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koji naizmjenično uzimaju slobodne grane/čvorove datog
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pobjeduje ako čvorovi koje uzme dok kraja igre formiraju
skup totalne dominacije. Za odredene klase povezanih
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grafova na kojima Dominator pobjeduje i onih na kojima
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Rezime

Tema istraživanja ove disertacije su igre tipa Mejker–Brejker u kojima
učestvuju dva igrača, Mejker i Brejker, koji naizmjenično uzimaju slo-
bodne grane/čvorove datog grafa. Bavimo se Voker–Brejker igrama koje
se igraju na skupu grana grafa Kn. Voker, u ulozi Mejkera, je ograničen
da uzima svoje grane kao da se šeta kroz graf, dok Brejker može da uzme
bilo koju slobodnu granu grafa. Fokus je na dvije standardne igre - igri
povezanosti, gdje Voker ima za cilj da napravi pokrivajuće stablo grafa Kn

i igri Hamiltonove konture, gdje Voker ima za cilj da napravi Hamiltonovu
konturu. Brejker pobjeduje ako spriječi Vokera u ostvarenju njegovog cilja.
Pokazaćemo da Voker sa biasom 2 može da pobijedi u obje igre čak i ako
igra protiv Brejkera čiji je bias b reda n/ lnn. Potom razmatramo (1 : 1)
VokerMejker–VokerBrejker igre na Kn, gdje oba igrača, i Mejker i Brej-
ker, moraju da biraju grane koje su dio šetnje u njihovom grafu s ciljem
odredivanja brze pobjedniče strategije VokerMejkera u igri povezanosti i
igri Hamiltonove konture. Konačno, istražujemo Mejker–Brejker igre to-
talne dominacije koje se igraju na skupu čvorova datog grafa. Dva igrača,
Dominator i Stoler naizmjenično uzimaju slobodne čvorove datog grafa.
Stoler je Mejker i pobjeduje ako uspije da uzme sve susjede nekog čvora.
Dominator je Brejker i pobjeduje ako čvorovi koje uzme dok kraja igre
formiraju skup totalne dominacije. Za odredene klase povezanih kubnih
grafova reda n ≥ 6, dajemo karakterizaciju onih grafova na kojima Domi-
nator pobjeduje i onih na kojima Stoler pobjeduje.
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Abstract

The topic of this thesis are different variants of Maker–Breaker positional
game, where two players Maker and Breaker alternatively take turns
in claiming unclaimed edges/vertices of a given graph. We consider
Walker–Breaker game, played on the edge set of the graph Kn. Walker,
playing the role of Maker is restricted to claim her edges according to a
walk, while Breaker can claim any unclaimed edge per move. The focus
is on two standard games - the Connectivity game, where Walker has
the goal to build a spanning tree on Kn, and the Hamilton Cycle game,
where Walker has the goal to build a Hamilton cycle on Kn. We show
that Walker with bias 2 can win both games even when playing against
Breaker whose bias b is of the order of magnitude n/ lnn. Next, we
consider (1 : 1) WalkerMaker–WalkerBreaker game on E(Kn), where both
Maker and Breaker are walkers and we are interested in seeing how fast
WalkerMaker can build spanning tree and Hamilton cycle.
Finally, we study Maker–Breaker total domination game played on
the vertex set of a given graph. Two players, Dominator and Staller,
alternately take turns in claiming unclaimed vertices of the graph. Staller
is Maker and wins if she can claim an open neighbourhood of a vertex.
Dominator is Breaker and wins if he manages to claim a total dominating
set of a graph. For certain connected cubic graphs on n ≥ 6 vertices, we
give the characterization of those graphs which are Dominator’s win and
those which are Staller’s win.
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Preface

We study different kinds of Maker–Breaker positional games. The theory
of positional games is a relatively young field of combinatorics whose task is
to develop a broad mathematical framework for different games of perfect
information played by two players alternately. The positional game is
described through the board of the game (finite set X), the family of
winning set (F ⊆ 2X) and the winning condition. In the Maker–Breaker
games players have opposite goals. Maker wins if she can claim all elements
of some winning set. Breaker wins if he manages to claim at least one
element from each winning set. No draw is possible.

The first game we consider is the so-called Walker–Breaker game, a
variant of Maker–Breaker game, recently introduced by Espig, Frieze,
Krivelevich, and Pegden [45]. The game is played by two players Walker
(playing the role of Maker) and Breaker who alternately choose unclaimed
edges of the graph Kn. Breaker can claim any unclaimed edge from
the graph while Walker is restricted to claim her edges according to a
walk, that is, an edge claimed by her must be incident with the vertex
in which she has finished her previous move. We are interested in (2 : b)
Walker–Breaker games where Walker claims two edges per move and
Breaker claims b edges per move. The focus is on two standard and
well-known games: the Connectivity game – where the winning sets are
spanning trees of Kn, and the Hamilton Cycle game – where the winning
sets are all Hamilton cycles of Kn. We are curious to see what is the
largest value of b for which Walker can build a spanning tree and Hamilton
cycle thus answering the question of Clemens and Tran [34].
Next, we investigate a question of Espig et al. [45] – what happens
if Breaker is also a walker, and consider unbiased WalkerMaker–
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WalkerBreaker Connectivity game and Hamilton Cycle game with a goal
of determining how fast WalkerMaker can build corresponding spanning
structure.
Finally, we consider Maker–Breaker total domination game, introduced by
Gledel, Henning, Iršič, and Klavžar [59]. In this game, players alternate
in claiming unclaimed vertices of a given graph. The players are called
Staller and Dominator, according to the roles they have in the game.
Winning sets are open neighbourhoods of all vertices in a given graph.
Staller is Maker and wins if she manages to isolate a vertex from the
graph, i.e. to claim all the vertices in its open neighbourhood. On the
other hand, Dominator is Breaker and wins if the vertices he claimed
during the game form a total dominating set. Being that this type of game
is an easy Dominator’s win on the complete graphs, it is interesting to
play the game on some given graphs that are not complete. As suggested
by Gledel et al. [59] we focus on the characterization of the connected
cubic graphs (i.e. graphs whose all vertices have degree three) on which
the Dominator wins and those graphs on which Staller wins.

The thesis is organized in the following way.

In Chapter 1 we introduce positional games and give an overview
of Maker–Breaker games. We introduce some basic concepts and give the
terminology used throughout the thesis.

In Chapter 2 we state the main results and theorems that will be
proven in this thesis.

In Chapter 3 we study (2 : b) Walker–Breaker games and we prove that
the maximum value of the parameter b that allows Walker to win the
Connectivity and Hamilton Cycle game is of order n

lnn .

The results of this chapter are submitted for publication as:

• J. Forcan and M. Mikalački, Spanning structures in Walker–Breaker
game [53].

In Chapter 4 we study the fast winning strategies of WalkerMaker in the
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unbiased WalkerMaker–WalkerBreaker games.

The results of this chapter are published as:

• J. Forcan and M. Mikalački, On the WalkerMaker–WalkerBreaker
games, Discrete Applied Mathematics, (2020) [55].

In Chapter 5 we consider Maker–Breaker total domination game on
connected cubic graphs.

The results of this chapter are submitted for publication as:

• J. Forcan and M. Mikalački, Maker–Breaker total domination game
on cubic graphs [54].

Novi Sad, 2021. Jovana Forcan
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Chapter 1

Introduction

Some of the most interesting mathematical problems involve combinatorial
games. The Combinatorial Game Theory studies strategies of two-player
games of perfect information and no chance moves. The development of
modern Combinatorial Game Theory can be attributed to two publica-
tions: “On Numbers and Games” [35] by Conway from 1976 and “Winning
Ways for Your Mathematical Plays” [19] by Berlekamp, Conway, and Guy
originally published in 1982.
The branch of combinatorial games, not covered by Conway’s theory is the
theory of positional games. The theory of positional games relies on the
combinatorial arguments of various kinds and it is deeply connected with
Ramsey’s theory, Extreme Graph Theory and Probability Theory. These
games include popular Tic-Tac-Toe and Hex games, but also the abstract
games played on graphs and hypergraphs. The pioneering results for the
beginning of the study of the theory of positional games are Hales-Jewett
theorem [64] which is considered as the fundamental result in Ramsey the-
ory and Erdős-Selfridge Criterion [44] which uses potential functions to
analyse the games providing the first derandomization argument which is
a central concept in the theory of algorithms.
The further development of the theory of position games is made by József
Beck whose monograph [9] covers many aspects of positional games and
where the author shows “how to escape from the combinatorial chaos via
the fake probabilistic method, a game-theoretic adaptation of the proba-
bilistic method in combinatorics”, [9]. The recent monograph [67] of Hefetz,
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CHAPTER 1. INTRODUCTION

Krivelevich, Stojaković and Szabó also provides a thorough introduction
to the theory of positional games and presents recent developments in this
field.
Positional game is a hypergraph (X,F), where X is a set, usually finite,
and F ⊆ 2X . The game is played by two players who alternately claim un-
occupied elements of a set X until all elements are claimed. Set X is called
the board of the game and F – the family of winning sets. Two additional
parameters configure in the game: positive integers a and b which define
the bias of the game. In the biased (a : b) game, the first player claims a
elements per move and the second player claims b elements per move. If
a = b = 1, the game is called unbiased. The winning condition is usually
defined in one of the following three ways:

• Under the strong win convention, the winner is the first player to
occupy all the elements of some set F ∈ F . If the board X is
exhausted and none of the players has won, the game is a draw.

