollary 3.1.17. O

Corollary 3.5.10. The analogue of Corollary 3.1.18 holds in the settings of non-adjointable
operators on arbitrary Hilbert C*-modules.

Proof. Let M be a Hilbert C*-module. Suppose that D € M®(M) and DF € M®(M). If
M = M&N, 25 My®Ny = M
is an .A//ITID—decomposition for DF, then, by Lemma 3.5.6,
M = F(M)®D Y (Ny) 2 My@ Ny = M

is an M®,-decomposition for D. Since D € ./\//ITID(M), by Corollary 3.1.12 we have that D=1 (Ns)
is finitely generated. It follows by Lemma 3.5.6 that

M = Mi&N, - F(M;)ED Y (Ny) = M

is an J\//l\CID-decomposition for F, so F' € /\//171)(]\/[ ).
The case when F' € M®(M) and DF € MP(M) can be treated similarly. O

Many of the results on adjointable semi-A-Fredholm operators that are presented so far
can in a similar be proved for non-adjointable semi-.A-Fredholm operators. However, for non-
adjointable operators we do not have Theorem 2.0.20 at disposition. Therefore, we now need to
give different proofs or to slightly modify the statements in the results where we apply Theorem
2.0.20 in order to hold in the case of non-adjointable semi-A-Fredholm operators.

In the next results we always assume that M is a Hilbert C*-module over a unital C*-algebra.

The next proposition is a modified version of |19, Proposiotion 3.1].
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Proposition 3.5.11. Let F' € B(M). If F € j\//l?I)l(M) and ImF is closed, then ker F' and
ImF are complementable in M.

In this case ' has the matrix [ 181 8 ] with respect to the decomposition

M = ker F°@ker F -5 ImF&ImE® = M,

where Fy is an isomorphism and ker F°, ImF*° denote the complements of ker F' and ImF),
respectively. If F € M®(M) and ImF is closed, then the index of F is well-defined.

Proof. Let
M = M&N, -5 My®N, = M

be an /\//l\@l—decomposition for F. If ImF is closed, then it is easy to see that F'(N;) must be
closed. This is because F(N7) = ImF N Ny. Indeed, if y € ImF N Ny, then y = Fx for some
r € F~1(Ny). However, by Lemma 3.1.3 we have F~'(N,) = Nj, hence x € Ny, which gives
y € F(Ny), so ImF N Ny C F(Ny). The opposite inclusion is obvious. Since Ny is self-dual,
by Proposition 2.0.28 we have that F|, is adjointable. Thus we are in the position to apply
Theorem 2.0.20 to deduce that

N1 = kerFEB Nl and N2 = F(Nl) @NQ
for some closed submodules ]\71 and ]\72. Then we get
M = MQ@F(Nl)éBNQ = ]mF@N%

so ImF is complementable in M. Moreover, M = M;®N;&ker F, so ker F' is also comple-
mentable in M. It follows by the Banach open mapping theorem that F’ has the matrix [ Fol 8 }

with respect to the decomposition
M = ker F°@ ker F - ImF&ImF°® = M,

where F7 is an isomorphism. Since V; is finitely generated, then ker F' is finitely generated as
a direct summand in N, and similarly, if N, is finitely generated, then ImF° = M, is finitely
generated.

Finally, N; 2 F(Nl), so, in the case when

M = My®N, 25 My®N, = M

is an M®-decomposition for F, we have [N1] = [Ng] = [ker F] — [ImF*]. Although ImF can
have several different complemented submodules in M, it is clear that they are all mutually
isomorphic to each other, hence the index of F' is well-defined in this case. O]

Corollary 3.5.12. If F € M®,(M)\ M®(M) and ImF is closed, then the complement of
ImF is not finitely generated.

Proposition 3.5.13. [19, Proposition 3.2 If F € /\//l\CPT(M) and ImF is closed and comple-
mentable in M, then the decomposition from Proposition 5.5.11 exists for the operator F. In this

case, instead of ker F, we have that ImF*° is finitely generated where ImF® is the complement
of ImF.
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Proof. Suppose that F' € /\//l\CDT(M) Let
M = My®N, 5 My®Ny = M

be an ./\//l\CIDT—decomposition for F. Then N, is finitely generated. Since I'mF' is closed by as-
sumption, it follows that F'(N;) is closed by the same arguments as in the proof of Proposition
3.5.11. As ImF is complementable by assumption, we obtain that F'(N;) is complementable
n Ng.

More precisely, we have

M = ImF®ImF°® = My®F(Ny)&ImF®,

where ImF*° stands for the complement of ImF. Hence, F'(N;) is complementable in M, so,
by Lemma 2.0.66, F(N;) is complementable in Ny since F(N;) C Nj. Therefore, F(N;) is
finitely generated projective, being a direct summand in a finitely generated, projective module
Ns. Since the operator Fj N N1 = F (N) is an epimorphism, there exists a decomposition
N; = N{@ker F, where N| = F(N,). O

Corollary 3.5.14. If F € M®, (M) \ M®(M) and in addition ImF is closed and comple-
mentable, then ker F' is not finitely generated.

Corollary 3.5.15. Let F' € B(M) and suppose that F' is regular, that is ImF is closed and
ker ', ImF are complementable. Then the following statements hold.

a) F € M, (M) if and only if ker F' is finitely generated.

b) F e ./\//l\CIDT(M) if and only if the complement of ImF' is finitely generated.

Lemma 3.5.16. Let F' € B(Hy) and suppose that F' is a regular operator. If F' € /\//ITI)I(HA)
orif F '€ M®,.(Hy), then ImF = H 4.

Proof. Consider the decomposition
H4 =ker F°@ker F - ImF&ImF® = Hy.

If I ¢ /\//l\q)l(HA), then by Corollary 3.5.15. ker F' is finitely generated. By Lemma 2.0.25 we
have H 4 = ker F'+@ker F and then, by the Dupre-Filmore Theorem 2.0.15, we get ker F+ = H 4.
Hence we deduce that

ImF 2~ ker F° 2 ker F+ =~ H 4.

If F e /\//l?DT(HA), then by Corollary 3.5.15 ImF*° is finitely generated. By the same

arguments as above we obtain ImF = (ImF°)t = H 4. O

Inspired by Definition 2.0.61 we give now the following definition which is a slightly modified
version of |21, Definition 13|.

Definition 3.5.17. Let F' € B(Hy4). We say that F' admits an upper external (Noether)
decomposition if there exist closed C*-modules X;, X5 and bounded A—linear operators Es,
FE5 such that the matrix operator

Fy = FE CHA® X, = Hi® X
Ey 0

is an invertible operator and X, is finitely generated. Similarly we say that [’ admits a lower
external (Noether) decomposition if all the above conditions hold, only in this case we assume

that X; (and not X5) is finitely generated.
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The next proposition is a slightly modified version of [21, Proposition 5|.

—

Proposition 3.5.18. Let F' € B(Hy). Then F € M®,(H ) if and only if F' admits an upper

—_

external (Noether) decomposition and similarly, F € M®,(H 4) if and only if F' admits a lower
external (Noether) decomposition.

Proof. Suppose that F' admits an upper external (Noether) decomposition. If Gy = F I and

: Gy Go
(Gp has the matrix [ G Gl
by the same arguments as in the proof of Theorem 2.0.62 we deduce that idx, = F5G2 and

tdyx, = G3F5. By Lemma 3.5.6 we get

} with respect to the decomposition H 4 @ Xs Go, H,® X;, then

H 4 = ImGy® ker B = ImE>® ker Gs.
Hence we may let
M1 == keI'Eg, Nl = ImGg, M2 = kerG3,N2 == [mEg

and proceed as in the proof of Theorem 2.0.62.
The proof for the case when F' admits lower external (Noether) decomposition is similar.
The proof for the implication in the other direction is exactly the same as the proof of
Theorem 2.0.62. ]

Notice that Definition 3.5.17 and Proposition 3.5.18 can be generalized from the standard
module case to arbitrary Hilbert C*—modules.

The next three lemmas present a generalization of [50, Theorem 1.2.7| in the setting of
operators on Hilbert C*—modules.

Lemma 3.5.19. [/8, Lemma 2.13] Suppose that D, F € B(H,4) DF € J@(HA) and ImF is
closed. Then DJp,r € M®(ImF, Hy).

Proof. Let
H.A - MléNl E) MQENBNQ — HA

be a decomposition with respect to which DF' has the matrix

O om )

where (DF); is an isomorphism and N; is finitely generated. By Lemma 3.5.6 we have that
H4 = F(M;)®D~'(N,). Hence, by Lemma 2.0.66, we get that

ImF = F(M)&(D ™ (Ny) N ImF).

With respect to the decomposition

DJ;

ImF = F(My)&(D ™" (Ny) N ImF) " Mp®&N; = Ha,

DJ;,,r has the matrix

(DJrmr)1 0
0 (DJpmp)a |’

where (DJp,r)1 is an isomorphism. Now, since DF has the matrix
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O om )

with respect to the decomposition

H.A = MléNl E) MQ@NQ — H_A,

by Lemma 3.5.6 it follows that F' has the matrix [ 1*;)1 1«2 } with respect to the decomposition
4
Hy = My®N; - F(M;)&D Y (N,y) = Ha,

where Fj is an isomorphism. By the same arguments as in the proof of Proposition 3.5.11
we get that D™1(Ny) N ImF = F(N;) which is finitely generated by Remark 2.0.68. We are
done. O

Lemma 3.5.20. [2], Lemma 7] Let V be a finitely generated Hilbert submodule of Hy and
F € B(H,). Suppose that Py. F € M®(H4, V1Y), where Py. denotes the orthogonal projection
onto V+ along V. Then F € M®,.(H,).

Proof. Since V is finitely generated, by Lemma 2.0.25 it follows that V' is an orthogonal direct
summand in H4, so Hy =V @ V*. Consider the decomposition

Ha= M®N, Y5 My®N, = V*

with respect to which P,,. F' has the matrix

(P vk )1 0
0 PyiF)y |’
where Ny, Ny are finitely generated Hilbert submodules and (P . F); is an isomorphism. Since
(Py.F), = Py, Py1 s, » Where P}, stands for the projection of V* onto M, along No, it

follows that P]\‘g Py.Fj,, is an isomorphism of M onto M,. However, Hq = M>®N,DV, so
P]\‘g Py . = Py, where Py, stands for the projection of H4 onto M, along Ny & V. Hence, F

has the matrix
FF
F; Fy

with respect to the decomposition
Ha=MEN, = MyS(No@V) = Ha,

where F| = PMQF|M1 is an isomorphism. Then, with respect to the decomposition

HA = Ul(Ml)@U1(N1> i> U2_1<M2)@U2_1(N2@V) = HA;

Fio0

0 Fy |’
where Uy, Uy and F} are isomorphisms. Now, No®V is finitely generated, hence, Uy 1(N2€~9V)
is finitely generated . O

F has the matrix
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Lemma 3.5.21. /2], Lemma 8] Let G, F € B(H,4) and suppose that ImG is closed. Assume
in addition that ker G and ImG are complementable in H,. If GF € M®,.(Hy), then

NE € M®,(H, N),
where ker GON = H 4 and M denotes the projection onto N along ker G.

Proof. Let Hy = M &N, S ML,EN, = H 4 be an M®,-decomposition for GF. From Lemma

3.5.6 it follows that F' and G have the matrices £ 0 and Gy 0 with respect to
0 F4 0 G4

the decompositions
HA_Ml@Nl —)F(Ml)@G ( ) HA>

HA = F(Ml)éBG (NQ) —) MQ@NQ HA>

respectively, where F; and G are isomorphlsms
Since ker GON = H,4 and ker G C G~(Ny), by Lemma 2.0.66 we get that

GY(Ny) = ker GE(GL(N,) N N).

As ImG is closed and H4 = F(M;)®(G~Y(Ny) N N)D ker G, we get that Gl
is an isomorphism onto ImG by the Banach open mapping theorem. Thus,

~L(Ng)NN)BF (M)

ImG = MQ@G(G_l(NQ) N N)

Since ImG is complementable in Hy4, we have that G(G~'(N;) N N) is complementable
in Hy. As G(G7Y(Ny) N N) C N,, it follows that G(G™*(N;) N N) is complementable in N
by Lemma 2.0.66. However, N is finitely generated, hence, G(G~!(Ny) N N) must be finitely
generated as a direct summand in N,. Therefore, G™1(Ny) N N is finitely generated, being
isomorphic to G(G™'(Ny) N N).
With respect to the decomposition M;®N; ——s F(M;)®G~(N,), F has the matrix [ ];1 }2
4
where F} is an isomorphism. Moreover, since

Hy= F(M)®(GH(Ny) N N)Dker G,

it follows that M L is an isomorphism onto N (recall that M is the projection
(F(M)E(G1(Ng)NN))
onto N along ker G). Therefore we get that

It is then easy to see that MF has the matrix [ } with respect to the decompo-
sition .

Ha = M®N, -5 N(F(M;))&(G ' (N;) N N) = N,
where (MF); is an isomorphism. Now, G~!(Ny) N N is finitely generated. O

Lemma 3.5.22. Let F € /\//lTPT(HA) and suppose that
H.A - MléNl i) MQ@NQ — HA,
Hy=M&N - MYGN, = Hy,

are two mr—decompositions for F. Then there exist some finitely generated, closed submodules
P and P' such that P ® N; = P' & Nj.
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Proof. Let Hy = Mi®N; LN My®N, = H 4 be an /%T—decomposition for F. As in the proof
of Lemma 2.0.43 we may without loss of generality assume that

My = Ly & P, L = P'@p,(Ny), P' = My Ly, po(N3) = N;

for some n € N and some finitely generated Hilbert submodules P, P’, where p, denotes the
orthogonal projection onto L,. Indeed, from Theorem 2.0.34 it follows that there exists an
n € N such that Hy = L:®PPHN, for some finitely generated Hilbert submodule P. If we let
M denote the projection onto L-®P along N, and the operator V be given by the operator

] with respect to the decomposition

matrix A
0 1

Ha = My®Ny = LyGPON, = Hy,
then V' is an isomorphism. Hence VF' € ./\//l\(I)r(H 4) and
Ha=MON, 5 (LyP)YDN, = Hy
is an /T/l\cbr-decomposition for V' F. Moreover,
Ha= M{®N] X5 V(ML)EV (Ny) = Ha

is also an j\//l\(br—decomposition for VF, since V is an isomorphism. Now, since V(Né) is finitely
generated, by Theorem 2.0.34 there exists an m > n such that L,, = P'@p,,(V(N,)) where
P' = V(M) N Ly, and p,,(V(N,)) = V(N,). Then &P = LLHP, where P = P& (L, N L),
By considering the operator V F' instead F, we see that we may in fact without loss of generality
assume that M, = L- @ P, L, = P'®p,(N,) for some n € N, where P = M, N L, and
Pn(Ng) = Ny

Therefore, we obtain that

Hy=LI:®PON, = L-OP'ON;.
We put Fy = F|,, ,F{ = F, and claim that Hy = F; '(LL)®F " (P)@&N]. Indeed, let
1
v € Hy. Then Fz = y + o' + 2, for some y € L-.y/ € P and 2, € Nj. Since F; is an
isomorphism of F;1(LY) onto L+ and F is an isomorphism of F ™' (P') onto P’, there exist some
w e F7YLY) and v € F/7'(P') such that y = Fiu and y/ = Flv. Hence, Fx = Fiu+ Flv + 2.
It follows that
zp=Fr— Fiu— Flv=F(z—u—v) € ImFNN,.

1/
0 F}

Hence, (z —u —v) € F~Y(N}). Since F has the matrix { } with respect to the decom-

position
Ha=M{GN] = My®N} = H,
where FY] is an isomorphism, by Lemma 3.1.3 it follows that F~1(Nj}) = N|. Now,
t=@x—u—v)+u+v, ueFFY (L), ve FI7'(P),(x —u—v) e FY(N}) = N/

Since # € H4 was arbitrary, it follows that Hy4 = F; '(LY) + F/7'(P') + NJ. Moreover, since
the submodules F; Y(LY), F/~1(P'), N/ obviously mutually intersects trivially (here we also use

that F|  and Fj_, are isomorphisms, thus injective ), it follows that
L P

Ha= FH(Ly)&F T (PON.
Hence, as we also have Hy = F; ' (LH)®F, 1 (P)©Ny, it follows that
FPAP)EN, = FI (P)EN].
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Remark 3.5.23. The proof of Lemma 3.5.22 is exactly the same as the proof of [21, Lemma 9].
Remark 3.5.24. Lemma 3.1.13 holds also for non-adjointable operators. Indeed, if P € B(H )
and P a projection with finitely generated kernel, then P € ./\//l?ID(H ). If in addition we have
F e A//ITI)(HA), then by Corollary 3.5.5 we get PFP € /\//l\q)(HA). Let

PFP

HA = MléNl — MQéNQ = HA

be an M®-decomposition for PFP. By Lemma 3.5.6 we have that both P(M,) and PF(M,)
are closed and complementable in H 4. Indeed,

Hy = P(M))®(PF)"Y(Ny) = PF(M;)&P1(Ny).

By Lemma 2.0.66 it follows then that P(M;) and PF(M;) are complementable in /mP. Hence,
by applying these facts instead of Theorem 2.0.20 we can proceed in the same way as in the
proof of Lemma 3.1.13.

3.6 Non-adjointable semi-C*-Weyl operators

Recall now Definition 3.4.11 of the classes M®'(H4), M®T'(H4). We are going to use the
same notation here, only without assuming the adjointability of operators.

Lemma 3.6.1. /21, Lemma 10] Let F € B(H,). Then F admits an upper external (Noether)
decomposition with the property that X, < Xy if and only if F € M®'(Hy,). Similarly, F
admits a lower external (Noether) decomposition with the property that X; < X if and only if
Fe M(I)_T_/(HA)

Proof. The statements can be shown in a similar way as in the proof of Proposition 3.5.18. [

Lemma 3.6.2. [2/, Lemma 11] Let F € M®Y(Hy). Then F + K € M®"(H,) for all
K e IC(HA)

Proof. Let Hq = M;®N, LN My®Ny, = H4 be an M®1 -decomposition for F. Then N, is
finitely generated and Ny < N;. We may assume that

Ny C L,, L, = Ny®P and My =L ® P

for some n € N and some finitely generated Hilbert submodule P. Indeed, by the proof of
Theorem 2.0.34, L,, = (My N L,,)®p,(N2) where p,(Na) = No. Hence we get

Hj= LF&POp,(Ny) = LrGPON,

. ~ r
where P = My N L,. Let M denote the projection onto LGP along Ny and V = [ 0 ; ]
with respect to the decomposition

Ha = My&N; — (L @P)&pn(Ns) = Ha.
Then V is an isomorphism, hence,
is an M®* — decomposition for VF. If we can show that VF + K € M®(H) for all
K € K(Hy), it would follow that FF + V'K € M®*'(H,) for all K € K(H,) since V is an
isomorphism. However, since K(H 4) is two sided ideal in B(H 4), we have VIC(H ) = K(H ),
hence it suffices to consider the operator V F' instead of F.
Moreover, we may choose an n big enough such that || ¢, K ||<|| F| . This is possible by

Theorem 2.0.56. Then we may proceed as in the proof of Lemma 2.0.45 and use that Ny < N;
in order to deduce the lemma. O

1 H—l
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Lemma 3.6.3. Let F € M®.' (H,) and K € K(Hy). Then F + K € M®7'(Hy).

Proof. Let F € M®'(H,), K € K(H4) and
H.A == MléNl i) MQ@NQ - HA

be an M@;/—decomposition for F. Set F| =
B!

0 0

and consider the operator G given by the

[ny

operator matrix { ] with respect to the decomposition

H_A = M2®N2—>M16~9N1 = H_A.

Then GF has the matrix l é 8 ] with respect to the decomposition

HA = MléNl ﬂ M1@N1 = HA-

Now, as in the proof of Lemma 2.0.45, we may without loss of generality assume that there
exists some m € N such that for all £ > m we have M; = Lé@P and L, = PO N,, since Ny is
finitely generated. Indeed, by the proof Theorem 2.0.34 there exists some m € N such that for
all k > m, we have L, = P®py(N;), where P = M; N Ly, and pp(N;) = N; (here pj, denotes the
orthogonal projection onto Ly). Therefore, we have Hy = Ly &P®pip(N,) = Ly &PPHN;. This
holds for all k& > m. Let ) denote the projection onto M; along N; and W be the operator

that has the matrix [ 1 } with respect to the decomposition

0 pk|N1
Hy = (LF&P)@pe(N) 25 My@N, = H .

(FEW ) 0

0 (FIV), with respect

Then W is an isomorphism. The operator F'I/ has the matrix

to the decomposition
1= ~ FW ~
HA = (Lk @P)@pk(]\fl) — MQ@NQ = HA,

where (F'W), is an isomorphism. Thus, we may consider the operator F'WW instead of the
operator F. If we can show that FW + K € M@:(HA) for all K € K(Hy), it would follow
that for all K € K(H4) we have (FW + K)W~' = F + KW~' € M®'(H,). Now, since
K(H 4) is two sided ideal in B(H ), we have K(H4) = K(H4)W ™!, so we may in fact without
loss of generality assume that F' has M@jrl—decomposition

Ha = (LE®P)BN, - My®N, = Hy

for some m € N and some finitely generated Hilbert submodule P satisfying L,, = PON, i.e.
we may assume that M, = L-®P and L,, = PON;.

Let now K € KC(H 4). Again, since K(H 4) is a two sided ideal in B(H 1), we have GK € K(H 4).
By Theorem 2.0.56 there exists some k > m such that || ¢GK ||< 1. Then we observe that

M, = L-®P = L} ®P, where P = P®(LL \ Li). It follows that GF has the matrix { é |9| 1

with respect to the decomposition L & Ly GF, Li & Ly, where M denotes the projection onto
P along N;. Then, with respect to the decomposition

Hy=LiéL, S5 1AL, = Ha,
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(GF +GK); (GF 4+ GK),
(GF +GK)s (GF +GK), | Vhere (GF + G
is an isomorphism, since || quK‘LL I<|| ¢GK ||< 1. Hence GF + GK has the matrix

k

the operator GF' + GK has the matrix [

(GF +GK), 0
{ 0 (GF + GK), }

with respect to the decomposition
Hy = LiaU(Ly) “2S5 VY LHSL, = Ha,

where (GF + GK)y,U, V are isomorphisms. From this ( using that GF+GK = G(F+K) ) and

by Lemma 3.5.6 we obtain that G has the matrix [ G

! } with respect to the decomposition
0 Gy

Hi=(F+K)L&N S VY (LH&L, = Hay,
where N = G71(L;,) and G is an isomorphism. Also, we obtain that F' 4+ K has the matrix

T e

with respect to the decomposition

Ha=LidU(Ly) &5 (F+ K)L}&N = Hy,

where (F' 4+ K); is an isomorphism.
Fr

0 8 ] with respect to the decomposition

However, since GG has the matrix [

H4= My®N, S5 MEN, = Hy,

Gy O

0 Gy

it follows that G has the matrix with respect to the decomposition

Ha= F(LD)&(F(P)&N,) -5 LB Ly = Hy,

where Gy = F1_1|F<LL) is an isomoprhism (observe that M, = F(L})®F(P) since My = Li-®P).
k

From Lemma 3.1.3 it follows that F(P)®N, = N = G~'(L;). Since N; < N and Fy, is an
isomorphism, we get that . .
Ly = P&N, < F(P)&N, = N.

(F+ K), 0

Moreover, Ly = U(Ly) and, as we have seen above, F'+ K has the matrix 0 (F+K),

with respect to the decomposition
Ha=L:oU(L,) ™5 (F + K)LFON = Hy,

where (F'+ K); is an isomorphism. O
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Recall Definition 3.4.1. Let us again use the same notation here, but without assuming the
adjointability of operators. It can be proved similarly as in the proof of Lemma 3.6.2 that the
classes MCIDJ:(H 4), M®_ (H,) are invariant under compact perturbations or, more precisely,
under perturbations by operators belonging to the class C(H 4). Since /\//lTI)l(HA) \/\//l\(P(HA) and
M, (H )\ M®(H 4) correspond to the set of all left invertible, but not invertible elements and
the set of all right invertible, but not invertible elements in the Calkin algebra B(H4)/KC(H ),
respectively, it follows that these sets are also invariant under compact perturbations. Thus,
also in the setting of non-adjointable operators, the classes M®7(H4) and M®T(H,) are
invariant under compact perturbations, being the union of the sets which are invariant under
compact perturbations.

Definition 3.6.4. We set

M(H4) ={D € B(H,) | F' is bounded below and ImF is complementable in H 4},

Q(H4) ={G € B(H4) | G is surjective and ker G is complementable in H 4}.

Then we have the following propositions which give a description of the sets M@:(H A)
and M@fl(H 4) in terms of compact perturbations.

Proposition 3.6.5. Let F' € B(H ). Then the following statements are equivalent:
(1) F € MO (Ha),
(2) There exist D € M(Hy) and K € KC(H 4) such that F =D + K.

Proof. From Lemma 3.6.3 it follows that (2) = (1), since M (H4) € M®3 (H4). Let us show
the implication (1) = (2). If H4y = M &N, Ly My@N, = Hy s an M®Z -decomposition for
F, then there exists an isomorphism ¢ of N; onto a closed submodule of N,. Since N is finitely

generated, we have that ¢(NN7) is finitely generated as well. By Lemma 2.0.25 there exists a
closed submodule N of Ny such that «(N7)®N = Nj. Let M denote the projection onto N; along

[ny

. . 0 . .
My and D be the operator having the matrix [ , } with respect to the decomposition

Hi= MEN, 25 My&N, = Hy.

Then D is bounded below and ImD®N = My®u(N,)ON = Hy, so D € M(H4). Moreover,
D+ (F—)N=F and (F — )N € K(Hy) since M € K(H 4). O

Proposition 3.6.6. Let F' € B(H ). Then the following statements are equivalent:
(1) F € M®T (Hy),
(2) There exist G € Q(H4) and K € K(Hy) such that F = G + K.

Proof. From Lemma 3.6.2 we have that (2) implies (1) since Q(H.4) € M®* (H ), so it suffices
to prove the opposite implication .

Let Hy = M&N, BN M>y®N, = H,4 be an M@f—decomposition for F. Then there exist
Hilbert submodules N’ and N” such that N; = N'&N” and N’ = N,. Indeed, since Ny < Ny,
there exists a closed submodule N’ of N; such that Ny = N’. As N, is finitely generated, it
follows that N’ is finitely generated also. Hence, by Lemma 2.0.24, we have that Ny = N'® N”
for some closed submodule N”.
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Set ¢ to be isomorphism of N’ onto Ny and P be the projection onto N’ along N”. Let G

. . F 0 . .
be the operator with the matrix [ |(J)”1 P } with respect to the decomposition

H4= MEN, - My&N, = Hy.

Then G is obviously surjective and ker G = N”, which complementable in H 4. Moreover,
F = G + (F — tP)N, where M stands for the projection onto N; along M;. Put I to be
the projection onto Ny along My. Then M € K(H,) since N, is finitely generated. We have
(F — PN =TI(F —'P)N € K(Hy,). O

Let M®((H4) have the same meaning as in Definition 3.4.1, only without assuming the
adjointability of operators. Similarly as in the propositions above, we can prove that the
following statements are equivalent:

(1) F' € MPo(Ha),
(2) There exist T' € B(H4) and K € K(H 4) such that T is invertible and F' =T + K.

In addition we have the analogue of Proposition 3.4.26 in the setting of non-adjointable
operators.

Next, we introduce the following auxiliary result.
Lemma 3.6.7. The sets M(H4) and Q(Hy) are semigroups under the multiplication.

Proof. Let D, D" € M(H 4). Since D and D’ are both bounded below, it follows that D’'D is also
bounded below. Now, since D’ is bounded below and ImD, ImD’ are both complementable in
H 4, we get

Hy = ImD'&ImD" = (D'(ImD®ImD®))HImD"

= D'(ImD)®D' (ImD°)®ImD"” = ImD' D&(D' (ImD°®))&ImD°.

Thus, ImD’'D is complementable in H 4, so D'D € M (H,).
Next, let G,G" € Q(H ). Obviously, G'G is surjective. So, since

Hi=kerG°®ker G’ = ker G°Dker G

and G, .. is an isomorphism onto H 4, it follows that ker G° = RO R° for some Hilbert sub-
modules R and R° where G|, and G|, are isomorphisms onto ker G' and ker G’, respectively.
Therefore, ker G'G = ker GOR, so ker G'G is complementable in H 4 since

Hj=kerGdker G° = ker GOROR®.
Thus, G'G € Q(Hy). ]
Lemma 3.6.8. The sets M(H4) and Q(Hy) are open in the norm topology.

Proof. Let M(H,4) and Q(H,) denote the sets of bounded below operators and surjective
operators on H 4, respectively. Then these sets are open. Since

M(H.4) = M(H4) N M®;(H4) and Q(Hu) = Q(H4) N MO, (H 1),

which holds by Proposition 3.5.11 and Proposition 3.5.13, respectively, it follows that M (H 4)
and Q(H,4) are open. Moreover, the lemma holds also in the case of arbitrary Hilbert C*-
modules and not just H 4. O

Corollary 3.6.9. MCDJ_FI(HA) and MO (H,) are semigroups under the multiplication.
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Corollary 3.6.10. The sets M(H 4) \/\//l?DT(HA) and Q(H 4) \/\//17191(HA) are open.
Lemma 3.6.11. Let M be a Hilbert C*-module and F € M®7 (M). If

M = M,&N, -5 My®N, = M

is an M®7 -decomposition for F and D € B(M) is such that N(D + F), € MO (M, M)
where M stands for the projection onto My along No, then D + F € MCIDIF/(M). Similar state-
ments hold for the classes M@fl,MCILr, MO, MP, MDPy, M, and MPT.

Proof. Let

My = My&N, -5 Mo N, = My
be an M@;l—decomposition for N(D + F) Then N; is finitely generated, N; < N, and
|‘|(D+F)‘M1 is an isomorphism onto M,. If we let 1 denote the projection onto M, along No@® No,

- [ (D+F); (D+F),
= I—](D+F)|A711' Hence D + F has the matrix (D+F); (D+F)

respect to the decomposition

Iy -

then M(D + F), with

M = Mlé(NléNl) M M2®(N2éN2) = M7

where (D + F); is an isomorphism. Moreover, since N; < Ns, ]\71 =< NQ and Np, Ny are
finitely generated, it follows that Ny@N; is finitely generated and Ni®N; < No@®N,. Then
we can proceed in the same way as in the proof of Lemma 2.0.42 to deduce that there exist
isomorphisms U and V' such that

M = MidU(N&N,) 25 V(Mo)&(N2BNy) = M

is an M@;/—decomposition for D+ F.
The proofs for the other cases are similar.

3.7 Examples of semi-C*-Fredholm operators

At the end of this chapter we introduce some examples of semi-.A-Fredholm operators.

Example 3.7.1. Let ' € B*(H 4) satisfying that F(eg) = eq for all k € N.
Then F' € MO, (H4).

Example 3.7.2. Let D € B*(H,) satisfying that D(eg,_1) = 0, D(ea) = e for all k£ € N.
Then D € M®_(H,).

Example 3.7.3. In general, let ¢ : N — +(N) be a bijection such that ¢«(N) C N and N\ ¢(N)
is infinite. Moreover, we may define ¢ in a such way that ¢(1) < ¢(2) < ¢(3) < ... . Then, if we
define an A-linear bounded operator F' as F(e;) = e, for all k, we get that F' € M® (Hy).
Also, if we define an A-linear operator D as
D(ek) _ €-1(k); for k € L(N),

0, else,
then D € M®O_(Hy).

Those examples are also valid in the case when A = C, that is when H4 = H is a Hilbert
space. We will now introduce examples where we use the structure of A itself in the case when

A#C.
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Example 3.7.4. Let A = L*>([0, 1], u), where p is the Lebesgue measure. Set
F(fla f27 f37 s ) = (X[O,%}fla X[%,l]fl? X[O,%}f% X[%,l]f% s ) .
Then F is a bounded A— linear operator, ker F' = {0},
[mF - SpanA{Xm,%]el, X[%,1]€27 Xm,%]eg’ .)('[%,1]64, e },

and, clearly, FF € M®, (H4). Actually, F' is an isometry onto its image.

Example 3.7.5. Let again A = (L*([0, 1]), ). Set
D(gb 92,93, - .. ) = (X[O,%}gl + X[%,l}g% X[O’%]gii + X[%71]947 ce ) .

Then ker D = ImF+, D is an A-linear, bounded operator and ImD = Hy4. Thus, D €
MP_(H,). Indeed, D = F*, where F is the operator from Example 3.7.4.

Example 3.7.6. Let A = B(H), where H is a Hilbert space and let P be an orthogonal
projection on H. Set

F(Ty,Ty,...) = (PTy,(I — P)Ty, PTy, (I — P)Ts,...),

D(ShSQ,):(P51+([—P)SQ,P53+([—P)S4,)

Then, by the similar arguments as in Example 3.7.4 and Example 3.7.5, we have F' € M®_ (H 4)
and D € M®_(H,). Moreover, D = F™.

Example 3.7.7. In general, supose that {p}};en is a family of projections in A such that
P, P}, = 0 for all 4, whenever j; # jp, and ) pi = 1 for all i and some k € N.
j=1

Set
/ 1 1 1 1 2 2
Flag,...;an,...) = (pjoq, pai, . .. PrQi, Poia, D3, . . . Prlia, . . . ),

k k
D/(/Bh"'aﬁn)"‘) - (szl/glazp?/g’b-l-k?)
i=1 i=1
Then F' € M, (H,4) and D' € MP_(H 4).

Later, in Section 7.1, when we introduce the generalized spectra in A of operators on H 4,
we calculate in Example 7.1.27 the generalized spectra of semi-A-Fredholm operators from
Example 3.7.4 and Example 3.7.5. Notice that all these examples of M®, operators so far
are actually examples of operators that are bounded below, whereas all our examples of M®_
operators so far are examples of surjective operators. Since

M®(Hy) € MO, (Hy) and Q*(H,) € ML (Hy),

it follows that these operators are actually examples of semi-A-Weyl operators. In Section 9.2
we shall give some more examples of semi-A-Weyl operators.

Recalling now that a composition of two M®, operators on H 4 is again an M®_ operator
on H, and that the same is true for M®_ operators, we may take suitable compositions of
operators from these examples in order to construct more M®_ operators.

Even more M®_. operators can be obtained by composing these operators with isomorphisms
of H 4. We will present here also some isomorphisms of H 4.
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Example 3.7.8. Let j : N — N be a bijection. Then the operator U given by Ulex) = e;j)
for all k is an isomorphism of H 4. This is a classical well known example of an isomorphism.

