

UNIVERSITY OF NOVI SAD
FACULTY OF SCIENCES

DEPARTMENT OF MATHEMATICS AND
INFORMATICS

 DEVELOPMENT OF XQUERY
INTERPRETER EXTENSIONS BASED ON

FUZZY LOGIC WITH PRIORITIES
doctoral dissertation

RAZVOJ PROŠIRENJA XQUERY

INTERPRETERA BAZIRAN NA FAZI LOGICI
SA PRIORITETIMA

doktorska disertacija

Supervisor:
Dr. Srdjan Skrbic

Candidate:
Pannipa Sae-Ueng

Novi Sad, 2021

i

Contents

Abstract ...vii

Acknowledgements ..viii

Chapter 1 Introduction..1

1.1 The problem and the motivation ..1

1.2 The results ..1

1.3 The structure of the thesis ..2

Chapter 2 Related Works ..3

2.1 Fuzzy data in XML documents ..3

2.2 Flexibility in XML query languages ..4

Chapter 3 Theoretical Background and Development Environment8

3.1 Fuzzy sets ...8

3.2 Generalized Prioritized Fuzzy Constraint Satisfaction Problem (GPFCSP)10

3.3 Fuzzy Compatibility...16

3.4 Fuzzy Ordering ..17

3.5 eXtensible Markup Language (XML) ...18

3.5.1 XML documents ...19

3.5.2 Document Type Definition (DTD) ...20

3.5.3 XML Schema Definition (XSD) ...21

3.5.4 XML Path (XPath) ..22

3.5.5 XQuery ..22

3.6 XML database ..23

3.7 eXist-db database ...24

3.8 ANTLR (ANother Tool for Language Recognition) ...26

3.9 Spring Boot ..31

3.10 RESTful web services ..31

3.11 RESTful API in eXist-db ...32

Chapter 4 System Implementation ...35

4.1 Fuzzy XQuery EBNF grammar ...35

ii

4.2 Representation of fuzzy data in an XML document ..37

4.3 Use case diagram ...39

4.4 Fuzzy XQuery query processing ..42

4.5 System Development ...47

4.5.1 The Backend development ..49

4.5.2 The Frontend Development ..57

Chapter 5 System Testing ...65

5.1 Correctness Testing ..65

5.2 Performance Testing ..68

Chapter 6 Conclusion ..70

Bibliography ..72

Appendix A: EBNF of fuzzy XQuery grammar ..76

Appendix B: The example of Test cases ..84

Key word documentation ...102

Data treatment plan ..105

Short biography ..110

iii

List of Figures

3.1 The linguistic variable “Price” ..10

3.2 R1
f and R2

f membership functions ...14

3.3 LTR(A) and RTL(A) ...18

3.4 Relationship between XML specifications ...19

3.5 An example XML document ..20

3.6 The DTD of the XML document from figure 3.5 ...20

3.7 An example of XSD schema ...21

3.8 An example of XPath expression ..22

3.9 Architecture of Native XML Database ...24

3.10 The eXist-db Architecture ...25

3.11 Overall translation data flow ...27

3.12 ANTLR generated Java files ...27

3.13 Set options in the grammar file ...28

3.14 Default AST construction ...28

3.15 AST from comparisonexpr ...29

3.16 Grammar for rewrite rules ..29

4.1 The snippet of fuzzy XQuery ..35

4.2 The definition of linguistic variable “age” ..38

4.3 XML Schema for linguistic variable definition ..38

4.4 An example to specify the fuzzy values in an XML document39

4.5 Use Case diagram of FXI system ..40

4.6 The process of Fuzzy XQuery execution ..42

4.7 The algorithm used to calculate the global constraint satisfaction degree43

4.8 Membership function of young ...47

4.9 The system architecture of FXI system ..48

4.10 The main class diagram of FXI system...49

4.11 The AST created by ANTLR ..51

4.12 The whereclause subtree ...52

iv

4.13 The algorithm used to delete the FUZZY node from whereclause subtree52

4.14 The whereclause subtree after the FUZZY token was deleted52

4.15 The inorder walk in whereclause subtree ...53

4.16 The tree after the fuzzy node was deleted ...53

4.17 Class diagram of package fuzzy.type ..56

4.18 The snippet of source code for calling the $http service in SubmitController58

4.19 The snippet of source code for calling the $http service in UploadController58

4.20 The snippet of source code for getting data in StudentController59

4.21 The snippet of source code for adding the new data in StudentController59

4.22 The snippet of source code for editing the data in StudentController60

4.23 The snippet of source code for deleting the data in StudentController60

4.24 The input.html page ..61

4.25 The input.html page with the result ..61

4.26 The upload.html page ..62

4.27 The managestudent.html page ..63

4.28 The managestudent.html page when a user wants to add new data63

4.29 The managestudent.html page when a user wants to edit data64

5.1 The conditional structure of fuzzy XQuery ..65

5.2 Possible values of ComparisonExpr ...65

v

List of Tables

2.1 Comparing approaches ..7

3.1 Characteristic functions ..9

3.2 Valuation vx ..14

3.3 Constraint satisfaction degree ...15

3.4 Global constraint satisfaction degree for all students ...15

3.5 Annotations for building AST nodes ..28

4.1 Tabular description of the “Search data” use case ..40

4.2 Tabular description of the “Calculate the global constraint satisfaction degrees”

use case ...41

4.3 Tabular description of the “Define the linguistic variables” use case41

4.4 Tabular description of the “Add/update/delete data” use case41

4.5 The constraint satisfaction degrees of every constraint and every student46

4.6 The global constraint satisfaction degrees () of every student47

4.7 List of software ...48

5.1 Possible input test cases ..67

5.2 Test Scenarios ...67

5.3 Fuzzy variable/Execution time ...69

5.4 Fuzzy data/Execution time ..69

B.1 Test cases of T2 test scenario with Conjunction “AND” ...84

B.2 Example of Test case values ...98

vi

Listings

3.1 An example of the FLWOR clause ...16

3.2 Example of XQuery with FLWOR expression ...23

4.1 A fuzzy XQuery with fuzzy constants ..36

4.2 A fuzzy XQuery with a linguistic label “young” ..37

4.3 A fuzzy XQuery with the priority clauses ..37

4.4 A fuzzy XQuery with a threshold clause ..37

4.5 An example of a Fuzzy XQuery query ...44

4.6 Transformation of the fuzzy XQuery query to a standard XQuery query44

4.7 The Fuzzy XQuery after removing the non-fuzzy node ...44

4.8 The snippet of student data ...45

4.9 The result set from standard XQuery in Listing 4.6 ...45

4.10 The final result set ...47

5.1 The student data ..68

5.2 The fuzzy XQuery with one fuzzy variable ..68

5.3 The fuzzy XQuery with two fuzzy variables ..69

vii

Abstract

In many real-world applications, information is often imprecise and uncertain. XML

(eXtensible Markup Language) is one of the standards for data exchange over the internet, and

with the popularity of web-based applications, huge amounts of data are available on the web.

The XQuery is the language for querying XML data. However, XML and XQuery suffer from

incapability of representing and manipulating imprecise and uncertain data. Consequently, this

work explores options to represent fuzzy data in XML documents and extends XQuery

language to provide a more flexible XQuery language by using the fuzzy set theory.

In this thesis, an extension of the XQuery query, called Fuzzy XQuery is described. It

allows users to define priority, threshold and fuzzy expressions in their queries, and predefine

linguistic terms to use them in querying. An algorithm for calculating the global constraint

satisfaction degree using the Generalized Prioritized Fuzzy Constraint Satisfaction Problem

(GPFCSP) is introduced. Furthermore, Fuzzy XQuery Interpreter (FXI) is implemented

allowing execution of fuzzy XQuery queries based on open-source technologies and native

XML open-source database management system. Additionally, innovative methods for

computing fuzzy set compatibility and introducing order over fuzzy sets have been

implemented, which give serious improvements in computational performance compared to

previous implementations.

viii

Acknowledgements

This thesis would not have been possible without the assistance and support of numerous

people. Many individuals have contributed their time and effort toward the completion of the

study. Words cannot express my gratitude to those who have so kindly helped me. I would like

to take this opportunity to acknowledge them and express my gratitude.

First and foremost, I would like to express my sincere gratitude to my academic advisor,

Professor Dr. Srđan Škrbić, who shared with me his vision, gave me valuable suggestions, and

who guided me through every step of the research. I am indebted to his excellent assistance,

invaluable experience, and support throughout my studies. I truly appreciate his patience and

tireless supervision.

I wish to pay my special regards to all the members of Thesis Presentation Committee

and Thesis Defense Committee - Professor Dr. Miloš Racković, Assistant Professor Dr.

Wiphada Wettayaprasit and Professor Dr. Aleksandar Takači, for their expert review,

discussion and excellent comments. They provided different points of view, all of which were

very helpful.

My deep appreciation goes to the Faculty of Science and Prince of Songkla University,

Hat Yai Campus for financial support in my PhD study, and for offering me the invaluable

opportunity to pursue a doctoral program.

I wish to show my gratitude to Assistant Professor Apirada Thadadach and Assistant

Professor Dr. Supaporn Kansomkeat for the invaluable assistance that they all provided during

my study. Moreover, my deep appreciation is extended to Sukgamon Sukpisit for his help with

the implementation of the important parts of this work. My thanks are also due to Thomas

ix

Daniel Houghton for his diligent proofreading of this Ph.D. thesis and Mintra Houghton for her

help.

 I would like to thank my sisters for their encouragement, love and help throughout the

process. They enthusiastically provided me with continuous emotional support which has been

invaluable at every step of my life. I thank my friends for their support throughout my graduate

study.

 Finally, and most importantly, I extend my heartfelt gratitude to my parents for their

unconditional love, and for teaching me the importance of education and the pride that comes

with accomplishment. I thank them for their patience, support and encouragement throughout

this study.

 Pannipa Sae-Ueng

1

Chapter 1

Introduction

1.1 The problem and the motivation

In many real-world applications, information is often imprecise and uncertain. For this

reason, topics related to handle imprecise and uncertain information have been considered in

the past.

With the popularity of web-based applications, the requirement has been put on the

exchange and share of data over the web. The XML (eXtensible Markup Language) has

become the de facto standard for data exchange over the internet. The query language to

retrieve data stored in the form of XML is XQuery. The XQuery might be used to query XML

databases in much the same way as we would use SQL (Structured Query Language) for

relational databases. Unfortunately, XML and XQuery often suffer from incapability of

representing and manipulating imprecise and uncertain data. Fuzzy set theory has been

introduced as a successful technique for modelling fuzzy information in many application

areas, especially in databases and XML documents. Consequently, we used the fuzzy set in this

research to represent fuzzy data in XML documents and extended XQuery language as to

provide a more flexible XQuery language.

In this work, we were inspired by the research of Skrbic et al., (Škrbić, Racković, 2013),

(Škrbić, Racković, & Takači, 2011, 2013). They did many years of research related to fuzzy

logic and fuzzy set theory extensions to relational databases. They modelled and implemented

a set of tools that allow usage of fuzzy logic enriched with priorities in relational database

applications. The relational data model was extended with the elements of fuzzy set theory.

Moreover, they also defined a fuzzy extension of query language, called PFSQL (Priority

Fuzzy SQL). Consequently, this approach was based on a similar idea, but we shifted towards

extending a native XML database.

1.2 The results

The main contributions of this thesis are:

 i) Fuzzy XQuery has been extended to allow users to define priority, threshold

and fuzzy expressions in their queries.

2

 ii) Extensions that include options to predefine linguistic terms in order to use

them in queries.

 iii) An implementation of the algorithm used to calculate the global constraint

satisfaction degree by using the Generalized Prioritized Fuzzy Constraint Satisfaction Problem

(GPFCSP), fuzzy compatibility, and fuzzy ordering functionalities in native XML database

environments.

 iv) The implementation of Fuzzy XQuery Interpreter (FXI) capable of executing

the fuzzy XQuery queries based on open-source technologies and an open-source native XML

database.

1.3 The structure of the thesis

The remainder of this thesis is organized as follows:

Chapter 2: Related Works reviews the main existing approaches in the area of fuzzy

data representation in XML documents and XML query language flexibility.

Chapter 3: The Theoretical Background and Development Environment gives the

basic concepts to be used in this thesis. It introduces the fuzzy set theory. Afterwards, the focus

is moved on GPFCSP concept, fuzzy compatibility and fuzzy ordering. Next, the concepts of

XML, XML databases are explained, including a presentation of eXist-db –native XML

database used in this thesis. Finally, technologies used for implementation - ANTLR (ANother

Tool for Language Recognition), Spring Boot and RESTful web services are presented.

Chapter 4: System implementation describes the details of implementation in five

sections: (i) Fuzzy XQuery EBNF grammar provides the fuzzy XQuery syntax in EBNF

(Extended Backus Normal Form) notation, (ii) the representation of fuzzy data, (iii) the use

case diagram of FXI system, (iv) the algorithm and fuzzy XQuery processing, and (v)

development of the system and GUI (Graphical User Interface).

Chapter 5: Software Testing examines the correctness and performance testing of the

FXI system.

Chapter 6: Conclusions provides a summary of the work presented in this thesis.

Appendix A: Complete EBNF grammar of fuzzy XQuery

Appendix B: Test cases information

3

Chapter 2

Related Works

 This chapter gives the literature review of attempts to introduce fuzzy mechanisms into

XML technologies. In the last decade, we observed that there were two main research

directions on storage and querying of imprecise and uncertain XML data. The first one was to

study ways to represent fuzzy data in XML documents. The second one was devoted to

achieving flexibility in XML querying languages.

2.1 Fuzzy data in XML documents

 There have been many different approaches to represent uncertain information in XML

documents.

 Üstünkaya et al. (Üstünkaya, Yazici, & George, 2007) focused on the fuzzy-XML

documents containing fuzzy-valued attributes which may have various semantics as “OR”,

“XOR” and “AND” for relating the fuzzy values.

Jin and Veerappan (2010) presented the implementation that supported the linguistic

label and approximate values. The linguistic label defines the linguistic variable from a

trapezoidal and interval distribution, while approximate values have been defined by a

triangular distribution only.

 The work of Oliboni and Pozzani (2008) proposed an XML schema definition for

representing different aspects of fuzzy information. They classified fuzzy data types into four

types in the fuzzy XML documents, which are classicType, FuzzyOrdType,

FuzzyNonOrdSimType and FuzzyNonOrdType. Moreover, they defined three kinds of degrees,

which are FuzzyAttrDegree, FuzzyInstDegree and FuzzyNonAssDegree.

 Panić et al. (Panić, Racković, & Škrbić, 2014) proposed the indefiniteness in XML

documents, which are the indefiniteness in XML values and the indefiniteness in XML

structure. Indefiniteness in XML values is achieved by introducing two types of elements: fuzzy

and function. Element fuzzy indicates a fuzzy set defined by a membership function, while

element function is used to define an arbitrary membership function under the element fuzzy.

Indefiniteness in structure is achieved by introducing the element possibility, which represents

the probability of an element occurring in an XML document.

4

 Yan et al. (Yan, Ma, & Zhang, 2014) presented the fuzzy construct Val and Dist. The

fuzzy construct Val was used to specify the possibility of an element in a fuzzy XML document

that is paired with a possibility attribute like <Val Poss=0.8> and </Val>, while the fuzzy

construct Dist was used to specify the type of distribution: disjunctive and conjunctive. The

former represents a set of possible values from which the only one is true, while the latter

represents a set of possible values that all “true” with various degrees.

2.2 Flexibility in XML query languages

 Several approaches have been proposed for adding flexibility to XML query languages.

We concluded that they could be categorized into the following four categories:

XQuery-based, XPath-based, algebra-based and twig-based.

 2.2.1 XQuery-based

 Lo et al. (Lo, Kianmehr, Kaya, Ozyer, & Alhajj, 2007) built a tool that introduces

flexibility to XQuery queries. They implemented the VIREX tool that a user could use to

specify membership functions of fuzzy terms in a database table. However, it supported only

triangular distribution. Queries containing fuzzy data are translated into corresponding

ordinary XQuery queries.

 To support fuzziness in XQuery, Goncalves and Tineo (2007, 2010) defined a new

xs:truth data type to represent truth degrees and a new xml:truth attribute to handle satisfaction

degree in the node of fuzzy XQuery expressions. The fuzzy terms were declared and used in

query expressions. Additionally, they proposed an evaluation algorithm for XQuery queries

based on the Derivation Principle (Goncalves & Tineo, 2005). Moreover, Labbad et al.

(Labbad, Monascal, & Tineo, 2016) developed an implementation of Fuzzy XQuery that was

proposed by Goncalves and Tineo’s concepts.

 Jin and Veerappan (2010) presented the fuzzy query language based on the XQuery

standard that allowed fuzzy expressions with various conditions in a query. This approach

allowed both crisp and fuzzy data in the XML document as in our approach. Thus, two cases

are possible for comparison: 1) one value is crisp and the other one is fuzzy and 2) both values

are fuzzy. The query is processed by comparing two ranges of values for overlapping of two

fuzzy distributions with the comparison translation rules.

5

 Fredrick and Radhamani (2010, 2011) introduced the algorithm for fuzzy XQuery

processing for native XML databases and implemented a querying tool with a GUI using

VB.Net. They allowed the users to use linguistic terms in an XQuery query. The linguistic

terms refer to fuzzy membership functions based on fuzzy sets. If the values are in the fuzzy

membership range, then the native XML database returns XML data.

 A similar approach as presented in this work was proposed by Panić et al. (2014). They

expanded XQuery syntax with fuzzy values and included priorities and thresholds in fuzzy

XQuery extensions using the GPFCSP concept in the same way as we did. However, there are

many differences between Panić’s work and this work. Firstly, Panić’s implementation used

.NET framework, MATLAB and the Microsoft SQL Server database in the Windows-based

application, whereas our approach uses open-source technologies - Java programming

language to implement the new interpreter that is independent of MATLAB with eXist-db – a

native XML database and web-based application for user access. The core methods of

implementation of algorithms for GPFCSP based satisfaction degree calculations, fuzzy

compatibility calculations and fuzzy ordering calculations are completely different. Moreover,

we used completely different ways to represent fuzzy data in an XML document.

 2.2.2 XPath-based

 Fuzzy versions of XPath have been previously studied in some works. For example,

Amer-Yahia et al. (Amer-Yahia, Lakshmanan, & Pandit, 2004) described the FleXPath that

integrates XPath querying with full-text search in a flexible way. It uses ‘template’ query

expressions and seeks answers that are approximation matches to this template. They

introduced fuzziness by query relaxations and defined four operations: axis generalization, left

deletion, subtree promotion and contains promotion on the structure of queries. The efficient

three algorithms were developed for answering top-k queries: Dynamic Penalty Order (DPO),

Static Selectivity Order (SSO) and Hybrid.

 Campi et al. (2009), (Campi, Guinea, & Spoletini, 2014) proposed FuzzyXPath that has

a deep-similar function. This function provides a degree of similarity between two XML trees

for assessing whether they are both similar.

 Almendros et al. (Almendros-Jiménez, Tedesqui, & Moreno, 2015) presented an

extension of the XPath query language that provided ranked answers. They proposed a fuzzy

variation of and, or and avg operators for XPath conditions as well as two structural constraints

called down and deep. They also implemented an application by using the Fuzzy Logic

6

Programming Environment for Research (FLOPER) tool which was based on Multi Adjoint

Logic Programming (MALP).

 2.2.3 Algebra-based

 Ma et al. (Ma, Li, & Yan, 2010) proposed a formal fuzzy XML query algebra for

expressing fuzzy XML queries by transforming the XQuery expressions into algebraic

expressions. They also introduced the fuzzy XML algebraic operations: set operations, fuzzy

selection, fuzzy projection, fuzzy join, fuzzy grouping, fuzzy ordering, and bind and tree, to

apply the algebra to XML query processing.

 2.2.4 Twig-based

 Yan et al. (2014) proposed an XML query formed as a twig pattern with predicates

additionally imposed on the contents or attribute values of the tree nodes. They presented three

types of fuzzy XML twig queries with AND, OR and NOT predicates, and used the fuzzy

extended Dewey encoding to encode the XML document tree. Li and Ma (2018) introduced

the structure query language into the keyword query in fuzzy XML data to get more

comprehensive query results. First, they proposed the concepts of object tree, the minimum

object tree, the nearest object tree and proposed semantics of matching object tree for a

keyword query. Then, they gave their query method AO-Twig to combine the structure query

language with keyword query to obtain the Top-K query results with the highest scores.