• In the weak (or Maker–Breaker) convention, the goals of the players
are opposite: one player (Maker) has a goal to occupy a winning set,
while the other player (Breaker) tries to prevent her. Maker wins
if she manages to claim all elements from some F ∈ F . Otherwise,
Breaker wins. Draws are impossible.

• In Avoider–Enforces convention, which is the misère version of the
Maker–Breaker convention, one player (Avoider) tries to avoid occu-
pying a winning set, while the other (Enforcer) tries to force her to
do so.

The two largest classes into which the positional games can be divided are
strong games and weak games. An example of a well-known strong game
is Tic-Tac-Toe (Noughts and Crosses) which is played on 3×3 grid square.
The board X consists of nine elements, and the family F consists of eight
winning sets (all rows, columns, and diagonals of the grid are included).
The first thing that comes to mind when analysing deterministic games
is to use a brute force computer search. In case of Tic-Tac-Toe it can be
applied, but in general this is not an option as there are too many cases and
possibilities to consider and analyse. Thus, in practice, this is not feasible
in a reasonable time for any computer. So, when analysing these games,

2



it would be useful to have some general tools. The following argument for
strong games confirms and proves that being the first player is always an
advantage.

Theorem 1.1. (Strategy stealing argument, [9]) In the strong positional
game (X,F), the first player can ensure at least a draw.

Proof. Indeed, if the second player (Player II) would have a winning strat-
egy (a book of instructions telling him how to answer each move), the
basic idea is to see what happens if the first player (Player I) steals that
winning strategy from Player II. Player I plays her first move arbitrarily
and from now on she ignores it. Then, after the first move of Player II,
Player I imagines that she is the second player and uses stolen strategy
against her opponent. If, at some point in the game, Player I needs to
claim the element she has already claimed in her first move, then she plays
arbitrarily. It is important to observe that playing an extra move can not
harm a player. So, by playing according to the stolen strategy, Player I
will win before her opponent. A contradiction.

So, if the game is played optimally by both players, then there are two
possible outcomes of the strong game: the first player’s win, and a draw.
For certain games, Ramsey type argument can be used to prove that draw
is not possible, and therefore in these games, the first player is a winner.
The argument asserts that if a hypergraph F is non-2-colorable, then the
first player has a winning strategy in the strong game over F . Indeed,
if every two-coloring of elements of X (where colors represent players’
moves) gives a monochromatic winning set, the draw is not an option. So,
by strategy stealing argument, the first player wins.
The strategy stealing argument and Ramsey type argument are currently
the only general tools for strong positional games. Although these tools
are very powerful, they tell us nothing about how a winning strategy for
the first player should look like. An explicit winning strategy is known for
a few natural strong games played on the edge set of a given graph, such
as Perfect Matching, Hamilton Cycle [47] and k-vertex connectivity game
[48].
The strong games are very difficult to analyse. The reason is in the fact
that they are not hypergraph monotone, which means that adding another
edge to the game hypergraph can change the outcome of the game (see

3



CHAPTER 1. INTRODUCTION

[10]). Given it is very difficult to analyse strong games, and yet the second
player can hope for a draw only, the weak games are introduced.

1.1 Maker–Breaker games

Maker–Breaker games, played by two players, Maker and Breaker, can
be considered as the relaxation of strong games, and sometimes they are
called the weak games. If Maker has a winning strategy in the game over
the hypergraph F , then F is called Maker’s win, otherwise, F is called
Breaker’s win. Maker’s win is also called Weak Win. This is because the
first player in the corresponding strong game cannot always apply the
Maker’s winning strategy to ensure winning. Maker, unlike the first player
in the corresponding strong game, needs to occupy a winning set to win,
but not necessarily first. Breaker’s winning strategy is called Strong Draw
since the second player can use Breaker’s winning strategy to ensure his
draw in the corresponding strong game, [8].
An example of Maker–Breaker game is the popular Hex game. The game
is played on a rhombus of hexagons of size n×n (traditionally it is played
on 11× 11 board). Maker is assigned a pair of opposite sides of red color
and Breaker is assigned a pair of opposite sides of blue color. Each player’s
goal is to connect the opposite sides of the board by coloring, in each
move, one of the uncolored hexagons in his/her own color. By looking
at the description, it may seem that Hex belongs to the class of strong
games. However, Hex is not a strong game because players’ winning sets
are different. The Hex Theorem of J. Nash [57] stating that all red/blue
colorings of the hex board must result in a path connecting opposite sides
of the rhombus makes the traditional game of Hex a Maker–Breaker game.
So, in the Maker–Breaker setup, the winning sets are all paths between
two opposite red sides of the board. Maker wins if by the end of the game
she owns one of these paths. Breaker wins if he blocks connecting red
sides by building his own path between the blue sides.

In the default setup of the Maker–Breaker game, Maker is the first
player. When providing a winning strategy for Maker in some games, that
strategy should work for every possible scenario, even if Breaker plays
first. Since being the first player in Maker–Breaker games is always an

4



1.1. MAKER–BREAKER GAMES

advantage, then if Maker can win as the second player in a game, she can
also win as the first player in the same game [67]. Indeed, if Maker has
a winning strategy S as the second player in (X,F) game she can adapt
it as a winning strategy in the same game when she is the first player.
She can play her first move arbitrarily and then she can pretend that she
is the second player and apply strategy S. If at some point of the game
strategy S tells Maker to play the move which she already played as her
first move, she takes another arbitrary element from X. By induction, it
can be proven that at any point after Maker’s first move, Maker’s set of
claimed elements contains those played according to the strategy S plus
exactly one extra move.
The same is true for Breaker, that is, if he has a winning strategy in the
game over F as the second player then he has a winning strategy in the
same game as the first player.
The following remarkable result gives a simple and useful criterion that
guarantees Breaker’s winning strategy on a hypergraph F .

Theorem 1.2. (Erdős-Selfridge Criterion, [44]) Let F be a hypergraph.
Then, ∑

A∈F
2−|A| <

1

2
⇒ F is Breaker’s win.

If Breaker is the first player, then
∑

A∈F 2−|A| < 1 is enough to ensure his
win.

The theorem gives a condition that is not hard to check and when
it is satisfied it provides an efficient algorithm for Breaker’s win. If the
game-hypergraph is k-uniform (i.e. all winning sets are of order k), then
by Erdős-Selfridge theorem Breaker wins if |F| < 2k−1. The potential-
based strategies play a key role in determining the breaking points for
many games, (see [7]).
A general criterion for Maker’s win is given by Beck [9].

Theorem 1.3. [9] Let (X,F) be a positional game. Let ∆2(F) denote the
max-pair degree of F , that is max{|{A ∈ F : {u, v} ⊆ A}| : u, v ∈ X}. If∑

A∈F
2−|A| >

1

8
∆2(F)|X|,
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then Maker has a winning strategy in (1 : 1) game (X,F).

It is very common to play Maker–Breaker games on the edges of a
graph G = (V,E) with |V | = n. In this case, the board of the game is
E(G) and the winning sets are all edge sets of subgraphs of G which
possess some given graph property. The well-studied positional games
played on a given graph G with n vertices are the Perfect Matching game
Mn – the winning sets are all sets containing bn/2c independent edges
of G, the Connectivity game Cn – the wining sets are all spanning trees
of G, the Hamilton Cycle game Hn – the winning sets are edges of all
Hamilton cycles of G, the min-degree-c game Dcn – the winning sets are
the subgraphs of G of positive minimum degree c and k-vertex connectivity
game Ckn - the winning sets are all spanning k-vertex connected subgraphs
of G.

Usually Maker–Breaker games are played on the complete graph Kn,
i.e. when X = E(Kn). Lehman [88] showed that in the (1 : 1) Connectivity
game on E(Kn) Maker can build a spanning tree in exactly n− 1 moves,
which is clearly, the fastest possible. The research on the Hamilton Cycle
game has a long history. First, Chvátal and Erdős in [27] proved that
Maker can win in Hamilton Cycle game on Kn for large enough n. Later
in [94] Papaioannou proved that Maker wins the game for all n ≥ 600.
In the same paper, he conjectured that the smallest n for which Maker
can win is 8. Hefetz and Stich [77] further improved the bound of 600 by
showing that Maker wins for all n ≥ 29. Finally, in [103] Stojaković and
Trkulja proved that no matter of who starts the game, Maker can win the
game if and only if n ≥ 8 and resolved the long-standing conjecture of
Papaioannou from [94].

In the Maker–Breaker games in which it is not hard to determine the
identity of the winner, a more interesting question to ask is how fast can the
winner win the game. This was first studied by Hefetz et al. in [72], and for
the Hamilton Cycle game, they showed that the minimum number of moves
needed for Maker to win, denoted by τ(Hn), is n+ 1 ≤ τ(Hn) ≤ n+ 2, for
sufficiently large n. Hefetz and Stich in [77] proved that τ(Hn) = n + 1,
which is optimal.
Fast winning strategies are also studied for other unbiased games on Kn.
For example, Maker can build a perfect matching on E(Kn) in n/2 + 1
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moves for even n, and in n/2 moves for odd n [72]. From these results, it
was not hard to obtain that in min-degree-1 game Maker wins in bn/2c+1
moves [72]. One more example in which Maker can win fast, within n+ 1
moves, is the T -game, where T is a given spanning tree with the bounded
maximum degree, studied by Clemens et al. in [29].
Determining how fast Maker can win and how to win fast is important
for studying other positional games. Sometimes the winning strategy of a
player requires that the player builds some structure fast before proceeding
to some other task. Fast winning strategies of Maker turned out to be very
useful for the analysis of strong positional games, (see [33, 47, 48]).