Example 3.7.9. Let (ay,...,an,...) € AY be a sequence of invertible elements in A such that
| e |I,]l @t |< M for all k € N and some M > 0. If the operator V is given by

V(I’l,"‘ 7xn7"'):(051x1"' 7anxn7'”)f0rau (xlv'” J‘xn?'”)eHAu
then V' is an isomorphism of H 4.

We will now apply some of the techniques and the ideas from the proofs of the results
in A-Fredholm theory and semi-A-Fredholm theory in order to extend the results from the
classical semi-Fredholm theory on infinite-dimensional Hilbert spaces to a new, greater class of
operators on infinite-dimensional Hilbert spaces.

Definition 3.7.10. Let H be a separable infinite-dimensional Hilbert space. We set g M®(H)
to be the class of all operators F' € B(H) for which there exists a decomposition

H = M&N, - My®N, = H
1 0
0 Fy
are infinite-dimensional, closed subspaces of H.

with respect to which F' has the matrix } , where F} is an isomorphism and My, M,

Remark 3.7.11. Note that we only require that M; and M, are infinite-dimensional, closed
subspaces, but we do not require that N; or Ny to be finite dimensional. Thus, this class of
operators on H is strictly greater than the class of semi-Fredholm operators on H and includes
the class of semi-Fredholm operators. In the rest of this section we always assume that H
is a separable, infinite-dimensional Hilbert space. We have the following characterization of
gMP-operators.

Lemma 3.7.12. Let F' € B(H). Then F € gM®(H) if and only if ImF contains an infinite-
dimensional closed subspace.

Proof. Suppose that there exists an infinite-dimensional closed subspace M C ImkF. We set
F = F Then F € B(F~'(M), M) and F is surjective. Let M; denote the orthogonal

complement of ker F' in F~!(M). It follows that F| u, 18 an isomorphism onto M. With respect
to the decomposition

Pl

H=M®a&M- 5 MeM =H,

F' has the matrix { ! 2| where F} is an isomorphism. Using the technique of diagonal-

0 Fy
ization as in the proof of Lemma 2.0.42 we easily obtain that F' € g M®(H), because M and
thus M, are infinite-dimensional.

The "only if" part follows from the definition of the class gM®P(H). O

Lemma 3.7.13. Let F,D € gM®(H), Then DF € gM®P(H) if and only if there exist two
gMD-decompositions

H - MlééNl i) MQ@NQ - H,
H = M&N] 2 MyEN, = H

for F and D, respectively, such that My N M] is an infinite-dimensional subspace.
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Proof. Suppose first that such decompositions exist and set Fy := Fj,, . Then DF|F_1
1
an isomorphism onto D(Ms N M]) which is a closed infinite-dimensional subspace of ImDF.

From Lemma 3.7.12 the implication in one direction follows.
Assume now that DF € gM®(H) and let

(MgaNMY)

H = M,&N, 25 M,GN, = H

be a gM®-decomposition for DF. From Lemma 3.5.6 it follows that with respect to the de-
compositions

H = M;&N, - F(M)&D (N,) = H,
H = F(M)&D (N,) 2 My®N, = H,
10 and Dy 0
0 Fy |’ 0 Dy
isomorphisms. Since M is infinite-dimensional, it follows that F'(M;) is infinite-dimensional
also. This proves the implication in the opposite direction.

F and D have the matrices , respectively, where F} and D, are

]

Note that for proving the implication in the opposite direction, we haven’t used the assump-
tion that F, D € gM®(H) . Therefore, we obtain the following corollary.

Corollary 3.7.14. Let F, D € B(H) and suppose that DF € gM®(H). Then F, D € gM®(H).
Let now {e;},en be an orthonormal basis for H. For each n, we set L, = Span{es, ..., e,}.

Lemma 3.7.15. If FF € gM®(H), then FF+ K € gM®P(H) for every compact operator K.

Proof. Let H = M,®N,; Xy My&N, = H be a gMP-decomposition for F' and choose an
n € N such that HK%H < ||F7 Y|t where F} = F,,,- We have M, = (M, N L;) @ P for some
finite dimensional subspace P. Indeed, if we denote by p, the orthogonal projection onto L,,,
then, since Pny,, is injective , it follows that P is finite dimensional. Now, since M; is infinite-
dimensional and P is finite dimensional, we must have that M; N L;- is infinite-dimensional. As

in the proof of Lemma 2.0.45 we can proceed further and deduce that F' + K has the matrix
(F+K) 0

with respect to the decomposition

0 (F+ K)4
H =DM&N, =5 M&N, = H,
where M; = M; N L+ and (F + K); is an isomorphism. O

In exactly the same way as in the proof of Lemma 2.0.42 we can show that the set g M®(H)
is open in the norm topology. Moreover, in the same way as in the proof of the Corollary
3.1.20, passing to the orthogonal decompositions, we can show that F* € gM®(H) if and only
if e gM®(H).

Next, the following results can be proved in exactly the same way as the corresponding results
for semi-A-Fredholm operators.

Lemma 3.7.16. Let M be a closed infinite-dimensional subspace of H and Jy; denote the
inclusion map. If FJy € gMO(M, H), then F € gM®P(H).

Lemma 3.7.17. Suppose that D,F € B(H), ImF is closed and DF € gM®(H). Then
DJir € gM@(ImF, H)
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Corollary 3.7.18. Let V be a closed subspace of H such that dim V+ = oco. Suppose that
F € B(H) and Py.F € gM®(H,V*+). Then F € gM®(H).

Corollary 3.7.19. Let D, F € B(H) and suppose that ImD* is closed. If DF € gM®(H),
then Py pL F' € gMP(H, ImD*).

Lemma 3.7.20. Let F € B(H). Then F € gM®(H) if and only if there ezists a closed,
infinite-dimensional subspace M of H such that F},, is bounded below.

Lemma 3.7.21. The analogue of Lemma 5.6.11 holds in the setting of gM® operators.

Remark 3.7.22. The operators belonging to the class g M®(H) can still be useful for solving
the equation of the form Fx = y because, if

H = M,&N, 25 My&N, = H

is a gM®-decomposition for F, then we can at least solve the equation when y € M.
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Chapter 4

Semi-Fredholm operators over
W*-algebras

Throughout this chapter we will assume that A is a W*— algebra. We will show that in
this case semi-A-Fredholm operators have several properties more similar to the properties of
classical semi Fredholm operators than in the general C*-algebra case. More precisely, we give a
generalization in this setting of Schechter Lebow characterization of semi-Fredholm operators,
punctured neighbourhood theorem etc.. Main tools in proving these results are the results from
preliminaries regarding Hilbert W*-modules. Therefore, we assume in this chapter that A is a
W*—algebra.
We start first with the following auxiliary lemma.

Lemma 4.0.1. Let M be a Hilbert W*-module and F € /\//l\CPZ(M) Then ker F' is finitely
generated.

Proof. Consider an /T/l\q)l—decomposition M = M,&N, LI My®Ny = M for F. Then Ny is
finitely generated and ker F' = ker F, . Since N is self-dual, from Corollary 2.0.50 it follows that

ker [ N is an orthogonal direct summand in N;. Hence, ker F' = ker F| N is finitely generated.
O]

Then we obtain the following generalization of Schechter-Lebow characterization given in
[56, Theorem 1.4.4] and [56, Theorem 1.4.5].

Corollary 4.0.2. Let ./\//lTI)l(HA). Then ker(F' — K) is finitely generated for all K € IKC(H 4).

Proof. The statement follows from Lemma 4.0.1 since F — K € ./\//lTIDZ(HA) for all K € K(H )
by Proposition 3.5.4. O

Proposition 4.0.3. [19, Proposition 3.10] Let G € j\//l\@,,(HA). Then for every K € K(H,)
there exists an inner product equivalent to the initial one such that the orthogonal complement
of Im(G + K) with respect to this new inner product is finitely generated.

Proof. Let Hy = M;®N, HER My;®N, = H,4 be an /T/l\@T—decomposition for G. Then N,
is finitely generated, so, by the proof of Theorem 2.0.34, there exists an n € N such that
L,= (MyNL,®N, N = N, and Hy = My®N. Moreover, G|, 1s an isomorphism onto M.
To simplify notation, we let M = M,, M’ = M; and N = N. Since N is then a finitely gen-
erated Hilbert submodule of L, (being a direct summand in L,), by Lemma 2.0.25 we deduce
that L, = P ® N for some closed submodule P. Hence, Hy = M&N = L @& P @ N.

Denote by M the orthogonal projection onto L+ @& P along N. It follows that M),, is an iso-
morphism onto L;- & P. Hence MGy is an isomorphism of M’ onto L & P. If K € K(H.),
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then, by Theorem 2.0.56, there exists an m > n such that |¢, K| < [[(MG)ar) 7! Let M” =
(I_IG|M/)*1(L#1). Then NGy = ¢ NG = GG sinee ¢, = ¢, Moreover, ¢, (G — K )y
is an isomorphism onto L;.. Now, M’ = M"®N", where N” = (NGy/) (P @& (L, N Ly)).
With respect to the decomposition
M = M”GNBN”%L;@Lm = Hy,

(G-K); (G—K),y
(G-K)s (G—K)
isomorphism. Hence, by the same arguments as in the proof of Lemma 2.0.42, there exists an
isomorphism U : M' — M’ and an isomorphism V' : H4y — H4 such that G — K has the

——
(G—=K)h 0
——
0 (G- K),

G — K has the matrix , where (G — K); = ¢n(G — K)),,, is an

matrix with respect to the decomposition

M = UM")&UN") =5 V(LL)EV (L) = Ha,

—
where (G — K); is an isomorphism. Moreover, V' satisfies the equality V(L,,) = L,, by the
construction of V' from the proof of Lemma 2.0.42. Since
V(LL) C Im(G — K) C Im(G — K) and Hy = V(L& L,

we obtain that Im(G — K) = V(L:)®(L,, N Im(G — K)). This follows from Lemma 2.0.66.
On H 4 we may replace the inner product by an equivalent one, in such a way that V(L) and
L,, form an orthogonal direct sum with respect to this new inner product.

Let us consider from now on this new inner product. We will therefore in the rest of the
proof denote L by L* in order to avoid possible confusion regarding orthogonlity with respect
to the old and the new inner product.

Since Ly, is finitely generated and L,, N Im(G — K) is a closed submodule of L,,, we have
from Lemma 2.0.47 that

L = (L N Im(G — K))** @ (L,, N Im(G — K))™*.
Then it follows that (L,, N Im(G — K))* is finitely generated. Since
Im(G—-K)=V(L})® (L,NIm(G - K)),

we see that Im(G — K)L C Ly, since Im(G — K)L is orthogonal to V(L¥)) with respect to
this new inner product and (V(L?,))* = L,,. Therefore,
Im(G —K)"

= L,NImG - K),
so Im(G — K )L is finitely generated. O

Note that from the proof of Proposition 4.0.3 it follows that if Im(F — K) is complementable

in Hy (for F' € -/\//l\q)r7 (Hy), K € K(H4)), then the complement must be finitely generated.
Indeed, in the proof of Proposition 4.0.3 we have obtained that

Im(G — K) = V(LE)&(Ly, N Im(G — K)) and Ha = V(L-)EV (Lu).
Hence, if Im(G — K) is complement of Im(G — K), we get
Hy=V(L)®(Ly N Im(G — K))®Im(G — K)

(o}
I

which gives that

(L N Im(G = K)&Im(G — K) 2 V(Ly) & L.

It follows that Im(G — K )O is finitely generated being isomorphic to a direct summand in L,,.
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Definition 4.0.4. [19, Definition 3.24] Let M be a Hilbert W*- module. For F' € B*(M), we
say that F satisfies the condition (*) if the following holds:
1) ImF™ is closed for all n,

2) F(ﬁ1 Im(F™)) = ﬁ Im(F™).

If we have a decreasing sequence of complementable submodules Ny s, then their intersection
in general (for C*-algebras) is not complementable, but it is complementable for W*-algebras.
This is true due to the possibility to define a w*-(or weak) direct sum of submodules, as
opposed to the standard [y construction. Let Ni_; = N, @ L;. Then we can define w* — @, Ly

o
as the set of sequences (zy), x € Lg, such that the sum Y (xy,xy) is convegent in A with
k=1

respect to the *-strong topology, as opposed to the norm topology. Then it is easy to see that
[e.@]
k=1

Note that if H is an ordinary Hilbert space, then (*) is always satisfied for any

F € ®(H) by [56, Theorem 1.1.9]. There are also other examples of Hilbert W*-modules for
which the condition (*) is automatically satisfied for a W*-linear, bounded operator F as long
as F' has closed image.

Example 4.0.5. [19, Example 3.25] Let A be a commutative von Neumann algebra with a
cyclic vector, that is A = L*(X, u), where X is a compact topological space and u is a Borel
probability measure. Consider A as a Hilbert module over itself. If F'is an A-linear operator
on A, it is easily seen that Im(F*) = Span4{(F (1))} for all k. Let S = (F(1)71({0}))¢. Then
one can show that ImF = ImF* = Spans{xs} for all k if we assume that F(1) is bounded
away from 0 on S and hence invertible on S. However, if I’ has closed image, then this is the
case. Indeed,

ker F={fe€A|f,=0un —ae on S}=Spans{xs}, so ker F* = Span{xs}.
Now, if F' has closed image, then F is bounded below on ker F*, hence we have

FE) loo=ll FEQ) Jloo= C I f lloo

for all f vanishing p-almost everywhere on S and for some constant C' > 0. However, if

W(F(1) (B0, ) 8)) > 0 v,

n

then, letting
fo = Xr@)-1((B0.2)ns)

we get || fn [oo=1 for all n and

F(fn) = fnF (1) = Xe@)-1(s0,2)ns)F (1),

1
so || F(fn) ||ooe< — for all n. Moreover, f,xs- = 0 for all n. It follows that F' is not bounded
n

below on (ker F)* in this case, which is a contradiction. Thus we must have that F(1) is
bounded away from 0 on S if F' has closed image. Hence, in this case we get

Im(F) = Im(F*) = Span{xs} = (ker F)*Vk,

so ImF = F(Im™®(F)) = Im™(F), where Im*(F) denotes () Im(F"*).
k=1
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For each n € N, let F), be the operator on L, (.A) given by
Fo(xy,...,2,) = (Fay,...,Fx,),

where F is the operator on A from above. If U is an isomorphism of L, (A)* onto L,(A)*,

then the operator F, on H,4 given by the operator matrix [ v o

0 F } with respect to the

decomposition

Fa

Hjy=L,(A)*®L,(A) =% L,(A) @ L,(A) = Hy,

satisfies the condition ().

Next, if '€ M%(H4) or if F' € Q*(H 4), then obviously such operator F satisfies the condition
(*). We recall once again that M®, and M®_ operators from our examples are actually
examples of the operators belonging to the class M*(H 4) and to the class Q%(H 4), respectively.

Proposition 4.0.6. Let M be a Hilbert W*-module and F' € M®(M). Then index of F' is well
defined.

Proof. Let M = M;®N,; LN M>® Ny = M be an M®-decompostion for F. Then there exists
an isomorphism U such that

M = NL&U(Ny) -5 F(NS) @ F(NP) =M

is also an M®-decompostion for F' and Ny = F(Ni)L. Indeed, by the proof of Theorem 2.0.38
it follows that
M = N @ N, - F(N{)ON, = M

is also an M®-decomposition for F. Moreover, as explained in the proof of Theorem 3.1.2 part
1) = 2), we have that F(N) is orthogonally complementable in M. Obviously, it holds that
(F(N{))* = N,. With respect to the decomposition

M = N{ e N, -5 F(N{) @ F(N{)*: = M,

F has the matrix [ LR

0 F } , where Fj is an isomorphism, hence there exists an isomorphism
4
U such that

M = NL&U(Ny) -5 F(NS) @ F(NP) =M

is an M®- decomposition for F. Since U(N;) and F(Ni-)* are self-dual being finitely generated,
as in the proof of Proposition 2.0.53 we can apply Corollary 2.0.50 and Lemma 2.0.52 in order
to deduce that there exists a Hilbert submodule N; such that

U(N,) = N, @ ker F and F(Nj)* = F(N,) @ ImF*,

where Ny = F(N;) and F(N;) denotes the closure of F(N;) in 7i-topology (for more details
about this topology, see [38, Section 3.5]). It follows that

[Ny] — [No] = [U(N)] — [F(N{)Y] = [ker F] — [ImF*].
Since this holds for any M®-decomposition of F, the statement follows. n

Remark 4.0.7. Proposition 4.0.6 shows that Proposition 2.0.53 is valid also in the case of arbi-
trary Hilbert W*-modules and not just countably generated ones.
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Recall that for a W*-algebra A, G(A) denotes the set of all invertible elements in A and
Z(A) = {B € A| Pa = apf for all & € A}. For a Hilbert A-module M and o € Z(A) we
let al denote the operator on M given by al(x) = z - « for all z € M. We notice that this
definition differs from the definition of the operator al on H 4 given in Section 3.4, however,
this definition is applicable in the case of arbitrary Hilbert-A-modules. The limitation of this
definition (compared to the definition of af from Section 3.4) is that it requires that o € Z(A),
however, in the case when A is commutative, then this definition coincides with the definition
of al from Section 3.4.

We have then the following generalization of the punctured neighbourhood theorem stated
in [56, Theorem 1.7.7].

Theorem 4.0.8. [19, Theorem 3.26] Let F € M®(M) where M is a Hilbert A-module over a
W*-algebra A and suppose that F satisfies the condition (*). Then there exists an € > 0 such
that if o € Z(A) NG(A) and || o ||< €, then

[ker(F — al)] + [N,] = [ker F] and [Im(F — oI)*] + [N,] = [Im(F)™]
for some fixed, finitely generated closed submodule Nj.

Proof. Since F € M®(M) has closed image, then by Lemma 3.3.6 and Lemma 2.0.42, there
exists an €; > 0 such that if | o ||< €1, € Z(A) N G(A), then

ker(F — ol) < ker F, Im(F — al)* < ImF*

and index (F — al) = index F. Now, since a € G(A) N Z(A), we have that
ker(F' —al) C Im™(F) = ﬂ Im(F™).
n=1

This works as in by the proof of [56, Theorem 1.7.7]. As Im>(F') is orthogonally comple-
mentable in M, there exists orthogonal projection Prypeo )2 onto Im™®(F)*+ along Im™(F),
hence

(ker ' Im™(F)) = ker Ppypoopy1y, .-

Since ker F' is self dual being finitely generated, then, by Corollary 2.0.50, ker F' N Im®(F') is
an orthogonal direct summand in ker F), so

ker F' = (ker F N Im™(F)) & N,

for some closed submodule Ny. Set M = (| Im(F™) and Fy = F},,. Then ker [y = ker F N M

n=1
is finitely generated as a direct summand in ker ' (which is finitely generated itself by Lemma

3.1.21). Since ker F' N M is finitely generated, by Lemma 2.0.25 ker F' N M is orthogonally
complementable in M, so M = (ker F'N M) @ M’ for some closed submodule M’. On M’; the
mapping Fj is an isomorphism from M’ onto M, since F'(M) = M by assumption as F' satisfies
(*) condition. Therefore, Fy € M®(M). By Lemma 3.3.6 and Lemma 2.0.42 there exists an
€3 > 0 such that if || a ||[< e, a € G(A) N Z(A), then

ker(Fy — aljpr) = ker Fy, Im(Fp — cv_f|M)L = ImFOL

in M and
index (Fy — al) = index Fy = [ker Fy,

because Fy is surjective. Since ImF;- = {0} (in M), we have

Im(Fy —al)*=0for all || a||< e, ,ac G(A)NZ(A),
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as Im(Fy — o), )= X ImFy- for all || a||< 2, € G(A) N Z(A).
Recall that ker(F' — al) C Im®(F) = M. Therefore,

ker(F' — al)] = [ker(Fy — od,,)] = index (Fy — al),,) = index Fy = [ker Fy).

This holds whenever || a ||< e, ,a € G(A) N Z(A).
Now, ker Fy = ker ' M and ker F' = (ker F N M) & N;. Therefore, if a € G(A) N Z(A) and
| @ ||< €2, then

[ker F] = [ker F'N M| + [Ny] = [ker Fy] + [IV1] = [ker(F — al)] + [ V4]

whenever || « ||< ez, a € G(A) N Z(A). If, in addition || a [|< €1, then as we have seen at the
beginning of this proof, by the choice of €;, we have that

index (F — al) = index F.
So, if || a [|[< min{e, &2} for a € G(A) N Z(A), then
index (F' — al) = index F and [ker F| = [ker(F — ad)] + [V4].
It follows by Proposition 2.0.53 and Proposition 4.0.6 that

[ImF*] = [Im(F — aI)*] + [N4].

]

Remark 4.0.9. [19, Remark 3.27| If A is a factor, then Theorem 4.0.8 is of interest in the case
of finite factors, since Ky(.A) is trivial otherwise.

Self-dual W*-modules have several special and nice properties, as described in |38, Chapter

3] and in preliminaries. We recall that there are also examples of self-dual Hilbert W*-modules
that are not finitely generated. On such self-dual Hilbert W*-modules semi-.A-Fredholm theory
might still be of interest. At the end of this section we give some results regarding semi-.A-
Fredholm operators on self-dual Hilbert modules over a W *-algebra A.

Lemma 4.0.10. Let M be a self-dual Hilbert module over a W*-algebra A. Then the classes
MO, (M), MO_(M), MDo(M), MO (M) and MO=' (M) are semigroups under the multi-
plication.

Proof. Suppose that D, F € /\/lq)jr/(]\/[) and let
M — MlééNl i) MQ@NQ - M,
M = M{&N] 25 MyBNy = M
be two M<I>jr/ -decompositions for F' and D, respectively. Then My N My = ker ™, ,, where [
1

stands for the projection onto Ny along M. By Lemma 2.0.30 Mj is self-dual. Hence M| , is
1

a bounded A-linear mapping between self-dual Hilbert A-modules. From Corollary 2.0.50 it
follows that kerr, , & My = Mj (where M}’ is the orthogonal complement of kerr1, ,.) With
1 1

respect to the decomposition
M = (My 0 MD®MISN]) 25 D(My N M)E(D(M!)BNL) = M,

Dy 0
0 Dy
have M{" = D(MY]). It follows that M{®N| < D(M])®N} since N| < Nj.

the operator D has the matrix [ } , where D; is an isomorphism and moreover, we
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Next, since My N M/ is complementable in M and M, N M; C M,, by Lemma 2.0.66 we have
that (My N M')@MQ M, for some Hilbert submodule M,. Set F;, = Fiar,, then Fjyy, is an
isomorphism from M; onto M. So we get

M = F7Y My N M)EFT (M) &N,

where F{H(My N M]) 22 My N\ M! and F;*(Ms) 22 M,. Hence FyH(My)®N; < My®N, because
N1 j NQ. Since R
M = (Mo N M)D(Ma®BN>) = (Mo 0V My)S(M{DN),

it follows that My@N, = M/'GN/. Therefore, we get F;1(M;)EN, < MI&N]. With respect to
the decomposition

M = F{ My 0 M)®(Fy Y (M) BN,) —— (My 0 MDS(MIBN]) = M,

F' has the matrix { (1;1 ?2 } , where F} is an isomorphism. Hence, by the proof of Lemma
4
. : . _ 0 .
2.0.42, there exists an isomorphism U such that F' has the matrix 0 B with respect to
4

the decomposition
M = F7 (Mo 0 MD)SU(FTH(M)ONy) 2 (Mo 0 M)&(MIGN]) = M.
Then, with respect to the decomposition
M = F7H (Mo 0 M)SU(FT (Ma)ENy) 25 D(My 0 M)&(D(M])ENL) = M,

(DF)1 0

the operator DF has the matrix [ 0 (DF),

over,

} , where (DF'); is an isomorphism. More-

FA(VR)BN, = UGN, < D(M)ENY,
It remains to show that F! 1_1(M2) is finitely generated. To this end, observe that we have that
My N M{ = kerrT},, ., where I’ stands for the projection onto Nj along M. Hence T, i

injective on M,. Now, by Lemma 2.0.30, M, is self-dual, so, by Lemma 2.0.52, we deduce that
M, is isomorphic to a direct summand in Nj. Since N7 is finitely generated, it follows that M,
is finitely generated as well. Hence F| (Mg) is ﬁmtely generated, since F;'(M,) = M,. We
have then obtained an M@Il—decomposition for DF, so DF € M® (M).

The proofs for the other cases are similar. O

Corollary 4.0.11. Let M be a self-dual Hilbert W*-module. Then M®, (M) and M®_ (M)
are semigroups under the multiplication.

Proof. We use Lemma 4.0.10 together with Proposition 3.4.12 (which is valid for arbitrary
Hilbert C*-modules by Remark 3.4.13) and obtain the result. ]

Corollary 4.0.12. Let M be a self-dual Hilbert W*-module. Then analogue of Corollary 3.1.19
holds in this case.

Proof. By applying Lemma 4.0.10, Corollary 3.5.9 and Corollary 3.5.10 instead of Corollary
3.1.14, Corollary 3.1.17 and Corollary 3.1.18, respectively, we deduce the desired result. n

Corollary 4.0.13. Let M be a self-dual Hilbert W*-module. Then M®L (M) and M®F (M)

are semigroups under the multiplication.
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Proof. By applying Lemma 4.0.10 instead of Corollary 3.1.14, Corollary 3.5.7 instead of Corol-
lary 3.1.15, Corollary 3.5.10 instead of Corollary 3.1.18, Corollary 4.0.12 instead of Corollary
3.1.19 and Corollary 4.0.11 instead of Lemma 3.4.7, we can argue in exactly the same way as
in the proof of Lemma 3.4.8. O]

Remark 4.0.14. Notice that Lemma 3.1.13 also holds in the case of arbitrary self-dual Hilbert
W*-modules. Indeed, by applying Lemma 4.0.10 instead of Lemma 2.0.43 and recalling that
by Proposition 4.0.6 the index is well defined on arbitrary Hilbert W*-modules, we can argue
in this case in exactly the same way as in the proof of Lemma 3.1.13.

Lemma 4.0.15. Let M be a self-dual Hilbert W*-module.
Then M®, (M) \ MP' (M), MP_(M)\ MPT' (M) and MP(M)\ M®y(M) are open.

Proof. Let F € M®(M)\ Md (M) and
M = Mi®N, 5 My®Ny = M

be an M®_ -decomposition for F. As in the proof of Lemma 3.4.14, for a sufficiently small € > 0
we can find some D € M® (M) such that

M = M&N, 2 MYEN, = M

is an M®_-decomposition for D and in addition M; = M7, Ny = Ny, My = M} and Ny = Nj.
If D e M®' (M), we can find an M®'-decomposition for D,

M = MI'®N] 25 MIGNY = M.

Then, by the same arguments as in the proof of Lemma 4.0.10, we deduce that there exists
finitely generated Hilbert submodules P’ and P” such that

M = (M, M})& P and M! = (M, N M!') & P".

Hence we can proceed in the same way as in the proof of Lemma 3.4.14 to conclude that there
exists an isomorphism U; such that

M = Uy (M, N M"Y&UL(P)EN,) —— F(UL (M, N M )& (F(U,(P)&Ny) = M

is an M®7'-decomposition for F. n
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Chapter 5

Generalizations of semi-C*-Fredholm
operators

Various generalizations of classical semi-Fredholm operators such as generalized Weyl operators
defined by Pordevi¢ in [3] and semi- B-Fredholm operators defined by Berkani in [4] and [5] have
been considered earlier. In this chapter we are going to construct in a similar way generalizations
of semi-A-Fredholm operators and investigate some of their properties. Moreover, we shall apply
some of these results to the classical case of regular operators on Banach spaces.

5.1 Generalized semi-C*-Weyl operators

We start with the following definition.

Definition 5.1.1. |21, Definition 11| Let F' € B%(H ).

1) We say that I € M®9(H ) if ImF is closed and in addition ker F' and ImF* are self-dual.
2) We say that F' € M®J°(H,) if ImF is closed and kerF = ImF* (here we do not require
the self-duality of ker I, ImF>).

The operators belonging to M®9¢(H 4) will be called the generalized A-Fredholm operators,
whereas the operators belonging to M®{°(H 4) will be called the generalized A-Weyl operators.

Remark 5.1.2. |21, Remark 10] Recall that if H is a Hilbert space, then an operator F' € B(H)
is called a Weyl operator if F' is a Fredholm operator with index 0. Now, as we have mentioned
in preliminaries, for A-Fredholm operators we wish to generalize the sign of the index by
considering monomorphism between the submodules. For the operators in B*(H 4) with closed
image we may obtain a generalization of the index by considering the monomorphisms between
their kernel and the orthogonal complement of their image. Thus, a natural generalization in
this setting of Weyl operators on Hilbert spaces would be the operators in B*(H 4) with closed
image such that their kernel is isomorphic to the orthogonal complement of their image, in
other words the operators belonging to M®§(H ).

We have the following proposition.

Proposition 5.1.3. /21, Proposition 3] Let F,D € M®{(H,) and suppose that ImDF is
closed. Then DF € M®{°(Hy).

Proof. Since ImDF is closed, by Theorem 2.0.20 there exists a closed submodule X such that
ImD = ImDF @& X because DF can be viewed as an adjointable operator from H 4 into ImD.

Next, considering the map D), , and again using the assumption that ImDF is closed,
we have that ker D), ., which is equal to ker D N ImF, is orthogonally complementable in
ImF by Theorem 2.0.20. Indeed, ImF is orthogonally complementable in H 4 by Theorem
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2.0.20, hence D), . is an adjointable operator from I'mF onto ImDF. Therefore, we can apply
Theorem 2.0.20 on the operator D), .. It follows that ImF = W @ (ker D N ImF) for some
closed submodule W. Now, since (ker DNImF)®W & ImEF+ = H4 and (ker DN ImFE) C ker D,
by Lemma 2.0.66 it follows that

ker D = (ker DN ImF) @ (ker D N (W & ImF*)).

Set M = ker D N (W @ ImF*), then ker D = (ker D N ImF) & M.

Clearly, D) po is an isomorphism from ker D+ onto ImD. Let S = (lechL )"t and P, pt
denote the orthogonal projection onto ker D*. Then B, pr = SDP,, pr and Py, DLy is an
isomorphism from W onto S(ImDF). Indeed, since Dy, is injective and D(W) = ImDF is
closed, by the Banach open mapping theorem D), is an isomorphism onto ImDF. This actually

means that DB, pr is an isomorphism onto ImDF, as D),, = D Py, pr, . It follows that

lw lw

PkerDl(W> = SDPkerDL(W) = S(ImDF)

Since D Py, DLy, is an isomorphism onto ImDF, it follows that P p., is an isomorphism

onto S(ImDF'). Recall that

lw

ker D+ = S(ImD) = S(ImDF)®S(X).
Therefore, we get that Hy = WOS(X )@ ker D. Indeed, let x € H 4, then, since
Hy= S(ImDF)®S(X)&ker D,

we have x = y + z + u for some y € S(ImDF), z € S(X) and u € ker D. As Pierpr  1s an

isomorphism onto S(ImDF), there exists some w € W such that P, pi(w) = y. This means
that w = y + ' for some v’ € ker D. Hence we get

r=y+ztu=y+u+z+u—u €W+ S(X)+kerD,

because u — v’ € ker D. Thus, Hy = W + S(X) + ker D. Since Pierpt,, is Injective, we have
W Nker D = {0}. If v € W N S(X) for some v € Hy, then, as S(X) C ker D, we get

v = Py pe(v) € S(IMDF) N S(X) = {0}.

Hence W N S(X) = 0, so we obtain Hy = W&S(X)® ker D.
Thus, we have

Hy=WaoS(X)®(ker DN ImF)OM =W @ (ker DN ImF) @ ImF*.

This gives S(X)®&M = ImF*.

Next, by Theorem 2.0.20 applied on the operator DF, we obtain that ker D F' is orthogonally
complementable in H 4. Hence, Fj,_ . is adjointable. Moreover, Im(Fj_, ,,) = ImF Nker D,
which is closed. Now, ker F' = ker (Fj,, ), as ker F' C ker DF. It follows by Theorem 2.0.20

that ker /' is orthogonally complementable in ker DF, so ker DF = ker F' & W for some closed
submodule W. On W, F is an isomorphism onto ker D N ImF, so W 2 (ker D N ImF).

Therefore, we get
ker DF = (ker F @ (ker D N ImF)) = ImF* & (ker D N ImF)
~S(X)® M@ (ker DNImF) =2 S(X)Dker D= X @ ImD*+ = ImDF*

(here @ denotes now the direct sum in the sense of Example 2.0.6). O
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Remark 5.1.4. In the proof of Proposition 5.1.3 we have obtained the relation
Hjy=W&S(X)®(ker DN ImF)&M.

Since ker D = (ker DN ImF)® M and ImF =W @ (ker DN ImF), we deduce from the above
relation that
Hy = S(X)®(ker D + ImF).

Thus, ker D + ImF' is closed and complementable in this case.

Proposition 5.1.3 is a generalization of |3, Theorem 1]. Indeed, our proof is also valid in the
case when F' € MP{(M,N), D € M{°(N, R), where M, N, R are arbitrary Hilbert C*-modules
over a unital C*-algebra A.

Next, by our proof we easily obtain a generalization of Harte’s ghost theorem in [11].

Corollary 5.1.5. [21, Corollary 1] Let F, D € B*(H,4) and suppose that ImF,ImD, ImDF
are closed. Then

ker F @ ker D @ ImDF* = ImD* @ ImF* @ ker DF.
Proof. We keep the notation from the previous proof. In that proof we have shown the relation
ImF+ 2= S(X)® M.
Moreover,
D = (ker DN ImF)® M, ImDF* = ImD*+ @ X,
ker DF = ker F & (ker D N ImF).

This gives
ker F @ ker D @ ImDF-~ker F ®ker D ® ImD+ @ X

~ker F @ (ket DN ImF) S M & ImD+ @ X Xker DF & M & S(X) @ ImD*
>~ ker DF @ ImF+ @ ImD™,
O

Inspired by the definition of the exact sequences in Banach spaces, we give now the following
definition.

Definition 5.1.6. |21, Definition 12| Let My, ..., M, be Hilbert submodules of H4. We say
that the sequence 0 — M; — My — --- — M,, — 0 is exact if for each k € {2,...,n — 1} there
exist closed submodules M, and M}’ such that the following holds:

1) My = M[@&M] for all k € {2,...,n—1};

2) M5 = M, and M) | = My;

3) My =M, forall ke {2,...,n—2}.
Then we have the following lemma.

