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(engl. Artificial neural networks/ANN). Sva tri poboljšana modela koriste 
različite arhitekture veštačkih neuronskih mreža, konstruisanih na osnovu 
Tagučijevih ortogonalnih vektorskih planova. Cilj je optimizacija poboljšanih 
modela kako bi se izbeglo ponavljanje broja eksperimenata i dugotrajno vreme 
za njihovo obučavanje, odnosno treniranje. Primenom metode klasterizacije na 
više različitih skupova realnih projekata dodatno se ublažava njihova 
heterogena struktura. Dodatno, ulazne vrednosti projekata se homogenizuju 
metodom fazifikacije čime se postiže još veća pouzdanost i tačnost dobijenih 
rezultata. Optimizacija Tagučijevom metodom uz povećanje pokrivenosti 
širokog spektra različitih projekata, dovodi do efikasnog i uspešnog 
dovršavanja što više različitih softverskih projekta. Glavni doprinosi ove 
disertacije su: konstruisanje i identifikovanje najboljeg modela za procenu 
napora i troškova, odabir najbolje ANN arhitekture čije vrednosti najbrže 
konvergiraju minimalnoj magnitudnoj relativnoj greški, postizanje malog broja 
izvedenih eksperimenata, smanjeno vreme procene softverskog napora zbog 
stope konvergencije. Uvode se i dodatni kriterijumi i ograničenja za 
nadgledanje i izvršavanje eksperimenata pomoću preciznog algoritma za 
izvršavanje nad sva tri nova predložena modela. Pored praćenja brzine 
konvergencije svake arhitekture veštačke neuronske mreže, prati se i uticaj 
ulaznih veličina svakog modela na promenu vrednosti magnitudne relativne 
greške modela. Na ovakav način konstruisani modeli eksperimentalno su više 
puta proveravani i potvrđeni na različitim skupovima realnih projekata i mogu 
se praktično primenjivati, a dobijeni rezultati ukazuju da su postignute vrednosti 
grešaka niže od dosadašnjih predstavljenih. Samim tim se predloženi modeli u 
ovoj disertaciji mogu pouzdano primenjivati i koristiti ne samo za procenu 
napora i troškova za razvoj softverskih već i za razvoj projekata u drugim 
oblastima industrije i nauke. 
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different sets of real projects further mitigates their heterogeneous structure. In 
addition, the input values of the projects are homogenized by the method of 
fuzzification, which achieves even greater reliability and accuracy of the 
obtained results. Optimization by the Taguchi method and increasing the 
coverage of a wide range of different projects leads to the efficient and 
successful completion of as many different software projects as possible. The 
main contributions of this paper are: constructing and identifying the best model 
for estimating effort and cost, selecting the best ANN architecture whose values 
converge the fastest to the minimum magnitude relative error, achieving a small 
number of experiments, reduced software effort estimation time due to 
convergence rate. Additional criteria and constraints are introduced to monitor 
and execute experiments using a precise algorithm to execute all three new 
proposed models. In addition to monitoring the convergence rate of each 
artificial neural network architecture, the influence of the input values of each 
model on the change in the value of the magnitude relative error of the model 
is also monitored. The models constructed in this way have been experimentally 
checked and confirmed several times on different sets of real projects and can 
be practically applied, and the obtained results indicate that the achieved error 
values are lower than those presented so far. Therefore, the proposed models in 
this dissertation can be reliably applied and used to assess the efforts and costs 
for software development and projects in other areas of industry and science. 
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Abstract 
 
 

The modern software industry requires fast, high-quality, and accurate forecasting 
of efforts and costs before the actual effort is invested in realizing the software product. 
Such requirements are a challenge for any software company, which must be ready to 
meet the expectations of the software customer. The main factor in the successful 
development of software projects and reducing the risk of errors is an adequate estimation 
of the effort and costs invested during its implementation.  

In this doctoral dissertation as a starting point, different approaches and models 
that have not been sufficiently precise and efficient so far will be analyzed, which resulted 
in only about 30% of successfully implemented software solutions.  

The main goal of the dissertation is to present three new, improved models based 
on efficient artificial intelligence tools, artificial neural networks. All three improved 
models use different architectures of artificial neural networks (ANN), constructed based 
on Taguchi's orthogonal vector plans. The idea is to optimize the improved models to 
avoid repeating the number of experiments and the long time needed for their training. 
Applying the clustering method to several different sets of real projects further mitigates 
their heterogeneous structure. In addition, the input values of the projects are 
homogenized by the method of fuzzification, which achieves even greater reliability and 
accuracy of the obtained results. Optimization by the Taguchi method and increasing the 
coverage of a wide range of different projects leads to the efficient and successful 
completion of as many different software projects as possible.  

The main contributions of this dissertation are:  
- constructing and identifying the best model for estimating effort and cost,  
- selecting the best ANN architecture whose values converge the fastest to the  
   minimum magnitude relative error,  
- achieving a small number of experiments, and  
- reduced software effort estimation time due to convergence rate.  
Additional criteria and constraints are introduced to monitor and execute 

experiments using a precise algorithm to execute all three new proposed models. In 
addition to monitoring the convergence rate of each artificial neural network architecture, 
the influence of the input values of each model on the change in the value of the magnitude 
relative error of the model is also monitored. The models constructed in this way have 
been experimentally checked and confirmed several times on different sets of real projects 
and can be practically applied.  

The obtained results indicate that the achieved error values are lower than those 
presented so far. Therefore, the proposed models in this dissertation can be reliably 
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applied and used to assess the effort and costs for software development and projects in 
other areas of industry and science. 
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Izvod 
 
 

Savremena softverska industrija zahteva brzo, kvalitetno i precizno predviđanje 
napora i troškova, pre nego što se stvarni napor uloži u realizaciju softverskog proizvoda. 
Ovako postavljeni zahtevi predstavljaju izazov za bilo koju softversku kompaniju, koja 
mora biti spremna da ispuni postavljena očekivanja naručioca softvera. Glavni faktor 
uspešnog razvoja softverskih projekata i smanjenja rizika od grešaka je adekvatna procena 
uloženog napora  i troškova tokom njegove realizacije. U ovoj  doktorskoj disertaciji, kao 
početna tačka, biće analizirani dosadašnji različitih pristupi i modeli koji nisu u najvećoj 
meri bili dovoljno precizni i efikasni, što je za posledicu imalo samo oko 30% uspešno 
realizovanih softverskih rešenja.  

Glavni cilj ove disertacije biće predstavljanje tri nova poboljšana modela 
zasnovana na efikasnim alatima veštačke inteligencije, veštačkim neuronskim mrežama 
(engl.  Artificial neural networks/ANN). Sva tri poboljšana modela koriste različite 
arhitekture veštačkih neuronskih mreža, konstruisanih na osnovu Tagučijevih 
ortogonalnih vektorskih planova. Ideja ove disertacije je i optimizacija poboljšanih 
modela kako bi se izbeglo ponavljanje broja eksperimenata i dugotrajno vreme za njihovo 
obučavanje, odnosno treniranje. Primenom metode klasterizacije na više različitih 
skupova realnih projekata dodatno se ublažava njihova heterogena struktura.  

Dodatno, ulazne vrednosti projekata se homogenizuju metodom fazifikacije čime 
se postiže još veća pouzdanost i tačnost dobijenih rezultata. Optimizacija Tagučijevom 
metodom uz povećanje pokrivenosti širokog spektra različitih projekata, dovodi do 
efikasnog i uspešnog dovršavanja što više različitih softverskih projekta.  

Glavni doprinosi ove disertacije su:  
- konstruisanje i identifikovanje najboljeg modela za procenu napora i troškova,  
- odabir najbolje ANN arhitekture čije vrednosti  najbrže konvergiraju minimalnoj    
   magnitudnoj relativnoj greški,  
- postizanje malog broja izvedenih eksperimenata,  
- smanjeno vreme procene softverskog napora zbog stope konvergencije.  
Uvode se i dodatni kriterijumi i ograničenja za nadgledanje i izvršavanje 

eksperimenata pomoću preciznog algoritma za izvršavanje nad sva tri nova predložena 
modela. Pored praćenja brzine konvergencije svake arhitekture veštačke neuronske 
mreže, prati se i uticaj ulaznih veličina svakog modela na promenu vrednosti magnitudne 
relativne greške modela. Na ovakav način konstruisani modeli eksperimentalno su više 
puta proveravani i potvrđeni na različitim skupovima realnih projekata i mogu se 
praktično primenjivati, a dobijeni rezultati ukazuju da su postignute vrednosti grešaka 
niže od dosadašnjih. Samim tim se predloženi modeli u ovoj disertaciji mogu pouzdano 
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primenjivati i koristiti ne samo za procenu napora i troškova za razvoj softverskih već i 
za razvoj projekata u drugim oblastima industrije i nauke. 
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Preface 
 
 
Estimation of effort and costs for realizing software projects is one of the most 

critical problems and tasks in software companies. In practice, software teams usually 
make estimation based on the knowledge of experts in the field or based on similarities 
with previous projects. Estimation of effort and costs is a crucial factor, which will 
determine the beginning of the project, the conditions, and limitations under which it will 
be realized and successfully completed, and applied in practice. The main reason for the 
insufficiently successful completion of projects still lies in insufficiently reasonable and 
inaccurate estimates. As a consequence of this inadequate, various world statistics show 
that only a third of projects are successfully completed and practically implemented. At 
the same time, almost half remain unresolved, i.e., break through the budget and 
implementation time, and about 20% of them fail entirely.  

This dissertation aims to analyze the existing estimation methods and to present 
and experimentally confirm new, improved models based on them, giving better results 
than the existing ones. The idea is to significantly increase the accuracy, efficiency, and 
reliability of the proposed models with the currently most powerful artificial intelligence 
tools, such as artificial neural networks, and appropriate optimization methods, such as 
the Taguchi method, with additional criteria and methods. Then it is necessary to 
repeatedly check and confirm the correctness and accuracy of the new models of effort 
and cost estimation on real different datasets. The introduction of additional methods and 
techniques will improve the efficiency of the proposed models, which will have no 
limitations and can still be tested on new sets of real projects from any area for which the 
software project is implemented. 

Additionally, the influence of different parameters, both input values and weight 
coefficients for different architectures of artificial neural networks, will be monitored. The 
aim is to identify the best model and the best architecture of an artificial neural network 
that will experimentally give the best results in the proposed models, i.e., the lowest error 
value. The proposed models aim to better, more accurate, and faster  of efforts and costs 
and thus increase project implementation success. This would significantly improve the 
field of software engineering. 

The dissertation is structured in the following way:  
- The first chapter will explain in more detail the problems of effort and cost   
   estimation.  
- The second chapter will present various parametric and non-parametric  
   approaches and models that have been most commonly used in practice to solve  
   problems.  
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- The third chapter will describe in detail and present three new, improved models  
   from three different approaches and the methodology used in the proposed  
   models.  
- The fourth chapter will present experimentally obtained and repeatedly tested  
   results.  
- The fifth chapter explains the general conclusions and reaffirms the reliability of  
   the proposed approaches.  
- The sixth chapter will present the application of the proposed models and an  
   explanation for their scientific contribution and general social significance.  
- The last chapter brings concluding remarks. 
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Chapter 1: Introduction 
 

The essential activity in the software development process is effort, which 
involves estimating the time and money to complete a software project successfully. 
Project development is of exceptional importance, both for the project customers and for 
the project implementers. The amount of money needed to invest in a project affects 
whether the project will start or not or whether it will be completed successfully. In 
practice, the price of a project is usually compared to the cost of similar projects, which 
have been successfully completed. Time and necessary money are not the only factors 
that define the beginning of the project, but other parameters must be taken into accounts, 
such as quality, the complexity of the project, overtime work of the team, and others.  

Preliminary estimates of effort can usually lead to delays in project 
implementation, requests for additional funds, overtime work of experts, and the like. 
Also, inaccurate estimates can directly affect the quality of the software. Due to not 
considering all the necessary parameters for implementing the software, certain activities, 
such as additional testing, completion of documentation, and additional definition of user 
requirements, are reduced to a minimum effort. All this can lead to a vast number of 
unexplained projects, which means that they have either exceeded the deadline or need 
more money for their implementation. The consequences of undefined and unexplained 
projects are currently a mirror of the software industry.  

Based on many years of research by the Project Management Institute, their 
analysis [1], and research by Professor Barry Boehm [2], it was concluded that the effort 
and cost converge to accurate values depending on the stages of project development. 
This characteristic can be presented as a “cone of uncertainty” of the effort and 
convergence estimate towards the final error value, see Figure 1. 



Chapter 1: Introduction____________________________________________________ 

24 | 198 
 

 
       Figure 1. “Cone of uncertainty“ according to the different phases of the project. 

Slika 1. “Kupa nesigurnosti” u zavisnosti od različitih faza projekta. 
 

From Table 1. [3], [4], [5], it can be concluded that in the period from 2010 to 
2020, the number of successfully completed projects decreased by 6%. The percentage of 
successfully completed projects for 2020 is only 31%. The number of failed projects also 
decreased by 2%, and in 2020 is 19%. The number of unresolved projects has increased 
by 8% and now stands at 50%, see Figure 2 [4], [5]. 

 

 
Figure 2. Graphic representation of successful, unsuccessful, and unresolved projects 

for 2020. 
Slika 2. Grafička reprezentacija uspešnih, neuspešnih i nerešenih projekata za 2020.god. 
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Table 1. Percentage of successful, unsuccessful, and unresolved projects for 10 years. 
Tabela 1. Procenat uspešnih, neuspešnih i nerešenih projekata u proteklih 10 god. 

 
Project (%) 2010 2015 2020 
successful 37 36 31 
failed 21 17 19 
challenged 42 47 50 

 
Based on the report of the Standish Group [6], which maintains a repository on 

global statistics on successful, unsuccessful, and unresolved projects, can be concluded 
that: in unsuccessful and unresolved projects, most of them exceed deadlines and budgets; 
deadlines are exceeded by about 80% of projects; the budget exceeds about 50% of the 
projects. It can be also stated that time and budget are the two most important causes of 
unsuccessful project completion. Therefore, the most complex and essential task facing 
software teams is a reliable, accurate and fast  of the effort required to implement the 
project. The conclusions of the research conducted by the Standish Group also show that 
the probability of failure of more extensive projects is higher [4], [5], [6]. That is, more 
complex projects have a higher chance of failure [7], [8]. 

Software companies use a variety of software tools and services to meet customer 
requirements. In order to construct reliable software of high standards, many researchers 
[9], [10], [11], [12] have proposed different combinations of parametric and non-
parametric models of effort and cost estimation. It is necessary to analyze and 
experimentally check the most successful methods and models so far to be adequately 
improved [13], [14], [15]. 
 
 

1.1 Software evaluation problems 
 

Previous methods of assessing software development have been based on 
unreliable and inaccurate methods, techniques, and models. The result of such inadequate 
processes is a huge number of unsuccessful and unrealized projects. The most commonly 
used methods are similarity method, method of analysis and synthesis,  based on the 
knowledge of experts in these fields, and various parametric (algorithmic) methods [13]. 
 
1. Similarity method: effort and cost estimation is done based on similar projects. In 
practice, there are no completely similar projects, and this method can be used to assess 
certain functionalities of a similar project that can be used. It is necessary to identify 
differences that must again be assessed by similarity or some other method.  

- The advantage of the similarity method is that the  of effort and costs  
   is performed on real projects from practice.  
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- The disadvantages are reflected in the fact that in practice, there are no similar  
   projects, so the method is reduced to the  of similar projects in which  
   there are differences that are re-assessed, which increases the  time  
   [13], [14], [15]. 

 
2. Analysis/Synthesis: estimating effort and cost using this method is done by dividing it 
into smaller parts of the project, which are evaluated individually. Then, based on them, 
an overall  of the project's success is made.  

- Advantages of evaluation of such approach are: parts of the project are easier  
  and simpler to assess.  
- Disadvantages are: This  method requires more time, but the accuracy  
  of the evaluation in the total sum of smaller parts of the project is less reliable  
  [13], [16]. 

 
3. Expert knowledge-based : this method involves estimating the effort and cost based 
on the experience of one/more experts who have worked on similar projects.   

- Advantages of this approach are:  is fast and straightforward. 
- Disadvantages are: the knowledge of experts is subjective, and if the   
   is made based on the opinion of several experts, it is not easy to reach an  
   objective solution [17], [18]. 

 
4. Parametric (algorithmic) methods: estimation of effort and costs using this method 
is performed based on the size (measure) of the project, and then an algorithm is 
constructed to determine the time and costs for its implementation.  

- Advantages of this approach are:  is objective, fast, and easy to use.   
- Disadvantages are: this method requires sound knowledge and  
   monitoring of historical data, and thus the algorithm is based on historical,  
   collected data [13], [19], [20]. 

 
 

1.2 Subject and goal of the research 
 

Assessing the effort and costs required to implement projects is a significant factor 
in the software development process. It largely depends on a vast number of software 
functional and non-functional requirements. Functional requirements such as business 
rules, transaction corrections, adjustments, and cancellations, administrative functions, 
authentication, authorization levels, audit tracking, external interfaces, certification 
requirements, reporting requirements and historical data. Non-functional requirements 
such as speed or how fast an application responds to commands, security of sensitive data, 
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portability, compatibility, capacity, reliability, environment, localization, etc. The 
influence of various factors on the  of effort and costs during the development of a 
software project is shown in Figure 3 [13]. 
 
 

 
Figure 3. The influence of various factors on the effort and costs for the implementation 

of software projects. 
Slika 3. Uticaj različitih faktora na napor i troškove potrebne za implementaciju 

softverskih projekata. 
 

 In addition to the total volume of necessary work, which takes into account the 
functional and non-functional requirements of users, factors of great importance are: 
 
1. Software quality: meeting requirements in accordance with the highest standards 
defined by the organization. These are most often: processing a large amount of data, 
increased speed and sending requests and responses, etc., which requires additional time 
to meet the requirements.  
2. Time limit: this factor is the most influential in project failure. Therefore, software 
development must not depend on the number of team members, additional time to 
improve the quality of software, implementation of the software itself, time of delivering 
the first version, and waiting for the completion of overall project tasks for a given 
software product [13], [21], [22], [23]. 
 

This dissertation’s subject is the analysis of existing methods, techniques, and 
models for estimating efforts and costs to realize software projects and present new, 
improved models through three different approaches.  

The performed experiments aim to construct three new, improved models based 
on different architectures of artificial neural networks. Improvement of existing methods 
and models would be realized by applying artificial intelligence, which would serve as a 
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powerful tool for better results when evaluating software. Using different architectures of 
ANN constructed based on Taguchi’s orthogonal vector plans [7], [8], [24], [25], [26], 
[27], it is possible to optimize the proposed models. A realistic and correct estimation is 
of utmost importance in managing software projects to avoid cancellation, deterioration, 
or exceeding the time or budget provided for the project. Improving existing  methods and 
models would reduce the risks of project cancellation or failure. This would be of great 
importance both for software companies and customers who expect the product within the 
set budget and time frame [28], [29]. 
 Additional value of this dissertation is to experimentally test and determine the 
best model for reliable, efficient, and accurate  of efforts and costs for the implementation 
of software projects.  

This model should meet the following set criteria: 
 

1. Choosing the simplest ANN architecture 
In the experimental part, which involves training each ANN, the most 

straightforward architecture is chosen depending on the input values. The selected ANN 
architecture is constructed based on the corresponding Taguchi orthogonal vector plan. 
Then, by adding nodes in the hidden layer, a more complex architecture is chosen. If the 
magnitude relative error (MRE) value is less than or equal to 1%, the addition of new 
nodes and new hidden layers is suspended.  

2. Minimum number of iterations (less than 10) 
The Gradient Descent (GA) value for each ANN architecture, i.e., the "stop 

criterion," is monitored in the training process. If the GA value is less than 0.01 of 1% of 
the MRE, the training procedure is suspended. The number of iterations performed in each 
proposed model is expected to be less than 10. 

3. Selection of the architecture that converges the fastest to the mean 
magnitude relative error (MMRE) value 

By training different architectures, it can be established that some of them have a 
smaller number of iterations (up to 5) and that they meet the "stop criterion" much faster. 
In the proposed models, it is possible to monitor the convergence rate of each selected 
ANN architecture. 

4. Appropriate selection of the activation function of the hidden layer of the 
ANN architecture 

In the experimental part of the training of different ANN architectures, different 
activation functions of the hidden and output layers were used. Sigmoid function, tangent 
hyperbolic, and Gaussian function were experimented with. 

5. Appropriate division of the used data sets into a certain number of clusters 
The nature of each observed data set is heterogeneous. In order to obtain an optimal 

estimate, it is necessary to divide each data set into an appropriate number of clusters.  
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In the first Constructive Cost Model (COCOMO2000) approach selected, a 
division into three clusters was used: small, medium, and large, for each of the data sets 
used.  

The second selected Function Point Analysis (FPA) approach experimented with 
the International Software Benchmarking Standards Group (ISBSG) repository divided 
into five clusters. Each cluster is divided at a scale of 70:30, where 70 projects are used 
for the training process and 30 for the testing process.  

In the third selected Use Case Point (UCP) approach, a 70:30 scale data set split 
was used, where 70% projects were used for the training process and 30% for the testing 
process. 
 
 

1.3 Expected scientific contribution 
 

The scientific contribution of this dissertation is based on a set of original and 
improved methods and models for estimating the effort and cost of developing software 
projects. Through the three approaches presented, improved methods based on existing 
models will be using: different data sets, clustering methods [30], and fuzzification 
methods [31], [32] for different ANN architectures constructed based on Taguchi's 
orthogonal vector plans and different activation functions [33] [34]. In addition, various 
metrics were calculated, and criteria set such as Mean Absolute Error (MAE), Magnitude 
Relative Error (MRE), Mean Magnitude Relative Error (MMRE) [35], Prediction on three 
criteria (PRED) [36], [37 ], Correlation (Pearson’s, Spearman’s and R2) [38]. 
 With different data sets, the correctness of new, improved models for each 
proposed approach is checked. The experimental part of the research is performed on 
different data sets and includes three parts: 
 
1. Training of the proposed ANN architecture who compete to become a "Winner"  
     network on a specific data set; E.g., it is necessary to train several ANN candidates at  
     the same time in depending on the selected Taguchi’s orthogonal vector plan, the most  
     accurate ANN the network becomes a "Winner" network; 
2. Testing on the same data set, but on other projects using the "Winner" network that  
     gave the best results in the first part, i.e., the lowest value of MMRE; 
3. Validation on other data sets using the "Winner" network. 
 

Due to the different nature of projects and their heterogeneous structure, the 
clustering method is used. Different data sets are divided into smaller parts (clusters) 
according to the corresponding project sizes. In order to further homogenize the input 
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values of the used data sets, the fuzzification method is used. This method involves 
mapping the real values of input values into values from the interval [0, 1]. 

The dissertation will use different ANN architectures in each of the models and 
approaches that depend on the number of the input values and weight factors  
(coefficients) used in all three parts of the experiment. Each of the ANN architectures 
used was constructed based on the corresponding Taguchi orthogonal vector plan. In this 
way, faster, more accurate, and more precise convergence towards the final value of 
MMRE is achieved. Also, the number of iterations is significantly reduced concerning the 
Full Factorial Plan (FFP) [39], [40], [41], which reduces the time required for. 

Based on several experiments and the use of different activation functions in the 
hidden and output layer of the proposed architectures, the lowest value of MMRE was 
achieved using the sigmoid function [42], [43], [44]. 

The following metrics are additionally calculated based on the estimated value: 
deviation [45], MAE, MRE, and MMRE [35]. The actual and estimated values are 
compared, the correlation is monitored, and the prediction on several criteria is performed.  

The results of extensive experiments showed that the values of errors in evaluating 
new, proposed models based on existing and improved methods are significantly less than 
the values of errors caused by the evaluation of previous parametric and non-parametric 
methods and models. It is possible to experimentally identify the best model that can be 
efficiently and reliably applied in practice. 
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Chapter 2: Typical existing methods for effort and cost 
estimation of software projects  

 
In this chapter, the existing typical and most frequently used estimation methods, 

such as parametric, nonparametric and combined methods, will be presented. 

 
2.1 Parametric methods 
 

Many methods measure a software's size, complexity, or the time it takes to build 
software. All of them can be divided into two main groups: parametric and non-
parametric. They can also differ according to different approaches of estimation, three are 
the most commonly used:  Code analysis and effort, Function Point Analysis, and 
Analysis of actors (users) and use cases, see Figure 4.  
 
1. An approach is based on analysis of the number of source code lines and assessing the 
effort required to design and implement a project. The most commonly used model of this 
approach is COCOMO2000 (Constructive Cost Model) [46]. 
 
2. An approach is based on the functional points for estimating the size of software 
functionality being developed [47]. Within this approach, two models were initially 
distinguished: IFPUG (International Function Point Users Group) [48] and Mark II [49], 
and later within the IFPUG model, the most commonly used were: NESMA (Netherlands 
Software Users Metrics Association) [50], IFPUG (version 4.1) [51] and COSMIC FFP 
(Common Software Measurement International Consortium Full Function Point) [52].  
 
3. An approach is based on the analysis of users and use cases for effort estimation. Within 
this approach, the most commonly used models are COBRA (Cost Estimation, 
Benchmarking, and Risk Assessment) [53] and UCP (Use Case Point Analysis) [54]. 
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Figure 4. Parametric methods. 
Slika 4. Parametarske metode. 

 
 

2.2 Linear regression and statistical estimates 
 

In many studies, various authors have used the regression method to estimate the 
effort and cost of developing software projects. Linear regression is a method that 
represents the relationship between dependent and independent variables on a given data 
set [55]. Based on this method, the estimated value with the slightest error can be 
determined. The relationship between the dependent variables Yi, 𝑤ℎ𝑒𝑟𝑒	𝑖 = 1, 𝑛+++++; and the 
independent Xi, 𝑤ℎ𝑒𝑟𝑒	𝑖 = 1, 𝑛+++++; can be represented by the following formula (1): 
 
𝑌! = 𝑓(𝑋!) + 𝑟! , 𝑤ℎ𝑒𝑟𝑒	𝑖 = 1, 𝑛+++++;                                                                                                                 (1) 
 

The real value of Yi is the sum of the estimated value of f(Xi), 𝑤ℎ𝑒𝑟𝑒	𝑖 = 1, 𝑛+++++;  and 
the error in estimating ri 𝑤ℎ𝑒𝑟𝑒	𝑖 = 1, 𝑛+++++;   

The main goal of regression models is to choose the appropriate function fi to 
minimize the error ri. The estimated value represents the time required to realize the 
software project, and f(Xi) represents the various functions that estimate the impact of 
input values. Input values are model parameters that affect the output value, representing 
the actual effort, functional size, and real effort depending on the experimental approach. 

The most commonly used examples of regression models use linear, polynomial, 
logarithmic, and exponential functions. Combinations of these functions are also possible 
to find the best model to give the lowest error value. An example of a combination of a 
linear and an exponential function is the COCOMO parametric method [56], [57], see 
formulas (4)-(10). 
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In addition to calculating the error in regression models, it is necessary to use 
specific statistical metrics that primarily describe the essential characteristics of data sets. 
The most common features of the data set based on which further estimation is performed 
are minimum and maximum value, mean value, and standard deviation. The mean value 
represents the arithmetic mean of the data set and is calculated according to the following 
formula (2):  
 
�̅� = 	 "

#
	∑ 𝑥!#

!$"  , where N is the total number of the observed data.                                      (2) 

 
The standard deviation represents the expected deviations of all values of a given 

set from the mean value and is calculated according to the following formula (3): 
 

𝜎 = 	8"
#
∑ (𝑥! − �̅�)%#
!$"                                                                                                        (3) 

 
In addition to basic information about the data set, it is necessary to compare the 

dependence of the data using the correlation coefficient. In this dissertation, Pearson’s, 
Spearman’s, and R2 correlation coefficients were used to determine the relationship 
between real and estimated values in all three proposed models. 

Additionally, the prediction was introduced as another parameter to confirm the 
quality of the proposed approach. The prediction was monitored on three criteria: 
PRED(25), PRED(30), and PRED(50). This metric represents the percentage of projects 
that have a relative error value less than a given criterion.  

Some authors [58], [59], [60] use other various statistical tests (ANOVA test, 
Wilcoxon's test, Mann-Whitney test) to compare the real and estimated value and to 
estimate the value of relative error depending on the proposed approach. 

 
 

2.3 Code analysis and effort estimation 
 

This chapter will explain in detail the approach based on the analysis of the 
number of source lines of code. The most commonly used model of this approach is 
COCOMO2000. 

 
2.3.1 Essential characteristics of the COCOMO2000 model 
 

In parametric methods, the size of the system is calculated as a combination of 
mathematical models whose primary data are parameters obtained experimentally - by 



Chapter 2: Previous methods of estimating effort and costs on software projects_______ 

34 | 198 
 

measuring real values during the design. Measurement-based on the number of lines of 
source code is used to determine the size and complexity of a software project. It is most 
often used to show the effort and time needed to realize a project. Indeed, the most crucial 
method for estimating the effort from this group is the COCOMO2000 parametric method, 
which uses the number of source lines of code as a unit for measuring software size. In 
this way, with COCOMO2000, it is possible to estimate the required production time. The 
number of lines of code is an easy way to estimate the effort and cost, but there are also 
many disadvantages, such as differences in the programming language used (C ++, Java, 
C #, etc.) and establishing the equivalence of specific databases. 

The COCOMO2000 is an algorithmic cost model where, with the help of 
mathematical functions, a context is created between software metrics and project costs. 
The actual effort represents the actual value of the project, based on the number of lines 
of code expressed in person-months [PM]. The twenty-two parameters represent input 
values, divided into two groups [61]: 

 
• The first group cosists of five parameters, denoted as scale factors: PREC, 

FLEX, RESL, TEAM, PMAT; 
• The second group consists of seventeen parameters, denoted as effort 

multipliers: RELY, CPLX, DATA, RUSE, TIME, STOR, PVOL, ACAP, 
PCAP, PCON, APEX, PLEX, LTEX, TOOL,  SCED, SITE, DOCU. 

 
Each of the scale factors is described as follows: 

 
1. PREC (Precedentedness) - represents the objectives of the project and the required  
    technology. 
2. FLEX (Development Flexibility) - represents the adaptation of development    
    concerning the requirements, standards, and restrictions. 
3. RESL (Architecture and Risk Resolution) - is a measure of software components,  
    quality, and potential risks. 
4. TEAM (Team Cohesion) - represents the complexity and adaptation of team members  
    to teamwork. 
5. PMAT (Process Maturity) - represents the maturity of the process, i.e., monitors the  
    development of software-based and Capability Maturity Model-Capability Maturity  
    Model Integration (CMM-CMMI). 
 

Each of the effort multipliers is described as follows: 
 
1. RELY (Required Software Reliability) - represents the reliability of performing certain     
    software functions up to a specific period. 
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2. DATA (Data Base Size) - represents the size of the database. 
3. CPLX (Product Complexity) - represents the operations performed on the product, and  
    they are divided into five areas: control operations, computational operations, device- 
    dependent operations, data management operations, and user interface management  
    operations. 
4. RUSE (Required Reusability) - represents the reusability of the software. 
5. DOCU (Documentation) - represents the documentation required to accompany each   
    part software life cycle. 
6. TIME (Time Constraint) - represents the time significance of software execution. 
7. STORE (Storage Constraint) - represents data storage and its limitations. 
8. PVOL (Platform Volatility) represents the impact of software and hardware  
    architecture changes on the system. 
9. ACAP (Analyst Capability) - is a measure of the ability of analysts. 
10. PCAP (Programmer Capability) - is a measure of the capability of the programmer. 
11. AEXP (Applications Experience) - is a measure of programmer experience working  
     on a given application. 
12. PEXP (Platform Experience) - is a measure of experience working on a particular  
     platform. 
13. LTEX (Language and Tool Experience) - is a measure of experience working with  
     different programming languages and tools. 
14. PCON (Personnel Continuity) - represents the complexity and efficiency of the team. 
15. TOOL (Use of Software Tools) - is a specific measure of used software tools. 
16. SITE (Multisite development) - represents the geographical distance of team  
     members. 
17. SCED (Required Development Schedule) - represents the required schedule of tasks  
     on the project. 
 

Finally, the COCOMO2000 formula was obtained as follows [61], see formulas 
(4)-(10): 
 
𝐸𝑓𝑓𝑜𝑟𝑡	 = 	𝐴 × [𝑆𝐼𝑍𝐸]& ×∏ 𝐸𝑀!

"'
!$"                                                                                             (4) 

 
𝐸 = 𝐵 + 0.01 × ∑ 𝑆𝐹𝑗(

)$" , 𝐴 = 2.94, 𝐵 = 0.91                                                              (5) 
 
𝐸𝑓𝑓𝑜𝑟𝑡[𝑃𝑀] = 2.94 × [𝑆𝐼𝑍𝐸]& × 𝑃𝐸𝑀!                                                                        (6) 
 
𝑃𝐸𝑀! = ∏ 𝐸𝑀!

"'
!$"                                                                                                              (7) 
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𝑇𝑖𝑚𝑒 = 𝐶 × (𝐸𝑓𝑓𝑜𝑟𝑡)*                                                                                                      (8) 
 
𝐹 = 𝐷 + 0.2 × 0.01 × ∑ 𝑆𝐹𝑗(

)$" , 𝐶 = 3.67, 𝐷 = 0.28.                                                    (9) 
 
𝑃𝑒𝑜𝑝𝑙𝑒 = 𝐸𝑓𝑓𝑜𝑟𝑡/𝑇𝑖𝑚𝑒                                                                                                     (10) 
 

A and B are the fundamental constants for calibration; KSLOC (thousands of 
source lines of code) represents the size of the software project; SFj denotes five scale 
factors; EMi denotes seventeen effort multipliers. As previously mentioned, performed 
experiments are using the COCOMO2000 Post Architecture model. This model 
combines, as mentioned above, factors and effort multipliers to calculate needed person-
months [PM] for the implementation of a particular software project. 

All factors are measured in values ranging from "very low" to "extremely high." 
An example of several parameters assigned in the COCOMO2000 model is given in Table 
2. 

Table 2. Example of weighting coefficients assigned to COCOMO2000 
parameters. 