Since many unbiased Maker–Breaker games on Kn are in favor of
Maker, it is natural to give Breaker more power. One way to do this
is to allow him to claim b > 1 edges per move.

1.1.1 Biased Maker–Breaker games

Motivated by the easy win of Maker, Chvátal and Erdős in [27] introduced
and studied (1 : b) Maker–Breaker games where Breaker is allowed to
claim more that one edge per move. They noted that (1 : b) Maker–
Breaker games are biased monotone. This means that if Breaker wins in
some (1 : b) Maker–Breaker game (X,F), then he also wins (1 : b + 1)
game (X,F). Therefore, there exists a unique positive integer bF , called
the threshold bias of (X,F), such that the (1 : b) game (X,F) is a Maker’s
win if and only if b ≤ bF where F 6= ∅ and min{|A| : A ∈ F} ≥ 2.

Two general criteria for biased Maker–Breaker games

The biased version of the Erdős-Selfridge Theorem due to Beck [5] gives
general criteria for Breaker’s win.

Theorem 1.4. (Generalized Erdős-Selfridge criterion, [5]) If∑
A∈F

(1 + b)−|A|/a <
1

1 + b

then Breaker has a winning strategy in the (a : b) Maker–Breaker game
(X,F) as the second player. If Breaker is the first player then

∑
A∈F (1 +

b)−|A|/a < 1 is enough to ensure his win.

7
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The sufficient condition for Maker’s win in biased games is also given
by Beck in [5].

Theorem 1.5. (Maker’s winning condition, [5]) If

∑
A∈F

(
a+ b

a

)−|A|
>

a2b2

(a+ b)3
·∆2(F) · |X|

then Maker (as the first player) has a winning strategy in the (a : b) game
(X,F), where ∆2(F) = max{|{A ∈ F : {u, v} ⊆ A}| : u, v ∈ X,u 6= v}.

The threshold bias for some Maker–Breaker games

In the (1 : b) Maker–Breaker game the main goal is to determine the
threshold bias of the game, especially for the natural games such as the
Connectivity game, the Hamilton Cycle game, etc. To guess the thresh-
old bias, Erdős suggested the heuristic approach which has become known
as the “probabilistic intuition” or the “Erdős Paradigm”. According to
the paradigm, the threshold bias in (1 : b) Maker–Breaker game (X,F)
in which both players Maker and Breaker play according to their opti-
mal strategy should be approximately the same as in the corresponding
game where both players play randomly. So, if both players play ran-
domly on (E(Kn),F), then Maker’s graph M is distributed according to
the well-known random graph model G(n,m) where m ≈ n2

2(b+1) . Acco-
rding to the probabilistic intuition Maker wins the game asymptotically
almost surely if M contains some winning set. Otherwise, Breaker wins.
To estimate the threshold bias b we should look at the threshold m for
which the corresponding combinatorial property starts appearing almost
surely in G(n,m). For example, RandomMaker wins in the Connectivity
game almost surely if and only if m > (1/2 + o(1))n lnn, so the thresh-
old bias of RandomBreaker’s win in the random game is almost surely
(1/2 + o(1))n lnn, [43].
In [79], Komlós and Szemerédi proved that if m = n

2 (log n + log log n +
ω(n)), then G(n,m) is almost surely Hamiltonian and it is known that
if m = n

2 (log n + log log n − ω(n)), then G(n,m) almost surely non-
Hamiltonian. This means that the threshold bias for the Hamilton Cycle
game should be of order n/ log n.

8
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Maker’s random graph can be also modeled by Erdős-Rényi random
graph G(n, p) (a graph on n vertices where each edge of Kn is included
independently with probability p) with p = 1/(b + 1). One of the
indicators that probabilistic intuition predicts the outcome of a game well
is to show that the threshold bias in the (1 : b) game (E(Kn),F) is equal
the reciprocal of the threshold probability for Maker’s win in the game on
G(n, p) with winning sets F .

The threshold bias for (1 : b) Maker–Breaker games is studied in
many papers. In [27], Chvátal and Erdős conjectured that the threshold
bias of the (1 : b) Connectivity game is of order n/ lnn. In the same
paper they showed that the threshold bias is between (1/4− ε)n/ lnn and
(1 + ε)n/ lnn for any ε > 0. To prove the upper bound they provided
Breaker with a strategy to isolate a vertex from Maker’s graph. After
building a large clique that does not contain any Maker’s edge, Breaker’s
goal is to claim all the remaining edges incident to some vertex of this
clique. A slightly better lower bound is proved latter by Beck [5] who
improved a constant factor to log 2. In his proof Beck applied the biased
version of the Erdős–Selfridge Theorem and building via blocking technique
by which Maker instead of trying to build a spanning tree, blocks every cut.

Regarding Hamilton Cycle game, Chvátal and Erdős in [27] proved
that there is a function b(n) such that for sufficiently large n Maker wins
the (1 : b(n)) game Hn on E(Kn) if b(n) ≥ 1. They conjectured that
Maker can win if b(n) → ∞ as n → ∞. This is verified by Bollobás and
Papaioannou [20], who proved that Maker can build a Hamilton cycle
even if Breaker’s bias is as large as O

(
lnn

ln lnn

)
. In [6], Beck gave the explicit

winning strategy for Maker in the (1 : b) Hamilton Cycle game where
b ≤

(
log2
27 − o(1)

)
n

logn for large enough n. In this way, he established that
the order of magnitude of the threshold bias in the Hamilton Cycle game
is n/ log n, supporting probabilistic intuition. Beck’s result was improved
by Krivelevich and Szabó in [84], who showed that the threshold bias for
the Hamilton Cycle game is at least (ln 2− o(1))n/ lnn.

For a long time, the asymptotic determination of the threshold bias
for the Connectivity and Hamilton Cycle game was the open problem. It
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is stated in [84] that the main reason for that is “the inability of current
techniques to deal with the min-degree-1 game”, that is to determine the
smallest bias of Breaker for which he can isolate a vertex in Maker’s graph.
This obstacle has finally been overcome in [58], where Gebauer and Szabó
showed that the threshold bias for the Connectivity game and min-degree-c
gameKn is asymptotically equal to n/ lnn. These two results both support
probabilistic intuition. Next, in [81] Krivelevich proved that the threshold
bias for the Hamilton Cycle game is asymptotically equal to n/ lnn as well
and resolved the long-standing conjecture.

Doubly biased Maker–Breaker games

For many biased (a : b) Maker–Breaker games played on E(Kn) the iden-
tity of the winner is known for a = 1 and almost all values of b. Unlike the
(1 : b) games, the (a : b) games, where a > 1, are less studied, but they
are also very important. There are examples of games where just a slight
change in bias can change the outcome of the game. One such example is
the diameter-2 game, where the board of the game is E(Kn) and the win-
ning sets are all subgraphs of Kn with the diameter at most 2. It is shown
that this game is a Breaker’s win for a = b = 1, [3]. Increasing biases by
one, the situation changes. When the game is played in the (2 : 2) setup,
Maker is a winner, as it is shown in [3]. Maker–Breaker games, in which
biases of Maker and Breaker are, both, larger than one, are often referred
to as the doubly biased games. Similarly as for the (1 : b) Maker–Breaker
games, the generalized threshold bias for the (a : b) games (X,F) where
a ≥ 1, denoted by bF (a), is the unique positive integer such that the (a : b)
game (X,F) is Maker’s win if and only if b ≤ bF (a). In [76, 89] the gener-
alized threshold bias for the Connectivity game and Hamilton Cycle game
is estimated for every a. Further examples of the (a : b) games, where
a > 1, can be found in [3, 9].

Winning fast in biased Maker–Breaker games on Kn

The concept of biased games onKn and fast winning strategies is combined
in several papers. In [49], Ferber et al. considered T -game and proved that
Maker can win within n + o(n) moves. How fast Maker can win in the
(1 : b) Perfect Matching game and Hamilton Cycle game played on E(Kn)
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is studied by Mikalački and Stojaković in [90]. They showed that the
shortest duration of the (1 : b) Maker–Breaker Perfect matching game is
between n

2 + b
4 and n

2 + O(b lnn) moves for b ≤ δn
100 lnn where δ > 0 is

a small constant, while the shortest duration of Hamilton Cycle game is
between n + b

2 and n + O(b2 ln5 n) moves for b ≤ δ
√

n
ln5 n

, where δ > 0 is
a small constant.
Fast winning strategies in the biased (a : a) games on Kn are studied by
Clemens and Mikalački in [33].

