

UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA

Departman za energetiku, elektroniku i telekomunikacije

Doktorska disertacija

Hibridni elektromagnetski-triboelektrični nanogenerator za prikupljanje mehaničke energije

Kandidat: M.Sc. Jelena Bjelica Mentori: prof. dr Nikola Đurić dr Snežana Đurić

Novi Sad, 2022. godina

УНИВЕРЗИТЕТ У НОВОМ САДУ НАВЕСТИ НАЗИВ ФАКУЛТЕТА ИЛИ ЦЕНТРА

Врста рада:	Докторска дисертација
Име и презиме аутора:	мастер инжењер Јелена Бјелица
Ментор (титула, име, презиме, звање, институција)	др Никола Ђурић, редовни професор, Факултет техничких наука, Универзитет у Новом Саду др Снежана Ђурић, виши научни сарадник, БиоСенс Институт, Универзитет у Новом Саду
Наслов рада:	Хибридни електромагнетски-трибоелектрични наногенератор за прикупљање механичке енергије
Језик публикације (писмо):	Српски (латиница)
Физички опис рада:	Унети број: Страница 106 Поглавља 10 Референци 155 Табела 5 Слика 48 Графикона 0 Прилога 2
Научна област:	Електротехничко и рачунарско инжењерство
Ужа научна област (научна дисциплина):	Теоријска електротехника и електроника/микроелектроника
Кључне речи / предметна одредница:	хибридни наногенератор, трибоелектрични наногенератор, електромагнетски генератор, прикупљање механичке енергије, моделовање
Резиме на језику рада:	У овој дисертацији је представљен хибридни наногенератор кога чине три модула, чији рад је заснован на трибоелектричном и електромагнетском ефекту за претварање механичке у електричну енергију. На основу теориј- ског модела извршена је оптимизација дизајна и практична реализација хибридног наногенератора. Анализа перформанси је потврдила да предло- жени хибридни наногенератор може ефикасно да сакупља механичку ене- ргију из околине.
Датум прихватања теме од стране надлежног већа:	26. 05. 2022. (одлука Сената Универзитета бр. 04-29/8)
Датум одбране: (Попуњава одговарајућа служба)	

КЉУЧНА ДОКУМЕНТАЦИЈСКА ИНФОРМАЦИЈА¹

¹ Аутор докторске дисертације потписао је и приложио следеће Обрасце:

^{56 –} Изјава о ауторству;

 ^{50 –} Изјава о истоветности штампане и електронске верзије и о личним подацима;
 5г – Изјава о коришћењу.
 Ове Изјаве се чувају на факултету у штампаном и електронском облику и не кориче се са тезом.

	Председник: др Станиша Даутовић, ванредни професор, Факултет техничких наука, Универзитет у Новом Саду
	Члан: др Зоран Пријић, редовни професор, Електронски факултет, Универзитет у Нишу
Чланови комисије: (титула, име, презиме, звање,	Члан: др Стеван Станковски, редовни професор, Факултет техничких наука, Универзитет у Новом Саду
институција)	Члан, ментор: др Снежана Ђурић, виши научни сарадник, БиоСенс Институт, Универзитет у Новом Саду
	Члан, ментор: др Никола Ђурић, редовни професор, Факултет техничких наука, Универзитет у Новом Саду
Напомена:	

UNIVERSITY OF NOVI SAD FACULTY OR CENTER

Document type:	Doctoral dissertation
Author:	M.Sc. Jelena Bjelica
Supervisor (title, first name, last name, position, institution)	Nikola Đurić, Ph.D., Full Professor, Faculty of Technical Sciences, University of Novi Sad Snežana Đurić, Ph.D., Research Associate Professor, BioSense Institute, University of Novi Sad
Thesis title:	Hybrid electromagnetic-triboelectric nanogenerator for mechanical energy harvesting
Language of text (script):	Serbian language (latin)
Physical description:	Number of: Pages 106 Chapters 10 References 155 Tables 5 Illustrations 48 Graphs 0 Appendices 2
Scientific field:	Electrical and computer engineering
Scientific subfield (scientific discipline):	Theoretical electrical engineering and electronics/microelectronics
Subject, Key words:	hybrid nanogenerator, triboelectric nanogenerators, electromagnetic generators, mechanical energy harvesting, modelling
Abstract in English language:	In this thesis, a hybrid nanogenerator that integrates three units based on tribo- electric and electromagnetic working mechanisms is presented, for conversion of mechanical energy into electrical energy. The device was theoretically mo- delled, optimized and practically realized. Performance characterization veri- fied the proposed hybrid nanogenerator as an efficient energy harvester.
Accepted on Scientific Board on:	26. 05. 2022. (University Senate decision no. 04-29/8)
Defended: (Filled by the faculty service)	

KEY WORD DOCUMENTATION²

 $^{^{2}}$ The author of doctoral dissertation has signed the following Statements:

^{56 -} Statement on the authority,

 ^{56 -} Statement on the authority,
 58 - Statement that the printed and e-version of doctoral dissertation are identical and about personal data,
 5r - Statement on copyright licenses.
 The paper and e-versions of Statements are held at he faculty and are not included into the printed thesis.

Thesis Defend Board: (title, first name, last name, position, institution)	 President: Staniša Dautović, Ph.D., Associate Professor, Faculty of Technical Sciences, University of Novi Sad Member: Zoran Prijić, Ph.D., Full Professor, Faculty of Electronic Engineering, University of Nis Member: Stevan Stankovski, Ph.D., Full Professor, Faculty of Technical Sciences, University of Novi Sad Member, Mentor: Snežana Đurić, Ph.D., Research Associate Professor, BioSense Institute, University of Novi Sad Member, Mentor: Nikola Đruić, Ph.D., Full Professor, Faculty of Technical Sciences, University of Novi Sad
Note:	

Zahvalnica

Doktorska disertacija "Hibridni elektromagnetski-triboelektrični nanogenerator za prikupljanje mehaničke energije" je najvećim delom urađena u laboratorijama BioSens Instituta, Univerzitet u Novom Sadu, dok je deo teorijske analize, koji se odnosi na elektromagnetski modul hibridnog nanogeneratora urađen na Fakultetu tehničkih nauka.

Ideja doktorske disertacije i metodologija istraživanja razvijeni su u okviru postojećeg istraživačkog pravca prikupljanje i skladištenje energije koji se razvija u BioSens Institutu.

BioSens Institut je obezbedio sve neophodne resurse za realizaciju istraživanja predstavljenog u ovoj doktorskoj disertaciji.

Želim da se zahvalim svojim mentorima, prof. dr Nikoli Đurić i dr Snežani Đurić, na pomoći i savetima prilikom istraživanja, pisanja naučnih radova i izrade disertacije.

Takođe, zahvaljujem se i kolegama sa Katedre za teorijsku elektrotehniku, Fakulteta tehničkih nauka, Univerzitet u Novom Sadu, na podršci i razumevanju tokom dosadašnjeg naučno-istraživačkog rada.

Na kraju, posebno želim da se zahvalim svojim roditeljima, mami Biljani i tati Mirku, porodici i prijateljima, na podršci, strpljenju i razumevanju.

Jelena Bjelica

Sadržaj

1.	Uvo	d	1
2.	Preg	led literature vezane za temu disertacije	3
	2.1.	Ambijentalni izvori energije i principi generisanja električne energije	3
	2.2.	Nanogeneratori za prikupljanje ambijentalne energije	4
	2.3.	Metode za fabrikaciju nanogeneratora	8
	2.4.	Primena nanogeneratora	12
	2.5.	Hibridni nanogeneratori	16
3.	Struk	ktura hibridnog elektromagnetskog-triboelektričnog nanogeneratora	22
4.	Princ	cip rada hibridnog elektromagnetskog-triboelektričnog nanogeneratora	23
5.	Teor	ijska analiza modula hibridnog nanogeneratora	26
	5.1.	EMG modul	26
	5.2.	Cik-cak TENG u kontaktnom režimu	33
	5.3.	Cilindrični TENG u kliznom režimu	41
	5.4.	Hibridni nanogenerator	47
6.	Fabr	ikacija hibridnog elektromagnetskog-triboelektričnog nanogeneratora	49
7.	Rezu	ıltati karakterizacije hibridnog nanogeneratora	51
	7.1.	Izlazne karakteristike cik-cak TENG-a, kliznog TENG-a i EMG-a	51
		7.1.1. Napon praznog hoda	51
		7.1.2. Izlazni napon, struja i snaga	55
	7.2.	Izlazne karakteristike hibridnog nanogeneratora	59
		7.2.1. Napon praznog hoda	59
		7.2.2. Izlazni napon, struja i snaga	61
8.	Perfo	ormanse hibridnog nanogeneratora prilikom punjenja kondenzatora	63
9.	Demonstracija praktične primene hibridnog nanogeneratora67		
10.	Zakl	jučak i pravac budućeg istraživanja	69

Prilog I	71
Prilog II	
Literatura	

Lista slika

Slika 1. Pregled tehnologija za sakupljanje ambijentalne energije [6]
Slika 2. Pregled materijala za fabrikaciju triboelektričnih nanogeneratora [28]7
Slika 3. Režimi rada triboelektričnih nanogeneratora7
Slika 4. Neke od metoda za fabrikaciju nanogeneratora [37], [38], [43], [44]9
Slika 5. Neke od primena triboelektričnih nanogeneratora za monitoring okoline i zdravstvenog stanja organizma [47], [49], [53], [55], [58], [61]12
Slika 6. Neke od primena triboelektričnih nanogeneratora u interakciji čovek-računar [65], [66], [76], [77], [80], [82]
Slika 7. Primena hibridnih nanogeneratora [88], [91], [93], [104]17
Slika 8. Neke od primena EMG-TENG nanogeneratora za monitoring okoline i zdravstvenog stanja organizma [114], [118], [122], [130], [132]
Slika 9. Neke od primena EMG-TENG nanogeneratora u interakciji čovek-računar [133], [135], [144], [145], [146]20
Slika 10. Šematski prikaz hibridnog nanogeneratora i njegovih pojedinačnih delova22
Slika 11. Princip rada hibridnog elektromagnetskog-troboelektričnog nanogeneratora23
Slika 12. Raspodela potencijala za TENG u režimu praznog hoda
Slika 13. Magnetska indukcija u zavisnosti od pomeraja magneta i presek EMG modula26
Slika 14. Funkcija d <i>B</i> /dz u zavisnosti od pomeraja magneta
Slika 15. Brzina magneta u zavisnosti od pomeraja magneta
Slika 16. Napon praznog hoda za različita ubrzanja i amplitude pomeraja magneta30
Slika 17. Napon praznog hoda za različite frekvencije31
Slika 18. Parametri koji utiču na indukovani napon i struju31
Slika 19. Napon praznog hoda za EMG1, EMG2 i za rednu vezu EMG1 i EMG233
Slika 20. Šematski prikaz strukture i ekvivalentnog električnog kola cik-cak TENG-a34
Slika 21. Rezultati za napon praznog hoda i za kapacitivnost cik-cak TENG-a

Slika 22. Šematski prikaz poprečnog preseka cilindrične TENG strukture4	12
Slika 23. Rezultati za napon praznog hoda i za kapacitivnost kliznog TENG-a4	14
Slika 24. Ekvivalentno električno kolo hibridnog nanogeneratora4	ŀ7
Slika 25. Fotografija pojedinačnih delova integrisanih u hibridnu strukturu5	50
Slika 26. Napon praznog hoda pojedinačnih ćelija cik-cak TENG-a izmeren sa dva kanala5	51
Slika 27. Izmereni napon praznog hoda za ćeliju 1, ćeliju 2 i za ćelije vezane paralelno5	52
Slika 28. Izmereni napon praznog hoda kliznog TENG-a5	53
Slika 29. Izmereni napon praznog hoda za EMG1, EMG2 i za rednu vezu EMG1 i EMG25	54
Slika 30. Napon praznog hoda za EMG1 i EMG2 izmeren sa dva kanala5	55
Slika 31. Izlazne karakteristike cik-cak TENG-a izmerene za različite otpornosti5	56
Slika 32. Izlazne karakteristike kliznog TENG-a izmerene za različite otpornosti5	57
Slika 33. Izlazne karakteristike EMG modula izmerene za različite otpornosti5	58
Slika 34. Ispravljeni napon za pojedinačne module i za hibridni nanogenerator6	50
Slika 35. Izlazne karakteristike hibridnog nanogeneratora izmerene za različite otpornosti6	51
Slika 36. Rezultati dobijeni nakon punjenja kondenzatora za hibridni nanogenerator6	53
Slika 37. Rezultati dobijeni nakon punjenja kondenzatora za pojedinačne module6	54
Slika 38. Poređenje rezultata dobijenih nakon punjenja kondenezatora6	55
Slika 39. Demonstracija praktične primene hibridnog nanogeneratora6	57
Slika 40. Skladištenje energije u banci kondenzatora i napajanje kalkulatora6	58
Slika 41. Naponski signali izmereni za ćeliju 1 cik-cak TENG-a7	7
Slika 42. Naponski signali izmereni za ćeliju 2 cik-cak TENG-a7	78
Slika 43. Naponski signali izmereni za ćelije cik-cak TENG-a vezane paralelno8	30
Slika 44. Naponski signali izmereni za klizni TENG8	32
Slika 45. Naponski signali izmereni za EMG18	33
Slika 46. Naponski signali izmereni za EMG28	35
Slika 47. Naponski signali izmereni za rednu vezu EMG1 i EMG28	37
Slika 48. Naponski signali izmereni za hibridni nanogenerator	39

Lista tabela

Tabela 1. Parametri geometrije i materijala za kontaktni TENG	35
Tabela 2. Parametri geometrije i materijala za klizni TENG	43
Tabela 3. Maksimalne vrednosti napona praznog hoda za EMG modul	55
Tabela 4. Izlazne karakteristike pojedinačnih modula i hibridnog nanogeneratora	62
Tabela 5. Skladištenje energije u kondenzatorima	66

Lista skraćenica

TENG	Triboelektrični nanogenerator
EMG	Elektromagnetski generator
IoT	Internet of Things
MEMS	Mikroelektromehanički sistemi
PENG	Piezoelektrični nanogenerator
PDMS	Polidimetilsiloksan
ICP	Inductively Coupled Plasma
ECG	Elektrokardiograf
NdFeB	Neodimijum
PTFE	Politetrafluoretan (Teflon)
LED	Light emitting diode

Bibliografija

M21

- J. Bjelica, N. Djuric, S. Djuric, Performance analysis and application of a hybrid electromagnetictriboelectric nanogenerator for energy harvesting, Energy Reports, 8, November 2022, 9184-9200, DOI: 10.1016/j.egyr.2022.07.052, ISSN: 2352-4847.
- D. Kljajic, N. Djuric, **J. Bjelica**, M. Milutinov, K. Kasas-Lazetic, D. Antic, Utilization of the boundary exposure assessment for the broadband low-frequency EMF monitoring, Measurement, 100, March 2017, 110-114, DOI:10.1016/j.measurement.2016.12.061, ISSN: 0263-2241.

M23

• J. Bjelica, N. Djuric, S. Djuric, Modeling and Performance Analysis of Planar Fractal Inductors, IEEE Transactions on Magnetics, 56 (11), November 2020, 8400308, DOI: 10.1109/TMAG.2020.3018428, ISSN 0018-9464.

M33

- J. Bjelica, N. Djuric, D. Kljajic, M. Milutinov, A. Fanti, The Boundary Exposure Assessment for Continuous Monitoring of the Low-Frequency EMF, 23rd Telecommunications Forum - TELFOR 2015, November 24-26, 2015, Belgrade, Serbia, 539-542, ISBN: 978-1-5090-0054-8.
- J. Bjelica, N. Djuric, D. Antic, D. Kljajic, The Inductive Sensor Analysis for the Energy Harvesting Applications, 14th IEEE International Symposium on Intelligent Systems and Informatics SISY 2016, August 29-31, 2016, Subotica, Serbia, 61-66, ISBN: 978-1-5090-2865-8.
- J. Bjelica, G. Mijatovic, D. Kljajic, A. Fanti, The Inductors with Adjustable Surface Area for Energy Harvesting Utilization, 24th Telecommunications Forum TELFOR 2016, November 22-23, 2016, Belgrade, Serbia, 597-600, ISBN: 978-1-5090-4085-8.
- N. Djuric, J. Bjelica, Resonant Cavity as Microwave Exposure System for Biological Materials, 24th Telecommunications Forum - TELFOR 2016, November 22-23, 2016, Belgrade, Serbia, 581-584, ISBN: 978-1-5090-4085-8.
- N. Djuric, J. Bjelica, D. Kljajic, M. Milutinov, K. Kasas-Lazetica, D. Antic, The SEMONT Network Utilization for the Low-frequency EMF Monitoring, 21st International Conference on Microwaves, Radar and Wireless Communications – MIKON 2016, May 9-11, 2016, Krakow, Poland, 1-6, ISBN: 978-1-5090-2213-7.

- N. Djuric, J. Bjelica, D. Kljajic, M. Milutinov, K. Kasas-Lazetic, D. Antic, The SEMONT Continuous Monitoring and Exposure Assessment for the Low-frequency EMF, 1st IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies -EMERGITECH 2016, August 1-6, 2016, Mauritius, 1-6, ISBN: 978-1-5090-0705-9.
- J. Bjelica, N. Djuric, A. Fanti, S. Djuric, The Planar Inductor with Adjustable Surface for Energy Harvesting Applications, 38th Progress in Electromagnetics Research Symposium PIERS 2017, May 22-25, 2017, Sankt Peterburg, Russia, 3651-3656, ISBN: 978-1-5090-6269-0.
- N. Djuric, G. Mijatovic, D. Antic, J. Bjelica, D. Kljajic, K. Kasas-Lazetic, Double-layer Variable Geometry Inductor for Energy Harvesting Applications, 38th Progress in Electromagnetics Research Symposium - PIERS 2017, May 22-25, 2017, Sankt Peterburg, Russia, 3644-3650, ISBN: 978-1-5090-6269-0.
- N. Djuric, N. Kavecan, G. Mijatovic, J. Bjelica, S. Djuric, Parser Function for D59 Files in EMF RATEL Monitoring System, 14th IEEE International Conference on Signal Processing – ICSP 2018, August 12-16, 2018, Beijing, China, 974-978, ISBN: 978-1-5386-4673-1.
- J. Bjelica, N. Djuric, S. Djuric, Simulation tool for optimization of planar inductors, 41st Progress in Electromagnetics Research Symposium PIERS 2019, Jun 17-20, 2019, Rome, Italy, 1-5, ISBN 978-1-7281-3403-1.

M82

- G. Mijatovic, N. Djuric, N. Kavecan, J. Bjelica, K. Haska, S. Djuric, Function of data parser for Narda AMS 8061 family of selective wireless sensors for electromagnetic field monitoring, Technical solution
 New technical solution (method) applied at national level, University of Novi Sad, Faculty of Technical Sciences, completed: October 2018, verified: 12.12.2018, <u>http://www.ftn.uns.ac.rs/n187159-7656/funkcija-parsera-menih-podataka-za-narda-ams-8061-familiju-selektivnih-bezicnih-menih-sen-zora-za-monitoring-elektromagnetskog-polja
 </u>
- N. Djuric, N. Kavecan, G. Mijatovic, J. Bjelica, D. Antic, S. Djuric, Function of data parser for Narda AMB 8059 family of broadband wireless sensors for electromagnetic field monitoring, Technical Solution - New Technical Solution (method) applied nationally, University of Novi Sad, Faculty of Technical Sciences, completed: September 2018, verified: 09.11.2018, <u>http://www.ftn.uns.ac.rs/n1871-597659/funkcija-parsera-menih-podataka-za-narda-amb-8059-familiju-sirokopojasnih-bezicnih-menih-senzora-za-monitoring-elektromagnetskog-polja.
 </u>

1. Uvod

Brojni elektronski uređaji poput senzora, aktuatora i bežičnih predajnika integrisani su u svakodnevni život [1]-[3], u nizu primena kao što su: monitoring zdravlja, zaštita životne sredine, daljinsko upravljanje, bežični prenos podataka, bezbednost. Njihovo napajanje je jedan od ključnih izazova modernog tehnološkog razvoja [4]. Izvori napajanja savremenih uređaja male snage treba da budu bežični, minijaturni, lagani, i da imaju karakteristike kao što su mobilnost, održivost i dostupnost [3]. Standardno, električne baterije se koriste kao izvori napajanja ovakvih uređaja. Međutim, baterije često predstavljaju najveći i najteži deo celokupnog sistema i imaju ograničen vek trajanja. Dodatno, održavanje i reciklaža velike količine baterija je veoma izazovan proces, a zbog hemikalija koje se nalaze u baterijama ovaj proces može da predstavlja i veliku opasnost za životnu sredinu i zdravlje ljudi.

Neiskorišćena energija iz okoline predstavlja značajan energetski resurs, a mogućnost njenog sakupljanja je tema mnogih naučnih istraživanja u poslednjih nekoliko godina. Činjenica je da alternativni izvori energije smanjuju zagađenje životne sredine i lako su dostupni, što im pruža i ekonomske prednosti, s obzirom da mogu da osiguraju energetsku efikasnost i nezavisnost sistema. Nanogeneratori različitih radnih mehanizama se pojavljuju kao vodeći kandidati za prikupljanje ambijentalne energije i time kao potencijalni izvori energije za napajanje autonomnih uređaja male snage, u širokom spektru primena [5].

Neki od dobro poznatih mehanizama za konverziju ambijentalne energije u električnu energiju jesu elektromagnetski efekat, fotoelektrični efekat, piezoelektrični efekat i piroelektrični efekat. Trenutno aktuelan pristup za prikupljanje mehaničke energije iz okoline zasniva se na triboelektričnom efektu. Triboelektrični nanogeneratori (TENG) imaju mnoge prednosti kao što su jednostavna realizacija (fabrikacija i integracija), veliki izbor materijala koji se koriste za fabrikaciju, fleksibilnost, ekonomičnost i biorazgradivost, zbog čega su interesantni za analizu. Međutim, sinteza TENG-a sa generatorima koji koriste drugačije mehanizme za prikupljanje ambijentalne energije može da poboljša njihove performanse i obezbedi dovoljno energije za primenu u praksi.

U ovoj doktorskoj disertaciji će biti analiziran hibridni izvor napajanja zasnovan na sintezi triboelektričnog i elektromagnetskog mehanizma, radi istovremenog sakupljanja mehaničke energije. Kombinacija individualnih modula treba da kompenzuje njihove pojedine nedostatke, kao što su npr. mala struja TENG-a i mali napon elektromagnetskog generatora (EMG). Elektromagnetskitriboelektrični nanogenerator omogućava sakupljanje mehaničke energije u širokom frekvencijskom opsegu, s obzirom na to da se TENG pokazao kao bolji za prikupljanje energije na niskim frekvencijama, dok je EMG pogodan za prikupljanje energije na visokim frekvencijama.

Cilj ovog istraživanja jeste dizajn, modelovanje, karakterizacija i primena elektromagnetskogtriboelektričnog nanogeneratora za prikupljanje mehaničke energije. Tri modula sa različitim radnim mehanizmima (EMG, kontaktni TENG i klizni TENG) integrisana su u okviru kompaktnog hibridnog nanogeneratora, čime je povećana efikasnost hibridnog uređaja kao potencijalnog izvora napajanja, u poređenju sa nezavisnim radom modula. Svi integrisani moduli istovremeno generišu odgovarajuće električne signale, kao posledica jedinstvene mehaničke pobude.

U početnom delu istraživanja urađena je teorijska analiza radnih mehanizama svih integrisanih modula, praćena odgovarajućim elektromagnetskim simulacijama, u cilju optimizacije dizajna i performansi hibridnog nanogeneratora. U eksperimentalnom delu istraživanja izvršena su merenja izlaznih karakteristika (napon, struja, snaga) pojedinačnih modula, kao i hibridne strukture. Nakon toga, testiran je i proces punjenja kondenzatora različitih kapacitivnosti od strane pojedinačnih modula, njihovih kombinacija i hibridnog nanogeneratora. Na kraju je ispitana efikasnost hibridnog nanogeneratora kao izvora napajanja prenosive elektronike.

Doktorska disertacija

2. Pregled literature vezane za temu disertacije

2.1. Ambijentalni izvori energije i principi generisanja električne energije

U neke od mnogobrojnih ambijentalnih izvora energije spadaju elektromagnetsko zračenje (solarna energija, veštačka svetlost, električno i magnetsko polje, radio talasi), mehanička energija (vetar, morski talasi, kišne kapi, pokreti tela, kretanje motornih vozila, zvuk), toplotna energija, biohemijska energija. U zavisnosti od izvora energije, postojeće tehnologije za sakupljanje ambijentalne energije baziraju se na sledećim efektima: triboelektrični, piezoelektrični, elektrostatički, elektromagnetski, magnetostrikcioni, fotoelektrični, termoelektrični, piroelektrični [6]. Prvih pet efekata se primenjuju za sakupljanje mehaničke energije, koja predstavlja jedan od najrasprostranjenijih izvora u okolini. Moguće primene zasnovane na tehnologijama za sakupljanje ambijentalne energije, u sklopu koncepta pametnih gradova i *Internet of Things* (IoT) su prikazane na slici 1 [6].

Slika 1. Pregled IoT aplikacija čiji rad može zavisiti od tehnologija za sakupljanje ambijentalne energije [6].