Lemma 5.1.7. [2], Lemma 2 | Let F, D € B*(H,) and suppose that ImF,ImD, ImDF are
closed. Then the sequence

0 — ker F — ker DF — ker D — ImF*+ — ImDF* — ImD*+ — 0

18 exact.
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Proof. From the proof of Proposition 5.1.3 and using the same notation, we obtain the following;:
ker DF = ker F ® W, where W = ker D N ImF,

ker D = (ker DN ImF) @& M, ImF+~= X @ M,
ImDF*+ = X & ImD*.
O

Using the fact that a direct summand in a self-dual module is again a self-dual submodule,
the fact that a direct sum of two self-dual modules is a self-dual module itself and the fact that
the self-duality is preserved under isomorphisms, which follows from Lemma 2.0.30, Lemma
2.0.31 and Lemma 2.0.33, we easily obtain the next result as a corollary of Lemma 5.1.7.

Corollary 5.1.8. [21, Lemma 3] Let F, D € M®(H,4) and suppose that ImDF' is closed.
Then DF € M®9(H 4).

Lemma 5.1.9. /21, Lemma 4] Let F € B*(Hy). Then F € M®(Hy) if and only if F* €
MPI(H ).

Proof. By the proof of Theorem 2.0.20 part ii), ImF™* is closed if ImF is closed. Next, we use
that ker F' = ImF** and ker F* = ImF*. ]

Proposition 5.1.10. /21, Proposition 4 | Let F,D € B*(Hy), suppose that ImF,ImD are
closed and DF € M®%(H 4). Then the following statements hold:

a) D € MO (Hy) = F € MP(Hy);

b) if ker D is self-dual, then F, D € M®Y(H 4);

c) if ImF* is self-dual, then F, D € M®9(H y).

Proof. Part b) follows from Lemma 5.1.7, Lemma 2.0.30, Lemma 2.0.31 and Lemma 2.0.33. By
passing to the adjoints and using Lemma 5.1.9 one may obtain ¢). To deduce a), use b) and

c). O

Lemma 5.1.11. /2], Lemma 5] Let F' € B*(H 4) and suppose that ImF is closed. Moreover,
assume that there exist operators D, D’ € B®*(H ) with closed images such that D'F,FD €
MPI(H ). Then F € MDPI(Hy).

Proof. By Lemma 5.1.7, since F'D is in M®9(H,) and ImF, ImD are closed, it follows that
ImF* is self-dual. Now, by passing to the adjoints and using Lemma 5.1.9, we obtain that
F*(D')* € M®9(H ), as D'F € M®9°(H 4). Moreover, by the proof of Theorem 2.0.20 part ii),
ImF*, (ImD")* are closed, as ImF, ImD’ are closed by assumption. Hence, using the previous
arguments, we deduce that ImF*+ = ker F is self-dual. O

Remark 5.1.12. Our results on generalized A-Fredholm operators are motivated and inspired
by Yang’s results and work in [31] on generalized Fredholm operators on Banach spaces.

We are now going to apply the proofs of Proposition 5.1.3 and Lemma 5.1.7 to the case
of operators on Banach spaces and extend to this case Theorem 1 of [¢] as well as some other
results from the classical semi-Fredholm theory.

Definition 5.1.13. Let X, Y be Banach spaces and 7' € B(X,Y’). Then T is called a regular
operator if T'(X) is closed in Y and in addition 77*(0) and T'(X) are complementable in X
and Y, respectively.
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Remark 5.1.14. Tt is not hard to see that T is a regular operator if and only if 7" admits a
generalized inverse, that is if and only if there exists some 7" € B(Y, X) such that TT'T =T.
In this case we have that 77" and T"T are the projections onto T'(X') and complement of 7~1(0),
respectively, and moreover, T"T"T" = T". Thus, Definition 5.1.13 corresponds to the definition
of regular operators on Banach spaces given in [14].

Definition 5.1.15. [8] Let X,Y be Banach spaces and 7" € B(X,Y). Then we say that T’
is generalized Weyl, if T'(X) is closed in Y, and T-*(0) and Y /T(X) are mutually isomorphic
Banach spaces.

We give then the following proposition as an extension of |8, Theorem 1] to the case of
regular operators on Banach spaces.

Proposition 5.1.16. Let X, Y, Z be Banach spaces and let T € B(X,Y),S € B(Y,Z). Suppose
that T, S, ST are regular, that is T(X),S(Y),ST(X) are closed and T, S, ST admit generalized
wmverse. If T and S are generalized Weyl operators, then ST is a generalized Weyl operator.

Proof. Since T, S, ST are regular by assumption, their kernels and ranges are complementable
in the respective Banach spaces X, Y, Z. Moreover, observe that S|T(X) is regular. Indeed, if U
denotes the generalized inverse of ST, then for any z in X, we have STUST (z) = ST (x), so
it is easily seen that TU is generalized inverse of S|, . Hence (S, ,)”'(0) is complementable
in T'(X). However, we have (S,,,)”"(0) = S7'(0) N T(X). Since T(X) is complementable in
Y, because T is regular, it follows that S~'(0) N T'(X) is complementable in Y. By Lemma
2.0.66 we have that S~1(0) N T'(X) is then complementable in S~(0). Moreover, ST(X) is
complementable in S(Y') by Lemma 2.0.66, since ST'(X) is complementable in Z. Finally, since
T71(0) is complementable in X, because T is regular, and T-1(0) C ST~1(0), it follows again
from Lemma 2.0.66 that T-'(0) is complementable in ST~'(0). Then we are in the position to
apply exactly the same proof as in Proposition 5.1.3. O

Remark 5.1.17. In general, if X,Y,Z are Banach spaces and F' € B(X,Y),G € B(Y,Z),
GF € B(X, Z) are regular operators, then we have that the sequence

0—=>kerF = kerGF = kerG — ImF° — ImGF° — ImG° —= 0

is exact, where ImF°, ImG° and ImGF° denote the complements of ImF, ImG and ImGF
in the respective Banach spaces. This can be deduced from the proof of Proposition 5.1.3
and Proposition 5.1.16 or from [31, Proposition 2.1] and [31, Theorem 2.7|. If G, F,GF are
regular operators, then all the subspaces in the above sequence are complementable in the
respective Banach spaces. From the exactness of the above sequence we may deduce as direct
corollaries various results such as [3, Theorem 1] and index theorem, Harte’s ghost theorem in
[11] etc. Recalling from Proposition 3.5.11 that the index of closed range operators A-Fredholm
operators on arbitrary Hilbert A-modules is well-defined, from the exact sequence in Lemma
5.1.7 we obtain that Lemma 2.0.43 remains valid for closed range A-Fredholm operators on
arbitrary Hilbert A-modules.

Recall Definition 2.0.41 from preliminaries. The next proposition is another generalization
of the well-known index theorem [56, Theorem 1.2.4].

Proposition 5.1.18. /19, Proposition 3.19] Let F,G € ./\//l?IDZ(HA) with closed images and sup-
pose that ImMGF is closed. Then ImF,ImG and ImGE are complementable in H 4. Moreover,
if ImF°, ImG°, ImGF° denote the complements of ImF, ImG, ImGF, respectively, then

ImGF° < ImF° & ImG°,

ker GF < ker G & ker F.

If F.G € /\//lTPT(HA) and ImF, ImG, ImGF are closed, then the above statement holds under
the additional assumption that ImF, ImG, ImGF are complementable in H 4.
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Proof. Since I’ € /\//l?IDZ(H 4), from Proposition 3.5.11 it follows that ImF' is complementable
in Hy because ImF' is closed by assumption. Similarly, since ImG,ImGF' are closed, we
have that ImG°, ImGF® exist, because G,GF € M®;(H,). Here we use the fact that GF' €

./\//l?DZ(HA) by Corollary 3.5.5 since F,G € ./\//l\q)l(HA). Moreover, if G, F € ./\//l?I)r(HA), we have
GF € mr(HA) by Corollary 3.5.5. In the first case, when G, F,GF € /\//l\(IDZ(HA), we have by
Proposition 3.5.11 that F,G and GF' are regular operators, whereas in the second case, when
G,F,GF € M®,.(H_,), we have by Proposition 3.5.13 that F, G and GF are regular operators.
By Remark 5.1.17 we can apply the exact sequence from Lemma 5.1.7 provided that we replace
the orthogonal complements by the respective complemented submodules. O

Lemma 5.1.19. /19, Lemma 3.20] Let M be a Hilbert C*-module and F, D € B*(M). Suppose
that ImF,ImD and ImDF are closed. Then

ImDF*+ < ImF+ @ ImD*,
ker DF <ker D @ ker F.

Proof. If F,D € B*(M) and ImF,ImD are closed, by Theorem 2.0.20 F' and D are then
regular operators. Hence we can apply the exact sequence from Lemma 5.1.7 . O]

Lemma 5.1.20. Let M be an arbitrary Hilbert W*-module and G, F € /\//@(M) Suppose that

ImG, ImF and ImGF are closed. If ImGF is complementable in M, then GF € M®(M) and
the relations from Proposition 5.1.18 hold in this case as well.

Proof. Since ImG and ImF' are closed by assumption, from Proposition 3.5.11 it follows that
M = ker F°@ker F - ImF&ImF°® = M,

M =ker G°® ker G i ImGHImG® = M

are two m—decomposition for F' and G, respectively. In particular, ker ' and ker GG are finitely
generated. Let M stand for the projection onto /mF*° along ImF. Since ker GNImF = ker M,
and ker G is self-dual, from Corollary 2.0.50 it follows that (ker G N ImF) & M’ = ker G for
some Hilbert submodule M’. Hence ker G N I'mF is finitely generated as a direct summand in
ker G. By Lemma 2.0.25 we obtain ImF = (ker G N ImF) @& M for a Hilbert submodule M.
Hence

ke F° = (F,..,.)" (M)(F, )" (ker G 1 ImF).

We have that
ker GF = ker F®(F,_ ..) ' (ker G N ImF),

so this implies that ker GF' is complementable in M. Since ImGF is closed and complementable
in M by assumption, we get that GF' is a regular operator. From the exactness of the sequence
given in Remark 5.1.17 we deduce then the desired results. [

Corollary 5.1.21. Let X,Y,Z be Banach spaces and F' € B(X,Y),G € B(Y,Z) be regular
operators. Suppose that GF' is also a regular operator. Then

ImGF° < ImG° ® ImF° and ker GF < ker G @ ker F,

where ImF°, ImG° and ImGF° denote the complements of ImF,ImG and ImGF in the re-
spective Banach spaces.

Definition 5.1.22. Let X, Y be Banach spaces and 7' € B(X,Y') be a regular operator. Then
T is said to be a generalized upper semi-Weyl operator if ker " < Y/Im(T). Similarly, T is said
to be a generalized lower semi-Weyl operator if Y/Im(T') < kerT.
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Lemma 5.1.23. Let T € B(X,Y), S € B(Y, Z) and suppose that S, T, ST are reqular. If S and
T are upper (or lower) generalized semi-Weyl operators, then ST is an upper (or respectively
lower) generalized semi-Weyl operator.

Proof. This follows from the exactness of the sequence given in Remark 5.1.17. O]

Lemma 5.1.24. Let F € B(M) where M is a Hilbert C*-module and suppose that F and
F? are reqular. If F € ]\//lTI)l(M), then F|, . € /\//lTI)l([mF). Similarly, if F € ./\//l\CIDr(M),
then F|, . € /\//l\CDT(ImF). Finally, if F € ./\//ITP(M), then F), . € /\//I?D([mF) and in this case
index £}, . = index F.

Proof. We can apply Lemma 5.1.7 and Corollary 3.5.15 to deduce the lemma. Indeed, by
Remark 5.1.17 we have that Lemma 5.1.7 can be generalized to regular operators. For the
third statement in the lemma we recall also that the index of regular A-Fredholm operators is
well-defined on arbitrary Hilbert C*-modules by Proposition 3.5.11. m

Corollary 5.1.25. Let F € B*(M) and suppose that ImF and ImF? are closed.
1)IfF e Md, (M), then F, . € M, (ImF).

2)If F e MO_(M), then F}, , € MO_(ImF).

3) If F € M®(M), then Fj, ., € M®(ImF) and index F = index Fj,, .

Proof. We just need to observe that ' and F'? are regular operators by Theorem 2.0.20. More-
over, since ImF' is orthogonally complementable in M by Theorem 2.0.20, it follows that
F,..» € B*(ImF). Then we can proceed further as in the proof of Lemma 5.1.24. O

Definition 5.1.26. For two Hilbert C*-modules M and M’ we set M®;, (M, M’) to be the class
of all closed range operators I’ € B*(M, M') for which there exist finitely generated Hilbert
submodules N, N with the property that

N @ ker F = N@ImF*.

Then we obtain the following generalization of [, Theorem 2|.

Lemma 5.1.27. Let T € M@ﬁC(HA) and F € B*(Hy) such that ImF is closed, finitely
generated. Suppose that Im(T + F),T(ker F), P(ker T'), P(ker(T + F)) are closed, where P
denotes the orthogonal projection onto ker F+. Then

T+ F e M, (Hy).

Proof. Since ImT and Im(T + F') are closed by assumption, by Theorem 2.0.20 we have
Hy = ImT & ImT+ and Hy = Im(T + F) & Im(T + F)*. Similarly, since ImF is closed
by assumption, from Theorem 2.0.20 we get that H4 = ker F'+ @ ker F. Hence TJ,_, is an
adjointable operator from ker F into ImT (and (T + F),..,, = 7T}... » is an adjointable operator
from ker F' into Im(T + F) ). Now, since T'(ker F') is closed by assumption, again by applying
Theorem 2.0.20 on the operator T}, ,, we deduce that

ImT =T(ker F)® N and Im(T + F) = T(ker F) & N’
for some Hilbert submodules N, N’. Hence

ImT+® N =Im(T + F)* ® N' = T(ker F)*.

Thus, T'(ker F) is orthogonally complementable in H 4. Let @) denote the orthogonal projection
onto T'(ker F)+. It turns out that N and N’ are finitely generated. Indeed, we have

ImT = T(ker F) + T'(ker F+) and Im(T + F) = T(ker F) + (T + F)(ker F'}).

82



Chapter 5. Generalizations of semi-C*-Fredholm operators

As F} . is an isomorphism onto ImF" by the Banach open mapping theorem and ImfF' is
finitely generated by assumption, it follows that ker F'+ is finitely generated. Hence QT (ker F'*)
and Q(T + F)(ker F+) are finitely generated. However, we have

N = Q(ImT) = QT (ker F+) and N' = QUm(T + F)) = Q(T + F)(ker F).

is adjointable (as kerT" is or-
= ker F'Nker T is orthogonally

Furthermore, since P(kerT") is closed by assumption and P,
thogonally complementable by Theorem 2.0.20), then ker P,
complementable in ker T, so

ker T

(ker T')

kerT' = (ker F NkerT) & M

for some closed submodule M. We have that P,,, is an isomorphism onto P(ker T'). Since P .. is
adjointable and P(ker T) is closed, by Theorem 2.0.20 P(ker T') is orthogonally complementable
in ker F'-. As ker F'* is finitely generated, it follows that P(kerT') is finitely generated. Thus,
M must be finitely generated because P}, is an isomorphism onto P(ker T').
By similar arguments as above, using that P(ker(T" + F)) is closed by assumption, we obtain
that

ker(T + F) = (ker(T + F) Nker F) & M,

where M’ is a finitely generated Hilbert submodule. Now, if z € ker(T + F') and Fx = 0,
then obviously Tz = 0 as well, hence ker(T + F') Nker F' C ker T'N ker F. On the other hand,
ker T'Nker F' C ker(T + F) Nker F, so we get

ker T'Nker F' = ker(T + F') Nker F.

Thus,
ker(T + F) = (ker T Nker F) & M'.

Finally, since T' € M@gC(H A), there exist finitely generated Hilbert submodules R and R’ such
that R @ kerT = R' @ ImT+. Combining all this together, we deduce that

ker(T+ F)eo M@®N® R (kerTNker F)d M & M &N SR
“kerTOM ONSREImMIT*o M eNOR =2Im(T+F) oM oN oR.
O

Corollary 5.1.28. Let T € M®3°(H,) and suppose that ker T = ImT+ = H,. If F € B*(Hy)
satisfies the assumptions of Lemma 5.1.27, then

ker(T + F) = Im(T + F)* = Hy4.
In particular, T + F € M®{(Hy).

Proof. Notice that, since T € M®J°(H4) by hypothesis, we already have that ker ' = ImT+,
so the additonal assumption is that ker 7" and ImT~* are isomorphic to H4. By the proof of
Lemma 5.1.27 (and using the same notation), since M®{°(H4) C MPI(Hy), we have

ker(T+F)oMe&NOR=ZkeeTOM &N R

*mT*eMeNoR2In(T+F) oM aoNoR.

Since M, N, R, M’ ,N', R are finitely generated Hilbert submodules and ker T" = ImT+ = H 4
by assumption, by the Kasparov stabilization Theorem 2.0.13 we have

HiZkeeTEM &NSREImT+e M &N R.
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Hence
Hy2ket(T+F)OMONGREIm(T+F)*eM &N aR.

By the Dupre-Filmore Theorem 2.0.15, it follows easily that
ker(T + F) = Im(T + F)* = Hy,.
O
Lemma 5.1.29. Let T € M®(H.4) and suppose that ImT is closed. Then T € MI; (Hy).

Proof. By Lemma 3.1.21, since ImT is closed and T € M®(H 4), we have that ker T and ImT+
are then finitely generated. By Theorem 2.0.34 we can find an n € N such that

L, = P&pyp(ker T) = P'$p,(ImT+) and p,(ker T) = ker T, p,(ImT™+) = ImT+,

where P and P’ are finitely generated Hilbert submodules and p, denotes the orthogonal
projection onto L,,. It follows that P ® ker T = P' @ ImT*. O

Lemma 5.1.30. Let M be a Hilbert C*-module and F,D € M®] (M). If InDF is closed,
then DF € M®; (M).

Proof. Since F, D € /\;lq)gc(M ) by assumption, there exist finitely generated Hilbert submod-
ules N, N, N' and N’ such that

N@ker F2N@®ImFtand N @kerD = N' @ ImD*.

By applying the arguments from the proof of Proposition 5.1.3 and using the same notation,
we obtain the following chain of isomorphisms:

ker DF@® N@® N Zker F @ (ker DNker F) & N & N’

~ ImFt @ (ker DNImF) @ NON' =2 S(X)®o M & (ker DN F)SN @ N’
~S(X)®kerD&NGN =X @ ImD* & N& N = ImDF-&N& N
O

We can apply the arguments from the proof of Lemma 5.1.27 to obtain an extension of
[3, Theorem 2] to the case of regular operators on Banach spaces.
First we give the following definition.

Definition 5.1.31. Let X, Y be Banach spaces. We set ®°(X,Y") to be the set of all regular
operators F' € B(X,Y) satisfying that there exist finite dimensional Banach spaces Z; and Z,
with the property that ker F' @ Z; = ImF° & Zy, where ImF° stands for the complement of
ImF inY.

Then we present the following extension of |3, Theorem 2| to the case of regular operators
on Banach spaces.

Lemma 5.1.32. Let X,Y be Banach spaces and T € ®°(X,Y). Suppose that F is a finite
rank operator from X intoY. Then T + F € ®§°(X,Y).
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Proof. Since F is finite rank operator, it is regular, i.e. ImF is closed, ker F' and ImF are
complementable in X and Y, respectively. Let ker F'° denote complement of ker F'in X. As ImT
is closed by assumption and ImT = T'(ker F')+T (ker F°), it follows that T'(ker F’) has finite co-
dimension in ImT), so, by the Kato Theorem [56, Corollary 1.1.7], we have that T'(ker F') is closed
(as T'(ker F') = ImT),_ , and ker F* is finite dimensional). Hence, again using that 7T'(ker F')
has finite co-dimension, by part b) in [15, Lemma 4.21] we obtain that ImT = T (ker F)®N,
where N is a finite dimensional subspace. Now, since T'(ker F') is closed and

Im(T+ F)=T(ker F) + (T + F)(ker F°),

by [50, Lemma 1.1.2] we get that Im(T + F) is closed as (T + F')(ker F*°) is finite dimensional.
By the similar arguments as above, we deduce then that Im(T + F) = T'(ker F)®N’ for some
finite dimensional subspace N’. Since

Y = ImT&ImT°® = T(ker F)&N®ImT®,

where ImT* stands for the complement of ImT in Y, we see that T'(ker F') is complementable
in Y. Let T'(ker F')° denote complement of T'(ker ') in Y and @) be the projection onto T"(ker F)°
along T'(ker F'). Then @), is injective. As N’ is finite dimensional, so is QQ(N'), hence Q(N’)
is closed and T'(ker F')° = Q(N")®V for some closed subspace V. This follows by part a) in
[45, Lemma 4.21] . Since @), is then an isomorphism onto Q(N’), by the same arguments as
in the proof of Proposition 5.1.3 we deduce that

Y = T(ker F)YON'SV = Im(T + F)3V,

so Im(T + F) is complementable.
Next, let P denote the projection onto ker /*° along ker F. Then P, and Plker(T gy are
finite rank operators, hence regular. It follows that their kernels are complementable, hence by

the same arguments as in the proof of Lemma 5.1.27 we deduce that
ker T = (ker T Nker F)&M and ker(T + F) = (ker T Nker F)&M’

for some finite dimensional subspaces M and M’. Since ker T is complementable in X as T
is regular, then kerT' N ker F' is complementable in X, so by the similar arguments as above
we can deduce that ker(7 + F') is complementable in X. Hence T + F' is a regular operator.
Moreover, proceeding in the same way as in the proof of Lemma 5.1.27 by considering chain of
isomorphisms, we conclude that T+ F € ®°(X,Y). O

Remark 5.1.33. If H is a Hilbert space, it follow that if ' € ®°(H) and ker F' or ImF* are
infinite-dimensional, then ker ' = I'mF*. Hence it is not hard to see that Lemma 5.1.32 is
indeed an extension of |8, Theorem 2.

Remark 5.1.34. As explained in the proof of Proposition 5.1.16 and Remark 5.1.17, the proof
of Proposition 5.1.3 applies in the case of regular operators on Banach spaces. By combining
this fact with the proof of Lemma 5.1.30 we can deduce that if T € ®{°(X,Y), S € ®(Y, Z)
and ST is regular, then ST € ®{°(X, Z) (where X,Y and Z are Banach spaces).

5.2 Semi-C"-B-Fredholm operators

In this section we are going to construct a generalization of B-Fredholm and semi-B-Fredholm
operators on Hilbert and Banach spaces defined in [5] and [1] in the setting of semi-.A-Fredholm
operators. We give the following definition.
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Definition 5.2.1. |21, Definition 16] Let I’ € B*(H ). Then F is said to be an upper semi-
A-B-Fredholm operator if there exists some n € N such that ImF™ is closed for all m > n
and F}, .. is an upper semi-A-Fredholm operator. Similarly, I is said to be a lower semi-.A-B-
Fredholm operator if the above conditions hold except that in this case we assume that F|

is a lower semi-A-Fredhlom operator and not an upper semi-A-Fredholm operator.

Remark 5.2.2. |21, Remark 7| If A = C, that is if H4 = H is a Hilbert space, then the
assumption that Fj, . is an A-Fredholm operator would automatically imply that ImF™ is
closed for all m > n. Indeed, since A = C, it is not difficult to see that the property of being
A-Fredholm in the sense of Definition 2.0.37 is the same as the property of being Fredholm
in the ordinary sense. Since F|, .. is then a Fredholm operator, it follows that F ’;an is
Fredholm for all k, as the composition of Fredholm operators is again a Fredholm operator .

Then F*(ImF™) is closed for all k, as the image of a Fredholm operator is closed. However,
F*(ImF™) = ImF"t*,

ImF™

Proposition 5.2.3. [21, Proposition 7] If F' is an upper semi-A-B-Fredholm operator (respec-
tiely, a lower semi-A-B-Fredholm operator), n € N is such that ImF™ is closed for allm > n
and F), .. is an upper semi-A-Fredholm operator (respectively, a lower semi-A-Fredholm opera-
tor), then Fj, ... is an upper semi-A-Fredholm operator (respectively, a lower semi-A-Fredholm
operator) for all m > n. Moreover, if F' is an A-B-Fredholm operator, n € N is such that ImF™
is closed for all m > n and F), ,. is an A-Fredholm operator, then F|, .. is an A Fredholm
operator and index F| = index F|, .. for allm >n.

ImFm™

Proof. By applying Corollary 5.1.25 on the operator [}, .. and proceeding inductively, we
deduce the proposition. O

For an A-B-Fredholm operator F' we set index F' = index Fj, .., where n is such that
ImF™ is closed for all m > n and such that Fj,, w18 an A-Fredholm operator.

Inspired by |5, Theorem 3.2] we state the following proposition.

Proposition 5.2.4. Let M be a Hilbert-module and F, D € B*(M) satisfying that FD = DF.
Suppose that there exists an n € N such that Im(DF)™ is closed for all m > n and in addition
for each m > n we have that ImF™ D™ and ImD™ ' EF™ are closed. If ' and D are upper
(lower) semi-A-B-Fredholm, then DF is upper (lower) semi-A-B-Fredholm. If F' and D are
A-B-Fredholm, then DF is A-B-Fredholm and index DF = index D + index F.

Proof. If F and D are upper semi-A-B-Fredholm, then by Proposition 5.2.3 we can choose an
n € N sufficiently large such that n satisfies the assumption in the proposition and in addition
satisfies that ImD™, ImF™ are closed and Fj, ....,D), .. are upper semi-A-Fredholm for all
m > n. As ImF" "' D" = ImF(DF)", ImD"™ F" = ImD(DF)", Im(DF)" and Im(DF)"*!
are all closed by assumption, we have that F|, .., D), ppe and DE| o are regular oper-
ators. This follows from Theorem 2.0.20. Hence we can apply the exact sequence from Lemma

5.1.7. Since F|,, ,, and D), . are upper semi-A-Fredholm, we have that

ker F =ker FNImF" and ker D), . =kerDNImD"

ImF™

are both finitely generated by Lemma 3.1.21. As F|
it follows that

ker Fl, oy = ker N Im(DF)" and ker Dy, .. = ker DN Im(DF)"

(DEY" and D, Im(pryn A€ regular operators,

are both orthogonally complementable in Im(DF)". However, Im(DF)" is orthogonally com-
plementable in M by Theorem 2.0.20, so ker F N Im(DF)™ and ker D N Im(DF)"™ are orthog-
onally complementable in M. Since

Im(DF)" = ImD"F" = ImF"D" C ImF" N ImD",
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we get that
ker DN Im(DF)" Cker DN ImD"™ and ker F N Im(DF)" C ker F N ImF™.

By Lemma 2.0.66 we obtain that ker F¥ N Im(DF)™ and ker D N Im(DF)"™ are orthogonally
complementable in ker F' N ImF™ and ker D N ImD", respectively. As ker FF' N ImF™ and
ker D N ImD" are finitely generated, it follows that ker F' N Im(DF)™ and ker D N Im(DF)"
are both finitely generated. By applying the exact sequence from Lemma 5.1.7 on the operators
and DF|, .. we deduce that ker DF|, .. is finitely generated. Hence,
is upper semi-A-Fredholm by Lemma 3.1.21. Proceeding inductively we obtain that
| tm(prym 1S UPPEr semi-A-Fredholm for all m > n.

Suppose next that F}, . and D, . are lower semi-A-Fredholm. Then, by Lemma 3.1.21,

F|1rm(DF)n ) D|1m(DF)n

l1m(DF)n

ImF™ = ImF"™' @ N and ImD" = ImD"™' @ N’
for some finitely generated Hilbert submodules N and N’. It follows that
ImD"F" = ImD"F"™' + D*(N) and ImF"D" = ImF"D""! 4+ F"(N").

Since ImF" ' D" = ImF(DF)" and ImD" ™' F" = ImD(DF)" are both closed by assump-
tion, by Theorem 2.0.20 we have that ImF"" D" and ImD" 1 F" are orthogonally comple-
mentable in ImF"D™ = ImD"F™ = Im(DF)", so

Im(DF)" = ImF(DF)" @ N and Im(DF)" = ImD(DF)" @& N’

for some Hilbert submodules N and N'. Let P and P’ stand for the orthogonal projections onto
N and N/, respectively. As ImF™1D" = ImD"F" and ImD" ' F" = ImF"D"t! | it follows
that N = PD"*(N) and N’ = P'F*(N’), hence N and N’ are finitely generated since N and
N’ are so. Thus, the orthogonal complement of ImF(DF)™ and the orthogonal complement of
ImD(DF)"in Im(DF)"™ are both finitely generated. By applying again the exact sequence from
Lemma 5.1.7 on the operators FIm(DF)n?D\ImwF)n and DF), (pryn We obtain by Lemma 3.1.21
that DF|, | ,pn. is lower semi-A-Fredholm. Proceeding mductlvely we obtain that DF, ..
is lower semi-A-Fredholm for all m > n.

The proof in the case when F' and D are A-B-Fredholm is similar, or more precisely, a
combination of the previous proofs for the cases when D and F' were upper or lower semi-A-
B-Fredholm. Moreover, by applying the exact sequence from Lemma 5.1.7 in this case, we can
also deduce that

index DF = index D + index F.

]

Remark 5.2.5. If F' and D are operators on a Hilbert space and both F' and D are B-Fredholm,
then from |5, Theorem 3.2| we know that DF' is B-Fredholm if D and F' mutually commute.
Hence, there exists an n € N such that Im(DF)™ is closed for all m > n. Now, if we choose
n € N such that in addition Fj, .. and D), . are Fredholm, then by the arguments from the
proof of Proposition 5.2.4 we get that the co-dimension of ImF(DF)™ and the co-dimension
of ImD(DF)" in Im(DF)" are finite. Since Im(DF)" is closed, by the Kato Theorem [506,
Corollary 1.1.7] we must have that ImF(DF)* = ImF"™ D" and ImD(DF)" = ImD" "™ F™
are both closed. Proceeding inductively we obtain that ImF™ D™ and Im D™ F™ are closed
for all m > n. Thus Proposition 5.2.4 can in a certain way be considered as a generalization of
[0, Theorem 3.2] to the case of operators on Hilbert C*-modules.
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Theorem 5.2.6. [21, Theorem 8] Let T be an A-B-Fredholm operator on H, and suppose
that m € N is such that T, ... is an A-Fredholm operator and ImT™ is closed for all n > m.
Let F' be in the linear span of elementary operators and suppose that Im(T + F)" is closed for
all n > m. Finally, assume that ImT™ = H 4, Im(F),T™(ker F) are closed and that ImFE is
finitely generated, where F = (T'+ F)y" —=T™. Then T + F is an A-B-Fredholm operator and
index (7' + F) = index T.

Proof. Since F e B*(Hy) and I mF is closed by assumption, by Theorem 2.0.20 we have that
ker F' is orthogonally complementable in H 4. Hence, T{: - is adjointable. Since T (ker F)

is closed by assumption, again by Theorem 2.0.20 we have that T (ker F ) is orthogonally
complementable in Hy4.
Observe that, since F' = (T + F)"™ — T™ by definition, it follows that (T + F)* =1/ _

- ~ ‘ker}?‘ kerF’
so T™(ker F') C Im(T + F)™. Hence, since T™(ker F') C ImT™ N Im(T + F)™, by Lemma
2.0.66 it follows that

ImT™ =T (ker F) @ N and Im(T + F)™ = T™(ker F) & N’

for some closed submodules N, N'. 3
~ Now, since ImF' is finitely generated, it follows that ker I’ L is also finitely generated, as
F . isan isomorphism onto ImF'. Moreover,

ImT™ = T™(ker F) + T™(ker F),

Im(T + F)™ = T™(ker F') + (T 4+ F)™ (ker F'1).
Let @ denote the orthogonal projection onto 7" (ker F')-. It is then clear that

N = Q(UImT™) = Q(T™ (ker F+)) and N' = Q(Im(T + F)™) = Q((T + F)™(ker F1)).

Since ker F'- is finitely generated, it follows that N, N' are also finitely generated.
As T is an A-Fredholm operator, by Lemma 3.1.13 it follows that M7] is an A-

ImT™ T™ (ker F)
Fredholm operator, where M denotes the orthogonal projection onto 77 (ker F') along N. Here
we use that ImT™ = H 4 by assumption, so we are indeed in the position to apply Lemma
3.1.13.

Let P = I—Q. Since T™(ker F')* = N @ ImT™", we have that PT] _is an A-Fredholm

~ Zm(kcr F)
operator on 7™ (ker F'), as P iy = o ) (because TT™ (ker F') C ImT™ C ImT™).

By Lemma 3.1.13, since ImT™ = H 4 by assumption, it follows that

index T = index 7| = index I T

ImT™

= index PT]

T (ker F) T™ (ker F)

Now, since ImT™ = H 4, ImT™ = T™ (ker F )& N and N is finitely generated, by the Dupre-
Filmore Theorem 2.0.15 it follows that 7™ (ker F') = H 4. Since PF| i € K (T (ker F)),

it follows from Lemma 2.0.45 that P(T + F') is an A-Fredholm operator on T" (ker F)

ITm(ker F)

and
index PTi,,. . 5 = ndex P(T+ F)ip,,, 2
Moreover, -
Im(T + F)"™ = T (ker F) & N',
where N’ is finitely generated Hilbert submodule. Hence, P(T+ F )\Tm(ker B NT+F )\Tm(kerﬁ)’

where I denotes the orthogonal projection onto 7" (ker ') along N’ as

(T + F)(T™(ker F)) = (T + F)"*(ker F') C Im(T + F)™" C Im(T + F)™.
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In addition, since N’ is finitely generated and 7™ (ker F ) = H 4, by the Kasparov stabilization
Theorem 2.0.13 it follows that Im(7T + F)™ = H 4.

Since N(T + E)l o e 7y 18 @ A-Fredholm operator on 1™ (ker F), Im(T+ F)™ = Hy and N’ is
finitely generated, by Lemma 3.1.13 it follows that (T'+ F)
and

rm(rsrym 1S an A-Fredholm operator

index (T'+ F) = index (T + F) = index N(T + F)

[1m(T+F)m |Tm(ker )’

[]

Remark 5.2.7. |21, Remark 9] When A = C, that is when H4 = H is a Hilbert space, then
Theorem 5.2.6 reduces to |1, Proposition 3.3]. Indeed, since F' and hence F' are finite rank
operators, then ImF and ker F'* are finite dimensional in this case. Hence, we have that
T™(ker F+) and (T + F)™(ker F'') are finite dimensional, so all these subspaces are closed,
being finite dimensional. Moreover,

Im(T + F)" = Im(T™ + F)

= T™(ker F) 4+ (T + F)(ker F*+) = T™(ker F') + (T 4 F)™ (ker F'1).