 In addition, there was an effort that did not classify to any categories such as Üstünkaya

et al. (2007). They defined the fuzzy attribute in XML documents that were kept in Tamino (a

native XML database) and allowed users to perform fuzzy queries by specifying fuzzy

attributes and threshold values. The similarity matrix was used to find results matching fuzzy-

value attributes.

The three aspects of comparative details between corresponding approaches and our

work in terms of how fuzziness was achieved in XQuery and how various details were

implemented are presented in Table 2.1.

The first aspect is support for fuzziness in XQuery. Several approaches as in Panić et

al. (2014), Labbad et al. (2016), Fredrick & Radhamani (2011), Jin & Veerappan (2010) and

this work allowed users to define fuzzy terms in a query. A fuzzy term is an expression that a

user can define as a linguistic label that is interpreted based on distributions of membership

functions according to the user’s preferences. Moreover, a user can define a threshold value.

7

Results that have a membership degree less than the defined threshold are removed from result

set as in Panić et al. (2014), Labbad et al. (2016), Üstünkaya et al. (2007) and our work. In

addition, Panić et al. (2014) and our approach support priority expressions to specify the

importance of each fuzzy condition. To support fuzziness in XQuery, it is necessary to

calculate a satisfaction degree, which is a real number between 0 and 1, for the result tuples

satisfying fuzzy conditions, as presented in Panić et al. (2014), Labbad et al. (2016), and this

work. One of the advantages of our approach is the fuzzy ordering function implementation

used to compare values between two fuzzy sets (see chapter III for more details).

The second aspect is the strategy for fuzzy query processing. There are various ways

and mechanisms to process evaluation of fuzzy XQuery results such as using: Generalized

Prioritized Fuzzy Constraint Satisfaction Problem: GPFCSP (described in detail in chapter III),

Derivation Principle, Fuzzy membership range, similarity matrix and Comparison Translation

Rules.

The third aspect is the implementation. Most implementations have used an open source

programming language (Java) and a native XML database such as eXist-db, Oracle and

Tamino. Our work is the first implementation that offers a web application based on eXist-db.

Table 2.1 Comparing approaches (Sae-Ueng & Skrbic, 2020)

Papers
Fuzziness in XQuery

Theory
Implementation

Fuzzy
term

Priority Threshold
Satisfaction

degree
Ordering DB

Programming
language

Application
base

Current
approach

 GPFCSP
eXist-db

JAVA Web-based

Panić et al. x GPFCSP
MS SQL
Server

.NET
Windows-

based

Labbad et
al.

 x x
Derivation
Principle

eXist-db
JAVA Client-Server

Fredrick
and

Radhamani
 x x x x

Fuzzy
membership

range

eXist-db
VB.NET Unknown

Üstünkaya
et al.

x x x x
Similarity

matrix
Tamino

JAVA
Standalone
application

Jin &
Veerappan

 x x x x
Comparison
Translation

Rules

Oracle
Berkeley
DB XML

JAVA Unknown

8

Chapter 3

Theoretical Background and Development Environment

This chapter presents theory and methods used later in the thesis or related to the topic

of the thesis. First, we present the theory of fuzzy sets in section 3.1. Next, we give details of

the Generalized Prioritized Fuzzy Constraint Satisfaction Problem (GPFCSP) in section 3.2.

The Fuzzy Compatibility and Fuzzy ordering are described in section 3.3 and section 3.4,

respectively. Section 3.5 provides the eXtensible Markup Language (XML) concept. The XML

database and eXist-db database are presented in section 3.6 and section 3.7, respectively.

Section 3.8 describes the ANTLR (ANother Tool for Language Recognition) tool. Spring Boot

is briefly presented in section 3.9, while options for building the RESTful web services and

RESTful API in eXist-db are explained in section 3.10 and 3.11.

3.1 Fuzzy sets

The fuzzy theory was proposed by Zadeh (1965). A fuzzy set can be defined as follows.

A fuzzy set A over universe X is determined by its characteristic (membership) function

µA : x [0,1]

where, for every x X, µA is a degree of membership of element x to the fuzzy set A.

The characteristic functions of fuzzy numbers used in this work are given in table 3.1.

When the fuzzy numbers represent linguistic concepts, such as low, medium and

expensive as interpreted in a particular context, the resulting constructs are usually called

linguistic variables.

A linguistic variable is a variable whose values are not numbers but words or sentences

in a natural or artificial language. The main purpose of using linguistic values (words or

sentences) instead of numbers is that linguistic characterizations are less specific than

numerical ones but much closer to the way that humans express and use their knowledge. For

example, if we say "this book is expensive" is less specific than "the book is 300 €". In that

case, "expensive" can be seen as a linguistic value of the variable "price" which is less precise

and informative than the numerical value "300".

9

Table 3.1 Characteristic functions (Alonso, n.d.)

Type Membership Function Two-dimensional graph

Triangular fuzzy number

A(x) =

;,0

),,(,
)(

)(

],,(,
)(

)(

otherwise

bmx
mb

xb

max
am

ax

Trapezoidal fuzzy number

A(x) =

;,0

),,(,
)(

)(

],[,1

),,(,
)(

)(

otherwise

dcx
cd

xd

cbx

bax
ab

ax

Interval

A(x) =

],,[,1

,,,0

bax

bxax

Fuzzy shoulder-Left

shoulder

A(x) =

;,0

),,(,
)(

)(

,,1

otherwise

bax
ab

xb

ax

Fuzzy shoulder-Right

shoulder
A(x) =

;,1

),,(,
)(

)(

,,0

otherwise

bax
ab

ax

ax

Each linguistic variable is expressed by linguistic terms interpreted as specific fuzzy

numbers. An example of a linguistic variable “Price” is shown in figure 3.1. This variable

m b a

A(x)

1

0

b c d 0 a

A(x)

1

1

b 0 a

A(x)

b 0 a

1

A(x)

b 0 a

1

A(x)

10

expresses the price of a book in a given context by three linguistic terms: low, medium and

expensive. Each of the linguistic terms is assigned one of five fuzzy numbers by a semantic

rule, as shown in the figure.

Figure 3.1 The linguistic variable “Price”

3.2 Generalized Prioritized Fuzzy Constraint Satisfaction Problem (GPFCSP)

 The concept of Constraint Satisfaction Problem (CSP) is the problem defined as a set

of objects whose states must satisfy a number of constraints or limitations. The CSP can be

extended to the Fuzzy Constraint Satisfaction Problem (FCSP) by modelling constraints as

fuzzy sets over a particular domain. The Priority Fuzzy Constraint Satisfaction Problem

(PFCSP) (Dubois, Fargier, & Prade, 1996) is a type of FCSP that introduces the notion of

priority. In this way, the value of a constraint with the highest priority has the largest impact

on the result. However, PFCSP only describes the use of the conjunction of the constraints.

Takači (2005) generalized the PFCSP to the GPFCSP by adding the possibility to use

disjunction and negation whereas the definition of the GPFCSP is an extension of the PFCSP

definition. We recall the definition of PFCSP and GPFCSP here.

Definition 1: A Priority Fuzzy Constraint Satisfaction Problem (PFCSP) is a quadruple

(X,D,Cf,) where

1. X = {xi|i=1,2,…,n} is a set of variables.

2. D = {di|i=1,2,…,n } is a set of domains. Every domain di is a finite set of possible values for

the corresponding variable xi in X,

3. Cf is a finite nonempty set of elements called fuzzy constraints, that is

Cf = {Ri
f|μ

Ri
f : (∏ djxj∈var (Ri

f)) [0, 1], i=1, 2,…,n},

where var(Ri
f) is a set of variables contained inside the constraint Ri

f

1

0

Price of book (€)

300 250 100 150

low expensive medium

(x
)

11

4. Cf[0,)

and a combined valuation vx of all variables in X, and : [0,1]n [0,1], g:[0,]x[0,1]

[0,1], and a global satisfaction degree (vx) which is calculated as

αρ(vx) = ρ {g(ρ(Rf), μ
Ri

f (vvar(Rf)) |Rf ∈ Cf}

This system is a PFCSP if the following axioms are satisfied:

1. If for the fuzzy constraint Rmax
f , we have

max = (Rmax
f) = max{(Rf) | Rf Cf },

then

μRmax
f (vx)= 0 (vx) = 0

2. If Rf Cf, (Rf) = 0 [0,1], then

αρ(vx) = ρ {μ
Ri

f (vvar(Rf)) |Rf ∈ Cf},

Where is a triangular norm.

3. For Ri
f, Rj

f Cf, assume (Ri
f) (Rj

f), > 0 and there are two different valuations vx and vx
′

such that:

3.1 if Rf Ri
f and Rf Rj

f, then μRf(vvar(Rf)) = μRf(vvar(Rf)
′),

 3.2 if Rf = Ri
f, then μRf(vvar(Rf)) = μRf(vvar(Rf)

′)+ ,

 3.3 if Rf = Rj
f, then μRf(vvar(Rf)

′) = μRf(vvar(Rf))+ .

 then if

g ((Ri
f), μ

Ri
f (v

var(Ri
f)

)) ≤ g ((Rj
f), μ

Rj
f (v

var(Rj
f)

))

then (vx) (vx
′) holds.

4. For two different combined labels vx and vx
′ such that Rf Cf, if

μRf(v
var(Rf)

) μRf(vvar(Rf)
′)

then (vx) (vx
′) holds.

12

5. If there exists a combined valuation vx and vx
′ such that Rf Cf, μRf(v

var(Rf)
) = 1 then

(vx)=1.

Definition 2: Let X, D, Cf, , g and vx be defined as in definition 1. The generalized PFCSP is

defined as a tuple (X, D, Cf, , g, ∧, ∨, ￢) which satisfies the following.

 An elementary formula in GPFCSP is a pair(x, (Ci)), where Ci Cf, x Dom(Ci)

represents the satisfaction degree of a constraint Ci and i= (Ci), represents its priority.

 A formula in GPFCSP is defined in the following way,

 1. An elementary formula is a formula.

 2. If f1 and f2 are formulas then also ∧(f1, f2), ∨(f1, f2) and ￢(f1) are formulas.

 For each valuation vx, a satisfaction degree F(vx) of a formula F is calculated

depending on the interpretation of connectives.

 A system is a GPFCSP if:

 1. Let F=∧i{1,…,n}fi be a formula in the GPFCSP where fi, i{1,…,n} are elementary

formulas and let be a set of constraints that appear in the formula. If for the fuzzy constraint

Rmax
f we have

max = (Rmax
f) = max{(Rf) | Rf Cf },

 Then for each formula F we have:

μRmax
f (vx)= 0 F(vx) = 0

 2. If Rf Cf, (Rf) = 0 [0,1], then for each formula F the following holds:

F(vx) =F£(vx),

 Where F£ is the interpretation of the logical formula F in fuzzy logic £(∧, ∨, ￢).

 3. For Ri
f, Rj

f Cf, assume (Ri
f) (Rj

f), > 0 and assume that there are two different

valuations vx and vx
′ such that:

 3.1 if Rf Ri
fand Rf Rj

f, then μRf(vx) = μRf(vx
′),

 3.2 if Rf = Ri
f, then μRf(vx) = μRf(vx

′)+ ,

 3.3 if Rf = Rj
f, then μRf(vx

′) = μRf(vx)+ .

13

 Then, for formulas:

F= ⋀k=1,…,n(xk, (Rk)), xk Dom(Rk)

and

F= ⋁k=1,…,n(xk, (Rk)), xk Dom(Rk)

The following holds:

F(vx) F(vx
′)

 4. Assume that two different compound labels vx and vx
′ such that Rf Cf satisfy

μRf(vx) μRf(vx
′)

 If formula F has no negation connective, then the following holds:

F(vx) F(vx
′)

 5. Let there be a compound label such that Rf Cf, μRf(vx) =1. If F is a formula

F = ⋀k=1,…,n fi or F = ⋁k=1,…,n fi, where fi, i {1,…,n} are elementary formulas then

F(vx) = 1

To obtain the global satisfaction degree, we need to aggregate the value of each

constraint. We can use aggregation operators from fuzzy logic t-norms, t-conorms and fuzzy

negation as shown in the GPFCSP definition below. The proof can be found in Takaci, Skrbic,

& Perovic (2009). Here we present a definition that describes one practically usable GPFCSP

system.

Theorem: the following system (X, D, Cf, , g, ∧, ∨, ￢,) where ∧ = TL, ∨ = SL,￢ = Ns, and

(xi, ci) = Sp(xi,1-i) is a GPFCSP. The global satisfaction degree of a valuation vx for a formula

F is obtained in the following way:

αF(vx) = F{(vxi
,
ρ(Ri

f)

ρmax
)|Rf ∈ Cf}

 Where Cf is the set of constraints of formula F, max= max{(Ri
f), Rf Cf}, TL is the

Łukasiewicz triangular norm, SL is the Łukasiewicz triangular conorm, Ns is the standard

negation (1-x), and Sp is the triangular product conorm.

Global satisfaction degree calculation for a given valuation will be illustrated in an

example.

14

Example Let us observe a set of students from the faculty of Science, Prince of Songkla

University. We will rank them using two criteria – age and height (in centimetres). Let us

construct the variables and their domains in the following way:

1. X1 represents age, D1 = [0,100]

2. X2 represents height, D2 = [100,250]

We also define the following constraints:

1. R1
f = “young students”

2. R2
f = “tall students”

Constraints are fuzzy subsets of the corresponding domains as in figure 3.2. The first

constraint is modelled as a left-shoulder with the upper offset and lower offset of 20 and 25,

respectively. The second constraint is a right-shoulder that ascends from 170 to 180.

Figure 3.2 𝐑𝟏
𝐟 and 𝐑𝟐

𝐟 membership functions

 Suppose that we retrieve the students who have a young age (R1
f) and about 180 cm

height (R2
f). In addition, the priority of each constraint is represented like this: (R1

f) = 0.6 and

(R2
f) = 0.3. Valuation vx given in table 3.2 defines three students.

Table 3.2 Valuation vx

Name Age Height

Mary 20 180

Peter 18 160

John 25 175

25 0 20

1

A(x1)

young

Age (years)

1

180 0 170

A(x2)

Height (centimeters)

15

First, we calculate constraint satisfaction degree (𝜇(Ri
f)) for every constraint and every

student. These degrees are obtained directly as values of corresponding membership functions

in given points. Results are given in table 3.3.

Table 3.3 Constraint satisfaction degree

Name 𝜇(R1
f) 𝜇(R2

f
)

Mary 1 1

Peter 1 0

John 0 0.5

 Now we can calculate the global constraint satisfaction degree for every student in the

following way:

= TL(SP(𝜇
𝑅1

𝑓(v),1-(R1
f)), SP(𝜇

𝑅2
𝑓(v),1-(R2

f)))

If we use values for the first student, we obtain the following:

= TL(SP(1,1-0.6), SP(1,1-0.3)) = TL(SP(1,0.4), SP(1,0.7))

The definition of the Łukasiewicz triangular norm (TL) and triangular product conorm (SP) as

following:

TL(x,y) = max(x+y-1,0)

SP (x,y) = x+y-xy

Finally, we obtain satisfaction degree for the first student:

= TL(1,1) = 1

Global constraint satisfaction degrees for all students are calculated in the same way

and given in table 3.4. These results are a measure of how much does every one of the students

satisfy our criteria.

Table 3.4 Global constraint satisfaction degree for all students

Name

Mary 1

Peter 0.7

John 0.91

16

 In a way, GPFCSP systems can be made similar to FLWOR clause of XQuery. The

basic structure of the FLWOR clause consists of for/let and where constructs. Variables that

follow after the for and let keywords can be viewed as GPFCSP variables with associated

domains. Where clause contains a sequence of constraints connected with logical operators in

much the same way as in GPFCSP. The example of the FLWOR clause is shown in Listing

3.1.

Listing 3.1 An example of the FLWOR clause

for $x in document(student.xml)

where $x/height>180 AND $x/age = 20

return $x

3.3 Fuzzy Compatibility

 In fuzzy XQuery statements, variables can assume fuzzy or non-fuzzy values.

Normally, different types of values cannot be compared directly. Therefore, it is necessary to

implement a fuzzy compatibility calculation to solve this problem. The equation of

compatibility of fuzzy set A to the fuzzy set B is given below (Škrbić, Racković, 2013).

CompatibilityA,B =
P(A ∩ B)

P(A)

(E1)

 P(A ∩ B) is the area of intersection between the two fuzzy sets and P(A) is the area of

the source fuzzy set A. Compatibility value is a number that varies from 0 to 1. Zero means

incompatible, and one means fully compatible. According to equation (E1), the fuzzy

compatibility calculation contains three steps (Sukpisit, Kansomkeat, Sae Ueng, Thadadech, &

Škrbić, 2016):

1. Calculate the intersection area,

2. Calculate the size of obtained intersection area,

3. Calculate the compatibility value.

 To obtain the intersection area of two fuzzy sets, the edge equations of each fuzzy set

will be compared as well as their boundaries. The output of step 1 is the coordinates of the

intersection area that will be used to calculate the size of the intersection area in step 2.

17

 In step 2, the cyclic polygon calculation proposed by Pak (Pak, 2005) will be used to

calculate the size of the intersection area. This method uses coordinates of a polygon for the

area calculations. The area is calculated by the following equation:

Area = |
(x1y2 − x2y1) + (x2y3 − x3y2) + ⋯ + (xny1 − x1yn)

2
| (E2)

 In step 3, a compatibility value can be obtained by equation (E1) using the size of the

intersection area provided by step 2 and the size of the area of the source fuzzy set that can be

calculated by the equation (E2). A more detailed explanation of the fuzzy compatibility

calculation is given in chapter 4.

3.4 Fuzzy Ordering

 When the relational operators (<,<=,>,>=) are included in the query, it is necessary to

provide means to calculate comparison values between fuzzy sets. These fuzzy relational

operators are typically used in two fuzzy set comparison cases but can also be used with some

aggregate functions like MIN, MAX, and SUM. A well-known ordering for real intervals is:

[a, b] ≼I [c, d] ⟺ a ≤ c & b ≤ d

The inequality a ≤ c means that there are no elements of the set [c,d] that are below the

interval [a,b]. While the inequality b ≤ d means that there are no elements of [a,b] that above

[c,d].

Bodenhofer (2008) has introduced an ordering as given below:

Definition 3 Let A be a fuzzy set of the domain X, a fuzzy superset of A, denoted by LTR(A)

(standing for Left-To-Right closure) is the smallest fuzzy superset of A that has a non-

decreasing membership function (see figures 3.3) as defined by:

LTR(A)(x) = sup{A(y)| y ∈ X & y ≤ x }

Definition 4 A fuzzy superset of A, denoted by RTL(A) (standing for Right-To-Left closure)

is the smallest fuzzy superset of A that has a non-increasing membership function (see figures

3.3) as defined by:

RTL(A)(x) = sup{A(y)| y ∈ X & x ≤ y }

18

Figure 3.3 LTR(A) and RTL(A) (Bodenhofer, 2008)

Definition 5 The F(X) denotes the set of all fuzzy sets of X, a fuzzy ordering on fuzzy set A

and B, if A, B F(X), is defined as follows:

A ≼I B ⟺ (LTR(A) ⊇ LTR(B) & RTL(A) ⊆ RTL(B)) (E3)

 Considering fuzzy orderings above, the fuzzy ordering calculation can be determined

by considering horizontal positions of compared fuzzy sets (Kansomkeat, Sukpisit, Thadadech,

Sae Ueng, & Skrbic, 2015). If the assertion (E3) is fulfilled in both conditions, the fuzzy

ordering value is true or 1. Otherwise, the operation returns false or 0. From assertion (E3) we

can conclude that if only one condition is satisfied, it means that fuzzy sets cannot be compared

- incomparable case. In this case, the fuzzy ordering operation will return incomparable or 0.5.

3.5 eXtensible Markup Language (XML)

 XML is a data formatting recommendation proposed by the W3C as a simplified form

of the Standard Generalized Markup Language (SGML) - one of the standards for data

description and exchange between various systems and databases over the Internet. As a

markup language, XML supports user-defined tags, encourages the separation of document

content from its presentation, and can automate web information processing. Figure 3.4 shows

the relationship of XML documents, DTD, XSD, XQuery, XPath and XSLT that will be

described in the next sections.