Triboelektrični nanogeneratori konvertuju mehaničku u električnu energiju kombinacijom triboelektričnog efekta i elektrostatičke indukcije. Elektrostatički generatori konvertuju mehaničku u električnu energiju usled promene kapacitivnosti strukture generatora (neophodan unapred naelektrisan dielektrik ili zaseban izvor napajanja za naelektrisanje elektroda). Piezoelektrični nanogeneratori konvertuju mehaničku u električnu energiju usled polarizacije piezoelektričnog materijala nakon delovanja spoljašnje sile. Elektromagnetski generatori konvertuju mehaničku u električnu energiju po principu Faradejevog zakona elektromagnetske indukcije. Magnetostrikcioni generatori koriste efekat obrnute magnetostrikcije za konverziju mehaničke u električnu energiju, gde pod uticajem spoljašnje sile fluks unutar magnetskog materijala varira kao posledica promene magnetske susceptibilnosti materijala, pri čemu se u zavojcima indukuje napon (magnetostrikcija je osobina mnogih magnetskih materijala da menjaju dimenzije pod uticajem magnetskog polja). Solarne ćelije konvertuju solarnu u električnu energiju usled polarizacije posebnih poluprovodničkih materijala pod uticajem sunčeve svetlosti. Termoelektrični generatori konvertuju toplotnu u električnu energiju na osnovu temperaturnog gradijenta (dT/dx), dok pirolektrični nanogeneratori konvertuju toplotnu u električnu energiju na osnovu promene temperature u vremenu (dT/dt). Standardno, antene sakupljaju elektromagnetsku energiju radio talasa i konvertuju je u napon [6].

2.2. Nanogeneratori za prikupljanje ambijentalne energije

Nanogeneratori su se pokazali kao pogodni za sakupljanje ambijentalne energije i prvenstveno su tako nazvani s obzirom da su prvi prototipovi koristili nanomaterijale. Međutim, bez obzira na prisustvo nanomaterijala, nanogeneratori predstavljaju male elektronske uređaje koji na osnovu Maksvelove struje električnog pomeraja ($J_D = dD/dt$) efikasno konvertuju mehaničku (piezoelektrični, triboelektrični) ili toplotnu (piroelektrični) energiju u električnu energiju, reda veličine od mikrovata (μ W) do milivata (mW) [7], [8]. Mogu biti pouzdan izvor napajanja za rad mnogih uređaja male snage vezanih za prenosivu elektroniku, mikroelektromehaničke sisteme (MEMS), kao i za bežične senzorske mreže, gde se mogu istovremeno koristiti i kao senzori [9].

Maksvelova struja električnog pomeraja, kao prirodni mehanizam, utiče na transfer elektrona kod nanogeneratora, tj. na konverziju mehaničke u električnu energiju. Standardni izraz za vektor električnog pomeraja D ($D = \varepsilon_0 E + P$) treba proširiti dodatnim vektorom polarizacije P_S ($D = \varepsilon_0 E$

+ $P + P_s$), kako bi se definisao rad nanogeneratora kao uređaja koji generišu energiju i kao senzora [10], [11]. Prvi član u izrazu, $\varepsilon_0 E$, je posledica električnog polja koje stvaraju slobodna naelektrisanja. Drugi član, vektor polarizacije P, predstavlja polarizaciju dielektrika usled postojanja električnog polja u samom dielektriku. Vektor P_s ne zavisi od toga da li postoji električno polje, već predstavlja polarizaciju dielektrika usled elektrostatičkih naelektrisanja akumuliranih na površi dielektrika. Elektrostatička naelektrisanja se indukuju kao posledica piezoelektričnog ili triboelektričnog efekta pokrenutog nakon delovanja spoljašnje sile na nanogenerator, kao i usled promene temperature (piroelektrični efekat). Površinska gustina elektrostatičkih naelektrisanja se može izraziti kao $\sigma_s = n \cdot P_s$, gde je n normala na površ dielektrika. Rad nanogeneratora je teorijski baziran na promeni vektora polarizacije P_s u vremenu, d P_s/dt [10], [11]. Nanogeneratori se po načinu indukovanja naelektrisanja dele na piezoelektrične, triboelektrične i piroelektrične nanogeneratore.

Prva generacija nanogeneratora, piezoelektrični nanogeneratori (PENG), realizovani su 2006. godine i njihov rad se zasniva na piezoelektričnom efektu koji se javlja u posebnim poluprovodničkim materijalima nakon deformacije [12]-[14]. Ovakvi materijali se nazivaju i piezoelektrični materijali i postavljeni su između dve metalne elektrode. U kristalnoj strukturi piezoelektričnih materijala centri pozitivnih i negativnih naelektrisanja se poklapaju. Nakon delovanja spoljašnje sile kristalna struktura se deformiše (centri pozitivnih i negativnih naelektrisanja se razdvajaju), pri čemu dolazi do polarizacije materijala i formiranja električnih dipola. Vezana naelektrisanja akumulirana na krajevima piezoelektričnog materijala stvaraju električno polje, usled čega dolazi do pojave napona između elektroda nanogeneratora, što će prouzrokovati kretanje elektrona kroz spoljašnje kolo. Nakon prestanka delovanja spoljašnje sile, PENG se vraća u početni oblik, a elektroni teku u suprotnom smeru. Na ovaj način se vrši konverzija mehaničke u električnu energiju. PENG je izuzetno osetljiv na delovanje spoljašnje sile, pa se često primenjuje i kao senzor za detekciju dodira, vibracija, zvučnih talasa [14].

Nakon piezoelektričnih nanogeneratora, 2012. godine su razvijeni i triboelektrični nanogeneratori, takođe za konverziju mehaničke u električnu energiju, čiji rad se zasniva na kombinaciji triboelektričnog efekta i elektrostatičke indukcije [15]-[18]. Triboelektrični efekat je prirodna pojava gde se usled periodičnog kontakta i razdvajanja dva triboelektrična materijala različitih polariteta može generisati elektricitet. Ova pojava je uglavnom nepoželjna, ali je u slučaju triboelektričnih nanogeneratora efikasno iskorišćena. Bar jedan triboelektrični materijal mora biti dielektrik, s obzirom da dielektrici imaju sposobnost da nakon kontakta duži vremenski period zadrže indukovana naelektrisanja na svojoj površi. Standardno, triboelektrični nanogenerator sadrži dva dielektrika postavljena između metalnih elektroda, a postoji mogućnost i da umesto dielektrika jedna od elektroda bude ujedno i kontaktna triboelektrična površ [17], [18].

Pod uticajem spoljašnje sile, usled kontakta triboelektričnih materijala, na njihovim površima se indukuju naelektrisanja suprotnog znaka. Nakon prestanka delovanja spoljašnje sile i razdvajanja materijala, javlja se električno polje između triboelektričnih naelektrisanja, a ujedno i napon između elektroda nanogeneratora, što će prouzrokovati kretanje elektrona od jedne elektrode ka drugoj, kako bi se eliminisala potencijalna razlika. Nakon ponovnog kontakta triboelektričnih materijala, naelektrisanja su kompenzovana tako da nema napona između elektroda nanogeneratora. Kako varira rastojanje između kontaktnih površi, tako se kroz spoljašnje kolo indukuje naizmenična struja [17], [18]. Mehanička energija iz okoline je često nepredvidiva, i javlja se u vidu oscilacija različitih amplituda i frekvencije, stoga nanogeneratori uglavnom nisu pogodni za direktno napajanje elektronike, već se generisana električna energija mora prvo skladištiti kako bi se obezbedio stabilan izlazni signal [19].

Prednost triboelektričnih nanogeneratora jeste ta što generalno mogu dostići veću izlaznu snagu u poređenju sa ostalim nanogeneratorima, što im omogućava široku primenu u pametnom sportu [20], za napajanje prenosive elektronike [21], [22], u okviru sistema za biohemijsku detekciju [23], u medicini za kontrolisano davanje terapije [24]. Performanse triboelektričnih nanogeneratora se mogu poboljšati izborom odgovarajućih triboelektričnih materijala, kao i modifikacijom kontaktnih površi, gde se formiranjem nanostruktura povećava triboelektrični efekat i količina akumuliranih naelektrisanja [25]-[27]. Kombinacije materijala koje se u literaturi najčešće koriste za fabrikaciju triboelektričnih nanogeneratora prikazane su na slici 2 [28]. Zavisno od izvora energije i primene, optimizacija dizajna TENG-a je takođe vrlo važna u cilju poboljšanja performansi [29], [30].

Slika 2. Pregled kombinacija materijala koje se u literaturi najčešće koriste za fabrikaciju triboelektričnih nanogeneratora [28].

Na osnovu različitih radnih mehanizama, triboelektrični nanogeneratori mogu biti u režimu kontakt-razdvajanje (slika 3a), u kliznom režimu (slika 3b), u režimu sa jednom elektrodom (slika 3c), i u režimu gde nezavisni triboelektrični materijal osciluje između fiksnih elektroda (slika 3d) [31], [32].

Slika 3. a) TENG u kontaktnom režimu, b) TENG u kliznom režimu, c) TENG u režimu sa jednom elektrodom, d) TENG u režimu gde nezavisni triboelektrični materijal osciluje između fiksnih elektroda.

TENG u kontaktnom režimu (slika 3a) može biti efikasan za prikupljanje mehaničke energije na niskim frekvencijama, kao što su pokreti tela ili različite vibracije. TENG u kliznom režimu (slika 3b) je pogodan da se implementira u linearnim ili rotacionim sistemima, za sakupljanje mehaničke energije kao što su energija vetra i morskih talasa, ili kretanje motornih vozila. Trenje između triboelektričnih materijala može poboljšati triboelektrični efekat. U poređenju sa TENGom u kontaktnom režimu, transfer naelektrisanja u slučaju kliznog TENG-a je kontinualan, s obzirom da je efektivni pomeraj između kontaktnih površi veći [32].

TENG sa jednom uzemljenom elektrodom (slika 3c) ima najjednostavniju strukturu. Naizmenična struja kroz spoljašnje kolo nastaje usled kontakta i razdvajanja elektrode i nezavisnog triboelektričnog materijala. Usled nešto nižih vrednosti izlaznih signala, TENG sa jednom elektrodom se uglavnom koristi kao senzor za sakupljanje informacija o objektima koji se slobodno kreću u okolini. TENG u kom nezavisni triboelektrični materijal (npr. koža, tekstil) osciluje između dve fiksne elektrode može da bude u kontaktnom ili u kliznom režimu. Tokom oscilacija triboelektričnog materijala generiše se razlika potencijala između elektroda, a nakon toga i naizmenična struja kroz spoljašnje kolo. Najjednostavnija od mogućih struktura je prikazana na slici 3d, gde su dve elektrode postavljene po dužini na određenom rastojanju, dok se dielektrik slobodno pomera između njih. Dielektrik ne mora imati ni elektrodu, ni dodatne priključke.

Činjenica je da se velika količina generisane energije izgubi svaki dan u vidu toplotne energije. Rad piroelektričnih nanogeneratora zasniva se na piroelektričnom efektu [33], [34] gde se toplotna energija konvertuje u električnu energiju, uz pomoć posebnih materijala sa piroelektričnim i poluprovodničkim osobinama. Usled promene temperature dolazi do polarizacije piroelektričnog materijala i do pojave napona između elektroda nanogeneratora, što će prouzrokovati protok struje kroz spoljašnje kolo. S obzirom da imaju veliku osetljivost, piroelektrični nanogeneratori se najčešće koriste kao temperaturni senzori [34].

2.3. Metode za fabrikaciju nanogeneratora

Neke od dostupnih tehnologija za fabrikaciju mikro/nanomaterijala i fleksibilne elektronike mogu poboljšati performanse nanogeneratora i dovesti do njihove masovne proizvodnje [35], [36].

Meka litografija se često koristi za formiranje nanostruktura na kontaktnim površima TENGa, pri čemu se rastvor odgovarajućeg polimera (najčešće polidimetilsiloksan - PDMS) izliva na silikonski kalup sa nanostrukturama koje se nakon izlaganja vrelom vazduhu preslikavaju na površ polimera. Nakon odvajanja od kalupa, dobija se hrapav polimerni film koji se koristi kao triboelektrični materijal (Slika 4a) [37]. Zbog povećanja efektivne kontaktne površi, TENG će imati bolje performanse. Glavne prednosti ove procedure jesu ekonomičnost, jednostavnost i mogućnost ponovnog korišćenja postojećih kalupa. Postoje različite tehnike za formiranje nanostruktura na površi kalupa, a jedna od najefikasnijih jeste nagrizanje površi korišćenjem hlorovodonične kiseline ili acetona.

Slika 4. Neke od metoda za fabrikaciju nanogeneratora: a) meka litografija [37], b) tretman jonizovanom parom [38], c) tehnologija ICP graviranja [38], d) TENG napravljen 3D štampom [43], e) *electrospinning* [44].

Roll-to-roll proizvodnja se zasniva na utiskivanju nanostruktura na tanak fleksibilni film velikih razmera. Jedna od mogućnosti za utiskivanje nanostruktura jeste izloženost svetlosti. Fotolitografija je tehnika koja koristi UV zrake za precizno urezivanje dizajna sa optičke maske na hemikaliju nanetu na substrat osetljivu na svetlost [37]. Hemikalija se stvrdnjava pri izlaganju svetlosti, dok se delovi koji nisu bili izloženi uklanjaju odgovarajućim rastvaračima. Talasna dužina svetlosti utiče na veličinu utisnutih nanostruktura. *Spin coating* se često koristi u fotolitografiji za nanošenje tankih filmova na substrat [37]. Mala količina hemikalije se premazuje na substrat koji rotira pri velikoj ugaonoj brzini, kako bi se hemikalija ravnomerno raširila usled centrifugalne sile, što traje dok se ne postigne željena debljina filma.

Hemijska modifikacija površi je efikasan način da se poveća površinska gustina naelektrisanja na triboelektričnim materijalima. Tretman jonizovanom parom podrazumeva ubacivanje jona pomoću uređaja koji proizvodi jonizovani vazduh odgovarajućeg polariteta. Naelektrisani joni se akumuliraju na površi materijala putem elektrostatičke adsorpcije (Slika 4b) [38]. Tehnologija *Inductively Coupled Plasma* (ICP) graviranja koristi reaktivnu jonizovanu plazmu za nagrizanje površi pri čemu se formiraju nanostrukture na triboelektričnim materijalima i povećava efektivna površ TENG-a (Slika 4c) [38]. Različitim hemijskim reakcijama se može postići da materijali lakše primaju ili otpuštaju elektrone, čime se poboljšavaju njihova triboelektrična svojstva.

Metoda hemijskog taloženja pare je uobičajena za proizvodnju tankih filmova visokog kvaliteta i performansi, i može se koristiti za fabrikaciju piezoelektričnih, triboelektričnih i piroelektričnih nanogeneratora [39]. Substrat je u vakuumskoj komori izložen česticama pare odgovarajućeg polimera, koje se nakon kontakta razlažu na površi substrata formirajući tanak film, dok se nusproizvodi uklanjaju iz komore. Mnoga istraživanja u oblasti nanogeneratora su fokusirana na unapređenje poluprovodničkih materijala sa piezoelektričnim i piroelektričnim osobinama kao što su cink oksid (ZnO), kadmijum sulfid (CdS), galijum nitrid (GaN), olovo cirkonat titanat (PZT), barijum titanat (BTO) i poliviniliden fluorid (PVDF). Prednost ovih materijala je jednostavna i ekonomična fabrikacija, pri čemu se koristi hidrotermalna sinteza zasnovana na kristalizaciji supstanci iz vodenih rastvora visoke temperature, u komori pod visokim pritiskom [39].

Obrada površi pomoću laserske ablacije omogućava brzu i efikasnu fabrikaciju nanonstruktura na površima različitih triboelektričnih materijala. Često se prenose mikro/nanostrukture lišća, s obzirom na to da mnogi biološki sitemi u prirodi nude inspiraciju za biomimetičko dizajniranje triboelektričnih površi, kao i za projektovanje TENG struktura [40]. Značajan korak ka čistoj energiji i realizaciji triboelektričnih nanogeneratora predstavlja ispitivanje i modifikacija biorazgradivih materijala na bazi celuloze [41]. Triboelektrični materijali se takođe često fabrikuju u vidu poroznog sunđera korišćenjem različitih hemijskih ili fizičkih metoda (npr. metode za fabrikaciju tekstila), gde se pored povećanja efektivne kontaktne površi TENG-a poboljšava i njegova elastičnost [42]. 3D štampa je efikasna procedura za izradu prototipova složenih 3D triboelektričnih nanogeneratora sa poroznom i elastičnom strukturom (Slika 4d) [43].

Electrospinning je jedna od najzastupljenijih procedura za izvlačenje naelektrisanih nanovlakana iz rastvora polimera, koja se potom koriste za proizvodnju fleksibilnih materijala različitih površi i poroznosti (Slika 4e) [44]. Nakon što se rastvor polimera u špricu ispusti do vrha igle, između vrha igle i kolektora se formira električno polje usled primene dovoljno visokog napona. Kao posledica električne sile, tečnost se isteže usled čega nastaje naelektrisani mlaz usmeren ka kolektoru. Naelektrisani mlaz tečnosti se suši u letu formirajući nanometarska vlakna koja se potom upredaju i koriste za fabrikaciju piezoelektričnih, triboelektričnih i piroelektričnih nanogeneratora.

2.4. Primena nanogeneratora

Potencijalna primena piezoelektričnih i triboelektričnih nanogeneratora može biti u medicini, u vidu izvora napajanja za uređaje koji vrše kontinualni monitoring parametara organizma [45], [46], gde se biomehanička energija konvertuje u električnu energiju. Mogu se koristiti i kao senzori za dijagnostiku kod pacijenata sa kardiovaskularnim ili respiratornim bolestima, za detekciju različitih fizioloških signala kao što su udisaj, puls, krvni pritisak i drugi ECG parametri (slika 5a) [47], [48]. Unapređenjem materijala, nanogeneratori će moći da sakupljaju biomehaničku energiju na osnovu otkucaja srca ili kontrakcije mišića i generišu elektricitet koji se može iskoristiti za napajanje pejsmejkera i drugih medicinskih implantata (slika 5b) [49], [50]. Nanogenerator integrisan u obuću, odeću, ili u sportsku opremu (npr. sat, narukvica) može sakupljati energiju na osnovu svakodnevnih aktivnosti čoveka [51], [52], pri čemu se lako može identifikovati bilo kakav poremećaj u pokretima tela. Pomoću bluetooth tehnologije za bežični prenos podataka, detektovani signal može biti prikazan na telefonu/računaru u realnom vremenu, pri čemu se smanjuje rizik od povreda, pogotovo kod starijih ljudi. Slika 5c prikazuje fleksibilnu triboelektričnu traku sa sopstvenim napajanjem za prepoznavanje identiteta osobe na osnovu analize pokreta tela [53].

Slika 5. a) Triboelektrični tekstilni senzor za praćenje fizioloških signala [47], b) TENG u vidu srčanog pejsmejkera [49], c) triboelektrična traka za praćenje i analizu pokreta tela u svrhu prepoznavanja identiteta osobe na osnovu jedinstvenog obrasca hoda [53], d) TENG sa strukturom travnjaka za sakupljanje energije vetra proizvoljnog smera [55], e) senzor za detekciju visine talasa kao deo pametne pomorske opreme [58], f) mreža TENG jedinica za moni-toring stanja automobilskih guma [61].

Najvažniji obnovljivi izvori mehaničke energije u prirodi jesu hidroenergija i energija vetra, koji mogu da posluže kao potencijalna zamena za tradicionalna fosilna goriva. Stoga je poslednjih godina veliko interesovanje naučnika usmereno ka dizajniranju odgovarajućih nanogeneratora za sakupljanje energije vetra, morskih talasa i kiše [54]. Na primer, TENG za sakupljanje energije vetra se može instalirati na krovu kuće i koristiti kao održiv izvor napajanja za pojedine električne uređaje [6]. Slika 5d prikazuje TENG sa strukturom travnjaka, gde pojedinačne TENG jedinice generišu elektricitet na bazi kontakta i razdvajanja [55]. TENG ima prednost nad EMG-om kada se radi o efikasnosti konverzije mehaničke energije na niskim frekvencijama, gde spadaju i morski talasi koji imaju veliku snagu, ali su nepravilne prirode [56]. Mreža nanogeneratora se uvek može iskoristiti kako bi se povećala generisana snaga [57], a pogodna je i za monitoring okeana i vremenskih uslova. Slika 5e prikazuje potencijalnu primenu TENG-a integrisanog u okviru pomorske platforme, u vidu senzora za detekciju visine talasa [58].

Monitoring u saobraćaju je takođe važan kako bi se osigurala bezbednost putnika i vozila [59], [60]. Nanogeneratori instalirani u motornim vozilima mogu sakupljati neiskorišćenu mehaničku energiju u vidu vibracija ili rotacija i iskoristiti je za napajanje mikrokontrolera u vozilu. Mogu raditi i kao senzori za monitoring okoline i unutrašnjosti vozila, kao što je npr. monitoring temperature, stanja motora i guma (slika 5f) [61], nivoa goriva, ponašanja vozača (ubrzanje, kočenje), brzine vozila [62]. Integracijom nanogeneratora može se smanjiti višak žica u vozilu, intenzitet neželjenih vibracija, kao i emisija štetnih gasova u atmosferu.

Razvojem i budućom primenom 5G tehnologije izvesno je da će doći do povećanja broja različitih IoT uređaja integrisanih u okviru pametnih kuća, vozila, zgrada, bolnica, fabrika i gradova, dok njihovo napajanje predstavlja veliki izazov [63], [64]. Nanogeneratori koji ujedno mogu biti i senzori i izvori napajanja spadaju u novu generaciju aktivnih senzora za prikupljanje različitih informacija iz okoline kao što su: pozicija i pomeraj tela (npr. detekcija putanje igrača ili lopte na sportskom terenu, slika 6a [65]), brzina i ubrzanje tela (npr. detekcija prekoračenja brzine vozila), zvuk (npr. prepoznavanje glasovnih komandi, slika 6b [66]), vibracije (npr. detekcija abnormalnog stanja mašina), vlažnost vazduha, brzina vetra (npr. monitoring vremenskih uslova u poljoprivredi), temperatura, pritisak (npr. u okviru sigurnosnih sistema) [6]. Električna energija koju generiše nanogenerator se može skladištiti dok je senzor u "*sleep*" modu i iskoristiti za obradu i slanje podataka kada je senzor aktivan. Nanogeneratori se mogu koristiti za upravljanje aktuatorima, za rad aplikacija vezanih za veštačku inteligenciju, ili predstavljati neke od osnovnih komponenti za pametne robote [67], [68].

Slika 6. a) Mreža TENG jedinica integrisana u okviru statističkog sistema za detekciju i analizu pozicije i putanje lopte u stonom tenisu [65], b) triboelektrični slušni senzor za prepoznavanje zvuka u opsegu od 100 Hz do 5000 Hz [66], c) fleksibilni triboelektrični senzor za 3D upravljanje robotskom rukom [76], d) personalizovana tastatura sa sopstvenim napajanjem za zaštitu protiv neovlašćeng pristupa računaru [77], e) pametne rukavice za prepoznavanje gestova u realnom vremenu, u svrhu upravljanja virtuelnim aplikacijama [80], f) prototip sistema za tumačenje govora na osnovu detekcije pokreta usana [82].

Fleksibilni, tanki, transparentni nanogeneratori ne zahtevaju dodatnu bateriju, lako se mogu prilagoditi bilo kojoj površi, i veoma su osetljivi na intenzitet spoljašnje sile, zbog čega mogu biti izuzetno važni u robotici, za uspostavljanje interakcije između čoveka i mašine [69]-[72]. Često se koriste kao senzori za detekciju dodira, gde se pri svakom kontaktu identifikuju pulsevi, a ukoliko se formira matrica nanogeneratora, može se pratiti lokacija, smer i brzina dodira u realnom

vremenu [73]-[75]. Slika 6c predstavlja fleksibilni triboelektrični senzor sa sopstvenim napajanjem za 3D prostorno upravljanje, pri čemu se može kontrolisati putanja i brzina kretanja robotske ruke [76].

TENG je ekonomičan, ima jednostavnu strukturu, i daje jasan i brz odziv na mehaničku pobudu, stoga se može implementirati u slučaju pametnog prekidača, displeja ili tastature, gde se na osnovu karakteristika dodira/kucanja može izvršiti identifikacija korisnika, s obzirom da generisani električni signal sadrži podatke o intenzitetu i frekvenciji sile koja deluje na TENG (slika 6d) [77], [78]. Neiskorišćena mehanička energija se nakon konverzije može skladištiti i iskoristiti za napajanje osvetljenja na prekidaču, ekranu ili tastaturi. U kombinaciji sa metodama mašinskog učenja, pametne rukavice sa integrisanim TENG senzorima na prstima i zglobovima se mogu koristiti za prepoznavanje gestova ili za detekciju objekata u okolini, u svrhu bežičnog upravljanja elektronskim uređajima (kućni aparati, vozila, dronovi) [79], za upravljanje virtuelnim aplikacijama (slika 6e) [80], kao i za prevod znakovnog jezika u govor [81]. Slika 6f prikazuje prototip sistema za konverziju pokreta usana u određenu komandu ili govor, pomoću fleksibilnog triboelektričnog senzora i dobro obučenog modela neuronske mreže [82].

2.5. Hibridni nanogeneratori

Energija koju samostalno generišu nanogeneratri često nije dovoljna za primenu u praksi. Hibridna tehnologija je jedno od mogućih rešenja kako bi se proširilo područje primene nanogeneratora [83], [84]. Zasniva se na integraciji više generatora sa različitim radnim mehanizmima, koji simultano ili u različitim vremenskim intervalima sakupljaju ambijentalnu energiju, u cilju povećanja efikasnosti konverzije uređaja [85]-[87].

