
University of Novi Sad
Faculty of Sciences

Department of
Mathematics and Informatics

Implementation and analysis of a class of
algorithms for distributed convex

optimization: Performance evaluation
and tradeoffs in practical HPC clusters

-PhD Thesis-

Implementacija i analiza klase algoritama za
distribuiranu konveksnu optimizaciju: Evaluacija

performansi i osobina na praktičnim HPC
klasterima

-Doktorska disertacija-

Mentors:

dr Dušan Jakovetić Candidate:

dr Danijela Boberić Krstićev Lidija Fodor

Novi Sad, 2022

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ – 5а
ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ

КЉУЧНA ДОКУМЕНТАЦИЈСКА ИНФОРМАЦИЈА1

Врста рада: Докторска дисертација

Име и презиме
аутора:

Лидија Фодор

Ментор (титула, име,
презиме, звање,
институција)

др Душан Јаковетић, ванредни професор, Природно-математички
факултет, Универзитет у Новом Саду

 др Данијела Боберић Крстићев, ванредни професор, Природно-
математички факултет, Универзитет у Новом Саду

Наслов рада:
Имплементација и анализа класе алгоритама за дистрибуирану конвексну
оптимизацију: Евалуација перформанси и особина на практичним HPC
кластерима

Језик публикације
(писмо):

Енглески jeзик

Физички опис рада:

Страница 225
Поглавља 4
Референци 163
Табела 19
Слика 52
Графикона 0
Прилога 2

Научна област: Информатика

Ужа научна област
(научна дисциплина):

Рачунарске науке

Кључне речи /
предметна
одредница:

Рачунарство високих перформанси, Дистрибуирана оптимизација,
АDMM, Евалуација перформанси

Резиме на српском
језику:

Значај алгоритама дистрибуиране оптимизације манифестује се кроз
растуће интересовање у различитим доменима примене. Примењује се у
аналитици великих података, дистрибуираном машинском учењу,
дистрибуираној контроли, мрежама возила и паметним мрежама, између
осталог. Ова теза се фокусира на примарне и дуалне дистрибуиране
методе конвексне оптимизације. Најпре се уводи општи алгоритамски
оквир метода првог и другог реда примарног типа, које користе концепт

1 Аутор докторске дисертације потписао је и приложио следеће Обрасце:
5б – Изјава о ауторству;
5в – Изјава o истоветности штампане и електронске верзије и о личним подацима;
5г – Изјава о коришћењу.
Ове Изјаве се чувају на факултету у штампаном и електронском облику и не кориче се са тезом.

спарсификоване комуникације и израчунавања преко повезаног графа
чворова. Поред неколико већ постојећих метода, појављују се и нове
варијанте које користе једносмерну комуникацију. Иако у овој области
постоји изузетно велика количина теорије и теоријског напретка,
практичне евалуације метода над стварним подацима и практичним
системима рачунара вискох перформанси (High Performance Computing
— HPC) великих размера, су много мањег обима. Стога смо развили
имплементације и извршили скуп различитих нумеричких евалуација
предложених метода у стварном, паралелном програмском окружењу.
Имплементације су развијене коришћењем технологије Message Passing
Interface (MPI) и тестиране су на рачунарском кластеру високих
перформанси. Ове емпиријске процене резултирају веома корисним
увидима и смерницама у вези са перформансама и наглашавају
најважније компромисе између комуникације и израчунавања, у стварном
окружењу извршавања. С обзиром на постојање широког скупа
алгоритама машинског учења који се могу посматрати као
оптимизациони проблеми, дистрибуирана оптимизација има врло
значајну улогу у овој области. У тези је такође представљен и алгоритам
за конвексно кластеровање, заснован на дуалној методи Alternating
Direction Method of Multipliers (ADMM), која се ослања на COMPS
Superscalar (COMPSs) приступ за паралелизацију. Приказујемо резултате
опсежних нумеричких евалуација алгоритма на HPC рачунарском
кластеру, како бисмо демонстрирали висок степен скалабилности и
ефикасности методе, у поређењу са постојећим алтернативним
приступима за конвексно кластеровање. Програмски код за развијене
алгоритме је софтвер отвореног кода, и доступан је у одговарајућим
репозиторијумима.

Датум прихватања
теме од стране
надлежног већа:

30.09.2021. (датум прихватања од стране сената)

Датум одбране:
(Попуњава
одговарајућа служба)

Чланови комисије:
(титула, име,
презиме, звање,
институција)

Председник: др Милош Стојаковић, редовни професор,
Природно-математички факултет, Универзитет у Новом Саду

Члан: др Наташа Крејић, редовни професор,
Природно-математички факултет, Универзитет у Новом Саду

Члан: др Милош Ивановић, ванредни професор,
Природно-математички факултет, Универзитет у Крагујевцу

Ментор: др Душан Јаковетић, ванредни професор,
Природно-математички факултет, Универзитет у Новом Саду

Ментор: др Данијела Боберић Крстићев, ванредни професор,
Природно-математички факултет, Универзитет у Новом Саду

Напомена:

UNIVERSITY OF NOVI SAD
FACULTY OF SCIENCES

KEY WORD DOCUMENTATION2

Document type: Doctoral dissertation

Author: Lidija Fodor

Supervisor (title, first
name, last name,
position, institution)

Dr Dušan Jakovetić, associate professor, Faculty of Sciences, University of
Novi Sad

Dr Danijela Boberić Krstićev, associate professor, Faculty of Sciences,
Unicersity of Novi Sad

Thesis title:
Implementation and analysis of a class of algorithms for distributed convex
optimization: Performance evaluation and tradeoffs in practical HPC clusters

Language of text
(script):

English language

Physical description:

Pages 225
Chapters 4
References 163
Tables 19
Illustrations 52
Graphs 0
Appendices 2

Scientific field: Informatics

Scientific subfield
(scientific discipline):

Computer science

Subject, Key words:
High-performance computing, Distributed optimization, ADMM, Performance
evaluation

Abstract in English
language:

The significance of distributed optimization algorithms manifests through
growing interest in various application domains. It finds its use in Big Data
analytics, distributed machine learning, distributed control, vehicle networks
and smart grid, inter alia. This thesis focuses on primal and dual distributed
convex optimization methods. First, it introduces a general algorithmic
framework of first and second order methods of primal type, that utilize the
concepts of sparsified communications and computations across a connected
graph of working nodes. Besides several already existing methods, the

2 The author of doctoral dissertation has signed the following Statements:
 5б – Statement on the authority,
 5в – Statement that the printed and e-version of doctoral dissertation are identical and about personal data,
 5г – Statement on copyright licenses.
 The paper and e-versions of Statements are held at he faculty and are not included into the printed thesis.

framework also includes novel variants that utilize unidirectional
communication. Although there have been a remarkable amount of theory and
theoretical advances in this field, practical evaluations of methods on real data
and practical large scale and High Performance Computing (HPC) systems are
of much smaller volume. Therefore, we developed the implementations and
performed various numerical evaluations of the proposed methods in an actual,
parallel programming environment. The implementations were developed
using the Message Passing Interface (MPI) and tested on a High Performance
Computing cluster. These empirical evaluations result with very useful insights
and guidelines regarding performance and highlights the most important
communication-computational tradeoffs in a real execution environment. As
there exists a wide set of machine learning algorithms that can be viewed as
optimization problems, distributed optimization plays a significant role in this
area. The thesis also presents an algorithm for convex clustering, based on the
dual method Alternating Direction Method of Multipliers (ADMM), that relies
on COMPS Superscalar (COMPSs) framework for parallelization. We provide
results of extensive numerical evaluations of the algorithm on a HPC cluster
environment, to demonstrate the high degree of scalability and efficiency of
the method, compared to existing alternative solvers for convex clustering. The
program code for the developed algorithms is open-source and available in the
corresponding repositories.

Accepted on Scientific
Board on:

30.09.2021. (accepted on Senate)

Defended:
(Filled by the faculty
service)

Thesis Defend Board:
(title, first name, last
name, position,
institution)

President: Dr Miloš Stojaković, full professor,
Faculty of Sciences, University of Novi Sad

Member: Dr Nataša Krejić, full professor,
Faculty of Sciences, University of Novi Sad

Member: Dr Miloš Ivanović, associate professor,
Faculty of Sciences, University of Kragujevac

Mentor: Dr Dušan Jakovetić, associate professor,
Faculty of Sciences, University of Novi Sad

Mentor: Dr Danijela Boberić Krstićev, associate professor,
Faculty of Sciences, University of Novi Sad

Note:

Abstract

The significance of distributed optimization algorithms manifests through growing inter-
est in various application domains. It finds its use in Big Data analytics, distributed
machine learning, distributed control, vehicle networks and smart grid, inter alia. This
thesis focuses on primal and dual distributed convex optimization methods. First, it intro-
duces a general algorithmic framework of first and second order methods of primal type,
that utilize the concepts of sparsified communications and computations across a con-
nected graph of working nodes. Besides several already existing methods, the framework
also includes novel variants that utilize unidirectional communication. Although there
have been a remarkable amount of theory and theoretical advances in this field, practi-
cal evaluations of methods on real data and practical large scale and High Performance
Computing (HPC) systems are of much smaller volume. Therefore, we developed the
implementations and performed various numerical evaluations of the proposed methods
in an actual, parallel programming environment. The implementations were developed
using the Message Passing Interface (MPI) and tested on a High Performance Comput-
ing cluster. These empirical evaluations result with very useful insights and guidelines
regarding performance and highlights the most important communication-computational
tradeoffs in a real execution environment. As there exists a wide set of machine learning
algorithms that can be viewed as optimization problems, distributed optimization plays
a significant role in this area. The thesis also presents an algorithm for convex clustering,
based on the dual method Alternating Direction Method of Multipliers (ADMM), that
relies on COMPS Superscalar (COMPSs) framework for parallelization. We provide re-
sults of extensive numerical evaluations of the algorithm on a HPC cluster environment,
to demonstrate the high degree of scalability and efficiency of the method, compared to
existing alternative solvers for convex clustering. The program code for the developed
algorithms is open-source and available in the corresponding repositories [1, 2].

v

Izvod

Značaj algoritama distribuirane optimizacije manifestuje se kroz rastuće interesovanje u
različitim domenima primene. Primenjuje se u analitici velikih podataka, distribuira-
nom mašinskom učenju, distribuiranoj kontroli, mrežama vozila i pametnim mrežama,
između ostalog. Ova teza se fokusira na primarne i dualne distribuirane metode konvek-
sne optimizacije. Najpre se uvodi opšti algoritamski okvir metoda prvog i drugog reda
primarnog tipa, koje koriste koncept sparsifikovane komunikacije i izračunavanja preko
povezanog grafa čvorova. Pored nekoliko već postojećih metoda, pojavljuju se i nove
varijante koje koriste jednosmernu komunikaciju. Iako u ovoj oblasti postoji izuzetno
velika količina teorije i teorijskog napretka, praktične evaluacije metoda nad stvarnim po-
dacima i praktičnim sistemima računara visokih performansi (High Perfromance Comput-
ing - HPC) velikih razmera, su mnogo manjeg obima. Stoga smo razvili implementacije
i izvršili skup različitih numeričkih evaluacija predloženih metoda u stvarnom, paralel-
nom programskom okruženju. Implementacije su razvijene korišćenjem tehnologije Mes-
sage Passing Interface (MPI) i testirane su na računarskom klasteru visokih performansi.
Ove empirijske procene rezultiraju veoma korisnim uvidima i smernicama u vezi sa per-
formansama i naglašavaju najvažnije kompromise između komunikacije i izračunavanja,
u stvarnom okruženju izvršavanja. S obzirom na postojanje širokog skupa algoritama
mašinskog učenja koji se mogu posmatrati kao optimizacioni problemi, distribuirana op-
timizacija ima vrlo značajnu ulogu u ovoj oblasti. U tezi je takođe predstavljen i algoritam
za konveksno klasterovanje, zasnovan na dualnoj metodi Alternating Direction Method
of Multipliers (ADMM), koja se oslanja na COMPS Superscalar (COMPS) pristup za
paralelizaciju. Prikazujemo rezultate opsežnih numeričkih evaluacija algoritma na HPC
računarskom klasteru, kako bismo demonstrirali visok stepen skalabilnosti i efikasnosti
metode, u poređenju sa postojećim alternativnim pristupima za konveksno klasterovanje.
Programski kod za razvijene algoritme je softver otvorenog koda, i dostupan je u odgo-
varajućim repozitorijumima [1, 2].

vi

Preface

Distributed convex optimization represents a field whose application is constantly expand-
ing. This is influenced by a demand to solve large-scale problems, on growing volumes
of data. The need for solutions that enable problem partitioning is emerging. Therefore,
distributed convex optimization finds its use in a wide variety of domains, as the need
for fast processing is rapidly increasing. High performance computing is a great ally to
these problems, as it provides a technical background to achieve efficient and scalable
execution.

This thesis focuses on the implementation and extensive analysis and evaluations of a set
of distributed convex optimization problems, by providing parallel algorithms, evaluated
on a computer cluster environment. It considers two directions. The first one is oriented
towards a class of primal distributed optimization methods. The second one is dedicated
to a well-known dual optimization method, Alternating Direction Method of Multipliers
(ADMM) [3].

The thesis is organized into four chapters. In Chapter 1, a short introduction to the main
concepts is provided, supported by an overview of the related work, with an emphasis on
the motivations and contributions of this work.

In Chapter 2, we focus on a class of primal optimization methods, by providing some
theoretical insights, but also stressing out the important implementation aspects. We
also carry out a thorough empirical evaluation of the developed algorithms on a computer
cluster and derive conclusions about the nature of different methods. These methods are
implemented using Message Passing Interface (MPI) [4].

Chapter 3 is dedicated to a dual distributed optimization method, ADMM, with an em-
phasis on the development and analysis of a parallel, ADMM-based convex clustering
approach. We provide the theoretical aspects of the proposed method, and also describe
the algorithm itself. A comprehensive evaluation of the method on an HPC cluster is
also described, by analysing different aspects of the algorithm and deriving necessary
conclusions. We also briefly explain the implementation of additional ADMM-based par-
allel algorithms. These algorithms are implemented using the COMPSs [5] framework.
Therefore we provide a comparison of the framework used in Chapter 2 (MPI) and in
Chapter 3 (COMPSs) and derive some insights into their properties. Finally, we derive
the conclusions on the proposed methods in Chapter 4.

vii

Acknowledgements

I would like to express my gratitude to my supervisor, Dr. Dušan Jakovetić, for all
the amazing ideas and the time spent on working on this thesis and the papers that
contributed to it. I thank him for the patience and commitment. I can not emphasize
enough how grateful I am for everything I learned through our collaboration. I would
also like to thank to my another supervisor, Dr. Danijela Boberić Krstićev for all the
discussions, tips and encouragements during the years. I am extremely grateful for the
knowledge that she selflessly shared with me all the time, it was always a pleasure to
work together. I also thank professor Dr. Nataša Krejić, for the fruitful collaboration,
but especially for the kindness, support and patience while working on the contributions of
this thesis. I am also grateful to the other member of the committee, Dr. Miloš Stojaković
and Dr. Miloš Ivanović for their time spent on reading the thesis and providing valuable
feedback. I would also like to thank professor Dr. Srđan Škrbić, for introducing me to the
world of parallel programming, and for the tremendous amount of help throughout my
academic career. I also thank Dr. Nataša Krklec Jerinkić for the nice collaboration and
support. Many thanks to my colleague Aleksandar Armacki, with whom we developed the
machine learning algorithms for the I-BiDaaS project, mentioned in the thesis. A special
thank goes to Bane Ivošev, Vladimir Jokić and Žarko Bodroški for giving me access and
support for the resources of the Axiom cluster, making my extensive experiments possible.
Also, I am grateful to the stuff at the Institute of physics, Belgrade, for the access to the
PARADOX computing facility. I also thank all of my colleagues for the positive work
environment and support.

U U U

My greatest gratitude goes to my dear parents, Virka and Rudi. I am so grateful for all
their love and support and for always believing in me unconditionally. Everything that I
am and everything that I achieved is inspired by their selfless support. I would also like
to thank other family members and relatives, who kept me asking about the progress of
the thesis. I also thank Attila, for all the nice moments and the valuable experiences.
Finally, I thank my friends, for the talks, support and encouragement.

viii

U U U

The work presented in the thesis is supported by the I-BiDaaS project, funded by the
European Commission under Grant Agreement No. 780787, and also by EU Project
CYRENE, which has received funding from the European Unions Horizon 2020 research
and innovation programme under grant agreement No 952690. The research presented in
the thesis was performed using the AXIOM HPC facility at Faculty of Sciences, University
of Novi Sad and the PARADOX supercomputing facility at the Scientific Computing
Laboratory, Center for the Study of Complex Systems of the Institute of Physics Belgrade.

ix

x

Dedicated to my parents...

xii

‘The only person who is educated is the one who has learned how to learn and change.’

Carl Rogers

xiii

xiv

Contents

Abstract v

Izvod vi

Preface vii

Acknowledgements viii

1 Introduction 1

1.1 Distributed convex optimization . 1

1.1.1 Distributed optimization methods 1

1.2 High performance computing . 3

1.3 Motivation and Objectives . 5

1.4 Contributions . 7

1.4.1 Contributions regarding primal methods 7

1.4.2 Contributions regarding dual methods 9

1.5 Related work . 11

1.6 Thesis overview . 20

2 Primal distributed optimization methods 23

2.1 Background theory . 23

xv

xvi CONTENTS

2.1.1 Optimization and network models 23

2.1.2 Algorithmic framework . 26

2.1.3 Convergence analysis . 28

2.2 Implementation . 35

2.2.1 Implementing the algorithm for strongly convex
quadratic cost functions . 36

2.2.2 Implementing the algorithm for logistic loss functions 42

2.2.3 A comparison with an ADMM implementation 65

2.2.4 Measuring the execution time in a parallel program 68

2.3 Experimentation . 69

2.3.1 The infrastructure . 70

2.3.2 Intermediate experimentation studies and results 70

2.3.3 The experimental results for the selected set of methods 82

2.4 Conclusions on the proposed class of primal
methods . 103

3 A dual distributed optimization method 106

3.1 Background theory . 106

3.1.1 Problem model and the proposed parallel method 108

3.2 Implementation . 115

3.2.1 The input data . 116

3.2.2 The stopping criterion . 117

3.2.3 The parallel implementation of the ADMM-based convex clustering
algorithm . 118

3.3 Experimentation . 121

3.3.1 Time consumption of different segments of the algorithm 122

CONTENTS xvii

3.3.2 Accuracy evaluation . 122

3.3.3 Scalability evaluation . 128

3.3.4 Choosing the value for the parameter γ 131

3.3.5 Comparison with other clustering methods 134

3.3.6 Testing on a real, industrial data set 142

3.4 Further implementation considerations . 143

3.5 A comparison of MPI and COMPSs parallel
applications . 145

3.6 Additional ADMM-based machine learning
algorithms . 148

3.6.1 ADMM-based lasso regression . 148

3.6.2 ADMM-based logistic regression . 150

3.7 Conclusions on the proposed utilization of the dual ADMM method 152

4 Conclusion 153

4.1 Summary of Thesis Achievements . 154

4.2 Applications . 155

4.3 Future Work . 156

Bibliography 157

A Prošireni izvod 173

B Short biography 197

List of Tables

2.1 Examples of comparing the execution times for all-to-all communication
and using communicators . 76

2.2 The percentages of execution time for different parts of the algorithm . . . 77

2.3 Different methods to be tested . 79

2.4 Execution time for different methods for 50 nodes in the network 81

2.5 The average percentage of time spent on communication for different ver-
sions of the algorithm . 82

2.6 Different alternatives of Algorithm 1 . 86

2.7 The execution time for different variations of Algorithm 1 (2.9)-(2.10), for
20 nodes in the network, on the p53 data set 90

2.8 The execution time for different variations of algorithm (2.9)-(2.10), for 12
nodes in the network, on the Mnist data set 90

2.9 Percentages of successful test with respect to the overall number of tests . 94

2.10 Comparison of the second order Methods SBC and SBI with ADMM . . . 96

3.1 Accuracy comparison for different clustering algorithms on the Iris data set 124

3.2 Accuracy evaluation for higher dimensional data sets 127

3.3 The comparison of execution time (in seconds) for AMA and ADMM-based
convex clustering methods . 136

3.4 Comparison of ADMM-based convex clustering with DBSCAN 138

xviii

LIST OF TABLES xix

3.5 The comparison of SSNAL and ADMM-based convex clustering methods,
in terms of execution time . 140

3.6 The execution time required for obtaining the weights 140

3.7 Comparison of ADMM-based convex clustering to Spark based k-means
from MLlib, in terms of execution time . 141

3.8 The impact of solver enhancement on performance 144

3.9 Comparing the execution time (in seconds) of ADMM-based convex clus-
tering with MPI and COMPSs . 146

List of Figures

2.1 The all-to-all communication protocol . 41

2.2 Examples for graph types used during the evaluation 44

2.3 The reasoning behind MPI_Bcast and MPI_Scatter 49

2.4 Creating a new communicator . 54

2.5 An example of sparsified communication 56

2.6 An example for unidirectional communication 63

2.7 Comparing the execution time for MATLAB and parallel, MPI based C code 71

2.8 Execution time of the distributed MPI implementation for quadratic cost
functions for different data sizes s and different number of nodes n, for data
dimension 200 and smaller . 73

2.9 Execution time of the distributed MPI implementation for quadratic cost
functions for different data sizes s and different number of nodes n, for data
dimension larger than 200 . 73

2.10 Scaling properties of the algorithm with communicators, on the Gisette
data set . 77

2.11 Comparing the execution time using regular and grid graphs for the same
number of nodes, using the Conll data set 80

2.12 Comparing the execution time related to the value of d, using d-regular
graphs and the Gisette data set . 80

2.13 Comparing the execution time using regular and grid graphs for the same
number of nodes, using the CT data set, for the SBC method 88

xx

LIST OF FIGURES xxi

2.14 Comparing the execution time using regular and grid graphs for the same
number of nodes, using the Conll data set, for the SBC method 88

2.15 Speedup for the SBC method for different graph types on the Conll data set 88

2.16 Scaling properties of Method FBI, for the YearPredictionMSD data set . . 91

2.17 Scaling properties of Method FUI, for the Mnist data set 91

2.18 Execution times for the first order methods on CT data set 92

2.19 Execution times for the first order methods on Gisette data set 92

2.20 Speedup for the FBD method on the Mnist data set 93

2.21 Average cost reduction compared to the worst relevant tested method for
each problem, for Methods FBI, FBD, FUI and FUD 94

2.22 The comparison between using different values of pk ≤ 1 for directed first
order method with unidirectional communication, on Conll data set 95

2.23 The comparison between ADMM and Method SBI on Conll data set 96

2.24 The performance profile for the all 10 methods, based on all the performed
tests . 98

2.25 The performance profile for first order Methods FBI, FBD, FUI, FUD and
FBC, based on all the performed tests . 98

2.26 The performance profile for second order Methods SBC, SBI, SBD, SUI
and SUD, based on all the performed tests 99

2.27 The performance profile for the all 10 methods, based on the tests per-
formed on the Gisette data set . 99

2.28 The performance profile for the all 10 methods, based on the tests per-
formed on the Mnist data set . 100

2.29 The performance profile for the all 10 methods, based on the tests per-
formed on the p53 data set . 101

2.30 The performance profile for the all 10 methods, based on the tests per-
formed on the CT data set . 101

xxii LIST OF FIGURES

2.31 The performance profile for the all 10 methods, based on the tests per-
formed on the YearPredictionMSD data set 102

3.1 Illustration of graph G and structure of problem (3.10) 110

3.2 Example of a 2-dimensional data set of a small volume. 116

3.3 t-SNE for an example of the generated 3-dimensional data set of larger
volume. 117

3.4 Results of clustering for a generated data set 30x2, γ = 0.3,ϵ⋆ = 2 123

3.5 All centroid candidates for a generated 30x2 data set 123

3.6 The t-Sne embedding of the Iris data set 125

3.7 The accuracy values of different methods on Iris data set 125

3.8 The graph for evaluation . 126

3.9 The data set and clustering . 126

3.10 t-SNE embedding for clustering over a synthetical data set of size 1000x3 . 128

3.11 Scaling properties for the data sets with 1000 samples and 3, 5 and 10
features . 129

3.12 Scaling properties for the data sets with 5000 samples and 3, 5 and 10
features . 130

3.13 Scaling properties for the data sets with 10000 samples and 3, 5 and 10
features . 130

3.14 The impact of choosing different values for γ 132

3.15 Centroids for different values of γ . 133

3.16 The effect of changing the value of γ on the number of clusters 133

3.17 The 100 × 2 generated data set . 135

3.18 The silhouette score values for a set of tests, for ADMM-based convex
clustering, k-means and DBSCAN . 138

3.19 The scaling properties on the Caixa Bank data set 143

LIST OF FIGURES xxiii

3.20 Speedup on the Caixa Bank data set . 143

3.21 Speedup for MPI and COMPSs implementations of ADMM-based convex
clustering . 147

xxiv

Chapter 1

Introduction
In this chapter, the introductory concepts are briefly presented, including also the main
motivations, expectations and contributions of this PhD thesis.

1.1 Distributed convex optimization

Mathematical optimization [6] is often described as a tool that enables to make the best
possible choice to be a solution for a specific problem. In other words, mathematical op-
timization seeks to maximize or minimize a function, called objective function, by deter-
mining the best values, regarding some input data. Convex optimization [6] is a subclass
of mathematical optimization, where the final goal is to minimize a convex function over
convex sets. The set of areas where convex optimization can find its use is very broad.
Nowadays, the constantly increasing demand for handling rapidly growing data volumes
requires new solutions, that can solve problems in an efficient manner. Distributed convex
optimization [3, 6, 7] provides a way to partition convex optimization problems into sets
of connected subsystems. Using a set of workers to solve these sets of problems leads us
to the distributed multi-agent convex optimization methods [8, 9, 10, 11, 12, 13], that
are able to solve a set of problems, working simultaneously, and hence provide the final
solution in less time. Incorporating high performance computing [14] techniques to the
described methods, a solution model for a wide range of problems can be established.

1.1.1 Distributed optimization methods

This subsection introduces basic concepts and terminology of distributed convex opti-
mization, at a high level. We refer the reader to [3, 6, 7] for further technical details to
the subject. Distributed convex optimization finds its use in a wide range of problem

1

2 Chapter 1. Introduction

types. The categorisation of distributed optimization problems [6, 7], can be defined in a
few ways:

• Unconstrained and constrained problems. Constrained optimization problems
tend to optimize an objective function with respect to some variables and set of
constraints defined on those variables. The constraints can be of different types,
but most often they are equality or inequality constraints. Unconstrained problems
do not involve any constraints on variable values. Usually, a constrained problem can
be adapted to an unconstrained problem, often using penalty methods. We consider
both classes, unconstrained problems in Chapter 2, and a constrained problem in
Chapter 3. In fact, the nature of the problems in Chapter 3 is unconstrained, but
when solving them, we utilize “cloning variable constraints”, in order to adapt the
problems to ADMM.

• Primal and dual problems. By the principle of duality, optimization problems
can be formulated in two different domains, primal and (Lagrangian) dual. Primal
optimization methods contain only primal variables. By means of weak duality, the
solution of the dual problem is the lower bound to the solution of the primal problem.
The difference between the optimal values of the primal and dual variables is called
duality gap. In convex optimization, we are dealing with strong duality, i.e., when
the original, primal problem is convex, under additional mild technical conditions,
the duality gap is zero, and, moreover, the primal solution can be recovered from the
dual solution. This means that the duality gap is zero under a defined constraint
qualification condition. Chapter 2 considers primal methods, while Chapter 3 is
dedicated to a dual method, ADMM.

• Stochastic and deterministic problems. Stochastic problems aim to minimize
or maximize an objective function when randomness is present. Deterministic prob-
lems (mathematical programming) follow a rigorous mathematical approach, where
the aim is to obtain the global solution and provide theoretical guarantees for the so-
lution. In Chapter 2, we consider stochastic methods with different communication
probabilities, while Chapter 3 covers a deterministic approach.

• When considering the underlying communication model, two different approaches
exist: manager-workers and fully distributed communcation models. A
multi-agent system consists of a set of agents and an underlying network, that
determines how the agents (computing units) communicate. This categorization can
be made on the level of the nature of algorithms. The manager-workers paradigm
means the existence of a manager node, that coordinates the process of computation

1.2. High performance computing 3

and communication inside a network of nodes, where the worker nodes perform some
assigned tasks. The principle of fully distributed model implies a generic connected
network of nodes, that mutually work on a solution of a problem. In Chapter 2, a
fully distributed model is used for the algorithmic framework of primal methods,
while Chapter 3 relies on the manager-workers model, applied for the dual, ADMM-
based algorithm for convex clustering.

This thesis includes work on different classes of distributed convex optimization methods.
Firstly, we focus on primal methods of first and second order, that represent stochastic
unconstrained approaches. The implementation of these methods uses a principle of a
fully distributed network of nodes. Secondly, we consider a class of dual methods, namely
Alternating Direction Method of Multipliers (ADMM) [3], where the implementation relies
on the manager-workers approach.

1.2 High performance computing

High performance computing (HPC) [14] is, as its name suggests, a computing strategy
that produces results with high performance properties (usually referred to as time ef-
ficient). It represents a contemporary approach to aggregate multiple computing units,
in order to solve a common problem. In the context of high performance computing,
related terms: parallel computing and computing cluster should also be explained. Par-
allel programming [15] provides the execution of a set of tasks simultaneously, in parallel.
Parallelism can be completely transparent to the end users. However, in order to ex-
ploit the benefits of it, a completely different programming strategy (compared to serial
programming) is required to be employed by the developer. Programs that execute in
parallel need to satisfy a few concepts. First of all, the problem being solved should be
divisible and the best scheme for dividing it should be used. This means splitting the
input data and investing simultaneous computational effort, while expecting the same re-
sults as when doing the same task without parallelism. Second, a problem should have a
notable volume, in order to benefit from parallelization. Besides the apparent advantages,
a parallel program usually has its bottlenecks. This usually means that there should exist
synchronization points, or message exchange points, that can use a significant portion of
time, depending on the context. For that reason, the program should be designed such
that it contains as little as possible highly time consuming points.

Parallel computing has several possible dimensions. Shared memory systems and dis-
tributed memory systems can be identified as commonly used. Shared memory systems

4 Chapter 1. Introduction

utilize the existence of a set of cores, while having access to the same memory locations.
This is the basic form of parallelization, that can be achieved on each computer that
possesses a CPU with multiple cores. One of the most common frameworks with shared
memory approach is OpenMP [16]. Practically, OpenMP represents an extension to the
C and Fortran programming languages. It can enhance the performance of an algorithm,
until the number of available cores that can use the shared memory is sufficient, and while
the shared memory can hold the required amount of data. When any of these conditions
can not be satisfied anymore, one should think about a more flexible approach.

Distributed memory systems imply that each computational unit i.e. core has its own
memory space. This means that they need a way to communicate somehow, as they do not
have access to the same memory locations. The most popular framework with distributed
memory approach is the Message Passing Interface (MPI) [4]. MPI is a standard, and
there exist several relevant implementations for it, as OpenMPI [17] and MPICH [18].
MPI is usually used with the C programming language, but can also be utilized with
C++, Python and other languages. The data exchange happens by sending and receiving
messages among the processes. By using MPI, different processes can run on different
machines, connected by a network. Besides these approaches, there also exists a possibility
to utilize the power of graphics processing units (GPUs). The most common interface
for this method is CUDA [19] (Compute Unified Device Architecture), where a CUDA-
enabled GPU is used for processing. These different parallelization approaches can also
be combined, depending on the needs.

As already mentioned, high performance computing is usually being manifested through
the use of a group of connected machines, i.e. cluster of computers. This simply means
that instead of using one single unit to solve a problem, one can utilize the power of
multiple, mutually connected machines that work together. Each machine in a cluster
is called a node. The components i.e. nodes are usually connected by a fast local area
network. The network properties play an important role, when it comes to the message
exchange speed. A cluster can contain a various number of nodes, but at least two. If a
node fails for some reason, the rest of the cluster can continue working undisturbed. Each
node in a cluster has an operating system and necessary software and libraries installed.
Usually, computer clusters are meant to be used by multiple users for different tasks, i.e.
cluster jobs. For that reason, most commonly, a special software called job scheduler is
also present on the cluster. This software is responsible to schedule different jobs, by
putting them in a queue.

MPI is very commonly used to write parallel programs, that operate on a cluster. Writing
parallel programs, that run on a cluster environment, can lead to serious time savings

1.3. Motivation and Objectives 5

and to solutions that could not be acquired using serial programs i.e. without parallelism.
Today, there also exists a variety of novel frameworks that can also provide parallelism,
while being higher level. This means that the process of parallelization is eased and even
automated to certain extent.

COMPS Superscalar (COMPSs) [5] is a representative of a high level framework, that
is meant for parallel application development and execution. It enables executing ap-
plications on distributed infrastructures. This is a task based framework that can be
used with Java, Python and C/C++. The parallelization process is simplified and made
mainly transparent for the programmer. The code can be written as a serial application
implementation, with the addition of task annotations to some portions of the code. This
seems related to shared memory systems, but as a matter of fact, COMPSs is able to
work on distributed cluster systems by spreading the data among the nodes implicitly,
without demanding message exchange handling by the programmer. However, this level
of comfort comes with some losses regarding performance, when compared to MPI. In
[20], the authors compare the COMPSs framework to Apache Spark [21] and conclude
that COMPSs is able to achieve comparable performance. However, in [22], it was shown
that Spark does not perform generally better than MPI. Writing parallel programs in
lower level languages and frameworks, as C with MPI, provides a high level of control
and opens additional opportunities to make the code more efficient. The tradeoff between
performance and programming effort is a present issue with mentioned frameworks. The
choice of the more suitable one depends on the particular needs and domain.

This thesis considers two different parallelization frameworks: MPI for the class of pri-
mal methods in Chapter 2, and COMPSs for the dual, ADMM method, in Chapter 3.
Both approaches are being tested on a computer cluster, in order to explore the scaling
properties and gains of parallelization in terms of execution time. We also provide a brief
comparison of these frameworks in Section 3.5.

1.3 Motivation and Objectives

High performance computing finds its use in a very wide variety of fields. On the other
hand, distributed optimization represents a basis that is of interest in different areas. By
definition, distributed multi-agent convex optimization problems are divisible to a set of
subproblems, that can be solved by multiple agents, as already explained. If we bring
together these two sides by utilizing the power of parallel programming in order to make
the agents (i.e. nodes) solve their subproblems in parallel, then significant results could
be expected, with regard to performance. This means that we could be able to apply

6 Chapter 1. Introduction

parallel distributed optimization to different domains, on large amount of data.

The high applicability of distributed multi-agent optimization methods in various domains
is evident. For example, these include distributed machine learning [23], distributed con-
trol [24], vehicular networks [25], smart grid [26], etc. Some relevant applications have
been demonstrated in [3]. Distributed multi-agent optimization is nowadays already a
mature theoretical area, e.g. [8]. Several first [8, 9, 10] and second order [11, 12, 13]
distributed methods of primal type have been proposed in the literature. The theoreti-
cal properties of these methods have been well understood, e.g., in terms of theoretical
iteration-wise convergence rates. However, there is a very restricted amount of scientific
investigation of distributed multi-agent optimization methods in realistic parallel compu-
tational systems. Carrying out such studies is extremely important as there is a significant
gap between theoretical studies of the methods and actual performance in practical in-
frastructures. For example, how a derived iteration-wise convergence rate translates into
actual communication and computational costs is very hard to understand without empir-
ical evaluation. The results of experimentation on real data sets, performed on a cluster
environment, while practically demonstrating the distributed nature of the algorithm by
parallelzation, could be of significant interest.

One of the main areas of application of distributed convex optimization methods is in
machine learning. Our empirical evaluations are also based on some important machine
learning algorithms. We use quadratic and logistic loss functions for our primal methods
evaluation. From the aspect of dual methods, we introduce an ADMM-based convex clus-
tering approach and evaluate its performance. Clustering is a widely used unsupervised
learning problem in various domains [27, 28, 29, 30]. The k-means algorithm [31] is a
well-known and commonly used clustering approach, but other useful methods have been
also proposed as K-means++[32], k-medians [33], and Bregman clustering [34]. Convex
clustering emerged as a valuable idea, in [35, 36, 37, 30, 38]. It exposes some advances
compared to conventional clustering methods, as it formulates the clustering problem as a
convex optimization problem, based on a sum-of-norms penalty and therefore it eliminates
local minima-related issues. Also, convex clustering does not need a predefined number
of clusters to be specified in advance. There exists a set of useful convex clustering ap-
proaches in the literature [35, 36, 37, 30, 38], but the main issue is that they do not scale
well with the number of input data points. This represents a motivation for developing a
scalable, parallel convex clustering approach, by relying on the dual optimization method
ADMM.

A very important aspect is that the above mentioned optimization problems can be solved
numerically, in an efficient manner. Therefore, our main focus is on creating the appro-

1.4. Contributions 7

priate implementations for the class of distributed multi-agent methods described later,
and performing different aspects of empirical evaluations. This approach enables com-
paring the behaviour of different methods, as well as to practically prove the theoretical
advances. The results will also recognise the bottlenecks, and highlight the most efficient
setups for particular domains.

1.4 Contributions

This thesis subsumes several contributions including the development and analysis of par-
allel implementations of a class of primal and dual methods, a comparison of corresponding
methods, a thorough analysis of their properties and a practical proof of the proposed
theoretical concepts. We also introduce and provide a description for two novel methods:
a primal method with unidirectional sparisifed communication and a dual method for
convex clustering, based on ADMM. The provided extensive empirical evaluations of the
methods provide important insights into performance, scalability and applicability of the
proposed methods.

1.4.1 Contributions regarding primal methods

With respect to primal methods, we first explain the development of parallel MPI imple-
mentations for the considered classes of optimization methods of first and second order. In
addition, we discuss different approaches regarding implementation strategies and identify
the most efficient one. Also, an extensive empirical evaluation of the developed imple-
mentations of the methods is discussed. The tests are performed on different data sets, of
different volumes, and various aspects are observed during the testing phase. This enables
the derivation of different dimensions of conclusions. For example, we are able to identify
which methods are more suitable depending on input data size. Also, we can identify
the most appealing communication sparsification strategy, regarding performance. We
compare first and second order methods and identify the setups where they perform bet-
ter. The topology of the underlying graph of communication is an important aspect, that
affects performance of distributed multi-agent optimization algorithms. More densely con-
nected graph implies faster information flow iteration-wise, whereas more communication
links may have a negative effect with respect to the cost incurred by excessive commu-
nications. On top of an all-to-all computer cluster wired communication infrastructure,
we implement and experiment with multiple communication topologies and study the
topology effects on the performance. Furthermore, the scaling properties of the developed

8 Chapter 1. Introduction

methods are also demonstrated. Other similar additional conclusions are also shown, as
explained later.

The underlying implementation framework that we use here is MPI (Message Passing
Interface, [4]) running on a computer cluster, as it is a standard and widely adopted
computational system. We develop MPI implementations for a class of first and second
order distributed multi-agent methods, that provide a framework for parallel, distributed
optimization problem solving. Also, we provide open-source code for the described meth-
ods [1]. As one of our main concerns is to carry out a thorough and systematic empirical
study of the mentioned class of methods, it is extremely important to implement differ-
ent variants i.e. methods of the algorithm. These methods utilize different variants of
sparsification of communications and/or computations along iterations. This means, that
we practically allow idling for a subset of nodes during the execution, in order to reduce
the amount of resources used to run the algorithm. We consider both first and second
order methods that exhibit either unidirectional or bidirectional randomized sparsified
communications. The communication sparsification is determined by a probability pk,
that represents the probability that a node communicates at iteration k; the quantity pk

is a design parameter that is either increasing, decreasing, or constant. These strategies
give rise to a number of methods. The studied class of methods subsumes several exist-
ing algorithms [39, 40, 41, 42, 43, 44] but also includes several methods that have not
been studied before, neither numerically nor analytically. We also compare the methods
utilizing communication sparsification with methods that do not utilize this mechanism.

As already mentioned, in order to achieve sparsification, the principle of randomized
communication with some probability can be successfully used here, as using randomized
communication at the level of algorithm design is a well established topic. For example,
gossip [45] is an outstanding example for this. An advantage of using this approach is the
possibility to explore the case when communication sparsification is not fully determined
by the algorithm designer, but instead is dictated by random link failures (e.g., packet
dropouts in wireless networks).

Beside exploiting communication sparsification itself, we may have unidirectional or bidi-
rectional communication strategies. The unidirectional strategy allows for inactive nodes
to receive messages (but not to send anything), while the bidirectional strategy only allows
two-sided communication (an inactive node cannot communicate at all). These strategies
are also implemented and combined with the previously discussed aspects.

Observing different aspects that we are interested in, the considered class of methods
subsume several existing, already described methods [39, 40, 41, 42, 43, 44], but it also

1.4. Contributions 9

provides certain methods that are either completely novel, or for which theoretical analysis
was not available in the literature yet.

Concisely, the goals that the empirical evaluation is aiming to achieve are the following:

1. An assessment of real benefits of sparsifying communications and/or computations
across working nodes, which have been already proved to be beneficial theoretically
[39].

2. A comparison of different variants of the sparsification strategies, in order to identify
the most efficient ones. We provide evaluations from different aspects, so we can
identify the factors that influence the performance of different methods in different
setups.

3. A comparison of unidirectional and bidirectional communication strategies. More
precisely, we are interested in performance benefits/losses when applying communi-
cation sparsification on two different ways: enabling mutual bidirectional commu-
nication only between active working nodes vs. also enabling mutual bidirectional
communication between active workers, but also allowing idle nodes to receive data
from active nodes (unidirectional communication).

One of the main motivations for using sparsified, randomized communication is to reduce
the amount of resources used for computation. In this case, the most important resource
is time. We strive to reduce the time spent on data exchange, and hence reduce the
overall execution time of the algorithm, as the time consumption evaluation of different
parts of the algorithm identifies the communication as the bottleneck. This evaluation is
performed on the algorithm without sparsification used. It is expected that the communi-
cation takes the largest portion of time, and that with data size increase, it also gets even
higher. That is the main motivation to sparsify this part of the algorithm. But generally,
the choice of omitting to communicate in some cases can also lead to another benefits and
savings in other resources as bandwidth or transmission power of wireless devices, when
considering wireless networks. Our work on this topic have been published in [46].

1.4.2 Contributions regarding dual methods

When considering dual methods, the focus is on Alternating Directions Method of Multi-
pliers (ADMM) here, as this method is designed for distributed setups. It breaks a prob-
lem into smaller pieces and enables solving of those problem parts separately, in parallel.
The main contribution is the development of a novel, convex, fully parallel ADMM-based

10 Chapter 1. Introduction

distributed convex clustering method. It relies on manager-workers (server-clients) com-
munication model. We describe the theoretical properties of the proposed method first
and provide a conceptual design for the algorithm.

The implementation of the parallel ADMM-based convex clustering method is written in
Python, and the COMPS Superscalar (COPMSs) framework is used for parallelization. It
has already been widely adopted and extended in numerous scientific projects and papers
(e.g. [47, 48, 20]) offered as a tool to develop scientific applications and optimize their
execution in distributed infrastructures. We discuss the implementation details of the
proposed clustering method in this framework and provide open-source code for it [2].

As the empirical evaluation of the properties of the methods is one of our main concerns,
we perform a thorough analysis oriented towards different aspects. First, we evaluate the
accuracy of the developed method, by observing the percentage of accurately clustered
data points, when the real labels denoting the clusters are available, or by observing an
appropriate accuracy metric, when the real labels are not available. The scaling properties
of the proposed method are also an important consideration point. Therefore, an analysis
of the execution time of the algorithm for different number of working nodes is also
provided. Another important aspect is to asses the proposed method, with regard to
other relevant clustering methods, in terms of accuracy and scalability. Therefore, we
make a comparison of our method to other clustering approaches and draw some important
conclusions.

The extensive set of evaluations implies using different data sets, of different volume.
We test the algorithm on both synthetic and real data sets. Moreover, a subset of tests
is performed on a real, industrial data set, that was part of use cases defined under a
H2020 project Industrial-Driven Big Data as a Self-Service Solution (I-BiDaaS) [47], and
is publicly available on the Zenodo repository [49, 50] of the project. We also discuss
the implementation of other machine learning algorithms, based on ADMM and using
COMPSs framework, by providing some example implementations.

To summarize, the main goals and contributions, related to the ADMM-based approach
are:

1. The development and evaluation of a novel parallel, convex clustering approach,
that exhibits convex clustering benefits (e.g., no need for a pre-defined number of
clusters).

2. The evaluation of the accuracy of the developed method. It turns out that the
method exhibits high level of accuracy, comparable to other clustering methods

1.5. Related work 11

(e.g., in terms of the silhouette score or percentage of accurately clustered points
when the ground truth for expected outcomes is known).

3. The evaluation of the scaling properties of the developed method. The method
improves scalability over existing convex clustering solvers and is suitable for use
with larger data sets.

Furthermore, we provide two additional implementations of machine learning algorithms
that relies on ADMM and utilize COMPSs: logistic regression and lasso regression. These
algorithm were developed under the H2020 project I-BiDaaS, and the ADMM-based lasso
regression was also incorporated into the dislib library [51]. The work regarding our
parallel, ADMM-based convex clustering algorithm has been submitted in EURASIP
Journal on Andvances in Signal Processing.

1.5 Related work

We can identify a few threads of work regarding the topics related to this thesis. The first
subset is the broadest and it subsumes applications of distributed multi-agent optimiza-
tion in different areas. The second one is dedicated to theoretical advances in distributed
optimization methods. The third subset covers the work that is oriented to empirical
evaluation, testing of distributed optimization methods in real, cluster environments. A
significant amount of literature dedicated to theoretical development of distributed opti-
mization methods is available nowadays. A proportionally much smaller body of scientific
literature focuses on testing and evaluation of the distributed optimization methods over
actual distributed infrastructures.

Applications

Regarding the topic of multi-agent optimization, there is a wide variety of domains, that
all utilize the concept of distributed workload between a network of agents, and there
exists a vast amount of work on this topic. Therefore, we demonstrate only a set of
examples here. Distributed machine learning represents one of the main areas of interest.
Reference [23] describes a fully decentralized multi-agent reinforcement learning, where
the agents are tending to maximize the final result incrementally, while having a step for
the internal calculation and a consensus update relying on the network. In [52],the main
strategies and principles of distributed machine learning are discussed, wit application
on Big Data. The authors emphasize the importance of distributed optimization in the

12 Chapter 1. Introduction

area of machine learning, as the majority of the considered algorithms can be actually
viewed as optimization problems. Reference [53] presents a parameter server framework
for distributed machine learning, that represents a communication efficient approach,
meant to solve non-convex non-smooth problems with convergence guarantees.

On the other side, distributed control represents an other direction, where distributed
optimization plays an important role. Reference [24] introduces important results regard-
ing different dimensions of cooperative control, based on distributed multi-agent systems.
The considered dimensions are distributed control and computation, adversarial interac-
tions, uncertain evolution and complexity management. The range of applications for this
area is wide, and includes autonomous vehicle systems, cooperative robotics, distributed
computing, sensor networks and data network congestion control as well.

In [54], a formation control problem with velocity assignment of networked multi-agent
systems with heterogeneous time-delays is in the focus. In this approach, only a sub-
set of agents receive a signal. The paper describes the problems that appear caused by
the heterogeneous time-delays and also proposes an algorithm to minimize the error that
appears. Reference [55] considers a non-convex problem of optimal power flow for micro-
grids, where a semidefinite programming relaxation is used to obtain a convex problem.
The problem is being solved in a distributed manner, by utilizing ADMM. In [56], the
authors focus on distributed estimation of deterministic vector parameters, using ad hoc
wireless sensor networks. The problem is being transformed to a set of constrained con-
vex optimization sub-problems, that are meant for distributed implementation. Spectrum
sensing represents an other area, where optimization finds its use. In [57], a wideband
spectrum sensing technique is introduced. Here, the spectrum sensing problem is consid-
ered as a class of optimization problems, which maximize the aggregated opportunistic
throughput of a cognitive radio system under some constraints on the interference to the
primary users. The application areas of distributed multi-agent optimization include a
wide range of other directions, as vehicular networks [25], smart grid [26], etc. In [3],
some relevant applications are illustrated as well.

Theoretical advances

The literature dedicated to theoretical development of distributed optimization methods
includes an extensive amount of work. As the body of scientific literature is vast, we pro-
vide a representative subset of work. In reference [8], the distributed subgradient approach
is proposed to solve optimization problems, by using a network of agents. This is a first
order, iterative method, that converges event when the objective function is not differen-

1.5. Related work 13

tiable. Each agent minimizes its objective function and exchanges data with others, while
the topology changes over time. The focus is on convergence, the communication is asyn-
chronous and the connectivity is changing among the agents. Reference [9] also considers
the topic, with main focus on distributed stochastic subgradient projection algorithms.
It investigates the effects of stochastic subgradient errors on convergence. Reference [11]
introduces a distributed network Newton(NN) method that includes second-order updates
approximations. This is achieved by means of a distributed implementation of the ap-
proximation of the appropriately chosen Newton step. This is a penalty method that
replaces a constrained problem with an array of unconstrained problems.

Reference [12] introduces a class of distributed Newton-like methods, referred to as Dis-
tributed Quasi Newton (DQN) methods, that are also in the focus in this thesis. It is
characterized by the approximation of the Hessian inverse, by splitting it to a diagonal
and off-diagonal parts and by inverting the diagonal part. The off-diagonal part is being
approximated through a weighted linear function. Reference [39] introduces communi-
cation sparsification into distributed second order methods, with increasing probability.
Reference [43] is also dedicated to novel methods for zeroth and first order distributed
stochastic optimization, based on a probabilistic communication between agents that in-
creasingly sparsifies agent communications over time. The communication probability
decreases over time here, and the approach is characterized by a mean square error con-
vergence rate. These papers also introduce an important concept, that is used in the
thesis. Additionally, [44] presents a distributed recursive estimator that utilizes directed
increasingly sparse communications. In [41], the convergence rates related to distributed
optimization with random networks are evaluated. A distributed approach that uses ze-
roth order optimization, namely a Kiefer-Wolfowitz stochastic approximation approach is
introduced in [42]. Also, reference [58] represents a very important theoretical basis, as it
is dedicated to the issue of convergence of decentralized gradient descent. Similarly, [59]
is dedicated to evaluate the convergence rates of inexact proximal-gradient methods.

In [60], the regularized dual averaging method is introduced. The idea is the use of
regularization structure in an online setting, where an optimization problem involves the
running average of all past subgradients of the loss functions and the whole regularization
term. [61] describes a set of distributed algorithms based on dual subgradient averaging,
while defining their convergence rates as a function of the network size and topology.
Reference [62] provides an extension to the distributed dual averaging algorithm, that
enables communication delays handling. Also, there is work on a new algorithm, that
combines dual averaging for convex optimization with a push-sum consensus protocol,
called push-sum distributed dual averaging, presented in [63]. In [64], an introduction to

14 Chapter 1. Introduction

augmented Lagrangian method (ALM) and its variants for solving convex optimization
problems is introduced, for large-scale and distributed applications.