19

Figure 3.4 Relationship between XML specifications (Erl, 2004)

3.5.1 XML documents

 An XML document has a logical and a physical structure. The physical structure

consists of entities that are ordered hierarchically. The logical structure is explicitly described

by markups that comprise declarations, elements, comments, character references, and

processing instructions. XML documents that conform to the rules of XML mark-up are called

"well-formed"; for example, each document must have a single top-level (root) element, and al1

tags must be correctly nested. A number of additional instructions arc permitted, such as

comments, processing instructions, unparsed character data and entity references. Tags can also

contain attributes in the form of name and value pairs, with the values enclosed in quotation

marks. Figure 3.5 shows an example XML document.

20

<?xml version= “1.0” ?>

<! DOCTYPE student SYSTEM “student.dtd”>

<student category=“University”>

 <nationality>Serbia</nationality >

 <age>20</age>

</student>

Figure 3.5 An example XML document

 Essentially, XML documents can be associated with and validated against a schema

specification in terms of a Document Type Definition (DTD) or by using the more powerful

XML Schema language.

3.5.2 Document Type Definition (DTD)

 DTD defines the legal building blocks of an XML document. A DTD document

contains the structural definition for the data in an XML document. It defines elements and

attributes that can appear, default and fixed values for attributes and the relationships between

elements. For example, figure 3.6 shows the example of DTD in an XML document. The

student element has two child elements: nationality and age. Moreover, the student element was

assigned an attribute called category, which has a validation rule limiting its possible value

assignments to University or High-School.

<! DOCTYPE student [
<! ELEMENT student (nationality, age)>

 <! ATTLIST student CATEGORY (University | High-School)>

<! ELEMENT nationality (#PCDATA)>

<! ELEMENT age (#PCDATA)>

]>

Figure 3.6 The DTD of the XML document from figure 3.5

21

3.5.3 XML Schema Definition (XSD)

 XSD is a comprehensive data modelling language for XML documents. Unlike DTDs,

the XSD is an actual implementation of the XML language; schemas are themselves XML

documents. XSD provides the structural and validation-related features offered by the DTD

language within an extended feature set consisting of many more variations and options in how

to model and establish validation criteria for XML document data.

 The XML Schema document format is very flexible and highly extensible. One of the

most important features introduced by the XML Schema specification is the wide range of

support for data types and namespaces. In the figure 3.7, represent the XSD schema from the

previous DTD in figure 3.6.

<?xml version= “1.0” ?>

<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>

<xsd:element name=“student”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=“nationality” type=“xsd:string”/>

 <xsd:element name=“age” type=“xsd:int”/>

 </xsd:sequence>

 <xsd:attribute name= “category”>

 <xsd:simpleType>

 <xsd:restriction base= “xsd:string”>

 <xsd:enumeration value= “University”/>

 <xsd:enumeration value= “High-School”/>

 <xsd:restriction>

 </xsd:simpleType>

 </xsd:attribute>

 <xsd:complexType>

</xsd:element >

Figure 3.7 An example of XSD schema

22

3.5.4 XML Path (XPath)

 XPath is a language used for finding data in XML documents by parsing those XML

documents for specific values. XPath performs parsing of XML documents by applying an

expression to the text of an XML document. The effective result is that an XPath expression

allows navigation through XML document elements and attributes, retrieving items and values

that match the expression passed into the XML document by XPath. Figure 3.8 shows the

XPath expression that selects all student elements that have the nationality with the value

‘Serbian’.

//student[nationality=‘Serbian’]

Figure 3.8 An example of XPath expression

3.5.5 XQuery

XQuery is a standardized language that can be used to query XML documents just as

SQL (Structured Query Language) is used to query relational databases. The XQuery is

structured in FLWOR expression (pronounced as “flower expression”) which is a form of for

loop. The term FLWOR is an acronym for the keywords: for, let, where, order by, and return.

The overview of these clauses is given as follows.

 For: Selects a sequence of nodes for iteration.

 Let: Binds values to variables.

 Where: Serves as a filter for the nodes.

 Order By: Values-based ordering of the nodes.

 Return: Determines what to return, and is evaluated once for every node.

Let us consider a FLWOR expression that returns the name of each student that has

Serbian nationality. The FLWOR expression for the query is written as in Listing 3.2.

23

Listing 3.2 Example of XQuery with FLWOR expression

for $x in document(“students.xml”)//student

where $x/nationality = “Serbian”

return $x/name

 The query iterates student elements, one at a time, found in students.xml, and checks

whether the student element qualifies the conditions. If so, it returns the name of each

qualifying student.

3.6 XML database

Being semi-structured data, there are two main approaches to storing XML documents.
The first one is using an XML-enabled database such as a relational database, or an object-
oriented database. The second one is using a native XML database.

3.6.1 XML-enabled database (XED)

 XED is a relational database that transfers data between XML documents and

relational tables. It retrieves data for maintaining the relational properties between tables and

fields, rather than to model XML documents.

3.6.2 Native XML Database (NXD)

 The native XML database stores XML data directly. The database engine

accesses the XML data without performing any conversion. This is the main difference between

an XML-enabled database and a native XML database. This direct access in a native XML

database can reduce processing time and provide better performance.

24

Figure 3.9 Architecture of Native XML Database (Fong, Wong, & Fong, 2021)

The diagram in figure 3.9 shows the storing and retrieving of XML data through the

XML engine. The XML parser checks the syntactical correctness of the schema and ensures

the incoming XML data objects are well formed. The object processor is used to store objects

in the native XML store. The query interpreter resolves incoming requests and interacts with

the object composer to retrieve XML objects according to the schemas defined by the

administrator. Using the storage and retrieval schemas, the object composer constructs the

information objects and returns them as XML documents.

3.7 eXist-db database

eXist-db is an open source native XML database system built for XML technology. It

stores XML data according to the XML data model and features efficient, index-based XQuery

processing. eXist-db supports many Web 2.0 technology standards, making it an excellent

platform for developing web-based applications. Furthermore, eXist-db provides a pluggable

module interface that allows extension modules to be easily developed in Java. These extension

modules can provide additional XQuery functions through a custom namespace. The extension

25

modules have full access to the eXist db, its internal API, the context of executing XQuery and

the HTTP session. The source code for extension modules should be placed in their own folder

inside $EXIST_HOME/extensions/modules/src/org/exist/xquery/modules. The eXist-db

architecture is shown in figure 3.10.

Figure 3.10 The eXist-db Architecture (Chaudhri, Rashid, & Zicari, 2003)

eXist-db provides an extension to XQuery for updating nodes in the database. Available

update actions are: "insert", "delete", "replace", "value" and "rename". All update statements

start with the keyword “update”, followed by an update action. The return type of the

expression is empty(). For brevity, we explain only the update actions that have been used in

the FXI system as follows.

 Update Insert

Syntax: update insert expr (into | following | preceding) exprSingle

Inserts the content sequence specified in expr into the element node passed via

exprSingle. ExprSingle and expr should evaluate to a node set. If exprSingle contains more

26

than one element node, the modification will be applied to each of the nodes. The position of

the insertion is determined by the keywords "into", "following" or "preceding":

into: The content is appended after the last child node of the specified elements.

following: The content is inserted immediately after the node specified in exprSingle.

preceding: The content is inserted before the node specified in exprSingle.

For Example, update insert <student><name>John</name> into //student[id="001"]

 Update Value

Syntax: update value expr with exprSingle

Updates the content of all nodes in expr with the items in exprSingle. If expr is an

attribute or text node, its value will be set to the concatenated string value of all items in

exprSingle. For example, update value //name[. = "John"] with 'Jim'

 Update Delete

Syntax: update delete expr

Removes all nodes in expr from their document. Expr cannot be the root element of a

document. For example, update delete //student[id='Jim']

3.8 ANTLR (ANother Tool for Language Recognition)

ANTLR is a parser generator that uses LL(*) based recursive-descent parsers. It

generates the source code for language recognizers, analyzers and translators from language

specification (Parr, 2010). The latest version is 4.8 that supports Java, C#, C, Python and Ruby

as target languages. Figure 3.11 presents the basic data flow for a translator. The lexer reads an

27

input character, divides it into tokens by using patterns that are specified in the grammar file

and generates a token stream as output. The parser reads a token stream from the lexer and

matches phrases in the language via the rules. After that parser generates Abstract Syntax Trees

(AST) which can be processed with tree walker and generate the final tree representation as

output.

Figure 3.11 Overall translation data flow (Parr, 2007)

We create a grammar file (FuzzyXQuery.g) and run it with ANTLR tool. ANTLR

automatically generates three files: Lexer.java, Parser.java and tokens file (as in figure 3.12).

The important output from ANTLR is an AST. Here we will describe how to construct the AST.

Figure 3.12 ANTLR generated Java files

28

First, we need to set the output option to AST in the grammar file (as shown in figure

3.13) because the default of grammar file does not create output in AST.

grammar FuzzyXQuery;
options {

 language = Java;

 output=AST;

 ASTLabelType=CommonTree;

}

Figure 3.13 Set options in the grammar file

Default AST construction will simply build a flat tree containing pointers to all the

input token objects (as shown in figure 3.14). Therefore, we will add the AST construction

operators and AST rewrite rules to facilitate handling the tree.

Figure 3.14 Default AST construction

I) Constructing ASTs Using Operators

 There are 2 operators: ! and ^ symbol for constructing the ASTs. The meaning

of these symbols is in table 3.5.

Table 3.5: Annotations for building AST nodes

Operator Meaning

T! discard T

T^ make T the root of this (sub) rule

29

Example:

 comparisonexpr

 : rangeexpr (generalcomp^ rangeexpr (priorityexpr!)?)? ;

 From this rule, the generalcomp will be the root node of this rule and the

priorityexpr will not be included in AST because of ! symbol. So, this rule will generate the

AST as in figure 3.15.

Figure 3.15 AST from comparisonexpr

II) Constructing ASTs with Rewrite Rules (Parr, 2007)

 The rewrite syntax is more powerful than the operators. While the parser

grammar specifies how to recognize input, the rewrites are generational grammars, specifying

how to generate output. ANTLR figures out how to map input to output grammar as in figure

3.16.

rule : <<alt1>> -> <<build-this-from-alt1>>

 | <<alt2>> -> <<build-this-from-alt2>>

 …

 | <<altN>> -> <<build-this-from-altN>>

 ;

Figure 3.16 Grammar for rewrite rules

generalcomp

rangeexpr rangeexpr

30

 Additionally, rewrite rules can add the imaginary node and omit the input

elements.

 Adding Imaginary node

 The imaginary token refers to tokens with a rewrite that are not found on the

left of -> symbol. The imaginary node is used to group the unit chunk of nodes.

Example:

 fuzzyexpr

 :'#' QNAME -> FUZZY;

 In this example, FUZZY is a node that is created from an imaginary token and

used to group the fuzzyexpr.

 Omitting input Elements

 Languages use many input symbols such as comma, semicolons, colons,

parentheses, and so on, to indicate structure in the input. These symbols are not useful in the

AST. Therefore, ANTLR uses the rewrite rule to delete these symbol tokens from the AST by

omitting them from the rewrite specification.

 Example:

 whereclause

 : 'where' exprsingle (thresholdexpr)? -> ^('where' exprsingle);

 In this example, we omit the thresholdexpr from the whereclause tree

 parenthesizedexpr

 :'(' expr?')' -> expr?

31

 In this example, we omit the parentheses -‘(’ and ‘)’ from the parenthesizedexpr.

3.9 Spring Boot

The Spring Framework has become the standard for building Java/Java EE-based

enterprise applications because it offered a simpler approach, lightweight in terms of

component code. However, Spring required a lot of explicit configuration in servlets and filters.

In response to this problem, Spring Boot was proposed to take away boilerplate configuration.

It is a new way to develop Spring applications with minimal friction from the framework itself.

Auto-configuration eliminates much of the boilerplate configuration from traditional Spring

applications. Spring Boot starters enable you to specify build dependencies by what they offer

rather than explicit library names and versions (Walls, 2015). The features of Spring Boot are

as follows (Spring Boot, 2020):

 Create stand-alone Spring applications

 Embedded Tomcat, Jetty or Undertow directly (no need to deploy WAR files)

 Provide opinionated 'starter' POMs to simplify your Maven configuration

 Automatically configure Spring whenever possible

 Provide production-ready features such as metrics, health checks and

externalized configuration

 Absolutely no code generation and no requirement for XML configuration

3.10 RESTful web services

REST (REpresentational State Transfer) is an architectural style based on transferring

representations of resources from a server to a client. It is the style that underlies the web as a

32

whole and has been used as a much simpler method than SOAP/WSDL for implementing web

services (Sommerville, 2016).

A RESTful web service is identified by its URI (Universal Resource Identifier) and

communicates using the HTML protocol. The HTTP methods are usually interpreted as

follows:

 1. GET is used to retrieve data for collection or the collection item.

 2. POST is used to create a new resource.

 3. PUT is used to update a resource.

 4. DELETE is used to delete a resource.

The information exchanged by RESTful services is the resource representation in JSON

(JavaScript Object Notation) format. For example, a student JSON data is {id: “001”, name:

“John”, age: 26, height: 170}.

The REST interface is often preferred by developers and has become the standard for

building services today because it has a lower overhead, simpler and is more efficient than

traditional SOAP-based web services.

3.11 RESTful API in eXist-db

eXist-db is an open source native XML database system built for XML technology. It

supports many Web 2.0 technology standards, making it an excellent platform for developing

web-based applications. In the FXI system, the client-side accesses the eXist-db via REST

Interface but server-side accesses by using XML:DB API.

The eXist-db provides a RESTful API through HTTP, which provides the simplest and

quickest way to access the database. The basic operations defined by the eXist's REST API are

33

GET, POST, PUT and DELETE (existdb, 2014). When running in a servlet-context in our

application, this servlet is configured to have a listen address at http://localhost:9999/exist/rest/.

The server treats all HTTP request paths as paths to a database collection, i.e. all resources are

read from the database instead of the file system. Relative paths are therefore resolved relative

to the database root collection. For example, if you enter the following URL into your web

browser: http://localhost:9999/exist/rest/db/data/studentdata.xml. The server will receive an

HTTP GET request for the resource studentdata.xml in the collection /db/data in the database.

The server will look for this collection and check if the resource is available and if so, retrieves

its contents and sends them back to the client. To keep the interface simple, the basic database

operations are directly mapped to HTTP request methods wherever possible. The following

request methods are supported:

 GET

If the server receives an HTTP GET request, it first tries to locate known parameters. If

no parameters are given or known, it will try to locate the collection or document specified in

the URI database path, and returns a representation of this resource to the client. Note that when

the located resource is XML, the returned content-type attribute value will be application/xml.

 PUT

Documents can be stored or updated using an HTTP PUT request. The request URI

points to the location where the document will be stored. As defined by the HTTP

specifications, an existing document at the specified path will be updated, i.e. removed, before

storing the new resource. Also, any collections defined in the path that does not exist will be

created automatically.

34

 DELETE

An HTTP DELETE removes a collection or resource from the database. For this, the

server first checks if the request path points to an existing database collection or resource, and

once found, removes it.

 POST

An HTTP POST request submits data in the form of an XML fragment in the content

of the request that specifies the action to take.

35

Chapter 4

System Implementation

This chapter describes details of FXI implementation. Section 4.1 provides the fuzzy

XQuery syntax in EBNF (Extended Backus Normal Form) notation. We present the

representation of fuzzy data in section 4.2. In section 4.3 shows the use case diagram of the

FXI system. The algorithm and fuzzy XQuery processing was given in section 4.4. Finally, we

explain our system development and GUI (Graphical User Interface) in section 4.5.

4.1 Fuzzy XQuery EBNF grammar

The fuzzy XQuery syntax is described by using the EBNF notation as shown in figure

4.1 (Sae Ueng, Škrbić, Kansomkeat, & Apirada, 2017). We extended the standard XQuery in

the WhereClause of the FLWOR (For-Let-Where-Order by-Return) statement with the

Threshold, Priority, and Fuzzy Expression.

Figure 4.1 The snippet of fuzzy XQuery

36

A formal definition of these fuzzy constraints was given as follows:

I) A threshold Expression is an expression with the keyword threshold that we use to remove

the results which have a membership degree less than the defined threshold from a result set.

The threshold value is a real number between 0 and 1. If there is no threshold expression, the

default value of threshold expression is 0.

II) A priority Expression is an expression with the keyword priority that specifies the

importance of the corresponding constraints to the result. If the value of priority expression is

higher, it means this constraint is more important. The priority value is also a real number

between 0 and 1. If there is no priority expression, the default value of priority expression is 1.

III) A fuzzy expression is an expression that allows creation of a linguistic label or four types

of fuzzy numbers in a query as follows:

 ‘ling’‘(’Qname‘)’ indicates a linguistic label with the name given by Qname that

was predefined in the system (see more in section 4.2).

 ‘tri’‘(’leftoffset‘,’max‘,’rightoffset‘)’ indicates a Triangular fuzzy number with

three arguments: left offset, maximum, and right offset.

 ‘trap’‘(’leftoffset‘,’leftmax‘,’rightmax‘,’rightoffset‘)’ indicates a Trapezoidal

fuzzy number with four arguments: left offset, left maximum offset, right maximum

offset, and right offset.

 ‘interval’‘(’leftoffset‘,’rightoffset‘)’ indicates an interval fuzzy number with two

arguments: left offset and right offset.

 ‘fs’‘(’type‘,’leftoffset‘,’rightoffset‘)’ indicates a fuzzy shoulder with three

arguments: type of Fuzzy Shoulder (left shoulder or right shoulder), left offset, and

right offset.

To illustrate the features of the fuzzy XQuery, we give four query examples. The first

query (Listing 4.1) retrieves the students who are taller than 180 cm and their age is about 20

years old.

Listing 4.1 A fuzzy XQuery with fuzzy constants

for $x in document(student.xml)

where $x/height>180 AND $x/age= #fs(0,20,25)#

return $x

37

The # symbol is chosen to mark fuzzy constants. If we defined a linguistic label

“young” that has value fs(0,20,25), the previous query could be simplified (Listing 4.2)

Listing 4.2 A fuzzy XQuery with a linguistic label “young”

for $x in document(student.xml)

where $x/height>180 AND $x/age= #ling(young)#

return $x

Queries can be enriched with additional constraints. The next query (Listing 4.3)

contains the priority clause. The priority clause specifies the importance of the corresponding

constraint to the overall result. If the value of the priority clause is higher, it means that the

constraint has higher importance.

Listing 4.3 A fuzzy XQuery with the priority clauses

for $x in document(student.xml)

where $x/height>#tri(170,180,190)# priority 0.4 AND $x/age= #ling(young)# priority 0.6

return $x

Moreover, the query can include the threshold clause that limits the results and removes

tuples with the global constraint satisfaction degree smaller than the value of threshold clause.

In this example (Listing 4.4), the result set does not include the tuples with the global constraint

satisfaction degree smaller than 0.2.

Listing 4.4 A fuzzy XQuery with a threshold clause

for $x in document(student.xml)

where $x/height>#tri(170,180,190)# priority 0.4 AND $x/age= #ling(young)# priority 0.6

threshold 0.2

return $x

4.2 Representation of fuzzy data in an XML document

We allow users to define fuzzy data representing imprecise data in an XML document

by using linguistic labels. The linguistic labels (or linguistic terms) are used to represent

expressions of a natural language (such as “young age,” or “tall student”) with associated

degrees of membership. Our system supported four types of distributions of fuzzy numbers:

triangular, trapezoidal, interval, and fuzzy shoulder (left shoulder and right shoulder).

To better understanding how the fuzzy data are presented, let us consider the following

example (as shown in Figure 4.2). It represents a linguistic variable “age” containing a value

38

of linguistic label “young” that is corresponding to the fuzzy shoulder distribution (left

shoulder) with the upper offset and lower offset of 20 and 25, respectively. Figure 4.3 shows

the XML Schema used to define the linguistic label.

Figure 4.2 The definition of linguistic variable “age”

Figure 4.3 XML Schema for linguistic variable definition

39

Moreover, users can define the value of each element as the fuzzy number in the

database (see figure 4.4) with four different types of fuzzy numbers, the same as in the linguistic

label, as follows:

1. Triangle fuzzy number: tri(leftOffset, maxOffset, rightOffset)

2. Trapezoidal fuzzy number: trap(leftLowerOffset, leftUpperOffset,

rightUpperOffset, rightLowerOffset)

3. Interval fuzzy number: interval(leftOffset, rightOffset)

4. Fuzzy shoulder: fs(type of fuzzy shoulder, lowerOffset, upperOffset)

Figure 4.4 An example to specify the fuzzy values in an XML document

4.3 Use case diagram

The Fuzzy XQuery Interpreter (FXI) system provides the following key features:

 A user can input the fuzzy XQuery queries with the priority, threshold and fuzzy

expressions.