Tabela 2. Primer težinskih koeficijenata dodeljenih COCOMO2000 
parametrima. 

 

Parameter Symbol Very Low Low Neutral High Very 
High 

Extreme 
High 

PREC SF1 0.05 0.04 0.03 0.02 0.01 0 
FLEX SF2 0.05 0.04 0.03 0.02 0.01 0 
RESL SF3 0.05 0.04 0.03 0.02 0.01 0 
DOCU EM5 0.85 0.93 1 1.08 1.17  
PCAP EM10 1.37 1.16 1 0.87 0.74  
PCON EM11 1.26 1.11 1 0.91 0.83  
AEXP EM12 1.23 1.1 1 0.88 0.8  

 
 

2.3.2 Previous research in the COCOMO2000 approach 
 

It is a constant struggle and challenge for many large software companies engaged 
in delivering various industrial tools, services, and products to meet the rigorous demands 
and needs of software clients/customers. A number of researches [9], [10], [11], [12] apply 
various software models and methods of effort and cost estimation in order to meet high 
standards and construct quality software. Some of the previous effort  models used in 
various software development projects are SLIM (Software Life Cycle Management) 
[62], SEER-SEM (System Evaluation and Estimation of Resource Software Evaluation 
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Model) [63], COCOMO81 (Constructive Cost model) [64] and COCOMO2000 [65], 
[66]. 

The COCOMO2000 model uses cost factors, scale factors, and software size to 
estimate effort and cost, expressed in the number of source lines of code. There are two 
versions of the COCOMO2000 model: Early Design and Post Architecture, which are 
tested to achieve the best  results. 

The Post Architecture model is a more detailed version and it was used in the first 
approach of this dissertation (3.1) for the training and testing during the performed 
experiments. A data set of the COCOMO2000 model consisting of 161 projects was also 
used. The authors in the study [66], in their approaches to software evaluation, used the 
technique of neural networks for backpropagation through the data set COCOMO2000, 
which consists of 60 and 93 projects, respectively, for estimating software costs and 
Dolphin algorithm. The results showed a lower value of MRE. However, in this 
dissertation, within this approach, it is shown that it is possible to reduce the value of 
MRE, i.e., achieve better results with a simple ANN architecture to perform a minimum 
number of iterations, which means reducing estimation time. 

Recent research, such as [67], presents the use of a combined COCOMO2000 
parametric approach technique and a neural network (non-parametric approach) into a 
single structure (model) for estimating effort and cost. The results showed that the 
estimated cost of COCOMO2000 is closer to the actual cost, i.e., that a lower MRE value 
is achieved. 

In another study [68], the authors experimentally showed that the application of 
Machine Learning improves the COCOMO2000 model using ANN. The obtained results 
again showed a high value of relative error. The authors in [69] present different 
algorithms and neural networks and compare them for a more accurate and reliable 
estimation of software costs. Also, this study used different hidden neural network 
activation functions that gave worse results than the sigmoid function. 

In a study [70], a two-layer network was used as a model to reduce MRE values 
further. Various models for estimating efforts and costs in the development of software 
projects [71], [72] based on non-parametric approaches such as multilayer neural 
networks have achieved slightly better results, i.e., a lower value of MRE. 

The paper [73] presents the results of research on over 33,000 different 
experiments, where different ANNs were used, which use real project values for data 
processing. Data obtained from these experiments were collected from different sources 
and evaluated using different metrics. In studies [74], [75], [76], [77], the authors use 
different architectures of artificial neural networks to process the data set. Compared with 
previous research, it has been shown that different results are obtained depending on the 
heterogeneous nature of the data sets. It can be concluded that there is no unified 
methodology to ensure adequate and reliable . 
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Contrary to previous research, different data sources will be used in this 
dissertation, and the obtained results will be compared using the same methodology. This 
achieves the stability, efficiency, and reliability of the proposed approach. In the 
experimental part, different data sets were used to confirm the use of the proposed 
methodology on different project values. COCOMO81, COCOMO2000, NASA60, 
NASA93, Kemerer15, and Desharnais datasets were used. 

In addition to different datasets, four different architectures of artificial neural 
networks constructed based on Taguchi's orthogonal vector plans were used. To further 
improve the proposed model within the COCOMO2000 approach, the clustering method 
divided the datasets into three clusters to mitigate the heterogeneous structure of different 
projects. For additional homogenization of input values, the fuzzification method was 
used. Unlike other research, this dissertation uses a combination of parametric and non-
parametric methods and models that have so far experimentally yielded the best results in 
effort and cost estimation. By introducing a machine learning rate as a criterion for 
stopping iterations, i.e., a "stop criterion," the convergence rate of each proposed 
architecture can be monitored, and the experiment stopped after the set conditions are met. 
The introduced machine learning rate criterion is Gradient Descent and it is used to 
monitor the progress and speed of the experiment. In this way, the best model is obtained 
with the lowest number of iterations, thus reduced execution time and the lowest MMRE 
value. Based on this criterion, it is possible to determine the most reliable, stable, and 
most accurate model of the proposed ANN architectures. 

 
The critical decisions that define the new, improved model within the 

COCOMO2000 approach in this dissertation are as follows: 
• Examining the convergence rate of four different proposed ANN 

architectures; 
• Analysis of the obtained MMRE values; 
• Division of all used datasets into clusters; 
• Examination of different activation functions of the hidden ANN layer; 
• Finding the most efficient methods of encoding and decoding input values, 

such as the fuzzification method; 
• Required minimum number of performed experiments; 
• Testing and validation on other different datasets. 
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2.4 Function Point Analysis 
 

This chapter will explain in detail the approach based on the analysis of the 
functional points. The most commonly used model of this approach is COSMIC FFP. 

 
2.4.1 Essential characteristics of the COSMIC FFP model 
 

Function Point Analysis (FPA) is an approach that has emerged in order to 
overcome the shortcomings of a previous approache that measuerd system size only based 
on the number of lines of code (source lines of code - SLOC). In the analysis of functional 
points, the system's functionality is measured based on the values expressed in functional 
points. Different systems may have similar functionalities but may use, for example, 
different technologies or programming languages, and therefore differ in the number of 
source lines of code. This approach has developed many models based on the proposed 
method to most effectively and accurately estimate the functional size. 

This dissertation will present the recent method from the family of functional 
points - COSMIC FFP (COmmon Software Measurement International Consortium Full 
Function Point). This method is used to estimate the effort and cost of the functional size 
of software projects based on fourteen parameters that are reduced to four input values: 
1. Entry, 2. Exit, 3. Read and 4. Write (see Figure 19). The fourteen system parameters 
are evaluated to measure the functional size reliably: 

 
• Data communication - data on the transfer and exchange of information 

between the users and system; 
• Distributed data processing - testing whether the data processing is 

distributed; 
• Performance - testing the required performance of the system; 
• Heavily used configuration - hardware and software platform; 
• Transaction rate - the frequency of execution of transactions in the 

system; 
• On-Line data entry - the percentage of data that is entered directly; 
• End-user efficiency - efficient operation of software users; 
• On-Line update - the amount of data that is updated; 
• Complex processing - the complexity of data processing in the system; 
• Reusability - code reuse; 
• Installation ease; 
• Operational ease - ease of use; 
• Multiple sites - division of the team into several locations; 
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• Facilitate change [13]. 
 

Unlike previous methods that were based on five input variables, COSMIC FFP 
is based on four. The four input variables presented in the model we proposed based on 
the COSMIC FFP method represent the input values for two different ANN architectures. 
Each of the proposed architectures is constructed based on Taguchi's orthogonal vector 
plan. There are four input variables are: 

 
1. Entry - messages that users send to the system or messages that one system 

sends to another to transmit the necessary data. These messages do not have necessary to 
be system entries. 

2. Exit - messages that the system or module returns in response to the user in the 
form of data that can be read from files. These messages can also be in the form of 
arithmetic and logic operations. 

3. Read - messages that update data in the system. They can be different files, 
tables, and other data. 

4. Write	- messages that send data from the system. They can be in the form of 
tables, files, and do not represent formulas or operations.  
 

It can be concluded that the functional size of the system represents the total 
number of all messages used. The system can be viewed as a four-dimensional vector 
space that represents the total number of messages. Messages are data entered, data that 
is logged out, data that is written in a file, or data read from files. This method enables the 
detection and determination of the influence and the slightest change on the functional 
size. The advantage of this method is that it is independent of technology and has no upper 
limit on the value of the functional quantity. Therefore, there is no saturation because the 
complexity of the functionality can grow indefinitely depending on the number of 
messages in the system [78], [79]. 

 
Functional size is determined based on a four-dimensional vector denoted as FFP 

as follows (11): 
 

𝐹𝐹𝑃 = (𝐸, 𝑋, 𝑅,𝑊)                                                                                                       (11) 
 
FFP	 represents the total number of messages in the entire observed system and is 
calculated as the norm of the vector in the formula (12): 
 
j𝐹𝐹𝑃kkkkkkkk⃗ j = 𝐸 + 𝑋 +𝑊 + 𝑅                                                                                            (12) 
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where E = Entry, X = Exit, W = Write, and R = Read. 
 

The COSMIC FFP method is important because it can be applied to different 
systems as even the slightest change can affect the change of the system, and there is no 
limit to the size of the functionality in the chosen dataset. 
 

2.4.2 Previous research in the FPA approach 
 

The first research related to the FPA approach appears in the works of Albrecht 
and Gafni (1983) [47] and Kemerer (1987) [80]. The research presented by Albrecht refers 
to the measurement of the functionality on IBM projects, where the relationship between 
the size of the project and the time required to create it is observed. Measuring 
functionality in this approach, Albrecht calls the functional point. This approach was 
later further developed and adopted by the International Function Point User Group 
(1994) [81] and is considered the basis for the further development of the FPA approach. 
 Similar models also have been  later developed, such as the NESMA by the 
Netherlands Software Metrics Association in the Netherlands [50] and the MARK II [82] 
model in the United Kingdom. With the further improvement and development of these 
models, IFPUG version 4.1 and the COSMIC FFP method developed by the COmmon 
Software Measurement International Consortium [83] are emerging. COSMIC FFP is the 
latest and most commonly used method based on size functionality. This method measures 
the system's functionality based on the functional points that are exchanged in the system. 
Functional points in the COSMIC FFP approach are communication messages. The 
essential functional points that are analyzed in this method are Entry, Exit, Write and 
Read. 
 Many authors, such as [84], [85], [86], have shown that despite attempts to 
introduce new metrics, such as user stories in agile methodologies, the COSMIC FFP 
method has proven to be more efficient and accurate in several experiments. 
 The paper [87] compares the effects of improving effort prediction using COSMIC 
FFP and IFPUG methods. COSMIC FFP again gave better results for predicting efforts 
to develop software projects. 
 The paper [88] presented an approximation model with a convolutional neural 
network and achieved a reliable prediction accuracy using a word embedding model 
trained on Wikipedia + Gigaworld and functional point measures. 
 Another study [89] proposed different machine learning algorithms to measure 
software development also using COSMIC functional size. 
 The authors in [90], [91] proposed a calibration of the functional point complexity 
(FP) weights and an FP calibration model called the Neuro-Fuzzy Function Point 
Calibration Model (NFFPCM). They used the ISBSG repository [15] and demonstrated 
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improved accuracy of the mean relative error (MMRE) value in estimating software effort 
after calibration. They used only parts of the ISBSG datasets, while in this dissertation, 
the entire dataset is used without any calibration or adjustment. Also, a method of 
clustering input values for the whole data set is presented, in addition to fuzzification and 
a smaller number of required iterations on different combinations of data sets from the 
ISBSG repository. Next, two more sets of data are introduced to confirm the obtained 
results. 
  
 The critical decisions that define the new, improved model within the COSMIC 
FFP approach in this dissertation are as follows: 

• Examination of the influence of four input values on the change of MMRE 
value; 

• Comparative analysis of two different architectures of artificial neural 
networks and the obtained results; 

• Division of the used dataset into clusters depending on their functional size 
and different nature of each project within the ISBSG repository; 

• Finding the most efficient methods of encoding and decoding input values, 
such as the fuzzification method; 

• Required minimum number of performed experiments; 
• Testing and validation on other different datasets. 

 

 

2.5 Analysis of actors (users) and Use Cases 
 

This chapter will explain in detail the approach based on the analysis of the use 
case points. The most commonly used model of this approach is UCP model. 

 
2.5.1 Essential characteristics of the UCP model 
 

The UCP (Use Case Point Analysis) method is most often used in estimating the 
real size of a software project. This method for estimating the effort to implement a 
particular system considers use cases of the system. Also, analyzes system users and 
different scenarios to adequately assess the effort required. It uses twenty-one parameters 
for, of which thirteen parameters are technical characteristics of the system, and the 
remaining eight are environmental factors. 
 
The technical characteristics of the system being evaluated are: 
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• Is system distributed; 
• System response time; 
• Efficiency of the system; 
• Complexity of internal processes; 
• Posibility of code reuse; 
• Ease of installation of the final product; 
• Ease of use of the final product; 
• Transfer to other required platforms; 
• System maintenance; 
• Competitiveness, parallel processing; 
• Security requirements of the system; 
• Access to external systems; 
• End-user training. 

 
The environmental factors being assessed are: 
 

• Compliance with the used development process; 
• Experience with applications that will be used; 
• Experience in object-oriented technologies that will be used; 
• Ability of chief analyst; 
• Team motivation; 
• Stability requirements of the system; 
• Working hours of team members; 
• Complexity of the programming language that will be used. 

 
System users and use cases were used together to determine the real size of the UCP 

method.  
Users of the system are divided into three groups: simple (depending on the interaction 

with the system, they are assigned a weight factor of 1), medium (depending on 
internal/external communication, they are assigned a weight factor of 2), and complex 
(depending on the complexity of interactions weighted by factor 3).  

There are also three categories of use cases that are defined based on the number of 
executed transactions (number of users and system messaging): simple (for less than 3 
transactions and a weighting factor of 5 is assigned), medium (from 4 to 7 transactions 
and a weighting factor of 10 is assigned), and complex (more than 8 transactions and a 
weighting factor of 15 is assigned).   
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The size of the system is defined based on a six-dimensional vector whose elements 
represent the complexity of the previously mentioned users and the cases of users in the 
system. 

The estimated value is calculated based on G. Karner formulas [92]: 
	

UAW (Unadjusted Actor Weight) - this input value is a functional point that can 
determine the level of complexity of system users. Users can be simple system operators 
or other external systems. Each user is ranked according to their level of complexity and 
can be: Simple, Average, and Complex, see formulas (13)-(16). 
 
SimpleA = ∑(𝑆𝑖𝑚𝑝𝑙𝑒𝐴𝑐𝑡𝑜𝑟) ∗ 𝑆𝑖𝑚𝑝𝑙𝑒𝑊𝑒𝑖𝑔ℎ𝑡, where SimpleWeight = 1;                    (13) 
AverageA = ∑(𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐴𝑐𝑡𝑜𝑟) ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑊𝑒𝑖𝑔ℎ𝑡, where AverageWeight = 2;        (14) 
ComplexA = ∑(𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝐴𝑐𝑡𝑜𝑟) ∗ 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑊𝑒𝑖𝑔ℎ𝑡, where ComplexWeight = 3;      (15) 
 
UAW = SimpleA + AverageA + ComplexA                                                                     (16) 
 

UUCW (Unadjusted Use Case Weight) - this input value is a functional point that 
can determine the level of complexity of use cases. Each use case is ranked according to 
its level of complexity and can be: Simple, Average and Complex, see formulas (17)-(20). 
 
SimpleUUCW = ∑(𝑆𝑖𝑚𝑝𝑙𝑒𝑈𝐶𝑊) ∗ 𝑆𝑖𝑚𝑝𝑙𝑒𝑊𝑒𝑖𝑔ℎ𝑡,  
where SimpleWeight = 5, (transactions<=3, analysis classes<5)                                   (17) 
 
AverageUUCW = ∑(𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑈𝐶𝑊) ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑊𝑒𝑖𝑔ℎ𝑡, where AverageWeight = 10, 
(4<=transactions<=7, 5<=analysis classes<=10)                                                              (18) 
 
ComplexUUCW = ∑(𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑈𝐶𝑊) ∗ 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑊𝑒𝑖𝑔ℎ𝑡, where ComplexWeight = 15; 
(transactions>7, analysis classes>=10)                                                                            (19) 
 
UUCW = SimpleUUCW + AverageUUCW + ComplexUUCW                                      (20) 
 
By using the two sizes listed above, the size of the system to be developed is obtained. 
 

UUCP	(Unadjusted Use Case Points) is determined by following equation (21):  
 
UUCP=UUCW+UAW                                                                                                      (21) 
 

TCF (Technical Complexity Factor) is an estimate of the technical complexity of 
the system and can be described by the following formulas (22), (23): 
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TCF = 0.6 + (0.01*FactorT)                                                                                           (22) 
FactorT = ∑𝑊𝑒𝑖𝑔ℎ𝑡 ∗ 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑉𝑎𝑙𝑢𝑒, where AssignedValue is from 0 to 5 and 
represents a technical factor of the estimated process, see Table 3.                                     (23) 
 

Table 3. Thirteen technical complexity factors. 
Tabela 3. Trinaest tehničkih faktora kompleksnosti. 

 
Factor Description Weight Assigned Value Weight x Assigned 

Value 
T1 Distributed system 2.0 5 10 
T2 Response time/performance 

objectives 
1.0 5 5 

T3 End-user efficiency 1.0 3 3 
T4 Internal processing complexity 1.0 2 2 
T5 Code reusability 1.0 3 3 
T6 Easy to install 0.5 1 0.5 
T7 Easy to use 0.5 5 2.5 
T8 Portability to other platforms 2.0 2 4 
T9 System maintenance 1.0 2 2 
T10 Concurrent/parallel processing 1.0 3 3 
T11 Security features 1.0 5 5 
T12 Access for third parties 1.0 1 1 
T13 End-user training 1.0 1 1 

Total (TF): 42 
 

ECF (Environmental Complexity Factor) is one of the factors affecting the size of 
the project expressed in Use Case points. It is calculated according to the following 
formulas (24), (25): 
 
ECF = 1.4+(-0.03xFactorE)                                                                                            (24) 
FactorE = ∑𝑊𝑒𝑖𝑔ℎ𝑡 ∗ 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑉𝑎𝑙𝑢𝑒, where AssignedValue from 0 to 5 and represents 
a environmental factor of the estimated process, see Table 4.                                               (25) 

Table 4. Eight environmental factors. 
Tabela 4. Osam faktora okruženja. 

 
Factor Description Weight Assigned Value Weight x Assigned 

Value 
E1 Familiarity with development 

process used 
1.5 3 4.5 

E2 Application experience 0.5 3 1.5 
E3 Object-oriented experience of team 1.0 3 2 
E4 Lead analyst capability 0.5 5 2.5 
E5 Motivation of the team 1.0 2 2 
E6 Stability of requirements 2.0 1 2 
E7 Part-time staff -1.0 0 0 
E8 Difficult programming language -1.0 4 -4 

Total (EF): 10.5 
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AUCP	(Adjusted Use Case Point) is the final size of the system expressed in Use 
Case points and is calculated as follows (26): 
 
AUCP = UUCPxTCFxECF                                                                                                (26) 
 

Representation of real effort by UCP approach as a six-dimensional vector, where 
its value is calculated as the norm of the vector as follows, see formulas (27), (28): 
 
UCP	= (UAW,	UUCW,	UUCP,	TCF,	ECF,	AUCP)                                                           (27) 
j𝑈𝐶𝑃kkkkkkkk⃗ j = 𝑈𝐴𝑊 + 𝑈𝑈𝐶𝑊 + 𝑈𝑈𝐶𝑃 + 𝑇𝐶𝐹 + 𝐸𝐶𝐹 + 𝐴𝑈𝐶𝑃                                     (28) 
 

Representation of real effort by UCP approach as a four-dimensional vector, 
where its value is calculated as the norm of the vector as follows, see formulas (29) (30): 
 
UCP	=	(UAW,	UUCW,	TCF,	ECF)                                                                                   (29) 
j𝑈𝐶𝑃kkkkkkkk⃗ j = 𝑈𝐴𝑊 + 𝑈𝑈𝐶𝑊 + 𝑇𝐶𝐹 + 𝐸𝐶𝐹                                                                      (30) 
 
where UUCP=	UAW+	UUCW, and AUCP=	UUCPxTXFxECF. 
 

In both cases, Real Effort is obtained as the norm of the UCP vector and represents 
the real functional size or number of points of use cases. This method is currently most 
commonly used to assess effort [56], although it is not standardized within ISO standards 
as the previous two are. 

 
 

2.5.2 Previous research in the UCP approach 
 

The UCP method is the latest and the most widespread method for estimating the 
effort and costs for realizing software products. The most significant advantage of this 
method is that the lowest values of relative error in estimation are obtained, between 20% 
and 35% [57]. The best result achieved by this method is an error value of about 10% 
[95]. Many researchers [96], [97], [98], [99] have combined this method with other 
parametric models and models of artificial intelligence. 
 In the study [100], the UCP method is used for estimating size and effort for 
mobile applications. Android mobile applications are considered as a case study, and 
modified UCP has also been proposed. 
 Authors in [101] proposed a framework for UCP-based techniques to promote 
reusability in developing software applications. The results showed that the framework 
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had met five quality attributes, and it can be used in the early stages of software 
development. 
 In [102], a systematic review of studies with the best practices of use case point 
(UCP) and expert judgment–based effort estimation techniques was given. 
 The study [103] presented the results of four different models that include the UCP 
method and Neuro-Fuzzy logic. It is concluded that the Neuro-fuzzy logic model using 
revised use case points and modified environmental gives the best fitting accuracy at an 
early stage than other models. 
 In the study [104], the authors compare the benefits of a statistical analysis of the 
effort estimation for seven real-world software development projects. Also, they contrast 
a conventional Use Case points method with iUCP, an HCI (Human-centric) enhanced 
model. Furthermore, they propose an enhancement of the iUCP original effort estimation 
formula. 
 
 The critical decisions that define the new, improved model within the UCP 
approach in this dissertation are as follows: 

• Examination of the influence of two linearly dependent input values (UUCP and 
AUCP) on the change of MMRE value; 

• Comparative analysis of two different architectures of artificial neural networks 
and the obtained results; 

• Dividing the used dataset to a scale of 70:30, i.e., 70% projects of the selected 
dataset are used for the training process, while 30% are used for the testing 
process; 

• Finding the most efficient methods of encoding and decoding input values, such 
as the fuzzification method; 

• Required minimum number of performed experiments; 
• Testing and validation on other different datasets. 

 
 

2.6 Application of ANN in software estimation 
 

Artificial neural networks (ANNs) are gaining importance in the 90s of the last 
century, with the accelerated computer technologies. Each ANN is a system that consists 
of interconnected elements that we call nodes or artificial neurons. Neurons are connected 
by certain connections (synapses) through which data is transmitted. The architecture of 
each network represents the connection of neurons into one that differs depending on the 
number of layers. The first layer is always called the input layer, and the last layer the 
output layer. All layers in between are called hidden layers. The first layer, i.e., the input 
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layer, can have several different input sizes. The corresponding data to be processed is 
entered via the input variables. The data is transferred to a hidden layer in which it is 
processed according to defined rules and further passed through synapses to the output 
layer. The strength of the connections between neurons is called the weighting factor 
(coefficient) [105], [106]. 
 Generally, this artificial intelligence tool can be justified when any specific rules 
cannot determine the final output value. First, it is necessary to train the artificial neural 
network for its further use. Training implies setting input values, defining the rules or 
functions according to which one trains and according to which the output value is 
obtained. Each ANN has a particular architecture, i.e., the scheme according to which the 
nodes are connected. It contains an input layer, usually one to three hidden layers, and an 
output layer. An essential role of each neural network is played by the activation function 
of neurons, which in combination with weight coefficients represents the essence of 
training. In the initial phase of training, the errors are much larger, and then in each 
subsequent iteration, by changing the weighting coefficients, the errors are reduced and 
converged towards precise, estimated values [107], [108].   
 

2.6.1 Classification of artificial neural networks 
 

There are different divisions and architectures of artificial neural networks. They 
can be distinguished according to the connection method: layered, wholly connected, and 
cellular artificial neural networks. According to the direction of signal transmission and 
data processing, we distinguish feedforward - networks in which the signal transmission 
takes place in one direction and feedback - recurrent or return networks.  

Depending on the way of training, artificial neural networks can be supervised or 
unsupervised [109]. Supervised neural networks use labeled input and output data, while 
an unsupervised do not. 
 

2.6.2 Artificial neural networks in other fields 
 

It is expected that in the future, this artificial intelligence tool will be used more 
and more because it is suitable for modeling complex systems that have a large number 
of conditioned, indeterminate, or unknown factors. One of these examples is estimating 
time and costs for the development of software projects, where the previous analytical 
methods can be replaced by  models that use artificial neural networks. 

 
With the apperance development of artificial intelligence, the application of ANN 

in solving various problems, which previously could not be solved by other classical 
computer technology methods, spread rapidly. Today, ANN can be used in image 
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processing, speech recognition, recognition of various objects, and sensory signals. They 
are also frequently used in areas like application in natural languages processing, 
recognition of printed texts, handwritten texts, and so on. They also play a notable role in 
medical diagnostics, military and police purposes, and telecommunications [110]. They 
certainly have the most significant contribution to computer science and information and 
communication technolgy. 
 The subject of the dissertation is convenient to use artificial neural networks 
because their advantage over other nonlinear models is based on estimating any function 
with optional precision. In the dissertation various Taguchi Orthogonal Arrays are used 
to simplify optimization problems, representing the MFFN (Multilayer Feed Forward 
Neural Network) class, which has a crucial role in solving various problems in science, 
engineering, medicine, pattern recognition, nuclear sciences, and other fields [7]. In order 
to construct a high-performance MFFN, no approved theory allows the calculation of ideal 
parameter settings. This leads to the conclusion that even small changes in parameters can 
cause significant differences in the behavior of almost all networks. In [8], an analysis of 
NN design factors and object functions is given, in which an architecture with one or two 
hidden layers is recommended. Based on the Kolmogorov-Smirnov test, a 
recommendation is given that the number of neurons in the hidden layer should be 
doubled the number of input neurons increased by one, i.e., 2 x Ninput + 1. The results for 
each of the 240 experiments performed in [8] were collected. It was shown that a specific 
neural network configuration is required to achieve convergence, along with the accuracy 
of the trained network, when a set of test data is obtained. Also, the number of hidden 
layers (one or two) has a minimal effect on the network accuracy but is rather significant 
at the convergence speed. Considering these results, a trial and error strategy is adopted 
because most existing theoretical works for generalization fail to explain the performance 
of neural networks in practice. 
 The idea adopted in the dissertation is experimenting with the simplest ANN 
topology - with none hidden layer, and then more complex - with one hidden layer, and 
finally with two hidden layers architecture, keeping in mind that the size of the set of 
observations during ANN training will not exceed the number of projects in the dataset. 
 

2.7 Robust design - Taguchi Orthogonal Arrays 
 

Dr. Genichi Taguchi proposed a robust design method in 1986. The main idea of 
this method is to find the interaction between the control and noise variables to provide 
appropriate settings of the control factors to reduce the changes caused by the noise 
variables. It is one of the powerful methods available to reduce costs, improve quality and 
at reducing the time necessary to perform the experiments. The robust design strategy also 
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involves using orthogonal vector plans to gather reliable information on project 
parameters with a small number of experiments [111], [112]. 
 A robust method design implies meeting the prescribed criteria when planning and 
implementing software. This can be achieved with Taguchi's method regardless of the 
different influences of external, additional requirements. The best effect in planning a 
robust product design, Taguchi achieved through Orthogonal Arrays. Taguchi's 
orthogonal vector plans are based on a unique set of Latin Squares. The discovery of 
orthogonal vector plans and their application minimizes the number of crucial parameters 
for the project's successful development. The impact parameters are not duplicated, which 
achieves a much faster estimation of the efforts and costs of a particular project. This 
design method is based on a “factorial experiment” that is realized only with all possible 
experimental combinations of parameter values. Taguchi's orthogonal vector plans play 
the most crucial role in experimenting. 
 Taguchi's robust design of the experiment in each orthogonal vector plan depends 
on the number of parameters, the weighting factors (coefficients), and the number of 
levels of each parameter. That is, how many times it is necessary to test each level for 
each parameter. The number of experiments required for a complete factorial analysis is 
N = LP	(for example: when three levels with 13 parameters are used according to the full 
factorial plan (FFP) it is necessary to execute N = 313 = 1 594 323 experiments). Using 
the Taguchi orthogonal vector plan with 13 parameters (weight coefficients) on three 
levels, only 33 = 27 experiments is necessary. The Taguchi method of robust design 
reduces the number of experiments for 99.99830649% (0.9999830649 = 1 - (27/1 594 
323)). 
 Taguchi's orthogonal vector plan takes the selected cluster of combinations 
without repetition but so that all parameters are equally taken into account. They can also 
be assessed independently of each other. Taguchi's orthogonal vector plan is observed for 
each level of a particular parameter [113]. All L levels of each of the (P-1) other 
parameters are tested at least once, see Figure 5. 
 

 

Figure 5. Taguchi design vs. Full Factorial Design (FFD). 

Slika 5. Taguči dizajn u poređenju sa potpunim faktorijalnim dizajnom. 
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Chapter 3: New, proposed models for three software  
approaches  

 
In software development, both in practice and in a large number of researches for 

estimating efforts and costs, one of the most frequently used tools of artificial intelligence 
are artificial neural networks (ANN). ANN is a good technique for information processing 
and can significantly contribute to constructing new models for software evaluation [114], 
[115]. Because of ANNs ability to learn from different data sets, it is possible to generate 
accurate and reliable results and assess the risk of possible errors.  

The general structure of ANN consists of three layers: input, hidden, and output. 
In the experiments in this dissertation, different architectures with three, four, and six 
input values will be presented in combination with the different number of weight factors 
(coefficients). In the new, proposed models, the input values and weight parameters are 
constructed according to Taguchi's orthogonal vector plans [116], [117]. The goal of each 
proposed model is to find the simplest network that meets all the additional criteria. In the 
hidden layer of each proposed architecture, a different number of nodes is selected 
depending on the appropriate orthogonal vector plan. The output layer has one obtained 
value (estimated value) where it can be used to calculate: Deviation, MRE (Magnitude 
Relative Error), and MAE (Mean Absolute Error) for each ANN.  

The MRE value is the error value for each ANN within the proposed architecture. 
Using the MRE value, the difference between the actual and the estimated effort 
concerning the actual effort is measured for a given project. This value considers the 
numerical value of each observation in the data distribution and is sensitive to individual 
predictions.  

The MAE value determines accuracy and represents the absolute difference 
between the actual and estimated value.  

In addition to the values of MRE and MAE, MMRE (Mean Magnitude Relative 
Error) is measured. MMRE is the mean value of MRE. Within the ANN-L27 architecture, 
there are 27 different combinations (“ANN candidates”), where the goal is to determine 
the ANN that gives the lowest MMRE value after the first part of the experiment (after 
ANN training). 
 
Why measuring the value of selected error criteria? 
 

Each of the new, proposed ANN models uses different Taguchi orthogonal vector 
plans to efficiently, reliably, and accurately estimate the effort and cost of developing 
software projects. Taguchi's orthogonal vector plan allows taking the selected cluster of 
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combinations without repetition. In this way, all factors are taken into account equally and 
can be assessed independently. By reducing the Full Factorial plan [118], [40] instead of 
testing all possible combinations of ANN, this method considers only pairs of 
combinations. This allows data to be collected to obtain information on which factors 
most influence the quality of the product being developed. It takes a minimum number of 
experiments, saves time and resources. The choice of the appropriate Taguchi orthogonal 
vector plan depends on the number of weighting factors and the number of input values. 
The general goal of Taguchi's method is to create a high-quality product with a possible 
reduction in development costs. 

Different ANN architectures constructed on Taguchi's orthogonal vector plans 
were used in different approaches to constructing the three improved models: 

- New, improved COCOMO2000 model, 
- New, improved COSMIC FFP model, and 
- New, improved UCP model. 

 
 

3.1 New, improved COCOMO2000 model 
 

As part of the COCOMO approach, an improved COCOMO2000 model is 
presented in this subsection. For the improved COCOMO2000 model, the following 
architectures and corresponding orthogonal vector plans L9, L18, L27 and L36 are used: 
 
1. COCOMO2000 and ANN-L9 
 

The first proposed ANN architecture, denoted as ANN-L9, is the simplest because 
there are no hidden layers. It is based on the orthogonal vector plan of Taguchi (L9) with 
four parameters (𝑊𝑖 , i = 1, 4+++++) and three different levels [7], [8], [119]: L1, L2 and L3, 
see Figure 6, Table 5. It is experimented with nine ANN candidates denoted as ANN1, 
ANN2,...,ANN9 who compete to become a "Winner" network. Bias represents an 
additional weighting factor to complete the selected orthogonal plan and has a value of 1. 
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Table 5. Taguchi orthogonal vector plan (L9=34). 
Tabela 5. Taguči ortogonalni vektorski plan (L9=34). 

 
ANN-L9 W1 W2 W3 W4 

ANN1 L1 L1 L1 L1 
ANN2 L1 L2 L2 L2 
ANN3 L1 L3 L3 L3 

   ANN4 L2 L1 L2 L3 
ANN5 L2 L2 L3 L1 
ANN6 L2 L3 L1 L2 
ANN7 L3 L1 L3 L2 
ANN8 L3 L2 L1 L3 
ANN9 L3 L3 L2 L1 

 

 
Figure 6. ANN architecture with none hidden layer (ANN-L9). 

Slika 6. ANN arhitektura bez skrivenog sloja (ANN-L9). 
 

2. COCOMO2000 and ANN-L18 
 

The second proposed ANN architecture, denoted as ANN-L18, is designed with a 
single hidden layer. It is based on the Taguchi orthogonal vector plan (L18) with eight 
parameters (𝑊𝑖 , i = 1, 8+++++) and three different levels [7], [8], [119]: L1, L2 and L3, see 
Figure 7, Table 6. Compared to the previous architecture, this is a combined version, 
because the first parameter has only two levels, and the remaining seven have all three 
levels. It is experimented with eighteen ANN candidates denoted as ANN1, 
ANN2,...,ANN18 who compete to become a "Winner" network.  
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Table 6. Taguchi orthogonal vector plan (L18=2137). 
Tabela 6. Taguči ortogonalni vektorski plan (L18=2137). 

