
UNIVERSITY OF BELGRADE 
 

SCHOOL OF ELECTRICAL ENGINEERING 
 
 
 
 
 

Jelena Lj. Dinkić 
 
 
 
 
 

NONUNIFORM HELICAL ANTENNAS 
 

Doctoral Dissertation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Belgrade, 2021. 



 

УНИВЕРЗИТЕТ У БЕОГРАДУ 
 

ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ 
 
 
 
 
 

Јелена Љ. Динкић 
 
 
 
 
 

НЕУНИФОРМНЕ ХЕЛИКОИДАЛНЕ АНТЕНЕ 
 

докторска дисертација 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Београд, 2021. 



 
Supervisors/ментори: 

Dr. Antonije Đorđević, retired professor 
University of Belgrade – School of Electrical Engineering 

 
Dr. Dragan Olćan, associate professor 

University of Belgrade – School of Electrical Engineering 
 
 

Jury members/чланови комисије: 
Dr. Marija Stevanović, associate professor 

University of Belgrade – School of Electrical Engineering 
 

Dr. Vesna Javor, associate professor 
University of Niš – Faculty of Electronic Engineering 

 
Dr. Dejan Gvozdić, full professor 

University of Belgrade – School of Electrical Engineering 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Defense date/датум одбране: __________________ 
 

 



i 

Acknowledgment 

The first class of my academic studies at the University of Belgrade – School of Electrical 
Engineering was taught by professor Dr. Antonije Đorđević. Since then, eleven years have passed 
and many different courses, lectures, and professors were involved in my education, but professor 
Dr. Antonije Đorđević has always been unique with his enormous knowledge, friendly support, and 
priceless advices. Therefore, it is my great pleasure to have the opportunity to thank him on this 
occasion for everything he has done for my education and professional growth. I also owe immense 
gratitude to professor Dr. Dragan Olćan who has been strongly involved in my academic education 
since the beginning. Firstly, during my bachelor and master studies, useful and clear lectures, and 
later during my Ph.D. life, many expert advices, discussions, ideas, and supportive suggestions 
have fulfilled my work with professor Dr. Dragan Olćan. Therefore, I believe that this thesis 
represents the culmination of our collaboration so far, but at the same time, it opens the door for 
future projects, work, and cooperation. 

Furthermore, this thesis would not be the same without a strong encourage and sincere support 
of professor Dr. Alenka Zajić (Georgia Tech, School of Electrical and Computer Engineering, 
Atlanta, Georgia). I am very thankful to professor Dr. Zajić for her valuable guidelines, careful 
monitoring, and the opportunity to collaborate with her team. 

I have received great help and support from the company WIPL-D d.o.o and 
professor Dr. Branko Kolundžija. Therefore, I would like to take this opportunity to thank them for 
making computer simulations within this thesis possible. Further, during the measurements great 
help came from the team of Idvorsky laboratories. Hence, I would like to thank them sincerely for 
their expert assistance. 

I would like to express my sincere gratitude to all professors and colleagues from the Chair of 
General Electrical Engineering. Especially, I owe many thanks to professor Dr. Marija Stevanović 
for advising and supervising me during the first two years of my Ph.D. studies. I would also like to 
thank professor Dr. Milan Ilić for literature suggestions, and Jovana Petrović and Darko Ninković 
for proofreading of the final manuscript. 

Last but not least, I would like to thank the Mathematical Grammar School in Belgrade and all 
teachers who were involved in my high-school education for introducing me the world of science, as 
well as for lifelong friendship. 

Finally, I am grateful for the opportunity to mention people who are the most important in my 
life¾my family. Their love and support for me is the strongest force and the source of the greatest 
happiness. Thank you! 

Jelena Dinkić 
 



ii 

Nonuniform helical antennas 

Abstract 

The objective of this thesis is to systematically analyze and optimize nonuniformly-wound helical 
antennas, along with classical (uniform) helical antennas. The optimization of the nonuniform 
helical antennas has many degrees of freedom. Hence, the optimization space is large and the 
optimization task is challenging. It is shown that, in most practical cases, the optimal nonuniform 
helical antennas outperform the uniform helical antennas presented in the literature. It is also shown 
that the nonuniform helical antennas are the preferable choice when the losses are low or medium, 
whereas for high losses, the uniform helical antennas should be used. 

A large database is assembled from the optimization results, wherefrom a complete design 
procedure is developed for the nonuniform helical antennas. This procedure comprises all necessary 
equations and graphs for evaluating the optimal antenna parameters and estimating the antenna 
characteristics. The design procedure is verified experimentally, by measurements of a fabricated 
prototype. 

Quad ( )2x2  arrays of nonuniform helical antennas are also investigated. Their design procedure 
includes the optimization of single antennas along with their positions in the array. The solution of a 
real engineering problem is presented: a quad array that meets predefined specifications is designed 
and a prototype is fabricated and measured. 
 
Key words: antenna design, helical antennas, optimization, quad arrays of helical antennas 

Scientific field: Electrical and Computer Engineering 
Scientific subfield: Electromagnetics, Antennas, and Microwaves 
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Неуниформне хеликоидалне антене 

Сажетак 

Циљ ове тезе је систематична анализа и оптимизација неуниформно мотаних 
хеликоидалних антена, као и класичних (униформних) хеликоидалних антена. Оптимизација 
неуниформних хеликоидалних антена има много степени слободе. Стога је оптимизациони 
простор велики, а оптимизација изазован задатак. Показано је да, у највећем броју 
практичних случајева, оптималне неуниформне хеликоидалне антене надмашују по 
перформансама униформне хеликоидалне антене представљене у литератури. Осим тога, 
показано је да су неуниформне хеликоидалне антене бољи избор када су губици мали или 
средњи, док би у случају великих губитака требало користити униформне хеликоидалне 
антене. 
Резултати оптимизације чине велику базу података, на основу које је развијен поступак 

пројектовања неуниформних хеликоидалних антена. Овај поступак обухвата све потребне 
једначине и графике за одређивање оптималних параметара антена и процену карактеристика 
антена. Поступак дизајна је потврђен експериментално, мерењем карактеристика 
реализованог прототипа. 
Такође су испитивани низови од 2x2  неуниформне хеликоидалне антене. Процедура за 

њихов дизајн садржи оптимизацију засебних антена, као и оптимизацију положаја антена у 
низу. Представљено је и решење реалног инжењерског проблема: дизајниран је низ од 2x2  
антене који испуњава унапред дефинисане спецификације, а прототип је направљен и 
измерен. 
 
Кључне речи: дизајн антена, хеликоидалне антене, оптимизација, низови хеликоидалних 
антена 
Научна област: Електротехника и рачунарство 
Ужа научна област: Електромагнетика, антене и микроталаси 
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1. Introduction 

Helical antennas were first reported by Kraus in [1] and explained in more details in [2]. The 
classical helical antenna consists of a conductor uniformly wound in the form of a helix and 
positioned above a ground plane or another convenient counterbalance. The sketch of a typical 
helical antenna is shown in Fig. 1.1a. The main parameters that define the geometry of the helical 
antenna are:  

· the axial antenna length, L, or the number of turns, N, 
· the turn radius, r, and  
· the pitch angle, φ, or the pitch, p.  

The relation between the pitch angle, turn radius, and pitch is defined by ( )( )rp p=j 2/arctan . 
We assume the ground plane to be horizontal, so that the axis of the helix is vertical (the z axis in 
Fig. 1.1a). In the case of uniform helical antennas, the turn radius and pitch angle are constant, 
whereas the turn radius and pitch angle of nonuniform helical antennas vary along the antenna axis 
(the z axis in Fig. 1.1a). The feeding port is between the counterbalance and the helix. The helical 
conductor (usually, a wire of a circular cross-section and radius rw, uniform along the conductor) 
can be located above a ground conductor of various shapes and sizes. The simplest theoretical case 
is an infinite perfectly conducting (perfect electric conductor, PEC) ground plane. Such a ground 
conductor is suitable for investigation of the antenna characteristics, since the influence of the 
currents on the ground plane can be replaced by the image theorem. However, for practically 
feasible realizations, the ground conductor of finite dimensions is required. The ground conductors 
of finite dimensions can be flat (most often of a circular or a square shape, Fig. 1.1a), or in a shape 
of a circular cup (Fig. 1.1b) or a truncated cone (Fig. 1.1c).  

 
(a) 

 
(b) 

 
(c) 

Figure 1.1. Sketch of the uniform helical antenna above (a) flat ground plane, (b) circular cup, and (c) truncated cone.  
Helical antennas can radiate in two different radiation modes, i.e., the normal mode and the axial 

(or beam) mode. For the operation in the normal mode, the helix must be short ( l<<L ) and the 
circumference of the helix turns and pitch must be small compared to the wavelength (smaller than 

l5.0 ), where l  is the free-space wavelength at the antenna operating frequency [2]. In the normal 
mode, the antenna radiates almost equally in all directions perpendicular to the helix axis; hence, 
the radiation pattern is omnidirectional in the equatorial plane. In the general case, the radiated field 
is elliptically polarized. However, for certain dimensions, the polarization can be circular or linear. 
Namely, if the pitch angle is equal to 0, the helical antenna collapses into a loop. The radiation is 
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perpendicular to the helix axis (i.e., in the equatorial plane), but the polarization is linear and 
horizontal. With the increase in the pitch angle, the polarization becomes elliptical. The polarization 
is circular when the pitch angle achieves the value such that the turn circumference is equal to 

lp2 , where p is the corresponding pitch [2]. With further increase in the pitch angle, the 
polarization becomes elliptical again. Finally, when the pitch angle is °90 , the helical antenna 
becomes a straight conductor. Hence, the polarization is linear and vertical. 

Helical antennas working in the normal mode are employed in WLAN applications [3]-[5], 
mobile communications [6]-[9], and medical applications [10]-[14]. However, note that they are 
narrowband and their directivity is low. 

The axial mode occurs when the circumference of the turns is around one wavelength at the 
antenna operating frequency. In the axial mode, the maximum of the radiation is along the helix 
axis, the field is circularly or elliptically polarized in that direction, and the main beam is well 
defined. Hence, in [2] it is also referred to this mode as the beam mode, so that helical antennas 
radiating in the axial mode can be referred to as axial or beam helical antennas [2]. 

Since an almost accidental invention of helical antennas working in the axial mode by Kraus, they 
have been widely used because of their good mechanical and electrical properties: a simple and 
robust structure, almost circular polarization, inherently broad bandwidth, etc. These good 
performances promote helical antennas as a good choice for various applications. First applications 
were primarily in the space communications [2], [15]. During the last two decades, besides space 
applications [16]-[22], helical antennas have also been used in medical applications [23]-[26], 
wireless communications [27]-[35], unmanned aerial vehicle (UAV) applications [36], [37], 
radio-frequency identification (RFID) systems [38]-[40], radar systems [41], [42], cyber security 
[43], and hybrid free-space optics/radio-frequency (FSO/RF) systems [44]. 

The focus of this thesis are helical antennas working in the axial mode. Various designs of helical 
antennas are widely investigated: designs devoted to the specific application [15]-[44], designs 
according to the defined specifications, or designs which improve specific antenna 
characteristics [45]-[84]. However, general and reliable guidelines for the design of the helical 
antennas are rarely found (especially for nonuniformly-wound helical antennas). To generate such 
guidelines, extensive numerical computations (simulations) are necessary. Modern computers have 
recently reached performances that allow running the necessary amount of simulations in 
reasonable and acceptable time. Therefore, the main motivation of this thesis is to build a large 
database of the optimal helical antennas by extensive numerical computations and, based on it, 
define general guidelines for the design of helical antennas. Within this work, several million 
simulations have been performed. The obtained data have been used for the formulation of a 
complete, standalone, and rapid procedure for designing the axial-mode nonuniform helical 
antennas. The antennas designed using this procedure have been investigated in detail, compared in 
terms of their characteristics with different types of helical antennas (i.e., uniform helical antennas 
and helical antennas with exponential and piecewise-linear variation of geometrical parameters) and 
with helical antennas whose design is presented in the literature. The results of the presented design 
procedure have been verified experimentally. In addition, this procedure has been expanded to the 
design of arrays of helical antennas. 

1.1. Design of helical antennas 

Some practical design guidelines (design equations and diagrams) are available in the open 
literature for designing uniform helical antennas, with constant turn radius and pitch angle along the 
antenna [1], [2], and [45]-[50]. 

Firstly, Kraus presented guidelines for the design of uniform helical antennas [1], [2]. For the 
antennas with more than 3=N  turns, it is suggested that the circumference, C, and pitch angle of 
each turn should be in the ranges l<<l 15.18.0 C  and °<j<° 1412 , respectively [2]. The 
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corresponding antenna gain in the main radiating direction (along the antenna axis), assuming no 
losses, can be calculated as  

 ÷
÷
ø

ö
ç
ç
è

æ

l
÷
ø
ö

ç
è
æ

l
=

LCg
2

10 12log10]dBi[ , (1.1) 

where λ is the free-space wavelength at the antenna operating frequency (f) and L is the axial 
antenna length. The antenna terminal resistance depends on the way antenna is fed. In case of the 
axial feed (i.e., the feed is on the axis of the helix, and a conductor is used to connect the feed and 
the helix wire), the resistance is ( )Wl= CR 140 , whereas for the peripheral feed (i.e., the feed is 
located directly at the onset of the helix wire, as in Fig. 1.1a), the resistance is Wl= CR 150 . 
The axial ratio (the ratio of the major to the minor axis of the polarization ellipse of the electric-
field intensity) is ( ) ( )NNAR 212 += . However, in Kraus’s early work, the shape and size of the 
ground plane is not clearly defined. This can lead to ambiguities when other, later results presented 
in the literature are compared with the Kraus’s results since the size and shape of the ground plane 
can strongly affect the antenna gain. 

The experimental results presented in [45] and [46] show that the results given by (1.1) 
overestimate the gain. For the helical antennas of a fixed length, containing 8.6 to 10 turns whose 
circumference is in the interval l<<l 2.18.0 C , instead of the coefficient 12 in (1.1), the 
numerical factor should be between 4.2 and 7.7, whereas in [47] it is suggested that 6.2 is suitable 
for this numerical factor. These results claim that the actual gain is for 1.9–4.6 dB smaller than 
given by (1.1), which is a significant reduction. 

Also, in [45] a new equation is derived to fit the measured gain of the fixed-length antenna of 
around 10 turns: ( )( ) ( ) ( )( )28.012

10 tan5.12tan23.8log10]dBi[ NN Lrg a°llp= -+ . The gain 
calculated from this equation is within ±0.1 dB of the measured data. It should be noted that 
experimental results utilized in this research are obtained for antennas located above a circular cup 
instead above a flat ground, whereas in [47] the type of the ground plane is not specified. 

Later, by extensive numerical modeling, Emerson [48] has found that the maximal possible gain 
of uniform helical antennas is up to 5 dB lower than the gain calculated from (1.1). More precisely, 
the antenna gain increases more slowly with increasing the antenna length than Kraus’s equation 
predicts. Further, in [48] a new equation for the antenna gain is presented, 

( )20726.022.125.10]dBi[ l-l+= LLg , along with an equation for the optimal turn radius, 
( )2000515.00079.02025.0 l+l-=l LLr . These design equations are valid for the axial antenna 

lengths in the range l<<l 72 L  and the constant pitch l= 24.0p . The gain is almost 
independent of the wire radius and conductivity (losses in the antenna conductor). Furthermore, in 
terms of the gain, a square ground plane of a 2l  side is nearly as good as an infinite ground plane 
[48]. 

Obviously, there exist significant differences among the results presented in the literature. In [49], 
these differences are pointed out and summarized. Further, a systematic investigation is performed 
of uniform helical antennas placed above an infinite ground plane in order to present a reliable 
procedure for designing such antennas. The optimal parameters for the narrowband (NB) design and 
three types of wideband (WB) designs are presented. These parameters depend on the axial antenna 
length, the wire radius, and the operating frequency. The gain of the optimal antennas is compared 
with the results available in the literature. The NB design achieves higher gain than almost all other 
designs, except the gain calculated from Kraus’s equation, which is known to significantly 
overestimate the gain. The smallest discrepancy is between the gain of the NB design and the 
design from [50]. (The on-line reference [50] has been last accessed in 2006, but it is not available 
any more.) It should be noticed that the optimal pitch angles in [49] are in the range °<a<° 163  
and they strongly depend on the wire radius. This range of pitch angles is much wider than the 
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classical range declared in [1], [2], and [45]-[47]. In [49] is indicated that the pitch angles from [50] 
are in good agreement with the optimal pitch angles for the NB design from [49]. 

In order to investigate causes of the discrepancies among the results presented in the literature, in 
[51] different shapes and sizes of the ground conductors are considered. Firstly, it is confirmed that 
the gain of the antenna located above an infinite ground plane is practically the same as reported in 
[48]. Further, it is shown that the optimal square ground plane is of a side 1.5 λ, although [52] 
recommends a circular or a square ground plane of a diameter or a side between 0.5 λ and 0.75 λ. In 
[51] antennas placed above a cylindrical cup (Fig. 1.1b) and a truncated cone (Fig. 1.1c) are also 
investigated. A cylindrical cup whose diameter is 1 λ and the height is 0.25 λ increases the gain for 
1.4 dB in comparison with the antenna located above an infinite ground plane. However, the 
increase in the gain depends on the antenna length, i.e., for shorter antennas and pitch angles 
considered in [51] the enhancement of the gain is negligibly small, but it increases with increasing 
the antenna length. A truncated cone significantly increases the gain. The optimal dimensions of the 
truncated-cone reflector are presented in [53]. In [53] by simultaneous optimization of the antenna 
geometry and the dimensions of the truncated-cone reflector, the gain enhancement is obtained to 
be up to 5 dB in comparison with helical antennas located above a square ground plane. The axial 
lengths of the helical antennas considered in [53] are 1 λ, 2 λ, and 5 λ, while the wire radius is 
0.0015 λ. The optimal pitch angles are several times larger than with a flat reflector, and the optimal 
lower and upper cone radii are l» 5.0lowerR  and l+» HR 5.0upper , respectively, where H is the 
height of the cone reflector.  

The explanation of the cup and cone functionality and various factors that improve the radiation 
pattern and gain are investigated in [54]. By analyzing the current distribution along different parts 
of the antenna conductor, it is confirmed that the traveling wave (along the upper part of the 
antenna) produces a relatively well-shaped radiation pattern, whereas the sidelobes are created by 
the current of the lowest turns. The current along the lowest turns does not resemble a traveling 
wave and it radiates almost omnidirectionally in horizontal directions. The field radiated by the 
lowest turns can easily be reflected into more favorable directions by the rim of the cup or the cone. 
Also, the field produced by the lowest turns can be suppressed by decreasing the pitch angles near 
the feed of the antenna. Additionally, it is explained that an infinite ground plane can make some 
helical antennas more broadband by reflecting waves that are launched from the antenna 
downwards, which justifies the WB design from [49]. 

Further, it is shown in [54] that for tall cones the length of the helical antenna practically has no 
influence on the antenna gain. This result confirms that the cone is the main radiation source: it acts 
like a horn antenna exited by the helical antenna, as it was previously indicated in [55].  

Square-shaped corrugated reflectors are investigated [56]. It is shown that the rear surface of the 
reflector changes the currents on the reflector, which reduces the backward radiation. 

In order to increase the gain or improve antenna characteristics, adding different parasitic 
elements is suggested in [33], [57]-[63]. Adding a circular plate on top of helical antenna is used 
for widening the axial-ratio bandwidth [57] and increasing the gain [58], [59]. A parasitic 
cylindrical ring is mounted on the top of antenna [60] or parasitic rings are mounted inside the 
helical antenna [61], both with the same purpose to increase the gain. To reduce the overall 
dimensions of the helical antenna, loading stubs are periodically placed around the turn 
circumference [62]. In order to keep the advantage (i.e., the size reduction) of the stub-loaded 
helical antennas from [62], but also to achieve a purely real input impedance, a new design is 
proposed in [33]. With the same aim to minimize the antenna overall dimensions (without 
sacrificing the gain), a lossy ferrite core with a dielectric shell is placed inside the helical antenna 
[63]. 

As it is mentioned, the antenna conductor is usually a wire of a circular cross-section, uniform 
along the conductor (Fig. 1.1a). However, in some applications, the antenna conductor can be a 
strip, a wire of a nonuniform circular cross-section, or the conductor can be realized as a printed 
conducting trace [5], [24], [38], [39], [57], [64], and [65]-[68]. The influence of different conductor 
types on the antenna characteristics is investigated in [64]. For a uniformly-wound helical antenna, 
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where the optimal design parameters are adopted as for the NB design from [49], various shapes 
and sizes of the antenna conductor are investigated. Three different sets of models are utilized that 
correspond to different manufacturing technologies: thin-wire models, wire-cage models, and plate 
models. In [64] it is shown that the thin-wire model is appropriate as long as the antenna conductor 
is thin (its radius is smaller than about 0.01 λ) and the gap between the turns is wide (larger than the 
wire radius). When the antenna conductor becomes thicker and the turns are closer, the proximity 
effect becomes pronounced, so that the thin-wire model is not appropriate any more [64]. 

Recently it was suggested that the metallic conductor of a conventional helical antenna can be 
replaced with a plastic tube of a circular cross-section filled with pure water [69]. This allows 
reconfigurability of polarization over a wide frequency range. Reconfigurability of polarization is 
also achieved using liquid metal as the antenna conductor [70]. Further, switchable sense of 
polarization is also obtained using origami helical antennas [65]. The origami helical antennas are 
used to obtain reconfigurability in terms of frequency [66], [67] or both mode and frequency [68]. 
Finally, reconfiguration of the radiation pattern can be obtained by using shape-memory alloy 
spring actuator [71]. 

In [1] Kraus claims that near the operating frequency, the real part of the input impedance is 
between W100  and W500 , whereas the imaginary part is W± 300j . However, in [72] it is 
indicated that an axial-fed helical antenna has a terminal impedance of W140 . Further, it is 
suggested that the impedance can be matched to W50  simply by increasing the conductor size close 
to the fed point. This way of impedance transformation is used for antenna matching in [43]. A 
similar idea for impedance matching is used in [73], where it is shown that increasing the pitch of 
the first turn increases the input resistance and decreases the input reactance, whereas increasing the 
feed height increases the input resistance and negligibly influences the input reactance. A detailed 
investigation of an impedance matching network that consists of a single wire (which enables fast 
analysis) is presented in [74], [75]. Another method for impedance matching is proposed in [76], 
where controlling the dimension of the top layer of a double-layer metal structure (bottom layer acts 
like a ground plane) enables tuning of the input impedance. 

As an upgrade of the classical, uniform helical antennas, nonuniform helical antennas are also 
investigated in the literature. Various types of nonuniformities are used to improve antenna 
characteristics. In [77], it is shown that tapered radii at the feeding end and at the termination of the 
antenna suppress unwanted current waves that travel along the helix, which improves the axial ratio. 
Further, by varying the angle of the truncated-cone reflector of the tapered antenna, the input 
impedance can be adjusted to an arbitrary value [77]. 

Continuously tapered (or conical) helices and quasi-tapered helices are considered in [78]. Such 
helices enable shaping the gain versus frequency and also improve the axial ratio and radiation 
pattern. A quasi-tapered helical antenna is proposed in [73] with an aim to broaden the bandwidth. 
This antenna consists of two segments. The bottom segment is conical and it is responsible for 
increasing the bandwidth towards lower frequencies. The top segment is uniform and it is used to 
increase the gain at higher frequencies. Further, quasi-tapered helical antennas are investigated with 
the same aim (to achieve a wide bandwidth) in [79]. Here, the quasi-tapered antenna consists of two 
uniform segments (of different turn radii) that are connected by a short intermediate segment. In 
[79] is stated that, in order to maximize the gain bandwidth, the ratio of lower-to-upper diameter 
should be around 1.41, and the axial lengths of two uniform segments should be equal. 

Logarithmic, linear, and exponential variations of the turn radius along the antenna are 
investigated and compared in [80], [81]. However, the gain of the antennas with the exponential 
variation of the turn radii, proposed as the best solution in [80], [81], is around 6.5 dB lower than 
the gain of uniform helical antenna of the same axial length [49], and around 7 dB lower than the 
gain of the nonuniform antenna of the same length from [82]. Hence, the data presented in [80], 
[81] do not seem to define optimal nonuniform helical antennas. 

Nonuniform pitch angles are also reported in the literature [82]-[85]. In [82], nonuniform helical 
antennas are considered that have a wire pigtail instead of a ground conductor. In order to maximize 
the gain, both the radii and pitches are optimized. The resulting gain is very close to the gain of the 
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optimal uniformly-wound helical antennas with a large ground plane [49], while the obtained 
nonuniform antennas are smaller and handier. In [83] and [84], nonlinear pitch profiles are 
considered with a constant or exponentially varying turn radius aimed at maximizing the gain and 
minimizing the axial ratio. In [85], an exponential pitch is considered and it is used for widening the 
bandwidth compared to uniform helical antennas. This improvement is explained by analyzing the 
current distribution along the antenna.  

Data presented in the literature strongly indicate that nonuniform helical antennas may 
outperform uniform helical antennas. Hence, for engineering purposes, it is desirable to have 
reliable guidelines how to achieve optimal properties of these antennas. However, in contrast to 
uniform helical antennas, where systematic investigation and practical design guidelines already 
exist in [1], [2], and [45]-[50], such design guidelines do not exist for nonuniform helical antennas. 
This fact has motivated us to perform a detailed study of nonuniform helical antennas, which would 
result in clear engineering design guidelines and procedures. This task is challenging because 
nonuniform helical antennas have many degrees of freedom, which significantly aggravates the 
search for the optimal solutions.  

1.2. Arrays of helical antennas 

In order to further increase the achieved gain, several helical antennas (uniform or nonuniform) 
can be arranged so to form an array. This concept is introduced by Kraus in [86], and investigated in 
more detail in [2]. Antenna arrays (instead of a single helix) can obtain the same gain, but allow 
using shorter antennas. Namely, to achieve the same gain, with an increase of the antenna number, 
the required antenna length is decreased. Similarly, using an antenna array instead of a single 
helical antenna of the same axial length (as the antennas that make up the array), increases the 
achieved gain. According to the theory of antenna arrays, the level of increase depends on the 
number of antennas used in the array (under condition that antennas are properly spaced) [2], [87]. 
For example, an array of four helical antennas achieves around 5 dB higher gain than a single 
helical antenna (of the same axial antenna length as the antennas used in the array) [88]. Arrays of 
helical antennas that contain various numbers of elements (arranged in different ways) are 
investigated in the literature: linear arrays in [89]-[92], planar square arrays in [88], [93]-[102], and 
circular arrays in [103]-[107]. 

The main parameters that define the geometry of the helical antenna array are the geometrical 
parameters of a single helix (i.e., the axial antenna length, turn radius, and pitch or pitch angle), the 
shape and size of the ground conductor, and number and spacing between the array elements. The 
influence on the antenna characteristics of the geometrical parameters of a single helix and shape 
and size of the ground conductor are similar as for a single helical antenna. Increase in the number 
of array elements increases the gain. The optimal spacing between the elements and the influence of 
the element spacing on the antenna characteristics are widely investigated in the literature [92], 
[94]-[98], [105], [106], [108]. The curves presented in [96] give a first-order approximation for two 
design questions. Firstly, in the case of a specified array aperture, the minimal number of elements 
is given that is required for the maximal directivity. Secondly, in the case of a specified number of 
elements, the optimal spacing for the maximal directivity is given. In [108] an equation that defines 
the minimal distance between the array elements is introduced. It is stated that the array-element 
spacing should be at least ( ) lp4hG , where hG  is the (numerical) gain of the single helical 
antenna. In [98] adjustment of the spacing between the array elements is utilized to tilt the radiated 
beam at the certain angle. Finally, by controlling the amplitude distribution, beams of complicated 
shapes can be generated [92]. 

The range of applications that employ arrays of helical antennas is similar as for single helical 
antennas: mobile communications [90], [95], [97], [109], satellite communications [107], and 
broadcasting satellite TV programs [105], [106]. In addition, arrays of helical antennas are used in 
radar applications [92] and high-power microwave applications [101], [104]. 
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The feeding of the antenna array requires an appropriate network. An antenna array can be 
matched to 50 Ω using a properly designed feeding network. The design of feeding networks is 
presented in [90], [91], [98], [101], [104]-[106], and [109]. Feeding networks are usually realized 
in the printed-circuit technology [90], [98], [109] or using waveguides [91], [104]-[106]. For the 
high-power applications, special attention is paid to the design of the feeding network [101]. 