Since ImT™ is closed, ImT™ = T™ (ker F)+T™(ker F*) and T (ker F'*) is finite dimensional,
it follows that T™ (ker F) is closed. This follows from the Kato theorem [56, Corollary 1.1.7]
applied on the operator T": = ker I — ImT™.

Now, since . .
Im(T + F)™ = T™(ker F) + (T 4 F)™(ker F'),

T™ (ker F) is closed and (T 4 F)™(ker F'*) is finite dimensional, we obtain that Im(T + F)™ is
closed by [56, Lemma 1.1.2]. By the same arguments it follows that Im(7+ F')" is closed for all
n > m, whenever I'm(T") is closed for all n > m ( and this is going to be the case when T
is Fredholm ) . Finally, if Im(7™) is closed and infinite-dimensional, then I'm(7T™) = H.

Now we are going to consider non-adjointable semi-.A-B-Fredholm operators.

ImT™

Proposition 5.2.8. Let ' € B(Hy). If n € N is such that ImF"™ closed, ImF" = Hy,
Fi, o 15 upper semi-A-Fredholm and ImF™ is closed for all m > n, then F|, .. is upper
semi-A- Fredholm and ImF™ = Hy for all m > n. If n € N s such that ImF™ is closed,
ImF™ = Ha, ImF™ 1s closed and complementable in ImF™ for all m = n and F|, .. is lower
semi-A-Fredholm, then F), .. is lower semi-A-Fredholm and ImF™ = Hy for all m > n.

Finally, if n € N is such that ImEF™ is closed for all m > n, ImF" = Hy4 and F), .. isin
MO(ImF™), then ImF™ = Hy, F, ... € M®(ImF™) and index F|
all m > n.

= index Fj, .. for

ImF™

Proof. Recall that if F' € /\//l\q)l(HA) and ImF is closed, or if ' € ./\//l?Dr(HA) and ImF is closed
and complementable, then by Proposition 3.5.11 and Proposition 3.5.13 F' is a regular operator.
Next, if Fj, ., € M®(ImF™), then, since ImF"™ = H, by assumption, it follows from

Corollary 3.5.5 that Fﬁmpn € ./\//lTID(ImF ™). The proof is similar in the case when we have

F, o € /\//lTI)r(ImF") or when Fj, .. € /\//lTI)l(ImF”). Combining all this together we de-
duce that F and Fﬁan are regular operators on ImF"™. We can then apply Lemma

ImF™
5.1.24 to deduce that Fj € /\//l\q)([mF”H) when F| € /\//l\q)([mF") and in this case
index F| ., = index Fj, ... The proof for the case when Fj, .. € M®(ImF") or when
F, . € /\//lTbr(ImF”) is similar. Also, we wish to argue that ImF"*! = H ,, however, this
follows from Lemma 3.5.16. Then we can proceed inductively to deduce the proposition. O

Fntl ImF™
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Remark 5.2.9. By applying Corollary 3.5.15 instead of Lemma 3.1.21, one can show that the
proof of Proposition 5.2.4 remains valid also for non-adjointable operators provided that we
assume in addition that Im(DF)" is complementable and that F] DF,,. prm
are regular operators for all m > n.

Im(DF)m 3 D\Im(DF)mﬂ

Lemma 5.2.10. Let F € M®(H ), K € K(H,4). Then index F = index (F + K).

Proof. Let
HA—MI@NI —>M2@N2 Hy

be an /\//l\CD—decomposition for F. We may without loss of generality assume that there exists
(F+K) (F+K)

an n € N such that F' + K has the matrix (F+K)s (F+K)s

} with respect to the

decomposition

F+K

Hy = Fy YLy )B(FT(P)ON:) = Ly @ Ly, = Hay,

where (F' + K); is an isomorphism. Here P is finitely generated Hilbert .A-module such that
(F+K) (F+K)
(F+K)s (F+K)4
in the proof of Lemma 2.0.42, we easily obtain that index (F' + K) = index F. ]

L, = No®P, M, = L+ ® P. By diagonalizing the operator matrix [

Lemma 5.2.11. Let T € B(H4) and F € K(H 4). Suppose that there exists an m € N satisfying
the conditions of Theorem 5.2.6 and assume in addition that T™(ker F') is complementable in
H 4. Then the analogue of Theorem 5.2.6 holds in this case.

Proof. By assumption ImFE is closed since m satisfies the condition of Theorem 5.2.6, so ImF
is a finitely generated, projective Hilbert A-module. It follows that ker I is complementable
in Hy since F: Hy— ImF is an epimorphism. If we let ker F° denote the complement of
ker F, it follows that ker F*° is finitely generated. Using that T " (ker F ) is complementable in
H 4 by assumption, we may proceed in the same way as in the proof of Theorem 5.2.6. The
projections P,M,11 and @ are no longer orthogonal projections, but rather skew projections.
By applying Corollary 2.0.26 instead of the Dupre-Filmore Theorem 2.0.15 we can show that
T™(ker F) = Hy. Let U : Hy — T™(ker F) be an isomorphism and J : T™(ker F) —: Hy
be the inclusion. Then U'PFU = U 'PFJU € K(H4) since F € K(H,) and K(H,) is a
two-sided ideal in B(H 4). By applying Lemma 5.2.10 instead of Lemma 2.0.45 and recalling
that Lemma 3.1.13 also holds for non-adjointable operators by Remark 3.5.24, we obtain that
index PT] =index U'PTU

T™ (ker F')
== indeX Uﬁlp(T + F>U = index P<T _'_ F>|Tm(kerﬁ).

Then we can proceed in exactly the same way as in the proof of Theorem 5.2.6. m

Corollary 5.2.12. Let M be an arbitrary Hilbert W*-module and F € B(M). If n € N is
such that ImF™ 1is closed and complementable for every m > n and such that F 1S an

ImF™
A-Fredholm operator, then F| is an A-Fredholm operator and index F|

rmpm = index Fj
for all m > n.

ImF™ ImF™
Proof. Since ImF™"? =1 mF‘2 .. is complementable in ImF™, which follows from the assump-

tion in the corollary and Lemma 2.0.66, we deduce from Lemma .1.20 that F‘2 . belongs to

Mq)([mF ), as F|, .. € M@(ImF”) by assumption. Then we can proceed in the same way
as in the proof of Proposition 5.2.8. O]

90



Chapter 5. Generalizations of semi-C*-Fredholm operators

We are now going to give some examples of semi-A-B-Fredholm operators.
Before that we wish to introduce some examples of nilpotent operators on Hilbert submodules
of H4 There are various ways of constructing such operators. Of course, the zero operator is
certainly a nilpotent operator, however, we wish to give here also some non-trivial examples of
nilpotent operators on H 4.

Example 5.2.13. Let A = B(H), choose a nilpotent operator C' € B(H) and let
C/(Al, AQ,Ag, ) = (éAl, C’Ag, éAg, ) for all (Al, Ag, Ag, ) S HA.

Then, if C7 = 0 for some j € N, it follows that C"7 = 0 also. Hence, if N =~ Hyand V : N — H4
is an isomorphism, then V~'C’V is a nilpotent operator on N.

Example 5.2.14. Consider now a more general situation where A is an arbitrary unital C*-
algebra and N is a closed submodule of H 4 not necessarily isomorphic to H 4. If we may write
N as N = Ny & Ny where Ny = L, (A) for some n, then we may let C' = Cy & Cy, where C] is

a nilpotent operator on Ny = L, (A) and Cy = 0. Such operators can easily be constructed, as
there are a plenty of nilpotent operators on L, (A). For example, if

0, k=1
er—1, k€{2,3,...,n},
then F'is an example of a nilpotent operator on L, (A). In general, if F' is given by n X n matrix

with coefficients in A and 0 on the main diagonal, with respect to the standard orthonormal
basis {e;}1<j<n, then F' is nilpotent.

Fley) =

Then we are ready to construct some semi-.A-B-Fredholm operators.

Example 5.2.15. Let H4 = M & N be a decomposition where M = H 4 and let U denote the
isomorphism from M onto H,4. Choose an operator T € M®.(H ) such that ImT* is closed
for all k. Again, such operators have been constructed in our previous examples. Hence, if
T € M®(H,) such that ImT* is closed for all k, then U™'TU € M®, (M) and Im(U~'TU)*
is closed for all k. Observe also that, since U™'TU € M®L(M), Im(UYTU)* is closed for all
k and M = H 4, it follows by applying inductively Corollary 5.1.25 that U _lTUhm(m is in

1TU)k
MO (Im(UITU)*) for all k. Next, choose C' € B4(N) such that C is nilpotent. Let F be the
operator having the matrix

0 C
with respect to the decomposition H4 = M & N. Then F is a semi-A-B-Fredholm operator.

{U—lTU 0 ]
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Chapter 6

Closed range operators over C*-algebras

In several results in previous chapters we have assumed that the image of an operator is closed.
This shows that closed range operators are important in semi-Fredholm theory on Hilbert C*-
modules. Therefore, we will devote this chapter to studying closed range operators and their
properties.

We start with the following lemma.

Lemma 6.0.1. /19, Lemma 3.13] Let M be a Hilbert C*-module, F,D € B*(M) and sup-
pose that ImF,ImD are closed. If ImF + ker D is closed, then ImF + ker D is orthogonally
complementable.

Proof. Suppose that ImF + ker D is closed. Since ImF @& ImF+ = M by Theorem 2.0.20, we
have that ImF + ker D = ImF & M", where

M" = (ImF +ker D) N ImF~*, as ImF C ImF +ker D.

This follows from Lemma 2.0.66. Let P denote the orthogonal projection onto ImZF~. Then
M" = P(ImF +ker D) = P(ImF)+ P(ker D) = P(ker D). Thus, Im(P,_ ,) = M". Now, since
ImD is closed, again by Theorem 2.0.20 ker D is orthogonally complementable in M. Hence
P,.., is an adjointable operator from ker D into ImF* and its image is closed. Applying

we obtain that ImP, is orthogonally

once again Theorem 2.0.20 on the operator P, rer D
complementable in ImF~*, hence ImF+ = M" @& N". Therefore,

M =ImF®M"® N"= (ImF +ker D) ® N".
[l

Corollary 6.0.2. [10, Corollary 3.14] Let M be a Hilbert C*-module, F,D € B*(M) and
suppose that ImF, ImD are closed. Then ImDF is closed if and only if ImF + ker D s closed
and orthogonally complementable.

Proof. By |12, Corollary 1|, ImDF is closed if and only if ImF + ker D is closed. Now we use
Lemma 6.0.1. O

Remark 6.0.3. [19, Remark 3.15] The statement of Corollary 6.0.2 was already proved in [19],
however, we have given here another, shorter proof.

We recall the definition of the Dixmier angle between two closed submodules of a Hilbert
C*-module, given in [19)].

Definition 6.0.4. [19], [19, Definition 3.16] Given two closed submodules M, N of a Hilbert
C*-module M, we set

co(M,N) = sup{|[ (z,y) | |z e MyeN|z|yl<1}
We say that the Dixmier angle between M and N is positive if ¢o(M, N) < 1.
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Chapter 6. Closed range operators over C*-algebras

Lemma 6.0.5. [/9, Lemma 3.17] Let M, N be two closed, submodules of a Hilbert C*-module

M over a C*-algebra A. Assume that M orthogonally complementable and suppose that MNN =
{0}. Then M + N s closed if the Dizmier angle between M and N is positive.

Proof. Suppose that the Dixmier angle between M and N is positive. If ¢o(M,N) = 0, then
M 1 N. It follows that M + N is closed in this case.

Now let ¢o(M, N) = 6 where 6 € (0,1). We wish first to show that in this case there exists
some constatnt C' > 0 such that whenever x € M,y € N satisfy ||  +y ||< 1, then || 2 ||< C.

To this end, observe first that, since M is orthogonally complementable in M, there exist some
y' € M,y"” € M+ such that y =4/ + " for y € N. Then we have

sup{l[ (y,2) [ | z € M, || z [|[= 1} =[l ¢ [[<] y || o

Indeed,
sup{[| (v, 2) | | = € M, || = [|= 1} = sup{|| (', 2) || | = € M, | = [|= 1},

hence, by Proposition 2.0.4 part (iii), it follows that

sup{[| (v, 2) ||| z€ M,[| z[=1} <[l 4/ || -

On the other hand, if 4 = 0, then (y,z) = 0 for all z € M. If y/ # 0, then ” H € M and
Iy =1 {y, Ty ||> < sup{|l (y,2) || z € M| z [[=1}.
It follows that
1—0 1—-9
" 1=y =y IZIly I =1y 12 A=) Iy ll=—=0llylz—= 1y

Now observe that for x € M we have that

(r+yz+y =(@+y.z+y)+ "y
By taking the supremum over all states on A, we obtain that

I +y 1= max{[| = +y" |l | " I}

Thus, if || x +y ||< 1, then || z + ¢ ||, || ¥ ||< 1. However, if || " ||< 1, then by the above
calculation, we get that || ¢ ||< T35 If in addition || x + ¢ [|[< 1, then

4]
B e

4] 1

sowemaysetC—l—l—m—m.

Assume now that {x,, + y,}, is a Cauchy sequence in M + N (here z,, € M,y, € N for all n).
By the above arguments we have that {x,}, must be then a Cauchy sequence in M. Indeed,
if {z, + y,} is a Cauchy sequence, then given ¢ > 0, there exists some Ny € N such that
| (2 = Zm) + (Yn — Ym) ||< & for all n,m > Ny. By the above arguments it follows then that
|  — @ ||< € for all n,m > Ny. Since M is closed, x,, — z for some x € M. However, then
{Yn}n must be also convergent as the difference of two convergent sequences, so y, — y for
some y € N since N is closed. Hence z, +y, > x+y € M + N as n — oo. Thus, M + N is

closed. O

Hence we get || z ||< 1+ ]
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Corollary 6.0.6. [19, Corollary 3.18] Let M be a Hilbert C*-module, F,D € B“(M) and
suppose that ImF, ImD are closed. Assume that ker D N ImF' is orthogonally complementable.
Set M = ImF N (ker DN ImF)*, M' =ker DN (ker DN ImF)*. Then ImDF is closed if the
Dizmier angle between M' and ImF is positive, (or if the Dizmier angle between M and ker D
is positive).

Proof. Since (ker D N ImF') is orthogonally complementable by assumption, by Lemma 2.0.66
we have that
ImF = (ker DN ImFEF) & M,

ker D = (ker D N ImF) & M'.

Then it follows that ImF +ker D = ImF + M’ = ker D+ M. Moreover, M and M’ are orthogo-
nally complementable being orthogonal direct summands of I'mF' and ker D, respectively, which
are orthogonally complementable by Theorem 2.0.20. Finally, M Nker D = M' N ImF = {0}.
Then we apply Lemma 6.0.5 and [12, Corollary 1] . ]

Remark 6.0.7. 1t is easy to see that the requirement that ker D N ImF is orthogonally comple-
mentable is satisfied if the condition in [19] that ker F* + I'mD* is orthogonally complementable
holds. Indeed, if (ker F* + ImD*) @ N = M for some closed submodule N, then in particu-
lar N C ker F** and N C ImD**. By the proof of Theorem 2.0.20 ker F** = ImF and
ImD*+ = ker D since ImF and ImD are closed by assumption. Hence N C ker D N ImF. On
the other hand, since (ker D N ImF) C ker F* + [ mD* by the linearity and the continuity of
the inner product, it follows that ker D N ImF C N. Thus,

ker D N ImF = N = ker F* + ImD* .
Hence Lemma 6.0.5 and Corollary 6.0.6 are indeed a simplification of the result in [19].

Lemma 6.0.8. Let M and N be two closed submodules of a Hilbert C*-module M over a C*-
algebra A. Suppose that M is orthogonally complementable in M and that M NN = {0}. Then

M + N s closed if and only if P, is bounded below, where P denotes the orthogonal projection
onto M+*.

Proof. Suppose first that P, is bounded below and let 6 = m(F,). Then § > 0. As in the
proof of Lemma 6.0.5 we wish to argue that in this case, there exists a constant C' > 0 such
that if x € M and y € N satisfy | z +y ||< 1, then || z [|[< C. Now, since M is orthogonally
complementable, given y € N, we may write y as y = 3 +v”, where y/ € M,y” € M+. Observe
that (y,y) = (v, v') + (¥",y"). By taking the supremum over all states on A we obtain that
Iy 1> masc{ll v’ I, 5" I}. Hence || 9" =l Py(u) 1126 [l y = 8 || || - Then, by the same

arguments as in the proof of Lemma 6.0.5, we obtain that if || z + y ||< 1 and x € M, then

1 6+1
o<1+ = % It follows that M + N is closed.

Conversely, if M + N is closed, then, by Lemma 2.0.66, M + N = M & M’, where M' =
M+ N (M + N). Hence P(M + N) = M’, which is closed. However, P(M + N) = P(N).
Moreover, since M N N = {0}, we have that P, is injective. By the Banach open mapping
theorem it follows that P is an isomorphism onto M’, hence P, is bounded below. O

Finally we are ready to give the conditions that are both necessary and sufficient for a
composition of two closed range operators to have closed image.

Corollary 6.0.9. Let M be a Hilbert C*-module, F, D € B“(M) and suppose that ImF, ImD
are closed. Then ImDF s closed if and only if ker D N ImF is orthogonally complementable
and P'ImFﬂ(kerDﬂImF)i is bounded below, (or, equivalently, Q|kerm(kerDMmF)L is bounded below),

where P and Q denote the orthogonal projections onto ker D+ and ImF*, respectively.
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Proof. 1f ker DN ImF is orthogonally complementable, then from Lemma 2.0.66 it follows that
ker D = (ker D N ImF) @ (ker D N (ker D N ImF)*)

and
ImF = (ker DN ImF) @ (ImF N (ker DN ImF)™b).

Hence
ker D + ImF = ker D + (ImF N (ker D N ImF)*) = ImF + (ker D N (ker D N ImF)*).

If in addition Py, pry(ker DAImF)L OF QlkerDﬂ(kerDﬂImF) | is bounded below, from Lemma 6.0.8 ( as

both ker D and ImF are orthogonally complementable by Theorem 2.0.20 ) we deduce that
ker D + I'mF is closed. Then, from [12, Corollary 1] it follows that ImDF is closed.

Conversely, if ImDF' is closed, then D), . is an adjointable operator with closed image. In-
deed, since ImF'is closed, by Theorem 2.0.20 I'mF is orthogonally complementable, hence Dy, .
is adjointable. From Theorem 2.0.20 it follows that ker Dy, . is orthogonally complementable

in I'mF. However, ker D), . = ker D N ImF. Since I'mF" is orthogonally complementable in M

and ker D N ImFE C ImF, we get that ker D N ImF is orthogonally complementable in M.
Moreover, ker D + ImF is closed by [12, Corollary 1| since ImDZF is closed. By the previous
arguments we have that

ker D = (ker D N ImF) @ (ker D N (ker D N ImF)*),
ImF = (ker DN ImF) @ (ImF N (ker DN ImF)™b),

so we are then in the position to apply Lemma 6.0.8 which gives us the implication in the
opposite direction. O

Remark 6.0.10. If H is a Hilbert space and M, N are closed subspaces of H such that M NN =
{0}, it is not hard to see that if P denotes the orthogonal projection onto M=, then P is
bounded below if and only if the Dixmier angle between M and N is positive. Thus, Corollary

6.0.9 is a proper generalization of Bouldin’s result in [6]. Indeed, since H is a Hilbert space, for
each y € N we have that [|y||* = || y[[*+ /(1= P )yl*. So, ||(1= B, )yll = V/Ilyll* = [Pyl
for every y € N, in particular ||(I — P, )y|| = /1 — ||P,y||* for every y € N with ||y|| = 1.

Next, for each y € N, we have sup {| (z,y) | | x € M and ||z|| <1} = |[({ — P )yl||. This is
because | (x,y) |=| (z,(I — P,)y) |< ||(I = P, )y|| when x € M with || z ||< 1, and, on the
other hand, |(y', y)| = ||(I — ) (y)||, where

(I-P )y .
irr i (= Py #0,

0 if (I —P,)y=0.

Thus, ||y|| <1 and ' € M. Therefore,

sup {| (z,y) [ [z € M,[[y|| <1} = [|(1 = Py )yl

for every y € N. Combining all this together, we deduce that
co(M,N) = sup {\/1—[| Pyy [ [y € N,[| y ||= 1},
hence co(M, N) < 1 if and only if P, is bounced below.
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In the case when we deal with non-adjointable operators, it is more challenging to describe
necessary and sufficient conditions for a composition of two closed range operators to have
closed image since we do not have in this case Theorem 2.0.20 at disposition. We provide in
the next lemma ( which is an extended version of |19, Lemma 3.21] ) such conditions for a

composition of two /\//ITIDZ closed range operators.

Lemma 6.0.11. Let .G € /\//@l(HA) and suppose that ImG and ImF are closed. Then
ImGF is closed if and only if ImF + ker G is closed and complementable.

If F,G € M®(H,), ImF,ImG are closed and ker G N ImF is complementable and if in
addition the Dizmier angle between ker G and ImF N (ker G N ImF)° is positive, (or, if the
Dizmier angle between ImF and ker G N (ker G N ImF)° is positive), where (ker G N ImEF')°
denotes the complement of ker G N ImF, then ImGF is closed.

Proof. If ImF+ker G is closed, from [12, Corollary 1] we have that ImGF is closed. Conversely,
if ImGF is closed, then it follows from Corollary 3.5.5 and Proposition 3.5.11 that F,G,GF
are regular operators. Since the proof of Proposition 5.1.3 extends to regular operators ( as
explained in the proof of Proposition 5.1.16 ), we deduce from that proof that ker G + ImF is
closed and complementable, as noticed in Remark 5.1.4.

Now, if G € M®;(H4), then ker G is finitely generated by Proposition 3.5.11, hence it is
orthogonally complementable by Lemma 2.0.25. If ker G N ImF is complementable, then in the
similar way as in the proof of Corollary 6.0.9 we obtain that

ImF + ker G = ker G + (ImF N (ker G N ImF)°).

Hence we may apply Lemma 6.0.5. Further, again since ker G N ImF' is complementable, it
follows by similar arguments as in the proof of Corollary 6.0.9 that

ImF +kerG = ImF + (ker G N (ker G N ImEF)°).

Now, from Lemma 2.0.66 we have ker G = (ker GNImF)®(ker GN (ker GNImF)°). We deduce
that ker G N (ker G N ImF')° is finitely generated since it is a direct summand in ker G, which
is finitely generated itself. Hence it is orthogonally complementable by Lemma 2.0.25. Since
ImF +ker G = ImF + (ker GN (ker GNImF')°), we are again in the position to apply Lemma
6.0.5.

O

Corollary 6.0.12. Let A be a W*-algebra and M be a Hilbert module over A. Suppose that
G,F € MO(M) and that ImG, ImF are closed. Then ImGF is closed and complementable in
M if and only if ImF +ker G is closed and complementable in M. Moreover, if G, F' are closed
range A-Fredholm operators on M, then ker G N ImF is complementable in M. If in addition
the Dizmier angle between ker G and ImF N (ker G N ImF)° is positive (or if the Dizmier
angle between ImF and ker G N (ker G N ImF)° is positive), where (ker G N ImFEF)° denotes the
complement of ker G N ImF in M, then ImGF is closed.

Proof. We recall again that ker G N I'mF is finitely generated. Indeed, since G, F' € ./\//l\q)(M ),
from Proposition 3.5.11 we have that ImF' is complementable in M and ker G is finitely gener-
ated. Since ker GNImF = ker M, ., where N stands for the projection onto ImF* along ImF,
from Corollary 2.0.50 it follows that ker G = (ker G N ImF') & M’ for some Hilbert submodule
M’. Hence ker G N ImF is finitely generated as a direct summand in ker G, so from Lemma
2.0.25 it follows that ImF = (ker G N ImF) & M" for some Hilbert submodule M”. Moreover,
from Lemma 2.0.25 it also follows that ker G N ImF' is orthogonally complementable in M.
If ImF + ker GG is closed and complementable, from the above equations we get that

ImF +ker G = M"®&M'®(ker G N ImF),
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which gives
M = M"&M'®(ker G N ImF)®N,

where N stands for the complement of ker G + ImF in M. So, M = ker GG&M"EN, therefore,
ImG = G(M")®G(N) (as G| ymay, 18 an isomorphism onto ImG because ImG is closed).
Hence

&N)
M = G(M"@G(N)BImG® = ImGF&G(N)BHImG,

since ImGF = G(M").

Conversely, if ImGF' is closed and complementable, then from Lemma 5.1.20 it follows that
GF € M®(M) and GF is a regular operator. Hence we can proceed in the same way as in the
proof of Lemma 6.0.11 to deduce that ker G + ImF is closed and complementable.

Next, since ker GNImF' is complementable in M when F' and G are closed range A-Fredholm
operators on M, which follows from the above arguments, we can proceed in exactly the same
way as in the proof of Lemma 6.0.11 in order to prove the second statement in the lemma. [

Now we give some examples of A-Fredholm operators with non-closed image.

Example 6.0.13. Let A = L*((0,1), ) and consider the operator F' : A — A given by
F(f) = f-id (where id(z) = « for all x € (0,1)). Then F is an A-linear, bounded operator on
A and, since A is finitely generated considered as Hilbert A-module over itself, it follows that
F'is A-Fredholm. However, ImF is not closed. Indeed, || F'(Xq 1 ) lloo= L for all n whereas

| (X0,2)) lloe= 1 for all n, so F is not bounded below.

Consider now the operator F' € B%(H 4) given by F' = Q+JF P, where @ denotes the orthogonal
projection onto L+, P=1 — Q and J(a) = (2, 0,0,0,...) for all @ € A. Then it is easy to see
that F' € M®(H,4) and ImF is not closed.

Example 6.0.14. Let A = B(H) where H is a Hilbert space. Choose an S € B(H) such that
ImS is not closed. Then S is not bounded below, so there exists a sequence of unit vectors
{Zyn}nen in H such that || Sz, ||[— 0 as n — oco. Choose an € H such that || = ||= 1 and
define the operators B, € B(H) to be given as B,z = x,, and By |spaniz1+ = 0 for all n. Then
we have that || B, ||=| B,z [|=[| =, [|= 1 for all n. However, since SB,spaniz- = 0 for all
n and || z ||= 1, it follows that || SB, ||=| SB.z ||=| Sz, || for all n. Thus, || SB, ||— 0 as
n — oo. If we consider the operator F': A — A given by F(T') = ST for all T € B(H), then F
is an A-linear, bounded operator on A (when A is viewed as a Hilbert A-module over itself),
but ImF is not closed. This also follows from [28, Theorem 7|. Using the operator F, it is easy
to construct an operator F € M®P(H4) in the same way as in the previous example such that
ImF is not closed.

Notice that if S € B(H) is such that ImS is closed , but ImS? is not closed, then ImF
will be closed , whereas ImE? will not be closed. Now we will give another example of an
A-Fredholm operator F' with the property that ImF is closed, but ImF? is not closed.

Example 6.0.15. Let H be an infinite-dimensional Hilbert space, M and N be closed, infinite-
dimensional subspaces of H such that M + N is not closed. Denote by p and ¢ the orthogonal
projections onto M and N, respectively. If we let A = B(H), then M = Span_4{(p,0,0,0,...)}
and N = Spans{(q,0,0,0,...)} are finitely generated Hilbert submodules of H 4. Moreover,
M + N is not closed. Indeed, since M + N is not closed, there exists a sequence {z, +y,} in H
such that z, € M,y, € N for all n and z,+vy,, — z for some z € H\ (M + N). Choose an z € H
such that || # [|= 1 and let, for each n, T, and S,, be the operators in B(H ) defined by T,,x = x,,
Sn® = Yp and Ty spanfa}t = Sn|span{z}t = 0. Since xr, € M and y, € N for all n, it follows that
T, € pAand S, € gA for all n. Moreover, || S, +1,, — Sy — T, ||=|| (Sn+ T3 — Si — Th)x || for
all m,n. Since (S, +71,)z = x, +y, for all n, it follows that {S,, + T}, }, is a Cauchy sequence in
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B(H), hence S, +T1,, — T for some T' € B(H). Then x,+vy,, = Spa+T,x — Tx = z asn — oo.
Now, S, + T, € pA+ gA for all n. If also T € pA + qA, then Tx € M + N. However, then
z € M+ N, which is a contradiction. Thus, T" ¢ pA+qA, so pA+qAis not closed in A. It follows
easily that M+ N is not closed. Also, (L@ M)+ N is not closed. Since N is finitely generated,
by the Dupre-Filmore Theorem 2.0.15 we have that Ni~qH 4. Moreover, Li @ M~H A, hence
L ®M = N+ Let U : N* — L+ ® M be an isomorphism, set ' = JUP, where P is the
orthogonal projection onto N* and J is the inclusion from Li- @ M into H4. Then ker F = N
and ImF = L @ M, so F is A-Fredholm. Now, since ImF +ker F is not closed, it follows from
[12, Corollary 1] that ImF? is not closed.

These examples show that semi-A—Fredholm operators may behave differently from clas-
sical semi-Fredholm operators on Hilbert spaces. Indeed, classical semi-Fredholm operators
always have closed image and are therefore regular operators on Hilbert spaces.

For F € B*(H4) let Ly and Rp denote the left and the right multiplier by F, respectively,
ie. Lp(D)=FD and Rp(D) = DF for all D € B*(H4). By exactly the same arguments as in
the proof of [28, Theorem 7| we can prove the following.

Proposition 6.0.16. Let F' € B*(H4). Then the following statements are equivalent.
1) ImF is closed in Hy.

2) ImLp is closed in B*(H 4).

3) ImRp is closed in B*(H4).

Proof. Assume that ImF is closed in H,4. Then by Theorem 2.0.20, ImF is orthogonally
complementable. In the same way as in the proof of [28, Theorem 7| part (1) = (3), we
may define the map A\ from ImF into H,4 and extend it to a map N : H4y — H4 by letting
Ny +y2) = M) for y1 € ImF and y, € ImF*. By the same arguments as in the proof of
[28, Theorem 7] one can show that A is well defined and .A-linear in this case here.

Moreover, since I'mF' is closed, ker F' is orthogonally complementable in H 4 by Theorem
2.0.20. Hence F|_, is an isomorphism onto ImF. Therefore, there exists a positive constant

C such that || Fr |> C || z || for all x € ker F'+. Hence, given y € H 4, we have
Cll Berrey | FRerey =1 Fy ll,

where P, po stands for the orthogonal projection onto ker F*. Then, using this fact we are in
the position to apply the same arguments as in the proof of [28, Theorem 7|.

In order to prove the implication (3) = (2) we can proceed in exactly the same way as in
the proof of [28, Theorem 7|. We just need to observe that, since B*(H 4) is a C*-algebra, then
for any closed subset S of B*(H,4) we have that S* is also a closed subset of B*(H 4).

In order to show (2) = (1), as in the proof of [28, Theorem 7|, we choose a sequence
{z,} € ImF such that z,, — yo where yo ¢ ImF. For each n we set F,, to be the operator given
by F,(x) = x, - (e1,z) and we set D(z) = yo - (€1, ). Then, D(e1) = yo- 14 = yo, s0 yo € ImD.
Moreover, by |28, Theorem 7| it follows that F'F,, — D in B*(H 4). Then we proceed as in the
proof of [28, Theorem 7. O

Recall Definition 3.4.20 of the class M“(H 4). We have the following lemma as an analogue
of [56, Lemma 1.6.5] in the setting of operators on Hilbert C*-modules.

Lemma 6.0.17. Let F' € M®(H,). If there exists a sequence {F,} C M®(Hy) of constant
index such that F,, — F in the operator norm, then F' C M®(H,) and index F' = index F,
for all n.
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Proof. Since M“(H 4) is open in B*(H 4) in the norm topology, we may without loss of generality
assume that {F,} C M*(Hy), as F € M*(Hy4) and F,, — F. By Theorem 2.0.20, ImF, is
orthogonally complementable in H 4 for all n. Since F,, € M®(H4) for all n, by Lemma 3.1.21
we must then have that ImF>, is finitely generated for all n. Thus, for each n there exists
an orthogonal projection P, such that ker P, = ImF, and ImP, = ImF-, which is finitely

n

generated. It follows that || P, ||= 1 and P, € K*(H ) for all n by Corollary 2.0.35. Then we
can proceed in exactly the same way as in the proof of [50, Lemma 1.6.5|. ]
Proposition 6.0.18. Let F' € B(H ) be bounded below and suppose that there exists a sequence
{F.} C MP(H,) of constant index and such that F,, — F. Suppose also that for each n there
exists an M®P-decomposition for F,

Ha=MMEND 12 M{MEN = H,

such that the sequence of projections {1, } is uniformly bounded, where M, denotes the projection
onto NZ(n) along MQ(n) for each n. Then F € M®(H 4) and index F,, = index F for all n.

Proof. As in the proof of Lemma 6.0.17, we may without loss of generality assume that F;,
is bounded below for all n. It follows that Fn(Nl(n)), which is a submodule of Nz("), is closed.
Hence FnIN(n)
generated, 1they are self-dual Hilbert A-modules, hence, by Proposition 2.0.28 and Theorem
2.0.20, Fn(Nl(n)) is orthogonally complementable in NQ(n). Then Hy = Mén)@(Fn(Nl(n)) @ NM),
where N stands for the orthogonal complement of Fn(Nl(n)) in NQ("). Let @),, be the projection
onto N along M{"&F,(N™). Then, Q, = P,M,, where P, stands for the orthogonal pro-

is a closed range operator from N\ into N{™. Since N\ and N{™ are finitely

jection of N{™ onto N™. Since {M,} is uniformly bounded and || P, ||= 1 for all n, it follows
that {@Q,} is uniformly bounded. Hence we may proceed in the same way as in the proof of
[0, Lemma 1.6.5]. O

Lemma 6.0.19. Let XY be Banach spaces and F € M(X,Y'). Suppose that there exists a
sequence {F,} of reqular operators in B(X,Y') such that F,, — F. Moreover, assume that there
exists a sequence of projections {M,,} in B(Y') which is uniformly bounded in the norm and such

that Im(I —M,) = ImF, for alln. Then F is a reqular operator, i.e. ImF is complementable
m Y.