Jedna od ideja jesu hibridni nanogeneratori za sakupljanje energije koja potiče od različitih izvora iz okoline (mehanička, solarna, toplotna energija), s obzirom da su pojedini izvori energije kao što je solarna energija ili energija vetra, dostupni samo pod određenim uslovima (slika 7a) [88]-[90]. Rad solarnih ćelija se zasniva na fotoelektričnom efektu i karakteriše ih dug životni vek, kao i velika izlazna snaga. Ukoliko se uz solarne ćelije integriše i TENG, hibridni uređaj će pored solarne energije moći da sakuplja i mehaničku energiju (energija kišnih kapi, vetra, pokreti tela,

kretanje motornih vozila), nezavisno od toga kakvi su vremenski uslovi, čime se poboljšavaju njegove performanse (slika 7b) [91], [92]. Zbog drugačijih radnih mehanizama, integrisani moduli će detektovati više različitih signala iz kojih se može izvući velika količina podataka, pa se hibridni uređaji mogu koristiti i kao senzori sa sopstvenim napajanjem (slika 7c) [93], [94]. Na primer, u okviru temperaturnog senzora može se kombinovati piroelektrični ili termoelektrični efekat za praćenje temperaturnih parametara, kao i triboelektrični ili piezoelektrični efekat za konverziju mehaničke u električnu energiju radi napajanja senzora [95], [96].

Slika 7. a) Mreža triboelektričnih nanogeneratora integrisana sa vetrogeneratorima i solarnim panelima u okviru pomorske platforme za sakupljanje ambijentalne energije [88], b) fleksibilan fotonaponski-triboelektrični uređaj integrisan sa superkondenzatorom za sakupljanje i skladištenje biomehaničke i solarne energije, u svrhu napajanja prenosive elektronike [91], c) fotonaponski-triboelektrični disk sa sopstvenim napajanjem za bežičnu kontrolu pristupa [93], d) piezoelektrični-triboelektrični senzor fabrikovan u vidu multifunkcionalne čarape sa sopstvenim napajanjem, za sakupljanje biomehaničke energije i detekciju fizioloških signala, kao i za praćenje obrasca hoda u medicinskoj dijagnostici, sportu i za rad različitih aplikacija u okviru pametne kuće [104].

S obzirom da je prenosiva elektronika uglavnom neposredno vezana za aktivnosti čoveka, hibridni nanogenerator koji sakuplja neiskorišćenu mehaničku energiju iz okoline je najpogodniji kao potencijalni izvor napajanja takvih uređaja [97]-[100]. U zavisnosti od primene, za sakupljanje mehaničke energije moguće je kombinovati elektromagnetski [101]-[103], triboelektrični i piezoelektrični efekat. Triboelektrični i piezoelektrični nanogenerator imaju dosta sličnosti s obzirom da generišu naelektrisanje po principu elektrostatičke indukcije. Jednostavnom integracijom TENG-a i PENG-a može se dobiti kompaktan i fleksibilan hibridni uređaj za efikasno sakupljanje mehaničke energije na niskim frekvencijama (slika 7d) [104]-[107].

Glavne prednosti EMG-a su velika izlazna struja, robusnost i dugotrajnost, zbog čega je možda najinteresantniji za sintezu sa TENG-om [108], [109], u cilju povećanja efikasnosti hibridnog uređaja kao izvora napajanja za različite IoT aplikacije [110]-[113]. Elektromagnetski-triboelektrični nanogeneratori mogu sakupljati energiju vetra (slika 8a) [114]-[117] i morskih talasa (slika 8b) [118]-[121] energiju generisanu na osnovu kretanja čoveka (pokreti ruku, hodanje, trčanje, skakanje, slika 8c) [122]-[125], kao i energiju različitih vibracija [126]-[129] u širokom frekvencijskom opsegu. Mogu se koristiti i kao senzori, npr. u okviru pametnih kuća (slika 8d) [130], [131] i vozila (slika 8e) [132], u interakciji čovek-računar (slika 9a) [133], [134], kao i za monitoring okoline (slika 9b) [135]-[137] i vremenskih uslova [138]. Takođe, potencijalna primena elektromagnetskih-triboelektričnih nanogeneratora može biti u industriji za detekciju mehaničkih kvarova [139], za napajanje savremenih sistema za prečišćavanje vode [140], kao i sistema za prikupljanje toplotne energije [141].

Slika 8. a) Rotacioni elektromagnetski-triboelektrični nanogenerator za sakupljanje energije vetra i vode, kao deo bežičnog sistema za monitoring vremenskih uslova u poljoprivredi [114], b) elektromagnetski-triboelektrični nanogenerator zasnovan na elektrodama u obliku saća, za prikupljanje energije morskih talasa nepravilne prirode [118], c) elektromagnetski-triboelektrični nanogenerator za sakupljanje biomehaničke energije, kao deo sistema za praćenje pokreta tela i kontrolu ravnoteže [122], d) elektromagnetski-triboelektrični nanogenerator u vidu tastera za prikupljanje biomehaničke energije, u svrhu razvitka nove generacije tastatura sa sopstvenim napajanjem, i sa potencijalnom primenom u okviru sigurnosnih sistema [130], e) elektromagnetski-triboelektrični-piezoelektrični nanogenerator za sakupljanje vibracione energije, kao potencijalni izvor napajanja bežičnih senzorskih mreža, npr. u okviru sistema za praćenje pritiska u gumama [132].

Elektromagnetski-triboelektrični nanogeneratori mogu biti integrisani u okviru medicinskih pomagala za monitoring aktivnosti osoba koje imaju poteškoće sa kretanjem [142], ili se mogu koristiti za napajanje bežičnih senzorskih mreža za monitoring dalekovoda [143]. Moguća je i primena u okviru sistema koji koriste veštačku inteligenciju, npr. u robotici kao hibridni taktilni senzor gde se triboelektrični i induktivni signali koriste za precizno sortiranje različitih objekata,

uz pomoć metoda mašinskog učenja (slika 9c) [144], ili kao fleksibilni senzor sa sopstvenim napajanjem za detekciju putanje u 3D prostoru (slika 9d) [145]. Mogu se implementirati i u pametnim fabrikama kao deo transportnog sistema sa sopstvenim napajanjem za praćenje i identifikaciju proizvoda u realnom vremenu, gde se triboelektrični signal koristi za identifikaciju veličine proizvoda, materijala i brzine kretanja, dok EMG napaja mikrokontroler gde se vrši obrada i bežični prenos podataka (slika 9e) [146].

Slika 9. a) Elektromagnetski-triboelektrični nanogenerator u vidu senzora sa sopstvenim napajanjem za upravljanje naprednim aplikacijama [133], b) upakovani elektromagnetski-triboelektrični nanogenerator sa rotacionim klatnom

za sakupljanje biomehaničke energije i energije morskih talasa, u svrhu napajanja uređaja za monitoring zdravstvenog stanja organizma, ili kao deo IoT platforme za monitoring okeana [135], c) elektromagnetski-triboelektrični taktilni senzor u vidu robotske ruke za precizno sortiranje različitih objekata u realnom okruženju [144], d) fleksibilni elektromagnetski-triboelektrični nanogenerator za 3D detekciju putanje [145], e) elektromagnetski-triboelektrični nanogenerator za rator kao deo pametnog transportnog sistema sa spostvenim napajanjem [146].

Zbog svih navedenih prednosti i primena koje elektromagnetski-triboelektrični nanogeneratori mogu imati, u ovoj doktorskoj disertaciji je realizovan hibridni nanogenerator kompaktnog dizajna, koji se sastoji od: dva EMG-a, cik-cak TENG-a u kontaktnom režimu i cilindričnog TENG-a u kliznom režimu. Svi integrisani moduli istovremeno sakupljaju mehaničku energiju i konvertuju je u napon. Nakon definisanja matematičkog modela hibridnog nanogeneratora, praćenog odgovarajućim simulacijama, na fabrikovanom uređaju je izvršen niz merenja u cilju detaljne analize njegovih izlaznih performansi.

3. Struktura hibridnog elektromagnetskog-triboelektričnog nanogeneratora

Struktura analiziranog hibridnog nanogeneratora je šematski prikazana na slici 10. Sastoji se od tri modula: EMG modul, TENG u kontaktnom režimu i TENG u kliznom režimu. EMG modul sadrži dva elektromagnetska generatora, EMG1 i EMG2, napravljena u vidu dva kalema koji su fiksirani unutar žlebova nanogeneratora (slike 10a i 10b) i magneta koji se pomera duž ose nanogeneratora (slika 10c). Cik-cak TENG sadrži dve ćelije u kontaktnom režimu (slika 10d) i postavljen je na dno baze (slika 10a). Sa gornje strane je pričvršćen za magnet, tako da proces kontakta i razdvajanja triboelektričnih materijala (aluminijum i kapton) prati kretanje magneta, u isto vreme generišući naelektrisanje. U slučaju cilindričnog TENG-a u kliznom režimu, unutrašnja elektroda prekrivena teflonom (slika 10d) takođe prati kretanje magneta, pri čemu dolazi do trenja sa spoljašnjom elektrodom (aluminijum) fiksiranom unutar baze (slika 10b), što se potom konvertuje u napon.

Slika 10. a) Šematski prikaz hibridnog nanogeneratora i njegovih pojedinačnih delova: b) baza, c) pokretni deo, d) cik-cak TENG.
4. Princip rada hibridnog elektromagnetskog-triboelektričnog nanogeneratora

Jedan kompletan ciklus stvaranja naizmenične struje u oba EMG-a, kao i u TENG modulima, u režimu kratkog spoja, prikazan je na slici 11. Elektromagnetski deo nanogeneratora sinhronizovan je sa triboelektričnim delom.

Slika 11. Princip rada hibridnog elektromagnetskog-troboelektričnog nanogeneratora. Raspodela linija vektora magnetske indukcije simulirana je u CST Studio Suite softveru koristeći magnetostatički solver.

Princip rada EMG modula je zasnovan na Faradejevom zakonu elektromagnetske indukcije. Kada magnet stoji, što je u poziciji z = 0 mm (slika 11a) i z = 15 mm (slika 11c), magnetski fluks kroz kalemove je konstantan i indukovana elektromotorna sila je tada jednaka nuli. Kada se magnet kreće nagore (slika 11b), magnetski fluks kroz donji kalem se smanjuje, dok se fluks kroz gornji kalem povećava, što će prouzrokovati indukovane elektomotorne sile suprotnih orijentacija u kalemovima. Prema Lencovom zakonu, indukovane struje u oba kalema opterećenog generatora teže da se suprotstave promeni magnetskog fluksa kroz njih. Kada se magnet pomera nadole (slika 11d), promena magnetskog fluksa kroz kalemove će biti obrnuta, a indukovane struje će teći u suprotnom smeru u odnosu na prethodni slučaj. Kalemovi su vezani redno kako bi se povećao izlazni napon.

Princip rada TENG modula je zasnovan na triboelektričnom efektu i na elektrostatičkoj indukciji. Kad pod uticajem spoljašnje sile magnet dostigne početnu poziciju (z = 0 mm, slika 11a), triboelektrični parovi aluminijum/kapton (cik-cak TENG) i aluminijum/teflon (klizni TENG) istovremeno dolaze u potpuni kontakt. Uzimajući u obzir njihove suprotne polaritete, elektroni sa aluminijumske elektrode prelaze na kapton/teflon i jednaka količina pozitivnih i negativnih naelektrisanja biće ravnomerno raspoređena na kontaktnim površima svakog TENG-a.

U slučaju TENG-a u kontaktnom režimu, nakon prestanka delovanja spoljašnje sile, pozitivno naelektrisan aluminijum i negativno naelektrisan kapton razdvojiće se pod uticajem opruga, a magnet počinje da se kreće nagore (slika 11b). Razlika potencijala između elektroda prouzrokovaće transfer elektrona od elektrode sa spoljašnje strane kaptona, koji će postepeno neutralisati pozitivna triboelektrična naelektrisanja na kontaktnoj elektrodi. Sličan koncept važi i za TENG u kliznom režimu, gde se struja indukuje radi kompenzacije rasparenih triboelektričnih naelektrisanja u segmentima TENG-a gde nema preklapanja kontaktnih površi. To traje sve dok magnet ne dostigne najveći pomeraj (z = 15 mm, slika 11c), kada struja prestaje. Čim magnet počne da se kreće nadole (slika 11d), elektroni će teći u suprotnom smeru sve do početne pozicije (z = 0 mm), čime se završava jedan ciklus proizvodnje električne energije. Oba TENG-a rade istovremeno, što znači da će im izlazni signali biti u fazi, i stoga se mogu direktno vezati paralelno kako bi se povećala struja.

Raspodela potencijala u režimu praznog hoda, za jednu ćeliju cik-cak TENG-a u kontaktnom režimu, i cilindrični TENG u kliznom režimu, simulirana je u CST Studio Suite softveru koristeći elektrostatički solver, što je prikazano na slikama 12a i 12b, respektivno.

Slika 12. Raspodela potencijala u režimu praznog hoda za a) jednu ćeliju cik-cak TENG-a, b) TENG u kliznom režimu. Dat je prikaz tri pozicije, kada je pomeraj magneta z = [0, 7.5, 15] mm.

U početnoj poziciji (z = 0 mm), kada su triboelektrični materijali u potpunom kontaktu, razlika potencijala između elektroda (napon praznog hoda) je blizu nule. Razlika potencijala se povećava sa povećanjem pomeraja magneta, tj. odstojanja između kontaktne elektrode i kaptona/teflona. Pri najvećem pomeraju magneta (z = 15 mm), napon praznog hoda dostiže teorijski mogući maksimum za oba TENG-a.

5. Teorijska analiza modula hibridnog nanogeneratora

5.1. EMG modul

U slučaju cilindričnog magneta, intenzitet vektora magnetske indukcije B na rastojanju z od površine magneta se može izračunati kao [147]:

$$B(z) = \frac{B_r}{2} \left(\frac{z+h}{\sqrt{(z+h)^2 + r^2}} - \frac{z}{\sqrt{z^2 + r^2}} \right),\tag{1}$$

gde B_r predstavlja remanentnu indukciju, *r* je poluprečnik magneta, a *h* visina magneta. Uzimajući u obzir usvojene dimenzije neodimijumskog (NdFeB) magneta (*r* = 10 mm, *h* = 5 mm), vrednost vektora magnetske indukcije *B* kroz oba kalema će se menjati u zavisnosti od pomeraja magneta *z*, kao što je prikazano na slici 13a. Kalemovi su postavljeni na rastojanju *h* + 2*A*_m (slika 13b), gde je *A*_m amplituda pomeraja magneta.

Slika 13. a) Intenzitet vektora magnetske indukcija B u zavisnosti od pomeraja magneta z, b) poprečni presek EMG modula.

Elektromotorna sila indukovana u pojedinačnim kalemovima, tj. napon praznog hoda (U_{OC}) EMG-a, može se izračunati na osnovu Faradejevog zakona [148], [149]:

$$U_{oc} = -N \frac{d\Phi}{dt},\tag{2}$$

gde je N broj zavojaka u kalemu, a Φ magnetski fluks kroz jedan zavojak kalema. Notacija korišćena u disertaciji za vremenski promenljive veličine je u skladu sa literaturom i notacijom korišćenom u radu [150]. Princip rada EMG modula zasniva se na relativnom kretanju između magneta i kalemova, tj. na dinamičkoj elektromagnetskoj indukciji. Stoga se jednačina (2) može napisati kao:

$$U_{oc} = -N \frac{d(BS)}{dt} = -NS \frac{dB}{dz} \frac{dz}{dt} = -NS \frac{dB}{dz} v,$$
(3)

gde je *B* magnetska indukcija kroz kalem, *S* je površina kalema, *z* je pomeraj magneta, a *v* je brzina kretanja magneta. Kod praktične realizacije je uzeto da oba kalema imaju po 500 zavojaka, dok su unutrašnji poluprečnik, spoljašnji poluprečnik i visina kalemova 12 mm, 16 mm, i 3 mm, respektivno, što je iskorišćeno i za potrebe teorijske analize.

EMG se može predstaviti kao realni naponski generator sa malim unutrašnjim otporom. Stoga se struja kratkog spoja (*I*_{SC}), indukovana u pojedinačnim kalemovima, može odrediti kao:

$$I_{SC} = \frac{U_{OC}}{R_{EMG}} = -\frac{NS}{R_{EMG}} \frac{dB}{dz} v,$$
(4)

gde je R_{EMG} otpornost kalema. Uzimajući u obzir jednačine (3) i (4), U_{OC} i I_{SC} će zavisiti od vrednosti dB/dz i brzine magneta *v*, tako da se izlazni signali EMG-a mogu koristiti i za detektovanje brzine i frekvencije mehaničke pobude.

S obzirom da je optimizacija EMG modula neophodna prilikom dizajniranja efikasnog hibridnog uređaja za prikupljanje energije, slike 14a i 14b prikazuju zavisnost funkcije dB/dz od pomeraja magneta z, za različite visine i poluprečnike magneta. Da bi se povećala maksimalna vrednost |dB/dz|, a ujedno i indukovani napon U_{OC} , može se povećati visina magneta ili smanjiti njegov poluprečnik, kao što je prikazano na slikama 14a i 14b. Takođe, smanjenjem poluprečnika pozicija maksimuma funkcije |dB/dz| pomera se u levo (slika 14b), tako da se amplituda pomeraja magneta na taj način može smanjiti, kao i visina EMG modula. Dimenzije magneta r = 10 mm i h = 5 mm predstavljaju dobar kompromis između veličine i performansi EMG modula.

Slika 14. Funkcija dB/dz u zavisnosti od pomeraja magneta z za a) različite visine magneta (r = 10 mm), b) različite poluprečnike magneta (h = 5 mm).

Kako bi se za usvojene dimenzije magneta postigao kompaktan dizajn EMG modula, maksimalno rastojanje između magneta i svakog kalema trebalo bi da bude približno 15 mm ($A_m = 7.5$ mm), s obzirom da doprinos B(z) indukovanom naponu, za z > 15 mm, može da se zanemari (slika 13a). To je takođe potvrđeno analizom funkcije dB/dz, prikazane na slikama 14a i 14b. Može se uočiti da su vrednosti |dB/dz| blizu nule ako je rastojanje između magneta i kalema veće od 15 mm (žuta kriva na oba grafika, r = 10 mm i h = 5 mm), iz čega sledi da će i indukovani napon imati zanemarljivo male vrednosti.

Iako se periodično kretanje opruge modeluje sinusnom funkcijom, pogodnije je koristiti slučaj konstantnog ubrzanja, kako bi se pojednostavio proračun brzine magneta *v* [151]:

$$v = \sqrt{v_0^2 + 2a(z - z_0)},$$
(5)

gde z_0 predstavlja početnu poziciju, v_0 je početna brzina, a *a* je ubrzanje magneta. Brzina magneta *v* u zavisnosti od pomeraja magneta *z*, tokom jednog radnog ciklusa ($A_m = 25 \text{ mm}$), prikazana je na slici 15.

Slika 15. Brzina magneta v u zavisnosti od pomeraja magneta z, tokom jednog radnog ciklusa.

Magnet se prvo udaljava od kalema konstantnim ubrzanjem ($a = 1 \text{ m/s}^2$), sve do pozicije gde je $z = A_m$, a brzina maksimalna i iznosi v = 0,22 m/s. Nakon toga, magnet usporava kretanje ($a = -1 \text{ m/s}^2$), sve dok ne dostigne maksimalnu poziciju $z = 2A_m$, gde je v = 0 m/s. Magnet zatim menja smer i kreće se prema kalemu konstantnim ubrzanjem sve do pozicije $z = A_m$, a nakon toga usporava do početne pozicije (z = 0 mm, v = 0 m/s). Za brzinu se koristi algebarska vrednost, pri čemu znak brzine ukazuje na smer kretanja magneta u odnosu na analizirani kalem. Stoga je brzina pozitivna ako se magnet odmiče od kalema, a negativna ako se kreće prema kalemu.

Budući da brzina magneta zavisi od amplitude i ubrzanja magneta, ti parametri će takođe uticati na napon praznog hoda U_{OC} . Slika 16a prikazuje zavisnost napona U_{OC} indukovanog u kalemovima od pomeraja magneta *z* za različita ubrzanja magneta *a*, tokom jednog radnog ciklusa ($A_m = 25$ mm). Prilikom povećanja ubrzanja magneta povećaće se i njegova brzina, kao i vrednost U_{OC} prema jednačini (3), što se može videti na slici 16a.

Slika 16. Napon praznog hoda U_{OC} u zavisnosti od pomeraja magneta z za a) različita ubrzanja magneta a, b) različite amplitude pomeraja magneta A_m , tokom jednog radnog ciklusa.

Slika 16b pokazuje zavisnost indukovanog napona U_{OC} od z za različite amplitude pomeraja magneta A_m , tokom jednog radnog ciklusa ($a = 1 \text{ m/s}^2$). Može se videti da su maksimalna vrednost napona U_{OC} , kao i pomeraj magneta z koji odgovara maksimalnom naponu nezavisni od amplitude A_m . Uzimajući u obzir rezultate prikazane na slici 16b, odabrano je da maksimalno rastojanje između magneta i svakog pojedinačnog kalema iznosi 15 mm ($A_m = 7.5 \text{ mm}$). Izborom odgovarajuće amplitude pomeraja magneta postignuta je maksimalna vrednost U_{OC} u oba kalema, dok su zanemarljivo male vrednosti naponske funkcije eliminisane kako bi izlazni signal bio nalik sinusoidi. Primenom ove teorijske analize izvršena je optimizacija EMG modula gde je konstruisan kompaktan dizajn, bez narušavanja njegovih izlaznih performansi. Stoga su kalemovi prilikom fabrikacije postavljeni na rastojanju od 20 mm ($h + 2A_m$). Slika 17 prikazuje zavisnost indukovanog napona U_{OC} od z za različite frekvencije mehaničke pobude f, tokom jednog radnog ciklusa ($A_m = 7.5 \text{ mm}$).

Slika 17. Napon praznog hoda U_{OC} u zavisnosti od pomeraja magneta z za različite frekvencije mehaničke pobude f, tokom jednog radnog ciklusa.

Slika 18 prikazuje analizu parametara koji utiču na indukovani napon i struju, u funkciji vremena *t*, za EMG1, tokom jednog radnog ciklusa. Jedina razlika kod rezultata za EMG1 i EMG2 je u tome što su za sve analizirane parametre krive međusobno pomerene za polovinu ciklusa. Amplituda i ubrzanje magneta su $A_m = 7.5 \text{ mm i } a = 1 \text{ m/s}^2$ (~2 Hz), respektivno. Ciklus počinje u poziciji gde je pomeraj između magneta i donjeg kalema jednak nuli (*z* = 0 mm, slika 11a) i traje 0,49 s.

Slika 18. Parametri koji utiču na indukovani napon i struju: a) magnetska indukcija B, b) dB/dz, c) pomeraj magneta z, d) brzina magneta v, e) napon praznog hoda U_{OC} , f) struja kratkog spoja I_{SC} , u funkciji vremena t.

Slika 18a prikazuje promenu intenziteta vektora magnetske indukcije *B* kroz donji kalem u vremenu, dok slika 18b prikazuje promenu funkcije dB/dz u vremenu, tokom jednog radnog ciklusa. Na osnovu slika 18c i 18d, može se uočiti da funkcija z(t) pod uticajem opruga varira u vremenu kao sinusoida i da je pomerena za četvrtinu ciklusa od funkcije v(t). Slika 18e prikazuje indukovani napon U_{OC} u funkciji vremena. U svakoj polovini ciklusa, apsolutna vrednost indukovanog napona prvo se povećava, a zatim smanjuje, dok se znak napona menja svaki put kada magnet promeni smer kretanja. Poznajući dimenzije bakarnih kalemova, indukovana struja I_{SC} se može izračunati na osnovu jednačine (4) (slika 18f). Izlazni signali U_{OC} i I_{SC} su u fazi za oba EMG-a.

Slika 19a prikazuje napone praznog hoda U_{OC} indukovane u EMG1 i EMG2 tokom jednog radnog ciklusa, gde je $A_{\rm m} = 7.5$ mm i a = 1 m/s² (~2 Hz). Može se uočiti da su indukovani naponi međusobno pomereni za polovinu ciklusa. Kalemovi su vezani redno kako bi se udvostručio izlazni napon EMG modula, kao što je prikazano na slici 19b. Slika 19b prikazuje i ekvivalentno električno kolo EMG modula, gde je $R_{\rm TOTAL} = 2R_{\rm EMG}$.

Slika 19. a) Naponi praznog hoda U_{OC} za EMG1 i EMG2 u funkciji vremena *t*. b) Napon praznog hoda U_{OC} za EMG modul (redna veza EMG1 i EMG2) u funkciji vremena *t*, i ekvivalentno električno kolo EMG modula.

5.2. Cik-cak TENG u kontaktnom režimu

Dizajn analiziranog cik-cak TENG-a, prikazan na slici 10d, pogodan je s obzirom da se izlazna struja može značajno povećati bez potrebe za proširenjem kontaktnih površi. Više TENG ćelija se lako može naslagati na cik-cak podlogu, gde istovremeno sakupljaju mehaničku energiju. Sve integrisane ćelije generišu gotovo identičan napon koji će odgovarati naponu celokupne TENG strukture ukoliko se ćelije vežu paralelno, dok se struje tada sabiraju i raste snaga nanogeneratora.

U ovoj disertaciji je razvijen teorijski model za cik-cak TENG sa dve ćelije, koji se može iskoristiti i u slučaju više integrisanih ćelija. Svaka ćelija radi nezavisno u kontaktnom režimu, gde kontaktna elektroda takođe služi i kao triboelektrični materijal. Nakon kontakta i prelaska elektrona sa aluminijuma na kapton, razdvajanje triboelektričnih površi formira ugao θ koji varira pod uticajem spoljašnje sile zajedno sa pomerajem magneta z (slika 20a). Usled toga generisaće se

razlika potencijala između elektroda, što će prouzrokovati kretanje elektrona kroz spoljašnje kolo, u istom smeru za obe ćelije.