In this thesis, arrays of helical antennas will be considered in the form of a planar, square array of 
four ( 2x2 ) nonuniform helical antennas, referred to as a quad array. Firstly, a complete design 
procedure for an antenna array (the optimal geometry of helical antennas utilized in the array, 
positions of the antennas, and the feeding network) is presented. The designed antenna array meets 
pre-set specifications. Hence, this part of the thesis presents a good solution of a real-world 
engineering problem. Further, general guidelines for the design of quad arrays are presented and a 
procedure for designing these arrays is formulated. The design procedure yields all necessary data; 
hence, it allows fast designing of quad arrays without additional calculations. 

1.3. Thesis outline 

This thesis contains eight chapters and two appendixes. 
The current chapter (Chapter 1) gives the basic information about helical antennas and arrays of 

helical antennas, their geometry, design guidelines, and applications, through the literature 
overview. It also outlines the main motivation and contributions of the thesis. 

In Chapter 2, the geometry of the considered (uniform and nonuniform) helical antennas is 
presented in more details. Nowadays, the simulations are widely used in the engineering world (as 
well as in this thesis). Details about the models of helical antennas utilized for the simulations 
within this thesis are brought out in Chapter 2. 

Finding the optimal design and formulation of a fast and reliable design procedure for 
nonuniform helical antennas is one of the main contributions of the thesis. Hence, optimizations are 
an important part of this investigation. Details about the optimization setup, choosing the most 
appropriate optimization algorithms, and processing of the optimization results with the mentioned 
purposes are presented in Chapter 3. The steps that precede the formulation of the set of equations 
for the designing of nonuniform helical antennas with linearly varying geometrical parameters are 
also given in Chapter 3. The formulated set of equations contains: 

· equations for calculating the geometrical parameters of helical antennas,  
· equation for gain estimation, and 
· equations for evaluating the validity of the design. 

Characteristics of the antennas designed utilizing the set of equations formulated in Chapter 3 are 
investigated in Chapter 4. Further, a flat square or circular ground plate of finite dimensions are 
used to replace an infinite ground plane. The influence of this replacement on the antenna 
characteristics is investigated and results are reported. Finally, the designed helical antennas with 
linearly varying geometrical parameters are compared with other types of helical antennas (uniform, 
exponential, piecewise-linear, etc.) and antennas whose design is presented in the literature. 

Chapter 5 summarizes the proposed fast procedure for designing helical antennas utilizing the 
formulated set of design equations. The validity of the design procedure is confirmed by 
measurements of a fabricated prototype of a helical antenna that is designed following this 
procedure. Details about the design, fabrication, and measurements of the prototype are presented. 

Chapter 6 presents steps for detailed design and fabrication of an array of nonuniform helical 
antennas. This chapter describes the design of the geometry of helical antennas that make up the 
array, design of the feeding network, fabrication, and measurements of the designed array. 
Chapter 6 details solution of a real engineering problem, which results in a designed and fabricated 
array that meets the required project specifications.  

In Chapter 7, the investigation of the quad arrays is generalized and the procedure for their design 
is presented. This procedure represents an extension of the design procedure formulated in 
Chapter 5 since it utilizes design equations for nonuniform helical antennas.  
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Finally, Chapter 8 summarizes the results presented within the thesis and outlines the main 
conclusions, contributions of the thesis, and guidelines for the future research. 

Appendix A explains antenna terms, definitions of the units, and definitions of some quantities 
which are frequently used within this thesis. 

Appendix B introduces the theorem of electromagnetic similitude, which is utilized within the 
thesis. 

1.4. Key references 

The results presented in this thesis are based on the following publications: 
[64] J. Lj. Dinkić, M. S. Tasić, and A. R. Đorđević, “Influence of conductor shape and size on 

properties of helical antennas,” Proceedings of 5th International Conference on Electrical, 
Electronic and Computing Engineering iETRAN 2018, Palić, Serbia, June, 2018. 

[88] J. Lj. Dinkić, D. I. Olćan, A. R. Djordjević, and A. G. Zajić, ”High-gain quad array of 
nonuniform helical antennas,” International Journal of Antennas and Propagation, 
Hindawi, vol. 2019, 12 pages, 2019, doi: 10.1155/2019/8421809. 

[110] J. Dinkić, D. Olćan, and A. Đorđević, “Comparison of various geometries of nonuniform 
helical antennas”, Proceedings of 6th International Conference on Electrical, Electronic and 
Computing Engineering icETRAN 2019, Srebrno jezero, Serbia, June 3-6, 2019. 

[113] J. Dinkić, D. Olćan, A. Djordjević, and A. Zajić, “Design and optimization of nonuniform 
helical antennas with linearly varying geometrical parameters,” IEEE Access, vol. 7, 
pp. 136855-136866, 2019, doi: 10.1109/ACCESS.2019.2942363. 

[114] J. Dinkić, D. Olćan, A. Djordjević, and A. Zajić, “Comparison of optimization approaches 
for designing nonuniform helical antennas,” Proceedings of 2018 IEEE International 
Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 
Boston, MA, 2018, pp. 1581-1582, doi: 10.1109/APUSNCURSINRSM.2018.8608928. 

[120] J. Dinkić, D. Olćan, A. Djordjević and A. Zajić, “Comparison of the optimal uniform and 
nonuniform lossy helical antennas,“ Proceedings of 2020 IEEE International Symposium on 
Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, 
Canada, 2020, pp. 423-424, doi: 10.1109/IEEECONF35879.2020.9330063. 
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2. Geometry and models of nonuniform helical antennas 

2.1. Geometry of nonuniform helical antennas 

As it is indicated in Chapter 1, the geometry of the helical antenna is defined by the axial antenna 
length, L, the turn radius, r, and the pitch angle, φ, or the pitch, p (Fig. 1.1a). In the case of 
nonuniform helical antennas, the turn radius and pitch angle can vary along the antenna in various 
ways. The design of this type of helical antennas has many degrees of freedom, which can result in 
ill-posed solutions with a very high gain, but also very narrow bandwidth. This is impractical for the 
applications where small deviations due to manufacturing tolerances can cause a shift of the 
operating frequency. Therefore, it is often adopted that the variations of the turn radius and pitch 
angle along the antenna have fewer degrees of freedom. Hence, these variations are taken to be 
linear, exponential, piecewise-linear (with a small number of linear segments) or based on other 
simple functions of the axial coordinate (the z coordinate in Fig. 2.1). In this thesis, linear, 
exponential, and piecewise-linear variations of geometrical parameters will be considered, and these 
types of geometries are discussed in more details in this chapter. 

The investigation within this thesis utilizes wire conductors of a circular cross-section, which is 
uniform along the conductor. Considered wire radii will be within the range where the thin-wire 
approximation is appropriate, with an aim to cover most commercially available wires. The helical 
conductor will be located above infinite PEC ground plane, but also ground planes of finite 
dimensions (square and circular) will be considered. 

2.1.1. Linear variation of geometrical parameters 

In the case of nonuniform helical antennas with linear variation of geometrical parameters, the 
radius and pitch angle of each turn are linear functions of the axial coordinate z (Fig. 2.1). These 
geometrical parameters are defined by: 

 112 )( r
L
zrrr +-= , (2.1) 

 112 )( j+j-j=j
L
z , (2.2) 

where 1r  is the radius of the lowest (bottom) turn (for 0=z ), 2r  is the radius of the highest (top) 
turn (for Lz = ), and, similarly, 1j  and 2j  are the pitch angles at the bottom and top of the helix, 
respectively. 

Note that uniform helical antennas can be considered as the special case of nonuniform helical 
antennas with linear variation of geometrical parameters where 21 rr =  and 21 j=j . 
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Figure 2.1. Sketch of the nonuniform helical antenna with linearly varying geometrical parameters. 

For simplification, if not stated otherwise, we shall refer to the nonuniform helical antennas with 
linearly varying geometrical parameters simply as nonuniform helical antennas. However, in the 
parts of the thesis where other types of nonuniformities are investigated, it will be clearly indicated 
what type of variation is considered. In those parts we shall refer to the antenna governed by (2.1) 
and (2.2) as the linear helical antenna. 

2.1.2. Exponential and piecewise-linear variations of geometrical parameters 

In the case of nonuniform helical antennas with exponentially varying geometrical parameters 
(which we refer to as exponential helical antennas), shown Fig. 2.2a, the turn radius and pitch angle 
are defined by: 

 zCBAr rerr += , (2.3) 

 zCBA j
jj +=j e , (2.4) 

where rBrA -= 1r , ( ) ( )1e/ r
12r --= LCrrB , jj -j= BA 1 , ( ) ( )1e/12 -j-j= j

j
LCB , 1r , 2r , 1j , 2j  

are the same as in the previous subsection, and rC  and jC  are arbitrary coefficients. 
Further, nonuniform helical antennas with piecewise-linear variations of the geometrical 

parameters (along concatenated segments) will be considered (Fig. 2.2b). These antennas will be 
referred to as piecewise-linear helical antennas. The full range ( Lz ££0 ) along the antenna axis is 
divided into segments. Along each segment, the geometrical parameters are defined in a similar way 
as for the linear helical antenna: 

 k
k

k
kk r

L
zrrr +-= + )( 1 , Nk ,,2,1 K= , (2.5) 

 k
k

k
kk L

z
j+j-j=j + )( 1 , Nk ,,2,1 K= , (2.6) 

where kr , 1+kr , kj  and 1+jk  are radii and pitch angles of the first turn and the last turn of the k-th 
segment, respectively, kz  is the local coordinate along each segment ( kk Lz ££0 ), kL  is the axial 
length of each segment, and N  is the total number of segments. 
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(a) 

 
(b) 

Figure 2.2. Sketch of the nonuniform helical antenna with (a) exponential and (b) piecewise-linear variations of 
geometrical parameters (three linear segments) [110]. 

In this thesis, linear, exponential, and piecewise-linear variations of the geometrical parameters 
are investigated and the characteristics of the best found (optimal) antennas are compared. The 
antennas with exponential and piecewise-linear variations of geometrical parameters can achieve 
slightly higher gain than linear antennas of the same axial length [110]. However, the bandwidth 
can be much narrower, which can cause problems in the fabrication and applications. If the antenna 
geometries are optimized in a given frequency range, the gain and bandwidth of all antennas is 
almost the same [110]. Further, the geometry of antennas with exponential and, especially, 
piecewise-linear variations is defined by more parameters; hence, the optimization requires more 
iterations and lasts significantly longer.  

For these reasons, in the first part of this investigation, nonuniform helical antennas with linear 
variation of geometrical parameters will be considered. In Subsection 4.4.4, a detailed comparison 
among various types of geometry will be presented. 

2.2. Models of helical antennas 

In the modern engineering, a huge part of the design process and research relies on various types 
of computer simulations. Hence, reliable models and simulators are required. For this investigation, 
simulations are performed in software WIPL-D [111] and AWAS [112]. These simulators perform a 
full-wave 3D electromagnetic analysis, based on the method of moments (MoM). As an example, 
the WIPL-D model of a helical antenna is shown in Fig. 2.3a. The antenna is fed by a voltage 
delta-gap (point) generator located at the bottom of a short vertical wire segment, between the 
ground plane and the beginning of the first turn. 

 
(a) 

 
(b) 

Figure 2.3. WIPL-D model of nonuniform helical antenna (a) with polygonal turns (16 sides) [113] and (b) with square 
turns [113]. 
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WIPL-D and AWAS can analyze only straight-line wire segments. For this reason, a perfectly 
circular turn of the radius r  has to be approximated by a regular polygonal line of n sides, having 
an appropriate side length. 

A heuristic choice of the polygon side is as follows. A circle, whose radius is r, is approximated 
by a polygon constructed in such a way that this circle is positioned midway between the circle that 
is inscribed into the polygon (whose radius is inr ) and the circle that is circumscribed around the 
polygon (whose radius is outr ), i.e., ( ) 2inout rrr +=  (Fig. 2.4). Hence, the polygon is inscribed into 
a circle whose radius is  

 
÷
ø
ö

ç
è
æ gD

+
=

2
cos1

2
out

rr , (2.7) 

where n/2p=gD  is the central angle of the polygon. 

2
inout rrr +

=

 
(a) 

 
(b) 

 
(c) 

Figure 2.4. Approximation of a circle by a polygonal line of (a) 8 sides, (b) 6 sides, and (c) 4 sides. 

If the number of polygon sides is large, the duration of the simulation increases. However, if n  is 
small, it can be expected that the error made due to the approximation can increase. In order to 
confirm the validity of the utilized approximation and to find the optimal n , we have performed the 
following numerical experiments. 

Various axial antenna lengths ( L ) and wire radii ( wr ) are considered. For each axial antenna 
length and wire radius, models with various numbers of polygon sides ( n ) are simulated and the 
gain is inspected. The gains of these antennas as the function of utilized number of polygon sides 
( n ) are presented in Fig. 2.5. Each graph corresponds to one considered wire radius, whereas traces 
in the graphs correspond to the considered axial antenna length. 

These results show that for 12³n  the gain practically does not depend on the number of polygon 
sides, i.e., for 12³n  the gain deviates less than 0.1 dB compared to a very large n . Nonetheless, 
the same low discrepancy can be noted for 4=n . Hence, in the majority of models considered in 
this dissertation, perfectly circular turns are approximated by square turns ( 4=n ), when 

( )2/21/2out += rr . An example of the corresponding model is shown in Fig. 2.3b. 
The approximation with four straight segments per turn speeds-up the computations. Further, it 

enables manufacturing of a simple dielectric support for the antenna that has an almost negligible 
influence on the antenna characteristics. More details about the fabrication of such antenna 
prototypes will be provided in Subsection 5.3. 
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Figure 2.5. Gain of the antennas for various numbers of sides of the approximating polygon ( n) for various axial lengths 
(L) and wire radius (a) l= 0002.0wr  [113], (b) l= 0005.0wr , (c) l= 001.0wr , and (d) l= 002.0wr . 

As it is already said in Chapter 1, the counterbalance of the helical antenna can be an infinite PEC 
ground plane or a ground plane of finite dimensions (e.g., a circular or square flat plate, a circular 
cup, or a truncated cone). If the antenna is located above an infinite PEC ground plane, the 
influence of the currents in the ground plane can be taken into account by utilizing the antenna 
image (image theorem).  

Flat square and circular ground planes will also be considered in this thesis. In WIPL-D models, 
square or circular ground planes are divided into smaller metallic plates. The current distributions 
over these plates are approximated by two-dimensional polynomials (basis functions). The 
simulator also allows considering losses in the ground plane. All helical antenna parameters of 
interest, e.g., the gain, input impedance, axial ratio, etc., are calculated in WIPL-D by 
post-processing of those (numerically calculated) current distributions. 
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3. Optimization 

In this chapter, we explain in detail the optimization procedures utilized for finding the optimal 
design of the nonuniform helical antennas with linearly varying geometrical parameters and present 
results of these optimizations. The optimization results consist of the geometrical parameters of the 
found antennas (radii and pitch angles of the first and the last turn). The optimal geometrical 
parameters and the gain of the optimal antennas are analyzed and used with the aim to define a set 
of equations for the rapid calculation of these quantities. This set of equations represents the base of 
the design (synthesis) procedure (presented in Subsection 5.1) that allows fast and reliable design of 
nonuniform helical antennas. 

3.1. Optimization setup 

The main criteria for the optimization of helical antennas are 
1. to maximize the antenna gain and 
2. to obtain circular polarization (axial ratio in dB as close to 0 as possible), 

which requires multicriteria optimization. However, the second criterion can be met (relatively) 
more easily than the first one. Therefore, we combined those two criteria into one. This simplifies 
the optimization and allows formulation of the unique optimization (cost) function. 

To that aim, we set the optimization goal to maximize the partial gain for the circular polarization 
in the main radiating direction (see Appendix A.1). By maximizing the partial gain, instead of the 
gain or the absolute gain (see Appendix A.1), the effects of imperfect circular polarization are also 
taken into account. Hence, thereby not only the gain is maximized (the first task), but also the axial 
ratio in dB is kept as low as possible (the second task), i.e., both tasks are included into the cost 
function.  

The partial gain is defined by 

 cgg += [dBi]]dBi[ absolute , (3.1) 

where c is the gain reduction due to the imperfect circular polarization (see Appendix A.1). In the 
case of the right-hand circular polarization (RHCP) 

 dBlog20
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where RHCPE  is the rms value of )(RHCP tE , qE  and jE  are the θ and φ components of the complex 

electric far field as defined in Appendix A.3, and 
22

tot jq += EEE . For the left-hand circular 
polarization (LHCP) 
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where LHCPE  is the rms value of )(LHCP tE , as defined in Appendix A.3. 
Further, as it is defined in Appendix A.3, the axial ratio is  
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Finally, we will formulate the optimization in terms of finding the minimum of the cost function. 
Hence, the cost function is defined as 

 ]dBi[100cost gf -= , (3.5) 

where the constant 100 is well above the maximal partial gain for all considered helical antennas in 
this thesis. The cost function (3.5) is always positive. The ultimate goal of the optimization is to 
find the global minimum of (3.5), taking into account the predefined ranges of the parameters of the 
antenna geometry, i.e., optimization variables. 

The optimization variables are the radii and pitch angles of the first turn and the last turn (r1, r2, 
φ1, and φ2, respectively). We consider the optimization variables within the following limits: 

· l££l 5.0,02.0 21 rr  and 
· °£jj£° 15,5.0 21 , 

where λ is the free-space wavelength at the operating frequency. Some combinations of the 
optimization variables correspond to infeasible geometries, i.e., geometries that cannot be 
practically realized (for example, if the desired spacing between adjacent turns is smaller than the 
conductor diameter, or this spacing is very small so in the real situation these turns can touch). 
These geometries are automatically identified and rejected during the optimization, by setting the 
cost function to 150, which is larger than the largest costf  for all feasible geometries. The radii and 
pitch angles of other turns are calculated using (2.1) and (2.2), respectively. During the 
optimization, the antenna is located above an infinite perfectly conducting ground plane. The 
antenna conductor is assumed to be lossy, but PEC conductors are also considered as a special case. 
The optimizations are performed for various axial antenna lengths, wire radii, and wire 
conductivities.  

The cost function defined by (3.5) is an instance of a constrained NLP (nonlinear programming) 
optimization problem. Various combinations of the optimization algorithms for the optimization of 
the helical antenna geometry are investigated in [114]. The random search, Nelder-Mead simplex 
[115], gradient method, and particle swarm optimization (PSO) [116], [117] are tested. The random 
search and randomly initialized PSO are stochastic algorithms that usually yield a different solution 
in each independent run. Hence, the random search or PSO are used in the first stage of the 
optimization, whereas in the second stage the Nelder-Mead simplex or gradient method are utilized 
in order to speed up the convergence to the (local) optimum. The second stage of the optimization is 
launched from the best-found solution within the first stage. Results from [114] show that the 
random search or PSO (in the first stage) followed by the Nelder-Mead simplex (in the second 
stage) have the highest probability of finding the best solution. 

Here, we will additionally investigate different combinations of the optimization algorithms, 
different numbers of iterations, and algorithm setups, with an ultimate goal to choose the 
combination that finds the best solution with the minimal number of iterations, i.e., 
electromagnetic-solver calls. 

In order to compare different combinations of the stochastic optimization algorithms, we perform 
investigation similar to the investigation performed in [114]. Each combination of the optimization 
algorithms is independently restarted 100 times. For each independent run, the best-found solution 
and the corresponding cost function are saved. The solutions are classified into 200 bins in terms of 
the gain. Thereby, k-th bin corresponds to the gain in the range 

[ ) 200,,2,1dBi,,11.0 K=-Î kkkgk . The probability of finding a solution within the bin kg  is 
estimated as totNNpk = , where N  is the total number of found solutions within the considered 
bin and totN  is the total number of independent runs ( 100tot =N ). 
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Fig. 3.1 shows the (estimated) probabilities, kp , for the axial antenna lengths 2 λ, 5 λ, and 10 λ, 
and various combinations of the optimization algorithms. The helix conductor is considered to have 
a circular cross-section of radius 0.0002 λ and to be lossy, of conductivity 58 MS/m. The 
simulations are performed at the operating frequency 300 MHz, where the free-space wavelength is 

m1»l . 
With an aim to select the algorithm for the first stage of the optimization, i.e., the random search 

or PSO, the results in Figs. 3.1b, c, e, and f can be compared. Namely, the same number of 
iterations is utilized in Figs. 3.1b and e, as well as in Figs. 3.1c and f. These results undoubtedly 
confirm that the PSO is better than the random search for the first stage of the optimization. Further, 
the results in Figs. 3.1c and d show that for the second stage of optimization the Nelder-Mead 
simplex is better than the gradient method. Hence, the chosen combination of optimization 
algorithms is the PSO followed by the Nelder-Mead simplex. (This agrees with the conclusion 
made in [114].) Finally, the results in Figs. 3.1e and f can be used for choosing the number of 
iterations. For shorter antennas (2 λ and 5 λ), it can be noticed that 2000 PSO iterations (swarm size 
20) followed by (maximum of) 200 Nelder-Mead simplex iterations have a notably higher 
probability to achieve the maximal gain (around 20 % higher) than 500 PSO iterations (swarm size 
20) followed by (maximum of) 200 Nelder-Mead simplex iterations. For 10 λ antennas the 
probability difference is smaller, i.e., it is around 5 %. Therefore, for the optimization of the 
geometry of the nonuniform helical antennas with linear variation of turn radius and pitch angle 
2000 iterations of PSO (swarm size 20) followed by (maximum of) 200 Nelder-Mead simplex 
iterations, launched from the best found PSO solution, are utilized. 
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Figure 3.1. Probabilities, pk, for the axial antenna lengths 2 λ, 5 λ, and 10 λ for (a) 1 random and 200 simplex iterations, 
(b) 500 random and 200 simplex iterations, (c) 2000 random and 200 simplex iterations, (d) 2000 random and 
200 gradient iterations, (e) 500 PSO (swarm size 20) and 200 simplex iterations, and (f) 2000 PSO (swarm size 20) and 
200 simplex iterations. 

3.2. Optimization results 

The optimization, utilizing the combination of the optimization algorithms chosen in 
Subsection 3.1, is performed for finding the optimal nonuniform helical antennas of various axial 
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antenna lengths, wire radii, and conductivities, including PEC. During the optimization, the helix is 
located above an infinite PEC ground plane. The optimal geometrical parameters, obtained from the 
optimization, are further analyzed and used to make conclusions presented in the following 
subsections. 

3.2.1. Lossless conductors (PEC) 

The chosen optimization setup is utilized for the optimization of lossless nonuniform helical 
antennas. The optimization is performed for different axial antenna lengths and wire radii. The gain 
and the geometrical parameters of the optimal antennas are shown in Figs. 3.2 and 3.3, respectively. 
The results in Fig. 3.2 show that, for lossless conductors, the gain practically does not depend on the 
conductor radius. Further, the gain dependence on the antenna axial length can be easily described 
by a logarithmic function, i.e., [ ] ( ) BLAg +l= logdBi . The values of the coefficients A and B are 
approximated so that this equation always underestimates the gain, but also keeping as low as 
possible the discrepancy between the gain of the optimal antennas and the calculated gain. As the 
result, the equation that estimates the gain of the optimal nonuniform helical antennas with lossless 
conductors is 

 [ ] 86.13log31.8dBi 10 +÷
ø
ö

ç
è
æ

l
=

Lg . (3.6) 

From the results shown in Fig. 3.2 it can be noticed that (3.6) successfully predicts the gain of 
antennas whose axial length is an integer multiple of a half wavelength, 4,2 ³l= kkL . The 
discrepancy between the simulated gain and the gain calculated from (3.6) is less than 0.25 dB. 
However, in other cases ( 4,2 ³l¹ kkL ), the gain of the optimal antennas is lower than predicted 
by (3.6), but also, in some cases, it is almost equal (or just negligibly higher) than the gain of the 
shorter antennas for which the condition 4,2 ³l= kkL  is fulfilled. For example, in the case of the 
conductor radius l= 0002.0wr , the gain of the antenna whose axial length is l2  is 16.47 dBi, 
whereas the gain of the antenna whose axial length is l25.2  is 16.46 dBi. Hence, there is no 
justification for using the longer antenna ( l25.2 ). 
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Figure 3.2. Gain of the optimal lossless nonuniform helical antennas. 

Fig. 3.3 shows the geometrical parameters (radii and pitch angles of the first and the last turn) of 
the optimal nonuniform helical antennas with lossless conductor for characteristic axial antenna 
lengths and conductor radii. (The considered axial antenna lengths and conductor radii are chosen 
within the ranges defined in Subsection 3.2.2.) These geometrical parameters show high regularity. 
This feature allows fitting of the data with the ultimate goal of defining a fast design procedure 
which contains design equations for calculating geometrical parameters of the optimal antennas.  
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Figure 3.3. Geometrical parameters of the optimal lossless nonuniform helical antennas: (a) radius of the first turn, 
(b) radius of the last turn, (c) pitch angle of the first turn, and (d) pitch angle of the last turn. 

3.2.2. Lossy conductors 

As a preparation for the optimization, the limits for the considered axial antenna lengths, antenna 
conductors, and antenna operation have to be adopted. These limits are defined by having practical 
applications in mind.  

The operating frequency and the antenna overall dimensions are inversely proportional, i.e., the 
antenna overall dimensions are linearly proportional to the wavelength at the operating frequency.  

Since very large and very small low-loss helices are hard to be fabricated, helical antennas are 
commonly used from the VHF range up to lower microwave frequencies. Hence, in this work we 
will consider operating frequencies from 30 MHz up to 6 GHz. 

The conductivities of the most commonly used conductors (copper, silver, gold, aluminum, brass, 
steel) range from 10 MS/m to several tens of MS/m. Hence, for the considered wire conductivities 
we adopt the range from 10 MS/m to 100 MS/m. 

The range of the axial antenna lengths is confined by the applications and the fabrication 
limitations (from the upper side) and by the nature of the helical antennas (from the lower side), i.e., 
for short antennas some features of the helical antennas can be undeveloped. Hence, considered 
range for the axial antenna lengths is from 2 λ to 10 λ, where λ is the wavelength at the operating 
frequency. 

The considered radii of the conductors are from 0.0002 λ to 0.002 λ, which mostly covers 
commercially available wires, for the considered frequency range. 
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Finally, the following limits are considered for the optimization of nonuniform helical antennas 
with lossy conductors: 

· operating frequencies from 30 MHz to 6 GHz, 
· wire conductivities from 10 MS/m to 100 MS/m, 
· axial antenna lengths from 2 λ to 10 λ, and 
· wire radii from 0.0002 λ to 0.002 λ. 

These limits define a design hyper rectangle.  
When considering the operating frequency, it is convenient to perform all optimizations at a 

single frequency, e.g., 300 MHz, where the wavelength is (around) 1 m, and thereafter scale the 
obtained solution (the antenna dimensions) and conductivity to the actual operating frequency. This 
procedure significantly reduces the optimization load that is necessary to obtain optimal antennas 
for all points within the design hyper rectangle. Inherently, significant data compression is thereby 
achieved. 

This procedure is based on the theorem of electromagnetic similitude [118]. According to the 
theorem, if the operating frequency is increased s times, all linear geometrical dimensions of the 
antenna should be decreased s times and the wire conductivity should be increased s times in order 
to obtain the electromagnetic similarity (see Appendix B). Note that the original antenna and the 
scaled antenna have the same gain and the same input impedance. Hence, the wire conductivities in 
the scaled model are taken to be in the range from 0.5 MS/m to 1000 MS/m, which corresponds to 
the targeted wire conductivities within the considered frequency range.  

Solid lines in Fig. 3.4 show the gain of the optimal antennas in the range of the targeted wire 
conductivities, for various axial lengths and wire radii. (Dark blue solid lines correspond to the gain 
of the antennas with lossless conductors calculated from (3.6).) All geometrical dimensions are 
expressed in terms of the wavelength at the operating frequency (λ). Note that the gain is plotted as 
a function of the conductivity multiplied by the wavelength at the operating frequency. (We refer to 
this product as the normalized conductivity.) Hence, in addition to the geometrical dimensions, the 
conductivity is also expressed in terms of the wavelength at the operating frequency. This way of 
expressing the geometrical dimensions and conductivity allows fast scaling of the model to an 
arbitrary operating frequency (within the design hyper rectangle, i.e., the limits defined at the 
beginning of this subsection). Therefore, the data shown in Fig. 3.4 are not valid only for the 
frequency utilized during the optimizations (300 MHz), but also are applicable to any other 
frequency (within the defined range). 