 
  ANN-L18 W1 W2 W3 W4 W5 W6 W7 W8 

ANN1 L1 L1 L1 L1 L1 L1 L1 L1 
ANN2 L1 L1 L2 L2 L2 L2 L2 L2 
ANN3 L1 L1 L3 L3 L3 L3 L3 L3 
ANN4 L1 L2 L1 L1 L2 L2 L3 L3 
ANN5 L1 L2 L2 L2 L3 L3 L1 L1 
ANN6 L1 L2 L3 L3 L1 L1 L2 L2 
ANN7 L1 L3 L1 L2 L1 L3 L2 L3 
ANN8 L1 L3 L2 L3 L2 L1 L3 L1 
ANN9 L1 L3 L3 L1 L3 L2 L1 L2 
ANN10 L2 L1 L1 L3 L3 L2 L2 L1 
ANN11 L2 L1 L2 L1 L1 L3 L3 L2 
ANN12 L2 L1 L3 L2 L2 L1 L1 L3 
ANN13 L2 L2 L1 L2 L3 L1 L3 L2 
ANN14 L2 L2 L2 L3 L1 L2 L1 L3 
ANN15 L2 L2 L3 L1 L2 L3 L2 L1 
ANN16 L2 L3 L1 L3 L2 L3 L1 L2 
ANN17 L2 L3 L2 L1 L3 L1 L2 L3 
ANN18 L2 L3 L3 L2 L1 L2 L3 L1 

 
 

 
Figure 7. ANN architecture with one hidden layer (ANN-L18). 

Slika 7. ANN arhitektura sa jednim skrivenim slojem (ANN-L18). 
 
 
3. COCOMO2000 and ANN-L27 
 

The third proposed ANN architecture, denoted as ANN-L27, is also designed with 
one hidden layer. It is based on the Taguchi orthogonal vector plan (L27) with thirteen 
parameters (𝑊𝑖 , i = 1, 13++++++) and three different levels [7], [8], [119]: L1, L2 and L3, see 
Figure 8, Table 7. It has experimented with twenty-seven ANN candidates denoted as 
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ANN1, ANN2,...,ANN27 who compete to become a "Winner" network. Bias represents 
an additional weighting factor to complete the selected orthogonal plan and has a value 
of 1. 

Table 7. Taguchi orthogonal vector plan (L27=313). 
Tabela 7. Taguči ortogonalni vektorski plan (L27=313). 
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Figure 8. ANN architecture with one hidden layer (ANN-L27). 

Slika 8. ANN arhitektura sa jednim skrivenim slojem (ANN-L27). 
 
4. COCOMO2000 and ANN-L36 
 

The fourth proposed ANN architecture, denoted as ANN-L36, consists of two 
hidden layers. It is based on the Taguchi orthogonal vector plan (L36) with twenty-three 
parameters (𝑊𝑖, i = 1, 23++++++) and three different levels [7], [8], [119]: L1, L2 and L3, see 
Figure 9, Table 8. This architecture is a combined network, because the first eleven 
parameters have only two levels, and the remaining twelve have all three levels. It is 
experimented with thirty-six ANN candidates denoted as ANN1, ANN2,...,ANN36 who 
compete to become a "Winner" network. Bias represents an additional weighting factor 
to complete the selected orthogonal plan and has a value of 1. 
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Table 8. Taguchi orthogonal vector plan (L36=211312). 
Tabela 8. Taguči ortogonalni vektorski plan (L36=211312). 

 

 
 

 
Figure 9. ANN architecture with two hidden layers (ANN-L36). 

Slika 9. ANN arhitektura sa dva skrivena sloja (ANN-L36). 
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Each experiment, depending on the chosen approach and used datasets, consists 
of three parts:  

1. Training of the proposed ANN architecture who compete to become a "Winner"  
    network.  
2. Testing on ANN "Winner" that gave the lowest value of MMRE in the first part  
    of the experiment on the same dataset;  
3. Validation on the ANN that gave the lowest value of MMRE in the first part of  
    the experiment, but on other datasets. 
 
 

3.1.1 Data sets used in the COCOMO2000 approach 
 

The data on which the experiments were performed has heterogeneous nature; 
therefore it is necessary to check the data on several different data sources. Since the 
experiment uses artificial neural network architectures with three input values, the 
estimated effort for the software development project is calculated according to the 
COCOMO2000 formula (4-10) and is presented as the number of person-months [PM]. 
 For the first experiment devoted to the training of models, a COCOMO2000 
dataset of 100 projects for all four proposed ANN architectures was used. The 
COCOMO2000 dataset of 20 projects for the second stage of experiment, i.e. for testing 
developed models for all four proposed ANN architectures, was used.  

To increase the reliability of our proposed approach, several datasets such as 
COCOMO81, where 51 random projects were selected, a NASA dataset with 60 projects, 
and a Kemerer dataset with 15 projects were used for the last stage of the experiment - 
i.e. for the validation of developed models, see Table 9.  

From the datasets used [120], it can be observed that the actual effort ranges from 
a minimum of 6.0 person-months (PM) in Dataset_1 to a maximum of 11399.9 PM in 
Dataset_3. This leads to the conclusion that the range of data is with very large standard 
deviation, see Table 10. 
 

Table 9. Information on used datasets (COCOMO2000). 
Tabela 9. Informacije o korišćenim skupovima podataka (COCOMO2000). 

 
 Dataset Number of projects Experiment 
Dataset_1 COCOMO2000 dataset 100 Training 
Dataset_2 COCOMO2000 dataset 20 Testing 
Dataset_3 COCOMO81 dataset Random 51 Validation1 
Dataset_4 NASA dataset 60 Validation2 
Dataset_5 Kemerer dataset 15 Validation3 
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Table 10. Basic statistics about datasets (COCOMO2000). 
Tabela 10. Osnovni statistički podaci o korišćenim skupovima podataka 

(COCOMO2000). 

 
Dataset No. of projects Min 

[PM] 
Max 
[PM] 

Mean 
[PM] 

Std. deviation [PM] 

Dataset_1 100 6.0 8211.0 616.0 1131.5 
Dataset_2 20 28.1 606.8 277.0 206.3 
Dataset_3 51 33.0 11399.9 841.8 1994.9 
Dataset_4 60 8.4 3240.0 406.4 656.9 
Dataset_5 15 23.2 1780.0 316.7 456.7 

 
 

3.1.2 The methodology used within the improved COCOMO2000 
model 
 

The appropriate methodology was selected for the experimental part in the 
COCOMO2000 approach based on several trial experiments. The order of the steps in the 
experiments was constructed based on a robust design algorithm and shown in the Figure 
10. 
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Figure 10. Robust design algorithm for performing the experiment (COCOMO2000). 
Slika 10. Algoritam robusnog dizajna za izvođenje eksperimenta (COCOMO2000). 

 
Step 1: Input layer, Clustering 
 
The input layer consists of data from the first 100 projects of the COCOMO2000 

dataset, divided into three clusters according to the value of actual effort expressed in 
person-months [PM]: less than 90PM (small projects), between 90PM and 500PM 
(medium projects), and more than 500PM (large projects). The three input values for the 
proposed neural network architectures ANN-L9, ANN-L18, ANN-L27, and ANN-L36 
are: X1 = E, X2 = PEMi, and X3 = KLOC (see formulas 5-7). 
 

Step 2: Coding method (fuzzification) 
 
In all trial experiments, the method that gave the best results was fuzzification 

which includes: mapping of all input values X1, X2 and X3 into real values given in the 
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interval [0, 1]: The function 𝜇𝐷(𝑋)∶	𝑅	→	[0,	1] , translates the real values of input signals 
into coded values from the interval [0, 1] , in the following way: 𝜇𝐷(𝑋!)	 =	
(𝑋!−𝑋+!,)/(𝑋+-.	−𝑋+!,) (min-max normalization) [121], where D is the set of data on 
which the experiment is performed. 

 
 Step 3: Activation function choices - hidden layer 

 
The functions of the hidden layer and the output layer use two different activation 

functions for proposed ANN architectures. EstEffANN represents the output value of 
proposed model (31): 
 
1.			𝑦! =

"
"/0!"#

 , 𝑖 = 1, 𝑛+++++                                                                                                             (31) 

 
a) None hidden and one output layer function for ANN-L9 architecture, see Figure 6, 
Table 5 (32): 
 
𝐸𝑠𝑡𝐸𝑓𝑓𝐴𝑁𝑁 − 𝐿9 = 1/�1 + 𝑒1(3$∙5$/3%∙5%/3&∙5&/"∙5')�                                             (32) 
 
where EstEffANN-L9 is the output value.                 
 
b) One hidden and one output layer functions for ANN-L18 architecture, see Figure 7, 
Table 6 (33)-(35): 
 
𝑌" = 1/�1 + 𝑒1(3$∙5$/3%∙5&/3&∙5()�                                                                              (33) 
𝑌% = 1/�1 + 𝑒1(3$∙5%/3%∙5'/3&∙5))�                                                                               (34) 
𝐸𝑠𝑡𝐸𝑓𝑓𝐴𝑁𝑁 − 𝐿18 = 1/�1 + 𝑒1(7$∙5*/7%∙5+)�                                                             (35) 
 
where Y1 and Y2 are calculated values from hidden layer and EstEffANN-L18 is the output 
value.                 
 
c) One hidden and one output layer functions for ANN-L27 architecture, see Figure 8, 
Table 7 (36)-(39): 
 
𝑌" =

"
"/0!(-$∙/$0-%∙/'0-&∙/*)

                                                                                            (36) 

𝑌% =
"

"/0!(-$∙/%0-%∙/(0-&∙/+)
                                                                                            (37) 

𝑌8 =
"

"/0!(-$∙/&0-%∙/)0-&∙/2)
                                                                                           (38) 

𝐸𝑠𝑡𝐸𝑓𝑓𝐴𝑁𝑁 − 𝐿27 = "
"/0!(3$∙/$403%∙/$$03&∙/$%0$∙/$&)

                                                  (39) 



Chapter 3: New, proposed models within three software  approaches_______ 

62 | 198 
 

where Y1, Y2, and Y3	 are calculated values from hidden layer and EstEffANN-L27 is the 
output value.               
 
d) Two hidden and one output layer functions for ANN-L36 architecture, see Figure 9, 
Table 7 (40)-(46): 
 
𝑌" =

"
"/0!(-$∙/$0-%∙/(0-&∙/2)

                                                                                             (40) 

𝑌% =
"

"/0!(-$∙/%0-%∙/)0-&∙/$4)
                                                                                            (41) 

	𝑌8 =
"

"/0!(-$∙/&0-%∙/*0-&∙/$$)
                                                                                         (42) 

𝑌9 =
"

"/0!(-$∙/'0-%∙/+0-&∙/$%)
                                                                                           (43) 

𝑍" =
"

"/0!(3$∙/$&03%∙/$(03&∙/$*03'∙/$2)
                                                                               (44) 

𝑍% =
"

"/0!(3$∙/$'03%∙/$)03&∙/$+03'∙/%4)
                                                                                (45) 

𝐸𝑠𝑡𝐸𝑓𝑓𝐴𝑁𝑁 − 𝐿36 = "
"/0!(5$∙/%$05%∙/%%0$∙/%&)

                                                               (46) 

 
where Y1, Y2, Y3, and Y4 are calculated values from the first hidden layer, Z1 and Z2 are 
calculated values from the second hidden layer and EstEffANN-L36 is the output value.   
 
Example of hyperbolic tangent for ANN-L27 and ANN-L36 according to formula (47): 
 

2. 𝑦! =	
0"#10!"#

0"#/0!"#
 , 𝑖 = 1, 𝑛+++++                                                                                              (47) 

 
a) Hidden and output layer functions for ANN-L27 architecture, according to formulas 
(48)-(51): 
 
𝑌" =

0(-$∙/$0-%∙/'0-&∙/*)10!(-$∙/$0-%∙/'0-&∙/*)

0(-$∙/$0-%∙/'0-&∙/*)/0!(-$∙/$0-%∙/'0-&∙/*)
                                                            (48) 

𝑌% =
0(-$∙/%0-%∙/(0-&∙/+)10!(-$∙/%0-%∙/(0-&∙/+)

0(-$∙/%0-%∙/(0-&∙/+)/0!(-$∙/%0-%∙/(0-&∙/+)
                                                            (49) 

𝑌8 =
0(-$∙/&0-%∙/(0-&∙/2)10!(-$∙/&0-%∙/(0-&∙/2)

0(-$∙/&0-%∙/(0-&∙/2)/0!(-$∙/&0-%∙/(0-&∙/2)
                                                            (50) 

𝐸𝑠𝑡𝐸𝑓𝑓𝐴𝑁𝑁 − 𝐿27 = 0(3$∙/$403%∙/$$03&∙/$%0$∙/$&)10!(3$∙/$403%∙/$$03&∙/$%0$∙/$&)

0(3$∙/$403%∙/$$03&∙/$%0$∙/$&)/0!(3$∙/$403%∙/$$03&∙/$%0$∙/$&)
      (51) 

 
where Y1, Y2, Y3 are calculated values from hidden layer and EstEffANN-L27 is the output 
value.                       
 
b) Hidden and output layer functions for ANN-L36 architecture, according to formulas 
(52)-(58): 
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𝑌" =
0(-$∙/$0-%∙/(0-&∙/2)10!(-$∙/$0-%∙/(0-&∙/2)

0(-$∙/$0-%∙/(0-&∙/2)/0!(-$∙/$0-%∙/(0-&∙/2)
                                                             (52) 

𝑌% =
0(-$∙/%0-%∙/)0-&∙/$4)10!(-$∙/%0-%∙/)0-&∙/$4)

0(-$∙/%0-%∙/)0-&∙/$4)/0!(-$∙/%0-%∙/)0-&∙/$4)
                                                          (53) 

𝑌8 =
0(-$∙/&0-%∙/*0-&∙/$$)10!(-$∙/&0-%∙/*0-&∙/$$)

0(-$∙/&0-%∙/*0-&∙/$$)/0!(-$∙/&0-%∙/*0-&∙/$$)
                                                          (54) 

𝑌9 =
0(-$∙/'0-%∙/+0-&∙/$%)10!(-$∙/'0-%∙/+0-&∙/$%)

0(-$∙/'0-%∙/+0-&∙/$%)/0!(-$∙/'0-%∙/+0-&∙/$%)
                                                          (55) 

𝑍" =
0(3$∙/$&03%∙/$(03&∙/$*03'∙/$2)10!(3$∙/$&03%∙/$(03&∙/$*03'∙/$2)

0(3$∙/$&03%∙/$(03&∙/$*03'∙/$2)/0!(3$∙/$&03%∙/$(03&∙/$*03'∙/$2)
                               (56) 

𝑍% =
0(3$∙/$'03%∙/$)03&∙/$+03'∙/%4)10!(3$∙/$'03%∙/$)03&∙/$+03'∙/%4)

0(3$∙/$'03%∙/$)03&∙/$+03'∙/%4)/0!(3$∙/$'03%∙/$)03&∙/$+03'∙/%4)
                               (57) 

𝐸𝑠𝑡𝐸𝑓𝑓𝐴𝑁𝑁 − 𝐿36 = 0(5$∙/%$05%∙/%%03&∙/$+0$∙/%&)10!(5$∙/%$05%∙/%%03&∙/$+0$∙/%&)

0(5$∙/%$05%∙/%%03&∙/$+0$∙/%&)/0!(5$∙/%$05%∙/%%03&∙/$+0$∙/%&)
      (58) 

 
where Y1, Y2, Y3, and Y4 are calculated values from the first hidden layer, Z1 and Z2 are 
calculated values from the second hidden layer and EstEffANN-L36 is the output value.  
 

Initial values in all proposed ANN architectures for weighting factors are taken 
from set [-1, 0, 1]. After the first iteration, the value of the cost effect function is calculated 
and arranged based on Taguchi Orthogonal Array and according to the following formula 
- for example, ANN-L27 and ANN-L36 are arranged as follows [7], [119] (59): 

 
L1W1	=	cost1	+	cost2	+	.	.	.+cost9	
L2W1	=	cost10	+	cost11	+	.	.	.+cost18	
L3W1	=	cost19	+	cost20	+	.	.	.+cost27	
….	
L1W13	=	cost1	+	cost5	+	.	.	.+cost26	
L1W13	=	cost2	+	cost6	+	.	.	.+cost27	
L1W13	=	cost3	+	cost4	+	.	.	.+cost25	
	
where	cost(𝑖	)	=	Σ	MRE(ANN-L27(𝑖	))                    (59) 
 
Calculating the levels for ANN-L36 architecture [7], [119] according to formula (60): 
	
L1W1	=	cost1	+	cost2	+	.	.	.+cost18		
L2W1	=	cost19	+	cost20	+	.	.	.+cost36	
….	
L1W23	=	cost1	+	cost5	+	.	.	.+cost34	
L2W23	=	cost2	+	cost6	+	.	.	.+cost35	
L3W23	=	cost3	+	cost4	+	.	.	.+cost36	
where	cost(𝑖	)	=	Σ	MRE(ANN-L36(𝑖	))                  (60) 



Chapter 3: New, proposed models within three software  approaches_______ 

64 | 198 
 

 For each subsequent iteration, the interval is divided as follows [7], [119] 
according to formula (61): 
 
L1W1new	=	L2W1old			 	
L2W1new	=	L2W1old	+	(L3W1old	−	L2W1old)/2	 	
L3W1new	=	L3W1old                            (61) 
 
where suffix “old” means values from the interval of the previous iteration, and “new” 
means the value calculated based on the division of the previous intervals. 
 

The set of input values of each dataset converges depending on the value of the 
cost effect function. An example of dividing the interval and calculating the value of the 
cost effect function through 6 iterations are given in Figures 11-16, and Tables 11-20. 

 
Table 11. Cost effect function values - 1st iteration. 

Tabela 11. Vrednosti funkcije troškova u prvoj iteraciji. 
 

Cost effect function values for the 1st iteration  

Wi W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 
L1 70.64 70.04 70.68 70.72 70.48 70.53 70.59 70.66 70.54 70.91 70.89 70.84 71.05 
L2 70.59 70.86 70.59 70.57 70.71 70.74 70.52 70.63 70.63 70.54 70.57 70.55 70.77 
L3 70.58 70.91 70.55 70.52 70.62 70.54 70.70 70.64 70.64 70.36 70.34 70.42 69.99 

 
 

 
Figure 11. Graphical representation of the cost effect function values - 1st iteration. 
Slika 11. Grafička reprezentacija vrednosti funkcije troškova tokom prve iteracije. 
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From Figure 11 and Table 11 it can be concluded that the weighting factors W2, 
W10 and W13 have the greatest influence on the change of MRE values in the next iteration. 
Weighting factor W8 has the smallest impact in this iteration. 
 

         
 

        
Figure 12. Division of the interval according to the value of the cost effect function. 

Slika 12. Podela intervala prema vrednostima funkcije troškova. 
 

Table 12. Intervals for the 2nd iteration. 
Tabela 12. Vrednosti intervala u drugoj iteraciji. 

 
Intervals for the 2nd iteration 

Wi W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 
L1 0.00 -1.00 0.00 0.00 -1.00 -1.00 -1.00 0.00 -1.00 0.00 0.00 0.00 0.00 

L2 0.50 -0.50 0.50 0.50 -0.50 -0.50 -0.50 0.50 -0.50 0.50 0.50 0.50 0.50 

L3 1.00 0.00 1.00 1.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00 1.00 1.00 

 
Table 13. Cost effect function values - 2nd iteration. 

Tabela 13. Vrednosti funkcije troškova u drugoj iteraciji. 
 

Cost effect function values for the 2nd iteration  

Wi W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 
L1 69.88 69.68 69.85 69.87 69.74 69.83 69.86 69.91 69.84 69.88 69.99 69.87 70.06 

L2 69.78 69.90 69.80 69.79 69.85 69.83 69.81 69.78 69.84 69.77 69.79 69.77 69.83 

L3 69.76 69.84 69.78 69.76 69.83 69.76 69.75 69.78 69.75 69.77 69.65 69.78 69.53 

 

70,50
70,55
70,60
70,65

1 2 3

W1

70,40

70,60

70,80

0 2 4

W5

70,63
70,64
70,65
70,66
70,67

0 2 4

W8

70,40
70,50
70,60
70,70

1 2 3

W9



Chapter 3: New, proposed models within three software  approaches_______ 

66 | 198 
 

 
Figure 13. Graphical representation of the cost effect function values - 2nd iteration. 
Slika 13. Grafička reprezentacija vrednosti funkcije troškova tokom druge iteracije. 

 
From Figure 13 and Table 13 it can be concluded that the weighting factors W11 

and W13 have the greatest influence on the change of MRE values in the next iteration. 
Weighting factors W3 and W5 have the smallest impact in this iteration. 

 
Table 14. Intervals for the  3rd iteration. 

Tabela 14. Vrednosti intervala u drugoj iteraciji. 
 

Intervals for the 3rd iteration 

Wi W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 

L1 0.50 -1.00 0.50 0.50 -1.00 -0.50 -0.50 0.50 -0.50 0.50 0.50 0.50 0.50 

L2 0.75 -0.75 0.75 0.75 -0.75 -0.25 -0.25 0.75 -0.25 0.75 0.75 0.75 0.75 

L3 1.00 -0.50 1.00 1.00 -0.50 0.00 0.00 1.00 0.00 1.00 1.00 1.00 1.00 

 
Table 15. Cost effect function values - 3rd iteration. 

Tabela 15. Vrednosti funkcije troškova u trećoj iteraciji. 
 

Cost effect function values for the 3rd iteration  

Wi W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 
L1 69.41 69.38 69.41 69.42 69.39 69.40 69.44 69.42 69.43 69.43 69.46 69.41 69.46 

L2 69.37 69.39 69.37 69.37 69.38 69.39 69.38 69.38 69.39 69.37 69.37 69.37 69.39 

L3 69.37 69.38 69.36 69.36 69.38 69.36 69.33 69.37 69.33 69.35 69.32 69.36 69.31 
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Figure 14. Graphical representation of the cost effect function values - 3rd iteration. 
Slika 14. Grafička reprezentacija vrednosti funkcije troškova tokom treće iteracije. 

 
From Figure 14 and Table 15 it can be concluded that the weighting factors W11 

and W13 have the greatest influence on the change of MRE values in the next iteration. 
Weighting factors W2 and W5 have the smallest impact in this iteration. 

 
Table 16. Intervals for the  4th iteration. 

Tabela 16. Vrednosti intervala u četvrtoj iteraciji. 
 

Intervals for the 4th iteration 

Wi W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 

L1 0.75 -1.00 0.75 0.75 -0.75 -0.25 -0.25 0.75 -0.25 0.75 0.75 0.75 0.75 

L2 0.88 -0.88 0.88 0.88 -0.63 -0.13 -0.13 0.88 -0.13 0.88 0.88 0.88 0.88 

L3 1.00 -0.75 1.00 1.00 -0.50 0.00 0.00 1.00 0.00 1.00 1.00 1.00 1.00 

 
Table 17. Cost effect function values - 4th iteration. 

Tabela 17. Vrednosti funkcije troškova u četvrtoj iteraciji. 
 

Cost effect function values for the 4th iteration  

Wi W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 
L1 69.22 69.22 69.22 69.23 69.22 69.22 69.24 69.22 69.24 69.23 69.24 69.23 69.24 

L2 69.21 69.22 69.21 69.21 69.21 69.21 69.21 69.21 69.22 69.21 69.21 69.21 69.21 

L3 69.21 69.21 69.21 69.21 69.21 69.21 69.19 69.21 69.19 69.20 69.20 69.20 69.19 
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Figure 15. Graphical representation of the cost effect function values - 4th iteration. 

Slika 15. Grafička reprezentacija vrednosti funkcije troškova tokom četvrte iteracije. 
 

 
From Figure 15 and Table 17 it can be concluded that the weighting factors W7 

and W9 have the greatest influence on the change of MRE values in the next iteration. 
Weighting factors W2 and W5 have the smallest impact in this iteration. 
 

Table 18. Intervals for the  5th iteration. 
Tabela 18. Vrednosti intervala u petoj iteraciji. 

 
Intervals for the 5th iteration 

Wi W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 

L1 0.88 -0.88 0.88 0.88 -0.63 -0.13 -0.13 0.88 -0.13 0.88 0.88 0.88 0.88 

L2 0.94 -0.81 0.94 0.94 -0.56 -0.06 -0.06 0.94 -0.06 0.94 0.94 0.94 0.94 

L3 1.00 -0.75 1.00 1.00 -0.50 0.00 0.00 1.00 0.00 1.00 1.00 1.00 1.00 

 
Table 19. Cost effect function values - 5th iteration. 

Tabela 19. Vrednosti funkcije troškova u petoj iteraciji. 
 

Cost effect function values for the 5th iteration  

Wi W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 
L1 69.15 69.15 69.15 69.15 69.15 69.15 69.16 69.15 69.16 69.16 69.16 69.16 69.16 

L2 69.15 69.15 69.15 69.15 69.15 69.15 69.15 69.15 69.15 69.15 69.15 69.15 69.15 

L3 69.15 69.15 69.15 69.15 69.15 69.15 69.14 69.15 69.14 69.14 69.14 69.15 69.14 
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Figure 16. Graphical representation of the cost effect function values - 5th iteration. 
Slika 16. Grafička reprezentacija vrednosti funkcije troškova tokom pete iteracije. 

 
From Figure 16 and Table 19 it can be concluded that the weighting factors W9 

and W10 have the greatest influence on the change of MRE values in the next iteration. 
Weighting factors W2 and W5 have the smallest impact in this iteration. 

 
Table 20. Intervals for the  6th iteration. 

Tabela 20. Vrednosti intervala u šestoj iteraciji. 
 

Intervals for the 6th iteration 
Wi W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 
L1 0.88 -0.88 0.88 0.88 -0.63 -0.13 -0.13 0.88 -0.13 0.88 0.88 0.88 0.88 

L2 0.94 -0.81 0.94 0.94 -0.56 -0.06 -0.06 0.94 -0.06 0.94 0.94 0.94 0.94 

L3 1.00 -0.75 1.00 1.00 -0.50 0.00 0.00 1.00 0.00 1.00 1.00 1.00 1.00 

 
 

By the interval division procedure, the MRE value decreases significantly in each 
subsequent iteration. The number of iterations required to reach the minimum relative 
error depends on the cost effect function. The rate at which each of the proposed ANNs 
advances toward the minimal magnitude relative error is actually its rate of convergence. 
e.g., the cost effect values of the ANN-L27 network function are calculated for each level 
L1, L2, and L3 after each iteration is performed. The cost effect function needs to be 
calculated for each of the architectures ANN-L9, ANN-L18, ANN-L27, and ANN-L36 
according to the Taguchi Orthogonal Arrays. This procedure should be repeated until the 
end of iterations, i.e. until the conditions are reached when GA <0.01. The figures above 
show the value of the cost effect function at all three levels, for all 5 iterations - for 
example, on the selected ANN-L27 architecture. From the figures it can also be concluded 
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how much is the influence of each weighting factor on the rate of convergence of the 
proposed ANN architecture. There are 13 weighting factors in the ANN-L27 architecture: 
W1, W2,...,W13. The closer the curves are, the contribution of weighting factors is minimal, 
for example from W1 to W5 on Figure 16. In contrast, if the curves are more distant, the 
contribution of their weighting factors to the convergence rate is higher, for example, from 
W8 to W10 on Figure 16. From this it can be concluded that not all weight factors have a 
uniform influence on the rate of convergence. The same procedure is repeated for all 
proposed architectures for each iteration. The rate of convergence of each ANN 
architecture depends on the appropriate division of the interval, which is performed based 
on the values of the cost effect function. As the values of input signals (projects) are 
heterogeneous, then the values of the cost effect function for all three levels are different. 
In the presented Figures 11-16 it can be seen that the values of the cost effect function for 
all three levels are uneven, i.e. that the network initially converges poorly. Dividing the 
interval properly, in each iteration performed, the symmetry of the first and third levels is 
achieved. When the second level has equal values, the ANN architecture converges to a 
specific value (MRE). 
 

Step 4: Decoding method (defuzzification) 
 
In all parts of the performed experiment, the appropriate method of defuzzification 

(decoding) was used according to the following formulas [122] (62)-(64): 
 
𝑋! = (𝑋+!, + µ:(𝑋!)) ∙ (𝑋+-. − 𝑋+!,)                                                                         (62) 
𝑂𝐴(𝐴𝑁𝑁 − 𝐿27 = 𝑋!), 𝑖 = (1, 27)+++++++++                                                                                (63) 
𝑂𝐴(𝐴𝑁𝑁 − 𝐿36 = 𝑋!), 𝑖 = (1, 36)+++++++++                                                                                 (64) 
 
where i=9, i=18, i=27 and i=36. 
 

Step 5: Output layer, tracking GA 
 
The performance of estimation strategies should be evaluated. There are a range 

of quantitative relation measurements of accuracy metrics (etc.) that could be used for 
assessing the quality of a particular estimation strategy. For each iteration in this 
experiment, the output values are obtained according to the following formulas/measures 
(65)-(69) [123]: 
 
𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = |𝐴𝑐𝑡𝐸𝑓𝑓𝑜𝑟𝑡 − 𝐸𝑠𝑡𝐸𝑓𝑓𝑜𝑟𝑡|                                                                         (65) 
𝑀𝐴𝐸! =

"
,
∑ |𝐴𝑐𝑡𝐸𝑓𝑓𝑜𝑟𝑡 − 𝐸𝑠𝑡𝐸𝑓𝑓𝑜𝑟𝑡|,
!$"                                                                    (66) 
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𝑀𝑅𝐸 = 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛/𝐴𝑐𝑡𝐸𝑓𝑓𝑜𝑟𝑡                                                                                     (67) 
𝑀𝑅𝐸 = "

,
	 ∙ ∑ 𝑀𝑅𝐸!,

!$"                                                                                                     (68) 

MMRE	=	mean	(MRE)                                                                                                    (69) 
For each of the experimental parts in every iteration, the Gradient Descent is 

monitored with the condition GA<0.01, calculated as (70):      
 
𝐺𝐴 = 𝑀𝑅𝐸&' −𝑀𝑅𝐸&( < 0.01,			 
𝑤ℎ𝑒𝑟𝑒	𝑖 = 1,… , 𝑛				𝑛	𝑖𝑠	𝑎	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐴𝑁𝑁	𝑎	𝑊𝑖𝑛𝑛𝑒𝑟	𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠.                                    (70) 
 

The difference of the minimum values for each iteration in each ANN architecture 
is denoted by delta, where delta(i) = 𝛿6, and is calculated as follows (71), (72): 
 
𝛿6 = 𝑀𝑀𝑅𝐸67 −𝑀𝑀𝑅𝐸(689)7			𝑖 − 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐴𝑁𝑁, 𝑘 − 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛.                                       (71) 
if 𝛿6 > 𝛿689,			𝑡ℎ𝑒𝑛	𝐴𝑁𝑁6 	𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠	𝑡𝑜	𝑀𝑀𝑅𝐸6		𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑜𝑓	𝑡ℎ𝑒	𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑	𝐴𝑁𝑁	𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒𝑠. (72) 
 

In this way, it can be determined which of the ANN architectures meets the given 
criterion of rapidity, i.e. which one converges at the fastest rate. By experimenting with 
different ANN architectures, a GA criterion was set to meet the required number of 
iterations or stopping convergence at GA <0.01.  

In the training part of the experiment of the each “ANN candidate” of the selected 
ANN architecture according to Taguchi’s Orthogonal Array, in each subsequent iteration, 
a reduction of MRE of less than 1% is achieved, which in this  experiment represents a 
"stop criterion" [114], [115]. 

 
Step 6: Correlation, Prediction 
 
Correlation represents the interrelationship between real and estimated value. The 

higher the correlation coefficient, the more stable the correlation. In this experiment, 
Pearson’s [124], Spearman’s [125] and R2 [126] test were followed. Correlation ranges 
from +1 to -1 and a correlation of +1 means that there is a perfect positive relationship 
between variables. The general formula for calculating the correlation coefficients 
between two variable is as follows (73): 
 

𝐶𝑜𝑟𝑟𝑒𝑙(𝑋, 𝑌) = ∑ (.#:
#;$ 	1	.̅)(>#	1	>?)

@∑ (.#1	.̅)% ∑ (>#1	>?)%:
#;$

:
#;$

                                                                       (73) 

 
Prediction at three criteria: PRED(25), PRED(30), and PRED(50) to calculate the 

percentage of the total number of ANNs that meet the GA criterion, see formula (74), 
[127]. 
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𝑃𝑅𝐸𝐷(𝑥) =
1
𝑛
	 ∙GH1,			𝑖𝑓			𝑀𝑅𝐸 ≤ 𝑥

0,								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

)

&*'

 

PRED(k) = count(MRE) < 25%    
PRED(k) = count(MRE) < 30%    
PRED(k) = count(MRE) < 50%  , where k = 25, k = 30, and k = 50.                                                          (74) 

 
Step 7: Obtained results 

            Testing of trained models is performed following the same methodology and 
algorithm related to other projects (these are not used in the training part of the 
experiment) in the same dataset. Validation as another quality check of proposed and 
trained models is performed also following the same methodology, but on different 
sources/other datasets. Also, testing and validation, are performed on the ANN network 
that gives the best results for each of the proposed ANN architectures. 
 
 

3.2 New, improved COSMIC FFP model 
 

As part of the COSMIC FFP approach, an improved COSMIC FFP model is 
presented in this subsection. For the improved COSMIC FFP model, the following 
architectures and corresponding orthogonal vector plans L12 and L36prim are used: 
 
1. COSMIC FFP and ANN-L12 
 

The first proposed architecture is ANN-L12. It consists of four input values, one 
hidden layer with two nodes, one output, and the total number of eleven weighting factors 
(𝑊𝑖, i = 1, 11++++++) and whose initial values are from the interval [-1, 1]. The Taguchi 
Orthogonal Array used in the construction of this proposed architecture contains two 
levels L1 and L2, see Figure 17, Table 21 [7], [8], [114]. Bias represents an additional 
weighting factor to complete the selected orthogonal plan and has a value of 1. 
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Table 21. Taguchi orthogonal vector plan (L12=211). 
Tabela 21. Taguči ortogonalni vektorski plan (L12=211). 