Distributed convex optimization by Alternating Direction Method of Multipliers (ADMM)
was studied in reference [3], where it is shown that ADMM is an appropriate choice in
distributed convex optimization. Furthermore, reference [65] introduces new methods as a
combination of stochastic optimization techniques and ADMM, where the dual averaging
and proximal gradient descent are used for online ADMM. A specific use of ADMM is
presented in [66], where it is applied to a class of total variation regularized estimation
problems. Furthermore, the behaviour of ADMM is well investigated. As an example, ref-
erence [67] focuses on analysis of the convergence of distributed ADMM, when an additive
random node error is present, while also providing numerical results. In [68], a practical,
parallel implementation of ADMM is introduced, and the results are again supported by
some numerical evaluations. Reference [69] introduces a flexible Alternating Direction
Method of Multipliers, called F-ADMM. The algorithm updates blocks of variables by
using a Gauss-Seidel scheme. The authors show that the algorithm is globally convergent
and that there is a case where the algorithm is partially parallelizable. Working with par-
allel applications necessarily involves large amounts of data, and there is a huge interest
in finding the best approaches to deal with such scenarios. In [70], it is studied how to
implement ADMM for large data sets, mathematically.

Reference [71] introduced a stochastic, efficient quasi-Newton method, using the BFGS
(Broyden Fletcher Goldforb Shanno) update formula, in order to take advantage of the
curvature information during approximation by points. This is an iterative method for
solving an unconstrained problem, that determines the direction of the descent by adding
curvature conditions to the gradient. In [72], a variance reduction method for stochastic
gradient descent is proposed, called stochastic variance reduced gradient (SVRG). Then,
as an extension to the previously mentioned two papers, a stochastic L-BFGS algorithm
is introduced, and its linear convergence rate is proven in [73]. On the other side, an
interesting study on vertical federated learning for logistic regression, based on a quasi-
newton method is shown in [74].

A fast distributed proximal gradient method was proposed in reference [75], for the op-
timization of the average of convex functions. This is also an iterative approach, where
agents recompute their estimates incrementally. The approach uses a time varying topol-
ogy and is relying on Nesterov-type acceleration techniques and uses multiple points for
communication inside iterations. The paper also discusses the convergence rate of the
method and supports it by numerical experiments. [10] proposes fast distributed gradi-
ent algorithms, that are also based on the centralized Nesterov gradient algorithm. The

1.5. Related work 15

authors prove fast convergence to the exact solution, with an advanced convergence rate
(similar to centralized Nesterov gradient), for convex, coercive, three times differentiable
and with Lipschitz continuous first derivative cost functions. This work also introduces a
distributed fast gradient algorithm for composite non-differentiable costs, with constant
step size. An asynchronous randomized dual proximal gradient method is introduced in
[76]. It is meant for large-scale distributed optimization, with the main idea to properly
choose the primal variables and hence separate the dual problem into separate blocks.
Reference [77] proposes accelerated distributed gradient-like methods, relying on the Nes-
terov gradient methods. The advantage of these methods is in the faster rates and cheap
iterations. The idea of using a variable number of working nodes for distributed gradient
methods is proposed in [40]. Our work also relies on these results.

Reference [78] presented an incremental sub-gradient approach, suitable for distributed
optimization in networked systems, that uses a fixed step size. A new distributed algo-
rithm for convex optimization problems related to big data is introduced in [79]. This
is a randomized block subgradient approach, meaning that the nodes can exchange only
blocks of their solutions at once. An equally interesting distributed consensus-based sub-
gradient method is presented in [80]. This approach assumes that each agent accumulates
information about past gradients of neighbours, while the underlying undirected graphs
are switching. Reference [81] also describes a distributed subgradient method for multi-
agent optimization. Here, a time-varying network and quantized communications are
considered. On the other hand, reference [82] also proposes a subgradient method, but
focuses on solving an optimization problem over an intersection of fixed point sets of
nonexpansive mappings in a real Hilbert space.

An important aspect for evaluation regarding distributed optimization is the topology of
the network of nodes that underlies communication. Reference [83] highlights the effects
of this aspect. In [84], a framework for optimizing a communication network topology, so
that it has the smallest number of links, is presented. It assumes that a prescribed decay
rate is satisfied, regarding the response of a distributed control system. Reference [85]
investigates the role of network topology, in a particular cluster environment in distributed
machine learning algorithms running on that infrastructure.

An interesting approach is described in [45], where special variants of distributed algo-
rithms are introduced, namely the gossip algorithms, where the communication is dis-
tributed and the communication is organized such that a node communicates with a
randomly chosen neighbour. There are additional ideas on this topic. [86] represents a
study on broadcasting-based gossip algorithm, for example. [87] is also related to convex
optimization problems over a network of nodes and introduces an augmented Langrangian

16 Chapter 1. Introduction

gossiping algorithm.

Other relevant works include the following: [88] focuses on analysis of convergence of
gradient-based optimizations, where the updates are dependent on delayed stochastic
gradient information; [89] describes control and coordination algorithms for groups of ve-
hicles, where a vehicle network performs distributed sensing tasks; [90] is also oriented to-
wards distributed multi-agent optimization, but the communication uses state-dependent
model; [91] focuses on reinforcement learning, with gradient approximations computing;
[92] describes the performance of a consensus-based distributed subgradient method with
random communication topologies; and many others.

Practical evaluations

When considering the work related to practical evaluations of distributed optimization
algorithms, on cluster environments, the amount of work available is modest. More re-
cently, there have been works that include MPI-based empirical studies of the methods.
Reference [93] proposes an asynchronous subgradient-push method and evaluates its per-
formance on an MPI cluster. The workers perform independently and asynchronously
here. It is shown that the iterates on the workers converge to the neighbourhood of the
solution, that is dependent on the level of asynchrony. As an addition, reference [94] com-
pares empirically several distributed first order methods. It also finds the asynchronous
subgradient optimization algorithm advantageous.

Reference [95] proposes an exact distributed asynchronous subgradient-push algorithm
(AsySPA) and provides its performance analysis using an MPI cluster. The working nodes
can asymptotically converge to the same optimal solution in this approach. However, the
update rates among them differ and there are bounded communication delays. These are
solved by adaptive step size adjusting.

Reference [96] provides a theoretical and empirical study of communication and computa-
tional tradeoffs for the distributed dual averaging method. It focuses on scalability issues.
Also, it identifies that the communication reduction over time, can lead to faster execution.
Finally, [97] also focuses on the distributed dual averaging method and provide several
useful guidelines about practical design and performance of the methods. Additionally,
reference [98] is directed towards asynchronous distributed optimization and proposes a
family of randomized primal-dual block coordinate algorithms, namely it utilizes doubly
stochastic coordinate optimization with variance reduction (DSCOVR).

Regarding primal methods, with respect to existing studies, this thesis contrasts with them
along several dimensions. First, it considers a different class of methods with respect to

1.5. Related work 17

existing empirical studies, where the considered methods include various strategies for
communication sparsification. We investigate both first and second order methods with
sparsifed communications, as well as different communication strategies during sparsifica-
tion (unidirectional vs bidirectional). Second, the thesis provides novel insights into how
the different sparsification strategies mutually compare, as well as how much are they
beneficial in practical settings over the corresponding always-communicating benchmark.
We investigate the performance of different communication probabilities over various data
sets. Interestingly, we show that communication sparsification can lead to significant ex-
ecution time reductions, when compared to always-communicating approach.

To the best of our knowledge, this is the first empirical evaluation about the class of algo-
rithms with sparsified communications in [39]. Besides that, the concept of unidirectional
communication strategy is also tested empirically here and compared to the bidirectional
alternatives.

While [44] also considers unidirectional communications, it studies the specific problem of
distributed estimation, which translates into quadratic objective functions and stochastic
gradient updates. In contrast, our analysis considers generic strongly convex costs. Also,
an important aspect is that our work is not limited to first order methods only, as we
evaluate the behaviour of both first and second order methods with different sparsification
strategies. Also, we introduce a novel method that has not been considered before.

When considering our ADMM-based clustering method, a set of related clustering ap-
proaches can be identified. The commonly used approach, k-means clustering was origi-
nally presented in [99], while reference [31] introduces the algorithm itself (Lloyds algo-
rithm). k-means represents a straightforward solution, that has been widely used due to
its useful features. However, it is sensitive to initialization and may converge to a local
minimum. The impact of different initialization methods on the algorithm behaviour was
empirically evaluated in [100]. The authors investigate four initialization strategies and
identify the most advantageous solutions. There have also been several works that de-
velop improved initialization methods. In [32], a randomized seeding technique was added
to the algorithm, in order to improve both its speed and accuracy. On the other hand,
reference [101] proposes an algorithm for cluster centers initialization.

The need for convex clustering solutions has been recognized by different authors and
several convex clustering formulations have been considered. In [102], an exemplar-based
likelihood function was introduced, leading to a convex minimization problem for cluster-
ing. This represents an efficient algorithm with guaranteed convergence to the globally
optimal solution, supported also by a set of experiments. Reference [103] formulates an

18 Chapter 1. Introduction

unsupervised learning problem as one convex “master“ problem, that includes nonconvex
subproblems which can be solved efficiently. There also emerges the idea of supervised
convex clustering, proposed in [104], that strives to find more interpretable patterns via a
joint convex fusion penalty. The authors introduce several extensions to this approach, in
order to integrate different types of supervising auxiliary variables and they also demon-
strate the practical advantages of the proposed method.

The growing interest and wider use of convex clustering becomes evident in different set-
tings. For example, in reference [105] the use of convex clustering approach instead of
hierarchical clustering in certain scenarios was investigated. This work derives and tests a
novel proximal distance algorithm for minimizing the objective function of convex cluster-
ing. Reference [106] introduced an approach, where the idea is to perform sparse convex
clustering. This means performing the clustering simultaneously with feature selection,
in order to enhance performance. The Sum of Norms (SON) clustering was proposed in
[37, 30, 38], as a convex relaxation of k-means clustering. A detailed explanation of the
algorithm for SON clustering was given in [35]. This work also includes the presentation
of the connection of SON clustering to k-means. It is inspired by the group lasso approach
[107].

It has been shown beneficial to utilize weighted pairwise differences, including setting up
many weights to zero [106, 108, 109, 110, 111, 112, 36], while the original SON clustering
formulation involves all-pairwise-differences across cluster candidates in the SON regular-
ization. The approach with weighted and sparse SON regularizations have been shown
to yield faster algorithms and good clustering accuracies [108, 111, 112, 36]. For exam-
ple, [108] proposes an approach based on weighted minimum spanning trees and k-means
bipartite graphs and shows high clustering accuracies of such sparse SON regularization
methods.

The SON clustering approach exhibits good theoretical cluster recovery guarantees for
all-pairwise-differences SON models. Theoretical advances regarding the perfect recovery
properties of the convex clustering model with uniformly weighted all-pairwise-differences
regularization were proven in [113, 114]. For weighted and sparse SON models, theoretical
recovery guarantees are limited. In reference [115], sufficient conditions for the perfect re-
covery guarantee of a general weighted convex clustering model are established. However,
the weights have to be non-zero for all data point pairs within the same clusterinformation
not known a priori.

There are several numerical algorithms, proposed for solving SON clustering problems.
Reference [115] introduces a semi-smooth Newton based augmented Lagrangian method,

1.5. Related work 19

for large-scale convex clustering, that is supported by a set of numerical evaluations.
The authors also establish sufficient conditions for the perfect recovery guarantee of the
general weighted convex clustering model in this work. Two splitting methods have been
proposed, by using the Alternating Direction Method of Multipliers (ADMM) and the
Alternating Minimization Algorithm (AMA) to solve convex clustering problems in [36].
In [109], a novel method for convex clustering, using semiproximal ADMM was introduced.
This method is suitable for high-dimensional data. It is based on the sparse group lasso
penalty and includes a set of numerical experiments in MATLAB. In [110], a networked
k-means algorithm is proposed. The algorithm deals with distributed data and a multi-
agent approach. It contains a description of an illustrative numerical evaluation, but
does not conduct a thorough empirical study. A Scalable cOnvex cLustering AlgoRithm
is introduced in [111], via Parallel Coordinate Descent Method (SOLAR-PCDM). The
authors combine a parallelizable algorithm with a compression strategy. SOLAR-PCDM
includes the development of a method called weighted convex clustering to recover the
solution path by formulating a sequence of smaller equivalent optimization problems and
the utilization of the Parallel Coordinate Descent Method (PCDM) to solve a specific
convex clustering problem. Furthermore, reference [112] introduces an efficient smoothing
proximal gradient algorithm (Sproga) for convex clustering.

Regarding dual methods and our parallel ADMM-based convex clustering approach, with
respect to the existing literature, our main contribution is on developing a novel parallel
and scalable solver for SON-type clustering. We adopt a sparse zero-one weights SON
formulation and leverage it to develop an efficient parallel ADMM method. Unlike existing
ADMM-based convex clustering methods that are sequential [109], our method is parallel
and hence well suited to scalable execution on HPC clusters.

Extensive numerical evaluations show a high clustering accuracy and a high scalability
of the proposed method on a number of real and synthetic data sets. Specifically, the
achieved accuracy is comparable to alternative sequential k-means solvers, while scalabil-
ity is significantly improved. It is worth noting that our sparse zero-one SON formulation
does not guarantee perfect theoretical recovery guarantees. However, extensive numerical
results demonstrate a high clustering accuracy of the proposed method. This is a typical
scenario with other sparse clustering methods like, e.g., [109, 108].

20 Chapter 1. Introduction

1.6 Thesis overview

This thesis is organized into four chapters. Chapter 1 contains the introduction to the field
of distributed, parallel convex optimization, including a brief description of distributed
convex optimization (Section 1.1) with an overview of different optimization methods
(Section 1.1.1) and basic concepts of high performance computing (Section 1.2). The
main motivations and objectives are described in Section 1.3, while the contributions are
explained in Section 1.4 (containing the contributions for both primal methods, in Section
1.4.1 and dual methods, in Section 1.4.2). The related work is presented in Section 1.5.

Chapter 2 is dedicated to the primal class of optimization methods, where we first describe
the background theory (in Section 2.1), starting with basic concepts of optimization and
network models (Section 2.1.1). We also describe the aspects of the algorithmic frame-
work, that is used here (Section 2.1.2), and show a convergence analysis for a novel method
(Section 2.1.3). Section 2.2 is dedicated to the aspects of implementation. It can be di-
vided into several subsections. First, in Section 2.2.1 the algorithm implementation for
strongly convex quadratic cost functions is described. This subsumes the description of
the input data preparation for the algorithm, the description of the serial implementation
and the description of the parallel implementation. Further, Section 2.2.2 is dedicated
to the algorithm development for logistic loss functions. This includes the description of
the input data preparation again, the explanation of the details of the serial and of the
parallel implementation. The description of the parallel implementation starts with the
initial implementation, that is followed by the adaptations of the algorithm, i.e. adapting
the algorithm to arbitrary input data size and weight matrix distribution, and adapting
the implementation regarding the stopping criterion. After that, a few innovations are
described regarding the implementation. First, the algorithm variant without second or-
der update computation is described, followed by the introduction of communicators, and
then by the introduction of communication sparsification and unidirectional communica-
tion principles. Finally, we derive some conclusions on the parallel implementation for
logistic loss functions. Section 2.2.3 contains an explanation of an evaluation metric for
comparing the implementation for logistic loss functions with an ADMM based imple-
mentation, also written in C using MPI. Section 2.2.4 provides some basic ideas on the
way of measuring execution time in parallel applications. Section 2.3 is oriented to exper-
imentation. Here, we first describe the infrastructure used for the tests, in Section 2.3.1.
Further, we can divide the experiments into two different sets. The first is containing the
intermediate experimentation results, obtained during the development of the implemen-
tation (Section 2.3.2). These include the results of the experiments, that are performed
on the implementation for strongly convex quadratic cost functions, and the results of the

1.6. Thesis overview 21

experiments on the implementation for logistic loss functions. Inside the topic containing
results regarding quadratic cost functions, two main topics can be identified: the descrip-
tion of the simulation setup, and the description of the experimental results. The results
for logistic loss functions also start with the description of the simulation setup for the
experiments. After that, the results of the experiments regarding introducing communica-
tors are displayed, followed by the results for testing different possible algorithm variants
with communication sparsification, followed by an explanation on choosing a graph type
for the experiments first, and then choosing the best performing algorithm methods. Sec-
tion 2.3.3 is dedicated to the experimental results regarding the selected set of methods.
It begins with the description of the methods, that is followed by the presentation of
the experimental results. These include an evaluation of graph types for the network,
a demonstration of execution times for different methods, an evaluation of the scaling
properties of the methods, a description of results regarding convergence percentage of
methods and cost reductions, an assessment of the execution time for different sequences
of probabilities, a comparison of the algorithm to ADMM, and the performance profiles
for the methods. Finally, Section 2.4 concludes this chapter.
Chapter 3 is dedicated to the dual class of optimization methods, particularly ADMM.
The main focus in this chapter is on developing a parallel ADMM-based convex clustering
algorithm. Section 3.1 provides the necessary theoretical insights, by means of describing
the basic concepts behind the ADMM method and SON clustering. Secondly, it introduces
the problem model and the proposed parallel clustering solution (Section 3.1.1). The
implementational aspects are described in Section 3.2, where a few different concepts are
examined: the input data that is used for the tests (Section 3.2.1), the stopping criterion
used (Section 3.2.2) and finally some details about the implementation in PyCOMPSs
[116]. Section 3.3 contains the experimental results, including the evaluation of different
aspects of the algorithm, as the time consumption of different parts of the implementation
(Section 3.3.1), an accuracy evaluation (Section 3.3.2), a scalability evaluation (Section
3.3.3), a discussion on choosing a value for the regularization parameter (Section 3.3.4) and
a comparison to other clustering approaches (Section 3.3.5). This comparison concerns
a set of clustering methods: SON clustering [37, 30, 38], AMA method [36], DBSCAN
[117], SSNAL [115] and parallel k-means provided by Apache Spark [21]. Finally, Section
3.3.6 is oriented towards describing the testing of the method on a real, industrial data
set from banking sector, provided by the H2020 project I-BiDaaS. In Section 3.4 some
further possibilities for implementation enhancement are considered, while Section 3.5
contains a comparison of MPI and COMPSs frameworks for parallelization. In Section
3.6, two additional ADMM-based parallel algorithms are described: ADMM-based lasso
regression (Section 3.6.1) and ADMM-based logistic regression (Section 3.6.2). Section

22 Chapter 1. Introduction

3.7 concludes this chapter. Finally, Chapter 4 represents the conclusions of the thesis,
where the summary of the main achievements of the thesis is described (Section 4.1) with
possible application scenarios mentioned (Section 4.2) and future work guidelines (Section
4.3).

Chapter 2

Primal distributed optimization
methods
The first contribution of this thesis is the evaluation of a class of primal distributed
convex optimization methods of first and second order. This chapter is dedicated to the
description of all aspects of these methods and their practical evaluation. We first describe
the methods theoretically. Then, the details of implementations are explained, and finally
the results and conclusions gathered during testing the methods on a cluster environment
are provided. The conducted experiments may reveal some important features of the
observed class of methods, that directly affects the possibility of their usage in different
setups.

2.1 Background theory

The main goal of this section is to provide all the necessary theoretical concepts, needed
to understand the nature of the class of observed methods. Besides the definition of the
properties of the methods, an algorithmic framework is also described in details. This
section also contains a convergence analysis for a novel method.

2.1.1 Optimization and network models

In this chapter, we consider an unconstrained optimization problem, that can be solved
in a distributed manner. Assume that a (connected) network of n nodes is given, where
each of the nodes has access to a convex cost function fi : IRs → IR, where fi is known
only by node i. Each fi is assumed to be strongly convex, twice differentiable, and
with Lipschitz continuous gradient. The goal for the nodes is to solve the following
unconstrained optimization problem:

23

24 Chapter 2. Primal distributed optimization methods

minimize f(x) :=
n∑

i=1
fi(x). (2.1)

We associate with problem (2.1) a graph G = (N, E), where N = {1, ..., n} is the set
of nodes, and E is the set of edges {i, j}, i.e., pairs of nodes i and j that can directly
communicate.

Graph G practically represents a collection of communication links among computational
nodes. The algorithms that we consider may use all these links (no sparsification in com-
munications) or utilize subsets of these links over iterations (sparsified communications).
Assume that graph G is connected, undirected and simple (no self nor multiple links).
Denote by Ωi the neighbourhood set of node i. With graph G, we associate an n × n

symmetric, (doubly) stochastic matrix W . The matrix W respects the sparsity pattern
of graph G, i.e., for i ̸= j, Wij = 0 if and only if {i, j} /∈ E. However, in the cases
of unidirectional communication between the computing nodes, the graph instantiations
over the iterations (subgraphs of G) can be directed. We also assume that Wii > 0, for all
i. It can be shown that λ1(W) = 1, and λ2(W) < 1, where λ1 is the largest eigenvalue of
W , and λ2(W) is the modulus of the eigenvalue of W that is second largest in modulus.
Denote by λn(W) the smallest eigenvalue of W . There also holds |λn(W)| < 1.

With (2.1), the following optimization problem can be associated:

min
x∈Rns

Ψ(x) :=
n∑

i=1
fi(xi) + 1

2α

∑
i<j

Wij||xi − xj||2. (2.2)

Here, x = (xT
1 , ..., xT

n)T ∈ Rns is the optimization variable that is partitioned into s × 1
blocks x1, ..., xn. The reasoning behind this transformation is the following. Assume that
s = 1 for simplicity. Under the stated assumptions on matrix W , it can be shown that
Wx = x if and only if x1 = x2 = ... = xn, so the problem (2.1) is equivalent to

min
x∈Rns

F (x), s.t. (I − W)x = 0, (2.3)

where F (x) := ∑n
i=1 fi(xi) and I is the identity matrix. Moreover, I − W is positive

semidefinite, so (I − W)x = 0 is equivalent to (I − W)1/2x = 0. Therefore, (2.3) can be
replaced by

min
x∈Rns

F (x), s.t. (I − W)1/2x = 0, (2.4)

In other words, the constraint Wx = x enforces that all the feasible xi’s in optimization
problem (2.3) are mutually equal, thus ensuring the equivalence of (2.1) and (2.3) and
the equivalence of (2.1) and (2.4). Further, a penalty reformulation of (2.3) can be stated

2.1. Background theory 25

as
min
x∈Rns

F (x) + 1
2α

xT (I − W)x, (2.5)

where 1
α

is the penalty parameter. Therefore (2.5) represents a quadratic penalty refor-
mulation of the original problem (2.1). After standard manipulations with the penalty
part we obtain

min
x∈Rns

F (x) + 1
2α

∑
i<j

Wij(xi − xj)2, (2.6)

which is the same as (2.2) for s = 1. These considerations are easily generalized for s > 1.

It is well known, [8], that the solutions of (2.1) and (2.2) are mutually close. More
specifically, for each i = 1, ..., n, ||x◦

i − x∗|| = O(α) where x∗ is the solution to (2.1) and
x• = ((x◦

1)T , ..., (x◦
n)T)T is the solution to (2.2).

In more details, Theorem 4 in [58] says that under strongly convex local costs fi’s with
Lipschitz continuous gradients (see ahead Assumption 2.1.1 for details), the following
holds, for all i = 1, ..., n:

∥x◦
i − x⋆∥ ≤ (αLD

1 − λ2(W)
)
√

4/c2 − 2α/c + αD

1 − λ2(W)
= O(α

1 − λ2(W)
),

(2.7)

where

D =

√√√√2L(
n∑

i=1
fi(0) −

n∑
i=1

fi(x′
i)); c = µL

µ + L
; (2.8)

and x′
i is the minimizer of fi. , L is the Lipschitz constant of the gradients of the fi’s,

and µ is the strong convexity constant of the fi’s.

The usefulness of formulation (2.2) is that it offers a solution that is close (on the or-
der O(α)) to the desired solution of (2.1), while, unlike formulation (2.1), it is readily
amenable for distributed implementation. A key insight known in the literature (see, e.g.
[11, 118]) is that applying a conventional (centralized) gradient descent method on (2.2)
precisely recovers the distributed gradient method proposed in [8]. In other words, it has
been shown that the distributed method in [8] – that approximately solves (2.1) – actu-
ally converges to the solution of (2.2). This insight has been significantly explored in the
literature to derive several distributed methods, e.g., [11, 12, 39]. The class of methods
considered in this chapter also exploits this insight and therefore harnesses formulation
(2.2) to carry out convergence analysis of the considered methods.

26 Chapter 2. Primal distributed optimization methods

2.1.2 Algorithmic framework

The considered algorithmic framework subsumes several existing algorithms [39, 40, 41,
42, 43, 44], and it also provides algorithms that are either novel, or they have not been
analyzed in the literature yet. Within the considered framework, each node i in the
network maintains, xk

i ∈Rs, as its approximate solution to (2.1), where k is the iteration
counter. We also associate a Bernoulli random variable zk

i to each node i, that governs
its communication activity at iteration k. If zk

i = 1, node i communicates; if zk
i = 0, node

i does not exchange messages with neighbours. When zk
i = 1, node i transmits xk

i to all
its neighbours j ∈ Ωi, and it receives xk

j , from all its active (transmitting) neighbours.

The idea behind the quantities zk
i is the following. It has been shown (see, e.g., [40]) that

distributed methods to solve (2.1) and (2.2) exhibit certain “redundancy” in terms of the
utilized communications. In other words, it is not necessary to activate all communica-
tion channels at all times for the algorithm to be convergent. Moreover, communication
sparsification may lead to convergence speed improvements in terms of communication
cost [40]. Communication sparsification and introduction of the zk

i ’s leads to less expen-
sive but inexact algorithmic updates. A proper design of the zk

i ’s can lead to a positive
resolution of the inexact-less expensive updates tradeoff; see, e.g., [40] for details.

We assume that the random variables zk
i are independent both across nodes and across

iterations. We denote by pk = Prob(zk
i = 1), assumed equal across all nodes. The quantity

pk is a design parameter of the method. We consider different approaches to set up this
parameter, namely we investigate constant, increasing and decreasing communication
probabilities. These strategies for setting pk are discussed further ahead. A large pk

corresponds to “less inexact” updates but also to lower communication savings. With the
considered algorithmic framework, solution estimate update at node i is as follows:

dk
i = −

[
(Mk

i)−1[α∇fi(xk
i) +

∑
jϵΩi

Wij(xk
i − xk

j)ξk
i,j]

]
(2.9)

xk+1
i = xk

i − dk
i (2.10)

Here, α is a positive parameter that plays the role of step-size. The value of the parameter
α differs for various input data sets (the particular values will be described later). ξk

i,j

is in general a function of zk
i and zk

j that encodes the communication sparsification; and
Mk

i is a local second order information-capturing matrix, i.e. the Hessian approximation.
We rely here on the class of proposed Newton-like methods, namely Distributed Quasi

2.1. Background theory 27

Newton (DQN) methods [12]. This class of methods defines the way to incorporate second
order information in distributed gradient methods. We will base our implementation on
this result.

Vector d
(k)
i contains information on node i’s local function’s gradient, node i’s local func-

tion Hessian approximation, and an adjustment based on the mutual disagreement be-
tween node i’s solution estimate and the estimates of its neighbours. Steps (2.9) and
(2.10) are carried out in parallel by all nodes. Note that step (2.10) assumes that, prior to
executing the step, each node i broadcasts its solution estimate x

(k)
i to all its neighbours

j ∈ Ωi and receives xj from all its neighbours j ∈ Ωi

We consider the following choices of the quantities ξk
i,j and Mk

i . For ξk
i,j, we consider:

1. ξk
i,j = 1: no communication sparsification. This means that the nodes exchange

their solution estimates with their neighbours constantly across the iterations;

2. ξk
i,j = zk

i · zk
j bidirectional communication sparsification (that is, node i includes

node j’s solution estimate in its update only if both i and j are active in terms of
communications). More precisely, if node i is active during the k-th iteration, it
sends its solution estimate to all its active neighbours, and also receives the solution
estimates from them. On the other hand, if node i is inactive during an iteration,
it does not receives nor sends any data;

3. ξk
i,j = zk

j (directed communications); that is, node i includes node j’s solution
estimate in its update whenever node j transmits, irrespective of node i being
communication-active or not. This means that, if node i is active during an iteration,
it sends its solution estimate to all its neighbours, regardless of their activity, but
only receives values from its active neighbours. In the opposite case, if node i is
inactive during an iteration, it does not send its solution estimate to other nodes,
but receives data from its active neighboring nodes.

Regarding quantity Mk
i , two options can be identified:

1. Mk
i = I. This corresponds to first order methods, where local functions’ Hessians

are not evaluated;

2. Mk
i = Dk

i , where

Dk
i = α∇2fi(xk

i) + (1 − Wii)I. (2.11)

28 Chapter 2. Primal distributed optimization methods

This corresponds to second order methods of DQN-type [39]. The method (2.9)-(2.10)
corresponds to an inexact first order or an inexact second order method to solve (2.2)
– and hence to approximately solve (2.1). The main source of inexactness is due to the
sparsification (ξk

i,j’s). The bidirectional communication (ξk
i,j = zk

i · zk
j) is appealing as it

preserves symmetry in the underlying weight matrix, which is known to be a beneficial
theoretical property. On the other hand, the bidirectional sparsification is also wasteful
in that a node ignores the received message from a neighbor if its own transmission to
the same neighbor is not successful (see formula (2.9)). With respect to the choice first
versus second order method (the choice of Mk

i), the second order choice is computationally
more expensive per iteration due to the Hessian computations; on the other hand, it can
improve convergence speed iteration-wise.

In order to make the algorithm description clearer,a general form of the introduced algo-
rithm can be described with a snippet of pseudocode (Algorithm 1).

Algorithm 1 Pseudocode for the proposed algorithmic framework
Require: at each node i: α > 0; {Wij}j∈Ωi

; {pk}k≥0
repeat

Each node i generates zk
i and computes:

Mk
i and ξk

i,j, j ∈ Ωi

if ξk
i,j = 1 then

Each node i receives xk
j from node j, j ∈ Ωi

end if
Each node i updates xk

i via (2.9) – (2.10)
until a stopping criterion is met

2.1.3 Convergence analysis

In this section, a convergence analysis of the algorithm variant with unidirectional com-
munications is carried out. This work has been published in [46]. In this section we
assume the following choice of Mk

i and ξk
ij:

Mk
i = I, ξk

ij = zk
j . (2.12)

To the best of our knowledge, except for a different estimation setting [44], this algorithm
has not been studied before. The following assumptions are needed.

Assumption 2.1.1 (a) Each function fi : IRs → IR, i = 1, ..., n is twice differentiable,
strongly convex with strong convexity modulus µ > 0, and it has Lipschitz continuous
gradient with the constant L, L ≥ µ.

2.1. Background theory 29

(b) The graph G is undirected, connected and simple.

(c) The step size α in (2.2) satisfies α < min{ 1
2L

, 1+λn(W)
L

}.

By Assumption 2.1.1, Ψ is strongly convex with modulus µ. Moreover, it has a Lipschitz
gradient with the constant

LΨ := L + 1 − λn(W)
α

. (2.13)

Notice that Assumption 2.1.1 (c) implies that α < (1 + λn(W))/L, which is equivalent to

α <
2

LΨ
. (2.14)

Let xk = ((xk
1)T , ..., (xk

n)T)T . We have the following convergence result for the first order
method with unidirectional communications. [46]

Theorem 2.1 Let {xk} be a sequence generated by Algorithm 1 and assume Assumption
2.1.1 holds. Then, the following results hold:

(a) Assume that the sequence {pk} converges to one as k → ∞. Then, the sequence of
iterates {xk} converges to x• in the expected error norm, i.e., there holds:

lim
k→∞

E[∥xk − x•∥] = 0. (2.15)

(b) Assume that the sequence {pk} converges to one geometrically as k → ∞, i.e., pk =
1 − δk+1, for all k, Then, there holds:

E[∥xk − x•∥] = O(γk), (2.16)

where γ < 1 is a positive constant.

(c) Assume that pk ≥ pmin for all k and for some pmin ∈ (0, 1) and that the itera-
tive sequence {xk} is uniformly bounded, i.e., there exists a constant C1 > 0 such that
E[∥xk∥] ≤ C1, for all k. Then, there holds:

E[∥xk − x•∥] ≤ θk∥x0 − x•∥ + (1 − pmin)2 C2, (2.17)

where C2 = 2nC1
αµ

.

30 Chapter 2. Primal distributed optimization methods

Theorem 2.1 demonstrates that Algorithm 1 with sparsified communications converges
with unidirectional communications. More precisely, as long as the sequence pk converges
to one, even arbitrarily slowly, the sequence {xk} converges to the solution of (2.2) in the
expected error norm sense. When the convergence of pk to one is geometric, we have that
xk converges geometrically, i.e., at a linear rate. Finally, when pk stays bounded away from
one, under the additional assumption that the sequence {xk} is uniformly bounded, the
algorithm converges to a neighbourhood of the solution to (2.2), where the neighbourhood
size is controlled by parameter pmin (the closer pmin to one, the smaller the error). This
complements the existing results in [39] which concerns bidirectional communications.

Next, the proof of Theorem 2.1 will be carried out. To avoid notation clutter, let the
dimension of the original problem (2.1) be s = 1. The proof relies on the fact that
the method can be written as an inexact gradient method for minimization of Ψ. More
specifically, it can be shown that the algorithm determined by (2.9) – (2.12) is equivalent
to the following:

xk+1 = xk − α[∇Ψ(xk) + ek], (2.18)

where ek = (ek
1, ..., ek

n)T is given by

ek
i = 1

α

∑
j∈Ωi

Wij(zk
j − 1)(xk

i − xk
j) (2.19)

and ek ∈Rn.Indeed, in view of (2.12), method (2.9)-(2.10) can be represented as

xk+1 = xk − α∇F (xk) − (I − Wk)xk, (2.20)

where
F : IRn → IR, F (x) =

n∑
i=1

fi(xi), (2.21)

[Wk]ij =


Wijz

k
j , if {i, j} ∈ E, i ̸= j,

0, if {i, j} /∈ E, i ̸= j,

1 − ∑
l ̸=i[Wk]il, if i = j.

(2.22)

Thus,

xk+1 = xk − α(∇F (xk) + 1
α

(I − Wk)xk ± 1
α

(I − W)xk)

= xk − α(∇Ψ(xk) + 1
α

((I − Wk)xk − (I − W)xk)).
(2.23)

2.1. Background theory 31

Therefore, for each component i the error is determined by

ek
i = 1

α
(

∑
j∈Ωi

Wijz
k
j (xk

i − xk
j) −

∑
j∈Ωi

Wij(xk
i − xk

j)), (2.24)

and (2.19) follows.

Next we state and prove an important result. Here and further on, || · || denotes the vector
2-norm and the corresponding matrix norm.

Lemma 2.2 Suppose that Assumption 2.1.1 holds. Then for each k we have

||xk − x•|| ≤ θk||x0 − x•|| + α
k∑

t=1
θk−t||et−1||, (2.25)

where x0 is the initial iterate and θ = max{1 − αµ, αLΨ − 1} < 1.

Proof. Using (2.18) and the fact that ∇Ψ(x•) = 0 we obtain

xk+1 − x• = xk − x• − αek − α(∇Ψ(xk) − ∇Ψ(x•)). (2.26)

Further, there exists a symmetric positive definite matrix Bk such that

∇Ψ(xk) − ∇Ψ(x•) = Bk(xk − x•) (2.27)

and its spectrum belongs to [µ, LΨ]. Thus, we obtain

∥I − αBk∥ ≤ max{1 − αµ, αLΨ − 1} := θ. (2.28)

Notice that the Assumption 2.1.1 (c) implies that θ < 1 since (2.14) holds and L ≥ µ.
Moreover, putting together (2.26) - (2.28), we obtain

∥xk+1 − x•∥ ≤ θ∥xk − x•∥ + α∥ek∥ (2.29)

and applying the induction argument we obtain the desired result. □

To complete the proof of parts (a) and (b) of Theorem 2.1, we need to derive an upper
bound for ||ek|| in the expected-norm sense. In order to do so, it is needed to establish
the boundedness of iterates xk in the expected norm sense.

32 Chapter 2. Primal distributed optimization methods

Lemma 2.3 Let Assumption 2.1.1 hold, and consider the setting of Theorem 2.1 (a).
Then, there holds E[||xk||] ≤ Cx for all k, where Cx is a positive constant.

Proof. The update rule (2.20) can be written equivalently as follows

xk+1 = Wkxk − α∇F (xk). (2.30)

Introduce W̃k = Wk − W , and rewrite (2.30) as

xk+1 = Wxk − α∇F (xk) + W̃kxk. (2.31)

Denote by x′ the minimizer of F . Then, by the Mean Value Theorem, there holds

∇F (xk) − ∇F (x′) =
[∫ 1

0
∇2F (x′ + t(xk − x′))dt

]
︸ ︷︷ ︸

Hk

(xk − x′)

= Hk(xk − x′) = Hkxk − Hkx′,

(2.32)

and
xk+1 = (W − αHk)xk + W̃kxk + αHkx′ − α∇F (x′). (2.33)

Note that ||Hk|| ≤ L, by Assumption 2.1.1. Also, note that ||W − αHk|| ≤ 1 − αµ, for
α ≤ 1

2L
. Therefore, the following can be stated

||xk+1|| ≤ (1 − αµ)||xk|| + α(L||x′|| + ||∇F (x′)||)︸ ︷︷ ︸
c′

+ ||W̃k|| · ||xk||

= (1 − αµ)||xk|| + c′ + ||W̃k|| · ||xk||.

(2.34)

Next, ||W̃k|| will be upper bounded. Note that

||W̃k|| ≤
√

n||W̃k||1 ≤
√

n
n∑

i=1

n∑
j=1

|[W̃k]ij|. (2.35)

Therefore,

||W̃k|| ≤ 2
√

n
n∑

i=1

n∑
j=1

Wij(1 − zk
j). (2.36)

2.1. Background theory 33

Taking expectation and using the fact that E[zk
j] = pk, for all k, it can be concluded that

E[||W̃k||] ≤ C̃(1 − pk) (2.37)

for some positive constant C̃. Now, using independence of W̃k and xk, the following can
be obtained from (2.34),

E[||xk+1||] ≤ (1 − αµ)E[||xk||] + C ′ + (1 − pk+1)C̃E[||xk||]

= (1 − αµ + C̃(1 − pk+1))E[||xk||] + C ′.
(2.38)

As pk → 1, i.e., (1 − pk) → 0, it is clear that, for sufficiently large k, there holds

E[||xk+1||] ≤ (1 − 1
2

αµ)E[||xk||] + C ′. (2.39)

This implies that there exists a constant Cx such that E[||xk||] ≤ Cx, for all k = 0, 1,
□

Applying Lemma 2.3, the following result is obtained.

Lemma 2.4 Suppose that the Assumption 2.1.1 holds and E(∥xk∥) ≤ C1 for all k and
some constant C1. Then the error sequence {∥ek∥} satisfies

E[||ek||] ≤ (1 − pk)Ce, (2.40)

for the positive constant Ce = 2n
α

(1 − pmin)C1.

Proof. The proof follows straightforwardly from (2.19) and Lemma 2.3. Consider (2.24).
Then, |ek

i | can be upper bounded as follows:

|ek
i | ≤ 1

α

∑
j∈Ωi

wij|1 − zk
j |2∥xk∥. (2.41)

This yields:

∥ek∥ ≤ ∥ek∥1 =
n∑

i=1

2
α

∑
j∈Ωi

wij|1 − zk
j |∥xk∥. (2.42)

34 Chapter 2. Primal distributed optimization methods

Taking expectation while using independence of zk
j and xk, and using E(∥xk∥) ≤ C1;∑

j∈Ωi
≤ 1; and E(|1 − zk

j |) = 1 − pk, the result follows. □

Now, Theorem 2.1 can be proved as follows.

Proof of Theorem 2.1. We first prove part (a). Taking expectation in Lemma 2.2, and
using Lemma 2.4, the following can be obtained

E[||xk − x•||] ≤ θk||x0 − x•|| + α
k∑

t=1
θk−tE[||et−1||]

≤ θk||x0 − x•|| + α
k∑

t=1
θk−t · Ce(1 − pt−1).

(2.43)

Next, applying Lemma 3.1 in [119], it follows that

E[∥xk − x•∥] → 0, (2.44)

as we wanted to prove.

Let us now consider the part (b). Note that, in this case, we have that 1 − pk = δk+1, for
all k. Specializing the bound in (2.43) to this choice of pk, the following holds

E[||xk − x•||] ≤ θk||x0 − x•|| + αCe

k∑
t=1

θk−tδt, (2.45)

and using the fact that sk := ∑k
t=1 θk−tδt converges to zero R-linearly (see Lemma II.1

from [39]), we obtain the result.

Finally, we prove part (c). Here, we upper bound the term (1 − pt−1) in (2.43) with
(1 − pmin). For this case we obtain

E[||xk − x•||] ≤ θk||x0 − x•||

+ (1 − pmin)Ce
1
µ

,
(2.46)

which completes the proof of part (c).□

2.2. Implementation 35

2.2 Implementation

This section is dedicated to the description of different aspects of implementation of the
considered class of methods (see (2.9)-(2.10) and Algorithm 1 in Section 2.1). A dis-
tributed nature of an algorithm naturally demands a parallelized implementation. A
serial algorithm is unable to handle the increase of the volume of data, and it cannot
provide a satisfactory performance level. However, a serial implementation is a good
starting point, and it serves as a basis for testing the correctness of the results of a par-
allel implementation. For this reason, we first developed a serial implementation in C
programming language. A parallel implementation of the described algorithm was then
developed using Message Passing Interface (MPI) also in C programming language. The
need for efficient operations on vectors and matrices is effectively fulfilled by using the
appropriate routines from the LAPACK [120] and BLAS [121] libraries on each node. The
development of the parallel solution went through a number of phases, striving to find
the most suitable algorithm variant, based on empirical evaluations. First, the algorithm
was implemented for strongly convex quadratic cost functions, using an all-to-all commu-
nication strategy. When considering graph G, that represents the communication links
among nodes, all the links from G need to be used here over iterations, as there is no
communication sparsification. Moreover, the all-to-all communication strategy assumes
that each node communicates with all the other nodes, regardless of the links in graph G.
The structure of graph G is then used afterwards on each node, to actually utilize only the
links defined by graph G. We also developed an implementation for logistic loss functions,
that initially also used the all-to-all communication protocol, but in the next stage, we
introduced communicators, in order to overcome the drawbacks of the initial approach.
This ensured that a node in a graph only exchanged data with its neighbours, so the cost
of communication was reduced. Finally, we applied different communication sparsification
strategies, both unidirectional and bidirectional, for both first and second order methods.
We also examined the possible implementations regarding the input data distribution,
stopping criterion and presence or absence of second order update computation. These
development stages and alternatives will be described below in details.

Before diving into the details of the solution development, a few concepts should be
explained first. The term serial is used to denote a program that is written to run on
a single machine, without parallelization. When writing a parallel program, that uses
MPI, a few commonly used terms should also be explained. First, when a program runs
in parallel, that means that a set of processes is working together, performing some task
simultaneously. Each process has an identifier, referred to as the rank (or sometimes id)
of the process. As our algorithm is working with a network of connected nodes, each

36 Chapter 2. Primal distributed optimization methods

node in a network is represented by one process physically, so that we will use the terms
process and node interchangeably, while explaining the implementation. The processes
are physically assigned to different CPU cores on different machines in the cluster. Inside
a set of processes, one can be identified as a master process. A master process always
has a rank 0, and should be the one responsible for managing certain common tasks as
input and output operations, data distribution among the processes and synchronization
of results.

When referring to a set of processes that is assigned to a parallel program, a few important
concepts should also be mentioned. First, the number of processes that the program uses
is being set at the moment of starting the program. All the parallel code, was tested on a
cluster environment. This means that we created scripts for submitting the programs to
be executed on the cluster batching system, where the required number of cluster nodes
and cores, and the time limit for the execution are being specified.

A communicator represents a set of processes that can communicate with each other. By
default, when running a parallel program, all the processes belong to a global commu-
nicator called MPI_COMM_WORLD, so that they can communicate arbitrarily. However, a
communicator can also be created by a program. In that case, it can be decided which
processes are included in the newly created communicators. This can be very useful in
the cases, when we need to split the communication lines in some ways. We will use these
concepts while describing the implementation and experimentation phases. By introduc-
ing communicators, we ensure that a process communicates as defined by graph G, i.e.
actually utilizing the communication links in graph G.

The algorithm is universal with respect to the cost functions fi, and can be easily uti-
lized for different applications. We describe below the implementations for two different
cases: quadratic and logistic loss functions. These implementations basically differ only in
the gradient and Hessian calculations. Therefore, another cost functions could be easily
accommodated, by replacing the calculations for gradient and Hessian.

2.2.1 Implementing the algorithm for strongly convex
quadratic cost functions

Consider the implementation for strongly convex quadratic cost functions first. This
means that, each node is assigned a function:

fi(x) = 1
2

(x − bi)τ ai(x − bi), (2.47)

2.2. Implementation 37

where x ∈ IRs represents the optimization variable. The input data are given as an s × s

matrix ai, and an s sized vector bi on each node.

As the algorithm is iterative, it should converge after some required number of iterations.
For quadratic cost functions, we used a fixed number of iterations. During the iterations,
the Gradient ∇fi(x(k)

i), the Hessian approximation M
(k)
i , and the solution update x are

being recalculated as:
∇fi(x(k)

i) = ai(xi − Bi) (2.48)

M
(k)
I = α∇2fi(x(k)

i) + (1 − Wii)I (2.49)

x
(k+1)
i = x

(k)
i − ϵ(M (k)

i)−1
[
α∇fi(x(k)

i) +
∑
j∈Ωi

Wij(x(k)
i − x

(k)
j)

]
(2.50)

The constant value ϵ in (2.50) is set to 1 in the implementation. The value α, representing
the step size of the algorithm is set as 1

200L
, where L is the largest eigenvalue, among the

eigenvalues of parts of input matrix a. The values wij correspond to the appropriate
elements of the weight matrix.

Input data preparation

The implementation can be tested with arbitrary input data. We want to have four
different binary files at the input. The first two of them are related to the input matrix
and vector, and the third and fourth define the graph structure. Here, we use randomly
generated values. The data generation process is not part of the implementation of the
algorithm. Therefore, different data generation approaches may be utilized.

As already explained, each node should have an s × s sized matrix ai, and an s sized
vector bi. The input binary files contain a global matrix and a global vector, i.e. all the
submatrices and subvectors for the nodes. This means, that the binary file containing the
input matrix should contain s × s × n entries, and the binary file with the input vector
contains s×n entries, where n is the number of nodes. This means that the first chunk of
size s × s from the matrix goes to the first process as its own matrix, and the first chunk
of vector of size s goes to the first process as its own vector. The same holds for the other
chunks.

The graph of nodes may also be created randomly, but ensuring that it remains connected.
The final binary files should contain the adjacency matrix and the degree vector for the
nodes separately. The adjacency matrix contains the information about the existing edges
in the connected graph of nodes, i.e. it contains value 1, when Wij > 0, for i ̸= j. The
degree vector is used to obtain the degrees for each node in the graph. This data is the

38 Chapter 2. Primal distributed optimization methods

basis for calculating the weight matrix W for the communicating nodes. This way, the
nodes are aware of the list of their neighbours, as well as of the degree of each node.

One way to generate a graph randomly is as follows:

• For a specified number of nodes n, random points for vertices are generated.

• For each pair of vertices with mutual distance smaller than some specified value r,
create an edge. The value r is specified as r =

√
log(n)

n

• An adjacency matrix (containing only values 0 an 1 - indicating the existence/lack
of an edge) is created and written to a file. A degree vector is also created and
written to a file. It contains the degree i.e. number of neighbours for each node.

The serial implementation for quadratic cost functions

We develop a serial implementation in C first, and then use it later as a starting point for
parallelization. This enables the comparison between the two implementations, not just
performance related (as we naturally expect better performance with parallelization), but
also related to the correctness of the resulting values. When referring to correctness, we
naturally do not expect some precisely defined value. We expect a result that converged
“close” to the solution. As we have 3 binary input files, the first task is to read the
content of the files, and create the needed data structures. This is a very simple, standard
approach, where we allocate the necessary data structures and read the contents of the
binary files into them. The next step is to create the weight matrix W , which is also
a straightforward task. Finally, we calculate the gradient, the Hessian and the solution
update iteratively as (2.48)-(2.50).

We use routines from LAPACK and BLAS libraries for operations on matrices and vec-
tors, as cblas_dgemv for matrix-vector product, cblas_daxpy for matrix addition and
subtraction, LAPACKE_dgetrf for LU factorization of a matrix, and LAPACKE_dgetri for
computing the matrix inverse.

The parallel implementation for quadratic cost functions

The serial implementation can now be adapted, in order to introduce the parallelization.
As usually, the first task to implement is the input data reading and preprocessing to the
desired form.

2.2. Implementation 39

The process of reading the data is the same as for the serial implementation, with the only
difference that the master process reads the data and then scatters the input matrix a

and vector b to all the processes equally. The scattering of the data is done in the simplest
way here, by calling the MPI method MPI_Scatter. First, the master process scatters
the whole matrix to chunks of size s × s among the processes (the first chunk stays on
process 0, the next one goes to 1 and so on). Each chunk is stored in a local matrix on a
process. A separate call to MPI_Scatter scatters the input vector in the same manner.
The communicator used for scattering is MPI_COMM_WORLD, by default. This means that all
the processes belong to the default global communicator and can communicate mutually.
Any call to MPI collective functions involves all the existing processes. For more details,
see the GitHub repository [1].

After this point, each process has the corresponding part of the global matrix a, and of
the global vector b. We refer to these values as variable A for the matrix and variable B
for the vector in the code. The symmetric weight matrix W is being created and broadcast
to the other processes by the master process, by calling the function MPI_Bcast.

The parallel implementation naturally differs from the serial one among several dimen-
sions. The program is working with a set of processes, and each of them operates on
its own memory space and communicates with other processes by message passing. For
that reason, it is necessary to know the number of neighbours and the array of particular
neighbours ranks for each process. This way, we can ensure that each process will be
aware of which processes it needs to communicate with. A convenient and easy solution
here is to maintain an integer variable, containing the number of neighbours for the node,
and a vector, containing the ranks of the neighbours. These data can be easily acquired
for node i, by observing all the indices j from W , where Wij > 0, and i ̸= j. Listing 2.1
shows the definition of these structures. Each process executes this snippet of code.

The main loop of the algorithm has a fixed number of iterations k. During the iterations,
the Gradient ∇fi(x(k)

i), the Hessian approximation M
(k)
i , and the solution update x are

being recalculated as in equations (2.48)-(2.50).