Further, in all graphs shown in Fig. 3.4, i.e, for all axial antenna lengths and wire radii, it can be 
noticed that by moving from the highest normalized conductivities towards the lowest normalized 
conductivities (from the right to the left part of the graphs) the traces have steep slopes. This 
behavior shows that the wire losses strongly affect the gain of the nonuniform helical antennas. 

The shape of the optimal nonuniform helical antennas depends on the wire conductivity, i.e., on 
the losses. When the losses are high (the conductivity is low), the radii and pitch angles of the turns 
near the feeding point are larger than the radii and pitch angles at the helix top. In addition, the turns 
at the helix top almost touch each other. A typical geometry of the antenna in this case is shown in 
Fig. 3.5a. As the losses decrease (the conductivity increases), the geometry smoothly changes to the 
geometry shown in Fig. 3.5b. In this case, the radii and pitch angles increase from the helix bottom 
towards the top. For simplicity, these losses are referred to as the medium losses. With a further 
diminish of the losses (increase in the conductivity, including PEC wires, Subsection 3.2.1), the 
typical antenna geometry looks like the one shown in Fig. 3.5c. The turns at the helix bottom 
become dense. Hence, the required conductor length becomes longer, which may be impractical. 

The main objective of this part of the work is to provide a fast and simple, but sufficiently 
accurate, design procedure valid for as large as possible subspace within the design hyper rectangle, 
defined at the beginning of Subsection 3.2.2. For that purpose, the geometry that corresponds to the 
medium losses (shown in Fig. 3.5b) is utilized, since it is considered to be the most interesting one 
from the practical point of view for two reasons.  
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Firstly, the gain of those antennas (indicated by dots in Fig. 3.4) is sufficiently high, i.e., the 
decrease in the gain of those antennas in comparison with the gain of the antennas from Fig. 3.5c 
(indicated by dark blue solid line in Fig 3.4) is between 0.8 dB and 0.9 dB. Namely, the ordinate 
values of the dots in Fig. 3.4 are between 0.8 dB and 0.9 dB below the level indicated by dark blue 
line. This discrepancy in gain is indicated as the margin in Fig. 3.4. 

Secondly, the turns are not overcrowded; hence, the total conductor length is shorter. 
The dots shown in Fig. 3.4 correspond to the designs with medium losses, i.e., the dots indicate 

antennas that are chosen for the reference design. (In the case of the longest antennas, whose axial 
lengths are 7 λ and 10 λ, with the thinnest wire, the normalized conductivity which corresponds to 
the medium losses is larger than 1000 MS. Hence, the dots for these two examples are not plotted in 
Fig. 3.4.) 

1 10 100 1000
12

13

14

15

16

17
 PEC (Eq. (3.6))

g 
[d

B
i]

sl [MS]

                       optimal antennas    medium losses  
                                                    Eq. (3.6) - margin
rw=0.0002 l:                                 
rw=0.0005 l:                                 

rw=0.001 l:                                      
rw=0.002 l:                                   

L=2 l
margin

0.8 – 0.9 dB

 
(a) 

1 10 100 1000
13

14

15

16

17

18 L=3 l

g 
[d

Bi
]

sl [MS]

 PEC (Eq. (3.6))

                       optimal antennas    medium losses  
                                                    Eq. (3.6) - margin
rw=0.0002 l:                                 
rw=0.0005 l:                                 

rw=0.001 l:                                      
rw=0.002 l:                                   

 
(b) 

1 10 100 1000
13

14

15

16

17

18

19

20

                       optimal antennas    medium losses  
                                                    Eq. (3.6) - margin
rw=0.0002 l:                                 
rw=0.0005 l:                                 

rw=0.001 l:                                      
rw=0.002 l:                                   

L=4 l

g 
[d

Bi
]

sl [MS]

 PEC (Eq. (3.6))

 
(c) 

1 10 100 1000
14

15

16

17

18

19

20 L=5 l

g 
[d

B
i]

sl [MS]

                       optimal antennas    medium losses  
                                                    Eq. (3.6) - margin
rw=0.0002 l:                                 
rw=0.0005 l:                                 

rw=0.001 l:                                      
rw=0.002 l:                                   

 PEC (Eq. (3.6))

margin
0.8 – 0.9 dB

 
(d) 

1 10 100 1000
15

16

17

18

19

20

21
L=7 l

g 
[d

Bi
]

sl [MS]

                       optimal antennas    medium losses  
                                                    Eq. (3.6) - margin
rw=0.0002 l:                                 
rw=0.0005 l:                                 

rw=0.001 l:                                      
rw=0.002 l:                                   

 PEC (Eq. (3.6))

 
(e) 

1 10 100 1000
15

16

17

18

19

20

21

22

23
L=10 l

g 
[d

B
i]

sl [MS]

                       optimal antennas    medium losses  
                                                    Eq. (3.6) - margin
rw=0.0002 l:                                 
rw=0.0005 l:                                 

rw=0.001 l:                                      
rw=0.002 l:                                   

 PEC (Eq. (3.6))

 
(f) 

Figure 3.4. Gain of the optimal nonuniform helical antennas within considered conductivity range for various wire radii 
and (a) L=2 λ, (b) L=3 λ, (c) L=4 λ, (d) L=5 λ, (e) L=7 λ, and (f) L=10 λ, solid lines. Gain of the nonuniform helical 
antennas with PEC wire calculated from (3.6), solid dark blue line. Dots indicate antennas that are chosen for the 
reference design. 
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Figure 3.5. Typical examples of geometries of the optimal antennas for (a) high losses [113], (b) medium losses [113], 
and (c) low losses [113]. 

Through a detailed investigation of the antennas that correspond to the medium losses, it is found 
that these designs can also be valid for a wider range of conductivities. Hence, we refer to these 
designs as reference designs, and the corresponding conductivity as the reference conductivity, 

refσ . Dots in Fig. 3.6a indicate the normalized conductivities that correspond to the medium losses 
(abscissas of the dots shown in Fig. 3.4). By heuristic investigation of logarithmic and linear 
dependencies, and by fine-tuning of each term, refσ  is approximated by 
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where L, rw, and λ are in meters, and refσ  is in MS/m. The validity of the approximation given by 
(3.7) is confirmed in Fig. 3.6a, where the normalized reference conductivities are compared with 

refσ  calculated from (3.7). 
Further, the normalized reference conductivity is plotted in Fig. 3.6b as a function of the 

normalized axial length and normalized wire radius. The normalization is with respect to the 
wavelength at the operating frequency. 
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Figure 3.6. (a) Normalized conductivities that correspond to the reference design and normalized reference 
conductivities calculated from (3.7) [113], and (b) normalized reference conductivity, calculated from (3.7), as a 
function of the normalized axial antenna length ( L/λ) and normalized wire radius (rw/λ) [113]. 

Normalized optimal geometrical parameters for the reference design (r1, r2, φ1, and φ2), for 
various axial antenna lengths and wire radii, are shown in Fig. 3.7. As for the antennas with lossless 
conductors, the optimal geometrical parameters for the reference design show high regularity, 
which allows this data to be fitted successfully. Normalized optimal radii of the first turn (Fig. 3.7a) 
and the last turn (Fig. 3.7b), and the optimal pitch angles of the last turn (Fig. 3.7d) are in the same 
ranges as for the antennas with lossless conductors (see Fig. 3.3). However, the optimal pitch angles 
of the first turn are around five times larger in the reference design. This was expected since the 
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turns at the antenna bottom in the case of lossless antennas are denser (Fig. 3.5c) than in the 
reference design (Fig. 3.5b). 
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Figure 3.7. Optimal geometrical parameters of the reference design: (a) normalized radius of the first turn [113], 
(b) normalized radius of the last turn [113], (c) pitch angle of the first turn [113], and (d) pitch angle of the last 
turn [113]. 

The gain of the antennas whose geometrical parameters are shown in Fig. 3.7 is compared in 
Fig. 3.8 with the gain of the antennas whose geometries are optimized at the corresponding 
normalized conductivities. The dots shown in Fig. 3.8 indicate the designs with the medium losses 
(as in Fig. 3.4). Hence, the abscissas and the ordinates of these dots correspond to the normalized 
reference conductivity and the gain calculated from (3.6) reduced by the margin (defined in 
Fig. 3.4), respectively. As it is explained for Fig. 3.4, for the longest antennas (axial antenna lengths 
7 λ and 10 λ), with the thinnest wire (0.0002 λ), the normalized conductivity which corresponds to 
the medium losses is larger than 1000 MS, so the dots for these two examples are not plotted in 
Fig. 3.8. 

In the range of the normalized conductivities MS1000σref <ls<l , the gain of the antennas 
obtained using the reference design is only up to 0.25 dB lower than the gain of the corresponding 
optimal antennas (Fig. 3.8). This confirms the assumption that the reference design can be used as 
the optimal design in a wider range of conductivities, i.e., in the range of the normalized 
conductivities MS1000σref <ls<l .  

Further, the discrepancy between the corresponding traces in Fig. 3.8 is negligible even for the 
conductivities smaller than the reference conductivity. We adopt that the reference design can be 
used as the optimal design as long as the discrepancy between the corresponding traces in Fig. 3.8 is 
lower than around 0.5 dB. This condition is fulfilled for the normalized conductivities within the 
range MS1000σmin <ls<l , where the normalized minimal conductivity ( lminσ ) is indicated by 
square markers in Fig. 3.8. The normalized minimal conductivity can be calculated from 
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The coefficients in (3.8) are heuristically obtained by considering linear and logarithmic 
dependencies (for which our analysis determines that they are the most suitable), and by 
fine-tuning. The main goal is to meet the previously defined condition, i.e., the maximal 
discrepancy between the gain of the antennas obtained using the reference design and the gain of 
the corresponding optimal antennas should be 0.5 dB. 

 

1 10 100 1000
7

8

9
10

11
12

13

14
15

16
17

                      optimal   reference   Eq. (3.6) -margin   s
min

l

r
w
=0.0002 l:                                  

r
w
=0.0005 l:                                    

rw=0.001 l:                                       
rw=0.002 l:                                      

L=2 l

g 
[d

Bi
]

sl [MS]  
(a) 

1 10 100 1000
8

9

10
11

12
13

14

15
16

17
18

                      optimal   reference   Eq. (3.6) -margin   sminl

rw=0.0002 l:                                  
rw=0.0005 l:                                   
rw=0.001 l:                                      
rw=0.002 l:                                    

L=3 l

g 
[d

Bi
]

sl [MS]  
(b) 

1 10 100 1000
9

10

11
12

13
14

15

16
17

18
19

                      optimal   reference   Eq. (3.6) -margin   sminl

rw=0.0002 l:                                  
rw=0.0005 l:                                   
rw=0.001 l:                                      
rw=0.002 l:                                    

L=4 l

g 
[d

Bi
]

sl [MS]  
(c) 

1 10 100 1000
10

11

12

13

14
15

16

17

18

19
20

                      optimal   reference   Eq. (3.6)-margin   sminl

rw=0.0002 l:                                  
rw=0.0005 l:                                   
rw=0.001 l:                                      
r

w
=0.002 l:                                    

L=5 l
g 

[d
Bi

]

sl [MS]  
(d) 

1 10 100 1000
11

12

13
14

15
16

17

18
19

20
21

                      optimal   reference   Eq. (3.6) -margin   sminl

rw=0.0002 l:                                  
rw=0.0005 l:                                   
rw=0.001 l:                                      
rw=0.002 l:                                    

L=7 l

g 
[d

Bi
]

sl [MS]  
(e) 

1 10 100 1000
12

13

14
15

16
17

18

19
20

21
22

                      optimal   reference   Eq. (3.6) -margin   s
min

l

rw=0.0002 l:                                  
rw=0.0005 l:                                   
rw=0.001 l:                                      
rw=0.002 l:                                    

L=10 l

g 
[d

Bi
]

sl [MS]  
(f) 

Figure 3.8. Gain of the optimal nonuniform helical antennas and the reference design within considered conductivity 
range for various wire radii and (a) L=2 λ, (b) L=3 λ, (c) L=4 λ, (d) L=5 λ, (e) L=7 λ, and (f) L=10 λ. Abscissas of the 
circle and square markers correspond to the normalized reference conductivity and σminλ, respectively. 

Although the normalized conductivities that are higher than 1000 MS do not correspond to any 
design within the design hyper rectangle, defined in Subsection 3.2.2, it can be illustrative to 
compare the gain of the reference design (with a PEC wire) with the gain of the optimal lossless 
antennas. If the reference design is used with a PEC wire, the resulting gain is up to 0.4 dB lower 
than the gain of the antennas optimized immediately assuming a PEC wire (Subsection 3.2.1). This 
confirms that the considered condition for defining the lower border of the 
normalized-conductivities range (the discrepancy between the corresponding traces in Fig. 3.8 is 



25 

lower than around 0.5 dB) is also fulfilled for the conductivities higher than 1000 MS, all the way 
up to PEC wires. 

For reference, in Fig. 3.9 the conductivities of the frequently used metals, i.e., copper (58 MS/m), 
gold (41 MS/m), silver (63 MS/m), and aluminum (37.7 MS/m), are compared with minσ  for 
various axial lengths and wire radii, in the considered frequency range (from 30 MHz to 6 GHz). 
Each graph in Fig. 3.9 corresponds to a different wire radius. Horizontal lines indicate the 
conductivities of frequently used wire materials. These lines intersect with the traces that 
correspond to minσ  for various axial antenna lengths. These intersections denote the points where 

minσ  of the observed axial antenna length and wire radius is equal to the conductivity of the 
considered metal (copper, gold, silver, or aluminum). Hence, at the operating frequencies lower 
than the frequency that corresponds to the intersection point, the reference design can be used as the 
optimal one with the considered metal as the wire material. For example, if we consider the axial 
antenna length 2 λ, the wire radius 0.0002 λ, and copper as the wire material, the operating 
frequency has to be below 300 MHz. In addition, if we consider the same axial antenna length and 
wire material, but we assume the wire radius to be 0.002 λ, the operating frequency can be 
anywhere within the considered frequency range (from 30 MHz to 6 GHz). 

Further, if a certain metal (as the wire material) and operating frequency are considered, the 
intersection points in Fig. 3.9 indicate for which axial antenna lengths the reference design can be 
used as the optimal one. For example, if we consider a copper wire of the radius 0.001 λ and the 
operating frequency is 1 GHz, the reference design can be used as the optimal design for the axial 
antenna lengths up to 5 λ. However, if the same wire material and the operating frequency are 
considered, but the wire radius is 0.002 λ, the reference design is valid as the optimal design for all 
axial antenna lengths within the defined range (from 2 λ to 10 λ). 
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Figure 3.9. σmin for various axial lengths and (a) rw=0.0002 λ, (b) rw=0.0005 λ, (c) rw=0.001 λ, and (d) rw=0.002 λ [113], 
in the considered operating frequency range. For reference, horizontal lines show conductivities of copper, gold, silver, 
and aluminum. 
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3.2.3. Approximating equations – geometrical parameters 

The results obtained in the previous subsection confirm that the gain of the reference design is 
very close to the gain of the optimal antennas in the wide range of conductivities (for the 
normalized conductivities MS1000σmin <ls<l ). Further, the results from Fig. 3.7 indicate that 
the dependence of the optimal geometrical parameters, for the reference design, on the axial antenna 
length and wire radius can be described by analytical equations. These analytical equations will 
enable a rapid and reliable procedure for designing the optimal nonuniform helical antennas in just 
a few steps. 

In Fig. 3.7 the abscissas of all graphs are in logarithmic scale. Hence, the dependence of the 
geometrical parameters on the axial antenna length can be approximated by the equation of the 
following form: ( ) BLAGP +l= log , where GP are geometrical parameters r1/λ, r2/λ, φ1, or φ2, 
and A and B are unknown coefficients, different for each geometrical parameter. By further 
inspection of the optimal geometrical parameters, it can be noticed that the values of the coefficients 
A and B depend on the radius of the conductor. Hence, ( )l= wrAA  and ( )l= wrBB . 

For each geometrical parameter, a detailed investigation is performed in order to describe 
dependences of the geometrical parameters on the axial antenna length and wire radius. The main 
task for finding the equations that approximate the optimal geometrical parameters is to maintain as 
low as possible the differences between the gain of the optimal antennas and the antennas designed 
using the proposed design equations. Hence, the antennas designed using the proposed equations 
achieve nearly the same gain as the optimal antennas. For that purpose, instead of fitting the optimal 
coefficients A and B using a standard method for data fitting, equations that approximate the values 
of the coefficients are found by heuristic investigation of various dependencies on linear and 
logarithmic scale, and by fine-tuning of each term in these equations. During this process, the gain 
differences are carefully monitored. 

In Fig. 3.10 square markers correspond to the optimal values of the coefficients A and B for 
different wire radii, and these optimal values are fitted by solid lines. Fig. 3.11 compares the 
optimal geometrical parameters with the geometrical parameters calculated from the equations 
where the optimal coefficients A and B (shown by square markers in Fig. 3.10) are utilized. The 
gain of the optimal antennas and the gain of antennas whose geometrical parameters are calculated 
from the equations with the optimal coefficients A and B are compared in Fig. 3.12. In the worst 
case, the discrepancy between the gains of those antennas is less than 0.5 dB, for the normalized 
conductivities higher than lsmin . Note that the largest discrepancy between the gain of the optimal 
antennas and the reference design, in the same range of the normalized conductivities, is also less 
than 0.5 dB (Fig. 3.8). Hence, antennas designed using the calculated geometrical parameters 
(where the coefficients A and B are optimal) achieve almost the same gain as antennas whose 
geometrical parameters are optimal for the reference design. 
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Figure 3.10. Coefficients A and B for approximating the optimal geometrical parameters: (a) normalized radius of the 
first turn, (b) normalized radius of the last turn, (c) pitch angle of the first turn, and (d) pitch angle of the last turn. 
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Figure 3.11. Optimal geometrical parameters of the reference design and geometrical parameters calculated from 
equations where the optimal coefficients A and B are utilized: (a) normalized radius of the first turn, (b) normalized 
radius of the last turn, (c) pitch angle of the first turn, and (d) pitch angle of the last turn. 
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Figure 3.12. Gain of the optimal nonuniform helical antennas and antennas whose geometrical parameters are calculated 
from the equations with the optimal coefficients A and B, within considered conductivity range for various wire radii 
and (a) L=2 λ, (b) L=3 λ, (c) L=4 λ, (d) L=5 λ, (e) L=7 λ, and (f) L=10 λ. Square markers correspond to the normalized 
conductivity σminλ. 

For the radii of the first and the last turn, the dependence of the optimal coefficient A on the wire 
radius is nearly linear (Figs. 3.10a and b). Hence, the optimal values of these coefficients are 
approximated in the following way: 
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The optimal coefficients B for the first and the last turn are approximated by the logarithmic 
functions 
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Finally, the optimal normalized radii of the first and the last turn are approximated by 
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From Fig. 3.10c it can be noticed that, for the pitch angle of the first turn, the dependencies of the 
coefficients A and B on the wire radius are logarithmic. The coefficient A in the equation for the 
pitch angle of the last turn linearly depends on the wire radius, whereas the dependence of the 
coefficient B is logarithmic. Hence, these coefficients are defined by the following equations 
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Finally, the optimal pitch angles of the first turn and the last turn ( 1j  and 2j ) are approximated by 
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In the following text, we refer to the set of equations (3.13), (3.14), (3.19), and (3.20) as the 
design equations, including equation (3.8) that is used to determine if this design is valid. 

In Fig. 3.13 the radii and pitch angles of the first turn and the last turn of the reference design 
(obtained from the optimization), referred to as “optimal”, are compared with the radii and pitch 
angles calculated from the design equations, referred to as “calculated”. The discrepancy between 
the “optimal” and “calculated” geometrical parameters is noticeable (the discrepancy in this case is 
much bigger than in Fig. 3.11, where the coefficients A and B are the optimal). However, this 
discrepancy does not mean that the design equations poorly fit the optimal geometrical parameters. 
The main parameter for the evaluation of the design equations is the antenna gain. Hence, the main 
goal during the fine-tuning of the coefficients in the design equations is to maintain as low as 
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possible the discrepancy between the gain of the optimal reference design and the gain of the 
antennas whose geometrical parameters are calculated from the design equations. 

Therefore, the gain of the optimal antennas and the antennas whose geometrical parameters are 
calculated from the design equations are compared in Fig. 3.14. From these results it can be noticed 
that the largest discrepancy of the gain is around 0.5 dB for the conductivities higher than lsmin . 
This leads to the conclusion that the design equations enable a rapid design procedure of the 
nonuniform helical antennas without significantly deteriorating the antenna performance in 
comparison with the optimal nonuniform helical antennas.  
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Figure 3.13. Optimal geometrical parameters of the reference design and the geometrical parameters calculated from 
(3.13), (3.14), (3.19), and (3.20): (a) normalized radius of the first turn, (b) normalized radius of the last turn, (c) pitch 
angle of the first turn, and (d) pitch angle of the last turn. 
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Figure 3.14. Gain of the optimal nonuniform helical antennas and antennas whose geometrical parameters are calculated 
from equations (3.13), (3.14), (3.19), and (3.20) , within considered conductivity range for various wire radii and 
(a) L=2 λ, (b) L=3 λ, (c) L=4 λ, (d) L=5 λ, (e) L=7 λ, and (f) L=10 λ. Square markers correspond to the normalized 
conductivity σminλ. 

Finally, by using the design equations for the design of the nonuniform helical antennas, the 
optimization of the antenna geometrical parameters (by the designer or user) can be avoided. Hence, 
computer resources (software and hardware for EM simulations) are not needed, and the design 
procedure is very short and fast. This can be very useful and preferable for practical applications. 
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3.2.4. Approximating equation – antenna gain 

The gain in the main radiating direction is one of the most important parameters that characterize 
an antenna. Therefore, the gain of the antennas designed using the presented design equations 
((3.13), (3.14), (3.19), and (3.20)) will also be approximated by an equation. 

Solid lines in Fig. 3.14 show the gain of antennas whose geometrical parameters are calculated 
from the design equations. It can be noticed that the gain dependences on the normalized 
conductivity are very similar regardless of the axial length and wire radius. For a more detailed 
investigation of these dependences, the antenna gain is simulated in a wider range of the normalized 
conductivities, MS106

min £sl£ls  (Fig. 3.15a) and the same conclusion is being drawn. This is 
also confirmed by the results shown in Fig. 3.15b, where all traces are translated and overlapped. 
The first step is the vertical translation, which is made so that the maximum of all traces is 0. In the 
second step the traces are horizontally translated so that all traces have a common point 
( )dB0.5MS,1 - . Thereafter, the behavior shown in Fig. 3.15b can roughly be approximated by the 
equation 

 
ls
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=

overlapped
normalized

5.0g , (3.21) 

where lsoverlapped  is the normalized conductivity that corresponds to the x axis in Fig. 3.15b, 
whereas we refer to the values on the ordinate after the translation as the normalized gain 
( normalizedg ). 
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Figure 3.15. (a) Gain of antennas whose geometrical parameters are calculated from the design equations in a wider 
range of normalized conductivities and (b) overlapped gain traces. 

The maximal gain strongly depends on the antenna axial length, whereas the wire radius only 
slightly affects the maximal gain. Circular markers in Fig. 3.16 correspond to the maximal gain for 
each axial length. Since the abscissa scale is logarithmic, the maximal gain can be fitted by the 
equation max10maxmax )(log gg BLAg +l= , where 385.8max =gA  and 48.13max =gB  (solid line in 
Fig. 3.16a). The fitting by this equation is satisfactory for longer antennas. However, this fitting is 
not good for shorter antennas, especially for L=2 λ. Hence, we added an additional term, which 
improves the fitting for the shortest antennas, ( ) max

maxmax10maxmax )(log gD
ggg LCBLAg l++l= , 

where the values of maxgA  and maxgB  are the same as previously defined, whereas 89.26max =gC  
and 763.6max =gD , Fig. 3.16b. 
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Figure 3.16. Fitting the maximal antenna gain by (a) ( ) 48.13log385.8 10 +lL  and 

(b) ( ) ( ) 763.6
10 89.2648.13log385.8 l++l LL . 

Thereafter, the dependence on the wire radius should also be fitted. For that purpose, the 
overlapped traces in Fig. 3.15b have to be separated in order to obtain the dependence of the gain on 
the wire radius for the normalized conductivities higher than lsmin  (Fig. 3.15a). Hence, the term 

ls
-

overlapped

5.0 , which fits the overlapped traces in Fig. 3.15b, needs to be expanded. Various 

dependencies are investigated and satisfactory fitting is achieved utilizing the term 
( )

( ) lsl

l-

overlappedw

5.0
gB

g

r

LA
, where the coefficients are 005966.0=gA  and 8411.0=gB . Note that in 

order to achieve satisfactory fitting, it is necessary to introduce the dependence on the axial antenna 
length. This dependence cannot be easily noticed from the data shown in Fig. 3.15a, but it 
significantly improves the fitting. The fitted and actual traces are compared in Fig. 3.17 for various 
axial antenna lengths, demonstrating good agreement. 

Finally, in Fig. 3.18 the gain of the antennas whose geometrical parameters are calculated from 
the design equations in a wide range of the normalized conductivities is compared with the gain 
fitted by the equation 
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However, in the case of the axial antenna lengths 7 λ and 10 λ, the thickest wire, and the 
normalized conductivities close to lsmin , equation (3.22) overestimates the gain. Hence, equation 
(3.22) needs to be further modified in order to ensure that the equation for the gain estimation 
always underestimates the gain. The additional (the last) term is included and the final equation is 
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Figure 3.17. Fitting the gain dependence on the wire radius for (a) L=2 λ, (b) L=3 λ, (c) L=4 λ, (d) L=5 λ, (e) L=7 λ, and 
(f) L=10 λ. 
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Figure 3.18. Gain of the antennas whose geometrical parameters are calculated from the design equations in a wide 
range of the normalized conductivities and the gain calculated from (3.22). 

The gain calculated from (3.23) and the gain of the antennas whose geometrical parameters are 
calculated using the design equations are compared in Fig. 3.19. 

10-1 100 101 102 103 104 105 106
15

16

17

18

19

20

21

22

23

L=10 l

L=7 l

L=5 l

L=4 l

L=3 l

L=2 l

g 
[d

Bi
]

sl [MS]

                     reference design     calculated from (3.23) 
rw=0.0002 l:                                    
rw=0.0005 l:                                    
rw=0.001 l:                                      
rw=0.002 l:                                      

 
Figure 3.19. Gain of the antennas whose geometrical parameters are calculated from the design equations in a wide 
range of the normalized conductivities and the gain calculated from (3.23). 

Results compared in Fig. 3.19 confirm that (3.23) estimates well the gain of the designed 
antennas, but also underestimates the gain in the range of the normalized conductivities 

MS1000min £sl£ls , in which the design equations are valid. Moreover, (3.23) underestimates 
the gain in an even wider conductivity range, considered in Fig. 3.19, MS106

min £sl£ls . The 
property that (3.23) underestimates the gain is important from the practical point of view since it 
ensures that designed antennas achieve at least the gain calculated from (3.23), but in most cases 
even a (slightly) higher gain. This secures that by using the design equations and the design 
procedure (which will be presented in Chapter 5), the designer will be able to meet the desired 
specification, i.e., the targeted gain. 

The maximal discrepancy between the gain of the designed antennas and the gain calculated from 
(3.23) is less than 0.3 dB (in the range of the normalized conductivities MS106

min £sl£ls ). 
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4. Characteristics of designed antennas 

During the optimization only the gain and the axial ratio are explicitly taken into account (through 
the cost function). However, some other antenna characteristics (e.g., bandwidth and input 
impedance) are also important for the applications. These characteristics are investigated in this 
chapter for the antennas designed using the design equations presented in Subsection 3.2.3.  

Further, the influence of the ground plane of finite dimensions on the gain, axial ratio, and other 
antenna characteristics is explored in this chapter.  

Finally, antennas, whose geometrical parameters are calculated from the design equations, are 
compared (in terms of the gain, axial ratio, and other characteristics) with other types of helical 
antennas (uniform and nonuniform) presented in the literature and obtained from additional 
optimizations. 

4.1. Bandwidth, axial ratio, and input impedance 

In this subsection, the relative bandwidths, axial ratios, and input impedances of the designed 
antennas are investigated in detail. 

The relative bandwidth is defined here as [ ] fffBW )/(100% minmax -= , where maxf  and minf  
stand for frequencies where the gain is for 1 dB (termed as BW1), 2 dB (BW2), or 3 dB (BW3) lower 
than the maximal gain (Fig. 4.1), and f is the operating frequency. 

g

f  
Figure 4.1. Definitions of the relative bandwidths. 