 
ANN-
L12 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 

ANN1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 
ANN2 L1 L1 L1 L1 L1 L2 L2 L2 L2 L2 L2 
ANN3 L1 L1 L2 L2 L2 L1 L1 L1 L2 L2 L2 
ANN4 L1 L2 L1 L2 L2 L1 L2 L2 L1 L1 L2 
ANN5 L1 L2 L2 L1 L2 L2 L1 L2 L1 L2 L1 
ANN6 L1 L2 L2 L2 L1 L2 L2 L1 L2 L1 L1 
ANN7 L2 L1 L2 L2 L1 L1 L2 L2 L1 L2 L1 
ANN8 L2 L1 L2 L1 L2 L2 L2 L1 L1 L1 L2 
ANN9 L2 L1 L1 L2 L2 L2 L1 L2 L2 L1 L1 
ANN10 L2 L2 L2 L1 L1 L1 L1 L2 L2 L1 L2 
ANN11 L2 L2 L1 L2 L1 L2 L1 L1 L1 L2 L2 
ANN12 L2 L2 L1 L1 L2 L1 L2 L1 L2 L2 L1 

 

 
Figure 17. ANN architecture with one hidden layer (ANN-L12). 

Slika 17. ANN arhitektura sa jednim skrivenim slojem (ANN-L12). 
 

2. COSMIC FFP and ANN-L36prim 
 

The second proposed architecture is ANN-L36prim. It consists of four input 
values, one hidden layer with three nodes, one output, and the total number of sixteen 
weighting factors (𝑊𝑖, i = 1, 16++++++) and whose initial values are from the interval [-1, 1]. 
The Taguchi Orthogonal Array used in the construction of this proposed architecture 
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contains two levels L1 and L2, see Figure 18, Table 22 [7], [8], [114]. Bias represents an 
additional weighting factor to complete the selected orthogonal plan and has a value of 1. 

 
Table 22. Taguchi orthogonal vector plan (L36prim=3112431). 

Tabela 22. Taguči ortogonalni vektorski plan (L36prim=3112431). 
 

ANN-
L36 
prim 

W 1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 

ANN1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 

ANN2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L1 L1 L1 L1 

ANN3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L1 L1 L1 L1 

ANN4 L1 L1 L1 L1 L2 L2 L2 L2 L3 L3 L3 L3 L1 L2 L2 L1 

ANN5 L1 L1 L1 L1 L3 L3 L3 L3 L2 L2 L2 L2 L1 L2 L2 L1 

ANN6 L3 L3 L3 L3 L1 L1 L1 L1 L2 L2 L2 L2 L1 L2 L2 L1 

ANN7 L1 L1 L2 L3 L1 L2 L3 L3 L1 L1 L1 L3 L2 L1 L2 L1 

ANN8 L2 L2 L3 L1 L2 L3 L1 L1 L2 L3 L3 L1 L2 L1 L2 L1 

ANN9 L3 L3 L1 L2 L3 L1 L2 L2 L3 L1 L1 L2 L2 L1 L2 L1 
ANN1

0 L1 L1 L3 L2 L1 L3 L2 L3 L2 L1 L3 L2 L2 L2 L1 L1 

ANN1
1 L2 L2 L1 L3 L2 L1 L3 L1 L3 L2 L1 L3 L2 L2 L1 L1 

ANN1
2 L3 L3 L2 L1 L3 L2 L1 L2 L1 L3 L2 L1 L2 L2 L1 L1 

ANN1
3 L1 L2 L3 L1 L3 L2 L1 L3 L3 L2 L1 L2 L1 L1 L1 L2 

ANN1
4 L2 L3 L1 L2 L1 L3 L2 L1 L1 L3 L2 L3 L1 L1 L1 L2 

ANN1
5 L3 L1 L2 L3 L2 L1 L3 L2 L2 L1 L3 L1 L1 L1 L1 L2 

ANN1
6 L1 L2 L3 L2 L1 L1 L3 L2 L3 L3 L2 L1 L1 L2 L2 L2 

ANN1
7 L2 L3 L1 L3 L2 L2 L1 L3 L1 L1 L3 L2 L1 L2 L2 L2 

ANN1
8 L3 L1 L2 L1 L3 L3 L2 L1 L2 L2 L1 L3 L1 L2 L2 L2 

ANN1
9 L1 L2 L1 L3 L3 L3 L1 L2 L2 L1 L2 L3 L2 L1 L2 L2 

ANN2
0 L2 L3 L2 L1 L1 L1 L2 L3 L3 L2 L3 L1 L2 L1 L2 L2 

ANN2
1 L3 L1 L3 L2 L2 L2 L3 L1 L1 L3 L1 L2 L2 L1 L2 L2 

ANN2
2 L1 L2 L2 L3 L3 L1 L2 L1 L1 L3 L3 L2 L2 L2 L1 L2 

ANN2
3 L2 L3 L3 L1 L1 L2 L3 L2 L2 L1 L1 L3 L2 L2 L1 L2 

ANN2
4 L3 L1 L1 L2 L2 L3 L1 L3 L3 L2 L2 L1 L2 L2 L1 L2 

ANN2
5 L1 L3 L2 L1 L2 L3 L3 L1 L3 L1 L2 L2 L1 L1 L1 L3 

ANN2
6 L2 L1 L3 L2 L3 L1 L1 L2 L1 L2 L3 L3 L1 L1 L1 L3 

ANN2
7 L3 L2 L1 L3 L1 L2 L2 L3 L2 L3 L1 L1 L1 L1 L1 L3 

ANN2
8 L1 L3 L2 L2 L2 L1 L1 L3 L2 L3 L1 L3 L1 L2 L2 L3 

ANN2
9 L2 L1 L3 L3 L3 L2 L2 L1 L3 L1 L2 L1 L1 L2 L2 L3 

ANN3
0 L3 L2 L1 L1 L1 L3 L3 L2 L1 L2 L3 L2 L1 L2 L2 L3 

ANN3
1 L1 L3 L3 L3 L2 L3 L2 L2 L1 L2 L1 L1 L2 L1 L2 L3 
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ANN3
2 L2 L1 L1 L1 L3 L1 L3 L3 L3 L3 L2 L2 L2 L1 L2 L3 

ANN3
3 L3 L2 L2 L2 L1 L2 L1 L1 L3 L1 L3 L3 L2 L1 L2 L3 

ANN3
4 L1 L3 L1 L2 L3 L2 L3 L1 L2 L2 L3 L1 L2 L2 L1 L3 

ANN3
5 L2 L1 L2 L3 L1 L3 L1 L2 L3 L3 L1 L2 L2 L2 L1 L3 

ANN3
6 L3 L2 L3 L1 L2 L1 L2 L3 L1 L1 L2 L3 L2 L2 L1 L3 

 

 
Figure 18. ANN architecture with one hidden layer (ANN-L36prim). 

Slika 18. ANN arhitektura sa jednim skrivenim slojem (ANN-L36prim). 
 

The experiment presented in this approach consists of three parts: 
 
1. Training of two different ANN architectures constructed according to the  
     corresponding Taguchi orthogonal vector plans (ANN-L12 and ANN36prim); 
2. Testing on ANN "Winner", which gave the best results (the lowest MMRE value) in  
     the first part of the experiment, for two proposed architectures on the same dataset; 
3. Validation on ANN "Winner" that gave the best results (the lowest MMRE value) in  
     the first part of the experiment, for each selected architecture, but using some other i.e.  
     different datasets. 
 
 

3.2.1 Data sets used in the COSMIC FFP approach 
 

For the first and second part of the experiment, the ISBSG [15] repository was 
used. In the 3rd part, different data sets are used: Desharnais dataset (avaiable at 
http://promise.site.uottawa.ca) and a combined dataset composed of projects of different 
companies. ISBSG offers a variety number of information regarding practices from 
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various organizations, applications, and development types, which represent its main 
potential. The ISBSG suggests that the most important criteria for estimation purposes are 
the functional values; the development type (new development, enhancement, or re-
development); the primary programming language or the language type/generation (e.g., 
3GL, 4GL); and the development platform (mainframe, midrange or PC).  

The results in Table 23. indicate the heterogeneous nature of the designs of each 
dataset used and within all three parts of the experiment. It can be seen that data sets in 
this approach [128], [129] are very different in terms of the programming languages used, 
the duration of application development, and an extensive range of functional values, with 
a large standard deviation, see Table 24. 
 

Table 23. Information on used datasets (COSMIC FFP). 
Tabela 23. Informacije o korišćenim skupovima podataka (COSMIC FFP). 

 
 Datasets Number of 

project 
Experiment 

Dataset_1 ISBSG (Functional Size<10) 37 Training 
 ISBSG (Functional Size<10) 15 Testing 
Dataset_2 ISBSG (10<Functional Size<50) 45 Training 
 ISBSG (10<Functional Size<50) 17 Testing 
Dataset_3 ISBSG (50<Functional 

Size<100) 
30 Training 

 ISBSG (10<Functional 
Size<100) 

13 Testing 

Dataset_4 ISBSG (100<Functional 
Size<500) 

60 Training 

 ISBSG (10<Functional 
Size<500) 

17 Testing 

Datset_5 ISBSG (Functional Size>500) 14 Training 
 ISBSG (Functional Size>500) 7 Testing 
Dataset_6 Desharnais 14 Validation1 
Dataset_7 Combined 33 Validation2 

 
Table 24. Basic statistics about datasets (COSMIC FFP). 

Tabela 24. Osnovni statistički podaci o korišćenim skupovima podataka (COSMIC 
FFP). 

 
Datasets N Min 

[PM] 
Max 
[PM] 

Mean 
[PM] 

Std. 
deviation 

[PM] 
Dataset_1 52 2.0 9.0 5.404 2.4031 
Dataset_2 62 10.0 48.0 24.823 11.3203 
Dataset_3 43 50.0 99.0 77.116 15.1441 
Dataset_4 77 104.0 492.0 234.130 113.8159 
Dataset_5 21 561.0 2090.0 1016.048 458.4442 
Dataset_6 14 140.0 3860.0 1011.429 920.4251 
Dataset_7 33 493.0 2589.0 1193.424 419.4201 
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3.2.2 The methodology used within the improved COSMIC FFP model 
 

The appropriate methodology was selected for the experimental part in the 
COSMIC FFP approach, i.e. it is based on several trial experiments. The order of the steps 
in the experiment was constructed based on a robust design algorithm and shown in the 
Figure 19. 

 

 
Figure 19. Robust design algorithm for performing the experiment (COSMIC FFP). 
Slika 19. Algoritam robusnog dizajna za izvođenje eksperimenta (COSMIC FFP). 

 
 Step 1: Input values are the data about particular project from the selected ISBSG 
dataset and are represented by four parameters (Entry, Exit, Read, Write), which describe 
the functional size. 
 

Step 2: All input values are transformed according to the following formula:  
 
The function 𝜇𝐷(𝑋)∶	𝑅	→	[0,	1] , translates the real values of input signals into 

coded values from the interval [0, 1] , in the following way: 𝜇𝐷(𝑋!)	=	(𝑋!−𝑋+!,)/(𝑋+-.	
−𝑋+!,) (min-max normalization) [121], where D is the set of data on which the 
experiment is performed, Xi is the input value, Xmin is the smallest input value, and Xmax 

the greatest input value on the observed dataset. 
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Step 3: The sigmoid function, as the activation function of the hidden layer was 
used (31): 
 
			𝑦! =

"
"/0!"#

 , 𝑖 = 1, 𝑛+++++                                                                                                             (31) 
 

The construction of the activation function is based on a combination of input 
values and corresponding weight coefficients 𝑊! for each of the proposed ANN 
architectures. 
 
a) Hidden and output layer functions for ANN-L12 architecture, see Figure 17, Table 21 
(75)-(77): 
 
𝑌1 = "

"/0!(<$∙=$0<%∙=&0<&∙=(0<'∙=*)	                                                                                    (75) 

𝑌2 = "
"/0!(<$∙=%0<%∙='0<&∙=)0<'∙=+)	                                                                                  (76) 

𝐸𝑠𝑡𝐸𝑓𝑓𝑜𝑟𝑡𝐴𝑁𝑁 − 𝐿12 = "
"/0!(?$∙=20?%∙=$40$∙=$$)	                                                         (77) 

 
where Y1 and Y2  are the hidden layer functions and EstEffortANN-L12 represents output 
function.  
 
b) Hidden and output layer functions for ANN-L36prim architecture, see Figure 18, Table 
22 (78)-(81): 
 
𝑌1 = "

"/0!(<$∙=$0<%∙='0<&∙=*0<'∙=$4)	                                                                                                 (78) 

𝑌2 = "
"/0!(<$∙=%0<%∙=(0<&∙=+0<'∙=$$)	                                                                                               (79) 

𝑌3 = "
"/0!(<$∙=&0<%∙=)0<&∙=20<'∙=$%)	                                                                                                (80) 

𝐸𝑠𝑡𝐸𝑓𝑓𝑜𝑟𝑡𝐴𝑁𝑁 − 𝐿36𝑝𝑟𝑖𝑚 = "
"/0!(?$∙=$&0?%∙=$'0?&∙=$(0$∙=$))	                                             (81) 

 
where Y1, Y2, and Y3 are the hidden layer functions and EstEffortANN-L36prim represents 
output function. 
 

In the first proposed ANN-L12 architecture, an orthogonal vector plan of two 
levels L1 and L2, and the initial values of the weighting factors Wi that take the values 
from the interval [-1, 1], were used. The second proposed architecture has an orthogonal 
vector plan of three levels L1, L2, and L3, and the initial values of the weighting factors 
Wi that takes the values from the interval [-1, 0, 1]. For each subsequent iteration, new 
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weight factor values must be calculated as follows (e.g., for ANN-L12 architecture) [7], 
[119] (82): 
 
W1∙L1	=	cost1	+	cost2	+	.	.	.+cost6		
W1∙L2	=	cost7	+	cost8	+	.	.	.+cost12		
….		
W12∙L1	=	cost1	+	cost5	+	.	.	.+cost12		
W12∙L2	=	cost2	+	cost3	+	.	.	.+cost11		
	
where	cost(𝑖	)	=	Σ	𝑀𝑅𝐸(𝐴𝑁𝑁(𝑖	))	                                           (82) 

For each subsequent iteration, the interval [-1, 1] is divided depending on the cost 
effect function as follows (83) [7], [119]: 
 
W1∙L1new	=	W1∙L1old		
W1∙L2new	=	W1∙L2old	+	(W1∙L2old	−	W1∙L1old)/2																																																																				(83) 
 
where W1∙L1old and W1∙L2old are values form the previous iteration. The set of input 
values of each dataset converges depending on the value of the cost effect function. 

 
Step 4: Method of defuzzification was used according to the following formula 

(84), (85) [122]: 
 
𝑋𝑖 = (𝑋𝑚𝑖𝑛 + 𝜇𝐷(𝑋𝑖)) ∙ (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)                                                                             (84) 
OA(ANNi) = Xi , where i = 12, i = 36.          (85) 
 
where OA represents actual effort of the particular project, that is calculated based on 
ANN-L12 and ANN-L36prim. 
 

Step 5: For each iteration in our experiment, the output values are obtained 
according to the following formulas/measures [123] (65)-(70):  
 
𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = |𝐴𝑐𝑡𝐸𝑓𝑓𝑜𝑟𝑡 − 𝐸𝑠𝑡𝐸𝑓𝑓𝑜𝑟𝑡|                                                                         (65) 
𝑀𝐴𝐸! =

"
,
∑ |𝐴𝑐𝑡𝐸𝑓𝑓𝑜𝑟𝑡 − 𝐸𝑠𝑡𝐸𝑓𝑓𝑜𝑟𝑡|,
!$"                                                                    (66) 

𝑀𝑅𝐸 = 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛/𝐴𝑐𝑡𝐸𝑓𝑓𝑜𝑟𝑡                                                                                     (67) 
𝑀𝑅𝐸 = "

,
	 ∙ ∑ 𝑀𝑅𝐸!,

!$"                                                                                                     (68) 

MMRE	=	mean	(MRE)                                                                                                    (69) 
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For each experimental part in every iteration, the Gradient Descent with the 
condition GA<0.01 is monitored and calculated as [114], [115] (70):      
 
𝐺𝐴 = 𝑀𝑅𝐸&' −𝑀𝑅𝐸&( < 0.01,			 
𝑤ℎ𝑒𝑟𝑒	𝑖 = 1,… , 𝑛				𝑛	𝑖𝑠	𝑎	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐴𝑁𝑁	𝑎	𝑊𝑖𝑛𝑛𝑒𝑟	𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠.                                  (70) 
 

Step 6: Examination of the influence of input values on the change of MMRE 
value (86)-(89): 
 
1. The influence of the first input parameter (Entry) and its value on the change of MMRE 
value is calculated as: 
 
					𝛿1 = mean(MMRE) – mean(MMRE1) 
 
    where MMRE1 is mean(MMRE) when X1=0;                                                                            (86) 
 
2. The influence of the second input parameter (Exit) and its value on the change of 
MMRE value is calculated as: 
 
				𝛿2 = mean(MMRE) – mean(MMRE2) 
 
   where MMRE2 is mean(MMRE) when X2=0;                                                                            (87) 
 
3. The influence of the third input parameter (Read) and its value on the change of MMRE 
value is calculated as: 
 
					𝛿3 = mean(MMRE) – mean(MMRE3) 
 
    where MMRE3 is mean(MMRE) when X3=0;                                                                            (88) 
 
4. The influence of the fourth input parameter (Write) and its value on the change of 
MMRE value is calculated as: 
 
				𝛿4 = mean(MMRE) – mean(MMRE4) 
 
   where MMRE4 is mean(MMRE) when X4=0;                                                                             (89) 
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Step 7: Correlation, Prediction  
 
Pearson’s [124], Spearman’s [125] and R2 [126] coefficients are monitored during 

the experiment (73). 
 

𝐶𝑜𝑟𝑟𝑒𝑙(𝑋, 𝑌) = ∑ (.#:
#;$ 	1	.̅)(>#	1	>?)

@∑ (.#1	.̅)% ∑ (>#1	>?)%:
#;$

:
#;$

                                                                                         (73) 

Additionally, Prediction at 25%, 30%, and 50% is the percentage of the total 
number of ANNs that meet the GA criterion (74) [127]. 
 

𝑃𝑅𝐸𝐷(𝑥)
1
𝑛 ∙GH1,			𝑖𝑓	𝑀𝑅𝐸 ≤ 𝑥

0,						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

@

6A9

 

 
PRED(k) = count(MRE) < 25%  
PRED(k) = count(MRE) < 30%  
PRED(k) = count(MRE) < 50% , where k = 25, k = 30, and k = 50.                                           (74) 
 

The second and third parts of the experiment are executed in the same way as the 
first part, with different projects and datasets being used. The second part uses the ISBSG 
dataset, but with projects that were not used in the first part. In the third part, the 
Desharnais dataset and combined dataset are used. 
 
 

3.3 New, improved UCP model 
 

As part of the UCP approach, an improved UCP modelproposed in the 
dissertation. For the improved UCP model, the following architectures and corresponding 
orthogonal vector plans L16 and L36prim are used: 
 
1. UCP and ANN-L16 
 

The first proposed architecture is ANN-L16. It consists of six input values, one 
hidden layer with two nodes, one output, and the total number of fifteen weighting factors 
(𝑊𝑖, i = 1, 15++++++) and their initial values are from the interval [-1, 1]. The Taguchi Orthogonal 
Array used in the construction of this proposed architecture contains two levels L1 and 
L2, see Figure 20, Table 25 [7], [8], [114]. Bias represents an additional weighting factor 
to complete the selected orthogonal plan and has a value of 1. 
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Table 25. Taguchi orthogonal vector plan (L16=215). 
Tabela 25. Taguči ortogonalni vektorski plan (L16=215). 

 
ANN-
L16 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 

ANN1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 

ANN2 L1 L1 L1 L1 L1 L1 L1 L2 L2 L2 L2 L2 L2 L2 L2 

ANN3 L1 L1 L1 L2 L2 L2 L2 L1 L1 L1 L1 L2 L2 L2 L2 

ANN4 L1 L1 L1 L1 L2 L2 L2 L2 L2 L2 L2 L1 L1 L1 L1 

ANN5 L1 L2 L2 L1 L1 L2 L2 L1 L1 L2 L2 L1 L1 L2 L2 

ANN6 L1 L2 L2 L1 L1 L2 L2 L2 L2 L1 L1 L2 L2 L1 L1 

ANN7 L1 L2 L2 L2 L2 L1 L1 L1 L1 L2 L2 L2 L2 L1 L1 

ANN8 L1 L2 L2 L2 L2 L1 L1 L2 L2 L1 L1 L1 L1 L2 L2 

ANN9 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 

ANN10 L2 L1 L2 L1 L2 L1 L2 L2 L1 L2 L1 L2 L1 L2 L1 

ANN11 L2 L1 L2 L2 L1 L2 L1 L1 L2 L1 L2 L2 L1 L2 L1 

ANN12 L2 L1 L2 L2 L1 L2 L1 L2 L1 L2 L1 L1 L2 L1 L2 

ANN13 L2 L2 L1 L1 L2 L2 L1 L1 L2 L2 L1 L1 L2 L2 L1 

ANN14 L2 L2 L1 L1 L2 L2 L1 L2 L1 L1 L2 L2 L1 L1 L2 

ANN15 L2 L2 L1 L2 L1 L1 L2 L1 L2 L2 L1 L2 L1 L1 L2 

ANN16 L2 L2 L1 L2 L1 L1 L2 L2 L1 L1 L2 L1 L2 L2 L1 

 

 
Figure 20. ANN architecture with one hidden layer (ANN-L16). 

Slika 20. ANN arhitektura sa jednim skrivenim slojem (ANN-L16). 



Chapter 3: New, proposed models within three software  approaches_______ 

83 | 198 
 

2. UCP and ANN-L36prim 
 

The second proposed architecture is ANN-L36prim. It consists of four input 
values, one hidden layer with three nodes, one output, and the total number of sixteen 
weighting factors (𝑊𝑖, i = 1, 16++++++), their initial values are from the interval [-1, 0, 1]. The 
Taguchi Orthogonal Array used in the construction of this proposed architecture is 
combined, where the first eleven parameters and the last sixteenth parameter are with 
three levels L1, L2, and L3, while the remaining four parameters are with two levels L1 
and L2, see Figure 21, Table 26 [7], [8], [114]. Bias represents an additional weighting 
factor to complete the selected orthogonal plan and has a value of 1. 
 

Table 26. Taguchi orthogonal vector plan (L36prim=3112431). 
Tabela 26. Taguči ortogonalni vektorski plan (L36prim=3112431). 

 
ANN-
L36 
prim 

W 1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 

ANN1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 

ANN2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L1 L1 L1 L1 

ANN3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L1 L1 L1 L1 

ANN4 L1 L1 L1 L1 L2 L2 L2 L2 L3 L3 L3 L3 L1 L2 L2 L1 

ANN5 L1 L1 L1 L1 L3 L3 L3 L3 L2 L2 L2 L2 L1 L2 L2 L1 

ANN6 L3 L3 L3 L3 L1 L1 L1 L1 L2 L2 L2 L2 L1 L2 L2 L1 

ANN7 L1 L1 L2 L3 L1 L2 L3 L3 L1 L1 L1 L3 L2 L1 L2 L1 

ANN8 L2 L2 L3 L1 L2 L3 L1 L1 L2 L3 L3 L1 L2 L1 L2 L1 

ANN9 L3 L3 L1 L2 L3 L1 L2 L2 L3 L1 L1 L2 L2 L1 L2 L1 

ANN1
0 L1 L1 L3 L2 L1 L3 L2 L3 L2 L1 L3 L2 L2 L2 L1 L1 

ANN1
1 L2 L2 L1 L3 L2 L1 L3 L1 L3 L2 L1 L3 L2 L2 L1 L1 

ANN1
2 L3 L3 L2 L1 L3 L2 L1 L2 L1 L3 L2 L1 L2 L2 L1 L1 

ANN1
3 L1 L2 L3 L1 L3 L2 L1 L3 L3 L2 L1 L2 L1 L1 L1 L2 

ANN1
4 L2 L3 L1 L2 L1 L3 L2 L1 L1 L3 L2 L3 L1 L1 L1 L2 

ANN1
5 L3 L1 L2 L3 L2 L1 L3 L2 L2 L1 L3 L1 L1 L1 L1 L2 

ANN1
6 L1 L2 L3 L2 L1 L1 L3 L2 L3 L3 L2 L1 L1 L2 L2 L2 

ANN1
7 L2 L3 L1 L3 L2 L2 L1 L3 L1 L1 L3 L2 L1 L2 L2 L2 

ANN1
8 L3 L1 L2 L1 L3 L3 L2 L1 L2 L2 L1 L3 L1 L2 L2 L2 

ANN1
9 L1 L2 L1 L3 L3 L3 L1 L2 L2 L1 L2 L3 L2 L1 L2 L2 

ANN2
0 L2 L3 L2 L1 L1 L1 L2 L3 L3 L2 L3 L1 L2 L1 L2 L2 

ANN2
1 L3 L1 L3 L2 L2 L2 L3 L1 L1 L3 L1 L2 L2 L1 L2 L2 

ANN2
2 L1 L2 L2 L3 L3 L1 L2 L1 L1 L3 L3 L2 L2 L2 L1 L2 

ANN2
3 L2 L3 L3 L1 L1 L2 L3 L2 L2 L1 L1 L3 L2 L2 L1 L2 

ANN2
4 L3 L1 L1 L2 L2 L3 L1 L3 L3 L2 L2 L1 L2 L2 L1 L2 

ANN2
5 L1 L3 L2 L1 L2 L3 L3 L1 L3 L1 L2 L2 L1 L1 L1 L3 



Chapter 3: New, proposed models within three software  approaches_______ 

84 | 198 
 

ANN2
6 L2 L1 L3 L2 L3 L1 L1 L2 L1 L2 L3 L3 L1 L1 L1 L3 

ANN2
7 L3 L2 L1 L3 L1 L2 L2 L3 L2 L3 L1 L1 L1 L1 L1 L3 

ANN2
8 L1 L3 L2 L2 L2 L1 L1 L3 L2 L3 L1 L3 L1 L2 L2 L3 

ANN2
9 L2 L1 L3 L3 L3 L2 L2 L1 L3 L1 L2 L1 L1 L2 L2 L3 

ANN3
0 L3 L2 L1 L1 L1 L3 L3 L2 L1 L2 L3 L2 L1 L2 L2 L3 

ANN3
1 L1 L3 L3 L3 L2 L3 L2 L2 L1 L2 L1 L1 L2 L1 L2 L3 

ANN3
2 L2 L1 L1 L1 L3 L1 L3 L3 L3 L3 L2 L2 L2 L1 L2 L3 

ANN3
3 L3 L2 L2 L2 L1 L2 L1 L1 L3 L1 L3 L3 L2 L1 L2 L3 

ANN3
4 L1 L3 L1 L2 L3 L2 L3 L1 L2 L2 L3 L1 L2 L2 L1 L3 

ANN3
5 L2 L1 L2 L3 L1 L3 L1 L2 L3 L3 L1 L2 L2 L2 L1 L3 

ANN3
6 L3 L2 L3 L1 L2 L1 L2 L3 L1 L1 L2 L3 L2 L2 L1 L3 

 

 
Figure 21. ANN architecture with one hidden layer (ANN-L36prim). 

Slika 21. ANN arhitektura sa jednim skrivenim slojem (ANN-L36prim). 
 

The experiment presented in this paper consists of three parts: 
1. Training of two different ANN architectures constructed according to the  
     corresponding Taguchi orthogonal vector plans (ANN-L16 and ANN36prim); 
2. Testing on ANN "Winner", which gave the best results (the lowest MMRE value) in  
     the first part of the experiment, for two proposed architectures on the same dataset; 
3. Validation on ANN "Winner" that gave the best results (the lowest MMRE value) in  
     the first part of the experiment, for each selected architecture, but using some other i.e.  
     different datasets. 
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3.3.1 Data sets used in the UCP approach 
 

For the first and second part of the experiment, the Use Case Point Benchmark 
Dataset by Radek Silhavy (UCP Benchmark Dataset) [130] was used. In the third part, 
different data sets were used, i.e. combined datasets composed of projects of different 
industrial companies were used. The results in Table 27. indicate a more homogeneous 
structure of the projects used in all three parts of the experiment. It is concluded based on 
the standard deviation results presented in Table 28. 
 

Table 27. Information on used datasets (UCP). 
Tabela 27. Informacije o korišćenim skupovima podataka (UCP). 

 
 Dataset Number of 

projects 
Experiment 

Dataset_1 UCP Benchmark Dataset 50 Training 
Dataset_2 UCP Benchmark Dataset 21 Testing 
Dataset_3 Combined 18 Validation1 
Dataset_4 Combined Industrial projects 17 Validation2 

 
Table 28. Basic statistics about dataset (UCP). 

Tabela 28. Osnovni statistički podaci o korišćenim skupovima podataka (UCP). 
 

Datasets N Min 
[PM] 

Max 
[PM] 

Mean 
[PM] 

Std. deviation 
[PM] 

Dataset_1 50 5775.0 7970.0 6506.940 653.0308 
Dataset_2 21 6162.6 6525.3 6393.993 118.1858 
Dataset_3 18 2692.1 3246.6 2988.392 233.2270 
Dataset_4 17 2176.0 3216.0 2589.400 352.0859 

 
 
3.3.2 The methodology used within the improved UCP model 
 

The appropriate methodology was selected for the experimental part in the UCP 
approach based on several trial experiments. The order of the steps in the experiment was 
constructed based on a robust design algorithm and it is shown in Figure 22. 
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Figure 22. Robust design algorithm for performing the experiment (UCP). 
Slika 22. Algoritam robusnog dizajna za izvođenje eksperimenta (UCP). 

 
Step 1: Input layer 
 
The input values of the first proposed architecture ANN-L16 are six input values, 

four of which are independent: UAW, UUCW, TCF, and ECF and two dependent: UUCP i 
AUCP. 
 

The input values of the second proposed architecture ANN-L36prim are four 
independent input values: UAW, UUCW, TCF, and ECF. 
 

Step 2: All input values are transformed according to the following formula:  
 
The function 𝜇𝐷(𝑋)∶	𝑅	→	[0,	1] , translates the real values of input signals into 

coded values from the interval [0, 1] , in the following way: 𝜇𝐷(𝑋!)	=	(𝑋!−𝑋+!,)/(𝑋+-.	
−𝑋+!,) (min-max normalization) [121], where D is the set of data on which the 
experiment is performed, Xi is the input value, Xmin is the smallest input value, and Xmax 
the greatest input value on the observed dataset. 

 
Step 3: The sigmoid function, as the activation function of the hidden layer was 

used (31): 
 
			𝑦! =

"
"/0!"#

 , 𝑖 = 1, 𝑛+++++                                                                                                             (31) 
 

The construction of the activation function is based on a combination of input 
values and corresponding weight coefficients 𝑊! for each of the proposed ANN 
architectures. 
 



Chapter 3: New, proposed models within three software  approaches_______ 

87 | 198 
 

a) Hidden and output layer functions for ANN-L16 architecture, see Figure 20, Table 25 
(90)-(92): 
 
𝑌" = 1/�1 + 𝑒1(3$∙5$/3%∙5&/3&∙5(/3'∙5*/3(∙52/3)∙5$$)�                                                (90) 
𝑌% = 1/�1 + 𝑒1(3$∙5%/3%∙5'/3&∙5)/3'∙5+/3(∙5$4/3)∙5$%)�                                             (91) 
𝐸𝑠𝑡𝐸𝑓𝑓𝐴𝑁𝑁 − 𝐿16 = 1/�1 + 𝑒1(7$∙5$&/7%∙5$'/"∙5$()�                                                (92) 
 
where Y1, Y2, and Y3 are the hidden layer functions and EstEffortANN-L16 represents 
output function. 
 
b) Hidden and output layer functions for ANN-L36prim architecture, see Figure 21, Table 
26 (78)-(81): 
 
𝑌1 = "

"/0!(<$∙=$0<%∙='0<&∙=*0<'∙=$4)	                                                                                                 (78) 

𝑌2 = "
"/0!(<$∙=%0<%∙=(0<&∙=+0<'∙=$$)	                                                                                               (79) 

𝑌3 = "
"/0!(<$∙=&0<%∙=)0<&∙=20<'∙=$%)	                                                                                                (80) 

𝐸𝑠𝑡𝐸𝑓𝑓𝑜𝑟𝑡𝐴𝑁𝑁 − 𝐿36𝑝𝑟𝑖𝑚 = "
"/0!(?$∙=$&0?%∙=$'0?&∙=$(0$∙=$))	                                             (81) 

 
where Y1, Y2, and Y3 are the hidden layer functions and EstEffortANN-L36prim represents 
output function. 

In the first proposed ANN-L16 architecture, an orthogonal vector plan of two 
levels L1 and L2, and the initial values of the weighting factors Wi that take the values 
from the interval [-1, 1], were used.  

The second proposed architecture has an orthogonal vector plan of three levels L1, 
L2, and L3, and the initial values of the weighting factors Wi that take the values from the 
interval [-1, 0, 1]. For each subsequent iteration, new weight factor values must be 
calculated as follows (e.g., for ANN-L16 architecture) [7], [119] (93): 
 
W1L1	=	cost1	+	cost2	+	.	.	.+cost8	
W1L2	=	cost9	+	cost10	+	.	.	.+cost16	
….	
W15L1	=	cost1	+	cost6	+	.	.	.+cost16	
W15L2	=	cost2	+	cost3	+	.	.	.+cost15	
	
where	cost(𝑖	)	=	Σ	𝑀𝑅𝐸(𝐴𝑁𝑁(𝑖))	                                (93) 
 

For each subsequent iteration, the interval [-1,  1] is divided depending on the cost 
effect function as follows [7], [119] (94): 
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W1L1new	=	W1L1old	 	
W1L2new	=	W1L2old	+	(W1L3old	−	W1L2old)/2	 	
W1L3new	=	W1L3old		 	 	 	 	 	 													(94)	
	
where	W1L1old,	W1L2old, and W1L3old are values form the previous iteration. The set 
of input values of each dataset converges depending on the value of the cost effect 
function. 
 