40

 A user can define the linguistic variables in the eXist-db database.

 The system administrator can add/update/delete data in the eXist-db database.

 The system returns the results to the user via a web browser.

The use case model of the FXI system contains three actors and four use cases as shown

in figure 4.5.

Figure 4.5 Use Case diagram of FXI system

 The system contains the following actors:

 User: the main actor of this system.

 System Administrator: A role responsible for the smooth running of the system’s

technical resources (e.g. web server, database).

 FXI System: the system which is under consideration to accomplish a goal.

The description of use cases is shown in table 4.1, 4.2, 4.3 and 4.4 as follows.

Table 4.1 Tabular description of the “Search data” use case

Use Case

Name:

Search data

Actors: user

Description: A user can search data in the database by inputting the fuzzy

XQuery into the system

41

Preconditions: The user knows the fuzzy XQuery syntax.

Postconditions: The user gets the results from the database

Table 4.2 Tabular description of the “Calculate the global constraint satisfaction

degrees” use case

Use Case

Name:

Calculate the global constraint satisfaction degrees

Actors: FXI system

Description: Calculate the global constraint satisfaction degrees by using the

GPFCSP concept

Preconditions: There is a fuzzy XQuery

Postconditions: Return the global constraint satisfaction degrees

Table 4.3 Tabular description of the “Define the linguistic variables” use case

Use Case

Name:

Define the linguistic variables

Actors: user

Description: Create predefined fuzzy variables which can be used in queries by

uploading an XML file or inputting in a form.

Preconditions: The user knows the DTD of XML file for defining the variables

Postconditions: Confirmation that the variables have been defined when finish.

Table 4.4 Tabular description of the “Add/update/delete data” use case

Use Case

Name:

Add/update/delete data

Actors: System administrator

Description: Use to add, update or delete data in the database

Preconditions: -

Postconditions: Confirmation that data has been added/updated/deleted in the

database

42

4.4 Fuzzy XQuery query processing

Mechanism of fuzzy XQuery query execution is shown in figure 4.6 while the algorithm

that we use to calculate the global constraint satisfaction degree is shown in figure 4.7.

Figure 4.6 The process of Fuzzy XQuery execution

 Now let us explain all details. When a user inputs a fuzzy XQuery query via GUI, the

query is sent to the system, where it goes through multiple steps before returning the result set.

First of all, the query syntax is validated against the given EBNF grammar (as can be seen in

figure 4.1) and parsed into an Abstract Syntax Tree (AST) by using ANTLR (ANother Tool

for Language Recognition). After that, the query is transformed in two ways. The first way, the

query is transformed to a standard XQuery query by eliminating the fuzzy constraint from the

fuzzy XQuery query. Then the system sends the standard XQuery to XML database. When the

database returns the result set, they are again interpreted for calculating the global constraint

satisfaction degree in Membership degree Calculation. The second way, the query is

transformed by deleting the crisp constraints and sent to the Membership degree Calculation.

Thereafter, the system goes into calculating the membership degrees by using GPFCSP

concept. Once the fuzzy XQuery query has been evaluated, the results are filtered by the

threshold value to produce the final results.

43

From the algorithm (figure 4.7), when the visited node is the conjunction ‘AND’, the

system calculates the global constraint satisfaction degree () by calling the Łukasiewicz

triangular norm (TL) function. The Łukasiewicz triangular conorm (SL) is used if the visited

node is the disjunction ‘OR’. If the fuzzy XQuery has priority expression, the system uses the

triangular product conorm (SP) to aggregate with the priority value. All is in accordance with

the GPFCSP concept. Consider the comparison operator, two cases are possible: 1) “equality”

(=) and “inequality” (!=) comparison of fuzzy data is calculated by calling the fuzzy

compatibility operation (see section 3.3). In the case of 2) “Greater than” (>) and “less than”

(<) comparison of fuzzy data is performed by calling the fuzzy ordering operation (see section

3.4).

Figure 4.7 The algorithm used to calculate the global constraint satisfaction degree

Now we illustrate the execution of the process of Fuzzy XQuery query with an example.

Suppose that we have a Fuzzy XQuery query as in Listing 4.5 that retrieves the students who

are of young age and their height is more than 150 cm with the priority 0.6 and 0.3, respectively.

In addition, we define the threshold value equal to 0.5 meaning that we want the results that

have the global constraint satisfaction degree more than 0.5.

44

Listing 4.5 An example of a Fuzzy XQuery query

for $x in document("student.xml") where $x/GPA >2.75 and

$x/age = #ling(’young’)# priority 0.6 and

$x/height > #tri(100,150,200)# priority 0.3

Threshold 0.5

return $x

Let us now describe how to calculate this Fuzzy XQuery. First of all, we transform the

Fuzzy XQuery to a standard XQuery by removing the fuzzy expressions, priority expressions

and threshold expression as shown in Listing 4.6.

Listing 4.6 Transformation of the fuzzy XQuery query to a standard XQuery query

for $x in document("student.xml")

where $x/GPA >2.75

return $x

Second, we get the result set after we send the standard XQuery query to the database.

Third, we send the results back to the interpreter to calculate the global constraint satisfaction

degree by calling the Membership degree Calculation. In this function, the system will remove

the non-fuzzy conditions from the Fuzzy XQuery, which in this example is “$x/GPA >2.75”,

as in Listing 4.7.

Listing 4.7 The Fuzzy XQuery after removing the non-fuzzy node

for $x in document("student.xml")

where $x/age = #ling(’young’) priority 0.6 and

$x/height > #tri(100,150,200)# priority 0.3

Threshold 0.5

return $x

We use the concept of GPFCSP (as in the preceding section) to calculate the global

constraint satisfaction degree for all the result set in step two by using the equation E4.

 = TL(SP(fR1

 (v),1- ρ(fR1
)), SP(fR2

 (v),1- ρ(fR2
))) (E4)

In the equation E4, fR1 is the fuzzy constraint i and
f

iR

is the satisfaction degree of

constraint
f

iR . The priority of each constraint is represented by the function ρ(
f

iR). The greater

value of ρ(
f

iR
) means that the constraint

f

iR
is more important. In this example, the constraint

fR1 : age is more important than the constraint
fR2 : height because the priority value of the

45

constraint age is 0.6 but the priority value of the constraint height is 0.3. It is noticeable that

we use the TL because of the conjunction AND in this Fuzzy XQuery. The SP is used to

aggregate with priority.

Let us assume that we have the student data in the XML file as in Listing 4.8 and the

result set from the standard XQuery is shown in Listing 4.9. It is noticeable that Ana’s GPA is

not greater than 2.75. Consequently, the result in Listing 4.9 does not show Ana’s record.

Listing 4.8 The snippet of student data

<?xml version= “1.0” encoding=“UTF-8”?>
<students>
 <student>
 <name>John</name>
 <GPA>3.5</GPA>
 <age>25</age>
 <height>170</height>
 </student>
 <student>
 <name>Peter</name>
 <GPA>3.0</GPA>
 <age>21</age>
 <height>165</height>
 </student>
 <student>
 <name>Ana</name>
 <GPA>2.5</GPA>
 <age>22</age>
 <height>180</height>
 </student>
 <student>
 <name>Alex </name>
 <GPA>2.8</GPA>
 <age>20</age>
 <height>tri(150,200,250)</height>
 </student>
</students>

Listing 4.9 The result set from standard XQuery in Listing 4.6

<?xml version= “1.0” encoding=“UTF-8”?>
<students>
 <student>
 <name>John</name>
 <GPA>3.5</GPA>
 <age>25</age>
 <height>170</height>
 </student>
 <student>

46

 <name>Peter</name>
 <GPA>3.0</GPA>
 <age>21</age>
 <height>165</height>
 </student>
 <student>
 <name>Alex </name>
 <GPA>2.8</GPA>
 <age>20</age>
 <height>tri(150,200,250)</height>
 </student>
</students>

We calculate the constraint satisfaction degree() for every constraint and every student

as in Table 4.5. In the case of the first constraint age, these degrees are obtained directly as the

values of the corresponding membership functions of the young linguistic fuzzy variable at the

given point of the age data. Suppose that we define the linguistic value of young in an XML

document whose membership function has the left fuzzy shoulder which can be seen in Figure

4.8. However, with the second constraint height, we calculate
fR2

 by using the fuzzy ordering

modules since the type of the fuzzy constant is tri and the operator is >. If we substitute µ(
f

iR)

and ρ(
f

iR) for the first student (John) into the equation E4, we obtain the following:

John = TL(SP(0,1-0.6), SP(0.5,1-0.3)) (E5)

Therefore, we obtain the global constraint satisfaction degree of John as follows:

John = TL(SP(0,0.4), SP(0.5,0.7)) = TL (0.4,0.85) = 0.25 (E6)

Table 4.5 The constraint satisfaction degrees of every constraint and every student

Name fR1

 fR2

John 0 0.5

Peter 0.8 0.5

Alex 1 1

f
iR

47

Figure 4.8 Membership function of young

The other students are calculated in the same way and are given in Table 4.6.

Table 4.6 The global constraint satisfaction degrees () of every student

Name

John 0.25

Peter 0.73

Alex 1

Finally, because of the threshold value, the system will print the results which have the

global constraint satisfaction degree more than 0.5 as shown in Listing 4.10.

Listing 4.10 The final result set

<?xml version= “1.0” encoding=“UTF-8”?>

<results>
 <student>
 <name>Peter</name>
 <alpha>0.73</alpha>
 </student>
 <student>
 <name>Alex</name>
 <alpha>1.0</alpha>
 </student>

</results>

4.5 System Development

 The system architecture is shown in figure 4.9 (Sae-Ueng & Skrbic, 2020). There are

three nodes: Database, Client and Web server under the Model-View-Controller (MVC)

architecture. The database server is eXist-db, which is the native-XML database capable of

executing XQuery queries. We use XML:DB API to connect to the database server. The client

browser is connected to a server-side resource via RESTful API, and directly connects to the

database via the eXist-db’s RESTful API. The Apache Tomcat web server is based on the Java

environment and Spring Boot Framework. We developed four main components: Calculation,

young

1

age (years)
25 0 20

µ(x)

48

Fuzzy, ANTLRGrammar, and SubmitService. The grammar of the fuzzy XQuery is defined by

using the ANother Tool for Language Recognition (ANTLR) that automatically generates the

lexical analyzer and parser. The list of software used is shown in table 4.7. The detail of

backend and frontend development is as follows:

Figure 4.9 The system architecture of FXI system

Table 4.7 List of software

 Software Version

Operating System Windows 7 64 bit

Database eXist-db 2.1

Web Server Apache Tomcat 8.0

Tools Java Standard Edition Development Kit (Linux x64)

7u7

Spring Tool Suite (STS)

IDE

3.7.1.RELEASE

ANTLR 3.4 (Complete ANTLR 3.4 Java binaries jar)

 AngularJS 1.4.8

49

4.5.1 The Backend development

 We developed the backend using Java programming language and based on Spring

Framework. The main class diagram is shown in figure 4.10. There are five main packages as

follows:

Figure 4.10 The main class diagram of FXI system

 A. Antlrgrammar package

 The fuzzy XQuery grammar was defined from the standard XQuery by using the EBNF

1.0 notation as in figure 4.1 (for the complete grammar, see Appendix A). We used the ANTLR

(ANother Tool for Language Recognition) to parse the fuzzy XQuery and generate a lexical

(FuzzyXQueryFullLexer.java) and a parser (FuzzyXQueryFullParser.java) class that is

contained in this package.

 B. Web package

 In this package, we create the resource controller in a SubmitController class. Building

RESTful web services and HTTP requests in Spring framework are handled by a controller.

These components are easily identified by the @RestController annotation. The

SubmitController class handles POST requests with a FuzzyXquery object for /submit by

50

returning a JSON object of the student data’s result set. The source code can be illustrated by

the following:

@RestController

public class SubmitController {

 @RequestMapping(value ="/submit",method=RequestMethod.POST)

 public Collection<JSONObject> submit(@RequestBody FuzzyXquery fuzzyxquery)

 {

 //call compiler class

 Compiler result = new Compiler();

 Collection<JSONObject> output =result.compile(fuzzyxquery.getXquery());

 return output;

 }

 The @RestController annotation marks the class as a controller and converts the

controller into a RESTful service that users can then access this resource from AngularJS

application. The @RequestMapping annotation ensures that HTTP requests to /submit are

mapped to the submit() method. In this service, after the system gets the value of FuzzyXquery

object, it will call the compile method of Compiler class to execute the fuzzy XQuery query.

 C. Calculation package

 This package consists of five classes (which are shown below) and used to execute the

fuzzy XQuery. Now let us explain in detail how this package executes the fuzzy XQuery. When

the submit service calls the Compiler class and passes a fuzzy XQuery in the URI, the system

first checks the syntax of the fuzzy XQuery following the given EBNF grammar. After that, if

it is valid, the fuzzy XQuery is transformed to a standard XQuery by parsing the fuzzy XQuery,

creating an Abstract Syntax Tree (AST), and extracting the fuzzy part from it. Next, the system

sends the standard XQuery into the database. When the database returns the result set, the

system will interpret this result set again using the GPFCSP concept to calculate the

membership degree of every element of the result set. Now we have the results that have a

fuzzy membership degree in every element. Then, if the query has a threshold expression, the

system will remove the tuples that have the fuzzy membership degree under the threshold

value. Finally, the system returns the result set in a JSON object

51

 C.1 Compiler class

 This class is the main class for calling other classes, which has compile method that is

the operation for receiving the fuzzy XQuery and returning the response to user interface.

C.2 Transformation class

 This class is used to transform a fuzzy XQuery to a standard XQuery. There are three

steps in this process: 1) check syntax and create an AST, 2) Delete fuzzy nodes and 3) inorder

walk.

 Step 1: Check syntax and create an AST

 The system checks and validates its syntax by following the EBNF grammar. The

ANTLR will generate the AST. For example, if we have the fuzzy XQuery as follows:

 “for $x in doc("db/data/student.xml")/students/student

where $x/tall > 170 and $x/age = #ling(young)# priority 0.5 threshold 0.6

 return $x”

 Thus, we will have the tree as in figure 4.11. It is noticeable that the fuzzyexpr has the

FUZZY token in the branch.

Figure 4.11 The AST created by ANTLR

Step 2: Tree traversal used for deleting fuzzy nodes in Whereclause.

 We traverse the tree, extract only a whereclause subtree (as in figure 4.12) and delete

the FUZZY node from the query.

52

Figure 4.12 The whereclause subtree

 The algorithm used to delete the FUZZY node from the whereclause subtree (as

shown in figure 4.13) has three steps as follows:

 1. Search FUZZY tokens from the child nodes. If found, delete the branch of the tree

that has the FUZZY token.

 2. If the parent of the branch (which was deleted in step 1) is a conjunction token (AND

or OR), delete the conjunction token and put the sibling branch instead of the conjunction

token.

 3. Traverse until FUZZY tokens are not found in the tree.

 Finally, we have the new whereclause subtree as shown in figure 4.14.

Figure 4.13 The algorithm used to delete the FUZZY node from whereclause subtree

Figure 4.14 The whereclause subtree after the FUZZY token was deleted

53

Step 3: Inorder walk in the Whereclause.

 After we have the new whereclause subtree, we walk through the whereclause subtree

again and write it to a standard XQuery with inorder traversal. Inorder walk traverses the left

subtree, visits the root node and finally traverses the right subtree. For example, in figure 4.15,

we walk through the tree as follows:

 1. Traverse the left subtree: $, x, /, tall

 2. Visit the root node: >

 3. Traverse the right subtree: 170

Figure 4.15 The inorder walk in whereclause subtree

 Finally, from this example, we have the tree as shown in figure 4.16. That means we

have the standard XQuery as follows:

for $x in doc("db/data/student.xml")/students/student

where $x/tall > 170

return $x

Figure 4.16 The tree after the fuzzy node was deleted

54

 C.3 CutNonFuzzyBranch class

 This class is used to delete the branches (in whereclause subtrees) that do not have the

fuzzy nodes. Next, this subtree will send to the Calculate class for calculating the global

constraint satisfaction degree.

 C.4 ConnecteXist class

 This class uses for connecting to the eXist-db database by Connectdb operation. We

used the XML:DB API to connect the eXist-db because it is an API provides a common

interface to native XML databases and supports the development of portable, reusable

applications. This is the code for retrieving the data from eXist-db with XML:DB.

 // initialize database driver
 Class<?> cl = Class.forName(DRIVER);
 Database database = (Database) cl.newInstance();
 DatabaseManager.registerDatabase(database);

 // get the collection
 Collection col = DatabaseManager.getCollection(URI + collectionPath);

 // query a document

 System.out.println("Execute xQuery = " + input);

 // Instantiate a XQuery service
 XQueryService service = (XQueryService) col.getService("XQueryService","1.0");
 service.setProperty("indent", "yes");

 // Execute the query, print the result
 ResourceSet result = service.query(input);
 ResourceIterator i = result.getIterator();
 while (i.hasMoreResources()) {
 Resource r = i.nextResource();
 System.out.println((String) r.getContent());
 }

 In this example, the database driver class for eXist (org.exist.xmldb.DatabaseImpl) is

first registered with the DatabaseManager. Next, we obtain a Collection object from the

database manager by calling the static method DatabaseManager.getCollection(). The method

expects a fully qualified URI for its parameter value, which identifies the desired collection.

The URI should have the format like this:

xmldb:[DATABASE-ID]://[HOST-ADDRESS]/db/Collection

55

 For instance, the URI like this: xmldb:exist://localhost:8080/exist/xmlrpc/db/data. The

first part of the URI (xmldb:[DATABASE-ID]) determines which driver class to use. The

database-id is used by the database manager to select the correct driver. This ID should always

be “exist” if using eXist-db. The final part of the URI ([HOST-ADDRESS]/db/Collection)

identifies the collection path, and optionally the host address of the database server on the

network. eXist-db uses two different driver implementations: the first is a remote database

engine using XML-RPC calls, the second is direct access to a local instance of eXist-db. The

/db is always the root collection.

 C.5 Calculate class

 The aim of this class is to walk the whereclause subtree of the fuzzy XQuery tree and

calculate the global constraint satisfaction degree for every XML element in the result set by

using the GPFCSP concept. Therefore, this class will calculate the degree by following the

algorithm in figure 4.7.

 D. Fuzzy Package

 This package is used to define five types of fuzzy numbers as shown in figure 4.17

(Sukpisit, 2015):

1. The Triangular fuzzy number is represented with the FuzzyTriangle class.

2. The Trapezoidal fuzzy number is represented with the FuzzyTrapezoidal class.

3. The Fuzzy shoulder is represented with the FuzzyShoulder class.

4. The Fuzzy Interval is represented with the FuzzyInterval class.

5. The Crisp value is represented with the FuzzyCrisp class.

We use the Coordinate class, IntersectionArea class and AreaCalculator to calculate the

compatibility operations and the fuzzy ordering operations.

E. Model package

 This package has a FuzzyXquery class, which is a resource representation class that

provides a plain old java object with field and two accessors (get and set) for the fuzzy XQuery

data.

56

Figure 4.17 Class diagram of package fuzzy.type

57

 4.5.2 The Frontend Development

 We developed the Graphical User Interface (GUI) with AngularJS and Bootstrap. There

are four main files: app.js, index.html, input.html, upload.html and managestudent.html as

follows:

 I) app.js

 This file is a JavaScript file that contains an Angular module, a function config() and

three controllers-SubmitController, UploadController, StudentController that controls three

HTML pages: input.html, upload.html and managestudent.html, respectively.

 i) Function config()

 In app.js file has a function config which configures the routes by using the Angular UI

Router (a third party routing module). The UI Router is a state-based approach. A state

describes how each UI looks at a particular time. Each state consists of three components: url,

templateUrl and controller.

o url: the URL of state

o templateUrl: the HTML template to be used

o controller: the controller which will be associated with the states.

 In the FXI system, we have five states: home, about, upload, manageStudent and

contact. The syntax to configure the routes is as follows:

app.config(function ($stateProvider, $urlRouterProvider) {

 $stateProvider

 .state('home', {

 url: '/home',

 templateUrl: '../html/input.html'

 })

 .state('about', {

 url: '/about',

 template: '../html/about.html'

 })

 .state('upload', {

 url: '/upload',

 templateUrl: '../html/upload.html'

 })

 .state('manageStudent', {

 url: '/manageStudent',

58

 templateUrl: '../html/managestudent.html'

 })

 .state('contact', {

 url: '/contact',

 template: '../html/contact.html'

 });

 $urlRouterProvider.otherwise("/home");

});

 ii) SubmitController controls the input.html page. When a user submits the fuzzy

XQuery query, the system will call the $http service, which is a core angular service that

consumes web services via the browser’s XMLHttpRequest object, with POST method (see

figure 4.18) to send this XQuery to the “http://localhost:8080/submit” URL that is defined in

the backend as the SubmitService RESTful service.