The relative bandwidths of the designed antennas for various wire radii and two different wire 
conductivities ( refs  and PEC) as a function of the axial antenna length are shown in Fig. 4.2. Note 
that the wire conductivity slightly influences the relative bandwidths (less than 8 %) for all 
considered wire radii (within the design hyper rectangle defined in Subsection 3.2.2, i.e., from 
0.0002 λ to 0.002 λ) and axial antenna lengths (from 2 λ to 10 λ, also defined by the design hyper 
rectangle). The discrepancies of BW2 caused by the different conductivities are negligibly small. 
However, for BW1 and BW3, these discrepancies are more pronounced. Namely, in all considered 
cases, BW1 is larger for the reference conductivity than for the PEC wire, whereas for BW3 the 
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situation is reversed, i.e., the PEC wire provides larger BW3. Further, as the wire radius increases, 
all the relative bandwidths increase. 
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Figure 4.2. Relative bandwidths for various axial lengths and wire radii (a) rw=0.0002 λ [113], (b) rw=0.0005 λ [113], 
(c) rw=0.001 λ [113], and (d) rw=0.002 λ [113]. 

The axial ratio (ar, defined by (3.4)) of the designed antennas for various antenna lengths, wire 
radii, and wire conductivities refs  and PEC is shown in Fig. 4.3a. The axial ratio practically does 
not depend on the wire conductivity (for the conductivities within the range where the design is 
valid). For all considered axial antenna lengths and wire radii, the axial ratio is maintained below 
0.7 dB (i.e., 1.17). Further, the increase in the axial antenna length is followed by the decrease in 
the axial ratio, except for the shortest antennas (2 λ and 2.5 λ) with the thickest wire (0.002 λ). 
Finally, the axial ratio gets smaller as the conductor becomes thinner. 

Fig. 4.3b shows the (complex) input impedance ( XRZ j+= ) of the designed antennas. The same 
axial antenna lengths, wire radii, and wire conductivities are considered as for the relative 
bandwidths and the axial ratio. The input impedance is not influenced by the wire conductivity (for 

the normalized conductivities higher than lsref ), whereas the axial antenna length slightly 
influences the input impedance. However, the wire radius affects the input impedance. Namely, 
when the wire radius is increased, the absolute values of the real and imaginary part of the input 
impedance are decreased. 
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(b) 
Figure 4.3. (a) Axial ratio [113] and (b) input impedance for various axial lengths and wire radii [113]. 

4.2. Note on antenna axial length 

In the case of the antennas with lossless conductors (Subsection 3.2.1), the axial antenna lengths 
which are non-integer multiples of the half wavelength are also investigated. It is shown that these 
antennas achieve lower gain than the gain predicted by (3.6), i.e., (3.6) successfully predicts the 
gain of antennas whose axial lengths are integer multiples of the half wavelength. 
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Here, we want to investigate the gain of the designed antennas (with lossy conductors) of various 
axial lengths (integer and non-integer). We utilize different wire radii (within the considered range 
defined in Subsection 3.2.2) and the normalized conductivity ls=sl ref . The gain of these 
antennas is shown in Fig. 4.4 by discrete points. These antennas show similar behavior as the 
antennas with lossless conductors (see Fig. 3.2). 
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Figure 4.4. Gain for various axial antenna lengths for σλ=σrefλ [113]. 

It can be concluded that (3.23) accurately predicts the gain of antennas whose axial length is an 
integer multiple of the half wavelength, i.e.,  

 { }4,...,20,
2

Î
l

= kkL . (4.1) 

However, the gain is lower for the optimal antennas for which this condition is not fulfilled. 
Therefore, in order to achieve the maximal gain, the axial antenna lengths defined by (4.1) are 
recommended. Particularly, the worst results are observed for the axial antenna lengths 

 { } { }3,18,...,36,
4

)( ÎÎl+= i,kikL , (4.2) 

when, for shorter antennas, the gain is around 0.4 dB lower than the gain calculated from (3.23). For 
longer antennas, the discrepancies decrease. The red solid line in Fig. 4.4 fits the gain of the 
antennas whose axial lengths are defined by (4.1), whereas the black solid line fits the gain of the 
antennas whose axial lengths are calculated from (4.2). 

4.3. Antennas above finite ground plane 

All the previously given results are obtained assuming the helix to be located above an (infinite) 
perfectly conducting ground plane. According to the image theory, the influence of an infinite 
perfectly conducting ground plane can be emulated by the antenna image (when both the antenna 
and the image are placed in free space). This significantly reduces the computation time, which 
justifies using an infinite ground plane in the simulations.  

However, in practice such a plane can only be approximated. Therefore, in this subsection the 
influence of finite-size ground planes on the antenna gain and other characteristics will be 
considered. Since the scope of this work is primarily oriented towards the design of the antenna 
conductor (i.e., the helix), not the design of the ground plane, here we consider only flat ground 
planes of a square or circular shape. Other shapes of the ground plane (circular cup, truncated cone, 
etc.) can significantly change the gain, as it is shown in [51]-[54], [56]. However, analyzing their 
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influence on the gain of the designed antennas and their characteristics is beyond the scope of this 
work. 

Fig. 4.5a shows a helical antenna with a square ground plane, and Fig. 4.5b shows an antenna 
with a circular ground plane. We denote the length of a side of the square plane by a  and the 
surface areas of the square and circular planes by S . The ground plane of finite dimensions 
influences the gain of the designed antennas, i.e., the antenna gain can be different from the gain 
calculated from (3.23). Fig. 4.6 shows the gain differences, gD , between the gain of antennas 
above the square or the circular ground plane and the antennas above an infinite ground plane 
(calculated from (3.23)), for various dimensions of the ground plane, various axial antenna lengths, 
and wire conductivity refs . The considered ground planes are supposed to be made of a PEC. 
Additional numerical experiments show that the influence of the ground-plane conductivity on gD  
is negligible, i.e., for the ground-plane conductivity refs , gD is almost the same as in Fig. 4.6. 

The results in Fig. 4.6 demonstrate that the circular and the square ground plane are equivalent if 
their surface areas are equal. Therefore the abscissas in Fig. 4.6 correspond to lS . As it is 
expected, when the ground-plane dimensions are increased, i.e., when the finite-size ground plane 
approaches the infinite ground plane, the gain differences tend to zero. Further, note that for some 
dimensions of the ground plane gD  is larger than 0. This indicates that, with a ground plane of 
proper dimensions, even higher gain can be achieved than in the case of the infinite ground plane 
(the gain calculated from (3.23)), which is of significant practical importance. This increase can be 
up to 0.5 dB. We denote the smallest dimension of the ground plane that corresponds to 0=D g  
(i.e., the antenna achieves the same gain as with the infinite ground plane) by l0S , whereas the 

dimension of the ground plane for which gD  is maximal is denoted by lmaxS . These 
dimensions are shown in Fig. 4.7 for various axial antenna lengths and wire radii. 

 
(a) 

 
(b) 

Figure 4.5. Helix located above (a) a square ground plane and (b) a circular ground plane. 
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Figure 4.6. Δ g for square or circular ground plane, various axial antenna lengths, and wire radii (a) rw=0.0002 λ, 
(b) rw=0.0005 λ, (c) rw=0.001 λ, and (d) rw=0.002 λ [113]. Wire conductivity is σref.. 
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Figure 4.7. l0S  ( 0=D g ) and lmaxS  (max gD ) for various axial antenna lengths and wire radii  
(a) rw=0.0002 λ, (b) rw=0.0005 λ, (c) rw=0.001 λ, and (d) rw=0.002 λ. Wire conductivity is σref. 
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The need for a relatively large ground plane can quantitatively be explained in the following way. 
The actual antenna consists of the helix and the ground plane. The electric field created by this 
structure, at any point in the space (including the far-field region), due to the superposition 
principle, is given as the sum of the field due to the current in the helix ( hE ) and the field due to the 
current in the ground plane ( gpE ), i.e., gph EEE += . 

We consider a representative example – a helical antenna whose axial length is l= 2L  at the 
operating frequency 300 MHz, the wire radius is l002.0 , and the wire conductivity is refs . 
Assuming an infinite ground plane, we use program AWAS [112] and evaluate the radiated electric 
field of this antenna. The gain of the actual system, as the function of the zenith angle q, is shown in 
Fig. 4.8, labeled “actual”. Since the ground plane is infinite, gpE  cancels hE  at all points under the 
ground plane, so that there is no radiated field in the lower half-space. In the upper half-space, gpE  
can be, mathematically, replaced by the electric field due to the (negative) image of the helix 
current, i.e., higp EE = . Hence, in the upper half-space, the actual electric field can be represented 
as hih EEE += . 

Using a customized version of program AWAS, we now compute hE  in the whole space. The 
corresponding gain pattern is shown in Fig. 4.8, labeled “original full space”. The current of the 
helix radiates both upwards and downwards, i.e., we clearly see an upward-radiated field and a 
downward-radiated field. (The field radiated downwards is even stronger than the field radiated 
upwards.) In the actual system, we can consider that the downward-radiated field is totally reflected 
by the ground plane and redirected upwards. This reflected field is hiE  and in Fig. 4.8 the 
corresponding gain pattern is labeled “image”.  

If the helix is wound according to the right-hand rule, then hE  is RHC polarized in the upward 
directions (within the main beam), but it is LHC polarized in the downward directions. The 
downward-radiated wave, reflected from the ground plane, changes its polarization and becomes 
RHC polarized. Hence, in the upper half-space, hE  and hiE  interfere constructively in the zenith 
direction (q=0). The intensity of hih EEE +=  is stronger than the intensities of both hE  and hiE . 
Thus, the gain of the actual antenna is larger than the gain that is attributed individually to hE  and 

hiE . 
If we consider a finite ground plane, the size of this plane must be large enough to properly reflect 
hE  (which, after reflection, becomes hiE ). In other words, the ground plane must be large enough 

to encompass the major part of the currents that exist in an infinite ground plane. 
Note that the effect of the reflection of the downward-radiated wave from the ground plane is 

utilized in [49] to enhance the operating bandwidth of the helical antenna, in particular, for the WB3 
design, but at the cost of reducing the peak gain compared to the narrowband (NB) design. On the 
other hand, the nonuniform helical antenna from [82] is optimized so to minimize the downward 
radiation from the helix current. Hence, this antenna does not need a ground plane, except for a 
small counterbalance required to feed the helix. 

We can also qualitatively explain the high gain of our nonuniform helical antenna in the 
following way. Generally, a helical antenna can be considered as a linear array of individual turns 
[2]. The axis of the array is the axis of the helix. In the classical design, this array radiates 
predominantly upwards. In our design, however, this array radiates both upwards and downwards. 
The downward radiation is reflected by the ground plane, which is equivalent to augmenting the 
original array by its image. The resulting array is two times longer than the original array. Hence, 
theoretically, the resulting numerical gain may be expected to be up to two times larger [119], i.e., 
the gain may be larger for up to 3 dB. 
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Figure 4.8. Actual radiation pattern, radiation pattern due to the original in the whole space, and radiation pattern due to 
the image. 

From the practical point of view, sometimes it is also important to take care of the antenna overall 
dimensions, instead of separately observing the axial antenna length and the dimensions of the 
ground plane. Fig. 4.9 shows the dependences of the gain of the designed antennas, located above a 
ground plane of finite dimensions, on the volume of the box or cylinder in which the antenna 
(together with the ground plane) fits. Therefore, the abscissas in Fig. 4.9 correspond to 3lSL , 
which is the normalized volume of that box or cylinder. As it is previously mentioned, the influence 
of the losses in the ground plane on the antenna gain is negligible. Hence, here we consider ground 
planes to be lossless, whereas the wire conductivity is refs . 
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Figure 4.9. Dependences of the gain of the designed antennas on the antenna overall dimensions for (a) rw=0.0002 λ, 
(b) rw=0.0005 λ, (c) rw=0.001 λ, and (d) rw=0.002 λ. Wire conductivity is σref and the ground plane is lossless. 
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For example, if we consider the wire radius 0.0005 λ, the targeted gain of 18 dBi can be achieved 
with different axial antenna lengths and corresponding ground planes (Fig. 4.9). For the axial 
antenna length 4 λ, a square ground plane of a side 3.25 λ is required. Also, the same gain can be 
achieved with antennas of the axial lengths 5 λ, 7 λ, or 10 λ located above square ground planes of 
sides 2.5 λ, 2.25 λ, or 2 λ, respectively. Depending on the application and desired antenna overall 
dimensions, the final decision can be made by the designer. 

The ground plane of finite dimensions also influences other antenna characteristics, i.e., the 
bandwidth, axial ratio, and input impedance. 

The differences between the relative bandwidths when the antennas are located above a PEC 
ground plane of a finite dimensions and above an infinite PEC ground plane are 1BWD , 2BWD , 
and 3BWD . For various axial antenna lengths, wire radii, and two different wire conductivities 
(PEC and refs ) 1BWD , 2BWD , and 3BWD  are shown in Figs. 4.10-4.12 (for square ground 
planes) and Figs. 4.13-4.15 (for circular ground planes). 

These results confirm that the relative bandwidths are negligibly influenced by conductor losses 
as well as by the shape (square or circular) of the ground plane (when their surface areas are equal). 
The ground plane of a finite size can increase the gain. However, its influence on the relative 
bandwidths is very small. Moreover, when the ground-plane dimension is larger than l0S , the 
relative bandwidths are almost the same as with the infinite ground plane. This conclusion is 
important from a practical point of view since it is expected that ground planes of dimensions 
smaller than l0S  will not be used often. Hence, the finite-size ground plane, used instead of the 
infinite ground plane, does not degrade the relative bandwidths. 
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(d) 

Figure 4.10. Δ BW1 for square ground plane, various axial antenna lengths, wire conductivities σref and PEC, and wire 
radii (a) rw=0.0002 λ, (b) rw=0.0005 λ, (c) rw=0.001 λ, and (d) rw=0.002 λ. 
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(d) 

Figure 4.11. Δ BW2 for square ground plane, various axial antenna lengths, wire conductivities σref and PEC, and wire 
radii (a) rw=0.0002 λ, (b) rw=0.0005 λ, (c) rw=0.001 λ, and (d) rw=0.002 λ. 
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(d) 

Figure 4.12. Δ BW3 for square ground plane, various axial antenna lengths, wire conductivities σref and PEC, and wire 
radii (a) rw=0.0002 λ, (b) rw=0.0005 λ, (c) rw=0.001 λ, and (d) rw=0.002 λ. 
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(d) 

Figure 4.13. Δ BW1 for circular ground plane, various axial antenna lengths, wire conductivities σref and PEC, and wire 
radii (a) rw=0.0002 λ, (b) rw=0.0005 λ, (c) rw=0.001 λ, and (d) rw=0.002 λ. 
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(d) 

Figure 4.14. Δ BW2 for circular ground plane,various axial antenna lengths, wire conductivities σref and PEC, and wire 
radii (a) rw=0.0002 λ, (b) rw=0.0005 λ, (c) rw=0.001 λ, and (d) rw=0.002 λ. 
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(d) 

Figure 4.15. Δ BW3 for circular ground plane, various axial antenna lengths, wire conductivities σref and PEC, and wire 
radii (a) rw=0.0002 λ, (b) rw=0.0005 λ, (c) rw=0.001 λ, and (d) rw=0.002 λ. 

The differences between the axial ratio ( arD ) and the input impedances ( XRZ D+D=D j ) 
when the antennas are located above a PEC square ground plane of a surface area S (square side 

Sa = ) and above an infinite PEC ground plane for various axial antenna lengths, wire radii, and 
two different wire conductivities (PEC and refs ) are shown in Figs. 4.16 and 4.18, respectively. 
These differences when the antennas are located above a PEC circular ground plane (instead of a 
square ground plane) are shown in Figs. 4.17 and 4.19, respectively. 

Figs. 4.16-4.19 confirm that conductor losses do not influence the axial ratio and the input 
impedance. The shape of the ground plane (if the surface areas of the square and circle are equal) 
negligibly influences the axial ratio, in particular for the ground planes whose dimensions are larger 
than l0S . In these cases, the considered differences of the axial ratio vary closely around zero 
(the variation is less than dB25.0± ). However, the influence of the ground plane shape on the input 
impedance is noticeable. From the practical point of view, the most preferable are the dimensions 
around l0S . Hence, the most preferable part of the graphs in Figs. 4.18 and 4.19 are the middle 
regions. Within these regions, for the square ground plane, RD  and XD  vary around W10  and 

W-15 , respectively. For the circular ground plane, XD  varies around 0. However, RD  changes 
depending on the wire radius, i.e., with the increase of the wire radius, RD  decreases. 
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Figure 4.16. Δ ar for square ground plane, various axial antenna lengths, wire conductivities σref and PEC, and wire 
radii (a) rw=0.0002 λ, (b) rw=0.0005 λ, (c) rw=0.001 λ, and (d) rw=0.002 λ. 
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Figure 4.17. Δ ar for circular ground plane, various axial antenna lengths, wire conductivities σref and PEC, and wire 
radii (a) rw=0.0002 λ, (b) rw=0.0005 λ, (c) rw=0.001 λ, and (d) rw=0.002 λ. 
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Figure 4.18. Δ Z for square ground plane, various axial antenna lengths, wire conductivities σref and PEC, and wire radii 
(a) rw=0.0002 λ, (b) rw=0.0005 λ, (c) rw=0.001 λ, and (d) rw=0.002 λ. 

lS

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5 6 7 8 9 10
-30
-20
-10

0
10
20
30
40
50

Circle rw=0.0002 l

D 
R 

[W
]

            L=2 l    L=2.5 l   L=3 l    L=4 l    L=5 l   L=7 l   L=10 l 
sref:                                          

PEC:                                         

D
 X

 [W
]

 
(a) 

lS

0
10
20
30
40
50
60
70

1 2 3 4 5 6 7 8 9 10
-30
-20
-10

0
10
20
30
40
50

D
 R

 [W
]

Circle rw=0.0005 l

            L=2 l    L=2.5 l   L=3 l    L=4 l    L=5 l   L=7 l   L=10 l 
sref:                                          

PEC:                                         

D
 X

 [W
]

 
(b) 

lS

0
10
20
30
40
50

1 2 3 4 5 6 7 8 9 10
-20
-10

0
10
20
30

            L=2 l    L=2.5 l   L=3 l    L=4 l    L=5 l   L=7 l   L=10 l 
sref:                                          

PEC:                                         

D
 R

 [W
]

rw=0.001 l

D 
X 

[W
]

Circle

 
(c) 

lS

0

10

20

30

1 2 3 4 5 6 7 8 9 10
-20
-10

0
10
20
30

            L=2 l    L=2.5 l   L=3 l    L=4 l    L=5 l   L=7 l   L=10 l 
sref:                                          

PEC:                                         

D 
R 

[W
]

Circle rw=0.002 l

D
 X

 [W
]

 
(d) 

Figure 4.19. Δ Z for circular ground plane, various axial antenna lengths, wire conductivities σref and PEC, and wire 
radii (a) rw=0.0002 λ, (b) rw=0.0005 λ, (c) rw=0.001 λ, and (d) rw=0.002 λ. 



50 

4.4. Comparison of designed nonuniform helical antennas with other 
helical antennas 

In this subsection the designed nonuniform helical antennas are compared with the uniform 
helical antennas and other types of nonuniform helical antennas (designed within this work), and 
with different types of helical antennas presented in the literature. 

4.4.1. Comparison of designed nonuniform helical antennas with the optimal 

uniform helical antennas 

The basic helical antennas are the uniform helical antennas, where the turn radius and the pitch 
angle are constant along the antenna axis. Hence, the uniform helical antennas can be observed as 
the special case of the nonuniform helical antennas with linearly varying geometrical parameters 
when 21 rr =  and 21 j=j  in (2.1) and (2.2), respectively. For the sake of comparison, using the 
same combination of the optimization algorithms as for the optimization of the nonuniform helical 
antennas (defined in Subsection 3.1), the optimization of the uniform helical antennas is performed 
for various axial lengths and wire radii within the ranges considered in the case of nonuniform 
antennas. The gain of these antennas is compared in Fig. 4.20 with the gain of the corresponding 
nonuniform helical antennas, designed using the presented design equations (3.13), (3.14), (3.19), 
and (3.20). The presented design of nonuniform antennas is valid for the normalized conductivities 
higher than the minimal normalized conductivity, lsmin , defined for each axial antenna length and 
wire radius by (3.8). These minimal normalized conductivities are indicated by diamond markers in 
Fig. 4.20. For the normalized conductivities higher than the minimal normalized conductivity, the 
designed nonuniform helical antennas achieve higher gain than the optimal uniform helical 
antennas. However, note that even for the normalized conductivities lower than lsmin  the designed 
nonuniform helical antennas still achieve higher gain than the optimal uniform antennas, although 
this advantage reduces with increasing losses. 

From the practical point of view, as long as the gain of the designed nonuniform antennas is more 
than 0.5 dB higher than the maximal gain achieved with the optimal uniform antennas of the same 
axial length and wire radius (red dashed line in Fig. 4.20), the designed nonuniform antennas can be 
considered as the preferable choice. However, for lower normalized conductivities it is suggested to 
use the uniform helical antennas due to their easier design (fewer degrees of freedom) and 
fabrication (since the turn radius is constant along the antenna; hence, the supporting structure for 
the antenna conductor can be constructed easier than in the case of nonuniform turn radius). For 
each axial antenna length and wire radius, the normalized conductivity that defines the proposed 
border can be calculated from 
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where bs  is in MS/m, and λ, L, and rw are in m. The coefficients in (4.3) are obtained by fitting the 
normalized border conductivities indicated in Fig. 4.20 by cross markers. 
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(f) 
Figure 4.20. Compared gain of the designed nonuniform and the optimal uniform helical antennas, (a) L=2 λ [120], 
(b) L=3 λ, (c) L=4 λ [120], (d) L=5 λ, (e) L=7 λ [120], and (f) L=10 λ [120]. Diamond markers indicate the minimal 
normalized conductivities for which the design of the nonuniform helical antennas is valid ( σminλ from (3.8)). Cross 
markers indicate normalized border conductivities (σbλ). Red dashed lines indicate gains for 0.5 dB higher than the 
maximal gains of the uniform helical antennas for the corresponding axial length and wire radius. 

Further, the gain of the optimal uniform helical antennas (optimized at the corresponding 
normalized conductivity) is compared with the gain of the uniform antennas whose design is the 
optimal one for the normalized border conductivity. This comparison is made in the range of the 
normalized conductivities from 0.1 MS to 1000 MS in Fig. 4.21. It can be noticed that the optimal 
uniform antennas for the normalized border conductivity achieve almost the same gain as the 
optimal uniform antennas. This conclusion allows us to define the optimal design for the 
normalized border conductivity as the optimal design of the uniform helical antennas valid in the 
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range of the normalized conductivities where the uniform helical antennas are the preferable choice 
(from 0.1 MS to lsb ). Hence, the optimal geometrical parameters of the uniform helical antennas 
(turn radius and pitch angle) do not depend on the wire conductivity (same as the optimal 
geometrical parameters of the nonuniform helical antennas). 
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Figure 4.21. Compared gain of the optimal uniform helical antennas (“optimal”), the optimal uniform helical antennas 
for the normalized border conductivity (“border”), and the antennas whose geometrical parameters are calculated from 
(4.4) and (4.5) (“calculated”) for (a) L=2 λ, (b) L=3 λ, (c) L=4 λ, (d) L=5 λ, (e) L=7 λ, and (f) L=10 λ. 

The geometrical parameters of the optimal uniform helical antennas for the normalized 
conductivity lsb  are shown in Fig. 4.22 (by circular markers). Following a similar procedure as 



53 

described for the fitting of the geometrical parameters of the nonuniform helical antennas 
(Subsection 3.2.3), the geometrical parameters of the optimal uniform helical antennas can be 
approximated by 
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The coefficients in (4.4) and (4.5) are found so that the discrepancy between the gain of the 
antennas whose geometrical parameters are calculated (from (4.4) and (4.5)) and the gain of the 
optimal uniform helical antennas is maintained as low as possible, instead of simply fitting the 
optimal geometrical parameters. Therefore, the discrepancies between the optimal (circular 
markers) and fitted (solid lines) turn radii and pitch angles are noticeable in Fig. 4.22. 

Note that the optimal radius of a turn of the uniform helical antennas is larger than the average 
turn radius (the arithmetic mean of the turn radius of the first and the last turn) of the optimal 
nonuniform helical antennas. The optimal pitch angle of the uniform helical antennas increases with 
the increase of axial antenna length. The same behavior shows the optimal pitch angle of the last 
turn of the nonuniform helical antennas, whereas the optimal pitch angle of the first turn decreases 
with the increase of the axial antenna length. 

Further, in Fig 4.21 the gain of the uniform helical antennas whose geometrical parameters are 
calculated from (4.4) and (4.5) is compared with the gain of the optimal antennas and the optimal 
antennas for the normalized border conductivity. The maximal discrepancy between the gain of the 
optimal uniform antennas and the gain of the antennas whose geometrical parameters are calculated 
is less than 0.3 dB, for the considered axial antenna lengths and wire radii. 
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Figure 4.22. Optimal geometrical parameters of the uniform helical antennas for the normalized conductivity σbλ and 
calculated geometrical parameters from (4.4) and (4.5): (a) normalized turn radius and (b) pitch angle. 

4.4.1.1. Comparison of the optimal uniform helical antennas and uniform helical 

antennas from the literature 

In Subsection 4.4.1 the results of the optimization of the uniform helical antennas are presented, 
the designed nonuniform helical antennas are compared with the optimal uniform helical antennas 
and the geometrical parameters of the optimal uniform helical antennas are approximated by (4.4) 
and (4.5). Here, we want to compare the optimal uniform helical antennas (obtained utilizing the 
same optimization procedure as described in the previous subsection) with other uniform helical 
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antennas presented in the literature and to point out and clarify some misunderstandings and 
discrepancies. 

The results of the detailed and comprehensive investigation of the uniform helical antennas are 
presented in [49]. As it is shown there, the narrow-band (NB) design achieves the highest gain 
compared to the other designs presented in the literature, except the gain calculated using the 
equation from [2], which is considered to overestimate the gain. For these reasons, we believe that 
the most important comparison of the optimal uniform antennas (designed here) is with the NB 
design from [49]. In [49] the considered conductors are lossy, and the conductor losses are as for 
the copper at 300 MHz. However, it is stated that the effect of losses is negligible even for the 
thinnest considered wire. (Losses in the thinnest wire reduce the gain by 0.1-0.2 dB.) In order to 
check this conclusion, we performed the optimization of the antenna geometry for various axial 
antenna lengths, wire radii (considered in [49]), and normalized wire conductivities ( ls ) from 
0.1 MS to 1000 MS. We consider the same axial antenna lengths and wire radii as in [49], 
summarized in Table 4.1. The gains of the optimal uniform antennas are shown by circular markers 
in Fig. 4.23. Further, the gains of the antennas whose geometrical parameters are presented as the 
optimal ones in [49] are shown in Fig. 4.23 by solid lines. In [49] the expected gains of the designed 
antennas are specified, for axial antenna lengths between λ and 7 λ. Hence, we also indicated these 
values in Fig. 4.23 by pink solid lines. 

Table 4.1. 
Considered axial antenna lengths and corresponding wire radii [49]. 

lL  lw1r  lw2r  lw3r  

0.7175 0.00015375 0.0015375 0.015375 

1.0175 0.00015255 0.0015255 0.015255 

1.98 0.00014850 0.0014850 0.014850 

4.5 0.00013500  0.0013500 0.013500 

8.5 0.00012750 0.0012750 0.012750 

16.6 0.00012450 0.0012450 0.012450 

 
Results in Fig. 4.23 definitely show that the gain of the uniform helical antennas does depend on 

the conductor losses, especially for the thinnest wire, when, for the normalized conductivities lower 
than 58 MS (copper at 300 MHz), the gain can be decreased for a few decibels due to the increase 
in losses. Further, antennas whose geometrical parameters are obtained from our optimization 
achieve slightly higher gain in almost all cases, especially for the longest antenna and the thickest 
wire, where this discrepancy is almost 1 dB. For the medium-length antennas, this discrepancy is 
around 0.5 dB, whereas for the shortest antennas this discrepancy becomes negligible. However, the 
gain of the optimal uniform antennas predicted in [49] is overestimated in most cases, especially for 
the lower normalized conductivities. 
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Figure 4.23. Gain of uniform antennas of the geometrical parameters from [49] and the optimal uniform antennas for 
axial lengths (a) L=0.7175 λ, (b) L=1.017 λ, (c) L=1.98 λ, (d) L=4.5 λ, (e) L=8.5 λ, and (f) L=16.6 λ. 