Slika 20. Cik-cak TENG: a) šematski prikaz strukture, b) šematski prikaz ekvivalentnog električnog modela, c) ekvivalentno kapacitivno kolo, d) ekvivalentno električno kolo.

Kako bi se dobile izlazne karakteristike cik-cak TENG-a, struktura prikazana na slici 20a može se pojednostaviti i predstaviti pomoću dva TENG-a sa paralelnim elektrodama, kao što je prikazano na slici 20b. Srednje rastojanje između triboelektričnih površi u svakoj integrisanoj ćeliji cikcak TENG-a (slika 20a), koje je u ovom slučaju blizu z/2 za obe ćelije, odgovaraće rastojanju između triboelektričnih površi TENG-a sa paralelnim elektrodama (slika 20b). Ova aproksimacija je potvrđena CST simulacijama (slika 21), gde je analizom pojedinačnih ćelija iz originalne cikcak strukture (slika 20a) pokazano da su napon praznog hoda U_{OC} i kapacitivnost C_{TENG} približni vrednostima dobijenim za ćelije u ekvivalentnom električnom modelu prikazanom na slici 20b. Parametri geometrije i materijala prema kojima su konstruisani odgovarajući CST modeli korišćeni za poređenje rezultata, dati su u tabeli 1.

TABELA 1

PARAMETRI GEOMETRIJE I MATERIJALA ZA KONTAKTNI TENG

Slika 21. a) Rezultati za napon praznog hoda U_{OC} dobijeni CST simulacijama, za jednu ćeliju cik-cak TENG-a i za odgovarajući TENG-a sa paralelnim elektrodama, b) rezultati za kapacitivnost C_{TENG} dobijeni CST simulacijama, za jednu ćeliju cik-cak TENG-a i za odgovarajući TENG-a sa paralelnim elektrodama.

Slike 21a i 21b prikazuju vrednosti izračunate za napon praznog hoda U_{OC} i kapacitivnost C_{TENG} jedne ćelije cik-cak TENG-a, kao i vrednosti izračunate za odgovarajući TENG sa paralelnim elektrodama, pokazujući dobro slaganje rezultata dobijenih simulacijama. Stoga će se u daljoj analizi koristiti pojednostavljena struktura prikazana na slici 20b.

Tokom analize se smatralo da su kontaktne površi TENG-a beskonačno velike, usled čega će raspodela naelektrisanja biti ravnomerna. Svaka TENG ćelija na slici 20b ponaša se kao kondenzator gde je dielektrik (kapton) male debljine d_{diel} i relativne permitivnosti ε_r , redno postavljen sa vazdušnim procepom d_0 permitivnosti ε_0 , između dve paralelne aluminijumske elektrode jednakih površi *S*, koje će u ovom slučaju biti jednake površi magneta. Linije vektora jačine električnog polja unutar dielektrika i vazduha su suprotnog smera i normalne na elektrode, usmerene od kraja višeg potencijala (elektroda) ka kraju nižeg potencijala (razdvojna površ dve sredine). Ivični efekti nisu uzeti u obzir jer je veličina elektroda mnogo veća od rastojanja između njih. Prema uopštenom Gausovom zakonu, intenzitet vektora električnog pomeraja je jednak gustini slobodnih naelektrisanja od kojih taj vektor potiče, a za linearne sredine, primenom formule $E = D/\varepsilon$, jačine električnog polja u dielektriku E_d i u vazduhu E_0 se mogu definisati kao [149], [152]:

$$E_{d} = \frac{\Delta Q}{\varepsilon_{r} \varepsilon_{0} S} = \frac{\Delta \sigma}{\varepsilon_{r} \varepsilon_{0}}, \quad E_{0} = \frac{Q - \Delta Q}{\varepsilon_{0} S} = \frac{\sigma - \Delta \sigma}{\varepsilon_{0}}.$$
(6)

Veličine Q i σ predstavljaju količinu triboelektričnih naelektrisanja, odnosno njihovu površinsku gustinu, dok ΔQ i $\Delta \sigma$ predstavljaju količinu proteklih naelektrisanja, odnosno njihovu površinsku gustinu, što ostavlja ($Q - \Delta Q$) naelektrisanja na drugoj elektrodi, kao što je prikazano na slici 20b.

Zbog malih rastojanja, izlazni napon U između elektroda se može odrediti kao:

$$U = E_0 d_0 - E_d d_{diel} = \frac{\sigma - \Delta \sigma}{\varepsilon_0} d_0 - \frac{\Delta \sigma}{\varepsilon_r \varepsilon_0} d_{diel} = -\frac{\Delta \sigma}{\varepsilon_0} (d_0 + \frac{d_{diel}}{\varepsilon_r}) + \frac{\sigma d_0}{\varepsilon_0}$$

$$= -\frac{\Delta Q}{\varepsilon_0 S} (d_0 + d_{ef}) + \frac{\sigma d_0}{\varepsilon_0} = -\frac{\Delta Q}{\varepsilon_0 S} (\frac{z}{2} + d_{ef}) + \frac{\sigma z}{2\varepsilon_0},$$
(7)

gde d_{ef} predstavlja efektivnu debljinu dielektrika dobijenu kao d_{diel}/ε_r . Navedena jednačina opisuje proces generisanja napona za svaku ćeliju analizirane TENG strukture [153].

Uzimajući u obzir da u režimu praznog hoda nema protoka naelektrisanja između elektroda $(\Delta Q = 0)$, napon praznog hoda U_{OC} se dobija kao:

$$U_{OC} = \frac{\sigma d_0}{\varepsilon_0} = \frac{\sigma z}{2\varepsilon_0}.$$
(8)

Može se primetiti da je U_{OC} direktno proporcionalan rastojanju između triboelektričnih površi, stoga će svaki radni ciklus kao rezultat dati po jedan naponski pik. Nakon prestanka delovanja spoljašnje sile, dolazi do razdvajanja aluminijuma i kaptona, pri čemu U_{OC} počinje da raste dok ne dostigne teorijski najveću vrednost koja odgovara maksimalnom pomeraju, što se može zaključiti na osnovu jednačine (8). Nakon ponovnog delovanja spoljašnje sile, U_{OC} se smanjuje do nule kada triboelektrične površi dolaze u potpuni kontakt.

U slučaju kratkog spoja, napon između elektroda U je nula, stoga se količina proteklih naelektrisanja Q_{SC} dobija kao:

$$0 = -\frac{Q_{SC}}{\varepsilon_0 S} (d_0 + d_{ef}) + \frac{\sigma d_0}{\varepsilon_0} \quad \Rightarrow \quad Q_{SC} = \frac{\sigma S d_0}{d_0 + d_{ef}} = \frac{\sigma S z}{z + 2d_{ef}} = \frac{\sigma S}{1 + 2d_{ef}/z}.$$
(9)

Promena rastojanja između triboelektričnih površi uticaće da odnos d_{ef}/z varira, što će prouzrokovati protok naelektrisanja. Protok naelektrisanja se može ubrzati smanjenjem efektivne debljine dielektrika d_{ef} . Treba napomenuti da se u slučaju TENG-a u kontaktnom režimu zasićenje ($Q_{SC} = Q$) postiže vrlo brzo [154], stoga je u svakom ciklusu neophodan potpuni kontakt između triboelektričnih površi kako bi se postigle optimalne performanse.

Struja kratkog spoja *I*_{SC} se izračunava kao:

$$I_{SC} = \frac{dQ_{SC}}{dt} = \frac{\sigma S \frac{d(d_0)}{dt} (d_0 + d_{ef}) - \sigma S(d_0) \frac{d(d_0)}{dt}}{(d_0 + d_{ef})^2}$$

$$= \frac{\sigma S d_{ef}}{(d_0 + d_{ef})^2} \frac{d(d_0)}{dt} = \frac{2\sigma S d_{ef}}{(z + 2d_{ef})^2} \frac{dz}{dt} = \frac{2\sigma S d_{ef}}{(z + 2d_{ef})^2} v.$$
(10)

Može se primetiti da *I*_{SC} zavisi od brzine protoka naelektrisanja koja je određena brzinom pomeraja gornje elektrode (magneta). U svakom radnom ciklusu, kontakt i razdvajanje triboelektričnih površi generisaće dva strujna pika suprotnog znaka.

Izvedeni izrazi pokazuju da vrednosti svih izlaznih signala zavise od površinske gustine triboelektričnih naelektrisanja σ , što je jedan od najvažnijih parametara za optimizaciju performansi TENG-a. Na njega utiče odabir triboelektričnih materijala, veličina kontaktnih površi, kao i modifikacija površi u vidu nanostruktura koje mogu pojačati triboelektrični efekat.

Struja I_{SC} se povećava sa radnom frekvencijom uređaja, dok napon U_{OC} i količina proteklih naelektrisanja Q_{SC} ne zavise od frekvencije. Međutim, performanse TENG-a će opasti ukoliko je frekvencija previsoka, s obzirom da zbog skraćenja radnog ciklusa neće moći da se postigne potpuni kontakt između triboelektričnih površi. Stoga je TENG pogodniji za prikupljanje energije na niskim frekvencijama.

Kao što je pomenuto, napon U_{OC} je proporcionalan površinskoj gustini triboelektričnih naelektrisanja, dok na struju I_{SC} utiče brzina kontakta i razdvajanja triboelektričnih površi, što ukazuje na to da će TENG na izlazu da generiše visoki napon i malu struju. Spoljašnja sila će uticati na količinu triboelektričnih naelektrisanja indukovanu na kontaktnim površima, pa se njen intenzitet može pratiti preko promene U_{OC} signala, dok se I_{SC} signal može iskoristiti za detektovanje radne frekvencije.

Na osnovu jednačine (7), može se primetiti da prvi deo napona U potiče od proteklih naelektrisanja $\Delta \sigma$ i opisuje kapacitivno ponašanje TENG ćelije, dok drugi deo, napon praznog hoda U_{OC} (jednačina (8)), potiče od triboelektričnih naelektrisanja σ . Stoga se napon U može napisati kao:

$$U = -\frac{\Delta Q}{C_{TENG}} + U_{OC}, \quad C_{TENG} = \frac{\varepsilon_0 S}{d_0 + d_{ef}} = \frac{2\varepsilon_0 S}{z + 2d_{ef}}, \tag{11}$$

gde C_{TENG} predstavlja kapacitivnost između elektroda, koja je obrnuto srazmerna rastojanju između triboelektričnih površi. U režimu kratkog spoja, jednačina (11) se može napisati kao $U_{\text{OC}} = Q_{\text{SC}}/C_{\text{TENG}}$.

Elektrostatički model sa tačkama koje označavaju ekvipotencijalne površi (slika 20c), predstavlja ekvivalentno kapacitivno kolo TENG strukture sa paralelnim elektrodama (slika 20b). Kapacitivnosti postoje između površi koje su povezane linijama električnog polja, tako da će svaka ćelija biti sastavljena od dva redno vezana kondenzatora. Prvi predstavlja kapacitivnost vazdušnog procepa C_0 , a drugi kapacitivnost dielektrika C_d . Kapacitivnosti su iste za obe ćelije i mogu se izračunati kao:

$$C_0 = C_{01} = C_{02} = \frac{\varepsilon_0 S}{d_0} = \frac{2\varepsilon_0 S}{z}, \quad C_d = C_{d1} = C_{d2} = \frac{\varepsilon_r \varepsilon_0 S}{d_{diel}} = \frac{\varepsilon_0 S}{d_{ef}}.$$
 (12)

Ukupna kapacitivnost C_{TOTAL} analiziranog TENG-a sa dve ćelije se može lako izvesti na osnovu datog elektrostatičkog kola i predstavlja dobru aproksimaciju stvarne kapacitivnosti cik-cak strukture (slika 20a):

$$C_{TOTAL} = 2C_{TENG} = 2\frac{C_0 C_d}{C_0 + C_d} = 2\frac{\varepsilon_0 S}{d_0 + d_{ef}} = \frac{4\varepsilon_0 S}{z + 2d_{ef}}.$$
 (13)

Uzimajući u obzir moguće praktične primene, prednost strukture sa više integrisanih ćelija je u tome što se smanjuje velika impedansa TENG-a, time što se povećava njegova ukupna kapacitivnost, s obzirom da su sve ćelije vezane paralelno. Analizirani TENG sadrži dve ćelije (indeks II), što udvostručuje kontaktnu površ, kao i količinu akumuliranih triboelektričnih naelektrisanja, u poređenju sa jednoćelijskim TENG-om iste zapremine (indeks I). Prema tome, u režimu kratkog spoja, ukupna količina naelektrisanja proteklih u jednoj polovini radnog ciklusa biće $Q_{\rm SC}^{\rm II} = 2Q_{\rm SC}^{\rm I}$ $= 2\sigma S$. Takođe, smanjuje se napon praznog hoda $U_{\rm OC}^{\rm II}$ TENG-a sa dve ćelije, s obzirom da će njegova kapacitivnost $C_{\rm TOTAL}$ biti oko četiri puta veća od kapacitivnosti $C^{\rm I}$ jednoćelijskog TENGa iste zapremine (jednačina (11), $d_0 = z$):

$$U_{OC}^{\ II} = \frac{Q_{SC}^{\ II}}{C_{TOTAL}} = \frac{2Q_{SC}^{\ I}}{4C^{I}} = \frac{U_{OC}^{\ I}}{2}.$$
(14)

Na osnovu jednačine (11), ekvivalentno električno kolo cik-cak TENG-a, prikazano na slici 20d, može se predstaviti sa dva redno vezana elementa. Prvi element je promenljivi kondenzator C_{TOTAL} , dok drugi element predstavlja idealni izvor napona U_{OC} , oba su u funkciji rastojanja između triboelektričnih površi. Uzimajući u obzir složene analitičke proračune za pojedine TENG strukture i spoljašnja kola, dati model se može implementirati u softver za projektovanje kola (npr. SPICE) kako bi se simulirali odzivi bilo kog TENG-a u realnom vremenu.

$$\underline{U} = \frac{R\underline{U}_{OC}}{\frac{1}{j\omega C_{TOTAL}} + R}.$$
(15)

Napon praznog hoda U_{OC} je proporcionalan pomeraju magneta *z*, koji se pod uticajem opruga menja u vremenu kao prostoperiodična funkcija:

$$z(t) = \frac{z_{\max}}{2} (1 - \cos \omega t), \quad \omega = 2\pi f.$$
(16)

Međutim, transformacija u kompleksni domen se u ovom slučaju ne može iskoristiti za određivanje izlaznog napona, s obzirom da kapacitivnost TENG-a u kontaktnom režimu nije konstantna već se menja u zavisnosti od pomeraja *z*.

Stoga su izlazni napon U(t) i struja I(t) cik-cak TENG-a određeni analitički. Kombinacijom jednačine (11), jednačine (13) i Omovog zakona dobija se:

što predstavlja linearnu diferencijalnu jednačinu prvog reda. Uzimajući u obzir da je za z(t = 0) = 0 granični uslov $\Delta Q(t = 0) = 0$, jednačina (17) se može rešiti kao (detaljno izvođenje je prikazano u prilogu, poglavlje I.1):

$$\Delta Q(t) = \frac{\sigma z_{\max}}{4\varepsilon_0 R} \cdot e^{-\frac{t}{2\varepsilon_0 SR}(\frac{z_{\max}}{4} + d_{ef}) + \frac{z_{\max}}{8\varepsilon_0 SR\omega}\sin\omega t} \cdot \int_0^t (1 - \cos\omega t) \cdot e^{\frac{t}{2\varepsilon_0 SR}(\frac{z_{\max}}{4} + d_{ef}) - \frac{z_{\max}}{8\varepsilon_0 SR\omega}\sin\omega t} dt.$$
(18)

Ubacivanjem $\Delta Q(t)$ u jednačinu (17) dobija se I(t), a zatim na osnovu Omovog zakona U(t):

$$I(t) = \frac{d(\Delta Q)}{dt} = -\frac{\sigma z_{\max}}{8\left(\varepsilon_0 R\right)^2 S} \cdot \left(\frac{z_{\max}}{4}\left(1 - \cos \omega t\right) + d_{ef}\right) \cdot e^{-\frac{t}{2\varepsilon_0 SR}\left(\frac{z_{\max}}{4} + d_{ef}\right) + \frac{z_{\max}}{8\varepsilon_0 SR\omega}\sin \omega t}}\right)$$

$$\cdot \int_{0}^{t} (1 - \cos \omega t) \cdot e^{\frac{t}{2\varepsilon_0 SR}\left(\frac{z_{\max}}{4} + d_{ef}\right) - \frac{z_{\max}}{8\varepsilon_0 SR\omega}\sin \omega t}} dt + \frac{\sigma z_{\max}}{8\varepsilon_0 R}\left(1 - \cos \omega t\right),$$
(19)

$$U(t) = RI = -\frac{\sigma z_{\max}}{8\varepsilon_0^2 RS} \cdot \left(\frac{z_{\max}}{4} (1 - \cos \omega t) + d_{ef}\right) \cdot e^{-\frac{t}{2\varepsilon_0 SR} (\frac{z_{\max}}{4} + d_{ef}) + \frac{z_{\max}}{8\varepsilon_0 SR\omega} \sin \omega t}} \\ \cdot \int_0^t (1 - \cos \omega t) \cdot e^{\frac{t}{2\varepsilon_0 SR} (\frac{z_{\max}}{4} + d_{ef}) - \frac{z_{\max}}{8\varepsilon_0 SR\omega} \sin \omega t}} dt + \frac{\sigma z_{\max}}{8\varepsilon_0} (1 - \cos \omega t).$$

$$(20)$$

Izvedene jednačine se mogu iskoristiti kako bi se numeričkim metodama odredile vrednosti izlaznih signala u cilju dalje analize performansi cik-cak TENG-a.

5.3. Cilindrični TENG u kliznom režimu

Princip rada TENG-a u kliznom režimu zasnovan je na kliznom kretanju između dva triboelektrična materijala. Zbog triboelektričnog efekta, trenje između aluminijumske elektrode i dielektrika (politetrafluoretan - PTFE) ostavlja površ elektrode sa pozitivnim naelektrisanjima, a površ dielektrika sa negativnim naelektrisanjima. Prilikom pomeraja unutrašnje elektrode, periodična promena površi preklapanja triboelektričnih materijala generisaće razliku potencijala između elektroda usled razdvajanja naelektrisanja. Kao posledica toga, indukovaće se naizmenična struja kroz spoljašnje kolo kako bi se kompenzovala triboelektrična naelektrisanja na rasparenim segmentima TENG-a. Protok naelektrisanja u svakoj polovini ciklusa traje sve dok kontaktne površi nisu potpuno preklopljene ili razdvojene.

Šematski prikaz poprečnog preseka cilindričnog TENG-a u kliznom režimu, prikazan je na slici 22.

Slika 22. Šematski prikaz poprečnog preseka cilindrične TENG strukture i raspodela naelektrisanja u režimu praznog hoda.

Data struktura se za potrebe analize može podeliti na tri segmenta, kao što je obeleženo na slici 22, u zavisnosti od toga da li su unutrašnja i spoljašnja elektroda preklopljene ili nisu [155]. Na slici 22 su prikazane i gustine površinskih naelektrisanja za pojedinačne segmente kliznog TENG-a, u režimu praznog hoda. Smatra se da su naelektrisanja ravnomerno raspoređena na odgovarajućim površima svakog segmenta TENG-a. Triboelektrična naelektrisanja suprotnog znaka se poništavaju na segmentu II. Na segmentu I, količina pozitivnih naelektrisanja na površi unutrašnje elektrode ($\sigma z 2\pi b$) jednaka je količini negativnih naelektrisanja na kontaktnoj površi dilektrika (- $\sigma z 2\pi b$). Na segmentu II, količina naelektrisanja na površi unutrašnje elektrode biće - $\sigma z 2\pi b$, s obzirom na to da ukupna količina naelektrisanja na toj elektrodi treba da bude jednaka nuli, u režimu praznog hoda. Ukupna količina naelektrisanja na spoljašnjoj elektrodi je $\sigma z 2\pi b$ i nalazi se na segmentu II. Na površi segmenta III nema naelektrisanja.

Usled elektrostatičke indukcije, potencijal unutrašnje elektrode će biti negativan, dok će potencijal spoljašnje elektrode biti pozitivan, što je pokazano i CST simulacijama (slika 12b). Klizni TENG je dizajniran tako da ne dođe do potpunog razdvajanja unutrašnje i spoljašnje elektrode, pri čemu će se u teorijskoj analizi ivični efekti zanemariti. Linije električnog polja unutar dielektrika uglavnom su uniformne i normalne na elektrode, usmerene od spoljašnje ka unutrašnjoj elektrodi u segmentu II, dok su u segmentu I linije orijentisane u suprotnom smeru.

$$\underbrace{\varepsilon_r \varepsilon_0 E_d}_{D_d} \cdot 2r\pi(l-z) = \sigma z 2\pi b \implies E_d = \frac{\sigma z}{\varepsilon_r \varepsilon_0 (l-z)} \frac{b}{r},$$
(21)

uzimajući u obzir da se u slučaju cilindrične strukture električno polje smanjuje sa poluprečnikom r. Napon praznog hoda U_{OC} , može se napisati kao:

$$U_{OC} = \int_{a}^{b} \underbrace{\frac{\sigma z}{\varepsilon_{r} \varepsilon_{0} \left(l-z\right)} \frac{b}{r}}_{E_{d}} \cdot dr = \frac{\sigma z b}{\varepsilon_{r} \varepsilon_{0} \left(l-z\right)} \ln \frac{b}{a}.$$
(22)

CST model kliznog TENG-a (slika 12b) sa parametrima geometrije i materijala datim u tabeli 2, korišćen je za verifikaciju teorijskih rezultata. Kao što je prikazano na slici 23a, vrednosti za napon praznog hoda TENG-a, izračunate na osnovu jednačine (22), pokazuju dobro slaganje sa vrednostima dobijenim iz CST simulacija.

TABELA 2

PARAMETRI GEOMETRIJE I MATERIJALA ZA KLIZNI TENG

<i>l</i> [mm]	<i>a</i> [mm]	<i>b</i> [mm]	<i>z</i> _{max} [mm]	<i>ɛ</i> _r (Teflon)	$\sigma [\mu C/m^2]$
18	10,015	10,15	15	2,1	5

Slika 23. Poređenje teorijskih rezultata i vrednosti dobijenih na osnovu CST simulacija za a) napon praznog hoda U_{OC} , b) kapacitivnost C_{TENG} cilindričnog TENG-a u kliznom režimu.

Na izlazni napon kliznog TENG-a uglavnom utiče kapacitivnost segmenta II. Uzimajući u obzir cilindričnu strukturu TENG-a, ukupna kapacitivnost između elektroda C_{TENG} može se odrediti kao:

$$C_{TENG} = \frac{\sigma z 2\pi b}{\underbrace{\frac{\sigma z b}{\varepsilon_r \varepsilon_0 (l-z)} \ln \frac{b}{a}}_{U_{ac}}} = \frac{2\pi \varepsilon_r \varepsilon_0 (l-z)}{\ln \frac{b}{a}},$$
(23)

gde *l* predstavlja visinu elektroda ($l \gg d_{diel}$), *a* je poluprečnik unutrašnje elektrode, *b* poluprečnik spoljašnje elektrode ($b - a = d_{diel}$), dok *z* predstavlja odstojanje unutrašnje elektrode (pomeraj magneta). Maksimalno odstojanje z_{max} jednako je $2A_m$ za dati dizajn ($z_{max} \sim 0.83l$, tabela 2).

Rezultati za kapacitivnost TENG-a, izračunati na osnovu jednačine (23), upoređeni su sa CST simulacijama, pokazujući dobro slaganje dobijenih vrednosti, što se može videti na slici 23b. Stoga se izlazni napon kliznog TENG-a može izraziti kao:

$$U = -\frac{\Delta Q}{C_{TENG}} + U_{OC} = -\frac{\Delta Q}{2\pi\varepsilon_r\varepsilon_0(l-z)}\ln\frac{b}{a} + \frac{\sigma zb}{\varepsilon_r\varepsilon_0(l-z)}\ln\frac{b}{a}.$$
 (24)

Uticaj svih važnih parametara date strukture može se lako ispitati pomoću predloženog teorijskog modela, što je veoma korisno kod optimizacije performansi TENG-a.

U režimu kratkog spoja, zbir naelektrisanja na obe elektrode jednak je $\sigma l 2\pi b$. Na segmentima I i III, količina pozitivnih naelektrisanja na površi unutrašnje elektrode je $\sigma z 2\pi b$, a nula na površi spoljašnje elektrode, kao u režimu praznog hoda. Međutim, na segmentu II, količina naelektrisanja na površi obe elektrode je nula, s obzirom da je u slučaju kratkog spoja moguć transfer naelektrisanja između njih. Prema tome, električno polje će postojati samo u segmentu I, sa linijama usmerenim od unutrašnje elektrode ka kontaktnoj površi dielektrika. U režimu kratkog spoja, obe elektrode imaju isti potencijal. Stoga je napon *U* jednak nuli, a količina proteklih naelektrisanja Q_{SC} se može izračunati kao:

$$0 = -\frac{Q_{SC}}{2\pi\varepsilon_r\varepsilon_0(l-z)}\ln\frac{b}{a} + \frac{\sigma zb}{\varepsilon_r\varepsilon_0(l-z)}\ln\frac{b}{a} \implies Q_{SC} = \sigma z 2\pi b, \tag{25}$$

što je jednako količini triboelektričnih naelektrisanja na rasparenim segmentima TENG-a. Struja kratkog spoja *I*_{SC} se dobija kao:

$$I_{SC} = \frac{dQ_{SC}}{dt} = \sigma 2\pi b \frac{dz}{dt} = \sigma 2\pi b v.$$
⁽²⁶⁾

Može se primetiti da se U_{OC} i Q_{SC} povećavaju sa pomerajem *z*, dok se I_{SC} povećava sa brzinom pomeraja unutrašnje elektrode (magneta), što ukazuje na to da se TENG u kliznom režimu takođe može iskoristiti za detektovanje parametara kretanja.