1.1.2 The variants of Maker–Breaker games

Maker–Breaker games on random boards

Another approach proposed to compensate the advantage of Maker in
the unbiased games is to reduce the number of winning sets by making
the base graph sparser and play on the random board, introduced by
Stojaković and Szabó in [102]. Given a positional game (X,F) and
probability p, the game on the random board (Xp,Fp) is a probability
space of games where Xp is obtained from X by removing elements
independently with probability 1− p and Fp = {A ∈ Fp : A ⊆ Xp}.
By decreasing p it gets harder for Maker to win, as “being a Maker’s win
in F” is an increasing graph property [101]. So, it makes sense to search
for the threshold probability pF for the family of the games {Fn : n ∈ N},
which can be defined as the probability for which an almost sure Breaker’s
win turns into an almost sure Maker’s win, [66].
For the Connectivity and Perfect Matching game, Stojaković and Szabó
proved in [102] that the threshold probability is equal to logn

n . For the
Hamilton Cycle game, it was shown in [102] that the threshold probability
is between logn

n and logn√
n

and it was conjectured there that it is Θ( lognn )

which is verified in [100]. Using a different approach, in [70] Hefetz et al.
proved that property of Maker’s winning in the Hamilton Cycle game has
a sharp threshold at (1 + o(1)) log n/n.
The unbiased H-game on the random boards, where Maker has a goal
to claim all the edges of a copy of a fixed graph H, is considered in
[91, 93, 102]. The threshold probability for the case when H is Kk,
where k ≥ 4, is determined by Müller and Stojaković in [91] to be
pKk

= Θ
(
n−2/(k+1)

)
. They gave the lower bound that matches the upper
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bound on the threshold probability given in [102].
It is interesting to notice that the threshold probability for Maker’s
win in the unbiased Kk-game, k ≥ 4, played on the random board has
the same order of magnitude as the inverse of the threshold bias in the
corresponding (1 : b) game played on E(Kn). The threshold bias for this
game is determined by Bednarska and  Luczak in [11]. This reciprocal
connection between the threshold probability and threshold bias is found
for the first time in [102] for the Perfect Matching and Connectivity game,
but it is discovered that the connection does not hold for the K3-game,
since it is obtained pK3 = n−5/9 in [102], while the threshold bias is
bK3 = Θ(n1/2), as it is shown in [27]. The hitting time version of this
result, which provided a better understanding of the game, is given in [91]
where the authors proved that Maker wins the K3-game asymptotically
almost surely in the moment of appearance of K5 − e, and that typically
happens at p = n−5/9.
Considering the relationship between the three thresholds: the threshold
bias in the (1 : b) game E((Kn),F), the threshold probability for Maker’s
win in the (1 : 1) game on G(n, p), and the threshold probability for
appearance of combinatiorial property in the (1 : b) game on G(n, p),
the following is known. For the Connectivity and Hamilton Cycle game
the total agreement is achieved between these three thresholds. For the
Kk-game, for k ≥ 4, the agreement is achieved between pKk

and bKk

as it holds pKk
= n−

2
k+1 = 1/bKk

, while the threshold probability for
appearance of Kk in G(n, p) is n−

2
k−1 . For K3-game all three parameters

are different: they are n1/2, n−5/9 and n−1, respectively.

In [32], Clemens and Mikalački studied Tk-tournament game where
Maker has a goal to create a copy of a given tournament Tk, (i.e. complete
graph on k vertices where each edge has an orientation) by the end of
the game. It is shown in [32] that the threshold probability for winning
in unbiased Tk-tournament game on the random graph G(n, p) is n−

2
k+1

for k ≥ 4, and that the threshold bias in the (1 : b) game on E(Kn) is
Θ(n

2
k+1 ) for k ≥ 3. The results support the probabilistic intuition for

k-clique game, k ≥ 4, no matter whether it is required to orient the edges
or not. The authors in [32] also proved that for acyclic tournament T3
the threshold probability is n−5/9 as well as in the K3-game, while for the
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cyclic tournament T3 the threshold probability is n−
8
15 which is closer to

the 1/bK3 .

For the general undirected graph H, different from a triangle or a tree,
Nenadov, Steger and Stojaković in [93] showed that the threshold for the
H-game is determined by the maximum 2-density of the graph H, which
corresponds to the reciprocal order of the threshold bias bH that is found
by Bednarska and  Luczak in [11]. The lower bound for the threshold
probability for this game can be obtained almost directly from the general
Ramsey-type result of Rödl and Ruciński [98] and the strategy stealing
argument.
In [102] the authors were interested to find the smallest bias bpF such
that Breaker can win the (1 : bpF ) game (Xp,Fp) almost surely. For the
Connectivity game Cn and Perfect Matching game Mn they obtained
bpCn = Θ(pbCn) and bpMn

= Θ(pbMn) for p ≥ C1
1
bCn

and p ≥ C2
1

bMn
,

respectively, for some constants C1 and C2. They conjectured that the
Hamilton Cycle game behaves in the same way as the Connectivity
game and the Perfect Matching game. Ferber et al. in [46] resolved
the conjecture by proving the stronger statement which says that for
p = ω(lnn/n), random graph G ∼ G(n, p) is typically such that np

lnn is the
asymptotic threshold bias for the gamesMn,Hn and Ckn.

Fast winning strategies of various Maker–Breaker games played on the
edge set of a random graph were studied in [30]. Clemens et al. in [30]
proved that for p = lnnK

n , where K > 100, the graph G ∼ G(n, p) is is
typically such that Maker can win gamesMn, Hn and Ckn asymptotically
as fast as possible, i.e. within n/2 + o(n), n + o(n), and kn/2 + o(n)
moves, respectively.

Hitting time results for various Maker–Breaker games are established
in [16] where Ben-Shimon et al. showed that with high probability, Maker
wins the Hamilton Cycle game, k-vertex connectivity game, and Perfect
Matching game exactly at the time the random graph process first reaches
minimum degree 4, 2k and 2, respectively.
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Random versions of Maker–Breaker games

It turns out that Erdős Paradigm holds for many Maker–Breaker games.
Therefore, Krivelevich and Kronenberg in [82] proposed the new direction
and studied the biased games in which only one player is the clever
player while the other one plays randomly. They studied randomized
versions of Maker–Breaker games which are played in the same way as the
ordinary Maker–Breaker games except that one player uses deterministic
optimal strategy, and the other player plays randomly. In the (1 : b)
random-Breaker game Maker claims one element per move and plays
according to her optimal strategy while Breaker plays randomly and
claims b elements per move. In the (m : 1) random-Maker game Breaker
uses his best strategy and claims one element per move and Maker is a
random player who claims m > 1 elements per move. Several classical
Maker–Breaker games are analysed in [82], such as the Hamilton Cycle
game, the Perfect Matching game, and the k-vertex connectivity game
played on E(Kn).
It is proven in [82] that for these random-Breaker games Maker typically
wins in Hamilton Cycle game, Perfect Matching game and k-vertex
connectivity game, if b ≤ (1 − ε)n2 , b ≤ (1 − ε)n and b ≤ (1 − ε)nk ,
respectively, for every ε > 0. For random-Maker games, it is proven that
the maximal value of m that allows Breaker to win is of order ln lnn.
In [61] Groschwitz and Szabó considered random-Maker game and
provided sharp threshold bias for Dkn, Hn and Cn. A sharp threshold
bias for the Connectivity game, Perfect Matching game and the Hamilton
Cycle game in random-Breaker setup is obtained in [62] and it is shown
that Maker can win fast wasting only logarithmically many moves.

Other examples of Maker–Breaker games that involve randomness are
p-random-turn Maker–Breaker games, studied in [50, 95]. In these games,
before each turn, a biased coin is being tossed and Maker plays this turn
with probability p independently of all other turns.

A quantitative version of a Maker–Breaker type game

The Toucher–Isolator game is a quantitative version of a Maker–Breaker
type game, recently introduced by Dowden, Kang, Mikalački and Sto-
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jaković [41]. The board of the game is the edge set of a given graph G.
Two players, Toucher and Isolator alternately claim edges of a given graph.
Toucher has a goal to maximize the number of vertices that are incident
to at least one of her chosen edges and Isolator tries to minimize the num-
ber of vertices that are so touched. In [41] authors analyse the number of
untouched vertices u(G) at the end of the game when both players play
optimally. They focused on some classes of graphs, such as cycles, paths,
trees, and k-regular graphs and also gave results for general graphs. This
type of Maker–Breaker game is further considered in [23, 96, 97].

1.1.3 Games related to Maker–Breaker games

A misère version of a Maker–Breaker game

Avoider–Enforcer games are a misère version of the Maker–Breaker games.
The winning condition in these games is the opposite of the winning
condition of the Maker–Breaker game over the same hypergraph. En-
forcer wins if he forces Avoider to occupy a winning set, which is for
this type of game sometimes referred to as the losing set, and Avoider
wins if she manages to avoid occupying it. Two different sets of the rules
can be defined for Avoider–Enforcer games - the strict game, where in
each move players claim exactly the number of elements given by their
biases, and the monotone game, where players claim at least the num-
ber of elements given by their biases. Avoider–Enforcer games played
under the strict rules are not bias monotone. So, to overcome the non-
monotonicity of strict Avoider-Enforcer games, Hefetz et al. [69] introduced
the monotone variant of Avoider–Enforcer games. Both strict and mono-
tone Avoider–Enforcer games have been intensively studied over the years
(see [4, 13, 28, 51, 63, 68, 69, 71, 73]).