4.4.2. Comparison of designed nonuniform helical antennas and uniform helical 
antennas from the literature 

In this subsection we present comparison of the characteristics of the nonuniform helical antennas 
designed using design equations with the narrow-band (NB) design for uniform helical antennas 
from [49] (the compared characteristics are gain, bandwidths, and axial ratio). These comparisons 
are made for the antennas at the operating frequency 300 MHz, wire radius is rw=0.0015 λ, whereas 
two different wire conductivities (σref and 1000 MS/m) are considered. The results of the 
comparison are presented in Tables 4.2-4.4. When the losses are low, the nonuniform helical 
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antennas achieve about 2 dB higher gain than the NB design. The gain of nonuniform antennas is 
more affected by the increase of losses than the gain of the NB design. However, even for higher 
losses, nonuniform antennas still achieve a higher gain than NB antennas. The bandwidths of 
uniform antennas are wider for shorter antennas, whereas for longer antennas the situation is 
reversed. For all considered cases, the axial ratio of nonuniform helical antennas is better than of 
NB antennas.  

Table 4.2. 
Comparison of the uniform antennas from [49] and the designed nonuniform helical antennas for L=2 λ [113]. 

L=2 λ   
g [dBi] BW1 [%] BW2 [%] BW3 [%] ar [dB] 

σref 14.12 20.61 28.46 30.23 1.71 
NB from [49] 

mMS1000  14.18 21.45 29.42 31.73 1.72 

σref 15.71 16.61 21.73 26.18 0.53 designed 
nonuniform 

helical antennas mMS1000  16.26 15.5 21.98 26.74 0.54 

© 2019 IEEE 
 

Table 4.3. 
Comparison of the uniform antennas from [49] and the designed nonuniform helical antennas for L=4.5 λ [113]. 

L=4.5 λ   
g [dBi] BW1 [%] BW2 [%] BW3 [%] ar [dB] 

σref 16.61 14.33 17.95 22.22 1.26 
NB from [49] 

mMS1000  16.63 14.67 18.73 25.27 1.26 

σref 18.38 20.47 26.10 30.40 0.13 designed 
nonuniform 

helical antennas mMS1000  18.84 20.30 25.90 30.86 0.13 

© 2019 IEEE 
 

Table 4.4. 
Comparison of the uniform antennas from [49] and the designed nonuniform helical antennas for L=8.6 λ [113]. 

L=8.6 λ   
g [dBi] BW1 [%] BW2 [%] BW3 [%] ar [dB] 

σref 18.48 11.31 13.46 15.04 1.19 
NB from [49] 

mMS1000  18.49 11.35 13.55 15.18 1.19 

σref 20.71 23.02 28.05 31.74 0.51 designed 
nonuniform 

helical antennas mMS1000  21.09 22.68 27.99 31.85 0.50 

© 2019 IEEE 

4.4.3. Comparison of designed nonuniform helical antennas with other types of 
helical antennas from the literature 

The designed nonuniform helical antennas are compared here with other (different) types of 
helical antennas presented in the literature. 
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Different types of tapered helical antennas are investigated in [78] (including the uniform helix). 
Since in [78] the radius and the conductivity of the considered conductor are not indicated, for our 
design (which is used for comparison) we adopt rw=0.002 λ and σ=58 MS/m. Further, we utilize an 
infinite perfectly conducting ground plane, instead of a cavity used in [78]. Note that the influence 
of cavity is investigated in [51], where it is shown that the cavity can increase the gain for about 
1.5 dB compared to the gain with the infinite ground plane. 

The results are presented in Table 4.5. For all considered cases, the nonuniform antennas, 
designed using design equations achieve more than 2 dB higher gain than the antennas presented in 
[78]. However, the target in [78] is to use the nonuniform helical antennas in order to broaden the 
bandwidth in comparison with the uniform helical antennas. Hence, the nonuniform helical 
antennas from [78] (continuously tapered and quasi-tapered) have wider bandwidth than the 
nonuniform antennas designed using the design equations, although the gain of our design is 
significantly higher. Finally, all considered antennas have comparable axial ratios. 

Table 4.5. 
Comparison of the antennas from [78] and the designed nonuniform helical antennas [113]. 

 g [dBi] BW2 [%] ar [dB] 

 [78] 

designed 
nonuniform 

helical 
antennas 

[78] 

designed 
nonuniform 

helical 
antennas 

[78] 

designed 
nonuniform 

helical 
antennas 

Uniform 4.46 λ at 
900 MHz 16.2 18.4 23 27.5 1 0.3 

Tapered-end 4.46 λ 
at 900 MHz 15.7 18.4 23.8 27.5 0.2 0.3 

Continuously tapered 
4.8 λ at 1000 MHz 15.8 18.5 31.2 27.3 0.5 1.1 

Quasi-tapered 3.84 λ 
at 800 MHz 14.8 17.8 43.1 24.4 0.5 1.4 

© 2019 IEEE 
A very compact design of nonuniform helical antennas with a wire pigtail counterbalance is 

reported in [82]. We compare our design with the design presented in [82] in Table 4.6. The 
comparison is made for the axial lengths and wire radii for which our design is applicable. For our 
design, the wire conductivity is 58 MS/m and antennas are located above an infinite perfectly 
conducting ground plane. 

Although our design achieves significantly higher gain, the antennas designed in [82] do not 
require a ground plane (a small ground plane is only used to enable easier practical realization of 
the antenna feeding). Hence, these antennas are very handy and can be the preferable choice for 
some applications. 

Table 4.6. 
Comparison of the antennas from [82] and the designed nonuniform helical antennas [113]. 

g [dBi] 
rw=0.001 λ L/λ 

[82] designed nonuniform helical 
antennas 

2.0 14.03 16.04 
2.5 14.68 16.65 
3.0 15.55 17.16 
3.5 16.10 17.71 
4.0 16.44 18.09 
4.5 16.83 18.39 
5 17.26 18.76 

© 2019 IEEE 
In [83] and [84] helical antennas with a pitch profile modeled using Catmull-Rom spline are 

optimized using PSO. In [83] the turn radius is constant, whereas in [84] an exponential variation of 
the turn radius is utilized. Moreover, these designs are compared (in terms of gain) with the 
classical design suggested by Kraus. In Table 4.7, the designs presented in [83] and [84] and the 
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classical Kraus’s design are compared with the nonuniform helical antennas designed using the 
design equations from the work presented in this thesis. The axial antenna lengths of the analyzed 
Kraus’s designs are calculated based on the known number of turns. In our design of nonuniform 
helical antennas, the corresponding axial lengths are the same as for the Kraus’s design, but 
rounded to the nearest integer multiple of the half-wavelength, as suggested in Subsection 4.2. 
Rounding is done towards smaller integers to ensure that our design is not favored. In our design of 
nonuniform helical antennas, infinite ground planes are utilized, the conductor radius is 0.002 λ, and 
the conductivity is 58 MS/m. 

The results in Table 4.7 show that our nonuniform helical antennas achieve higher gain in all 
cases except for the design from [84]. However, this discrepancy is small. Moreover, utilizing other 
conductor properties (radius or conductivity) or a ground plane of an appropriate (finite) dimension, 
this discrepancy can be reversed. 

Table 4.7. 
Comparison of the antennas from [83], [84], and Kraus’s design with our design of nonuniform helical antennas.  

g [dBi] number of 
turns [83] [84] Kraus’s design designed nonuniform 

helical antennas 

10 14.6 16.02 11.79 L=2 λ 15.89 

15 15.5 û 13.17 L=3.5 λ 17.39 

20 16.6 û 14.04 L=4.5 λ 18 

 
Exponentially varying spacing between turns is considered in [85], and the comparison with 

uniform helical antennas is made. In Table 4.8 we compare our design (of wire radius 0.002 λ) with 
the designs from [85]. The compared antennas are of the same axial length, wire conductivity, 
ground plane shape, and dimension. It can be noticed that the gain of the antennas designed using 
our design equations is more than 4.5 dB higher than the gain of the antennas from [85]. 

Table 4.8. 
Comparison of the antennas from [85] and our design of nonuniform helical antennas [113].  
Operating frequency, axial length Type of design g [dBi] 

exponential [85] 11.2 f=2.9 GHz, L=2.48 λ designed nonuniform helical antennas 16.4 
uniform [85] 10.8 f=2.5 GHz, L=2.13 λ designed nonuniform helical antennas 15.5 

exponential [85] 12.3 f=2.8 GHz, L=3.56 λ designed nonuniform helical antennas 16.8 
uniform [85] 11.8 f=2.5 GHz, L=3.17 λ designed nonuniform helical antennas 16.1 

© 2019 IEEE 

4.4.4. Comparison of designed nonuniform helical antennas and helical antennas 
with exponential and piecewise-linear variation of geometrical parameters 

The geometrical parameters of the nonuniform helical antennas with exponential (here referred to 
as exponential or EG antennas) and piecewise-linear (here referred to as piecewise-linear or PWLG 
antennas) variation of geometrical parameters are defined in Subsection 2.1.2 by (2.3)-(2.6). The 
models of these antennas are made following the same procedure as for the nonuniform helical 
antennas with linearly varying geometrical parameters. (In this subsection we refer to these 
antennas as linear or LG antennas.) Hence, the perfectly circular turns are approximated by square 
turns and the antennas are located above an infinite perfectly conducting ground plane. WIPL-D 
models of EG and PWLG antennas are shown in Fig. 4.24b–c. 



59 

Similarly to LG antennas, the geometrical parameters of EG and PWLG antennas are firstly 
optimized at a single (operating) frequency in order to maximize the partial gain for the circular 
polarization. Additionally, for the sake of a more detailed comparison, the optimization of the 
geometrical parameters of LG, EG, and PWLG antennas is also performed in a frequency range. 

The optimization of the geometrical parameters of the EG antennas utilizes the same optimization 
setup as for the LG antennas (defined in Subsection 3.1), i.e., 2000 PSO iterations (swarm size 20), 
followed by (maximum of) 200 Nelder-Mead simplex iterations launched form the best-found PSO 
solution. In this case, the optimization variables are 1r , 2r , 1j , 2j  (the same variables as defined 
for LG antennas), with the additional variables rC  and jC  from (2.3) and (2.4). 

Since the geometry of PWLG antennas implies more degrees of freedom (also depending on the 
considered number of linear segments along the antenna axis), for the optimization of this antenna 
type, 5000 PSO iterations (swarm size 20) are followed by (maximum of) 200 Nelder-Mead 
simplex iterations. Within this work we consider only PWLG helical antennas with three linear 
segments, i.e., { }3,2,1Îk  in (2.5) and (2.6). Hence, the optimization variables are jr  and jj , 

{ }4,3,2,1Îj , from (2.5) and (2.6). Additionally, the axial lengths of the two lower linear segments 
are also optimized, whereas the length of the third segment is 213 LLLL --= , where 1L , 2L , and 

3L  are the axial lengths of the three segments (Fig. 2.2b). 
The optimization in a frequency range utilizes the same combinations of the optimization 

algorithms, but each combination is independently repeated five times in order to increase the 
possibility to find the best solution. The optimal solution is the best-found solution within those five 
independent optimizations. 

Firstly, the single-frequency optimization is performed at 300 MHz. The considered axial antenna 
length is l= 3L , the wire radius l= 002.0wr , and the wire conductivity MS/m58=s  (copper). 
The models of the optimal LG, EG, and PWLG antennas are shown in Fig. 4.24a-c. In addition, the 
LG antenna is designed following the presented design procedure, i.e., the geometrical parameters 
are calculated from (3.13), (3.14), (3.19), and (3.20). We refer to this antenna as LG (designed), and 
the model is shown in Fig. 4.24d. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.24. WIPL-D models of the optimal (single-frequency optimization): (a) LG [110], (b) EG [110], 
(c) PWLG [110], and (d) LG antenna designed following the presented design procedure. 

Although the optimization is performed at the single frequency (300 MHz), the gain of the helical 
antennas is compared in a wider frequency range in Fig. 4.25a. 

At 300 MHz the PWLG antenna achieves more than 0.5 dB higher gain than LG and EG 
antennas. However, this advantage is accompanied with a very narrow bandwidth of the PWLG 
antenna (the gain has a sharp peak around 300 MHz). From the practical point of view, this can be 
critical, since the manufacturing tolerances can cause the frequency response to shift. 
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Further, for the practical purposes, the overall length of the conductor is also an important 
parameter. According to this criterion, the PWLG antenna can be considered as the preferable 
choice, since it requires the shortest conductor (27.63 λ). The required conductor lengths for the LG, 
LG (designed), and EG antennas are 39.02 λ, 33.44 λ, and 33.50 λ, respectively. In Fig. 4.24 it can 
be noticed that the optimal LG antenna has significantly more turns at the lower part compared with 
the other optimal antennas, which explains the request for the long conductor. 

To make a fair comparison, we additionally perform the optimization in a frequency range. The 
goal is to achieve as high as possible gain, but in a reasonably wide frequency range. During the 
optimization, we consider the frequency range slightly shifted towards higher frequencies, from 
280 MHz to 340 MHz, instead the frequency range symmetrically positioned around the operating 
frequency. The reason for this is that the discrepancies of the gain in Fig. 4.25a are bigger (up to 
3 dB) at the higher frequencies. We consider seven equidistantly spaced frequencies within the 
defined range. We calculate the (partial) cost function for each frequency (in the same way as for 
the optimization at a single frequency), whereas the (total) cost function is the arithmetic mean of 
the (partial) cost functions. For this optimization the same axial antenna length, wire radius, and 
conductivity are utilized. 

The gains of the optimal LG, EG, and PWLG helical antennas are compared in Fig. 4.25b, 
whereas the models of those antennas are shown in Fig. 4.26. Visually, small differences between 
the geometries of the antennas shown in Fig. 4.24 and Fig. 4.26 can be noticed. Further, antennas in 
Fig. 4.26 have more densely spaced turns at the bottom of the antenna than at the top. Finally, the 
conductor lengths of LG, EG, and PWLG antennas optimized in the frequency range are 34.88 λ, 
31.79 λ, and 32.97 λ, respectively. 
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Figure 4.25. Gain of the nonuniform helical antennas: (a) single-frequency optimization (at 300 MHz) [110] and 
(b) optimization in a frequency range [110]. 
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(a) 

 
(b) 

 
(c) 

Figure 4.26. WIPL-D models of the optimal (optimization in a frequency range): (a) LG [110], (b) EG [110], and 
(c) PWLG antennas [110]. 

Obviously, the optimization in the frequency range leads to the solutions with a wider bandwidth, 
but this is accompanied with the decrease in the gain at the operating frequency. In the frequency 
range from 260 MHz to 330 MHz, the antennas of all geometries achieve almost the same gain (the 
gain differs for less than 0.5 dB within this frequency range). Fig 4.27 compares the gain of the 
antennas optimized at the single frequency (300 MHz) and in the frequency range. In case of the LG 
antenna, the optimization in the frequency range results in a small decrease in the gain (for 0.3 dB), 
but the bandwidth is slightly wider and the required conductor is shorter. The EG antenna optimized 
in the frequency range achieves around 0.5 dB smaller gain at 300 MHz than the EG antenna 
optimized in the single frequency. However, the conductor is slightly shorter and the bandwidth is 
wider. At 300 MHz, the PWLG antenna optimized at the single frequency achieves around 1 dB 
higher gain than the antenna optimized in the frequency range. Although the PWLG antenna 
optimized in the frequency range obtains significantly larger bandwidth, the required conductor is 
for about 20 % longer. Hence, the main advantages of the PWLG antennas optimized at the single 
frequency (high gain at the operating frequency and short conductor) are not present in case of 
PWLG antennas optimized in the frequency range.  

Therefore, the optimizations for various axial lengths are performed only for LG and EG 
antennas, since their geometry is simpler. Hence, the optimization requires fewer parameters, which 
allows us to utilize less iteration. 
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Figure 4.27. Gain of the optimal (a) LG [110], (b) EG [110], and (c) PWLG antenna optimized at a single frequency and 
in a frequency range [110]. 

Finally, the optimization of the LG and EG antennas of various axial lengths is performed in the 
frequency range. The gain of these antennas is compared in Fig. 4.28, whereas the gain at the 
operating frequency and the required conductor lengths are listed in Table 4.9. The gain of the EG 
antennas at 300 MHz is slightly higher, especially for longer antennas. Also, for shorter antennas 
( l£ 3L ) the EG antennas require shorter conductors than the LG antennas. However, for longer 
antennas the situation is reversed. 
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Finally, it can be concluded that from the practical point of view, EG and LG antennas are very 
similar with respect to the gain, bandwidth, and even the required conductor length. Hence, EG 
antennas do not introduce any important advantages over LG antennas. 
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Figure 4.28. Gain of the optimal helical antennas optimized in a frequency range: (a) L=2 λ [110], (b) L=2.5 λ [110], 
(c) L=4 λ [110], and (d) L=5 λ [110]. 

Table 4.9. 
Conductor lengths and maximal gain of the optimal helical antennas [110]. 

LG antennas EG antennas 
L 

conductor length g [dBi] conductor length g [dBi] 
2 λ 26.7 λ 16.0 26.7 λ 16.1 

2.5 λ 31.8 λ 16.7 31.2 λ 16.9 
3 λ 34.9 λ 17.2 31.8 λ 17.5 
4 λ 44.0 λ 18.2 45.8 λ 18.5 
5 λ 53.2 λ 19.0 54.9 λ 19.3 

© 2019 (Ic)ETRAN 
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5. Design procedure and experimental verification 

In this chapter we formulate an algorithm (set of the steps) for the design of the optimal 
nonuniform helical antennas with linearly varying geometrical parameters based on the design 
equations formulated in Chapter 3. In order to make the design procedure usable for practical 
purposes, a ground plane of finite dimensions should be chosen following the conclusions from 
Chapter 4. 

We also present a worked-out example, based on which a nonuniform helical antenna was 
manufactured and tested.  

5.1. Design procedure 

The targeted antenna gain (at the desired operating frequency) and wire properties (wire radius 
and conductivity) are assumed to be known. This is justified from the practical point of view, since 
in most cases a specific material (wire) is available and the targeted gain is defined by the 
application.  

Thereafter the design procedure consists of the steps summarized in Fig. 5.1. The required 
normalized axial antenna length can be calculated from (3.23). Theoretically, this step requires an 
inversion of (3.23). Also, according to Subsection 4.2, (3.23) predicts well the gain of antennas 
whose axial length is an integer multiple of the half-wavelength. Hence, the normalized axial 
antenna length calculated by the inversion of (3.23) should first be rounded to the nearest greater or 
equal integer multiple of the half-wavelength and then denormalized by multiplication by l. Hence, 
in practical applications, instead of the inversion, the minimal axial antenna length that meets the 
requested gain can be found by a systematic check of the suggested (discrete) axial antenna lengths, 
using (3.23). When the required axial antenna length is calculated, (3.8) should be used to check if 
this design is valid for the available wire conductor and desired axial antenna length. If the 
normalized conductivity of the wire conductor is higher than σminλ (calculated from (3.8)), the 
design parameters can be calculated from (3.13), (3.14), (3.19), and (3.20), which concludes the 
design. 
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Figure 5.1. Flowchart of the design procedure. 

In Table 5.1 the values of σmin for different wire radii and axial antenna lengths at various 
frequencies are listed and practical feasibility of the design is indicated by the green color and the 
infeasible designs are denoted in red color. Namely, the green color indicates that, for the observed 
frequency, wire radius, and axial antenna length, σmin is lower than 100 MS/m (which is indicated as 
the upper limit for the conductivity defined in Subsection 3.2.2), whereas if the required σmin is 
greater than 100 MS/m, that cell is colored red. From these results it can be noticed that below 
around 130 MHz, for all considered axial antenna lengths and wire radii, the corresponding σmin is 
lower than 100 MS/m. However, above 130 MHz, firstly for the thinnest wires and the longest 
antennas, the required values of σmin become larger than 100 MS/m. As the operating frequency 
increases, more cells becomes red (the corresponding σmin is larger than 100 MS/m). Finally, at 
6 GHz (which is the highest considered frequency, defined in Subsection 3.2.2), for the wire radius 
0.001 l only the shortest axial antenna length fulfills the limit for σmin. 

Further, if it is necessary for a cross-check, the expected gain of the designed antenna can be 
calculated from (3.23).  

It is important to mention that the same design procedure and equations hold for both right-hand 
and left-hand wound helices. 

Also note that if σminλ is too high, the geometrical parameters of the optimal antenna calculated 
from the design equations can be used as a good starting point for further numerical optimization 
performed by the designer. 
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Table 5.1. 
Values of σmin, in MS/m, at different operating frequencies and for various antenna lengths and wire radii. 

 l= 2L  l= 5.2L
 

l= 3L  l= 4L  l=5L  l= 7L  l= 10L  

l= 0002.0wr 6.12 8.00 9.87 13.41 16.56 21.27 23.37 

l= 0005.0wr 1.42 1.95 2.49 3.59 4.64 6.38 7.54 

l= 001.0wr  0.47 0.67 0.88 1.33 1.77 2.57 3.21 
MHz30=f  

l= 002.0wr 0.16 0.23 0.32 0.49 0.68 1.04 1.37 

l= 0002.0wr 20.39 26.67 32.88 44.68 55.19 70.88 77.88 

l= 0005.0wr 4.73 6.48 8.29 11.95 15.45 21.26 25.13 

l= 001.0wr  1.57 2.22 2.93 4.41 5.90 8.55 10.68 
MHz100=f  

l= 002.0wr 0.52 0.77 1.03 1.63 2.25 3.44 4.54 

l= 0002.0wr 26.51 34.67 42.74 58.08 71.74 91.43 101.24 

l= 0005.0wr
 

6.15 8.42 10.78 15.53 20.08 27.63 32.67 

l= 001.0wr  2.04 2.89 3.80 5.73 7.67 11.11 13.88 
MHz130=f  

l= 002.0wr
 

0.68 0.99 1.34 2.11 2.93 4.47 5.90 

l= 0002.0wr 61.17 80.00 98.62 134.02 165.55 212.63 233.63 

l= 0005.0wr 14.19 19.43 24.86 35.83 46.34 63.76 75.38 

l= 001.0wr  4.70 6.66 8.77 13.21 17.69 25.64 32.04 
MHz300=f  

l= 002.0wr 1.56 2.29 3.09 4.87 6.75 10.31 13.62 

l= 0002.0wr 203.90 266.64 328.72 446.72 551.82 708.74 778.75 

l= 0005.0wr 47.29 64.74 82.85 119.44 154.44 212.53 251.25 

l= 001.0wr  15.66 22.19 29.21 44.03 58.94 85.46 106.77 
GHz1=f  

l= 002.0wr 5.19 7.61 10.30 16.24 22.50 34.36 45.38 

l= 0002.0wr 611.68 799.92 986.14 1340.16 1655.46 2126.21 2336.23 

l= 0005.0wr 141.87 194.21 248.55 358.30 463.32 637.59 753.74 

l= 001.0wr  46.97 66.56 87.63 132.09 176.82 256.37 320.31 
GHz3=f  

l= 002.0wr 15.55 22.82 30.90 48.70 67.48 103.08 136.12 

l= 0002.0wr 1223.36 1599.83 1972.28 2680.32 3310.91 4252.42 4672.46 

l= 0005.0wr 283.73 388.42 497.09 716.60 926.64 1275.18 1507.47 

l= 001.0wr  93.93 133.12 175.25 264.17 353.64 512.73 640.62 
GHz6=f  

l= 002.0wr 31.10 45.63 61.79 97.39 134.96 206.16 272.24 

In order to obtain a complete design algorithm, an infinite ground plane has to be replaced by the 
ground plane of finite dimensions. Subsection 4.3 (Figs. 4.6, 4.7, and 4.9–4.19) gives results that are 
relevant for the designer when choosing the appropriate dimensions of the circular or square ground 
plane. For practical purposes, it is important to stress that the losses in the ground plane do not 
affect the antenna gain, as it is mentioned in Subsection 4.3. 
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The other important characteristics (bandwidths, axial ratios, input impedances) of the optimal 
antennas designed following the presented design algorithm are summarized in Subsection 4.1, 
whereas the influence of the finite ground plane (square of circular) on these characteristics is 
discussed in Subsection 4.3. 

5.2. Verification of the design procedure 

Following the presented algorithm, an antenna that meets concrete specified characteristics is 
designed. Firstly, the antenna characteristics are checked using the simulations. Thereafter a 
prototype of the designed antenna is fabricated, and the antenna characteristics are verified by 
measurements.  

We suppose a left-hand wound helical antenna. The target gain is 16 dBi at the operating 
frequency 1 GHz (the corresponding free-space wavelength is mm300»l ). The parameters of the 
wire conductor are l»= 002.0mm6.0wr  and MS/m58=s  (which corresponds to copper). The 
flowchart of the design procedure performed for the specified input values is shown in Fig. 5.2. 

The normalized axial antenna length, required to achieve the targeted gain, is calculated from 
(3.23), and rounded to the first greater integer multiple of the half wavelength, l= 5.2L . The next 
step is to check if this design algorithm is valid for the desired normalized axial antenna length and 
conductor properties. From (3.8) σmin is calculated to be 7.6 MS/m ( mins>s ). Hence, the design 
equations can be used for calculating geometrical parameters of the optimal antenna. The radii of 
the first and the last turn, l= 1051.01r  and l= 1453.02r , are calculated from (3.13) and (3.14), 
respectively, whereas the pitch angles of the first and the last turn are calculated from (3.19), and 
(3.20) to be °=j 8438.41  and °=j 6121.52 , respectively. To double-check, the expected gain of 
the designed antenna (calculated from (3.23)) is 16.40 dBi. Hence, the required specification is 
fulfilled. 

Inversion of (3.23)

L = 2.5 λ

Check the design by (3.8)

 MS/m  MS/m

min

The design is not 
valid

Design parameters:
r1 = 0.1051 λ
 r2 = 0.1453 λ
φ1 = 4.8438°
φ2 = 5.6121°

Calculate the expected gain by (3.23)
gexpected = 16.40 dBi > g = 16 dBi

 
Figure 5.2. Flowchart of the performed design procedure. 
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The models (made in WIPL-D and AWAS) of the designed antenna located above an infinite 
PEC ground plane are shown in Figs. 5.3a and b. The simulated gain of the designed antenna in a 
wider frequency range (from 0.75 GHz to 1.25 GHz) is shown in Fig. 5.3c. At the operating 
frequency (1 GHz) the simulated gain in AWAS is 16.57 dBi, whereas WIPL-D yields 16.62 dBi 
(this discrepancy is due to the different numerical analyses used by these codes). 
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Figure 5.3. (a) WIPL-D and (b) AWAS model of the designed helical antenna located above an infinite PEC ground 
plane, and (c) simulated antenna gain in the frequency range from 0.75 GHz to 1.25 GHz (antenna operating frequency 
is 1 GHz) [113]. 

Although the design parameters are optimized at a single frequency, the antenna designed using 
the calculated geometrical parameters is reasonably broadband. The relative bandwidths are 

%98.17PEC1 =BW , %61.24PEC2 =BW , and %24.29PEC3 =BW . These relative bandwidths are in 
good agreement (the variation is less than 0.2 %) with the results shown in Fig. 4.2d.  

The axial ratio of the designed antenna in the direction along the antenna axis and the antenna 
input impedance in the considered frequency range are shown in Fig. 5.4. At the operating 
frequency, the axial ratio is 0.49 dB, whereas the input impedance of the antenna at the same 
frequency is ( ) W- 23.01j81.121 . The axial ratio and input impedance at the operating frequency 
are in good agreement with the results shown in Fig. 4.3. 
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Figure 5.4. (a) Axial ratio in the direction along the antenna axis and (b) input impedance of the designed antenna 
located above an infinite PEC ground plane in the frequency range from 0.75 GHz to 1.25 GHz (antenna operating 
frequency is 1 GHz). 

In order to take a step towards the design suitable for the fabrication, an infinite ground plane 
needs to be replaced by a ground plane of finite dimensions. As it is shown in Subsection 4.3, the 
finite-size ground plane influences the antenna gain, as well as the relative bandwidths, axial ratio, 
and input impedance. In this work only flat ground planes are considered.  