U slučaju kada je otpornik R priključen na cilindrični TENG, izlazni napon U(t) i struja I(t) se mogu odrediti analitički. Kombinacijom jednačine (24) i Omovog zakona dobija se:

$$R\frac{d(\Delta Q)}{dt} = -\frac{\Delta Q}{2\pi\varepsilon_r\varepsilon_0(l-z)}\ln\frac{b}{a} + \frac{\sigma zb}{\varepsilon_r\varepsilon_0(l-z)}\ln\frac{b}{a},$$
(27)

što predstavlja linearnu diferencijalnu jednačinu prvog reda. Uzimajući u obzir da je za z(t = 0) = 0 granični uslov $\Delta Q(t = 0) = 0$, jednačina (27) se može rešiti kao (detaljno izvođenje je prikazano u prilogu, poglavlje I.2):

$$\Delta Q(t) = \frac{\sigma b z_{\max} \ln \frac{b}{a}}{2\varepsilon_r \varepsilon_0 R} \cdot e^{-\frac{\ln \frac{b}{a}}{\pi \varepsilon_r \varepsilon_0 R \omega \sqrt{l(l-z_{\max})}} \tan^{-1} \left(\sqrt{\frac{l-z_{\max}}{l}} \cdot \tan \frac{\omega t}{2}\right)} \\ \cdot \int_0^t \frac{1 - \cos \omega t}{l - \frac{z_{\max}}{2} (1 - \cos \omega t)} \cdot e^{\frac{\ln \frac{b}{a}}{\pi \varepsilon_r \varepsilon_0 R \omega \sqrt{l(l-z_{\max})}} \tan^{-1} \left(\sqrt{\frac{l-z_{\max}}{l}} \cdot \tan \frac{\omega t}{2}\right)} dt.$$
(28)

Ubacivanjem $\Delta Q(t)$ u jednačinu (27) dobija se I(t), a zatim na osnovu Omovog zakona U(t):

$$I(t) = \frac{d(\Delta Q)}{dt} = -\frac{\sigma b z_{\max}\left(\ln \frac{b}{a}\right)^{2}}{4\pi \left(\varepsilon_{r}\varepsilon_{0}R\right)^{2} \left(l - \frac{z_{\max}}{2}(1 - \cos \omega t)\right)} \cdot e^{-\frac{\ln \frac{b}{a}}{\pi \varepsilon_{r}\varepsilon_{0}R \omega \sqrt{l(l - z_{\max})}} \tan^{-l} \left(\sqrt{\frac{l - z_{\max}}{l}} - \tan \frac{\omega t}{2}\right)}$$
(29)
$$\cdot \int_{0}^{t} \frac{1 - \cos \omega t}{l - \frac{z_{\max}}{2}(1 - \cos \omega t)} \cdot e^{\frac{\ln \frac{b}{a}}{\pi \varepsilon_{r}\varepsilon_{0}R \omega \sqrt{l(l - z_{\max})}} \tan^{-l} \left(\sqrt{\frac{l - z_{\max}}{l}} - \tan \frac{\omega t}{2}\right)} dt + \frac{\sigma z b}{\varepsilon_{r}\varepsilon_{0}R \left(l - \frac{z_{\max}}{2}(1 - \cos \omega t)\right)} \ln \frac{b}{a},$$
$$U(t) = RI = -\frac{\sigma b z_{\max}\left(\ln \frac{b}{a}\right)^{2}}{4\pi R \left(\varepsilon_{r}\varepsilon_{0}\right)^{2} \left(l - \frac{z_{\max}}{2}(1 - \cos \omega t)\right)} \cdot e^{-\frac{\ln \frac{b}{a}}{\pi \varepsilon_{r}\varepsilon_{0}R \omega \sqrt{l(l - z_{\max})}} \tan^{-l} \left(\sqrt{\frac{l - z_{\max}}{l}} - \tan \frac{\omega t}{2}\right)}$$
(30)
$$\cdot \int_{0}^{t} \frac{1 - \cos \omega t}{l - \frac{z_{\max}}{2}(1 - \cos \omega t)} \cdot e^{\frac{\ln \frac{b}{a}}{\pi \varepsilon_{r}\varepsilon_{0}R \omega \sqrt{l(l - z_{\max})}} \tan^{-l} \left(\sqrt{\frac{l - z_{\max}}{l}} - \tan \frac{\omega t}{2}\right)} dt + \frac{\sigma z b}{\varepsilon_{r}\varepsilon_{0} \left(l - \frac{z_{\max}}{2}(1 - \cos \omega t)\right)} \ln \frac{b}{a}.$$

Izvedene jednačine se mogu dalje iskoristiti kako bi se numeričkim metodama odredile vrednosti izlaznih signala cilindričnog TENG-a u kliznom režimu.

5.4. Hibridni nanogenerator

Ekvivalentno električno kolo hibridnog nanogeneratora je prikazano na slici 24.

Slika 24. Ekvivalentno električno kolo hibridnog nanogeneratora.

Ekvivalentno električno kolo cik-cak TENG-a i kliznog TENG-a vezanih paralelno može se predstaviti rednom vezom promenljivog kondenzatora C_{ek}^{TENG} i idealnog izvora napona U_{OC}^{TENG} , kao što je prikazano na slici 24. Kapacitivnost C_{ek}^{TENG} može se izračunati kao:

$$C_{ek}^{TENG} = C^{CIK-CAK} + C^{KLIZNI} = \frac{4\varepsilon_0 S}{z + 2d_{ef}} + \frac{2\pi\varepsilon_r \varepsilon_0 (l - z)}{\ln \frac{b}{a}},$$
(31)

gde je $C^{\text{CIK-CAK}}$ kapacitivnost cik-cak TENG-a data u jednačini (13), dok je C^{KLIZNI} kapacitivnost kliznog TENG-a data u jednačini (23). Napon praznog hoda $U_{\text{OC}}^{\text{TENG}}$ cik-cak TENG-a i kliznog TENG-a vezanih paralelno može se izračunati kao:

1

$$U_{oc}^{TENG} = \frac{1}{C^{CIK-CAK} + C^{KLIZNI}} \left(C^{CIK-CAK} \cdot U_{oc}^{CIK-CAK} + C^{KLIZNI} \cdot U_{oc}^{KLIZNI} \right)$$

$$= \frac{1}{\frac{4\varepsilon_0 S}{z + 2d_{ef}} + \frac{2\pi\varepsilon_r\varepsilon_0(l-z)}{\ln\frac{b}{a}}} \left(\frac{4\varepsilon_0 S}{z + 2d_{ef}} \cdot \frac{\sigma z}{2\varepsilon_0} + \frac{2\pi\varepsilon_r\varepsilon_0(l-z)}{\ln\frac{b}{a}} \cdot \frac{\sigma z b}{\varepsilon_r\varepsilon_0(l-z)} \ln\frac{b}{a} \right)$$
(32)
$$= \frac{2\sigma z}{\frac{4\varepsilon_0 S}{z + 2d_{ef}} + \frac{2\pi\varepsilon_r\varepsilon_0(l-z)}{\ln\frac{b}{a}}} \left(\frac{S}{z + 2d_{ef}} + \pi b \right) = \frac{\sigma z \ln\frac{b}{a} \left(S + \pi b \left(z + 2d_{ef} \right) \right)}{2\varepsilon_0 S \ln\frac{b}{a} + \pi\varepsilon_r\varepsilon_0 \left(l - z \right) \left(z + 2d_{ef} \right)},$$

gde je $U_{OC}^{CIK-CAK}$ napon praznog hoda cik-cak TENG-a dat u jednačini (8), dok je U_{OC}^{KLIZNI} napon praznog hoda kliznog TENG-a dat u jednačini (22).

EMG modul (redna veza EMG1 i EMG2) je vezan paralelno sa TENG modulima, kao što je prikazano na slici 24. Može se predstaviti rednom vezom otpornika R^{EMG} i idealnog izvora napona $U_{\text{OC}}^{\text{EMG}}$. Otpornost EMG modula R^{EMG} je duplo veća od otpornosti jednog kalema, dok je napon praznog hoda EMG modula $U_{\text{OC}}^{\text{EMG}}$ duplo veći od napona praznog hoda za EMG1/EMG2 datog u jednačini (3). Napon praznog hoda EMG modula $U_{\text{OC}}^{\text{EMG}}$ modula $U_{\text{OC}}^{\text{EMG}}$ modula $U_{\text{OC}}^{\text{EMG}}$

$$U_{oc}^{EMG} = -2NS \frac{dB}{dz} \frac{dz}{dt} = -2NS \frac{d\left(\frac{B_r}{2} \left(\frac{z+h}{\sqrt{(z+h)^2 + r^2}} - \frac{z}{\sqrt{z^2 + r^2}}\right)\right)}{dz}v$$

$$= -NSB_r r^2 \left(\left((z+h)^2 + r^2\right)^{-\frac{3}{2}} - \left(z^2 + r^2\right)^{-\frac{3}{2}}\right)v.$$
(33)

Na osnovu datog teorijskog modela mogu se uočiti bitne karakteristike pojedinačnih modula i steći uvid u parametre od kojih zavise njihovi izlazni signali, kako bi se olakšala analiza i optimizacija performansi, u cilju dizajna efikasnog i kompaktnog hibridnog nanogeneratora.

6. Fabrikacija hibridnog elektromagnetskog-triboelektričnog nanogeneratora

Hibridni nanogenerator ima cilindričan oblik i sastoji se od dva akrilna dela (baza i pokretni deo) fabrikovana 3D štampom, koji su odvojeni sa četiri opruge. Baza je stacionarna i predstavlja otvoren cilindar. Sadrži dva žleba unutar kojih su namotani bakarni kalemovi, kao što je prikazano na slikama 10a i 10b. Unutrašnji poluprečnik, spoljašnji poluprečnik i visina kalemova su 12 mm, 17 mm, i 3 mm, respektivno. Debljina žice je 0,15 mm. Oba kalema imaju po 500 zavojaka i postavljeni su na rastojanju od 20 mm, kao što je proračunato u poglavlju 5.1. Vezani su redno i predstavljaju deo EMG modula, zajedno sa neodimijumskim (NdFeB) magnetom u obliku diska, poluprečnika 10 mm i visine 5 mm, koji je pričvršćen za dno pokretnog dela, kao što je prikazano na slici 10c.

Cik-cak TENG u kontaktnom režimu je napravljen sa dve triboelektrične ćelije (slika 10d) koje su vezane paralelno. Postavljen je na dno baze, kao što je prikazano na slici 10a. Za fabrikaciju elektroda korišćena je aluminijumska traka. Svaka ćelija je sastavljena od dve aluminijumske elektrode nanete na fleksibilnu podlogu, pri čemu jedna elektroda služi i kao kontaktna triboelektrična površ, dok je druga kontaktna površ napravljena od kaptona. 3MTM 9088 dvostrano lepljiva traka je korišćena da se kapton zalepi za elektrodu. Fleksibilna podloga na koju su nanete ćelije je takođe napravljena od kaptona.

TENG u kliznom režimu se nalazi u gornjem delu nanogeneratora, gde je jedna aluminijumska elektroda obmotana oko pokretnog dela i prekrivena teflon (PTFE) trakom, kao što je prikazano na slici 10c. Druga aluminijumska elektroda, koja je ujedno i kontaktna elektroda, postavljena je unutar baze, kao što je prikazano na slici 10b. Maksimalno odstojanje unutrašnje elektrode odgovara predviđenom pomeraju magneta od 15 mm (proračunato u poglavlju 5.1), dok je visina kliznog TENG-a oko 18 mm. Fabrikovani hibridni uređaj je prikazan na slici 25. Ceo uređaj je kompaktan i lagan, zapremine $37 \times 37 \times 70$ mm.

Slika 25. Fotografija pojedinačnih delova integrisanih u hibridnu strukturu.

Rezultati teorijskog modelovanja dobijeni su korišćenjem MATLAB softvera, dok su rezultati simulacija dobijeni korišćenjem CST Studio Suite softvera. Izlazni signali pojedinačnih modula i hibridnog nanogeneratora mereni su pomoću dvokanalnog osciloskopa ROHDE&SCHWARZ RTC1002. Svaki signal je izmeren minimalno tri puta kako bi se postigla ponovljivost dobijenih rezultata.

7. Rezultati karakterizacije hibridnog nanogeneratora

U poglavlju 7 je ispitana efikasnost sinteze EMG i TENG modula, budući da koriste različite mehanizme za prikupljanje i konverziju mehaničke u električnu energiju. Date su izlazne karakteristike (napon, struja i snaga) pojedinačnih modula, kao i samog hibridnog nanogeneratora, u cilju analize i poređenja njihovih performansi.

7.1. Izlazne karakteristike cik-cak TENG-a, kliznog TENG-a i EMG-a

Tokom delovanja spoljašnje sile svi integrisani moduli generišu nezavisne signale, stoga su za početak zasebno analizirane njihove izlazne performanse.

7.1.1. Napon praznog hoda

Napon praznog hoda cik-cak TENG-a je izmeren na frekvenciji od ~5 Hz. Cik-cak TENG sadrži dve identične ćelije koje rade istovremeno. Ćelije generišu naponske signale koji su u fazi i imaju slične vrednosti, kao što je prikazano na slikama 26a i 26b.

Slika 26. Napon praznog hoda U_{OC} pojedinačnih ćelija cik-cak TENG-a, izmeren sa dva kanala na frekvenciji od ~5 Hz a) tokom 6 s, b) tokom 0,6 s (tri radna ciklusa).

Maksimalna vrednost izmerenog napona je oko 60 V za obe ćelije. Intenzitet spoljašnje sile utiče na to koliko će se naelektrisanja akumulirati na kontaktnim površima i može se detektovati kroz promenu maksimalnog napona TENG-a. Dodatni pik u naponskim signalima (~20 V) na slikama 26a i 26b koji se javlja u svakom ciklusu, postoji zbog malih oscilacija između triboelektričnih materijala nakon njihovog kontakta. Slika 27c prikazuje napon praznog hoda cik-cak TENG-a, kada su ćelije povezane paralelno, čije vrednosti su približno iste kao i za napone pojedinačnih ćelija, prikazane na slikama 27a i 27b.

Slika 27. Napon praznog hoda U_{OC} cik-cak TENG-a za a) ćeliju 1 (donja ćelija), b) ćeliju 2 (gornja ćelija) c) ćelije vezane paralelno.

Napon praznog hoda kliznog TENG-a je takođe izmeren na frekvenciji od ~5 Hz. Maksimalna vrednost izmerenog napona je oko 13 V, kao što je prikazano na slici 28.

Slika 28. Napon praznog hoda $U_{\rm OC}$ kliznog TENG-a.

Zbog različitih radnih mehanizama opisanih u poglavljima 5.2 i 5.3, naponski signal kliznog TENG-a imaće oblik sinusoide za razliku od naponskog signala cik-cak TENG-a koji sadrži pikove. Uzimajući u obzir teorijsku analizu, radna frekvencija ne utiče na napon praznog hoda TENG-a.

Ambijentalna mehanička energija je uglavnom rasprostranjena u niskofrekventnom opsegu, stoga je napon praznog hoda za EMG1, EMG2, kao i za EMG modul (redna veza EMG1 i EMG2) izmeren na četiri frekvencije: 2 Hz, 4 Hz, 6 Hz i 8 Hz, kao što je prikazano na slikama 29a, 29b i 29c, respektivno.

Slika 29. Napon praznog hoda U_{OC} za a) EMG1, b) EMG2, c) rednu vezu EMG1 i EMG2, izmeren na frekvencijama f = [2, 4, 6, 8] Hz.

Amplituda napona raste sa povećenjem frekvencije, s obzirom da su izlazni signali EMG-a proporcionalni brzini pomeraja magneta, prema Faradejevom zakonu elektromagnetske indukcije. EMG1 i EMG2 su sinhronizovani, stoga će se napon povećati kad se kalemovi vežu redno, kao što je prikazano na slici 29c. Maksimalne vrednosti izmerenih napona su date u tabeli 3. Radna frekvencija utiče na brzinu pomeraja magneta, i stoga se kroz promenu amplitude napona EMG-a mogu detektovati parametri kretanja vezani za spoljašnju silu koja deluje na uređaj.

	2 Hz	4 Hz	6 Hz	8 Hz
EMG1	0,22 V	0,62 V	1,04 V	1,45 V
EMG2	0,2 V	0,53 V	0,92 V	1,34 V
redna veza EMG1 i EMG2	0,41 V	1,03 V	1,86 V	2,68 V

 $MAKSIMALNE \ VREDNOSTI \ NAPONA \ PRAZNOG \ HODA \ ZA \ EMG \ MODUL$

TABELA3

EMG1 i EMG2 generišu naponske signale približne amplitude, pomerene za polovinu ciklusa, kao što je prikazano na slikama 30a i 30b, izmereno na frekvenciji od 4 Hz.

Slika 30. Napon praznog hoda U_{OC} za EMG1 i EMG2, izmeren sa dva kanala na frekvenciji od 4 Hz a) tokom 6 s, b) tokom 0,5 s (dva radna ciklusa).

Signali imaju sličan oblik kao i teorijski rezultati prikazani na slici 19a. Amplituda je nešto manja u odnosu na teorijske vrednosti, s obzirom na rasipanje magnetskog fluksa (slika 17, crvena kriva).

7.1.2. Izlazni napon, struja i snaga

Izlazni napon cik-cak TENG-a je izmeren za različite otpornosti potrošača (u opsegu od 10 k Ω do 100 M Ω), na frekvenciji od ~5 Hz, kao što je prikazano na slikama 31a, 31c i 31e. Izlazna struja je takođe prikazana na slikama 31a, 31c i 31e. Može se uočiti da napon raste sa povećanjem

otpornosti, dok se struja smanjuje. Nakon toga je izračunata izlazna snaga cik-cak TENG-a, što je prikazano na slikama 31b, 31d i 31f.

Slika 31. Izlazne karakteristike cik-cak TENG-a izmerene za različite otpornosti potrošača, na frekvenciji od ~5 Hz: a) izlazni napon i struja ćelije 1, b) izlazna snaga ćelije 1, c) izlazni napon i struja ćelije 2, d) izlazna snaga ćelije 2, e) izlazni napon i struja ćelija vezanih paralelno, f) izlazna snaga ćelija vezanih paralelno.

Maksimalna snaga prve ćelije TENG-a je 0,145 mW pri otpornosti od 2,2 MΩ, dok je maksimalna snaga druge ćelije 0,125 mW pri istoj otpornosti od 2,2 MΩ, kao što je prikazano na slikama 31b i 31d. Maksimalna snaga za ćelije vezane paralelno iznosi 0,24 mW pri otpornosti od 1 MΩ (slika 31f). Povećanjem broja integrisanih ćelija raste izlazna snaga cik-cak TENG-a, dok se njegova ukupna impedansa smanjuje za ćelije vezane paralelno. Maksimalna izlazna struja, tj. struja kratkog spoja I_{SC} , iznosi 7,8 µA za prvu ćeliju (slika 31a), 7,5 µA za drugu ćeliju (slika 31c), i 15 µA za ćelije vezane paralelno (slika 31e). Naponski signali izmereni na različitim otpornostima za pojedinačne ćelije cik-cak TENG-a, kao i za ćelije vezane paralelno, prikazani su u prilogu, poglavlja II.1, II.2 i II.3.

Izlazni napon kliznog TENG-a je takođe izmeren za različite otpornosti potrošača (u opsegu od 10 k Ω do 100 M Ω), na frekvenciji od ~5 Hz, kao što je prikazano na slici 32a. Izlazna struja i snaga su prikazane na slikama 32a i 32b.

Slika 32. Izlazne karakteristike kliznog TENG-a izmerene za različite otpornosti potrošača, na frekvenciji od ~5 Hz: a) izlazni napon i struja kliznog TENG-a, b) izlazna snaga kliznog TENG-a.

Klizni TENG ima nešto manju izlaznu snagu u poređenju sa cik-cak TENG-om, čija maksimalna vrednost iznosi 30 μ W pri otpornosti od 1 M Ω (slika 32b), dok je maksimalna izlazna struja (I_{SC}) 5,4 μ A (slika 32a). Naponski signali izmereni na različitim otpornostima za klizni TENG su prikazani u prilogu, poglavlje II.4.

Izlazni napon EMG modula je izmeren za različite otpornosti potrošača (u opsegu od 1 Ω do 1 M Ω), na frekvenciji od ~5 Hz, kao što je prikazano na slikama 33a, 33c i 33e. Izlazna struja je

takođe prikazana na slikama 33a, 33c i 33e. Izlazna snaga je izračunata i prikazana na slikama 33b, 33d i 33f.

Slika 33. Izlazne karakteristike EMG modula izmerene za različite otpornosti potrošača, na frekvenciji od ~5 Hz: a) izlazni napon i struja za EMG1, b) izlazna snaga za EMG1, c) izlazni napon i struja za EMG2, d) izlazna snaga za EMG2, e) izlazni napon i struja redne veze EMG1 i EMG2, f) izlazna snaga redne veze EMG1 i EMG2.
Maksimalna snaga za EMG1 je 0,32 mW pri otpornosti od 60 Ω (slika 33b), 0,29 mW za EMG2 pri istoj otpornosti od 60 Ω (slika 33d), i 0,5 mW za rednu vezu EMG1 i EMG2 pri otpornosti od 200 Ω (slika 33f). Maksimalna izlazna struja (*I*_{SC}) je 11,2 mA za EMG1 (Slika 33a), 9,6 mA za EMG2 (Slika 33c), i 12 mA za rednu vezu EMG1 i EMG2 (Slika 33e). Naponski signali izmereni na različitim otpornostima za EMG1, EMG2, kao i za rednu vezu EMG i EMG2, prikazani su u prilogu, poglavlja II.5, II.6, II.7.

Na osnovu dobijenih rezultata može se uočiti da je izlazna struja EMG-a dosta veća od izlazne struje TENG-a, dok je suprotno za napon. Takođe, impedansa EMG-a je mnogo manja u poređenju sa impedansom TENG-a. Prema teorijskoj analizi, izlazna snaga EMG-a biće proporiconalna kvadratu frekvencije, za razliku od TENG-a gde samo struja zavisi od frekvencije. S obzirom da TENG ima bolje performanse na nižim frekvencijama, sinteza sa EMG-om je važna kako bi uređaj mogao efikasno da sakuplja mehaničku energiju u širokom frekvencijskom opsegu.

7.2. Izlazne karakteristike hibridnog nanogeneratora

U poglavlju 7.2 su date izlazne karakteristike (napon, struja i snaga) hibridnog nanogeneratora u cilju ispitivanja efikasnosti sinteze EMG i TENG modula.

7.2.1. Napon praznog hoda

Pre nego što se nanogenerator priključi na spoljašnje kolo, integrisani moduli (EMG, cik-cak TENG i klizni TENG) su povezani na tri ispravljača kako bi se njihovi naizmenični izlazni signali ispravili (pretvorili u jednosmerne) i prilagodili potrošaču. Ispravljeni naponski signali pojedinačnih modula su prikazani na slikama 34a, 34b i 34c.

Slika 34. Ispravljeni napon a) EMG-a, b) cik-cak TENG-a, c) kliznog TENG-a, i d) hibridnog nanogeneratora.

S obzirom da EMG ima mali napon na niskim frekvencijama, sinteza sa TENG-om će povećati izlazni napon nanogeneratora. Hibridni nanogenerator je dizajniran tako da svi moduli rade sinhrono, stoga će njihovi izlazni signali biti u fazi. Ispravljeni napon praznog hoda hibridnog nanogeneratora, prikazan na slici 34d, predstavlja kombinaciju pojedinačnih naponskih signala, s obzirom da su svi moduli vezani paralelno. Maksimalna vrednost izmerenog napona hibridnog nanogeneratora je oko 65 V. Iako cik-cak TENG i hibridni nanogenerator imaju slične maksimalne vrednosti napona, hibridni nanogenerator ima znatno veću izlaznu snagu i bolje performanse kad se analizira proces punjenja kondenzatora, što će biti prikazano u poglavlju 8.

7.2.2. Izlazni napon, struja i snaga

Izlazni napon, struja i snaga hibridnog nanogeneratora za različite otpornosti potrošača (u opsegu od 1 Ω do 100 M Ω), na frekvenciji od ~5 Hz, prikazani su na slikama 35a i 35b.

Slika 35. Izlazne karakteristike hibridnog nanogeneratora izmerene za različite otpornosti potrošača, na frekvenciji od ~5 Hz: a) izlazni napon i struja, b) izlazna snaga.

Maksimalna izlazna struja (I_{SC}) je 15,25 mA (slika 35a), a maksimalna snaga je 1,13 mW pri otpornosti od 200 Ω (slika 35b). Naponski signali izmereni na različitim otpornostima za hibridni nanogenerator su prikazani u prilogu, poglavlje II.8.

Rezultati izlaznih karakteristika za pojedinačne module kao i za hibridni nanogenerator su dati u tabeli 4.