Waiter–Client and Client–Waiter games

Waiter–Client game (also called Picker–Chooser game) is the positional
game in which Waiter has the same goal as Enforcer and Client has the
same goal as Avoider in Avoider–Enforcer game, but the rules of taking
elements are different. In the biased (a : b) Waiter–Client game, the first
player Waiter offers the second player, called Client, a + b previously
unclaimed elements of the board. Client claims a of these elements
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and then Waiter takes the remaining b elements. If in the last round
there are only 1 ≤ t < a + b remaining elements, then Client will choose
max{0, t−b} elements and Waiter will choose min{t, b} elements. Waiter’s
goal is to force Client to claim all elements of some winning set and Client
tries to avoid it. Waiter–Client games are also bias monotone in Waiter’s
bias b.
Client–Waiter games (also called Chooser–Picker game) are related to
Maker–Breaker games. Client wins if he manages to claim all elements of
some winning set. Otherwise, Waiter wins. So, Client and Waiter have the
same goals as Maker and Breaker respectively, but the process of selecting
elements in Client–Waiter games is different than in Maker–Breaker
games, as Client can only choose edges out of a + b edges offered by
Waiter.
Waiter–Client and Client–Waiter games are studied for the first time by
Beck in [7]. The further development of these games can be found in
[12, 14, 15, 31, 36, 37, 38, 39, 74, 75, 85].

In the next two sections, we focus on Walker–Breaker games and
Maker–Breaker domination games, which are another two variants of
Maker–Breaker games. Since these two types of Maker–Breaker game are
in focus in this thesis, in the following we also discuss the motivation for
studying these games.

1.2 Maker–Breaker games with constraints

Maker–Breaker games, played on the edge set of a given graph G, in which
Maker is constrained to choose her edges according to a walk or path in G
are called Walker–Breaker games. These games are recently introduced by
Espig, Frieze, Krivelevich, and Pegden in [45]. In her first move, Walker
(playing the role of Maker) can choose any vertex to be her starting posi-
tion. In every other round, when it is her turn to play, she needs to claim
an edge not previously claimed by Breaker which is incident with the ver-
tex in which she finished her previous move. The other endpoint of the
claimed edge becomes her new position. On the other hand, Breaker plays
in the usual way, that is, in each move he claims an unclaimed edge of the
board. Since Breaker has no restrictions on the way he chooses his edges,
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these games increase Breaker’s power and make up for Maker’s advantage
in the unbiased Maker–Breaker games.
It is not hard to see that Breaker can easily isolate a vertex from Walker’s
graph in the unbiased Walker–Breaker game. This can be done in the follo-
wing way: after Walker’s first move, Breaker can fix some vertex v (still
untouched by Walker) and in each round, he can claim edges between this
vertex and Walker’s current position. In this way, he can prevent Walker
from visiting vertex v. This implies that Walker is not able to make any
spanning structure. So, the first natural question to consider is how many
vertices of a given graph Walker can visit. This question was studied
by Espig, Frieze, Krivelevich, and Pegden in [45] for different variants of
Walker–Breaker games. They proved that if b is a constant, Walker can
visit n− 2b+ 1 vertices in the (1 : b) Walker–Breaker game on Kn. In [45]
a variant of the game is also studied, where Walker is restricted to choose
her edges according to a path, that is, she is not allowed to use an edge
more than once. It was proven there that the longest path PathWalker
can create in the unbiased game on E(Kn) has n − 2 vertices, while in
(1 : b) game, where b > 1, the largest path made by PathWalker contains
n − Θ(lnn) vertices. Several interesting questions for the further develo-
pment of these games were proposed in [45], such as how large a cycle
can Walker make under the various conditions, how many edges Walker
can visit under various game conditions, how large a clique she can make,
and also what happens if Breaker is a walker as well. The first of these
questions was considered by Clemens and Tran in [34]. They analysed how
long a cycle Walker can create in the unbiased game and for which biases
b Walker has a chance to create a cycle of given constant length. They
proved that the length of the largest cycle that Walker can create in the
unbiased game is n− 2, while in the biased (1 : b) game Walker can create
a cycle of length n−O(b) where b ≤ n

ln2 n
.

Since Walker can not hope to make a spanning structure for any b ≥ 1,
an interesting question is what happens when Walker’s bias changes, and
whether the situation changes with the increase of Walker’s bias by 1. As
suggested in [34] another interesting problem is to consider the doubly bi-
ased (2 : b) Walker–Breaker games in order to determine the largest bias b
for which Walker has a strategy to create a spanning tree and the largest
bias b for which she can create a Hamilton cycle.
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Furthermore, it is an intriguing question to resolve Maker’s problem of cre-
ating a spanning structure in the unbiased Walker–Breaker game. To help
Maker, one can restrict Breaker’s selection of edges in the same way as for
Maker in the Walker–Breaker games. In this case, both players would be
walkers, that is each player would have to claim her/his edges according
to a walk, i.e. when a player is at some vertex v, she/he could only choose
edges incident with v not previously claimed by the opponent. This type
of games will be called WalkerMaker–WalkerBreaker games.

1.3 Maker–Breaker (total) domination game

Maker–Breaker domination game (or MBD game for short) was introduced
for the first time by Duchêne, Gledel, Parreau, and Renault in [42]. The
game is played on the vertex set of a given graph. The players are called
Dominator and Staller, according to the roles they have in the game and
to be consistent with the domination game, introduced by Brešar, Klavžar,
and Rall in [24] and further studied in [25, 40, 92, 99, 105]. In the dom-
ination game, Dominator and Staller alternate in choosing an unclaimed
vertex from a given graph G. Dominator’s aim is to dominate a graph in
as few steps as possible and Staller wants to delay the process for as long
as possible, [24].
As already mentioned, in the MBD game played on the graph G = (V,E)
the board X of the game is set V . It seems natural to define the family
of winning sets F as the family of all the dominating sets of G. However,
in that case, it is hard to control the sizes of the winning sets and thus to
apply some general tools such as Erdős-Selfridge Theorem. To overcome
these difficulties one can consider the reverse version of the game in which
Staller becomes Maker and Dominator takes the role of Breaker. So, the
winning sets are closed neighbourhoods of all vertices in G. In the pri-
ncipal paper on this topic [42], the focus was on determining which player
has a winning strategy, while in [60] Gledel, Iršič, and Klavžar studied the
minimum number of moves needed for Dominator to win provided that he
has a winning strategy.
As a natural extension to the Maker–Breaker domination game, Gledel,
Henning, Iršič, and Klavžar introduced the Maker–Breaker total domina-
tion game (or MBTD game, for short) [59]. The board of the game is the
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vertex set of a given graph and the winning sets are open neighbourhoods
of all vertices in the graph. Dominator wins if he can claim a total dominat-
ing set, that is a set T such that every vertex of a graph has a neighbour
in T . Staller wins if she manages to claim an open neighbourhood of a
vertex in the graph. In [59] authors were interested in determining the
outcome of the games played on grids and some Cartesian products of
paths and cycles. They also classify cacti (connected graphs in which any
two simple cycles have at most one vertex in common) with reference to
the outcome of the game. The classification of cubic graphs (the graphs
whose all vertices have degree three) with reference to the outcome of the
MBTD game seems not to be so easy. It is shown in [59] that there are
infinitely many connected cubic graphs in which Staller wins and that no
minimum degree condition is sufficient to guarantee that Dominator wins
when Staller starts the game. So, this opens the question of studying the
MBTD games on connected cubic graphs and to characterize those graphs
that are Dominator’s win and those that are Staller’s win, as it is suggested
in [59].