Listing 2.1: Creating the data structures that contain data about neighbours, C with MPI
int * my_neighbours = calloc (n, sizeof (int));
int my_neighbours_count =0;
for(i=0;i<n;++i)

if(WMatrix [my_rank *n+i]!=0.0 && my_rank !=i){
my_neighbours [my_neighbours_count]=i;
my_neighbours_count ++;

}

40 Chapter 2. Primal distributed optimization methods

Listing 2.2 represents a snippet of code, where the gradient is being calculated. It is based
on calls to LAPACK and BLAS routines, in order to ensure the best performance of the
computations. Each process has its own vector for solution x, and its own data chunk.
First, we create a copy of the local solution, variable X in the code. Then we subtract B
from copyX, by calling cblas_daxpy. The result is stored in copyX. Finally, we multiply
that result with the matrix A and store the result in a variable called Grad.

Listing 2.2: Calculating the gradient for quadratic functions, C with MPI
LAPACKE_dlacpy (LAPACK_ROW_MAJOR ,’A’,1,s,X,s,copyX ,s);
cblas_daxpy (s,-1,B,1,copyX ,1);
cblas_dgemv (CblasRowMajor , CblasNoTrans ,s,s,1,A,s, copyX ,1,0,Grad ,1);

Next, each process calculates its Hessian inverse approximation. The code that calculates
the Hessian inverse approximation is displayed in Listing 2.3. The variable GMatr initially
holds the values from the local matrix A, so its dimension is s × s. The matrix AWeight
is again initialized as an identity matrix, its dimension is s × s, as we work on one data
chunk on a process.

The matrix Wii is also a simple diagonal matrix of size s×s now. It contains the value Wii

on the diagonal, where i is equals to the process rank. We add the GMatr multiplied by
alpha to AWeight, and then subtract Wii from it. Finally, we create the matrix inverse
AWeightInv using the appropriate LAPACKE routines.

Listing 2.3: Calculating the Hessian inverse for quadratic functions, C with MPI
LAPACKE_dlacpy (LAPACK_ROW_MAJOR ,’A’,s,s,A,Dim ,GMatrix ,s);
for(i=0;i<s;++i)

AWeight [i*s+i]=1.0;
cblas_daxpy (s*s,alpha ,GMatrix ,1, AWeight ,1);
cblas_daxpy (s*s,-1,Wii ,1, AWeight ,1);
LAPACKE_dlacpy (LAPACK_ROW_MAJOR ,’A’,s,s,AWeight ,s,AWeightInv ,s);
LAPACKE_dgetrf (LAPACK_ROW_MAJOR ,s,s,AWeightInv ,s, pivotArray);
LAPACKE_dgetri (LAPACK_ROW_MAJOR ,s,AWeightInv ,s, pivotArray);

At this point, the processes need to exchange their values of resulting vectors with their
neighbours, by exchanging messages, in order to ensure the proper access to neighbours
solution updates. The simplest way to achieve this is to use the all-to-all communication
protocol, by calling the MPI_Allgather function. This ensures that all the results all
collected on all processes. However, as a process should consume only the results from
its neighbours, the vector of neighbours enables to take into account only the needed
values. This can be achieved as follows: node i checks in a loop for each value j ∈

2.2. Implementation 41

Figure 2.1: The all-to-all communication protocol

{0..., n − 1}, j ̸= i weather node j is its neighbour; if j is its neighbour, then it includes
the received data during calculating the update as ∑

j∈Ωi
wij(x(k)

i −x
(k)
j); otherwise, it skips

node j. Fig. 2.1 displays the all-to-all communication protocol. The red arrows represent
the communication links defined by matrix W. The black arrows are communication links,
that are not of interest for the algorithm, but are still physically utilized. The right side
on Fig. 2.1 shows that each node (i.e. process) contains all the data, from all nodes, when
the communication is finished. The crossed out data chunks on nodes are those that are
not being used by a node, as they came from non-neighbors. After recalculating the
update, the final result for the current iteration is being evaluated by incorporating the
gradient and the Hessian inverse approximation to the formulation as showed in (2.50).
When the iteration counter exceeds the maximal number of iterations, the master process
gathers the parts of the results from the other processes, in order to provide the final
value.

Listing 2.4: The data exchange and solution update, C with MPI
MPI_Allgather (X,s,MPI_DOUBLE ,Xremote ,s,MPI_DOUBLE , MPI_COMM_WORLD);
for(i=0;i< my_neighbours_count ;++i){

j= my_neighbours [i];
LAPACKE_dlacpy (LAPACK_ROW_MAJOR ,’A’,1,s,X,s,Xdiff ,s);
cblas_daxpy (s,-1, Xremote +j*s,1,Xdiff ,1);
cblas_daxpy (s, WMatrix [my_rank *n+j],Xdiff ,1,zero ,1);
cblas_daxpy (s,1,zero ,1, NablaPsi ,1);

}
cblas_daxpy (s,alpha ,Grad ,1, NablaPsi ,1);
cblas_dgemv (CblasRowMajor , CblasNoTrans ,s,s ,1.0 , AWeightInv ,s,

NablaPsi ,1 ,1.0 , sDirection ,1);
cblas_daxpy (s,-1, sDirection ,1,X ,1);

Listing 2.4 shows the data exchange process and the computation of the solution update.
As already mentioned, the call to MPI_Allgather ensures that all the processes have the

42 Chapter 2. Primal distributed optimization methods

solutions from all other processes in the variable Xremote. Each process then executes a
for loop, for each neighbour. The rank of the current neighbour is j, and it can be obtained
from the array called my_neighbours, created initially. Now, a process subtracts the j-th
process solution from its own value X and multiplies it with the appropriate value from
WMatrix. The result is stored in a vector called zero (it initially contains all zeros).
This vector is then added to NablaPsi. In other words, NablaPsi contains the sum of
differences from (2.50). After the loop, the gradient multiplied with the step size alpha
is being added to NablaPsi. We then multiply it with AWeightInv using cblas_dgemv,
and store the result in sDirection. Finally, the solution update is being computed by
subtracting the sDirection from X. This implements the formula (2.50). Note that we
use the value ϵ = 1.

This completes the parallel implementation of the algorithm for quadratic cost functions.
All these code snippets, including the gradient, Hessian inverse and solution estimation
update, are part of the main loop of the algorithm. After a predefined number of iterations,
the algorithm finishes its execution, and the master process gathers the solution estimate
from its neighbours. The tests and results of tests, performed for this implementation
will be explained in the section dedicated to experimentation.

2.2.2 Implementing the algorithm for logistic loss functions

After implementing the algorithm for a very simple setup with strongly convex quadratic
cost functions, the idea is to create an implementation for an another, commonly used
approach, in order to demonstrate the possibility for wide applications. Therefore, the
algorithm was implemented for logistic loss functions with L2 regularization (that corre-
sponds to distributed learning of a linear classifier), that can be defined as:

fi(x) =
J∑

j=1
Jlogis(bij(x⊤

1 aij + x0)) + τ

n
||x||2. (2.51)

Here, x = (xT
1 , x0) ∈ Rs−1 × R represents the optimization variable and τ is the penalty

parameter. The input values are ai ∈ Rs−1 and bi ∈ R. Each node i has J data samples.
Also, there holds that:

Jlogis(z) = log(1 + e−z), (2.52)

so that, we have:

fi(x) =
J∑

j=1
log(1 + e−bij(x⊤

1 aij+x0)) + τ

n
||x||2. (2.53)

2.2. Implementation 43

As the algorithm is reusable for different cost functions, the principles regarding the imple-
mentation for logistic loss functions are the same as for quadratic cost functions. However,
there are naturally some changes, that we illustrate. First, there are two dimensions now,
R and s. R represents the total number of rows i.e. samples in the global input matrix
a and the number of elements in the global input vector b. The value s is the number
of columns i.e. features in matrix a, and there holds that s + 1 is the dimension for
the solution vector x. The main loop of the algorithm has also a predefined number of
iterations, at first. Later, we introduce a stopping criterion, that stops the algorithm if
the result is satisfactorily close to the solution. This is explained in more details later in
this section. Inside the main loop, each process calculates the gradient, the Hessian and
the solution update with data exchange, as:

∇fi(x(k)
i) =

J∑
j=1

ebij(x⊤
1 aij+x0)

1 + ebij(x⊤
1 aij+x0)

(−bijaij, −bij) + τ

n
xi (2.54)

M
(k)
I = α∇2fi(x(k)

i) + (1 − Wii)I (2.55)

x
(k+1)
i = x

(k)
i − ϵ(M (k)

i)−1
[
α∇fi(x(k)

i) +
∑
j∈Ωi

Wij(x(k)
i − x

(k)
j)

]
(2.56)

The step size parameter α is now being set, according on the data set used. This can
be determined experimentally. The dimension of the data set influences the value of this
parameter. We will define this value for each data set that we use for the experiments in
the corresponding section of the thesis. The value of ϵ remains 1, as before.

Input data preparation

The input data format is the same here as it was for quadratic cost functions. We expect
binary input files for the matrix and vector, and also for the adjacency matrix and degree
vector. We expect an input matrix of size R × s, where r = R

n
samples of data goes

to a single process. Similarly, we expect an input vector b of size R, and each process
gets a portion of size r = R

n
. The input data used for this example will not be synthetic

randomly generated data. Instead of that, we use real data sets, obtained from public
data repositories. These data sets will be explained in detail later.

The graph structure for the nodes connections is generated, but this time, we do not use
random graphs any more. We use regular and grid graphs instead. Fig. 2.2 illustrates
examples for these graph types. These graph structures are generated by using auxil-
iary scripts. We perform tests for both types of graphs and explore the differences in
performance, in Section 2.3.3, dedicated to experimentation.

44 Chapter 2. Primal distributed optimization methods

(a) An example for an 8-regular
graph, with 10 nodes

(b) An example for a grid graph,
with 36 nodes

Figure 2.2: Examples for graph types used during the evaluation

The first type of graphs that we use is d-regular undirected, simple graph type. It means
that there are no loops or double edges inside the graph and that each node has d neigh-
bours. The construction of d-regular graphs can be explained in the following way. For
8-regular graphs, for example, for each number of nodes n, we construct an 8-regular
graph starting from a ring graph with nodes 1, 2, ..., n and then adding to each node i the
links to the nodes i − 4, i − 3, i − 2, and i + 2, i + 3, and i + 4, where the subtractions and
additions here are modulo n. The same principle was also used for other values of d, for
d-regular graphs used during the evaluation.

The second type of graphs we used is a grid graph type. For this type of graph, we used
only such numbers of edges n, that are divisible by 4. All of the nodes will be of degree
2, 3 or 4, depending on their position in the grid. We are only interested in rectangular
grid graphs. For that reason, we choose those numbers of nodes, that satisfy this demand.
We are striving to have square grid graphs where possible. For example, for n = 36, we
generate a 6 × 6 grid. In the cases when this is not achievable, we are working with
rectangular variants t × v, wile trying to keep t and v as close as possible. For example,
for n = 48, we do not want to create a 12 × 4, or 24 × 2 grid. Instead of that, we are
working with a 8 × 6 grid structure.

The serial implementation for logistic loss functions

Our first implementation is a serial one, following the same principles as with quadratic
cost functions. However, for the logistic loss functions, we will have several adjustments
for the parallel algorithm implementation, in order to improve the performance. This
incremental development maintains the opportunity to compare the performance of dif-

2.2. Implementation 45

ferent versions of the algorithm, that use different strategies to solve the same problem.
Therefore, the performance of the algorithm can be enhanced.

The first task is the input data reading and processing to the desired form. The master
process reads the content from the binary input files, in the same manner as for quadratic
cost functions. After that, the main loop performs the updates iteartively, as before. We
only need to change the way of computing the gradient and the Hessian inside the main
loop, in order to implement (2.54) and (2.55).

The initial parallel implementation for logistic loss functions

The parallel implementation of the algorithm for logistic loss functions can be straight-
forwardly derived by combining the serial implementation for logistic loss functions with
the parallelization for quadratic cost functions. The first task, the input data reading
and scattering is the same as for quadratic cost functions. The only difference is that we
expect R × s × n entries for the input matrix (instead of n × s × s) and R × n entries
for the input vector (instead of s × n). Similarly, when scattering the data, the size of
data chunk for the matrix is r × s (instead of s × s) and r for the vector (instead of s).
The process of creating and distributing the weight matrix is completely identical as for
the quadratic cost functions. A vector that contains the list of neighbours for the nodes
is also present here, and defined in the same manner as for quadratic cost functions (See
Listing 2.1).

The main loop of the algorithm also computes the gradient, the Hessian inverse approx-
imation and the solution update. Listing 2.5 shows the code snippet that calculates the
gradient inside the main loop. Here, each process has an r × s sized matrix A and an r

sized vector B. Also, each node is aware of its neighbours.

The first task is to allocate some auxiliary data structures: a vector Sum, that represents
the sum in (2.54), a vector for the first s elements from the solution update (variable ww)
i.e. x1 and the value x0 (represented as variable vv), i.e. the last element from the current
solution update.

Then, we need to implement a loop, that iterates for each row of data. As we have R

rows and n nodes, this means that each node needs to handle r = R
n

rows. This, of course
means, that we assume that the number of rows in the input data is divisible by the
number of nodes. This aspect will be discussed further later.

For each row, we calculate the coefficient coeff, that is the following: the dot product of
the current row from input matrix A (corresponds to aij in the formula) and the variable

46 Chapter 2. Primal distributed optimization methods

ww, or x1 in the formula, with vv (or x0 in the formula) added and multiplied by the
appropriate element from the input vector B (multiplied by −1), that corresponds to bij

in the formula. Then, we obtain the value of the expression ecoeff

1+ecoeff , as variable coeff2.
Then, it remains to calculate the vector called subMatr here. It contains the product of
the current row of A and current element of B, multiplied by −1, on the first s positions.
The last position simply contains the current element from B, multiplied by −1. The final
step inside the loop is to multiply the created subMatr by the coefficient coeff and add
the result to the Sum vector.

Listing 2.5: Calculating the gradient in parallel for logistic loss functions, C with MPI
double *Sum= calloc (s+1, sizeof (double));
double *ww= calloc (s, sizeof (double)),vv=X[s];
LAPACKE_dlacpy (LAPACK_ROW_MAJOR ,’A’,1,s,X,s,ww ,s);
for(l=0;l<r;l++){

double dot= cblas_ddot (s, A+(l*(s)),1,ww ,1);
double coeff =(dot+vv)*(- Bdata[l]);
double coeff2 =exp(coeff)/(1+ exp(coeff));
for(h=0;h<s;h++)

subMatr [h]=A[l*s+h]*(- Bdata[l]);
subMatr [s] = -Bdata[l];
cblas_daxpy (s+1, coeff2 ,subMatr ,1,Sum ,1);

}
LAPACKE_dlacpy (LAPACK_ROW_MAJOR ,’A’,1,s+1,Sum ,s+1,Grad ,s+1);
cblas_daxpy (s+1, lambda_penal ,X,1,Grad ,1);

Finally, we copy the vector Sum to the variable Grad, and then add the current solution
update, multiplied by lambda_penal to it. The lambda_penal variable represents the
value τ

n
from the formula, i.e. the regularization parameter. Instead of calculating this

value, we use a fixed value lambda_penal=0.03. This completes the calculation of the
gradient.

Listing 2.6 shows the computation of the Hessian. The values ww and vv are predefined
before the gradient calculation, so they can be reused here, as they play the same roles as
before. We also use an auxiliary variable, a sum matrix of size (s+1)×(s+1) here. Again,
the coefficient coeff is being calculated in the same way as before. The variable coeff2
is now different and is being calculated as ecoeff

(1+ecoeff)2 . We again compute the variable
subMatr on the same manner as for the gradient. We then call the routine cblas_dger
to multiply the vector subMatr with the transpose of the same vector. The result is being
stored in the variable tmp. Finally, we add to the sum matrix SumMatrix the created
matrix tmp, multiplied by coeff2.

2.2. Implementation 47

The matrix eye at the end of code snippet is again an (s + 1) × (s + 1) diagonal matrix,
as the final matrix GMatrix is of size (s + 1) × (s + 1) and we need to add the diagonal
matrix multiplied with lampbda_penal to the result. After calculating the gradient and
Hessian this way, each process has its own local variable Gradient and its own local
variable GMatrix, that are necessary for further computations.

Listing 2.6: Calculating the Hessian approximation in parallel for logistic loss functions,
C with MPI
double * SumMatrix = calloc ((s+1)*(s+1), sizeof (double));
for(l=0;l<r;l++){

double dot= cblas_ddot (s,A+(l*s),1,ww ,1);
double coeff =(dot+vv)*(- Bdata[l]);
double coeff2 =exp(coeff)/(1+ exp(coeff))/(1+ exp(coeff));
double * subMatr = calloc (s+1, sizeof (double));
double *tmp= calloc ((s+1)*(s+1), sizeof (double));
for(h=0;h<s;h++)

subMatr [h]=A[l*s+h]*(- Bdata[l]);
subMatr [s]=(- Bdata[l]);
cblas_dger (CblasRowMajor ,s+1,s+1 ,1.0 ,

subMatr ,1, subMatr ,1,tmp ,s+1);
cblas_daxpy ((s+1)*(s+1), coeff2 ,tmp ,1, SumMatrix ,1);

}
LAPACKE_dlacpy (LAPACK_ROW_MAJOR ,’A’,s+1,s+1, SumMatrix ,s+1, GMatrix ,s+1);
cblas_daxpy ((s +1)*(s+1), lambda_penal ,eye ,1, GMatrix ,1);

The inverse of the Hessian is being calculated in the same way as for quadratic cost
functions (see Listing 2.3), with two differences. First, we calculate the GMatrix as
shown in Listing 2.6, so we do not need the first line in Listing 2.3 at all. The second
thing is that we have the dimension s + 1 everywhere, instead of s on Listing 2.6. The
data exchange between the processes and the solution update calculation is the same as
for the quadratic cost functions (see Listing 2.4 and Fig. 2.1), with the difference that we
should use s + 1 instead of s for the dimension now. This completes the initial parallel
implementation. Now, we want to explore the possibilities for algorithm enhancement.

Adapting the parallel implementation to arbitrary input data set sizes and
weight matrix distribution

The implementation assumed that we have an input data size R as the number of samples,
that is divisible by the number of nodes, for now. Then we just defined r = R

s
as the

number of samples that goes to each process. This is acceptable, as far as we are working
with synthetic data, so we can generate data of any size. However, we want to test our

48 Chapter 2. Primal distributed optimization methods

implementation for logistic loss functions on real, publicly available data sets. At this
moment, fulfilling this request regarding the dimension is unreasonable. For this reason,
the algorithm was modified here, in order to make it able to deal with data set sizes
not divisible by the number of processes. In such cases, the overage is assigned to the
master process, while also taking care of allocating more space on it. Also, during the
computations, the algorithm needs to take care of the possibly larger dimension on the
master process.

The master process reads the input matrix and the vector again from binary files, as
before. However, the function MPI_Scatterv is used, instead of MPI_Scatter, when an
overage exists. This function enables to set arrays for send counts and displacements for
each process, ensuring the proper data distribution. Listing 2.7 shows the code snippet
for the data distribution process. The variable rem is the remainder when dividing R by
n.

Listing 2.7: Scattering the input data with a possible overage, C with MPI
if (* rem !=0){

int * sendcounts = calloc (n, sizeof (int));
int * displs = calloc (n, sizeof (int));
sendcounts [0]=s*(r+* rem); displs [0]=0;
for(int p=1;p<n;p++)

sendcounts [p]=s*r; displs [p]=p*s*r+s** rem;
MPI_Scatterv (Adata ,sendcounts ,displs ,MPI_DOUBLE ,A,

sendcounts [my_rank],MPI_DOUBLE ,0, MPI_COMM_WORLD);
sendcounts [0]=r+* rem; displs [0]=0;
for(int p=1;p<n;p++)

sendcounts [p]=r; displs [p]=r*p+* rem;
MPI_Scatterv (Bdata ,sendcounts ,displs ,MPI_DOUBLE ,B,

sendcounts [my_rank],MPI_DOUBLE ,0, MPI_COMM_WORLD);
}
else{

MPI_Scatter (Adata ,r*s,MPI_DOUBLE ,A,r*s,MPI_DOUBLE ,0,
MPI_COMM_WORLD);

MPI_Scatter (Bdata ,r,MPI_DOUBLE ,B,r,MPI_DOUBLE ,0,
MPI_COMM_WORLD);

}

The overage rem is actually a number of rows, where each row contains again s elements.
If there is an overage, we call MPI_Scatterv. Otherwise, we call MPI_Scatter as before.
Some data structures need to be prepared for the call to MPI_Scatterv. Concretely, we
need an array of send counts an array of displacements. The array sendcounts contains
the number of elements that goes to each process, as the name suggests. It contains

2.2. Implementation 49

Figure 2.3: The reasoning behind MPI_Bcast and MPI_Scatter

s × r + rem for the master process, and s × r for the rest of the processes, regarding the
input matrix. The array displs contains the starting positions for the chunks to be sent
to processes. For the matrix, for the master process, the starting position is 0, for the
other processes it is p × (s × r) + s × rem (note that we are representing matrices as one
dimensional arrays), where p is the id of a process. When working with the input vector,
the same principles hold. The send count for the master is then r + rem, and r for the
other processes, where the displacement is 0 for the master, and p × r + rem for the other
processes, where p is the id of a process.

This adaptation enables to work with arbitrarily sized data sets. However, we should
also keep in mind the loops, where we iterate over the rows in a local data chunk.
This kind of loop is present when calculating the gradient and the Hessian. In those
places, we will have a loop of the form for(l=0;l<r+(my_rank==0)*rem; l++), instead
of for(l=0;l<r;l++). This is a very simple C-style solution: if a rank of the process is
zero, it is the master process, so the expression my_rank==0 is true, i.e. it has value 1.
When multiplied by rem, we have exactly what we wanted. For the rest of the processes,
this will be 0×rem. The weight matrix W is being created as already described. But now,
instead of broadcasting the whole matrix W to all processes, we can just scatter it, so each
process can have its own part of the matrix. The reason behind this is that the processes
do not actually need to know the weight values for the processes they are not connected
with. So, we replace the call to:

MPI_Bcast(WMatrix, n*n, MPI_DOUBLE, 0, MPI_COMM_WORLD)

with the call to:

MPI_Scatter(WMatrix,n,MPI_DOUBLE,myWMatr,n,MPI_DOUBLE,0,MPI_COMM_WORLD).

This means that each process obtains a vector of n elements myWMatrix, that contains
the weight values for the branches between that node and its neighbours (the value 0

50 Chapter 2. Primal distributed optimization methods

means that the node is not connected to the particular process). It is a convenient fact
that the ranks of processes correspond to indices in the resulting vector. The properties
of the mentioned functions MPI_Bcast and MPI_Scatter, can be easily demonstrated
graphically, as shown on Fig. 2.3.

Adapting the parallel implementation regarding the stopping criterion

The problem of stopping criterion is a place for reevaluation at this point. We had a fixed
number of iterations initially, and it turned out mainly inefficient. For different data sets,
the algorithm needs different number of iterations in order to approach the desired values.
Defining a large value for the iterations number can lead to overkill in cases when that
large number is not needed practically.

For that reason, we let the algorithms run until ||∇Ψ(xk)|| ≤ ϵ, where ϵ = 0.01. Note that
the gradient ∇Ψ(xk) is not computable by any node in a distributed graph G in general.
In our implementation ∇Ψ(xk) is maintained by the master node. We calculate this value
at the end of every iteration.

Listing 2.8: Introducing the stopping criterion, C with MPI
double * curRes = calloc (s+1, sizeof (double));
double * GradGlob = calloc ((s+1)*n, sizeof (double));
for(i=0;i<s+1;i++){

curRes [i]=(1 - myWMatrix [my_rank])*X[i];
for(j=1;j<= my_neighbours_count -1;j++){

int my_neighbours_rank = my_neighbours [j -1];
curRes [i]+=- myWMatrix [my_neighbours_rank]*

Xremote [my_neighbours_rank *(s+1)+i];
}
curRes [i]+= alpha* GradOld [i];

}
MPI_Gather (curRes ,s+1, MPI_DOUBLE ,GradGlob ,s+1, MPI_DOUBLE ,0,

MPI_COMM_WORLD);
if(my_rank ==0)

euclidean_norm = cblas_dnrm2 ((s+1)*n,GradGlob ,1);
MPI_Bcast (& euclidean_norm ,1, MPI_DOUBLE ,0, MPI_COMM_WORLD);
if(k<iter && euclidean_norm < epsilon){

stop= my_rank ;
continue ;

}

Listing 2.8 shows the code snippet, that should be inserted into the main loop, before the
solution update calculation. The master process gathers the values and determines the

2.2. Implementation 51

euclidean norm of the gathered vector (containing subvectors from all processes). First,
each process calculates its current solution (the variable curRes). This means that it
first takes its own solution update and multiplies it with 1 − Wii. Then for each of its
neighbours, it finds the rank of the neighbour. The loop starts from 1 here, and we are
searching for the neighbour on position j −1. This is because the first neighbour’s rank is
on position 0, and so on. Then, we subtracts the solution obtained from that neighbour
and multiplied by the appropriate value from myWMatr, from the current solution. We use
the neighbours rank to obtain the needed element from the weight matrix. Similarly, in
order to access the right solution update in Xremote, we use the rank of the neighbour.
Finally, we add the value of the previously calculated gradient, multiplied by the step
size alpha. We use the value of the previously calculated gradient, i.e. the value that
corresponds to the previous iteration. Because of this, before calculating the gradient,
we need to copy its current value to GradOld. This way, we always have the value of the
gradient from the previous iteration.

Finally, the master process gathers these current results into the GradGlob variable. Then
it calculates the euclidean norm of it, by calling the routine cblas_dnrm and broadcasts
it to all the processes. At the moment, when the euclidean norm becomes smaller than ϵ

(and we are not in the first iteration), the main loop should be terminated. This can be
achieved by broadcasting the euclidean norm to all processes, where each process sets its
variable stop to its rank value, and continues to the top of the main loop.

Listing 2.9: Stopping the main loop, C with MPI
MPI_Allreduce (&stop ,& stopGlobal ,1, MPI_INT ,MPI_MAX , MPI_COMM_WORLD);
if(stopGlobal >=0)

break ;

At the top of the main loop, we place an MPI_Allreduce call, for finding the maximal
value for stop. All processes will be aware of this maximal value stopGlobal. If that
value is greater than 0, we should stop (see Listing 2.9). As the variable stop is initialized
to -1 on all processes, it can be easily seen that any value greater than -1 shows that we
have a stopping signal. In fact, the maximal value of the stop variable will be the highest
rank value in the communicator. In that case, each process breaks the loop. This way, we
ensure that all the processes leave the loop, and later finalize in a proper manner. While
not being a realistic stopping criterion in a fully distributed setting, this approach allows
us to adequately compare different algorithmic strategies. When the algorithm finishes,
a log file is being created. This file contains the important data about the algorithm
execution, including the total execution time, among others. The total execution time
is the execution time of the slowest process. These log files are very important from the

52 Chapter 2. Primal distributed optimization methods

aspect of testing the algorithm, that will be described later.

Introducing the algorithm variant without Hessian inverse approximation

During the test phase, we will investigate the performance of the implementation. One
of the aspects to consider will also be the time consumption for different parts of the
algorithm. For that reason, as we are aware that the Hessian inverse approximation can
take a significant amount of time, we are interested in the results when we omit the Hessian
inverse approximation calculation, i.e. when we work with first order methods. We can
possibly expect faster iterations, as we do not spend the execution time on second-order
update determination. But, we will possibly need a larger number of iterations in order to
converge towards the solution. These aspects will be evaluated in detail in Section 2.3.3,
that is dedicated to the tests. Here, we want to explain what happens in the code, when
we want to omit the calculation of the variable AWeightInv.

Listing 2.10: The solution update, without Hessian inverse calculation, C with MPI
double * AWeightInv = calloc ((s+1)*(s+1), sizeof (double));
for(int i=0;i<s+1;i++)

AWeightInv [i*(s+1)+i] = 1.0;
cblas_daxpy (s+1,alpha ,Grad ,1, NablaPsi ,1);
cblas_dgemv (CblasRowMajor , CblasNoTrans ,s+1,s+1 ,1.0 , AWeightInv ,

s+1, NablaPsi ,1 ,1.0 , sDirection ,1);
cblas_daxpy (s+1,-1, sDirection ,1,X ,1);

Listing 2.10 shows the code snippet for the solution update, when we do not want to
calculate the Hessian inverse approximation. In that case, we replace the matrix repre-
senting the inverse of the Hessian, with an identity matrix and use that identity matrix
to calculate the solution update. This means that we do not need the computation of
the variable GMatrix here, that was shown on Listing 2.6. It should be noted here, that
we do not want to omit the calculation of the Hessian inverse from the implementation
permanently. We just want to investigate both possibilities, i.e. the algorithm with and
without this computation (first and second order methods) and compare the performance.

Introducing communicators

The tests performed on the developed algorithm as it was described for now, showed that
it had serious performance issues. As we measured the overall execution time, and also the
time needed for different parts of code, we concluded that, not surprisingly, the all-to-all
communication protocol represents the bottleneck of the implementation. When working
with larger data sets, the amount of data that goes to each process is naturally larger.

2.2. Implementation 53

With the all-to-all communication protocol, the amount of data for exchange in every
iteration represents a significant problem. By the nature of the algorithm, the nodes do
not need the data from all the other nodes, only from their neighbours. The problem of
significant communication time can be possibly solved by reducing the communication
channels, so that each node communicates only with its neighbours. This can be achieved
by using an array of communicators. We eliminated the all-to-all data exchange, by
introducing an array of communicators. This means that n communicators need to be
created, one for each node. The i-th communicator contains the node i as the master
node. It also contains all the nodes that are connected to the node i. The creation
of these communicators should be done once, before the iterative part of the algorithm
starts. This way, during the iterations, the value exchange on a node should happen for
all the communicators where the node is a master (there is exactly one such case) or a
neighbour to the other node. The global communicator is also preserved, as it is needed for
synchronization. The part of the implementation regarding the solution update exchange
should be also updated, in order to eliminate the call to MPI_Allgather, and replace it
with a code snippet that enables communicator based connections among the nodes. But
first, let us explain the process of creating the communicators, shown on Listing 2.11.

Listing 2.11: The creation of communicators, C with MPI
MPI_Group worldGroup , myGroup ; MPI_Comm myComm , tmpComm ;
MPI_Comm * allComms = calloc (n, sizeof (MPI_Comm));
for(i=0;i<n;i++){

if(my_rank ==i)
numOfNeighbours = my_neighbours_count ;

MPI_Bcast (& numOfNeighbours ,1, MPI_INT ,i, MPI_COMM_WORLD);
int * arrayOfNeighbours = calloc (numOfNeighbours +1, sizeof (int));
if(my_rank ==i){

arrayOfNeighbours [0]= my_rank ;
for(int k=0;k< my_neighbours_count ;k++)

arrayOfNeighbours [k+1]= my_neighbours [k];
}
MPI_Bcast (arrayOfNeighbours , numOfNeighbours +1, MPI_INT ,

i, MPI_COMM_WORLD);
MPI_Comm_group (MPI_COMM_WORLD ,& worldGroup);
MPI_Group_incl (worldGroup , numOfNeighbours +1,

arrayOfNeighbours ,& myGroup);
MPI_Comm_create (MPI_COMM_WORLD ,myGroup ,& tmpComm);
allComms [i]= tmpComm ;
free(arrayOfNeighbours);
if(my_rank ==i)

myComm = tmpComm ;
}

54 Chapter 2. Primal distributed optimization methods

Figure 2.4: Creating a new communicator

As Listing 2.11 shows, we first allocate the variable for the array of communicators,
allComms. Then, we should iterate a loop n times, as we need to create n communicators.
The size of the i-th communicator is equals to the number of neighbours of node with rank
i, plus one (the node i itself). We already have a variable my_neighbours_count that is
used for defining the communicator size. We need to broadcast this value, so that all the
processes are then aware of the size of the communicator that is being created currently.
Then, we need to create the array of nodes that will participate in the communicator. A
process whose rank is equals to the iteration counter, becomes the master process in the
newly created communicator. Therefore, we put the rank of that process to the position
0 in the variable arrayOfNeighbours. Then, we copy the ranks of neighbours of that
node, that we already had before, to the rest of the positions of arrayOfNeighbours.

The order of ranks during this procedure is being maintained. We create an array of
ranks that go to the new communicator, ensuring that the first rank corresponds to the
process for which we are creating the communicator. The other ranks will actually go
in ascending order into the communicator, following the same ordering as in the array
of neighbours. This is important, as inside the new communicators, the processes will
have new ranks, and the only way for the new master to identify their original ranks is to
maintain the ordering. The rank of the first process will be 0 in its own communicator,
as it represents the master node in that subset of nodes. The ranks of other processes in
the new communicator will be assigned one after the other. Let us illustrate this on an
example, shown on Fig. 2.4. Suppose that we are creating a communicator for process 2,
and that the neighbours are the processes with ranks 4, 5, 7 in the global communicator,
as shown on left on Fig. 2.4. We create an array, that contains the ranks of the nodes,
that need to be included as [2, 4, 5, 7]. This results with new ranks for the processes in
the newly created communicator, i.e. we get [0, 1, 2, 3] (as shown on right, on Fig 2.4).

When the array of the processes for the communicator is being created by the i-th process
(that will be the master in the new communicator), the i-th process broadcasts that
array on the level of the global communicator. Then, by calling MPI_Comm_group, we

2.2. Implementation 55

obtain the global group worldGroup, that is by default assigned to the MPI_COMM_WORLD
communicator. The call to MPI_Group_incl creates a new group myGroup, based on the
worldGroup, and the new group will contain the defined array of process ranks. Finally,
we create the communicator, by calling MPI_Comm_create. The new communicator is
called tmpComm. We put it in the appropriate position in the array of communicators
and set it as the own communicator of the process i, by assigning the communicator
to myComm. This way, the communicators are organized in an array, also keeping the
ordering. The i-th position is reserved for the communicator of the process than has rank
i in the global communicator.

The next task is to adapt the data exchange so that it utilizes the created communica-
tors. This is shown on Listing 2.12. We replace the call to MPI_Allgather, with a loop
having n iterations. Inside that loop, a process calls MPI_Gather, if its rank corresponds
to the iteration counter or if it is a neighbour of the node with rank equals to the it-
eration counter. The MPI_Gather is called for the i-th communicator, where i is the
iteration counter. Here, the dimension of the vector Xremote corresponds to the size of
the communicator. Its size is (s + 1) × (my_neighbours_count + 1).

Listing 2.12: The data exchange using communicators, C with MPI
for(int c=0;c<n;c++)

if(my_rank ==c || is_my_neighbour (my_rank ,c, my_neighbours ,
my_neighbours_count))

MPI_Gather (X,s+1, MPI_DOUBLE ,Xremote ,s+1, MPI_DOUBLE ,0,
allComms [c]);

for(i=0;i< my_neighbours_count ;++i){
double *zero= calloc (s+1, sizeof (double));
int my_neighbours_rank = my_neighbours [i];
LAPACKE_dlacpy (LAPACK_ROW_MAJOR ,’A’,1,s+1,X,s+1,Xdiff ,s+1);
cblas_daxpy (s+1,-1, Xremote +(i+1)*(s+1),1, Xdiff ,1);
cblas_daxpy (s+1, myWMatr [my_neighbours_rank],Xdiff ,1,zero ,1);
cblas_daxpy (s+1,1,zero ,1, NablaPsi ,1);
free(zero);

}

The source process, gathering the result is always 0 in the current communicator (that
corresponds to i in the global communicator). This way, we ensure that each process
gathers its data from the neighbours, as it has rank 0 in its own communicator. On the
other hand, a process sends its data to be gathered on a master process of other commu-
nicator, if the nodes are neighbours. In order to check whether a node is a neighbour to
the current node, we use an auxiliary function is_my_neighbour. This function simply
iterates over the array of neighbours searching for the particular rank (see Listing 2.13).

56 Chapter 2. Primal distributed optimization methods

Figure 2.5: An example of sparsified communication

For checking the stopping criterion, we still use the global communicator, as we need the
data from all the processes. This enhancement makes the code execute more efficiently,
as will be shown in the section, dedicated to the experimental results.

Listing 2.13: The function is_my_neighbour, C with MPI
int is_my_neighbour (int my_rank ,int i,int * my_neighbours ,

int my_neighbours_count){
for(int j=0;j< my_neighbours_count ;++j)

if(my_neighbours [j]==i)
return 1;

return 0;
}

Introducing sparsification

In order to additionally enhance the algorithm performance, a communication sparsifica-
tion can be applied. This means that some nodes become idle during the iterations. This
principle reduces the amount of communication, and possibly leads to lower execution
time. Fig. 2.5 represents an example for sparsified communication. We consider 4 nodes,
where node 0 is meant to be idle in the current iteration. The dashed lines show the com-
munication links for node 0, defined by W. However, as the node is idle, its communication
links are not being utilized in the current iteration. On the right part of Fig. 2.5, it can
be seen that node 0 only has its original data (it did not receive anything) and that the
other nodes, that are neighbours of 0 do not have the data from 0. Only active nodes
exchanged their data with their active neighbours.

There are different approaches for sparsifying the communication. We investigated dif-
ferent possibilities and made some important conclusions. In order to sparsify commu-
nications, we introduce communication probability pk, as it was already described. The
probability can be a fixed value. We first investigated the cases for values pk = 0.3, pk =
0.5, pk = 0.8. Next, the probability value can alternatively change during the iterations,

2.2. Implementation 57

it can increase as pk = 1 − 0.5k, or decrease as pk = 1
k+1 , where k is the iteration counter.

We investigate and compare different probability values, combined with other features of
the algorithm, in order to make some valuable conclusions. This will be explained in more
details in the section dedicated to the experiments.

The solution update formula should now be changed, in order to encode the sparsification:

xk+1
i = xk

i −
[
(Mk

i)−1[α∇fi(xk
i) +

∑
jϵΩi

Wij(xk
i − xk

j)ξk
i,j]

]
, (2.57)

If we associate a Bernoulli random variable zk
i to each node i, that denotes its communi-

cation activity at iteration k, then zk
i = 1 means that node i communicates in the k-th

iteration, where if zk
i = 0, it means that node i does not exchange messages with neigh-

bors in the k-th iteration. Then, the probability is pk = Prob(zk
i = 1). ξk

i,j is in general a
function of zk

i and zk
j that encodes the communication sparsification. The value ξk

i,j = 1
means that there is no communication sparsification. This corresponds to the previous
implementations. ξk

i,j = zk
i · zk

j corresponds to bidirectional communication sparsification,
i.e. the implementation that we are currently describing. ξk

i,j = zk
j is for unidirectional

communication, that will be described in the next topic.

From the aspect of the implementation, introducing the idling mechanism means that
we need to invest some additional effort to the code development. The code snippet,
that represents the process of recreating the communicators at the beginning of the
main loop is shown on Listing 2.14. First, we introduce a probability bound value, as
probab_bound=pk*10. This value can be constant all the time, or it can change, ac-
cording to the described principle of increasing or decreasing communication probability.
Consider the case when the probability is not constant. Then, at the beginning of an
iteration, we calculate the current probab_bound value. We set some limits, so that this
value cannot be smaller than 1, when the probability decreases, and it cannot be smaller
than 5, when the probability increases, as we want to start from pk = 0.5. Listing 2.14
shows the case when the probability decreases. For constant probability values, we will
not have the calculation of the probab_bound at the beginning of the loop, but instead,
it will be defined as a constant before the main loop.

Next, each process generates a random number comm_probab from the range between
1 and 10. It is important to initialize the seed for random number generator on each
process for every iteration separately, depending on the iteration counter and node’s
rank, in order to prevent it from returning always the same values. We need to maintain
a new array of communicators allCurrComms, that contains only the communicators of
the active nodes in the current iteration k. However, those communicators will not be the

58 Chapter 2. Primal distributed optimization methods

same as we created them in advance, as we need to remove the inactive nodes from the
communicators. The easiest way to achieve this is the use of function MPI_Comm_split.
This function enables to split a communicator into a set of disjoint communicators. The
function is declared as:

int MPI_Comm_split(MPI_Comm comm,int color,int key,MPI_Comm * newcomm).

The function splits a communicator into an array of communicators, regarding the flag
color. The first argument of the function is the current communicator that needs to be
split. The last argument is the new communicator where the process belongs, created
by splitting the original communicator. The argument color determines the split, as all
the processes with the same color value will be assigned to the same communicator. The
key value helps to assign the ranks to the processes in the newly created communicators.
In our case, we just want to remove some processes from the communicator, so we will
have just one resulting communicator after split. This function enables for processes to
set the color value to MPI_UNDEFINED. This way, the process will be omitted from the
resulting communicator (those processes get MPI_COMM_NULL for the resulting communi-
cator after split). Following this scheme, the process of splitting the communicators is
straightforward.

Listing 2.14: Recreating the communicators at the beginning of an iteration, according
to the idling mechanism, C with MPI
color =1; activeLoc =0; active = calloc (n, sizeof (int));
allCurrComms = calloc (n, sizeof (MPI_Comm));
probab_bound =(1/(k +1))*10;
if(probab_bound <1) probab_bound =1;
srand (time(NULL)+ my_rank +k);
comm_probab =rand () % 10 +1;
if(comm_probab > probab_bound) color= MPI_UNDEFINED ;
else activeLoc =1;
MPI_Allgather (& activeLoc ,1, MPI_INT ,active ,1, MPI_INT , MPI_COMM_WORLD);
MPI_Comm_split (MPI_COMM_WORLD ,color ,my_rank ,& global_active_comm);
for(int c=0;c<n;c++){

if ((my_rank ==c && activeLoc) || (is_my_neighbour (my_rank ,
c, my_neighbours , my_neighbours_count) && active [c])){
int my_local_rank ;
MPI_Comm_rank (allComms [c], & my_local_rank);
MPI_Comm_split (allComms [c], color ,

my_local_rank , & allCurrComms [c]);
}

}

2.2. Implementation 59

If the generated communication probability on a node represents a larger value than
the defined probability bound, then the node will be idle in the current iteration. As we
decrease the probability bound across the iterations, a smaller number of processes will be
included in the communication. With increasing communication probability, it will be the
opposite. When a node is inactive, we set its color to MPI_UNDEFINED, otherwise it will be
1. We also create an array that indicates the activeness of nodes. The variable activeLoc
indicates whether a node is active or not. We call MPI_Allgather to crate an array, based
on all nodes value for activeLoc. The result is stored in a vector active, that will be
useful later. We first split the global communicator, based on the color (only active nodes
has color value 1). This way, we can have a communicator that contains all the nodes
that are active. Then, we iterate in a loop n times (once for each communicator), in order
to split the communicators. If the node’s rank equals to the iteration counter and the
node should be active, then we need to redefine its communicator. The second condition
is if the iteration counter is a rank of a node that is a neighbour of the current node and
that node is active. In that case, we also redefine its communicator. Basically, whenever
a master node of a communicator should be active, we need that communicator. When
a master node of a communicator is inactive, then we do not need that communicator.
When splitting the current communicator, each process provides its local rank from that
communicator, in order to preserve the ordering (even if some processes are omitted
now). The inactive nodes will also call the split function, but they pass MPI_UNDEFINED
for color, so they will be omitted from the new communicator. To summarize, an idle
node will not participate in the communicators of its neighbours, and it will not use its
own communicator at all.

The data exchange part follows, after the nodes finished their local calculations. It needs
to be changed significantly now. This part of the code is shown on Listing 2.15. The
data exchange on a node happens only if it is active. If a node is active, it needs to
allocate a vector, whose size corresponds to the current size of the communicator for that
node. Next, the node runs a loop n times. If the iteration counter c is equal to the rank
of the process, then it should call MPI_Gather in order to gather the data from active
neighbours. The other case we are interested in is when the iteration counter value c is
equals to some of the node’s active neighbour’s rank. In that case, the node also calls
MPI_Gather. The gathering is always called on allCurrentCommunicators[c]. This
ensures that, when a node calls gathering for its own communicators, than its rank is 0
in that communicator, so it gets the data. When a node calls gathering on some other
node’s communicator, than its rank is greater than zero, so it just sends data.

60 Chapter 2. Primal distributed optimization methods

Listing 2.15: The data exchange with sparsified communications, C with MPI
if(active [my_rank]){

my_communcator_size =0;
MPI_Comm_size (allCurrComms [my_rank], & my_communcator_size);
Xremote = calloc ((my_communcator_size)*(s+1), sizeof (double));
for(int c=0;c<n;c++)

if(my_rank ==c || (is_my_neighbour (my_rank ,c,
my_neighbours , my_neighbours_count) && active [c]))

MPI_Gather (X,s+1, MPI_DOUBLE ,Xremote ,s+1,
MPI_DOUBLE ,0, allCurrComms [c]);

}

There is one more important aspect, after the data exchange finishes. We have to maintain
the rule, that the sum of the weights for the nodes should be 1, i.e. the values on the
diagonal of the matrix W should change now. While computing the sum in equation (2.57),
we can determine the sum of weights of active neighbours. Later, we will need this value to
get Wii = 1 − active_neighbours_weight. We sum the weights of the active neighbours,
while computing the value of the variable NablaPsi, i.e. consuming the solutions gathered
from the active neighbours. This is shown on Listing 2.16.

Listing 2.16: Processing the solutions from active neighbours, C with MPI
if(active [my_rank]){

active_neighbours_weight =0.0;
for(i=0;i< my_communcator_size -1;++i){

double *zero= calloc (s+1, sizeof (double));
int my_neighbours_rank = get_my_active_neighbour (i,

my_rank , my_neighbours , my_neighbours_count , active);
LAPACKE_dlacpy (LAPACK_ROW_MAJOR ,’A’,1,s+1,X,s+1,Xdiff ,s+1);
cblas_daxpy (s+1,-1 Xremote +(i+1)*(s+1),1, Xdiff ,1);
cblas_daxpy (s+1, myWMatr [my_neighbours_rank],Xdiff ,1,zero ,1);
active_neighbours_weight += myWMatr [my_neighbours_rank];
cblas_daxpy (s+1,1,zero ,1, NablaPsi ,1);
free(zero);

}
}

An active node iterates in a loop, where the number of iterations is determined by the size
of its communicator. Here, we need a special function, that will return the rank of the
i-th active neighbour. It will return the rank of a neighbour, regarding the global commu-
nicator MPI_COMM_WORLD. Then, we can subtract the solution of that node from the local
solution, and multiply the result by the weight for that neighbour. Note that we pick the
i+1-th chunk from Xremote. This is because, in the current local communicator, the first

2.2. Implementation 61

neighbours solution comes to position 1, as the own solution comes to position 0, and so on
for the other neighbours. Using the global rank of the neighbour, we get the appropriate
value from the weight matrix and add it to the sum active_neighbours_weight.

Listing 2.17 shows the implementation of the function get_my_active_neighbour. It is
very straightforward. It iterates through the neighbours array and counts the active ones.
When the counter reaches the desired position, it returns the rank of the process that
corresponds to that position. This function returns a process rank regarding the global
communicator MPI_COMM_WORLD.

When checking whether the stopping criterion is met, all the processes are obligated to
participate. That means that even if a process is idle at the current iteration, it should
send its current result, that of course, does not include any result from the neighbours, just
a locally obtained value. On the other hand, active processes should calculate their current
result values, but with the modified weight value Wii. We can call this value the node’s
self confidence. This value has changed now, as the sum of weights for the neighbours
changed, because the inactive nodes weight values are not relevant now. Basically, it
means that the more inactive neighbours a process has, its self confidence should grow
accordingly.

Listing 2.17: The implementation of the function get_my_active_neighbour, C with
MPI
int get_my_active_neighbour (int k,int my_rank ,

int * my_neighbours ,int my_neighbours_count ,int * active){
int cnt_active =-1; int neighbour =-1;
for(int i=0;i< my_neighbours_count ;i++){

if(active [my_neighbours [i]])
++ cnt_active ; neighbour = my_neighbours [i];

if(cnt_active ==k) return neighbour ;
}

}

Listing 2.18 shows the process of gathering the data for checking the stopping criterion.
An active node calculates its self confidence, using the sum of weights of active neighbours,
that was computed before.

The self confidence value is then 1-active_neighbours_weight. After this point, it
calculates the value of variable curRes as before. It iterates through the list of its neigh-
bours and adds the neighbours solutions multiplied with weights to the result. Finally,
the gradient value from the previous iteration is also being added, multiplied by the step

62 Chapter 2. Primal distributed optimization methods

size alpha. In the case of an inactive node, the variable curRes only contains the gradient
from the previous step, multiplied by the step size. Here, the self confidence is 1.

Listing 2.18: The data preparation and gathering for stopping criterion check, MPI with
C
double * curRes = calloc (s+1, sizeof (double));
GradijentGlob = calloc ((s+1)*n, sizeof (double));
if(active [my_rank]){

my_self_confidence = 1- active_neighbours_weight ;
for(i=0;i<s+1;i++){

curRes [i]=(1 - my_self_confidence)*X[i];
for(j=1;j<= my_communcator_size -1;j++){

int my_neighbours_rank = get_my_active_neighbour (j-1,
my_rank , my_neighbours , my_neighbours_count , active);

curRes [i]+=- myWMatrix [my_neighbours_rank]
* Xremote [j*(s+1)+i];

}
curRes [i]+= alpha* GradOld [i];

}
}else{

my_self_confidence =1;
cblas_daxpy (s+1,alpha ,GradOld ,1, curRes ,1);

}
MPI_Gather (curRes ,s+1, MPI_DOUBLE , GradijentGlob ,s+1, MPI_DOUBLE ,0,

MPI_COMM_WORLD);

After the code snippet from Listing 2.18 is being executed, the master node gathers all
the curRes vectors and computes the euclidean norm, as already explained before. The
rest of the algorithm (gradient, Hessian and solution update computation) is also the
same as described before. This mechanism of communication sparsification will be used
in different variants during testing, and it will be combined with other aspects of different
variants of the algorithm (see more details in Section 2.3.3).

Introducing unidirectional communication

Introducing sparsification as explained means using bidirectional communication protocol,
by default. This means that an inactive node does not communicate with its neighbours,
while an active node sends and also receives data. However, an interesting approach to
reduce the communication amount, and hence the time needed for it, is to implement
the idea of unidirectional communication. As already described, this approach ensures
that an active node receives data only from active neighbours, but sends data to all of
them, regardless of the fact whether they are active or not. An example for unidirectional

2.2. Implementation 63

Figure 2.6: An example for unidirectional communication

communication is displayed on Fig. 2.6. Here, we consider 4 nodes, and node 0 is idle in
the current iteration, meaning that it does not send its data to neighbours (the dashed
lines). However, it still receives data from its active neighbours (the red lines). The right
side of Fig 2.6 shows the state of nodes and data, when the communication is finished.
This means, that an idle, i.e. inactive node does not sends its solution update to the
neighbours, but still receives data from the active ones. In equation (2.57), the value of
ξ is now ξk

i,j = zk
j . This could be a possible point for execution time reduction, but we

need to keep in mind the existence of other additional costs during executing the code
with this kind of sparsification. Possible bottlenecks could appear due to an additional
effort needed to set up the described scenario, and also regarding the required number of
iterations to converge. These aspects will be evaluated in the section, that is dedicated
to testing the algorithms (particularly Section 2.3.3).