Proof. We may proceed in exactly the same way as in the proof of |70, Lemma 1.6.5] in order
to deduce that DF = Iy for an operator D € B(Y,X). This is because the sequence {,}
is uniformly bounded in the norm by assumption, so the arguments from the proof of |50,
Lemma 1.6.5] applies. Further, the operator F'D is then a projection onto ImF C Y because
FDFD = FIxD = FD and ImFD = F(D(Y)) = F(X) = ImF since D(Y) = X because
DF = Ix. Therefore, ImF' is complementable in Y. O]

Remark 6.0.20. Lemma 6.0.17 is valid in the case of arbitrary Hilbert C*-modules and not just
H 4. Indeed, we recall from Proposition 3.5.11 that the index of closed range A-Fredholm oper-
ator is well-defined on arbitrary Hilbert .A-modules. Let us consider now an arbitrary Hilbert
C*-module N, suppose that F' € M*(N) and that {F,,} C M®(NV) satisfies the assumption of
Lemma 6.0.17. Then, as explained in the proof of Lemma 6.0.17, for each n we can consider the
orthogonal projection onto ImFE+ and proceed in the same way as in the proof of |56, Lemma
1.6.5]. Hence we obtain that G, F' is invertible for large enough n, where G,, is generalized in-
verse of F,, that satisfies ker G, = ImF+. If we set G := (G, F)"'G,,, then G is surjective since
G, is so. Moreover, ker G = ker G,, = ImF and GF = I. However, ImF = —index F}, since
F,, is bounded below, which follows from Proposition 3.5.11. In particular, ImF is finitely
generated for all n € N because F,, € M®(N) for all n € N. Since GF' = I, from Lemma 3.5.6
it follows that ImF@&ker G = N, hence F € M®(N) and index F' = —[ker GJ.
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Chapter 7

(Generalized spectra of operators over
C*-algebras

We recall the definition of the operator ol on H4 from Section 3.4.
Our starting question is the following: If A is a C*-algebra, then for a € A could we consider
the generalized spectra in A of operators in B*(H 4) by setting for every F' € B*(H 4)

oA(F)={a € A| F —al is not invertible in B*(H4)} ?

The main topic from now on and in the rest of the thesis will be to obtain generalization of
some results from spectral theory of operators on Hilbert spaces in the setting of generalized
spectra in C*-algebras of operators on Hilbert C*-modules.

We introduce first the following notion:
ocA(F) ={a € A| F — al is not invertible in B*(H)};
0;,4(F) ={a € A|ker(F —al) # {0}};
04(F) ={a € A| F — al is bounded below, but not surjective on H4};
(F)={ae€ A| Im(F — al) is not closed }.
It is understood that F' € B%(H 4).
Recall that not all closed submodules of H 4 are orthogonally complementable in H 4, which
differs from the situation of Hilbert spaces. It may happen that Im(F — od) & Im(F —al)*
H 4. However, if Im(F — o) is closed, then I'm(F* — a*I) is closed and we also have

rl
A

Ol

Hy=1Im(F —al)®ker(F* —a*I) =ker(F —al) @ Im(F* —a*I)

whenever F' € B*(H 4), which follows from the proof of Theorem 2.0.20.
Therefore, it is more convinient in this setting to work with o7}(F) and o7 (F) for F €
B®(H 4) instead of the residual and the continuous spectrum.
Note that we obviously have
o (F) = oA (F) U H(F)U o4 (F) and oY (F*) = (0”(F))*.

p

The challenges which arise are the following:

1) A may be non commutative;
2) If A is a non trivial C*-algebra, then there exists certainly nonzero non-invertible elements by
the Gelfand-Mazur Theorem |25, Chapter VII, Theorem 8.1]. Moreover, even if « € ANG(A),

1
Il

we do not have in general that || ™! ||= . Therefore, 04(F') may be unbounded. (However,

oA(F) is always closed in A).
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7.1 Generalized spectra of shift operators, unitary, self-
adjoint and normal operators

In this section we shall give description of the generalized spectra of shift operators, unitary, self-
adjoint and normal operators on H 4 and investigate some further properties of these spectra.
Most of the results in this section are generalizations of the results from [50, Chapter 4] .

We start with the following proposition.

Proposition 7.1.1. Let A be a unital C*-algebra, {ey}ren denote the standard orthonormal
basis of Hy and S be the operator defined by Sep = exi1,k € N, that is S is a unilateral shift
and S*epy1 = ey for all k € N. If A = L*>((0,1), ) where p is the Lebesgue measure, or if
A= C([0,1)), then

oA(S) ={a € A|inf|a| <1},

where in the case when A= L>*((0,1), ), we set
inf |a| = inf{C > 0 | u(]a]7'([0,C])) > 0} =sup{K > 0| |a] > K a.e. on [0,1]}.

Moreover, o74(S) = @ in both cases.

Proof. We have two cases.
Case 1: In this case we consider A = C([0,1]). Let a € A and suppose that inf |a| < 1. Since
|a| is continuous, we may find an open interval (t1,t3) C (0,1) such that |a(t)] < 1 — € for all
t € (t1,t2), where 0 < € < 1 — inf |a|. We may find some g € A such that supp g C (¢,t2) and
0 < g < 1. Consider

La = (975976297 e )
Then, obviously, z, € Hy and {(al — S)ey, z4) = a*g — a*g = 0. Hence x, € Im(al — S)*
and z, # 0, which gives that a € 04(S). Therefore, {a € A | inf |a| < 1} C o4(9).
Since 07(S) is closed in the norm topolgy in A, it follows that

{a € A|infla| < 1} C o(S).

On the other hand, if @ € A and inf |a| > 1, then « is invertible and sup |a™!| =| a7t ||< 1. Tt
follows that || ™S [|<|[ a7 ||| S ||< 1, s0 al — S = (I —a~'S) is invertible in B*(Hy).

Next, suppose that (al — S)(z) = 0 for some o € A and x € Hy4. This gives the following
system of equations coordinatewise: ax; = 0,axs — 7 = 0, x3 — x5 = 0,--- . Since ax; = 0,
we deduce that ;gpp o = 0. However, since axy — 1 = 0, it follows that 1 gupp a)e = 0 also.
Hence xy = 0. However, then axy = 0 and axs — x5 = 0. Using the same argument we obtain
that x5 = 0. Proceeding inductively, we obtain that x; = 0 for all k, so x = 0. Since a € A was
arbitrary chosen, we conclude that o7'(S) = @.

Case 2: In this case we consider A = L>*((0, 1), u). Let o € A and assume that inf || < 1. This
means that p(|a|~1([0,1 —¢€])) > 0, where 0 < ¢ < 1 —inf |a|. Set M, = |a|7*([0,1 — €]), then
xu. # 0. Letting xj., play the role of the function g in the previous proof, (which is possible
since T4 = (Xar., AXa., 02X, - -- ) € Hy because |a| < 1 — € on M,), we deduce by the same
arguments that

oA(S) ={a € A|inf|a| < 1}.

Next, assume that (o —S5)(z) = 0 for some o € A and € H4. As in the previous proof we
get the system of equations axy = 0, axrs — x1 = 0,ax3 — x9 = 0,--- . The first equation gives
that 1 = 0 a.e. on |a|7}(0,00), whereas the second equation gives x; = 0 a.e. on o' ({0}).
Hence x; = 0. Proceeding inductively as in the previous proof, we get = 0, hence o*(S) is

p
empty also in this case. O]
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Lemma 7.1.2. Let A = B(H), T € B(H) and suppose that T is invertible. Then the equa-
tion (T -1 — S)x = y has a solution in Hy for all e,k € N, if and only if the sequence
(T=Y,T72,... , T7% ...) belongs to Hy.

Proof. For k =1, if (T - I — S)x = ey, then we must have TB; = I, where x = (By, Bs,--+).
Hence By = T~ !. Next, TBy — By = 0, so T By = B; = T~! which gives B, = T~2. Proceeding
inductively, we obtain that By = T* for all k. So the equation (T - I — S)z = e; has a solution
in H 4 if and only if the sequence (T~1, 772, --.) belongs to H 4.

Now, if (T—',T72,---) € Hy, then the sequence z*) in H4 given by

k) 0 ifne{l, -+ k—1}
T TAT kY forme {k k41, )
is the solution of the equation (T"- I — S)x = e, for each k € N. O

Set 671(9) = {a € a}(S) | Im(al — S) = H4}. We have the following corollary.
Corollary 7.1.3. Let A be a commutative unital C*-algebra. Then
a(8) = (A\G(A) U{a e GA)|(a a7 - a7 ) & Ha} UGH(S).

Proof. Since A is commutative, then the set of right invertible elemnts coincides with G(.A).
Hence we can apply the arguments from the proof of Lemma 7.1.2. O

Corollary 7.1.4. Let A be a unital C*-algebra. If 14 denotes the unit in A, then 14 € o4(S).

Proof. We obviously have that the sequence (14,14,14,--) = (13,1331 ) is not an
element of Hy4. Then we apply the arguments from the proof of Lemma 7.1.2. ]

Example 7.1.5. We may also consider a weighted shift S,, on H4 given by S, ()11 = w;x;,
where w = (wy,ws,---) is a bounded sequence in A. In this case, if a has a common right
annihilator as w; for some j € N, then the sequence having this right annihilator in its j-th
coordinate and 0 elsewhere belongs to the kernel of al — S,,. Hence a € 04(S,,) in this case.

Example 7.1.6. Let A = L>((0,1), u). Set

g(fl: fasor) = (le(o,%)a sz(o,%) + le(%J)a f3X(o7%) + f2X(%71)7 ).

Then S has the matrix [ é g, } with respect to the decomposition (H4-x(,1)) ® (Ha-X(11))-
It follows that

04(8) = {a € A inf{C >0 u(la|~"([0,C]) N (%, )} <1}

UHaeAd|(a—1)- X(0,}) is not invertible in L*((0, 5), W)}

Proposition 7.1.7. Let a € A. We have
1. If oI — F is bounded below and F € B*(Hy), then o € 07}(F) if and only if o € o;'(F*);
2. If F,D € B*(H,) and D = U*FU for some unitary operator U, then

o (F) = c(D),0;\(F) = 0;(D), 04 (F) = 0(D) and 0(F) = o;(D).

»Yp » Yl cl rl

Proof. 1) Suppose first that F — ol is bounded below and o € o7} (F). Then Im(F — al) is
closed. Hence, by Theorem 2.0.20 we have that H4 = Im(F —al) ® Im(F — ol)* which gives
that Im(F —al)t # {0} as Im(F —al) # H4. Since Im(F — al)* = ker(F* — a*I), it follows
that o € o'(F*).

Conversely, suppose that a* € 0;)4(F *) and that F' — ol is bounded below. Then, again,
Im(F — al) is closed and moreover, Im(F — al)t = ker(F* — o*I) # {0}. It follows that
a € o (F).

It is straightforward to prove the statement 2. O]
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Now we are going to describe the generalized spectrum of a unitary operator on H 4.
Proposition 7.1.8. Let U € B*(H,4) be unitary. Then
oA(U)S{ae A [la]=1},
oA U)NGA) S{aeGA) | o |, al=1}
Proof. We have ol — U = ((al)U* — 1)U and || U* ||=|| U ||= 1. O

Consider again the orthonormal basis {eg}ren for Hy. We may enumerate this basis by
indexes in Z. Then we get orthonormal basis {e;};ecz for H4 and we can consider a bilateral
shift operator V' with respect to this basis, i.e. Vep = epyq all k € Z, which gives V*ep = e,
for all k£ € Z.

Proposition 7.1.9. Let V' be the bilateral shift operator on H 4. Then the following holds:

1) If A= C([0,1)), then (V) = {f € A[|fI([0,1]) n {1} # &},
2) If A= L>((0,1), ), then

AWV) = {f € A p(f17H(1 - 6,14 €))) > 0 ¥e > 0},
In both cases o, (V) = @.

Proof. Case 1:

In this case we consider A = C([0, 1]). Suppose that a € A and |a(#)| = 1 for some ¢ € [0, 1].
Choose a function y € A such that y(#) = 1. If af —V is surjective, then there exists an z € H 4
such that (al —V)z = e - y. Now, z(f) € Il since € Hy. If we let V denote the ordinary
bilateral shift on [y, we get that a( () — V(z(f)) = (1,0,0,---), since y(f) = 1. However,
this is not possible since |a(t)| = 1 (for more details, see |50, Chapter 4, Proposition 19] ). We
conclude that al —V can not be surjective, so a € (V).

On the other hand, if @ € A and |a|([0,1]) N {1} = @, then either |a(t)] > C > 1 or
la(t)] < K < 1forallt € [0,1] and some constants C' or K (here we use that |«/| is continuous).

1
If |a(t)] > C > 1 for all t € [0,1], then « is invertible in A and || a™! ||< o < 1. Since

| V ||= 1, it follows that o ¢ o4(V). If |a(t)] < K < 1 for all t € [0,1], then || a [|< K < 1, so,
by Proposition 7.1.8 it follows then that o ¢ o*4(V). Hence

o4 (V) ={a € Al a[(0,1]) N {1} # 2}.

Next, if (ol — V)z = 0 for some x € Hy, then we must have a(t)z(t) — Va(t) = 0 for
all t € [0,1]. This means that x(t) = 0 for all t € [0,1] since 0,(V) = @ by [50, Chapter 4,
Proposition 19| .

Case 2:

Let now A = L>((0,1),u) and a € A be such that u(|a| ' ((1 — € 1+¢€))) > 0 for all € > 0.
If (al —V)x = ey for some x € Hy, then we must have ax, — x,_1 = 0 for all £ # 0 and
azg —x_1 = 14 For small € > 0 set M, = |a| (1 —€¢,1+¢)), M7 = |a|}((1 — 1)) and
MF = |a|7((1,1 +€)), s0 M. = M- U M and xu. # 0. From the first equation above we
get 1, = o F*tDg_ for all k < —1. Moreover, z = a ¥z, for all k > 0 a.e. on any subset of
(0,1) on which |a| is bounded below, thus in particular on M.. Hence X, = zoa Fxpy, for
all k > 0 where for all k we let a ¥y, denote the function given by

a k() forte M,

0 else.

a "y, (t) = {
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Since x € H 4, it follows that @y x,,+ = 0forall kK < —1 and zyx,,~ = 0 for all k > 0. Setting this
into the second equation above, we get awoX + —T-1Xp~ = X, which gives zoxa, = oflxMj
and T_1 Xy, = —X - Hence zpxn, = a*(k“)XMj for all £ > 0 and xpxp, = —a*(kH)XM; for
all k < —1. This gives |zz| > (14 €)~®x, .+ for all k > 0 and |z;,| > (1 —¢)~*Hy — for all
k < —1. Since this holds for all € > 0 and moreover, we have that either x,,- or x,,+is non-zero
(because xyy, is non-zero for all € > 0), we get that the infinite sum ), _, z;2) diverge in A,
otherwise || Y, ., @iz |> min { 377 ﬁ, > reo(l—€)*} for all € > 0, a contradiction.
Hence = can not be an element of H4. We conclude that eg ¢ Im(al — V), so a € o4(V) in
this case.

On the other hand, if u(ja|™((1 —¢,1+¢€))) = 0 for a € A and some ¢ > 0, then we
have (0,1) = N7 U N, where N7 = |a]7!((0,1 — €)) and NI = |a|7'((1 + €, +00)). Since
the decomposition Hq = Hy - xy+ © Hy - xy- clearly reduces the operator e/ — V' and the
restrictions of &/ —V on both these submodules are invertible, ( as the restriction of V' to both

these submodules acts as a unitary operator on these submodules ), it follows that af — V is
invertible, so a ¢ o(V). O

Example 7.1.10. Let {ag, a9, -} be a sequence in a unital C*-algebra A such that each «y
is a unitary element of A. Then the operator V' defined by

V(xy,ze,- ) = (1z1, aoxg, - -+ )

is a unitary operator on H4. If A = C([0,1]) or if A = L>((0,1), ) and Jy, Jo are two closed
subintervals of (0, 1) such that J; NJ, = &, then we may easily find a function 5 € A such that
B =y on J; and |B(t)| > 1 for all t € J,. Hence || 8 ||> 1, but we also have 8 € a4(V) since
ker(BI — V') # {0}. Similarly, if A = B(H) where H is an infinite-dimensional Hilbert space,
then we may easily find two closed suspaces H; and Hj such that H; 1 Hy and T' € B(H)
satisfying 7}, = o1}, and || T},, [[> 1. Hence, again T € cA(V) and | T ||> 1. So, if V is a
unitary operator on H 4, we do not have in general that

oA (V)S{ae Al [la|=1}

Next we are going to describe and investigate some properties of generalized spectra of
self-adjoint operators on H 4.

Lemma 7.1.11. Let A be a commutative C*-algebra. If F' is a self-adjoint operator on H 4,

then o7\ (F) is a self-adjoint subset of A, that is v € o' (F) if and only if o* € o7 (F).

Proof. Since F' — ol and F — o*I = F* — o*] mutually commute because A is commutative,
we can deduce that || (F' — al)x |=|| (F — o*I)x || for all z € H4. O

Example 7.1.12. Let A = C([0,1]) or A = L*((0,1), ). If G is the operator on H,4 given
by G(f1, f2,-+) = (91.f1,92f2, ), where {g1,¢92,---} is a bounded sequence of real valued
functions in A, then G is a self-adjoint operator. Suppose that there are two mutually disjoint,
closed subintervals J; and J of (0,1) such that 91y, # 0 and gy, = 0. Set g = 1g;. Then,
if we choose a function f in A such that supp f C Jo, we get that (g — G)(f,0,0,---) = 0.
However, § # g, so we do not have that U;f‘(G) is included in the set of self-adjoint elements of

A.

Example 7.1.13. Let A = B(H) where H is a separable infinite-dimensional Hilbert space
and let {e;};en be an orthonormal basis for H. If P denotes the orthogonal projection onto
Span{e;}, then the operator P - I is a self-adjoint operator on H 4. Now, if S is the unilateral
shift operator on H with respect to the orthonormal basis {e;}, then S — P is injective whereas
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S* — P is not injective because (S* — P)(e; + e3) = 0. It follows that (S — P) - I is an injective
operator on H 4, whereas (S* — P)-I = ((S— P)-I)* is not an injective operator on H 4, since
(S*— P)-1(Q,0,0,0,---) = 0, where @ is the orthogonal projection onto Span{e; + e3}.

Hence, if A = B(H), we do not have in general that 0;04(F ) is a self-adjoint subset of A
when F = F*. It follows that the assumption that A is commutative is indeed necessary in
Lemma 7.1.11.

Lemma 7.1.14. Let A be a commutative C*-algebra. If F is a self-adjoint operator on H 4
and o € A\ o7\ (F), then Im(F — al)" ={0}. Hence, if a € A and F — oI is bounded below,
then a € A\ o(F).

Proof. Suppose that o € A\ o7 (F). If y € Im(F — al)*, then y € ker(F* —a*I). By the proof
of Lemma 7.1.11 we obtain that (F — al)y = 0. Since o ¢ 07'(F) by the choice of a, we get
that y = 0. Thus, Im(F — )™ = {0}, when a € A\ o:A(F).

Suppose next that o € A is such that F' — af is bounded below. Then o € A\ U;D“(F), SO
from the previous arguments we deduce that Im(F —al)* = {0}. Moreover, since Im(F — al)
is then closed and F' — al € B%(H_,), from Theorem 2.0.20 it follows that Im(F — o) is
orthogonally complementable in H 4. However, since Im(F — al)* = {0}, we must have that
Im(F — al) = Hy. Hence F — al is invertible in B*(H4), so a is in A\ o(F). O

Corollary 7.1.15. Let A be a unital commutative C*-algebra and F be a self-adjoint operator
on Hy. If o € A and a — a* € G(A), then F — ol is invertible. In this case,
| (F—al)™ 2] (a=a”)7" .
Proof. If a € A, then, since A is commutative, we get
(x,Fx — alzx)y — (Fr — alr,x) = o (z,x) — (x,r)a = (o — a)(x, x).

From the triangle inequality and the Cauchy-Schwartz inequality for the inner product we
obtain ||(a — a*)(z, x)|| < 2||z||||Fx — alzx||. Since (o — a*) is invertible by assumption, we get
from this inequality

Il =l (2, 2) 1<)l (o — )7 Il] (& = a")(z, @) |

<2 |la || (F—aDz ||| (a = o)™,

which gives
|z |l
2- || (a —

for all x € Hy. From Lemma 7.1.14 it follows that F' — « is invertible. O

Remark 7.1.16. Let A = C([0,1]) or A = L*((0,1), ). As we have seen in Example 7.1.12,
the operator gI — G is not invertible, whereas § — g = 2ig; # 0. Therefore, it is not sufficient
only to assume that o — a* # 0, so the requirement that a — a* is invertible is indeed necessary

in Corollary 7.1.15.

Example 7.1.17. Let A = M,(C) and 71,7, € A be given by T} = { ? (1) } , Ty = [ (2 z } )

Then 77 is self-adjoint and T, — T = 2¢ [ (1) 1 } , so Ty — T3 is invertible. Now, T} — Ty =

[ 1 3@ 1__2.2 } , so det(Ty — Ty) = 0, which gives that T} — T» is not invertible. Hence the
operator F' := T - I is a self-adjoint operator on Hy, but FF — Ty - [ = (17 — T3) - I is not
invertible. This shows that the assumption that A is commutative in Corollary 7.1.15 is indeed
necessary.
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For a self-adjoint operator F' on H 4, set
M(F) = sup{|| (Fz,z) | | [| = [=1} and m(F) = inf{|| (F,z) || | ||« [|=1}.
We have the following corollary.
Corollary 7.1.18. If A= C([0,1]) and F is a self-adjoint operator on H 4, then
o (F) C {f € A| IfI([0,1]) N [m, M] # &}
If A= L*>((0,1),u) and F is a self-adjoint operator on H 4, then
o(F) S {f € Al u(IfI7'([m — e, M +€])) > 0 for all e > 0}.

Proof. Let A= L>((0,1), 1), F be a self-adjoint operator on H 4 and o € A be such that there
exists an € = e(a) with the property that p(|a|=*([m — e, M + €])) = 0. Then (0,1) = M; U
M,, where M; and M, are Lebesgue measurable, mutually disjoint subsets of (0, 1) satisfying
lalxan = (M 4+ €)xar, and |a|xan, < (m — €)xar a.e. Hence, for all x € Hy, we have

(F—al)x,z) = ((F —al)x,x) - xa, + (F —al)x,z) - X,-

Now, we have
[ {(F = ad)z, z) | 2]] (F = al)z, ) xan, |

Z|| a<‘fl"7x>X]\41 H - H <Fx7I>XM1 H:H aXM1<"L’7‘7”>XM1 || - || XMy <FI,J}>XM1 ”
:H aX]\/Il <.I',£C>XM1 H - H <F£Ij’ X1, T - XM1> H
> (M_'_E) H <.1',$>XM1 H - H <F(xXM1)?xXM1> H

— (M +0) || e, 2hxan | =M | xan (o 2hxan, 1= € | (@ 2)xan |

(where we have used that

I (Fy, ) =l v Il <F(sz/_H) Ly I< (wy) | M)

y
Similarly we obtain
[H{(F = al)z, ) |Z[| ((F = al)z, 2)x, 2] (Fo, 2)xan | = | oz, 2)x, |
=1 {F(z - xa), 2 - xam) | = | @, )X ||
Zm || (2 X, - Xom) | =(m =€) || {2, 2)xan, [|= € || (2, @)X, ] -

Hence |[ ((F — al)z, z) [|[> emax{|| (z,2)xm, |, | (z,2)xan ||} = €| {z,2) | -

Thus, || (F —alzx ||| z ||>]| (F — al)x,x) ||> €| x ||? for all x € H4. It follows that
' — ol is bounded below, hence, from Lemma 7.1.14 we deduce that F' — ol is invertible in
B*(Ha).

The proof in the case when A = C/([0, 1]) is similar, but more simple, because if o € A
and |a|([0,1]) N [m, M] = @, then by the continuity of |a| we must either have that |a] < m
or || > M that on the whole interval [0, 1]. Moreover, there exists then an ¢ > 0 such that
la] < m —€or |a] > M + € on the whole [0, 1]. Hence we may proceed in the same way as in
the above proof. O

Finally, we are going to study the properties of generalized spectra of normal operators on
Hy.
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Lemma 7.1.19. Let A be a commutative unital C*-algebra and F be a normal operator on
Hy, that is FF* = F*F. If aq, a9 € cr;fl(F) and ay — o 18 not a zero divisor in A, then
ker(F' — aql) L ker(F — al).

Proof. Since F' commutes with F™* and A is a commutative unital C*-algebra, then F' — anl
and F* — a5 mutually commute. Hence ker(F — aol) = ker(F* — a31). For x; € ker(F — ay1)
and x5 € ker(F — agl) = ker(F* — o31), we get

<1’2,5L’1>(041 - 042) = <$2>$1>061 - 042<5132>$1> = (fl’zaFiUl) - <F*l’279€1> =0

(where we have used that A is commutative, so (22, 71) ag = aa(xs, x1)). Since (a; — ag) is
not a zero divisor by assumption, it follows that (zs,z) = 0. ]

Example 7.1.20. Let A = C([0,1]) or A = L>°((0, 1), 1) and consider the self-adjoint operator
G from Example 7.1.12. For any function f in A with the support contained in J;, we have
(f,0,0,---) € ker G Nker(gl — G). However, g =ig; # 0 and f # 0, but g is not invertible in
A, so it is not sufficient only to assume that a; — ay # 0 and the assumption that a; — ag is
not a zero divisor in A is indeed necessary.

Example 7.1.21. Let A = B(H) and T € A be a normal and invertible operator. If H; and
H, are two closed subspaces of H such that H = H;®H, and H; # Hj (that is H; and H,
are not mutually orthogonal), then 771 and T'(1 — 1) are elements of o3'(T" - I), where M stands
for the skew projection onto H; along Hy. Moreover, the operator T'- I is normal operator on

Hy and TN —T(1 — M) is invertible in A because 7'M —7'(1 — M) has the matrix [ g _OT }

with respect to the decomposition H = H®&Hy — T(H,)®T(H,) = H. However, if P, and P,
denote the orthogonal projections onto H; and Hs, respectively, then, for all j,

ej-Preker(TN-I—T-I)ande;- Py €ker(T(1—11)- I —-T-1),

since MNP, = P and (1 — M)P, = P,. Moreover, PiP, # 0. So the assumption that A is
commutative is indeed necessary in Lemma 7.1.19.

Lemma 7.1.22. Let A be a commutative C*-algebra and F' be a normal operator on H 4. Then
oi(F) = @, hence o4(F) = o2 (F) U o (F).

rl

Proof. Suppose that a € ¢7}(F). Then F — ol is bounded below. Again, since F — ol and
F* — o*I mutually commute, we get that ker(F — al) = ker(F* — a*I) = {0}. Next, since
Im(F — al) is closed, by Theorem 2.0.20 we have that

Hy=ker(F* —a*I)® Im(F —al) = Im(F — al).
So F' — ol is surjective, thus invertible, which gives that o7} (F) = @. O

Example 7.1.23. Let A = B(H) and S, P be as in Example 7.1.13. Then P - I is a normal
operator on H 4 being self-adjoint and (S — P) - I is bounded below on H 4. Indeed, we have
that || (S — P)x [|>]] = || for all x € H, hence m(S — P) > 1. Therefore, since

T*(S — P)*(S — P)T > (m(S — P))*T*T

for all T"€ B(H), it is not hard to see that (S — P) - I is bounded below on H4. However,
Im((S — P)-I)* =ker((S* — P) - I) and ker((S* — P) - I) # {0} as we have seen in Example
7.1.13. Hence P - I is a normal operator on Hy and S € o7}(P - I), which shows that the
assumption that A is commutative is indeed necessary in Lemma 7.1.22. Moreover, this also
shows that the assumption that A is commutative is indeed necessary in Lemma 7.1.14 as well,

because S € A\ o:'(P - I), however, Im((S — P) - I)*= # {0}.
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The next lemma is a generalization of |25, Chapter XI, Proposition 1.1] . For F' € B*(H 4),
set
o (F)={a € A| F - al is not bounded below },

o (F) ={a € A| F — ol is not left invertible in B*(H,)},

o (F)={a € A| F — ol is not right invertible in B*(H4)}.

T

Lemma 7.1.24. Let F' € B*(H,4). Then the following statements are equivalent.

a) o € A\ o (F).

b) a € A\ oi\(F).

c) a* € A\ o A(F™).

d) Im(a*I — F*) = H,.

Proof. This proof is similar to the proof of [25, Chapter XI, Proposition 1.1]. Indeed, if F'— al
is bounded below, then Im(F — ) is orthogonally complementable in H 4 by Theorem 2.0.20.
The operator F'— al is invertible viewed as an operator from H 4 onto Im(F —al). This follows
by the Banach open mapping theorem. Hence (F — o)™ € B*(Im(F — ol), H,) by Remark
2.0.21. Let P denote the orthogonal projection onto Im(F — alI), then (F — alI)7!'P is a left
inverse of F' — ol in B*(Hy). Next, F' — ol has left inverse if and only if F* — o*I has right
inverse in B*(H_4), so (b) = (c¢). Part (¢) = (d) is obvious. Finally, if Im(a*l — F*) = Hy,
then ker(F — ol) = Im(F* — o*I)* = {0}. Moreover, from the proof of Theorem 2.0.20 we
have that Im(F — o) is closed since Im(F* — a*I) is closed. Therefore, F' — ol is bounded
below. O

The next two propositions can be proved in exactly the same way as for operators on Hilbert
spaces, see |50, Chapter 4, Proposition 20| and [50, Chapter 4, Proposition 21].

Proposition 7.1.25. For F' € B%(H,), we have that o2(F) is a closed subset of A in the
norm topology and o (F) = o{(F) U o7} (F).

Proof. The statement follows since M®*(H 4) is open in B%(H 4) in the norm topology. Next, if
F — oyl is bounded below, it is easy to see that either g € 073 (F) or F — agl is invertible.

O
Proposition 7.1.26. Let A be a commutative C*-algebra. If F € B*(H,), then do*(F) C
oM(F). Moreover, if M is a closed submodule of H 4 invariant with respect to F and Iy = F,,

a

then we have do™(Fy) C oA(F) and o (Fy) N pA(F) = o/4(Fy), where p*(F) = A\ o(F).

Proof. Let ay € do(F). Then there exists a sequence {a,} € A\ o*(F) such that a,, — ag
in A, hence F' — a,,] — F — gl in the norm. From a well known result for operators on
Banach spaces stated in [50, Chapter 4, Proposition 12|, there exists a subsequence a,,, such
that [|(F — a, I)7t| — 0o as k — oo since F' — apl is not invertible. Hence, there exists a
sequence of unit vectors {x;} C H 4 such that ||[(F — a,, )" ap|| — 0o as k — oo. For each
k, set yp = (F — apn, I)"'ay and vy = Hy—kH Then we have that
Yk
1

I (E" = o D)oy, |<[| (@0 = an ) Tvg || + || (F = anpl)vg [|[<]] @0 = oy, || +7——

[x7a

which gives that || (F — apl)vy ||— 0, so ag € o}(F). This shows the first statement in the
proposition. However, then we have that

(90“4(F0) C Uf(Fo) C Jf(F) C O"A(F).
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Example 7.1.27. We may also consider the operators on H 4 defined by
Wer) = ear, and W' (ey,) = egy,_q for all k € N.

Also for these operators we have oA(W) = o4(W’') = {a € A | inf|a| < 1} in the case when
A = C([0,1]) or when A = L>((0, 1), ). Suppose now that A = L>°((0,1), 1) and consider the
operator F' on H 4 given by

F(f17f2,f3,"'):(X(o )flaX(%,l)flaX(o )f27X( 1)f2,"')-

1 1 1
2 2 27

w0

It follows that F' has the matrix [ 0w

} with respect to the decomposition

F
Hy=(Ha- X(o,%)) ® (Ha- X(%,l)) — (Ha- X(o,%)) ® (Ha- X(%,l)) = Hy.
Therefore, 0(F) = {a € A | inf |a| < 1}. Next we have that
af(W) =g, af(W’) ={a € A| a =1 on some closed subinterval J C [0, 1]}
in the case when A = C([0,1]) and o' (W') = {a € A | p({t € (0,1) | a(t) = 1}) > 0} in the
case when A = L>°((0,1), u). Hence, we get that
1
o (F) = {a € Al p({t € (0,5) [ a(t) = 1}) > 0}.

p

Consider next the operators

e when 7 = 2k
Z(ej):{o’f . keN

er when j =2k —1
Z'(e) =1 lse ,keN

Then 04(Z) = 04(Z') = {a € A | inf |a| < 1}. This follows since Z = W* and 2’ = W',
Moreover, we have
o (Z) ={a e Al infla| <1}
both in the case when A = C([0,1]) and when A = L>((0,1), u).
In the case when A = L>°((0,1), 1) we have that

oM7) ={ac Al|infla| <1or u({t € (0,1)|a(t)=1}) >0}

p

and in the case when A = C/([0, 1]), we have that
a;;‘(Z') ={a € A|inf|a| <1 or a =1 on some closed subinterval J C [0, 1]}.
Let the operator D on H 4 be given by
D(g1,92:93:- ) = (91X (0,2) + 92X (L 1)> 93X (0.8) T 9aX(21)>" ")

/

when A = L*((0,1), ). Then D = F* and D has the matrix 0 7

} with respect to the
decomposition H 4 - X(0,1) @ Hy- X(4.1): It follows that
oA(D) = {a € A|inf|a| < 1},
1
a;,“(D) ={a e Al|inf|a| <1 or u({t € (0, 5) | a(t) =1}) > 0}.

Note that the operators F' and D here are actually the operators from Example 3.7.4 and
Example 3.7.5, respectively.
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7.2 Generalized Fredholm spectra of operators over (-
algebras

Various subclasses of semi-A-Fredholm operators induce various corresponding generalized spec-
tra in A of operators in B*(H4). We shall investigate several properties of such spectra and
the relationship between them. Most of the results in this section are generalizations in this
setting of the results from |50, Section 2.2| and [56, Section 2.3] .

We start with the following definition.

Definition 7.2.1. We set msg(F) =inf{|| a || |a € A, F —al ¢ MP(H,)},

ms(F)=inf{|| a| |a€ A F —al ¢ MPL(H,4)},

msi(F)=mf{||a| |a€ A F—al ¢ MO (HA)},

ms_(F)=inf{||a| [a€ A F—al ¢ MOP_(Hy)}.
It follows that mse(F) =max{e > 0| ||a||<e=F —al € MP(H,)},

msi(F)=max{e>0]| ||all<e=F —al € MO (H4)},

ms_(F)=max{e>0| [[a|[<e=>F—al € MP_(H,)},
ms(F)=max{e>0| [|a|<e=F —al € MO_L(H,)},
From Lemma 2.0.42 and Theorem 3.3.1 it follows that

mse(F) >0 F e MO(H,),

msy(F)>0< Fe M, (Hy),ms_(F)>0& Fe MP_(Hy),
ms(F) >0& Fe M@i(HA).
From Corollary 3.1.20 it follows that

msy (F) = ms_(F*),mse(F) = mse(F*),
ms(F) = ms(F™").
Lemma 7.2.2. Let F € B*(H,). If ms(F) >0 and ms_(F) > 0, then ms(F) =ms_(F).