 $http({

 method:'POST',

 url:'http://localhost:8080/submit',

 headers:{'Content-Type': 'application/json'},

 data:{xquery:$scope.xquery}

 })

Figure 4.18 The snippet of source code for calling the $http service in SubmitController

 iii) UploadController controls the upload.html page used for uploading an XML file

to the database. We use the ng-file-upload of the Angular directive for uploading files to the

eXist-db . This controller accesses to the database via the eXist-db RESTful API (see more in

section 3.11) with the PUT method of $http service as can be seen in figure 4.19.

file.upload = Upload.upload({

 method:'PUT',

 url: 'http://localhost:9999/exist/rest/db/data/'+file.name,

 data: {file: file}

 });

Figure 4.19 The snippet of source code for calling the $http service in UploadController

59

 iv) StudentController controls the managestudent.html page for adding, editing and

deleting data in studentdata.xml. For getting the data, the controller accesses to the database

via the eXist-db RESTful API with the GET method of $http service and uses xml2json

component to convert the XML data to JSON format as you can see in figure 4.20.

$http.get('http://localhost:9999/exist/rest/db/data/studentdata.xml').then(function(response){

 var studentdata=x2js.xml_str2json(response.data);

 $scope.student = studentdata.students.student;

 }

Figure 4.20 The snippet of source code for getting data in StudentController

 If we wish to add a new data, first we check if the studentID field already has the value

being sent (check for duplicates). If it is does, the system returns the error to the user. However,

if it does not, the controller accesses the database with the POST method of $http service and

uses the update insert statement of XQuery update extension (see more in section 3.7) to insert

the new data at the end of studentdata.xml as you can see in figure 4.21.

 var promise = $http({

 method:'POST',

 url: 'http://localhost:9999/exist/rest/db/data/studentdata.xml',

 headers: {'Authorization': 'Basic YWRtaW46MTIzNDU2','Content-

Type':'application/x-www-form-urlencoded'},

 data:'_query=update insert

<student><id>'+_id+'</id><name>'+_name+'</name><age>'+_age+'</age><gpa>'+_gpa+'</

gpa><height>'+_height+'</height></student> into //students'});

Figure 4.21 The snippet of source code for adding the new data in StudentController

 For editing the data, the controller accesses to the database with the POST method of

$http service and uses the update value statement to edit data as you can see in the snippet of

source code in figure 4.22.

60

 var promise = $http({

 method:'POST',

 url: 'http://localhost:9999/exist/rest/db/data/studentdata.xml',

 headers: {'Authorization': 'Basic YWRtaW46MTIzNDU2','Content-

Type':'application/x-www-form-urlencoded'},

 data:'_query=update value //name[.="'+$scope.temp.name+'"] with "'+

$scope.EditData.name+'"'});

Figure 4.22 The snippet of source code for editing the data in StudentController

 For deleting the data, the controller accesses to the database with the POST method of

$http service and uses the update delete statement to delete data as you can see in figure 4.23.

 var promise = $http({

 method:'POST',

 url: 'http://localhost:9999/exist/rest/db/data/studentdata.xml',

 headers: {'Authorization': 'Basic YWRtaW46MTIzNDU2','Content-

Type':'application/x-www-form-urlencoded'},

 data:'_query=update delete //student[id="'+data.id+'"]'});

Figure 4.23 The snippet of source code for deleting the data in StudentController

 II) index.html

 This is the main page of our application for calling the libraries and app.js to run.

 III) input.html

 This page uses to submit the fuzzy XQuery. When a user adds the fuzzy XQuery in the

text box (as shown in figure 4.24) and click on the Submit button to submit the query into our

system. After that the result will be shown as in figure 4.25. The table of results has six

columns: ID, Name, Age, GPA, Height and degree. The first five columns are the data from

studentdata.xml file in the database and the last column is the global constraint satisfaction

degree of that record.

61

 IV) upload.html

 This page (as can be seen in figure 4.26) is used to upload an XML file for predefining

the linguistic variables in eXist-db. We use ng-file-upload that is the lightweight Angular

directive to upload files.

Figure 4.24 The input.html page

Figure 4.25 The input.html page with the result

62

Figure 4.26 The upload.html page

 V) managestudent.html

 This page used to create, update, delete of student data in the studentdata.xml file in the

eXist-db. When the browser loads the div element with ng-controller directive

‘StudentController’, the controller module in the app.js file executes. It makes the $http service

to get all students initially and display in this HTML file as a table as shown in figure 4.27. If

the user clicks the New Data button, it shows five text boxes to input the new data as in figure

4.28. When the user clicks the Edit button to edit data in any lines of the table, it will show the

same five text boxes with the old data in that row as in figure 4.29. If the user clicks the Delete

button, it will delete that record immediately.

63

Figure 4.27 The managestudent.html page

Figure 4.28 The managestudent.html page when a user wants to add new data

64

Figure 4.29 The managestudent.html page when a user wants to edit data

65

Chapter 5

System Testing

This describes in detail experiments conducted to evaluate the accuracy and

performance of the FXI system. The objective is to determine how the FXI system meets the

requirements, does it respond correctly to all kinds of inputs and does it perform its functions

within an acceptable time frame.

5.1 Correctness Testing

The purpose of correctness testing is to prove that the FXI system can calculate the

global constraint satisfaction degree correctly for all kinds of possible inputs. The structure of

fuzzy XQuery can have the conjunction “AND” or “OR” as in figure 5.1.

Figure 5.1 The conditional structure of fuzzy XQuery

Each condition (Comparison Expression) can have four relational operations (=,!=,>,<)

as in figure 5.2. A Variable Expression (VariableExpr) can take values of crisp number type or

four types of fuzzy numbers: triangle, trapezoidal, Interval and two kinds of fuzzy shoulders:

left shoulder and right shoulder. In the same way, fuzzy expressions (FuzzyExpr) can be

defined as linguistic variables or four types of fuzzy numbers.

Figure 5.2 Possible values of ComparisonExpr

Therefore, we consider all possible input test cases as follows (see table 5.1):

66

First, we consider all types of fuzzy numbers in fuzzy Expression (FuzzyExpr) of the

first and second conditions. For example, the Fuzzy Expression of the first condition has a

triangle fuzzy number and the second condition has a trapezoidal fuzzy number as below:

Where $x/height=#tri(170,180,190)# AND $x/age=#trap(30,40,50,60)#

There are four possible fuzzy numbers in the first conditions and second conditions.

However, the fuzzy shoulder has two types: left shoulder and right shoulder. Thus, we have

5x5=25 main test scenario as in table 5.2.

Second, the assignment of values to the variable expression (VariableExpr) can be

defined as a crisp number or four types of a fuzzy number.

Third, it is possible to have a priority expression in a condition of fuzzy XQuery.

Therefore, there are four possible cases of priority expression as follows:

A. The query does not have any priority expression.

B. The query has priority expressions in both conditions.

C. The query has a priority expression only in the first condition.

D. The query has a priority expression only in the second condition.

Fourth, we consider the relational operator as one of the four operators: =,!=,>, and <

from both conditions.

Fifth, there are two conjunctions: AND or OR in a fuzzy XQuery.

Lastly, it is possible to have a threshold expression in the fuzzy XQuery.

Based on the above considerations, we have 22,400 test cases and have constructed the

test case tables as shown in Appendix B. Table B.1 shows the various inputs of T2 test scenario

with conjunction AND in the query and table B.2 describes the test data of variable expressions

in the test cases.

67

Table 5.1 Possible input test cases

Factors

Fuzzy

Expression

Variable

Expression

Priority

expression

Relational

operator

Conjunction Threshold

expression

Triangle Crisp number (A) No

priority

expression

= AND No threshold

Trapezoidal Triangle (B) Both

conditions

have priority

expression

!= OR Has threshold

Interval Trapezoidal (C) Priority

expression in

the first

condition

>

Leftshoulder Interval (D) Priority

expression in

the second

condition

<

Rightshoulder Leftshoulder

 Rightshoulder

Table 5.2 Test Scenarios

Test Scenario First Fuzzy Expression Second Fuzzy Expression

T1 Triangle Triangle

T2 Triangle Trapezoidal

T3 Triangle Interval

T4 Triangle Leftshoulder

T5 Triangle Rightshoulder

T6 Trapezoidal Triangle

T7 Trapezoidal Trapezoidal

T8 Trapezoidal Interval

T9 Trapezoidal Leftshoulder

T10 Trapezoidal Rightshoulder

T11 Interval Triangle

T12 Interval Trapezoidal

T13 Interval Interval

T14 Interval Leftshoulder

T15 Interval Rightshoulder

T16 Leftshoulder Triangle

T17 Leftshoulder Trapezoidal

T18 Leftshoulder Interval

T19 Leftshoulder Leftshoulder

T20 Leftshoulder Rightshoulder

T21 Rightshoulder Triangle

T22 Rightshoulder Trapezoidal

T23 Rightshoulder Interval

68

Test Scenario First Fuzzy Expression Second Fuzzy Expression

T24 Rightshoulder Leftshoulder

T25 Rightshoulder Rightshoulder

5.2 Performance Testing

Performance testing is a testing practise performed to determine how a system performs

in terms of responsiveness and stability under a particular workload. We analyze the

performance of the FXI system based on a comparison of two data sets under a server

containing the Intel Core2 Duo 2.4 GHz processor with 4 GB RAM memory running the 64-

bit Windows 7 operating system. The data set was the student data from Prince of Songkla

University about 5,000 records with five elements as in Listing 5.1.

Listing 5.1 The student data

<students>

 <student>

 <id>10001</id>

 <name>JIRAWAN</name>

 <age>25</age>

 <height>170</height>

 <gpa>3.23</gpa>

 </student>

</students>

The efficiency of the FXI system was evaluated by measuring how the query execution

time varies depending on the number of fuzzy values in the query and data. There are two

experiments. First, we executed a fuzzy XQuery with various fuzzy variables as shown in

Listing 5.2 and 5.3. The result shows that the execution time increases with the increasing

number of fuzzy variables, as expected (see Table 5.1).

Listing 5.2 The fuzzy XQuery with one fuzzy variable

for $x in doc(/apps/FXIdb/studentdata.xml)

where $x/age=#trap(18,20,22,25)#

and $x/height>160

return $x

69

Listing 5.3 The fuzzy XQuery with two fuzzy variables

for $x in doc(/apps/FXIdb/studentdata.xml)

where $x/age=#trap(18,20,22,25)#

and $x/height=#tri(100,150,200)#

return $x

Table 5.3 Fuzzy variable/Execution time

789 KB file size 1 variable 2 variables

Fuzzy XQuery 25 s 38 s

The second experiment used the same data as in the first, but we executed a query

regarding the size of fuzzy data in an XML document. We ran the query in Listing 5.3

randomizing fuzzy values only in the age field in three cases: 1,000, 2,500 and 4,000 records,

respectively. The result shows that the value type as a factor (crisp value or fuzzy values) does

not make a significant difference in the response times (see Table 5.2).

Table 5.4 Fuzzy data/Execution time

 Crisp 5,000 records

Crisp 4,000

records,
fuzzy data 1,000

records

Crisp 2,500

records,
fuzzy data 2,500

records

Crisp 1,000 records,
fuzzy data 4,000

records

Fuzzy XQuery 38s 42s 43s 44s

70

Chapter 6

Conclusion

This thesis proposes fuzzy XQuery expansions that extend the standard XQuery

capabilities with priority, threshold and fuzzy expressions. The priority expression specifies

the importance of the corresponding constraints to the result, while the threshold expression

use to eliminate the results, which have a membership degree less than the defined threshold

value from a result set. The fuzzy extensions of the XML database allowed the use of fuzzy

values and predefined linguistic labels that could be used later in the queries. One of the main

results is a detail of an algorithm that calculated the global constraint satisfaction degrees using

Generalized Prioritized Fuzzy Constraint Satisfaction Problem (GPFCSP) theory. The

introduction of fuzzy values in XQuery queries raises the question of comparing fuzzy values,

calculating compatibility, as well as aggregating the satisfaction degree of individual

conditions into a global constraint satisfaction degree. The implementation of a software

product in which these solutions are integrated is called Fuzzy XQuery Interpreter (FXI) – an

interpreter of processing fuzzy XQuery queries with priorities based on open-source

technologies and native XML open-source database.

 Furthermore, the two types of experimental evaluations of results were performed –

correctness testing and performance testing. The purpose of the correctness testing is to show

that the FXI calculates the exact global satisfaction degrees, for different types of query

constructs and overall available data 22,400 cases were tested experimentally, all with a

successful outcome. The performance testing was done by measuring the variation of query

execution time depending on the number of fuzzy constructions in the query and data. There

were two experiments. First, queries were made with one and two fuzzy variables overall 5,000

elements of the data set. Second, the same data were used, but the dependence on the amount

of fuzzy data in the XML document was measured by varying the fuzzy values.

 The largest contribution of this thesis is the successful development of the fuzzy

XQuery interpreter offered as a web application implemented using Java and eXist-db. There

are various ways to support fuzziness in XQuery as described in chapter II. Fuzzy membership

degree calculations within the product are based on GPFCSP, as in some previous approaches,

however, this is an implementation written from scratch, and for the first time, it is not based

on external commercial products used for evaluations, calculations and data storage. Instead,

71

we only use Java and open source native XML database written in Java. Everything else has

been implemented by hand within the product. This includes an engine that implements fuzzy

ordering based on Bodenhofer’s order that allows the usage of relational operators (<, <=, >,

>=) in queries, as well as an innovative engine, used to calculate compatibility degree between

two fuzzy values. Every aspect of the implementation has been tested and validated for

correctness and performance.

 We plan to base our future work on applications of querying mechanisms in the

Resource Description Framework (RDF). The RDF is a language used for representing

metadata about web resources that can be vague or ambiguous. Thus, we believe that described

methods could be used in the intelligent data representations related to web resources.

72

Bibliography
Almendros-Jiménez, J. M., Becerra-Terón, A., & Moreno, G. (2017). FSA-SPARQL: Fuzzy

Queries in SPARQL.

Almendros-Jiménez, J., Tedesqui, A., & Moreno, G. (2015). Fuzzy xpath through fuzzy logic

programming. New Generation Computing, 33(2), 173-209.

Alonso, S. K. (n.d.). MEMBERSHIP FUNCTIONS. Retrieved September 27, 2020, from

eMathTeacher: Mamdani's Fuzzy Inference Method:

http://www.dma.fi.upm.es/recursos/aplicaciones/logica_borrosa/web/fuzzy_inferencia

/funpert_en.htm

Amer-Yahia, S., Lakshmanan, L., & Pandit, S. (2004). FleXPath: flexible structure and full-

text querying for XML. SIGMOD '04: the 2004 ACM SIGMOD international

conference on Management of data (pp. 83-94). Paris, France: ACM.

doi:10.1145/1007568.1007581

Bodenhofer, U. (2008). Orderings of fuzzy sets based on fuzzy orderings. Part I: the basic

approach. Mathware & Soft Computing, 201-218.

Campi, A., Damiani, E., Guinea, S., Marrara, S., Pasi, G., & Spoletini, P. (2009). A fuzzy

extension of the XPath query language. Journal of Intelligent Information Systems, 33,

285-305. doi:10.1007/s10844-008-0066-3

Campi, A., Guinea, S., & Spoletini, P. (2014). An Operational Semantics for XML Fuzzy

Queries. the International Conference on Fuzzy Computation Theory and Applications

(FCTA-2014), (pp. 205-210). Rome, Italy. doi:10.5220/0005155502050210

Chaudhri, A. B., Rashid, A., & Zicari, R. (2003). XML Data Management: Native XML and

XML-enabled Database Systems. Addison Wesley.

Dubois, D., Fargier, H., & Prade, H. (1996). Possibility theory in constraint satisfaction

problems: Handling priority, preference and uncertainty. Applied Intelligence, 287-309.

Erl, T. (2004). Service-oriented architecture; a field guide to integrating XML and web

services. Prentice Hall PTR.

existdb. (2014). Retrieved September 27, 2020, from REST-Style Web API: http://exist-

db.org/exist/apps/doc/devguide_rest.xml

Fong, J., Wong, H. K., & Fong, A. (2021). Performance Analysis between an XML-Enabled

Database and a Native XML Database. Retrieved from http://etutorials.org/.

Fredrick, E., & Radhamani, G. (2010). A GUI Based Tool for Generating XQuery and Fuzzy.

International Journal of Computer Applications, 1(17), 54-58.

Fredrick, E., & Radhamani, G. (2011). INFORMATION RETRIEVAL USING XQUERY

PROCESSING TECHNIQUES. International Journal of Database Management

Systems (IJDMS), 3(1), 50-58. doi:10.5121/ijdms.2011.3104

Goncalves, M., & Tineo, L. (2007). Un Nuevo Paso hacia XQuery Flexible A New Step

towards Flexible XQuery. Revista Avances en Sistemas e Informática, 4(3), 27-34.

73

Goncalves, M., & Tineo, L. (2010). Fuzzy XQuery. In Z. Ma, & L. Yan, Soft Computing in

XML Data Management (pp. 133-163). Springer, Berlin, Heidelberg. doi:10.1007/978-

3-642-14010-5_6

Goncalves, M., & Tineo, L. (2005). Derivation Principle in Advanced Fuzzy Queries. The 14th

IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05 (pp. 579-584).

Reno, NV, USA: IEEE. doi:10.1109/FUZZY.2005.1452458

Jin , Y., & Veerappan, S. (2010). A fuzzy XML database system: Data storage and query

processing. 2010 IEEE International Conference on Information Reuse & Integration

(pp. 318-321). Las Vegas, NV, USA: IEEE. doi:10.1109/IRI.2010.5558919

Kansomkeat, S., Sukpisit, S., Thadadech, A., Sae Ueng, P., & Skrbic, S. (2015). Fuzzy ordering

implementation applied in fuzzy XQuery. the 5th International Conference on

Information Society and Technology (ICIST 2015), (pp. 443-493). Kopaonik, Serbia.

Labbad, J. Á., Monascal, R. R., & Tineo, L. (2016). Fuzzy XQuery: A Real Implementation.

In L. Yan, Handbook of Research on Innovative Database Query Processing

Techniques (pp. 158-198). doi:10.4018/978-1-4666-8767-7

Li, T., & Ma, Z. (2018). A structure-based approach of keyword querying for fuzzy XML data.

International Journal of Knowledge-based and Intelligent Engineering Systems, 22(2),

125-140. doi:10.3233/KES-180379

Lo, A., Kianmehr, K., Kaya, M., Ozyer, T., & Alhajj, R. (2007). Wrapping VRXQuery with

Self-Adaptive Fuzzy Capabilities. IEEE/WIC/ACM International Conference on Web

Intelligence (WI'07) (pp. 750-756). Fremont, CA, USA: IEEE.

doi:10.1109/WI.2007.127

Ma, Z. M., Li, J., & Yan, L. (2010). Fuzzy data modeling and algebraic operations in XML.

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 25(9), 925-947.

doi:10.1002/int.20424

Oliboni, B., & Pozzani, G. (2008). Representing Fuzzy Information by Using XML Schema.

2008 19th International Workshop on Database and Expert Systems Applications (pp.

683-687). Turin, Italy: IEEE. doi:10.1109/DEXA.2008.44

Pak, I. (2005). The area of cyclic polygons: Recent progress on Robbins' conjectures. Advances

in Applied Mathematics, 34(4), 690-696. Retrieved from

https://doi.org/10.1016/j.aam.2004.08.006

Panić, G., Racković, M., & Škrbić, S. (2014). Fuzzy XML and prioritized fuzzy XQuery with

implementation. Journal of Intelligent & Fuzzy Systems, 26(1), 303-316.

doi:10.3233/IFS-120739

Parr, T. (2007). The Definitive ANTLR Reference: Building Domain-Specific Languages. North

Carolina Dallas, Texas, United States of America: The Pragmatic Bookshelf.

Parr, T. (2010). ANTLR v3. Retrieved September 14, 2020, from https://www.antlr3.org/

74

Sae Ueng, P., Škrbić, S., Kansomkeat, S., & Apirada, T. (2017). A GPFCSP-based fuzzy

XQuery interpreter. Journal of Telecommunication, Electronic and Computer

Engineering (JTEC), 9(2-2), 35-40.