When considering implementing the unidirectional communication with idling, there are
a few things that need to be changed, compared to the previously described bidirectional
approach. The main difference is that now, for inactive nodes, we still need to keep their
communicators. But, those communicators include the node itself, and only the active
neighbours. This can be achieved, as shown in Listing 2.19.

We cannot set a flag for activeness of a node in advance, as it will not be the same in
different communicators. Actually, an idle node is inactive for the neighbours, but in a
sense ‘active‘ for receiving data. We also need a loop, with n iterations. Inside it, if a
node’s rank is equals to the iteration counter c, then it should be included in its own
communicator (regardless of its activity). Similarly, if a node is a neighbour to the node
with rank equals to c and it is also active, it should be included into that communicator.
These two cases are displayed by the first condition of if statement in the code. A special
case is when the node is a neighbour to the node with rank c, but is not active. In that
case, we omit that node from the communicator and set the color flag to MPI_UNDEFINED.
This is the condition of the else if statement. Otherwise, when a node is not a neighbour

64 Chapter 2. Primal distributed optimization methods

to node c, then it was neither included in that communicator initially.

Listing 2.19: The process of recreating the communicators for unidirectional sparsified
communication, C with MPI
if(comm_probab <= probab_bound) activeLoc =1;
MPI_Allgather (& activeLoc ,1, MPI_INT ,active ,1, MPI_INT , MPI_COMM_WORLD);
for(int c=0;c<n;c++)

if(my_rank ==c || (is_my_neighbour (my_rank ,c,
my_neighbours , my_neighbours_count) && active [my_rank])){

int my_local_rank ;
MPI_Comm_rank (allComms [c],& my_local_rank);
MPI_Comm_split (allComms [c],1, my_local_rank ,& allCurrComms [c]);

}
else if(is_my_neighbour (my_rank , c,

my_neighbours , my_neighbours_count) && ! active [my_rank]){
int my_local_rank ;
MPI_Comm_rank (allComms [c],& my_local_rank);
MPI_Comm_split (allComms [c], MPI_UNDEFINED , my_local_rank ,

& allCurrComms [c]);
}

The data exchange process is similar as for bidirectional communication. It is shown in
Listing 2.20. The main difference is that we do not need to check here whether a node
is active, in order to perform communication, as the idle nodes should also receive data.
So, each node communicates in a sense here. We again need a loop with n iterations. If
a node’s rank is equals to the iteration counter, then it should certainly communicate,
i.e. receive data from its neighbours, regardless of its activeness. This part is related
to receiving data. When thinking about sending the solution update to neighbours, it
is a task that only active processes should perform. In other words, if the rank that
corresponds to the iteration counter is a neighbour of the current process and the current
process is active, then it should communicate, i.e. send data to the neighbour.

Listing 2.20: The data exchange with unidirectional sparsified communication, C with
MPI
my_communicator_size =0;
MPI_Comm_size (allCurrComms [my_rank],& my_communicator_size);
double * Xremote = calloc ((my_communicator_size)*(s+1), sizeof (double));
for(int c=0;c<n;c++)

if(my_rank ==c || (is_my_neighbour (my_rank ,
c, my_neighbours , my_neighbours_count) && active [my_rank]))

MPI_Gather (X,s+1, MPI_DOUBLE ,Xremote ,s+1,
MPI_DOUBLE ,0, allCurrComms [c]);

2.2. Implementation 65

Regarding the processing of the neighbours solutions, this part of the code is the same
as for bidirectional communication (see Listing 2.16). The only difference is that we do
not need the if statement any more, as each node has some solution update from the
neighbours. It can happen at some point that a node does not have any active neighbours.
In that case, the communicator size is 1, so the loop will not be executed and the sum
of weights for the neighbours will remain zero. The data preparation and gathering for
determining the stopping criterion occurrence is also almost the same as for the bidirec-
tional communication approach (see Listing 2.18). The difference is that we do not need
the check if the node is active. Hence, we do not need the line if(active[my_rank]),
and we can completely remove the else branch and its content as well.

Conclusion on parallel implementation for logistic loss functions

The described incremental development of parallel implementation of the algorithm for
logistic loss functions can be observed in two dimensions. The first one is related to en-
hancements. This subsumes the possibility for reading input data of arbitrary size, and
introducing the stopping criterion, instead of fixed number of iterations. All the tests
performed on logistic loss functions will rely on this enhancements. The introduction of
communicators can be also put here, because the tests are mainly directed to the version
of the algorithm that uses communicators. However, we will briefly mention the tests
that did not use communicators, in order to encourage introducing them. The second di-
mension represent the possibilities to: introduce communication sparsification, to exclude
the second order updates and to work with bidirectional or unidirectional communication
sparsification. We will create different methods, by combining these properties and base
the tests on them. This way, we can explore how these different possibilities influence the
performance.

2.2.3 A comparison with an ADMM implementation

In this section, the focus is on a class of primal convex optimization methods and the de-
scribed implementation details correspond to these methods. However, we are interested
in how the performance of these methods relate to the performance of a dual method,
applied for the same algorithm, on same data. A fair comparison requires an MPI im-
plementation for logistic regression in C language. Problem (2.1) can be solved using
the Alternating Direction Method of Multipliers (ADMM) [3], so we decided to compare
our Algorithm 1 to an ADMM implementation for logistic regression [122] (the authors
provide the source code on GitHub), also implemented in C, and using MPI for paral-
lelization. The reason for choosing ADMM is twofold. First, ADMM represents a widely

66 Chapter 2. Primal distributed optimization methods

applied, efficient approach. Second, the next chapter of the thesis focuses on ADMM-
based algorithms as representatives of dual methods.

A few adaptations need to be applied, in order to make a meaningful comparison. More
precisely, the method in [3] solves problem (2.1) assuming the presence of a central node
that communicates to all other nodes in the network. Hence, we need to adapt our
algorithmic framework to the latter setting by letting the underlying network G to be
fully connected and by setting the matrix W to have all its entries equal 1

n
.

We calculate the value of Φk = 1
n

∑n
i=1 f(xk

i), i.e., the average global cost in (2.1) averaged
across all nodes’ estimates, at the end of each iteration and we also measure the execution
time; where f(x) = ∑n

i=1 fi(x). We are interested in the time required to satisfy the
condition Φk−f∗

f∗ < 0.1. Here, f ⋆ is numerically evaluated by ADMM. The rationale for this
comparison is the following. Our algorithm (Algorithm 1) converge to a neighbourhood
of the solution to (2.1), while ADMM converges to the exact solution of (2.1). Therefore,
it is meaningful to compare the times that each method needs to reach a certain accuracy
level, measured with respect to the cost function in (2.1).

In order to be able to measure the time, required to satisfy Φk−f∗

f∗ < 0.1, we need to add
a computation for the following:

Φk = 1
n

n∑
i=1

J∑
j=1

log(1 + 1
ebij(x⊤

1 aij+x0)) + τ

n
||x||2 (2.58)

at the end of each iteration, for both implementations (our algorithm and ADMM). Also,
we measure the time for each iteration, but that time naturally does not include the
calculation of (2.58). This metric requires that we calculate f(x) = ∑n

i=1 fi(x), meaning
that for each node’s solution, we should consume the whole input data, i.e. the data
distributed between the nodes at the beginning of the algorithm. This can be done in two
ways. We can gather the input data parts on each node once, at the beginning, so that the
node can perform the calculation for its solution at the end of each iteration. The second
approach is to gather the whole data set only on the master node once, before the main
loop, and then send the solution approximations from the nodes to the master, meaning
that the master calculates the whole expression. We chose the second option. The reason
is that this way, we need the whole data set only on the master node. Also, we chose a
smaller data set for these tests, that is suitable to make the comparison, but still does not
overload the master node. The dimension of the solution update is also reasonably small,
so the computation of the described metric can be done easily. The setup and results of
tests will be described in Section 2.3.3.

2.2. Implementation 67

Listing 2.21: Implementation of the process of obtaining the value of Φk, C with MPI
MPI_Reduce (& comm_time ,& max_comm_time ,1, MPI_DOUBLE ,MPI_MAX ,

0, MPI_COMM_WORLD);
MPI_Reduce (& iter_elapsed ,& max_iter_time ,1, MPI_DOUBLE ,MPI_MAX ,

0, MPI_COMM_WORLD);
MPI_Gather (X,s+1, MPI_DOUBLE ,Xall_k ,s+1, MPI_DOUBLE ,0, MPI_COMM_WORLD);
if(my_rank ==0){

double sum =0.0;
for(int i=0; i<n; i++){

double Fx =0.0; double *Xk= Xall_k +i*(s+1);
double x0=Xk[s]; double *x1= calloc (s, sizeof (double));
LAPACKE_dlacpy (LAPACK_ROW_MAJOR ,’A’,1,s, Xk ,s,x1 ,s);
for(int j=0; j<n; j++){

double *Ai=A+(j*r*s)+(j!=0)* rem*s;
double *Bi=B+(j*r)+(j!=0)* rem;
double sumForSample = 0.0;
for(int t=0; t<r+(i==0)* rem; t++){

double dotProd = cblas_ddot (s,Ai+(t*s),1,x1 ,1);
double coeff =(dotProd +x0)*(-Bi[t]);
double exp_val =exp(coeff);
double log_val =log (1+ exp_val); sumForSample += val;

}
double x_norm = cblas_dnrm2 (s+1,Xk ,1);
Fx+= sumForSample + lambda_penal * x_norm ;

}
sum +=Fx;

}
avg=sum/n; Fi[k]= avg;
iter_timings [k]= max_iter_time ; comm_times [k] = max_comm_time ;

}

The code for the computation of Φk is shown in Listing 2.21. This computation is being
inserted to the end of main loop of the algorithm. It is used only for evaluation purposes,
and the time needed for this is not part of the running time of the algorithm (it is not
taken into account when measuring the execution time). First, it is important to record
the time required for that iteration as the required time of the slowest process. Similarly,
we also compute the total communication time for an iteration. Also, the master node
gathers the current solution estimates to Xall and initializes the overall sum. Then, the
master node computes (2.58), so that the first loop iterates over the solution estimates. It
picks Xk from Xall and initializes Fx=0, as it will be computed inside the inner loop. The
second loop iterates over data chunks (with j as the iteration counter). It takes the j-th
part of the input data matrix and vector. It also takes into account the possible overage

68 Chapter 2. Primal distributed optimization methods

on the 0-th chunk. Finally, the third loop (where t is the iteration counter), computes
the sum for one sample, iterating over the current matrix and vector chunk.

We add the norm of the current solution estimate to the value Fx, and then Fx is added to
the final sum. We maintain three arrays globally. The iter_timings keeps the required
timings for the iterations. Similarly, communication_times contains the time required
for communications during the iterations. The array Fi contains the solution to (2.58)
iteration-wise. These arrays are being written to separate files, when the algorithm finishes
its execution.

The final step to obtain some meaningful results is to process these resulting files. We
created a Python script that reads these files created by different variants of our algorithm,
and also by the ADMM variant, and that produces some interesting insights. The script
first reads the output files of the ADMM variant, and finds the minimal value of Φk, i.e.
f ⋆. It also determines the required number of iterations and the required time to reach
that minimum. This process is being repeated for different variants of our algorithm
(the exact list of them will be described in Section 2.3.3). Then, the absolute differences
between different variants and ADMM, and the average time to reach own minimum are
being computed. The script also truncates the vectors to contain only the values until
the minimum, as a preparation step for possible plotting. Finally, the point where an
algorithm satisfies Φk−f⋆

f⋆ < 0.1 is being found, and the sum of timings of the iterations to
reach that point is being recorded.

2.2.4 Measuring the execution time in a parallel program

The way of measuring the execution time of a serial program is straightforward, as it
only requires to check the points for measurement start and end and put the appropriate
function calls recording the current time (this is dependent on the programming language)
to that positions. However, when we are working with parallel programs, a set of processes
is working simultaneously, and their execution times can be various. For that reason, we
always should pick the execution time of the slowest process. After all, we need to wait
for the slowest process to finish the execution, in order to terminate the application.

When measuring the execution time of an MPI application, we should measure the exe-
cution time for each process separately, and then find the largest value.

Listing 2.22 shows a snippet of code for measuring the time in an MPI application. The
function MPI_Wtime() returns an elapsed time on the calling processor. We should call
this routine immediately before and after the code block, that is of interest to measure its

2.3. Experimentation 69

execution time. By subtracting these values, i.e. the beginning from the end, we get the
execution time for the particular process. Then, by calling MPI_Reduce, we can get the
highest execution time among the processes and that is our final value. This approach
can be applied to an arbitrary block of the code.

Listing 2.22: Measuring the execution time of an MPI program, C with MPI
double start = MPI_Wtime ();
// here we put the code that we are interested in
// for measuring the execution time
double end = MPI_Wtime ();
double elapsed =end -start;
double max_time ;
MPI_Reduce (& elapsed , &max_time , 1, MPI_DOUBLE ,MPI_MAX , 0,

MPI_COMM_WORLD);

2.3 Experimentation

The testing of the algorithm includes a broad set of benchmarks. First, we illustrate
some experimental results, that we obtained while developing the solution and comparing
different aspects of the implementation of the algorithm. Secondly, for the final implemen-
tation, we make a thorough comparison of the properties of various methods, that utilize
different communication sparsification strategies. In terms of the results of intermediate
experiments regarding implementing the algorithm, a few different aspects emerge. First,
the algorithm was compared to the serial implementation. These tests were conducted for
the algorithm implementation for quadratic cost functions. We then also make a quick
comparison between the all-to-all and communicator-based algorithm variants. Then, we
test different sparsification strategies, in order to identify those we are mostly interested
in. These tests were performed on the algorithm implementation regarding logistic loss
functions. They enable the identification of the suitable implementation strategies and
best performing sparsification approaches. The second part of the evaluations is ori-
ented towards examining a class of implemented methods. When referring to “methods”
through the thesis, we mean algorithm variations with different communication sparsifica-
tions, combined with first/second order approaches and with bidirectional/unidirectional
communication lines between the nodes. We compare the performance of these meth-
ods in different setups, and also make a comparison between the appropriate methods
with and without communication sparsification. These tests are performed for logistic
loss functions. The final goal of the experimentation phase is to obtain some meaning-
ful information about the nature of the algorithm. This is the empirical proof of the

70 Chapter 2. Primal distributed optimization methods

performance properties of the described concepts.

2.3.1 The infrastructure

A few different infrastructures were used for the tests. First, the tests for serial approaches
(MATLAB and plain C) were performed on a 64-bit Linux machine, with Core i5-4590
3.30GHz 4 core CPU and 16GB RAM. Then, for the parallel implementation, we used
a real cluster environment for the tests. Particularly, we used two different clusters, at
different moments of the evaluation. One of them is the AXIOM computing facility con-
sisting of 16 compute nodes (8 x Intel i7 5820k 3.3GHz and 8 x Intel i7 8700 3.2GHzCPU -
192 cores and 16GB DDR4 RAM/node) interconnected by a 10 Gbps network. The tests
were mainly performed on this cluster. However, at one stage (when choosing the appro-
priate sparsification strategies based on performance), we also used the Paradox cluster
consisting of 106 compute nodes (2 x 8 core Sandy Bridge Xeon 2.6GHz processors with
32GB of RAM + NVIDIA Tesla M2090) interconnected by the QDR InfiniBand network.

2.3.2 Intermediate experimentation studies and results

In this subsection, we describe the conclusions that can be drawn, regarding the imple-
mentation. Here, we compare different approaches for implementing the algorithm, in
order to identify the most suitable one, in terms of performance. We also make a com-
parison between different communication sparsification techniques, in order to choose the
final class of methods, that we evaluate in details.

The tests regarding the algorithm implementation for quadratic cost functions

First, let us illustrate the results of evaluation on the parallel implementation of the al-
gorithm for quadratic cost functions. We observe the scaling properties of the algorithm
here. Also, we compare the parallel implementation to a serial MATLAB implementation,
in order to assess the benefits of parallelization. All the serial tests regarding this phase
were performed on a single machine (see the details in Section 2.3.1 regarding infrastruc-
ture). The performance of the parallel implementation was tested on the AXIOM cluster
environment (see also Section 2.3.1 for details).

The simulation setup

As already described earlier, the tests for quadratic cost functions were run on syntheti-
cally generated data. The graph structure between the nodes is also randomly generated.
For detailed explanation, see Section 2.1.1.

2.3. Experimentation 71

Figure 2.7: Comparing the execution time for MATLAB and parallel, MPI based C code

The experimental results

First, we want to investigate quickly how well an MPI based parallel algorithm, written in
C performs, when compared to an implementation, written in MATLAB. As the nature
of the algorithm is parallel, and the work is meant to be distributed among a set of nodes,
a serial implementation of it means that the workload of each of the nodes is physically
executed sequentially over a single machine. This can be done in a loop, that computes
the solution update for node i, in the i-th iteration, where i = 1, 2, ..., n. We expect that
the efforts invested in the parallel solution development pays off, and that this can serve
as a good basis for further enhancements.

Fig 2.7 represents the comparison of the time needed for the serial version of the same
algorithm written in MATLAB, where the updates of different nodes are carried out
sequentially and for the parallel MPI based C version of the code. This comparison should
assesses the gains of parallelization. The example illustrates relatively small input data
sets. The reason for this is that serial algorithms limit the possibility for data enlargement.
The time needed for the serial algorithm raises relatively quickly when increasing the data
size. For only s = 60 as vector and matrix dimension and with n = 10 nodes in a graph,
the execution time for MATLAB is 29.5 seconds. For the same input, the parallel program
executes in 1.85 seconds. The MATLAB version is able to handle increased input data size
to certain extent, but it is naturally very limited and unable to execute all the examples
that we can run on a cluster. With larger data size, the serial program can deplete the
resources and even block the machine during the execution. In contrast, the parallel
implementation can handle these cases. We can provide much bigger amount of data to
our algorithm, that leads to opening of possibilities for further work in this direction. In
the observed examples on Fig. 2.7, it performs 16 times faster than the MATLAB version.
When providing larger data sets, the difference in performance is growing even further.
These tests were dedicated to prove the gains of the introduced parallelization. We can

72 Chapter 2. Primal distributed optimization methods

conclude that they showed that introducing the parallel implementation is worthwhile.

The second part of tests on quadratic cost functions is meant to explore whether the
implementation is scalable regarding performance. The described initial MPI implemen-
tation for quadratic cost functions was tested here for different data dimensions s and
different graph sizes n. The execution times on a cluster environment are shown in Figs
2.8 and 2.9. As expected, increasing data size leads to execution time increase for the
same number of nodes, as this way each node has a larger portion of work. If we consider
different possibilities for number of nodes n, where the dimension is the same, it is notice-
able that the time changes only slightly for increased number of nodes. Fig 2.8 shows that
increasing the number of nodes n , for the same data dimension s, does not reduce the
execution time. The small data dimension values s could influence this results. However,
if we consider Fig 2.9, where we have larger data dimensions, we can derive very similar
conclusions. We cannot identify the existence of scaling, as mostly the execution time is
the same for different numbers of nodes n, or is even higher for higher values of n. This
deterioration is most likely due to the costs of communications between the nodes, that
can actually influence even execution time increase, while increasing n. The reason is that
the gain of parallelzitaion on larger number of nodes is smaller than the losses caused by
the communication. This means that our implementation is not scalable and the most
possible reason is the all-to-all communication protocol. This approach leads to increased
amount of communication lines, while increasing the number of nodes n. Of course, the
number of links in different graph instantiations also varies, and this is also reflected in a
varying time spent on communications across different graph instances.

We should note that, for the quadratic cost considered here, the problem admits a closed-
form solution, only in the centralized setting where a single node has access to all functions
fi ’s. However, this is not the case for generic fi ’s. A study of this kind will be also
described later.

To summarize, we carried out a performance evaluation of the proposed method for
quadratic cost functions when implemented in a distributed MPI cluster environment.
We concluded that the advantage of introduced parallel algorithm are evident. The first
gaining is the performance improvement, where our program performs significantly faster
than the MATLAB version. Also, the MPI implementation can clearly accommodate
larger data sizes s. In our setup, the MATLAB implementation breaks down already at
s = 150, depleting the resources or blocking the machine.

The communication overhead was expected to play a significant role regarding the execu-
tion time. From the aspect of the parallelization, the nature of the graph is completely

2.3. Experimentation 73

Figure 2.8: Execution time of the distributed MPI implementation for quadratic cost
functions for different data sizes s and different number of nodes n, for data dimension
200 and smaller

Figure 2.9: Execution time of the distributed MPI implementation for quadratic cost
functions for different data sizes s and different number of nodes n, for data dimension
larger than 200

transparent, as we use all-to-all communications. Regardless of the edges in the graph,
each node communicates with all the other nodes all the time. This can get even worse,
as the data size grows. In that case, a node has to exchange larger portions of data
with all the other nodes. Therefore, even if we do not have a scalable implementation at
this stage, it was of interest to experimentally quantify the parallelization and commu-
nication overhead effects. As the results demonstrate significant gains of parallelization
and how to moderate losses due to communication overhead, the next steps include tests
of non-quadratic cost functions, i.e. for logistic loss and over real data sets, while the
implementation will be also accommodated, as already explained in Section 2.2.2.

74 Chapter 2. Primal distributed optimization methods

The tests regarding the algorithm implementation for logistic loss functions

As the algorithm implementation that utilizes the all-to-all communication protocol does
not scales well, i.e. the time reduction with increased number of workers on the same prob-
lem is not evident, a different approach is needed for the communication implementation.
First, we show the difference in execution time, after introducing the communicators, com-
pared to the all-to-all approach. Then, we evaluate the time consumption of different parts
of the algorithm, after introducing communicators, in order to see how time-consuming
different algorithm parts tend to be. Then, we also explore different possible algorithm
variants with sparsified communications and pick the most promising ones for the final
class of proposed methods.

Regarding the data distribution process, it does not consume a large amount of the
execution time. For example, considering a data set that contains a matrix of 5000×6000
elements and a vector of 5000 elements, the initial setup, including reading and scattering
the data, as well as the creation of the communicators, takes about 0.3s per process. When
compared to the overall run-time of the tests, it represents a relatively small percentage.
Regarding the case with the lowest execution time this percentage is 5%. On the other
hand it is only 0.0007%, in the case with the highest execution time.

The simulation setup

For the tests regarding logistic loss functions, we use two different types of graphs for
comparison: grid graphs and d-regular graphs, as instances of graph G, introduced in
Section 2.1.1. We generate them as already described. See Section 2.2.2 for details.

As already mentioned, the input data are represented as an R×s sized matrix of features,
and an R sized vector of labels. Both the matrix and the vector are then being divided
into n parts, where n represents the number of nodes. For different tests in different
stages, the following data sets were used:

• The Conll data set that concerns language-independent named entity recognition
[123, 124]. It has R = 220663 and s = 20 as the input data sizes. This data set is
only used for comparing the performance of the algorithm between regular and grid
graphs, as well as for some initial tests.

• The Gisette data set [125, 126, 127, 128]. It is known as a handwritten digit recog-
nition problem. Its input data sizes are R = 6000 and s = 5001. The data set is
used for testing the different alternatives of the algorithm as well as for determining
the most suitable value of d for d-regular graphs.

2.3. Experimentation 75

• The YearPredictionMSD train data set used to predict the release year of a song
from audio features [129, 126, 130, 128]. The values R and s are R = 463715 and
s = 91 here. The data set is also used for testing the different alternatives of the
algorithm.

• The Mnist data set representing a database of handwritten digits [131, 132], with
input data sizes R = 60000 and s = 785. This data set is also used for testing the
different alternatives of the algorithm.

• The Relative location of CT slices on axial axis data set (referred to as CT data set in
the further text), containing features extracted from CT images [133, 126, 134, 128].
The data sizes are R = 53500 and s = 386. This data set is also used for testing
the different alternatives of the algorithm.

• The p53 Mutants data set [135, 126, 136, 137, 138, 128] (referred to as p53 data set
in the further text), used for modelling mutant p53 transcriptional activity (active
or inactive) based on data extracted from biophysical simulations. The data set
sizes are R = 31159 and s = 5410. The data set is also used for testing the different
alternatives of the algorithm.

We use these data sets for different kinds of tests, and for each test it will be noted on
which data set it was concretely performed.

The value of the step size α in (2.2), can be fine-tuned according to the data set used for
the tests. Increasing this value can lead to faster convergence. However, if the value is
too large, then the algorithm might converge to a coarse solution neighbourhood. The
values of α used for the mentioned data sets are obtained experimentally and are listed
below:

• α = 0.0001 for the Gisette data set;

• α = 0.001 for the p53 data set;

• α = 0.1 for the YearPredictionMSD, Mnist and CT data sets.

A larger value of α = 0.1 can be applied in the cases of relatively small number of
features, compared to the number of instances (i.e. rows of data). Here, in all the 3 cases
for α = 0.1, the number of features is smaller than 1000.

76 Chapter 2. Primal distributed optimization methods

The experimental results regarding the benefits of introducing communicators

The tests on quadratic cost functions already showed the lack of scaling properties when
using all-to-all communication protocol. We get the same conclusion for logistic loss
functions as well. Therefore, after implementing the communication based on a list of
communicators, it was of interest to prove weather the cost of creating this structure
of communicators is smaller than the cost of communicating to all nodes all the time.
We will illustrate this concept with a couple of examples, where we compare the two
approaches.

Table 2.1: Examples of comparing the execution times for all-to-all communication and
using communicators

Data set number of nodes Time(s): all-to-all Time(s): communicators
Conll 26 2.81 2.61
Gisette 42 6926.05 6628.73

Table 2.1 illustrates two examples to compare the execution timings for the two implemen-
tations with different communication strategies: all-to-all and using communicators. The
first example is on the Conll data set with 26 nodes, and the second one is on the Gisette
data set with 42 nodes. These tests were performed on the AXIOM computing facility.
We can see that the execution time reduction is evident after introducing communicators.
It is naturally of smaller volume for a smaller data set and is more significant for a larger
one. This supports the idea that the introduction of communicators represents a payable
solution.

As one of the main concerns with the all-to-all communication approach is the lack of scal-
ing properties, it is extremely important to investigate this property on the communicators-
based implementation.

Fig. 2.10 shows the scaling properties of the algorithm implementation for logistic loss
functions on the Gisette data set, after introducing communicators. These tests are
performed on the AXIOM computing facility, for 8-regular graphs. It is now evident that
the algorithm scales well. The most optimal number of nodes for the Gisette data set
is 38 here. The execution time decreases while increasing the number of nodes n, until
reaching this optimal point. After that, it starts to grow again. This is a completely
normal occurrence, as after the optimal number of nodes was reached, increasing further
this number is unnecessary and leads to poorer performance, as now the communication
costs can be more extensive than the gains of parallelization.

2.3. Experimentation 77

Figure 2.10: Scaling properties of the algorithm with communicators, on the Gisette data
set

For now, we showed that the parallelization reduces the execution time and provides
broader use than a serial implementation, as it can work on much larger data sets. Fur-
thermore, we showed that introducing the concept of communicators leads to further
algorithm improvements regarding performance, and that this implementation is also
scalable. Now, we are interested in the time consumption of different parts of the al-
gorithm, in order to direct our further enhancements of the implementation. For that
reason, we conducted an experiment on the algorithm that uses communicators for the
Gisette data set, on the PARADOX cluster this time (this cluster can provide a larger
number of cores, i.e. processes for the execution). We run our tests for the following
numbers of nodes n = {50, 60, 70, 80, 90, 100, 120, 140}. We measured the execution time
of the following parts of the algorithm here: the communication, i.e. data exchange; the
gradient computation; the Hessian computation; the checking if the stopping criterion is
satisfied; the solution update computation. Table 2.2 shows the results.

Table 2.2: The percentages of execution time for different parts of the algorithm

Algorithm part percentage(%)
Communication 71.39
Gradient 0.003
Hessian 61.56
Stop check 0.16
Solution update 20.91

The percentages in Table 2.2 are calculated in the following way: for each number of nodes
n, we calculate the exact percentage for each part of the algorithm, and then we calculate
the average on different parts of the algorithm. Each timing represents the time for the
slowest process. For this reason, the sum of percentages in the table is not 100%. It serves

78 Chapter 2. Primal distributed optimization methods

as a starting point for possibly considering further enhancements. First, although the al-
gorithm performs much better after introducing the communicators, it still consumes the
most of execution time on communication. That is the main motivation for communica-
tions sparsifications in the next iteration of development. Also, the computation of the
Hessian is also very time consuming. This fact motivates the investigation of using first
order methods, that omit this computation. The solution update is taking about 20%
of the execution time, but it should be mentioned that we also incorporated the inverse
matrix computation for the Hessian here. So, without that, the solution update is not
time consuming at all. If we omit the Hessian inverse computation, then this percentage
will be also negligible. The rest of the code does not seem to influence the performance
significantly.

The experimental results for testing different possible methods with sparsifi-
cation

At this stage, the main idea is to choose a set of possible algorithm variants, i.e. methods,
that will be used for detailed performance evaluation later. There are three dimensions
for creating these methods:

• The first one is the probability pk for communication. We want to test the cases
with increasing, decreasing and constant probability values. In other words, the
communication probability can be defined to grow as pk = 1 − 0.5k, or to decrease
as pk = (k + 1)−1. We also investigate 3 different cases for constant probability
values pk = 0.3, pk = 0.5 and pk = 0.8.

• The second dimension is the second order information presence. The Hessian inverse
approximation can be included in the computation during the iterations, or it can
be replaced by an identity matrix.

• The third dimension is the type of the communication. This means that the algo-
rithm can use bidirectional or unidirectional communicating principle.

While combining these dimensions, we get a list of possible methods to be tested. Table
2.3 lists them. For this stage of tests, the PARADOX cluster environment is used. The
reason behind this is the possibility of this cluster to offer a larger number of processes.
This is necessary, as we do not know at this stage the exact number of nodes that can
satisfy our test requirements, so we cannot claim for now that the AXIOM cluster will be
satisfactory. The implementation details for these dimensions were already described in
detail in Section 2.2.2.

2.3. Experimentation 79

Table 2.3: Different methods to be tested

Method Probability Hessian inverse Direction
1 increasing yes bidirectional
2 decreasing yes bidirectional
3 constant 0.3 yes bidirectional
4 constant 0.5 yes bidirectional
5 constant 0.8 yes bidirectional
6 increasing no bidirectional
7 decreasing no bidirectional
8 constant 0.3 no bidirectional
9 constant 0.5 no bidirectional
10 constant 0.8 no bidirectional
11 increasing yes unidirectional
12 decreasing yes unidirectional
13 constant 0.3 yes unidirectional
14 constant 0.5 yes unidirectional
15 constant 0.8 yes unidirectional
16 increasing no unidirectional
17 decreasing no unidirectional
18 constant 0.3 no unidirectional
19 constant 0.5 no unidirectional
20 constant 0.8 no unidirectional

There are 20 different methods of the algorithm to be tested, listed in Table 2.3. The goal
of testing these 20 variants of the algorithm is to eliminate those that perform worse, and
keep those that show better performance for further testing. In order to do so, we need
to choose a graph type first to be used for these tests.

Choosing the graph type for the tests

We simply consider two types of graphs for graph G here, regular and grid graphs. The
easiest and probably best way to choose the better option is empirically, to perform a set
of tests regarding these graph types. These tests are performed on the algorithm that
uses communicators, but without any sparsification. Here, we tested 7-regular, 8-regular,
9- regular, 10-regular and grid graphs, in order to identify the most appealing alternative.
The Conll data set is used here for the tests.

Fig 2.11 represents the comparison between grid and regular graphs. For regular graphs
value, we use the average for the mentioned 4 variants for d, when working with d-regular
graphs. For a low number of nodes, regular graphs already perform better, but this
difference is not so obvious. However, as the number of nodes grow, the difference in
performance between these two types of graphs is evident. This leads to the choice of

80 Chapter 2. Primal distributed optimization methods

Figure 2.11: Comparing the execution time using regular and grid graphs for the same
number of nodes, using the Conll data set

Figure 2.12: Comparing the execution time related to the value of d, using d-regular
graphs and the Gisette data set

working with d-regular graph. In order to choose the most appropriate value for d, we can
examine Fig 2.12, where the execution times for different variants of d-regular graph are
presented. It can easily be concluded, that the best performing option is with 8-regular
graphs. For that reason, we will work with them for the rest of the experiments. An
extensive analysis of the graph topology is out of scope of this thesis, and represents a
possible future research direction.

Choosing the best performing methods for the algorithm

Now, we can run the tests for the 20 mentioned methods of the algorithm with sparsified
communication. We run these tests with 80 nodes first (in order to choose the “good”
and eliminate the “bad” performing variants), with 8-regular graphs, on the Gisette data
set again. As we need to set some time limit for execution, we set it to 5 hours for
each job on the cluster. We will not display the results of all tests, but instead some
of the interesting ones. The first important conclusion is that the methods that work

2.3. Experimentation 81

with constant probability values do not converge close enough to the solution for the
defined time limit. They do approach it, as we can see from the log files, but they need
extensively more time to converge. For that reason, we will omit to use these constant
probability values for the rest of our tests, with one exception later, where we will explore
the convergence. But for the relevant methods, that will be used for further tests, we will
use only cases with increasing and decreasing probabilities.

Before moving on to the next section, where we will explore further the performance
of these relevant algorithm methods, let us demonstrate a few interesting conclusions,
based on the already performed tests. Table 2.4 shows a comparison between the 4 best
performing methods (on the Gisette data set), for 50 nodes. The first value is present as a
baseline and represents the algorithm without sparsification. It is obvious that introducing
any sparsification leads to execution time reduction, that can be very extensive.

Table 2.4: Execution time for different methods for 50 nodes in the network

Method Execution time (s)
No sparsification, second order method 24966.11
Bidirectional, decreasing probability, second order method 8166.08
Bidirectional, decreasing probability, first order method 789.92
Bidirectional, increasing probability, first order method 314.47
Unidirectional, increasing probability, first order method 16.28

The maximal execution time, i.e. the time for the slowest process, is taken into account
for all the cases. It is evident that the second order method, i.e. the case with the
Hessian inverse included, requires a larger amount of time, as the nodes spent more time
on computation than the other variations where the Hessian inverse was excluded. Only
the first version includes the Hessian inverse, the others use an identity matrix instead of
it, as its computation is time consuming. As this amount of time can vary on different
processes, all processes are waiting for the slowest one in the communicator in order
to successfully exchange the data. When the Hessian inverse is excluded, all parts of
the algorithm perform relatively fast, so there is no such large delay present. However,
second order methods are of interest when the dimension of the optimization variable
is sufficiently small or moderate sized and when the problem is difficult, so second order
information pays off. The greatest time reduction occurs for unidirectional communication
for this particular case, displayed in Table 2.4. This means that introducing the concept
of idling, so that an idle process performs computation and gathers results from active
neighbours without sending its own results, drastically decreases the communication time
here. However, the data set used for testing highly influences the fact which methods

82 Chapter 2. Primal distributed optimization methods

perform better on it. This aspect will be evaluated further.

Table 2.5: The average percentage of time spent on communication for different versions
of the algorithm

Method Communication time
No sparsification, second order method 71.39%
Bidirectional, decreasing probability, second order method 13.22%
Bidirectional, decreasing probability, first order method 25.7%
Bidirectional, increasing probability, first order method 11.27%
Unidirectional, increasing probability, first order method 9.7%

As we performed the tests, we also measured the execution time for different parts of the
algorithm. The results show that the most time consuming part is the communication,
which is not a surprising fact. Table 2.5 represents the average percentage of commu-
nication time, related to the overall execution time, for the different 4 best performing
methods of the algorithm, and the base case, without sparsification (same as in Table
2.4). These percentages represent the average percentage of time spent on communicat-
ing, relative to the overall execution time, for a set of tests with different numbers of
nodes in the network. Without sparsification, the algorithm still spends more than 70%
on communication, although the all-to-all communication protocol was replaced with in-
troducing a set of communicators. The idea that the data exchange is not necessary in
every iteration for every node might seem interesting from this aspect. Decreasing the
frequency of exchanging the results, the average communication time falls to 25.7% in
the worst case. For the other methods, this percentage is around 10%. The value of
25.7% is unexpected, as the algorithm does not differ from the others in an extent to
influence more communication. However, it should be kept in mind that each process
generates a random value in the predefined range between 0 and 1. If the randomly
generated value falls into the scope of the probability bound for that iteration, than the
node is active. As a consequence, it can happen that even if the probability is small,
the majority of processes still satisfy the condition to be active. It is evident that the
performance significantly increases with the introduction of communication probability.
Moreover, introducing directed communication could possibly make the algorithm even
more efficient.

2.3.3 The experimental results for the selected set of methods

The previously conducted set of tests revealed the algorithm methods that are possibly
worth for further analysis, in the sense that they may show good performance features.

2.3. Experimentation 83

However, the class of methods that we propose does not contain only those solutions
that showed the best performance for the described test cases. Instead, it also includes
the appropriate pairs of them, in order to ensure the ability of comparing the adequate
possible approaches. From here, we consider the selected class of methods.

The methods

Here, we provide a complete list of algorithm methods, that we are interested in for further
analysis. When considering the solution update:

xk+1
i = xk

i + dk
i , (2.59)

the following alternatives of algorithm (2.9)-(2.10) are considered.

• Method 0 : The initial version of the algorithm, used as the benchmark here,
without sparsification (all the nodes are active all the time), the communication
is always bidirectional, and the Hessian is included in the computation, so it is a
second order method. More precisely, the method is defined by the following. For
all i = 1, . . . , n, given xk

i , we have

ξk
i,j = 1, pk = 1, Mk

i = α∇2fi(xk
i) + (1 − Wii)I, (2.60)

dk
i = −

[
(Mk

i)−1[α∇fi(xk
i) +

∑
jϵΩi

Wij(xk
i − xk

j)]
]
. (2.61)

• Method 1 : Bidirectional communication, with increasing communication probabil-
ity. Here, the Hessian approximation is replaced with the identity matrix, resulting
in the following first order method:

ξk
i,j = zk

i · zk
j , pk = 1 − 0.5k, Mk

i = I, (2.62)

dk
i = −

[
α∇fi(xk

i) +
∑
jϵΩi

Wij(xk
i − xk

j)ξk
i,j

]
. (2.63)

• Method 2 : Bidirectional communication, with decreasing communication proba-

84 Chapter 2. Primal distributed optimization methods

bility and first order updates,

ξk
i,j = zk

i · zk
j , pk = 1

k + 1
, Mk

i = I, (2.64)

dk
i = −

[
α∇fi(xk

i) +
∑
jϵΩi

Wij(xk
i − xk

j)ξk
i,j

]
. (2.65)

• Method 3 : Unidirectional communication, with increasing communication proba-
bility and first order method updates,

ξk
i,j = zk

j , pk = 1 − 0.5k, Mk
i = I, (2.66)

dk
i = −

[
α∇fi(xk

i) +
∑
jϵΩi

Wij(xk
i − xk

j)ξk
i,j

]
. (2.67)

• Method 4 : Unidirectional communication with decreasing communication proba-
bility and first order updates,

ξk
i,j = zk

j , pk = 1
k + 1

, Mk
i = I, (2.68)

dk
i = −

[
α∇fi(xk

i) +
∑
jϵΩi

Wij(xk
i − xk

j)ξk
i,j

]
. (2.69)

• Method 5 : Bidirectional communication, with increasing communication proba-
bility and second order updates,

ξk
i,j = zk

i · zk
j , pk = 1 − 0.5k, Mk

i = α∇2fi(xk
i) + (1 − Wii)I, (2.70)

dk
i = −

[
(Mk

i)−1[α∇fi(xk
i) +

∑
jϵΩi

Wij(xk
i − xk

j)ξk
i,j]

]
. (2.71)

• Method 6 : Bidirectional communication, with decreasing communication proba-
bility and second order updates,

ξk
i,j = zk

i · zk
j , pk = 1

k + 1
, Mk

i = α∇2fi(xk
i) + (1 − Wii)I, (2.72)

2.3. Experimentation 85

dk
i = −

[
(Mk

i)−1[α∇fi(xk
i) +

∑
jϵΩi

Wij(xk
i − xk

j)ξk
i,j]

]
. (2.73)

• Method 7 : Unidirectional communication, with increasing communication proba-
bility and second order updates,

ξk
i,j = zk

j , pk = 1 − 0.5k, Mk
i = α∇2fi(xk

i) + (1 − Wii)I, (2.74)

dk
i = −

[
(Mk

i)−1[α∇fi(xk
i) +

∑
jϵΩi

Wij(xk
i − xk

j)ξk
i,j]

]
. (2.75)

• Method 8 : Unidirectional communication, decreasing communication probability
and second order updates,

ξk
i,j = zk

j , pk = 1
k + 1

, Mk
i = α∇2fi(xk

i) + (1 − Wii)I, (2.76)

dk
i = −

[
(Mk

i)−1[α∇fi(xk
i) +

∑
jϵΩi

Wij(xk
i − xk

j)ξk
i,j]

]
. (2.77)

• Method 9 : Bidirectional communication without communication sparsification.
This is a first order method. It corresponds to Method 0 without second order
information.

ξk
i,j = 1, pk = 1, Mk

i = I, (2.78)

dk
i = −

[
α∇fi(xk

i) +
∑
jϵΩi

Wij(xk
i − xk

j)ξk
i,j

]
. (2.79)

In order to make things clearer, we introduce a naming convention for the mentioned meth-
ods. Our convention for abbreviating the methods uses a three letter system, where the
first letter represents whether the method is first or second order (F or S); the second letter
represents the type of the communication (B for bidirectional and U for unidirectional);
the third letter represents the communication sparsification type, i.e. the probability used
for communication (I for increasing, D for decreasing and C for constant)

It can be seen that Method SBC represents the initial version of the algorithm, used
as the benchmark here, where Method FBC is its first order equivalent. These are the

86 Chapter 2. Primal distributed optimization methods

Table 2.6: Different alternatives of Algorithm 1

Method
name

Method
number Type Mk

i ξki,j pk Relevant reference

FBI Method 1 First order I zk
i · zk

j pk = 1 − 0.5k [40]
FBD Method 2 First order I zk

i · zk
j pk = (k + 1)−1 [43]

FUI Method 3 First order I zk
j pk = 1 − 0.5k novel method [46]

FUD Method 4 First order I zk
j pk = (k + 1)−1 [44]

FBC Method 9 First order I 1 1 [41]
SBC Method 0 Second order Dk

i 1 1 [12]
SBI Method 5 Second order Dk

i zk
i · zk

j pk = 1 − 0.5k [39]
SBD Method 6 Second order Dk

i zk
i · zk

j pk = (k + 1)−1 [39, 43]
SUI Method 7 Second order Dk

i zk
j pk = 1 − 0.5k novel method [46]

SUD Method 8 Second order Dk
i zk

j pk = (k + 1)−1 novel method [46]

only methods that do not utilize any communication sparsification. Methods FBI, FBD,
FUI, FUD, SBI, SBD, SUI, SUD use sparsification with either increasing or decreasing
communication probabilities pk. The reason for choosing a linearly increasing pk and
a sub-linearly decreasing pk is adopted according to insights available in the literature;
see, e.g., [39], [44]. While it is possible to consider other choices and fine-tuning of the
sequence pk, this topic is outside of the thesis scope. Our primary aim is to investigate the
feasibility and performance of increasing and of decreasing sequence of pk’s relative to the
always-communicating strategy (Method SBC and Method FBC), as well as relative to
the unidirectional versus bidirectional communication, and the first order versus second
order methods.

The considered communication probability in [12] in Table 2.6, is 1. References [39, 40], in
addition to communication sparsification, also consider sparsification in search directions
(of second and first order, respectively). However, the analysis therein can be extended to
also cover communication sparsification-only. Also, reference [44] considers a distributed
estimation setting, but we also include it in Table 2.6 for completeness. The convergence
analysis for the novel method with unidirectional communication Method FUI was pre-
sented in Section 2.1.3, while Methods SUI and SUD, that also rely on unidirectional
communication, remain open for theoretical analysis in the future. The Methods FBI,
FBD, SBI and SBD, using bidirectional communication are already analysed in the lit-
erature (see [39, 40, 41, 42, 43, 44]).

The listed methods and data sets described before, are used to derive some empirical
conclusions. As expected, the analysis of obtained results provides some insights about
the optimal number of nodes for different setups. Also, the advantages of particular

2.3. Experimentation 87

methods are clearly visible and one can estimate the usefulness of sparsification based on
these results, keeping in mind that the tests might be influenced by the selection of data
sets. Nevertheless, we believe that the obtained insights are useful.

The experimental results

The tests performed on the PARADOX cluster environment enabled to run our tests
for a large number of nodes. However, the optimal number of nodes for a data set and
particular method could not be clearly detected. Also, the scaling was not detectable
above 80 nodes in a graph. This is quite easy to explain - it means that the optimal
number of nodes is lower and that we do not need such a large number of processes in
order to expose the scaling properties, for our setups. For that reason, we decided to
explore the performance of the relevant methods, using a smaller number of nodes, i.e.
less than 50. For these purposes, the AXIOM cluster is a reasonable choice. All the
tests which follow are performed on this cluster environment. First, we will investigate
further the behaviour of Algorithm 1 for two types of graphs - d-regular graphs and grid
graphs. After that, we perform a sequence of tests using all the methods and the data sets
stated above on d-regular graphs. These test are used to gain insight into effectiveness
of different sparsification alternatives and differences between the first and second order
methods in the framework of Algorithm 1.

The experiments regarding graph types

We already made a set of tests regarding the nature of the graph, that is the most
appropriate for our experiments. We concluded that the 8-regular graphs represent the
best choice. However, we wanted to test this property again for a lower number of nodes.
We run these tests again for grid and d-regular graphs. However, we choose different
values for d this time. The reason behind this is that the values for d were quite “close“
in the previous set of tests. We want to explore more distant values now.

Fig. 2.13 and 2.14 represent a performance comparison between the executions of the
algorithm using different d-regular (d = 4, d = 8, d = 16) and grid graphs with the
SBC method on CT and Conll data sets, respectively. Observing Fig. 2.13, it can be
clearly concluded that d-regular graphs perform better than grid graphs, which becomes
more evident when increasing the number of nodes. This is equivalent to our previous
conclusion, regarding this comparison. However, d-regular graphs perform similarly on
this data set for different values of d, so it is hard to identify one of them as a best
choice. The execution times for d = 4 and d = 8 are almost the same here. Therefore,

88 Chapter 2. Primal distributed optimization methods

Figure 2.13: Comparing the execution time using regular and grid graphs for the same
number of nodes, using the CT data set, for the SBC method

Figure 2.14: Comparing the execution time using regular and grid graphs for the same
number of nodes, using the Conll data set, for the SBC method

Figure 2.15: Speedup for the SBC method for different graph types on the Conll data set

it is important to examine the performance for different graphs on another data set,
in order to open the possibility to gain additional information regarding the differences

2.3. Experimentation 89

between variants of d-regular graphs. From Fig. 2.14, it is evident that the execution
time decreases until the optimal number of nodes is reached, and starts to grow after that
point. The same trend is present in Fig. 2.13, but the optimal number of nodes is higher
here. Fig. 2.14 clearly shows the difference between d-regular and grid graphs again. It
also identifies 8-regular graphs as the most suitable choice for different number of nodes,
as these graphs mostly have the lowest execution time. This is again the same conclusion,
as we made for larger number on nodes and different values of d previously.

Let us now consider the speedup of the algorithm for these alternatives. The speedup
of an algorithm can be also presented graphically, e.g in [139]. Consider an example for
this on Fig. 2.15, that displays the speedup for the SBC method, on the Conll data
set, for the mentioned underlying graph structures. The speedup value on y axis can be
calculated using Amdahl’s Law [140], as a ratio between the execution time required for
one worker, divided by the execution time for n workers. In an ideal case, we could expect
a linear speedup. Fig. 2.15 shows that a certain speedup exists for all considered graph
types. Grid graphs have the weakest acceleration, where the considered different variants
of d-regular graphs perform much better. In fact, 4-regular and 8-regular graphs have
very similar speedups, but 8-regular graphs still perform slightly better, in most cases.
All the tests performed in order to determine the most suitable graph type, resulted in
the empirical conclusion that d = 8 is the most appropriate value when the number of
nodes is at least 8. For the cases, where the number of nodes n is less than 8, the value
d = n − 1 is used, leading to all-to-all graphs for n < 8.

From this point, we perform a sequence of tests using the described set of methods and
the data sets stated in Section 2.3.3, on 8-regular graphs. These test are used to gain
insight into effectiveness of different sparsification alternatives and differences between
first and second order methods in the framework (2.9) - (2.10).

The experiments regarding execution times of methods

Let us start the examination by comparing the execution times for all the considered
methods, for the same concrete example. Table 2.7 lists the execution time for each of the
10 methods for the p53 data set and 20 nodes in the network. As always, the maximal
execution time, i.e. the time for the slowest process, was taken into account for all the
cases. As this amount of time can vary on different processes, all processes are waiting
for the slowest one in the communicator in order to successfully exchange the data. As
the table shows, all first order methods introduce significant execution time reduction. In
this case, the Method FBD has the best performance. When comparing Method FBC to

90 Chapter 2. Primal distributed optimization methods

Table 2.7: The execution time for different variations of Algorithm 1 (2.9)-(2.10), for 20
nodes in the network, on the p53 data set

Method Execution time (s)
FBI 4.64
FBD 1.89
FUI 6.04
FUD 3.56
FBC 3.16
SBC 9661.42
SBI 43126.71
SBD 22683.84
SUI 22029.20
SUD 9651.77

Table 2.8: The execution time for different variations of algorithm (2.9)-(2.10), for 12
nodes in the network, on the Mnist data set

Method Execution time (s)
FBI 336.31
FBD 118.16
FUI 353.31
FUD 342.59
FBC 161.33
SBC 19045.00
SBI 3124.56
SBD 11853.99
SUI 12259.79
SUD N/A

Method SBC, it is clear that the computation of second order direction dk
i significantly

increases the execution time, as these methods differ only in this dimension. Reduc-
ing the amount of communication across the iterations with Method FBD leads to even
faster execution here. However, this behaviour may be highly dependent on the nature
of the data set itself. The algorithms for p53 data set converge generally fast, within
relatively small number of iterations. An equally important aspect here is also the fact
that Method FUD, using unidirectional communication and decreasing communication
probability performs better than Method FBI, with bidirectional and increasing commu-
nication probability. Observing the execution times for the second order methods proves
that introducing communication sparsification mostly does not pay off as the computation
of the second order direction is time consuming here.