Proof. Since ms (F') and ms_(F) are strictly positive by assumption, then, by Corollary 3.1.10,
Fe MO (Hy) NMP_(Hy) = MP(Hy). If ms (F) > ms_(F), then, obviously, there exists
an « € A such that || a ||€ (ms_(F),ms(F)), and (F — al) € MP, (Hy) \ MD_(Hy).
However, if we consider the map f : [0,1] — B%(Hj4) given by f(t) = F — tal, then f is
continuous. Since || a [|[< msy(F), it follows that f([0,1]) € M®P, (Hy) € MPL(H,). By
Corollary 3.3.5 we deduce that f(1) € M®(H,) since f(0) € MP(H ). However, we have that
f(l) =F —al ¢ M®_(Hy). Since MP(H,) C MP_(Hy), we get a contradiction. Thus,
msi(F) = ms_(F) in this case. Similarly, if ms_(F) > ms,(F'), we can show that actually
ms_(F) = msy(F). O

Lemma 7.2.3. Let F € B*(Hy). Then
1) mse(F) = min{ms, (F),ms_(F)},
2) ms(F) = max{ms,(F),ms_(F)}.
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Proof. First we prove 1). If 0 = min{ms, (F'), ms_(F)}, then either ms, (F) = 0 or ms_(F) =
0. Suppose that msy (F') = 0. Then, by the above arguments, since M®, (H 4) is open, we must
have that F' ¢ M®, (H,4). Hence F' ¢ M®(H 4), so mse(F) = 0. Similarly, if ms_(F) = 0, it
follows that mse(F) = 0, since M®_(Hy) is open and MP(H4) C MP_(H4).
Suppose now that
0 < min{ms,(F),ms_(F)} =ms(F).

By Lemma 7.2.2 we have ms (F') = ms_(F'). Applying Corollary 3.1.10 we easily deduce that
mse(F) =ms, (F)=ms_(F).

Next we prove 2). If max{ms,(F),ms_(F)} =0, then F' ¢ M®PL(H4), hence ms(F) = 0,
as in the proof of |50, (2.3.8.2.)].
Suppose that 0 < max{ms, (F),ms_(F)} = ms,(F). Obviously, ms(F') > ms(F). If we have
ms(F) > ms; (F), then for any r € (msy(F),ms(F)), the set

Cr={F—allacAl|a|<r)

would intersect both M® (H4) and M®_(H4) \ MP(H,), which are both open by Theo-
rem 3.3.1 and Remark 3.3.4. Hence the sets M® (H4)NC, and (M®P_(H4)\MP, (H4))NC,
would form a separation of C,., since C,, C M®, (H 4). Indeed, since r > max{ms (F), ms_(F)},
we can not have that C,, C M®, (H4) or C;, € M®P_(H 4). On the other hand, since r < ms(F),
we must have that C, C M®PL(H,). Therefore, it follows that C, N M®, (H,4) # @ and
Cr N (MO_(Hy) \ MP(Hy)) # @. This is a contradiction since C, is connected. Hence we
must have ms(F) = ms, (F).

The case when max{ms(F),ms_(F)} = ms_(F) can be treated analogously. O

Definition 7.2.4. Let F' € B*(H 4). We set
o (F) ={a € Al (F —al) ¢ Mdy(H)},

0y (F) = fa € A| (F - al) ¢ MO, (H)},
oy (F) = {a € A| (F—al) ¢ MO_(H)},
oA(F) = {a € A| (F —al) ¢ MOL(HL)},

o (F)={a € A|(F—al)¢ M®(Hu)}.

Lemma 7. 2 5. Let F € B(H ) and suppose that Ko(A) satisfies the cancellation property. Then
oA(F) = o (F)Ua(F)Uod(F).

Proof. Tt suffices to show 7 C 7. Suppose that a € oA(F)\ (6} (F)Uc2 (F)). Then Im(F —al)
is closed and (F'—al) € M®Py(H 4). By Proposition 3.5.11 the operator F' — «l has the matrix
{ (F - Oé[)l 0

0 0 } with respect to the decomposition

Hy = ker(F — ol)°®ker(F — o) =% Im(F — aI)&Im(F — al)° = Hy,

where (F' — al); is an isomorphism by the Banach open mapping theorem. Since we have

(F —al) € M®y(H,), then it holds that
0 = index (F — al) = [ker(F — al)| — [Im(F — al)°],
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so [ker(F — al)] = [Im(F — al)°]. If [ker(F — ad)] = 0, then ker(F — al) = {0}, since
Ky(A) satisfies the cancellation property by assumption. By the same reason we would have
Im(F — al)° = {0}, so F' — al is then invertible, which is a contradiction, since o € o*(F).
Thus, we must have ker(F — al) # {0}, so a € o3'(F). O
Example 7.2.6. Let A = B(H) where H is a separable, infinite-dimensional Hilbert space
and consider the operator T' from Example 3.4.5. Obviously, T' € M®y(H 4) and moreover, T
is bounded below, but 7' is not surjective, thus not invertible. Hence

0 € (a7(T) \ 02, (T)) € (0(T) \ (070,(T) U o, (T) U o (T))).

This shows that the assumption that K(.A) satisfies the cancellation property is indeed neces-
sary in Lemma 7.2.5.

Recall Definition 5.1.1 of the class M®J°(H4). We have the following lemma.

Lemma 7.2.7. For F € B%(Hy) set 00,,.(F) = {a € A| (F —al) ¢ M®}°(H4)}. Then
oMF) = aéﬂgc(F) U Jf(F).

Proof. Again it suffices to show ” C 7. Suppose that a € 04(F) \ 07,,.(F). Then I'm(F — al)
is closed and ker(F — al) = Im(F — al)*. Moreover, Hy = Im(F — ol) ® Im(F — al)* by
Theorem 2.0.20. Since o € o**(F), it follows that ker(F — af) # {0}. O

For F € B*(H 4) we set

MO (F)={ac A|F—al € Md,(Hy)},
MO (F)={acA|F—al e M®_(Hy)},
MO(F)={aec A|F—al € MO(H,)},
MO, (F)={aeA| F—al € M®L(H,)} and
MO(F)={ac A| F—al € MP(H)} .

The next two results are generalizations of [25, Chapter XI, Proposition 4.9] .

Proposition 7.2.8. If F € B*(H ), then the components of A\ (o, ;(F)No/;(F)) are either
completely contained in one of the sets

M, (F)\ MB(F), MO_(F)\ Mb(F)

or they are completely contained in MP(F') and in this case index (F — al) is constant on
them.

Proof. Let C' be a component of A\ (afuf(F) N U;‘llf(F)). Then either CN M, (F) # @ or
CNMP_(F) # @. Hence we must have that either C C M®_(F) or C C M®P (F) because
otherwise the sets CNM®_(F) and CN(MP,(F)\ MP_(F)) would form a separation of C,
which is a contradiction. Indeed, it follows straightforward from Theorem 3.3.1 and Remark
3.3.4 that the sets M®_(F) and M (F)\ M®P_(F) are open in the norm topology of A.

Assume that C C MO, (F). If CNMP(F) # @, then C C MP(F') because otherwise the
sets MO(F) and M (F)\ MP(F) would form a separation of C, since it follows straightfor-
ward from Lemma 2.0.42 and Theorem 3.3.1 that M®(F) and MO (F) \ M®P(F) are open.
So, either C C M®, (F)\ M®(F) or C C MP(F). Now, if C C MP(F), then index (F —al)
must be constant on C| since index is locally constant by Lemma 2.0.42.

The case when C' C M®_(F') can be treated similarly. O
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Lemma 7.2.9. Let F € B“(Ha). If a € 90 (F) \ (6, ;(F) N0 ((F)), then o € MP(F).

Proof. Let v € 9o (F) \ (0, 4(F) No7;(F)). Then a € M®,(F). Since a € do*(F), each
open neighbourhood of « in A intersects M®y(F') non-empty. Since M® (F)\ M®P(F) and
MO_(F)\ MP(F) are open, it follows that o must be an element of M®(F'). Now, since
a € 9o (F) and M®(F)\ M®dy(F) is open (this follows from Lemma 3.4.16), we must have
that o € MPy(F). O

Theorem 7.2.10. [20, Theorem 4 | Let ' € B*(H 4). Then the following inclusions hold:

DoA

ew

Proof. We will show this by proving the following inclusions:

dot

ew

(F) C oy (F),

9073(F) C (o, (F) N o, (F)) = o4 (F),
&Tfuf(F) - aﬁg(F) and 80g41f(F) C ai(F).

Since, obviously,

(F) C o2t

A
oAy c Teprth) c pa A (F),

O¢ lf(F) = e

if we prove the inclusions above, the theorem would follow. Here we use the property that if
S, 8 CA,SCS and 95" C S, then 05" C 0S.

The first inclusion follows by the same arguments as in the classical case (the proof of
[76, Theorem 2.2.2.3]) since o7}, (F) \ 07(F) is open in A by Lemma 3.4.16.

Next, if a € 802‘}(F), then, obviously, F'— al is in OM®P(H 4). By applying Corollary 3.3.3,
we deduce that (F —al) ¢ MP (Hsq) UMP_(H,). This works as in the proof of |50, 2.2.2.4]
and [50, 2.2.2.5]. Hence,

0074 (F) C (02,(F) N oZy(F)).
Suppose now that a € Jdo. ,f(F). If o ¢ a;“lf(F), then (F' — al) € M®_(Hy). Since a €
0o f(F), it follows that (F' — al) € OMP,(Hy). Hence (F — al) ¢ M®P,(Hy), because
M (H,) is open in the norm topology. Thus, if o € 9o, ((F)oZ((F), then o € MP_(F)
and o ¢ M®_(F). Now, since a belongs to the boundary of Ufuf(F), it follows that any open
ball around « in A intersects M®, (F') non—empty. On the other hand, M®_(F)\ MP (F)
is open in A, which follows from Theorem 3.3.1, and & € M®_(F)\ M®(F), a contradiction.
Thus, we must have doe uf(F) C oc1p(F). Hence 9o, ;(F) C o, ;(F) N ol (F) = o (F).
Similarly, we can show that o ;(F) C o7 (F). O

Now we consider the following spectra for F' € B*(Hy) :

0(F) ={a € A (F —al) ¢ MO (Ha)},

020(F) ={a € A| (F —al) ¢ M (Ha)}.
Clearly, afuf(F) C oA (F) Cod(F) C oA (F). We have the following theorem.
Theorem 7.2.11. /20, Theorem 5] Let F' € B*(H ). Then

do

ew

(F) C 9024 (F) C 002 (F) C 8oL 4(F).
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Proof. Again it suffices to show

902, (F) C 04(F), 005 (F) C 074(F) and o2y (F) C o, ;(F).

The first inclusion follows as in the proof of [56, Theorem 2.7.5], since do (F) C doZi(F) by
Theorem 7.2.10 and since do7}(F) C o4(F) C o (F).

To deduce the second inclusion, assume first that o € dot(F) \ o (F). Then we have
that (F — al) € MO (H,) and (F — al) ¢ M®(H,) since M®_(H ) is open by Lemma
3.4.9. It follows by Definition 3.4.1 that F' — af is in M® (Hy) \ MP(H 4). However, since
MO (H,) \ M®(H,) is open by Theorem 3.3.1 and M®(H,) € M®(H,) by definition,
we must have (F — al) ¢ OM®L(H,). This contradicts the choice of a € do7i(F). Hence
0ot (F) C ol (F).

For the last inclusion, assume that & € doA(F) and that & ¢ o7, s(F7). Then it follows that
(F—al) € M®,(Hy) and (F—al) ¢ M (Hy). This means by the definitions of M®7 (H ),
Mo, (H4) and by Proposition 3.4.12 that (F' —al) € M®(H4) and that

(F—al) ¢ M®_(Ha) = MDY (Ha) N MD(H ).

Thus, (F —al) € MO(HL)\ M®_ (H4) = MO(H,) N (MD, (Hy) \ M (Hy)). By Lemma
2.0.42 and Lemma 3.4.16 the set M®(H4) N (M®, (H4) \ M®T (H,)) is open in the norm
topology. Hence, there exists an ¢ > 0 such that (F — &'I) € M®(H,) \ M® (H,) for all
&' € A satisfying that || @ — & ||< e. It follows that & ¢ JoA(F), which is a contradiction.
Thus, we must have that & € quf(F), so oA (F) C ofuf(F).

U
As mentioned in [20], in a similar way as in Theorem 7.2.11, one can show that
00%,(F) C 0o (F) C dogy(F) C 007 (F),
where .
oA (F)={a€A|(F—al)¢ MO (H,)}
and

oh(F)={ac A| (F—al)¢ MOT(H,)}.

By applying the arguments from the proof of Theorem 7.2.11 we obtain the following.

Corollary 7.2.12. The sets MO(H4)\ MO (H4) and MD(H ) \./\;l(I)J:(HA) are open in the
norm topology.

Next we introduce the following spectra for F' € B(H 4) :
o (F) ={a € A| (F —al) ¢ M® (Ha)},
o (F)={ac Al (F—al) ¢ MO (Hy,)}.
By Remark 3.4.13 we have that
MO (Hy) € MO (H,) and MOT (H,) C MO (Hy).

Hence, we get 02 (F) C oA, (F) C oA(F) and 04(F) C 03, (F) C O';%(F).
We present the following proposition.
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Proposition 7.2.13. Let ' € B*(Hy). Then
004(F) € do2ar (F) € 0oy (F),
904 (F) C 005 (F) C 0o (F).
Proof. 1t suffices to show
IoA(F) C o (F), 002 (F) C o (F),
Dot

eb
Suppose that a € doA(F) \ o, (F). Then

F—al € M®, (Hy) \ MO, (H )

= MO (Ha) \ (MO (Ha) N MP(H y))
= MO (H4) \ MP(Ho)

= MO (Ha) N (MP(Ha) \ MO(Ho)),
where in the first equality we apply Proposition 3.4.12 and in the last equality we apply the
fact that M®; (H4) € M®, (H4) by definition. Now, by Theorem 3.3.1 and Lemma 3.4.14,
we obtain that M®7 (Hy) \ M®, (H4) is open in the norm topology. As F —al is in
MO (H )\ MO (Hy), it follows that o ¢ do7i(F), which is a contradiction. Thus we must
have that 9ot (F) C o, (F).

Next suppose that o € dot,(F) \ oA(F). Since M®; (H) is open by Lemma 3.4.14, we

must have that o2, (F) is closed, hence F — al € M®5(H4) \ M®T (H,).
Now, as M® (H4) € MP;(Hy) C MO, (Hy), we get that

MO (Ha) \ MO (Ha) = MO (Ha) N (M (Ha) \ MDT (H)),

so by Corollary 3.4.10 and Lemma 3.4.16 we deduce that M®; (H4) \ M®7 (H,4) is open in
the norm topology. It follows that a ¢ do7t,(F), which is a contradiction. We conclude then
that 9o, (F) C o2 (F).

ea’

Similarly we can prove that 80;%(}7) C o7(F) and 9oy, (F) C o (F). O

Corollary 7.2.14. The sets
M (Ha) \ MP(H1), MO (Ha)\ MPS (Hy), M (Hy)\ MO (Ho)

and MO*(H,) \ MO (H,) are open.

Proposition 7.2.15. Let M be a Hilbert C*-module over a unital C*-algebra A and F' € B(M).
If Ko(A) satisfies the cancellation property, then

Gaﬁl(F) C 80;4uf(F) and 302‘)(}7’) C 80flf(F).

Proof. Tt suffices to show that doZ (F) C afuf(F). To this end, assume that & € do7t(F)
and that & ¢ o, ;(F). Since Theorem 3.3.1 and Lemma 3.4.9 hold in the case of arbitrary

Hilbert C*-modules, it follows that Corollary 3.4.10 also remains valid in the case of arbitrary
Hilbert C*-modules, hence M®_ (M) is open. Therefore we must have (F' — al) € M®, (M)
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and (F —al) ¢ MO (M). This means by the definitions of M®, (M) and M, (M) that
(F —al) e M®(M) and that given any decomposition

M = My®N, =8 My®Ny = M
(F — Oé[)l 0

0 (F—al)
isomorphism and N, N5 are finitely generated, then N is_not isomorphic to a closed submodule

of Ny . By the proof of Lemma 2.0.42 there exists an € > 0 such that if @ € A and ||a@—&'|| <,

- - [ (F—a'l), 0
then (F—a&'l) € M®(M) and (F'—a&'I) has the matrix [ 0 (F—a'l)

with respect to which (F'—a&/) has the matrix ] , where (F'—al); is an
4

with respect

to the decomposition
F—&'T

M = MQU(N,) = V1 (My)®&Ny = M,

where (F —&'I);, U,V are isomorphisms. As V; is not isomorphic to a closed submodule od N,
and U is an isomorphism from M onto M , it follows that U(N;) is not isomorphic to a closed
submodule of Ny . Now, if (F — &) € M®2(M), then we must have (F — &'I) € M®(M),
as (F—&1) € M®(M) and MO (M) = Md(M)NMI(M) by definition. By Lemma 3.4.3,
as Ko(A) satisfies the cancellation property, we must then have that U(N;) < Ny, which is a
contradiction. So 907 (F) C o, ((F).

Similarly we can prove that do7(F) C do, s (F). O

Remark 7.2.16. The proof of Proposition 7.2.15 is similar to the proof of |20, Theorem 5.

Remark 7.2.17. Notice that, except Lemma 7.2.7, the results presented in this section hold also
in the setting of non-adjointable semi-.A-Fredholm operators.

Example 7.2.18. Consider the Hilbert space L*((0,1),u). For every f € C([0,1]) or f €
L>((0,1), 4) we consider the multiplication operator M; on L*((0,1),u), i.e. Ms(g) = gf
for all ¢ € L?((0,1), ). Then M; is well defined, bounded linear operator on L?((0,1), u),
| My I<[ f lloo, and M} = M. If F € B(L?(0,1), 1), then the operators F' — M, when f runs
through C'([0,1]) or L>((0, 1), u), give rise to another kind of generalized spectra of F'in C(]0, 1])
orin L>((0, 1), ), respectively. Many of the results presented in this chapter have their natural
analogue in this setting here. However, we should notice that, since L?*((0, 1), 1) is an ordinary
Hilbert space, we consider now generalized spectra in C([0,1]) or in L*((0,1), ) induced by
the corresponding subclasses of the classical semi-Fredholm operators on L*((0,1), ).
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Chapter 8

Perturbations of generalized spectra of
operators over C*-algebras

In this chapter we are going to study perturbations of generalized spectra of operators over
C*-algebras. The first section of this chapter gives an overview of the basic results concerning
perturbations of generalized spectra, that are an analogue in this setting of the results in [50],
whereas in the second section of this chapter we study perturbations of generalized spectra of
upper triangular operator 2 x 2 matrices acting on H4 & H 4 and provide a generalization in
this setting of the results from [7].

8.1 Basic results

First we recall the following definitions concerning perturbation classes and the radical of a
Banach algebra.

Definition 8.1.1. |70, Definition 1.8.1] Let S be a subset of a Banach space A. The perturba-
tion class of S, denoted by P(S), is the set

P(S)={a€ A:a+se S forevery s € S}.
We assume that S satisfies the additional condition AS C S for every scalar A # 0.

Definition 8.1.2. [50, Definition 1.8.7|] Let A be a Banach algebra with the unit 1. The
(Jacobson) radical of A, denoted by Rad (A), is defined as

Rad (A) = {x € A:r(ax) =0 for every a € A}

={z € A:r(za) =0 for every a € A}.

For a Banach space X, we denote the closed ideal of compact operators on X by C'(X) and
we let 7: B(X) — B(X)/C(X) be the quotient map. We recall the following.

Definition 8.1.3. |70, Definition 1.8.18| The set of all operators 7' € B(X) satisfying 7(7")
Rad(C(X)), is the set of inessential operators, denoted by I(X), i.e. I(X) = 7n~(Rad(C(X))).

Then we set MI(H,) = 7' (Rad(B*(H4)/K*(H,)), where 7 stands now for the quotient
map from B*(H4) onto B*(H)/K*(H,). Since
MO(Hy) =7 H(G(B*(Ha)/K"(Ha)),

we easily obtain the following lemma as an analogue of [50, Lemma 1.8.19].
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Lemma 8.1.4. MI(H4) is a closed two sided ideal in B*(H4) and
MI(HA) = {D € BG(HA) | I+ DF e M@(HA) VF € Ba(HA)}

={D € B*(H.) | [ + DF € M®(H ) YF € M®(H,)}
—{D e B*(Hy) | I +FD e M®(H,) YF € B*(H,)}
= {D € BYHy,) | I+ FD &€ M®(H4) VF € MO(Hpy)}.

Recall that we have
MO (Hy) = 77 (Gi(B*(Ha)/K*(Ha))) and MO_(Hy) = 77 (G (B (Ha) /K" (H)))-
Hence, by the similar arguments as in the proof of [56, Lemma 1.8.20], we deduce that
MI(Ha) = P(IMO(Ha)) = P(MP(Ha)) = P(MP_(Hy)).

Therefore, we get K*(H4) C MI(H,4), as MP(Hy), MP,(H,4) and MP_(H,) are invariant
under compact perturbations. Since M®_, (H 4) is an open subset of M®,(H,4) and, by Re-
mark 3.3.4, M®_(H ) does not contain boundary points of M®, (H ), from [506, Lemma 1.8.3]
we deduce that P(M®L(H,)) € P(M®, (H,)). Similarly, P(IM®PL(H4)) € P(MP_(Hy)).
On the other hand, we obviously have that P(M®,(H4)) N P(M®_(H,)) is included in
P(M®L(Hy)). Thus, PIMPL(Hy)) = PIMP (Hy)) N P(MP_(Hy)). Those arguments are
essentially the same as in the proof of [56, Corollary 1.8.21].

Next we have the following generalization of |70, Lemma 1.8.22].

Lemma 8.1.5. a) If F € M®, (H4) \ M®(H4) and D € P(M®(H.)), then
F+D e Mb, (Hy)\ MO(H,).
b) If F € M®_(Ha)\ M®(Hy4) and D € P(MO(H.)), then
F+D e MP_(Hy)\ MO(H,).
¢) If F € M®(H,4) and D € P(M®(H.4)), then D+ F € M®(H,) and
index (D + F) = index F.
d) If F € M®y(H,) and D € P(M®(HJ,)), then F + D € M®o(H.4).

Proof. The proof is essentially the same as the proof of [56, Lemma 1.8.22|. Indeed, from
[56, Lemma 1.8.2] it follows that A\D € P(M®(H 4)) for all A € [0, 1]. We have already noticed
that

PM®,(Ha)) = P(MP_(Ha)) = P(MP(HaA))

Hence, by considering the map f : [0,1] — M®L(H,4) given by f(t) = F + tD and applying
Corollary 3.3.5 we deduce a), b), and ¢) in the lemma, whereas for the part d) we apply
Corollary 3.4.17 part 6).

O

Lemma 8.1.6. We have P(M®y(H4)) = P(MP(H4)).

Proof. The proof of this lemma is exactly the same as the proof of |56, Lemma 1.8.23|. ]
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Since K*(H4) € P(M®T (Hy)) N P(MOY (H4)) N P(M®(Hy)), (which follows from
Lemma 2.0.45 and Lemma 3.4.14), from Theorem 3.4.18, Corollary 3.4.22 and Theorem 3.4.25
we deduce the following lemma.

Lemma 8.1.7. Let F € B*(H ). Then

(1) F € ./\/ICD_/(HA) if and only if there exist some D € M®(H,) and

K e P(M®7 ( A)) such that F =D + K,

(2) F € MO (Hy) if and only if there exist some G € Q*(H.,4) and

K € P(M®*Y (Hy)) such that F = G + K,

(3)F € MPy(H,) if and only if there exists some invertible T € B%(H,4) and some
K € PIM®(Hy,)) such that F =T + K.

Finally we are ready to prove the first result in this chapter regarding perturbations of
generalized spectra.

Proposition 8.1.8. Let F' € B*(Hy). Then

o(F)= () 'F+D)= () oNF+D)

DeK*(H4) DeMI(Hy)

Proof. The proof is similar to the proof of [56, Theorem 2.1.3]. Indeed, from Lemma 8.1.7 it
follows that F'—al € M®y(H,) if and only if there exists some K € P(M®(Hy)) = MI(H4)
such that F'— ol + K is invertible or, equivalently, if and only if there exists some K € K*(H 4)
such that F' — ol + K is invertible, which follows from Theorem 3.4.25. O

Next we have the following results as an analogue of the results in |50, Chapter 2.4] in the
setting of the generalized spectra in A.

Lemma 8.1.9. The operator D € B*(H ) satisfies the condition
05.(F + D) = a4 (F)
for every F' € B*(Hy) if and only if
D € P(M®, (Ha)) 1 P(M®_(Hy)) = PM®(H.4)).

Proof. The proof is similar to the proof of [56, Theorem 2.4.1]. Indeed, since P(M®P(H,)) is
a subspace by [50, Lemma 1.8.2|, it follows that —D € P(M®(H4)) when D € P(M®(H 4)).
Therefore, if « € A and D € P(M@(HA)), then F' — ol € ./\/lCDi(HA) if and only if we have
that F+D —al € M®L(Hy), so a ¢ o/t(F) if and only if a ¢ o74(F + D). On the other
hand, if 0/} (F + D) = o k(F) for every F € B%(H,), then, if we choose an F € MPOL(Hy),
we get that 0 ¢or(F)=0i(F+ D), soF+De M@i(HA). Therefore, D € P(M®,(H4)).
Since we have from above that P(M®.(H4)) = P(M® (H4)NP(MP_(Hy)), we deduce the
desired result. O

Similarly we can prove the following results.

Lemma 8.1.10. The operator D € B*(H 4) satisfies the condition
0 f(F + D) =0, ;(F) for every F € B*(Hy) if and only if D € P(M®(H.z,)).

Lemma 8.1.11. The operator D € B*(H 4) satisfies the condition
0;(F + D) = 0\,;(F) for every F € B“(Hz) if and only if D € P(M®(H 4)).

Lemma 8.1.12. The operator D € B*(H 4) satisfies the condition
0y(F + D) = 0/;(F) for every F € B*(H.) if and only if D € P(M®(Hy)).
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Lemma 8.1.13. The operator D € B*(H ) satisfies the condition
oA (F+ D) = ot (F) for every F € B*(H,) if and only if D € P(M®(H,)).

Corollary 8.1.14. Let F € B*(H4). Then

(1) ms, (F + D) = ms, (F) for every D € P(M®(Hy)),
(2) ms_(F + D) = ms_(F) for every D € P(M®(H,)),
(3) ms(F + D) = ms(F) for every D € P(M®(Hy)),
(4) mse(F + D) = mse(F) for every D € P(M®(Hy)).

Lemma 8.1.15. M® (H4) (respectively MP_(H 4)) does not contain the boundary points of
MP(H,) (respectively MO (Hy)).

Proof. Using Lemma 3.4.16 we can proceed in the same way as in the proof of Corollary
3.3.3. =

Corollary 8.1.16. [t holds that
PM®P,(H,)) € P(MP(Hy)) and P(MP_(H,)) € P(MPZ'(Hy)).

Proof. Since M®, (H 4) does not contain the boundary points of M®7'(H 4), from [56, Lemma
1.8.3] the first statement of corollary follows. The proof of the second statement is similar. [

We recall the definition of o2, (F) and o7}, (F) from Section 7.2. Moreover, for F' € B*(H )
we set
o F):={a € A| F — al is not surjective }.

The next lemma follows from Theorem 3.4.18, Corollary 3.4.22 and Lemma 8.1.7.
Lemma 8.1.17. Let F' € B*(H,). Then

oA(F)= () oMF+D)= N oM (F + D),
DeK*(Hy) DeP(M®'(Ha))

oh(F)= () ofF+D)= ()  oMNF+D).
DeK*(H 4) DeP(MOT (H4))

Lemma 8.1.18. Let F' € B*(H,). Then
1) We have oX,(F + D) = o2,(D) for every D € B*(H ) if and only if F € P(M®'(Hy,)).

2) We have o4 (F + D) = a24,(D) for every D € B*(H,) if and only F € P(M®T'(H,)).

Proof. The proof is similar to the proof of Lemma &8.1.9. O

Remark 8.1.19. Observe that all the results from this section are valid also in the setting of
non-adjointable operators. However, in Lemma 8.1.7 we should replace M“(H 4) by the class of
bounded below operators with complementable image, whereas Q*(H 4) should be replaced by
the class of surjective operators with complementable kernel. ( Moreover, obviously we should
replace KC*(H4) by K(H4) ).
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8.2 Perturbations of generalized spectra of operator 2 x 2
matrices over C*-algebras

The aim of this section is to provide a generalization of the results in [7] in the setting of semi-
A-Fredholm operators and generalized spectra in A. Moreover, by applying our results from
this section in the special case of operators on Hilbert spaces, we show that |7, Theorem 4.4]
and |7, Theorem 4.6] can be simplified when Hilbert spaces (and not arbitrary Banach spaces)
are considered.

In this section, for F,C, D € B*(H 4), we will consider the operator
MA(F,D): Hy® Hy — Hy ® Hy

F C

0 D

will only write Mg instead of MA(F, D) when F, D € B*(H,) are given.

Let

given as 2 X 2 operator matrix . To simplify notation, throughout this section, we

oA (MA) = {a € A| MJ — ol is not A-Fredholm }.

(We notice that this notation is different from the notation in the previous section and previous
chapter. However, since the results in this section generalize the results from [7], we introduce
another notation in this section which is more similar to the notation in [7]).

We have the following proposition.
Proposition 8.2.1. /22, Proposition 3.1] For given F,C,D € B*(H 4), one has
o (MZ) C (o2 (F) U o (D)).

Proof. Observe first that

10 1 C][F-al 0
A _ —
Mz O‘I—[o D—al}{@l]{ 0 1]'

Now, [ (1) ? } is clearly invertible in B*(H4 @& Hy4) with inverse { (1] _10 , so it follows
1 . . .. F—al O 1 0
that [ 0 1 } is A-Fredholm. If in addition both { 0 1 } and { 0 D—al } are A-

Fredholm, then M# — ol is A-Fredholm being a composition of A-Fredholm operators. This
holds because H4 & H4 = Hy4 by the Kasparov stabilization Theorem 2.0.13, so that we can

F—al 0} A

apply Lemma 2.0.43. However, if F' — al is A-Fredholm, then, clearly, [ 0 )

Fredholm, and similarly, if D — a1 is A-Fredholm, then [ é D E ol } is A-Fredholm. Thus,

if both F' —al and D — al are A-Fredholm, then M#A — af is A-Fredholm. The proposition
follows. m

Theorem 8.2.2. [22, Theorem 3.2] Let F, D € B%(Hy). If MA € M®(H 4 ® H,) for some
C € B*(Hyu), then F € MO (Hy),D € M®_(H4) and for all decompositions

Hi= MA&EN, 5 My&N, = Hy,
Hy= M]&N] 25 MyEN, = Ha,
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with respect to which F, D have matrices B0 , Dy 0 , respectively, where Fy, Dy
0 F4 0 D4

are isomorphisms, and Ny, N are finitely generated, there exist closed finitely generated sub-
modules P and P of H 4 such that Ny & P = N{ & P'.

Proof. Again write M# as MA = D'C'F' where

, | F 0 , |1 C , 110
F{O 1}’0[01 ’Di()D'
Since M is A-Fredholm, if
~ MA ~
HA@HA:M@N—C>M,@N,:HA@HA

is a decomposition with respect to which M4 has the matrix [ (1\/100)1 (I\/IO A) } , where (M),
C)4

is an isomorphism and N, N’ are finitely generated, then, by Lemma 3.5.6 and also using that
(" is invertible, one may easily deduce that there exists a chain of decompositions

Hi®HA = MON 25 RiOR, %5 O'(R)GC!(Ry) 25 M'ON' = HadHy

with respect to which F’, C’, D' have matrices
Fl 0 o0 D, D,
O F; |’ 0 Cy|’| 0 Dj|’

/
respectively, where FY, (", C, D} are isomorphisms. So D’ has the matrix {

1

0 )
0 Dfl] with

respect to the decomposition
Hi®HA = WC' (R)EWC(Ry) 25 M'EN' = H @ Ha4,
where W is an isomorphism. It follows from this that
F' e MO, (Hy®H,), D' € MO _(H BH,),

as N and N’ are finitely generated Hilbert submodules of H ®H 4 . Moreover, Ry = WC'(Ry),
because W’ is an isomorphism. Since there exists an adjointable isomorphism between H 4
and H4 & Hy, by applying Theorem 3.1.2 and Theorem 3.1.4 it is easy to deduce that F” is
left invertible and D’ is right invertible in the Calkin algebra B*(Ha & Ha)/ K*(H4 & Hy).
It follows from this that F' is left invertible and D is right invertible in the Calkin algebra
B*(HA)/K*(HA), hence F € M®, (Hy) and D € M®_(H,) again by Theorem 3.1.2 and
Theorem 3.1.4, respectively. Choose arbitrary M®, and M®_-decompositions for F' and D,
respectively, i.e.

H.A = MléNl i) MQ@NQ — H_A,
Hy = M®N, 25 MYEN, = H .
Then
Hy® Ha= (M ® Ha)®(N: @ {0})

}F
HA@HA:(MQ@HA)®<N2@{O}>
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and
Hia@® Ha= (Hqa® M)®({0} & M)

1D
Hy® Hy = (Hq® M)H({0} & Nj)

are an M®, and an M®_-decomposition for F’ and D', respectively. Hence the decomposition
Hye Hy=M&N 5 RiGR, = Hyo Hy

and the M®_ -decomposition given above for F’ are two M®_-decompositions for F’. Again,
since there exists an adjointable isomorphism between H 4 & H 4 and H 4, we may apply Lemma
3.1.23 on the operator F’ to deduce that

((Ny ® {0})®P) = (Ry®P)

for some finitely generated Hilbert submodules P, Pof Hy® Hy. Similarly, since
Hi® Hy=WC'(R)GWC (Ry) 25 MGN' = Hy® Hy

and
Hoa® Hy= (Ha® M))D({0} & Ny)

1D
Hy @ Hq= (Hq® My)®({0} @ N;)

are two M®_-decompositions for D', we may by the same arguments apply Lemma 3.5.22 on
the operator D’ to deduce that

({0} @ ND@P') = (WC'(Ry) 0 P')

for some finitely generated Hilbert submodules P’, P’ of H @ H 4. Since W' is an isomorphism,
we get B B . B B
({0} N))oP' @ P) =~ (WC'(Ry))® P ® P) X (Ryd P P).