Cik-cak TENG											
		V	V _{OCmax} [V]		I _{SCmax} [µA] na 5 Hz		P _{max} [mW] na 5 Hz				
Ćelija 1		60			7,8		0,145 (za 2,2 MΩ)				
Ćelija 2		60			7,5		0,125 (za 2,2 MΩ)				
Paralelna veza			60		15		0,24 (za 1 MΩ)				
Klizni TENG											
V _{OCmax} [V]			I _{SCmax} [µA] na 5 Hz			P _{max} [µW] na 5 Hz					
13			5,4			<u>30 (za 1 MΩ)</u>					
EMG											
		V _{OC}	max [V]		I _{SCmax} [mA] na		5 P _{max} [mW] na 5				
	2 Hz	4 Hz	6 Hz	8 Hz		Hz	Hz				
EMG1	0,22	0,62	1,04	1,45		11,2	0,32 (za 60 Ω)				
EMG2	0,2	0,53	0,92	1,34		9,6	0,29 (za 60 Ω)				
Redna veza	0,41	1,03	1,86	2,68		12	0,5 (za 200 Ω)				
Hibridni nanogenerator											
V _{OCmax} [V]			I _{SCmax} [mA] na 5 Hz			P _{max} [mW] na 5 Hz					
65			15,25			1,13 (za 200 Ω)					

TABELA 4

IZLAZNE KARAKTERISTIKE POJEDINAČNIH MODULA I HIBRIDNOG NANOGENERATORA

Može se uočiti da sinteza EMG i TENG modula povećava izlaznu snagu uređaja, bez obzira na razliku između njihovih izlaznih karakteristika. S obzirom da je EMG ekvivalentan naponskom generatoru, a TENG je ekvivalentan strujnom generatoru [108], ukoliko se vežu paralelno naponski generator (EMG) će dominirati na izlazu, zbog čega se maksimalna snaga očekuje na nižim otpornostima, što je pogodno za primenu u praksi.

8. Performanse hibridnog nanogeneratora prilikom punjenja kondenzatora

U ovom delu istraživanja je ispitana efikasnost konverzije mehaničke u električnu energiju za hibridni nanogenerator, kao i za pojedinačne module. Većina elektronskih uređaja zahteva konstantan izvor napajanja, stoga električna energija koju proizvodi nanogenerator treba prvo da se akumulira u komponentama sa skladištenje energije (kondenzatori, superkondenzatori, baterije). Slika 36a prikazuje eksperimentalnu postavku za testiranje performansi hibridnog nanogeneratora sa ispravljačkim kolom korišćenim za punjenje kondenzatora.

Slika 36. a) Eksperimentalna postavka sa ugrađenim ispravljačkim kolom. b) Rezultati dobijeni nakon punjenja različitih kondenzatora, na frekvenciji od ~5 Hz, za hibridni nanogenerator.

Performanse hibridnog nanogneratora (nivo napona do kog se puni kondenzator i brzina punjenja kondenzatora) su testirane na frekvenciji od ~5 Hz, korišćenjem kondenzatora različitih kapacitivnosti (1 μ F, 4,7 μ F, 10 μ F, 47 μ F), kao što je prikazano na slici 36b. Brzina kojom se pune kondenzatori raste kako se smanjuje njegova kapacitivnost, što važi i za proces pražnjenja. Može se uočiti da na početku punjenja kondenzatora napon brzo raste dok ne dostigne maksimalnu vrednost za EMG modul, što je posledica njegove velike struje, nakon čega se kondenzator kontinualno puni od strane TENG modula. Slike 37a-37f prikazuju naponske krive dobijene prilikom testiranja efikasnosti pojedinačnih modula, kao i različitih kombinacija među njima.

Slika 37. Rezultati dobijeni nakon punjenja različitih kondenzatora, na frekvenciji od ~5 Hz, za a) EMG, b) cik-cak TENG, c) klizni TENG, d) EMG i cik-cak TENG, e) EMG i klizni TENG, f) cik-cak TENG i klizni TENG.

Na slikama 38a i 38b je prikazano poređenje rezultata dobijenih nakon punjenja kondenzatora od 1 μ F i 4,7 μ F za cik-cak TENG, klizni TENG, EMG, njihove kombinacije, kao i za hibridni nanogenerator.

Slika 38. Rezultati dobijeni nakon punjenja kondenezatora od a) 1 μ F i b) 4,7 μ F, za individualne module, njihove kombinacije i za hibridni nanogenerator.

Izlazni napon integrisanih modula utiče na nivo do kog se puni kondenzator, dok izlazna struja utiče na brzinu punjenja kondenzatora. Iz toga sledi da će kondenzatoru priključenom na TENG

biti potrebno duže vremena da dostigne maksimalni napon, što je posledica niske struje TENG-a. Sa druge strane, napon kondenzatora priključenog na EMG brzo dostiže maksimalnu vrednost zbog velike struje, međutim ta vrednost će biti ograničena niskim naponom EMG-a. Sintezom datih modula se mogu efikasno iskoristiti njihove prednosti i kompenzovati pojedini nedostaci, kao što je prikazano na slikama 38a i 38b.

Rezultati dobijeni nakon testiranja punjenja svih kondenzatora su dati u tabeli 5.

Kapacitivnost kondenzatora	1 µF	4,7 μF	10 µF	47 µF
Hibridni nanogenerator	9,1 V za	6,88 V za	4,48 V za	2,01 V za
	60 s	60 s	60 s	60 s
EMG	1,3 V za	1,18 V za	1 V za	0,88 V za
	5 s	5 s	5 s	5 s
Cik-cak TENG	2,8 V za	1,94 V za	0,72 V za	0,32 V za
	60 s	60 s	60 s	60 s
Klizni TENG	6 V za	4,2 V za	2,64 V za	0,77 V za
	60 s	60 s	60 s	60 s
Cik-cak TENG + klizni	6 V za	4,2 V za	2,64 V za	0,77 V za
TENG	40 s	50 s	50 s	50 s
EMG + cik-cak TENG	3,6 V za	2,9 V za	2,31 V za	1,59 V za
	60 s	60 s	60 s	60 s
EMG + klizni TENG	6,5 V za	4,85 V za	2,88 V za	1,62 V za
	60 s	60 s	60 s	60 s

TABELA 5 Skladištenje energije u kondenzatorima

Na osnovu slika 38a i 38b, kao i vrednosti u tabeli 5, vidi se da klizni TENG pokazuje bolje performanse prilikom punjenja kondenzatora u poređenju sa cik-cak TENG-om. Takođe, cik-cak TENG i klizni TENG vezani paralelno generišu veću izlaznu struju, što povećava brzinu kojom se puni kondenzator. U slučaju hibridnog nanogeneratora značajno je povećan nivo napona, kao i brzina punjenja kondenzatora u poređenju sa individualnim modulima. Na slikama 38a i 38b se može uočiti da kombinacija EMG i TENG modula takođe stabilizuje napon kondenzatora. Performanse se mogu dodatno poboljšati povećanjem radne frekvencije hibridnog uređaja, s obzirom da za sve integrisane module važi da je brzina punjenja kondenzatora proporcionalna frekvenciji, kao što je prikazano u teorijskoj analizi.

9. Demonstracija praktične primene hibridnog nanogeneratora

Prilikom demonstracije praktične primene, hibridni nanogenerator je prvo testiran za direktno napajanje svetlećih dioda (LED). Grupa od 50 žutih LED dioda vezanih paralelno priključena je na EMG, grupa od 50 crvenih LED dioda vezanih redno priključena je na cik-cak TENG, a grupa od 44 narandžaste LED diode vezane redno priključena je na klizni TENG, kao što je prikazano na slici 39a. Slika 39b prikazuje da se 144 LED diode mogu istovremeno napajati od strane pojedinačnih modula.

Slika 39. Demonstracija praktične primene: (a-b) pojedinačni moduli mogu istovremeno osvetliti minimum 144 LED diode. Hibridni signal može osvetliti minimum (c-d) 50 crvenih i 44 narandžaste LED diode vezane redno, i (e-f) 50 žutih LED dioda vezanih paralelno.

Narandžaste LED diode koje napaja klizni TENG sijaju neprekidno, dok crvene LED diode koje napaja cik-cak TENG trepere, što je posledica toga da je kod kliznog TENG-a transfer

naelektrisanja kontinualan u svakoj polovini ciklusa (jednačina (25)), dok se u slučaju kontaktnog TENG-a prilikom transfera naelektrisanja brzo dostiže zasićenje (jednačina (9)). Određena radna frekvencija je neophodna da bi EMG dostigao odgovarajući napon i upalio LED diode (~ 6 Hz), dok cik-cak TENG i klizni TENG mogu da upale LED diode i na veoma niskim frekvencijama, s obzirom da imaju inicijalno velike napone. Na višim frekvencijama LED diode priključene na EMG sijaju jače od LED dioda priključenih na cik-cak TENG i klizni TENG, s obzirom da EMG ima najveću izlaznu struju. Nakon toga, hibridni nanogenerator je priključen da napaja 50 crvenih i 44 narandžaste LED diode vezane redno, kao što je prikazano na slikama 39c i 39d. Grupa od 50 žutih LED dioda vezanih paralelno takođe je napajana od strane hibridnog nanogeneratora, kao što je prikazano na slikama 39e i 39f.

Električna energija koju proizvodi hibridni nanogenerator je zatim skladištena u grupi kondenzatora kapacitivnosti 235 μ F (paralelna veza pet kondenzatora, svaki od 47 μ F) i iskorišćena za napajanje kalkulatora, kao što je prikazano na slikama 40a i 40b.

Slika 40. a) Napon grupe kondenzatora (paralelna veza pet kondenzatora, svaki od 47 μ F) prilikom skladištenja energije i napajanja kalkulatora, b) eksperimentalna postavka za napajanje kalkulatora.

Nanogenerator je pokazao dobre performanse u praktičnoj primeni, što ukazuje na to da se može koristiti kao potencijalni izvor napajanja za prenosivu elektroniku.

10. Zaključak i pravac budućeg istraživanja

U ovoj doktorskoj disertaciji je predstavljen hibridni elektromagnetski-triboelektrični nanogenerator kompaktnog dizajna za sakupljanje ambijentalne mehaničke energije u širokom frekvencijskom opsegu. Hibridni nanogenerator se sastoji od tri modula zasnovana na različitim radnim mehanizmima: EMG modul sa dva kalema i magnetom, cik-cak TENG sa dve ćelije u kontaktnom režimu i cilindrični TENG u kliznom režimu. Moduli su integrisani unutar dvodelne cilindrične akrilne strukture i generišu nezavisne signale pod uticajem jedinstvene mehaničke pobude. U disertaciji je prikazana teorijska analiza pojedinačnih modula u cilju optimizacije dizajna hibridnog nanogeneratora. Ceo uređaj je ekonomičan, lagan i kompaktan.

Izlazne karakteristike nanogeneratora su ispitane za različite otpornosti potrošača (u opsegu od 1 Ω do 100 MΩ), na frekvenciji od ~5 Hz. Maksimalni izlazni napon (napon praznog hoda) hibridnog nanogeneratora je 65 V, maksimalna izlazna struja (struja kratkog spoja) je 15,25 mA, a maksimalna izlazna snaga je 1,13 mW, pri otpornosti od 200 Ω, kao što je prikazano u poglavlju 7. U disertaciji je ispitana i efikasnost konverzije mehaničke u električnu energiju za pojedinačne module, kombinacije među njima, kao i za hibrdni nanogenerator, pri čemu su za testiranje korišćeni kondenzatori različitih kapacitivnosti. Pokazano je da sinteza više različitih modula koristi njihove prednosti i kompenzuje nedostatke kao što su mala struja TENG-a i mali napon EMG-a, pri čemu se poboljšavaju performanse uređaja za prikupljanje energije (nivo napona i brzina punjenja kondenzatora). Hibridni nanogenerator je napunio kondenzator kapacitivnosti 1 μF do 9,1 V za jedan minut, znatno brže od pojedinačnih modula, gde je uočeno da napon kondenzatora brzo dostiže maksimalnu vrednost za EMG modul zbog njegove velike struje, nakon čega se kondenzator kontinualno puni od strane TENG modula, kao što je prikazano u poglavlju 8.

Testiranjem performansi je potvrđeno da predloženi hibridni nanogenerator efikasno sakuplja mehaničku energiju iz okoline, pri čemu se može primeniti kao potencijalna zamena za baterije, u svrhu napajanja elektronskih uređaja male snage kao što su kalkulator ili LED diode. Električna energija koju je proizvodi hibridni nanogenerator je skladištena u grupi kondenzatora kapacitivnosti 235 µF i iskorišćena za napajanje kalkulatora, kao što je prikazano u poglavlju 9. Svi integrisani moduli istovremeno generišu naelektrisanje, što može direktno da osvetli najmanje 144

LED diode. Takođe, hibridni signal može da osvetli najmanje 94 LED diode vezane redno, i najmanje 50 LED dioda vezanih paralelno, kao što je prikazano u poglavlju 9.

Hibridni nanogenerator se potencijalno može koristiti i kao senzor sa sopstvenim napajanjem za detekciju pokreta/vibracija. Ukoliko se integriše u okviru sedišta automobila, bicikla ili kao deo podne strukture, prikupljena biomehanička energija se može iskoristiti za napajanje manjih elektronskih uređaja, kao i za praćenje pozicije i pomeraja tela, npr. u okviru sigurnosnog sistema ili za detekciju nezgoda. Nanogenerator integrisan u okviru nekog mehaničkog sistema može se iskoristiti za detekciju kvarova, kao i za napajanje senzora za monitoring okoline. S obzirom da su u okviru mehaničkih sistema vibracije česte i u većini slučajeva neželjene, nanogenerator će prilikom prikupljanja ambijentalne energije ujedno smanjiti i intenzitet vibracija koje se emituju.

Takođe, na osnovu pozitivnih i negativnih pikova naponskih signala EMG-a i kliznog TENGa (slike 28 i 30) moguće je detektovati smer pomeraja pokretnog dela nanogeneratora, npr. u svrhu kontrole stranica dokumenata na računaru. Naponski signal cik-cak TENG-a (slika 27) može se iskoristiti za detekciju aktivnosti (kontakt - razdvajanje) i pokretanje aplikacija, npr. za otvaranje i zatvaranje dokumenata.

Buduća istraživanja će biti usmerena ka dizajniranju triboelektričnih i hibridnih senzora sa sopstvenim napajnjem za prikupljanje biomehaničke energije, u cilju uspostavljanja interakcije čovek-računar, što može imati široku primenu u robotici ili u aplikacijama vezanim za veštačku inteligenciju. S obzirom da nanogeneratori imaju veliki potencijal da zamene postojeće izvore napajanja uređaja male snage (npr. senzori, prenosiva elektronika), istraživanje će takođe biti usmereno ka poboljšanju njihovog dizajna i performansi.

Prilog I

I.1. Izvođenje funkcije $\Delta Q(t)$ za cik-cak TENG

Dato je izvođenje funkcije $\Delta Q(t)$ za cik-cak TENG sa dve ćelije u kontaktnom režimu. Kada se u jednačinu (17) uvrsti jednačina (16) za pomeraj magneta z(t):

$$R\frac{d(\Delta Q)}{dt} = -\frac{\Delta Q}{2\varepsilon_0 S}(\frac{z}{2} + d_{ef}) + \frac{\sigma z}{2\varepsilon_0}, \quad \left(z = \frac{z_{\max}}{2}(1 - \cos \omega t)\right)$$
(34)

nakon preuređivanja dobija se izraz koji predstavlja linearnu diferencijalnu jednačinu prvog reda i rešava se smenom $\Delta Q(t) = u(t) \cdot v(t)$:

$$\frac{d(\Delta Q)}{dt} + \frac{\Delta Q}{2\varepsilon_0 SR} \left(\frac{z_{\max}}{4} \left(1 - \cos \omega t\right) + d_{ef}\right) = \frac{\sigma z_{\max}}{4\varepsilon_0 R} \left(1 - \cos \omega t\right), \quad (\Delta Q = u \cdot v)$$
(35)

$$\frac{d(uv)}{dt} + \frac{uv}{2\varepsilon_0 SR} \left(\frac{z_{\max}}{4} (1 - \cos \omega t) + d_{ef}\right) = \frac{\sigma z_{\max}}{4\varepsilon_0 R} (1 - \cos \omega t)$$
(36)

$$u\frac{dv}{dt} + v\frac{du}{dt} + \frac{uv}{2\varepsilon_0 SR} \left(\frac{z_{\max}}{4} \left(1 - \cos \omega t\right) + d_{ef}\right) = \frac{\sigma z_{\max}}{4\varepsilon_0 R} \left(1 - \cos \omega t\right).$$
(37)

Zatim se u zagradi grupišu delovi izraza koji množe v(t), što daje diferencijalnu jednačinu prvog reda koja zavisi samo od u(t). Izraz u zagradi se rešava nakon što se izjednači sa nulom:

$$u\frac{dv}{dt} + v\left(\underbrace{\frac{du}{dt} + \frac{u}{2\varepsilon_0 SR}(\frac{z_{\max}}{4}(1 - \cos\omega t) + d_{ef})}_{0}\right) = \frac{\sigma z_{\max}}{4\varepsilon_0 R}(1 - \cos\omega t)$$
(38)

$$\frac{du}{dt} = -\frac{u}{2\varepsilon_0 SR} \left(\frac{z_{\max}}{4} \left(1 - \cos \omega t\right) + d_{ef}\right) / \frac{dt}{u}$$
(39)

$$\frac{du}{u} = -\frac{dt}{2\varepsilon_0 SR} \left(\frac{z_{\max}}{4} \left(1 - \cos \omega t\right) + d_{ef}\right)$$
(40)

$$\int \frac{du}{u} = -\int \frac{dt}{2\varepsilon_0 SR} \left(\frac{z_{\text{max}}}{4} \left(1 - \cos \omega t \right) + d_{ef} \right)$$
(41)

$$\ln u = -\frac{1}{2\varepsilon_0 SR} \left(\frac{z_{\max}}{4} + d_{ef}\right) \int dt + \frac{z_{\max}}{8\varepsilon_0 SR} \int \cos \omega t \, dt \tag{42}$$

$$\ln u = -\frac{t}{2\varepsilon_0 SR} \left(\frac{z_{\max}}{4} + d_{ef}\right) + \frac{z_{\max}}{8\varepsilon_0 SR\omega} \sin \omega t$$
(43)

$$u = e^{-\frac{t}{2\varepsilon_0 SR}(\frac{z_{\max}}{4} + d_{ef}) + \frac{z_{\max}}{8\varepsilon_0 SR\omega}\sin\omega t}.$$
(44)

Nakon određivanja i smene u(t) u jednačinu (38), može se izvesti izraz za v(t):

$$u\frac{dv}{dt} = \frac{\sigma z_{\max}}{4\varepsilon_0 R} (1 - \cos \omega t), \quad \left(u = e^{-\frac{t}{2\varepsilon_0 SR}(\frac{z_{\max}}{4} + d_{ef}) + \frac{z_{\max}}{8\varepsilon_0 SR\omega}\sin \omega t}\right)$$
(45)

$$e^{-\frac{t}{2\varepsilon_0 SR}(\frac{z_{\max}}{4}+d_{ef})+\frac{z_{\max}}{8\varepsilon_0 SR\omega}\sin\omega t} \cdot \frac{dv}{dt} = \frac{\sigma z_{\max}}{4\varepsilon_0 R} (1-\cos\omega t)$$
(46)

$$dv = \frac{\sigma z_{\max}}{4\varepsilon_0 R} (1 - \cos \omega t) \cdot e^{\frac{t}{2\varepsilon_0 SR} (\frac{z_{\max}}{4} + d_{ef}) - \frac{z_{\max}}{8\varepsilon_0 SR\omega} \sin \omega t}} dt$$
(47)

$$\int dv = \int \frac{\sigma z_{\max}}{4\varepsilon_0 R} (1 - \cos \omega t) \cdot e^{\frac{t}{2\varepsilon_0 SR} (\frac{z_{\max}}{4} + d_{ef}) - \frac{z_{\max}}{8\varepsilon_0 SR\omega} \sin \omega t}} dt$$
(48)

$$v = \frac{\sigma z_{\max}}{4\varepsilon_0 R} \int (1 - \cos \omega t) \cdot e^{\frac{t}{2\varepsilon_0 SR} (\frac{z_{\max}}{4} + d_{ef}) - \frac{z_{\max}}{8\varepsilon_0 SR\omega} \sin \omega t}} dt.$$
(49)

Funkcija $\Delta Q(t)$ se dobija nakon što se u(t) i v(t) uvrste u izraz $\Delta Q(t) = u(t) \cdot v(t)$:

$$\Delta Q = u \cdot v = \frac{\sigma z_{\max}}{4\varepsilon_0 R} \cdot e^{-\frac{t}{2\varepsilon_0 SR} (\frac{z_{\max}}{4} + d_{ef}) + \frac{z_{\max}}{8\varepsilon_0 SR\omega} \sin \omega t}} \cdot \int (1 - \cos \omega t) \cdot e^{\frac{t}{2\varepsilon_0 SR} (\frac{z_{\max}}{4} + d_{ef}) - \frac{z_{\max}}{8\varepsilon_0 SR\omega} \sin \omega t}} dt.$$
(50)

I.2. Izvođenje funkcije $\Delta Q(t)$ za cilindrični TENG

Dato je izvođenje funkcije $\Delta Q(t)$ za cilindrični TENG u kliznom režimu. Kada se u jednačinu (27) uvrsti jednačina (16) za pomeraj magneta z(t):

$$R\frac{d(\Delta Q)}{dt} = -\frac{\Delta Q}{2\pi\varepsilon_r\varepsilon_0(l-z)}\ln\frac{b}{a} + \frac{\sigma bz}{\varepsilon_r\varepsilon_0(l-z)}\ln\frac{b}{a}, \quad \left(z = \frac{z_{\max}}{2}(1-\cos\omega t)\right)$$
(51)

nakon sređivanja dobija se izraz koji predstavlja linearnu diferencijalnu jednačinu prvog reda i rešava se smenom $\Delta Q(t) = u(t) \cdot v(t)$:

$$\frac{d(\Delta Q)}{dt} + \frac{\Delta Q}{2\pi\varepsilon_{r}\varepsilon_{0}R\left(l - \frac{z_{\max}}{2}(1 - \cos \omega t)\right)} \ln \frac{b}{a} = \frac{\sigma b z_{\max}(1 - \cos \omega t)}{2\varepsilon_{r}\varepsilon_{0}R\left(l - \frac{z_{\max}}{2}(1 - \cos \omega t)\right)} \ln \frac{b}{a}, \quad (\Delta Q = u \cdot v) \quad (52)$$

$$\frac{d(uv)}{dt} + \frac{uv}{2\pi\varepsilon_{r}\varepsilon_{0}R\left(l - \frac{z_{\max}}{2}(1 - \cos \omega t)\right)} \ln \frac{b}{a} = \frac{\sigma b z_{\max}(1 - \cos \omega t)}{2\varepsilon_{r}\varepsilon_{0}R\left(l - \frac{z_{\max}}{2}(1 - \cos \omega t)\right)} \ln \frac{b}{a} \quad (53)$$

$$u \frac{dv}{dt} + v \frac{du}{dt} + \frac{uv}{2\pi\varepsilon_{r}\varepsilon_{0}R\left(l - \frac{z_{\max}}{2}(1 - \cos \omega t)\right)} \ln \frac{b}{a} = \frac{\sigma b z_{\max}(1 - \cos \omega t)}{2\varepsilon_{r}\varepsilon_{0}R\left(l - \frac{z_{\max}}{2}(1 - \cos \omega t)\right)} \ln \frac{b}{a}. \quad (54)$$

Zatim se u zagradi grupišu delovi izraza koji množe v(t), što daje diferencijalnu jednačinu prvog reda koja zavisi samo od u(t). Izraz u zagradi se rešava nakon što se izjednači sa nulom:

$$u\frac{dv}{dt} + v\left(\underbrace{\frac{du}{dt} + \frac{u}{2\pi\varepsilon_{r}\varepsilon_{0}R\left(l - \frac{z_{\max}}{2}(1 - \cos\omega t)\right)}\ln\frac{b}{a}}_{0}\right) = \frac{\sigma bz_{\max}(1 - \cos\omega t)}{2\varepsilon_{r}\varepsilon_{0}R\left(l - \frac{z_{\max}}{2}(1 - \cos\omega t)\right)}\ln\frac{b}{a} \quad (55)$$
$$\frac{du}{dt} = -\frac{u}{2\pi\varepsilon_{r}\varepsilon_{0}R\left(l - \frac{z_{\max}}{2}(1 - \cos\omega t)\right)}\ln\frac{b}{a} / \cdot \frac{dt}{u} \quad (56)$$

$$\frac{du}{u} = -\frac{dt}{2\pi\varepsilon_r \varepsilon_0 R \left(l - \frac{z_{\max}}{2} (1 - \cos \omega t) \right)} \ln \frac{b}{a}$$
(57)

$$\int \frac{du}{u} = -\int \frac{dt}{2\pi\varepsilon_r \varepsilon_0 R \left(l - \frac{z_{\max}}{2} (1 - \cos \omega t) \right)} \ln \frac{b}{a}$$
(58)

$$\ln u = -\frac{\ln \frac{b}{a}}{2\pi\varepsilon_r \varepsilon_0 R} \int \frac{dt}{l - \frac{z_{\max}}{2} + \frac{z_{\max}}{2} \cos \omega t}.$$
(59)

Prilikom rešavanja integrala
$$\int \frac{dt}{l - \frac{z_{\text{max}}}{2} + \frac{z_{\text{max}}}{2} \cos \omega t}$$
 uzima se da je:

$$\cos \omega t = \frac{1 - \tan^2 \frac{\omega t}{2}}{1 + \tan^2 \frac{\omega t}{2}}, \quad A = l - \frac{z_{\max}}{2}, \quad B = \frac{z_{\max}}{2}$$
(60)

pri čemu se dobija:

$$\int \frac{dt}{l - \frac{z_{\max}}{2} + \frac{z_{\max}}{2} \cos \omega t} = \int \frac{dt}{A + B \left(\frac{1 - \tan^2 \frac{\omega t}{2}}{1 + \tan^2 \frac{\omega t}{2}}\right)}.$$
(61)