As the nature of the data can highly influence the results, let us consider an another
example that compares the execution timings for the methods, but on a different data

2.3. Experimentation 91

Figure 2.16: Scaling properties of Method FBI, for the YearPredictionMSD data set

Figure 2.17: Scaling properties of Method FUI, for the Mnist data set

set and with different number of nodes in the network. Table 2.8 contains the execution
times for each of the 10 methods, with 12 nodes for the Mnist data set. In this example
(Method SUD does not converge for the given execution time limit).

The behaviour of methods on this data set differs from the behaviour on the p53 data set,
observed in Table 2.7, as now we have longer execution timings. This is not surprising,
as these data sets produce quite different behaviour. For example, for 12 nodes Method
FBD requires 4795 iterations to converge for the Mnist data set. When considering the
p53 data set for the same setup with 12 nodes, it converges after only 3 iterations.

However, the conclusions based on Table 2.8 are very similar to those from Table 2.7. In
fact, it seems that the properties of particular methods are similar as long as the data sets
are of similar volume. Generally, there exists a large decrease in execution time, when
using communication sparsification. This corresponds also to the conclusions made on
Table 2.4. The next important task is to examine the scaling properties of the methods.

92 Chapter 2. Primal distributed optimization methods

FBI

FUI

FUD

FBD

Figure 2.18: Execution times for the first order methods on CT data set

Figure 2.19: Execution times for the first order methods on Gisette data set

The experiments regarding scaling properties

A results of sequences of tests with different number of computational nodes n are shown
next to give an insight into the most suitable number of nodes for a particular data set.
Fig. 2.16 and Fig. 2.17 represent examples of the scaling properties of the algorithm, for
Method FBI on the YearPredictionMSD data set and for Method FUI on the Mnist data
set, respectively. Here, when varying n we keep the graph structure to the 8-regular graph
all the time. The optimal number of nodes can be identified in both cases. These graphs
obviously show the usual and expected trend where the execution time decreases until
the optimal number of nodes is reached, while after that, further enhancement in number
of nodes leads to time increase. Intuitively, the larger number of workers n means that
the same overall workload is parallelized over more workers, leading to time reduction.
However, the benefit effect is lost for a sufficiently large n when the communication
overhead time starts to dominate. Interestingly, the optimal number of nodes is mostly
constant for the first order methods as well as for the second order methods irrespective
of the data set.

2.3. Experimentation 93

Figure 2.20: Speedup for the FBD method on the Mnist data set

In order to examine the performance of first order methods in one place, let us take a
look at two different examples. Fig. 2.18 and Fig. 2.19 represent the execution times for
first order methods with communication sparsification for the CT and Gisette data sets,
respectively. From Fig. 2.18, it can be concluded that the optimal number of nodes for
Methods FBI, FUI and FUD, is the same value n = 6. However, Method FBD performs
differently. It shows lower execution time values generally, and its optimal number of
nodes is n = 10. Similar conclusions could be made based on Fig. 2.19. Here, the optimal
number of nodes for Methods FBI, FUI and FUD is again the same value, n = 8. Method
FBD also performs differently here, with lower execution time values, compared to other
first order methods. The optimal number of nodes for the second order methods tends
to be a larger number generally. This is a direct consequence of the fact that the time
consuming computations for the direction are faster with smaller portions of data on a
node.

Fig. 2.20 shows the speedup of the FBD method on the Mnist data set. The number of
nodes on x axis is in range from 2 to 12. The reason for choosing this interval is that the
“sweet spot”, i.e. the optimal number of nodes for this test case is 12. Considering the
results on Fig. 2.20, it can be seen that the speedup of the FBD method is satisfactory.
Similar conclusions can be made for the rest of the methods, as well.

The results regarding convergence percentage and cost reduction

We should also take into consideration to what extend the methods converge, when ob-
serving all the performed tests. Table 2.9 shows the percentages of successful tests for
all methods, i.e., of tests that satisfy the stopping criteria ∥Φ(xk)∥ < 0.01 within maxi-
mal execution time of 15 hours. We enlarged the time limit here (compared to the tests
for large numbers of nodes from the previous stage of testing), in order to provide a
broader possibility for tests on different data sets to converge. The failed tests were also

94 Chapter 2. Primal distributed optimization methods

Table 2.9: Percentages of successful test with respect to the overall number of tests

Method Percentage
FBI 99.1
FBD 100
FUI 100
FUD 100
FBC 100
SBC 98.3
SBI 84.1
SBD 95.8
SUI 95.8
SUD 35

Figure 2.21: Average cost reduction compared to the worst relevant tested method for
each problem, for Methods FBI, FBD, FUI and FUD

approaching the solution, but they did not reach it within the given time limit. The re-
sults indicate that the first order methods are better choice in this environment. Method
SUD is the method with the smallest number of successful tests. This fact can be easily
explained as it computes the expensive second order direction and the communication
probability decreases while the communications are unidirectional. All this lead to the
lack of communication epochs in order to ensure convergence during the time consuming
iterations.

In order to make an additional comparison between first order methods with communi-
cation sparsification, let us examine Fig. 2.21. It represents the average cost reduction
for different number of nodes, compared to the method of the weakest performances for
each data set, where the average is taken across different data sets. Basically, this figure
covers all the tests performed on first order methods with communication sparsification,
i.e., Methods FBI, FBD, FUI and FUD. For each data set, we divide the execution time
for a given number of nodes with the worst execution time on the same data set, and

2.3. Experimentation 95

Figure 2.22: The comparison between using different values of pk ≤ 1 for directed first
order method with unidirectional communication, on Conll data set

compute the average value over methods for all the data sets, for different numbers on
nodes.

This is how we compute the average cost reduction on y axis of Fig 2.21. The conclusions
based on this figure are consistent with the ones in Fig. 2.18 and Fig. 2.19. Method FBD
has the best performance properties. Also, for each method, an optimal number of nodes
can be easily identified.

The evaluation of the execution with different sequences of pk

In order to examine the convergence properties and behaving of the algorithm for different
probabilities, we can observe Fig 2.22. An evaluation of the algorithm execution with
different sequences {pk} that stay bounded away from one as k grows large is presented
in Fig. 2.22.

The unidirectional, first order method was tested on the Conll data set, using the step
size value α = 0.1. We observed the value of Ψ as in (2.2) during the execution of the
algorithm. The value of Ψ decreases over time for all choices of pk, as expected. The
zoomed part of the figure is included in order to present the last few seconds of the
execution before reaching the minimal values of Ψ. Fig. 2.22 shows that for different
values of pk the iterative sequences do not converge to the same value, but also that for
the constant pk choices the obtained limiting values are close.

Comparing the algorithm to ADMM

As problem (2.1) can be solved using the Alternating Direction Method of Multipliers
(ADMM) [3], we compare Algorithm 1 to an ADMM implementation for logistic regres-
sion [122], on the Conll data set. We want to investigate how the performance of our
algorithm relates to the performance of an ADMM implementation, when the implemen-
tations are using the same framework. More precisely, the method in [3] solves problem

96 Chapter 2. Primal distributed optimization methods

Table 2.10: Comparison of the second order Methods SBC and SBI with ADMM

Method Execution time
ADMM 4.487
Method SBC 0.247
Method SBI 0.226

Figure 2.23: The comparison between ADMM and Method SBI on Conll data set

(2.1) assuming the presence of a central node that communicates to all other nodes in the
network. Henceforth, we adapt our algorithmic framework to the latter setting by letting
the underlying network G to be fully connected and by setting the matrix W to have all
its entries equal 1/n. This is easy to set up in our implementation.

The comparison between the second order Methods SBC and SBI and ADMM is shown
in Table 2.10. We calculate the value of Φk = 1

n

∑n
i=1 f(xk

i), i.e., the average global cost in
(2.1) averaged across all nodes’ estimates, at the end of each iteration and we also measure
the execution time. The implementation of this cost calculation was already explained in
Section 2.2.3. The second column in Table 2.10 represents the time required to satisfy the
condition Φk−f∗

f∗ < 0.1. Here, f ⋆ is numerically evaluated by ADMM. The rationale for
this comparison is the following. Our proposed methods converge to a neighbourhood of
the solution to (2.1), while ADMM converges to the exact solution of (2.1). Therefore, it
is meaningful to compare the times that each method needs to reach a certain accuracy
level, measured with respect to the cost function in (2.1). We tested all the methods, and
finally included the results for the best performing second order methods, i.e. Methods
SBC and SBI. More precisely, Method SBI (a second order method with sparsification)

2.3. Experimentation 97

is here the best performing method across all methods, while Method SBC is taken as
the baseline (second order) method without sparsification. The fact that second order
methods perform better than first order methods here is consistent with our previous
conclusion that for smaller data sets, second order methods perform better than first
order methods. It is clear that our second order methods converge faster than ADMM.
Fig. 2.23 shows the comparison between Method SBI and ADMM. Method SBI takes a
larger number of significantly faster iterations, compared to ADMM, and hence results
with shorter execution time needed to approach the solution.

The performance profiles

Fig. 2.24 - 2.31 displays the performance profile [141] for the described methods. Perfor-
mance profiles enable evaluating the performance of different solvers running on a large
number of tests. The performance measure is the execution time here. It is noticeable
that the value range on the x axis is large, on these figures. This is due to the fact that
there are very large differences in execution times, ranging from a few seconds to values
larger that 18000 seconds. So, we consider the execution time as the comparison criterion.
To compute the performance profile let us denote the execution time for a method Mi and
test problem j by T j

i . Then, given the value on the x-axis β ≥ 1, the method Mi obtains
a point for the performance on test j if there holds T j

i ≤ βT j
min, where T j

min is the smallest
execution time of all tested methods considering that problem, i.e., T j

min = mini T j
i . The

performance profile for a given β of the method Mi is then calculated as the number of
points divided by the number of the performed tests. For example, on the y-axis where
the parameter β = 1, we obtain the statistical probability that the method is the best
one among all the tested methods in terms of the execution time.

Fig. 2.24 shows the performance profile for all the test on all data sets for the all 10
methods, where Fig. 2.25 and Fig. 2.26 display the performance profile for first and
second order methods, respectively. Fig. 2.24 and Fig. 2.25 identify Method FBD as the
best choice within the framework for Algorithm 1. This is accordant with the previous
conclusions we made.

The performance profile evaluation gives us the opportunity to compare the pairs of
first and second order methods, that use the same sparsification strategy. Observing the
methods without sparsification, i.e. Methods SBC and FBC, Fig. 2.24 indicates that the
first order method, Method FBC, performs better than the second order method, Method
SBC. The same is true if we consider the methods with sparsification. Considering meth-
ods with decreasing communication probability and using bidirectional communication,
Method FBD performs clearly much better than Method SBD. When comparing the other

98 Chapter 2. Primal distributed optimization methods

FBI
FBD

FUD

FBC
SBC

SBI

SBD

SUI
SUD

FUI

Figure 2.24: The performance profile for the all 10 methods, based on all the performed
tests

Figure 2.25: The performance profile for first order Methods FBI, FBD, FUI, FUD and
FBC, based on all the performed tests

first and second order methods using the same sparsification (Method FBI and Method
SBI, Method FUI and Method SUI, Method FUD and Method SUD), first order methods
performs better in 61% of test cases. Also, the convergence rate for first order methods
is higher (See Table 2.9).

It can also be concluded that the sparsification of second order methods gives no sig-
nificant advantages probably because the computation of the second order direction is
time consuming by itself (from Table 2.5, it can be seen that the average percentage

2.3. Experimentation 99

Figure 2.26: The performance profile for second order Methods SBC, SBI, SBD, SUI and
SUD, based on all the performed tests

Figure 2.27: The performance profile for the all 10 methods, based on the tests performed
on the Gisette data set

of time, spent on communication does not depend on whether the method is of first or
second order). Furthermore, with communication sparsification the second order infor-
mation is incorporated only partially and hence it does not provide enough advantage
to compensate for computational load. On the other hand, communication sparsification
can be beneficial for the first order methods, as evidenced by Method FBD. Generally,
the best performing method is a first order method using the appropriate sparsification
(bidirectional with decreasing communication probability), Method FBD.

100 Chapter 2. Primal distributed optimization methods

MNIST dataset

Figure 2.28: The performance profile for the all 10 methods, based on the tests performed
on the Mnist data set

Now, we will take a look at performance profile graphs regarding different data sets
separately. Fig. 2.27 represents the performance profile for the tests on the Gisette data
set. Here, Method FBD can be also identified as the most suitable, followed by Method
FBC, and later by Method FUI, Method FBI and Method FUD, where the second order
methods show poorer performance profiles. The dimension s for this data set is a large
value s = 5001, resulting with time consuming calculations in the second order methods
as the Hessian approximation matrices are of large dimensions. Therefore, the first order
methods perform better than second order methods. Here, the only sparsification strategy
that truly pays off is the approach of Method FBD. Fig. 2.29 displays the performance
profile for the tests on the p53 data set. The conclusions for this data set, are very
similar to those for Fig. 2.27. Similarly, the dimension s is also a larger value here,
s = 5410, so the first order methods also performs better than the second order methods
and again, Method FBD represents the best choice. Similar conclusions are emerging
from Fig. 2.28, that represents the performance profile for the Mnist data set. Here, the
dimension s = 785 is around 6 times smaller, compared to Gisette and p53 data sets,
but the dimension r = 60000 is 10 times larger than for Gisette, and 2 times larger than
for p53. This results with similar load when distributing the data and calculation of the
second order direction is too costly again.

The performance profile for the CT data set is displayed on Fig. 2.30. Here, the second
order method, Method SUI dominates, as the data set dimension s = 386 enables faster
calculations of the second order direction, and therefore it pays of. Comparison between
first and second order methods with the same communication sparsification yields the

2.3. Experimentation 101

Figure 2.29: The performance profile for the all 10 methods, based on the tests performed
on the p53 data set

Figure 2.30: The performance profile for the all 10 methods, based on the tests performed
on the CT data set

following conclusion - with the increasing communication probability the second order
methods (Methods SBI and SUI) perform better (for both unidirectional and bidirectional
communication). With the decreasing communication probability the first order methods
(Mehods FBD and FUD) give better results. This gives us a new insight, as we can see
that data sets with lower data dimensions can benefit from second order information.

Fig. 2.31 represents the performance profile for the YearPredictionMSD data set. Here,
the dimension s = 91 is the smallest among the observed data sets. Therefore the second

102 Chapter 2. Primal distributed optimization methods

Figure 2.31: The performance profile for the all 10 methods, based on the tests performed
on the YearPredictionMSD data set

order methods performs better, as we already saw for the Mnist data set also. But the
sparsification does not improve the first order nor the second order methods for these
data. This fact might be explained by the large dimension R = 463715. Each node gets a
large subset and sparsifying the communication means ignoring a large portion of data on
idle nodes, even if there is only one idle node. Thus, the gradient and Hessian are poorly
approximated with idling.

2.4. Conclusions on the proposed class of primalmethods 103

2.4 Conclusions on the proposed class of primal
methods

The tests were performed on an MPI cluster with a usual configuration, where each
cluster node contains one processor with 6 CPU cores, and the nodes are connected by
an Ethernet network with speed of 10Gbps. Execution and results may depend on the
speed of the cores themselves and on the speed of the network. Given that we used a
cluster with eighth-generation Core i7 cores, a performance jump can be expected if newer-
generation CPUs and / or more powerful Xeon processors were used. This effect would
refer to the shortening of the absolute execution time per core, but overall performance
characteristics would remain the same. The scaling properties would still be present, as
well as the preferences of certain methods for the specified scenarios regarding the data.
The factors that can mostly affect the execution of the program are the speed and the
latency of the network. In the case of clusters with higher network speeds and lower
latency, the general expectation is to achieve good program performance with more nodes
than in our experiments. In these cases, communication saturation, which we have shown
to be present in this type of algorithm implementations, could only occur with more
nodes involved than in our experiments (see Fig. 2.16 and 2.17, as well as Fig. 2.18 and
2.19 and the corresponding descriptions, that show these results for our experiments). In
other words, increasing the network speed, with reduced latency, would be a crucial factor
that would increase the number of nodes on which the proposed implementations can be
executed efficiently. This could result in different values for the optimal number of cores
in different setups, compared to the results on Fig. 2.16, 2.17, 2.18 and 2.19.

This chapter contains a detailed explanation of developing a parallel, scalable implemen-
tation of a set of distributed optimization methods. It subsumes several existing methods,
but also discusses some new directions, both theoretically and empirically. The different
phases and possibilities of the solution development are shown, while focusing on overcom-
ing the detected bottlenecks regarding performance. We showed how the implementation
can be refined and make more efficient in terms of resolving its most critical parts. The
implementation was developed for strongly convex quadratic cost functions and for logistic
loss functions as well.

We considered a class of first and second order distributed optimization methods which
utilize different versions of the communication sparsification strategy. This means using
different communication probabilities, combined with unidirectional or bidirectional com-
munication between the nodes. The concept of unidirectional communication represents
a novelty in the considered class of methods.

104 Chapter 2. Primal distributed optimization methods

The thesis provides a comprehensive empirical evaluation of various communication spar-
sification strategies. The experimentation was performed on a cluster environment. We
discuss the results for different implementation strategies, and for the different methods
implemented. The overall execution time is observed for different data sets in order to
identify the most suitable methods for different setups. Also, an evaluation of the influ-
ence of the nature of graph used to connect the nodes was performed. Additionally, a
comparison to an ADMM implementation was also performed, in order to gain insights
into the way how primal and dual methods relate, when solving the same problem.

The analysis of the methods showed that they posses the expected scaling properties,
while the differences in the optimal number of nodes for a particular data set in consider-
ation are evident for various methods. The comparison of different properties of methods
was also performed. The performance profile showed the comparison between the pro-
posed methods on different data sets separately, and for all tests together. It was clearly
identified that the first order methods perform much better with larger volumes of data,
where for smaller data sets the second order methods are more suitable. For data sets
with larger number of features (103 or more in our tests), the portions of data that the
processes work on demand a significant amount of time to calculate the second order up-
dates. If the number of samples is also larger (larger than 103 for our tests), it additionally
burdens the execution. This is the reason why the first order methods perform better on
larger data sets. The first order methods converge within a larger number of iterations,
but those iterations are multiple times faster than for the second order methods. When
the data set is smaller, obtaining the second order information is not costly as the pro-
cesses are working on small data portions. On these data sets the second order methods
perform better as they converge within smaller number of iterations than the first order
methods, while the second order iterations are negligibly slower than for the first order
methods.

The method with bidirectional communication and decreasing communication probability,
i.e. Method FBD, was identified as the best performing first order method. This method
also shows the best performance globally, when observing all the tests on all 5 data sets.
The fact that the bidirectional method performs better than the unidirectional method in
most of the cases is a consequence of enabling exchange only between active nodes. Uni-
directional methods require additional communication lines, in order to enable receiving
data for idle nodes from their neighbors. The gain from solution update for the idle nodes
can be slightly smaller than the cost of the communication to achieve that update. The
decreasing probability leads to more communication in the beginning of the execution.
Later, the communication becomes sparse, but at the same time the solution becomes

2.4. Conclusions on the proposed class of primalmethods 105

closer to the desired one, so that it does not require much communication any more. This
is the reason why decreasing communication probability with a bidirectional method rep-
resents an optimal choice. However, the other methods with communication sparsification
also showed satisfactory performance. The tests showed that, in general, communication
sparsification can significantly improve performance. This serves as motivation for using
communication sparsification in the described framework.

An important aspect of tests was the comparison between bidirectional and unidirectional
communication. One conclusion is that unidirectional communication strategy works in
the framework of (2.9)-(2.10), and thus confirm the theoretical results. Besides that, this
strategy yields lower execution time than the bidirectional communication strategy for
some test cases. All these conclusions might be influenced by the considered data sets
but nevertheless provide significant empirical evidence.

Chapter 3

A dual distributed optimization
method
The Alternating direction method of multipliers (ADMM) represents a dual method, that
is in common use nowadays when it comes to distributed optimization problems. The
reason behind this is that ADMM is a general purpose method that works under a very
general setting on the underlying optimization problem and usually exhibits good per-
formance on a wide variety of problems. This fact goes hand in hand with the growing
interest in parallel application development, resulting with more efficient and scalable
programs, applicable to larger amounts of input data. Therefore, this thesis also focuses
on ADMM as a representative of a dual optimization method. Today, the need for effi-
cient machine learning algorithms is growing with the need to process large amount of
data as fast and accurate as possible. Clustering is an important unsupervised learning
method, that find its use in different domains. Therefore, it is of great interest to pro-
vide distributed, parallel clustering solutions. In this chapter, a parallel, ADMM-based
clustering algorithm is being described and practically evaluated. The implementation
utilizes the manager-workers communication model, unlike the fully distributed model,
used in Chapter 2.

3.1 Background theory

First, the theoretical aspects behind the parallel ADMM-based convex clustering algo-
rithm need to be explained. The algorithm utilizes and adapts the idea of Sum Of Norms
(SON) clustering algorithm and applies the ADMM approach.

SON clustering. SON clustering represents a convex relaxation of k-means clustering.
It can be defined as follows. Consider the problem of clustering a set of observations

106

3.1. Background theory 107

{aj}N
j=1, aj ∈Rd, where the number of clusters is not known in advance. The SON (Sum

Of Norms) clustering is formulated as:

min
x

N∑
j=1

||aj − xj||2 + γ
∑
i<j

||xi − xj||, (3.1)

where x =
(
(x1)⊤, (x2)⊤, ..., (xN)⊤

)⊤
∈ RNd is the optimization variable. Here, xi ∈ Rd

plays the role of the i-th cluster center candidate, i = 1, ..., N and γ > 0 is a regularization
parameter. The first sum corresponds to fidelity measure, while the second sum represents
the regularization term. It enforces zeros for ||xi − xj|| across a subset of pairs i, j, and
can be seen as a generalisation of the fused Lasso penalty [142]. This means that, at
the solution x∗ = ((x∗

1)⊤, ..., (x∗
N)⊤)⊤ of (3.1), there will be only a subset of K, K <

N , mutually distinct vectors x∗
1, ..., x∗

N ; these K distinct vectors, say x∗
i1 , ..., x∗

iK
, where

{ii, ..., iK} ⊂ {1, ..., N} are the cluster centers obtained through convex clustering. The
cost function in (3.1) is strongly convex, and (3.1) has the unique solution x∗. Practically,
this means that the algorithm is able to find the cluster centers, as some of the candidate
centers “overlap“ as the algorithm progresses.

ADMM. As already stated, the proposed parallel clustering method is based on ADMM.
ADMM [3] is an iterative algorithm that solves the following type of problems:

minimizef(x) + g(z) s.t. Ax + Bz = c, (3.2)

where f : Rn → R and g : Rm → R are convex functions, i.e., ADMM assumes an
objective function, that is separable to two components, x ∈ Rn and z ∈ Rm. A ∈Rp×n,
B ∈ Rp×m are real-valued matrices, where c ∈ Rp. The augmented Lagrangian, Lρ :
(Rm+n) × (Rp) → R associated with (3.2) is:

Lρ(x, y; λ) = f(x) + g(y) + λ⊤(Ax + By − c) + ρ

2
||Ax + By − c||2, (3.3)

where ρ > 0 is a penalty parameter, and λ is the dual variable. Then, the ADMM
algorithm consists of the following updates during the iterations:

xk+1 = argminxLρ(x, yk, λk), (3.4)

yk+1 = argminyLρ(xk+1, y, λk), (3.5)

108 Chapter 3. A dual distributed optimization method

λk+1 = λk + ρ(Axk+1 + Byk+1 − c). (3.6)

Here, k = 0, 1, ..., is the iteration counter, xk ∈ Rn and yk ∈ Rm are the primal variables,
and λk ∈ Rp is the dual variable. It is well known that (xk, yk) converges to a solution of
(3.2) under mild conditions; see [3].

Regarding the stopping criterion, a common way to terminate the algorithm is to introduce
threshold values ϵpri and ϵdual, as feasibility tolerances, for the primal and dual feasibility
conditions:

||rk|| = ||Axk + Byk − c|| ≤ ϵpri, (3.7)

||sk|| = ||ρA⊤B(yk − yk−1)|| ≤ ϵdual, (3.8)

so that the algorithm terminates if both conditions (3.7) and (3.8) are satisfied.

3.1.1 Problem model and the proposed parallel method

Based on the given definitions of SON clustering and ADMM method, the parallel ADMM-
based convex clustering approach can be defined as follows. Assume we have N obser-
vations {aj}N

j=1 ∈ Rd as already stated before. As the intention is to develop a parallel
algorithm, the work needs to be divided and delegated to a set of K working nodes. We
assume a manager - workers (nodes) computational and sharing model with K −1 worker
nodes that store data, perform calculations, and communicate with the master. Without
loss of generality, we index the master as the first node, and the workers as nodes 2, ..., K.
Each node (including master) has a chunk of the input data a of size N/K × d 1. To
facilitate presentation, we introduce a two index notation, where aij ∈ Rd represents the
j-th data point available at node i, i = 1, ..., K, j = 1, ..., N

K
. We introduce a modification

of standard convex clustering in (3.1), as follows. Note that the second term in (3.1)
involves the differences across all pairs (i, j), i < j, of “candidate“ cluster centers. Here,
we also start by letting xij ∈ Rd, i = 1, ..., N, j = 1, ..., N

K
, be a “candidate“ cluster center

that corresponds to the (i, j)-th data point. However, unlike (3.1), we do not penalize
the differences across all pairs of candidate clusters. Instead, we assign to the master

1For simplicity, assume that N is divisible by K; otherwise, node 1 can take ⌊ N
K ⌋ + r data points, and

the remaining nodes take ⌊ N
K ⌋ data points, where r is the remainder when dividing N by K.

3.1. Background theory 109

a “center“ candidate cluster x11. Similarly, we assign to each worker i, i = 2, ..., K, a
local “center“ candidate cluster xi1. Then, we replace the second sum in (3.1) with the
following sum:

K∑
i=1

N/K∑
j=2

||xi1 − xij|| +
K∑

i=2
||x11 − xi1||. (3.9)

In other words, within the data points at each node i, i = 1, ..., N , we penalize the
difference between the local center xi1 and the remaining data points xij, j = 2, ..., N

K
,

at that node. This corresponds to the first sum in (3.9). In addition, regarding cross-
node penalization, we penalize the differences between the master center x11 and the local
centers xi1, i = 2, ..., K. This corresponds to the second sum in (3.9). Finally, accounting
for the sum of squared distances between each point aij and each candidate cluster center
xij, we arrive at the following formulation for convex clustering:

minimize
xij

K∑
i=1

N
K∑

j=1
||aij − xij||2 + γ

K∑
i=1

N
K∑

j=2
||xi1 − xij|| + γ

K∑
i=2

||x11 − xi1||, (3.10)

where the minimization is with respect to the variables xij ∈ Rd, i = 1, ..., K, j = 1, ..., N
K

,
and γ > 0. Note that problem (3.10) is not equivalent to the analog of (3.1) below:

minimize
K∑

i=1

N/K∑
j=1

||aij − xij||2 + γ
∑

||xij − xlm||, (3.11)

where the second sum includes the differences between each pair of variables xij and xlm.
Implementing (3.11) in a parallel environment would result with high costs of commu-
nication and ineffective parallelization. However, extensive numerical results show that
solving (3.10) yields effective clustering methods.

It is also useful to associate to problem (3.10) a graph G = (N , E), where N is the set of
N nodes, each corresponding to a single variable xij, i = 1, ..., K, j = 1, ..., N

K
, and E is the

set of edges (i, j) ∼ (l, m), such that there is an edge between nodes (i, j) and (l, m) if the
second sum in (3.10) involves the term ||xij − xlm||. Figure 3.1 illustrates graph G on an
example with K = 4 nodes and N

K
= 4 data points per node. In Fig. 3.1, x11 corresponds

to the master center; xi1, i > 1 correspond to node (worker) i center; and xij, i > 1, j > 1
correspond to the remaining candidate clusters. Formulation (3.10) penalizes differences
||xij − xlm|| for those pairs of xij and xlm for which an edge in G exists.

110 Chapter 3. A dual distributed optimization method

Figure 3.1: Illustration of graph G and structure of problem (3.10)

In view of the graph-based representation of (3.10), the original convex clustering in (3.1)
is recovered when G is replaced with the full (complete) graph. Similarly, (3.10) may be
seen as a weighted convex clustering [115], where unit weights are added for those pairs
of xij’s and xlm’s where (i, j) ∼ (l, m), and zero weights are added elsewhere.

Note that we do not assume beforehand any knowledge of the “structure“ or “distribu-
tion“ of data across different nodes. Also, the graph construction is independent of the
actual values of the data points aij’s. In other words, the graph construction is arbitrary
with respect to the available data. Extensive numerical results (See Section 3.3), show
that this leads to accurate clustering solutions. We adapt this approach because the al-
ternative, “data-driven“ graph (weights) construction, as e.g. done in [109], incurs high
computational cost and communication coordination among nodes. Data-driven centers
and graph assignments are left for future work.

The problem can now be reformulated, in order to apply ADMM, as follows:

minimize
K∑

i=1

N
K∑

j=1
||aij − xij||2 + γ

K∑
i=1

N
K∑

j=2
||xi1 − xij|| + γ

K∑
i=2

||x11 − yi1||

s.t. yi1 = xi1, i = 2..K.

(3.12)

In other words, we introduce, for each node’s center xi1, i = 1, ..., K, an auxiliary variable
yi1 and add the constraint yi1 = xi1 to keep problem (3.12) equivalent to (3.10). Clearly,
variables in (3.12) are then {xij}, i = 1, ..., K, j = 1, ..., N

K
, and yi1, i = 1, ..., K. We

3.1. Background theory 111

now dualize the constraints in (3.12) and form the Augmented Lagrangian function Lρ :
RNd × RKd × RKd → R as follows:

Lρ(x, y; λ) =
K∑

i=1

N
K∑

j=1
||aij − xij||2 + γ

K∑
i=1

N
K∑

j=2
||xi1 − xij|| + γ

K∑
i=2

||x11 − yi1||

+
K∑

i=2
λT

i (yi1 − xi1) + ρ

2

K∑
i=2

||yi1 − xi1||2,

(3.13)

where ρ > 0 is a penalty parameter. In (3.13), we denote by x ∈ RNd the vector that
stacks all the xij’s one in top of another, and by y ∈ RKd the vector that collects all
yi1’s one on top of another. We now apply ADMM in (3.4)-(3.6) with respect to the
Lagrangian Lρ in (3.13) to solve (3.12). After decomposing x and y back to blocks xij’s
and yi1’s, it can be verified that (3.4)-(3.6) translates into the set of updates in (3.14) -
(3.17), as follows:

• x update on each worker node i = 2..K in parallel:

xk+1
ij = argmin

N
K∑

j=1
||aij − xij||2 + γ

N
K∑

j=2
||xi1 − xij||

+ (λk
i)T (yk

i1 − xi1) + 1
2

ρ||yk
i1 − xi1||2

(3.14)

In (3.14), the optimization is (jointly) with respect to xij, j = 1, ..., N
K

.

• x update on the master node:

xk+1
1j = argmin

N
K∑

j=1
||a1j − xk

1j||2 + γ

N
K∑

j=1
||x1j − x11|| + γ

k∑
i=2

||x11 − yk
i1|| (3.15)

Note that the optimization in (3.15) is (jointly) with regard to x1j, j = 1, ..., N
K

.

• y update on master node:

yk+1
i1 = argmin

K∑
i=2

(λk
i)T (yi1−xk+1

i1)+ 1
2

ρ
k∑

i=2
||yi1−xk+1

i1 ||2+γ
K∑

i=2
||xk+1

11 −yi1||. (3.16)

Note that minimization (3.16) is with respect to (jointly) variables yi1, i = 2, ..., K.

112 Chapter 3. A dual distributed optimization method

• λ update on master node:

λk+1
i = λk

i + ρ(yk+1
i1 − xk+1

i1) (3.17)

Note that all the λi’s, i = 2, ..., K, are updated at the master independently, in
parallel.

Regarding inter-node communications (variable exchange), the procedure is as follows.
Assume for simplicity that all the λ’s, x’s and y’s are initialized to zero. Then, after the
master and the worker nodes update x according to (3.14) and (3.15), each worker i sends
its new center variable xk+1

i1 to the master. After the master performs y and λ updates as
in (3.16) - (3.17), it sends variables yk+1

i and λk+1
i to worker i, i = 2, ..., K. The “sending“

of results does not have to be explicit sending, it can also be a synchronization, depending
on the parallelization framework (see more details in Section 3.2).

Regarding (3.14)-(3.17), at each iteration, each node and the master solve problems (3.14)
and (3.15). These problems are of SON type, but with a sparse, star graph of SON
penalties, and of variable size that is K times smaller than (3.10) and (3.11), hence
enabling scalability. Hence, for sufficiently large K, an efficient solver for moderate-
sized SON problems can be adapted to solve (3.14) and (3.15), e.g., [112]. Actually, as
detailed later, we used CVXPY [143, 144] as a general convex solver to solve (3.14)-(3.15).
Update (3.17) is clearly a cheap update. Finally, (3.16) is done closed form by evaluating
a proximal operator block-thresholding for the 2-norm [109].

Note that formulation (3.10), unlike (3.11), does not guarantee perfect cluster recovery
for any γ > 0. However, we observe numerically that, for the solution {x∗

ij} of (3.10), an
approximate clustering structure emerges. That is, the {x∗

ij}’s cluster into a number, say
K ′, different groups, such that the x∗

ij’s within the same group are mutually very close.
This motivates the following merging procedure.

Algorithm 2 shows the merging procedure, that is being applied after (3.14) - (3.17)
converges. The first stage of merging is applied locally on each node. The threshold
values ϵi and ϵ are positive numbers, used to filter the possible centers x∗

ij. We assign
the first candidate point as a first center, and check the rest of the points. All those
points that are close (within ϵi distance) to the points already marked as centers are
being ignored. In the opposite case, a point is denoted as a new center. The second
step is to merge the obtained local centers on the master node. This means that all the
obtained local centers need to be synchronized on the master node first. The value ϵ is
calculated by using the average distance between the obtained local centers. Then, the

3.1. Background theory 113

Algorithm 2 Merging procedure of possible centers
On each node i locally, in parallel:

Require: ϵi, i = 1, ..., K; ϵ; initialize the list of local cluster centers Ci = {}
for all possible center candidates x∗

ij do
for already accepted centers cil ∈ Ci do

if ∥x∗
ij − cil∥ ≤ ϵi then

omit x∗
ij from centers Ci

else
include x∗

ij to centers Ci

end if
end for

end for
return the found local centers Ci = {ci1, ..., ciPi

}, where Pi is the number of local
centers found at node i
On master node:

Require: ϵ;, All possible center candidates from the nodes: Ci, i = 1, ..., K
Require: initialize the list of final centers C = Null

for all possible center candidates from all nodes cij ∈ Ci, i = 1, ..., K do
for already accepted centers cl ∈ C do

if ∥cij − cl∥ ≤ ϵ then
omit cij from centers C

else
include cij to centers C

end if
end for

end for
return the found centers C = c⋆

1, ..., c⋆
P ′ , where P ′ is the final number of centers

same merging procedure is applied as before. The result is a set of centroids on the output
of the algorithm. It is important to perform this twofold merging procedure, as the result
of first phase of merging is a local set of centers that a worker found, that may and should
partially overlap with the sets of centers found by other workers.

This means that we keep each next candidate for centroid only if its distance to previously
kept centroids is larger than ϵ. Then, this whole set of already reduced subsets of possible
centers from all nodes is being analyzed by the master node in the same manner. The
output of this process is the set of resulting centers.

The pseudocode for the described clustering algorithm is shown in Algorithm 3, where the
overall proposed clustering method is summarized. After (3.14)-(3.17) converges and the
merging procedure is applied as described in Algorithm 2, the master node makes the final
centers available to the worker nodes. Then, each worker assigns its local data points to
the cluster that corresponds to the nearest center, by assigning the corresponding labels.

114 Chapter 3. A dual distributed optimization method

Algorithm 3 Pseudocode for the proposed algorithm
Require: global tuning parameters γ and ϵ⋆, and at each node i: aij, j = 1, ..., N

K

repeat
Compute xk

1j on master as in (3.15)
Compute xk

ij for each worker i = 2..K in parallel as in (3.14)
Compute yk

i1 on master as in (3.16)
Compute λk

i on master as in (3.17)
until a stopping criterion is met
Merge the possible centers as described in Algorithm 2

Require: on each node i the final list of global centers C = c⋆
1, ..., cP ′

⋆

for all local data points aij on each worker i, in parallel do
assign point aij to cluster c⋆

l where mint=1,...,P ′∥aij − c⋆
t ∥ = ∥aij − c⋆

l ∥
end for

The algorithm works with 2 tunable parameters, γ and ϵ. Choosing a large value for the
regularization parameter γ naturally enforces more overlapping centroids. On the other
hand, choosing a small value for the parameter can result in only slightly moving the
centers, producing large distances between the gathered points, and hence a too large
number of clusters. A discussion on choosing the value for parameters γ is given later, in
the section dedicated to experimentation.

The adjustable parameter ϵi, needed during the merging procedure, can be chosen on
different ways. The proposed approach here to choose ϵi, i = 1, ..., K is the following:

ϵi = 2K2

ϵ⋆ × N(N − K)

N
K∑

j=1

N
K∑

l=j

∥aij − ail∥, (3.18)

where ϵ⋆ is a tunable input parameter, that can also be set to a universal, data and
problem independent, constant value, e.g., equal to 5 or 10. The formulation in (3.18)
means that each node calculates the average euclidean distance between the points in its
own data chunk and divides the result by a constant value ϵ⋆. Similarly, the parameter ϵ

can be calculated on master, based on the average euclidean distance between the locally
obtained centers as follows:

ϵ = 2
ϵ⋆ × P (P − 1)

P∑
j=1

P∑
l=j

∥cj − cl∥, (3.19)

where P = P1 + ... + PK is the overall number of locally obtained centers on all nodes and
the sum in (3.19) involves all elements from the union of sets Ci, i = 1, ..., K. Calculating
ϵi as in (3.18) involves only pairwise distances within single workers data, which is only
O(N2

K2) pairwise distances. That is, across all nodes, we calculate O(K × N2

K2) pairwise

3.2. Implementation 115

distances. Compared with O(N2) pairwise distances, needed with sequential weighted
SON clustering approaches, like for example AMA [36], it is significantly cheaper for
sufficiently large number of workers K. Alternatively, the sums in (3.18) may be replaced
with minimum, i.e. to consider minimal within-workers data distances. This means that,
when performing the merging of the local centers, the value of ϵ on the master can be
used by calculating it in the same manner as in (3.18), with the only difference that the
distances of local centers are considered instead of the distances of data points.

Algorithm 2 may be seen as a simple instance of a pairwise clustering method; see, e.g.,
[145]. Intuitively, solving (3.10) usually brings the x⋆

ij’s that correspond to the data points
aij’s within a single “true” cluster very close to each other, but it may not make them
exactly equal up to the full accuracy. Therefore, a simple pairwise clustering method in
Algorithm 2 is introduced to fine-tune the results achieved by solving (3.10). Note that
Algorithm 2 involves O(K × N2

K2) pairwise comparisons across all nodes, and hence again it
scales well when K is large. We also report that Algorithm 2 allows for a cheap polishing
of the results, typically incurring 11.6% of the overall execution time of Algorithm 3, on
average.

3.2 Implementation

The implementation of Algorithm 3 is developed in Python, using the COMPSs [5] frame-
work for parallel execution. COMPSs offers a simple programming model with the aim
to facilitate the parallelization process. It has been widely adopted and extended in nu-
merous scientific projects offered as a tool to develop scientific applications and optimize
their execution on distributed infrastructures. The testing has been performed using the
AXIOM computing facility, as well as for the primal methods described in the previous
chapter.

The Python implementation relies on the CVXPY [143, 144] package, used for the min-
imizations described in (3.14)-(3.15). The PyCOMPSs framework [116] (COMPSs for
Python) enables a convenient way for parallelization, by simply annotating a function
as a task. However, this requires a proper data format and distribution, as well as a
synchronization point, where the results of execution on different processes are being col-
lected into a predefined data structure. As the parallelization for the primal methods
was developed in MPI, it is of interest to exploit another, alternative approach. The
parallelization offered by PyCOMPSs is of higher level and more user-oriented than MPI.
This transparency reduces the level of control in the hands of programmers and naturally
may be less efficient than MPI. However, it is valuable to collect impressions about these

116 Chapter 3. A dual distributed optimization method

Figure 3.2: Example of a 2-dimensional data set of a small volume.

frameworks and compare them from different aspects. This section provides a detailed
explanation of implementing the described algorithm in Python, using PyCOMPSs as a
tool for parallelization. The implementation of the algorithm is open-source and can be
found on GitHub [2].

3.2.1 The input data

The input data is read from a file and resized from its 2-dimensional form to a 3-
dimensional form workers × chunk_size × d, where workers is the number of nodes
operating (defined as an input parameter) and chunk_size = N

K
. The data points are

being distributed in consecutive chunks as read from files. This means that the data
distribution across workers is not “informed“ and is arbitrary, i.e., each worker usually
contains a mixture of data points that should belong to different clusters. The tests are
based on both synthetical and real data sets. The synthetical data sets were generated in
order to test the scalability and the accuracy of the algorithm. The data sets were gener-
ated by using a samples generator from the scikit-learn package [146]. Fig. 3.2 represents
an example of a generated 2-dimensional data set of small volume. It contains 30 points,
with clearly distinguishable clustering into 3 clusters.

Large synthetic data sets are generated as Gaussian mixture models [147]. We con-

3.2. Implementation 117

Figure 3.3: t-SNE for an example of the generated 3-dimensional data set of larger volume.

sider mixtures of k multivariate Gaussian distributions with mean µi and covariance
Ei, i = 1...k. The values for µ are d-dimensional points generated randomly, but from
different intervals for each Gaussian k, in order to ensure that they will be distant enough
to represent separate clusters. Also, the values for σ are generated randomly, from one
interval for the diagonal part and from another one for the upper triangular part. Re-
garding the value of π, the same value of π = 1

k
was used for each Gaussian. Fig. 3.3

shows the t-SNE embedding [148] for an example of generated data. The data set size is
3000 points here, with dimension 3 and 5 clusters.

3.2.2 The stopping criterion

The stopping criterion implemented here is the usual stopping approach for ADMM. It
requires implementing (3.7)-(3.8).

The residuals are being calculated at the end of each iteration, when the master process
has access to all results, obtained by the workers. The threshold values ϵpri and ϵdual are
also being recalculated at each iteration as follows:

ϵpri = α
√

N + βmax{||xk||, || − yk||}, (3.20)

118 Chapter 3. A dual distributed optimization method

ϵdual = α
√

N + β||λk||. (3.21)

Here, α ∈R and β ∈R represent the absolute and relative tolerance values, respectively.
These values can be set as input parameters and their default values are α = 10−4 and
β = 10−2. This means that both the residuals and the threshold values are being updated
at the end of each iteration k, based on the values xk, yk and λk.

3.2.3 The parallel implementation of the ADMM-based convex
clustering algorithm

Developing a parallel algorithm in PyCOMPSs is nearly as simple as developing a serial
implementation. A function or method needs to be annotated with a decorator @task.
This means that the function/method that follows represents a place for parallel execution.
The @task decorator can have parameters, that for example describe the input/output
types for tasks. Before invoking a task, there are a few important aspects to note. First,
we need to prepare the input data for a task properly. This means that we should have
a data structure, for example a list of arrays, that can be divided between the workers,
so that each worker does the computation on a separate data chunk. Practically, this
means reshaping the data structure so that it contains K sub structures for the workers.
Particularly, the input data a, the primal variables x and y, as well as the dual variable λ

are organized as lists of arrays. Every list contains K arrays, one for each worker, where
the shapes of these arrays correspond to definitions given before. Listing 3.1 shows the
setup of these structures.

Listing 3.1: Preparing the data structures for parallel execution, Python
N=A. shape [0]
d=A. shape [1]
chunk_size =N// workers
a=[A[i* chunk_size :(i+1)* chunk_size] for i in range (workers)]
x=[np.zeros ((chunk_size , d)) for i in range (workers)]
y=[np.zeros ((d)) for i in range (workers -1)]
y=np. asarray (y)
lambdaVal =[np. zeros ((d)) for i in range (workers -1)]

We use functools from Python standard library, that offers higher-order functions and
operations on callable objects. Specifically, we use the function partial, that is able to
return a partial object. When that object is called, it behaves like the function from its
arguments. When combined with map, the following call can be made:

3.2. Implementation 119

list(map(functools.partial(update_x, rho, gamma, d),
a[1:workers], x[1:workers], y, lmbd))

This enables calling the function update_x on each worker, with scalar valued parameters
rho, gamma and d, that are the same values for all workers. The rest of the parameters,
a[1:workers], x[1:workers], y and lmbd, are being sent “partially“, by chunks, so
that each worker gets the following chunk. This makes the synchronization process eased
afterwards.

The code snippet in Listing 3.2 shows the definition of the function update_x, that
is being executed as a task. The @task decorator specifies the return type as array.
The function creates the CVXPY variable for the solution and sets up the minimization
problem. The function objective_x directly implements the previously defined objective
function. Finally, the CVXPY solver solves the problem and returns the solution on each
worker separately.

When the workers complete the task, they can return the results to a joint list. However,
it is still needed to do an explicit synchronization after task execution, in order to collect
the results correctly. This ensures that all workers finished the execution and put the data
to the resulting structure. Different function exist for synchronization in the framework.
We used the @compss_wait_on in our implementations for this purpose.

Listing 3.2: The definition of a task function, in PyCOMPSs
@task (returns =np.array)
def update_x (rho , lmbd , d, a, x, y, lambdaVal):

sol=cp. Variable (a.shape , value=x)
problem =cp. Problem (cp. Minimize (\

objective_x (a,sol ,lambdaVal ,y,rho ,lmbd ,d)))
problem . solve ()
return sol.value

The main loop of the algorithm is displayed in Listing 3.3. During the main loop of the
algorithm, the update of x is performed in parallel as a task, and the rest of updates is
carried out afterwards, on a single (master) node.

When the convergence criteria are met, the algorithm breaks the loop. It is convenient
that the synchronization is already done at this point, so there is no need for spreading
a break signal among processes, as we are working with only one process when checking
the termination condition.

120 Chapter 3. A dual distributed optimization method

Listing 3.3: The main loop of Algorithm 3
for i in range (num_iter):

x[0]= update_x_zero (a[0],x[0],y,lmbd , workers)
x[1: workers]= list(map(functools . partial (update_x ,rho ,lmbd ,d), \

a[1: workers],x[1: workers],y, lambdaVal))
x[1: workers] = compss_wait_on (x[1: workers])
y_old=y
y= y_update (lambdaVal ,x,y,rho ,workers -1,d,lmbd)
lambdaVal = lambda_update (lambdaVal ,rho ,x,y,workers -1)
#The stopping criterion
primal_res =np.sqrt(np.sum ([(np. linalg .norm(x[i][0] -y[i -1])**2) \

for i in range (1, workers)]))
dual_res =np. linalg .norm(- rho *(y-y_old))
eps_pri =np.sqrt(N)* abstol + reltol * \

max(np. linalg .norm(x),np. linalg .norm(-y))
eps_dual =np.sqrt(N)* abstol + reltol *np. linalg .norm(lambdaVal)
if primal_res <= eps_pri and dual_res <= eps_dual :

req_iter =i+1
break

The merging procedure is performed on each worker separately, as another task, as shown
in Listing 3.4. This corresponds to the merging procedure, described in Algorithm 2. The
final merging of locally obtained centers is done serially, on master.

Listing 3.4: The local merging on workers
@task (returns =np.array)
def merge_centers_locally (epsilon , x, chunk_size , a, data_size):

sumVal =0.0
cnt =0
for i in range (data_size):

for j in range (i+1, data_size):
sumVal += np. linalg .norm(a[i]-a[j])
cnt=cnt +1

avg_dist = sumVal /cnt
eps = avg_dist / epsilon
centers =[]
removed_indices =[]
for i in range (0, chunk_size):

if i not in removed_indices :
centers . append (x[i])
for j in range (i+1, chunk_size):

if np. linalg .norm(x[i] - x[j]) <= eps:
removed_indices . append (j)

return centers

3.3. Experimentation 121

The function for the final merging is similar as the local function from Listing 3.4, see
the GitHub repository for more details [2]. COMPSs enables running this kind of code
on different distributed infrastructures. The fact that the algorithm is operating on a
computing cluster without the need for explicit data exchange inside the code is directly
showing the advantageous ease of development. All the data exchange within cluster nodes
is completely transparent, which makes this high-level approach for parallel application
development very appealing.

3.3 Experimentation

In this section, the aim is to assess the quality of different aspects of the distributed
ADMM-based convex clustering algorithm. Particularly, the tests performed on small,
2-dimensional data sets are appealing for plotting and evaluating the properties of the
algorithm. One of the main ideas is to monitor the accuracy of the solution, which is
straightforward with data sets generated under controlled conditions. For these synthetic
data sets, the number of expected clusters is known in advance, which makes the first
stage of the evaluation simpler. However, we will also include other accuracy metrics, as
silhouette score and comparison with the results of plain k-means clustering. The second
key aspect is the evaluation of performance. The scaling properties of the algorithm will
be demonstrated through a set of tests on different data sets. A real, industrial, highly
relevant data set is also used for evaluation. The real data used for the tests are gained
through collaborations on a H2020 project, I-BiDaaS [47].

A few different sets of experiments can be identified during the evaluation process. First,
we discuss the time consumption of different parts of the algorithm. This is useful in
order to identify possible bottlenecks. Further, the focus is on accuracy evaluation, where
these analyzes include measuring the percentage of accurately clustered points, where a
ground truth is known. We use a small, synthetic data set and the Iris data set [149, 150]
here. Additionally, we observe the accuracy of some large, synthetic data set, by means
of silhouette score values and comparison to k-means. We also evaluate the scalability of
the proposed method, on some large, synthetic data sets, generated as Gaussian mixtures.
The evaluation also includes a discussion on some aspects of choosing the value for the
regularization parameter γ. A comparison of the proposed method to other clustering
approaches is also given in this section. We compare our approach to the following
alternatives: the SON clustering [37, 30, 38], the AMA method [36], DBSCAN [117],
SSNAL [115] and parallel k-means provided by Apache Spark [21]. We perform the
comparison on the synthetic data sets, generated as Gaussian mixtures. Finally, we also

122 Chapter 3. A dual distributed optimization method

include the results of tests on a mentioned real, industrial data set.

3.3.1 Time consumption of different segments of the algorithm

When considering the time consumption of the different actions during the algorithm
execution, it naturally emerges that the iterative part of algorithm consumes 88.3% of
the overall execution time, on average. The average time spent on reading the input
data is only 0.05%, while the average time needed for the process of merging the possible
centers is 11.6%. These average values are calculated over all the experiments conducted
and mentioned in this chapter.