For the present design, a square ground plane is chosen. Considering the results shown in 
Fig. 4.6d, a square ground plane of the side length of 2.25 λ is sufficient to achieve the same gain as 
with an infinite ground plane. Furthermore, with the square ground plane of the side 3.33 λ (around 
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1 m) the antenna gain is more than 0.5 dB higher than the gain calculated from (3.23), as shown in 
Fig. 4.7d. We chose the ground-plane side to be 3.33 λ. From Figs. 4.10d, 4.11d, and 4.12d, the 
differences of the relative bandwidths (when the antenna is located above a square ground plane and 
above an infinite ground plane) can be estimated. These differences for the chosen ground plane are 

%11 -»D BW , 02 »D BW , and %23 »D BW . Further, from Figs. 4.16d and 4.18d the differences 
of the axial ratio and the input impedance can be estimated to be dB13.0-»D ar , W»D 10R , and 

W-»D 8X . 
The WIPL-D model of the designed antenna located above the square ground plane of the side 

3.33 λ is shown in Fig. 5.5a. At the operating frequency (1 GHz), the simulated gain is 16.93 dBi, 
which is for 0.53 dB higher than the gain calculated from (3.23), as it is predicted by the results 
shown in Fig. 4.7d. At the same frequency, the axial ratio (in the direction along the antenna axis) is 
0.37 dB and the input impedance is ( ) W- .5913j27.130 , as the results shown in Figs. 4.16d and 
4.18d, respectively, estimate. 

The antenna gain in a wider frequency range (from 0.75 GHz to 1.25 GHz) is shown in Fig. 5.5b. 
In the same frequency range the axial ratio and the input impedance are also calculated and shown 
in Fig. 5.6. The relative bandwidths are %84.163.331 =

l
BW , %53.243.332 =

l
BW , and 

%12.313.333 =
l

BW . This example confirms that the differences in bandwidths predicted in 
Figs. 4.10d, 4.11d, and 4.12d, as well as the relative bandwidths for the antennas located above an 
infinite ground, allow a good estimation of the relative bandwidths for the antennas located above a 
square ground plane. 
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Figure 5.5. (a) WIPL-D model of the designed antenna located above the square ground plane of the side 3.33 λ (around 
1 m) and (b) antenna gain in the frequency range from 0.75 GHz to 1.25 GHz (antenna operating frequency is 1 GHz). 
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Figure 5.6. (a) Axial ratio in the direction along the antenna axis and (b) input impedance of the designed antenna 
located above the square ground plane of the side 3.33 λ (around 1 m) in the frequency range from 0.75 GHz to 
1.25 GHz (antenna operating frequency is 1 GHz). 
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Results for the gain, axial ratio, and input impedance at the operating frequency, and relative 
bandwidths for the designed antenna located above an infinite and a square ground plane are 
summarized in Table 5.2. Also, gD , 1BWD , 2BWD , 3BWD , arD , RD , and XD  from 
Subsection 4.3 are indicated in Table 5.2. 

Table 5.2.  
Gains, relative bandwidths, axial ratios, and input impedances for the designed antenna located above an infinite and 

square ground plane, and differences of these values from Subsection 4.3. 
 g BW1 BW2 BW3 ar R X 

calculated (3.23) simulated Infinite 
ground plane 16.40 dBi 16.62 dBi 

17.98 % 24.61 % 29.24 % 0.49 dB 121.81 Ω -23.01 Ω 

Square ground 
plane 

(side 3.33 λ) 
16.93 dBi 16.84 % 24.53 % 31.12 % 0.37 dB 130.27 Ω -31.59 Ω 

Type of 
difference Δ g Δ BW1 Δ BW2 Δ BW3 Δ ar Δ R Δ X 

Achieved 0.53 dB -1.14 % -0.08 % 1.88 % -0.12 dB 8.46 Ω -8.58 Ω  
From 

Subsection 4.3 0.5 dB -1 % 0 2 % -0.13 dB 10 Ω -8 Ω 
 

5.3. Fabricated prototype 

The prototype of the antenna designed in the previous subsection is fabricated and measured. 
The antenna prototype consists of a wire, wound in the form of a helix with the specified radius 

and pitch angle for each turn, and a square ground plane. Theoretically the wire is placed in air (in a 
vacuum). However, for the required precise positioning of the wire, a supporting structure is 
necessary. The material of the supporting structure should meet several criteria. Firstly, the 
influence of the supporting structure needs to be as low as possible. Hence, the material of the 
supporting structure must have a minimal effect on the field distribution. Secondly, available 
techniques for cutting the supporting-structure material need to allow precise tailoring. Finally, a 
good choice of the supporting-structure material implies a material which is not very heavy and 
very expensive. Taking all these facts into account, acrylic glass is chosen. 

The supporting structure is modeled in software Blender [121]. It consists of three acrylic-glass 
plates (Fig. 5.7a). These plates are precisely tailored so to properly intersect and form a cross-like 
structure (Fig. 5.7b). Each plate is slotted at the proper location to allow that intersection. The edges 
of these plates are the corners of the antenna turns (Fig. 5.7c). Hence, the width of the plate 
corresponds to the realized turn diameter. Along the edge of each plate, small grooves are cut at 
precisely defined positions. These grooves hold the antenna conductor and provide the required 
pitch angle. In order to additionally reduce the mass of the supporting structure, big holes are cut in 
the plates. 

The acrylic-glass plates are fabricated and assembled (Fig. 5.8a). At the places of plate 
intersection, the acrylic-glass plates are glued in order to increase the strength of the supporting 
structure. At the bottom of the supporting structure, a small footer (also made of acrylic glass) is 
placed to allow fixing the antenna to the ground plane (Fig. 5.8a). The antenna conductor (copper 
wire of the circular cross-section of the radius l» 002.0mm6.0 ) is wound on the supporting 
structure (Fig. 5.8b), which is thereafter fixed to an aluminum square plate. The side of the plate is 
1 m, which corresponds to 3.33 λ at the operating frequency. The fully assembled antenna prototype 
is shown in Fig. 5.8c. 
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(a) 

 
(b) 

 
(c) 

Figure 5.7. Blender models: (a) acrylic-glass plates, (b) the way plates intersect, and (c) full model of the assembled 
acrylic-glass supporting structure with the antenna conductor. 

 
(a) 

 
(b) 

 
(c) 

Figure 5.8. (a) Assembled supporting structure, (b) with wound antenna conductor, and (c) assembled antenna 
prototype [113]. 

5.4. Measurement procedure and results 

Measurements of the designed and fabricated antenna are performed in Idvorsky laboratories 
[122]. The chamber in Idvorsky laboratories is semianechoic. Hence, additional absorbers are 
placed on the floor of the chamber in order to reduce the wave reflected from the floor. With these 
additional absorbers, the semi-anechoic chamber could be considered as a fully anechoic chamber. 
The measurement setup in the chamber is shown in Fig. 5.9. It consists of the designed nonuniform 
helical antenna, a well-documented Vivaldi antenna, a vector network analyzer Agilent E5061A, 
and a laptop for collecting measurement results. 
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Figure 5.9. Measurement setup in the anechoic chamber in Idvorsky laboratories. 

Firstly, the reflection coefficient of the fabricated antenna is measured and compared with the 
simulated results in the frequency range from 0.75 GHz to 1.25 GHz (Fig. 5.10). 

The effect of imperfect wire bendings at the corners of the turns is also taken into account. This is 
done by scaling the turn radii of the model that is used for the comparison with measured results of 
the fabricated antenna. 

The total wire length of the fabricated antenna is 882.5 cm, whereas the total wire length of the 
model (without scaling) is 861 cm. Hence, the imperfect bendings at the corners of the turns extends 
the wire length for around 2.5 %, so that the characteristics of the fabricated antenna are shifted 
towards lower frequencies in comparison with the computational model. Further, in the model, the 
conductor is placed in a vacuum, whereas in the case of the fabricated antenna the conductor is 
wound on the supporting structure made of acrylic glass (a dielectric whose relative permittivity is 
approximately 3.5). This dielectric also slightly influences the antenna performance, by shifting the 
antenna characteristics towards lower frequencies. 

To take into account the influence of the imperfect bendings and also the influence of the 
dielectric supporting structure, all simulations (whose results are compared with measurements) are 
performed for models with 5 % larger turn radii than the turn radii of the fabricated prototype. 

The effect of the surface roughness is taken into account by taking the wire conductivity, in the 
model, to be 29 MS/m, as explained in [43]. 
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Figure 5.10. Measured and simulated reflection coefficients of the fabricated antenna in the frequency range. 

Next, the transmission coefficient between the fabricated helical antenna and the Vivaldi antenna 
is measured and compared with the simulated results in the frequency range from 0.75 GHz to 
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1.25 GHz. The simulated results are obtained for the model which emulates real situation, i.e., 
models of both antennas placed at the actual distance. The tip-to-tip distance between the helical 
antenna and the Vivaldi antenna is 2460 mm. Since the Vivaldi antenna is linearly polarized, two 
scenarios are considered, each corresponding to one of the two orthogonal polarizations.  

In the first case, the Vivaldi antenna is placed in a vertical position, as in Fig. 5.9. We refer to this 
scenario as “vertical”, and the WIPL-D model for this case is shown in Fig. 5.11a. In the second 
case, the Vivaldi antenna is rotated for 90°, so it is placed horizontally (“horizontal scenario”), and 
the WIPL-D model is shown in Fig. 5.11b.  

The measured and simulated transmission coefficients for both scenarios are compared in 
Fig. 5.12. The measured and simulated results are in good agreement.  

 
(a) 

 
(b) 

Figure 5.11. WIPL-D models that correspond to the (a) vertical scenario and (b) horizontal scenario. 
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Figure 5.12. Measured and simulated transmission coefficient for (a) vertical and (b) horizontal scenario. 

In order to perform measurements in the far field, the three conditions given in Appendix A.3 
must be fulfilled. In our case, the critical condition is l=> 22 Ddr F , where Fd  is the Fraunhofer 
distance, and we take D to be the antenna axial length. For the fabricated antenna D=2.5 λ and 

mm3750=Fd . Hence, the measurements are actually performed in the near-field region and, 
strictly speaking, we cannot extract the antenna gain from the measured data, because the far-field 
conditions are not fulfilled. Unfortunately, the available chamber is too small to perform far-field 
measurements. 

However, the good agreement between simulated and measured results shown in Fig. 5.12 gives 
us a strong solid background to believe that the gain of the fabricated antenna is very close to the 
gain obtained from the simulations. 
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In order to further increase the confidence in the good gain of the fabricated antenna, the 
following numerical experiment is performed. 

Firstly, two identical Vivaldi antennas are simulated at the distances (d), sweeped from 0.1 m to 
5 m (measured from the tip of one antenna to the tip of the other antenna). The frequency for the 
analysis is 1 GHz. We start from the modified Friis formula  

 ( ) ( )( )2
22

2
11tr

2
2

21 11
4

ssGG
d

ds --÷
ø
ö

ç
è
æ

p
l= . (5.1) 

This formula gives the squared magnitude of the transmission coefficient between the antenna ports. 
The modification takes into account the mismatch between the antennas and the feeding 
transmission lines. Note, however, that this formula assumes that the receiving antenna is in the far 
field of the transmitting antenna. Since the transmitting and the receiving antennas are identical, the 
antenna gain is GGG == tr  and 2211 ss = . Hence, the transmission coefficient is  

 ( ) ( )2
1121 1

4
sG

d
ds -

p
l

= . (5.2) 

We use G and 11s  from the simulations in order to calculate ( )ds21  from (5.2). We compare the 
transmission coefficient from the simulation to the one obtained using the Friis formula. If we use 
the distance, d, measured between the tips of the antennas, we observe a discrepancy in the 
transmission coefficients, as shown in Fig. 5.13a. This discrepancy is expected since the Friis 
formula is valid when the antennas are in the far-field region, but we use it in a region that is not 
sufficiently far from the antennas, i.e., in a region that is not exactly the far-field region. 

In order to mitigate this discrepancy, we need to find the “center” of the Vivaldi antenna, or the 
correct distance that should be used in the Friis formula. With simple optimization of the distance 
used in the Friis formula, it is found that the distance between the tips should be increased for 
approximately 93 mm per antenna, i.e., 186 mm in total. This distance is practically the same as if 
we measure the distance between the antennas from nearly the mid-point of one antenna to the 
mid-point of the other antenna. The comparison of the simulated transmission coefficient and 
calculated transmission coefficient with this distance correction is shown in Fig. 5.13b. From the 
presented results it can be concluded that if we use the Friis formula for the gain estimation of the 
fabricated helical antenna, we need to correct the tip-to-tip distance between the helical antenna and 
the Vivaldi antenna by adding 93 mm. However, we also need a similar correction for the helical 
antenna. 
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Figure 5.13. Transmission coefficient simulated and calculated from Friis formula (a) without the distance correction 
and (b) with the distance correction of 93 mm for each Vivaldi antenna. 
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Further, the same numerical experiment is performed for the designed helical antenna in order to 
find the distance correction for it. Two identical antennas are analyzed, oriented so to achieve the 
maximal power transfer. The transmission coefficients obtained without the distance correction and 
with the distance correction of mm 806  for each helical antenna are shown in Fig. 5.14. Note that 
for calculating the transmission coefficient using (5.2), the gain and the reflection coefficient are 
obtained from the simulation of a single helical antenna at the operating frequency. Hence the 
coupling between helical antennas is not taken into account, unlike in the case of simulated 
transmission coefficient where this coupling is considered. Therefore the simulated results in 
Fig. 5.14 show a “zig-zag” behavior. 

In the inset of Fig. 5.14b, the position of the antenna “center” with the correction is indicated by a 
black dot. 
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Figure 5.14. Transmission coefficient simulated and calculated from Friis formula (a) without the distance correction 
and (b) with the distance correction of 680 mm for each helical antenna. 

Finally, we use the distance corrections for the Vivaldi antenna and for the designed helical 
antenna with the measured results for the transmission and reflection coefficients in order to 
estimate the measured gain. Note that the distance corrections have slight variations with frequency, 
but we use constant corrections estimated for 1 GHz since the aim of our measurements is primarily 
to get the gain of the fabricated antenna at 1 GHz. 

Since the Vivaldi antenna is linearly polarized and the helical antenna is circularly polarized, the 
gain obtained from the Friis formula, using the measured results for the transmission and reflection 
coefficients, corresponds to one of the two orthogonal linear polarizations. The measured gain (in 
the main radiating direction and in the frequency range from 0.75 GHz to 1.25 GHz) for each 
polarization is compared with the simulated results in Fig. 5.15. The numerical gain (Appendix A.1) 
for the circular polarization can be calculated as the sum of the numerical gains for the linear 
polarizations. Note that if the circular polarization is perfect, the gains of the two orthogonal (linear) 
polarization components are equal and the logarithmic gain for the circular polarization is 3 dB 
higher than the logarithmic gain of the linear-polarization components. 
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Figure 5.15. Simulated and measured gain for (a) the vertical polarization and (b) the horizontal polarization. 

Further, the gain of the fabricated helical antenna prototype in the main radiating direction in the 
same frequency range is compared with simulated results in Fig. 5.16a. The measured and 
simulated radiation patterns of the fabricated antenna at 1 GHz in the xOz plane (Fig. 5.5a) are 
compared in Fig. 5.16b. Although the distance corrections are calculated only at the operating 
frequency (1 GHz), the simulated and measured results shown in Figs. 5.15 and 5.16a are in very 
good agreement in the full considered frequency range. In particular, the discrepancy at 1 GHz is 
negligible (less than 0.03 dB). 
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(b) 

Figure 5.16. Measured and simulated gain of the designed helical antenna (a) in the frequency range from 0.75 GHz to 
1.25 GHz [113] and (b) the radiation pattern at the operating frequency of 1 GHz [113]. 

The radiation patterns in the xOz plane (Fig. 5.5a) are also measured at some other frequencies 
and compared with the simulated results in Fig. 5.17. These results also confirm that the measured 
gain of the designed antenna is in good agreement with the simulated gain near the main radiating 
direction (within the main lobe) at all considered frequencies. 
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(d) 

Figure 5.17. Radiation pattern of the designed and fabricated helical antenna at (a) 0.8 GHz, (b) 0.9 GHz, (c) 1.1 GHz, 
and (d) 1.2 GHz. 

Finally, it can be concluded that measurement results demonstrate excellent agreement with the 
design targets and with the computational models. 
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6. Design of array of nonuniform helical antennas 

In this chapter a complete design of an array of nonuniform helical antennas will be presented in 
detail. The designed array has to meet predefined design specifications. Hence, this task illustrates a 
practical engineering problem.  

The presented design procedure contains the design of an array of four ( 2x2 ) nonuniform helical 
antennas with linearly varying geometrical parameters, optimization of the antenna positions within 
the array, and the design of the feeding network that simultaneously is a matching network with 
respect to W50 . The design procedure is verified through the measurements of the fabricated array. 

6.1. Design specifications 

The task is to design and verify (through simulations and measurements) an antenna array whose 
gain is at least 20 dBi within the frequency range from 0.9 GHz to 1.1 GHz, whereas the required 
gain at the operating frequency 1 GHz is 21 dBi. Hence, BW1 (defined in Subsection 4.1) is 20 %. 
The free-space wavelength at the operating frequency is mm300»l . It is also required that the 
antenna is matched with respect to W50  (the modulus of the reflection coefficient, 11s , is less than 

dB10- ) within the same frequency range. The overall antenna dimensions have to be maintained 
as small as possible, with a tendency to achieve a cuboid shape with the maximal dimension of a 
side l» 33.3m1 . 

6.2. Geometry and model of quad array 

To meet the required specifications, we adopt an array of four ( 2x2 ) identical nonuniform 
helical antennas. We refer to this array of antennas as quad array. For this design, we consider 
nonuniform helical antennas with linearly varying geometrical parameters. The antennas are placed 
at the vertexes of an imaginary square of a side D (Fig. 6.1a). All antennas have the same 
orientation. The geometry of the nonuniform helical antennas with linearly varying geometrical 
parameters is defined by the axial antenna length, L, the radii of the first and the last turn, 1r  and 2r , 
respectively, and the pitches (or pitch angles) of the first and the last turn, 1p  and 2p  (or 1j  and 

2j ), respectively. The radii and pitch angles of each turn can be calculated using (2.1) and (2.2), 
where z is the axial coordinate. Alternatively to the pitch angle, the pitch of each turn can be 
calculated from  

 112 )( p
L
zppp +-= . (6.1) 

The antenna conductor is a wire of a circular cross-section whose radius is wr . Theoretically, the 
antenna array can be placed above an infinite perfectly conducting ground plane or above a ground 
plane of finite dimensions. For this design, we consider a flat, square-shaped ground plane of a side 
a, Fig. 6.1a. 
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As it is explained in Subsection 2.2 (where a single helical antenna is considered), a perfectly 
circular turn can be approximated by a polygonal turn utilizing (2.7). This approximation is also 
used when making the model of the array, since it speeds up computations and it is necessary to 
overcome the limitations imposed by the utilized electromagnetic solver, i.e., the solver can analyze 
only straight-line wire segments. All simulations are run in WIPL-D [111]. The WIPL-D model of 
the quad array, utilizing the suggested approximation, is shown in Fig. 6.1b. 

 
(a) 

 
(b) 

Figure 6.1. Array (2 x 2) of nonuniform helical antennas, quad array: (a) sketch [88] and (b) WIPL-D model [88]. 

The available conductor is a copper wire of a circular cross-section and radius 
l»= 0.002mm.60wr . In order to estimate the required axial antenna length, we consider the fact 

that the array of four antennas can increase the gain by up to 6 dB in comparison with a single 
helical antenna. Hence, the required gain of a single helical antenna has to be at least 15 dBi at 
1 GHz. Utilizing the first step from the flowchart shown in Fig. 5.1 (“Inversion of (3.23)”), the 
minimal required axial antenna length is estimated to be 2 λ. However, it is also required that the 
gain has to be above 20 dBi in the frequency range from 0.9 GHz to 1.1 GHz, i.e., that the required 

%201 =BW . Fig. 4.2d shows that, for the designed antennas, %201 <BW . Hence, to be on the safe 
side, we adopt that the axial length of the antennas in array is mm7505.2 »l=L . The gain of the 
nonuniform helical antenna (located above an infinite ground plane) of axial length 2.5 λ, wire 
radius 0.002 λ, and wire conductivity 58 MS/m (which corresponds to the copper) is estimated from 
(3.23) to be 16.4 dBi. Actually, this is the same antenna as the antenna designed in Subsection 5.2. 

Since the maximal dimension of the array is limited to 1 m, we adopt the side of the ground plane 
l»= 33.3m1a . In the simulations we consider a lossless ground plane, since the investigation 

done for a single helical antenna (Subsection 4.3) shows that losses in the ground plane have 
negligible influence on the antenna characteristics. 

In the basic model of the array (shown in Fig. 6.1b), all antennas are fed by voltage delta-gap 
point generators located on the short vertical wire segment between ground plane and the first 
antenna turn (as for a single helical antenna). All generators are of the same amplitude and phase. 
The feeding network will be included in the model later. 

6.3. Optimization procedure for basic model 

The optimization procedure is similar to the procedure formulated for optimizing nonuniform 
helical antennas with linearly varying geometrical parameters (Subsection 3.1). The optimization 
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goal is to maximize the partial gain for the circular polarization in the main radiating direction 
(Appendix A.1) of the array. The cost function is defined here as the L2-norm, 

 ( )2
cost 100 gf -= , (6.2) 

where g is the gain of the array. The best possible design corresponds to the global minimum of 
costf . 
The optimization again contains two steps. For the first step, we utilize the particle swarm 

optimization (PSO) [116], [117] with a randomly seeded swarm. The second step of the 
optimization is launched from the best-found solution in the first step. For the second step, local 
optimization algorithms are utilized, i.e., Nelder-Mead simplex [115] or gradient algorithm.  

Different numbers of iterations and algorithm setups are investigated and the following designs 
(marked as the optimal) are the best-found results. 

The optimization of the considered quad array contains 5 optimization variables: 
· the radius of the first turn, 1r , 
· the radius of the last turn, 2r , 
· the pitch of the first turn, 1p , 
· the pitch of the last turn, 2p , and 
· the distance between the feeding points of the helical antennas, D . 

According to the optimal geometrical parameters of the nonuniform helical antennas calculated 
using (3.13), (3.14), (3.19), and (3.20), the optimization variables are expected to be within the 
limits: 

· mm 40mm 25 1 ££ r , 
· mm 50mm 03 2 ££ r , 
· mm 50mm 10 1 ££ p , and 
· mm 50mm 10 2 ££ p . 

The distance between the array elements is investigated in the literature [96], [108]. As it is 
indicated in Chapter 1, in [108] it is suggested that the array elements should be spaced at least 

( )lp4hG , where hG  is the (numerical) gain of the single helical antenna. Hence, it can be 
expected that the optimal spacing between the elements is around mm560 . However, we 
additionally investigated how the distance between array elements affects the gain and the radiation 
pattern, in order to find a proper range for the optimization variable D.  

We consider a quad array of the same axial length, operating frequency, wire radius, and wire 
conductivity (i.e., 2.5 λ, 1 GHz, 0.002 λ, and 58 MS/m, respectively). The geometrical parameters 
of the helical antennas are calculated using (3.13), (3.14), (3.19), and (3.20). To simplify the 
computation, the helices are located above an infinite perfectly conducting ground plane. We vary 
the distance between the antennas, D, from 200 mm to 700 mm. The radiation patterns (in the 0=f  
cut) are shown in Fig. 6.2, where f  and q  are measured from the x axis (in the xOy plane) and the z 
axis to the considered direction, respectively (Fig. 6.1a). It can be noticed that for D=200 mm, 
sidelobes are the lowest, but also the gain in the main radiating direction (θ=0) is the lowest. With 
increasing D, the gain in the main radiating direction increases, but this is accompanied with the 
increase in the sidelobes. For D > 600 mm, no further increase in the gain in the main radiating 
direction can be noticed; however, the sidelobes increase further. Therefore, we adopt the limits for 
the optimization variable D to be mm 600mm 400 ££ D . 
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Figure 6.2. Radiation patterns of the array of nonuniform helical antennas for various distances between the elements. 

6.4. Optimal basic design 

The optimizations are run for the basic model shown in Fig. 6.1a, and the optimal values of the 
optimization variables are 

· mm9.341 =r , 
· mm1.472 =r , 
· mm171 =p , 
· mm9.372 =p , and 
· mm9.586=D . 

We refer to this design as the optimal basic design. The model of this design and the 3-D radiation 
pattern at 1 GHz are shown in Fig. 6.3. The gain in the main radiating direction is slightly less than 
22 dBi, whereas the front-to-back ratio is 21 dB. The f -cut ( 0=f ) of the radiation pattern at 
1 GHz is shown in Fig. 6.4a. The gain and the axial ratio in the main radiating direction in the 
frequency range from 0.8 GHz to 1.5 GHz are shown in Fig. 6.4b. The gain is above 20 dBi (as it is 
required by the design specification) in the frequency range from 0.9 GHz to 1.15 GHz. Within that 
frequency range, the axial ratio is below 1.4, and the input impedance of each helical antenna is 
around ( )W- 20j115 . 

 
(a) 

 
(b) 

Figure 6.3. Optimal basic design: (a) model [88] and (b) 3-D radiation pattern at 1 GHz [88]. 
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Figure 6.4. Optimal basic design: (a) ϕ-cut of the radiation pattern at 1 GHz [88] and (b) gain and axial ratio versus 
frequency [88]. 

The next step is to introduce the feeding network into the design and to find the best values of the 
optimization variables in this case. 

6.5. Feeding network 

The feeding network has two roles. The first role is to feed each helical antenna with the same 
amplitude and phase. The second role is to match the quad array to 50 Ω. 

For these purposes, a H-shaped feeding network is chosen (Fig. 6.5). The network consists of six 
wire segments. These wire segments are located above a ground plane; hence, they act like 
transmission lines. Four transmission lines, of a characteristic impedance 1cZ , interconnect adjacent 
helices. These transmission lines transform the impedances of single helical antennas. Pairs of those 
(transformed) impedances are connected in parallel at points A and B. The impedances at points A 
and B are further transformed by the transmission lines whose characteristic impedance is 2cZ . At 
the point O, these transformed impedances are again connected in parallel. The point O is the 
feeding point of the quad array and 1cZ  and 2cZ  are chosen so that the impedance at O is as close 
as possible to 50 Ω, i.e., the quad array is well matched with respect to 50 Ω. 

Zc1 Zc1

Zc1 Zc1

Zc2

Zc2

A

B

O

 
Figure 6.5. Model of the quad array with H-shaped feeding network [88].  

The characteristic impedances 1cZ  and 2cZ  are determined by the radii of the wire segments and 
the elevations of the wires above the ground plane. The available wire radii in our lab are 0.3 mm 
and 0.6 mm. Since it is necessary that 2c1c ZZ > , the four transmission lines of the characteristic 
impedance 1cZ  are realized with the wire of the radius 0.3 mm, whereas the two middle wire 
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segments are made of the wire of the radius 0.6 mm. The elevation of all wires is 2 mm above the 
ground plane. For these data, the corresponding characteristic impedances are Zc1=155 Ω and 
Zc2=112 Ω, calculated using [123].  

Further, the geometry of the quad array, with the incorporated feeding network, will be optimized.  

6.6. Optimization of quad array with feeding network 

The optimization of the quad array with the H-shaped feeding network is challenging since it 
requires simultaneous maximization of the partial gain for the circular polarization and 
minimization of the reflection coefficient at the feeding point of the quad array, i.e., matching of the 
quad array. 

Although this is a two-criteria optimization problem, in our case these criteria are weakly 
coupled. Namely, the gain of the quad array depends only on the geometry of the array (geometry 
of the helices and the distance between elements). The gain is not affected by the geometry of the 
feeding network since it practically does not radiate. The geometry of the feeding network has a 
role in the impedance transformation and affects the reflection coefficient. These conclusions allow 
us to combine the two criteria into a single cost function, utilizing our engineering experience for 
estimation of the relative weights of the criteria. 

The set of optimization variables and optimization algorithms are the same as for the basic model. 
In order to broaden the bandwidth, 5=N  equidistantly spaced frequencies within the frequency 
range from 0.95 GHz to 1.15 GHz are considered (~20 % bandwidth). This frequency range is 
chosen to account for a 5 % frequency shift towards lower frequencies due to the imperfect 
mounting of wires on the supporting structure and the influence of the dielectric of the supporting 
structure. Hence, the expected frequency range of the fabricated quad array is from 0.9 GHz to 
1.1 GHz, 

The cost function is defined as 

 ( ) ( )( )åå
==

++-=
N

k

N

k
s

N
g

N
f

1

2
11

1

2
cost 0,15max11001 , (6.3) 

where 11s  is the reflection coefficient in dB at the antenna feeding point.  
The optimal values of the optimization variables are  

· mm1.341 =r , 
· mm6.442 =r , 
· mm5.201 =p , 
· mm9.492 =p , and 
· mm2.488=D . 