Step 4: Method of defuzzification was used according to the following formula 
(84), (85) [122]: 
 
𝑋𝑖 = (𝑋𝑚𝑖𝑛 + 𝜇𝐷(𝑋𝑖)) ∙ (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)                                                                             (84) 
OA(ANNi) = Xi , where i = 16, i = 36.          (85) 
 
where OA represents actual effort of the particular project, that is calculated based on 
ANN-L12 and ANN-L36prim. 
 

Step 5: For each iteration in our experiment, the output values are obtained 
according to the following formulas/measures [123] (65)-(70):  
 
𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = |𝐴𝑐𝑡𝐸𝑓𝑓𝑜𝑟𝑡 − 𝐸𝑠𝑡𝐸𝑓𝑓𝑜𝑟𝑡|                                                                         (65) 
𝑀𝐴𝐸! =

"
,
∑ |𝐴𝑐𝑡𝐸𝑓𝑓𝑜𝑟𝑡 − 𝐸𝑠𝑡𝐸𝑓𝑓𝑜𝑟𝑡|,
!$"                                                                    (66) 

𝑀𝑅𝐸 = 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛/𝐴𝑐𝑡𝐸𝑓𝑓𝑜𝑟𝑡                                                                                     (67) 
𝑀𝑅𝐸 = "

,
	 ∙ ∑ 𝑀𝑅𝐸!,

!$"                                                                                                     (68) 

MMRE	=	mean	(MRE)                                                                                                    (69) 
 

For each of the experimental part in every iteration, the Gradient Descent is 
monitored with the condition GA<0.01, calculated as [114], [115] (70):      
 
𝐺𝐴 = 𝑀𝑅𝐸&' −𝑀𝑅𝐸&( < 0.01,			𝑤ℎ𝑒𝑟𝑒	𝑖 = 1,… , 𝑛				𝑛	𝑖𝑠	𝑎	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐴𝑁𝑁.                      (70) 

 
Step 6: Influence of dependent variables UUCP and AUCP on the change of 

MMRE value. 
 
1. The influence of the input parameter UUCP and its value is calculated as (95): 
						
				𝛿1 = mean(MMRE) – mean(MMRE1)                                                                                     (95) 
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    where MMRE1 is mean(MMRE) when UUCP=0; 
 
2. The influence of the input parameter AUCP and its value is calculated as (96): 
					
				𝛿2 = mean(MMRE) – mean(MMRE2) when AUCP=0;                                                         (96) 
 

Step 7: Correlation, Prediction  
Pearson’s [124], Spearman’s [125] and R2 [126] coefficients are monitored during 

the experiment (73). 
 

𝐶𝑜𝑟𝑟𝑒𝑙(𝑋, 𝑌) = ∑ (.#:
#;$ 	1	.̅)(>#	1	>?)

@∑ (.#1	.̅)% ∑ (>#1	>?)%:
#;$

:
#;$

                                                                                         (73) 

 
Additionally, Prediction at 25%, 30%, and 50% is the percentage of the total 

number of ANNs that meet the GA criterion (74) [127]. 
 

𝑃𝑅𝐸𝐷(𝑥)
1
𝑛 ∙GH1,			𝑖𝑓	𝑀𝑅𝐸 ≤ 𝑥

0,						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

@

6A9

 

 
PRED(k) = count(MRE) < 25%  
PRED(k) = count(MRE) < 30%  
PRED(k) = count(MRE) < 50% , where k = 25, k = 30, and k = 50.                                           (74) 
 

The second and third part are executed in the same way as the first part, with 
different projects and datasets being used. The second part uses the also UCP Benchmark 
(Mendeley) dataset, but with projects that were not used in the first part. In the third part, 
the combined industrial datasets were used. 
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Chapter 4: Analysis of the obtained results by applying 
three new, improved models 

 
4.1 Obtained results using COCOMO2000 model and ANN 
 

Within the first proposed, improved COCOMO2000 approach, four different 
ANN architectures based on Taguchi's orthogonal vector plans were used, designated as 
ANN-L9, ANN-L18, ANN-L27, and ANN-L36. In the first part of the experiment - 
training these ANN architectures, the used COCOMO2000 data set was divided into three 
clusters, according to the value of actual effort: small, medium, and large.  
 - Small cluster (Actual Effort <50PM); 
 - Medium cluster (50PM<Actual Effort<500PM); 
 - Large cluster (Actual Effort>500PM). 

Table 29. shows the results obtained by training the first proposed ANN-L9 
architecture on a small cluster. In addition to examining the MRE values for each of the 
nine ANN architecture candidates, the GA criterion was also monitored. Based on all 
MRE values in each performed iteration, the "Winner" network was determined, i.e., the 
ANN network with the lowest MRE value (the ANN with the best performances). 
Additionally, the MMRE value was calculated for each iteration. The obtained value of 
the "Winner" network (ANN9) is 80.7%, and the value of MMRE is 81.1%. The required 
GA criterion was met after seven iterations.  

 
Table 29. ANN-L9 results of training part on small cluster. 

Tabela 29. Rezultati treniranja ANN-L9 nad malim klasterom. 
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Table 30. shows the results obtained by training the first proposed ANN-L9 
architecture on the medium cluster. In addition to examining the MRE values for each of 
the nine ANN architecture candidates, the GA criterion was also monitored. Based on all 
MRE values in each performed iteration, the "Winner" network was determined, i.e., the 
ANN network with the lowest MRE value. Additionally, the MMRE value was calculated 
for each iteration. The obtained value of the "Winner" network (ANN9) is 49.4%, and the 
value of MMRE is 49.8%. The required GA criterion was met after six iterations. 

 
Table 30. ANN-L9 results of training part on medium cluster. 

Tabela 30. Rezultati treniranja ANN-L9 nad srednjim klasterom. 
 

 
 

Table 31. shows the results obtained by training the first proposed ANN-L9 
architecture on a large cluster. In addition to examining the MRE values for each of the 
nine ANN architecture candidates, the GA criterion was also monitored. Based on all 
MRE values in each executed iteration, the "Winner" network is determined, i.e., the ANN 
network with the lowest MRE value. Additionally, the MMRE value was calculated for 
each iteration. The obtained value of the "Winner" network (ANN9) is 206.9%, and the 
value of MMRE is 207.6%. The required GA criterion was met after eight iterations. 
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Table 31. ANN-L9 results of training part on large cluster. 
Tabela 31. Rezultati treniranja ANN-L9 nad velikim klasterom. 

 

 
 
Figure 23. presents the MMRE results for all three clusters on which the ANN-L9 

training procedure was performed using the COCOMO2000 dataset. It can be concluded 
that the value of MMRE is the lowest on a small cluster (49.8%) and the highest on a large 
cluster (207.6%). Figure 24. presents the MMRE results for the obtained "Winner" 
network on all three clusters. The ANN-L9 training procedure was performed using the 
COCOMO2000 dataset. It can be concluded that the value of MMRE "Winner" is the 
lowest on a small cluster after seven iterations (49.4%) and the highest on a large cluster 
after the eight iterations (206.9%). 
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Figure 23. MMRE results in three parts of the experiment for all clusters (ANN-L9). 
Slika 23. Rezultati vrednosti MMRE u sva tri dela eksperimenta nad svim klasterima 

(ANN-L9). 
 

 
Figure 24. MMRE for “Winner” ANN9 (ANN-L9). 

Slika 24. MMRE vrednosti za “Winner” ANN9 (ANN-L9). 
 

Table 32. shows the results obtained by training the second proposed ANN-L18 
architecture on a small cluster. In addition to examining the MRE values for each of the 
18 ANNs, the GA criterion was also monitored. Based on all MRE values in each executed 
iteration, the "Winner" network is determined, i.e., the ANN network with the lowest 
MRE value. Additionally, the MMRE value was calculated for each iteration. The 
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obtained value of the "Winner" network (ANN5) is 63.3%, and the value of MMRE is 
63.7%. The required GA criterion was met after six iterations. 
 

Table 32. ANN-L18 results of training part on small cluster. 
Tabela 32. Rezultati treniranja ANN-L18 nad malim klasterom. 

 

 
 

Table 33. shows the results obtained by training the second proposed ANN-L18 
architecture on the medium cluster. In addition to examining the MRE values for each of 
the 18 ANNs, the GA criterion was also monitored. Based on all MRE values in each 
executed iteration, the "Winner" network is determined, i.e., the ANN network with the 
lowest MRE value. Additionally, the MMRE value was calculated for each iteration. The 
obtained value of the "Winner" network (ANN5) is 44.6%, and the value of MMRE is 
44.8%. The required GA criterion was met after six iterations. 
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Table 33. ANN-L18 results of training part on medium cluster. 
Tabela 33. Rezultati treniranja ANN-L18 nad srednjim klasterom. 

 

 
 

Table 34. shows the results obtained by training the second proposed ANN-L18 
architecture on a large cluster. In addition to examining the MRE values for each of the 
18 ANNs, the GA criterion was also monitored. Based on all MRE values in each executed 
iteration, the "Winner" network is determined, i.e., the ANN network with the lowest 
MRE value. Additionally, the MMRE value was calculated for each iteration. The 
obtained value of the "Winner" network (ANN5) is 137.0%, and the value of MMRE is 
137.3%. The required GA criterion was met after nine iterations. 
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Table 34. ANN-L18 results of training part on large cluster. 
Tabela 34. Rezultati treniranja ANN-L18 nad velikim klasterom. 

 

 
 

Figure 25. presents the MMRE results for all three clusters on which the ANN-
L18 training procedure was performed using the COCOMO2000 dataset. It can be 
concluded that the value of MMRE is the lowest on a small cluster (44.6%) and the highest 
on a large cluster (137.0%). Figure 26. presents the MMRE results for the obtained 
"Winner" network on all three clusters on which the ANN-L18 training procedure was 
performed using the COCOMO2000 dataset. It can be concluded that the value of MMRE 
"Winner" is the lowest on a small cluster after the sixth iteration (44.8%) and the highest 
on a large cluster after the ninth iteration (137.3%). 
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Figure 25. MMRE results in three parts of the experiment for all clusters (ANN-L18). 
Slika 25. Rezultati vrednosti MMRE u sva tri dela eksperimenta nad svim klasterima 

(ANN-L18). 
 

 
Figure 26. MMRE for “Winner” ANN5 (ANN-L18). 

Slika 26. MMRE vrednosti za “Winner” ANN5 (ANN-L18). 
 

Table 35. shows the results obtained by training the third proposed ANN-L27 
architecture on a small cluster. In addition to examining the MRE values for each of the 
27 ANNs, the GA criterion was also monitored. Based on all MRE values in each executed 
iteration, the "Winner" network is determined, i.e., the ANN network with the lowest 
MRE value. Additionally, the MMRE value was calculated for each iteration. The 
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obtained value of the "Winner" network (ANN5) is 59.8%, and the value of MMRE is 
60.4%. The required GA criterion was met after six iterations. 

 
Table 35. ANN-L27 results of training part on small cluster. 

Tabela 35. Rezultati treniranja ANN-L27 nad malim klasterom. 
 

 
 

Table 36. shows the results obtained by training the third proposed ANN-L27 
architecture on the medium cluster. In addition to examining the MRE values for each of 
the 27 ANNs, the GA criterion was also monitored. Based on all MRE values in each 
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executed iteration, the "Winner" network is determined, i.e., the ANN network with the 
lowest MRE value. Additionally, the MMRE value was calculated for each iteration. The 
obtained value of the "Winner" network (ANN5) is 43.2%, and the value of MMRE is 
43.3%. The required GA criterion was met after five iterations. 
 

Table 36. ANN-L27 results of training part on medium cluster. 
Tabela 36. Rezultati treniranja ANN-L27 nad srednjim klasterom. 
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Table 37. shows the results obtained by training the third proposed ANN-L27 
architecture on a large cluster. In addition to examining the MRE values for each of the 
27 ANN architecture candidates, the GA criterion was also monitored. Based on all MRE 
values in each executed iteration, the "Winner" network is determined, i.e., the ANN 
network with the lowest MRE value. Additionally, the MMRE value was calculated for 
each iteration. The obtained value of the "Winner" network (ANN5) is 48.8%, and the 
value of MMRE is 49.0%. The required GA criterion was met after eight iterations. 
 

Table 37. ANN-L27 results of training part on large cluster. 
Tabela 37. Rezultati treniranja ANN-L27 nad velikim klasterom. 
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Figure 27. presents the MMRE results for all three clusters on which the ANN-
L27 training procedure was performed using the COCOMO2000 dataset. It can be 
concluded that the value of MMRE is the lowest in the medium cluster (43.3%) and the 
highest in the small cluster (60.4%). Figure 28. presents the MMRE results for the 
obtained "Winner" network on all three clusters on which the ANN-L27 training 
procedure was performed using the COCOMO2000 dataset. It can be concluded that the 
value of MMRE "Winner" is the lowest in the medium cluster, after the fifth iteration 
(43.2%), and the highest in the small cluster after the sixth iteration (59.8%).  

 

 
Figure 27. MMRE results in three parts of the experiment for all clusters (ANN-L27). 
Slika 27. Rezultati vrednosti MMRE u sva tri dela eksperimenta nad svim klasterima 

(ANN-L27). 
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Figure 28. MMRE for “Winner” ANN5 (ANN-L27). 

Slika 28. MMRE vrednosti za “Winner” ANN5 (ANN-L27). 
 

Table 38. shows the results obtained by training the fourth proposed ANN-L36 
architecture on a small cluster. In addition to examining the MRE values for each of the 
36 ANNs, the GA criterion was also monitored. Based on all MRE values in each executed 
iteration, the "Winner" network is determined, i.e., the ANN network with the lowest 
MRE value. Additionally, the MMRE value was calculated for each iteration. The 
obtained value of the "Winner" network (ANN23) is 52.4%, and the value of MMRE is 
52.6%. The required GA criterion was met after five iterations. 
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Table 38. ANN-L36 results of training part on small cluster. 
Tabela 38. Rezultati treniranja ANN-L36 nad malim klasterom. 
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Table 39. shows the results obtained by training the fourth proposed ANN-L36 
architecture on the medium cluster. In addition to examining the MRE values for each of 
the 36 ANNs, the GA criterion was also monitored. Based on all MRE values in each 
executed iteration, the "Winner" network is determined, i.e., the ANN network with the 
lowest MRE value. Additionally, the MMRE value was calculated for each iteration. The 
obtained value of the "Winner" network (ANN18) is 42.9%, and the value of MMRE is 
43.0%. The required GA criterion was met after five iterations. 
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Table 39. ANN-L36 results of training part on medium cluster. 
Tabela 39. Rezultati treniranja ANN-L36 nad srednjim klasterom. 
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Table 40. shows the results obtained by training the fourth proposed ANN-L36 
architecture on a large cluster. In addition to examining the MRE values for each of the 
36 ANNs, the GA criterion was also monitored. Based on all MRE values in each executed 
iteration, the "Winner" network is determined, i.e., the ANN network with the lowest 
MRE value. Additionally, the MMRE value was calculated for each iteration. The 
obtained value of the "Winner" network (ANN23) is 49.5%, and the value of MMRE is 
49.9%. The required GA criterion was met after eight iterations. 
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Table 40. ANN-L36 results of training part on large cluster. 
Tabela 40. Rezultati treniranja ANN-L36 nad velikim klasterom. 
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Figure 29. presents the MMRE results for all three clusters on which the ANN-
L36 training procedure was performed using the COCOMO2000 dataset. It can be 
concluded that the value of MMRE is the lowest on the medium cluster (43.0%) and the 
highest on the small cluster (52.6%). Figure 30. presents the MMRE results for the 
obtained "Winner" network on all three clusters on which the ANN-L36 training 
procedure was performed using the COCOMO2000 dataset. It can be concluded that the 
value of MMRE "Winner" is the lowest in the medium cluster, after the fifth iteration 
(42.9%), and the highest in the small cluster after the five iterations (52.4%). 

 

 
Figure 29. MMRE results in three parts of the experiment for all clusters (ANN-L36). 
Slika 29. Rezultati vrednosti MMRE u sva tri dela eksperimenta nad svim klasterima 

(ANN-L36). 
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Figure 30. MMRE for “Winner” ANN23 (ANN-L36). 

Slika 30. MMRE vrednosti za “Winner” ANN23 (ANN-L36). 
 

The convergence rate describes the rate of the proposed algorithm, that is, the 
number of iterations required by the algorithm to achieve the smallest value, i.e. the 
minimum value of the MRE in experiment. From the point of view of a project,  it is 
calculated as the minimum relative error difference between every two output iterations. 
The rate of convergence of each cluster depends on the particular ANN architecture. 
Achieving the minimum MRE and fulfilling the criteria, GA<0.01 is achieved for the 
small and medium cluster after 5 iterations in architectures ANN-L27 and ANN-L36, 
while for the large cluster this condition is achieved after 8 iterations for architectures 
ANN-L9, ANN-L27, and ANN- L36. The rate of convergence in this approach implies a 
significant reduction in the number of iterations, and therefore a reduction in the time of 
effort estimation during the development of software projects.  
 

From Figure 31, it can be concluded that: 
𝛿𝑖 (𝐴𝑁𝑁 − 𝐿36) > 𝛿𝑖 (𝐴𝑁𝑁 − 𝐿18) > 𝛿𝑖 (𝐴𝑁𝑁 − 𝐿9) > 𝛿𝑖 (𝐴𝑁𝑁 − 𝐿27), that is, the ANN-
L36 architecture converges the fastest to the minimum MMRE on a small cluster.  
 

From Figure 32, it can be concluded that: 
𝛿𝑖 (𝐴𝑁𝑁 − 𝐿36) > 𝛿𝑖 (𝐴𝑁𝑁 − 𝐿27) > 𝛿𝑖 (𝐴𝑁𝑁 − 𝐿18) > 𝛿𝑖 (𝐴𝑁𝑁 − 𝐿9), that is, the ANN-
L36 architecture again converges the fastest for medium cluster.  
 

From Figure 33, it can be concluded that: 
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𝛿𝑖 (𝐴𝑁𝑁 − 𝐿36) > 𝛿𝑖 (𝐴𝑁𝑁 − 𝐿27) > 𝛿𝑖 (𝐴𝑁𝑁 − 𝐿18) > 𝛿𝑖 (𝐴𝑁𝑁 − 𝐿9) , that is, again, 
the ANN-L36 architecture converges the fastest to the minimum MMRE observed for a 
large cluster. 
 

 
Figure 31. Convergence rate of the four proposed ANNs on small cluster. 

Slika 31. Brzina konvergencije četiri predložene ANN arhitekture nad malim klasterom. 
 

 
Figure 32. Convergence rate of the four proposed ANNs on medium cluster. 

Slika 32. Brzina konvergencije četiri predložene ANN arhitekture nad srednjim 
klasterom. 
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Figure 33. Convergence rate of the four proposed ANNs on large cluster. 

Slika 33. Brzina konvergencije četiri predložene ANN arhitekture nad velikim 
klasterom. 

 
 

In the first part of this experiment, devoted to training proposed architectures: 
ANN-L9, ANN-L18, ANN-L27 and ANN-L36, a COCOMO2000 dataset of 100 projects 
was used, divided into clusters according to actual effort expressed in person-months 
(PM) as follows: for PM<90 (small cluster of 32 projects), for 90<PM<500 (medium 
cluster of 40 projects), and PM>500 (large cluster of 28 projects).  

The average value of MMRE during this part of the experiment is the lowest in 
the case of ANN-L36 network, which is the best result of all the obtained and is 43.3%.   

The ANN-L27 network has an MMRE value of 45.3%, which is 2% less than the 
best result.  

The networks ANN-L18 and ANN-L9, with 59.7% and 72.0% respectively, have 
a worse result, i.e. a higher value of MMRE.  

Based on the results in Table 8, it can be concluded that the ANN-L36 network 
gives the best result and converges the fastest to the minimum value of MMRE.  

Additionally, to improve the efficiency of the experiments, the Mean absolute 
error (MAE) was calculated. This value represents the average of differences in the 
absolute value between the actual effort and each estimated effort following the total 
number of projects, see Table 41. 

From the results it can be concluded that the ANN-L36 network achieves the best 
behavior with an average MMRE value of 43.3% in all three parts of the experiment. A 
slightly higher value of MMRE, about 2%, is achieved by the ANN-L27 architecture 
(45.3%). A weaker result is achieved with ANN-L18 (59.7%), and the worst result is 
achieved with ANN-L9 (72%), see Table 42, Figure 34.  
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It can be concluded that by increasing the number of hidden layers, the estimation 
of MMRE value is more reliable. 

 
Table 41. MAE for each proposed ANN architecture on clusters (COCOMO2000). 

Tabela 41. Vrednosti MAE za svaku predloženu arhitekturu u svim klasterima 
(COCOMO2000). 

 

 
 

Table 42. MMRE for each proposed ANN architecture on clusters (COCOMO2000). 
Tabela 42. Vrednosti MMRE za svaku predloženu arhitekturu u svim klasterima 

(COCOMO2000). 
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Figure 34. MMRE values of proposed ANN architectures for each part of the 

experiment (COCOMO2000). 
Slika 34. Vrednosti MMRE za svaku predloženu arhitekturu u svakom delu 

eksperimenta (COCOMO2000). 
 

In the training part of the experiment, it can be concluded that the medium cluster 
gives the best results for the ANN-L36 architecture (43.1%).  

In the testing part of the experiment, it can be concluded that the best result is 
achieved by a large cluster for the architectures ANN-L9 and ANN-L18 (13.6% for both 
architectures).  

In the validation part of the experiment, the best results were achieved on the 
medium cluster for all proposed architectures. 

During all three parts of the experiments, the prediction PRED (%) was monitored, 
i.e. the number of projects that meet the set GA criterion. It can be concluded that the 
value of PRED is approximate in all proposed architectures.  

During the training experiment, the best prediction is achieved by the ANN-L9 
network, while in part of testing and validation experiments, the best PRED value is 
achieved with the ANN-L27 and ANN-L36 networks, depending on the dataset. During 
the first and second validations, the best prediction result is achieved with the ANN-L36 
network, while during the third validation, the best results are obtained with the ANN-
L27 architecture, see Table 43.  

The results in Table 10. indicate the heterogeneous nature of the designs of each 
datasets used and directly affect the prediction results within all three parts of the 
experiment. It can be seen that data sets from 1 to 5 are very heterogeneous in terms of 
the programming languages used, the duration of application development, and a very 
large range of actual effort values, with a large standard deviation. 
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Table 43. Monitoring the prediction of each part of the experiment (COCOMO2000). 
Tabela 43. Praćenje predikcije u svakom delu eksperimenta (COCOMO2000). 

 
Training 

PRED(%) ANN-L9(%) ANN-L18(%) ANN-L27(%) ANN-L36(%) 
PRED(25) 20.0 21.0 16.0 16.0 
PRED(30) 22.0 23.0 22.0 21.0 
PRED(50) 51.0 46.0 42.0 43.0 

Testing 
PRED(25) 35.1 45.5 60.4 45.2 
PRED(30) 50.4 50.2 65.3 50.3 
PRED(50) 80.7 75.2 80.0 70.3 

Validation1 
PRED(25) 25.5 17.6 17.6 25.5 
PRED(30) 31.4 21.6 23.5 33.3 
PRED(50) 62.7 43.1 41.2 56.9 

Validation2 
PRED(25) 25.0 18.3 16.7 16.7 
PRED(30) 33.3 21.7 20.0 25.0 
PRED(50) 68.3 56.7 35.0 43.3 

Validation3 
PRED(25) 25.1 19.0 25.1 25.1 
PRED(30) 38.2 25.1 25.1 41.6 
PRED(50) 71.4 69.9 75.9 73.4 

 
 

The minimum value of MRE also depends on the nature of the projects, so in 
addition to the obtained training results on three clusters, it is necessary to test and validate 
these models on different data sources, i.e. on several different datasets. The correlation 
coefficient in this method represents the agreement of the actual effort and the estimated 
value. Statistical verification of the values of the correlation coefficients for all four 
proposed architectures proves the reliability of the method used to obtain the estimated 
value of each specified architecture. The observed correlations were obtained on a 
complete dataset and include all three defined clusters.  

A lower correlation value is observed in the simpler architectures ANN-L9 and 
ANN-L18, while the correlation has a higher value in the more complex architectures 
ANN- L27 and ANN-L36. It can be concluded that the best correlation results are obtained 
according to Pearson’s and Spearman’s for the architecture ANN-L36 and according to 
R2 for the architecture ANN-L27, see Table 44. All three coefficients were used to 
represent the correlation between the estimated and actual values of the actual effort for 
each of the selected architectures ANN-L9, ANN-L18, ANN-L27, and ANN-L36. 
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Table 44. Correlation for each ANN architecture 
(COCOMO2000). 

Tabela 44. Korelacija svake predložene ANN arhitekture (COCOMO2000). 
 

Correlation ANN-L9 ANN-L18 ANN-L27 ANN-L36 
Pearson’s 0.617 0.615 0.714 0.866 
Spearman’s rho 0.869 0.864 0.862 0.904 
R2   0.827 0.861 0.862 0.869 

 
Based on all parts of the experiment, it can be concluded that the ANN-L36 

architecture has the best results for the MMRE value (43.3%), observed on all clusters 
Table 42, the number of iterations is the lowest compared to other architectures, and for 
the small and medium cluster it is 5. The ANN-L36 architecture converges fastest 
compared to all proposed architectures, see Figure 31, Figure 32, and Figure 33. The three 
correlation coefficients attempt to best match the actual effort values for all datasets used 
in all parts of the experiment for ANN-L36.  

Prediction monitoring shows the best result with ANN-L36 in all parts of the 
experiment. Finally, among all the proposed architectures, regardless of the nature of the 
project, ANN-L36 gives the best and most reliable results. 

 
The results shown in the previous tables and figures of this approach 

(COCOMO2000) were processed in the R programming language (avaiable at: 
https://www.r-project.org/) and checked in the Python programming language (avaiable 
at: https://www.python.org/) within the RStudio environment (avaiable at: 
https://www.rstudio.com/products/rstudio/). The data required for statistical analysis 
were processed in the IBM SPSS Statistical 25 software tool (avaiable at: 
https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-25). 

 

4.2 Obtained results using COSMIC FFP model and ANN 
 

Within the second proposed, improved COSMIC FFP approach, two different 
ANN architectures based on Taguchi's orthogonal vector plans, designated as ANN-L12 
and ANN-L36prim, were used. In the first part of the experiment - training these ANN 
architectures, the used ISBSG data set was divided into five clusters depending on the 
functional size. After several experiments, it was found that the most reliable results in 
training and testing parts of the experiments are given by the proposed division of 70:30. 
In each cluster, 70% of the projects were used for training and the remaining 30% for 
testing.  
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Table 45. shows the results obtained by training the first proposed ANN-L12 
architecture on the first cluster. In addition to examining the MRE values for each of the 
12 ANN architecture candidates, the GA criterion was also monitored. Based on all MRE 
values in each executed iteration, the "Winner" network is determined, i.e., the ANN 
network with the lowest MRE value (the ANN with the best performances). Additionally, 
the MMRE value was calculated for each iteration. The obtained value of the "Winner" 
network (ANN1) is 36.1%, and the value of MMRE is 36.4%. The required GA criterion 
was met after five iterations. 

 
Table 45. ANN-L12 results of training part on Dataset_1 

(COSMIC FFP). 
Tabela 45. Rezultati treniranja ANN-L12 u Dataset_1 (COSMIC FFP). 

 

 
 
Table 46. shows the results obtained by training the first proposed ANN-L12 

architecture on the second cluster. In addition to examining the MRE values for each of 
the 12 ANN architecture candidates, the GA criterion was also monitored. Based on all 
MRE values in each executed iteration, the "Winner" network is determined, i.e., the ANN 
network with the lowest MRE value. Additionally, the MMRE value was calculated for 
each iteration. The obtained value of the "Winner" network (ANN1) is 35.4% and the 
value of MMRE is 35.7%. The required GA criterion was met after six iterations. 
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Table 46. ANN-L12 results of training part on Dataset_2 
(COSMIC FFP). 

Tabela 46. Rezultati treniranja ANN-L12 u Dataset_2 (COSMIC FFP). 
 

 
 

 
Table 47. shows the results obtained by training the first proposed ANN-L12 

architecture on the third cluster. In addition to examining the MRE values for each of the 
12 ANN architecture candidates, the GA criterion was also monitored. Based on all MRE 
values in each executed iteration, the "Winner" network is determined, i.e., the ANN 
network with the lowest MRE value. Additionally, the MMRE value was calculated for 
each iteration. The obtained value of the "Winner" network (ANN12) is 16.6%, and the 
value of MMRE is 16.8%. The required GA criterion was met after five iterations. 
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Table 47. ANN-L12 results of training part on Dataset_3 
(COSMIC FFP). 

Tabela 47. Rezultati treniranja ANN-L12 u Dataset_3 (COSMIC FFP). 
 

 
 

Table 48. shows the results obtained by training the first proposed ANN-L12 
architecture on the fourth cluster. In addition to examining the MRE values for each of 
the 12 ANN architecture candidates, the GA criterion was also monitored. Based on all 
MRE values in each executed iteration, the "Winner" network is determined, i.e., the ANN 
network with the lowest MRE value. Additionally, the MMRE value was calculated for 
each iteration. The obtained value of the "Winner" network (ANN1) is 29.4%, and the 
value of MMRE is 29.6%. The required GA criterion was met after six iterations. 
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Table 48. ANN-L12 results of training part on Dataset_4 
(COSMIC FFP). 

Tabela 48. Rezultati treniranja ANN-L12 u Dataset_4 (COSMIC FFP). 
 

 
 

Table 49. shows the results obtained by training the first proposed ANN-L12 
architecture on the fifth cluster. In addition to examining the MRE values for each of the 
12 ANN architecture candidates, the GA criterion was also monitored. Based on all MRE 
values in each executed iteration, the "Winner" network is determined (the ANN with the 
best performances), i.e., the ANN network with the lowest MRE value. Additionally, the 
MMRE value was calculated for each iteration. The obtained value of the "Winner" 
network (ANN1) is 24.1%, and the value of MMRE is 24.2%. The required GA criterion 
was met after six iterations. 
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Table 49. ANN-L12 results of training part on Dataset_5 
(COSMIC FFP). 

Tabela 49. Rezultati treniranja ANN-L12 u Dataset_5 (COSMIC FFP). 
 

 
 

The behavior of the introduced GA criterion on all five used ISBSG dataset 
clusters is shown in Figure 35. It can be concluded that in each cluster, five or six executed 
iterations are enough to achieve the minimum MMRE value.  

 

 
Figure 35. GA for all five clusters (ANN-L12). 

Slika 35. GA vrednost za svih pet korišćenih klastera (ANN-L12). 
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The MMRE value for the "Winner" network in each cluster used is graphically 
shown in Figure 36. It can be concluded that the difference between the MMRE value in 
the first and last iteration is minimal and weighs a constant value. 

 

 
Figure 36. “Winner“ MMRE for all five clusters (ANN-L12). 

Slika 36. Vrednost MMRE za “Winner“ mrežu za svih pet korišćenih klastera 
(ANN-L12). 

 
The value of MMRE in each cluster used is graphically shown in Figure 37. Unlike 

the value of MMRE "Winner" network, the functions are exponentially shaped and tend 

towards the minimum MMRE. 

 
Figure 37. MMRE value for all five clusters (ANN-L12). 

Slika 37. Vrednost MMRE za svih pet korišćenih klastera (ANN-L12). 
 

Table 50. shows the results obtained by training the second proposed ANN-
L36prim architecture on all five used ISBSG dataset clusters. The number of iterations in 
each cluster was monitored. The set GA criterion was met after six iterations for all five 
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clusters. A graphical representation of the GA criteria for all five clusters used is shown 
in Figure 38. 

 
Table 50. GA for all five clusters (ANN-L36prim). 

              Tabela 50. Vrednost GA za svih pet korišćenih klastera (ANN-L36prim). 
 

Gradient Descent (GA) for used datasets 

No. of Iteration 1. 2. 3. 4. 5. 6. 

Dataset_1 36 36 27 14 3 0 

Dataset_2 36 35 23 17 5 0 

Dataset_3 36 35 21 13 4 0 

Dataset_4 36 35 25 15 7 0 

Dataset_5 36 35 21 12 2 0 

 

 
 Figure 38. GA for all five clusters (ANN-L36prim). 

Slika 38. Vrednost GA za svih pet korišćenih klaster (ANN-L36prim) 
 

Table 51. shows the results obtained by training the second proposed ANN-
L36prim architecture on the first cluster. Based on all MRE values in each executed 
iteration, the "Winner" network is determined, i.e., the ANN network with the lowest 
MRE value. Additionally, the MMRE value was calculated for each iteration. The 
obtained value of the "Winner" network (ANN1) is 32.1%, and the value of MMRE is 
32.1%. The required GA criterion was met after six iterations. 
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Table 51. “Winner“ MMRE vs. MMRE Dataset_1 (ANN-L36prim). 
Tabela 51. Vrednost MMRE “Winner“ mreže u odnosu na vrednost MMRE u 

Dataset_1 (ANN-L36prim). 
 

MMRE (%) 

No. of Iteration 1. 2. 3. 4. 5. 6. 

Dataset_1 Winner 34.8% 33.5% 32.8% 32.5% 32.1% 32.1% 

Dataset_1 47.7% 37.6% 34.1% 33.1% 32.2% 32.1% 

 
A graphical representation of the MMRE value for the Winner network relative to 

the MMRE value on Dataset_1 during six iterations is given in Figure 39. 
 

 
Figure 39. “Winner“ MMRE vs. MMRE Dataset_1 (ANN-L36prim). 

Slika 39. Grafička reprezentacija vrednosti MMRE “Winner“ mreže u odnosu na 
vrednost MMRE u Dataset_1 (ANN-L36prim). 