3.3.2 Accuracy evaluation

In order to gain some insights into the level of accuracy of the developed clustering
implementation, a few approaches are used here. First, we investigate the solution for a
small, generated 2-dimensional data sets, where it is straightforward to plot the results
and gain visual insights. Fig. 3.4 shows an example with 30 2-dimensional data points.
The points belong to 3, clearly separable clusters, as shown by the blue dots on Fig.
3.4. The results of clustering are also shown on Fig. 3.4. Clearly, the algorithm is able
to identify the centers correctly. Fig. 3.4 displays the found centroids, as shown by
the orange dots. These centers are the output from the merging mechanism. When the
stopping criterion is met, the center candidate points, that are “close“, by the definition
of ϵi (3.18) are being aggregated. It can be seen that the algorithm properly detected the
existence of 3 clusters and assigned the points to the clusters accurately.

It is also interesting to examine the points that are candidates for centroids, i.e. the
values of the primal variables x and y, after the algorithm converges, before applying the
merging of centroids. Fig. 3.5 shows all the candidate points for centroids. It can be
observed that the points are moving towards each other on the level of one cluster, but
also globally. This example meets the termination condition in only 7 iterations, and after
applying the merging, it results with 3 centers.

Beside these visual inspections of the results, some reliable accuracy proofs are also needed,
in order to ensure the algorithm is working as intended, especially for larger data sets. The
best approach is to use the ground truth, when available. Comparing the results with the
clearly defined expected cluster labels provides the most reliable clustering accuracy, that
can be expressed through the percentage of accurately clustered points. When obtaining
the percentage of accuracy, it should be taken into account that we are interested in

3.3. Experimentation 123

Figure 3.4: Results of clustering for a generated data set 30x2, γ = 0.3,ϵ⋆ = 2

Figure 3.5: All centroid candidates for a generated 30x2 data set

assigning the points to the same cluster, when they have the same real cluster label.
Naturally, the found label can differ regarding the real label. For example, the algorithm
can converge and assign the points to clusters accurately, but denoting the points with
label ’x’, where the label for that cluster was ’y’ in original. This can be easily solved
by designing the accuracy checking algorithm so that it tries all the combinations for
cluster labels and takes the one with the best accuracy. The accuracy evaluation, when
the ground truth is known, can be illustrated on a common example of the Iris [149, 150]
data set. This means dealing with a higher-dimensional data set, where the clusters are
mainly distinguishable by the nature of the underlying data.

As already stated, when the ground truth is available, we evaluate the clustering accuracy

124 Chapter 3. A dual distributed optimization method

Table 3.1: Accuracy comparison for different clustering algorithms on the Iris data set

Algorithm Parameters Number of clusters Accuracy (%)
ADMM-based convex clustering γ = 40, ϵ⋆ = 5 3 93.33%
k-means k = 3 3 88.66%
AMA γ ∈ [4.3, ..., 9.1] 3 90.66%

as the percentage of correctly classified data points. The Iris data set [149, 150], is
available in scikit-learn. It contains 3 different classes of the plant Iris. It has 4 attributes
and 150 samples. Based on these attributes, a clustering algorithm could identify the
existence of 3 clusters (see Table 3.1). We executed the ADMM-based convex clustering
algorithm on this data set and obtained the 3 clusters. In order to further analyse the
results, we compared the obtained labels to the real, known labels. It turns out that our
algorithm assigned 93.33% of the data points to the correct cluster. It should be also
mentioned that it assigns all data points belonging to the first cluster accurately, while it
makes some ‘mistakes‘ with the second and third cluster. The nature of the data directly
affects this, as the mentioned two clusters are ‘close‘ to each other. In fact, running
the standard k-means algorithm on this data set for different values of k, results with
a highest silhouette score value of 0.68 for k = 2. This can be also easily seen on the
t-SNE embedding of the data set, in Fig 3.6. Table 3.1 also contains the percentages of
accurately clustered points for the standard k-means algorithm (with the preset value of
k) and for the AMA method [36] as well, for reference. When running plain k-means for
k=3, the percentage of points accurately clustered is 89.33%. As these evaluation showed,
our method can perform as accurately as (or even more accurately than) k-means with a
correctly predefined value for k. In order to further investigate this test case, we also run
the AMA method [36] on this data set. By setting the parameter γ appropriately, it is able
to find the 3 clusters with 90.66% of points clustered accurately. This shows that the 3
different clustering algorithms perform with a similar degree of accuracy on this data set.
This is illustrated on Fig. 3.7. It shows the accuracy percentage related to the value of
the input parameter γ. The accuracy percentage of k-means is independent regarding the
value of the input parameter γ. Different initializations for k-means, meaning the usage
of alternate algorithms as ’elkan’ and ’full’ or number of runs with different centroid seeds
set to {5, 10, 100}, always result with the same level of accuracy of 89.33% on this data
set. The AMA method has its range γ ∈ [4.3, ..., 9.1], where it produces the highest
accuracy. All values of γ that are out of this range affect significant decrease in clustering
accuracy. The similar holds for ADMM-based convex clustering, except that this range
of values giving the highest accuracy is significantly broader. Intuitively, even outside

3.3. Experimentation 125

Figure 3.6: The t-Sne embedding of the Iris data set

Figure 3.7: The accuracy values of different methods on Iris data set

of the range of γ for which a SON-like clustering is exact, in a vicinity of this range,
“SON-like clustering still produces nearly-exact“ clustering - that is then harnessed for
correct clustering - via the merging procedure.

Let us consider an additional example, where a graph G of data points is as on Fig.
3.8. The different colors of points denote different clusters, where the points should be
assigned. This data set contains only 10 2-dimensional points, in order to make it easier to
plot and evaluate. 3 different clusters of points can be identified, based on the coordinates
of the points. It is envisaged to work with 4 workers in this case. The first worker only
has one point, while the rest of them have 3 data points each. Each of the 3 data points

126 Chapter 3. A dual distributed optimization method

Figure 3.8: The graph for evaluation

(a) The data set for evaluation (b) The resulting clustering for
γ = 1.5 and ϵ⋆ = 5

Figure 3.9: The data set and clustering

on a worker should belong to a different cluster, which makes the problem challenging.
The 3 clusters are clearly separable, as shown on Fig. 3.9 (a). The algorithm is able to
cluster the points with 100% accuracy, for ϵ⋆ = 5 and γ ≤ 10. Fig. 3.9(b) demonstrates
the resulting cluster centers.

As the ground truth for clustering is not always available, some additional accuracy met-
rics can be used in order to assess the outcomes of clustering. Silhouette score is a common
and widely-used way to evaluate a clustering approach, so it is included as an accuracy
metric in our experiments. First, after obtaining the cluster centers, a label that corre-
sponds to one of the resulting clusters is needed to be assigned to each data point. This
can be simply achieved by computing the Euclidean distance of each data point to each
center, and taking the least one to label the data point. This can be done in parallel on
the workers, when each workers has access to the final centers. Then, the silhouette score

3.3. Experimentation 127

Table 3.2: Accuracy evaluation for higher dimensional data sets

Data size γ ϵ⋆
clusters

ADMM-based
convex clustering

clusters
k-means

ADMM-based
convex clustering

s.score

k-means
s.score

1000 × 3 5.0 4 8 8 0.76 0.76
5000 × 3 6.6 2 4 4 0.77 0.78
5000 × 5 6.6 2 5 4 0.62 0.75
10000 × 3 6 5 10 10 0.69 0.75

value can be easily obtained.

The accuracy of the algorithm is also tested for large higher-dimensional data sets. These
data set are generated as Gaussian mixture models, as described earlier (see Section
3.2.1). In order to visualize the results, t-distributed stochastic neighbor embedding (t-
SNE) [148] will be used. Let us consider a few higher-dimensional data sets. Table 3.2
shows the results for these experiments. It can be seen that the algorithm is mostly able to
identify the expected number of clusters, with high silhouette score values. Additionally,
the scikit-learn k-means algorithm results mostly with the same number of clusters and
similar values for silhouette score.

Fig. 3.10 shows the t-SNE embedding for a 1000 × 3 generated data set. The data
points are colored according to their cluster labels, obtained by our ADMM-based convex
clustering algorithm. It represents an example where our clustering algorithm clusters the
data points accurately to the expected clusters, that also corresponds to a high silhouette
score value.

Based on the described experiments, it can be concluded that ADMM-based convex clus-
tering can perform with high accuracy. The accuracy of the algorithm is compatible with
the accuracy level of k-means clustering and the AMA method.

Additional accuracy metrics

The accuracy level of the performed tests was represented by silhouette score, which
is a commonly used approach for clustering. However, there exists a set of additional
metrics for this purpose. One of them is the Dunn Index (DI) [151]. Dunns Index is
equal to the minimum inter-cluster distance divided by the maximum cluster size. This
practically means that large inter-cluster distances (better separation) and smaller cluster
sizes (more compact clusters) lead to a higher DI value, which represents better clustering.
The validclust package provides this metric. We can test this metric on an example.

128 Chapter 3. A dual distributed optimization method

Figure 3.10: t-SNE embedding for clustering over a synthetical data set of size 1000x3

For instance, let us take our smallest data set with size 30 × 2 data points. The DI is
2.53, in the setup where the silhouette score is also high, 0.89.

Another useful metric is the Davies-Bouldin score [152]. It represents the average sim-
ilarity measure of each cluster with its most similar cluster. Similarity is the ratio of
within-cluster distances to between-cluster distances. This means that further clusters
that are less dispersed will result in a better score, i.e. lower values represent better
clustering here. The metric is available in the scikit-learn library. Let us demonstrate the
metric with the same example as for DI. For the 30 × 2 data set, we get 0.13 for Davies-
Bouldin score, when the silhouette score is 0.89. These approaches support the trends
presented by silhouette score, and can be used as additional metrics here. However, the
silhouette score is still a baseline for our tests, as its value is limited from -1 to 1, so it
gives a clear representation of the quality of the results.

3.3.3 Scalability evaluation

In order to evaluate the scaling properties of the parallel ADMM-based convex clustering
algorithm, different data sets will be used to run on a computer cluster with different
numbers of working nodes. All the data sets in these experiments are generated as Gaus-

3.3. Experimentation 129

Figure 3.11: Scaling properties for the data sets with 1000 samples and 3, 5 and 10
features

sian mixtures. One aspect is to evaluate run time with respect to the number of workers.
Here, we assume a fixed-sized data set is partitioned into an increasing number of workers.
Another aspect is to see how the changes in number of features influences the execution.
Finally, these tests can provide an insight into the most appropriate number of working
nodes for each data set, i.e. the number of nodes that produces the lowest execution time
on the data set. There is always a tradeoff between communication and computation in
parallel systems. Splitting the computation to smaller chunks, i.e. adding more nodes,
reduces the time required for computation. However, the process of communication/syn-
chronization is becoming more time consuming when increasing the number of nodes.
Therefore, an optimal point (a particular number of workers) can be found, where these
two aspects are best balanced.

Figs. 3.11, 3.12 and 3.13 represent the scaling properties of the algorithm, by showing
the execution timings for different data sets and different number of workers. Fig. 3.11
displays the experiments for 3 data sets, where the number of samples is the same value
1000, but the number of features is different for each data set (3,5 and 10 features). It
can be seen that the algorithm scales well here. Increasing the number of worker nodes
reduces the execution time until reaching the optimal point of workers for the data set.
After that point, the execution time starts to increase, as the cost of having more nodes
is then higher than the gains of parallelization. For the 1000 × 3 data set, the optimal
number of nodes is 8, for 1000 × 5 is 10 and for 1000 × 10 is 10 as well.

Fig. 3.12 displays the tests for 3 data sets with 5000 samples and 3,5 and 10 features. It
can be seen that the algorithm scales well and it is straightforward to identify that the
optimal number of nodes for each data set: 12, 20 and 30 respectively. However, there

130 Chapter 3. A dual distributed optimization method

Figure 3.12: Scaling properties for the data sets with 5000 samples and 3, 5 and 10
features

Figure 3.13: Scaling properties for the data sets with 10000 samples and 3, 5 and 10
features

is a whole range of number of workers where the execution time remains similarly low.
Increasing the number of working nodes reduces the execution time until reaching the
optimal range of workers for the data set. The execution time remains approximately the
same, within the frames of the conducted experiments. Further increasing the number
of workers could lead to execution time increase at some point, as the cost (in terms of
communication/synchronization) of having more nodes would then be higher than the
gains of parallelization. At some points, the execution time of a larger data set can be
slightly lower than the execution time for a smaller data set. The reasons for this could
be various, including latency caused by a particular node, but also the nature of the

3.3. Experimentation 131

particular data in the data set. It should be kept in mind that measuring the execution
time of a synchronous parallel program always subsume waiting for the slowest process
to terminate. The difference compared to Fig 3.11 is that there is a larger gap between
the optimal number of points when changing the number of features, as we have a data
set with larger number of samples now. The behaviour of the algorithm in these 3 cases
is similar.

Fig. 3.13 shows the scaling properties for 3 data sets with 10000 samples and again 3,
5 and 10 features. The algorithm scales well here, as expected. The optimal number of
workers is 35, 25 and 25 respectively, but also stays close to this optimal value for a range
of different number of workers. It seems strange that we do not have the distribution for
optimal points as expected: lower value for less features, higher value for more features.
However, this observation is not completely true. The reason is the following: we start
with small number of workers and very high execution times. As we increase the number
of workers, the execution time rapidly drops, and once it is reduced to certain level, it
remains close to that value for further increased number of workers. As a result, the
mention optimal number of workers corresponds to the lowest execution time, but that
timing is only slightly different for a whole range of tests with different number of nodes.

The displayed experiments showed that the developed algorithm exposes good scaling
properties and that the gains of parallelization are evident. The execution time decreases
nearly linearly with the number of workers in the experimental range of workers consid-
ered.

3.3.4 Choosing the value for the parameter γ

It is well-known that, with SON clustering, parameter γ critically influences performance.
The magnitude of this parameter determines the size of steps the algorithm will take
during the iterations. The number of clusters for a very small γ equals the number of
data points. As γ increases, the number of clusters typically reduces. For gamma above
a large threshold, the number of clusters equals one. For all-pair-penalty in [113, 114],
SON clustering guarantees to find exact clustering structure, if it exists, for a range of γ.
In practice, one can start with a small γ and re-solve the SON problem multiple times,
each time increasing γ by a multiplicative functor. This is also known as clusterpath [38].
With our approach, for a fixed ϵ, we observe a similar behavior: the number of clusters
reduces when we increase γ, while for a range of γ, we obtain exact recovery (Figs. 3.4,
3.7, 3.10).

We illustrate clusterpath on an example with 30 × 2 data points, that is suitable for

132 Chapter 3. A dual distributed optimization method

Figure 3.14: The impact of choosing different values for γ

easily plotting the results, as effects of changes in the value of γ. This data set was
generated using samples generator from the scikit-learn package [146], that generates
isotropic Gaussian blobs for clustering. Fig. 3.14 shows the silhouette score values and
the number of obtained clusters for a set of experiments, performed for different values of
γ. For the value γ = 0.3, the algorithm results with 3 centers and high silhouette score
value. As we increase the regularization parameter, the silhouette score value is getting
lower, as well as the number of clusters. For γ = 3.5, we still have 3 centers, but they are
obviously closer to each other than for γ = 0.3. The silhouette score value is preserved, as
the clustering of the data points in this case remain the same as for γ = 0.3. Increasing
the value further as γ = 5.0, two centers already overlap, resulting with 2 clusters and
lower silhouette score value accordingly. Choosing even larger values for γ forces the
two centers to become even more close to each other. At the end, for γ = 50.0, only 1
center remains, as the candidate points for centers overlap. This can be also seen when
plotting the resulting centers, as shown on Fig. 3.15. This trend can also be illustrated
in a different way. As discussed in [35], a graphical interpretation similar to hierarchical
clustering plot can be created that shows the dependency between different values of γ

and number of centroids. Fig 3.16 shows the effects of γ to the number of clusters, for
the 30 × 2 generated data set. It identifies the values of γ, where the number of cluster
changes and illustrates the ranges of values where the number of cluster centers remains
the same.

An approach to choose γ is to evaluate an initial value γ∗, and search in a neighborhood
of that value. One way to compute γ∗ is as follows:

3.3. Experimentation 133

(a) γ = 0.3 (b) γ = 3.5

(c) γ = 5.0 (d) γ = 10.0

(e) γ = 25.0 (f) γ = 50.0

Figure 3.15: Centroids for different values of γ

Figure 3.16: The effect of changing the value of γ on the number of clusters

134 Chapter 3. A dual distributed optimization method

γ∗ = max
i=1...K

maxj ̸=l{||aij − ail||}
N
K

, (3.22)

Then, we can consider the values γ = { γ⋆

100 , γ⋆

10 , γ⋆ 10 × γ⋆ 100 × γ⋆}.

3.3.5 Comparison with other clustering methods

In this section, we provide a comparison of the developed parallel ADMM-based con-
vex clustering algorithm, to other clustering solutions. The comparison is made for the
following clustering approaches: SON clustering, AMA method, DBSCAN, SSNAL and
k-means from Apache Spark.

Comparison with SON clustering

As it was already stated, the parallel ADMM-based convex clustering algorithm relies on
the idea of Sum Of Norms (SON) clustering, as a convexification of k-means with ADMM
incorporated. A parallel implementation is naturally meant to run faster and to be able
to handle larger data sets. However, in order to investigate the limitations of the serial
SON clustering algorithm, we make a quick comparison here. We implemented the SON
clustering approach as (3.1), in Python and tried to run it on a single computer. The
machine used for the tests has 24 GB RAM and an Intel i5-4590 CPU with 4 × 3.30GHz.
It turns out that the serial approach breaks down quite fast. Using a data set with only
500 samples and 2 features already depletes the resources of the machine and is not able
to be executed.

Furthermore, in order to illustrate the speedup with the parallel approach, we decided
to run the comparison for a data set, that is small enough to produce results with SON
clustering inside a reasonable time frame. A data set of dimension 100 × 2 was generated
and used here. The data set was generated with 2, clearly distinguishable clusters, as
shown on Fig. 3.17. It turns out that SON clustering is able to find the solution during
the first iteration already. The algorithm produced a silhouette score value of 0.79, with
the 2 clusters found. The execution time was 8.95 seconds. We then ran the parallel
ADMM-based clustering algorithm on our cluster environment, although it may seem
as an overkill to expect gains of parallelization on such a small data set. However, the
algorithm converged in 3 iterations with 2 workers, obtaining the silhouette score of 0.79
with 2 clusters found, and with overall execution time of 4.89 seconds. Clearly, the
ADMM-based convex clustering is twice as fast as SON clustering for this small volume
example with 2 workers. It is an expected advantage, that emerges from the nature of

3.3. Experimentation 135

Figure 3.17: The 100 × 2 generated data set

the algorithm. On the other hand, the most important conclusion here is the same level
of accuracy, that our approach exposes when compared to SON clustering.

Comparison with splitting method for convex clustering

In [36], two convex clustering methods are introduced, one based also on ADMM and the
other based on alternating minimization algorithm (AMA). The authors provide a rich
set of results, based on different tests on synthetic and real data. They clearly identify
AMA significantly more efficient. However, the tests described are performed on at most
500 data points, as the subgradient algorithm, used as a benchmark takes a large portion
of time to converge on larger data. The R code for these algorithms is available in earlier
versions of the CRAN [153] repository.

In order to compare the performance of the parallel ADMM-based convex clustering to
this approach, we used only the AMA splitting method, as it is more efficient. We created
an R script that utilizes the AMA approach.

The AMA method defines a function named cvxclust_path_ama as the starting point for
calling the clustering path algorithm. This function expects a set of arguments, at least
the following: a data matrix to be clustered, a vector of prepared non-negative weights
and a sequence of regularization parameters γ. After setting up the weights, the algorithm

136 Chapter 3. A dual distributed optimization method

Table 3.3: The comparison of execution time (in seconds) for AMA and ADMM-based
convex clustering methods

Data
set

AMA
method

ADMM
-based
convex

clustering
4 workers

ADMM
-based
convex

clustering
8 workers

ADMM
-based
convex

clustering
10 workers

ADMM
-based
convex

clustering
20 workers

ADMM
-based
convex

clustering
25 workers

1000 × 3 2.8 12.65 9.73 13.79 11.45 12.24
5000 × 3 17.55 38.38 19.95 16.45 19.35 14.15
10000 × 3 45.46 96.0 51.17 40.84 37.3 22.01
5000 × 5 22.74 39.29 19.65 16.87 16.15 14.37
10000 × 10 100.2 136.76 72.63 59.33 50.23 30.29
200000 × 3 N.A. − − − − 564.1

estimates the convex clustering path. Particularly, it takes each value from the sequence
γ and calls cvxclust_ama, the function that actually performs the convex clustering via
AMA method. In order to be able to compare the performance of the AMA method with
ADMM-based convex clustering, we measure the execution time of cvxclust_path_ama,
for only one value of γ, as it corresponds to our setup, where we run our algorithm once
for some defined parameter value.

We run a set of tests for the AMA method. The machine used for the tests has 24 GB
RAM and an Intel i5-4590 CPU with 4 × 3.30GHz. We also run ADMM-based convex
clustering on the same data sets on our cluster, for different number of workers. The
results of comparison regarding the Iris data set with known ground truth were already
described previously. The results for other data sets are displayed in Table 3.3. It can
be seen that for data sets of smaller volume, the AMA method can perform even better
than our approach. This is observable for the data set with 1000 × 3 points. The AMA
method, available in R language is actually a wrapper around C code, which is a low
level programming language, so the performance is expectably good. Running a smaller
example on a cluster naturally does not pay off as in the cases with higher volume of data.
For a little larger data set with 5000 × 3 points, the performance of the AMA method
is still very close to the performance, that can be obtained on the cluster. However, as
we increase the volume of the data, it becomes obvious that the parallel ADMM-based
convex clustering can perform much better. For the 10000 × 3 data set, it performs 2
times faster, while for the 10000 × 10 data set, it performs 3 time faster, when using
an appropriate number of workers. Enlarging the data set size even further, leads us to
cases where the AMA method cannot be run, as it cannot allocate a data structure of the
defined volume, due to its serial nature. This is the case for the 200000 × 3 data set. The

3.3. Experimentation 137

AMA method cannot obtain the results, but the ADMM-based convex clustering methods
solves the problem for 9.4 minutes with 25 workers. This illustrates the advantage of a
parallel approach, that can solve large scale problems.

Comparison with DBSCAN

The ADMM-based convex clustering algorithm should also be compared to another al-
gorithm where the number of clusters is also unknown in advance. We decided to use
Density-based spatial clustering of applications with noise (DBSCAN) [117] for this pur-
pose. We use the implementation of DBSCAN from the scikit-learn library. By default,
the algorithm uses euclidean distance as a metric for obtaining the distance values. It
accepts a parameter ϵ, representing the maximum distance between two samples for one
to be considered as in the neighborhood of the other. This value can be set according to
the data set. We set the number of samples in a neighborhood for a point to be consid-
ered as a core point to value 2 for all the tests, and run all the tests mentioned before
with DBSCAN in order to catch the results for those ϵ values, that produce the highest
silhouette score.

Table 3.4 lists the results of experiments, containing the number of clusters and silhouette
score for ADMM-based convex clustering, scikit-learn k-means and DBSCAN respectively.
The values for DBSCAN silhouette score assume that there are points labeled as noisy
by the algorithm, that are not assigned to any of the clusters. For the smallest example
(30 × 2 data set), DBSCAN performs in the same manner as our proposed method and k-
means, as the number of clusters and the silhouette scores are the same. Let us consider an
example of a noisy data set, where the clusters are not clearly separated. For an example
of a 40 × 2 data set, where the data is noisy, DBSCAN performs slightly better than
our method, resulting with the highest silhouette score value and (expected) 3 clusters,
but also leaving some points unlabeled. For the bigger, generated data sets, DBSCAN
performs very similar to ADMM-based convex clustering and k-means. For a clearer view,
the silhouette score values for the mentioned test cases are also represented graphically,
on Fig. 3.18. Based on these tests, we can conclude that when a clear cluster structure
exists, both methods perform satisfactorily.

Comparison with SSNAL method

In [115], a semismooth Newton based augmented Lagrangian method for solving large-
scale convex clustering problems was introduced, called SSNAL. It represents an efficient
and robust approach for large-scale problems. The algorithm is developed in MATLAB.

138 Chapter 3. A dual distributed optimization method

Table 3.4: Comparison of ADMM-based convex clustering with DBSCAN

Data set
no

clust.
ADMM

ADMM
s.sc.

no
clust.

k-means

k-means
s.sc.

DB-
SCAN

ϵ

no
clust.
DB-

SCAN

DB-
SCAN

s.sc.

30 × 2 3 0.89 3 0.89 0.5 3 0.89
40 × 2 6 0.39 5 0.57 0.8 3 0.65
1000 × 3 8 0.76 8 0.76 2.5 8 0.75
5000 × 3 4 0.77 4 0.78 2.5 4 0.76
5000 × 5 5 0.62 4 0.75 5.0 4 0.75
10000 × 3 10 0.69 10 0.75 2.5 10 0.75

Figure 3.18: The silhouette score values for a set of tests, for ADMM-based convex
clustering, k-means and DBSCAN

A comparison with the AMA method shows great advantage of SSNAL over AMA, in
execution time. In order to compare ADMM-based convex clustering with SSNAL, we
need a reasonably larger data set, as the performance of a parallel algorithm does not
come to expression, when the expenses of parallelization and syncrhronization are higher
than the gains gathered in computation. The authors in [115] mention the following large
scale problem they tested: they generated a data set with 200000 × 3 points, representing
semi spherical data. For n = 200000, they report the execution time of 374 seconds to
solve the model, for the right choice of input parameters. In order to gain some insight
into the timings of ADMM-based convex clustering, for a data set of same volume, let us
first consider a data set of volume 200000 × 3 generated as a Gaussian mixture model,
as we do not have access to the same data set that was used for SSNAL. The nature of
these data sets differs, but this example serves just to roughly evaluate the behavior of
ADMM-based convex clustering on this volume of data. Let us illustrate the results in
Table 3.5. It can be seen that our proposed approach performs better than SSNAL for

3.3. Experimentation 139

100 workers. It should also be noted, that the presented time for our method also includes
the time spent on merging the cluster centers when the algorithm terminates.

We expect that SSNAL cannot scale as effectively as the proposed approach on larger data
sets due to the serial implementation and calculation of weights that are pair-wise across
all pairs of data in the data set. To further demonstrate this, we evaluated execution times
for weights calculation for data sets of different sizes. Note that the weights calculation
time represents a lower bound on the execution time of the overall SSNAL method.
Therefore, if the execution time of the proposed method is smaller than that of the
weight calculation, it follows that the execution time of the proposed method is smaller
than that of SSNAL overall. We also implement the weight assignment as in [115], and
measure the time required for this kind of preprocessing. Assigning weights according to
the nature of the data is very useful, but the process have a certain cost. We want to
identify how much time is needed for this kind of preprocessing, in order to compare it
to our execution time. The calculation of the weights, as stated in [115], can be done as
follows:

wij =

exp(−0.5||ai − aj||2 if(i, j) ∈ E,

0 otherwise
(3.23)

Here, E = UN
i=1{(i, j)|aj is among ai’s k nearest neighbours, i < j ≤ N}. This kind of

preprocessing is not applicable in this form to ADMM-based convex clustering, due to
its distributed nature. Computing the pairwise distances among points that are assigned
to different workers could be very expensive. However, it is indisputable that assigning
weights could seriously affect the performance of the algorithm afterwards. Therefore, we
analyze the execution time required for obtaining the weights, as well as the execution
time of ADMM-based convex clustering itself. We wrote a Python script, that works
sequentially with sparse data structures, and tested it for 2 data sets and a few different
values of k, used for k-nearest neighbors.

The execution time for different values of k, for the mentioned 2 data sets, are shown in
Table 3.6. For the smaller data set with 200000 × 3 data points and k=10 and k=100,
the required time for weights calculation is low, compared to the overall execution time
of 9.4 minutes on the cluster. However, when increasing k to k = 1000, the time grows to
15 minutes, that is longer than the time required to solve the problem by ADMM-based
convex clustering on the cluster. Considering the larger data set, with 2000000 × 3 data
points, the execution time for weight calculation is extensive. For k = 100, it takes almost
an hour. Setting the parameter k for KNN is always an open issue. However, for a data

140 Chapter 3. A dual distributed optimization method

Table 3.5: The comparison of SSNAL and ADMM-based convex clustering methods, in
terms of execution time

SSNAL
(on

200000× 3
semi spherical

data)

ADMM-based
convex clustering

on 200000× 3
gaussian

mixture data
with 25
workers

ADMM-based
convex clustering

on 200000× 3
gaussian

mixture data
with 50
workers

ADMM-based
convex clustering

on 200000× 3
gaussian

mixture data
with 100
workers

374s 564.14s 744.01s 315.76s

Table 3.6: The execution time required for obtaining the weights

Data set size k for KNN Time
200000x3 10 24.4s
200000x3 100 61.38s
200000x3 1000 959.32s
2000000x3 10 18.46 min
2000000x3 100 59.05 min

set of large volume, as the data sets displayed here, it is likely that a larger value of k
will be needed. This could result with a very time consuming preprocessing step, that
can actually be higher than the execution time for ADMM-based convex clustering on a
cluster, that does not use any proprocessing. Our approach uses pairwise distances only
within workers, when the value of ϵ is being computed, for the merging process.

Comparison with another parallel implementation

The state of the art regarding parallel clustering algorithms is mainly oriented towards
utilizing the Apache Spark framework, as described in [154]. As it represents a completely
different technology, it is interesting to examine the performance of a Spark-based clus-
tering algorithm, and compare it to ADMM-based convex clustering, that is based on
COMPSs. We use Python in both cases. Apache Spark provides a parallel version of
k-means algorithm, that is part of the MLlib [155] library. We created a Python script,
that loads the data and calls k-means from MLlib. The disadvantage of this approach
is that we need to specify the number of clusters in advance. However, in this case, we
already know the desired number of clusters for our generated data sets, so we can use
these values to test the performance. As our cluster currently does not support Spark,

3.3. Experimentation 141

Table 3.7: Comparison of ADMM-based convex clustering to Spark based k-means from
MLlib, in terms of execution time

Data set

Spark
k-means
time for

2 workers

Spark
k-means
time for

4 workers

ADMM
conv. clust.

COMPSs
time for

2 workers

ADMM
conv. clust.

COMPSs
time for

4 workers

ADMM
conv. clust.
Best time

/ no workers

1000 × 3 21.27s 26.14s 18.44s 14.64s 8.77s/8
5000 × 5 24.31s 30.31s 95.9s 43.6s 15.92s/20
10000 × 10 26.79s 33.26s 437s 136.57s 31.61s/55

we set up a standalone Spark Server on our computer and tested the performance for
different number of workers, specifically for 2 cases: 2 and 4 workers. Each worker is
assigned a CPU unit and 4GB of memory. As the CPU has 4 cores, 4 is the maximal
number of workers used for the tests. Table 3.7 lists the execution time for each test,
for a few different data sets. It also includes the results for the same number of workers,
obtained for the ADMM-based convex clustering COMPSs implementation. It should be
noted that these tests were run on a cluster, so the comparison can be made only roughly.

From Table 3.7, it can be concluded that the ADMM-based convex clustering COMPSs
based algorithm performs better for the 1000×3 data set, than MLlib k-means. However,
as the data size grows, the MLlib k-means shows better performance for 2 and 4 workers.
It is also noticeable that the addition of workers is expensive in these cases, so the Spark
based clustering does not scales well for these data sets. The reason is probably the
moderate volume of these data sets. The best obtained time for ADMM-based convex
clustering for larger number of workers is interesting for observation here, as it can be seen
that in the first two cases, it is far better than the Spark timings, but for the third case,
the Spark based k-means performs better than ADMM-based convex clustering in the best
case. This comparison is only for illustration. It should be kept in mind that these two
algorithms are relying on completely different principles and are implemented in different
technologies. Finally, the tests are not made on the same machine, although the machine
used for Spark is similar to the cluster nodes. However, it can be seen that the Spark
based implementation is expected to perform better for even larger data sets, and also
that the COMPSs based ADMM-based convex clustering implementation needs a larger
number of workers to achieve the optimal performance, where the Spark implementation
can accomplish good results with less workers. The reasons behind this are lying in the
differences in the natures of the algorithms and frameworks.

142 Chapter 3. A dual distributed optimization method

3.3.6 Testing on a real, industrial data set

The developed algorithm was also tested on a real, industrial data set, gained through
collaborations on a H2020 project, I-BiDaaS [47]. The data set is from the banking sector
and is publicly available on the Zenodo repository [49]. The data set was generated
collecting relevant information of bank transfers, done by a bank employee. The aim was
to identify anomalies that lead to potential frauds or bad practices.

Therefore, the data set was already used for similar clustering analysis under the I-BiDaaS
project, the results are available in the public Deliverable 3.3 of the project [156]. The
parallel ADMM-based convex clustering algorithm is able to find the same number of
clusters, as reported in the deliverable, with a silhouette score value that corresponds to
the results in the deliverable, so the accuracy level of this evaluation corresponds to the
previously obtained results.

Fig. 3.19 displays the scaling properties of the algorithm on this data set. It can be seen
that the algorithm scales well again. Although the data set is not very large, the execution
is more efficient with parallelization. The best choice for the number of workers appears
to be 10 here. Adding more than 10 workers does not increase performance any more, as
the cost of parallelization then becomes more demanding than the gains. However, these
tests showed that the ADMM-based clustering algorithm has good scaling properties, and
an acceptable level of accuracy as well. The speedup of the algorithm on this data set is
displayed on Fig. 3.20. It is necessary to mention here that the algorithm is designed to
work in parallel, and it requires a separation to x update on master and x update on the
rest of the nodes, as in (3.14) and (3.15). This means that it assumes the existence of at
least 2 worker nodes. In order to run the code serially, we need to keep this separation.
The updates are then executed serially, but we need to split x to x0, that is being solved
as (3.15) and x1..k, that is being solved as (3.14). However, the way of splitting this value
significantly influences the execution time. Therefore, a fair comparison of the serial
and parallel execution time is to keep the separation as in the parallel test during serial
execution, for the observed number of workers. This results with the speedup as shown
on Fig. 3.20. It can be observed that the speedup is increasing until reaching the optimal
number of workers, and after that it decreases a bit, that corresponds to the conclusions
made on Fig. 3.19.

3.4. Further implementation considerations 143

Figure 3.19: The scaling properties on the Caixa Bank data set

Figure 3.20: Speedup on the Caixa Bank data set

3.4 Further implementation considerations

Enhancing the CVXPY solver performance

The current implementation of the proposed method utilizes CVXPY to solve sub-problems
and it can be set to use the so called “warm start“ option. Generally, improvements in
execution time can be expected if we use a “warm start“ in updates (3.14), (3.15) and
(3.16) and initialize the new variables with their values from the previous iteration. In
addition, as commonly used with ADMM, the sub-problems (3.12) may not be solved to
full accuracy, i.e., they can be solved inexactly. We examine these two strategies on the
CVXPY implementation. This way the solver starts with the solution from the previous
iteration, which can reduce the execution time. Another approach is to set a solver prop-
erty such that the expected accuracy becomes lower during the first few iterations. The
ECOS solver, used by CVXPY in this case, has the property abstol, which corresponds to
absolute accuracy tolerance and it has a default value of 1e − 8. By enlarging this value,
we permit greater difference i.e. lower accuracy. We tested this approach by using 0.0001
during the first 3 iterations of the algorithm.

Let us illustrate the impacts of these enhancements to performance. Table 3.8 shows the

144 Chapter 3. A dual distributed optimization method

Table 3.8: The impact of solver enhancement on performance

Data set No enhancement Warm start Accuracy
adjustment

Warm start
and accuracy adjustment

10000x3 38.65 s 37.5 s 37.7 s 35.88 s

execution time for different variants of the algorithm: without enhancement, with warm
start, with tolerance set up and with both warm start and tolerance set up. Apparently,
these enhancements can reduce the execution time to certain extent. For the data set
with 10000 × 3 points, the time reduction is 2.7 seconds, i.e. 7% roughly. This is not a
drastic difference, but it certainly represents an improvement in performance.

An alternative problem solving approach

In addition, sub-problems (3.12) can be solved by adopting efficient moderate-size problem
SON clustering solvers like [109], instead of using the general-purpose solver like CVXPY.
This approach is described as follows. Let us redefine the solution update on the worker
nodes, by introducing inner iterations t = 0, 1, In order to update x (see Algorithm 3),
let us define, for each node i = 2, ..., K:

xt+1 = zt+1 + t − 1
t + 2

(zt+1 − zt), (3.24)

where z is being computed as:
zt+1 = xt − 1

L
gt. (3.25)

Here, xt = (xi1, xi2, ..., xi N
K

) and L = 1 + 2γ N
K

µ
, µ = 2ϵ

γ N
K

, ϵ = {10−1, 10−2}. xt and zt are
being initialized with xt−1. The gradient gt = (gt

1, gt
2, ..., gt

N
K

) is being calculated for nodes
i = 2, ..., K as follows:

gt
1 = −λk

i + ρ(xt
i1 − yk

i1) + (xt
i1 − ai1) + γ

N
K∑

j=2
P

xt
i1 − xt

ij

µ

, (3.26)

and

gt
j = (xt

ij − aij) − γP

xt
i1 − xt

ij

µ

, j = 2, ...,
N

K
. (3.27)

3.5. A comparison of MPI and COMPSs parallelapplications 145

where:

P (a) =


a

||a|| if||a|| > 1

a else.
(3.28)

The x update on the master node is the same as for the others, except for gt
1:

gt
1 = (a11 − xt

11) + γ

N
K∑

j=2
P

xt
11 − xt

1j

µ

 + γ
K∑

j=2
P

xt
11 − yk

i1
µ

. (3.29)

The y update on the master node is now:

yi1 = xk+1
i1 + δi1, (3.30)

where δi1 = Prox

−λk
i

ρ

 and Prox(a) =

1−
γ
ρ

||a||


+

a, and [b]+ = (max{0, b1}, max{0, b2}, ...).

The implementation of this approach is also available on GitHub [2]. The parallelization
and synchronization points remain the same as before, only the computation during the
x and y update change according to (3.24) and (3.30).

This approach can exhibit equally good or even better performance than CVXPY. For
example, some initial tests show that the data set with 10000 × 3 points (generated as a
Gaussian mixture model), can be solved for 6.7 seconds with 25 workers, where with the
CVXPY solver, the same problem was solved for 22 seconds, with the same number of
workers. The accuracy of the solution is the same as for CVXPY. Therefore, this approach
represents a promising direction for further enhancement.

3.5 A comparison of MPI and COMPSs parallel
applications

The development of parallel algorithms always brings up the question about choosing
the best possible parallelization framework. There does not exist a unique criterion for
making this kind of choice. Through this thesis, we discussed the use of two different par-
allelization approaches, MPI and COMPSs. We developed the implementations for primal
methods with MPI in C programming language, and for dual methods with COMPSs in
Python. Both approaches have their own advantages. In order to make a fair compar-
ison of these approaches regarding performance, we need the same algorithm (based on

146 Chapter 3. A dual distributed optimization method

Table 3.9: Comparing the execution time (in seconds) of ADMM-based convex clustering
with MPI and COMPSs

4 workers 8 workers 10 workers 20 workers 25 workers
Data set MPI COMPSs MPI COMPSs MPI COMPSs MPI COMPSs MPI COMPSs
1000 × 3 5.83 12.65 4.99 9.73 3.18 13.79 2.59 11.45 4.26 12.24
5000 × 3 34.17 38.38 15.36 19.95 10.85 16.45 5.49 19.35 10.05 14.15
5000 × 5 38.71 39.29 18.82 19.65 13.26 16.87 10.08 16.15 7.94 14.37
10000 × 3 95.13 96.0 29.89 51.17 29.08 40.84 13.31 37.3 15.53 22.01
10000 × 10 153.09 136.76 42.57 72.63 47.44 59.33 29.24 50.23 15.97 30.29

the same optimization method), implemented in the same programming language, paral-
lelized with the two frameworks, and tested on same data. In order to achieve this, we
created an implementation of the parallel ADMM-based convex clustering algorithm in
MPI for Python. This practically means replacing COMPSs with MPI in the code. This
is not as straightforward as it may seem, as the frameworks work on different principles.
The source code for this approach is also available on ADMM-based clustering GitHub
repository [2].

The main difference is that, with COMPSs, we assumed that one process (the master)
performs everything, until we invoke a task. After that, with one call, we were able to
synchronize the results to make them available again to a single operating process. With
MPI, we need to specify explicitly that the master process performs the logic meant for
serial execution. Also, the initializations are now different. Instead of having a list of data
chunks that is being split by calling a task, we need to initialize local data structures on the
processes. The functions that used to be tasks with COMPSs are now executed locally on
the processes on local data. Instead of having a line of code that synchronizes the results
to be used further by the main (master) process, we need to call a corresponding MPI
routine to gather the results on the master. Similarly, in order to make the global values
available to the processes, we need explicit broadcasts. All these differences arise from
different setups of the frameworks. After adapting the algorithm to use MPI, we run a
set of tests in order to compare performance.

Table 3.9 displays the results of tests, meant for comparing MPI with COMPSs. We
observe the execution times of the two implementations for a set of worker numbers, on a
few different data sets. We use the same data sets, that we already utilized for the tests
on ADMM-based convex clustering with COMPSs. Both implementations show good
scaling properties, and achieve the same level of accuracy, as described before for the
mentioned data sets. For the smallest data set, with 1000 × 3 data points, there exists a
difference in the optimal number of points, as COMPSs has the best performance for 8
workers, where MPI performs the best with 20 workers. It is also obvious that for this

3.5. A comparison of MPI and COMPSs parallelapplications 147

Figure 3.21: Speedup for MPI and COMPSs implementations of ADMM-based convex
clustering

data set, the timing does not change a lot when changing the number of workers, only a
few seconds, for both implementations. However, when comparing the performance of the
two implementations, there exists a serious difference, MPI is 2 to 4 times faster, when
observing the same number of workers. On the other hand, the best time for MPI is 2.59
seconds, where for COMPSs is 9.73, which also represents an important variance. For the
data sets 5000×3, 5000×5 and 10000×3, the implementations perform very similar for 4
workers. In fact, the differences in timings for 8 and 10 workers are of smaller volume, in
most of the cases. Still, MPI performs better. For the largest data set with 10000×10 data
points, COMPSs has a lower execution time than MPI for 4 workers. When increasing the
number of workers, both implementations show a decrease in execution time. However, in
case of MPI, this decrease is steeper, and the best timing for MPI is 2 times faster than
for COMPSs, for the same number of workers. The speedup for both implementations,
MPI and COMPSs, is displayed on Fig. 3.21, for the 2 largest data sets, considered in
Table 3.9, i.e 10000 × 3 and 10000 × 10. Both implementations show a certain level of
speedup, for both test cases. However, the advantage of MPI over COMPSs is clearly
visible. The speedup is generally higher for MPI than for COMPSs, and is also growing
faster.

As the tests showed, MPI is able to achieve better performance than COMPSs. This
is not surprising, as MPI represents a lower-level approach. Earlier works also showed
that COMPSs has comparable performance with Apache Spark [20], and other results
proved the advantage of MPI over Apache Spark [22], in terms of performance. Now,
we showed directly that MPI performs a few times faster than COMPSs in most of the
cases. Although the advantage of MPI is inviolable in terms of performance, higher-level
approaches, as COMPSs, have other advantages over MPI. The most important one is the

148 Chapter 3. A dual distributed optimization method

ease of parallelization with COMPSs, as it provides a high level of transparency. There is
no need for managing communication or possible deadlocks. We do not have to deal with
complex operations to achieve parallelization. Adding a @task annotation simply makes
a function parallel. This automatically means less control than with MPI, but COMPSs is
convenient for a broader number of developers, as it does not require extensive experience.

The choice of a parallelization framework hence depends on the particular needs, but the
benefits of different approaches should be kept in mind. When the aim is to create a
parallel algorithm quickly and easily, COMPSs is a reasonable choice. It scales well, and
accelerates the execution properly. However, when the speed of an algorithm is a critical
demand, MPI remains the best choice.

3.6 Additional ADMM-based machine learning
algorithms

The broad usability of the ADMM approach can be illustrated by applying it to implement
some well-known machine learning algorithms. We describe two additional algorithms,
beside the already mentioned convex clustering approach: ADMM-based lasso regression
and ADMM-base logistic regression. The parallelization framework used here is also
PyCOMPSs. These implementations were developed under the H2020 project I-BiDaaS
as part of the projects’ pool of machine learning algorithms and are publicly available on
the GitHub knowledge repository of the project [157].

3.6.1 ADMM-based lasso regression

The Least Absolute Shrinkage and Selection Operator (lasso) represents a regression
model, that is suitable for both variable selection and regularization. Particularly, lasso
is a type of linear regression that uses shrinkage, where data values are being shrunk
towards some central point. The algorithm performs L1 regularization and can be defined
as:

minimize
1
2

∥Ax − b∥2
2 + λ∥x∥1, (3.31)

where λ > 0 is the regularization parameter and A ∈ Rn×p and b ∈ Rn. Then, keeping
in mind the already introduced definition of ADMM, the formulation can be rewritten to
ADMM form as:

3.6. Additional ADMM-based machine learningalgorithms 149

minimize
1
2

∥Ax − b∥2
2 + λ∥z∥1 subject to x − z = 0. (3.32)

Finally, the ADMM steps follow the standard ADMM form, as defined in [3]:

xk+1 = (A⊤A + ρI)−1(A⊤b + ρ(zk − uk)), (3.33)

zk+1 = Sλ/ρ(xk+1 + uk), (3.34)

uk+1 = uk + xk+1 − zk+1, (3.35)

where ρ > 0 is the penalty parameter for constraint violation, and x and z are the primal
variables and u is the dual variable here; Sλ/ρ is a soft thresholding (shrinkage) operator,
that moves a point towards zero. We compute xk+1 by minimizing the objective function
in each iteration as 3.32. Further, the soft threshold operator is being computed as:

Sk(a) =


a − k, a > k

0, |a| ≤ k

a + k, a < −k

(3.36)

The implementation of the algorithm in Python with PyCOMPSs can be found on the
GitHub knowledge repository of the I-BiDaaS project [157]. The parallelization is based
on a similar idea, as for ADMM-based convex clustering. The main loop performs the
updates in each iteration and checks whether the stopping criterion is met. The function
that updates x is defined as a task and being executed in parallel, by passing the already
prepared split data structures. A maximum number of iterations is defined, but the
algorithm could stop earlier, when the stopping conditions are met. We initialize x and
u as lists of n vectors of size p, meaning that we have a vector of p elements for each of
n workers, for both variables. z is initialized as a p-sized zero vector. Additionally, the
update for u can also be defined as a task, although its computation is not demanding.

The task method for updating x is called, using mapping on partial (as it was also the
case for convex clustering), meaning that this call is being executed in parallel, for each
worker on a separate data and label chunks. The vector u is also being divided between
the workers, as it contains a list of vectors, as explained. z and rho are the values that are

150 Chapter 3. A dual distributed optimization method

used by each worker as they are. The stopping criterion and the synchronizations are done
in a same way as it was described for ADMM-based clustering. It is, again, important
to synchronize the result of parallel execution, in order to gather all the elements of x.
We achieve this by compss_wait_on. Then, the update of z is executed sequentially, by
calculating a soft threshold value. The rest of the code is dedicated to the evaluation of
the stopping criterion. We calculate the square roots of the sum of squared norm of x

and u, respectively. The primal and dual residual actually show how much progress the
algorithm is doing from one iteration to the other in both the primal and dual domain.
These values tend to be smaller than the primal and dual feasibility tolerance values.

The input data reading is performed in parallel here, as it is assumed that the data set
is previously split to a number of input files, that corresponds to the number of workers.
That means that the functions for reading the input matrix and vector are defined as
tasks. This approach is convenient, as we save time with reading data chunks separately,
without the need to split them. However, this usually requires a preprocessing step, that
actually splits the data and creates the needed number of chunks saved to separate files.

The CVXPY Python package is used to solve the optimization problem here. We create
the solution variable first. Then, we formulate the problem as a minimization of our
objective function. Finally, the problem is being solved by CVXPY. When solving the
problem, the warm_start option can be also used. It represents a logical value, that
indicates whether to use the warm start option. This means that the solver can use some
previous solution or initial value in order to produce the solution faster.

In order to evaluate the performance of the developed algorithm, The ADMM lasso imple-
mentation was tested for a synthetically generated data set. The results of this evaluation
are available in Deliverable 3.3 of the I-BiDaaS project, where it can be observed that
this example illustrate the high rate of speedup with increased number of workers of the
parallel ADMM-based lasso implementation on a computer cluster. The implementation
of the parallel ADMM-based lasso regression was also included to the dislib repository
[51], through a collaboration between the I-BiDaaS and dislib teams. Dislib represents an
effort to adapt the highly efficient scikit-learn machine learning implementations to the
highly parallelizable COMPSs runtime.

3.6.2 ADMM-based logistic regression

As a well known binary classification approach, the logistic regression algorithm can be
also implemented as an ADMM-based solution, as defined in [3]. We used ADMM for

3.6. Additional ADMM-based machine learningalgorithms 151

logistic regression with L2 regularization, therefore it ensures preserving convexity. The
starting point is an L2 regularized logistic regression model, defined as:

minimize
m∑

i=1
log(1 + exp(−bi(a⊤

i x1 + x0))) + 1
2

λ∥x∥2
2, (3.37)

where ai ∈ Rn is a feature vector, bi ∈ {−1, 1} represents the corresponding label, x0 ∈ Rn

and x1 ∈ R are the optimization variables and λ > 0 is the regularization parameter. By
applying ADMM to this problem as in [3], we obtain the steps of the algorithm as follows:

xk+1 = minimize l(−bAx) + ρ

2
∥x − zk + uk∥2, (3.38)

zk+1 = Sλ/ρN(xk+1 + uk), (3.39)

uk+1 = uk + xk+1 − zk+1, (3.40)

where the variables have the same meaning as for lasso regression. l represents a logistic
loss function, where l(x) = log(1 + e−x). The code for this algorithm is also available on
the GitHub knowledge repository of the I-BiDaaS project [157]. Mostly, the code for lasso
regression can be reused here, as the structure is the same, it only requires some slight
changes, that correspond to (3.38). This particularly means that only the computation
of the objective function needs to be changed in the code.

In order to evaluate the developed approach, the ADMM logistic regression was tested
on a synthetic data set, provided by CRF, under the project I-BiDaas. The data set is
publicly available on the Zenodo repository [50]. The tests showed a level of accuracy,
comparable to the accuracy of the scikit-learn logistic regression on the same data. The
evaluations also showed good scaling properties of the algorithm on the mentioned data
set. The results of these experiments are publicly available in Deliverable 3.3 [156] of the
project.

The ADMM solver represents a good choice for distributed problem solving and is well
suited for different well-known machine learning algorithms. The developed implemen-
tations can serve as a base for introducing other ADMM-based solutions, parallelized by
PyCOMPSs. In fact, the Python code, available in the I-BiDaaS knowledge repository is

152 Chapter 3. A dual distributed optimization method

highly reusable. This makes the development and application of parallel machine learning
algorithms eased and more transparent.