The model of the optimal quad array with the incorporated feeding network, the 3-D radiation 
pattern and f -cut ( 0=f ) of the radiation pattern of this antenna at 1 GHz are shown in Figs. 6.5, 
6.6a, and 6.6b, respectively. The results in Figs. 6.3b and 6.4a compared with the results shown in 
Fig. 6.6 confirm that the feeding network has negligible influence on the radiation properties of the 
antenna. The optimal radii of the first and the last turn have changed for less than 10 % (in 
comparison with the basic design, Subsection 6.4). However, the optimal pitches of the first and the 
last turn are increased due to the incorporated feeding network. From the practical point of view, 
this change is favorable, since it leads to shortening the antenna wires, i.e., the fabrication requires 
less material. The distance between the array elements, D, decreases for more than 15 % for the 
quad array with the incorporated feeding network in comparison with the basic design. 

The gain, axial ratio, and reflection coefficient are analyzed within the frequency range from 
0.8 GHz to 1.5 GHz (Fig. 6.7). The gain is above 20 dBi from 0.94 GHz to 1.27 GHz, which is an 
almost 33% bandwidth. The axial ratio within this frequency range is below 1.5 and the reflection 
coefficient is below -9.3 dB. The wider bandwidth is expected since now the optimization is done 
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in a frequency range instead at the single frequency. Hence, the designed quad array with the 
feeding network fulfills the design specifications. The next step is design verification through 
measurements of a fabricated prototype. 
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Figure 6.6. Optimal quad array with the feeding network at 1 GHz: (a) 3-D radiation pattern [88] and (b) ϕ-cut of the 
radiation pattern [88]. 
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Figure 6.7. Optimal quad array with feeding network: (a) gain and axial ratio [88] and (b) reflection coefficient at the 
feeding point of the quad array versus frequency [88]. 

6.7. Prototype of quad array 

The fabricated prototype is used for the design verification. The prototype consists of four 
identical nonuniform helical antennas, the feeding network, and the ground plane. The four helical 
antennas are designed to be identical. However, due to manual wire winding, small discrepancies 
are present. Therefore, the feeding network is designed to enable individual testing of each helical 
antenna, pairs of antennas (connected by the transmission lines of the characteristic impedance 

1cZ ), and the entire quad array. The feeding network keeps the H-shape. 
The supporting structure for each single helical antenna is realized following the same procedure 

and choosing the same technology as described in Subsection 5.3. The wire conductor of radius 
0.6 mm is wound on the supporting structure. The assembled single helical antenna is shown in 
Fig. 6.8a. The reflection coefficients of helical antennas are firstly measured independently in the 
frequency range from 0.8 GHz to 1.2 GHz. The measured reflection coefficients, with respect to 
150 Ω, are shown in Fig. 6.8b. These results confirm that four helical antennas are almost identical 
despite the small differences due to manual winding. Further, these results are used to additionally 
optimize the feeding network. 
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Figure 6.8. (a) Assembled single helical antenna [88] and (b) measured reflection coefficients of helical antennas that 
make up quad array with respect to 150 Ω in the frequency range from 0.8 GHz to 1.2 GHz [88]. 

During the fabrication of the feeding network (shown in Fig. 6.5), we faced difficulties to achieve 
and maintain the required positions of the wires. Namely, the required height of the wires above the 
ground plane is almost impossible to maintain precisely along the wires. 

To overcome this problem, we changed the technology for the fabrication of the feeding network 
and realized the feeding network by the printed-circuit technique, on FR-4 substrate. In order to 
minimize the influence of the substrate (in particular, to reduce losses), the transmission lines are 
designed as inverted microstrips [124], whose cross-section is shown in Fig. 6.9. The issue of 
mechanical stability of the feeding network is solved by inserting acrylic-glass spacers between the 
FR-4 substrate and the ground plane, all along the edges of the lines. The thickness of the substrate 
and air layer (i.e., the height of the spacers) are mm5.0s =h  and mm2a =h , respectively, whereas 
the thickness of the metallization is m36m=t .  

 
Figure 6.9. Cross-section of inverted microstrip line [88]. 

The characteristic impedances of the inverted microstrip lines (i.e., the widths of microstip lines) 
are fine-tuned in Microwave Office (MWO) [125], using the model shown in Fig. 6.10. In this 
model, the measured reflection coefficients (shown in Fig. 6.8b) are used. The measured reflection 
coefficients are imported into the model via subcircuits “S11_1”, “S11_2”, “S11_3”, and “S11_4”. 
The transmission lines (of characteristic impedances 1cZ  and 2cZ ), that make up H-shaped feeding 
network, are realized in the model using the subcircuits “Zc1” and “Zc2” shown in Fig. 6.10. 
Fine-tuning is applied to the microstrip-line widths in these two subcircuits, whereby the reflection 
coefficient of the quad array is monitored. The resulting line widths are 0.6 mm and 3.4 mm, which 
correspond to W= 1561cZ  and W= 872cZ , respectively. The corresponding reflection coefficient 
of the quad array is shown in Fig. 6.11a. The reflection coefficient is below dB10-  in almost the 
whole frequency range from 0.8 GHz to 1.2 GHz (namely, from 0.815 GHz to 1.2 GHz). The 
simulated input impedance ( XRZ j+= ) of the quad array is shown in Fig. 6.11b. At the operating 
frequency (1 GHz), ( )W-= 17.7j53.37Z . 
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Figure 6.10. MWO model of the feeding network realized in inverted-microstrip technology. 
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Figure 6.11. Simulated (a) reflection coefficient and (b) input impedance of the quad array. 

The ground plane of the quad array is manufactured as a square aluminum plate of a side 1 m and 
thickness 2 mm. To increase the rigidity of the structure, aluminum tubes are placed along the edges 
of the plate on the underside (Fig. 6.12a). 

The fabricated, fully-assembled quad array with the incorporated H-shaped feeding network is 
shown in Fig. 6.12b. The inset in Fig. 6.12b shows more details on how the inverted microstrip lines 
are interconnect and fixed to the ground plane. 
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(a) 

 
(b) 

Figure 6.12. (a) Bottom side of aluminum plane used as a ground plane and (b) fully-assembled quad array [88]. 

6.8. Measurements of quad array 

The fabricated prototype of the quad array (shown in Fig. 6.12b) is measured in Idvorsky 
laboratories [122]. The first measurement setup is the same as for the measurements of the 
nonuniform helical antenna (explained in Subsection 5.4).  

Firstly, the reflection coefficient of the quad array (with respect to W50 ) is measured and 
compared with the simulated reflection coefficient (Fig. 6.11a) in Fig. 6.13. As in the case of the 
simulated reflection coefficient, the measured reflection coefficient is also below dB10-  in almost 
the entire considered frequency range (namely, from 0.81 GHz to 1.17 GHz). 

Further, the measurement setup that consists of the fabricated quad array and a well-documented 
in-house made Vivaldi antenna is utilized (Fig. 6.14). As it is explained in Subsection 5.4, in order 
to estimate the gain and the radiation pattern of the quad array (which is circularly polarized), two 
sets of measurements are necessary. These sets correspond to two linear polarizations; hence, the 
quad array is placed in two different orientations. When the middle section of the feeding network 
(the transmission lines of the characteristic impedance 2cZ ) is positioned horizontally (parallel to 
the floor of the chamber), we refer to this orientation as “horizontal”, whereas when the middle 
section is vertical (perpendicular to the floor), we refer to this orientation as “vertical”. The 
transmission coefficients between the quad array and the Vivaldi antenna are measured (and 
simulated) when the distance between the ground plane of the quad array and the tip of the Vivaldi 
antenna is mm1575Vivaldi-Quad =D  (Fig. 6.13b). In the frequency range from 0.9 GHz to 1.1 GHz, 
the discrepancy between the simulated and measured transmission coefficients is less than 1.5 dB. 
At 1 GHz, the simulated and measured results agree almost perfectly. 
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Figure 6.13. Simulated and measured (a) reflection coefficient of the quad array [88] and (b) transmission coefficient 
between the quad array and Vivaldi antenna [88]. 
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Figure 6.14. Measurement setup consists of quad array and Vivaldi antenna [88]. 

The radiation patterns of the quad array, in the 0=f  cut, are measured for both the horizontal 
and vertical orientations, in the frequency range from 0.95 GHz to 1.1 GHz, and 

mm4020Vivaldi-Quad =D . The simulated and measured transmission coefficients, normalized to the 
maximal level, are compared in Figs. 6.15 and 6.16. The simulated and measured results agree 
almost perfectly within the main lobe at all considered frequencies and for both orientations. 
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Figure 6.15. Cuts ( 0=f ) for the horizontal orientation at: (a) 0.95 GHz [88], (b) 1 GHz [88], (c) 1.05 GHz [88], and 
(d) 1.1 GHz [88].  



88 

0
30

60

90

120

150
180

210

240

270

300

330

-40

-30

-20

-10

0

-40

-30

-20

-10

0

vertical

q [°]

f=0

 N
or

m
al

iz
ed

 p
at

te
rn

 [d
B

]

 Measurement
 Simulation

0.95 GHz

 
(a) 

0
30

60

90

120

150
180

210

240

270

300

330

-40

-30

-20

-10

0

-40

-30

-20

-10

0

vertical

q [°]

 f=0

 N
or

m
al

iz
ed

 p
at

te
rn

 [d
B

]

 Measurement
 Simulation

 1 GHz

 
(b) 

0
30

60

90

120

150
180

210

240

270

300

330

-40

-30

-20

-10

0

-40

-30

-20

-10

0

vertical

q [°]

f=0

  N
or

m
al

iz
ed

 p
at

te
rn

 [d
B]

 Measurement
 Simulation

1.05 GHz

 
(c) 

0
30

60

90

120

150
180

210

240

270

300

330

-40

-30

-20

-10

0

-40

-30

-20

-10

0

vertical

q [°]

f=0
  N

or
m

al
iz

ed
 p

at
te

rn
 [d

B]

 Measurement
 Simulation

 1.1 GHz
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Figure 6.16. Cuts ( 0=f ) for the vertical orientation at: (a) 0.95 GHz [88], (b) 1 GHz [88], (c) 1.05 GHz [88], and 
(d) 1.1 GHz [88]. 

Finally, another measurement setup (Fig. 6.17) is utilized. In this measurement setup, a signal 
generator Rohde Schwartz SML03 (whose power level is 0 dBm at 0.99 GHz) is connected to the 
quad array. A Teseq CLB 6144 BiLog antenna is used as the receiving antenna. Using a Teseq 
SMR4503 EMI receiver, the electric field is measured at a 3000 mm distance. The simulated and 
measured normalized radiation patterns (normalized to the maximal level) at 0.99 GHz for both 
orientations (horizontal and vertical) are compared in Fig. 6.18. 

 
Figure 6.17. Measurement setup consists of quad array and bilog antenna [88]. 
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Figure 6.18. Normalized level of electric field for (a) horizontal [88] and (b) vertical orientation at 0.99 GHz [88]. 

Finally, it can be concluded that the simulated and measured results of the designed and 
fabricated quad array show good agreement. At the operating frequency 1 GHz the gain is 21 dB, 
whereas in the frequency range from 0.9 GHz to 1.1 GHz the gain is ( )dBi 5.15.20 ± . 
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7. Design of optimal quad arrays of nonuniform helical antennas 

with linearly varying geometrical parameters 

In this chapter, design equations for the nonuniform helical antennas with linearly varying 
geometrical parameters (from Chapter 3) are utilized for the design of quad arrays ( 2x2  arrays of 
helical antennas). The design equations from Chapter 3 are used for calculating the optimal 
geometrical parameters of the nonuniform helical antennas that make up the quad array. Further, 
optimizations are run in order to find the optimal locations (i.e., distances) of the array elements. 
These optimizations allow expanding the design equations by an equation for the optimal locations 
of the array elements. Hence, the complete design procedure for quad arrays is obtained. For the 
sake of comparison, additional optimizations are performed, where both the geometrical parameters 
of the helical antennas and their locations are optimized. 

Optimizations are made utilizing helical antennas located above an infinite ground plane. Finally, 
with the purpose to obtain practically realizable designs, the infinite ground plane is replaced by a 
flat, finite-size square ground plane and the influence of this ground plane on the array gain is 
investigated. 

7.1. Quad array geometry 

As it is stated in Subsection 6.2, the quad array consists of four ( 2x2 ) identical helical antennas 
(Fig. 6.1a). The geometry of helical antennas that make up the array is explained in 
Subsection 2.1.1. The optimal parameters that define the geometry of nonuniform helical antennas 
with linearly varying geometrical parameters (radii and pitch angles of the first and the last turn) 
can be calculated from the design equations (3.13), (3.14), (3.19), and (3.20). The radii and pitch 
angles of other turns can be calculated from (2.1) and (2.2). In the quad array, the helical antennas 
are located above an infinite ground plane at the vertexes of an imaginary square of a side D. The 
generators, located between the ground plane and the first turn of the helix, feed each helical 
antenna. All generators are of the same amplitude and phase. The antenna conductor is a wire of a 
circular cross-section. 

7.2. Optimization procedure 

The utilized optimization procedure is similar to the optimization procedure explained in 
Subsection 3.1 for the optimization of the geometrical parameters of a single helical antenna. 
Namely, the optimization goal is to maximize the partial gain for the circular polarization in the 
main radiating direction (see Appendix A.1). Hence, the cost function is again defined by (3.1). In 
the case of the quad array, the optimization variable is the distance between the adjacent helical 
antennas, D, whereas the optimal geometrical parameters of helical antennas that make up the quad 
array are calculated using the design equations from Subsection 3.2.3. 

For these optimizations we firstly utilized the systematic search, since there is only one 
optimization variable. However, we found that the same (or even better) results (i.e., higher gain of 
the optimal arrays) are achieved utilizing a two-stage optimization with the same total number of 
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evaluations of the cost function. In the first optimization stage (maximum of) 500 iterations of the 
particles swarm optimization (PSO) algorithm [116], [117] are utilized (the swarm size is 10), 
whereas in the second stage (maximum of) 200 iterations of the Nelder-Mead simplex [115] are 
launched from the best-found solution within the first optimization stage. 

The optimizations are performed for different axial lengths (L) of the single helical antennas and 
radii of the helical conductors ( wr ), within the ranges defined in Subsection 3.2.2. Since the design 
equations are used for calculating the geometrical parameters of the helical antennas, we consider 
normalized conductivities that are bigger than lsmin , i.e., the conductivities for which the design 
equations are valid. 

The constraints for the optimization variable D  are estimated for each considered axial antenna 
length (L) following the similar investigations as explained in Subsection 6.3. Namely, we vary the 
distance D  (normalized to the wavelength at the operating frequency) and simulate the radiation 
pattern of the quad arrays at the operating frequency. As it is explained in Subsection 6.3, when D  
is small, the sidelobes are low, but the gain in the main radiating direction is also small. When D  
increases, the gain in the main radiating direction increases, but this is accompanied with the 
increased sidelobes. In order to utilize the criteria for defining the constrains of the optimization 
variable D  (i.e., maxmin DDD ££ ), we perform a set of simulations for various L, assuming the 
wire radius to be l0002.0  and the wire conductivity to be refs .  

Firstly, we simulate the radiation pattern for D  within the wide range from l1  to l5 , with the 
step of l2.0 , and determine the maximal achieved gain (for each L) in the main radiating direction, 

maxg . Finally, we define the following criteria (these criteria are indicated in Fig. 7.1a): 
· minD  corresponds to the maximal considered distance between the adjacent array 

elements for which the gain in the main radiating direction is less than 90 % of maxg , 
· maxD  corresponds to the maximal considered distance between the adjacent array 

elements for which the level of the first sidelobes is less than 80 % of maxg . 
The utilized constrains of the optimization variable D  are summarized in Table 7.1, whereas the 

radiation patterns (the 0=f  cuts) for various axial lengths (L) and corresponding minD  and maxD  
are shown in Fig. 7.1. Angles f  and q  are measured from the x axis (in the xOy plane) and the z 
axis to the considered direction, respectively (Fig. 6.1a). 

Table 7.1. 
Constrains for the optimization variable D. 

L  Dmin Dmax 
2 λ 1.2 λ 3 λ 
3 λ 1.4 λ 3.4 λ 
4 λ 1.6 λ 3.8 λ 
5 λ 1.6 λ 4 λ 
7 λ 1.6 λ 4.4 λ 
10 λ 1.8 λ 5 λ 
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Figure 7.1. Radiation patterns ( 0=f  cuts) of the quad arrays for finding the constrains of the optimization variable D 
for (a) L=2 λ, (b) L=3 λ, (c) L=4 λ, (d) L=5 λ, (e) L=7 λ, and (f) L=10 λ. 
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7.3. Optimization results 

The optimizations are run for various axial lengths, wire radii, and wire conductivity refs  
calculated from (3.7). The geometrical parameters of the helical antennas are calculated from design 
equations (3.13), (3.14), (3.19), and (3.20), and the distances between the adjacent array elements 
are optimized. All optimizations are run at 300 MHz, but all results are normalized to the 
corresponding wavelength. Hence, they can be scaled to an arbitrary frequency according to the 
similitude theorem (see Appendix B). 

The optimal distances D for different axial lengths and wire radii are shown in Fig. 7.2. These 
results show that the wire radius negligibly influences the optimal distance. Further, it can be 
noticed that the optimal distance D shows nearly logarithmic dependence on the axial length. This 
conclusion is very useful, since it allows fitting the optimal values of D and formulating an equation 
for calculating these optimal values. This equation has the form ( ) DD BLAD +l=l 10log . By 
fine-tuning the constants DA  and DB , the optimal distance D can be approximated by 

 15.1log41.3 10 +÷
ø
ö

ç
è
æ

l
=

l
LD . (7.1)  

The optimal distances calculated using (7.1) are indicated by the solid line in Fig. 7.2. 
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Figure 7.2. Optimal distance D. 

The radiation patterns ( 0=f  cuts) for the optimal distances D are shown by blue solid lines in 
Fig. 7.1 and compared with the radiation patterns of the quad arrays when the distances between 
adjacent array elements are minD  and maxD . In the main radiating direction, the gain is almost the 
same as in the case when the distance is maxD , whereas the first sidelobes are lower. This is 
expected, since the level of the first sidelobes decreases when the distance decreases; hence, for the 
distance D ( maxDD < ) the level of the first sidelobes is lower than when the distance is maxD . 

For the sake of comparison, we perform additional optimizations where all geometrical 
parameters of the quad arrays are optimized. Namely, the optimization variables are the radii and 
the pitch angles of the first and the last turn of the helical antennas, as well as the distance D. For 
this optimization we utilize the same setup (optimization algorithms, constrains for the optimization 
variables, cost function) as for the optimization of nonuniform helical antennas (Subsection 3.1) 
whereas constrains for the optimization variable D are the same as defined in Table 7.1. 

Fig. 7.3 compares the gain (at the operating frequency in the main radiating direction) of: 
· the quad arrays where only the distance D is optimized and the geometrical parameters of 

the helical antennas are calculated from design equations (referred to as “optimal”), 
· the quad arrays where all geometrical parameters are optimized (referred to as “optimal 

all”), and  
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· the quad arrays where the distance D is calculated from (7.1) and the geometrical 
parameters of the helical antennas are calculated from design equations (referred to as 
“calculated”). 

The maximal discrepancy between the gain in the case referred to as “optimal” and the gain in the 
case when D is calculated from (7.1) is less than 0.04 dB, i.e., this discrepancy is negligible. The 
discrepancy between the gain in the case referred to as “optimal all” and the gain in the case when 
D is calculated from (7.1) is less than 0.12 dB, which is also practically negligible. 

Since it is expected that the quad array increases the gain for around 6 dB in comparison with a 
single helical antenna of the same axial length, in Fig. 7.3 the gain calculated from (3.23) increased 
by 6 dB is also indicated (by solid lines). These results show that the quad array increases the gain 
by more than 6 dB. The minimal increase is by 6.19 dB. 
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Figure 7.3. Comparison of the gain of the quad arrays where geometrical parameters of helices are calculated from the 
design equations and the distance D is optimized (“optimal”), where geometrical parameters and the distance D are 
optimized (“optimal all”), and where geometrical parameters of helices are calculated from the design equations and the 
distance D is calculated from (7.1) (“calculated”) for (a) rw=0.0002 λ, (b) rw=0.0005 λ, (c) rw=0.001 λ, and 
(d) rw=0.002 λ. 

The optimal distances D obtained from the additional optimization when all geometrical 
parameters are optimized are compared in Fig. 7.4a with the optimal distances D calculated from 
(7.1). These results confirm that (7.1) also successfully fits these optimal distances D. In Fig. 7.4b 
the geometrical parameters of the helices obtained from the optimization of the quad array are 
compared with the geometrical parameters calculated from the design equations. The optimal 
geometrical parameters are not perfectly fitted by the design equations formulated for the design of 
a single nonuniform helical antenna. However, the perfect fitting is not the main evaluation 
criterion. The gain of the designed antennas is of much greater significance and the fulfillment of 
that criterion is confirmed by the results shown in Fig. 7.3. 
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Figure 7.4. Comparison of: (a) the optimal distances D obtained from the optimization when all geometrical parameters 
are optimized and the optimal distances D calculated from (7.1), and (b) the geometrical parameters obtained from the 
optimization when all geometrical parameters are optimized and the geometrical parameters calculated from the design 
equations. 

Further, the influence of the wire conductivity on the optimal distance between the adjacent 
elements is investigated. The optimization variable is again the distance D and the same 
optimization procedure is utilized. However, in this case we consider two extreme conductivities, 

mins  and PEC. The optimal distances D obtained from these optimizations are compared with the 
optimal distances calculated from (7.1) in Fig. 7.5, whereas the gain of these antennas is shown in 
Fig. 7.6. Additionally, in Fig. 7.6 the gain of the single helical antenna calculated from (3.23) and 
increased by 6 dB is also indicated.  

These results confirm that the optimal distance between the array elements does not depend on 
the wire conductivity. Hence, (7.1) can be used for calculating the optimal distances D for an 
arbitrary wire conductivity, as long as the design equations are valid (i.e., for the normalized 
conductivities ls³sl min ). Further, the design equations can be used for calculating the 
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geometrical parameters of the helices. These conclusions allow us to formulate the procedure for 
designing the quad arrays of nonuniform helical antennas with linearly varying geometrical 
parameters by expanding the previously formulated design procedure for nonuniform helical 
antennas. 
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Figure 7.5. The optimal distances D for (a) σmin and (b) PEC. 
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Figure 7.6. The gain of the quad array for the wire conductivity σmin and PEC: (a) rw=0.0002 λ, (b) rw=0.0005 λ, 
(c) rw=0.001 λ, and (d) rw=0.002 λ. 
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Finally, we utilize the design equations (3.13), (3.14), (3.19), and (3.20) for calculating the 
geometrical parameters of helices and (7.1) for calculating the distance between adjacent elements, 
and design quad arrays for various axial lengths, wire radii, and a wide range of normalized wire 
conductivities (from lsmin  to l610 ). Circular markers in Fig. 7.7 show the gain of these arrays. 
Additionally, we calculate the gain of the single helical antenna (from (3.23)) considering the same 
axial lengths, wire radii, and wire conductivities as for the quad arrays. The smallest discrepancy 
between the gain of the designed quad array and the gain calculated from (3.23) is 6.185 dB, 
whereas the largest discrepancy is 6.369 dB. Therefore, we can formulate an equation that estimates 
the gain of the designed quad array by adding the constant 6.185 to (3.23): 

 185.671.6889.26002983.0
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Solid lines in Fig. 7.7 indicate the gain calculated using (7.2). Note that (7.2) underestimates the 
gain (this property is obtained for the same reason as it is explained for (3.23)). The largest 
discrepancy between the simulated gain and the gain calculated from (7.2) is less than 0.2 dB. 
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Figure 7.7. Gain of the designed quad arrays in wide range of the normalized conductivities. 

7.4. Finite ground plane 

The results presented in the previous subsections are obtained considering helices located above 
an infinite ground plane. This scenario is favorable for simulations (since it reduces the required 
computation time). However, for the practical purposes, the infinite ground plane has to be replaced 
by a finite-size ground plane. Therefore, in this subsection we consider helices located above a flat 
square-shaped ground plane of a side a (Fig. 6.1). The quad arrays are designed utilizing the design 
equations (3.13), (3.14), (3.19), and (3.20) for calculating the geometrical parameters of the helices, 
whereas the optimal distances between the adjacent elements are calculated from (7.1). The 
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influence of the finite-size ground plane is investigated in terms of the gain of the quad arrays at the 
operating frequency in the main radiating direction, for various axial lengths, wire radii, and wire 
conductivity refs . The difference between the gain of the quad array located above finite ground 
plane and the gain of the corresponding quad array calculated from (7.2), i.e., the gain of the 
corresponding quad array located above infinite ground plane, is shown in Fig. 7.8. 

These results confirm that the finite-size ground plane can replace the infinite ground plane 
without sacrificing the gain. Moreover, by appropriate choosing the ground plane dimension, a 
slightly higher gain can be achieved. However, this increase is lower than in the case of single 
helical antennas. (The influence of a finite ground plane on the gain of a single helical antenna is 
investigated in Subsection 4.3.) 
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Figure 7.8. Differences between the gain of the designed quad arrays located above the ground plane of a finite 
dimension and the gain calculated from (7.2) for wire conductivity σref and wire radius (a) rw=0.0002 λ, (b) rw=0.0005 λ, 
(c) rw=0.001 λ, and (d) rw=0.002 λ. 

7.5. Design procedure 

The results and conclusions presented within previous subsections allow us to formulate a 
procedure for designing quad arrays of nonuniform helical antenna with linearly varying 
geometrical parameters. This procedure is an extension of the design procedure for single helical 
antennas (formulated in Subsection 5.1), since it utilizes the design equations (3.13), (3.14), (3.19), 
and (3.20), but also (7.1) is included for calculating the optimal distance between adjacent array 
elements and the equation for gain estimation is rewritten; hence, the quad gain can be estimated 
using (7.2). 
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Finally, the procedure for designing the quad arrays of nonuniform helical antenna with linearly 
varying geometrical parameters is summarized by the flowchart shown in Fig. 7.9. 

For the practical realization of the designed quad array, the infinite ground plane has to be 
replaced by a finite-size ground plane. For the selection of the appropriate dimension of the 
square-shaped ground plane and estimation of the gain difference due to the finite dimensions of the 
ground plane, results shown in Fig. 7.8 can be used. 

 
Figure 7.9. Flowchart of the procedure for designing quad arrays. 

7.6. Comparison with quad arrays of uniform helical antennas 

The quad arrays of nonuniform helical antennas, designed following the design procedure 
presented in Subsection 7.5, will be compared with the quad arrays of uniform helical antennas, 
optimized in this subsection.  

The geometrical parameters of the uniform helical antennas that make up the quad arrays are 
calculated from (4.4) and (4.5). The distance between adjacent array elements, D, is optimized. For 
the optimization we utilize the same setup and procedure as for the quad arrays of nonuniform 
helical antennas (Subsection 7.3). We consider various axial antenna lengths, wire radii, and wire 
conductivity refs , whereas the operating frequency is 300 MHz and the helices are located above an 
infinite perfectly conducting ground plane. 

The optimal distances D are compared in Fig. 7.10 with D calculated from (7.1), whereas the gain 
of the optimal quads with uniform and nonuniform helical antennas is compared in Fig. 7.11.  

The optimal distances D for the quad arrays with uniform helical antennas are smaller than the 
optimal distances for the quad arrays with nonuniform helical antennas. Namely, for shorter axial 



100 

antenna lengths the discrepancies of these optimal distances are around 0.25 λ, whereas for longer 
axial antenna lengths they are around 0.7 λ.  

Further, the discrepancy between the gain of quad arrays of uniform and nonuniform helical 
antennas is between 1.4 dB (for shorter axial antenna lengths) and 2.2 dB (for longer axial antenna 
lengths). These discrepancies are similar to the discrepancies between the gain of single uniform 
and nonuniform helical antennas. Hence, the gain improvement, introduced by the nonuniform 
helical antennas in comparison with the uniform helical antennas, is maintained when these 
antennas are employed in quad arrays, as it is expected from the antenna array theory.  
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Figure 7.10. Optimal distances D for the quad arrays of uniform helical antennas. 
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Figure 7.11. Gain of the optimal quad arrays of uniform and nonuniform helical antennas. 