Sae-Ueng, P., & Skrbic, S. (2020). Priority fuzzy database management system implementation

based on extensions to the XQuery language. Journal of Intelligent & Fuzzy Systems,

38(4), 4107-4118. doi:10.3233/JIFS-190202

Škrbić, S., & Racković, M. (2013). Fuzzy Database. Novi Sad: Faculty of Science, University

of Novi Sad.

Škrbić, S., Racković, M., & Takači, A. (2011). Towards the methodology for development of

fuzzy relational database applications. Computer Science and Information Systems,

8(1), 27-40. doi:10.2298/CSIS100102010S

Škrbić, S., Racković, M., & Takači, A. (2013). Prioritized fuzzy logic based information

processing in relational databases. Knowledge-Based Systems, 38, 62-73.

doi:https://doi.org/10.1016/j.knosys.2012.01.017

Sommerville, I. (2016). Software Engineering. Pearson Education Limited.

Spring Boot. (2020). Retrieved September 27, 2020, from Spring:

https://spring.io/projects/spring-boot

Sukpisit, S. (2015). Automated Fuzzy Set Operations for XML Database. Master’s Thesis,

Prince of Songkla University, Songkhla, Thailand, p.34. Retrieved from

https://kb.psu.ac.th/psukb/bitstream/2016/10701/1/404601.pdf

Sukpisit, S., Kansomkeat, S., Sae Ueng, P., Thadadech, A., & Škrbić, S. (2016). Polygon

intersection based algorithm for fuzzy set compatibility calculations. International

Journal of Machine Learning and Computing, 6, 32-35.

Takači, A. (2005). Schur-concave triangular norms: Characterization and application in

pFCSP. Fuzzy Sets and Systems, 155(1), 50-64. Retrieved from

https://doi.org/10.1016/j.fss.2005.05.011

Takaci, A., Skrbic, S., & Perovic, A. (2009). Generalised Prioritised Fuzzy Constraint

Satisfaction Problem. 2009 7th International Symposium on Intelligent Systems and

Informatics (pp. 145-148). Subotica, Serbia: IEEE. doi:10.1109/SISY.2009.5291177

Thadadech, A., Vonghirandecha, P., Kansomkeat, S., & Skrbic, S. (2014). A Fuzzy XML

Database System. Retrieved from

http://kb.psu.ac.th/psukb/bitstream/2016/11260/1/413290.pdf

Üstünkaya, E., Yazici, A., & George, R. (2007). FUZZY DATA REPRESENTATION AND

QUERYING IN XML DATABASE. International Journal of Uncertainty, Fuzziness

and Knowledge-Based Systems, 15, 43-57. doi:10.1142/S0218488507004455

Walls, C. (2015). Spring Boot in Action. Manning Publications.

Yan, L., Ma, Z., & Zhang, F. (2014). Fuzzy XML data management. Springer, Berlin,

Heidelberg. doi:10.1007/978-3-642-44899-7

https://kb.psu.ac.th/psukb/bitstream/2016/10701/1/404601.pdf

75

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

76

Appendix A: EBNF of fuzzy XQuery grammar

grammar FuzzyXQueryFull;

options {

 language = Java;

 output=AST;

 ASTLabelType=CommonTree;

}

tokens{

 FUZZY;

 PRIORITY;

}

@lexer::header{

 package grammar;

}

@parser::header{

 package grammar;

}

querybody

 : expr

 ;

expr

 : exprsingle (',' exprsingle)*

 ;

exprsingle

 : flowrexpr

 |orexpr

 ;

77

flowrexpr

 :(forclause|letclause)+ whereclause? orderbyclause? returnclause

 ;

forclause

 : 'for'^ '$' varname typedeclaration? positionalvar? 'in' exprsingle

(',' '$' varname typedeclaration? positionalvar? 'in' exprsingle)*

 ;

positionalvar

 : 'at' '$' varname

 ;

letclause

 : 'let'^ '$' varname typedeclaration? ':=' exprsingle (',' '$' varname

typedeclaration? ':=' exprsingle)*

 ;

whereclause

 : 'where' exprsingle (thresholdexpr)? -> ^('where' exprsingle)

 ;

orderbyclause

 : ('order' 'by' | 'stable' 'order' 'by') orderspeclist

 ;

orderspeclist

 : orderspec (',' orderspec)*

 ;

orderspec

 : exprsingle ordermodifier

 ;

ordermodifier

 : ('ascending' | 'descending')? ('empty' 'greatest'| 'empty' 'least')?

('collation' uriliteral)?

 ;

returnclause

 : 'return'^ '$' varname

 ;

orexpr

 : andexpr ('or'^ andexpr)*

78

 ;

andexpr

 : comparisonexpr ('and'^ comparisonexpr)*

 ;

comparisonexpr

 : rangeexpr (generalcomp^ rangeexpr)?

 ;

rangeexpr

 :valueexpr

 ;

valueexpr

 : pathexpr

 | fuzzyexpr (priorityexpr)? ;

generalcomp

 : '=' | '!=' | '<' | '<=' | '>' | '>='

 ;

pathexpr

 :('/' relativepathexpr?)

 | ('//' relativepathexpr)

 | relativepathexpr

 ;

relativepathexpr

 : stepexpr (('/' | '//')stepexpr)*

 ;

stepexpr

 :filterexpr

 | axisstep

 ;

axisstep

 :(reversestep | forwardstep) predicatelist

 ;

forwardstep

 : (forwardaxis nodetest)

79

 | abbrevforwardstep

 ;

forwardaxis

 :('child' '::')

 | ('descendant' '::')

 | ('attribute' '::')

 | ('self' '::')

 | ('descendant-or-self' '::')

 | ('following-sibling' '::')

 | ('following' '::')

 ;

abbrevforwardstep

 : '@'? nodetest

 ;

reversestep

 :(reverseaxis nodetest) | abbrevreversestep

 ;

reverseaxis

 : ('parent' '::')

 | ('ancestor' '::')

 | ('preceding-sibling' '::')

 | ('preceding' '::')

 | ('ancestor-or-self' '::')

 ;

abbrevreversestep

 :'..'

 ;

nodetest

 :nametest

 ;

nametest

 :QNAME

 ;

filterexpr

80

 :primaryexpr predicatelist

 ;

predicatelist

 :predicate*

 ;

predicate

 :'[' expr ']'

 ;

primaryexpr

 :literal

 |varref

 |parenthesizedexpr

 |contextitemexpr

 |functioncall

 |orderedexpr

 |unorderexpr

 ;

literal

 :numericliteral

 |STRINGLITERAL

 ;

varref

 : '$' varname

 ;

varname

 : QNAME

 ;

parenthesizedexpr

 :'(' expr?')' -> expr?

 ;

contextitemexpr

 :QNAME '.' QNAME // add QNAME

 ;

orderedexpr

81

 :'ordered' '{' expr '}'

 ;

unorderexpr

 :'unordered' '{' expr '}'

 ;

functioncall

 :QNAME '("'(exprsingle (',' exprsingle)*)? '")' //add " and "

 ;

ncname

 :name

 ;

singletype

 : atomictype '?'?

 ;

typedeclaration

 : 'as' sequencetype

 ;

sequencetype

 : ('empty-sequence' '(' ')')

 ;

occurrenceindicator

 :'?' |'*'|'+'

 ;

atomictype

 : QNAME

 ;

uriliteral

 : STRINGLITERAL

 ;

fuzzyexpr

 : '#' 'ling' '('QNAME')' '#' -> FUZZY 'ling' QNAME

 | '#' 'tri' '(' leftoffset','max','rightoffset')' '#' -> FUZZY 'tri'

leftoffset max rightoffset

 | '#' 'trap' '('leftoffset',' leftmax ','rightmax ',' rightoffset ')' '#' -

> FUZZY 'trap' leftoffset leftmax rightmax rightoffset

82

 | '#' 'interval' '(' leftoffset ',' rightoffset ')' '#' -> FUZZY 'interval'

leftoffset rightoffset

 | '#' 'fs' '(' type ',' leftoffset ',' rightoffset')' '#' -> FUZZY 'fs'

type leftoffset rightoffset

 ;

max

 :numericliteral

 ;

leftoffset

 :numericliteral

 ;

rightoffset

 :numericliteral

 ;

leftmax

 :numericliteral

 ;

rightmax

 :numericliteral

 ;

type

 : '1' | '0';

priorityexpr

 : 'priority' degreeliteral -> PRIORITY degreeliteral

 ;

thresholdexpr

 : 'threshold' degreeliteral

 ;

numericliteral

 :integerliteral

 |decimalliteral

 ;

integerliteral

 :DIGITS

83

 ;

decimalliteral

 :(DIGITS '.' DIGITS)

 ;

degreeliteral

 : '0.' DIGITS

 ;

predefinedentityref

 : '&' ('lt'|'gt'|'amp'|'quot'|'apos')';'

 ;

name

 :NAMESTARTCHAR (namechar)*

 ;

QNAME

 : ('a'..'z')+

 ;

DIGITS

 :('0'..'9')+

 ;

STRINGLITERAL

 : ('A'..'Z'| 'a'..'z'| '0'..'9')*

 ;

S

 : (' '| '\r'|'\t'| '\n')+ {$channel=HIDDEN;}

 ;

namechar

 :NAMESTARTCHAR | '-' | '.' | '0'..'9'

 ;

NAMESTARTCHAR

 :':' | 'A'..'Z' | '_' | 'a'..'z';

84

Appendix B: The example of Test cases

Table B.1 Test cases of T2 test scenario with Conjunction “AND”