3.7 Conclusions on the proposed utilization of the
dual ADMM method

In this chapter, we introduced a parallel ADMM-based algorithm for convex clustering
and provided a parallel implementation for it. Also, a detailed description of a thorough
testing of the algorithm was provided. The tests were performed on the AXIOM com-
puting facility. The configuration of the AXIOM computing facility consists of 16 nodes,
where each node has a processor with 6 CPU cores (eighth-generation Core i7 cores), and
the nodes are connected by an Ethernet network with speed of 10Gbps. The described
behaviour of the algorithm during tests should be preserved when tested on other cluster
environment. The execution time may be shorter on a cluster with newer generation of
processors, but the overall performance characteristics as the scaling properties and the
advantages of parallel execution are expected to be the same. A higher network speed
and lower latency is expected to produce good performance with more nodes than in our
experiments, so the range of the number of nodes with lowest execution time would be
different, but still detectable.

The framework used for parallelization is COPMSs, that represents a convenient, task-
based programming model. The comprehensive empirical evaluations prove that the algo-
rithm satisfies a similar level of accuracy as the other widely used clustering approaches.
It was also shown that the algorithm can work with large data sets efficiently, exhibiting
good scaling properties on a cluster environment. The algorithm was also tested on a
real, industrial data-set, and exposed the expected outcomes. Additionally, a description
of the implementation of other ADMM-based solutions for machine learning is also pro-
vided and supported by a set of evaluations. This motivates the utilization of ADMM
to obtain parallel solutions, that are efficient and scalable. Finally, we use the developed
dual optimization clustering solution to compare two different parallelization strategies,
MPI and COMPSs.

Chapter 4

Conclusion
This thesis focuses on development and practical evaluation of a set of parallel distributed
convex optimization algorithms. It consists of two main directions. The first one is di-
rected towards developing a class of primal methods of first and second order. The focus
is on the practical evaluation of the properties of the proposed methods, their mutual
comparison and also on development of novel methods based on empirical evaluation in-
sights. This includes the utilization of different communication sparsification strategies,
resulting with a novel approach of unidirectional sparsified communication during parallel
execution. The second direction is focused on the class of dual methods. Particlualry,
it relies on ADMM as a representative of this class, in order to develop and evaluate
a novel parallel, convex clustering approach. It also introduces two additional ADMM-
based implementations. The thesis uses two different frameworks for parallelization, MPI
and COMPSs. The class of primal methods is developed using MPI, while the dual,
ADMM-based solutions are developed with COMPSs. This provides a deep insight into
the different possibilities for parallel application development. A comparison of the per-
formances of the two approaches is also provided, by implementing the same algorithm,
the parallel ADMM-based convex clustering, with the two frameworks. All the developed
code, discussed in the thesis is publicly available on GitHub [2, 1].

The results show that the developed class of primal methods can find its use in different
scenarios. Currently, the methods are developed for logistic and quadratic loss, but can
be easily extended to other, widely used algorithms, in order to provide scalable and
fast solutions to real-world problems. The methods are being analysed from different
aspects and the thesis also includes a discussion on the properties of input data sets, that
influence the choice of particular methods, that could produce the best performance. The
parallel ADMM-based convex clustering algorithm can be applied to arbitrary clustering
problems, as its level of accuracy on the scenarios we considered is comparable with
the accuracy of other clustering solutions. Additionally, it represents a parallel, scalable

153

154 Chapter 4. Conclusion

approach, that is able to solve large-scale problems. The usefulness of the method was
demonstrated on a real data set, provided by Caixa Bank during the I-BiDaaS project
[49]. This represents an example of the utilization of the algorithm and its possibilities
for a broader usage in emerging areas of data analysis. Regarding the properties of the
developed algorithms, both primal and dual, they could evidently find their use as Big
Data solutions, for real-world problems. Their extensible nature enables widening the set
of supported algorithms and hence the area of their use.

4.1 Summary of Thesis Achievements

The achievements presented in this thesis are multiple. First, it represents an overview
of parallel distributed optimization algorithms development. It shows some interesting
implementational aspects, while highlighting the possible performance bottleneck and
providing solutions for them. It uses two different parallelization frameworks with exten-
sive explanations of their different aspects. Further, it introduces some novel methods
with sparsified communication, based on the experimental insights, as well as the novel
ADMM-based convex clustering method implementation.

A detailed empirical evaluation of the developed methods is also shown. It analyses a
wide variety of aspects regarding performance and properties of the algorithms. The class
of primal methods considered is design to work under a given fixed arbitrary connected
network. On the other hand, the underlying cluster infrastructure allows for all-to-all
communications. The experimental evaluation shows that introducing communicators
that comply with the underlying (sparse) graph topology, improves performance over
an all-to-all communication protocol. The use of communicators enables utilizing only
a subset of wired links available, which replaces physical data exchange among nodes
in an all-to-all fashion, that ignores the underlying graph topology. Moreover, it was
observed that the amount of time required for the data exchange drastically decreased
further by introducing a probabilistic sparsification to these methods. It was also shown
that ADMM represents a valuable choice for developing a distributed, parallel solution
for clustering implemented over HPC infrastructures in the first place, but also for other
machine learning algorithms. Furthermore, it was shown that the developed methods
all scale well, and that the optimal number of nodes exists for each of the test cases.
Regarding the class of primal methods, it was also detected in which cases the second
order methods perform better, and in which ones are the first order methods dominant.
The best performing method regarding all the tests was also identified. The thesis also
highlights the communication sparsification strategies that are of interest, as they reduce

4.2. Applications 155

the execution time of the algorithm. It also provides comparisons among different aspects
of the developed methods and makes conclusions based on them, in order to identify the
suitable methods for particular setups. From the aspect of dual methods, it was shown
that the proposed convex clustering approach is capable of solving the assigned clustering
tasks in an accurate and fast manner.

The thesis covers a set of distributed convex optimization methods, and makes compar-
isons on different levels. It makes a comparison of the developed primal methods with
the ADMM-based solution for the same problem. It also compares and discusses the
performance and ease of development for the mentioned two parallelization frameworks,
MPI and COMPSs. The main contribution includes an introduction and analysis of a
set of distributed, parallel and scalable solutions, that can be applied on a wide range of
problems.

4.2 Applications

The results described in the thesis open a few application possibilities. First of all, the
developed implementations can be used on real data sets to solve some real problems.
An example was demonstrated by applying the parallel ADMM-based convex clustering
algorithm to the I-BiDaaS use case for the Caixa Bank data set. This data set was
analysed with the aim to identify anomalies that lead to potentially fraudulent bank
transfers or bad practices. Similar applications may arise, not only for the clustering
solution, but also for the developed class of primal methods. The application of these
parallel solutions can be achieved in an efficient, scalable manner, on a computer cluster.
The parallel, distributed nature of the algorithms opens the possibility to utilize them in
real-world Big Data scenarios.

Secondly, as already mentioned, the implementation process of the algorithm can be ap-
plied to the development process of similar algorithms, as the main bottlenecks were
empirically found and the solutions for them were proposed, implemented and tested on a
cluster environment, in order to prove the performance gains. This means that the class
of the proposed algorithms is extensible to even broader use. The set of applications for
the class of primal methods can be widen for different cost functions, by replacing the
computations for the gradient and Hessian in the implementation. Also, the described
ADMM-based approach can be accommodated for different objective function specifica-
tions.

156 Chapter 4. Conclusion

4.3 Future Work

There are a few possible directions for future work, from the aspects of both primal and
dual methods. Regarding the class of primal methods, there are several possibilities. First,
further evaluation of unidirectional communication can be an interesting task, theoreti-
cally and practically as well. We provided some initial empirical results on the algorithm
that is utilizing unidirectional communication, that prove that this principle produces
good performance during execution, in some cases even better than the bidirectional ap-
proach. This could be expanded further, by additional experimentation, in order to get
more detailed insights into the properties of the algorithm setup that lead to performance
increase when using unidirectional communications. Also, second order methods could
be also enhanced, as they have good performance characteristics for smaller data sets.
As for larger data sets, exact second order updates are time consuming, it might be of
interest to consider Quasi-Newton methods with cheaper second-order-type updates, as
they can possibly reveal new insights towards efficient execution. An equally useful task
for the future could also be to expand further the algorithm implementation for other
convex cost functions, in order to make it applicable for a broader use. From the aspect
of dual methods, the speed of the ADMM-based convex clustering algorithm could possi-
bly be enhanced by further designing efficient sub-problem solvers. We already proposed
an approach that seems promising, and that could be further elaborated. In addition,
data-dependent sparse graph construction and weighted sparse SON penalty can be con-
sidered with an additional preprocessing cost. Another useful enhancement for both types
of methods might be adapting the implementation for very large data sets that cannot
be held in memory at once. This means that the input data should be divided during
the preprocessing, before running the algorithm. This way, the processes could read their
own chunks separately. This is feasible to accomplish, similarly as in the described alter-
native implementations. The second aspect of this enhancement is the possibility for the
process to not consume the whole data chunk it possesses, at once. This could require
some further modifications in the algorithm behaviour as well, but could be a very useful
innovation.

Source code and reproducibility

The source code for our methods can be found on the following links:

• The class of primal optimization methods:
https://github.com/lidijaf/parallel_primal_optimization_methods

• The ADMM-based convex clustering algorithm:
https://github.com/lidijaf/Parallel-ADMM-based-convex-clustering

• ADMM-based lasso and logistic regression:
https://github.com/ibidaas/knowledge_repository

Some of the data sets used in the thesis are publicly available, and after performing a
needed set of preprocessing tasks (where needed), they can be used with the provided
implementations. The data sets and graph structures, synthetically generated for the
tests, can be recreated using the provided code. Alternatively, the data sets are available
on request.

157

https://github.com/lidijaf/parallel_primal_optimization_methods
https://github.com/lidijaf/Parallel-ADMM-based-convex-clustering
https://github.com/ibidaas/knowledge_repository

Bibliography

[1] “A class of parallel primal optimization methods of first and second order.”
https://github.com/lidijaf/parallel_primal_optimization_methods. Ac-
cessed: 2022-06-28.

[2] “Parallel admm-based convex clustering.” https://github.com/lidijaf/
Parallel-ADMM-based-convex-clustering. Accessed: 2022-06-10.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers,”
Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[4] M. P. I. Forum, MPI: A Message-passing Interface Standard, Version 3.1 ; June
4, 2015. High-Performance Computing Center Stuttgart, University of Stuttgart,
2015.

[5] L. F., E. Tejedor, J. Ejarque, R. Rafanell, J. Álvarez, F. Marozzo, D. Lezzi, R. Sir-
vent, D. Talia, and R. M. Badia, “Servicess: an interoperable programming frame-
work for the cloud,” Journal of Grid Computing, vol. 12, p. 6791, March 2014.

[6] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,
2004.

[7] T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin,
and K. H. Johansson, “A survey of distributed optimization,” Annual Reviews in
Control, vol. 47, pp. 278–305, 2019.

[8] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent op-
timization,” IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48–61,
2009.

[9] S. S. Ram, A. Nedich, and V. V. Veeravalli, “Distributed stochastic subgradient
projection algorithms for convex optimization,” Journal of Optimization Theory
and Applications, vol. 147, pp. 516–545, Dec 2010.

158

https://github.com/lidijaf/parallel_primal_optimization_methods
https://github.com/lidijaf/Parallel-ADMM-based-convex-clustering
https://github.com/lidijaf/Parallel-ADMM-based-convex-clustering

BIBLIOGRAPHY 159

[10] D. Jakovetic, J. M. F. Xavier, and J. M. F. Moura, “Fast distributed gradient
methods,” CoRR, vol. abs/1112.2972, 2011.

[11] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network Newton Distributed Optimization
Methods,” IEEE Transactions on Signal Processing, vol. 65, no. 1, pp. 146–161,
2017.

[12] D. Bajović, D. Jakovetić, N. Krejić, and N. K. Jerinkić, “Newton-like method with
diagonal correction for distributed optimization,” SIAM Journal on Optimization,
vol. 27, no. 2, pp. 1171–1203, 2017.

[13] H.-U. JB., S. JJ., and N. V.H, “Generalized hessian matrix and second-order op-
timality conditions for problems withc 1,1 data,” Applied Mathematics and Opti-
mization, vol. 11, pp. 43–56, 1984.

[14] G. Hager and G. Wellein, Introduction to high performance computing for scientists
and engineers. CRC Press, 2010.

[15] P. Pacheco, An Introduction to Parallel Programming. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1st ed., 2011.

[16] L. Dagum and R. Menon, “Openmp: An industry-standard api for shared-memory
programming,” IEEE Comput. Sci. Eng., vol. 5, p. 4655, Jan. 1998.

[17] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres,
V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel,
R. L. Graham, and T. S. Woodall, “Open mpi: Goals, concept, and design of a
next generation mpi implementation,” in In Proceedings, 11th European PVM/MPI
Users Group Meeting, pp. 97–104, 2004.

[18] MPICH, accessed on: July 20, 2020.

[19] S. Cook, CUDA Programming: A Developer’s Guide to Parallel Computing with
GPUs. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1st ed., 2012.

[20] J. Conejero, S. Corella, R. M. Badia, and J. Labarta, “Task-based programming
in compss to converge from hpc to big data,” The International Journal of High
Performance Computing Applications, vol. 32, pp. 45 – 60, 2018.

[21] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng,
J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker,
and I. Stoica, “Apache spark: A unified engine for big data processing,” Commun.
ACM, vol. 59, p. 5665, oct 2016.

160 BIBLIOGRAPHY

[22] S. Ekanayake, S. Kamburugamuve, P. Wickramasinghe, and G. C. Fox, “Java thread
and process performance for parallel machine learning on multicore hpc clusters,”
in 2016 IEEE International Conference on Big Data (Big Data), pp. 347–354, 2016.

[23] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully decentralized multi-
agent reinforcement learning with networked agents,” CoRR, vol. abs/1802.08757,
2018.

[24] J. Shamma, Cooperative Control of Distributed Multi-Agent Systems. USA: Wiley-
Interscience, 2008.

[25] A. Salkham, R. Cunningham, A. Garg, and V. Cahill, “A collaborative re-
inforcement learning approach to urban traffic control optimization,” in 2008
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology, vol. 2, pp. 560–566, 2008.

[26] R. Roche, B. Blunier, A. Miraoui, V. Hilaire, and A. Koukam, “Multi-agent sys-
tems for grid energy management: A short review,” in IECON 2010 - 36th Annual
Conference on IEEE Industrial Electronics Society, pp. 3341–3346, 2010.

[27] T. Warren Liao, “Clustering of time series data - a survey,” Pattern Recognition,
vol. 38, no. 11, pp. 1857–1874, 2005.

[28] X. Dai and T. Kuosmanen, “Best-practice benchmarking using clustering methods:
Application to energy regulation,” Omega, vol. 42, no. 1, pp. 179–188, 2014.

[29] T. Chaira, “A novel intuitionistic fuzzy c means clustering algorithm and its appli-
cation to medical images,” Applied Soft Computing, vol. 11, no. 2, pp. 1711–1717,
2011.

[30] F. Lindsten, H. Ohlsson, and L. Ljung, “Clustering using sum-of-norms regular-
ization: With application to particle filter output computation,” in 2011 IEEE
Statistical Signal Processing Workshop (SSP), pp. 201–204, 2011.

[31] S. Lloyd, “Least squares quantization in pcm,” IEEE Transactions on Information
Theory, vol. 28, pp. 129–137, March 1982.

[32] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful seeding,”
in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’07, (USA), p. 10271035, Society for Industrial and Applied Mathe-
matics, 2007.

BIBLIOGRAPHY 161

[33] S. Arora, P. Raghavan, and S. Rao, “Approximation schemes for euclidean k-
medians and related problems,” in Proceedings of the Thirtieth Annual ACM Sym-
posium on Theory of Computing, STOC ’98, (New York, NY, USA), p. 106113,
Association for Computing Machinery, 1998.

[34] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, “Clustering with bregman
divergences,” J. Mach. Learn. Res., vol. 6, p. 17051749, dec 2005.

[35] F. Lindsten, H. Ohlsson, and L. Ljung, “Just relax and come clustering! : A
convexification of k-means clustering,” in Technical report, Department of Electrical
Engineering, Linkopings Universitet, 2011.

[36] E. C. Chi and K. Lange, “Splitting methods for convex clustering,” Journal of
Computational and Graphical Statistics, vol. 24, no. 4, pp. 994–1013, 2015. PMID:
27087770.

[37] K. Pelckmans, J. D. Brabanter, B. D. Moor, and J. A. K. Suykens, “Convex cluster-
ing shrinkage,” in Workshop on Statistics and Optimization of Clustering Workshop
(PASCAL), 2005.

[38] T. D. Hocking, A. Joulin, F. Bach, and J.-P. Vert, “Clusterpath: An algorithm for
clustering using convex fusion penalties,” in Proceedings of the 28th International
Conference on International Conference on Machine Learning, ICML’11, (Madison,
WI, USA), p. 745752, Omnipress, 2011.

[39] N. K. Jerinkić, D. Jakovetić, N. Krejić, and D. Bajović, “Distributed second-order
methods with increasing number of working nodes,” IEEE Transactions on Auto-
matic Control, vol. 65, no. 2, pp. 846–853, 2020.

[40] D. Jakoveti, D. Bajovi, N. Kreji, and N. Krklec Jerinki, “Distributed gradient meth-
ods with variable number of working nodes,” IEEE Transactions on Signal Process-
ing, vol. 64, no. 15, pp. 4080–4095, 2016.

[41] D. Jakovetić, D. Bajović, A. K. Sahu, and S. Kar, “Convergence rates for distributed
stochastic optimization over random networks,” in 2018 IEEE Conference on Deci-
sion and Control (CDC), (Miami Beach, FL, USA), pp. 4238–4245, 2018.

[42] A. Sahu, D. Jakovetić, D. Bajović, and S. Kar, “Distributed zeroth order opti-
mization over random networks: A kiefer-wolfowitz stochastic approximation ap-
proach,” in 2018 IEEE Conference on Decision and Control (CDC), (Miami Beach,
FL, USA), pp. 4951–4958, 03 2018.

162 BIBLIOGRAPHY

[43] A. K. Sahu, D. Jakovetic, D. Bajovic, and S. Kar, “Communication-efficient dis-
tributed strongly convex stochastic optimization: Non-asymptotic rates,” 2018.

[44] A. K. Sahu, D. Jakovetic, D. Bajovic, and S. Kar, “Communication efficient dis-
tributed estimation over directed random graphs,” in IEEE EUROCON 2019 -18th
International Conference on Smart Technologies, (Novi Sad, Serbia), pp. 1–5, 2019.

[45] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,”
IEEE Transactions on Information Theory, vol. 52, pp. 2508–2530, June 2006.

[46] L. Fodor, D. Jakovetic, N. Krejic, N. K. Jerinkic, and S. Skrbic, “Performance evalu-
ation and analysis of distributed multi-agent optimization algorithms with sparsified
directed communication,” EURASIP J. Adv. Signal Process, vol. 25, 2021.

[47] “I-bidaas project, funded by the european commission under grant agreement
no.780787.” https://www.ibidaas.eu/. Accessed: 2022-06-15.

[48] M. Bancheri, F. Fusco, D. D. Torre, F. Terribile, P. Manna, G. Langella, P. De
Vita, V. Allocca, H. Loishandl-Weisz, T. Hermann, C. De Michele, A. Coppola,
F. A. Mileti, and A. Basile, “The pesticide fate tool for groundwater vulnerability
assessment within the geospatial decision support system landsupport,” Science of
The Total Environment, vol. 807, p. 150793, 2022.

[49] R. M. de Pozuelo Genis and M. M. Marcos, “I-BiDaaS - CAIXA - Bank Transfer -
Tokenised Dataset,” Oct. 2020.

[50] J. Mascolo, G. Genchi, and G. D. Spennacchio, “I-BiDaaS - CRF - Aluminium
die-casting Synthetic Dataset,” Dec. 2020.

[51] “Distributed computing library,” accessed on June 1, 2022.

[52] E. P. Xing, Q. Ho, P. Xie, and D. Wei, “Strategies and principles of distributed
machine learning on big data,” Engineering, vol. 2, no. 2, pp. 179–195, 2016.

[53] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication efficient dis-
tributed machine learning with the parameter server,” in Advances in Neural Infor-
mation Processing Systems (Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,
and K. Weinberger, eds.), vol. 27, Curran Associates, Inc., 2014.

[54] K. Sakurama, “Leader selection via lasso for formation control of time-delayed multi-
agent systems,” Neurocomputing, vol. 270, pp. 18 – 26, 2017. Distributed Control
and Optimization with Resource-Constrained Networked Systems.

https://www.ibidaas.eu/

BIBLIOGRAPHY 163

[55] E. Dall’Anese, H. Zhu, and G. Giannakis, “Distributed optimal power flow for smart
microgrids,” IEEE Transactions on Smart Grid, vol. 4, 11 2012.

[56] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in ad hoc wsns with noisy
linkspart i: Distributed estimation of deterministic signals,” IEEE Transactions on
Signal Processing, vol. 56, no. 1, pp. 350–364, 2008.

[57] Z. Quan, S. Cui, A. H. Sayed, and H. V. Poor, “Optimal multiband joint detection
for spectrum sensing in cognitive radio networks,” IEEE Transactions on Signal
Processing, vol. 57, no. 3, pp. 1128–1140, 2009.

[58] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized gradient
descent,” SIAM Journal on Optimization, vol. 26, no. 3, p. 18351854, 2016.

[59] M. Schmidt, N. L. Roux, and F. Bach, “Convergence rates of inexact proximal-
gradient methods for convex optimization,” in Advances in Neural Information
Processing Systems (NIPS’11), pp. 1458–1466, Dec 2011.

[60] L. Xiao, “Dual averaging method for regularized stochastic learning and online op-
timization,” in Advances in Neural Information Processing Systems 22 (Y. Bengio,
D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta, eds.), pp. 2116–
2124, Curran Associates, Inc., 2009.

[61] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for distributed
optimization: Convergence analysis and network scaling,” IEEE Transactions on
Automatic Control, vol. 57, no. 3, pp. 592–606, 2012.

[62] K. I. Tsianos and M. G. Rabbat, “Distributed dual averaging for convex optimiza-
tion under communication delays,” in 2012 American Control Conference (ACC),
pp. 1067–1072, 2012.

[63] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Push-sum distributed dual averaging
for convex optimization,” in 2012 IEEE 51st IEEE Conference on Decision and
Control (CDC), pp. 5453–5458, 2012.

[64] D. Jakoveti, D. Bajovi, J. Xavier, and J. M. F. Moura, “Primaldual methods for
large-scale and distributed convex optimization and data analytics,” Proceedings of
the IEEE, vol. 108, no. 11, pp. 1923–1938, 2020.

[65] T. Suzuki, “Dual averaging and proximal gradient descent for online alternating di-
rection multiplier method,” in Proceedings of Machine Learning Research (S. Das-
gupta and D. McAllester, eds.), vol. 28, (Atlanta, Georgia, USA), pp. 392–400,
PMLR, 17–19 Jun 2013.

164 BIBLIOGRAPHY

[66] B. Wahlberg, S. Boyd, M. Annergren, and Y. Wang, “An admm algorithm for a class
of total variation regularized estimation problems*,” IFAC Proceedings Volumes,
vol. 45, no. 16, pp. 83 – 88, 2012. 16th IFAC Symposium on System Identification.

[67] L. Majzoobi, F. Lahouti, and V. Shah-Mansouri, “Analysis of distributed admm
algorithm for consensus optimization in presence of node error,” IEEE Transactions
on Signal Processing, vol. 67, no. 7, pp. 1774–1784, 2019.

[68] J. Yan, F. Guo, C. Wen, and G. Li, “Parallel alternating direction method of mul-
tipliers,” Information Sciences, vol. 507, pp. 185 – 196, 2020.

[69] R. D.P. and T. R., “A flexible admm algorithm for big data applications,” Journal
of Scientific Computing, vol. 71, p. 435467, 2017.

[70] H. Yue, Q. Yang, X. Wang, and X. Yuan, “Implementing the alternating direction
method of multipliers for big datasets: A case study of least absolute shrinkage and
selection operator,” SIAM J. Sci. Comput., vol. 40, no. 5, pp. A3121–A3156, 2018.

[71] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer, “A stochastic Quasi-Newton
method for Large-Scale Optimization,” SIAM Journal on Optimization, vol. 26,
no. 2, pp. 1008–1031, 2016.

[72] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive
variance reduction,” in NIPS, 2013.

[73] P. Moritz, R. Nishihara, and M. I. Jordan, “A linearly-convergent stochastic l-bfgs
algorithm,” in AISTATS, 2016.

[74] K. Yang, T. Fan, T. Chen, Y. Shi, and Q. Yang, “A quasi-newton method
based vertical federated learning framework for logistic regression,” ArXiv,
vol. abs/1912.00513, 2019.

[75] I. A. Chen and A. Ozdaglar, “A fast distributed proximal-gradient method,” in
2012 50th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), (Monticello, IL, USA), pp. 601–608, 2012.

[76] I. Notarnicola and G. Notarstefano, “Randomized dual proximal gradient for large-
scale distributed optimization,” in 2015 54th IEEE Conference on Decision and
Control (CDC), pp. 712–717, 2015.

[77] D. Jakoveti, J. Xavier, and J. M. F. Moura, “Distributed nesterov gradient meth-
ods for random networks: Convergence in probability and convergence rates,” in

BIBLIOGRAPHY 165

2014 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1508–1511, 2014.

[78] B. Johansson, M. Rabi, and M. Johansson, “A Randomized Incremental Subgradient
Method for Distributed Optimization in Networked Systems,” SIAM Journal on
Optimization, vol. 20, pp. 1157–1170, Jan 2009.

[79] F. Farina and G. Notarstefano, “A randomized block subgradient approach to dis-
tributed big data optimization,” in 2019 IEEE 58th Conference on Decision and
Control (CDC), pp. 6362–6367, 2019.

[80] Y. KAJIYAMA, N. HAYASHI, and S. TAKAI, “Distributed constrained convex
optimization with accumulated subgradient information over undirected switching
networks,” IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, vol. E102.A, no. 2, pp. 343–350, 2019.

[81] J. Li, G. Chen, Z. Wu, and X. He, “Distributed subgradient method for multi-agent
optimization with quantized communication,” Mathematical Methods in the Applied
Sciences, 06 2016.

[82] H. Iiduka, “Incremental subgradient method for nonsmooth convex optimization
with fixed point constraints,” Optimization Methods and Software, vol. 31, no. 5,
pp. 931–951, 2016.

[83] A. Nedi, A. Olshevsky, and M. G. Rabbat, “Network topology and communication-
computation tradeoffs in decentralized optimization,” Proceedings of the IEEE,
vol. 106, no. 5, pp. 953–976, 2018.

[84] N. Gaeini, A. Amani, M. Jalili, and X. Yu, “Optimization of communication network
topology in distributed control systems subject to prescribed decay rate,” IEEE
Transactions on Cybernetics, vol. PP, pp. 1–9, 07 2019.

[85] G. Neglia, G. Calbi, D. Towsley, and G. Vardoyan, “The role of network topology
for distributed machine learning,” in IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications, pp. 2350–2358, 2019.

[86] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione, “Broadcast gossip
algorithms for consensus,” IEEE Transactions on Signal Processing, vol. 57, no. 7,
pp. 2748–2761, 2009.

166 BIBLIOGRAPHY

[87] D. Jakovetic, J. Xavier, and J. M. F. Moura, “Cooperative convex optimization in
networked systems: Augmented lagrangian algorithms with directed gossip commu-
nication,” IEEE Transactions on Signal Processing, vol. 59, no. 8, pp. 3889–3902,
2011.

[88] A. Agarwal and J. C. Duchi, “Distributed delayed stochastic optimization,” in Ad-
vances in Neural Information Processing Systems 24 (J. Shawe-Taylor, R. S. Zemel,
P. L. Bartlett, F. Pereira, and K. Q. Weinberger, eds.), pp. 873–881, Curran Asso-
ciates, Inc., 2011.

[89] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for mobile
sensing networks,” IEEE Transactions on Robotics and Automation, vol. 20, no. 2,
pp. 243–255, 2004.

[90] I. Lobel, A. Ozdaglar, and D. Feijer, “Distributed multi-agent optimization with
state-dependent communication,” Mathematical Programming, vol. 129, p. 255284,
Jun 2011.

[91] J. Baxter and P. L. Bartlett, “Direct gradient-based reinforcement learning,” in 2000
IEEE International Symposium on Circuits and Systems (ISCAS), vol. 3, pp. 271–
274 vol.3, 2000.

[92] I. Matei and J. S. Baras, “Performance evaluation of the consensus-based distributed
subgradient method under random communication topologies,” IEEE Journal of
Selected Topics in Signal Processing, vol. 5, no. 4, pp. 754–771, 2011.

[93] M. Assran and M. Rabbat, “Asynchronous subgradient-push,” CoRR,
vol. abs/1803.08950, 2018.

[94] M. Assran and M. Rabbat, “An empirical comparison of multi-agent optimization
algorithms,” in 2017 IEEE Global Conference on Signal and Information Processing
(GlobalSIP), pp. 573–577, 2017.

[95] J. Zhang and K. You, “Asyspa: An exact asynchronous algorithm for convex opti-
mization over digraphs,” CoRR, vol. abs/1808.04118, 2018.

[96] K. I. Tsianos, S. F. Lawlor, and M. G. Rabbat, “Communication/computation trade-
offs in consensus-based distributed optimization,” CoRR, vol. abs/1209.1076, 2012.

[97] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Consensus-based distributed op-
timization: Practical issues and applications in large-scale machine learning,” in
2012 50th Annual Allerton Conference on Communication, Control, and Comput-
ing (Allerton), pp. 1543–1550, 2012.

BIBLIOGRAPHY 167

[98] L. Xiao, A. W. Yu, Q. Lin, and W. Chen, “Dscovr: Randomized primal-dual block
coordinate algorithms for asynchronous distributed optimization,” Journal of Ma-
chine Learning Research, vol. 20, no. 43, pp. 1–58, 2019.

[99] H. Steinhaus, “Sur la division des corps matériels en parties,” Bull. Acad. Pol. Sci.,
Cl. III, vol. 4, pp. 801–804, 1957.

[100] J. Peña, J. Lozano, and P. Larrañaga, “An empirical comparison of four initialization
methods for the k-means algorithm,” Pattern Recognition Letters, vol. 20, pp. 1027–
1040, October 1999.

[101] S. S. Khan and A. Ahmad, “Cluster center initialization algorithm for k-means
clustering,” Pattern Recognition Letters, vol. 25, no. 11, pp. 1293–1302, 2004.

[102] D. Lashkari and P. Golland, “Convex clustering with exemplar-based models,” Ad-
vances in neural information processing systems, vol. 20, pp. 825–832, 01 2007.

[103] S. Nowozin and G. Bakir, “A decoupled approach to exemplar-based unsupervised
learning,” in Proceedings of the 25th International Conference on Machine Learning,
ICML ’08, (New York, NY, USA), p. 704711, Association for Computing Machinery,
2008.

[104] M. Wang, T. Yao, and G. I. Allen, “Supervised convex clustering,” arXiv preprint
arXiv:2005.12198, 2020.

[105] C. GK, C. EC, R. JM, and L. K, “Convex clustering: an attractive alternative to
hierarchical clustering,” PLoS Comput Biol, vol. 11, May 2015. PMID: 25965340;
PMCID: PMC4429070.

[106] B. Wang, Y. Zhang, W. Sun, and Y. Fang, “Sparse convex clustering,” Journal
of Computational and Graphical Statistics, vol. 27, pp. 393–403, April 2018. Pub-
lisher Copyright: c⃝ 2018, c⃝ 2018 American Statistical Association, Institute of
Mathematical Statistics, and Interface Foundation of North America.

[107] M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped
variables,” Journal of the Royal Statistical Society Series B, vol. 68, pp. 49–67, 02
2006.

[108] Q. Qian, On Algorithmic Regularization And Convex Clustering. PhD thesis, SOhio
State University, 2019. OhioLINK Electronic Theses and Dissertations Center.

168 BIBLIOGRAPHY

[109] Y. L. Huangyue Chen, Lingchen Kong, “A novel convex clustering method for high-
dimensional data using semiproximal admm,” Mathematical Problems in Engineer-
ing, vol. 2020, 2020. Article ID 9216351, 12 pages.

[110] S. Kar and B. Swenson, “Clustering with distributed data,” 2019.

[111] W. Zhou, H. Yi, G. Mishne, and E. Chi, “Scalable algorithms for convex clustering,”
in 2021 IEEE Data Science and Learning Workshop (DSLW), pp. 1–6, 2021.

[112] X. Zhou, C. Du, and X. Cai, “An efficient smoothing proximal gradient algorithm
for convex clustering,” 2020.

[113] C. Zhu, H. Xu, C. Leng, and S. Yan, “Convex optimization procedure for cluster-
ing: Theoretical revisit,” in Advances in Neural Information Processing Systems
(Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, eds.),
vol. 27, (New York, USA), pp. 1619–1627, Curran Associates, Inc., 2014.

[114] A. Panahi, D. Dubhashi, F. D. Johansson, and C. Bhattacharyya, “Clustering by
sum of norms: Stochastic incremental algorithm, convergence and cluster recovery,”
in Proceedings of the 34th International Conference on Machine Learning (D. Precup
and Y. W. Teh, eds.), vol. 70 of Proceedings of Machine Learning Research, (Sydney,
Australia), pp. 2769–2777, PMLR, 06–11 Aug 2017.

[115] D. Sun, K. chuan Toh, and Y. Yuan, “Convex clustering: Model, theoretical guar-
antee and efficient algorithm,” J. Mach. Learn. Res., vol. 22, pp. 9:1–9:32, 2021.

[116] E. Tejedor, Y. Becerra, G. Alomar, A. Queralt, R. M. Badia, J. Torres, T. Cortes,
and J. Labarta, “Pycompss: Parallel computational workflows in python,” The
International Journal of High Performance Computing Applications, vol. 31, no. 1,
pp. 66–82, 2017.

[117] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for dis-
covering clusters in large spatial databases with noise,” in Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, KDD’96, (Palo
Alto, California), p. 226231, AAAI Press, 1996.

[118] D. Jakoveti, J. M. F. Moura, and J. Xavier, “Distributed nesterov-like gradient
algorithms,” in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC),
pp. 5459–5464, 2012.

[119] S. Sundhar Ram, A. Nedi, and V. V. Veeravalli, “Distributed stochastic subgradient
projection algorithms for convex optimization,” Journal of Optimization Theory and
Applications, vol. 147, p. 516545, Jul 2010.

BIBLIOGRAPHY 169

[120] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D.
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK
Users’ Guide, vol. 9. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics (SIAM), 3 ed., 1999.

[121] L. B. et al., “An Updated Set of Basic Linear Algebra Subprograms (BLAS),” ACM
Trans. Math. Softw., vol. 28, p. 135151, June 2002.

[122] ADMM l1 and l2 logistic regression, accessed on: May 15, 2020.

[123] E. F. Tjong Kim Sang and F. De Meulder, “Language-independent named entity
recognition ii,” 2005; accessed on: May 30, 2019.

[124] E. F. Tjong Kim Sang and F. De Meulder, “Introduction to the conll-2003 shared
task: Language-independent named entity recognition,” in Proceedings of the Sev-
enth Conference on Natural Language Learning at HLT-NAACL 2003 - Volume 4,
CONLL 03, (USA), p. 142147, Association for Computational Linguistics, 2003.

[125] UCI Machine Learning Repository, “Gisette data set,” 2008; accessed on: May 29,
2019.

[126] D. Dua and C. Graff, “UCI machine learning repository,” 2017. University of Cali-
fornia, Irvine, School of Information and Computer Sciences.

[127] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, “Result analysis of the nips 2003
feature selection challenge,” in Proceedings of the 17th International Conference on
Neural Information Processing Systems, vol. 17 of NIPS04, (Cambridge, MA, USA),
p. 545552, MIT Press, 01 2004.

[128] “Uci machine learning repository.” hhttp://archive.ics.uci.edu/ml. University
of California, Irvine, School of Information and Computer Sciences, 2017, Accessed:
2022-03-20.

[129] UCI Machine Learning Repository, “Yearpredictionmsd data set,” 2011; accessed
on: September 01, 2019.

[130] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere, “The million song
dataset,” in Proceedings of the 12th International Conference on Music Information
Retrieval (ISMIR 2011), 2011.

[131] Y. LeCun and C. Cortes, “The mnist database of handwritten digits,” 2005; accessed
on: September 01, 2019.

hhttp://archive.ics.uci.edu/ml

170 BIBLIOGRAPHY

[132] L. Deng, “The mnist database of handwritten digit images for machine learning
research [best of the web],” IEEE Signal Processing Magazine, vol. 29, pp. 141–142,
2012.

[133] UCI Machine Learning Repository, “Relative location of ct slices on axial axis data
set,” 2011; accessed on: September 08, 2019.

[134] F. Graf, H.-P. Kriegel, M. Schubert, S. Pölsterl, and A. Cavallaro, “2d image regis-
tration in ct images using radial image descriptors,” in International Conference on
Medical Image Computing and Computer-Assisted Intervention, vol. 6892, pp. 607–
614, Springer, Springer, Berlin, Heidelberg, 2011.

[135] UCI Machine Learning Repository, “p53 mutants data set,” 2010; accessed on:
September 03, 2019.

[136] S. Danziger, R. Baronio, L. Ho, L. Hall, K. Salmon, G. Hatfield, P. Kaiser, and
R. Lathrop, “Predicting positive p53 cancer rescue regions using most informative
positive (mip) active learning,” PLoS computational biology, vol. 5, p. e1000498, 09
2009.

[137] S. A. Danziger, J. Zeng, Y. Wang, R. K. Brachmann, and R. H. Lathrop, “Choosing
where to look next in a mutation sequence space: Active Learning of informative
p53 cancer rescue mutants,” Bioinformatics, vol. 23, pp. 104–114, 07 2007.

[138] S. Danziger, S. J. Swamidass, J. Zeng, L. Dearth, Q. Lu, J. Chen, J. Cheng,
V. Hoang, H. Saigo, R. Luo, P. Baldi, R. Brachmann, and R. Lathrop, “Func-
tional census of mutation sequence spaces: The example of p53 cancer rescue
mutants,” IEEE/ACM transactions on computational biology and bioinformatics
/ IEEE, ACM, vol. 3, pp. 114–25, 05 2006.

[139] V. Simic, B. Stojanovic, and M. Ivanovic, “Optimizing the performance of optimiza-
tion in the cloud environmentan intelligent auto-scaling approach,” Future Genera-
tion Computer Systems, vol. 101, pp. 909–920, 2019.

[140] R. E. Bryant and D. R. O’Hallaron, Computer systems. Prentice Hall, 2011.

[141] E. D. Dolan and J. J. Moré, “Benchmarking optimization software with performance
profiles,” Mathematical Programming, vol. 91, p. 201213, Jan 2002.

[142] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity and smooth-
ness via the fused lasso,” Journal of the Royal Statistical Society: Series B (Statis-
tical Methodology), vol. 67, no. 1, pp. 91–108, 2005.

BIBLIOGRAPHY 171

[143] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language for
convex optimization,” Journal of Machine Learning Research, vol. 17, no. 83, pp. 1–
5, 2016.

[144] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, “A rewriting system for
convex optimization problems,” Journal of Control and Decision, vol. 5, no. 1,
pp. 42–60, 2018.

[145] Y. Gdalyahu, D. Weinshall, and M. Werman, “A randomized algorithm for pairwise
clustering,” in NIPS, 1998.

[146] “scikit-learn: Machine learning in python.” https://scikit-learn.org/stable/.
Accessed: 2022-03-20.

[147] C. Rasmussen, “The infinite gaussian mixture model,” in Advances in Neural In-
formation Processing Systems (S. Solla, T. Leen, and K. Müller, eds.), vol. 12,
(Cambridge, Massachusetts, USA), MIT Press, 1999.

[148] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of
Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

[149] E. Anderson, “The species problem in iris,” Annals of the Missouri Botanical Gar-
den, vol. 23, no. 3, pp. 457–509, 1936.

[150] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals
of Human Genetics, vol. 7, pp. 179–188, 1936.

[151] J. C. Dunn, “Well-separated clusters and optimal fuzzy partitions,” Journal of Cy-
bernetics, vol. 4, no. 1, pp. 95–104, 1973.

[152] D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. PAMI-1, no. 2, pp. 224–227,
1979.

[153] “The comprehensive r archive network.” https://cran.r-project.org/. Ac-
cessed: 2022-06-20.

[154] W. Xiao and J. Hu, “A survey of parallel clustering algorithms based on spark,”
Scientific Programming, vol. 2020, pp. 1–12, 09 2020. Article ID 8884926, 12 pages.

[155] E. R. Sparks, A. Talwalkar, V. Smith, J. Kottalam, X. Pan, J. Gonzalez, M. J.
Franklin, M. I. Jordan, and T. Kraska, “Mli: An api for distributed machine learn-
ing,” in 2013 IEEE 13th International Conference on Data Mining, pp. 1187–1192,
IEEE, October 2013.

https://scikit-learn.org/stable/
https://cran.r-project.org/

172 BIBLIOGRAPHY

[156] “I-bidaas - d3.3: Batch processing analytics module implementation final report,”
2021; accessed on June 1, 2022.

[157] “The knowledge repository of the i-bidaas project.” https://github.com/
ibidaas/knowledge_repository. Accessed: 2022-06-15.

[158] MATLAB, version 7.10.0 (R2010a). Natick, Massachusetts: The MathWorks Inc.,
2010.

[159] B. R. M., J. Conejero, C. Diaz, J. Ejarque, D. Lezzi, F. Lordan, C. Ramon-Cortes,
and R. Sirvent, “Comp superscalar, an interoperable programming framework,”
SoftwareX, vol. 34, p. 3236, December 2015.

[160] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse linear re-
gression,” IEEE Transactions on Signal Processing, vol. 58, no. 10, pp. 5262–5276,
2010.

[161] T. Gowda and C. A. Mattmann, “Clustering web pages based on structure and
style similarity (application paper),” in 2016 IEEE 17th International Conference
on Information Reuse and Integration (IRI), pp. 175–180, 2016.

[162] “H2020 i-bidaas project - industrial-driven big data as a self-service solution,” 2021;
accessed on June 1, 2022.

[163] A. Alexopoulos, Y. Becerra, O. Boehm, G. Bravos, V. Chatzigiannakis, C. Cug-
nasco, G. Demetriou, I. Eleftheriou, L. Fodor, S. Fotis, S. Ioannidis, D. Jakovetic,
L. Kallipolitis, V. Katusic, E. Kavakli, D. Kopanaki, C. Leventis, M. M. Mar-
cos, R. M. de Pozuelo, M. Martínez, N. Milosevic, E. P. P. Montanera, G. Ris-
tow, H. Ruiz-Ocampo, R. Sakellariou, R. Sirvent, S. Skrbic, I. Spais, G. Vasiliadis,
and M. Vinov, Big Data Analytics in the Banking Sector: Guidelines and Lessons
Learned from the CaixaBank Case, pp. 273–297. Cham: Springer International
Publishing, 2022.

https://github.com/ibidaas/knowledge_repository
https://github.com/ibidaas/knowledge_repository

Appendix A

Prošireni izvod

Uvod

Distribuirana konveksna optimizacija [3, 6, 7] predstavlja pristup, koji omogućuje par-
ticionisanje konveksnog optimizacionog problema u skup povezanih podsistema. Pri-
menom skupa agenata za rešavanje ovakvih problema, pojavljuju se multi-agent dis-
tribuirane metode konveksne optimizacije, koje omogućuju rešavanje širokog skupa prob-
lema [8, 9, 10, 11, 12, 13]. Metode distribuirane konveksne optimizacije, mogu se podeliti
na više načina. U ovoj tezi razmatramo dve klase metoda: stohastičke metode primarnog
tipa, bez ograničenja i determinističke metode dualnog tipa sa ograničenjem (posma-
trani problem bez ograničenja prevodimo u metodu sa ograničenjem). Iz aspekta im-
plementacije, posmatraju se dva modela komunikacije: manager-workers princip, koji u
okviru teze koristimo sa dualnom ADMM [3] metodom, i princip mreže ravnopravno
povezanih čvorova, koji koristimo sa metodama primarnog tipa u tezi.

Primenom računarstva visokih performansi, problemi iz oblasti distribuirane konveksne
optimizacije se mogu rešavati na efikasan način. Unutar teze, koristimo dva različita
pristupa za paralelizaciju: Message Passing Interface (MPI) [4], i COMPS Superscalar
(COMPSs) [5]. Primenom ovih tehnologija, razvijamo paralelne implementacije metoda,
nad kojima sprovodimo sveobuhvatnu empirijsku evaluaciju na računarskom klasteru.
Rezultati ovih analiza omogućuju uvid u osobine posmatranih metoda, njihovo međusobno
poređenje, kao i detekciju daljih pravaca razvoja. Metode primarnog tipa, u prvom delu
teze, razvijamo u MPI tehnologiji, u programskom jeziku C, dok u drugom delu teze razvi-
jamo algoritam za konveksno klasterovanje, baziran na ADMM-u, u COMPSs tehnologiji.
Pokazaćemo osobine skalabilnosti razvijenih algoritama, uz zaključke o njihovoj primen-
jivosti u raznim scenarijima. Osim toga, teza sadrži i poređenje pomenute dve tehnologije.

173

174 Appendix A. Prošireni izvod

Metode distribuirane optimizacije primarnog tipa

U prvom delu teze, u težištu pažnje su metode distribuirane optimizacije primarnog tipa,
bez ograničenja. Akcenat je na razvoju što efikasnije implementacije ovih metoda i nji-
hovoj praktičnoj evaluaciji na računarskom klasteru.

Teorijske osobine metoda

Posmatramo mrežu povezanih čvorova (agenata), gde svaki čvor u mreži poseduje konvek-
snu funkciju cilja fi : IRp → IR, gde je funkcija fi poznata samo čvoru i, i svaka funkcija
fi je strogo konveksna, dvaput diferencijabilna, sa Lipschitz kontinuiranim gradijentom.
Svaki čvor u mreži teži rešavanju sledećeg problema:

minimize f(x) :=
n∑

i=1
fi(x). (A.1)

Problemu (A.1), pridružujemo graf G = (N, E), gde N = {1, ..., n} predstavlja skup
čvorova, a E predstavlja skup grana {i, j}, odnosno parove čvorova, koji mogu direktno
komunicirati. Drugim rečima, graf G predstavlja kolekciju komunikacionih veza između
čvorova. Algoritmi koje ovde razmatramo mogu da koriste sve ove veze (slučaj kada
ne koristimo sparsifikaciju komunikacije), ili mogu da koriste samo podskup ovih veza
tokom iteracija (slučajevi primene sparsfikovanja komunikacije). Opisani problem se može
rešavati iterativno, na sledeći način:

xk+1
i = xk

i − dk
i , (A.2)

dk
i = −

[
(Mk

i)=1[α∇fi(xk
i) +

∑
jϵΩi

Wij(xk
i − xk

j)ξk
i,j]

]
. (A.3)

U ovoj formulaciji, xi ∈ Rp, predstavlja optimizacionu varijablu, a (Mk
i)−1 je aproksi-

macija vrednosti inverza Hessian-a, tj. informacije drugog reda. Ωi je skup suseda čvora
i, a matrica W je dvostruko stohastička matrica susedstva, koja prati strukturu grafa
G, tako da je Wij = 0 za i ̸= j, ako i samo ako je {i, j} /∈ E. α predstavlja pozitivnu
vrednost, koja ima ulogu dužine koraka.

Parametar ξk
ij enkodira informaciju o sparsifikaciji komunikacije. Označimo sa zk

i slučajne
promenljive, koje su nezavisne na nivou čvorova i iteracija. Tada je verovatnoća data sa

175

pk = Prob(zk
i = 1), jednaka na nivou svih čvorova. Vrednost pk predstavlja dizajn param-

etar metoda, i posmatramo različite pristupe za podešavanje njegove vrednosti, što će biti
opisano u nastavku. ξk

i,j je funkcija zk
i i zk

j i smatramo da može imati sledeće vrednosti:
ξk

i,j = 1, kada nema sparsifikacije komunikacije; ξk
i,j = zk

i · zk
j , u slučaju dvosmerne spar-

sifikacije komunikacije; i ξk
i,j = zk

j , u slučaju jednosmerne sparsifikacije komunikacije.
Dvosmerna sparsifikacija komunikacije podrazumeva da čvor i uključuje procenu rešenja
susednog čvora j, samo ako su oba čvora i i j aktivna za komunikaciju. Drugim rečima,
ukoliko je čvor i aktivan u iteraciji k, on šalje svoju porcenu rešenja svim svojim aktivnim
susedima i takođe prima lokalne procene rešenja od njih. S druge strane, jednosmerna
sparsifikacija komunikacije podrazumeva da čvor i uključuje procenu rešenja svog suseda
j, ukoliko je čvor j aktivan, bez obzira na aktivni status čvora i. Ovo znači da aktivan
čvor i šalje svoje rešenje susedima, bez obzira na to da li su oni aktivni, ali prima vrednosti
samo od aktivnih suseda. U protivnom, kada je čvor i neaktivan, ne šalje svoju procenu
rešenja susedima, ali prihvata njihova rešenja.

Vrednost Mk
i može da ima vrednost Mk

i = I, što podrazumeva metode prvog reda. Druga
mogućnost je Mk

i = Dk
i , gde je:

Dk
i = α∇2fi(xk

i) + (1 − Wii)I, (A.4)

što odgovara metodama drugog reda. Na osnovu definisanih principa, osnovna forma algo-
ritma za metode primarnog tipa se može prikazati pseudokodom, datim unutar Algoritma
4.

Algoritam 4 Pseudokod algoritma za metode primarnog tipa
Potrebno na svakom čvoru i: α > 0; {Wij}j∈Ωi

; {pk}k≥0
ponovi

Svaki čvor i generise zk
i i računa:

Mk
i i ξk

i,j, j ∈ Ωi

ako ξk
i,j = 1 onda

Svaki čvor i prima xk
j od čvora j, j ∈ Ωi

kraj ako
Svaki čvor i racuna xk

i kao (2.9) – (2.10)
dok nije ispunjen kriterijum zaustavljanja

Implementacija metoda

Paralelna implementacija predloženog algoritma, razvijena je upotrebom MPI tehnologije,
u programskom jeziku C. Kada govorimo o MPI tehnologiji, potrebno je deinisati neko-
liko pojmova. Pre svega, prilikom izvršavanja paralelnog programa, skup procesa radi

176 Appendix A. Prošireni izvod

istovremeno na rešavanju problema. Svaki proces ima svoj identifikator, odnsono redni
broj. Proces sa rednim brojem 0 nazivamo master proces, i on je zadužen za koordinaciju
paralelnog izvršavanja. Kada je reč o implementaciji, pojmove proces i čvor koristimo
naizmenično. Za potrebe efikasnih operacija nad vektorima i matricama, koriste se odgo-
varajuće rutine iz biblioteka LAPACK [120] i BLAS [121], na svakom čvoru. Algoritam
je razvijen za dva različita slučaja funkcije cilja: kvadratne funkcije i funkcije logističkog
gubitka (logistic loss). Implementacija je razvijana u nekoliko etapa, gde je nakon svake
od njih urađena empirijska analiza, kako bi se utvrdila i eliminisala potencijalna “uska
grla” po pitanju performansi. Prvobtino, implementacija je zasnovana na principu ko-
munikacije svako-sa-svakim. Ovo podrazumeva da svaki čvor komunicira sa svim ostalim
čvorovima fizički, bez obzira na strukturu grafa G. Naknadno, svaki čvor uzima u obzir
rešenja u skladu sa definicijom grafa G.