1.4 General notation and terminology

The notation in this thesis is standard and follows that of [22]. Specifically,
we use the following.
A graph G is an ordered pair (V (G), E(G)) consisting of a set V (G)
of vertices and a set E(G), disjoint from V (G), of edges. Graph H
is called a subgraph of a graph G if V (H) ⊆ V (G), E(H) ⊆ E(G).
Graph H is isomorphic to G, denoted by H ∼= G if there is a bijection
φ : V (G) → V (H) such that uv ∈ E(G) if and only if φ(u)φ(v) ∈ E(H).
The mapping φ is called an isomorphism between G and H.
The order of graph G is the number of vertices in G which we denote by
v(G) = |V (G)|, and the size of graph G is the number of edges in G which
we denote by e(G) = |E(G)|. We write uv for an unordered pair {u, v}.
If vertex u is an endpoint of edge e, then u and e are incident. Two
vertices which are incident with a common edge are adjacent and two
edges which are incident with a common vertex are also adjacent. Two
distinct adjacent vertices are neighbours.
Given a graph G and two disjoint sets A,B ⊆ V (G), let
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N(A,B) = {b ∈ B : ∃a ∈ A, ab ∈ E(G)} be the set of neighbours
of the vertices of A in B. We abbreviate N({v}, B) to N(v,B) for some
v ∈ V (G)\B. Let dG(v,B) = |N(v,B)| denote the degree of vertex v in G
toward vertices from B. The open neighbourhood of a vertex v ∈ V (G),
denoted by NG(v), is the set of vertices adjacent to v in G and the closed
neighbourhood of a vertex v ∈ V (G) is defined as NG[v] = NG(v) ∪ {v}.
Let dG(v) = |NG(v)| denote a degree of v in G. A graph is simple if it has
no loops (loop - an edge with identical ends) or parallel edges (edges with
the same pair of ends).
A clique of a graph is a set of mutually adjacent vertices.
An independent set (or stable set) in a graph is a set of pairwise nonadja-
cent vertices.
A complete graph is a graph in which any two vertices are adjacent. A
complete graph with n vertices is denoted by Kn. A diamond is the
complete graph on four vertices minus one edge. A bipartite graph is a
graph whose vertices can be divided into two disjoint and independent
sets X and Y such that every edge has one end in X and one end in Y .
Partition (X,Y ) is called a bipartition of the graph. Bipartite graph with
bipartition (X,Y ) is denoted by G[X,Y ]. If every vertex in X is joined to
every vertex in Y , then G is called a complete bipartite graph. A complete
bipartite graph with vertex classes of order m and n is denoted by Km,n.
A claw is the complete bipartite graph K1,3.
A walk in a graph G is an alternating sequence, not necessarily distinct,
of vertices and edges v0, e1, v1, ..., vl−1, el, vl such that ei = vi−1vi for each
1 ≤ i ≤ l. A path is a walk whose vertices and edges are distinct. A cycle
is a graph with an equal number of vertices and edges whose vertices can
be placed around a circle such that two vertices are adjacent if they are
consecutive in a cyclic sequence. A path or cycle which contains every
vertex of a graph is called a Hamilton path or Hamilton cycle, respectively
of the graph. The length of a path or a cycle is the number of its edges.
Graph G is connected if each pair of vertices in G belongs to a path.
Otherwise, G is disconnected.
A graph with no cycle is acyclic. A tree is a connected acyclic graph.
A spanning subgraph of G is a subgraph of G with vertex set V (G).
A spanning tree is a spanning subgraph that is a tree. Graph G is
r-regular if every vertex v ∈ V (G) has degree r. A 3-regular graph is
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called cubic graph. Generalized Petersen graph is a cubic graph which is
defined as follows: Let k and n be positive integers, with n > 2k. The
generalized Petersen graph GP (n, k) is the simple graph with vertices
x1, x2, ..., xn, y1, y2, ..., yn, and edges xixi+1, yiyi+k, xiyi, 1 ≤ i ≤ n, indices
being taken modulo n.
The Cartesian product G�H of graphs G and H is the graph with a
vertex set V (G�H) = V (G)× V (H) in which (u, v) is adjacent to (u′, v′)
if either u = u′ and vv′ ∈ E(H), or v = v′ and uu′ ∈ E(G).
The circular ladder graph (or prism graph) CLn is the Cartesian product
of a cycle of length n ≥ 3 and an edge, that is, CLn = Cn�P2.
A n-prism graph is equivalent to the generalized Petersen graph GP (n, 1).

Let n be a positive integer and let 0 ≤ p := p(n) ≤ 1. The Erdős-Rényi
model G(n, p) is a random subgraph G of Kn, constructed by retaining
each edge of Kn in G independently at random with probability p. We
say that graph G ∼ G(n, p) possesses a graph property P (i.e. a family of
graphs which is closed under isomorphisms) asymptotically almost surely,
or a.a.s., for brevity, if the probability that G(n, p) possesses P tends to 1
as n goes to infinity. We use the approximation lnn ≤

∑n
i=1

1
i ≤ lnn+ 1,

where lnn stands for natural logarithm throughout the thesis.
The model G(n,m) consists of all graphs with n vertices and 0 ≤ m ≤

(
n
2

)
edges in which the graphs have the same probability. It has

((n2)
m

)
elements

and every elements occur with the probability
((n2)
m

)−1
. Random graph

models are studied in [21, 78].
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Chapter 2

Results

In this chapter, we state the main results of this thesis.

2.1 Doubly biased Walker–Breaker games

In Chapter 3 we study the (2 : b) Walker–Breaker games on Kn. We
are interested in determining the threshold bias for two standard games:
Connectivity game and Hamilton Cycle game. As it is stated earlier Walker
is not able to create a spanning tree or Hamilton cycle in Walker–Breaker
game on Kn even if she plays against the Breaker with bias 1. We show
that the outcome of the game changes if we increase Walker’s bias by just
1. More precisely, we answer the next two question raised in [34]:

Question 2.1 ([34], Problem 6.4). What is the largest bias b for which
Walker has a strategy to create a spanning tree of Kn in the (2 : b) Walker–
Breaker game on Kn?

Question 2.2 ([34], Problem 6.5). Is there a constant c > 0 such that
Walker has a strategy to occupy a Hamilton cycle of Kn in the (2 : cn

lnn)
Walker–Breaker game on Kn?

To answer Question 2.1 we need the following two theorems. The first
one gives the lower bound for the threshold bias in the (2 : b) Walker–
Breaker Connectivity game.
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Theorem 2.3. For every 0 < ε < 1
4 and every large enough n, Walker has

a strategy to win in the biased (2 : b) Walker–Breaker Connectivity game
played on Kn, provided that b ≤

(
1
4 − ε

)
n

lnn .

Theorem 2.4 provides the upper bound for the threshold bias in the
(2 : b) Connectivity game.

Theorem 2.4. For every ε > 0 and b ≥ (1+ε) n
lnn , Breaker has a strategy

to win in the (2 : b) Walker–Breaker Connectivity game on Kn, for large
enough n.

The following theorem answers Question 2.2 and gives the lower bound
for the threshold bias in the (2 : b) Walker–Breaker Hamilton Cycle game.

Theorem 2.5. There exists a constant α > 0 for which for every large
enough n and b ≤ α n

lnn , Walker has a winning strategy in the (2 : b)
Hamilton Cycle game played on Kn.

2.2 WalkerMaker–WalkerBreaker games

In Chapter 4 we study Maker–Breaker games on Kn in which both players
are walkers. Since it is impossible for Maker to create a spanning structure
in the (1 : 1) Walker–Breaker game we are interested in seeing how the
situation changes if we also restrict the way Breaker moves, i.e. if Breaker
is also a walker. So, we consider (1 : 1) WalkerMaker–WalkerBreaker
game (WMaker–WBreaker games for brevity) with the goal of finding fast
winning strategy of WMaker in the Connectivity game and Hamilton Cycle
game. We prove the following theorems:

Theorem 2.6. In the (1 : 1) WMaker–WBreaker Connectivity game on
E(Kn), WMaker has a strategy to win in at most n+ 1 moves.

Theorem 2.7. In the (1 : 1) WMaker–WBreaker Hamilton Cycle game
on E(Kn), WMaker has a strategy to win in at most n+ 6 moves.

We also look at WBreaker’s possibilities to postpone WMaker’s win in
the Connectivity game.

Theorem 2.8. In the (1 : 1) WMaker–WBreaker Connectivity game
on E(Kn), WBreaker, as the second player, has a strategy to postpone
WMaker’s win by at least n moves.
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2.3 MBTD game on cubic graphs

In Chapter 5 we study MBTD game on cubic graphs. We are interested in
the characterization of connected cubic graphs that are Dominator’s win
and those that are Staller’s win. To do so, we use the following classification
of cubic graphs. In a cubic graph on n ≥ 6 vertices each vertex has only
three possibilities [80]:

1. it lies in two triangles (Figure 2.1(a))

2. it lies in one triangle (Figure 2.1(b))

3. it lies in zero triangles (Figure 2.1(c)).

(a) (b) (c)

Figure 2.1: Different possible locations for vertices in cubic graph of order
n ≥ 6. Vertex can lie in (a) two triangles (b) one triangle (c) no triangles.

Therefore, cubic graphs can be classified according to the number of ver-
tices of type 1 (being in two triangles), type 2 (being in one triangle), and
type 3 (being in no triangle). Let T1, T2 and T3 denote the number of
vertices of type 1, type 2 and type 3, respectively. These three numbers
are related by the following formulas [80]:

T1 = 2k1, T2 = T1 + 3k2, T1 + T2 + T3 = n,

where k1 and k2 are nonnegative integers.
If the cubic graph contains vertices of type 1, then this means that G
contains at least one diamond. Hereinafter, when we say a triangle we
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refer to an induced K3 which is not part of a diamond.
Taking into consideration the possible types of cubic graphs, we prove the
following theorems.

Theorem 2.9. Let G be a cubic graph on n ≥ 6 which is the union of
vertex-disjoint diamonds. Then, the MBTD game on G is Dominator’s
win.

Theorem 2.10. Let G be a cubic graph on n ≥ 6 vertices in which every
vertex lies in exactly one triangle, that is, G is the union of vertex-disjoint
triangles. If n = 6, the graph G is Dominators’win. Otherwise, the graph
G is Staller’s win.

Theorem 2.11. Let G be a cubic graph on n ≥ 6 vertices which is the
union of vertex-disjoint triangles and diamonds. Then, there are only two
types of such a graph on which Dominator wins, but only, as the first
player. In all other cases, the graph G is Staller’s win.

Another type of graph interesting to us is the Generalized Petersen
graphs. They drew lots of attention since their definition, and have already
been examined in the domination game. Namely, in [59], the authors
showed that the prism P2�Cn, which is equivalent to the Generalized
Petersen graph GP (n, 1), for n ≥ 3 is Dominator’s win. On the other
hand, graph GP (5, 2) is proven to be Staller’s win also in [59]. We consider
the graphs GP (n, 2), for all n ≥ 6, and give the following characterization.

Theorem 2.12. MBTD game on generalized Petersen graph GP (n, 2) for
n ≥ 6 is Staller’s win.

We are also curious about MBTD games on cubic bipartite graphs and
the union of bipartite graphs and prove the following.

Theorem 2.13. A cubic bipartite graph is Dominator’s win.

Finally, we consider cubic graphs that are union of vertex disjoint claws
and prove the following.