7.7. Comparison with a design from literature 

In this subsection the quad arrays designed following formulated design procedure are compared 
with the quad arrays which are designed following the recommendations from [108], where an 
equation is presented for estimation of the optimal distances between the adjacent elements of the 
quad arrays 

 
p

=
l 4

h]108[ GD
, (7.3) 

where hG  is the (numerical) gain of the single helical antenna. Since the helical antennas that make 
up the quad array are designed utilizing the design equations (3.13), (3.14), (3.19), and (3.20), we 
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calculate hG  from (3.23). (The gain g calculated from (3.23) is in dBi, hence it requires a simple 
conversion 10

h 10gG = .) Firstly, the best distances obtained through optimizations (for wire 
conductivity refs ), distances calculated from (7.1) and calculated from (7.3) are compared in 
Fig. 7.12a, whereas the gains of the quad arrays for which distances D are calculated from (7.1) and 
(7.3) are compared in Fig. 7.12b. The optimal distances D or the distances D calculated from (7.1) 
are for more than 40 % larger than the distances calculated from (7.3). However, when the distance 
D is calculated from (7.1), instead of using (7.3), the quad arrays achieve for around 0.5 dB higher 
gain. 
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Figure 7.12. Comparison of quad arrays designed using presented design equations and utilizing guidelines from [108] 
(a) optimal normalized distance D and (b) gain. 

The design procedure presented in this chapter allows rapid design of quad arrays of nonuniform 
helical antennas with linearly varying geometrical parameters. Moreover, comparison made in 
Fig. 7.12b confirms that, compared to the results presented in the literature, using the presented 
design procedure guarantees achievement of at least the same (or even higher) gain. 
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8. Conclusions 

The main topic of this thesis is comprehensive investigation of nonuniform helical antennas and 
quad arrays of such antennas. Using software for numerical simulations of these antennas, 
optimization procedures were used and a large database of the optimal designs was created. By 
careful examination of this database, equations were developed that constitute a complete, 
standalone, and rapid procedure for designing nonuniform helical antennas with linearly varying 
geometrical parameters, which is the main contribution of the thesis. The proposed design 
procedure gives all necessary data for the complete design of nonuniform helical antennas, which 
significantly simplifies the design of these antennas and guarantees achievement of the optimal (or 
very close to the optimal) characteristics for the chosen conductor and antenna overall dimensions. 

This procedure was expanded to the design of quad arrays of nonuniform helical antennas, which 
is the second major contribution of the thesis. 

The validity of the presented design procedures was verified in several ways within this thesis. 
Firstly, a nonuniform helical antenna was designed following the presented design procedure and it 
was fabricated and measured. The results of the measurements show excellent agreement with the 
results of the simulations, which confirms the validity of the proposed design procedures. Secondly, 
the designed nonuniform helical antennas and arrays were compared with the helical antennas and 
arrays described in the literature. Our nonuniform helical antennas outperform practically all helical 
antennas presented in the literature, except in the cases of highly lossy conductor when uniform 
helical antennas perform better.  

Besides nonuniform helical antennas with linearly varying geometrical parameters, other 
variations of the dimensions were considered (exponential and piecewise linear). It was concluded 
that all these antennas achieve almost the same gain. However, the geometry of the designed 
nonuniform helical antennas is simpler and hence preferable for the applications.  

Further, it was noticed that nonuniform helical antennas are more sensitive to losses than the 
uniform helical antennas. Namely, the optimal nonuniform helical antennas achieve up to 2.5 dB 
higher gain than the optimal uniform helical antennas. However, this discrepancy decreases with the 
increase of losses. Hence, we also formulated a set of equations for the design of the optimal 
uniform helical antennas, which are the preferable choice when the losses are high. The clear border 
is established that suggests which design should be used for the considered axial antenna length, 
wire radius, and conductivity.  

Within this thesis, flat square and circular ground planes were considered. The side of a square 
ground plane or the radius of a circular ground plane that is required for the achievement of the best 
performances are around the axial antenna length for shorter antennas, whereas for the longest 
antennas, they are around one half of the axial antenna length. Although the designed nonuniform 
helical antennas require a relatively large ground plane, this may not be a problem when such a 
plane already exists (e.g., certain satellites and vehicles). 

Finally, additional contribution of the thesis is the complete, “step-by-step”, solution of a real 
engineering problem, i.e., the design and fabrication of a quad array that meets the pre-defined 
specifications. This solution contains details about the design and optimization of the geometry of 
helical antennas and their positions within the array, the design of the feeding and matching 
network, and details about the fabrication of the prototype. The validity of the solution is verified by 
measurements. 
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The investigation and results presented in this thesis open potential topics for the future research. 
Namely, machine learning algorithms might be use for accelerating the finding of the optimal 
helical antennas and for considering more criteria or wider search-spaces. For example, the 
optimization can be directed at simultaneously maximizing the gain and minimizing the length of 
the helix conductor, which is preferable from the practical point of view. Further, the design of 
arrays of helical antennas can be generalized to cover an arbitrary number of array elements. 
Finally, nonuniform helical antennas with a small ground plane may be systematically investigated 
and their design procedure formulated. 
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Appendix 

A. Gain definitions 

In the literature, software, antenna datasheets, and standards the term “antenna gain” is not 
consistently used, or, at least, it is not used clearly. Problems also exist with the units used for the 
gain. The objective of this appendix is to clarify the terms and units. We primarily follow [126]. 
The definitions in this appendix are taken from [126] directly or with minor modifications. 
However, we have added comments and corrections to these definitions. 

We consider an antenna in the transmitting mode. The antenna is fed by a generator that is 
connected to the antenna by a lossless transmission line, of a given (nominal) characteristic 
impedance, or a lossless waveguide, of a given wave impedance. The incident wave on the line, viz. 
waveguide (traveling from the generator towards the antenna) is partly reflected from the antenna 
due to the antenna mismatch. The reflection coefficient of the antenna is defined with respect to the 
characteristic impedance of the transmission line, viz. the wave impedance of the waveguide. 

A.1. Terms 

The radiation intensity, in a given direction, is defined as1 P2rI = , where r  is the distance of 
the field point from the antenna and P  is the intensity of the Poynting vector at the field point2, 

HE´=P  (E is the electric-field vector and H is the magnetic-field vector). 
The average radiation intensity is equal to the total power radiated by the antenna divided by 

the full solid angle3. The average radiation intensity of an antenna whose total radiated power is 

radP  is 
p

=
4
radPI . 

An isotropic radiator is a hypothetical, lossless antenna whose radiation intensity is equal in all 
directions. The radiation intensity of the isotropic radiator whose total radiated power is radP  is 

p
=

4
radPI  for any direction. 

The radiation efficiency is the ratio of the total power radiated by the antenna and the net power 
accepted by the antenna from the connected transmitter. 

The directivity of the antenna is the ratio of the radiation intensity in a given direction to the 
radiation intensity averaged over all directions4. In the older literature, the term directive gain is 
                                                           
1Although [126] is an engineering text, formulas are avoided, though formulas would provide more compact and clearer 
statements. Hence, we prefer to at least partly deviate from that style. 
2 The definition in [126] is different: “the radiation intensity, in a given direction, is the power radiated from an antenna 
per unit solid angle”. As in the most texts in English, the construction “per unit...” is used, which is not favored in a 
rigorous approach. Here, we actually evaluate the power density in the sense of the ratio of the elementary power 
radiated into an elementary solid angle and that elementary solid angle, i.e., W= d/dPI . We do not take the ratio of 
the power radiated into the unit solid angle and the unit solid angle (which would be 1 steradian). 
3 In [126], it is written “divided by p4 ”, where p4  actually means the full solid angle (4p steradians). 
4 “All directions” means here the directions covering the full solid angle (4 π steradians). Care should be taken, however, 
that in some cases only the upper half-space is considered (e.g., in AM broadcasting in the LF, MF, and HF bands). 
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also used, but this term has been deprecated. The directivity does not take into account the 
dissipative loss in the antenna or the losses due to the mismatch of the antenna to the feeder and the 
polarization mismatch. 

The gain of the antenna in a given direction is the ratio of the radiation intensity in that direction 
and the radiation intensity that would be obtained if the power accepted by the antenna were 
radiated isotropically. The term absolute gain is also used to stress the distinction from the relative 
gain. The gain takes into account the dissipative loss in the antenna, but it does not take into account 
the losses due to the mismatch of the antenna to the feeder and the polarization mismatch. If the 
antenna is without the dissipative loss, then, for any direction, its gain is equal to its directivity. If 
the antenna has the dissipative loss, then, for any direction, its numerical gain is equal to its 
numerical directivity multiplied by the radiation efficiency.  

The realized gain5,6 of the antenna in a given direction is the gain of the antenna reduced to take 
into account the losses due to the mismatch of the antenna to the feeder7. The realized gain is the 
product of the absolute gain and the feeder mismatch factor 2||1 r- , where r  is the reflection 
coefficient of the antenna for the given feeder8. The realized gain takes into account the dissipative 
loss in the antenna and the mismatch of the antenna to the feeder, but it does not take into account 
the polarization mismatch. 

The relative gain of the antenna in a given direction is the ratio of the gain of the antenna and the 
gain of a reference antenna. The maximum gain of the reference antenna is implied9. 

The term the relative gain is sometimes used in conjunction with the “relative radiation pattern”, 
meaning the radiation pattern of the antenna normalized to its maximum. 

The partial directivity/gain (absolute gain, realized gain, or relative gain) of the antenna for a 
given polarization, in a given direction, is the directivity/gain reduced to take into account the 
losses due to the polarization mismatch. The partial directivity/gain is the product of the total 
directivity/gain and the polarization mismatch factor totalcopol IIC = , where copolI  is the radiation 
intensity corresponding to the given polarization and totalI  is the total radiation intensity10. 

For the given direction, the total directivity/gain is the sum of the partial directivities/gains for 
(any) two orthogonal polarizations. The partial directivity cannot be greater than the total 
directivity. If the direction for the directivity/gain is not specified, the direction of the maximal11 
radiation intensity is implied and the maximal directivity/gain is implied. 

In all previous definitions, the directivity and the gain are expressed as ratios of two physical 
quantities, i.e., the radiation intensities. This ratio is a pure number, i.e., it has no units. We shall 
                                                           
5 An alternative term in English found in the literature is “practical gain”; in Serbian: “pogonsko poja čanje”; in German: 
“Antennen-Betriebsgewinn”. 
6 In [127] the term “absolute gain” is wrongly used to mean the “realized gain: “... we define two gains; one, referred to 
as gain (G), and the other, referred to as absolute gain (G abs), that also takes into account the reflection/mismatch 
losses...”. The same mistake also appears in [128]. 
7 The wording in [126] is “The gain of an antenna reduced by its impedance mismatch factor.” By the term 
“impedance”, one should consider the actual impedance for a transmission-line feeder and the wave impedance for a 
waveguide feeder. 
8 In [126], the feeder mismatch factor is referred to as the impedance mismatch factor, but it is not related to the 
reflection coefficient. 
9 In [126], it is incorrectly stated that “the maximum gains of the antennas are implied”. The problem comes from two 
different usages of the word “gain”. One usage is to denote the gain as the function of the angles of the spherical 
coordinate system (this defines the “gain pattern”). The other usage is to denote the maximum gain of the antenna. In 
the first usage, only the maximal gain of the reference antenna is involved. In the second usage, the maximal gain of 
both antennas is involved. 
10 In [126], the polarization mismatch factor is not defined, but rather the partial directivity/gain are defined from 
scratch, by considering copolI  and the radiation intensity averaged over all directions, viz. the radiation intensity that 
would be obtained if the power accepted by the antenna were isotropically radiated. 
11 In [126], the word “maximum” is used instead of “maximal”. Although linguistically “maximum” is used as an 
adjective, it is a good practice to distinguish between “maximal” (being an adjective, i.e., “the largest”; in Serbian: 
“najveći“) and “maximum” (“the largest value”, as in “the maximum of the sinusoidal function is 1; in Serbian: 
“najveća vrednost”, “maksimum”). A similar disambiguation should be done for “minimum” and “minimal”. 
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refer to this ratio as the numerical directivity, viz. gain. We shall use upper-case letters for the 
numerical directivity (D) and gain (G). We shall use the attribute “numerical” where necessary to 
distinguish from the logarithmic values. 

The directivity and gain are often expressed in decibels by taking 10log10  of the numerical 
directivity, viz. gain. We shall use lower-case letters for the logarithmic directivity (d) and gain (g). 
We shall not stress “logarithmic” unless it is necessary to distinguish it from the numerical gain. 

When considering the logarithmic directivity/gain, multiplications/divisions are replaced by 
additions/subtractions. 

The logarithmic gain is the sum of the logarithmic directivity and the logarithmic radiation 
efficiency. 

The realized logarithmic gain is the sum of the logarithmic (absolute) gain and the term 
( )dB||1log10 2

10 r- . 
The relative logarithmic gain is the difference of the logarithmic gain of the antenna and the 

logarithmic gain of the reference antenna. 
The partial logarithmic directivity/gain is the sum of the logarithmic directivity/gain and the term 

dBlog10
total

copol
10 I

I
c = . 

A.2. Units 

The averaged radiation intensity amounts to using an isotropic radiator as a reference antenna. 
Hence, the unit for the logarithmic directivity/gain is dBi (decibels with respect to the isotropic 
radiator). 

In the older literature, as a rule, the reference antenna was a half-wave dipole. This reference is 
nowadays still used in some antenna data sheets and standards (e.g., electromagnetic-compatibility 
standards). To stress the reference antenna, the unit for the logarithmic directivity/gain in this case 
is dBd. 

The antenna directivity/gain in dBi is for 2.15 dB greater than when expressed in dBd. 
Circularly-polarized antennas are often used for satellite communications (e.g., for the GPS 

navigation system). In order to stress that the partial logarithmic directivity/gain for the circular 
polarization is considered, the unit dBic (or dBiC) is used. 

The attribute “partial” is seldom used, although its usage can be important to avoid ambiguities.  
The unit dBi is not used in many cases, but only dB is used instead, leading to possible confusion 

in books, papers, simulation software, and antenna data sheets. 
In software, the unit dB is often used in the meaning “dBi”. 
When stating the difference between two directivities/gains, which are given in dBi, it is adequate 

to say that the directivity/gain, is “for n dB higher than...”. It is not correct to say that it is “for n dBi 
higher than...”. 

A.3. Derivation of RHCP and LHCP components of the radiated field 

 
Figure A.1. Considered scenario for the derivation of RHCP and LHCP components of the radiated field. 
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We consider an arbitrary antenna, located near the coordinate origin (Fig. A.1). We observe the 
far (radiated) field of the antenna, at an arbitrary point M at the distance r from the antenna. 

Far-field conditions are (simultaneously): 
· Dr >> , 

· l>r , 

· 
l

>
22Dr  (the Fraunhofer condition), 

where D is the maximal linear dimension of the antenna.  
In case of helical antennas, l>» LD  (if the counterbalance is not very large), so that only 

l
>

22Dr  matters. (If this condition is fulfilled, then the other two are automatically satisfied.) 

In the far-field region, the transversal components of the electric field ( qE  and jE  dominate), 
i.e., 0»rE  and jjqq += uuE EE , where ru , qu , and ju  are the unit vectors of the spherical 
coordinate system. The radiated field is, locally, a TEM wave. 

We want to separate E  into two circularly-polarized components. The first component is the 
RHCP component and the second one is the LHCP component (both observed with respect to the 
direction of wave propagation, i.e., ru ). 

Let us first consider the RHCP component, RHCPE . Projections of RHCPE  on qu  and ju  have the 
same intensities (the same rms values), they are in phase quadrature (these two conditions are the 
same for the RHCP and LHCP components), and the phase difference between qE  and jE  is 2/p  
( qE  advances in phase, i.e., jE  lags in phase). Hence, we can write 

jqqqjjqq -=+= uuuuE RHCPRHCPRHCPRHCPRHCP j EEEE . 
Similarly, for the LHCP, jqqqjjqq +=+= uuuuE LHCPLHCPLHCPLHCPLHCP j EEEE  because now 

the phase difference between qE  and jE  is 2/p-  ( jE  advances in phase). 
Further, LHCPRHCP EEE += , so that qqq += LHCPRHCP EEE  and qqj +-= LHCPRHCP jj EEE . 

From the last two equations we have 
2

j
RHCP

jq
q

+
=

EE
E  and 

2
j

LHCP
jq

q
-

=
EE

E . We also have 

2
j

RHCP
jq

j
+-

=
EE

E  and 
2

j
LHCP

jq
j

+
=

EE
E . 

We have completely defined the RHCP and LHCP components. We can also prove that any 
(arbitrarily) polarized radiated field can be split into these two components. Namely, a 
time-harmonic field is elliptically polarized in the general case. Hence, it can be expressed in terms 
of only two orthogonal linearly polarized fields (two fields are sufficient, not three). Each of these 
two fields can be exressed in terms of two circularly-polarized waves (one RHCP and one LHCP). 
The resulting RHCP and LHCP waves can be obtained by simple summations. 

In the time domain, the vectors )(RHCP tE  and )(LHCP tE  rotate in the same plane (the plane 
defined by qu  and ju  in our case), in opposite senses, but with the same angular velocity. At 
certain instances, these two vectors have the same direction (and this situation periodically repeats 
after an integer multiple of 2/T , where fT /1=  is the period of the field). At those instances, the 
intensity of the resulting electric field is maximal, LHCPRHCPmax|| EE +=E , where RHCPE  is the rms 

value of )(RHCP tE , 
2

j
2)(2 RHCPRHCPRHCP

jq
q

+
===

EE
tEE E , and LHCPE  is the rms value of 
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)(LHCP tE , 
2

j
2)(2 LHCPLHCPLHCP

jq
q

-
===

EE
tEE E . A quarter period later, the vectors 

)(RHCP tE  and )(LHCP tE  have opposite directions, when the intensity of the resulting electric field is 
minimal, LHCPRHCPmin|| EE -=E . Hence, the numerical axial ratio is 

LHCPRHCP

LHCPRHCP

LHCPRHCP

LHCPRHCP

min

max

||
||

EE
EE

EE
EEAR

-
+

=
-
+

==
E
E , whereas [ ]

LHCPRHCP

LHCPRHCP
10log20dB

EE
EE

ar
-
+

= . 

B. Theorem of electromagnetic similitude 

The theorem of electromagnetic similitude [118] defines the conditions that have to be satisfied in 
order to obtain an electromagnetic field similar to the field in a geometrically similar system.  

Let us consider two geometrically similar systems (system 1 and system 2), shown in Fig. B.1. 
The ratio of the linear dimensions of these systems is n, i.e., rr n=¢ . (Note that in all equations 
within this subsection and in Fig. B.1, prime denotes the system 2.) Hence, for 1>n  the system 2 is 
larger than the system 1, and for 1<n  the situation is reversed. The electromagnetic similitude 
theorem is valid when both systems are linear. Hence the permittivity, permeability, and 
conductivity of the material are 

 ( ) ( )rr e=¢e¢ e , ( ) ( )rr m=¢m¢ m , ( ) ( )rr s=¢s¢ s , (B.1) 

where e, m, and s are constants. The sources of the electromagnetic field are modeled by impressed 
currents, which satisfy the relation ( ) ( )rJrJ ii j=¢¢ , where j is a constant (not the imaginary unit). 
All phenomena in the system 2 are T times faster than in the system 1, tTt =¢ . 

The field vectors in the systems satisfy the relations 

 ( ) ( )rErE Ek=¢¢ , ( ) ( )rHrH Hk=¢¢ , (B.2) 

where Ek  and Hk  are constants. If the same field in the two systems is required, the constants Ek  
and Hk  should be 1. 

 
(a) 

 
(b) 

Figure B.1. Sketch of two similar systems: (a) system 1 and (b) system 2. 

Maxwell’s equations for the systems 1 and 2 are 

 
t¶

¶
m-=

HEcurl , 
t¶

¶
e++s=

EJEH icurl , (B.3) 

 
t¢¶

¢¶
m¢-=¢¢ HElcur , 

t¢¶
¢¶

e¢+¢+¢s¢=¢¢ EJEH ilcur . (B.4) 

Since the operation lcur ¢ refers to a point r¢  of the system 2, ncurllcur =¢ . After the substitution 
of the quantities from the system 2 (prime quantities) according to previously defined relations into 
(B.4), it becomes 
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tkT

kmn

E
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ø

ö
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è
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HEcurl , 
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ø
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ø

ö
çç
è

æ
=

EJEH icurl . (B.5) 

In order to obtain the electromagnetic similitude, (B.3) and (B.5) must be identical. Hence, the 
expressions in parentheses in (B.5) must be equal to unity, 

 1=
E

H

kT
kmn , 1=

H

E

k
ksn , 1=

Hk
nj , 1=

H

E

kT
ken . (B.6) 

Since we are interested in the relative field distribution (for analyzing antenna characteristics), the 
constants Ek  and Hk  are 1, which simplifies (B.6) to 

 1=
T
mn , 1=sn , 1=nj , 1=

T
en . (B.7) 

Practically it is almost impossible to obtain 1¹m , i.e., m¹m¢ , and 1>>e  or 11 >>e . Hence, we 
can adopt 1== em  (i.e., we have the same dielectric and magnetic materials in these systems, 
provided that they are lossless), which additionally simplifies (B.7) to 

 Tn = , 
T

j 1
= , 

T
s 1

= . (B.8) 

These conditions lead to the conclusion that if the geometrical parameters are n times larger in the 
system 2 than in the system 1, the conductivity and the frequency (1/T) in the system 2 have to be n 
times smaller. This allows that the antenna simulations can be run at an arbitrary operating 
frequency and, by applying the theorem of electromagnetic similitude, the antenna geometry can be 
scaled so that it corresponds to the desired frequency. The shape (pattern) of the electromagnetic 
field distribution (hence, the antenna characteristics, such as the impedance and radiation pattern) 
will be maintained. 
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o6pa3a� U3jaee o aymopcmey 

H3jaea o ayropcruy 

11.Me H npe3HMe ayropa __ J_e_n_e_H_a _A_ H_ H_K_H_h _____ _

Epoj HH,D,eKca 2015/5026

Aa je ,1],0KTOpCKa ,l],HCepTaQHja TIOA HaCJIOBOM 

(Nonuniform helical antennas) 

• pe3ynTaT concrseHor HCTpa)KHBa'I.IKor p�a;
• p;a )],HCepTaQHja y QeJIHHH HH y ,D,eJIOBHMa HHje 6HJia npe,1],JIO)KeHa 3a CTHQaH>e ,D,pyre

AHITJIOMe npeMa CTyAHjCKHM nporpaMHMa APYfHX BHCOKOlliKOJICKHX yCTaHOBa;
• Aa cy pe3yJITaTH KopeKTHO HaBe)],eHH H
• )],a HHCaM Kpm110/na ayropCKa npasa H KOpHCTHO/Jia HHTeJieKryaJIHY CBOjHHY ,D,pyrHX

JIHQa.

IloTnnc ayropa 

y Eeorpa,D,y, 26.04.2021. ro,D,HHe
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ff3jaBa o Kopuwlie11>y 

OsJiawnyjeM YH11Bep311TeTcey 6116n110Teey ,,CBeTo3ap MapKoewh" ,n;a y JJ,1-1rHTaJIHH 
peno311Top11jyM YHHBep3HTeTa y Eeorpa,D,y yHece Mojy ,n;mcropcey ,D,HcepTaQHjy no,D, 
HaCJIOBOM: 

Kaja je Moje aYTopcKo ,n;eJio. 

HeyHHq>OpMHe xeJIHKOH,D;aJIHe aHTeHe 
(Nonuniform helical antennas) 

JJ,11cepTaQ11jy ca cBHM npHJI03HMa npe,n;ao/Jia caM y eJieKTpOHCKOM cpopMary noro,n;HoM 3a 
TpajHO apXHBHpaH>e. 

Mojy ,lJ,OKTopcey ,lJ,HCepTaQHjy noxpaH>eHy y JJ,HrHTaJIHOM peno3HTOpHjyMy YHHBep3HTeTa y 
Eeorpa,n;y H ,n;ocrynHy y 0TBopeHOM np11cryny Mory ,n;a K0pHCTe CBH K0jH noWTyjy o,n;pe,n;6e 
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IlOTDHC ayropa 

y Eeorpa,n;y, 26.04.2021. ro,n;HHe

 



1. AyropCTBO. ,ll;03BOJbaBaTe YMH0)KaBal-be, AHCTpH6yu,1-1jy H jaBHO ca0nIIITaBaH>e AeJia, H

npep�e, aKo ce HaBeAe HMe ayropa Ha Ha'IHH OApeljeH 0A CTpaHe ayropa HJIH ,a.aaaou,a

JIHU,eHu,e, 'laK H y  KOMepu,HjaJIHe CBpxe. Oao je Hajcno6oAHHja 0A CBHX JIHU,eHLJ,M.

2. AyropCTBO - HeKOMep�HjaJIHO. ,ll;03BOJbaBaTe YMH0)KaBal-be, AHCTpH6yu,Hjy M jaBHO

caom11Tasal-be AeJia, H npepa,a.e, aKo ce HaBeAe HMe ayropa Ha Ha'IHH OApeljeH 0A CTpaHe

ayropa HJIH Aasaou,a JIHU,eHu,e. Osa nm.i;ettu,a He ,LI.03B0Jbasa KOMepu,11jaJIHY ynoTpe6y ,a.ena.

3. Ayropcrso - HeKOMep�HjaJJHO - 6e3 npepaAa, ,ll;03BOJbaBaTe YMH0)KaBal-he,

AHCTpH6yu,Hjy H jasHo caorrwTaBaH>e AeJia, 6e3 npoMeHa, npeo6JIHKOBal-ba HJIH ynoTpe6e

AeJia y csoM AeJT.Y, aKo ce HaBe/J,e HMe ayropa Ha Ha'IHH O/J,peljeH 0A CTpaHe ayropa HJIH

AaBaou,a JIHU,eHu,e. Osa JIHU,eHu,a He /J,03B0JbaBa KOMepu,HjaJIHY ynoTpe6y AeJia. y 0/J,H0cy Ha

cse ocrane m1u,eHu,e, osoM JIHU,eHU,0M ce orpaHH'lasa Hajsel'rn o6HM npaea KOpHwli.el:ba /J,eJia.

4. AyropCTBO - HeKOMep�HjaJJHO - AeJJHTH DOA HCTHM YCJIOBHMa. ,ll;o3BOJbasaTe

YMH0)KasaH>e, ,a.11cTpH6yu,11jy H jaBHO caonrnTaBal-he AeJia, H npep�e, aKo ce Haee,a.e HMe

ayropa Ha Ha'IHH o,a.peljeH o,a. crpaHe ayropa HJIH /],asaou,a JIMU,eHu,e 11 aKo ce npepaAa

AHCTpH6y11pa no.a. HCT0M HJIH CJIH'IH0M JIHU,eHU,0M. Oea JIHU,eHu,a He ,LJ.03B0JbaBa

KOMepu,HjaJIHY ynoTpe6y p,ena H npepa,a.a.

5. Ayropcrso - 6e3 npepaAa, ,ll;03BOJbaBaTe YMH0)KaBal-be, AHCTpM6yu,11jy H jaBHO

caonwTaBal-he ,a.ena, 6e3 npoMeHa, npeo6JIHKosal:ba HJIH ynoTpe6e ,a.ena y ceoM AeJiy, aKo ce

HaBeAe HMe ayropa Ha Ha'IMH o,a.peljeH o,a. crpaHe ayropa HJIH Aasaou,a JIHU,eHu,e. Osa

JIHU,eHu,a A03B0Jbasa KOMepu,HjaJIHY ynoTpe6y AeJia.

6. Ayropcrso - AeJIHTH IIOA HCTHM YCJIOBHMa. ,ll;03BOJbaBaTe YMH0)KaSal:be, AHCTpH6yu,Hjy
H jasHo caonuJTasaH>e AeJia, H rrpep�e, aKo ce HaBeAe HMe ayropa Ha Ha'-IHH o,a.peljeH 0A
crpaHe ayropa HJIH Aasaou,a JIHU,eHu,e H aK0 ce npepa,a.a AHCTpH6yHpa Il0A HCT0M HJIH
CJIH'IH0M JIHU,eHl_\0M. Oea JIHU,eHu,a A03B0Jbasa KOMepu,HjaJIHY YIIOTPe6y ,a.eJia H npepa,a.a.
CJIH'-IHa je coq>TBepcKHM m1u,eHU,aMa, 0AH0CH0 m1u,ettu,aMa 0TB0peH0r K0Aa,
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