 
 

Table 52. shows the results obtained by training the second proposed ANN-
L36prim architecture in the second cluster. Based on all MRE values in each executed 
iteration, the "Winner" network is determined, i.e., the ANN network with the lowest 
MRE value. Additionally, the MMRE value was calculated for each iteration. The 
obtained value of the "Winner" network (ANN36) is 32.0%, and the value of MMRE is 
32.0%. The required GA criterion was met after six iterations. 
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Table 52. “Winner“ MMRE vs. MMRE Dataset_2 (ANN-L36prim). 
Tabela 52. Vrednost MMRE “Winner“ mreže u odnosu na vrednost MMRE u 

Dataset_2 (ANN-L36prim). 
 

MMRE (%) 

No. of Iteration 1. 2. 3. 4. 5. 6. 

Dataset_2 Winner 35.2% 34.1% 33.8% 32.7% 32.2% 32.0% 

Dataset_2 49.7% 38.6% 36.9% 35.0% 32.3% 32.0% 

 
A graphical representation of the MMRE value for the Winner network relative to 

the MMRE value on Dataset_2 during six iterations is given in Figure 40. 

 
Figure 40. “Winner“ MMRE vs. MMRE Dataset_2 (ANN-L36prim) 

Slika 40. Grafička reprezentacija vrednosti MMRE “Winner“ mreže u odnosu na 
vrednost MMRE u Dataset_1 (ANN-L36prim). 

 
 

Table 53. shows the results obtained by training the second proposed architecture 
ANN-L36prim on the third cluster. Based on all MRE values in each executed iteration, 
the "Winner" network is determined, i.e., the ANN network with the lowest MRE value. 
Additionally, the MMRE value was calculated for each iteration. The obtained value of 
the "Winner" network (ANN12) is 16.4%, and the value of MMRE is 16.4%. The required 
GA criterion was met after six iterations. 
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Table 53. “Winner“ MMRE vs. MMRE Dataset_3 (ANN-L36prim). 
Tabela 53. Vrednost MMRE “Winner“ mreže u odnosu na vrednost MMRE u 

Dataset_3 (ANN-L36prim). 
 

MMRE (%) 

No. of Iteration 1. 2. 3. 4. 5. 6. 

Dataset_3 Winner 16.7% 16.6% 16.5% 16.7% 16.4% 16.4% 

Dataset_3 20.6% 18.5% 17.3% 16.9% 16.5% 16.4% 

 
Graphical representation of the MMRE value for the "Winner" network relative to 

the MMRE value on Dataset_3 during six iterations is given in Figure 41. 
 

 
Figure 41. “Winner“ MMRE vs. MMRE Dataset_3 (ANN-L36prim). 

Slika 41. Grafička reprezentacija vrednosti MMRE “Winner“ mreže u odnosu na 
vrednost MMRE u Dataset_3 (ANN-L36prim). 

 
 

Table 54. shows the results obtained by training the second proposed architecture 
ANN-L36prim on the fourth cluster. Based on all MRE values in each executed iteration, 
the "Winner" network is determined, i.e., the ANN network with the lowest MRE value. 
Additionally, the MMRE value was calculated for each iteration. The obtained value of 
the "Winner" network (ANN5) is 29.7%, and the value of MMRE is 29.7%. The required 
GA criterion was met after six iterations. 
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Table 54. “Winner“ MMRE vs. MMRE Dataset_4 (ANN-L36prim). 
Tabela 54. Vrednost MMRE “Winner“ mreže u odnosu na vrednost MMRE u 

Dataset_4 (ANN-L36prim). 
 

MMRE (%) 

No. of Iteration 1. 2. 3. 4. 5. 6. 

Dataset_4 Winner 37.5% 33.2% 32.1% 31.5% 30.4% 29.7% 

Dataset_4 51.1% 42.7% 35.7% 32.2% 31.1% 29.7% 

 
Graphical representation of MMRE value for "Winner" network relative to 

MMRE value on Dataset_4 during six iterations is given in Figure 42. 
 
 

 
Figure 42. “Winner“ MMRE vs. MMRE Dataset_4 (ANN-L36prim). 

Slika 42. Grafička reprezentacija vrednosti MMRE “Winner“ mreže u odnosu na 
vrednost MMRE u Dataset_4 (ANN-L36prim). 

 
 

Table 55. shows the results obtained by training the second proposed architecture 
ANN-L36prim in the fourth cluster. Based on all MRE values in each executed iteration, 
the "Winner" network is determined, i.e., the ANN network with the lowest MRE value. 
Additionally, the MMRE value was calculated for each iteration. The obtained value of 
the "Winner" network (ANN5) is 19.0%, and the value of MMRE is 19.1%. The required 
GA criterion was met after six iterations. 
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Table 55. “Winner“ MMRE vs. MMRE Dataset_5 (ANN-L36prim). 
Tabela 55. Vrednost MMRE “Winner“ mreže u odnosu na vrednost MMRE u 

Dataset_5 (ANN-L36prim). 
 

MMRE (%) 

No. of Iteration 1. 2. 3. 4. 5. 6. 

Dataset_5 Winner 33.6% 29.4% 26.4% 22.5% 20.3% 19.0% 

Dataset_5 40.3% 34.5% 29.8% 27.5% 22.4% 19.1% 

 
Graphical representation of MMRE value for "Winner" network relative to 

MMRE value on Dataset_5 during six iterations is given in Figure 43. 
 

 
Figure 43. “Winner“ MMRE vs. MMRE Dataset_4 (ANN-L36prim). 

Slika 43. Grafička reprezentacija vrednosti MMRE “Winner“ mreže u odnosu na 
vrednost MMRE u Dataset_5 (ANN-L36prim). 

 
 

In this approach, the first proposed ANN-L12 architecture is with one hidden layer 
and two nodes, and then the second proposed ANN-L36prim architecture is with also one 
hidden layer and three nodes. The number of hidden layers indicates reducing the number 
of iterations to achieve the stop criteria. Choice of ANN architecture with one hidden 
layer did not significantly increase the number of factors. In the ANN-L12 architecture, 
this number is 11, and in the ANN-L36prim is 16, which was acceptable in COSMIC FFP 
approach, while experiments showed that the MMRE value was reduced by 0.9%. It is 
not necessary to introduce more complex architectures because this did not require more 
time for processing than other ANN architectures experimented with. 
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The result that was monitored during the execution of the required iterations is the 
value of MMRE, which, depending on the nature of the dataset, proved to be stable for 
the two proposed architectures in all three parts of the experiment.  

Datasets with a small functional size have a higher value of MMRE (Dataset_1, 
Dataset_2) than datasets with a medium value of functional size (Dataset_3). Datasets 
with a large functional size value have a medium MMRE value (Dataset_4, Dataset_5). 
Validation datasets have different values of functional magnitude and have a higher 
MMRE value. The lowest value of MMRE is achieved on Dataset_3 for the proposed 
ANN-L12 architecture (17.0%), while for ANN-L36prim the value of MMRE is 16.4%. 
The mean MMRE value on all datasets in all three parts of the experiment was 29.7% for 
ANN-L12 and 28.8% for ANN-L36prim, see Figure 44, Table 56. Compared to the 
COCOMO approach, the value of MMRE was significantly reduced by 14.5%, see Table 
57. 

 
Table 56. MMRE value for each proposed ANN architecture (COSMIC FFP). 
Tabela 56. Vrednost MMRE za svaku predloženu arhitekturu (COSMIC FFP). 

 
Datasets ANN-L12 

MMRE(%) 
ANN-L36prim 

MMRE(%) 
Part of 
experiment 

Dataset_1 36.1 36.2 Training 
36.7 35.6 Testing 

Dataset_2 33.2 32.0 Training 
36.6 33.8 Testing 

Dataset_3 17.0 16.4 Training 
18.1 17.2 Testing 

Dataset_4 29.6 29.7 Training 
29.8 29.6 Testing 

Dataset_5 24.2 19.0 Training 
27.0 24.8 Testing 

Dataset_6 34.9 39.1 Validation1 
Dataset_7 33.2 31.8 Validation2 
AVERAGE(MMRE) 29.7 28.8  

 
Table 57. MMRE values COCOMO2000 vs. COSMIC FFP. 

Tabela 57. Vrednosti MMRE u poređenju COCOMO2000 i COSMIC FFP. 
 

COCOMO model Functional point - COSMIC 
model 

ANN L-18 
MMRE (%) 

ANN L-27 
MMRE (%) 

ANN L-36 
MMRE (%) 

ANN L-12 
MMRE (%) 

ANN L-36prim 
MMRE (%) 

59.7 45.3 43.3 29.7 28.8 
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Figure 44. Graphical representation of MMRE value for each proposed ANN 

architecture (COSMIC FFP). 
Slika 44. Grafička reprezentacija vrednosti MMRE svake predložene arhitekture 

(COSMIC FFP). 
 

In addition to examining MMRE value, the convergence rate on all five datasets 
for the two ANN architectures was considered. It can be concluded that both architectures 
ANN-L12 and ANN-L36prim converge the fastest in Dataset_5 and the slowest in 
Dataset_, see Figure 45, Figure 46. 
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Figure 45. Convergence rate ANN-L12 (COSMIC FFP). 

Slika 45. Brzina konvergencije ANN-L12 (COSMIC FFP). 
 

 
Figure 46. Convergence rate ANN-L36prim (COSMIC FFP). 

Slika 46. Brzina konvergencije ANN-L36prim (COSMIC FFP). 
 
 

 
The higher the value of the correlation coefficient, the more stable the relationship 

between the observed values. By calculating the correlation coefficient between the 
estimated and actual value, the reliability, accuracy, and precision of the proposed 
approach can be determined. Correlation coefficients, calculated according to Pearson and 
Spearman, indicate that the correlation is very high. The best result, based on the 
experiment performed, is achieved on Dataset_2 and Dataset_4, while the worst outcome 
is achieved on Dataset_6 and Dataset_7, see Table 58. 
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Table 58. Correlation coefficients (COSMIC FFP). 
Tabela 58. Korelacioni koeficijenti (COSMIC FFP). 

 
Correlation Pearson Spearman's rho 

Datasets ANN-L12 ANN-
L36prim ANN-L12 ANN-

L36prim 
Dataset_1 0.859 0.756 0.884 0.785 
Dataset_2 0.984 0.788 0.984 0.808 
Dataset_3 0.734 0.688 0.745 0.678 
Dataset_4 0.912 0.911 0.918 0.917 
Dataset_5 0.767 0.618 0.715 0.918 
Dataset_6 0.628 0.586 0.612 0.534 
Dataset_7 0.674 0.622 0.654 0.618 

 
By monitoring the prediction at three different values: 25%, 30%, and 50%, it is 

possible to conclude the appropriate degree of certainty of the proposed approach. This 
allows the best model of the presented ANN architectures to be selected. If the prediction 
value is high, the proposed model is good. In our approach, the highest prediction value 
of the 25% criterion is achieved on the Dataset_3 for ANN-L36prim architecture (84.1%). 
The highest prediction value of the 30% criterion is conducted on the Dataset_3 for ANN-
L36prim architecture (86.4%). The prediction value of the 50% criterion is achieved again 
for the ANN-L36prim architecture but within the Dataset_1 (98.1%). We can show that 
in our work, prediction represents the percentage of projects that have an MRE value of 
less than 25%, 30, and 50%, respectively, see Table 59. 

 
Table 59. Prediction measured on three criteria 

(COSMIC FFP). 
Tabela 59. Merenje predikcije na sva tri predložena kriterijuma (COSMIC FFP). 

 
PRED 

(%) P(25) P(30) P(50) 

Datasets ANN-L12 ANN-
L36prim ANN-L12 ANN-

L36prim ANN-L12 ANN-
L36prim 

Dataset_1 39.6 37.7 49.1 52.8 83.0 98.1 
Dataset_2 33.3 31.7 41.3 44.4 69.8 82.5 
Dataset_3 79.5 84.1 86.4 86.4 95.5 97.7 
Dataset_4 42.3 42.3 51.3 51.3 78.2 80.8 
Dataset_5 50.0 59.1 54.5 63.6 81.8 86.4 
Dataset_6 28.6 28.6 28.6 35.7 78.6 78.6 
Dataset_7 30.3 30.3 42.4 57.6 81.8 84.8 

 
In addition to the presented criterions for monitoring the efficiency, effectiveness, 

and precision of the proposed approach, the influence of the input values of the COSMIC 
FFP method on the change in the MMRE value was also monitored. By omitting each 
value for the four input values (Entry, Exit, Read, and Write), the change in MMRE versus 
mean (MMRE) for the proposed architecture on each selected dataset was monitored. In 



Chapter 4: Analysis of the obtained results by applying three new, improved models___ 

132 | 198 
 

this way, it is possible to determine the impact of each input value on the final estimated 
value of the project. 

When examining the influence of these input values for the ANN-L12 
architecture, it can be concluded that the most significant influence has the second input 
value (Exit) on Dataset_1 (5.3%) and the smallest first input value (Entry) on Dataset_6 
(-1.1%). It can be concluded that the Exit value on Dataset_1 increases the MMRE value 
by 5.3%, while Entry value decreases the MMRE value by 1.1%. The influence of all four 
input values on all seven datasets ranges in the interval [- 1.1, 5.3]. A value of 0.0% means 
that the input value does not affect the change in the MMRE value, see Figure 47, Table 
60. 

 
Table 60. Influence of input values on MMRE value (d(%)) - ANN-L12 architecture. 
Tabela 60. Uticaj ulaznih veličina na vrednost MMRE (d(%)) - ANN-L12 arhitektura. 

 
   d(%) Dataset_1 Dataset_2 Dataset_3 Dataset_4 Dataset_5 Dataset_6 Dataset_7 

Entry 3.3 3.7 0.2 0.0 0.3 -1.1 0.5 
Exit 5.3 1.3 0.2 0.7 1.4 0.9 0.5 
Read 4.1 -0.7 0.2 0.6 0.0 2.3 0.0 
Write 0.6 1.3 -0.1 0.3 0.0 0.8 0.0 
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Figure 47. Graphical representation of the influence of input values on MMRE value 

(ANN-L12 COSMIC FFP). 
Slika 47. Grafička reprezentacija uticaja ulaznih veličina na vrednost MMRE (ANN-

L12 COSMIC FFP). 
 

When examining the influence of the input values for ANN-L36prim architecture, 
it can be concluded that the first input value has the most significant influence (Entry) on 
Dataset_2 (3.7%). In comparison, the most negligible impact has the fourth input value 
(Write) in Dataset_7 (-2.0%). It can be concluded that the Entry value on Dataset_2 
increases the MMRE value by 3.7%, while the Write value decreases the MMRE value 
by 2.0%. The influence of all four input values individually on all seven datasets take 
values from the interval [-2.0, 3.7], see Figure 48, Table 61. 
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Table 61. Influence of input values on MMRE value (d(%)) - ANN-L36prim architecture. 
Tabela 61. Uticaj ulaznih veličina na vrednost MMRE (d(%)) - ANN-L36prim 

arhitektura. 
 

d(%) Dataset_1 Dataset_2 Dataset_3 Dataset_4 Dataset_5 Dataset_6 Dataset_7 
Entry 3.4 3.7 0.7 0.9 1.3 0.9 0.8 
Exit 2.2 0.7 0.1 0.8 0.9 1.2 -0.6 
Read 0.6 -0.7 0.1 1.2 1.6 1 -1.6 
Write 0.4 1.1 0.4 1 0.2 1.7 -2.0 

 

 
Figure 48. Graphical representation of the influence of input values on MMRE value 

(ANN-L36prim COSMIC FFP). 
Slika 48. Grafička reprezentacija uticaja ulaznih veličina na vrednost MMRE (ANN-

L36prim COSMIC FFP). 
 

 
The COSMIC FFP measure defines a model of software functionality. By 

monitoring the influence of input values (Entry, Exit, Read, Write), the value of MMRE 
can be further improved depending on the user's needs, i.e. functional requirements, 
depending on the software being developed. By examining the individual effects of four 
different input values, it can be concluded that the most significant changes come from 
Entry and Exit input values. Therefore, it is necessary to re-perform the analysis and 
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additional testing of these two input values to establish if everything in their requirements 
is necessary. Entry value represents user messages to the system. It is desirable and 
possible to redesign this size and thus write it in a more suitable form to reduce its impact 
on the value of MMRE. The Exit value represents the messages that the system returns in 
response and can be read from files and can result from some logical, arithmetic and other 
mathematical operations. This size can be redesigned and modified to reduce its impact 
on MMRE. With these modifications and possible changes that will be adjusted to the 
needs of the users of the system, it is possible to increase the efficiency, accuracy, 
stability, and reliability of the proposed approach, and thus the success of the completion 
of the software project. The models and tools are currently consolidated to estimate 
software project development efforts based on functional points that express the 
functional size of that program. Recent research and many companies use the COSMIC 
FFP method because it is possible to assess the development effort in the initial stage 
compared to previously used FPA methods.  

The obtained results of the used COSMIC FFP method show that it is possible 
with our approach and applied methodology to estimate the functional size quite 
accurately. Remarkably, the results found tend to suggest that in the presence of a set of 
projects, concerning the application domain, the nature of computation performed, and 
the implementation technology, it's possible to get more accurate estimates of the 
functional size (expressed either in FP or in CFP) on the premise of several base functional 
components (BFC) [12]. Before presenting the requirements specification in detail, it is 
possible to make an early  if there is not enough time to apply some other standard 
methods. 

 
The results shown in the previous tables and figures of this approach (COSMIC 

FFP) were processed in the R programming language (avaiable at: https://www.r-
project.org/) and checked in the Python programming language (avaiable at: 
https://www.python.org/) within the RStudio environment (avaiable at: 
https://www.rstudio.com/products/rstudio/). The data required for statistical analysis 
were processed in the IBM SPSS Statistical 25 software tool (avaiable at: 
https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-25). 
 

4.3 Obtained results using UCP model and ANN 
 

With the UCP model, it is possible to measure the size of the system similar as 
with the model of functional points. This model represents system characteristics and uses 
cases to estimate effort and cost needed for realization of software project. UCP is one of 
the most commonly used model due to the exceptional evaluation results that can be 
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achieved. The disadvantage of this model is that it does not consider the data structure in 
the system because such data are not contained in the use cases.  

Table 62. shows the results obtained by training the first proposed ANN-L16 
architecture on the used dataset. The number of iterations concerning the required GA 
criterion was monitored. The GA criterion was met after four iterations. Based on all MRE 
values in each executed iteration, the "Winner" network is determined, i.e., the ANN 
network with the lowest MRE value. Additionally, the MMRE value was calculated for 
each iteration. The obtained value of the "Winner" network (ANN6) is 6.7%, and the value 
of MMRE is 7.1%. 

In addition to examining the MMRE value, the convergence rate on all training 
data for the two ANN architectures was examined. It can be concluded that the ANN-
L36prim architecture quickly converges to the minimum knowledge of MMRE compared 
to the ANN-L16 architecture, see Figure 49. 

 

 
Figure 49. Convergence rate ANN-L16 vs. ANN-L36prim (UCP). 

Slika 49. Brzina konvergencije ANN-L16 u odnosu na ANN-L36prim (UCP). 
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Table 62. ANN-L16 results of training part. 
Tabela 62. Rezultati treniranja ANN-L16. 

 
 
A graphical representation of GA values during four iterations is shown in Figure 50. 
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Figure 50. GA for ANN-L16 - training part (UCP). 

Slika 50. Vrednost GA za ANN-L16 - treniranje (UCP). 
 

A graphical representation of the MRE value for the "Winner" network relative to 
the MMRE value on the training dataset during the four iterations is given in Figure 51. 

 

 
Figure 51. “Winner“ MRE vs. MMRE on the training dataset (ANN-L16). 

Slika 51. Vrednost MMRE “Winner“ mreže u odnosu na vrednost MMRE na skupu 
podataka za treniranje (ANN-L16). 

 
Table 63. shows the results obtained by training the second proposed ANN-36prim 

architecture on the used dataset. The number of iterations concerning the set GA criterion 
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was monitored. The GA criterion was met after six iterations. Based on all MRE values 
in each executed iteration, the "Winner" network is determined, i.e., the ANN network 
with the lowest MRE value. Additionally, the MMRE value was calculated for each 
iteration. The obtained value of the "Winner" network (ANN10) is 6.9%, and the value of 
MMRE is 7.0%. 
 

Table 63. ANN-L36prim results of training part. 
Tabela 63. Rezultati treniranja ANN-L36prim. 

 
ANN-L36prim 

GA 36 35 23 14 3 0 
Winner 7.3% 7.2% 7.1% 7.0% 7.0% 6.9% 
MMRE 12.1% 9.4% 8.4% 7.5% 7.2% 7.0% 

 
A graphical representation of GA values during six iterations is shown in Figure 52. 

 

 
Figure 52. GA for ANN-L36prim - training part (UCP). 

Slika 52. Vrednost GA za ANN-L36prim - treniranje (UCP). 
 
 

A graphical representation of the MRE value for the "Winner" network relative to 
the MMRE value on the training dataset during six iterations is given in Figure 53. 
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Figure 53. “Winner“ MRE vs. MMRE on the training dataset (ANN-L36prim). 

Slika 53. Vrednost MMRE “Winner“ mreže u odnosu na vrednost MMRE na skupu 
podataka za treniranje (ANN-L36prim). 

 
 

The obtained results for the two proposed architectures, ANN-L16 and ANN-L36, 
in all three parts of the experiment showed that the different nature of the data set does 
not affect the complexity of the architecture used. Furthermore, it does not depend on the 
value of the input values.  

In the first proposed architecture, ANN-L16, all six input values were used (where 
four are linearly dependent and two linearly independent), and the MMRE value in all 
three parts of the experiment is 7.5%, see Table 64.  

Using the second architecture ANN-L36prim with four independent input values, 
the same MMRE value was obtained in all three parts of the experiment i.e. 7.5%, see 
Table 64.  

The error differences in individual parts of the experiment are not more than 0.5%, 
indicating the proposed model's reliability. 
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Table 64. MMRE value in all three parts of the experiment (UCP). 
Tabela 64. Vrednost MMRE u sva tri dela eksperimenta (UCP). 

 

Datasets 
ANN-L16 ANN-L36prim Part of 

experiment MMRE(%) MMRE(%) 

Dataset_1 
6.7 7.0 Training 
7.1 7.1 Testing 

Dataset_2 8.0 7.5 Validation1 

Dataset_3 8.3 8.4 Validation2 

AVERAGE(MMRE) 7.5 7.5  

 
The huge values of the correlation coefficients (Pearson’s and Spearman’s rho) 

further show the consistency of the actual and estimated values obtained using the 
proposed models. In the ANN-L36prim architecture, Pearson’s value is 0.983, which 
indicates an exceptional interrelationship between the observed values, see Table 65. 

 
Table 65. Correlation coefficients (UCP). 

Tabela 65. Korelacioni koeficijenti (UCP). 
 

Correlation ANN-L16 ANN-L36prim 
Pearson’s 0.875 0.983 
Spearman’s rho 0.784 0.962 

 
Prediction represents the number of projects that have an error less than the value 

set by criterion. Prediction can further confirm the validity and reliability of the models 
used. For all three proposed criteria: PRED (25), PRED (30), and PRED (50), and in all 
three parts of the experiment: training, testing and validation, using both proposed 
architectures, the value is 100%, see Table 66. 
 
 
 
 
 
 
 
 
 
 
 



Chapter 4: Analysis of the obtained results by applying three new, improved models___ 

142 | 198 
 

Table 66. Prediction values (UCP). 
Tabela 66. Vrednosti predikcije (UCP). 

 
Training 

PRED(%) ANN-L16(%) ANN-L36prim(%) 
PRED(25) 100.0 100.0 
PRED(30) 100.0 100.0 
PRED(50) 100.0 100.0 

Testing 
PRED(25) 100.0 100.0 
PRED(30) 100.0 100.0 
PRED(50) 100.0 100.0 

Validation1 
PRED(25) 100.0 100.0 
PRED(30) 100.0 100.0 
PRED(50) 100.0 100.0 

Validation2 
PRED(25) 100.0 100.0 
PRED(30) 100.0 100.0 
PRED(50) 100.0 100.0 

 
By examining the influence of dependent and independent variables on the change 

of MMRE value, it was shown that it is sufficient to use a four-dimensional vector instead 
of a six-dimensional vector. The error with dependent input values on the four datasets 
used is between -0.3 to 0.5, which is less than 1%. The most significant influence has the 
input value of AUCP (Dataset_3), and the change in the value of MMRE is, in that case, 
is increased by 0.5%. The slightest influence has the input value of UUCW (Dataset_4), 
and the change in the value of MMRE is, in this case, is decreased by 0.5%, which would 
mean that the error can be reduced/increased if the observed values are further analyzed.  

It can be concluded that the architecture with six input sizes can be replaced with 
the architecture with four input sizes. That is, in the observed approach, the ANN-L16 
architecture can be replaced with the ANN-L36prim architecture, see Table 67.  
 

Table 67. Influence of the input values on the MMRE change (UCP). 
Tabela 67. Uticaj ulaznih veličina na promenu vrednosti MMRE (UCP). 

 

Dataset MMRE UAW UUCW UUCP TCF ECF AUCP 

Dataset_1 6.7% 7.1% 6.7% 7.0% 6.7% 6.7% 7.1% 
Dataset_2 7.0% 7.1% 7.0% 7.2% 6.9% 7.1% 7.2% 
Dataset_3 8.0% 7.9% 8.1% 7.9% 8.1% 8.1% 7.5% 
Dataset_4 8.3% 7.9% 8.4% 7.9% 8.3% 8.2% 8.0% 
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From Table 68, it can be concluded that the dependent variable UUCP has less 
impact than the dependent variable AUCP. The most significant influence of AUCP 
(Dataset_3) on the change in MMRE value is 0.5%. The slightest influence of AUCP 
(Dataset_1) on the change in MMRE value is -0.3%. 
 

Table 68. Influence of dependent variables (UUCP and AUCP) on the change of 
MMRE value. 

Tabela 68. Uticaj zavisnih promenljivih (UUCP and AUCP) na promenu vrednosti 
MMRE. 

 
Dataset UUCP g-UUCP=MMRE-UUCP AUCP g-AUCP=MMRE-AUCP 

Dataset_1 6.9% -0.1% 6.8% -0.3% 
Dataset_2 7.1% -0.1% 7.1% -0.1% 
Dataset_3 8.0% 0.1% 8.0% 0.5% 
Dataset_4 8.2% 0.2% 8.2% 0.2% 

 max 0.2% max 0.5% 
 min -0.1% min -0.3% 
A graphical representation of the dependent input values of UUCP and AUCP 

with the values of their errors is given in Figure 54. 
 
 

 
                    Figure 54. Influence of dependent variables (UUCP and AUCP) on the 

change of MMRE value. 
Slika 54. Uticaj zavisnih promenljivih (UUCP and AUCP) na promenu vrednosti 

MMRE. 
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The results shown in the previous tables and figures for this approach (UCP) were 
processed in the R programming language (avaiable at: https://www.r-project.org/) and 
checked in the Python programming language (avaiable at: https://www.python.org/) 
within the RStudio environment (avaiable at: https://www.rstudio.com/products/rstudio/). 
The data required for statistical analysis were processed in the IBM SPSS Statistical 25 
software tool (avaiable at: https://www.ibm.com/support/pages/downloading-ibm-spss-
statistics-25). 

 
4.4 Analysis of three proposed models 
 

Comparative analysis of the parametric COCOMO2000 method with the 
improved COCOMO2000 by use of ANN leads us to the conclusion that reduction of the 
model error is 193.1/43.3=4.5 times. In the second proposed approach, comparing the 
parametric method COCOMO2000 and the improved COSMIC FFP with ANN, the 
model error reduction is 193.1/28.8=6.7 times. Compared to the parametric 
COCOMO2000 method with UCP and ANN, the model error reduction is 193.1/7.5=25.7 
times Table 69, Figure 55.  

In the first proposed approach, the lowest model error value is 43.3% for ANN-
L36 architecture. In the second proposed approach, the lowest error value is achieved with 
ANN-L36prim and it is 28.8%. In the third proposed approach, both proposed 
architectures ANN-L16 and ANN-L36prim give the lowest model error value of 7.5%, 
see Table 69, Figure 55.  

It can be concluded that the third proposed UCP approach achieves the lowest 
MMRE value. In addition, the ANN-L16 architecture in this approach quickly converges 
and reaches the "stop criterion" after the 4th iteration, which is also the lowest number of 
iterations performed concerning all used architectures in all three proposed approaches.  

The influence of dependent variables on the change of MMRE value in the ANN-
L16 architecture is less than 0.5%. It can be concluded that the improved UCP model 
using the ANN-L16 architecture is the best-proposed estimator of effort and cost for 
software project development.  

 
Table 69. MMRE values for used approaches. 

Tabela 69. Vrednosti MMRE u korišćenim pristupima. 
 

MMRE(%)  COCOMO2000 and ANN COSMIC FFP and ANN UCP and ANN 
COCOMO20

00 
ANN-

L9 
ANN-
L18 

ANN-
L27 

ANN-
L36 

ANN-
L12 

ANN-
L36prim ANN-L16 ANN-

L36prim 
193.1% 72.0% 59.7% 45.3% 43.3% 29.7% 28.8% 7.5% 7.5% 
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Figure 55. MMRE value for used approaches. 

Slika 55. Vrednosti MMRE u korišćenim pristupima. 
 

By selecting the best ANN architectures, which achieved the lowest MMRE value 
for each of the three proposed, improved models, it can be concluded that: COSMIC FFP 
with ANN is 43.3/28.8=1.5 times better than COCOMO2000 with ANN; UCP with ANN 
is 48.8/7.5=5.8 times better than COCOMO2000 with ANN; UCP with ANN is 
28.8/7.5=3.8 times better than COSMIC FFP with ANN, see Table 70. 
 

 
Table 70. COCOMO2000 and ANN vs. COSMIC FFP and ANN vs. UCP and ANN. 
Tabela 70. Poređenje vrednosti MMRE za COCOMO2000 i ANN, COSMIC FFP i 

ANN i UCP i ANN. 
 

 
  

COCOMO2000 and ANN COSMIC FFP and ANN UCP and ANN 

MMRE(%) 
ANN-L36 ANN-L36prim ANN-L16 ANN-L36prim 

43.3% 28.8% 7.5% 7.5% 
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Chapter 5: The problem of generalization 
 

During the software product development, various data are collected and used. By 
applying different machine learning tools, numerous analyses are performed, and specific 
conclusions are drawn based on which important decisions related to project 
implementation success are made [114], [115]. A huge number of tasks in the estimation 
process can be presented as machine learning problems. When it comes to artificial neural 
networks, the training procedure provides a large number of possibilities for solving the 
presented problem. It is essential to experiment with sufficiently available realistic 
projects to evaluate the new proposed solutions and projects accurately [119].  

The information environment is constantly evolving and needs to be adjusted 
quickly and efficiently process of effort and cost estimation. Problems that remain 
insufficiently defined during ANN estimation are a division of the dataset into clusters, 
the optimal number of projects within each dataset, and various algorithms to check the 
size of the cluster concerning the number of weighting coefficients by various statistical 
analyses.  

In addition to experiments with the three proposed new models and several 
different ANN architectures, it is necessary to experiment with new methods to achieve 
further improvements of cost and effort estimation. These are experimenting with: 
selecting other activation functions and encoding/decoding methods, monitoring and 
checking the influence of input variables on the change of relative error, and many others. 
Of course, the proposed models have more advantages than disadvantages comparing to 
similar traditional methods. However, each parameter that affects the estimation must be 
additionally analyzed and checked several times and applied in experiments in different 
ways. 

 
 

5.1 Number of projects in the data set 
 

Depending on the proposed approaches, the training process on different ANN 
architectures also involves use of specific datasets. The choice of appropriate datasets 
depends on the model and input sizes, as well as publicly available databases.  

In the first proposed approach, for the ANN training procedure, the 
COCOMO2000 dataset was used. The same dataset was used for the ANN testing process 
on other projects, and the validation process used COCOMO81, NASA60, and Kemerer 
datasets. On each selected dataset, the number of projects needs to be greater than the 
number of weighting factors of the proposed ANN architecture. 
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For ANN-L9, ANN-L18 and ANN-L27 architectures, the set requirement for the 
minimum number of projects is met on all data sets used, see Table 71. 

In the ANN-L36 architecture, which has 23 weighting coefficients, the number of 
testing projects was 20, so the required condition is not met (Dataset_2). In the ANN-L36 
architecture, which has 23 weighting coefficients, the number of projects for the third 
validation was 15, so the required condition is not met (Dataset_5).  

It can be concluded that in all parts of the experiment within the first proposed 
approach, the fulfillment of the conditions is 90%, see Table 71. 

 
Table 71. The number of projects greater than the number of weighting factors 

(COCOMO2000). 
Tabela 71. Broj projekata veći od broja težinskih koeficijenata (COCOMO2000). 

 
   Weighting factors (coefficients) 

Datasets No. of 
projects Experiment ANN-L9 

(4) 
ANN-L18 

(8) 

 
ANN-L27 

(13) 
 

ANN-L36 
(23) 

Dataset_1 COCOMO2000 100 Training + + + + 
Dataset_2 COCOMO2000 20 Testing + + + / 
Dataset_3 COCOMO81 51 Validation1 + + + + 
Dataset_4 NASA 60 Validation2 + + + + 
Dataset_5 Kemerer 15 Validation3 + + + / 

 
 

In the second proposed approach, the ISBSG dataset divided into five selected 
clusters was used for the ANN training process. The same dataset in the five selected 
clusters was used for the ANN testing procedure. The number of projects in both 
procedures on each selected cluster is 70:30; 70 projects were used for training, and 30 
projects for testing. Desharnais dataset and dataset combined from different, realistic 
industrial projects were used for the validation process. On each selected dataset, the 
number of projects needs to be greater than the number of weighting factors of the 
proposed ANN architecture. 

In the ANN-L12 architecture, which has 11 weighting coefficients, only the 
number of projects to be tested was 7, so the required condition is not met for one data set 
(Dataset_5).  

With the ANN-L36prim architecture, which has 16 weighting coefficients, the 
number of testing projects is 15, so the set condition is not met (Dataset_1). The number 
of projects for testing was 13 (Dataset_3), so within the third cluster, the required 
condition is not met. The number of training and testing projects (Dataset_5) was 14, 7, 
respectively. Within the Desharnais dataset (Dataset_6), the number of projects was 14, 
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and the set condition is not fulfilled. The number of data sets that fulfill the criteria was 7 
of 12, see Table 72. 