Nakon uvođenja smene $x = \tan \frac{\omega t}{2} \implies t = \frac{2 \tan^{-1} x}{\omega} \implies dt = \frac{2}{\omega (1 + x^2)} dx$ u integral i

sređivanja izraza dobija se:

$$\frac{2}{\omega}\int \frac{1}{A+B\left(\frac{1-x^{2}}{1+x^{2}}\right)} \frac{dx}{(1+x^{2})} = \frac{2}{\omega}\int \frac{1}{\frac{A+Ax^{2}+B-Bx^{2}}{1+x^{2}}} \frac{dx}{(1+x^{2})}$$

$$= \frac{2}{\omega}\int \frac{dx}{(A+B)+x^{2}(A-B)} = \frac{2}{\omega(A+B)}\int \frac{dx}{1+x^{2}\left(\frac{A-B}{A+B}\right)}$$

$$= \frac{2}{\omega(A+B)}\sqrt{\frac{A+B}{A-B}}\int \frac{\sqrt{\frac{A-B}{A+B}}}{1+x^{2}\left(\sqrt{\frac{A-B}{A+B}}\right)^{2}} = \frac{2}{\omega\sqrt{(A+B)(A-B)}}\int \frac{\sqrt{\frac{A-B}{A+B}}}{1+x^{2}\left(\sqrt{\frac{A-B}{A+B}}\right)^{2}}$$

$$= \frac{2}{\omega\sqrt{(A+B)(A-B)}}\tan^{-1}\left(\sqrt{\frac{A-B}{A+B}}\cdot x\right) = \frac{2}{\omega\sqrt{l(l-z_{\max})}}\tan^{-1}\left(\sqrt{\frac{l-z_{\max}}{l}}\cdot \tan\frac{\omega t}{2}\right).$$
(62)

Kada se rešenje integrala uvrsti u jednačinu (59), dolazi se do izraza za u(t):

$$\ln u = -\frac{\ln \frac{b}{a}}{2\pi\varepsilon_{r}\varepsilon_{0}R} \cdot \frac{2}{\omega\sqrt{l(l-z_{\max})}} \tan^{-1}\left(\sqrt{\frac{l-z_{\max}}{l}} \cdot \tan \frac{\omega t}{2}\right)$$
(63)
$$u = e^{-\frac{\ln \frac{b}{a}}{\pi\varepsilon_{r}\varepsilon_{0}R\omega\sqrt{l(l-z_{\max})}} \tan^{-1}\left(\sqrt{\frac{l-z_{\max}}{l}} \cdot \tan \frac{\omega t}{2}\right)}.$$
(64)

Nakon određivanja i smene u(t) u jednačinu (55), može se izvesti izraz za v(t):

$$u\frac{dv}{dt} = \frac{\sigma b z_{\max}(1 - \cos \omega t)}{2\varepsilon_r \varepsilon_0 R \left(l - \frac{z_{\max}}{2} (1 - \cos \omega t) \right)} \ln \frac{b}{a}, \quad \left(u = e^{-\frac{\ln \frac{b}{a}}{\pi \varepsilon_r \varepsilon_0 R \omega \sqrt{l(l - z_{\max})}} \tan^{-1} \left(\sqrt{\frac{l - z_{\max}}{l}} \cdot \tan \frac{\omega t}{2} \right)} \right)$$
(65)

$$e^{-\frac{\ln\frac{b}{a}}{\pi\varepsilon_{r}\varepsilon_{0}R\omega\sqrt{l(l-z_{\max})}}\tan^{-1}\left(\sqrt{\frac{l-z_{\max}}{l}}\cdot\tan\frac{\omega t}{2}\right)}\cdot\frac{dv}{dt}} = \frac{\sigma b z_{\max}(1-\cos\omega t)}{2\varepsilon_{r}\varepsilon_{0}R\left(l-\frac{z_{\max}}{2}(1-\cos\omega t)\right)}\ln\frac{b}{a}$$
(66)

$$dv = \frac{\sigma b z_{\max} (1 - \cos \omega t) \ln \frac{b}{a}}{2\varepsilon_r \varepsilon_0 R \left(l - \frac{z_{\max}}{2} (1 - \cos \omega t) \right)} \cdot e^{\frac{\ln \frac{b}{a}}{\pi \varepsilon_r \varepsilon_0 R \omega \sqrt{l(l - z_{\max})}} \tan^{-l} \left(\sqrt{\frac{l - z_{\max}}{l}} \cdot \tan \frac{\omega t}{2} \right)} dt$$
(67)

$$\int dv = \int \frac{\sigma b z_{\max} (1 - \cos \omega t) \ln \frac{b}{a}}{2\varepsilon_r \varepsilon_0 R \left(l - \frac{z_{\max}}{2} (1 - \cos \omega t) \right)} \cdot e^{\frac{\ln \frac{b}{a}}{\pi \varepsilon_r \varepsilon_0 R \omega \sqrt{l(l - z_{\max})}} \tan^{-l} \left(\sqrt{\frac{l - z_{\max}}{l}} \cdot \tan \frac{\omega t}{2} \right)} dt$$
(68)

$$v = \frac{\sigma b z_{\max} \ln \frac{b}{a}}{2\varepsilon_r \varepsilon_0 R} \int \frac{1 - \cos \omega t}{l - \frac{z_{\max}}{2} (1 - \cos \omega t)} \cdot e^{\frac{\ln \frac{b}{a}}{\pi \varepsilon_r \varepsilon_0 R \omega \sqrt{l(l - z_{\max})}} \tan^{-1} \left(\sqrt{\frac{l - z_{\max}}{l}} \cdot \tan \frac{\omega t}{2}\right)} dt.$$
(69)

Funkcija $\Delta Q(t)$ se dobija nakon što se u(t) i v(t) uvrste u izraz $\Delta Q(t) = u(t) \cdot v(t)$:

$$\Delta Q = u \cdot v = \frac{\sigma b z_{\max} \ln \frac{b}{a}}{2\varepsilon_r \varepsilon_0 R} \cdot e^{-\frac{\ln \frac{b}{a}}{\pi \varepsilon_r \varepsilon_0 R \omega \sqrt{l(l-z_{\max})}} \tan^{-l} \left(\sqrt{\frac{l-z_{\max}}{l}} \cdot \tan \frac{\omega t}{2}\right)} \cdot \int \frac{1 - \cos \omega t}{l - \frac{z_{\max}}{2} (1 - \cos \omega t)} \cdot e^{\frac{\ln \frac{b}{a}}{\pi \varepsilon_r \varepsilon_0 R \omega \sqrt{l(l-z_{\max})}} \tan^{-l} \left(\sqrt{\frac{l-z_{\max}}{l}} \cdot \tan \frac{\omega t}{2}\right)} dt.$$
(70)

Prilog II

II.1. Naponski signali za ćeliju 1 cik-cak TENG-a

Naponski signali izmereni na različitim otpornostima potrošača za ćeliju 1 cik-cak TENG-a.

Slika 41. Naponski signali izmereni za ćeliju 1 cik-cak TENG-a.

II.2. Naponski signali za ćeliju 2 cik-cak TENG-a

Naponski signali izmereni na različitim otpornostima potrošača za ćeliju 2 cik-cak TENG-a.

Slika 42. Naponski signali izmereni za ćeliju 2 cik-cak TENG-a.

II.3. Naponski signali za ćelije cik-cak TENG-a vezane paralelno

Naponski signali izmereni na različitim otpornostima potrošača za ćelije cik-cak TENG-a vezane paralelno.

Slika 43. Naponski signali izmereni za ćelije cik-cak TENG-a vezane paralelno.

II.4. Naponski signali za klizni TENG

Naponski signali izmereni na različitim otpornostima potrošača za klizni TENG.

Slika 44. Naponski signali izmereni za klizni TENG.

II.5. Naponski signali za EMG1

Naponski signali izmereni na različitim otpornostima potrošača za EMG1.

84

Slika 45. Naponski signali izmereni za EMG1.

II.6. Naponski signali za EMG2

Naponski signali izmereni na različitim otpornostima potrošača za EMG2.

Slika 46. Naponski signali izmereni za EMG2.

II.7. Naponski signali za rednu vezu EMG1 i EMG2

Naponski signali izmereni na različitim otpornostima potrošača za rednu vezu EMG1 i EMG2.

Slika 47. Naponski signali izmereni za rednu vezu EMG1 i EMG2.

II.8. Naponski signali za hibridni nanogenerator

Naponski signali izmereni na različitim otpornostima potrošača za hibridni nanogenerator.

Slika 48. Naponski signali izmereni za hibridni nanogenerator.

Literatura

- B. Chu, W. Burnett, J. W. Chung, Z. Bao, Bring on the bodyNET, Nature News 549 (2017), 328.
- [2] T. R. Ray, J. Choi, A. J. Bandodkar, S. Krishnan, P. Gutruf, L. Tian, R. Ghaffari, J. A. Rogers, Bio-integrated wearable systems: a comprehensive review, Chemical reviews 119 (2019), 5461.
- [3] Q. Shi, B. Dong, T. He, Z. Sun, J. Zhu, Z. Zhang, C. Lee, Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and internet of things, InfoMat 2 (2020), 1131.
- [4] Z. L. Wang, Entropy theory of distributed energy for internet of things, Nano Energy 58 (2019), 669.
- [5] A. Alagumalai, O. Mahian, M. Aghbashlo, M. Tabatabaei, S. Wongwises, Z. L. Wang, Towards smart cities powered by nanogenerators: Bibliometric and machine learning– based analysis, Nano Energy 83 (2021), 105844.
- [6] L. Liu, X. Guo, C. Lee, Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters, Nano Energy 88 (2021), 106304.
- [7] M. Sun, Z. Li, C. Yang, Y. Lv, L. Yuan, C. Shang, S. Liang, B. Guo, Y. Liu, Z. Li, D. Luo, Nanogenerator-based Devices for Biomedical Applications, Nano Energy 89 (2021), 106461.
- [8] Z. Li, Y. Cui, J. Zhong, Recent advances in nanogenerators-based flexible electronics for electromechanical biomonitoring, Biosensors and Bioelectronics 186 (2021), 113290.
- [9] M. Zhu, Z. Yi, B. Yang, C. Lee, Making use of nanoenergy from human Nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems, Nano Today 36 (2021), 101016.
- [10] Z. L. Wang, On Maxwell's displacement current for energy and sensors: the origin of nanogenerators, Materials Today 20 (2017), 74.
- [11] Z. L. Wang, On the first principle theory of nanogenerators from Maxwell's equations, Nano Energy 68 (2020), 104272.

- [12] E. Kar, N. Bose, B. Dutta, S. Banerjee, N. Mukherjee, S. Mukherjee, 2D SnO2 nanosheet/PVDF composite based flexible, self-cleaning piezoelectric energy harvester, Energy Conversion and Management 184 (2019), 600.
- [13] L. Gu, J. Liu, N. Cui, Q. Xu, T. Du, L. Zhang, Z. Wang, C. Long, Y. Qin, Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode, Nature communications 11 (2020), 1.
- [14] D. Hu, M. Yao, Y. Fan, C. Ma, M. Fan, M. Liu, Strategies to achieve high performance piezoelectric nanogenerators, Nano Energy 55 (2019), 288.
- [15] S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu, Z. L. Wang, Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism, Nano Letters 13 (2013), 2226.
- [16] W. Yang, J. Chen, G. Zhu, J. Yang, P. Bai, Y. Su, Q. Jing, X. Cao, Z. L. Wang, Harvesting Energy from the Natural Vibration of Human Walking, ACS Nano 2013, 7, 11317.
- [17] F. R. Fan, Z. Q. Tian, Z. L. Wang, Flexible triboelectric generator, Nano energy 1 (2012), 328.
- [18] Z. L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors, ACS nano 7 (2013), 9533.
- [19] S. Yun, Y. Zhang, Q. Xu, J. Liu, Y. Qin, Recent advance in new-generation integrated devices for energy harvesting and storage, Nano Energy 60 (2019), 600.
- [20] J. Luo, W. Gao, Z. L. Wang, The Triboelectric Nanogenerator as an Innovative Technology toward Intelligent Sports, Advanced Materials 33 (2021), 2004178.
- [21] F. Xu, S. Dong, G. Liu, C. Pan, Z. H. Guo, W. Guo, L. Li, Y. Liu, C. Zhang, X. Pu, Z. L. Wang, Scalable fabrication of stretchable and washable textile triboelectric nanogenerators as constant power sources for wearable electronics, Nano Energy 88 (2021), 106247.
- [22] S. Niu, X. Wang, F. Yi, Y. S. Zhou, Z. L. Wang, A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics, Nature Communications 2015, 6, 8975.
- [23] Q. Zhou, J. Pan, S. Deng, F. Xia, T. Kim, Triboelectric Nanogenerator-Based Sensor Systems for Chemical or Biological Detection, Advanced Materials 33 (2021), 2008276.
- [24] X. Li, T. Tat, J. Chen, Triboelectric nanogenerators for self-powered drug delivery, Trends in Chemistry 3 (2021), 765.
- [25] I. Shabbir, D. M. Lee, D. C. Choo, Y. H. Lee, K. K. Park, K. H. Yoo, S. W. Kim, T. W. Kim, A graphene nanoplatelets-based high-performance, durable triboelectric nanogenerator for harvesting the energy of human motion, Energy Reports 8 (2022), 1026.
- [26] C. Lin, J. Yu, Z. Hua, J. Lan, H. Huang, D. Lu, S. Cao, X. Ma, Development progress, performance enhancement routes and applications of paper-based triboelectric nanogenerators, Chemical Engineering Journal 430 (2021), 132559.
- [27] S. A. Shankaregowda, C. B. Nanjegowda, X. L. Cheng, M. Y. Shi, Z. F. Liu, H. X. Zhang, A flexible and transparent graphene-based triboelectric nanogenerator, IEEE Transactions on Nanotechnology 2016, 15, 435.
- [28] R. Zhang, H. Olin, Material choices for triboelectric nanogenerators: A critical review, EcoMat 2 (2020), 12062.
- [29] S. Zargari, Z. D. Koozehkanani, H. Veladi, J. Sobhi, A. Rezania, A new Mylar-based triboelectric energy harvester with an innovative design for mechanical energy harvesting applications, Energy Conversion and Management 244 (2021), 114489.
- [30] M. Khorsand, J. Tavakoli, K. Kamanya, Y. Tang, Simulation of high-output and lightweight sliding-mode triboelectric nanogenerators, Nano Energy 66 (2019), 104115.
- [31] W. He, X. Fu, D. Zhang, Q. Zhang, K. Zhuo, Z. Yuan, R. Ma, Recent progress of flexible/wearable self-charging power units based on triboelectric nanogenerators, Nano Energy 84 (2021), 105880.
- [32] Z. Zhang, N. Yin, Z. Wu, S. Pan, D. Wang, Research methods of contact electrification: Theoretical simulation and experiment, Nano Energy 79 (2021), 105501.
- [33] K. Zhang, Wang, Z. L. Wang, Y. Yang, Standard and figure-of-merit for quantifying the performance of pyroelectric nanogenerators, Nano Energy 55 (2019), 534.
- [34] S. Korkmaz, İ. A. Kariper, Pyroelectric nanogenerators (PyNGs) in converting thermal energy into electrical energy: Fundamentals and current status, Nano Energy 84 (2021), 105888.
- [35] H. J. Yoon, H. Ryu, S. W. Kim, Sustainable powering triboelectric nanogenerators: Approaches and the path towards efficient use, Nano Energy 51 (2018), 270.
- [36] R. D. I. G. Dharmasena, S. R. P. Silva, Towards optimized triboelectric nanogenerators, Nano Energy 62 (2019), 530.

- [37] B. Meng, Fabrication of triboelectric nanogenerators, chapter 3 in Flexible and Stretchable Triboelectric Nanogenerator Devices: Toward Self-Powered Systems, edited by M. Han, X. Zhang, H. Zhang, Wiley-VCH Verlag (2019), 41.
- [38] H. Yang, F. R. Fan, Y. Xi, W. Wu, Design and engineering of high-performance triboelectric nanogenerator for ubiquitous unattended devices, EcoMat 3 (2021), 12093.
- [39] Y. M. Wang, Q. Zeng, L. He, P. Yin, Y. Sun, W. Hu, R. Yang, Fabrication and application of biocompatible nanogenerators, iScience 24 (2021), 102274.
- [40] W. Li, Y. Pei, C. Zhang, A. G. P. Kottapalli, Bioinspired designs and biomimetic applications of triboelectric nanogenerators, Nano Energy 84 (2021), 105865.
- [41] Z. Niu, W. Cheng, M. Cao, D. Wang, Q. Wang, J. Han, Y. Long, G. Han, Recent advances in cellulose-based flexible triboelectric nanogenerators, Nano Energy 87 (2021), 106175.
- [42] W. Paosangthong, R. Torah, S. Beeby, Recent progress on textile-based triboelectric nanogenerators, Nano Energy 55 (2019), 401.
- [43] B. Chen, W. Tang, T. Jiang, L. Zhu, X. Chen, C. He, L. Xu, H. Guo, P. Lin, D. Li, J. Shao, Z. L. Wang, Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing, Nano Energy 45 (2018), 380.
- [44] S. Jang, Y. Kim, S. Lee, J. H. Oh, Optimization of Electrospinning Parameters for Electrospun Nanofiber-Based Triboelectric Nanogenerators, International Journal of Precision Engineering and Manufacturing-Green Technology 6 (2019), 731.
- [45] X. Xiao, G. Chen, A. Libanori, J. Chen, Wearable triboelectric nanogenerators for therapeutics, Trends in Chemistry 3 (2021), 279.
- [46] X. Pu, S. An, Q. Tang, H. Guo, C. Hu, Wearable triboelectric sensors for biomedical monitoring and human-machine interface, iScience 24 (2021), 102027.
- [47] W. Fan, Q. He, K. Meng, X. Tan, Z. Zhou, G. Zhang, J. Yang, Z. L. Wang, Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring, Science advances 6 (2020), eaay2840.
- [48] D. Heo, M. Song, S. H. Chung, K. Cha, Y. Kim, J. Chung, P. T. Hwang, J. Lee, H. Jung, Y. Jin, J. Hong, Inhalation-Driven Vertical Flutter Triboelectric Nanogenerator with Amplified Output as a Gas-Mask-Integrated Self-Powered Multifunctional System, Advanced Energy Materials (2022), 2201001.

- [49] H. Ouyang, Z. Liu, N. Li, B. Shi, Y. Zou, F. Xie, Y. Ma, Z. Li, H. Li, Q. Zheng, X. Qu, Symbiotic cardiac pacemaker, Nature communications 10 (2019), 1.
- [50] S. M. A. Z. Shawon, A. X. Sun, V. S. Vega, B. D. Chowdhury, P. Tran, Z. D. Carballo, J. A. Tolentino, J. Li, M. S. Rafaqut, S. Danti, M. J. Uddin, Piezo-tribo dual effect hybrid nanogenerators for health monitoring, Nano Energy 82 (2021), 105691.
- [51] H. Wang, M. Han, Y. Song, H. Zhang, Design, manufacturing and applications of wearable triboelectric nanogenerators, Nano Energy 81 (2021), 105627.
- [52] X. S. Zhang, M. Han, B. Kim, J. F. Bao, J. Brugger, H. Zhang, All-in-one self-powered flexible microsystems based on triboelectric nanogenerators, Nano Energy 47 (2018), 410.
- [53] Y. Han, F. Yi, C. Jiang, K. Dai, Y. Xu, X. Wang, Z. You, Self-powered gait pattern-based identity recognition by a soft and stretchable triboelectric band, Nano Energy 56 (2019), 516.
- [54] X. Wu, X. Li, J. Ping, Y. Ying, Recent advances in water-driven triboelectric nanogenerators based on hydrophobic interfaces, Nano Energy 90 (2021), 106592.
- [55] L. Zhang, B. Zhang, J. Chen, L. Jin, W. Deng, J. Tang, H. Zhang, H. Pan, M. Zhu, W. Yang, Z. L. Wang, Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftop, Advanced Materials 28 (2016), 1650.
- [56] T. Zhao, M. Xu, X. Xiao, Y. Ma, Z. Li, Z. L. Wang, Recent progress in blue energy harvesting for powering distributed sensors in ocean, Nano Energy 88 (2021), 106199.
- [57] X. Liang, T. Jiang, G. Liu, T. Xiao, L. Xu, W. Li, F. Xi, C. Zhang, Z. L. Wang, Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting, Advanced Functional Materials 29 (2019), 1807241.
- [58] M. Xu, S. Wang, S. L. Zhang, W. Ding, P. T. Kien, C. Wang, Z. Li, X. Pan, Z. L. Wang, A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment, Nano Energy 57 (2019), 574.
- [59] L. Jin, B. Zhang, L. Zhang, W. Yang, Nanogenerator as new energy technology for selfpowered intelligent transportation system, Nano Energy 66 (2019), 104086.
- [60] H. Askari, E. Hashemi, A. Khajepour, M. B. Khamesee, Z. L. Wang, Towards self-powered sensing using nanogenerators for automotive systems, Nano Energy 53 (2018), 1003.
- [61] T. Guo, G. Liu, Y. Pang, B. Wu, F. Xi, J. Zhao, T. Bu, X. Fu, X. Li, C. Zhang, Z. L. Wang, Compressible hexagonal-structured triboelectric nanogenerators for harvesting tire rotation energy, Extreme Mechanics Letters 18 (2018), 1.

- [62] H. Askari, A. Khajepour, M. B. Khamesee, Z. L. Wang, Embedded self-powered sensing systems for smart vehicles and intelligent transportation, Nano Energy 66 (2019), 104103.
- [63] B. Dong, Q. Shi, Y. Yang, F. Wen, Z. Zhang, C. Lee, Technology evolution from self-powered sensors to AIoT enabled smart homes, Nano Energy 79 (2021), 105414.
- [64] X. Zhao, H. Askari, J. Chen, Nanogenerators for smart cities in the era of 5G and Internet of Things, Joule 5 (2021), 1391.
- [65] J. Luo, Z. Wang, L. Xu, A. C. Wang, K. Han, T. Jiang, Q. Lai, Y. Bai, W. Tang, F. R. Fan, Z. L. Wang, Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics, Nature communications 10 (2019), 1.
- [66] H. Guo, X. Pu, J. Chen, Y. Meng, M.-H. Yeh, G. Liu, Q. Tang, B. Chen, D. Liu, S. Qi, C. Wu, C. Hu, J. Wang, Z. L. Wang, A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids, Science Robotics 3 (2018), eaat2516.
- [67] P. Jiao, Emerging artificial intelligence in piezoelectric and triboelectric nanogenerators, Nano Energy 88 (2021), 106227.
- [68] Y. Zhou, M. Shen, X. Cui, Y. Shao, L. Li, Y. Zhang, Triboelectric nanogenerator based selfpowered sensor for artificial intelligence, Nano Energy 84 (2021), 105887.
- [69] M. Pan, C. Yuan, X. Liang, J. Zou, Y. Zhang, C. Bowen, Triboelectric and Piezoelectric Nanogenerators for Future Soft Robots and Machines, iScience 23 (2020), 101682.
- [70] H. Fang, J. Guo, H. Wu, Wearable triboelectric devices for haptic perception and VR/AR applications, Nano Energy 96 (2022), 107112.
- [71] X. Pu, H. Guo, J. Chen, X. Wang, Y. Xi, C. Hu, Z. L. Wang, Eye motion triggered selfpowered mechnosensational communication system using triboelectric nanogenerator, Science Advances 3 (2017), e1700694.
- [72] L. Dhakar, P. Pitchappa, F. E. H. Tay, C. Lee, An intelligent skin based self-powered finger motion sensor integrated with triboelectric nanogenerator, Nano Energy 2016, 19, 532.
- [73] S. Liu, Y. Li, W. Guo, X. Huang, L. Xu, Y. C. Lai, C. Zhang, H. Wu, Triboelectric nanogenerators enabled sensing and actuation for robotics, Nano Energy 65 (2019), 104005.
- [74] Y. Luo, X. Xiao, J. Chen, Q. Li, H. Fu, Machine-Learning-Assisted Recognition on Bioinspired Soft Sensor Arrays, ACS nano 16, 6734.
- [75] J. Yun, N. Jayababu, D. Kim, Self-powered transparent and flexible touchpad based on triboelectricity towards artificial intelligence, Nano Energy 78 (2020), 105325.

- [76] T. Chen, et al. Triboelectric self-powered wearable flexible patch as 3D motion control interface for robotic manipulator, ACS Nano 12 (2018), 11561.
- [77] J. Chen, G. Zhu, J. Yang, Q. Jing, P. Bai, W. Yang, X. Qi, Y. Su, Z. L. Wang, Personalized keystroke dynamics for self-powered human–machine interfacing, ACS nano 9 (2015), 105.
- [78] Y. Song, N. Wang, C. Hu, Z. L. Wang, Y. Yang, Soft triboelectric nanogenerators for mechanical energy scavenging and self-powered sensors, Nano Energy 84 (2021), 105919.
- [79] K. Tao, Z. Chen, J. Yu, H. Zeng, J. Wu, Z. Wu, Q. Jia, P. Li, Y. Fu, H. Chang, W. Yuan, Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micropyramid patterned ionic hydrogel for interactive human-machine interfaces, Advanced Science 9 (2022), 2104168.
- [80] F. Wen, et al. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications, Advanced Science 7 (2020), 2000261.
- [81] Z. Zhou, K. Chen, X. Li, S. Zhang, Y. Wu, Y. Zhou, K. Meng, C. Sun, Q. He, W. Fan, E. Fan, Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays, Nature Electronics 3, 571.
- [82] Y. Lu, H. Tian, J. Cheng, F. Zhu, B. Liu, S. Wei, L. Ji, Z. L. Wang, Decoding lip language using triboelectric sensors with deep learning, Nature communications 13, 1.
- [83] X. Chen, Z. Ren, M. Han, J. Wan, H. Zhang, Hybrid energy cells based on triboelectric nanogenerator: From principle to system, Nano Energy 75 (2020), 104980.
- [84] Q. Shi, Z. Sun, Z. Zhang, C. Lee, Triboelectric nanogenerators and hybridized systems for enabling next-generation IoT applications, Research 30 (2021), 6849171.
- [85] X. Wang, Z. L. Wang, Y. Yang, Hybridized nanogenerator for simultaneously scavenging mechanical and thermal energies by electromagnetic-triboelectric-thermoelectric effects, Nano Energy 26 (2016), 164.
- [86] S. Wang, Z. L. Wang, Y. A. Yang, A one-structure-based hybridized nanogenerator for scavenging mechanical and thermal energies by triboelectric–piezoelectric–pyroelectric effects, Advanced Materials 28 (2016), 2881.
- [87] H. Yang, M. Deng, Q. Tang, W. He, C. Hu, Y. Xi, R. Liu, Z. L. Wang, A nonencapsulative pendulum-like paper–based hybrid nanogenerator for energy harvesting, Advanced Energy Materials 2019, 9(33), 1901149.