(A) No priority expression

(B) Both conditions have priority expression

(C) Priority expression is in the first condition

(D) Priority expression is in the second condition

Test case ID
First Fuzzy

Expression
Conjunction

Second

Fuzzy

Expression

Priority Expression
First

operator

Second

operator

First

variable

expression

Second

variable

expression

T2_01 Triangle AND Trapezoidal (A) = = Crisp number Crisp number

T2_02 Triangle AND Trapezoidal (A) = = Triangle Triangle

T2_03 Triangle AND Trapezoidal (A) = = Trapezoidal Trapezoidal

T2_04 Triangle AND Trapezoidal (A) = = Interval Interval

T2_05 Triangle AND Trapezoidal (A) = = Leftshoulder Leftshoulder

T2_06 Triangle AND Trapezoidal (A) = = Rightshoulder Rightshoulder

T2_07 Triangle AND Trapezoidal (A) = != Crisp number Crisp number

T2_08 Triangle AND Trapezoidal (A) = != Triangle Triangle

T2_09 Triangle AND Trapezoidal (A) = != Trapezoidal Trapezoidal

T2_10 Triangle AND Trapezoidal (A) = != Interval Interval

T2_11 Triangle AND Trapezoidal (A) = != Leftshoulder Leftshoulder

T2_12 Triangle AND Trapezoidal (A) = != Rightshoulder Rightshoulder

T2_13 Triangle AND Trapezoidal (A) = < Crisp number Crisp number

T2_14 Triangle AND Trapezoidal (A) = < Triangle Triangle

85

Test case ID
First Fuzzy

Expression
Conjunction

Second

Fuzzy

Expression

Priority Expression
First

operator

Second

operator

First

variable

expression

Second

variable

expression

T2_15 Triangle AND Trapezoidal (A) = < Trapezoidal Trapezoidal

T2_16 Triangle AND Trapezoidal (A) = < Interval Interval

T2_17 Triangle AND Trapezoidal (A) = < Leftshoulder Leftshoulder

T2_18 Triangle AND Trapezoidal (A) = < Rightshoulder Rightshoulder

T2_19 Triangle AND Trapezoidal (A) = > Crisp number Crisp number

T2_20 Triangle AND Trapezoidal (A) = > Triangle Triangle

T2_21 Triangle AND Trapezoidal (A) = > Trapezoidal Trapezoidal

T2_22 Triangle AND Trapezoidal (A) = > Interval Interval

T2_23 Triangle AND Trapezoidal (A) = > Leftshoulder Leftshoulder

T2_24 Triangle AND Trapezoidal (A) = > Rightshoulder Rightshoulder

T2_25 Triangle AND Trapezoidal (A) != = Crisp number Crisp number

T2_26 Triangle AND Trapezoidal (A) != = Triangle Triangle

T2_27 Triangle AND Trapezoidal (A) != = Trapezoidal Trapezoidal

T2_28 Triangle AND Trapezoidal (A) != = Interval Interval

T2_29 Triangle AND Trapezoidal (A) != = Leftshoulder Leftshoulder

T2_30 Triangle AND Trapezoidal (A) != = Rightshoulder Rightshoulder

T2_31 Triangle AND Trapezoidal (A) != != Crisp number Crisp number

T2_32 Triangle AND Trapezoidal (A) != != Triangle Triangle

T2_33 Triangle AND Trapezoidal (A) != != Trapezoidal Trapezoidal

T2_34 Triangle AND Trapezoidal (A) != != Interval Interval

T2_35 Triangle AND Trapezoidal (A) != != Leftshoulder Leftshoulder

T2_36 Triangle AND Trapezoidal (A) != != Rightshoulder Rightshoulder

T2_37 Triangle AND Trapezoidal (A) != < Crisp number Crisp number

T2_38 Triangle AND Trapezoidal (A) != < Triangle Triangle

T2_39 Triangle AND Trapezoidal (A) != < Trapezoidal Trapezoidal

T2_40 Triangle AND Trapezoidal (A) != < Interval Interval

T2_41 Triangle AND Trapezoidal (A) != < Leftshoulder Leftshoulder

T2_42 Triangle AND Trapezoidal (A) != < Rightshoulder Rightshoulder

86

Test case ID
First Fuzzy

Expression
Conjunction

Second

Fuzzy

Expression

Priority Expression
First

operator

Second

operator

First

variable

expression

Second

variable

expression

T2_43 Triangle AND Trapezoidal (A) != > Crisp number Crisp number

T2_44 Triangle AND Trapezoidal (A) != > Triangle Triangle

T2_45 Triangle AND Trapezoidal (A) != > Trapezoidal Trapezoidal

T2_46 Triangle AND Trapezoidal (A) != > Interval Interval

T2_47 Triangle AND Trapezoidal (A) != > Leftshoulder Leftshoulder

T2_48 Triangle AND Trapezoidal (A) != > Rightshoulder Rightshoulder

T2_49 Triangle AND Trapezoidal (A) < = Crisp number Crisp number

T2_50 Triangle AND Trapezoidal (A) < = Triangle Triangle

T2_51 Triangle AND Trapezoidal (A) < = Trapezoidal Trapezoidal

T2_52 Triangle AND Trapezoidal (A) < = Interval Interval

T2_53 Triangle AND Trapezoidal (A) < = Leftshoulder Leftshoulder

T2_54 Triangle AND Trapezoidal (A) < = Rightshoulder Rightshoulder

T2_55 Triangle AND Trapezoidal (A) < != Crisp number Crisp number

T2_56 Triangle AND Trapezoidal (A) < != Triangle Triangle

T2_57 Triangle AND Trapezoidal (A) < != Trapezoidal Trapezoidal

T2_58 Triangle AND Trapezoidal (A) < != Interval Interval

T2_59 Triangle AND Trapezoidal (A) < != Leftshoulder Leftshoulder

T2_60 Triangle AND Trapezoidal (A) < != Rightshoulder Rightshoulder

T2_61 Triangle AND Trapezoidal (A) < < Crisp number Crisp number

T2_62 Triangle AND Trapezoidal (A) < < Triangle Triangle

T2_63 Triangle AND Trapezoidal (A) < < Trapezoidal Trapezoidal

T2_64 Triangle AND Trapezoidal (A) < < Interval Interval

T2_65 Triangle AND Trapezoidal (A) < < Leftshoulder Leftshoulder

T2_66 Triangle AND Trapezoidal (A) < < Rightshoulder Rightshoulder

T2_67 Triangle AND Trapezoidal (A) < > Crisp number Crisp number

T2_68 Triangle AND Trapezoidal (A) < > Triangle Triangle

T2_69 Triangle AND Trapezoidal (A) < > Trapezoidal Trapezoidal

T2_70 Triangle AND Trapezoidal (A) < > Interval Interval

87

Test case ID
First Fuzzy

Expression
Conjunction

Second

Fuzzy

Expression

Priority Expression
First

operator

Second

operator

First

variable

expression

Second

variable

expression

T2_71 Triangle AND Trapezoidal (A) < > Leftshoulder Leftshoulder

T2_72 Triangle AND Trapezoidal (A) < > Rightshoulder Rightshoulder

T2_73 Triangle AND Trapezoidal (A) > = Crisp number Crisp number

T2_74 Triangle AND Trapezoidal (A) > = Triangle Triangle

T2_75 Triangle AND Trapezoidal (A) > = Trapezoidal Trapezoidal

T2_76 Triangle AND Trapezoidal (A) > = Interval Interval

T2_77 Triangle AND Trapezoidal (A) > = Leftshoulder Leftshoulder

T2_78 Triangle AND Trapezoidal (A) > = Rightshoulder Rightshoulder

T2_79 Triangle AND Trapezoidal (A) > != Crisp number Crisp number

T2_80 Triangle AND Trapezoidal (A) > != Triangle Triangle

T2_81 Triangle AND Trapezoidal (A) > != Trapezoidal Trapezoidal

T2_82 Triangle AND Trapezoidal (A) > != Interval Interval

T2_83 Triangle AND Trapezoidal (A) > != Leftshoulder Leftshoulder

T2_84 Triangle AND Trapezoidal (A) > != Rightshoulder Rightshoulder

T2_85 Triangle AND Trapezoidal (A) > < Crisp number Crisp number

T2_86 Triangle AND Trapezoidal (A) > < Triangle Triangle

T2_87 Triangle AND Trapezoidal (A) > < Trapezoidal Trapezoidal

T2_88 Triangle AND Trapezoidal (A) > < Interval Interval

T2_89 Triangle AND Trapezoidal (A) > < Leftshoulder Leftshoulder

T2_90 Triangle AND Trapezoidal (A) > < Rightshoulder Rightshoulder

T2_91 Triangle AND Trapezoidal (A) > > Crisp number Crisp number

T2_92 Triangle AND Trapezoidal (A) > > Triangle Triangle

T2_93 Triangle AND Trapezoidal (A) > > Trapezoidal Trapezoidal

T2_94 Triangle AND Trapezoidal (A) > > Interval Interval

T2_95 Triangle AND Trapezoidal (A) > > Leftshoulder Leftshoulder

T2_96 Triangle AND Trapezoidal (A) > > Rightshoulder Rightshoulder

T2_97 Triangle AND Trapezoidal (B) = = Crisp number Crisp number

T2_98 Triangle AND Trapezoidal (B) = = Triangle Triangle

88

Test case ID
First Fuzzy

Expression
Conjunction

Second

Fuzzy

Expression

Priority Expression
First

operator

Second

operator

First

variable

expression

Second

variable

expression

T2_99 Triangle AND Trapezoidal (B) = = Trapezoidal Trapezoidal

T2_100 Triangle AND Trapezoidal (B) = = Interval Interval

T2_101 Triangle AND Trapezoidal (B) = = Leftshoulder Leftshoulder

T2_102 Triangle AND Trapezoidal (B) = = Rightshoulder Rightshoulder

T2_103 Triangle AND Trapezoidal (B) = != Crisp number Crisp number

T2_104 Triangle AND Trapezoidal (B) = != Triangle Triangle

T2_105 Triangle AND Trapezoidal (B) = != Trapezoidal Trapezoidal

T2_106 Triangle AND Trapezoidal (B) = != Interval Interval

T2_107 Triangle AND Trapezoidal (B) = != Leftshoulder Leftshoulder

T2_108 Triangle AND Trapezoidal (B) = != Rightshoulder Rightshoulder

T2_109 Triangle AND Trapezoidal (B) = < Crisp number Crisp number

T2_110 Triangle AND Trapezoidal (B) = < Triangle Triangle

T2_111 Triangle AND Trapezoidal (B) = < Trapezoidal Trapezoidal

T2_112 Triangle AND Trapezoidal (B) = < Interval Interval

T2_113 Triangle AND Trapezoidal (B) = < Leftshoulder Leftshoulder

T2_114 Triangle AND Trapezoidal (B) = < Rightshoulder Rightshoulder

T2_115 Triangle AND Trapezoidal (B) = > Crisp number Crisp number

T2_116 Triangle AND Trapezoidal (B) = > Triangle Triangle

T2_117 Triangle AND Trapezoidal (B) = > Trapezoidal Trapezoidal

T2_118 Triangle AND Trapezoidal (B) = > Interval Interval

T2_119 Triangle AND Trapezoidal (B) = > Leftshoulder Leftshoulder

T2_120 Triangle AND Trapezoidal (B) = > Rightshoulder Rightshoulder

T2_121 Triangle AND Trapezoidal (B) != = Crisp number Crisp number

T2_122 Triangle AND Trapezoidal (B) != = Triangle Triangle

T2_123 Triangle AND Trapezoidal (B) != = Trapezoidal Trapezoidal

T2_124 Triangle AND Trapezoidal (B) != = Interval Interval

T2_125 Triangle AND Trapezoidal (B) != = Leftshoulder Leftshoulder

T2_126 Triangle AND Trapezoidal (B) != = Rightshoulder Rightshoulder

89

Test case ID
First Fuzzy

Expression
Conjunction

Second

Fuzzy

Expression

Priority Expression
First

operator

Second

operator

First

variable

expression

Second

variable

expression

T2_127 Triangle AND Trapezoidal (B) != != Crisp number Crisp number

T2_128 Triangle AND Trapezoidal (B) != != Triangle Triangle

T2_129 Triangle AND Trapezoidal (B) != != Trapezoidal Trapezoidal

T2_130 Triangle AND Trapezoidal (B) != != Interval Interval

T2_131 Triangle AND Trapezoidal (B) != != Leftshoulder Leftshoulder

T2_132 Triangle AND Trapezoidal (B) != != Rightshoulder Rightshoulder

T2_133 Triangle AND Trapezoidal (B) != < Crisp number Crisp number

T2_134 Triangle AND Trapezoidal (B) != < Triangle Triangle

T2_135 Triangle AND Trapezoidal (B) != < Trapezoidal Trapezoidal

T2_136 Triangle AND Trapezoidal (B) != < Interval Interval

T2_137 Triangle AND Trapezoidal (B) != < Leftshoulder Leftshoulder

T2_138 Triangle AND Trapezoidal (B) != < Rightshoulder Rightshoulder

T2_139 Triangle AND Trapezoidal (B) != > Crisp number Crisp number

T2_140 Triangle AND Trapezoidal (B) != > Triangle Triangle

T2_141 Triangle AND Trapezoidal (B) != > Trapezoidal Trapezoidal

T2_142 Triangle AND Trapezoidal (B) != > Interval Interval

T2_143 Triangle AND Trapezoidal (B) != > Leftshoulder Leftshoulder

T2_144 Triangle AND Trapezoidal (B) != > Rightshoulder Rightshoulder

T2_145 Triangle AND Trapezoidal (B) < = Crisp number Crisp number

T2_146 Triangle AND Trapezoidal (B) < = Triangle Triangle

T2_147 Triangle AND Trapezoidal (B) < = Trapezoidal Trapezoidal

T2_148 Triangle AND Trapezoidal (B) < = Interval Interval

T2_149 Triangle AND Trapezoidal (B) < = Leftshoulder Leftshoulder

T2_150 Triangle AND Trapezoidal (B) < = Rightshoulder Rightshoulder

T2_151 Triangle AND Trapezoidal (B) < != Crisp number Crisp number

T2_152 Triangle AND Trapezoidal (B) < != Triangle Triangle

T2_153 Triangle AND Trapezoidal (B) < != Trapezoidal Trapezoidal

T2_154 Triangle AND Trapezoidal (B) < != Interval Interval

90

Test case ID
First Fuzzy

Expression
Conjunction

Second

Fuzzy

Expression

Priority Expression
First

operator

Second

operator

First

variable

expression

Second

variable

expression

T2_155 Triangle AND Trapezoidal (B) < != Leftshoulder Leftshoulder

T2_156 Triangle AND Trapezoidal (B) < != Rightshoulder Rightshoulder

T2_157 Triangle AND Trapezoidal (B) < < Crisp number Crisp number

T2_158 Triangle AND Trapezoidal (B) < < Triangle Triangle

T2_159 Triangle AND Trapezoidal (B) < < Trapezoidal Trapezoidal

T2_160 Triangle AND Trapezoidal (B) < < Interval Interval

T2_161 Triangle AND Trapezoidal (B) < < Leftshoulder Leftshoulder

T2_162 Triangle AND Trapezoidal (B) < < Rightshoulder Rightshoulder

T2_163 Triangle AND Trapezoidal (B) < > Crisp number Crisp number

T2_164 Triangle AND Trapezoidal (B) < > Triangle Triangle

T2_165 Triangle AND Trapezoidal (B) < > Trapezoidal Trapezoidal

T2_166 Triangle AND Trapezoidal (B) < > Interval Interval

T2_167 Triangle AND Trapezoidal (B) < > Leftshoulder Leftshoulder

T2_168 Triangle AND Trapezoidal (B) < > Rightshoulder Rightshoulder

T2_169 Triangle AND Trapezoidal (B) > = Crisp number Crisp number

T2_170 Triangle AND Trapezoidal (B) > = Triangle Triangle

T2_171 Triangle AND Trapezoidal (B) > = Trapezoidal Trapezoidal

T2_172 Triangle AND Trapezoidal (B) > = Interval Interval

T2_173 Triangle AND Trapezoidal (B) > = Leftshoulder Leftshoulder

T2_174 Triangle AND Trapezoidal (B) > = Rightshoulder Rightshoulder

T2_175 Triangle AND Trapezoidal (B) > != Crisp number Crisp number

T2_176 Triangle AND Trapezoidal (B) > != Triangle Triangle

T2_177 Triangle AND Trapezoidal (B) > != Trapezoidal Trapezoidal

T2_178 Triangle AND Trapezoidal (B) > != Interval Interval

T2_179 Triangle AND Trapezoidal (B) > != Leftshoulder Leftshoulder

T2_180 Triangle AND Trapezoidal (B) > != Rightshoulder Rightshoulder

T2_181 Triangle AND Trapezoidal (B) > < Crisp number Crisp number

T2_182 Triangle AND Trapezoidal (B) > < Triangle Triangle

91

Test case ID
First Fuzzy

Expression
Conjunction

Second

Fuzzy

Expression

Priority Expression
First

operator

Second

operator

First

variable

expression

Second

variable

expression

T2_183 Triangle AND Trapezoidal (B) > < Trapezoidal Trapezoidal

T2_184 Triangle AND Trapezoidal (B) > < Interval Interval

T2_185 Triangle AND Trapezoidal (B) > < Leftshoulder Leftshoulder

T2_186 Triangle AND Trapezoidal (B) > < Rightshoulder Rightshoulder

T2_187 Triangle AND Trapezoidal (B) > > Crisp number Crisp number

T2_188 Triangle AND Trapezoidal (B) > > Triangle Triangle

T2_189 Triangle AND Trapezoidal (B) > > Trapezoidal Trapezoidal

T2_190 Triangle AND Trapezoidal (B) > > Interval Interval

T2_191 Triangle AND Trapezoidal (B) > > Leftshoulder Leftshoulder

T2_192 Triangle AND Trapezoidal (B) > > Rightshoulder Rightshoulder

T2_193 Triangle AND Trapezoidal (C) = = Crisp number Crisp number

T2_194 Triangle AND Trapezoidal (C) = = Triangle Triangle

T2_195 Triangle AND Trapezoidal (C) = = Trapezoidal Trapezoidal

T2_196 Triangle AND Trapezoidal (C) = = Interval Interval

T2_197 Triangle AND Trapezoidal (C) = = Leftshoulder Leftshoulder

T2_198 Triangle AND Trapezoidal (C) = = Rightshoulder Rightshoulder

T2_199 Triangle AND Trapezoidal (C) = != Crisp number Crisp number

T2_200 Triangle AND Trapezoidal (C) = != Triangle Triangle

T2_201 Triangle AND Trapezoidal (C) = != Trapezoidal Trapezoidal

T2_202 Triangle AND Trapezoidal (C) = != Interval Interval

T2_203 Triangle AND Trapezoidal (C) = != Leftshoulder Leftshoulder

T2_204 Triangle AND Trapezoidal (C) = != Rightshoulder Rightshoulder

T2_205 Triangle AND Trapezoidal (C) = < Crisp number Crisp number

T2_206 Triangle AND Trapezoidal (C) = < Triangle Triangle

T2_207 Triangle AND Trapezoidal (C) = < Trapezoidal Trapezoidal

T2_208 Triangle AND Trapezoidal (C) = < Interval Interval

T2_209 Triangle AND Trapezoidal (C) = < Leftshoulder Leftshoulder

T2_210 Triangle AND Trapezoidal (C) = < Rightshoulder Rightshoulder

92

Test case ID
First Fuzzy

Expression
Conjunction

Second

Fuzzy

Expression

Priority Expression
First

operator

Second

operator

First

variable

expression

Second

variable

expression

T2_211 Triangle AND Trapezoidal (C) = > Crisp number Crisp number

T2_212 Triangle AND Trapezoidal (C) = > Triangle Triangle

T2_213 Triangle AND Trapezoidal (C) = > Trapezoidal Trapezoidal

T2_214 Triangle AND Trapezoidal (C) = > Interval Interval

T2_215 Triangle AND Trapezoidal (C) = > Leftshoulder Leftshoulder

T2_216 Triangle AND Trapezoidal (C) = > Rightshoulder Rightshoulder

T2_217 Triangle AND Trapezoidal (C) != = Crisp number Crisp number

T2_218 Triangle AND Trapezoidal (C) != = Triangle Triangle

T2_219 Triangle AND Trapezoidal (C) != = Trapezoidal Trapezoidal

T2_220 Triangle AND Trapezoidal (C) != = Interval Interval

T2_221 Triangle AND Trapezoidal (C) != = Leftshoulder Leftshoulder

T2_222 Triangle AND Trapezoidal (C) != = Rightshoulder Rightshoulder

T2_223 Triangle AND Trapezoidal (C) != != Crisp number Crisp number

T2_224 Triangle AND Trapezoidal (C) != != Triangle Triangle

T2_225 Triangle AND Trapezoidal (C) != != Trapezoidal Trapezoidal

T2_226 Triangle AND Trapezoidal (C) != != Interval Interval

T2_227 Triangle AND Trapezoidal (C) != != Leftshoulder Leftshoulder

T2_228 Triangle AND Trapezoidal (C) != != Rightshoulder Rightshoulder

T2_229 Triangle AND Trapezoidal (C) != < Crisp number Crisp number

T2_230 Triangle AND Trapezoidal (C) != < Triangle Triangle

T2_231 Triangle AND Trapezoidal (C) != < Trapezoidal Trapezoidal

T2_232 Triangle AND Trapezoidal (C) != < Interval Interval

T2_233 Triangle AND Trapezoidal (C) != < Leftshoulder Leftshoulder

T2_234 Triangle AND Trapezoidal (C) != < Rightshoulder Rightshoulder

T2_235 Triangle AND Trapezoidal (C) != > Crisp number Crisp number

T2_236 Triangle AND Trapezoidal (C) != > Triangle Triangle

T2_237 Triangle AND Trapezoidal (C) != > Trapezoidal Trapezoidal

T2_238 Triangle AND Trapezoidal (C) != > Interval Interval

93

Test case ID
First Fuzzy

Expression
Conjunction

Second

Fuzzy

Expression

Priority Expression
First

operator

Second

operator

First

variable

expression

Second

variable

expression

T2_239 Triangle AND Trapezoidal (C) != > Leftshoulder Leftshoulder

T2_240 Triangle AND Trapezoidal (C) != > Rightshoulder Rightshoulder

T2_241 Triangle AND Trapezoidal (C) < = Crisp number Crisp number

T2_242 Triangle AND Trapezoidal (C) < = Triangle Triangle

T2_243 Triangle AND Trapezoidal (C) < = Trapezoidal Trapezoidal

T2_244 Triangle AND Trapezoidal (C) < = Interval Interval

T2_245 Triangle AND Trapezoidal (C) < = Leftshoulder Leftshoulder

T2_246 Triangle AND Trapezoidal (C) < = Rightshoulder Rightshoulder

T2_247 Triangle AND Trapezoidal (C) < != Crisp number Crisp number

T2_248 Triangle AND Trapezoidal (C) < != Triangle Triangle

T2_249 Triangle AND Trapezoidal (C) < != Trapezoidal Trapezoidal

T2_250 Triangle AND Trapezoidal (C) < != Interval Interval

T2_251 Triangle AND Trapezoidal (C) < != Leftshoulder Leftshoulder

T2_252 Triangle AND Trapezoidal (C) < != Rightshoulder Rightshoulder

T2_253 Triangle AND Trapezoidal (C) < < Crisp number Crisp number

T2_254 Triangle AND Trapezoidal (C) < < Triangle Triangle

T2_255 Triangle AND Trapezoidal (C) < < Trapezoidal Trapezoidal

T2_256 Triangle AND Trapezoidal (C) < < Interval Interval

T2_257 Triangle AND Trapezoidal (C) < < Leftshoulder Leftshoulder

T2_258 Triangle AND Trapezoidal (C) < < Rightshoulder Rightshoulder

T2_259 Triangle AND Trapezoidal (C) < > Crisp number Crisp number

T2_260 Triangle AND Trapezoidal (C) < > Triangle Triangle

T2_261 Triangle AND Trapezoidal (C) < > Trapezoidal Trapezoidal

T2_262 Triangle AND Trapezoidal (C) < > Interval Interval

T2_263 Triangle AND Trapezoidal (C) < > Leftshoulder Leftshoulder

T2_264 Triangle AND Trapezoidal (C) < > Rightshoulder Rightshoulder

T2_265 Triangle AND Trapezoidal (C) > = Crisp number Crisp number

T2_266 Triangle AND Trapezoidal (C) > = Triangle Triangle

94

Test case ID
First Fuzzy

Expression
Conjunction

Second

Fuzzy

Expression

Priority Expression
First

operator

Second

operator

First

variable

expression

Second

variable

expression

T2_267 Triangle AND Trapezoidal (C) > = Trapezoidal Trapezoidal

T2_268 Triangle AND Trapezoidal (C) > = Interval Interval

T2_269 Triangle AND Trapezoidal (C) > = Leftshoulder Leftshoulder

T2_270 Triangle AND Trapezoidal (C) > = Rightshoulder Rightshoulder

T2_271 Triangle AND Trapezoidal (C) > != Crisp number Crisp number

T2_272 Triangle AND Trapezoidal (C) > != Triangle Triangle

T2_273 Triangle AND Trapezoidal (C) > != Trapezoidal Trapezoidal

T2_274 Triangle AND Trapezoidal (C) > != Interval Interval

T2_275 Triangle AND Trapezoidal (C) > != Leftshoulder Leftshoulder

T2_276 Triangle AND Trapezoidal (C) > != Rightshoulder Rightshoulder

T2_277 Triangle AND Trapezoidal (C) > < Crisp number Crisp number

T2_278 Triangle AND Trapezoidal (C) > < Triangle Triangle

T2_278 Triangle AND Trapezoidal (C) > < Trapezoidal Trapezoidal

T2_280 Triangle AND Trapezoidal (C) > < Interval Interval

T2_281 Triangle AND Trapezoidal (C) > < Leftshoulder Leftshoulder

T2_282 Triangle AND Trapezoidal (C) > < Rightshoulder Rightshoulder

T2_283 Triangle AND Trapezoidal (C) > > Crisp number Crisp number

T2_284 Triangle AND Trapezoidal (C) > > Triangle Triangle

T2_285 Triangle AND Trapezoidal (C) > > Trapezoidal Trapezoidal

T2_286 Triangle AND Trapezoidal (C) > > Interval Interval

T2_287 Triangle AND Trapezoidal (C) > > Leftshoulder Leftshoulder

T2_288 Triangle AND Trapezoidal (C) > > Rightshoulder Rightshoulder

T2_289 Triangle AND Trapezoidal (D) = = Crisp number Crisp number

T2_290 Triangle AND Trapezoidal (D) = = Triangle Triangle

T2_291 Triangle AND Trapezoidal (D) = = Trapezoidal Trapezoidal

T2_292 Triangle AND Trapezoidal (D) = = Interval Interval

T2_293 Triangle AND Trapezoidal (D) = = Leftshoulder Leftshoulder

T2_294 Triangle AND Trapezoidal (D) = = Rightshoulder Rightshoulder

95

Test case ID
First Fuzzy

Expression
Conjunction

Second

Fuzzy

Expression

Priority Expression
First

operator

Second

operator

First

variable

expression

Second

variable

expression

T2_295 Triangle AND Trapezoidal (D) = != Crisp number Crisp number

T2_296 Triangle AND Trapezoidal (D) = != Triangle Triangle

T2_297 Triangle AND Trapezoidal (D) = != Trapezoidal Trapezoidal

T2_298 Triangle AND Trapezoidal (D) = != Interval Interval

T2_299 Triangle AND Trapezoidal (D) = != Leftshoulder Leftshoulder

T2_300 Triangle AND Trapezoidal (D) = != Rightshoulder Rightshoulder

T2_301 Triangle AND Trapezoidal (D) = < Crisp number Crisp number

T2_302 Triangle AND Trapezoidal (D) = < Triangle Triangle

T2_303 Triangle AND Trapezoidal (D) = < Trapezoidal Trapezoidal

T2_304 Triangle AND Trapezoidal (D) = < Interval Interval

T2_305 Triangle AND Trapezoidal (D) = < Leftshoulder Leftshoulder

T2_306 Triangle AND Trapezoidal (D) = < Rightshoulder Rightshoulder

T2_307 Triangle AND Trapezoidal (D) = > Crisp number Crisp number

T2_308 Triangle AND Trapezoidal (D) = > Triangle Triangle

T2_309 Triangle AND Trapezoidal (D) = > Trapezoidal Trapezoidal

T2_310 Triangle AND Trapezoidal (D) = > Interval Interval

T2_311 Triangle AND Trapezoidal (D) = > Leftshoulder Leftshoulder

T2_312 Triangle AND Trapezoidal (D) = > Rightshoulder Rightshoulder