Theorem 2.14. Let G be a connected cubic graph on n ≥ 6 vertices formed
as the union of k ≥ 2 vertex-disjoint claws. For k = 2, G is Dominator’s
win. For k ≥ 3, the graph G is Staller’s win.
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There has been some research on this topic previously, although not
under the name MBTD game. Namely, in his PhD thesis, [86], Kutz was
considering the Maker–Breaker games on almost-disjoint hypergraphs of
rank three (edges with up to three vertices intersecting in at most one
vertex), where the players alternately claim vertices of a given hypergraph
and where Maker is the first player. In an almost disjoint hypergraph
of rank three, it can be decided in polynomial time whether Maker or
Breaker wins, as shown in [86].

Looking at the winning sets of Staller in the MBTD game which will
be considered in this thesis, we would have a hypergraph whose all edges
have three vertices (3-uniform hypergraph), but the key difference is that
majority of the graphs that we consider are not almost-disjoint, as a lot of
intersections exist among the edges. We also look at some graphs whose
hypergraph would have almost-disjoint hyperedges (e.g. the union of at
least four vertex-disjoint K1,3). In this case, the analysis from [86] would
require searching through all possible pairs of first moves, and then apply-
ing some reductions when Staller is the first player. However, to be able
to classify these graphs, we provide more applicable and explicit winning
strategy for the players.

26



Chapter 3

Doubly biased
Walker–Breaker games

In this chapter we prove the theorems 2.3, 2.4, 2.5. We consider (2 : b)
Walker–Breaker Connectivity and Hamilton Cycle game. By proving
Theorem 2.3 we establish the lower bound for the threshold bias in (2 : b)
Walker–Breaker Connectivity game. To prove this theorem we provide
Walker with the strategy which allows her to build a spanning tree for
every b ≤

(
1
4 − ε

)
n

lnn where 0 < ε < 1
4 .

In every round, Walker’s goal is to visit a vertex, still untouched by her,
which has the maximum degree in Breaker’s graph. When analysing
Walker’s strategy we will use the well-known Box game, introduced by
Chvátal and Erdős in [27].

To obtain the upper bound for the threshold bias in the (2 : b)
Walker–Breaker Connectivity game we need to prove that Breaker can
isolate a vertex from Walker’s graph for every b ≥ (1 + ε) n

lnn and ε > 0.
As in the (1 : b) Maker–Breaker Connectivity game, Breaker’s strategy
will consist of building a clique which does not contain any Walker’s edge,
and then Breaker’s aim will be to isolate one vertex from that clique by
claiming all remaining free edges incident with that vertex.

To prove Theorem 2.5 we use the approach of connecting (2 : b)
Walker–Breaker games and local resilience in random graphs. The
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approach is proposed by Ferber et al. in [52] for studying (1 : b) Maker–
Breaker games and its adjustment for studying (1 : b) Walker–Breaker
games are made by Clemens and Tran in [34]. The approach presented in
[52] is based on the argument given by Bednarska and  Luczak in [11], who
investigated the relationship between results in Maker–Breaker games
played on graphs and threshold properties for random graphs to obtain
the threshold bias for H-game. They provided Maker with the random
strategy for which they showed that is almost optimal for her. Maker’s
strategy is to choose edges of Kn uniformly at random which has not
been claimed by her so far. In the case that Maker claims an edge that
already belongs to Breaker, this edge is declared as the failure, and Maker
losses her move. So, at the end of the game, the Maker’s graph will not be
exactly the random graph. Bednarska and  Luczak [11] showed that failure
edges represent a small fraction of the total number of edges claimed by
Maker and after removing them, her final graph will contain a copy of
H with positive probability. This is related to the resilience of random
graphs with respect to the property “containing a copy of H”, [52].
The systematic study of the graph resilience is initiated in [104] by
Sudakov and Vu and since then this field received a lot of attention (see
[2, 17, 26, 56, 18, 83, 87]).

To prove that Walker can win in the (2 : b) Walker–Breaker Hamilton
Cycle game for b ≤ c n

lnn for some c > 0 and large enough n, we adapt
approach presented in [52] and provide Walker with the strategy which
will be partly deterministic and partly random. We want to ensure that
Walker generates a random graph that asymptotically almost surely
satisfies the property “being Hamiltonian”.

In Section 3.1 we give additional theory (definitions, tools, auxiliary
statements) needed for proving theorems 2.3 and 2.4, 2.5. In Section 3.2
we prove Theorem 2.3 and Theorem 2.4, and in Section 3.3 we present
the proof of Theorem 2.5. In Section 3.4 we give some concluding remarks.

At any given moment during this game, we denote the graph spanned
by Walker’s edges by W and the graph spanned by Breaker’s edges by B.
For some vertex v we say that it is visited by a player if he/she has claimed
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at least one edge incident with v. A vertex is isolated/unvisited if no edge
incident to it is claimed. The edges in E(G) \ (W ∪ B) are called free.
By U ⊆ V (Kn) we denote the set of vertices, not yet visited by Walker,
which is dynamically maintained throughout the game. At the beginning
of the game, we have U := V (Kn). Unless otherwise stated, we assume
that Breaker starts the game, i.e. one round in the game consists of a move
by Breaker followed by a move of Walker.

3.1 Preliminaries

To analyse players’ strategy in Theorem 2.3 and Theorem 2.5, we use the
Box game introduced by Chvátal and Erdős in [27]. The game is very
helpful in describing strategies whose goal is to bound the degrees in the
opponent’s graph.

Maker–Breaker Box game. The rules are as follows. Let
F = {A1, ..., Ak} be a hypergraph where the sets Ai’s are pairwise
disjoint and ||Ai| − |Aj || ≤ 1 for every 1 ≤ i, j ≤ k. Let X =

⋃k
i=1Ai

such that |X| = t. The Box game B(k, t, a, 1) is played by two players,
BoxMaker and BoxBreaker, who take turns in claiming elements of the
board X. In each round, BoxMaker claims a unclaimed elements from
X per move and BoxBreaker claims one unclaimed element per move.
Since sets A1, A2, ..., Ak represent boxes, where for every 1 ≤ i ≤ k, the
box Ai contains |Ai| balls, the players’ moves can be also described in the
following way: in each move BoxMaker removes a balls from these boxes
and BoxBreaker destroys one box for BoxMaker.
BoxMaker wins if and only if she succeeds to claim all elements of some
box (that is if she succeeds to empty one of the boxes) before it is
destroyed by BoxBreaker. BoxBreaker wins if he succeeds to claim at
least one element from each box, that is if he destroys all boxes.

Chvátal and Erdős in [27] gave the criterion for BoxMaker’s win in
B(k, t, a, 1). They defined the following recursive function:

f(k, a) :=

{
0, k = 1⌊

k(f(k−1,a)+a)
k−1

⌋
, k ≥ 2
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The value of f(k, a) can be approximated as

(a− 1)k
k−1∑
i=1

1

i
≤ f(k, a) ≤ ak

k−1∑
i=1

1

i
.

Theorem 3.1. ([27], the Box game criterion) Let a, k and t be positive
integers. BoxMaker has a winning strategy in B(k, t, a, 1) if and only if
t ≤ f(k, a).

For BoxBreaker it is important to always destroy the box of the
smallest size in each move. This is because of the following: if in some
moment one box Ai, 1 ≤ i ≤ k, has x ≤ a elements and BoxBreaker
decides to destroy some other box with more than a elements, then
BoxMaker in her next move can claim all the remaining elements from
Ai and wins. The optimal strategy for BoxMaker is to balance the sizes
of all boxes, because, if some box is too small compared to others, then
BoxBreaker will surely destroy this box in his next move. So, BoxMaker
should in fact ignore these boxes and balance the rest.

The proof of Theorem 3.1 given in [27] contained an error which is
fixed by Hamidoune and Las Vergnas in [65]. Hamidoune and Las Vergnas
in [65] also gave more general result. They considered (a : b) Box game,
b > 1, for all values |A1|, |A2|, ..., |Ak|, where boxes do not have to be
almost equal.

To prove Theorem 2.5 and answer Question 2.2, we need the following
related to local resilience and random graphs.

Definition 3.2. [34] For n ∈ N, let P = P(n) be some graph property
that is monotone increasing, and let 0 ≤ ε, p = p(n) ≤ 1. Then P is said
to be (p, ε)-resilient if a random graph G ∼ G(n, p) a.a.s. has the following
property: For every R ⊆ G with dR(v) ≤ εdG(v) for every v ∈ V (G) it
holds that G \R ∈ P.

The Hamiltonicity is one of the central research concepts in graph the-
ory. Since the problem of determining whether a given graph contains
a Hamilton cycle is NP-complete, finding sufficient conditions for Hamil-
tonicity became one of the most important questions. In [104], Sudakov
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and Vu proposed to study resilience of random graphs with respect to the
Hamiltonicity. They proved that G(n, p) is (p, 1/2 + o(1))-resilient with
the respect to Hamiltonicity for p > log4 n/n and conjectured that this
holds for pn/ log n→∞.
The following theorem provides a good bound on the local resilience of a
random graph with respect to Hamiltonicity and resolves the conjecture
of Sudakov and Vu [104].

Theorem 3.3. [87] For every positive ε > 0, there exists a constant C =
C(ε) such that for p ≥ C lnn

n , a graph G ∼ G(n, p) is a.a.s. such that the
following holds. Suppose that H is a subgraph of G for which G′ = G−H
has minimum degree at least (1/2 + ε)np, then G′ is Hamiltonian.