It can be concluded that in all parts of the experiment under the second proposed 
approach, the fulfillment of the conditions is 75%, see Table 72. 

 
Table 72. The number of projects greater than the number of weighting factors 

(COSMIC FFP). 
Tabela 72. Broj projekata veći od broja težinskih koeficijenata (COSMIC FFP). 

 

Datasets 
Number 

of 
project 

Experiment 

Weighting factors 
(coefficients) 

ANN-L12 
(11) 

ANN-L36prim 
(16) 

Dataset_1 ISBSG (Functional Size<10) 37 Training + + 
 ISBSG (Functional Size<10) 15 Testing + / 

Dataset_2 ISBSG (10<Functional 
Size<50) 45 Training + + 

 ISBSG (10<Functional 
Size<50) 17 Testing + + 

Dataset_3 ISBSG (50<Functional 
Size<100) 30 Training + + 

 ISBSG (10<Functional 
Size<100) 13 Testing + / 

Dataset_4 ISBSG (100<Functional 
Size<500) 60 Training + + 

 ISBSG (10<Functional 
Size<500) 17 Testing + + 

Datset_5 ISBSG (Functional 
Size>500) 14 Training + / 

 ISBSG (Functional 
Size>500) 7 Testing / / 

Dataset_6 Desharnais 14 Validation1 + / 
Dataset_7 Combined 33 Validation2 + + 

 
In the third proposed approach, for the ANN training process, the Benchmark 

(Mendeley) dataset divided into a 70:30 scale, 70% of projects for the training process, 
and 30% for the testing process were used. Combined real, industrial projects (Dataset_3, 
Dataset_4) were used for the validation procedure. On each selected dataset, the number 
of projects needs to be greater than the number of weighting factors of the proposed ANN 
architecture. 

In the ANN-L16 architecture, which has 15 weighting coefficients, the condition 
is met that the number of projects for all parts of the experiments is greater than the 
number of weighting coefficients. With the ANN-L36prim architecture, which has 16 
weighting coefficients, the condition is met that the number of projects for all parts of the 
experiment is greater than the number of weighting coefficients. 

It can be concluded that in all parts of the experiment within the third proposed 
approach, the fulfillment of the conditions is 100%, see Table 73. 
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Table 73. The number of projects greater than the number of weighting factors (UCP). 
Tabela 73. Broj projekata veći od broja težinskih koeficijenata (UCP). 

 

Dataset 
Number 

of 
projects 

Experiment 

Weighting factors 
(coefficients) 

ANN-L16 
(15) 

ANN-L36prim 
(16) 

Dataset_1 UCP Benchmark 
Dataset 50 Training + + 

Dataset_2 UCP Benchmark 
Dataset 21 Testing + + 

Dataset_3 Combined 18 Validation1 + + 

Dataset_4 Combined 
Industrial projects 17 Validation2 + + 

 
 

5.2 Comparative analysis of proposed models with SVM  
      algorithm 
 

In order to confirm the correctness and reliability of the proposed approach and its 
comparison with other artificial intelligence tools, the Support Vector Machine (SVM) 
algorithm was used. SVM is a popular machine-learning (ML) algorithm and stems from 
the use of observed data for training. The SVM is a robust and proficient technique for 
both classification and regression. In addition, it minimizes the expected error, thus 
reducing the problem of overfitting [131], [132], [133]. The SVM machine algorithm 
divides the plane by the function fSVM into two parts, so that the points (project input 
values) lie above or below the function fSVM. Three different functions inside a kernel in 
SVM with radial basis function (RBF) were used: 
 

• linear kernel function, 
• quadratic kernel function, 
• cubic kernel function. 

 
The obtained results show that the estimated value in the training part of the 

experiment for ANN-L27 and ANN-L36 architectures, based on three input variables of 
E, PEMi, and KLOC, have a very high degree of correlation (deterministic coefficient-
R2). Graphical representations of the actual and estimated values using the SVM algorithm 
and the corresponding kernel functions for both architectures are shown in Figure 56, 
Figure 57, and Figure 58. 
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Figure 56. Graphical representation using different kernel functions based on SVM 

(RBF) for ActEffort on the training dataset (COCOMO2000). 
Slika 56. Grafička reprezentacija ActEffort koriščenjem različitih funkcija jezgra 

zasnovana na SVM (RBF) u skupu podataka za treniranje. 
 

 
Figure 57. Graphical representation using different kernel functions based on SVM 

(RBF) for EstEffort on the training dataset (ANN-L27). 
Slika 57. Grafička reprezentacija EstEffort koriščenjem različitih funkcija jezgra 

zasnovana na SVM (RBF) u skupu podataka za treniranje (ANN-L27). 
 

 



Chapter 5: The problem of generalization_____________________________________ 

151 | 198 
 

 
Figure 58. Graphical representation using different kernel functions based on SVM 

(RBF) for EstEffort on the training dataset (ANN-L36). 
Slika 58. Grafička reprezentacija EstEffort koriščenjem različitih funkcija jezgra 

zasnovana na SVM (RBF) u skupu podataka za treniranje (ANN-L36). 
 
 

 
The MMRE value for all three kernel functions used in the SVM algorithm is 

higher (60% for ANN-L27 architecture and 56.3% for ANN-L36 architecture) than the 
proposed approach using ANN and Taguchi Orthogonal Arrays, see Table 74. For ANN-
L27 architecture using Taguchi Orthogonal Arrays and the COCOMO2000 model the 
MMRE value is 45.3%, and for ANN-L36 is 43.3%. 

Additionally, the estimated value obtained using the improved COCOMO2000 
model was confirmed by the high value of the deterministic coefficient - R2, using three 
different kernel functions. This once again confirmed that the datasets were adequately 
divided into clusters. 

 
Table 74. R2 values using different kernel functions based on SVM (RBF) - 

COCOMO2000. 
Tabela 74. Vrednosti R2 korišćenjem različitih funkcija jezgra zasnovana na SVM 

(RBF) - COCOMO2000.   
 

 Act Effort EstEffort_27 EstEffort_36 
R2 Linear 0.703 0.913 0.984 

R2 Quadratic 0.718 0.923 0.984 
R2 Cubic 0.719 0.927 0.984 

MMRE (%)  60.0 56.3 
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The obtained results show that the estimated value in the training part of the 
experiment for ANN-L12 and ANN-L36prim architectures, based on four input variables 
of Entry, Exit, Read, and Write, have a very high degree of correlation (deterministic 
coefficient - R2). Graphical representations of the actual and estimated values using the 
SVM algorithm and the corresponding kernel functions for both architectures are shown 
in Figure 59, Figure 60, and Figure 61. 

 

 
Figure 59. Graphical representation using different kernel functions based on SVM 

(RBF) for Functional Size on the training dataset (COSMIC FFP). 
Slika 59. Grafička reprezentacija funkcionalnih tačaka koriščenjem različitih funkcija 

jezgra zasnovana na SVM (RBF) u skupu podataka za treniranje (COSMIC FFP). 
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Figure 60. Graphical representation using different kernel functions based on SVM 

(RBF) for EstEffort on the training dataset (ANN-L12). 
Slika 60. Grafička reprezentacija EstEffort koriščenjem različitih funkcija jezgra 

zasnovana na SVM (RBF) u skupu podataka za treniranje (ANN-L12). 
 

 
Figure 61. Graphical representation using different kernel functions based on SVM 

(RBF) for EstEffort on the training dataset (ANN-L36prim COSMIC FFP). 
Slika 61. Grafička reprezentacija EstEffort koriščenjem različitih funkcija jezgra 

zasnovana na SVM (RBF) u skupu podataka za treniranje (ANN-L36prim COSMIC 
FFP). 
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The MMRE value for all three kernel functions used in the SVM algorithm is 
higher (38.1% for ANN-L12 architecture and 35.7% for ANN-L36prim architecture) than 
the proposed approach using ANN and Taguchi Orthogonal Arrays, see Table 75. For 
ANN-L12 architecture using Taguchi Orthogonal Arrays and the COSMIC FFP model 
the MMRE value is 29.7%, and for ANN-L36prim is 28.8%. 

Additionally, the estimated value obtained using the improved COSMIC FFP 
model was again confirmed by the high value of the deterministic coefficient - R2, using 
three different kernel functions. This once again confirmed that the datasets were 
adequately divided into clusters. 

 
Table 75. R2 values using different kernel functions based on SVM (RBF) - COSMIC 

FFP. 
Tabela 75. Vrednosti R2 korišćenjem različitih funkcija jezgra zasnovana na SVM 

(RBF) - COSMIC FFP.   
 

 Act Effort EstEffort_12 EstEffort_36prim 
R2 Linear 0.958 0.743 0.962 

R2 Quadratic 0.958 0.799 0.963 
R2 Cubic 0.959 0.803 0.963 

MMRE (%)  38.1 35.7% 
 

The obtained results show that the estimated value in the training part of the 
experiment for ANN-L16 and ANN-L36prim architectures, based on four input variables 
of UAW, UUCW, TCF, ECF, UUCP, and AUCP have a very high degree of correlation 
(deterministic coefficient - R2). Graphical representations of the actual and estimated 
values using the SVM algorithm and the corresponding kernel functions for both 
architectures are shown in Figure 62, Figure 63, and Figure 64. 
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Figure 62. Graphical representation using different kernel functions based on SVM 

(RBF) for Real Effort on the training dataset (UCP). 
Slika 62. Grafička reprezentacija stvarnog napora  koriščenjem različitih funkcija jezgra 

zasnovana na SVM (RBF) u skupu podataka za treniranje (UCP). 
 

 

 
Figure 63. Graphical representation using different kernel functions based on SVM 

(RBF) for EstEffort on the training dataset (ANN-L16). 
Slika 63. Grafička reprezentacija EstEffort koriščenjem različitih funkcija jezgra 

zasnovana na SVM (RBF) u skupu podataka za treniranje (ANN-L16). 
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Figure 64. Graphical representation using different kernel functions based on SVM 

(RBF) for EstEffort on the training dataset (ANN-L36prim UCP). 
Slika 64. Grafička reprezentacija EstEffort koriščenjem različitih funkcija jezgra 
zasnovana na SVM (RBF) u skupu podataka za treniranje (ANN-L36prim UCP). 

 
 

The MMRE value for all three kernel functions used in the SVM algorithm is 
higher (13.2% for ANN-L16 architecture and 13.5% for ANN-L36prim architecture) than 
the proposed approach using ANN and Taguchi Orthogonal Arrays, see Table 76. For 
ANN-L16 architecture using Taguchi Orthogonal Arrays and the UCP FFP model the 
MMRE value is 7.5%, and for ANN-L36prim is 7.5%. 

Additionally, the estimated value obtained using the improved UCP model was 
once again confirmed by the high value of the deterministic coefficient - R2, using three 
different kernel functions. This once again confirmed that the datasets were adequately 
divided into clusters. 
 

Table 76. R2 values using different kernel functions based on SVM (RBF) - UCP. 
Tabela 76. Vrednosti R2 korišćenjem različitih funkcija jezgra zasnovana na SVM 

(RBF) - UCP.   
 

 Act Effort EstEffort_16 EstEffort_36prim 
R2 Linear 0.390 0.952 0.936 

R2 Quadratic 0.508 0.967 0.947 
R2 Cubic 0.515 0.967 0.959 

MMRE (%)  13.2% 13.5% 
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Based on the obtained results, it can be concluded that our proposed approach is 
stable, reliable, and efficient even when compared by other machine-learning tools like 
SVM algorithm.  
 
 
5.3 Construction and complexity of ANN architecture 
 

One of the goals in all three proposed models is to select the simplest ANN 
architecture that meets the additionally set criteria: 

- minimum number of iterations performed, reduced estimation time, 
- the simplest ANN architecture that converges the fastest, 
- minimum MMRE value, 
- use of clustering and fuzzification methods and sigmoid function as activation 
  function, 
- stop criterion GA to stop the number of iterations. 
 
 The choice of architecture depends on the number of input values, the number of 

weight coefficients, and the corresponding orthogonal vector plan. Each proposed model 
has an architecture constructed based on two or three levels or a combined orthogonal 
vector plan. Experiments always use the simplest possible architecture, then add nodes to 
the hidden layer in and finally increase the number of hidden layers. 

From Table 77, it can be concluded that the number of input values in the 
COCOMO2000 model is three, in the COSMIC FFP is four, while in the UCP model, it 
is six or four. The ANN-L9 architecture has no hidden layer but is constructed based on 
the orthogonal vector plan L9. Only the ANN-L36 architecture has two hidden layers: in 
the first hidden layer it has three nodes, while in the second hidden layer it has two nodes. 
All other used ANN architectures have one hidden layer. The number of nodes in the 
hidden layer is equal to zero in ANN-L9, 5 in ANN-L36, while in all other cases, it is 
equal to two or three. For each of the three proposed models, one output value is 
calculated, which represents the estimated value. 
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Table 77. Characteristics of ANN architecture. 
Tabela 77. Karakteristike ANN arhitekture. 

 

 
 
 

5.4 ANN convergence rate and the number of performed    
      iterations 
 

One of the goals of the new, improved models is to achieve the minimum number 
of iterations performed in order to reduce the time required for estimation. For each of the 
four listed ANN architectures, Table 78 gives the number of iterations that need to be 
performed to meet the set value for Gradient Descent criterion. The minimum number of 
iterations required to be performed is for the ANN-L27 and ANN-L36 architectures for 
small and medium clusters. The most significant number of iterations needs to be 
performed for the ANN-L18 architecture and it is nine iterations. It can be concluded that 
the number of required iterations is minimal (equal to nine), which leads to rapid 
estimation using the COCOMO2000 model. 

The number of required iterations in the second COSMIC FFP approach for both 
proposed architectures is six, except for the ANN-L12 architecture, where for Dataset_1 
and Dataset_3, it is five. It can be concluded that the number of required iterations is also 
minimal (equal to six), which leads to an even faster estimation using the COSMIC FFP 
model, see Table 79. 

In the first proposed ANN-L16 architecture for the UCP model, it is necessary to 
perform four iterations to meet the set GA criterion. For ANN-L36rpim architecture, the 
number of iterations is equal to six. It can be concluded that the number of required 
iterations is the smallest comparing two other models (equal to six), which leads to an 
even faster estimation using the UCP model, see Table 80. 
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Table 78. Number of iterations performed for each ANN architecture - COCOMO2000. 
Tabela 78. Broj izvršenih iteracija za svaku ANN arhitekturu - COCOMO2000. 

 

 
 

Table 79. Number of iterations performed for each ANN architecture - COSMIC FFP. 
Tabela 79. Broj izvršenih iteracija za svaku ANN arhitekturu - COSMIC FFP. 

 

 
 

 
Table 80. Number of iterations performed for each ANN architecture - UCP. 

Tabela 80. Broj izvršenih iteracija za svaku ANN arhitekturu - UCP. 
 

UCP model 
No. of 

Iterattion ANN-L16 ANN-L36prim 

GA<0.01 Training Training 
4 6 

 
In all three proposed approaches, the minimum number of iterations required to 

meet the GA criterion is 4 in the UCP model for the ANN-L16 architecture. It can be 
concluded that this architecture converges the fastest to the minimum value of MMRE. 

 
 

5.5 Activation function choice and encoding/decoding method 
 

During the research, for all experiments of all three proposed approaches, different 
activation functions in the hidden and output layers were used. Various functions have 
been experimented with, such as sigmoid function, hyperbolic tangent, Gaussian function, 
and others. The sigmoid function gave the best results in all experiments, i.e., the smallest 
MMRE value, and it was used in all three proposed improved models.  

Different coding methods were used to homogenize the different nature of the 
input values: the fuzzification method, the logarithmic method, the combined method, and 
others. The best results were achieved in all experiments with the fuzzification method 
used in all three proposed models.  
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5.6 Threats to validity 
 

In this chapter, the threats and validity of the proposed models in all three 
approaches will be explained in order to identify potential problems that can help to 
further improve future research in the field of software project estimation. The main 
validity aspects are: Internal validity, External validity, Construction validity, and 
Conclusion validity. 

 
Internal validity 
 

The choice of the set of methods used in all three proposed models represents the 
potential internal validity of the software effort . The proposed methods of clustering and 
fuzzification and the assignment of weighting coefficients to different ANN architectures 
are threats that have been addressed using hyperparametric optimization using the 
Taguchi method based on orthogonal vector plans. This method has proven to be an 
effective tool for robust design, i.e., as a good, new technique for optimizing software 
products. The used Taguchi method includes different input values depending on the three 
used models. The input values are combined with the weighting coefficients using the 
sigmoid activation function of the hidden and output layers to obtain the estimated value. 
From the simplest to the most complex, different ANN architectures were used until the 
obtained MRE value becomes less than 1%. The application of ANN constructed on 
Taguchi's orthogonal vector plans confirmed the reliability, stability, and efficiency of the 
proposed models. The proposed Orthogonal Array Tunning Method (OATM) gives good 
results while requiring a much smaller number of experiments to find the minimum value 
of MMRE. Using OATM, hyperparameters are represented by levels. In the three 
proposed models, two levels L1 and L2 or three levels L1, L2, and L3 were used, 
depending on the orthogonal vector plan used. The optimal set of parameters constructed 
in this way gives the best basis for each experiment.  
 
External validity 
 

The obtained results in all three proposed models can be used and applied in other 
areas, not only in the field of software project estimations. For all three parts of the 
experiment: training, testing, and validation, several publicly available data sets with real 
values of given projects were used, such as COCOMO2000, COCOMO81, NASA60, 
NASA93, Desharnais, Kemerer, ISBSG, UCP Benchmark (Mendeley) and other 
combined industrial made up of real projects. The obtained results showed the same 
efficiency even when using different ANN architectures in three different approaches. 
The method of halving the interval and reducing the values of the weight coefficients of 
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each subsequent iteration leads to rapid convergence that gradually tends towards the 
values of minimum costs and effort. This approach is simple and leads to finding the 
minimum MMRE value with fewer iterations performed being less than 10. Three orders 
of magnitude reduce the search interval by less than 10 steps. The obtained results can 
still be checked on new data sets.  
 
Construction validity 
 

Different ANN architectures were used in all three proposed improved models, 
based on Taguchi's orthogonal vector plans. Depending on the proposed model, the input 
values and weight coefficients of the corresponding orthogonal vector plan are combined. 
The algorithm by which each step is performed is presented in detail and methodology of 
each proposed and improved model is explained (see Chapter 3). Since one of the goals 
is to select the simplest architecture, which converges the fastest to the minimum value of 
MMRE, stability and reliable estimation accuracy are achieved, which is lower than other 
software development effort estimation models. The Gradient Descent criterion was also 
introduced to know when to run iterations when the ANN architecture converges to the 
final error value. In all experiments, for all ANN architectures, the "stop criterion" was 
achieved after a maximum of 9 iterations, while the best architecture in the UCP model 
has a maximum of 4 iterations. 
 
Conclusion validity 
 

The experiments presented in this dissertation have been repeatedly checked and 
validated on different data sets, using different ANN architectures and with a minimum 
number of iterations performed.   
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Chapter 6: Application of the proposed models and 
scientific contribution 

 
The research realized in this doctoral dissertation has shown that better, improved 

models can be constructed based on existing methods of estimating effort and costs that 
give better results. The applied scientific methods that have been presented can help 
advance this area of software engineering. The new, applied methodology does not 
exclude the possibility of applying a subjective estimation of effort and costs, but can help 
the project team, pointing out potential problems due to discrepancies in the different 
methods. In this way, teams can perform additional analysis to better assess and correct 
the results in the shortest possible time. Otherwise, project teams would have to take over 
their own risk if the only  is their subjective opinion.  

The obtained results can help project teams, software engineers, and test engineers 
to make short-term plans with the high and long-term reliability of estimation. Therefore, 
the teams can can realize all phases of analysis and design and complete the project on 
time with great certainty. If additional realization is needed, it is possible to anticipate the 
effort and costs for each project task to be realized in quality and optimal way.  

This dissertation presents three models for estimating the effort and costs of 
developing projects with an accuracy better than the accuracy of the previously existing 
original methods (see Chapter 3):  

- new, improved COCOMO2000 with ANN, 
- new, improved COSMIC FFP with ANN, and 
- new, improved UCP with ANN. 
Depending on clients' historical data, it is possible to choose one of the three 

proposed approaches and accurately, efficiently, and reliably assess the success of the 
implementation of the planned tasks. The application of scientific methods and proposed 
models can help software engineering reach a higher level of maturity. In particular, the 
probability of successful completion of software projects is not at a satisfactory level. It 
has been shown that software engineering can have much helpful information based on 
reliable scientific methods when it comes to the domain of software effort estimation.  

The research presented in this dissertation has shown that new, improved models 
for estimating the effort and costs to implement software projects constructed using three 
different approaches can gain better results than previously used methods and models. It 
is also possible to combine the proposed models in order to estimate the software effort 
successfully.  

All three proposed, improved models are used as a fundamental tool of an artificial 
neural network, so it is possible to solve many problems that are not only related to the 
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field of software engineering. It is possible to apply them in other areas and problems that 
cannot be solved by classical means of computer technology.  

In addition to the application of the proposed methodology in the field of software 
engineering, it is also possible to apply the proposed models in other areas such as signal 
processing, image and speech recognition, recognition and processing of natural 
languages and different knowledge, recognition of printed texts, and others. They can also 
be successfully used in the medical sciences to construct various software solutions to 
diagnose a vast number of diseases. Also, they can be used in meteorology for forecasting 
weather conditions. Furthermore, they can be relevant in nuclear science, robotics, 
automatic control, telecommunications, financial, and banking services. 

A company or individual can use three different proposed models depending on 
the data they collect and their needs. In addition, all three proposed approaches can be 
used together in the same time to obtain more stable, reliable, and accurate effort and cost 
estimation results. 

Numerous new applications of the proposed models of artificial intelligence are 
expected in the future. Future research will focus on constructing models in solving the 
problem of cybercrime. 
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Chapter 7: Conclusion 
 

In the first proposed, improved COCOMO2000 model, four different ANN 
architectures, five different datasets divided into three clusters, an activating sigmoid 
function, a fuzzification method, and a Taguchi method for estimating effort and cost were 
used. Based on all experiments, the approach constructed in this way ensures the 
reliability and stability of the obtained results, which was shown by monitoring the values 
of MMRE. It can be concluded that the convergence rate of each proposed architecture 
depends on the cost effect function and the nature of the projects in the different used 
datasets. The more complex the ANN architecture, the higher the convergence rate, the 
shorter the time it takes to perform the required iterations and achieve the minimum 
MMRE and vice versa. By dividing each data set into clusters and using the fuzzification 
method, the heterogeneous structure of the project can be partially mitigated, making the 
proposed model sufficiently stable, flexible, and reliable.  

It can be concluded that the ANN-L36 architecture gave the best results, i.e., the 
lowest value of MMRE within the COCOMO2000 approach following all parts of the 
experiment.  

The main advantages of this model are:  
- the number of iterations is in the range of five to ten - which means shorter effort  
  estimation time thanks to the convergence speed and simple architectures of each  
  proposed ANN,  
- use of simple ANN architectures, 
- high actual effort coverage on used datasets, and  
- minimal MMRE.  
A possible drawback is finding new methods that could further reduce the value 

of MMRE. There are no particular limitations in applying this approach, precisely because 
of experimentation with several proposed ANN architectures and high coverage of project 
values.  

Another proposed, improved COSMIC FFP model in this dissertation has shown 
that two different ANN architectures based on Taguchi Orthogonal Arrays can further 
reduce the MMRE value. The COSMIC FFP model belongs to a group of approaches 
based on user functional requirements using four input values. In this model, the ISBSG 
dataset, clustering method for input values and the fuzzification method were used to 
control and mitigate different project structures.  

It was concluded that models constructed from the two proposed ANN 
architectures (ANN-L12 and ANN-L36prim) give a significantly lower MMRE value that 
differs by about 14.5% compared to the previous experiment realized on the improved 
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COCOMO2000 model. The obtained results show that the difference in MMRE of the 
more complex ANN-L36prim architecture is 0.9% lower than for the ANN-L12 
architecture.  

The efficiency and stability of the proposed model were confirmed by calculating 
two correlation coefficients. Monitoring the prediction on three different criteria further 
confirmed the accuracy and reliability of this model. In addition to calculating the MMRE 
value, the influence of the input values of the used COSMIC FFP model on the change of 
the MMRE value on each of the seven used datasets was examined.  

The main advantages of the proposed approach are:  
- the number of iterations is in the range of five to six - which significantly reduces  
  the estimation time,  
- use of simple ANN architectures,  
- optimization of proposed ANN architectures using Taguchi Orthogonal Arrays,  
- high coverage of different values of functional size of software projects,  
- ISBSG repository of data on real projects collected from different companies.  
There are no specific limitations in this approach, and it can be applied in various 

fields of business and science domains, such as medicine, recognition of patterns and 
images, nuclear science, and others.  

The third proposed, improved UCP model uses two different ANN architectures 
and four different datasets, a sigmoid activation function, a fuzzification method, and a 
Taguchi method to estimate the effort and cost of software development. By monitoring 
the MMRE value and the convergence rate of each of these architectures, this model gives 
much better results compared to the previous two models.  

Based on three performed parts of the experiment, it was concluded that the ANN-
L16 architecture converges after the fourth iteration and gives an MMRE value of only 
7.5%, which is 35.8% better than the first COCOMO2000 model. The error value of the 
UCP model is 21.3% lower than for the other proposed COSMIC FFP model. Following 
the prediction through all parts of the experiment, both ANN architectures of this model 
have a value of 100%, which means that the model is exact, accurate, and reliable. In 
addition to the MMRE value, the influence of the dependent variables UUCP and AUCP 
was monitored to check the influence on the change in the MMRE value. The resulting 
error is less than 0.5%, so it can be concluded that the ANN-L36prim architecture and 
vice versa can replace the ANN-L16 architecture.  

The main advantages of this model are:  
- the number of iterations is in the interval from four to six - which means reduced  
  effort estimation time thanks to the exceptional convergence rate of both  
  architectures,  
- two simple proposed ANN architectures,  
- high coverage of different real effort values and the lowest MMRE value of  
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  7.5%.  
A possible drawback is the finding of new methods that could further reduce the 

value of MMRE. However, there are no specific limitations in applying this approach. 
This model can be used alone or in combination with the previous two depending on the 
company's historical data for which the software is implemented. Although not as 
standardized as the previous two, it is increasingly used by software companies, software 
engineers, and teams to assess the effort required to implement software projects 
effectively. 

The proposed, improved models can serve as an idea for constructing one or more 
tools that will accurately, efficiently, and reliably estimate the effort and costs during the 
various stages of software project development. In addition, these models can be used by 
software companies, software engineers, and technical project managers to obtain fast and 
accurate results for the reliable and stable estimation of all anticipated project 
implementation requirements. This can further reduce the problems most commonly 
encountered by professionals and teams in this area of software engineering. 
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Prošireni Izvod 
 
 
Predmet istraživanja 
 

Procena napora i troškova je od izuzetnog značaja za uspešnu realizaciju 
softverskih projekata. Vreme izrade projekta je bitan faktor, kako za naručioce projekta 
tako i za realizatore projekta. Količina novca koja je potrebna da se uloži u projekat utiče 
na odluku da li će projekat početi ili ne, odnosno da li će se uspešno završiti ili ne. Cena 
koštanja projekta se u praksi najčešće upoređuje sa cenom koštanja sličnih projekata, koji 
su uspešno završeni. Vreme i potreban novac nisu jedini faktori koji definišu početak 
realizacije projekta, već se u obzir moraju uzeti i ostali parametri kao što su: kvalitet, 
složenost, prekovremeni rad tima i drugo. Neadekvatne procene napora najčešće mogu 
dovesti do kašnjenja u realizaciji projekta, zahtevima za dodatnim novčanim sredstvima, 
prekovremenim radom eksperata i slično. Takođe, one mogu da utiču direktno na kvalitet 
softvera. Usled ne sagledavanja svih potrebnih parametara za procenu realizacije softvera, 
često se dešava da se pojedine aktivnosti, kao što su: dodatna testiranja, kompletiranje 
dokumentacije i dodatno definisanje zahteva korisnika svode na minimum napora. Sve 
ovo može dovesti do velikog broja projekata koji su nerazjašnjeni i koji predstavljaju 
trenutno ogledalo softverske industrije. 

Dosadašnji načini procene napora i troškova tokom realizacije softverskih 
projekata su se zasnivali na nepouzdanim i nepreciznim metodama, tehnikama i 
modelima. Rezultat ovakvih nepotpunih procena je veliki broj neuspešnih i 
nerealizovanih projekata. Sva istraživanja ukazuju da se uspešno završi samo oko 30% 
projekata, dok preostali procenat projekata ostaju nerešeni ili potpuno propali. Dosadašnje 
najčešće korišćene metode su: metoda sličnosti, metoda analize i sinteze, procena 
zasnovana na znanju eksperata i razne parametarske (algoritamske) metode. Softverske 
kompanije svakako pored raznih metoda procene, koriste i različite pomoćne softverske 
alate i servise kako bi ispunile zahteve kupaca. Da bi konstruisali pouzdani softver visokih 
standarda i performansi, mnogi istraživači su predlagali različite kombinacije 
parametarskih i ne-parametarskih modela procene napora i troškova. Neophodno je 
analizirati i eksperimentalno proveriti dosadašnje najuspešnije metode i modele, kako bi 
se one adekvatno mogle unaprediti. 

Predmet istraživanja ove doktorske disertacije jeste analiza dosadašnjih najboljih 
praktično korišćenih pristupa i modela u proceni napora i troškova. Potom su na osnovu 
njih konstruisana, predstavljena i eksperimentalno potvrđena tri nova, poboljšana modela 
u okviru tri različita pristupa koji će dati bolje rezultate. 
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Cilj istraživanja 
 

Cilj ove disertacije je konstruisanje tri nova, poboljšana modela zasnovana na 
različitim arhitekturama veštačkih neuronskih mreža (engl.  Artificial Neural 
Network/ANN). Unapređenje postojećih metoda i modela bi se realizovalo primenom 
veštacke inteligencije, koja bi poslužila kao moćan alat za postizanje boljih rezultata. 
Korišćenjem različitih arhitektura veštačkih neuronskih mreža konstruisanih na osnovu 
Tagučijevih ortogonalnih vektorskih planova moguće je optimizovati predložene modele. 
Realna i pravilna procena je od izuzetnog značaja u upravljanju softverskim projektima, 
kako ne bi došlo do otkazivanja, propadanja ili probijanja vremena ili budžeta projekta. 
Poboljšanjem postojećih metoda procene bi se smanjili rizici i potencijalne greške 
projekta kako za softverske kompanije koje ga realizuju tako i za klijente koji očekuju 
proizvod unutar okvira budžeta i vremena. 

Glavni cilj ove disertacije je eksperimentalno proveriti i utvrditi najbolji model za 
pouzdanu, efikasnu, brzu i tačnu procenu napora i troškova za realizaciju softverskih 
projekata. Potrebno je identifikovati najbolji model koji ispunjava zadate kriterijume: ima 
najjednostavniju ANN arhitekturu, minimalan broj iteracija, ANN arhitektura treba 
najbrže da konvergira ka minimalnoj vrednosti MMRE - zbog smanjenja potrebnog 
vremena za estimaciju. Dodatno se bira odgovarajuća metodologija za konstrukciju 
modela i u okviru nje se definiše najbolja optimizaciona metoda (metoda Tagučijevih 
ortogonalnih vektorskih planova bazirana na latinskim kvadratima, što znači da se u 
velikoj meri smanjuje broj eksperimenta). Tagučijeva metoda za razliku od potpunog 
ortogonalnog faktorijalskog plana (engl.  Full Factorial Plan/FFP), smanjuje broj 
eksperimenata na minimalni, pri čemu ostaje potpuna pokrivenost svih jednako 
zastupljenih parametara koji utiču na procenu. Definiše se i odgovarajuća aktivaciona 
funkcija koja daje najmanju grešku modela.  Zatim se uvodi i metoda klasterizacije koja 
u velikoj meri doprinosi smanjenju heterogene strukture različite prirode realnih projekata 
iz različitih domena primene.  

Dodatno, testiranje i validacija se vrše na drugim realnim projektima i različitim 
ANN arhitekturama, zavisno od odabranog pristupa i predloženog modela.  Dodatne 
statističke provere i potvrde preciznosti, pouzdanosti i efikasnosti predloženih novih 
rešenja se uvode na svakom predloženom modelu. Na kraju se porede predloženi modeli 
sa SVM (engl.  Support Vector Regression) algoritmom. 
 
 
Novi, poboljšani modeli 
 

Iz svakog od tri najčešće korišćena pristupa, koji se zasnivaju na različitim 
metodama procene napora i troškova, odabran je i konstruisan novi, poboljšani model. 
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Prethodno korišćeni modeli predloženih pristupa nisu davali dovoljno dobre rezultate da 
bi se značajno poboljšala uspešnost projekata. 

Tri nova, poboljšana modela su konstruisana pomoću različitih ANN arhitektura 
koje su zasnovane na različitim Tagučijevim ortogonalnim vektorskim planovima. ANN 
predstavljaju dobru tehniku za obradu informacija i mogu umnogome doprineti 
konstruisanju novih modela za procenu softvera. Zbog sposobnosti ANN-a da uče iz 
različitih skupova podataka, moguće je generisati tačne i pouzdane rezultate kako bi se 
izbegle nepredviđene situacije. Različite arhitekture ANN, se koriste u cilju 
identifikovanja najjednostavnije koja ispunjava dodatno postavljene kriterijume.  