T2_313 Triangle AND Trapezoidal (D) != = Crisp number Crisp number

T2_314 Triangle AND Trapezoidal (D) != = Triangle Triangle

T2_315 Triangle AND Trapezoidal (D) != = Trapezoidal Trapezoidal

T2_316 Triangle AND Trapezoidal (D) != = Interval Interval

T2_317 Triangle AND Trapezoidal (D) != = Leftshoulder Leftshoulder

T2_318 Triangle AND Trapezoidal (D) != = Rightshoulder Rightshoulder

T2_319 Triangle AND Trapezoidal (D) != != Crisp number Crisp number

T2_320 Triangle AND Trapezoidal (D) != != Triangle Triangle

T2_321 Triangle AND Trapezoidal (D) != != Trapezoidal Trapezoidal

T2_322 Triangle AND Trapezoidal (D) != != Interval Interval

96

Test case ID
First Fuzzy

Expression
Conjunction

Second

Fuzzy

Expression

Priority Expression
First

operator

Second

operator

First

variable

expression

Second

variable

expression

T2_323 Triangle AND Trapezoidal (D) != != Leftshoulder Leftshoulder

T2_324 Triangle AND Trapezoidal (D) != != Rightshoulder Rightshoulder

T2_325 Triangle AND Trapezoidal (D) != < Crisp number Crisp number

T2_326 Triangle AND Trapezoidal (D) != < Triangle Triangle

T2_327 Triangle AND Trapezoidal (D) != < Trapezoidal Trapezoidal

T2_328 Triangle AND Trapezoidal (D) != < Interval Interval

T2_329 Triangle AND Trapezoidal (D) != < Leftshoulder Leftshoulder

T2_330 Triangle AND Trapezoidal (D) != < Rightshoulder Rightshoulder

T2_331 Triangle AND Trapezoidal (D) != > Crisp number Crisp number

T2_332 Triangle AND Trapezoidal (D) != > Triangle Triangle

T2_333 Triangle AND Trapezoidal (D) != > Trapezoidal Trapezoidal

T2_334 Triangle AND Trapezoidal (D) != > Interval Interval

T2_335 Triangle AND Trapezoidal (D) != > Leftshoulder Leftshoulder

T2_336 Triangle AND Trapezoidal (D) != > Rightshoulder Rightshoulder

T2_337 Triangle AND Trapezoidal (D) < = Crisp number Crisp number

T2_338 Triangle AND Trapezoidal (D) < = Triangle Triangle

T2_339 Triangle AND Trapezoidal (D) < = Trapezoidal Trapezoidal

T2_340 Triangle AND Trapezoidal (D) < = Interval Interval

T2_341 Triangle AND Trapezoidal (D) < = Leftshoulder Leftshoulder

T2_342 Triangle AND Trapezoidal (D) < = Rightshoulder Rightshoulder

T2_343 Triangle AND Trapezoidal (D) < != Crisp number Crisp number

T2_344 Triangle AND Trapezoidal (D) < != Triangle Triangle

T2_345 Triangle AND Trapezoidal (D) < != Trapezoidal Trapezoidal

T2_346 Triangle AND Trapezoidal (D) < != Interval Interval

T2_347 Triangle AND Trapezoidal (D) < != Leftshoulder Leftshoulder

T2_348 Triangle AND Trapezoidal (D) < != Rightshoulder Rightshoulder

T2_349 Triangle AND Trapezoidal (D) < < Crisp number Crisp number

T2_350 Triangle AND Trapezoidal (D) < < Triangle Triangle

97

Test case ID
First Fuzzy

Expression
Conjunction

Second

Fuzzy

Expression

Priority Expression
First

operator

Second

operator

First

variable

expression

Second

variable

expression

T2_351 Triangle AND Trapezoidal (D) < < Trapezoidal Trapezoidal

T2_352 Triangle AND Trapezoidal (D) < < Interval Interval

T2_353 Triangle AND Trapezoidal (D) < < Leftshoulder Leftshoulder

T2_354 Triangle AND Trapezoidal (D) < < Rightshoulder Rightshoulder

T2_355 Triangle AND Trapezoidal (D) < > Crisp number Crisp number

T2_356 Triangle AND Trapezoidal (D) < > Triangle Triangle

T2_357 Triangle AND Trapezoidal (D) < > Trapezoidal Trapezoidal

T2_358 Triangle AND Trapezoidal (D) < > Interval Interval

T2_359 Triangle AND Trapezoidal (D) < > Leftshoulder Leftshoulder

T2_360 Triangle AND Trapezoidal (D) < > Rightshoulder Rightshoulder

T2_361 Triangle AND Trapezoidal (D) > = Crisp number Crisp number

T2_362 Triangle AND Trapezoidal (D) > = Triangle Triangle

T2_363 Triangle AND Trapezoidal (D) > = Trapezoidal Trapezoidal

T2_364 Triangle AND Trapezoidal (D) > = Interval Interval

T2_365 Triangle AND Trapezoidal (D) > = Leftshoulder Leftshoulder

T2_366 Triangle AND Trapezoidal (D) > = Rightshoulder Rightshoulder

T2_367 Triangle AND Trapezoidal (D) > != Crisp number Crisp number

T2_368 Triangle AND Trapezoidal (D) > != Triangle Triangle

T2_369 Triangle AND Trapezoidal (D) > != Trapezoidal Trapezoidal

T2_370 Triangle AND Trapezoidal (D) > != Interval Interval

T2_371 Triangle AND Trapezoidal (D) > != Leftshoulder Leftshoulder

T2_372 Triangle AND Trapezoidal (D) > != Rightshoulder Rightshoulder

T2_373 Triangle AND Trapezoidal (D) > < Crisp number Crisp number

T2_374 Triangle AND Trapezoidal (D) > < Triangle Triangle

T2_375 Triangle AND Trapezoidal (D) > < Trapezoidal Trapezoidal

T2_376 Triangle AND Trapezoidal (D) > < Interval Interval

T2_377 Triangle AND Trapezoidal (D) > < Leftshoulder Leftshoulder

T2_378 Triangle AND Trapezoidal (D) > < Rightshoulder Rightshoulder

98

Test case ID
First Fuzzy

Expression
Conjunction

Second

Fuzzy

Expression

Priority Expression
First

operator

Second

operator

First

variable

expression

Second

variable

expression

T2_379 Triangle AND Trapezoidal (D) > > Crisp number Crisp number

T2_380 Triangle AND Trapezoidal (D) > > Triangle Triangle

T2_381 Triangle AND Trapezoidal (D) > > Trapezoidal Trapezoidal

T2_382 Triangle AND Trapezoidal (D) > > Interval Interval

T2_383 Triangle AND Trapezoidal (D) > > Leftshoulder Leftshoulder

T2_384 Triangle AND Trapezoidal (D) > > Rightshoulder Rightshoulder

Table B.2 Example of Test case values

T2. The first condition is triangle fuzzy number and the second condition is trapezoidal fuzzy number, with operator AND in the query.

I. The fuzzy XQuery does not have any priority expression.

a. The first relational operator is = and the second relational operator is = (= AND =).

Fuzzy XQuery condition: where $x/height = #tri(170,180,190)# AND $x/age = #trap(30,40,50,60)#

Test case ID
Test data Expected Result

(Satisfaction degree)

Actual Result

(Satisfaction degree)
Status

$x/height $x/age

T2_01 160 45 0 0 Pass

T2_02 Tri(140,150,160) Tri(30,45,60) 0 0 Pass

T2_03 Trap(160,170,190,200) Trap(20,25,30,35) 0 0 Pass

T2_04 Interval(170,180) Interval(65,70) 0 0 Pass

T2_05 Leftshoulder(180,190) Leftshoulder(25,30) 0 0 Pass

T2_06 Rightshoulder(180,190) Rightshoulder(25,30) 0 0 Pass

99

b. The first relational operator is = and the second relational operator is != (= AND !=).

Fuzzy XQuery condition: where $x/height = #tri(170,180,190)# AND $x/age != #trap(30,40,50,60)#

Test case ID
Test data Expected Result

(Satisfaction degree)

Actual Result

(Satisfaction degree)
Status

$x/height $x/age

T2_07 160 45 0 0 Pass

T2_08 Tri(140,150,160) Tri(30,45,60) 0 0 Pass

T2_09 Trap(160,170,190,200) Trap(20,25,30,35) 0.247 0.247 Pass

T2_10 Interval(170,180) Interval(65,70) 0.5 0.5 Pass

T2_11 Leftshoulder(180,190) Leftshoulder(25,30) 0.054 0.054 Pass

T2_12 Rightshoulder(180,190) Rightshoulder(25,30) 0 0 Pass

c. The first relational operator is = and the second relational operator is < (= AND !<).

Fuzzy XQuery condition: where $x/height = #tri(170,180,190)# AND $x/age < #trap(30,40,50,60)#

Test case ID
Test data Expected Result

(Satisfaction degree)

Actual Result

(Satisfaction degree)
Status

$x/height $x/age

T2_13 160 45 0 0 Pass

T2_14 Tri(140,150,160) Tri(30,45,60) 0 0 Pass

T2_15 Trap(160,170,190,200) Trap(20,25,30,35) 0.33 0.33 Pass

T2_16 Interval(170,180) Interval(65,70) 0 0 Pass

100

T2_17 Leftshoulder(180,190) Leftshoulder(25,30) 0.054 0.054 Pass

T2_18 Rightshoulder(180,190) Rightshoulder(25,30) 0 0 Pass

d. The first relational operator is = and the second relational operator is > (= AND >).

Fuzzy XQuery condition: where $x/height = #tri(170,180,190)# AND $x/age > #trap(30,40,50,60)#

Test case ID
Test data Expected Result

(Satisfaction degree)

Actual Result

(Satisfaction degree)
Status

$x/height $x/age

T2_19 160 45 0 0 Pass

T2_20 Tri(140,150,160) Tri(30,45,60) 0 0 Pass

T2_21 Trap(160,170,190,200) Trap(20,25,30,35) 0 0 Pass

T2_22 Interval(170,180) Interval(65,70) 0.5 0.5 Pass

T2_23 Leftshoulder(180,190) Leftshoulder(25,30) 0 0 Pass

T2_24 Rightshoulder(180,190) Rightshoulder(25,30) 0 0 Pass

e. The first relational operator is != and the second relational operator is = (!= AND =).

Fuzzy XQuery condition: where $x/height != #tri(170,180,190)# AND $x/age = #trap(30,40,50,60)#

Test case ID
Test data Expected Result

(Satisfaction degree)

Actual Result

(Satisfaction degree)
Status

$x/height $x/age

T2_25 160 45 1 1 Pass

T2_26 Tri(140,150,160) Tri(30,45,60) 1 1 Pass

101

T2_27 Trap(160,170,190,200) Trap(20,25,30,35) 0 0 Pass

T2_28 Interval(170,180) Interval(65,70) 0 0 Pass

T2_29 Leftshoulder(180,190) Leftshoulder(25,30) 0 0 Pass

T2_30 Rightshoulder(180,190) Rightshoulder(25,30) 0 0 Pass

102

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ – 5а

ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ

КЉУЧНA ДОКУМЕНТАЦИЈСКА ИНФОРМАЦИЈА1

Врста рада: Докторска дисертација

Име и презиме

аутора:
Pannipa Sae-Ueng

Ментор (титула, име,

презиме, звање,

институција)

др Срђан Шкрбић, редовни професор, Универзитет у Новом Саду,

Природно математички факултет

Наслов рада:
Development of XQuery Interpreter Extensions Based on Fuzzy Logic with

Priorities

Језик публикације

(писмо):
Енглески

Физички опис рада:

Унети број:

Страница 120

Поглавља 6

Референци 44

Табела 19

Слика 47

Графикона 0

Прилога 2

Научна област: Информатика

Ужа научна област

(научна дисциплина):
Рачунарске науке

Кључне речи /

предметна

одредница:

Fuzzy XQuery, XQuery Interpreter, XQuery, XML Database

Резиме на језику

рада:

In many real-world applications, information is often imprecise and uncertain.

With the popularity of web-based applications, huge amounts of data are

available on the web, and XML (eXtensible Markup Language) has become the

de facto standard for data exchange over the internet. The XQuery is the

language for querying XML data. However, XML and XQuery suffer from

incapability of representing and manipulating imprecise and uncertain data.

Consequently, this work represents fuzzy data in XML documents and extends

XQuery language as providing a more flexible XQuery language by using the

fuzzy set theory.

In this thesis, an extension of the XQuery query, called Fuzzy XQuery is

described. It allows users to define priority, threshold and fuzzy expressions in

their queries. Users also can predefine linguistic terms to use them in querying.

An algorithm for calculating the global constraint satisfaction degree using the

Generalized Prioritized Fuzzy Constraint Satisfaction Problem (GPFCSP) is

introduced. Furthermore, Fuzzy XQuery Interpreter (FXI) is implemented

allowing execution of fuzzy XQuery queries based on open source technologies

and native XML open- source database. Additionally, innovative methods for

computing fuzzy set compatibility and introducing order over fuzzy sets have

been implemented, which give serious improvements in computational

performance compared to previous implementations.

1 Аутор докторске дисертације потписао је и приложио следеће Обрасце:

5б – Изјава о ауторству;

5в – Изјава o истоветности штампане и електронске верзије и о личним подацима;

5г – Изјава о коришћењу.

Ове Изјаве се чувају на факултету у штампаном и електронском облику и не кориче се са тезом.

103

Датум прихватања

теме од стране

надлежног већа:

Датум одбране:

Чланови комисије:

(титула, име,

презиме, звање,

институција)

Председник: др Милош Рацковић, редовни професор, Универзитет у

Новом Саду, Природно-математички факултет

Ментор: др Срђан Шкрбић, редовни професор, Универзитет у Новом

Саду, Природно-математички факултет

Члан: Dr. Wiphada Wettayaprasit, assistant professor, Prince of Songkla

University, Faculty of Science

Члан: др Александар Такачи, редовни професор, Универзитет у Новом

Саду, Технолошки факултет

Напомена:

104

UNIVERSITY OF NOVI SAD

FACULTY OF SCIENCES

KEY WORD DOCUMENTATION2

Document type: Doctoral dissertation

Author: Pannipa Sae-Ueng

Supervisor (title, first

name, last name,

position, institution)

Dr. Srdjan Skrbic, full profesor, Univesity of Novi Sad, Faculty of Sciences

Thesis title:
Development of XQuery Interpreter Extensions Based on Fuzzy Logic with

Priorities

Language of text

(script):
English

Physical description:

Number of:

Pages 120

Chapters 6

References 44

Tables 19

Figures 47

Graphs 0

Appendices 2

Scientific field: Informatics

Scientific subfield

(scientific discipline):
Computer Science

Subject, Key words: Fuzzy XQuery, XQuery Interpreter, XQuery, XML Database

Abstract in English

language:

In many real-world applications, information is often imprecise and uncertain.

With the popularity of web-based applications, huge amounts of data are

available on the web, and XML (eXtensible Markup Language) has become the

de facto standard for data exchange over the internet. The XQuery is the

language for querying XML data. However, XML and XQuery suffer from

incapability of representing and manipulating imprecise and uncertain data.

Consequently, this work represents fuzzy data in XML documents and extends

XQuery language as providing a more flexible XQuery language by using the

fuzzy set theory.

In this thesis, an extension of the XQuery query, called Fuzzy XQuery is

described. It allows users to define priority, threshold and fuzzy expressions in

their queries. Users also can predefine linguistic terms to use them in querying.

An algorithm for calculating the global constraint satisfaction degree using the

Generalized Prioritized Fuzzy Constraint Satisfaction Problem (GPFCSP) is

introduced. Furthermore, Fuzzy XQuery Interpreter (FXI) is implemented

allowing execution of fuzzy XQuery queries based on open source technologies

and native XML open- source database. Additionally, innovative methods for

computing fuzzy set compatibility and introducing order over fuzzy sets have

been implemented, which give serious improvements in computational

performance compared to previous implementations.

2 The author of doctoral dissertation has signed the following Statements:

 5б – Statement on the authority,

 5в – Statement that the printed and e-version of doctoral dissertation are identical and about personal data,

 5г – Statement on copyright licenses.

 The paper and e-versions of Statements are held at he faculty and are not included into the printed thesis.

105

Accepted on Scientific

Board on:

Defended:

Thesis Defend Board:

(title, first name, last

name, position,

institution)

President: Dr. Milos Rackovic, full professor, University of Novi Sad, Faculty

of Sciences

Supervisor: Dr. Srdjan Skrbic, full professor, University of Novi Sad, Faculty

of Sciences

Member: Dr. Wiphada Wettayaprasit, assistant professor, Prince of Songkla

University, Faculty of Science

Member: Dr. Aleksandar Takaci, full professor, University of Novi Sad,

Faculty of Technology

Note:

106

This Form is an integral part of the doctoral dissertation or the doctoral art project that is

being defended at the University of Novi Sad. Include the completed form after the text of the

doctoral dissertation or the doctoral art project.

Data treatment plan

Project/research title

Development of XQuery Interpreter Extensions Based on Fuzzy Logic with Priorities
Name of the institution / institutions within which the research is conducted

a) Department of Mathematics and informatics, Faculty of Sciences, University of Novi Sad

b)

c)

The name of the program within which the research is realized

Ph.D. program in informatics

1. Data description

1.1 Type of study

No data were collected in this study.

Briefly describe the type of study in which the data are collected

__

__

__

1.2 Data types

a) quantitative

b) qualitative

1.3. Data collection method

a) polls, questionnaires, tests

b) clinical assessments, medical records, electronic health records

c) genotypes: specify type ________________________________

d) administrative data: specify type _______________________

e) tissue samples: specify type _________________________________

f) recordings, photographs: specify type _____________________________

g) text, specify type _______________________________________

h) map, specify type ______________________________________

i) other: describe ___

1.3 Data format, scales used, amount of data

1.3.1 Software used and file format:

a) Excel file __________________

107

b) SPSS file __________________

c) PDF file ___________________

d) Textual file __________________

e) JPG file ___________________

f) Other file ____________________

1.3.2. Number of records (for quantitative data)

a) number of variables ___

b) number of measurements (respondents, assessment, recordings, etc.) ___________________

1.3.3. Repeated measurements

a) yes

b) no

If the answer is yes, please answer the following questions:

a) the time interval between repeated measurements is______________________________

b) variables that are measured multiple times refer to ________________________________

c) new versions of files that contain repeated measurements are named as ____________

Notes: __

Do formats and software enable data sharing and long-term validity?

a) Yes

b) No

If the answer is no, please explain __

2. Data collection

2.1 Methodology for data collection/generation

2.1.1. Within which research project was the data collected?

a) experiment, specify type ___

b) correlational research, specify type __

c) text analysis, specify type __

d) other, specify what __

2.1.2 Indicate the types of measuring instruments or data standards specific to a particular scientific

discipline (if any).

__

__

2.2 Data quality and standards

2.2.1. Missing data treatment

а) Does the matrix contain missing data? Yes No

If the answer is yes, please answer the following questions:

a) What is the number of missing data? __________________________

b) Is the user of the matrix recommended to replace the missing data? Yes No

c) If the answer is yes, provide suggestions for treatment to replace the missing data

108

__

2.2.2. How is data quality controlled? Please describe.

__

__

2.2.3. How the data entry into the matrix was controlled?

__

__

3. Data treatment and supporting documentation

3.1. Treatment and storage of data

3.1.1. Data will be deposited in ___________________________________ repository.

3.1.2. URL address ___

3.1.3. DOI __

3.1.4. Will the data be in open access?

а) Yes

b) Yes, after an embargo that will last until ___________________________________

c) No

If the answer is no, please state the reason __

3.1.5. The data will not be deposited in the repository, but will be kept locally stored.

Justification

__

__

3.2 Metadata and data documentation

3.2.1. Which metadata standard will be applied? _________________________________

3.2.1. Specify the metadata on the basis of which the data was deposited in the repository.

__

__

If necessary, indicate the methods used to retrieve data, analytical and procedural information, their

coding, detailed descriptions of variables, records, etc..

__

__

__

__

109

3.3 Data retention strategy and standards

3.3.1. Until when will the data be stored in the repository? _______________________

3.3.2. Will the data be deposited under a password? Yes No

3.3.3. Will the password be available to a particular circle of researchers? Yes No

3.3.4. The data must be removed from open access after some time:

Yes No

Please justify

__

__

4. Data security and protection of confidential information

This section MUST be completed if your information includes personal information relating to survey

participants. For other research, data protection and security should also be considered.

4.1 Formal standards for information / data security

Researchers conducting human trials must adhere to the Law on Personal Data Protection

(https://www.paragraf.rs/propisi/zakon_o_zastiti_podataka_o_licnosti.html) and the relevant

institutional code on academic integrity.

4.1.2. Has the research been approved by an ethics committee? Yes No

If the answer is Yes, state the date and name of the ethics committee that approved the research

__

4.1.2. Does the data include the personal data of the research participants? Yes No

If yes, please indicate how you ensured the confidentiality and security of the information related to the

respondents:

а) Data is not in open access

b) Data has been anonimized

c) Other, please specify

__

__

5. Data availability

5.1. The data will be

а) publicly accessible

б) available only to a narrow circle of researchers in a particular scientific field

ц) closed

If the data are only available to a narrow circle of researchers, indicate the conditions under which

they can use them:

__

__

If the data are only available to a narrow circle of researchers, indicate how they can access the data:

__

__

https://www.paragraf.rs/propisi/zakon_o_zastiti_podataka_o_licnosti.html

110

5.4. Specify the license under which the collected data will be archived.

__

6. Roles and responsibilities

6.1. Provide the name and e-mail address of the owner (author) of the data

__

6.2. Provide the name and email address of the person maintaining the data matrix

__

6.3. Provide the name and email address of the person providing access to the data to other researchers

__

111

Short biography

Pannipa Sae-Ueng was born on 22 January 1975 in Trang

Province, Thailand. She started her undergraduate studies in

Computer Science at Faculty of Sciences, Prince of Songkla

University in 1994 and graduated with Second-Class Honours in

1998. From 1998 to 2002 she worked as a system analyst at

Computer Center of Walailak University in Nakhon Si Thammarat

Province. In the period 2002 – 2004, she was employed as a system

analyst at the Government Savings Bank in Bangkok. Between

2004 and 2007 she studied a master degree at Faculty of Engineering, Chulalongkorn

University and defended her master thesis entitled "A Development of DSPACE Programming

Interface for Center of Academic Resources, Chulalongkorn University".

Since 2008 she has been employed as a lecturer at the Department of Computer Science,

Faculty of Science, Prince of Songkla University in Songkhla Province. She teaches courses to

students of computer science on the bachelor level. After that in 2011, she received the

scholarship from Prince of Songkla University to study Ph.D. at Department of Mathematics

and Informatics, Faculty of Sciences, University of Novi Sad, Republic of Serbia. She

published (as author or co-author) about 10 scientific papers in the field of fuzzy set and fuzzy

logic.

Novi Sad, September 2021 Pannipa Sae-Ueng

https://ib.gsb.or.th/retail/security/commonLogin.jsp?userloc=en-TH