Hence
(N; & {0)@eP@® P)~ (R, P P') = (({0} & N))&P & P).

This gives (No @ POP') = (N @ P' @ P). (Here @ always denotes the direct sum of modules
in the sense of Example 2.0.7.) O

Remark 8.2.3. |22, Remark 3.3] We have that |7, Theorem 3.2 |, part (i) implies (ii) follows
actually as a corollary from Theorem 8.2.2 in the case when X =Y = H, where H is a Hilbert
space. Indeed, by Theorem 8.2.2, if My € ®(H & H), then F € &, (H) and D € ®_(H).
Hence ImF and ImD are closed, dimker F,dim ImD* < oco. Moreover, with respect to the
decompositions

H=%erFtaoker F - ImF o ImF+ = H,

H =ker DX @ ker D 25 ImD @ ImD* = H,

Dy

the operators F, D have matrices { 131 0 ] ) [ 0 0

] , respectively, where F, D; are isomor-

phisms.

From Theorem 8.2.2 it follows that there exist finite dimensional subspaces P and P’ such that
P @ ImF+ = ker D @ P'. However, this just means that ImFE~* and ker D are isomorphic up
to a finite dimensional subspace in the sense of |7, Definition 2.2 | because in this case either
both ImF+ and ker D are infinite-dimensional or they are both finite dimensional.
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Proposition 8.2.4. [22, Proposition 3.4] Suppose that there exists some C € B*(Hy) such
that the inclusion oX(MA) C o/(F) U o A(D) is proper. Then for any

o € [0 (F) U (D)) \ o (ME)

we have that
a € o (F)na(D).

e

Proof. Assume that
a € [o(F)\ o (D)]\ o' (MZ).

Then (F — al) ¢ M®(H,) and (D — al) € M®(H,). Moreover, since a ¢ o{(Mg), then
(MA — al) is A-Fredholm. From Theorem 8.2.2 it follows that (F — al) € M®, (H4). Since
(F—al) e MO, (Hy) and (D — al) € M®(H4), we can find decompositions

Hy = Mi®N, iy M>®N, = Hu,

Hy= M&N, =8 MLEN, = H.,

with respect to which F' — a1, D — al have matrices

(F — al), 0 (D — al), 0
0 (F—a1)4]’ { 0 (D—al)y |’

respectively, where (F'—al)q, (D —al); are isomorphisms, N1, N{ and N} are finitely generated.
By Theorem 8.2.2 there exist then closed finitely generated submodules P and P’ such that
Ny @ P = N{ & P'. Since N & P’ is finitely generated, it follows that N, is finitely generated
as well. Hence F' — a1 is in M®(H 4). This is a contradiction. Thus, we must have that

[ (F)\ o (D) \ ol (M) = 2.
Analogously, we can prove that
[0 (D) \ oM (F)]\ 0 (M) = 2.
The proposition follows. O

Theorem 8.2.5. [22, Theorem 3.6/ Let F' € M®, (H4),D € MP_(H,) and suppose that
there exist decompositions

HA:MléNli}NQJ_@NQZHAa

Hy=N{" & N| = My&N; = Hy,

with respect to which F, D have matrices

0 D, 0
At
respectively, where Fy, Dy are isomorphims and Ny, N are finitely generated.
Assume also that one of the following statements hold.
a) There exists some J € B*(Ny, Ni) such that J is an isomorphism of Ny onto ImJ and ImJ*
1s finitely generated.

b) There exists some J' € B*(Ny, No) such that J' is an isomorphism of N onto ImJ' and
(ImJ")* is finitely generated.

Then Mg € M®(H 4 ® Hy) for some C € B*(Hy,).
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Proof. We remark that Im.J= in part a) denotes the orthogonal complement of Im.J in N| and
ImJ'" denotes the orthogonal complement of Im.J’ in Ns.

By Theorem 2.0.20, if I'mJ is closed, then Im.J is indeed orthogonally complementable, so,
since by the assumption a) we have I'm.J = Ny, it follows that N| = ImJ & I'mJ+. Similarly,
by the assumption b) we get No = ImJ' & ImJ™*.

Suppose that b) holds and consider the operator J=J Py; where Py denotes the orthog-
onal projection onto Ny. Then J' can be considered as a bounded adjointable operator on H 4
(as N, is orthogonally complementable in H 4, so the inclusion of N into H 4 is adjointable).
To simplify notation, we let My = Ni-, M/ = N!* and M“Jf‘, = Mj. We claim then that with
respect to the decomposition

Hy® Hy= (M, ® Ha)S(N, @ {0})
1 Mj,
Hy & Hy = (My®ImJ') & MY&(ImJ'™ & Nb),
M;j, has the matrix

(M) (Mjf)z}
(Mj)s (Mj)a |’

where (M), is an isomorphism. To see this, observe first that

[ A

(Mj ) = Mo msemM 0 Dy

j'\Ml@HA
where M(anermyeny; denotes the projection onto (My@ImJ') & M, along ImJ™* @ Ny, Mo
denotes the projection onto Mj along Nj. Here we use that F'(M;) = M and My D = DMy
where Iy, stands for the projection onto M; along Ny. Clearly, (M), is onto (My®ImJ')® M.
Indeed, given (mg + ny,mb) € (Mo®ImJ')OM; (where my € My,ny € ImJ'" C Ny and
mi, € MJ), there exist some my € My,n} € N| and m) € M| such that Fm; = mo, J'n| = ny
and Dmy = my, as Fj,, and D|M{ are isomorphisms onto M, and M, respectively. Since

D My (my +ny) = Dmy = mj and J'(m), +n}) = J'Pyi(m) +ny) = J'n} = ny (recall that
M{ = Ny*, so Py;m} = 0), we get that

Ekfl j/ mq | Mo+ ng
0 DMy my+nf | ml '

Now, if (M3 ), [Z] = [8] for some x € M,y € Hy, then DMy y = 0,50 y € Ny as

D, ., is bounded below. Also, Fz + J'y = 0. However, since y € Ni, then Jy = Jy, so we
1

get Fo + J'y = 0. Since Fo € My, J'y = Ny and My N Ny = {0}, we have Foz = J'y = 0.

As F},, and J" are bounded below, we get =y = 0. So (M), is injective as well, thus an

isomorphism.

Recall next that Ny @ {0} and ImJ'" & N}, are finitely generated. By using the procedure of

diagonalization of the matrix of Mj as done in the proof of Lemma 2.0.42, we obtain that
Mj € MO(Hy @ Hy).

Assume now that a) holds. Then, by the Banach open mapping theorem and Remark 2.0.21,
there exists some ¢ € B*(ImJ, Ny) such that ¢J = idy,. Let © = 1Py, ; where Pp,; denotes the
orthogonal projection onto Im.J (notice that I'm.J is orthogonally complementable in H 4 since
it is orthogonally complementable in N| and H4 = N| @ N!*). Thus, we have 7 € B*(H,)
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and Imi = Im(z),,,,) = Na. Consider M; = [ ](? ‘ ] We claim that with respect to the

S

decomposition
Hji® Hy = (M, & (M@ImJ)®(N, ® ImJ*))

L Mz
Hy® Hy = (Hq® My)S({0} & Ny),

(M) (M),

M; has the matrix [ (M) (M),

} , where (My); is an isomorphism. To see this, observe

again that
Rl T -
(M) = H(HAeaMé)MﬂMl@(M{@ImJ) = 6”1 ‘gﬁjw‘” ] , so (My); is obviously onto H4 & M.
1
Indeed, given (x, m}) € H 4@ M}, there exist some mq € My and ny € Ny such that x = mo+ns.
Since tJ = idy,, there exists an n} € ImJ C Nj such that 7n] = ny. Moreover, we can find
some m; € My and m) € M| such that Fm; = ms and Dm/ = m},. Hence

mq _ Mo + Mo
my + nj ml ’

~
F|M1 [’|(Mi@ImJ)

0 D[—lM{

since vm} = Pp,ym) = 0.

Next, if (M), { z } = [ 8 1 for some x € M; and y € Mi®ImJ, we get that DMy y = 0, so
y € I'mJ. Hence 1y = 1y, so Fx +1y = Fx + 1y = 0. Since Fo € My, 1y € Ny, My N Ny = {0},
we get Fx =1y = 0. As F},, and ¢ are bounded below, we deduce that x =y = 0. So (M), is
also injective, hence an isomorphism.

Finally, we recall that Ny ®ImJ* and {0} @ N are finitely generated, so, by the same arguments
as before, we deduce that Mz € MO(H4 @ Hy). O

Remark 8.2.6. 22, Remark 3.8] We know from the proofs of Theorem 3.1.2 and Theorem 3.1.4,
part 1) implies 2), that, since F' € M®, (H4), D € MP_(H 4), we can find the decompositions
HA:MléNl LNQL@NQ :HA,

Hi=N*a& N 2 MyEN) = Hy,

with respect to which F, D have matrices

Fr 0 Dy 0

0O Fy |’ | 0 Dy |’
respectively, where F, Dy are isomorphisms and Ny, V) are finitely generated. However, in this
theorem we have also the additional assumptions a) and b).

Remark 8.2.7. |22, Remark 3.9] We have that |7, Theorem 3.2 |, part (ii) implies (i) follows
as a direct consequence of Theorem &8.2.5 in the case when X =Y = H, where H is a Hilbert
space. Indeed, if F € ®,(H),D € ®_(H) and in addition ker D and ImF* are isomorphic up
to a finite dimensional subspace, then we may let

M, = ker F+ N, = ker F, Ny = ImF* N| = ker D, M} = ImD, N} = ImD*.

If ker D and I'mF* are isomorphic up to a finite dimensional subspace, by |7, Definition 2.2 |
this means that either the condition a) or the condition b) in Theorem 8.2.5 holds. By Theorem
8.2.5 it follows then that My € ®(H & H).
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For F, D € B%(H,), let W (F, D) be the set of all & € A such that there exist decompositions

Hu= M&EN, =8 My@N, = Hy,

Hy= M&N, =% M/GN, = Hy,

with respect to which F' — a1, D — al have matrices

(F —al), 0 } ’ { (D —al), 0

0 (F —al), 0 (D—al), |’ respectively,

where (F'—al)q, (D—al); are isomorphisms, Ny, N} are finitely generated submodules and such
that there are no closed finitely generated submodules P and P’ satisfying No & P = N; & P'.
Put W(F, D) to be the set of all & € A such that there are no decompositions

H.A = MléNl F_—a>1 NQJ_@N2 = HA,

Hy=N"a& N =8 M)&N, = Hy,

with respect to which F' — al, D — a1 have matrices

(F — al); 0 } {(D—al)l 0

0 (F —al), 0 (D—al), |’ respectively,

where (F—al)y, (D—al); are isomorphisms, Ny, N} are finitely generated and with the property
that a) or b) in the Theorem 8.2.5 hold.
Moreover, for F' € B*(H 1) we set

oe(F) ={a € A| (F—al) ¢ MO_(Ha)},

0ie(F) ={a € A (F —al) ¢ MP,(Ha)}.

Then we have the following corollary.

Corollary 8.2.8. [22, Corollary 3.10] For given F' € B*(H4) and D € B*(Hy), we have

oiR(F)Uoy(D)UW(F,D)C (] o/ (M@) C W(F,D)Uoi(F)U (D).
CeB*(H,4)

Next, we shall give a description of the right generalized Fredholm spectra of M in terms
of the right generalized Fredholm spectra of F' and D. To this end, we present the following
theorem.

Theorem 8.2.9. [22, Theorem 3.11] Suppose that MA € M®_(H ®H,) for some C €
B*(Hy). Then D € M®_(Hy) and in addition the following statement holds:
FEither F' € M®_(H 1) or there exists decompositions

HA@HA:M1®N1LM2®N2:HA@HAa

Ha® Ha = M{®N] 5 MyONy = Ha @ Ha,
F 0 D;
0O F; || 0 Dj
F|, D} are isomorphisms, N, is finitely generated, N7 is not finitely generated, and in addition
M, = M/, N, = N!.

with respect to which F', D' have the matrices , respectively, where
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Proof. If MA € M®_(H®H ), then there exists a decomposition

~ MA ~
HA@HA:Ml@Nl—C)MQ@NQZHA@HA,

(M&), 0

0 (M)
and N, is finitely generated. By the proof of Theorem 3.1.4 part 1) implies 2), we may as-
sume that M; = Ni- . Hence FI/M is adjointable. Moreover, as Ma = D'C'F', it follows that

1
F'(My) € (D'C")~'(Ms,). Since F}, ~can be viewed as an operator in B*(Mj, (D'C")~"(Ms))
because M; is orthogonally complementable, by Theorem 2.0.20 we have that F’(M;) is orthog-

onally complementable in (D'C")~'(M,). By the same arguments as in Lemma 3.5.6 we deduce
that there exists a chain of decompositions

with respect to which MiA has the matrix , where (M) is an isomorphism

M ® N, 25 Ri@Ry, <5 O'(R)BC(Ry) 25 Mod N,y

F{ 0 C; 0 D} D]
: : l l / : 1 1 1 2 _
with respect to which F’, C’, D' have matrices [ 0 F } , [ e } , { 0 D, } , Tespec
D/
tively, where FY|,C],C}, D] are isomorphisms. Hence D’ has the matrix { 01 g, 1 with
4

respect to the decomposition
Hi® Hy=WC(R)EWC (Ry) 25 My®Ny = Ha @ Ha,

where W is an isomorphism. It follows that D' € M®_(H4®H 4) since Ny is finitely generated.
Hence D € M®_(Hy) (by the same arguments as in the proof of Theorem 8.2.2).

Next, assume that F' ¢ M®_(H,), then F' ¢ M®_(H 4@ H 4) since any MP_-decomposition
for F' induce in a natural way an M®_-decomposition for F’. Therefore, Ry can not be finitely
generated. Now, Ry = WC'(R;) and Ry = WC'(Ry). O

Remark 8.2.10. |22, Remark 3.12| In the case of ordinary Hilbert spaces, |7, Theorem 4.4 | part
(77) implies (éi7) follows as a corollary of Theorem 8.2.9. Indeed, suppose that D, F € B(H)
(where H is a Hilbert space). If ker D < ImF*, this means by |7, Remark 4.4 | that ker D is
finite dimensional. Now, if (iz) in |7, Theorem 4.4 | holds, that is M € ®_(H & H) for some
C' € B(H), then by Theorem 8.2.9 we have that D € ®_(H) and either F' € ®_(H) or there
exist decompositions

H@H=M1®N1LM2®N2:H@H7
He H=M&N, 2 MEN, =He H,

which satisfy the conditions described in Theorem 8.2.9. In particular, Ny, Ni are infinite-
dimensional, whereas NNV} is finite dimensional. Suppose that F' ¢ ®_(H) and that the above
decompositions exist. Observe that ker D' = {0} @ ker D. Hence, if dimker D < oo, then
ker D’ is finite dimensional. Since DIIM{ is an isomorphism, by Lemma 3.1.3 one can deduce

that ker D' C N . Assume that dimker D(= dimker D') < oo and let Ni' be the orthogonal
complement of ker D' in Ny’, that is Nj = ker D' & N{. Now, since ImD’ is closed as D’
is in M®_(H @© H), then D/  is an isomorphism by the Banach open mapping theorem.

5
Since dim N, = oo and dimker I’ < oo , we must have dim N] = oo . Hence D'(N!) is
infinite-dimensional subspace of NVj. This is a contradiction since dim NJ is finite. Thus, if
F ¢ ®_(H), we must have that ker D is infinite-dimensional. Hence, we deduce, as a corollary,
[7, Theorem 4.4] in the case when X =Y = H, where H is a Hilbert space. In this case, part
(744)(b) in |7, Theorem 4.4] could be reduced to the following statement: Either F € ®_(H) or
dim ker D = oo.
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Theorem 8.2.11. /22, Theorem 3.13] Let F, D € B*(Hy). Suppose that D € M®_(H,4) and
either F € M®_(H 4) or that there exist decompositions

HA:MlEle LNQJ_@NQ :HAa
Hy=N"*® N 2 MGN, = Hy,

0 Fy 0 Dy
Fy, Dy are isomorphisms and N is finitely generated. Assume in addition that in this case
there exists also some v € B*(Ny, N|) such that v is an isomorphism onto its image in N7 .

Then we have Ma € M®_(H, @ Hy) for some C € BY(H ).

Proof. If FF € M®_(H,), then F' € M®_(Hy & Hy). Also, as D € MP_(H,), we have
D' € M®_(H4® Hy), hence M4 = D'C'F’ belongs to M®_(H 4 & H4). All this follows by
the similar arguments as in the proof of Theorem 8.2.2.

Suppose now that F' ¢ M®_(H ) and that the second part of the assumptions in Theorem
8.2.11 holds. Then, since Im¢ is closed and ¢ € B*(Na, N7), we have that Imu is orthogonally
complementable in N] by Theorem 2.0.20, that is N] = Im ¢ @N | for some closed submodule
Ni. Hence Hy = Imu @ N e N{L, that is Imu is orthogonally complementable in H 4. Also,
there exists some J € B"“([ma Ns) such that Ju = idy,, tJ = idjy,,. Let P, be the orthogonal
projection onto Im¢ and set C' = JPp,,,. Then C' € B*(H,). Indeed, since N, is orthogonally
complementable, the inclusion of Ny into H 4 is adjointable, hence C' can be viewed as an
adjointable operator on H 4. Moreover, with respect to the decomposition

Ha® Hy= (M & (N" @ Imu)B(N, & NY)
L Mg
Ha® Hy= (Ha® My)D({0} @ Ny),

with respect to which F,D have the matrices [ £ 0 } , [ Dy 0 ] , respectively, where

M has the matrix (Mz), - (M2), where (Mg), is an i hism. This follows by th
C v v ) ¢ )1 18 an 1somorphism. 1s follows by the
(MZ)s  (Mg)a

same arguments as in the proof of Theorem 8.2.5. Using that NJ is finitely generated and
proceeding further as in the proof of Theorem 8.2.5, we reach the desired conclusion. O]

Remark 8.2.12. |22, Remark 3.14| In the case of ordinary Hilbert spaces, |7, Theorem 4.4] part
(7) implies (77) can be deduced as a corollary of Theorem 8.2.11. Indeed, if ImF is closed and
D € ®_(H), (which also gives that ImD is closed), then the pair of decompositions

H=ker Froker F 5 ImF @ ImF+ = H,

H =ker D* @ ker D 25 ImD @ ImD* = H,

for F' and D, respectively, is one particular pair of the decompositions that satisfy the hypothe-
ses of Theorem 8.2.11 as long we assume that ImF+ < ker D.

For F, D € B*(H4) let R(F, D) be the set of all & € A such that there exist no decomposi-
tions
HA:MléNl F_—a>1 NQL@NQZH/h

Hi=N"a N =3 M)&N, = H,

that satisfy the hypotheses of the Theorem 8.2.11. Put R'(F, D) to be the set of all & € A such
that there exist no decompositions

HA@HA—Ml@NI —>MQEBN2 HA@HA,

Hi® Hy= MEN "= MIEN, = Hy® Ha

that satisfy the hypotheses of the Theorem 8.2.9. Then we have the following corollary.
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Corollary 8.2.13. /22, Corollary 3.15] Let F, D € B*(H ). Then

oA(D)U(cA(F)NR(F,D))C () (M) Coa(D)U (;i(F) N R(F,D)).

re
CeB*(H,4)

Finally, we give a description of the left generalized Fredholm spectra of M in terms of the
left generalized Fredholm spectra of F' and D. To this end, we present the following theorem.

Theorem 8.2.14. [22, Theorem 3.16] Suppose that MA € M, (H4 ® Hy) for some C €
B“(H ). Then F € M®_(Hy) and either D € M (H 1) or there exist decompositions

HA@HA:MléNli/)MQ@NQ:HA@HA,

Hi® Hy=MON, 25 MYON, = Hy @ Ha,

1
0 F 0 D,

are isomorphisms, My = M/ and Ny = N, N; is finitely generated and No, N| are closed, but

not finitely generated.

. . F— , F 0 Dy 0 . P
with respect to which F', D" have matrices , , respectively, where Fy, D]

Proof. Since M& € M® (H4 @ H,), there exists an M®_, -decomposition for M,

~ MA ~
Hy® Hy= M{®N, —5 MiON) = Hy & Hy,

so N is finitely generated. By the proof of Theorem 3.1.2 part 1) implies 2), we may assume
that M; = Ni-. Hence F"Ml is adjointable. As in the proof of Lemma 3.5.6 and Theorem 8.2.2,

we may consider a chain of decompositions

Hi® Hi=M &N, -5 R&R, %5 O'(R)GC(Ry) 25 MLOM, = Hy® Ha

F 0 C; 0 D, D
: : l l / : 1 1 1 2 _
with respect to which F’, C", D’ have matrices [ 0 F } , [ e } , [ 0 D, } , Tespec

tively, where F}, C], C}, D} are isomorphisms. Then we can proceed in the same way as in the
proof of Theorem 8.2.9. n

Remark 8.2.15. |22, Remark 3.17| In the case of Hilbert spaces, the implication (i) implies (%)
in [7, Theorem 4.6] follows as a corollary of Theorem 8.2.14. Indeed, for the implication (i)
implies (4i1)(b), we may proceed as follows: Since ImF° = ImF+ when one considers Hilbert
spaces and ker D’ = ker D, then, by [7, Remark 4.3|, the relation ImF° < ker D’ simply means
that dim ImF+ < oo whereas dimker D = oo. Now, if dim ImF+ < oo, then F € ®(H),
since I € ®,(H) and dim ImF+ < oo. Hence I’ € ®(H & H), so, by Corollary 3.1.12, Ny
must be finitely generated. Thus, N must be finitely generated being isomorphic to No. If
in addition D ¢ ®,(H), then D" ¢ &, (H & H). By the same arguments as earlier, we have
that ker D’ C Nj. Since we consider Hilbert spaces now, the fact that N; is finitely generated
means actually that N7 is finite dimensional. Hence ker D’ must be finite dimensional, so
dimker D = dimker D’ < oo. This is in a contradiction to ImF+ < ker D. So, in the case of
Hilbert spaces, if Mo € @, (H @ H), then from Theorem 8.2.14 it follows that F' € &, (H) and
either D € ®,(H) or ImF* is infinite-dimensional.
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Theorem 8.2.16. [22, Theorem 3.18] Let ' € M®,(H4) and suppose that either D €
MO (H ) or that there exist decompositions

HA:M1®N1L>NQJ'@N2:HAa

Hi=N*a& N 2 MEN) = Hy,
1 0 Dy 0

0O Fy|”| 0 Dy
are isomorphisms, Ny is finitely generated and in addition there ezists some + € B*(N;, Ny)
such that v is an isomorphism onto its image. Then

with respect to which F, D have matrices ] , respectively, where Fy, Dy

Mé € Mq)Jr(HA D H-A)?
for some C € B*(Hy).

Proof. Let C' = 1Py, where Py, denotes the orthogonal projection onto Ny, then apply similar
arguments as in the proof of Theorem 8.2.5 and Theorem 8.2.11. In this case, with respect to
the decomposition

Ha®© Hy=H(M © Hp)S(N: @ {0})

Mg
Ha® Ha= (N5 @ Imi) @ My)&(Imut & Ny),
A A
the operator M has the matrix (Mf\)l (Mﬁ>2 , where (M), is an isomorphism. O
(Mg)s  (Mg)a
Remark 8.2.17. |22, Remark 3.19] The implication () implies (i¢) in [7, Theorem 4.6] in the

case of Hilbert spaces could also be deduced as a corollary of Theorem 8.2.16. Indeed, if ImD
is closed, then D|kerD | is an isomorphism from ker D+ onto ImD. Moreover, if FF € &, (H),

then F| | is also an isomorphism from ker /' L onto ImF and dimker F < co. If in addition
ker D < ImF*, then the pair of decompositions

H=%erFtaokeF - ImF o ImFt = H,

H =ker DX @ ker D 25 ImD @ ImD* = H,
is one particular pair of the decompositions that satisfy the hypotheses of Theorem 8.2.16.

For F, D € B*(H,4) let L'(F, D) be the set of all a € A such that there exist no decompo-

sitions [

HAEBHA:MlEBNl ;O; MQ@NQIHA@HA,

Ha® Hyq=M&N, "= MON, = Hyo® Ha,
for I/ — al, D" — al, respectively, which satisfy the hypotheses of Theorem 8.2.14.
Put L(F, D) to be the set of all & € A such that there exist no decompositions

~ F—qal 18
HA:Ml@Nl — N2 @NQZH.%U

Hy=N*o N =3 M)&N, = Hy,

for FF'— al, D — al, respectively, which satisfy the hypotheses of Theorem 8.2.16.
Then we have the following corollary.
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Corollary 8.2.18. /22, Corollary 3.20] Let F, D € B*(H ). Then

oi(F)U(ef(D)NL(F,D) € () oit(ME) C 0ji(F) U (o2(D) N L(F, D)).
CeB*(H,)

Remark 8.2.19. Notice first that Lemma 3.1.23 also holds for non-adjointable operators. Next,
by applying Proposition 3.5.4 instead of Theorem 3.1.2 and Theorem 3.1.4, we obtain an ana-
logue of the results in this section in the setting of non-adjointable operators.

However, in Theorem 8.2.5 part a), if J € B(N2, N;) and J is not adjointable, then we should
require in addition that Im.J is complementable and that the complement of I'mJ is finitely
generated. Similar requirement should be added in part b) in Theorem 8.2.5 in the case when
the operator .J’ is not adjointable. In Theorem 8.2.11 and Theorem 8.2.16 in the case when ¢
is not adjointable, we should require then in addition that the image of ¢ is complementable.
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Chapter 9

Compressions and generalized spectra of
operators over C*-algebras

9.1 Relations between generalized spectra of operator and
its compressions

If « € Aand (z1,22,...) € N C Hy, where N is Hilbert submodule of H 4, then we do not
have in general that (axy,azs,...) € N. However, if o € Z(A) (recall that Z(A) denotes
center of A), then (axy, axs,...) = (x1,22,...) a € N. Since we are going to deal with closed
submodules of H 4 and the compressions of operators on H 4 with respect to these submodules,
we are now going to consider generalized spectra in Z(.A) instead of A. The aim of this section
is to provide a generalizations in this settings of the results in [54] and [56, Section 2.10] by
Zemanek regarding the relationship between the spectra of an operator and the spectra of its
compressions.

Let M®y(H.4) be the set of all F € B(H ) satisfying that there exists a decomposition

Hi= M&ON, 25 My&N, = Hy

F, 0

with respect to which F' has the matrix
0 Fy

], where Fi is an isomorphism, Ny, Ny are
finitely generated and
NéNl == NéBNQ == HA

for some closed submodule N C H 4.

Notice that this implies that F € M®(H4) and Ny 2 Ny, hence M®y(H.4) C M®o(H ).
Let P(Hy) = {P € B(H4) | P is a projection and ker P is finitely generated} and for

F € B(H4) we put

oy (F) = {a € Z(A) | (F — al) ¢ MPy(Ha)}.
Then we have the following theorem.
Theorem 9.1.1. /20, Theorem 1] Let F € B(Hy) . Then
o2y (F) = 0{o*(PF|,,) | P € P(HL)),

where

cMPF, )={ae€ Z(A)|(PF —al), . isnot invertible in B(ImP)}.
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Proof. Let o € Z(A) \ (N{o*(PF,, )| P € P(H4)}) . Then there exists some P € P(Hy)
such that (PF — af)|,  is invertible in B(ImP) . Hence (PF — al) is an isomorphism
from I'mP onto ImP, so with respect to the decomposition

‘ImP

H4=ImPdker P=Y ImP&ker P = Hy,

(F—Oé])l (F—OéI)Q
(F—Oéf)g (F—Oéf)4

isomorphism. Then, with respect to the decomposition

, where (F' — al); = (PF —al)|,  is an

Im

F — ol has the matrix [

Hy = ImP®U (ker P) =% V' (ImP)®ker P = H,

—
(F —al), 0
—
0 (F —al),

is an isomorphism. This follows from the proof of Lemma 2.0.42 given in [35].
Set My = ImP, N; = U(ker P), My = V='(ImP), Ny = ker P and N = ImP. It follows that
(F —al) € M®y(H,), so a & oty (F).

—
F —al has the matrix , where U, V' are isomorphisms and (F' — o),

Conversely, suppose that o € Z(A)\ oAy (F) . Then, by definition of o2, (F') and M®,(H 4),
there exists an M®-decomposition

H.A = MléNl Fi)l MQ@NZ == HA

for F — oI, where N®ON, = N&N, = H 4 for some closed submodule N. In particular, N; and

N, are finitely generated.

Let May, My, denote the projections onto M; along N; and onto M, along Ns, respectively.
0 (F - 041)4

Since F' — ol has the matrix with respect to the decomposition

Hy= M,®N, =of M>®N, = Hy,
it follows that
|_|M2(F — CYI)|N = (F — Oé[) |_|M1\N .

As Hy = N®N, = M{®N;, we have that |_|M1|N is an isomorphism from N onto M; . Using
this together with the fact that (F'—al)),, is an isomorphism from M; onto My, one gets that
M, (F' = al)y = (F'—ad)Myy,,  is an isomorphism from N onto Mj . Therefore, with respect
to the decomposition

Hi=N&N, =8 My®N, = Hy,

(F — o), 0

F' — ol has the matrix (F—al); (F—al),

, where (F' — al); is an isomorphism, since

———
(F —al), 0

| with
0 (F - OéI)4

(F —al)y = My, (F — of)|,. Hence F' — al has the matrix
respect to the decomposition
HA = N@Nl ﬂl V_l(MQ)éNZ = HAv

——
where V' and (F — al), are isomorphisms. It follows that (F' — al),
N onto V~1(My). Next, since

v 18 an isomorphism from

HA = N@NQ = V_1<M2)G~9N2;
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we obtain that Pl i, 18 an isomorphism from V~'(M;) onto N, where P denotes the pro-

jection onto N along N, . Hence P(F — al)
that

|y 18 an isomorphism from N onto N, so we have

a ¢ n{o*(PF, )| PeP(Ha}

Lemma 9.1.2. [20, Lemma 2] M®o(H,) is open in B(H.,).

Proof. If F € M®y(H.,) , then there exists a decomposition H4 = M&N, L My®N, = Hy

with respect to which F' has the matrix { 181 }9,

4
finitely generated and H4 = NON; = NON, for some closed submodule N. We may without
loss of generality assume that M; = N . Indeed, as we have seen in the proof of the Theorem
9.1.1, we have that PF]_ is invertible in B(NV), where P is the projection onto N along N .
Then, with respect to the decomposition

] , where F} is an isomorphism, Ny, Ny are

Hy= NON, 25 NGN, = Hy,

o :lljzz

[ F S . .
F' has the matrix [ Fl }(«2 } , where F) is an isomorphism, so F’ has the matrix
2 I'4

with respect to the decomposition

y
E,

Hy=N&N, -5 V- YN)EN, = Hy,

where F},V are isomorphisms. Therefore, we may without loss of generality assume that
N - Ml-
Now, by the proof of Lemma 2.0.42, there exists some € > 0 such that if D € B(H4) and

||D — F|| <€, then D has the matrix [ l())l lg ] with respect to the decomposition
4

Hy=NOUN,) 2 VWY (N)EN, = Ha,

where UV and D, are isomorphisms. Since H4 = NOU(N;) = N®N,, it follows that
D e MCI)()(HA). ]

Definition 9.1.3. We put /\//lTI)J:(HA) to be the set of all F' € B%(H4) such that there exists
a decomposition H4 = M;®N, N M,®N, = H, with respect to which F' has the matrix

Fi 0
{ 0 Fy
closed submodules N}, N, where Nj = Ny, Hy = N®N; = NON} and the projection onto N
along N/ is adjointable.

} , where F} is an isomorphism, N is finitely generated and such that there exist

Then we set -
0&(F):={a € Z(A) | (F —al) ¢ MO (Ha)}.

Theorem 9.1.4. [0, Theorem 2| Let F' € B*(H ). Then

o5(F) =n{o;\(PF, ) | P € P*(Ha)}

ea

where o' (PF|, ) is the set of all o € Z(A) such that (PF — o)), is not bounded below on
ImP and P*(H) = P(Ha) N B(Hy).
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Proof. Suppose that a € Z(A)\ o(PF|, ) for some P € P*(Hu),o € Z(A). Then we
have that the operator (PF — af)  is bounded below on I'mP, hence its image is closed.
However, we also have Im((PF — al), ) = Im(PFP — aP). Since (PFP — aP) can be
viewed as an adjointable operator from H 4 into ImP , from Theorem 2.0.20 it follows that
Im(PF — al),, , = Im(PFP — «aP) is orthogonally complementable in ImP. So if we let
M = Im(PFP — aP), we get that ImP = M @ M’ for some Hilbert submodule M’. Hence
Hy= M&M'®ker P and (PF —al)|,  is an isomorphism from ImP onto M. It follows that

with respect to the decomposition
Hy = ImP&ker P =% M&(M'Gker P) = Hy,
(F—O[])l (F_O[])Q
(F— Oé])g (F - Oé]>4

with respect to the decomposition

F — ol has the matrix , where (F'— «); is an isomorphism. Hence,

Hy = ImP&U (ker P) =% V-1(M)&(M'&ker P) = H4,
——
(F —al); 0

——
0 (F — Oé])4
Set N = My, = ImP,N, = U(kerP),Mg = V_l(M), Ny = M'@ker P and Né = ker P. It
follows that

—
F — al has the matrix , where (F' — al)1,U, V are isomorphisms.