Kada se koriste tri ulazne veličine na primer, kod ANN-L27 arhitekture, prema 
FFP planu je potrebno izvršiti 313=1 594 323 iteracija (eksperimenata). Međutim, 
korišćenjem Tagučijevog ortogonalnog vektorskog plana sa 13 parametara (težinskih 
koeficijenata), potrebno je samo 33=27 iteracija (eksperimenata). Korišćenjem ove 
metode robusnog dizajna eksperimenata se smanjuje broj iteracija za 99.99830649% 
(0.9999830649 = 1 – (27/1 594 323)). Predlog redukovanog FFP plana dao je Dr Genichi 
Taguchi iz Japana i zasnovan je na izuzetnom skupu latinskih kvadrata. Tagučijev 
ortogonalni vektorski plan omogućava uzimanje odabranog podskupa kombinacija bez 
ponavljanja. Na ovaj način se svi faktori uzimaju u obzir podjednako i mogu se 
procenjivati nezavisno jedni od drugih. Ovo omogućava prikupljanje dovoljnog broja 
podataka kako bi se došlo do informacija koji faktori najviše utiču na kvalitet proizvoda 
koji se razvija. Pri tom se uzima minimalan broj eksperimenata, štedi vreme i potrebni 
resursi. Izbor odgovarajućeg Tagučijevog ortogonalnog vektorskog plana zavisi od broja 
težinskih faktora i broja ulaznih veličina. Opšti cilj ove metode je stvaranje visoko 
kvalitetnog proizvoda uz moguće smanjenje troškova razvoja. Kombinovane metode kao 
što su klasterizacija, metoda fazifikacije i dodatne metode provere daju bolje rezultate od 
dosadašnjih korišćenih modela i pristupa, što i jeste cilj ove disertacije. 
 
1. Novi, poboljšani COCOMO2000 model 
 

COCOMO2000 (engl. Constructive Cost model) je parametarski model koji 
veličinu sistema računa kao kombinaciju matematičkih modela. Osnovni podaci su 
parametri koji se dobijaju eksperimentalnim putem, merenjem realnih vrednosti tokom 
izrade projekta.  Merenje na osnovu broja linija izvornog koda služi da se utvrdi veličina 
i kompleksnost softverskog projekta. Najšešće se koristi da se utvrdi napor i vreme 
potrebno za realizaciju projekta. Svakako najznačajnija metoda za procenu napora iz ove 
grupe je COCOMO2000 parametarska metoda. Na ovaj način pomoću COCOMO2000 
moguće je proceniti i zahtevano vreme izrade. Broj linija koda je jednostavan način za 
procenu napora i troškova, ali ima i dosta nedostataka, kao na primer, razlike u 
korišćenom programskom jeziku (C++, Java, C# i sl.) i uspostavljanju ekvivalencije 
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određenih baza podataka. Stvarni napor (engl.  Actual Effort) predstavlja stvarnu vrednost 
projekta, baziranu na broju linija koda izraženih u čovek-mesecima (engl. person-
months/PM). Koristi 22 parametara kao ulazne veličine, podeljena u dve grupe: prvih 5 
čine faktori skaliranja (engl. Scale factors) i drugu grupu čini 17 faktora multiplikatora 
napora (engl. Effort Multipliers). Oni se korišćenjem parametarske metode mogu svesti 
na tri ulazne veličine koje će se koristiti u novom predloženom modelu. 

U novom, poboljšanom modelu korišćene su četiri različite arhitekture ANN, 
bazirane na različitim Tagučijevim ortogonalnim vektorskim planovima. 
Najjednostavnija arhitektura ANN-L9, koristi ortogonalni plan L9 na 3 nivoa i 4 težinska 
koeficijenta. Složenija ANN-L18, koristi ortogonalni plan L18 na 2 i 3  nivoa i 8 težinskih 
koeficijenta.  Nešto složenija ANN-L27, koristi ortogonalni plan L27 na 3 nivoa sa 13 
težinskih koeficijenata. Najsloženija korišćena ANN-L36 arhitektura u ovom modelu 
koristi ortogonalni plan L36 na  2 i 3 nivoa i 23 težinska koeficijenta. Pored različitih 
arhitektura, metoda klasterizacije u velikoj meri doprinosti kontrolisanju različitih 
vrednosti realnih projekta iz prakse, što za cilj ima realnu procenu i smanjenje minimalne 
relativne greške modela. Korišćena aktivaciona funkcija je sigmoidna funkcija skrivenog 
i izlaznog sloja. Ova funkcija omogućava dodatnu homogenizaciju ulaznih veličina, ali i 
doprinosi brzini konvergencije svake od navedenih ANN arhitektura. Eksperimenti su 
pokazali da je broj iteracija u svakoj ANN arhitekturi manji od 10, što izuzetno skraćuje 
vreme procene. Pouzdanost, preciznost i efikasnost novog predloženog modela je više 
puta proveravana i potvrđivana na pet različitih skupova podataka i proveravanjem uz 
metode statističke analize. Na osnovu dobijene procenjene vrednosti računate su različite 
metrike kao što su: MAE (engl. Magnitude Absolute Error), MRE (engl. Magnitude 
Relative Error), MMRE (engl. Mean Magnitude Relative Error). 
  
2. Novi poboljšani COSMIC FFP model 
 

Analiza funkcionalnih tačaka (engl.  Function Point Analysis) je pristup koji je 
nastao u cilju prevazilaženja nedostataka prethodnog pristupa, koji se zasniva na merenju 
veličine sistema na osnovu broja linija koda. U ovom pristupu, funkcionalnost sistema se 
meri na osnovu veličina, izraženih u funkcionalnim tačkama. Različiti sistemi mogu imati 
slične funkcionalnosti, ali mogu koristiti različite tehnologije ili programske jezike, pa se 
zbog toga razlikuju u broju izvornih linija koda. Pristup zasnovan na broju funkcionalnosti 
je razvio veliki broj modela kako bi najefikasnije i najtačnije procenili funkcionalnu 
veličinu. U ovoj disertaciji će biti prikazana najmlađa metoda iz familije funkcionalnih 
tačaka,  COSMIC FFP. Ova metoda se koristi u procesu procene napora i troškova 
funkcionalne veličine softverskih projekata i zasnovana je na 14 parametra koji se svode 
na 4 ulazne veličine. Kod ranijih metoda funkcionalnih tačaka korišćeno je pet ulaznih 



Prošireni Izvod__________________________________________________________ 

182 | 198 
 

veličina. Korišćene 4 ulazne veličine u predloženom COSMIC FFP modelu je svedeno 
na:  
 
1. Entry - poruke koje korisnici šalju sistemu ili poruke koje jedan sistem šalje drugom  
					u cilju prenosa neophodnih podataka. Ove poruke ne moraju biti sistemski unosi;  
2. Exit	- poruke koje sistem ili modul vraća kao odgovor korisniku u vidu podataka koji  
     se mogu čitati iz datoteka i ove poruke mogu biti i u obliku aritmetičkih i logičkih  
     operacija;  
3. Read	- poruke koje ažuriraju podatke u sistemu i mogu biti ražlicite datoteke, tabele i  
     drugi podaci; 
4. Write	- poruke koje šalju podatke iz sistema i mogu biti u obliku tabela, datoteka i  
     slično.  
 

Može se zaključiti da funkcionalna veličina sistema predstavlja ukupan broj svih 
korišćenih poruka. Sistem se može posmatrati kao četvorodimenzioni vektorski prostor, 
koji predstavlja ukupan broj poruka. Poruke čine podaci koji se unose, podaci koji izlaze 
iz sistema, podaci koji se zapisuju ili podaci koji se čitaju iz datoteka. Ova metoda 
omogućava otkrivanje i utvrđivanje uticaja i najmanje promene na funkcionalnu veličinu. 
Prednost ove metode je što je nezavisna od tehnologije i što ne postoji gornja granica 
funkcionalne veličine. Samim tim nema ni zasićenja, jer složenost funkcionalnosti može 
neograničeno da raste u zavisnosti od broja poruka u sistemu. 

U novom, poboljšanom COSMIC FFP modelu korišćene su dve različite ANN 
arhitekture, bazirane na različitim Tagučijevim ortogonalnim vektorskim planovima. 
Najjednostavnija arhitektura ANN-L12, koristi ortogonalni plan L12 na 2 nivoa i 11 
težinskih koeficijenta. Složenija ANN-L36prim, koristi ortogonalni plan L36prim na 2 i 
3  nivoa i 16 težinskih koeficijenta. Korišćen je najpoznatiji repozitorijum industrijskih 
projekta ISBSG, na kome su primenjivane metoda klasterizacije i podele skupova 
podataka u razmeri 70:30, od kojih je 70% projekata korišćeno za treniranje, a 30% 
preostalih za testiranje. Metoda klsterizacije u velikoj meri doprinosi ublažavanju 
heterogene strukture različitih realnih projekta iz prakse, što za cilj ima realnu procenu i 
smanjenje minimalne relativne greške modela. Korišćena aktivaciona funkcija je 
sigmoidna funkcija skrivenog i izlaznog sloja. Pomoću ove funkcije moguće je 
kontrolisati različite vrednosti ulaznih veličina, ali i doprineti brzini konvergencije svake 
od navedenih ANN arhitektura. Eksperimenti su pokazali da je broj iteracija u svakoj od 
njih manji od 7, što u mnogome skraćuje vreme procene. Pouzdanost, preciznost i 
efikasnost novog predloženog modela je više puta proveravana i potvrđivana na sedam 
različitih skupova podataka i proveravanjem pomoću metoda statističke analize. Na 
osnovu dobijene procenjene vrednosti računate su različite metrike kao što su: MAE, 
MRE, MMRE, uticaj ulaznih veličina na promenu vrednosti MMRE. 
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3. Novi poboljšani UCP model 
 

UCP (engl. Use Case Point Analysis) metoda je najnovija, ali i najčešće korišćena 
metoda za procenu napora i troškova za realizaciju softverskih proizvoda. Iako nije 
standardizovana u okviru ISO standarda poput COCOMO2000 i COSMIC FFP metoda, 
ovom metodom se dobijaju greške procene između 20% i 35%. Najbolji rezultat koji je 
postignut ovom metodom je vrednost greške oko 10%. Za određivanje funkcionalne 
veličine UCP metodom koriste se korisnici sistema i slučajevi korišćenja. Korisnici 
sistema se dele na tri grupe: jednostavne - u zavisnosti od interakcije sa sistemom 
dodeljuje im se težinski faktor 1, srednje - u zavisnosti od interne/eksterne komunikacije 
dodeljuje im se težinski faktor 2, i složene - u zavisnosti od složenosti interakcija dodeljuje 
im se težinski faktor 3. Postoje i tri kategorije slučajeva korišćenja koje se definisu na 
osnovu izvršenog broja transakcija i broja razmena poruka korisnika i sistema: 
jednostavne - za manje od 3 transakcije i dodeljuje im se težinski faktor 5, srednje - od 4 
do 7 transakcija i dodeljuje im se težinski faktor 10, i složene - više od 8 transakcija i 
dodeljuje im se tezinski faktor 15.  Veličina sistema se definiše na osnovu 
četvorodimenzionog ili šestodimenzionog vektora čiji elementi predstavljaju složenost 
prethodno navedenih korisnika i slučajeva korisnika u sistemu. To su: UAW (engl. 
Unadjusted Actors Weight), UUCW (engl. Unadjusted Use Case Weight), UUCP (engl. 
Unadjusted Use Case Point Weight), TCF (engl. Technical Complexity Factor), ECF (engl. 
Environmental Complexity Factor), AUCP (engl. Adjusted Use Case Point Weight), od 
kojih su UUCP i AUCP zavisne promenljive, a UAW, UUCW, TCF i ECF nezavisne ulazne 
veličine. Stvarni napor (engl. Real Effort) se dobija kao norma vektora jednog od dva 
vektora i predstavlja realnu funkcionalnu veličinu ili broj tačaka slučajeva korišćenja.  

U novom, poboljšanom UCP modelu korišćene su dve različite ANN arhitekture, 
bazirane na različitim Tagučijevim ortogonalnim vektorskim planovima. 
Najjednostavnija arhitektura ANN-L16, koristi ortogonalni plan L16 na 2 nivoa i 15 
težinskih koeficijenata. Složenija ANN-L36prim, koristi ortogonalni plan L36prim na 2 i 
3  nivoa i 16 težinskih koeficijenta. Pored različitih arhitektura, metoda klasterizacije u 
velikoj meri doprinosi ublažavanju različite strukture realnih projekta iz prakse, što za cilj 
ima realnu procenu i smanjenje minimalne relativne greške modela. Korišćena 
aktivaciona funkcija je sigmoidna funkcija skrivenog i izlaznog sloja koja doprinosi 
dodatnoj homogenizaciji ulaznih veličina, ali i brzini konvergencije svake od navedenih 
arhitektura ANN. Eksperimenti su pokazali da je broj iteracija u svakoj od njih manji od 
7, što značajno skraćuje vreme procene. Pouzdanost, preciznost i efikasnost novog 
predloženog modela je više puta proveravana i potvrđivana na četiri različita skupa 
podataka i proveravanjem korišćenjem metoda statističke analize. Na osnovu dobijene 
procenjene vrednosti računate su različite metrike kao što su: MAE, MRE, MMRE, uticaj 
zavisnih promenljivih, ulaznih veličina na promenu MMRE i druge. 
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Dobijeni rezultati 
 

Iz dobijenih rezultata za prvi novi, poboljšani COCOMO2000 model se može 
zaključiti da arhitektura ANN-L36 postiže najbolje rezultate sa prosečnom vrednosti 
MMRE od 43.3% u sva tri dela eksperimenta. Nešto veću vrednost MMRE, oko 2%, 
postiže arhitektura ANN-L27 (45.3%). Slabiji rezultat, veća vrednost MMRE greške se 
postiže  kod ANN-L18 arhitekture (59.7%), a najslabiji rezultat se postiže kod ANN-L9 
arhitekture (72%). Analiziranjem sve četiri ANN arhitekture na svakom klasteru na pet 
različitih skupova podataka, pokazalo se, da sa povećanjem broja skrivenih slojeva 
procena vrednosti MMRE je pouzdanija, videti Slika 34. Dodatno je praćena i brzina 
konvergencije svake arhitekture ka minimalnoj relativnoj greški i pokazalo se da u sva tri 
klastera najbrže konvergira ANN-L36 arhitektura. Broj iteracija potrebnih za svaki deo 
eksperimenta je u opsegu od 5 do 9, videti Slika 31, Slika 32, Slika 33. 

 
Slika 34. Vrednosti MMRE za svaku predloženu arhitekturu u svakom delu 

eksperimenta (COCOMO2000). 

 
Slika 31. Brzina konvergencije četiri predložene ANN arhitekture nad malim klasterom. 
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Slika 32. Brzina konvergencije četiri predložene ANN arhitekture nad srednjim 

klasterom. 
 

 
Slika 33. Brzina konvergencije četiri predložene ANN arhitekture nad velikim 

klasterom. 
 
 Rezultat koji je praćen tokom izvršavanja potrebnih iteracija u drugom 
predloženom COSMIC FFP modelu, je vrednost MMRE, koja se, u zavisnosti od prirode 
skupa podataka, pokazala stabilnom za dve predložene arhitekture u sva tri dela 
eksperimenta. Skupovi podataka male funkcionalne veličine imaju veću vrednost MMRE 
(Dataset_1, Dataset_2) od skupova podataka srednje vrednosti funkcionalne veličine 
(Dataset_3). Skupovi podataka sa velikom vrednosti funkcionalne veličine imaju srednju 
vrednost MMRE (Dataset_4, Dataset_5). Skupovi podataka za proveru validnosti imaju 
različite vrednosti funkcionalne veličine i imaju veću vrednost MMRE. Najniža vrednost 
MMRE postignuta je na Dataset_3 za predloženu arhitekturu ANN-L12 (17.0%), dok je 
za ANN-L36prim arhitekturu vrednost MMRE 16.4%. Srednja vrednost MMRE u svim 
skupovima podataka u sva tri dela eksperimenta iznosila je 29.7% za ANN-L12 i 28.8% 
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za ANN-L36prim, videti Slika 44, Tabela 56. U poređenju sa COCOMO pristupom, 
vrednost MMRE je značajno smanjena, za 14.5%. Dodatno je praćen uticaj ulaznih 
veličina Entry, Exit, Read i Write na promenu vrednosti MMRE. Kod arhitekture ANN-
L12 najveći uticaj na promenu greške ima ulazna veličina Exit, dok kod arhitekture ANN-
L36prim najveći uticaj ima ulazna veličina Entry, videti Slika 47, Slika 48. 
 

 
Slika 44. Grafička reprezentacija vrednosti MMRE svake predložene arhitekture 

(COSMIC FFP). 
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Slika 47. Grafička reprezentacija uticaja ulaznih veličina na vrednost MMRE (ANN-

L12 COSMIC FFP). 
 
 

 
Slika 48. Grafička reprezentacija uticaja ulaznih veličina na vrednost MMRE (ANN-

L36prim COSMIC FFP). 
 

Primenom novog, poboljšanog UCP modela za dve predložene arhitekture ANN-
L16 i ANN-L36 u sve tri faze eksperimenta, pokazano je da različita priroda skupa 
podataka ne utiče na složenost arhitekture koja se koristi. Odnosno, nezavisna je od 
vrednosti ulaznih veličina. U prvoj predloženoj arhitekturi ANN-L16 je korišćeno svih 
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šest ulaznih veličina (gde su četiri linearno zavisne, a dve linearno nezavisne) i vrednost 
MMRE u sva tri dela eksperimenta iznosi 7.5% Korišćenjem druge arhitekture ANN-
L36prim sa četiri nezavisne ulazne veličine dobijena je ista vrednost MMRE u sva tri dela 
eksperimenta i iznosi 7.5%, videti Tabela 64. Razlike grešaka u pojedinim delovima 
eksperimenta nisu veće od 0.5%, što ukazuje na pouzdanost i preciznost predloženog 
modela. Ovo je trenutno jedan od najčešće korišćenih modela zbog izuzetnih rezultata 
procene koji se mogu postići njegovom primenom.  

 
Tabela 64. Vrednost MMRE u sva tri dela eksperimenta (UCP). 

 

Datasets 
ANN-L16 ANN-L36prim Part of 

experiment MMRE(%) MMRE(%) 
         Dataset_1 6.7 7.0 Training 
         Dataset_2 7.1 7.1 Testing 

Dataset_3 8.0 7.5 Validation1 

Dataset_4 8.3 8.4 Validation2 

AVERAGE(MMRE) 7.5 7.5  

 
 

 
Slika 54. Uticaj zavisnih promenljivih (UUCP and AUCP) na promenu vrednosti 

MMRE. 
 

Dodatno je ispitivan uticaj dve zavisne promenljive UUCP i AUCP na promenu 
vrednosti MMRE, videti Slika 54. Kod obe ANN arhitekture ona je u intervalu od -0.3 do 
0.5%.  
Poređenjem dobijenih rezultata korišćenjem sva tri nova predložena poboljšana  modela 
može se zaključiti:  
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• Najveća vrednost greške u proceni napora i troškova je u parametarskoj   
            COCOMO2000 metodi i iznosi 193.1%;  

• Najbolji rezultat, najniža vrednost MMRE u prvom predloženom modelu iznosi  
            43.3%  što je 4.5 puta bolji rezultat u poređenju sa parametarskom metodom;  

• U drugom predloženom modelu, greška na arhitekturi ANN-L36prim je 28.8% 
što je 6.7 puta bolji rezultat u poređenju sa parametarskom metodom; 

• Kod trećeg modela, što je i najbolji rezultat u svim izvedenim eksperimentima, 
vrednost MMRE za obe predložene ANN arhitekture iznosi 7.5%, što je 25.7 
puta bolji rezultat od parametarske metode.  

 
U poređenju modela međusobno, videti Slika 55: 

• Drugi predloženi model ANN+COSMIC FFP ima 1.6 puta manju grešku od 
prvog modela ANN+COCOMO2000; 

• Treći predloženi model ANN+UCP ima 5.8 puta nižu grešku od prvog 
predloženog modela ANN+COCOMO2000; 

• Treći predloženi model ANN+UCP ima 3.8 puta nižu vrednost MMRE od 
drugog predloženog modela ANN+COSMIC FFP. 

  

 
Slika 55. Vrednosti MMRE u korišćenim pristupima. 

 
 
Zaključak 
 

U zavisnosti od veličine projekta za koji treba vršiti procenu napora i troškova, 
broja ulaznih veličina i drugih specifičnih faktora moguće je koristiti sva tri nova, 
poboljšana modela. Posle više realizovanih eksperimenata i analiza dobijenih rezultata, 
može se zaključiti da treći predloženi model daje najmanju vrednost relativne greške i ona 
iznosi 7.5%. Ako se uzme u obzir da je najmanji broj iteracija potrebnih za dostizanje 
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minimalne MMRE samo četiri, može se identifikovati  najbolja ANN arhitektura, a to je 
ANN-L16 u okviru UCP modela. 
 Predloženi, novi, poboljšani modeli mogu poslužiti kao ideja za izgradnju jednog 
ili više alata koji će tačno, efikasno i pouzdano proceniti napor i troškove tokom različitih 
faza razvoja softverskog projekta. Pored toga, ove modele mogu da koriste softverske 
kompanije, softverski inženjeri i tehnički rukovodioci projekata, kako bi dobili brže i 
tačnije rezultate za pouzdanu, stabilnu i efikasnu procenu svih predviđenih zahteva za 
realizaciju projekata. Ovim se mogu dodatno smanjiti problemi sa kojima se stručnjaci i 
timovi najčešće susreću u ovoj oblasti softverskog inženjerstva. 
 
Disertacija se sastoji iz 7 poglavlja, organizovanih na sledeći način:  
 

Prvo poglavlje 1. Uvod ima tri dela. U prvom delu 1.1 su prikazani problemi i 
dosadašnji načini u proceni napora i troškova kada je pitanju realizacija softverskog 
projekta. Drugi deo 1.2 prikazuje predmet istraživanja ove doktorske disertacije. Potom 
se detaljno opisuje šta je cilj i koji modeli će biti predstavljeni, na koji način će biti 
konstruisani i eksperimentalno proveravani. Treći deo 1.3 objašnjava značaj uvođenja i 
predstavljanja novih poboljšanih modela i zbog čega je to važno za ovu oblast softverskog 
inženjerstva. Potom se objašnjava i šira primena novih poboljšanih modela u drugim 
oblastima, ne samo u proceni napora i troškova za realizaciju softverskih projekata. 

Drugo poglavlje 2. Dosadašnje metode procene napora i troškova na 
softverskim projektima sadrži sedam delova i detaljno prikazuje različite metode i 
modele dosadašnjih procena napora i troškova. U prvom delu 2.1 objašnjava se primena 
različitih, do sada korišćenih, parametarskih metoda i navodi primer COCOMO2000 
parametarske metode, sa kojom će se porediti i rezultati novih poboljšanih, predloženih 
modela. U drugom delu 2.2 prikazano je korišćenje i nekih drugih parametarskih i 
kombinovanih metoda kao što su linearna regresija i druge statističke procene i analize. 
Treći deo 2.3 je posvećen detaljnijem objašnjenju dosadašnjeg COCOMO2000 pristupa, 
čija je realna vrednost zasnovana na broju linija koda i različitim kombinovanim 
metodama. U delu 2.3.1 su objašnjeni svi parametri ovog pristupa i njihove kombinacije 
sa drugim metodama, algoritmima i tehnikama, koje bi dale bolje rezultate. Takođe se 
detaljno prikazuje koji se parametri mere, a bitno utiču na procenu napora i troškova, kako 
se oni računaju i šta predstavljaju ulazne veličine na osnovu kojih se izračunava stvarna 
vrednost projekta. Deo 2.3.2 predstavlja i opisuje dosadašnja istraživanja vezana za 
korišćenje COCOMO2000 modela i pristupa u mnogim istraživačkim i naučnim 
radovima. Četvrti deo ovog poglavlja 2.4 Analiza funkcionalnih tačaka, prikazuje 
dosadašnji pristup u korišćenju analize funkcionalne veličine sistema. Za razliku od 
prethodnog pristupa veličina sistema se ovde računa na osnovu određenih funkcionalnih 
tačaka koje se mere. U delu 2.4.1 se detaljno prikazuju ulazni parametri koji bitno utiču 
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na procenu napora i troškova, kako se koriste i šta predstavljaju ulazne veličine na osnovu 
kojih se izračunava stvarna funkcionalna veličina sistema. Deo 2.4.2 predstavlja i opisuje 
dosadašnja istraživanja vezana za korišćenje ovog modela i pristupa, kao i sve druge 
modele nastale kao rezltat poboljšanih prethodnih pristupa. Ističe se i značaj ovih modela 
kako u praksi tako i u mnogim istraživačkim, stručnim i naučnim radovima. U delu 2.5 je 
predstavljen treći, najčešće korišćeni pristup koji se zasniva na analizi korisnika i 
slučajeva korišćenja. U delu 2.5.1 se prikazuju svi parametri koji se mere kako bi se 
izračunala realna vrednost projekta. Detaljno su opisani i predstavljeni parametri koji 
utiču na realnu vrednost projekta i način na koji se ona adekvatno može izračunati.  Deo 
2.5.2 je posvećen dosadašnjim istraživanjima koja su vezana za predstavljanje i korišćenje 
ovog modela i pristupa i sve druge modele nastale kao rezltat poboljšanih prethodnih 
pristupa. Takođe, ističe se značaj ovih modela kako u praksi tako i u mnogim 
istraživačkim i naučnim radovima.  U delu 2.6 Primena veštačkih neuronskih mreža je 
detaljno objašnjena uloga i mogućnosti primene savremenog alata veštačke inteligencije 
- veštačkih neuronskih mreža. Ovaj alat je pogodan za korišćenje kada nema određenih 
pravila po kojima bi se izračunavala konačna izlazna vrednost. Veštačke neuronske mreže 
imaju važnu ulogu u konstruisanju sva tri nova poboljšana predložena modela za procenu 
napora i troškova za realizaciju softverskih projekata, koji će biti predstavljeni u ovoj 
disertaciji. Deo 2.7 Tagučijev metod robusnog dizajna je posvećen izuzetno važnoj 
metodi optimizacije, koja značajno doprinosi unapređenju novih poboljšanih modela. 
Strategija robusnog dizajna podrazumeva i korišćenje ortogonalnih vektorskih planova za 
prikupljanje pouzdanih informacija o parametrima projekta sa izuzetno malim brojem 
eksperimenata. Ovaj metod se do sada koristio u drugim oblastima, a veoma retko u ovoj 
oblasti softverskog inženjerstva. 

U poglavlju 3. Novi poboljšani modeli u  okviru tri pristupa procene softvera 
koje se sastoji iz tri dela detaljno su objašnjena i predstavljena sva tri nova konstruisana 
modela iz tri različita pristupa procene napora i troškova za razvoj softverskih projekata. 
U delu 3.1 prikazan je prvi, novi, poboljšani COCOMO2000 model, koji koristi četiri 
različite ANN arhitekture. Svaka arhitektura konstruisana je na osnovu odgovarajućeg 
Tagučijevog ortogonalnog vektorskog plana. Izbor vektorskog plana zavisi od broja 
ulaznih veličina i broja težinskih koeficijenata. Potom je odabrano pet različitih skupova 
podataka koji su opisani u delu 3.1.1 na kojima će se eksperiment izvršavati. Deo 3.1.2 
prikazuje korišćenu metodologiju u sva tri dela eksperimenta: treniranje, testiranje i 
validacija i izvršava se korak po korak na osnovu datog algorima. Deo 3.2 prikazuje drugi, 
novi, poboljšani COSMIC FFP model, koji koristi dve različite arhitekture ANN. Svaka 
arhitektura konstruisana je na osnovu odgovarajućeg Tagučijevog ortogonalnog 
vektorskog plana. Izbor vektorskog plana zavisi od broja ulaznih veličina i broja težinskih 
koeficijenata. Potom je odabrano sedam različitih skupova podataka predstavljenih u delu 
3.2.1 na kojima će se eksperiment izvršavati. Deo 3.2.2 prikazuje korišćenu metodologiju 
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u sva tri dela eksperimenta: treniranje, testiranje i validacija i izvršava se korak po korak 
na osnovu datog algorima. U delu 3.3 prikazan je treći, novi, poboljšani UCP model, koji 
koristi dve različite arhitekture ANN. Svaka arhitektura konstruisana je na osnovu 
odgovarajućeg Tagučijevog ortogonalnog vektorskog plana. Izbor vektorskog plana 
zavisi od broja ulaznih veličina i broja težinskih koeficijenata. Potom je odabrano četiri 
različita skupa podataka predstavljenih u 3.3.1 na kojima će se eksperiment izvršavati. 
Deo 3.2.2 prikazuje korišćenu metodologiju u sva tri dela eksperimenta: treniranje, 
testiranje i validacija i izvršava se korak po korak na osnovu datog algorima. 

Četvrto poglavlje 4. Analiza dobijenih rezultata tri nova poboljšana modela 
sadrži četiri dela. U delu 4.1 za novi poboljšani COCOMO2000 model, predstavljeni su 
rezultati svake iteracije svakog klastera za svaku od četiri predložene ANN arhitekture. 
Potom su analizirane vrednosti relativne greške, dobijene korišćenjem prikazanih ANN. 
Urađena je i statistička provera pouzdanosti modela kroz predikciju na tri kriterijuma i 
proverom sa dva koeficijenta korelacije. Dobijeni rezultati su bolji od prikazanih u 
prethodnim istraživanjima. Praćen je broj izvršenih iteracija i brzina konvergencije i 
rezultat ovog modela je do sada najbolji, što kao posledicu ima izuzetno brzo vreme 
estimacije. Na osnovu dobijenih rezultata moglo se zaključiti da je ANN-L36 arhitektura 
koja daje najnižu vrednost greške od 43.3%, a konvergira posle pete iteracije. Deo 4.2 za 
novi poboljšani COSMIC FFP model, prikazuje rezultate svake iteracije svakog klastera 
za svaku od dve predložene ANN arhitekture. Analizirane su vrednosti relativne greške 
dobijene korišćenjem dve različite ANN arhitekture. Urađena je i statistička provera 
pouzdanosti modela kroz predikciju na tri kriterijuma i proverom sa dva koeficijenta 
korelacije. Dobijeni rezultati su bolji od prethodno predstavljenih u sličnim 
istraživanjima. Najniža vrednost MMRE je 28.8% na arhitekturi ANN-L36prim. Praćen 
je i broj izvršenih iteracija i brzina konvergencije, i rezultati ovog modela su do sada 
najbolji u poređenju sa dobijenim rezultatima iz dosadašnjih istraživanja. Ovo za 
posledicu ima izuzetno brzo vreme estimacije. i konvergenciju posle pete iteracije. U delu 
4.3 za novi poboljšani UCP model, predstavljeni su rezultati svake iteracije svakog 
klastera za svaku od dve predložene ANN arhitekture. Potom su analizirane vrednosti 
relativne greške dobijene korišćenjem različitih ANN. Urađena je i statistička provera 
pouzdanosti modela kroz predikciju na tri kriterijuma i proverom sa dva koeficijenta 
korelacije. Dobijeni rezultati su najbolji u poređenju sa do sada prikazanim u bilo kom 
prethodnom eksperimentalnom i naučnom istraživanju. Vrednost MMRE je 7.5%, dok 
arhitektura ANN-L16 konvergira posle četiri iteracije, što kao posledicu ima izuzetno 
brzo vreme estimacije.  

Konačno, u delu 4.4 na osnovu analiza i poređenja dobijenih rezultata u različitim 
eksperimentima, identifikovan je najbolji model - treći, novi, poboljšani UCP  model, koji 
daje najbolje rezultate. Potom je identifikovana i najbolja ANN-L16 arhitektura koja 
postiže minimalnu vrednost greške nakon samo četiri iteracije. 
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Poglavlje 5. Problem generalizacije, se sastoji iz šest delova i predstavlja 
uopštavanje problema koji su se javljali tokom realizacije svih prethodno navedenih 
eksperimenata. Deo 5.1 daje odgovor na pitanje koliko projekata je potrebno za svaki 
klaster svakog skupa podataka u svakom delu eksperimenta. Upoređivanjem sa 
prethodnim istraživanjima ovaj broj treba da bude veći od broja težinskih koeficijenata 
korišćenog ortogonalnog vektorskog plana, što je u svim korišćenim skupovima podataka 
ove disertacije u velikom procentu ispunjeno. U delu 5.2 je rešen problem ispravno 
korišćene podele skupa podataka na klastere, korišćenjem uporedne analize svakog novog 
poboljšanog modela sa SVM (engl.  Support Vector Regression) algoritmom koristeći 
proveru još jednim detrminističkim koeficijentom korelacije - R2. Dobijeni rezultati 
pokazuju da je vrednost R2 kod sva tri modela upoređivanjem sa tri različite funkcije 
jezgra RBF (engl.  Radial Basis Function): linearnom, kvadratnom i kubnom veća od 0.9. 
Ovim se još jednom potvrđuje preciznost, pouzdanost i efikasnost tri nova, predložena, 
poboljšana modela. Deo 5.3 daje odgovor na pitanje kako i koju odgovarajuću ANN 
arhitekturu treba izabrati za sva tri dela eksperimenta. Polazi se od najjednostavnije ANN 
arhitekture bez skrivenog sloja, potom se uvodi jedan skriveni sloj sa najmanje dva čvora, 
zatim se povećava broj čvorova u skrivenom sloju arhitekture i na kraju se koristi 
arhitektura sa dva skrivena sloja. Odabir nove, složenije arhitekture se zaustavlja kada 
razlika vrednosti MMRE uzastopnih iteracija bude oko 1%. U delu 5.4 analizira se i 
prikazuje broj potrebnih iteracija svakog modela i ispituje brzina svih korišćenih ANN 
arhitektura. U delu 5.5 prikazuje se važnost odabira aktivacione funkcije koja daje najnižu 
vrednost greške, a pri tome konvergira ka najnižoj vrednosti sa minimalnim brojem 
iteracija.U delu 5.6 predstavljaju se pretnje po validnost modela, kao što su interna, 
eksterna i zaključna validnost.  

Poglavlje 6. Primena predloženih modela  i naučni doprinos objašnjava koje su 
mogućnosti primene novih, predloženih modela ne samo u oblasti procene napora i 
troškova u softverskom inženjerstvu, već i drugim oblastima nauke i industrije. Novi, 
poboljšani modeli mogu preciznijom i efikasnijom procenom u velikoj meri povećati 
procenat uspešne realizacije projekata, a samim tim značajno unaprediti ovu oblast 
softverskog inženjerstva.  

Poglavlje 7. Zaključak prikazuje glavne zaključke svih eksperimenata, dobijenih 
rezultata,  njihov značaj i primenu u praksi. 
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