Kako se ovaj pristup komunikacije svako-sa-svakim pokazao neefikasnim i neskalabilnim,
zamenjen je upotrebom komunikatora. Komunikatori su koncept iz MPI tehnologije,
koji omogućuju komunikaciju između određenog skupa čvorova. Podrazumevani, globalni
komunikator, koji se implicitno kreira, pri pokretanju MPI aplikacije, sadrži sve procese.
Međutim, moguće je programski kreirati komunikator, koji sadrži samo određene procese.
Praktično, za potrebe algoritma, kreiramo niz komunikatora, po jedan za svaki proces,
gde je dati proces master proces, i osim datog procesa, sadrži sve procese, koji su njemu
susedni. Na ovaj način, obezbeđuje se da svaki čvor komunicira isključivo sa susednim
čvorovima, shodno definiciji grafa G.

Nakon toga, istražujemo i implementacije algoritma, sa sparsifikovanom komunikacijom,
na opisan način. Kako bi se realizovao koncept sparsifikovane komunikacije, definišemo
verovatnoću pk. Verovatnoća može imati fiksnu vrednost tokom iteracija, ili može da
se menja. U okviru teze, testirane su fiksne vrednosti pk = 0.3, pk = 0.5 i pk = 0.8.
Takođe, razmatramo rastuću, pk = 1 − 0.5k, i opadajuću verovatnoću, pk = 1

k+1 , gde je
k brojač iteracije. Iz aspekta implementacije, ovo znači da je na početku svake iteracije
potrebno ponovo kreirati komunikatore, s obzirom da sastav svakog komunikatora zavisi
od toga da li su potencijalni kandidati za njega aktivni. Aktivnost procesa u datoj it-
eraciji, određuje se generisanjem slučajne vrednosti iz zadatog intervala i određivanjem
da li je ta vrednost u granicama zadate verovatnoće. U skladu sa ovim je potrebno pri-
lagoditi i implementaciju razmene podataka među procesima. Kada je u pitanju koncept
jednosmerne komunikacije, kreiranje komunikatora na početku iteracije je potrebno pri-
lagoditi tako, da sada i neaktivni čvorovi zadrže svoj komunikator, u kome će učestvovati
aktivni susedi, kako bi čvor mogao primati podatke od aktivnih suseda, i onda kada je
neiaktivan.

177

Ulazni podaci su organizovani u 4 ulazna fajla, za matricu, vektor i 2 fajla za podatke o
grafu, gde su sadržane informacije o matrici susedstva i stepenima čvorova. Master proces
učitava podatke i raspoređuje ih svim procesima. Ukoliko dimenzija ulaznih podataka nije
deljiva sa brojem procesa, ostatak se dodeljuje master procesu. Po pitanju prirode grafa
G, razmatraju se jednostavni slučajevi upotrebe regularnih i mrežnih grafova. Kriterijum
zaustavljanja algoritma se definiše na sledeći način: iteracije algoritma se nastavljaju sve
dok nije ispunjen uslov ∥∇ϕ(xk)∥ ≤ ϵ, gde je ϵ = 0.01. Gradijent ∇ϕ(xk) ne može da se
izracuna na nivou jednog čvora. Na kraju svake iteracije, master čvor sakuplja vrednosti
od ostalih čvorova i određuje euklidsku normu vektora. Ukoliko je kriterijum zaustavljanja
ispunjen, šalje se odgovarajući signal svim procesima.

Algoritam je univerzalan u odnosu na funkciju cilja fi, i može se lako prilagoditi za
implementaciju nove funkcije cilja, jednostavnom zamenom izračunavanja gradijenta i
Hessian-a. Unutar teze, razvili smo implementaciju za dve funkcije cilja. Implemetacija
za kvadratne funkcije podrazumeva sledeću funkciju cilja:

fi(x) = 1
2

(x − bi)τ ai(x − bi), (A.5)

gde x ∈ Rs predstavlja optimizacionu varijablu, ai je ulazna matrica, a bi je ulazni vektor
na svakom čvoru. Implementacija za funkcije logističkog gubitka sa L2 regularizacijom
podrazumeva:

fi(x) =
J∑

j=1
Jlogis(bij(x⊤

1 aij + x0)) + τ

n
||x||2. (A.6)

U ovoj formulaciji, x = (x⊤
1 , x0) ∈ Rs−1 × R predstavlja optimizacionu varijablu, τ je

kazneni (penalty) parametar, dok su ai i bi ponovo ulazni podaci, i važi da je Jlogis(z) =
log(1 + e−z).

Evaluacija metoda

Kada je u pitanju evaluacija osobina opisanog algoritma, mogu se definisati dve celine.
Prva se tiče testiranja algoritma tokom razvoja implementacije i poređenje različitih as-
pekata implementacije. Druga celina se tiče temeljne analize formirane klase posmatranih
metoda, koje koriste različite strategije sparsifikovanja komunikacije. Za potrebe testi-
ranja, korišceno je nekoliko različitih infrastruktura. Pre svega, za testiranje serijskih
implementacija, korišćena je 64-bitna Linux konfiguracija, sa Core i5-4590 3.30GHz pro-
cesorom sa 4 jezgra i 16 GB RAM memorije. Paralelne implementacije, testirane se na
realnom računarskom klasteru. Za ovu svrhu, korišćena su 2 klastera: AXIOM, koji sadrži
16 računarskih jedinica (8 x Intel i7 5820k 3.3GHz i 8 x Intel i7 8700 3.2GHzCPU - 192

178 Appendix A. Prošireni izvod

jezgra i 16GB DDR4 RAM-a po čvoru), povezanih 10 Gbps mrežom; i Paradox, koji sadrž
106 računarskih jedinica (2 x 8 jezgara Sandy Bridge Xeon 2.6GHz procesori sa 32GB
RAM-a + NVIDIAő Tesla M2090), povezanih QDR InfiniBand mrežom.

Rezultati i zaključci na osnovu analize implementacionih aspekata

Prvobitni skup analiza, tiče se evaluacije razvijene implementacije i ulaganje napora u
njeno poboljšanje. Pre svega, prvobitna paralelna implementacija, sa upotrebom komu-
nikacionog protokola svako-sa-svakim za kvadratne funkcije, upoređena je sa serisjkom
implementacijom, razvijenom u MATLAB-u. Kako je priroda algoritma takva da po-
drazumeva paralelno izvršavanje, serijska implementacija izvršava deo posla svakog čvora
sekvencijalno, u jednoj petlji. Ova inicijalna analiza je potvrdila da je paralelna imple-
mentacija daleko efikasnija po pitanju performansi, što je očekivani zaključak. Međutim,
ovakva implementacija se ne skalira, a razlog je u pristupu komunikacije, baziranom na
principu svako-sa-svakim. Ovi rezultati su motivisali adaptaciju implementacije, tako
da se inkorporira upotreba komunikatora i time se smanje troškovi komunikacije. Za
testiranje algoritma za kvadratne funkcije, korišćeni su sintetički podaci.

U nastavku, testovi su bazirani na funkcijama logističkog gubitka, nad realnim, javno
dostupnim skupovima podataka. Tabela A.1 prikazuje poređenje vremena izvršavanja za
pristup sa komunikacijom po principu svako-sa-svakim i upotrebom komunikatora, za dva
skupa podataka: Conll [123] i Gisette[125]. Evidentno je da se upotrebom komunikatora
smanjuje vreme izvršavanja, što je za veći skup podataka izraženije.

Tabela A.1: Primer poređenja vremena izvršavanja za algoritam sa komunikacijom svako-
sa-svakim i sa upotrebom komunikatora

Skup podatala broj čvorova Vreme(s): svako-sa-svakim Vreme(s): komunikatori
Conll 26 2.815006 2.610187
Gisette 42 6926.05 6628.73

Algoritam sa komunikatorima se dobro skalira. Primer skaliranja, prikazan je na Slici
A.1. Odavde se jasno vidi da se vreme izvršavanja algoritma smanjuje sa povećanjem
broja čvorova, dok se ne dostigne optimalan broj čvorova za dati primer. Nakon toga,
vreme izvršavanja počinje da raste, s obzirom da troškovi paralelizacije sa većim brojem
čvorova postaju skuplji, u odnosu na dobit, koji dobijamo paralelizacijom.

Analizom potrebne količine vremena za izvršavanje raznih delova algoritma, jasno se vidi
da najveći procenat vremena oduzima komunikacija. Stoga se pojavljuje motivacija za
uveđenje različitih pristupa sparsifikacije komunikacije. U ovom kontekstu, testiran je

179

Slika A.1: Skaliranje algoritma sa komunikatorima, na Gisette skupu podataka

Tabela A.2: Metode Algoritma 1

Naziv
metode

Broj
metode Tip Mk

i ξk
i,j pk Relevantna referenca

FBI Metod 1 Prvog reda I zk
i · zk

j pk = 1 − 0.5k [40]
FBD Metod 2 Prvog reda I zk

i · zk
j pk = (k + 1)−1 [43]

FUI Metod 3 Prvog reda I zk
j pk = 1 − 0.5k nova metoda [46]

FUD Metod 4 Prvog reda I zk
j pk = (k + 1)−1 [44]

FBC Metod 9 Prvog reda I 1 1 [41]
SBC Metod 0 Drugog reda Dk

i 1 1 [12]
SBI Metod 5 Drugog reda Dk

i zk
i · zk

j pk = 1 − 0.5k [39]
SBD Metod 6 Drugog reda Dk

i zk
i · zk

j pk = (k + 1)−1 [39, 43]
SUI Metod 7 Drugog reda Dk

i zk
j pk = 1 − 0.5k nova metoda [46]

SUD Metod 8 Drugog reda Dk
i zk

j pk = (k + 1)−1 nova metoda [46]

skup od 20 metoda, koje predstavljaju kombinacije različitih pristupa sparsifikaciji (koriste
različite verovatnoće komunikacije, konkretno 0.3, 0.5, 0.8, kao i rastuću i opadajuću),
mogu biti prvog ili drugog reda i mogu biti jednosmerne ili dvosmerne. Nakon analize
izvršavanja ovih metoda, identifikovane su one, koje pokazuju najbolje performanse, a
osim njih, u konačnu klasu predloženih metoda, ulaze i odgovarajući parovi metoda.

Klasa posmatranih metoda

Konačna klasa predloženih metoda, može da se definiše na način, prikazan u Tabeli A.2.
Kako bi identifikacija metoda bila jednostavnija, uveden je princip imenovanja metoda,
koji se sastoji od 3 slova: prvo slovo označava da li je metoda prvog ili drugog reda (F
za first i S za second order, na engleskom), drugo slovo označava da li je komunikacija
jednosmerna ili dvosmerna (B za bidirectional i U za unidirectional, na engleskom), treće
slovo označava tip verovatnoće (I za increasing, D za decreasing i C za constant, na
engleskom). Jedine metode sa konstantnom verovatnoćom su FBC i SBC. Metoda SBC

180 Appendix A. Prošireni izvod

je inicijalna verzija algoritma, koja ne sparsifikuje komunikaciju. Ona je drugog reda,
a metoda FBC je odgovarajuća metoda prvog reda, takođe bez sparsifikacije. Varijante
metoda sa konstantnom verovatnoćom 0.3, 0.5, 0.8 se nisu pokazale dovoljno efikasnim,
kako bismo ih uključili u ovaj skup.

Experimentalni rezultati nad klasom odabranih metoda

Prilikom testiranja klase predloženih metoda, korišćeni su 8-regularni grafovi. Testirano
je nekoliko alternativa regularnih i mrežnih grafova, a 8-regularni su se pokazali kao nja-
pogodniji među njima. Kada su u pitanju vremena izvršavanja različitih metoda, razmot-
rimo Tabelu A.3. Unutar nje su prikazana vremena izvršavanja za svih 10 metoda, nad p53
[135] skupom podataka, i mrežu od 20 čvorvoa. Kada je u pitanju vreme izvršavanja par-
alelnih programa, konačna vrednost vremena je vreme potrebno da najsporiji proces završi
svoj deo posla. Iz Tabele A.3 se može videti da metode prvog reda uvode značajno sman-
jenje potrebne količine vremena izvršavanja. U ovom slučaju, metoda FBD ima najbolje
performanse. Kada se uporedi metod FBC sa metodom SBC, jasno je da izračunavanje
informacije drugog reda značajno povećava vreme izvršavanja, jer se ove metode razlikuju
samo u toj dimenziji. Smanjenje koliine komunikacije tokom iteracija kroz opadajuću
verovatnoću pomoću metode FBD ovde dovodi do bržeg izvršenja, u odnosu na rastuću
vrednost verovatnoće. Međutim, ovo ponašanje može biti veoma zavisno od prirode samog
skupa podataka. Algoritmi za skup podataka p53 generalno brzo konvergiraju, unutar
relativno malog broja iteracija. Jednako važan aspekt ovde je takođe činjenica da Metod
FUD, koristeći jednosmernu komunikaciju i opdajuću verovatnoću, radi bolje od metode
FBI, sa dvosmernom komunikacijom i rastućom verovatnoćom komunikacije. Posma-
tranje vremena izvršenja za metode drugog reda dokazuje da uvođenje sparsifikacije ko-
munikacije uglavnom nije isplativo, jer se računanjem informacija drugog reda oduzima
značajna količina vremena, koja se zbog sparsifikacije ne može kompenzovati.

Potrebno je razmotriti i osobinu skalabilnosti predloženih metoda. Posmatramo Sliku A.2,
gde je prikazano skaliranje za metodu FBI, na skupu podataka YearPredictionMSD [129].
Na slici se može identifikovati optimalan broj čvorova za ovaj slučaj i uočava se uobičajen
trend za paralelne programe: vreme izvršavanja opada, dok se ne dostigne optimalan broj
čvorova, nakon čega počinje da raste, jer dodavanje novih čvorova više nije isplativo i
vreme komunikacije postaje dominantno.

Slika A.3 prikazuje vremena izvršavanja metoda prvog reda, koje koriste sparsifikaciju
komunikacije, na skupu podataka CT [133]. Jasno se vidi da je optimalan broj čvorova
za metode FBI, FUI i FUD ista vrednost, n = 6. Metoda FBD se ponaša malo drugačije.
Generalno, ona rezultuje nižim vrednostima vremena izvršavanja, a optimalan broj čvorova

181

Tabela A.3: Vremena izvršavanja različitih metoda Algoritma 4 (A.3)-(A.2), za 20 čvorova
u mreži, na p53 skupu podataka

Metod Vreme izvršavana (s)
FBI 4.64
FBD 1.89
FUI 6.04
FUD 3.56
FBC 3.16
SBC 9661.42
SBI 43126.71
SBD 22683.84
SUI 22029.20
SUD 9651.77

Slika A.2: Osobine skaliranja Metode FBI, za YearPredictionMSD skup podataka

FBI

FUI

FUD

FBD

Slika A.3: Vremena izvršavanja za metode prvog reda na skupu podataka CT

za nju je n = 10.

Ubrzanje algoritma je moguce predstaviti i grafički, kao na primer u [139]. Primer za ovo,
prikazan je na Slici A.4, gde je iscrtano ubrzanje metode FBD na Mnist skupu podataka,
za broj čvorova od 2 do 12, s obzirom da je 12 optimalna broj čvorova za ovaj test slučaj.
Ubrzanje na y osi, može se računati upotrebom Amdahl-ovog pravila [140], kao odnos

182 Appendix A. Prošireni izvod

Slika A.4: Ubrzanje za FBD metodu na Mnist skupu podataka

Slika A.5: Poređenje ADMM pristupa sa SBI metodom na Conll skupu podataka

vremena izvršavanja programa za jedan čvor i vremena izvršavanja za n čvorova. U
idealnom slučaju, očekuje se linearno ubrzanje. U ovom slučaju, evidentno je da metoda
FBD pokazuje veoma zadovoljavajući nivo ubrzanja sa povećanjem broja čvorova.

Kako se opisani problem može rešiti korišćenjem ADMM metode [3], uporedili smo al-
goritam sa ADMM implementacijom za logističku regresiju, na Conll skupu podataka.
Tačnije, ADMM metoda rešava problem pretpostavljajući prisustvo centralnog čvora koji
komunicira sa svi ostalim čvorovima u mreži. Zbog toga, prilagođavamo naš algoritam,
tako da graf G bude potpuno povezan i da matrica W sadrži sve jednake vrednosti 1/n.
Rezultati poređenja su prikazani na Slici A.5

Računamo vrednost Φk = 1
n

∑n
i=1 f(xk

i), tj. prosečni globalni trošak u (A.1) u proseku,
kroz sve čvorove, na kraju svake iteracije. Merimo vreme potrebno da se zadovolji Φk−f∗

f∗ <

0.1. Ovde, f ⋆ se numerički evaluaira od strane ADMM-a. U ovom poređenju, kao najbolja,
pokazala se metoda SBI.

Činjenica da metoda drugog reda ima bolje performanse u ovom slučaju, u odnosu na
metode prvog reda, konzistentna je sa ranijim zaključcima. U principu, za manje skupove
podataka, metode drugog reda imaju tendenciju da budu efikasnije. Slika A.5 pokazuje

183

FBI
FBD

FUD

FBC
SBC

SBI

SBD

SUI
SUD

FUI

Slika A.6: Profil performansi za svih 10 metoda, na osnovu svih izvršenih testova

da SBI metoda koristi veći broj znatno bržih iteracija, u odnosu na ADMM, i rezultuje
nižim celokupnim vremenom izvršavanja.

Kada je reč o performansama i njihovom međusobnom poređenju, profil performansi [141]
predstavlja vrlo pregledan i koristan pristup za evaluaciju. Slika A.6 prikazuje profil per-
formansi za svih 10 metoda, na osnovu svih izvršenih testova. Ovakva evaluacija nam,
između ostalog, daje priliku da uporedimo parove metoda prvog i drugog reda, koje koriste
istu strategiju sparsifikacije. Posmatrajući metode bez sparsifikacije, odnosno metode
SBC i FBC, slika pokazuje da metoda prvog reda, metod FBC, ima bolje rezultate od
metode drugog reda, metode SBC. Isto važi i ako razmatramo metode sa sparsifikaci-
jom. Uzimajući u obzir metode sa smanjenom verovatnoćom komunikacije i korišćnjem
dvosmerne komunikacije, ispostavlja se da metoda FBD ima mnogo bolje perfromanse
od metode SBD. Prilikom uporeivanja ostalih metoda prvog i drugog reda koristeći istu
sparsifikaciju (metod FBI i SBI, metod FUI i SUI, metod FUD i SUD), metode prvog
reda imaju bolji učinak u 61% test slučajeva. Postoje slučajevi u kojima metode drugog
reda dominiraju. Ako posmatramo Sliku A.7, gde je prikazan profil performansi za skup
podataka CT, vidimo da je u ovom slučaju metoda sa najboljim performansama, metoda
drugog reda, SUI. Razlog za ovo je dimenzionalnost skupa podataka. Za manje skupove
podataka, informacija drugog reda se računa brže, potreban je manji broj iteracija, i
time dolazi do brže konvergencije. Ovaj trend važi generalno, za skupove podata manje
dimenzionalnosti.

Prikazane analize su pokazale da metodi iz predloženog skupa imaju osobine skalabilnosti.
Pokazano je da za svaku metodu, može da se identifikuje optimalan broj čvorova na datom

184 Appendix A. Prošireni izvod

Slika A.7: Profil perofmansi za svih 10 metoda, na osnovu testova izvršenim na CT skupu
podataka

test skupu. Međusobnim poređenjem metoda, zaključuje se da su metode prvog reda bolji
izbor po pitanju performansi, kada skup podataka ima veliki broj osobina (103 ili više
za prikazane rezultate). S druge strane, kod manjih dimenzija podataka, metode drugog
reda pokazuju bolje performanse. Metodama prvog reda je potreban veći broj iteracija
za konvergenciju, ali su te iteracije brze, što je suština razlike u ponašanju. Pokazano
je da je metoda FBD, metoda sa najboljim performansama unutar prezentovanog skupa
testova. Međutim, evidentno je da i metode sa jednosmernom komunikacijom mogu da
imaju veoma dobre performanse, u nekim slučajevima i bolje od onih sa dvosmernom
komunikacijom, pa stoga predstavljaju takođe značajan doprinos.

Metoda distribuirane optimizacije dualnog tipa

U drugom delu teze, razmatra se dualna metoda, Alternating direction method of mul-
tiplyers (ADMM) [3]. Metoda je u širokoj primeni u domenu problema distribuirane
optimizacije. Danas, potreba za efikasnim algoritmima mašinskog učenja neprestano
raste, praćena težnjom da se obradi velika količina podataka, na što efikasniji način.
Klasterovanje (grupisanje) predstavlja značajan metod učenja bez nadzora, koji pronalzi
primenu u raznim domenima. Stoga je od interesa da se razvijaju distribuirana, paralelna
rešenja za grupisanje podataka. U drugom delu teze, opisujemo i praktično evaluairamo
paralelni algoritam za konveksno grupisanje podataka, baziran na ADMM-u.

185

Teorijske osobine metode

Predložena metoda za grupisanje podataka, zasniva se na ideji SON klasterovanja [35],
primenom ADMM metode. Posmatramo skup N observacija {aj}N

j=1 ∈ Rd. S obzirom
da razvijamo paralleni algoritam, potrebno je sav posao podeliti i delegirati skupu od
K čvorova, tj. procesa. Primenjujemo manager-workers princip model komunikacije.
Povezane čvorove označavamo indeksima na sledeći način: mater čvor označavamo sa 1,
a ostale čvorove sa 2, ..., K. Ulazni podaci se dele jednako među čvorovima, i sa aij ∈ Rd

označavamo j-tu tačku, dostupnu na čvoru i, gde je i = 1, ..., K, j = 1, ..., N
K

. Uvodimo
nekoliko izmena, u odnosu na standardnu formu konveksnog grupisanja. Prvo, ovde ne
penalizujemo razlike po svim parovima klaster kandidata. Umesto toga, dodeljujemo mas-
ter čvoru “centralni” klaster kandidat, koji označavamo sa x11. Slično tome, svim ostalim
čvorovima (workers) i = 2, ..., K, dodeljujemo lokalni “centralni” klaster kandidat xi1.
Drugim rečima, unutar tačaka podataka na jednom čvoru i, i = 1, ..., N , penalizujemo ra-
zliku između lokalnog centra xi1 i ostalih tačaka xij, j = 2, ..., N

K
na tom čvoru. Osim toga,

penalizujemo i razlike između master centra x11 i lokalnih centara xi1, i = 2, ..., K. Na
osnovu navedenog, predložena formulacija konveksnog kalsterovanja ima sledeću formu:

minimize
xij

K∑
i=1

N
K∑

j=1
||aij − xij||2 + γ

K∑
i=1

N
K∑

j=2
||xi1 − xij|| + γ

K∑
i=2

||x11 − xi1||, (A.7)

gde se minimizacija vrši u odnosu na varijable xij ∈ Rd, i = 1, ..., K, j = 1, ..., N
K

, i
važi γ > 0. Definisanom problemu, može se dodeliti graf G = (N , E), gde je N skup
čvorova, gde svaki odgovara jednoj varijabli xij, i = 1, ..., K, j = 1, .., N

K
, a E je skup grana

(i, j) ∼ (l, m), tako da među čvorovima (i, j) i (l, m) postoji grana, ako druga suma u (A.7)
uključuje term ∥xij −xlm∥. U smislu grafovske reprezentacije, originalan problem konvek-
snog klasterovanja, dobija se zamenom grafa G kompletnim grafom. Takođe, (A.7) mogao
bi dodatno da se posmatra i kao grupisanje sa dodatom težinskom komponentom. Pred-
loženi algoritam ne pretpostavlja nikakvno poznavanje strukture ili raspodele podataka
po čvorovima unapred i konstrukcija grafa je nezavisna od vrednosti ulaznih podataka.
Nakon primene ADMM pristupa, problem može da se reformuliše na sledeći način:

minimize
K∑

i=1

N
K∑

j=1
||aij − xij||2 + γ

K∑
i=1

N
K∑

j=2
||xi1 − xij|| + γ

K∑
i=2

||x11 − yi1||

s.t. yi1 = xi1, i = 2..K.

(A.8)

186 Appendix A. Prošireni izvod

Drugim rečima, za centar svakog čvora xi1, i = 1, ..., K, uvodimo pomoćnu varijablu
yi1 i dodajemo ograničenje yi1 = xi1 kako bi problem (A.8) bio ekvivalentan sa (A.7).
Varijable u (A.8) su tada {xij}, i = 1, ..., K, j = 1, ..., N

K
, i yi1, i = 1, ..., K. Dualizovanjem

ograničenja u (A.8), formira se funkcija proširenog Lagranžijana Lρ : RNd ×RKd ×RKd →
R, na sledeći način:

Lρ(x, y; λ) =
K∑

i=1

N
K∑

j=1
||aij − xij||2 + γ

K∑
i=1

N
K∑

j=2
||xi1 − xij|| + γ

K∑
i=2

||x11 − yi1||

+
K∑

i=2
λT

i (yi1 − xi1) + ρ

2

K∑
i=2

||yi1 − xi1||2,

(A.9)

gde je ρ > 0 kazneni (penalty) parametar. Konačno, dobijamo skup sledećih ažuriranja:

• ažuriranje vrednosti x, na svakom čvoru i = 2..K, paralelno:

xk+1
ij = argmin

N
K∑

j=1
||aij − xij||2 + γ

N
K∑

j=2
||xi1 − xij||

+ (λk
i)T (yk

i1 − xi1) + 1
2

ρ||yk
i1 − xi1||2

(A.10)

• ažuriranje vrednosti x na master čvoru:

xk+1
1j = argmin

N
K∑

j=1
||a1j − xk

1j||2 + γ

N
K∑

j=1
||x1j − x11|| + γ

k∑
i=2

||x11 − yk
i1|| (A.11)

• ažuriranje vrednosti y na master čvoru:

yk+1
i1 = argmin

K∑
i=2

(λk
i)T (yi1−xk+1

i1)+1
2

ρ
k∑

i=2
||yi1−xk+1

i1 ||2+γ
K∑

i=2
||xk+1

11 −yi1||. (A.12)

• ažuriranje vrednosti λ na master čvoru:

λk+1
i = λk

i + ρ(yk+1
i1 − xk+1

i1) (A.13)

Komunikacija, odnosno sinhronizacija među čvorovima, vrši se nakon ažuriranja vred-
nosti za varijablu x, kada su svi čvorovi ažurirali svoju varijablu. Nakon toga, master

187

čvor izračunava ažurirane vrednosti y i λ i saopštava ih ostalim čvorovima. Ovakva for-
mulacija ne garantuje savršeno grupisanje. Međutim, numeričke evaluacije potvrđuju da
algoritam rezultuje aproksimativnim klasterovanjem za rešenje {x∗

ij}. Drugim rečima,
{x∗

ij} se grupišu u određen broj različitih klastera, K ′, tako da su {x∗
ij} tačke unutar

iste grupe veoma bliske. Ovo predstavlja motivaciju za razvoj procedure spajanja bliskih
tačaka, nakon što algoritma konvergira. Ova procedura je prikazana u okviru Algoritma
5.

Algoritam 5 Procedura spajanja potencijalnih centara
Na svakom čvoru i lokalno, paralelno:

Potrebno ϵi, i = 1, ..., K; ϵ; inicijalizovati listu lokalnih centara Ci = {}
za sve moguće kandidate centara x∗

ij radi
za vec prihvacene centre cil ∈ Ci radi

ako ∥x∗
ij − cil∥ ≤ ϵi onda

izostavi x∗
ij iz skupa centara Ci

else
uključi x∗

ij u skup centara Ci

kraj ako
kraj za

kraj za
vrati pronađene lokalne centre Ci = {ci1, ..., ciPi

}, gde Pi je broj lokalnih centara,
pronađenih na čvoru i
Na master čvoru:

Potrebno ϵ; Svi mogući kandidati centara čvorova: Ci, i = 1, ..., K
Potrebno inicijalizovati listu konacnih centara C = Null

za sve moguce kandidate centara svih čvorova cij ∈ Ci, i = 1, ..., K radi
za vec prihvacene centre cl ∈ C radi

ako ∥cij − cl∥ ≤ ϵ onda
izostavi cij iz skupa centara C

else
uključi cij u skup centara C

kraj ako
kraj za

kraj za
vrati pronađene centre C = c⋆

1, ..., c⋆
P ′ , gde je P ′ konačan broj centara

Prva faza spajanja centara, vrši se lokalno, na svakom čvoru. Vrednosti ϵi i ϵ su pozitivni
brojevi, koji se koriste za filtriranje potencijalnih centara. Prva tačka kandidat za centar
se proglašava prvim centrom, i nakon toga se proverava ostatak tačaka. Sve one tačke
koje su blizu (u smislu ϵi), tačkama koje su već označene kao centri se ignorišu. U
suprotnom, tačka se označava kao novi centar. Drugi korak je spajanje dobijenih lokalnih
centara unutar čvorova, na master čvoru. Ovo znači da svi lokalni centri treba prvo da
se sinhronizuju na masteru. Nakon toga, primenjuje se isti postupak za spajanje. Ovo

188 Appendix A. Prošireni izvod

je značajno, s obzirom da je moguće da se neki centri, pronađeni na različitim čvorovima
preklapaju. Nakon ove procedure, dobija se konačan skup centroida. Pseudokod za
algoritam grupisanja možemo opisati, kao što je predstavljeno unutar Algoritma 6.

Algoritam 6 Pseudokod za predloženi algoritam grupisanja
Potrebno globalni parametri γ i ϵ⋆, i na svakom čvoru i: aij, j = 1, ..., N

K

ponovi
Izračunati xk

1j na masteru, kao u (3.15)
Izracunati xk

ij na svakom čvoru i = 2..K paralelno, kao u (3.14)
Izracunati yk

i1 na masteru, kao u (3.16)
Izracunati λk

i na masteru, kao u (3.17)
dok nije ispunjen kriterijum zaustavljanja
Spojiti potencijalne centre, kao što je opisano u Algoritmu 6

Potrebno na svakom čvoru i finalna lista globalnih centara C = c⋆
1, ..., cP ′

⋆

za sve lokalne tačke iz ulaznog skupa aij na svakom čvoru i, paralelno radi
dodeliti tačku aij u klaster c⋆

l gde mint=1,...,P ′∥aij − c⋆
t ∥ = ∥aij − c⋆

l ∥
kraj za

Kao što je prikazano unutar Algoritma 6, nakon što iterativan deo algoritma konvergira i
primeni se procedura spajanja, kao što je opisano Algoritmom 5, master čvor sinhronizuje
finalnu listu centara sa svim čvorovima. Na taj način, svaki čvor može da dodeli svoje
lokalne tačke iz ulaznog skupa podataka u odgovarajući najbliži klaster, odnosno da dodeli
odgovarajuću labelu tački.

Implementacija metode

Implementacija predložene metode grupisanja, razvijena je u programskom jeziku Python,
upotrebom COMPSs [20] tehnologije za paralelizaciju. COMPSs nudi jednostavan model
programiranja sa ciljem da olakša proces paralelizacije. Široko je prihvaćen i proširen u
brojnim naučnim projektima, kao alat za razvoj aplikacija u nauci i optimizaciju njihovog
izvršavanja na distribuiranim infrastrukturama. Testiranje implementacije je sprovedeno
na raunarskom klasteru AKSIOM, koji je korišćen i za primarne metode, na opisan način.

Python implementacija, oslanja se na CVXPY paket [143, 144], koji koristimo za opisane
minimizacije. PyCOMPSs tehnologija [116], namenjena je za rad sa programskim jezikom
Python i omogućuje pristupačan način razvoja paralelne implementacije, jednostavnim
anotiranjem funkcija, koje je potrebno izvršiti u paraleli. Ovakav pristup je višeg nivoa u
odnosu na MPI, zbog čega je posebno interesantno istražiti oba pristupa.

Ulazni podaci se čitaju iz fajla, od strane master procesa. Prilikom evaluacija, koristimo
sintetički generisane podatke, ali i neke primere realnih skupova podataka. Sintetičke po-

189

Slika A.8: Rezultat grupisanja sa sintetički skup podataka dimenzije 30x2, γ = 0.3,ϵ⋆ = 2

datke manjeg obima generišemo upotrebom generatora iz scikit-learn [146] paketa. Velike
skupove sintetičkih podataka generišemo kao modele Gausovih mešavina [147].

Evaluacija metode

Cilj evalucije razvijenog pristupa za konveksno, ADMM-bazirano paralelno klasterovanje
je procena kvaliteta raznih aspekata algoritma. Pre svega, evaluiramo nivo preciznosti
rezultujućeg grupisanja. Ovde možemo govoriti o dva tipa testova: testiranje nad po-
dacima za koje je poznat očekivani ishod, odnsno realne labele tačaka; i testiranje nad
podacima za koje nemamo očekivane labele. U prvom slučaju, preciznost grupisanja,
možemo izraziti kao procenat tačno klasterovanih tačaka. U drugom slučaju, koristimo
metriku silhouette score.

Tačnost grupisanja

Prvo ćemo evaluirati tačnost grupisanja nad malim skupom podataka, gde možemo lako
grafički prikazati rezultate. Posmatrajmo Sliku A.8, gde razmatramo skup podataka
dimenzije 30 × 2. Jasno se može videti da su tačke organizovane u tri odvojena klastera.
Takođe, sa slike se vidi da algoritam uspeva da identifikuje centre korektno. Prikazani
centri su rezultat primene procedure spajanja.

Kako bismo dobili pouzdane dokaze preciznosti grupisanja, primenićemo algoritam nad
skupom podataka, gde su poznate realne, očekivane labele i gde je dimenzija veća od
2. Posmatramo Iris skup podata [149, 150], koji je dostupan u scikit-learn biblioteci.
Ovaj skup podataka sadrži 3 različite klase biljke Iris, i ima 4 atributa i 150 uzoraka.

190 Appendix A. Prošireni izvod

Tabela A.4: Poređenje tačnosti za različite algoritme grupisanja, na Iris skupu podataka

Algoritam Parametri Broj klastera Tačnost (u procentima)
ADMM-bazirano konveksno klasterovanje γ = 40, ϵ⋆ = 5 3 93.33%
k-means k = 3 3 88.66%
AMA γ ∈ [4.3, ..., 9.1] 3 90.66%

Tabela A.5: Evaluacija tačnosti algoritma za podatke većih dimenzija

Skup podataka γ ϵ⋆
klasteri

ADMM-bazirano
konveksno grupisanje

klasteri
k-means

ADMM-bazirano
konveksno grupisanje

s.score

k-means
s.score

1000 × 3 5.0 4 8 8 0.76 0.76
5000 × 3 6.6 2 4 4 0.77 0.78
5000 × 5 6.6 2 5 4 0.62 0.75
10000 × 3 6 5 10 10 0.69 0.75

Izvršili smo naš algoritam nad ovim skupom podataka i dobili smo očekivana 3 klastera.
Kako bismo analizairali rezultate dodatno, uporedili smo dobijene labele sa očekivanim
ishodom. Ispostavlja se da je algoritam grupisao 93.33% tačaka tačno. U principu,
sve tačke koje pripadaju prvom klasteru su grupisane tačno. Do ‘grešaka’ je došlo kod
drugog i trećeg klastera, koji su po prirodi blizu jedan drugog. Tabela A.4 prikazuje
tačnost grupisanja za ovaj slučaj, ali pored rezultata za naš pristup, sadrži i podatke za
standardni k-means (sa predefinisanom vrednošću parametra k), i za AMA metodu [36],
radi poređenja. Evidentno je da naš metod može da postigne jednak (ili čak viši nivo)
tačnosti, u odnosu na ove alternativne pristupe.

Kada je reč o većim skupovima podataka, algoritam takođe daje dobre rezultate, po
pitanju tačnosti. Tabela A.5 prikazuje ovakve slučajeve, za razne sintetički generisane
podatke. Evidentno je da naš algoritam postiže slične vrednosti za silhouette score, kao
k-means. Grafički prikaz rezultata grupisanja za skup podataka veće dimenzije, prikazan
je na slici A.9. Slika predstavlja t-SNE [148] embedovanje rezultata klasterovanja, gde se
jasno vidi da je algoritam rasporedio tačke u klastere na adekvatan način.

Evaluacija skalabilnosti

U smislu evaluacije osobina skalabilnosti algoritma, koristićemo veće skupove, sintetički
generisanih podataka. Slika A.10 prikazuje skaliranje algoritma za 3 različita skupa po-
dataka, sa 10000 uzoraka i 3, 5 i 10 karaktersitika.

191

Slika A.9: t-SNE embedovanje za grupisanje sintetičkog skupa podataka veličine 1000x3

Slika A.10: Skaliranje algoritma nad skupom podataka sa 10000 uzoraka i 3, 5 i 10
karakteristika

Algoritam se ovde dobro skalira, kao što se i moglo očekivati. Optimalan broj čvorova
se može odrediti za svaki slučaj, ali se primećuje da vreme izvršavanja ostaje blizu ove
optimalne vrednosti za veći opseg različitog broja čvorova. Kada bismo dalje povećavali
broj čvorova, u nekom momentu, bi vreme izvršavanja počelo rasti, na uobičajen način.
Prikazani eksperimenti su pokazali da razvijeni algoritam pokazuje dobra svojstva skali-

192 Appendix A. Prošireni izvod

Tabela A.6: Poređenje vremena izvršavanja (u sekundama) za AMA i ADMM-baziran
metod konveksnog grupisanja

Skup
podataka

AMA
metoda

ADMM
-bazirano
konveksno

klasterovanje
4 čvora

ADMM
-bazirano
konveksno

klasterovanje
8 čvorova

ADMM
-bazirano
konveksno

klasterovanje
10 čvorova

ADMM
-bazirano
konceksno

klasterovanje
20 čvorova

ADMM
-bazirano
konveksno

klasterovanje
25 čvorova

1000 × 3 2.8 12.65 9.73 13.79 11.45 12.24
5000 × 3 17.55 38.38 19.95 16.45 19.35 14.15
10000 × 3 45.46 96.0 51.17 40.84 37.3 22.01
5000 × 5 22.74 39.29 19.65 16.87 16.15 14.37
10000 × 10 100.2 136.76 72.63 59.33 50.23 30.29
200000 × 3 N.A. − − − − 564.1

ranja i da su prednosti paralelizacije evidentni. Vreme izvršavanja se smanjuje skoro
linearno sa brojem čvorova u eksperimentalnom opsegu koji se razmatra.

Poređenje sa drugim pristupima za grupisanje podataka

Od posebnog je značaja napraviti poređenje razvijenog algoritma sa drugim, prihvaćenim
pristupima za grupisanje podataka. Na taj način, stiče se jasniji uvid u karatkeristike
razvijene metode, kako po pitanju tačnosti, tako i po pitanju performansi.

U radu [36], pojavljuju se dve nove metode za konveksno grupisanje. Mi ćemo iskoristiti
efikasniju, da bismo je uporedili sa našim pristupom. U pitanju je metoda, bazirana
na alternating minimzation algoritmu (AMA), koji smo već pomenuli prilikom evaluacije
tačnosti. Metoda je dostupna u jeziku R.

Tabela A.6 prikazuje rezultate poređenja pomenute dve metode, AMA i konveksno grupi-
sanje, bazirano na ADMM-u. Za manje obimne skupove podataka, AMA metoda može
imati bolje performanse, što je ovde slučaj za skup podataka obima 1000 × 3 tačaka.
AMA metoda, dostupna u R-u, je zapravo omotač oko C koda, što objašnjava ovaj trend.
Pokretanje manjih primera na klasteru računara prirodno nije toliko isplativo, kao sa
većim obimom podataka. Iz Tabele A.6 se može videti da za veće skupove podataka
konveksno klasterovanje, bazirano na ADMM-u, ima znatno bolje performanse. Takođe,
evidentno je da AMA, kao serijska metoda, poseduje ograničenje nad veličinom problema
koji može da rešava. Ovakvo ograničenje se u paralelnim aplikacijama može prevazići
povećanjem broja procesa, koji rešavaju problem.

U nastavku ćemo uporediti našu metoda i sa DBSCAN [117] metodom za grupisanje,
s obzirom da je i DBSCAN metoda, kod koje nije potrebno unapred specificirati broj

193

Tabela A.7: Poređenje konveksnog grupisanja, baziranog na ADMM-u sa DBSCAN algo-
ritmom

Skup podataka
br

klast.
ADMM

ADMM
s.sc.

br
klast.

k-means

k-means
s.sc.

DB-
SCAN

ϵ

br
klast.
DB-

SCAN

DB-
SCAN
s.sc.

30 × 2 3 0.89 3 0.89 0.5 3 0.89
40 × 2 6 0.39 5 0.57 0.8 3 0.65
1000 × 3 8 0.76 8 0.76 2.5 8 0.75
5000 × 3 4 0.77 4 0.78 2.5 4 0.76
5000 × 5 5 0.62 4 0.75 5.0 4 0.75
10000 × 3 10 0.69 10 0.75 2.5 10 0.75

klastera. Tabela A.7 prikazuje rezultate ovog poređenja. Ove dve metode se razlikuju
po načinu na koji se nose sa šumovima u podacima, ali kada postoji jasna struktuira
grupisanja, obe metode imaju zadovoljavajuću preciznost.

U radu [115], pojavljuje se definicija metoda pod nazivom “Semismooth Newton based
augmented Lagrangian method” (SSNAL), za rešavanje problema konveksnog grupisanja.
Poređenjem prijavljenog vremena izvršavanja SSNAL metode nad skupom polusferičnih
podataka obima 200000 × 3 i vremena izvršavanja našeg algoritma nad podacima istog
obima za različit broj čvorova, dolazimo do zaključka da naša metoda može da se izvršava
efikasnije. S druge strane, SSNAL metoda, podrazumeva veoma koristan, ali vremenski
zahtevan proces pretprocesiranja, u cilju određivanja težinskih vrednosti. Naša metoda ne
koristi ovakav vid pretprocesiranja. Implementirali smo izračunavanje težinskih vrednosti
iz [115], i zaključili da ovaj proces može biti vremenski zahtevniji, nego izvršavanje našeg
algoritma na kalsteru. Osim pomenutih testova, naš predloženi algoritam je testiran
i nad realnim industrijskim podacima, dostupnim zahvaljujući saradnji na projektu I-
BiDaaS [47]. Rezultati ovih testova konzistentni su sa rezultatima, dobijenim u okviru
samog projekta. Ovim se direktno potvrđuje primenjivost algoritma u relanim slučajevima
korišćenja.

Poređenje MPI i COMPSs paralelnih aplikacija

Unutar teze, koristimo 2 različite tehnologije za paralelizaciju algoritma, MPI i COMPSs.
MPI je tehnologija nižeg nivoa, koja daje veći stepen kontrole programeru, ali je i mnogo
zahtevnija za primenu. S druge strane, COMPSs je tehnologija višeg nivoa, gde je
paralelizacija velikim delom transparenta i implicitna, tako da je razvoj implementacije

194 Appendix A. Prošireni izvod

znatno olakšan. Kako bismo uporedili efikasnost pomenutih tehnologija, razvili smo MPI
implementaciju našeg algoritma za konveksno klasterovanje, u Python-u. Na ovaj način,
rešavamo isti problem, u istom programskom jeziku, nad istim podacima. Razlikuje se
samo pristup paralelizaciji.

Tabela A.8 prikazuje rezultate ovog poređenja. Evidentno je da MPI postiže bolje perfor-
manse u odnosu na COMPSs. Nad nekim skupovima podataka, za manji broj čvorova,
razlike u vremenima izvršavanja za ova dva pristupa nisu drastične, ali se za MPI vreme
mnogo brže smanjuje, sa povećanjem broja čvorova. U nekim slučajevima iz Tabele A.8,
MPI se izvršava 2 do 4 puta brže u odnosu na COMPSs. Ovo nije iznenađujuće, s obzirom
na opisanu prirodu ovih tehnologija. Izbor jedne od ovih tehnologija zavisi od konkret-
nih potreba i prioriteta, u smislu pitanja, da li je akcenat na brzom i lakom razvoju
paralelizacije ili na postizanju što veće brzine izvršavanja.

Tabela A.8: Poređenje vremena izvršavanja (u sekundama) konveksnog grupisanja bazi-
ranog na ADMM-u u MPI i COMPSs tehnologijama

4 čvora 8 čvorova 10 čvorova 20 čvorova 25 čvorova
Skup podataka MPI COMPSs MPI COMPSs MPI COMPSs MPI COMPSs MPI COMPSs
1000 × 3 5.83 12.65 4.99 9.73 3.18 13.79 2.59 11.45 4.26 12.24
5000 × 3 34.17 38.38 15.36 19.95 10.85 16.45 5.49 19.35 10.05 14.15
5000 × 5 38.71 39.29 18.82 19.65 13.26 16.87 10.08 16.15 7.94 14.37
10000 × 3 95.13 96.0 29.89 51.17 29.08 40.84 13.31 37.3 15.53 22.01
10000 × 10 153.09 136.76 42.57 72.63 47.44 59.33 29.24 50.23 15.97 30.29

Zaključak

U fokusu ove teze, nalaze se razvoj i praktična evaluacija skupa paralelnih algoritama
konveksne optimizacije. Teza obuhvata dva glavna pravca: razvoj i analizu klase metoda
prvog i drugog reda, primarnog tipa, koje korsite razne tehnike sparsfikovanja komu-
nikacije; i razvoj i analizu dualne, ADMM metode za paralelno konveksno grupisanje
podataka. Temeljna evaluacija pomenutih metoda, omogućila je izvođenje nekih važnih
zaključaka. Pre svega, pokazano je da su implementacije skalabilne i preimenjive na ve-
like skupove podataka. Poređenje raznih aspekata metoda primarnog tipa, omogućilo je
identifikaciju scenarija, u kojima određene metode imaju bolje performanse od drugih.
Analizom konveksnog grupisanja, baziranog na ADMM-u, pokazano je da algoritam pro-
dukuje zadovoljavajući nivo tačnosti. Metode primarnog tipa predstavljaju proširiv skup,
jer jednostavnom zamenom gradijenta i Hessian-a, mogu se implementirati slučajevi za do-
datne funkcije cilja. Slično, ADMM pristup se može lako prilagoditi za različite slučajeve
funckije cilja. Pokazano je da su razvijeni algoritmi primenjivi i u realnim scenarijima,
nad realnim podacima, što otvara mogućnost njihove kasnije šire primene.

195

This is some white invisible text block

196 Appendix A. Prošireni izvod

Appendix B

Short biography
Lidija Fodor was born on 25.07.1989. in Bačka Topola.
She finished “Čaki Lajoš“ elementary school in Bačka
Topola in 2004. After that, she finished high school
“Gimnazija i ekonomska škola Dositej Obradović“, Bačka
Topola, in 2008. She enrolled studies of information tech-
nologies at Faculty of Sciences, University of Novi Sad, in
2008 and finished her bachelor studies in 2011 with grade
point average 9.85. In 2013, she also finished her master
studies at Faculty of Sciences, with grade point average
10.0. After that, she started her PhD studies at Faculty
of Sciences. She works as a teaching and research assis-
tant and was involved in teaching on various courses, in-
cluding: Databases, NoSql databases, High performance
computing, Advanced programming, Information systems
development, Information systems modelling. She coau-
thored six publications in international conferences and
journals. She participated in national and international
projects, including two H2020 projects: I-BiDaas - Industrial-Driven Big Data as a Self-
Service Solution and Cyrene). Besides that, she attended numerous scientific visits across
Europe, including PRACE “Parallel programming workshop“ in Barcelona, Spain and
“Introduction to high-performance machine learning“, in Amsterdam, Netherlands, among
others.

Novi Sad, 2022 Lidija Fodor

197

198 Appendix B. Short biography

1

Овај Образац чини саставни део докторске дисертације, односно
докторског уметничког пројекта који се брани на Универзитету у Новом
Саду. Попуњен Образац укоричити иза текста докторске дисертације,
односно докторског уметничког пројекта.

План третмана података

Назив пројекта/истраживања

Имплементација и анализа класе алгоритама за дистрибуирану конвексну оптимизацију:
Евалуација перформанси и особина на практичним HPC кластерима

(Implementation and analysis of a class of algorithms for distributed convex optimization: Performance
evaluation and tradeoffs in practical HPC clusters)

Назив институције/институција у оквиру којих се спроводи истраживање

a) Природно-математички факултет, Универзитет у Новом Саду

Назив програма у оквиру ког се реализује истраживање

1. Опис података

1.1 Врста студије

У овој студији нису прикупљани подаци.

2. Прикупљање података

3. Третман података и пратећа документација

4. Безбедност података и заштита поверљивих информација

5. Доступност података

6. Улоге и одговорност

Национални портал отворене науке – open.ac.rs

	Abstract
	Izvod
	Preface
	Acknowledgements
	Introduction
	Distributed convex optimization
	Distributed optimization methods

	High performance computing
	Motivation and Objectives
	Contributions
	Contributions regarding primal methods
	Contributions regarding dual methods

	Related work
	Thesis overview

	Primal distributed optimization methods
	Background theory
	Optimization and network models
	Algorithmic framework
	Convergence analysis

	Implementation
	Implementing the algorithm for strongly convex quadratic cost functions
	Implementing the algorithm for logistic loss functions
	A comparison with an ADMM implementation
	Measuring the execution time in a parallel program

	Experimentation
	The infrastructure
	Intermediate experimentation studies and results
	The experimental results for the selected set of methods

	Conclusions on the proposed class of primal methods

	A dual distributed optimization method
	Background theory
	Problem model and the proposed parallel method

	Implementation
	The input data
	The stopping criterion
	The parallel implementation of the ADMM-based convex clustering algorithm

	Experimentation
	Time consumption of different segments of the algorithm
	Accuracy evaluation
	Scalability evaluation
	Choosing the value for the parameter
	Comparison with other clustering methods
	Testing on a real, industrial data set

	Further implementation considerations
	A comparison of MPI and COMPSs parallel applications
	Additional ADMM-based machine learning algorithms
	ADMM-based lasso regression
	ADMM-based logistic regression

	Conclusions on the proposed utilization of the dual ADMM method

	Conclusion
	Summary of Thesis Achievements
	Applications
	Future Work

	Bibliography
	Prošireni izvod
	Short biography