- [88] Z. L. Wang, T. Jiang, L. Xu, Toward the blue energy dream by triboelectric nanogenerator networks, Nano Energy 39 (2017), 9.
- [89] Y. Wu, J. Qu, P. K. Chu, D. M. Shin, Y. Luo, S. P. Feng, Hybrid photovoltaic-triboelectric nanogenerators for simultaneously harvesting solar and mechanical energies, Nano Energy 89 (2021), 106376.
- [90] H. Shao, Z. Wen, P. Cheng, N. Sun, Q. Shen, C. Zhou, M. Peng, Y. Yang, X. Xie, X. Sun, Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator electromagnetic generator and solar cell for harvesting blue energy, Nano Energy 2017, 39, 608.
- [91] W. Song, X. Yin, D. Liu, W. Ma, M. Zhang, X. Li, P. Cheng, C. Zhang, J. Wang, Z. L. Wang, A highly elastic self-charging power system for simultaneously harvesting solar and mechanical energy, Nano Energy 65 (2019), 103997.
- [92] D. Yang, Y. Ni, H. Su, Y. Shi, Q. Liu, X. Chen, D. He, Hybrid energy system based on solar cell and self-healing/self-cleaning triboelectric nanogenerator, Nano Energy 79 (2021), 105394.
- [93] C. Qiu, F. Wu, C. Lee, M. R. Yuce, Self-powered control interface based on Gray code with hybrid triboelectric and photovoltaics energy harvesting for IoT smart home and access control applications, Nano Energy 70 (2020), 104456.
- [94] Q. Zhang, Q. Liang, Z. Zhang, Z. Kang, Q. Liao, Y. Ding, M. Ma, F. Gao, X. Zhao, Y. Zhang, Electromagnetic shielding hybrid nanogenerator for health monitoring and protection, Advanced Functional Materials 28 (2018), 1703801.
- [95] J. G. Sun, T. N. Yang, C. Y. Wang, L. J. Chen, A flexible transparent one-structure tribopiezo-pyroelectric hybrid energy generator based on bio-inspired silver nanowires network for biomechanical energy harvesting and physiological monitoring, Nano Energy 48 (2018), 383.
- [96] S. Kumar, H. H. Singh, N. Khare, Flexible hybrid piezoelectric-thermoelectric generator for harnessing electrical energy from mechanical and thermal energy, Energy Conversion and Management 198 (2019), 111783.
- [97] K. W. Zhang, X. Wang, Y. Yang, Z. L. Wang, Hybridized Electromagnetic-Triboelectric Nanogenerator for Scavenging Biomechanical Energy for Sustainably Powering Wearable Electronics, ACS Nano 2015, 9, 3521.

- [98] X. Wang, S. H. Wang, Y. Yang, Z. L. Wang, Hybridized Electromagnetic-Triboelectric Nanogenerator for Scavenging Air-Flow Energy to Sustainably Power Temperature Sensors, ACS Nano 2015, 9, 4553.
- [99] T. Quan, X. Wang, Z. L. Wang, Y. Yang, Hybridized Electromagnetic-Triboelectric Nanogenerator for a Self-Powered Electronic Watch, ACS Nano 2015, 9, 12301.
- [100] X. D. Zhong, Y. Yang, X. Wang, Z. L. Wang, Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source, Nano Energy 2015, 13, 771.
- [101] X. Li, J. Liu, W. Chen, S. Bai, Analytical magnetics and torque modeling of a multi-layer electromagnetic driven spherical motion generator, Journal of Magnetism and Magnetic Materials 493 (2020), 165707.
- [102] Y. Gu, W. Liu, C. Zhao, P. Wang, A goblet-like non-linear electromagnetic generator for planar multi-directional vibration energy harvesting, Applied Energy 266 (2020), 114846.
- [103] M. Li, X. Jing, A bistable X-structured electromagnetic wave energy converter with a novel mechanical-motion-rectifier: Design, analysis, and experimental tests, Energy Conversion and Management 244 (2021), 114466.
- [104] M. Zhu, Q. Shi, T. He, Z. Yi, Y. Ma, B. Yang, T. Chen, C. Lee, Self-powered and selffunctional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring, ASC Nano 13 (2019), 1940.
- [105] D. W. Lee, D. G. Jeong, J. H. Kim, H. S. Kim, G. Murillo, G. H. Lee, H. C. Song, J. H. Jung, Polarization-controlled PVDF-based hybrid nanogenerator for an effective vibrational energy harvesting from human foot, Nano Energy 76 (2020), 105066.
- [106] Z. Li, Z. Saadatnia, Z. Yang, H. Naguib, A hybrid piezoelectric-triboelectric generator for low-frequency and broad-bandwidth energy harvesting, Energy Conversion and Management 174 (2018), 188.
- [107] M. H. Syu, Y. J. Guan, W. C. Lo, Y. K. Fuhg, Biomimetic and porous nanofiber-based hybrid sensor for multifunctional pressure sensing and human gesture identification via deep learning method, Nano Energy 76 (2020), 105029.
- [108] C. Zhang, W. Tang, C. Han, F. Fan, Z. L. Wang, Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and

triboelectric nanogenerator for harvesting mechanical energy, Advanced Materials 26 (2014), 3580.

- [109] F. R. Fan, W. Tang, Y. Yao, J. Luo, C. Zhang, Z. L. Wang, Complementary power output characteristics of electromagnetic generators and triboelectric generators, Nanotechnology 25 (2014), 135402.
- [110] B. Zhang, J. Chen, L. Jin, W. Deng, L. Zhang, H. Zhang, M. Zhu, W. Yang, Z. L. Wang, Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for sustainably powering wireless traffic volume sensors, ACS Nano 2016, 10, 6241.
- [111] L. Gao, S. Lu, W. Xie, X. Chen, L. Wu, T. Wang, A. Wang, C. Yue, D. Tong, W. Lei, H. Yu, X. He, X. Mu, Z. L. Wang, Y. Yang, A self-powered and self-functional tracking system based on triboelectirc-electromagnetic hybridized blue energy harvesting module, Nano Energy 2020, 72, 104684.
- [112] X. Chen, L. Gao, J. Chen, S. Lu, H. Zhou, T. Wang, A. Wang, Z. Zhang, S. Guo, X. Mu, Z. L. Wang, Y. Yang, A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system, Nano Energy 69 (2020), 104440.
- [113] Q. Zhang, L. Li, T. Wang, Y. Jiang, Y. Tian, T. Jin, T. Yue, C. Lee, Self-sustainable flowvelocity detection via electromagnetic/triboelectric hybrid generator aiming at IoT-based environment monitoring, Nano Energy 90 (2021), 106501.
- [114] M. T. Rahman, S. M. S. Rana, P. Maharjan, M. Salauddin, T. Bhatta, H. Cho, C. Park, J. Y. Park, Ultra-robust and broadband rotary hybridized nanogenerator for self-sustained smartfarming applications, Nano Energy 85 (2021), 105974.
- [115] J. Mu, J. Zou, J. Song, J. He, X. Hou, J. Yu, X. Han, C. Feng, H. He, X. Chou, Hybrid enhancement effect of structural and material properties of the triboelectric generator on its performance in integrated energy harvester, Energy Conversion and Management 254 (2022), 115151.
- [116] P. Wang, L. Pan, J. Wang, M. Xu, G. Dai, H. Zou, K. Dong, Z. L. Wang, An ultra-lowfriction triboelectric-electromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensor, ACS Nano 2018, 12, 9433.

- [117] P. Lu, H. Pang, J. Ren, Y. Feng, J. An, X. Liang, T. Jiang, Z. L. Wang, Swing-Structured Triboelectric–Electromagnetic Hybridized Nanogenerator for Breeze Wind Energy Harvesting, Advanced Materials Technologies 6 (2021), 2100496.
- [118] L. Feng, G. Liu, H. Guo, Q. Tang, X. Pu, J. Chen, X. Wang, Y. Xi, C. Hu, Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting, Nano Energy 47 (2018), 217.
- [119] C. Hao, J. He, C. Zhai, W. Jia, L. Song, J. Cho, X. Chou, C. Xue, Two-dimensional triboelectric-electromagnetic hybrid nanogenerator for wave energy harvesting, Nano Energy 58 (2019), 147.
- [120] Z. Wen, H. Guo, Y. Zi, M. H. Yeh, X. Wang, J. Deng, J. Wang, S. Li, C. Hu, L. Zhu, Z. L. Wang, Harvesting broad frequency band blue energy by a triboelectric–electromagnetic hybrid nanogenerator, ACS Nano 2016, 10, 6526.
- [121] X. Wang, Z. Wen, H. Guo, C. Wu, X. He, L. Lin, X. Cao, Z. L. Wang, Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator, ACS Nano 2016, 10, 11369.
- [122] L. Liu, Q. Shi, C. Lee, A hybridized electromagnetic-triboelectric nanogenerator designed for scavenging biomechanical energy in human balance control, Nano Research 14 (2021), 4227.
- [123] E. Islam, A. M. Abdullah, A. R. Chowdhury, F. Tasnim, M. Martinez, C. Olivares, K. Lozano, M. J. Uddin, Electromagnetic-triboelectric-hybrid energy tile for biomechanical green energy harvesting, Nano Energy 77 (2020), 105250.
- [124] W. Nie, A sliding hybrid triboelectric-electromagnetic nanogenerator with staggered electrodes for human motion posture, Energy Reports 8 (2022), 617.
- [125] X. Ren, H. Fana, C. Wanga, J. Maa, S. Leia, Y. Zhaoa, H. Lia, N. Zhaoa, Magnetic force driven noncontact electromagnetic-triboelectric hybrid nanogenerator for scavenging biomechanical energy, Nano Energy 2017, 35, 233.
- [126] H. Yang, M. Deng, Q. Zeng, X. Zhang, J. Hu, Q. Tang, H. Yang, C. Hu, Y. Xi, Z. L. Wang, Polydirectional microvibration energy collection for self-powered multifunctional systems based on hybridized nanogenerators, ACS Nano 14 (2020), 3328.

- [127] J. He, X. Fan, J. Mu, C. Wang, J. Qian, X. Li, X. Hou, W. Geng, X. Wang, X. Chou, 3D full-space triboelectric-electromagnetic hybrid nanogenerator for high-efficient mechanical energy harvesting in vibration system, Energy 194 (2022), 116871.
- [128] V. Vivekananthan, W. J. Kim, N. R. Alluri, Y. Purusothaman, K. S. Abisegapriyan, S. J. Kim, A sliding mode contact electrification based triboelectric-electromagnetic hybrid generator for small-scale biomechanical energy harvesting, Micro and Nano Systems Letters 7 (2019), 1.
- [129] T. Quan, Y. Wu, Y. Yang, Hybrid electromagnetic-triboelectric nanogenerator for harvesting vibration energy, Nano Research 2015, 8, 3272.
- [130] P. Maharjan, T. Bhatta, C. Park, H. Cho, K. Shrestha, S. Lee, M. Salauddin, M. T. Rahman, S. M. S. Rana, J. Y. Park, High-performance keyboard typing motion driven hybrid nanogenerator, Nano Energy 88 (2021), 106232.
- [131] Y. Zhong, H. Zhao, Y. Guo, P. Rui, S. Shi, W. Zhang, Y. Liao, P. Wang, Z. L. Wang, An easily assembled electromagnetic-triboelectric hybrid nanogenerator driven by magnetic coupling for fluid energy harvesting and self-powered flow monitoring in a smart home/city, Advanced Materials Technologies 2019, 4(12), 1900741.
- [132] X. Du, S. Zhao, Y. Xing, N. Li, J. Wang, X. Zhang, R. Cao, Y. Liu, Z. Yuan, Y. Yin, Z. L. Wang, C. Li, Hybridized Nanogenerators for Harvesting Vibrational Energy by Triboelectric– Piezoelectric–Electromagnetic Effects, Advanced Materials Technology 3 (2018), 1800019.
- [133] L. Liu, Q. Shi, Z. Sun, C. Lee, Magnetic-interaction assisted hybridized triboelectricelectromagnetic nanogenerator for advanced human-machine interfaces, Nano Energy 86 (2021), 106154.
- [134] S. M. S. Rana, M. T. Rahman, M. Salauddin, P. Maharjan, T. Bhatta, H. Cho, J. Y. Park, A human-machine interactive hybridized biomechanical nanogenerator as a self-sustainable power source for multifunctional smart electronics applications, Nano Energy 76 (2020), 105025.
- [135] C. Hou, T. Chen, Y. Li, M. Huang, Q. Shi, H. Liu, L. Sun, C. Lee, A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications, Nano Energy 63 (2019), 103871.
- [136] X. Fan, J. He, J. Mu, J. Qian, N. Zhang, C. Yang, X. Hou, W. Geng, X. Wang, X. Chou, Triboelectric-electromagnetic hybrid nanogenerator driven by wind for self-powered wireless

transmission in Internet of Things and self-powered wind speed sensor, Nano Energy 68 (2020), 104319.

- [137] Y. Feng, X. Liang, J. An, T. Jiang, Z. L. Wang, Soft-contact cylindrical triboelectricelectromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting, Nano Energy 2021, 81, 105625.
- [138] B. Zhang, S. Zhang, W. Li, Q. Gao, D. Zhao, Z. L. Wang, T. Cheng, Self-powered sensing for smart agriculture by electromagnetic–triboelectric hybrid generator, ACS nano 15 (2021), 20278.
- [139] J. Mu, H. He, J. Song, J. He, X. Hou, X. Han, C. Feng, J. Zou, J. Yu, X. Chou, Functional structure enhanced synergistic sensing from triboelectric–electromagnetic hybrid nanogenerator for self-powered rotating speed monitoring, Energy Reports 8 (2022), 5272.
- [140] H. Cho, I. Kim, J. Park, D. Kim, A waterwheel hybrid generator with disk triboelectric nanogenerator and electromagnetic generator as a power source for an electrocoagulation system, Nano Energy 95 (2022), 107048.
- [141] R. Li, X. Wei, Y. Shi, Z. Yuan, B. Wang, J. Xu, L. Wang, Z. Wu, Z. L. Wang, Low-grade heat energy harvesting system based on the shape memory effect and hybrid triboelectricelectromagnetic nanogenerator, Nano Energy 96 (2022), 107106.
- [142] X. Guo, T. He, Z. Zhang, A. Luo, F. Wang, E. J. Ng, Y. Zhu, H. Liu, C. Lee, Artificial intelligence-enabled caregiving walking stick powered by ultra-low-frequency human motion, ACS nano 15 (2021), 19054.
- [143] Z. Yuan, X. Jin, R. Li, B. Wang, C. Han, Y. Shi, Z. Wu, Z. L. Wang, Hybrid Triboelectric-Electromagnetic Magnetic Energy Harvester-Based Sensing for Wireless Monitoring of Transmission Lines, Small (2022), 2107221.
- [144] N. Li, Z. Yin, W. Zhang, C. Xing, T. Peng, B. Meng, J. Yang, Z. Peng, A triboelectricinductive hybrid tactile sensor for highly accurate object recognition, Nano Energy 96 (2022), 107063.
- [145] J. Wan, H. Wang, L. Miao, X. Chen, Y. Song, H. Guo, C. Xu, Z. Ren, H. Zhang, A flexible hybridized electromagnetic-triboelectric nanogenerator and its application for 3D trajectory sensing, Nano Energy 74 (2020), 104878.
- [146] Y. Ra, J. Kim, H. Kim, S. Cho, D. Lee, S. Jang, D. Kam, M. La, S. J. Park, D. Choi, Smart conveyor roller system for self-powered product size identification in electrically off-grid

condition via hybridization of triboelectric-electromagnetic generators, Nano Energy 100 (2022), 107447.

- [147] P. Wang, R. Liu, W. Ding, P. Zhang, L. Pan, G. Dai, H. Zou, K. Dong, C. Xu, Z. L. Wang, Complementary Electromagnetic Triboelectric Active Sensor for Detecting Multiple Mechanical Triggering, Adv. Funct. Mater. 28 (2018), 1705808.
- [148] B. Popovic, Osnovi elektrotehnike 2, Akademska Misao (2004).
- [149] B. Popovic, Elektromagnetika, Akademska Misao (2004).
- [150] J. Bjelica, N. Djuric, S. Djuric, Performance analysis and application of a hybrid electromagnetic-triboelectric nanogenerator for energy harvesting, Energy Reports 8 (2022), 9184.
- [151] H. D. Young, R. A. Freedman, L. Ford, University physics with modern physics with mastering physics, Addison Wesley, 12th edition (2007).
- [152] B. Popovic, Osnovi elektrotehnike 1, Akademska Misao (2004).
- [153] S. M. Niu, Z. L. Wang, Theoretical systems of triboelectric nanogenerators, Nano Energy 14 (2015), 161.
- [154] S. Niu, S. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. Hu, Z. L. Wang, Theoretical study of contact-mode triboelectric nanogenerators as an effective power source, Energy and Environmental Science 6 (2013), 3576.
- [155] S. Niu, Y. Liu, S. Wang, L. Lin, Y. S. Zhou, Y. Hu, Z. L. Wang, Theory of sliding-mode triboelectric nanogenerators, Advanced Materials 25 (2013), 6184.

Овај Образац чини саставни део докторске дисертације, односно докторског уметничког пројекта који се брани на Универзитету у Новом Саду. Попуњен Образац укоричити иза текста докторске дисертације, односно докторског уметничког пројекта.

План третмана података

Назив пројекта/истраживања				
Хибридни електромагнетски-трибоелектрични наногенератор за прикупљање механич енергије	ічке			
Назив институције/институција у оквиру којих се спроводи истраживање				
а) БиоСенс Институт, Универзитет у Новом Саду				
б) Факултет техничких наука, Универзитет у Новом Саду				
Назив програма у оквиру ког се реализује истраживање				
1. Опис података				
1.1 Врста студије				
Укратко описати тип студије у оквиру које се подаци прикупљају				
1.2 Врсте података				
а) квантитативни				
б) квалитативни				
1.3. Начин прикупљања података				

а) анкете, упитници, тестови			
б) клиничке процене, медицински записи, електронски здравствени записи			
в) генотипови: навести врсту			
г) административни подаци: навести врсту			
д) узорци ткива: навести врсту			
ђ) снимци, фотографије: навести врсту			
е) текст, навести врсту			
ж) мапа, навести врсту			
з) остало: описати			
1.3 Формат података, употребљене скале, количина података			
1.3.1 Употребљени софтвер и формат датотеке:			
a) Excel фајл, датотека			
b) SPSS фајл, датотека			
с) PDF фајл, датотека			
d) Текст фајл, датотека			
е) ЈРБ фајл, датотека			
f) Остало, датотека			
1.3.2. Број записа (код квантитативних података)			
а) број варијабли			
б) број мерења (испитаника, процена, снимака и сл.)			
1.3.3. Поновљена мерења			
а) да			
б) не			
Уколико је одговор да, одговорити на следећа питања:			
а) временски размак измедју поновљених мера је			
б) варијабле које се више пута мере односе се на			
в) нове верзије фајлова који садрже поновљена мерења су именоване као			

Национални портал отворене науке – open.ac.rs

Напомене: Да ли формати и софтвер омогућавају дељење и дугорочну валидност података? *a)* Да б) Не Ако је одговор не, образложити 2. Прикупљање података 2.1 Методологија за прикупљање/генерисање података 2.1.1. У оквиру ког истраживачког нацрта су подаци прикупљени? а) експеримент, навести тип б) корелационо истраживање, навести тип ц) анализа текста, навести тип д) остало, навести шта _____ 2.1.2 Навести врсте мерних инструмената или стандарде података специфичних за одређену научну дисциплину (ако постоје). 2.2 Квалитет података и стандарди 2.2.1. Третман недостајућих података а) Да ли матрица садржи недостајуће податке? Да Не Ако је одговор да, одговорити на следећа питања: Колики је број недостајућих података? a) б) Да ли се кориснику матрице препоручује замена недостајућих података? Да Не

в) Ако је одговор да, навести сугестије за третман замене недостајућих података		
2.2.2. На који начин је контролисан квалитет података? Описати		
2.2.3. На који начин је извршена контрола уноса података у матрицу?		
3. Третман података и пратећа документација		
3.1. Третман и чување полатака		
sin ipennan n ijbabe nogatana		
3.1.1. Подаци ће бити депоновани у репозиторијум.		
3.1.1. Подаци ће бити депоновани у репозиторијум.		
3.1.1. Подаци ће бити депоновани у репозиторијум. 3.1.2. URL адреса		
3.1.1. Подаци ће бити депоновани у репозиторијум. 3.1.2. URL адреса 3.1.3. DOI		
3.1.1. Подаци ће бити депоновани у репозиторијум. 3.1.2. URL адреса 3.1.3. DOI		
3.1.1. Подаци ће бити депоновани у репозиторијум. 3.1.2. URL адреса 3.1.3. DOI 3.1.4. Да ли ће подаци бити у отвореном приступу?		
3.1.1. Подаци ће бити депоновани у репозиторијум. 3.1.2. URL адреса 3.1.3. DOI 3.1.4. Да ли ће подаци бити у отвореном приступу? а) Ла		
3.1.1. Подаци ће бити депоновани у репозиторијум. 3.1.2. URL адреса 3.1.3. DOI		
3.1.1. Подаци ће бити депоновани у репозиторијум. 3.1.2. URL адреса		
3.1.1. Подаци ће бити депоновани у репозиторијум. 3.1.2. URL адреса		
3.1.1. Подаци ће бити депоновани у репозиторијум. 3.1.2. URL адреса		
3.1.1. Подаци ће бити депоновани у репозиторијум. 3.1.2. URL адреса 3.1.3. DOI		
3.1.1. Подаци ће бити депоновани у репозиторијум. 3.1.2. URL адреса		
3.1.1. Подаци ће бити депоновани у репозиторијум. 3.1.2. URL адреса		
3.1.1. Подаци ће бити депоновани у репозиторијум. 3.1.2. URL адреса		
3.1.1. Подаци ће бити депоновани у репозиторијум. 3.1.2. URL адреса		
3.1.1. Подаци ће бити депоновани у репозиторијум. 3.1.2. URL адреса		
3.1.1. Подаци ће бити депоновани у репозиторијум. 3.1.2. URL адреса		
3.1.1. Подаци ће бити депоновани у репозиторијум. 3.1.2. URL адреса		

L

2 2 2 4	•
З 2 Метаполани и	Покументација полатака
5.2 moranogadin i	. How montailing modulate

3.2.1. Који стандард за метаподатке ће бити примењен?_____

3.2.1. Навести метаподатке на основу којих су подаци депоновани у репозиторијум.

Ако је потребно, навести методе које се користе за преузимање података, аналитичке и процедуралне информације, њихово кодирање, детаљне описе варијабли, записа итд.

3.3 Стратегија и стандарди за чување података

3.3.1. До ког периода ће подаци бити чувани у репозиторијуму?

3.3.2. Да ли ће подаци бити депоновани под шифром? Да Не

3.3.3. Да ли ће шифра бити доступна одређеном кругу истраживача? Да Не

3.3.4. Да ли се подаци морају уклонити из отвореног приступа после извесног времена?

Да Не

Образложити

4. Безбедност података и заштита поверљивих информација

Овај одељак МОРА бити попуњен ако ваши подаци укључују личне податке који се односе на

учеснике у истраживању. За друга истраживања треба такође размотрити заштиту и сигурност података.

4.1 Формални стандарди за сигурност информација/података

Истраживачи који спроводе испитивања с људима морају да се придржавају Закона о заштити података о личности (<u>https://www.paragraf.rs/propisi/zakon_o_zastiti_podataka_o_licnosti.html</u>) и одговарајућег институционалног кодекса о академском интегритету.

4.1.2. Да ли је истраживање одобрено од стране етичке комисије? Да Не

Ако је одговор Да, навести датум и назив етичке комисије која је одобрила истраживање

4.1.2. Да ли подаци укључују личне податке учесника у истраживању? Да Не

Ако је одговор да, наведите на који начин сте осигурали поверљивост и сигурност информација везаних за испитанике:

- а) Подаци нису у отвореном приступу
- б) Подаци су анонимизирани
- ц) Остало, навести шта

5. Доступност података

5.1. Подаци ће бити

а) јавно доступни

б) доступни само уском кругу истраживача у одређеној научној области

ц) затворени

Ако су подаци доступни само уском кругу истраживача, навести под којим условима могу да их користе:

Ако су подаци доступни само уском кругу истраживача, навести на који начин могу приступити подацима:

5.4. Навести лиценцу под којом ће прикупљени подаци бити архивирани.

6. Улоге и одговорност

6.1. Навести име и презиме и мејл адресу власника (аутора) података

6.2. Навести име и презиме и мејл адресу особе која одржава матрицу с подацима

6.3. Навести име и презиме и мејл адресу особе која омогућује приступ подацима другим истраживачима