Hy = N®N, = N&N}, N, C Ny

—
(F-Oé])l 0

and F' — «f has the matrix A
0 (F —al)y

with respect to the decomposition

Hy= M1€~9N1 F_—a)I M2®N2 = Hy,
——
where (F — al); is an isomorphism and N; = U (ker P) is finitely generated. Thus, a ¢ 74 (F).
Conversely, suppose that o € Z(A) \ 0A(F). Then there exists a decomposition

H.A = MléNl Fi}l MQ@NQ = H_A

(F — Oé])l 0

0 (F - 051)4
isomorphism, V; is finitely generated and there exists some closed submodules N, N} such that
N} C Ny, NON; = NON, = H, and the projection onto N along N, is adjointable. As we
have seen in the proof of Theorem 9.1.1 , the operator My, (F — o)), is then an isomorphism
onto My, where M), denotes the projection onto Ms along Ny . Therefore, with respect to the
decomposition

with respect to which F'— af has the matrix { , where (F'—al); is an

Hy=NoUN,) =% V-1 My)EN, = Hy,
—
| F=al) 0 —— . .
F — ol has the matrix e | » Where (F — al);,U,V are isomorphisms.
0 (F - Oé])4

Hence (F — )|, maps N isomorphically onto V~(M,). Since N} = N; as NGN; = NN},
it follows that NV} is finitely generated (as Nj is so), hence, by Lemma 2.0.25, as N} is a closed
submodule of Ny, we get that No = N @ N}’ for some closed submodule N} of N,. So

Hy =V Y (My)&N, =V My)DON) SNy = NSNS},
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It follows that if P is the projection onto N along N, then PV_I(M o~ is an isomorphism
2 2

from V~1(M;)®N,' onto N. Hence By, 10,y mADS V~1(M,) isomorphically onto some closed
submodule of N. By using this together with the fact that (F' — aJ)), is an isomorphism from
N onto V~!(M,), we obtain that P(F — al)|, is bounded below. Thus, o ¢ o2{(PF|, ). O

| v

Remark 9.1.5. [20, Remark 3| In the similar way as for M®(H 4), one can show that ./\//l\q);(HA)
is open in B%(H 4). Indeed, let F' € /\//EI)J:(HA) and choose a decomposition

H.A - MléNl i) MQ@NQ — HA

with respect to which F' has the matrix [ }81 Zg

4
closed submodule of H 4 such that H4 = NO&N; = NON,, N) C N, and the projection onto N
along N3 is adjointable. Such decomposition exists since F' € MCDJ_F(H A)- It is easy to see that
if we let My, , My, denote the projections onto M; along N; and onto M, along Ns, respectively,
then My, B, = FT1 My, IS an isomorphism onto Ms. Hence, with respect to the decomposition

] , where F} is an isomorphism. Let N be a

Hy= N&N, LN M>®N, = Hy, F has the matrix [ ? Ig ] , Where F} is an isomorphism.
2 Iy
Then, using the technique of diagonalization as in the proof of Lemma 2.0.42, we get that F

0
4

has the matrix with respect to the decomposition

Hy=N&ON, - V- {M)BN, = Hy,

where V and F) are isomorphisms. By the proof of Lemma 2.0.42, there exists an ¢ > 0 such

that if | £/ — D ||< ¢, then D has the matrix { Dy 0

with respect to the decomposition
0 Dy

Hy=NOUN,) 2 VWY (My)EN, = Hy,
where U, V', Dy are isomorphisms. Since Hy = N&U(N,) = N®Nj, Nj C N, and the projection
onto N along N} is adjointable, it follows that D € /\//@I(HA).

Definition 9.1.6. [20, Definition 4| We set ./T/l\CDJ:(HA) to be the set of all D € B%(H4) such
that there exists a decomposition

Hy=M&N, 25 MYON, = Hy

. . . Dy 0

with respect to which D has the matrix 0 D

4

generated and such that H, = M{® NG N, for some closed submodule N, where the projection
onto M{®N along N} is adjointable.

} , where D is an isomorphism, V) is finitely

Then we set -
o75(D) = {a € Z(A) | (D — al) ¢ MO_(H.)}

ed
and for P € P*(H 4) we put

o (PDy,,.,) ={a € Z(A) | (PD —al),,,, is not onto ImP}.

|I'mP

We have the following theorem.
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Theorem 9.1.7. [0, Theorem 3] Let D € B*(H ). Then
O-fd(D) = ﬂ{aj(PD‘ImP> | P e PQ(HA)}'

Proof. Suppose first that o € Z(A) \ (N{o;}(PDy,,.,) | P € P*(H4)}). Then (PD — al),,, .
is onto ImP for some P € P%(Hy). Since P is adjointable and ImP is closed, by Theorem
2.0.20 ImP is orthogonally complementable in H 4, hence (PD — f)),, , can be viewed as an
adjointable operator from I'mP onto ImP. Then, again by Theorem 2.0.20, ker(PD — al),,, .
is orthogonally complementable in ImP, that is ImP = (ker(PD — ol)),,.,) ® N for some
closed submodule N. The operator PD — oI is an isomorphism from N onto ImP. Hence, with
respect to the decomposition

Hy = N&((ker(PD — o)y, )& ker P) =% ImP&ker P = Hy,

‘ImP)

(D—al); (D—al),
(D—O./I)g (D—Oz])4

(D I) 0
) —
that D — af has the matrix ! ~
0 (D —al),

D—al has the matrix , where (D—al); is an isomorphism. It follows

with respect to the decomposition

Hy = NoU((ker(PD — o), )& ker P) =% V- (ImP)@ker P = H,

‘ImP

where U,V and (D — af); are isomorphisms.

Set N = ker((PD — al),,, ), M{ =N, M), =V~*ImP),N; = U((ker(PD — al),,,,)®ker P)
and N = ker P. Since ImP = N @ N and ker P is finitely generated, it follows that (D —«al) €
—

MO _(Hy).

Conversely, suppose that a € Z(A) \ a(;‘iz(D) and let

Hy= M&®N, =% M)GN], = H,

be decomposition with respect to which D — ol has the matrix

(D — al) 0
0 (D—al) |

where (D —al); is an isomorphism, N is finitely generated and such that H4 = M{®N®NS for

some closed submodule N, where the projection onto M|@®N along Nj is adjointable. It follows

that P , is an isomorphism onto M{®N, where P is the projection onto M|{®N along Nj.
2

Hence P(D —al),,,

1

My ). Therefore, P(D—al)|, . is onto M{®N. Now, ImP = M{®&N, so a ¢ 07(PD),, ). O
1

is an isomorphism onto M{®N ( since (D —al),, , is an isomorphism onto
1

Remark 9.1.8. As explained in [20], similarly as for M®y(H4) and /\//lTID;(HA), one can show
that /T/l\CDJ_r(HA) is open. Indeed, let D € /\//ITI)J_F(HA), choose an /T/l\(I)J_r-decomposition for D,

Hy=M&N 25 MYON, = Hy.

Let N be a closed submodule such that H,4 = M{®&NGN) and such that the projection onto
M{®N along N} is adjointable. By the proof of Lemma 2.0.42, there exists an € > 0 such that
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if || G — D ||< € for an operator G € B*(H 4), then G has the matrix [ Gy 0

1 .
0 G } with respect

to the decomposition
Hy = MGU(N]) -5 VY MY)ON, = Hoy,

where U, V, G are isomorphisms. It follows that G € /\//l\(IJJ_r(H A)-
Remark 9.1.9. If A =C, that is if H4 = H is an ordinary Hilbert space, then

Mbo(H) = do(H), MP_ (H) = & (H) and MD. (H) = &+ (H).

In addition, observe that ./%J:(HA) C MP'(H4) and ./\//l\CIDt(HA) C MY (Hy).
Next we consider non-adjointable operators and give a modified version of the above results
in the setting of non-adjointable operators. We start with the following definition.

Definition 9.1.10. [21, Definition 14] We let /\//ITI)JF(HA) be the set of all F € B(H4) such
that there exists an M®;-decomposition for F

H.A == MléNl i) MQ@NQ — HA,
and closed submodules N, N) with the property Nj C Ny and
Hi= N&N, = NGN,,

Recall that P(H,4) denotes the set of all projections on H 4, not necessarily adjointable,
with finitely generated kernel. Put

oAo(F) = {a € Z(A) | (F — al) ¢ Mb, (HA)}.

eal
Then we have the following version of Theorem 9.1.4 in the setting of non-adjointable operators
on Hilbert C*-modules.

Theorem 9.1.11. [2/, Theorem 6] For F € B(H_4) we have
0e0(F) = N{o(PF,.) | P € P(Ha)},

eal
where

o (PF, ) ={a € Z(A) | (PF — al)|pmp is not bounded below on ImP}

Wa e Z(A) | Im(PFP — aP) is not complementable in ImP}.

Proof. If a € Z(A)\ 04 (PF,, ) for some P € P(H,), then (PF — al)|,, , is bounded below
and Im(PFP — «P) is complementable in ImP. Hence, we may proceed as in the proof of the

Theorem 9.1.4 to deduce that F'— ol € ./\//l?I)Jr(HA).
Conversely, if a € Z(A) \ 07,(F), then we recall from the proof of Theorem 9.1.4 that we
obtain the decomposition

Hp=V Y M)ENy = VI My)BN)ONy = NONy = NONy,
where Ny = Ny@NY, V is an isomorphism, N is finitely generated and (F — ol )|, maps N
isomorphically onto V1 (M,). If we let, as in that proof, P be the projection onto N along N,
then P, is an isomorphism onto N. Set N = P(V~'(M,)), N = P(N{). Then we have

V=l BNY
that N = N®N. Hence, P(F — ol )|, 18 an isomorphism onto N, which is complementable in
N =ImP, so a ¢ oi(PE,. ). O
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Remark 9.1.12. |21, Remark 5| It can be shown that /\//l\(I>+(HA) is open.

—+

Definition 9.1.13. |21, Definition 15] We set /@,(HA) to be the set of all G € B(H4) such

—

that there exists an M®,-decomposition for G
Hy= M&N, -5 MYEN, = Hy
and a closed submodule N with the property that H4 = M{GNON,'.

Then we put .,
oA (G) ={a € Z(A) | (G —al) ¢ MO_(H)}

ed0
and obtain the following analogue of Theorem 9.1.7 in the setting of non-adjointable operators.

Theorem 9.1.14. [21, Theorem 7| For G € B(H_4) we have

020(G) = {070 (PGy,,.) | P € P(Ha)},
where o (PG|, ) = {a € Z(A) | ImP does not split into the decomposition ImP = NON
with the property that (PG — al)| . is an isomorphism onto ImP}.

Proof. If o € Z(A) \ o75(PG,,,.,,) for some P € P(H,), then ImP = N&N for some closed
submodules N, N of ImP such that (PG — o), is an isomorphism onto ImP. Letting N play
the role of ker(PD — «l) in the proof of Theorem 9.1.7, we may proceed in the same way as in

—+

that proof to conclude that G — al € ./\//—ITIL(HA).
+

On the other hand, if & € Z(A) \ 0;4&0(6’), then G — al € ./\//l\@_(HA). As in the proof of
Theorem 9.1.7 (and using the same notation), we may consider the projection P onto M|®&N
along Nj and obtain that P(G — o), , is an isomorphism onto M{®N. O

1

— - =+
Remark 9.1.15. |21, Remark 6] In a similar way as for M®_ (H 4), one can show that M®_(H )
is open.

9.2 Examples of semi-C*-Weyl operators

g e —_—+

We observe first that ./T/I\CD+ C M7 and Md_ C MY, so Mo and M_ operators are
also upper and lower semi-C*-Weyl operators, respectively. In this section we are going to

present some examples of M®  and M®_ operators. In order to construct such examples
we are first going to give some examples of Hilbert submodules N, N; and N, satisfying that
HA = NENBNl = NENBNQ = HA and N1 # NQ.

Example 9.2.1. Let z = (aq,...,ap,...) € Hy and suppose that «y is invertible. Set N =
Spana{x}, then Ny is closed. It is not difficult to see that N7 = L; via the orthogonal
projection onto L;. Hence Hy = L @®N;. Indeed, in order to see that Nj is closed, suppose
that {g,} € Nj such that g,, — y for some y € Hy4. Then g, = = - 3, for each m € N and
some sequence {3,,} C A. It follows that a3, — y in A as m — oo. Hence £,, — aj 'y
in A as m — oo, so we deduce that = - §,, —> x - oy 'y1, which is an element of N;. Next,
if p; denotes the orthogonal projection onto Ly, then, for 3 € A, we have z - a;* € N; and
pi(z-a7'B) = (B,0,0,...). Furthermore, if p,(x - ) = 0 for some 8 € A, then a;3 = 0, hence
B =aj;ta;3=0. Thus, z - 8 = 0. Hence Pijy, is indeed an isomorphism onto L.
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Example 9.2.2. Let A = L*((0,1), ), choose an z = (f1, fo,...) in H4 and set
1
M, =| fi|7* ((=,00)) for each n € N.
n

We can choose x € H 4 in a such way that p(M,) # 0 for some n € N and that fi,, =0 p-a.e.
for all k£ € N. If we set Ny = Spans{z} and Ny = Spana{(xn,.000..)} then N; "and Ny are
closed. Indeed, XMnf—ll € L>((0,1), ) and || XMnf—ll loo< n where XMn% denotes the function
1
given by XMnf—ll(t) = fi(t) e € M,
0, else.
Now, if - g,, = y as m — oo for some sequence {g,,} € A and y € H4, then we must
have that figm — 1wy, in L=((0,1),p) for all k. In particular, figm — y1 as m — oo.
Hence Xy, g — XMnfilyl as m — oo. Moreover, since fk‘]\lﬁ = 0 for all £ > 2, we get that

feGm = [eXar,Gm. Therefore, frgm —3 kaMn%yl. Thus, y, = kaMn%?h for all k, so we get
y=ux- XMnf—llyl, which is an element of N;. Hence, Ny is closed and it is easy to verify that
also Ny is closed.

Moreover, Ny C L; and it is not difficult to see that Pijy, is an isomorphism onto N,, where
p1 denotes the orthogonal projection onto L. Indeed, if g = (g1,92,...) € Spana{x}, then
g = z -« for some a € A, so in particular g; = af;. It follows that if g; = 0, then o,, =0
i—a.e, hence afy, = 0 for all £ > 2 because fk|M% = 0 for all k. Consequently, g, = 0 for all k, so
g = 0. Thus, |y, 1s injective. Next, since fk‘M% =0 for all £ € N, then, in particular, f1|Mﬁ =0,
SO Im]o‘N1 C N,. Finally, Pla, is onto Na, because f; invertible on M, since |fi|xu, > %XMn-

Put N = Ns-. Then H4y = N®N; = N @& N,. Moreover, it follows from the above arguments
that if y = (g1,92,...) € H4 such that M, = |g:|7*((+,00)) for some m € N and such that
k| = 0 prace. for all k € N, then Hy = NON, = NON;, where Ny = Span 4 {y}.

Example 9.2.3. Let A = B(H) and x = (T}, T5,T3,...) € H4. Suppose that ImT; is closed
and ker 77 C ker T} for all k. Let Prp, PkerT# denote the orthogonal projections onto I'mT}
and ker Tj-, respectively. Set Ny = Spany{z} and Ny = Span{(Prm1,,0,0,0,...)}. Once
again, we wish to argue that V; is closed. Since I'mT) is closed by assumption, there exists an
operator 7" € B(H) such that T"T; = Pyt and TyT" = Ppyr,. If there is a sequence {S,}

in B(H) such that z - S, "= y for some y = (Ey, By, ...) € Hy, then TS, — Ej in B(H)
for all £ as n — oo. Hence PkerT%Sn =T'T,S, =% T'E,. Now, since we have ker T} C ker T},
for all k£ > 2, then TS, = TkPkeerLSn = Ty Birrt Sn for all k,n. So, for all k we get that
TS, = TkPkerTlLSn — TRT'Ey as n — oo. Thus, y = o - T'Ey € Spana{z} = Ny, hence N; is
closed. Moreover, N, is closed, which is easy to verify.

Also, Pijy, is an isomorphism onto N by the same arguments as in Example 9.2.2. (since

T\T' = Prynr, and ker Ty C ker Ty, for all k& € N). Set
N’ = Span{(I — Ppnr,,0,0,...)}, N=Li ® N'.
Then H4 = N®N;, = N @ N,. Moreover, it follows from the above arguments that if
y=(51,5,...) € Hy, ImS; = ImT; and ker Sy C ker S, for all £,
then H4 = N®Ny, where Ny = Spans{y}.

Example 9.2.4. In general, let N’ be any finitely generated Hilbert submodule of H 4. Then
by Theorem 2.0.34, there exists some n € N and a finitely generated Hilbert sumodule P such
that Hy = L-:OPPOp,(N') = L:OPON' (where p, is the orthogonal projection onto L,).
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Example 9.2.5. Once we have constructed closed submodules N, N1, Ny such that

HA == NéBNl == NENBNQ
~ _ - =+

where Ny, N, are finitely generated, it is then easy to construct M®,, M®_, M®_ operators
using the previous examples of isomorphisms of H 4 and examples of M®, and M®_ operators.
Namely, by the Dupre-Filmore Theorem 2.0.15 we have that N = H 4.

In fact, as regards the above examples, we can construct concrete isomorphisms between N
and Hy4. Let S denote the unilateral shift operator on H 4 as given in Section 7. In Example
9.2.1 N = L, hence we can let S be the isomorphism of H4 onto N. Next, it is not hard to
see that N = H - xpe © Li - xa, in Example 9.2.2. Let W be the operator with the matrix

{ (1) g 1 with respect to the decomposition

HAIHA'XMg@HA'XMn&HA'XMg@Lf'XMn:N

Then W is an isomorphism of H4 onto N. Finally, in Example 9.2.3 we have N = N & Jif ,
where 3

N = {(0, Ppr, Fy, Prry Fa, ... ) | (F1, Fa,...) € Hyb.
Set M = {(Prmr, Fi, P Fa,...) | (F1, Fy,...) € Hy}, then Hy = M @& N. Put W to be

(1) ,(5)' with respect to the decomposition

the operator with the matrix

Hi=NeMYsNeoN=N

Then W is an isomorphism of H4 onto N.

Let now M; denote the projection onto N along N; and My be the projection onto Ny along
N.If Hy = NON, = NON,, then My, is an isomorphism onto N». Hence it follows that if
¢ € B(Ny) and ¢ € B(N,), then we have that

— - vl
WEW ™ M1+ (I = M) € M® (Ha) and WGW ™' My 4 My 6(1 — 1) € MP_(Ho),

when F' € M*(H,) and G € Q*(H4). (Recall that semi-A-Fredholm operators presented in
examples 3.7.1 - 3.7.6 are examples of operators that are either bounded below or surjective).
Moreover, if U is an isomorphism of H,4 (recall examples of isomorphisms from Section 3.7),
then WUW ™'} +p My ¢(1 — M) is an M®g-operator. In order to construct some ¢ € B(Ny)
and ¢ € B(N,), we just need to observe that if T € B(H4), then (I — )T}, € B(N;) and

2Ty, € B(Na).

N1

e —+

Of course, there are many other examples of M + and MD_ operators. The most simple
examples are the following.

Example 9.2.6. Let S,S" be subsets of N such that S is finite, S’ and N\ S’ infinite and
S C S, Choose a bijection ¢ : N\ S — N\ S and let

F(ek) _ Cu(k); for k € N\S, .
ek, for k € S.

Then F € M®, (H ). Similarly, if & is finite, 5’ C S and S, N\ S are infinite, and if we set
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ek for k € &,
Ger) = S ey for ke N\ S,
0 else,

==+
then G € M®_(H,).

At the end of this chapter we also introduce an example which shows how the proofs from
Section 9.1 can be used to extend Zemarek’s result in [51] in the special case of operators on
infinite-dimensional Hilbert spaces.

Example 9.2.7. Let H be an infinite-dimensional Hilbert space and put gM®y(H) to be the
set of all ' € B(H) such that there exists a decomposition

H = Mi&N, - My®N, = H

. . . Fi 0
with respect to which F' has the matrix 0 F
4

N&N; = NON, = H for some closed, infinite-dimensional subspace N. Put

} , where F} is an isomorphism and such that

gP(H) ={P € B(H)|P is a projection and dim ImP = oo},

Tegw (F) = {A € C[(F — AT) & gM®o(Hoa)}-

Then we have
Tegw (F) =No {PF|ImP|P € gP(H)} )

Moreover, gM®,(H) is open in the norm topology of B(H).
Next, put gM®(H) to be the set of all F' € B(H) satisfying that there exists a decomposition

H = M,&N, 25 My&N, = H

with respect to which F' has the matrix [ £ 0 , Where F} is an isomorphism and such that

1
0 Fy
there exists an infinite-dimensional closed subspace N and a closed subspace N} of Ny with the
property H = N®N; = N®N),. Then oM (H) is open.
If we set
Gega(F) = {A € C| F— A ¢ gMO(H)},

then we get
Ocga(F) = Nou{PF|,,,, | P € gP(H)}.

Finally, put gM®*(H) to be the set of all D € B(H) satisfying that there exists a decompo-
sition
H = M&N, 2 M&N, = H
1 0
0 Dy
are infinite-dimensional, and such that there exists a closed subspace N with the property that
H = M]®N®N;,. Then gM®*(H) is open.
If we set

with respect to which D has the matrix , where D is an isomorphism, M| and M}

Oega(D) = {N€C | D— A\ ¢ gM>*(H)},

we get that
Ocgd(D) = Noa{PDy,., | P € gP(H)}.
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Chapter 10

Final remarks

The unpublished results in Section 7.1 are available on arXiv in [24]|, whereas the other unpub-
lished results in the thesis are available on arXiv in [23].

At the end of this thesis we will now give an overview of the results that can be generalized
from the standard module to arbitrary Hilbert C*-modules.

Chapter 3

Since many of the results from this chapter can be generalized to arbitrary Hilbert C*-
modules, we will here just specify which of the results are valid only for the standard module
case. Below is the list of those results.

Theorem 3.1.2 and Theorem 3.1.4, part 2) = 1), (we notice that part 1) = 2) holds for
arbitrary countably generated Hilbert C*-modules in both these theorems), Lemma 3.1.13,
Corollary 3.1.14, Corollary 3.1.19, Lemma 3.1.23 and Corollary 3.2.4. The analogue of Lemma
3.1.13, Corollary 3.1.14 and Corollary 3.1.19 hold in the case of arbitrary self-dual Hilbert
W*-modules, which has been proved in several results at the end of Chapter 4. All the other
results from Section 3.1 that have not been mentioned here hold in the case of arbitrary Hilbert
C*-modules.

As regards Section 3.2, except Lemma 3.2.1, all the other results in this section are con-
structed for the standard module case.

As regards the results from Section 3.3, all these results are valid also in the case of arbitrary
Hilbert C*-modules.

As regards Section 3.4, most of the results here have been constructed for the standard
module case, so we will just mention now the results from this section which can be generalized
to arbitrary Hilbert C*- modules. These are Lemma 3.4.3, Lemma 3.4.9, Corollary 3.4.10,
Proposition 3.4.12, Remark 3.4.13, Proposition 3.4.19 and Lemma 3.4.21. The first statement
in Lemma 3.4.14 concerning the openess of the classes of semi-.A-Weyl operators is also valid
in the case of arbitrary Hilbert C*-modules. Lemma 3.4.7, Lemma 3.4.8, Lemma 3.4.16 and
Corollary 3.4.23 hold in the case of self-dual Hilbert WW*-modules, as explained at the end of
Chapter 4.

As regards Section 3.5, except Proposition 3.5.4, Corollary 3.5.5, Lemma 3.5.16, Lemma
3.5.22 and Remark 3.5.24 all the other results in this section hold in the case of arbitrary
Hilbert C*-modules, whereas most of the results in Section 3.6 are valid only in the case of the
standard module.

Chapter 4

Except Corollary 4.0.2 and Proposition 4.0.3 that are valid only in the standard module
case and except the results at the end of this chapter where we consider self-dual Hilbert WW*-
modules, all the other results in this chapter hold in the case of arbitrary Hilbert W*-modules.

144



Chapter 10. Final remarks

Chapter 5

As regards Section 5.1, all the results except Proposition 5.1.18, Corollary 5.1.28 and Lemma
5.1.29 hold in the case of arbitrary Hilbert C*-modules. As regards Section 5.2, most of the re-
sults in this section are constructed only for the standard module case. However, the exceptions
are Proposition 5.2.3, Proposition 5.2.4 and Corollary 5.2.12. Moreover, Proposition 5.1.18 ca
be reformulated to hold in the case of arbitrary Hilbert W*-modules as stated in Corollary
5.2.12.

Chapter 6

All the results from this chapter are valid in the case of arbitrary Hilbert C*-modules except
Lemma 6.0.11. The reformulated version of this lemma given in Corollary 6.0.12 holds for
arbitrary Hilbert W*-modules.

Chapter 7

As explained in the beginning of Chapter 9, if we wish to extend the notion of the operator
al from the standard module to arbitrary modules over C*-algebras, then we should only
consider Hilbert modules over commutative C*-algebras. Except from the results concerning
shift operators, all the other results from Section 7.1 are therefore valid in the case of arbitrary
Hilbert C*-modules over commutative C*-algebras.

As regards Section 7.2, all the results can be transferred to the case of arbitrary Hilbert C*-
modules over commutative C*-algebras since the key arguments in the proofs here are actually
the results from Section 3.3 and those results remain valid also in the case of arbitrary Hilbert
C*-modules. However, in some of the proofs in this section we apply also Lemma 3.4.14 which
has so far only been proved for the standard module case and for the case of self-dual Hilbert
W*-modules as explained in Lemma 4.0.15. Author believes that this result can be generalized
to arbitrary Hilbert C*-modules, but this still remains as an open question for further research.
Therefore, we also need slight modifications in the formulation of Lemma 7.2.9, Theorem 7.2.10
and Theorem 7.2.11 in order to hold for arbitrary Hilbert C*-modules over commutative C*-
algebras. More precisely, if we let

Mq)()ﬂ'nd(M) = {F S M(I)(M>| index F' = O},
where M is an arbitrary Hilbert C*-module, and set
Mq)o,ind(F) = {CY € A’F —al € M(I)O’an(M)} and O'A (F) = A \ M(Do,ind(F>7

ew,ind
then, replacing M®q(F) by M®g ;,q(F) in Lemma 7.2.9 and replacing o4 (F) by Oéw’md(F> in
Theorem 7.2.10 and Theorem 7.2.11, we obtain the results that are valid in the case of arbitrary
Hilbert C*-modules over commutative C*-algebras. However, the last inclusion in Theorem
7.2.11 (which is doi(F) C 80, ;(F)) holds only in the case of arbitrary Hilbert C*-modules
over commutative C*-algebras whose K-group satisfies the cancellation property, as explained
in Proposition 7.2.15. In addition, the inclusions 9o, (F) C o2t (F) and o2, (F) C do(F)
given in Proposition 7.2.13 hold only in the case of the standard module and in the case of
self-dual Hilbert W*-modules. Similarly, as regards Corollary 7.2.12 and Corollary 7.2.14, the
sets MO\ M, MO\ ME" Md\ M®, and MO+ \ M are open only in the standard

module case and in the case of self~-dual Hilbert W*-modules.
Chapter 8

Although Theorem 8.2.5, Theorem 8.2.11 and Theorem 8.2.16 hold in the case of arbitrary
Hilbert C*-modules, this chapter deals mainly with the standard module case.

Chapter 9
All the results in this chapter are valid in the case of arbitrary Hilbert C*-modules.
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Mpwunor 1.

UsjaBa o ayTopcTBy

[Notnucanu-a _CredbaH VBkoBuh

6poj ynuca __2017/2016

UzjaBrbyjem
[a je JoKTopCcKa aucepTaumja noa HacnosoM

Mony-®peaxonmosu oneparopu Ha Xundeptosum C*-mogynuma

e pesynTtaTt CONCTBEHOI UCTPaXXnBa4kor paga,

e [a npearnoxeHa guceprauunja 'y LenuHU HU y AernoBuMa Huje Guna npeanoxeHa
3a nobujawe 6Guno koje AunnoMe npema CTYAUCKUM Mporpamuma [apyrux
BUCOKOLLIKONCKMX YCTaHOBa,

e [acy pe3ynTaTul KOPEKTHO HaBeAEeHU U

e [a HucaM KpLUMoO/na ayTopcka npaBa UM KOPUCTUO WHTENEKTyasiHy CBOjuHy
ApYrvx nuua.

Motnuc OOKTOopaHaa

Y Beorpagy, 30.11.2021.
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Mpunor 2.

U3jaBa 0 MCTOBETHOCTMU WITaMMNaHe U efleKTPOHCKe
Bep3uje OOKTOpPCKOr paga

Wwme n npesume aytopa CredhaH Vekosuh

Bpoj ynuca 2017/2016
Cryaujckv nporpam MaTtemaTuka

Hacnos paaa MNony-®penxonmosu onepatopu Ha Xunteptosum C*-moaynuma

MenTop npod. ap. Aparad C. Hophesuh, npod. ap. [laHko Jouuh

MoTtnucanu CtedaH MBkosuh

usjaBrbyjem [a je LitamnaHa Bep3uja Mor AOKTOPCKOr paja UCTOBETHA eneKTPOHCKO)
Bep3nju Kojy cam npegao/nma 3a objaBrbuMBake Ha noptany  OurAtanHor
penosuTtopujyma YHuBep3uteta y Beorpagy.

[osBorbaBam fa ce objaBe Moju nNUYHKM nogauy BesaHu 3a gobujare akagemcKor
3Baka JOKTOpa Hayka, Kao LUTO Cy uMe 1 npesume, rognHa u Mecto pofewa u gatym
onbpaHe paga.

OBM nuyHn nojaum mory ce o6jaBuT Ha MPEXHUM CTpaHuuama auruTtanqe
Bubnuoteke, y enekTpoHCKOM Katanory uy nybnukauvjama YHuBep3auteTta 'y beorpagy.

MoTnuc gokropaHaa
Y Beorpagy, 30.11.2021.
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Mpunor 3.

UsjaBa o kopuwherwy

Osnawhyjem YHuBepauteTcky Gubnuoteky ,Csetosap MapkoBuh® aa y [durutanyu
penoautopujym YHusepauteTa y Beorpagy yHece MOjy AOKTOPCKY avcepTauujy nop
HacrnoBoOM:

[MOAY-PPEAXOAMOBK ONEPATOPU HA XMABEPTOBUM C*-MOAYAMMA

Koja je Moje ayTopcKo Aeno.

[ncepTaumjy ca CBUM Npunosuma npeaao/na cam y enekrpoHCKom dopmaTy norogHoOMm
3a TpajHO apXvBUpar-E.

Mojy AOKTOPCKY AvcepTauujy noxpareHy y AurutanHu penosuTopujym YHuBepsuTeTa
y Beorpazly Mory Aa KOpUCTe CBU KOju MOLUTYjy oapenbe cagpxaHe y ogabpaHom Tuny
nuueHue KpeatusHe 3ajepHuue (Creative Commons) 3a Kojy cam ce oany4no/na.

1. AyTOpCTBO

2. AyTOpPCTBO - HeKOMepLInjanHo
\\\éﬁ'~}AyTOpCTBO — HekomepuujanHo — 6e3 npepazae

4; AyTOPCTBO — HEKOMEPLIMjariHO — AenuTY NojA UCTUM YCrioBrma
5. AytopctBo — ©es npepage

6. AyTOpPCTBO — [A€nnTK NoA UCTUM ycrioBMMa

(Monumo [ia 3a0Kpy)XuUTe Camo jefiHy O LUECT MOHyfeHnX nuueHun, kpartak onuc
NULEHLM AaT je Ha nonehuHu nucTa).

MoTnuc goKkropaHaa

Y Beorpaay, 30.11.2021.
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1. AyTopctBo - [Jo3BorbaBarte YMHOXaBare, AUCTPUOYLM)y U jaBHO caomnliTaBahe
Aena, n npepaje, ako ce HaBefe uMme ayTopa Ha HauuH ofpeheH oA cTpaHe ayTopa
unu fasaola nuueHLe, Yak u y komepuujanHe cepxe. OBo je HajcnobogHuja of CBUX
NULeHUN.

2. AyTtopcTBO — HekomepuwjanHo. [lossorbaBate yMHOXaBake, AUCTpubyumjy u jaBHo
caonwrtaBawe gena, u npepaje, ako ce HaBede MMe ayTopa Ha HauuH ogpeheH of
CTpaHe ayTopa unu gasaoua nuueHue. OBa nuueHUa He [403BOSfbaBa KomepuujarHy
ynoTtpeby gena.

3. AyTopcTBO - HekomepumjanHo — 0e3 npepage. [lo3BorbaBaTe YMHOXaBahe,
anctpubyumjy m jaBHO caorwitaBawe fena, 6e3 npomeHa, npeobnukoBama unuv
ynotpebe gena y CBOM [Jerny, ako ce HaBege ume aytopa Ha HauuH ogpefeH of
CTpaHe ayTopa wunu Aasaoua nuueHue. OBa nuueHua He [03BoSbaBa KoMepuyjanHy
ynotpeby fderna. Y ofHOCY Ha CBe ocTarie nuLeHLe, OBOM NULIEHLIOM ce orpaHuvaBa
Hajsehu obum npasa kopuwhera gena.

4. AyTOpCTBO - HekomepumjanHo — Aenuty noj WUCTUM ycrnosuma. [o3BorbaBaTte
YMHOXaBakhe, UCTPUbYLINjy 1 jaBHO caonwiTaBawe Aena, v npepage, ako ce HaBefe
MMe ayTopa Ha HadvH ogpefeH of cTpaHe ayTopa vunu fasBaoua fuvueHUe 1 ako ce
npepaga guctpubympa noh WUCTOM WnuM CcnvyHoM nuueHuom. OBa nuueHua He
[J03BorbaBa komepuujanHy ynoTtpedy gena v npepaga.

5. AytopcTtBo — 6Ge3 npepage. [lo3BorbaBate ymMHOXaBake, AUCTpudyuujy u jaBHO
caonwitaBane gena, 6e3 npomeHa, npeobnukosara unv ynotpebe genay csom geny,
ako ce HaBege uMme aytopa Ha HauuH ogpefleH of cTpaHe ayTopa unu gasaoua
nuueHue. OBa nuLieHLa [o3Borbasa komepuujanHy ynotpeby gena.

6. AyTopcTBO - JAenuTU nop MUCTUM  ycrnosuMa. [Jo3BorbaBate YMHOXaBakse,
AncTpubyuumjy 1 jaBHO caoniuTaBake Aena, u npepaje, ako ce HaBefe nMe aytopa Ha
HauuH ofpefeH of cTpaHe ayTopa wWnu gaBaola NULEHLEe 1M ako ce npepaja
ouctpubyupa nod WCTOM WM CrivyHoMm nuvueHuoMm. OBa nuueHua [03BOrbaBa
KkomepuujanHy ynoTpeby gena u npepaga. CnuuyHa je codTBEpCKMM fULEHUama,
OOHOCHO NULEHLama OTBOPEHOr Koga.
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