The proof of Theorem 2.5 will follow from Theorem 3.3 and the following
statement, which is the key ingredient. We will prove both of them in
Section 3.3.

Theorem 3.4. For every constant 0 < ε ≤ 1/100 and a sufficiently large
integer n the following holds. Suppose that 10 lnn

εn ≤ p < 1 and P is a
monotone increasing graph property which is (p, ε)-resilient. Then in the(

2 : ε
60p

)
game on Kn Walker has a strategy to create a graph that satisfies

P.

To prove Theorem 3.4 we will use an auxiliary MinBox game motivated
by the study of the degree game [58]. The MinBox(n,D, α, b) game is a
Maker–Breaker game played on n disjoint boxes F1, ..., Fn, each of order
at least D. Maker claims 1 element and Breaker claims b elements in each
round. Maker wins the game if she succeeds to claim at least α|Fi| elements
in each box Fi, 1 ≤ i ≤ n.
The number of elements in box F claimed so far by Maker and Breaker are
denoted by wM (F ) and wB(F ), respectively. The box F is free if there are
elements in it still not claimed by any of the players. If wM (F ) < α|F |,
then F is an active box. For each box F we set the danger value to be
dang(F ) := wB(F )− b · wM (F ).
We also need the following upper bound on the danger value.

Theorem 3.5. [52] Let n, b,D ∈ N, let 0 < α < 1 be a real number,
and consider the game MinBox(n,D, α, b). Assume that Maker plays as
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follows: In each turn, she chooses an arbitrary free active box with maxi-
mum danger, and then she claims one free element from this box. Then,
proceeding according to this strategy,

dang(F ) ≤ b(lnn+ 1)

is maintained for every active box F throughout the game.

3.2 Connectivity game

Proof of Theorem 2.3. First, we describe Walker’s winning strategy and
then prove that during the game she can follow it.

Walker’s strategy. In the first round Walker visits three vertices. She
identifies two vertices v0 and v1 with the largest degrees in Breaker’s
graph. Let dB(v0) ≥ dB(v1). She starts her move in vertex v0 and
then, if v0v1 ∈ E(B), she finds a vertex u ∈ U such that the edges
v0u and uv1 are free, and claims them. Otherwise, if v0v1 /∈ E(B),
she claims v0v1 and then from v1 moves to some u′ ∈ U such that
dB(u′) = max{dB(u) : u ∈ U} (ties broken arbitrarily) and v1u′ is free.
In every round r ≥ 2 Walker visits at least one vertex from U .
After Breaker’s move, Walker identifies a vertex a ∈ U such that
dB(a) = max{dB(u) : u ∈ U} (ties broken arbitrarily). Then Walker
checks if there is some vertex y ∈ U such that edges wy and ya are free,
where w is Walker’s current position, and she claims these two edges wy
and ya. If no such vertex y ∈ U exists, then Walker finds an arbitrary
vertex y′ ∈ V (Kn), which could be already visited by Walker, such that
edges wy′ and y′a are free. She claims these two edges.

Assuming Walker can follow this strategy, she plays at most n − 2
rounds.

In the rest of this proof, we will show that Walker can follow the
proposed strategy.
First, we are going to consider the maximum degree of unvisited vertices
in Breaker’s graph B. We can analyse Walker’s strategy through an
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auxiliary Box game, where she takes the role of BoxBreaker. In the Box
game each box represents all free edges adjacent to some vertex u ∈ U .
At the beginning of the game, the number of boxes is n and the number
of elements in each box is n − 1. Boxes are not disjoint since for any
u ∈ U , vertices from N(u) can also belong to U . So, each edge of the
original game belongs to two of these boxes. BoxBreaker can pretend that
the boxes are disjoint and that BoxMaker claims 2b elements in every
move. So, we look at the Box game Box(n, n(n − 1), 2b, 1). We estimate
the number of the elements that BoxMaker could claim within at most
n − 2 rounds. This gives us the maximum degree of vertices from U in
Breaker’s graph B.
After n− 2 rounds, the number of elements that BoxMaker could claim is
at least

2b

n
+

2b

n− 1
+ ...+

2b

3
≤ 2b(lnn+ 1)−

(
2b

2
+

2b

1

)
= 2b lnn− b. (3.1)

Now, we are going to prove that Walker can follow her strategy. The proof
goes by induction on the number of rounds. After Breaker’s first move we
have that dB(v0) + dB(v1) ≤ b + 1, so it is obvious that Walker can visit
vertices v0 and v1. Suppose that Walker already played k ≤ n− 3 rounds
and visited at least k+2 vertices. Suppose that Walker finished this round
at some vertex w and at the end of this round dB(w) ≤ 2b lnn− b.
Breaker could have claimed all b edges incident with w, in his (k + 1)st

move, so dB(w) ≤ 2b lnn. According to (3.1), after Breaker’s move in
round k + 1, some vertex a ∈ U can have degree at most 2b lnn− b in B.
Walker finds a vertex y′ ∈ V (Kn) such that edges wy′ and y′a are free,
with preference that y′ ∈ U . Such a vertex exists since

dB(w) + dB(a) ≤ 4b lnn− b < n− 2

So, Walker is able to play her move in (k + 1)st round.

To prove Theorem 2.4 we need to provide Breaker with a strategy which
will enable him to isolate a vertex from Walker’s graph for given bias
b ≥ (1 + ε) n

lnn . For that, we rely on the strategy of Breaker in the (1 :
b) Maker–Breaker Connectivity game [27], where Breaker first makes a
clique in his graph and then isolates one of the vertices from that clique in
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Maker’s graph. Looking from Breaker’s point of view, in the Connectivity
game, Walker claiming two edges per move can achieve the same as Maker
claiming one edge per move. Therefore, in order to win in the (2 : b)
Walker–Breaker Connectivity game Breaker can apply the same strategy
as Breaker in the (1 : b) Maker–Breaker Connectivity game [27].

Proof of Theorem 2.4. Suppose that Walker begins the game. Breaker’s
winning strategy is divided into two stages.

Stage 1. Breaker builds a clique C of orderm =
⌊
b
2

⌋
such that all vertices

from C are isolated in Walker’s graph.

Stage 2. Breaker isolates one of the vertices from C in Walker’s graph.

Now we are going to prove that Breaker can follow his strategy.

Stage 1. Breaker will play at most b/2 moves. Suppose that in round
i−1, where i ≤ b/2, Breaker built a clique Ci−1, such that all its vertices are
isolated in Walker’s graph. After Walker’s move in round i, Walker’s graph
contains at most 2i edges and at most 2i+ 1 vertices. Since i < n/2− 2,
there are at least two vertices u and v outside the Breaker’s clique which
are not incident with Walker’s edges.
Then Breaker can claim the edge uv and 2(i − 1) edges joining uv to
V (Ci−1). In this way he creates a clique Ci of order |Ci−1| + 2. In the
round i+ 1, Walker can visit only one vertex from Ci. After Walker visits
some c ∈ Ci, Breaker’s graph still contains a clique C ′ isolated in Walker
graph with V (C ′) = Ci \ {c}.

Stage 2. Let C be the Breaker’s clique of order m = |C| after Stage
1. Let c1, c2, ..., cm ∈ C. To isolate some vertex ci ∈ C Breaker needs to
claim n−m edges ciu, u ∈ V (Kn) \V (C). In each round Walker can visit
at most one vertex from C, so she will need to play at most m rounds in
Stage 2 to visit all vertices from C. We can use an auxiliary Box Game
Box(m,m ·(n−m), b, 1) to show that Breaker can isolate a vertex from his
clique in Walker’s graph in at mostmmoves. Breaker is the BoxMaker who
claims b elements per move. Walker, whom Breaker sees as BoxBreaker,
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can claim an element in at most one unvisited box per move.
After m− 1 rounds in Stage 2 BoxMaker could claim at least

b

m
+

b

m− 1
+ · · ·+ b

m− (m− 2)
= b

m∑
k=1

1

k
− b

1
≥ b lnm− b

= b ln

⌊
b

2

⌋
− b > n > n−m

elements from some box.
It follows that there is some ci ∈ C which is still unvisited by Walker,

such that dB(ci) > m− 1 + (n−m) = n− 1. This means that Breaker is
able to isolate a vertex in Walker’s graph and thus he wins in the (2 : b)
Walker–Breaker Connectivity game.

3.3 Hamilton Cycle game

In this section we prove Theorem 3.4 and Theorem 2.5. The proof of
Theorem 3.4 follows very closely to the proofs of Theorem 1.5 in [52] and
Theorem 2.4 in [34].

Proof of Theorem 3.4. We show that Walker has a strategy to build
a graph that satisfies property P. Walker’s strategy will be partly
deterministic and partly random.
In the random part of the strategy, Walker generates a random graph
H ∼ G(n, p) on the vertex set V (Kn), by tossing a biased coin on each
edge of Kn (even if this edge already belongs to E(B)), independently
at random, which succeeds with probability p. When Walker tosses a
coin for an edge e, we say that she exposes the edge e. For each vertex
v ∈ V (Kn) we consider the set Uv ⊆ N(v, V (Kn)) which contains those
vertices u for which the edge vu is still not exposed. At the beginning of
the game, Uv = N(v, V (Kn)) for all v ∈ V (Kn).

To decide for which edges she needs to toss a coin, Walker identi-
fies an exposure vertex v (the way of choosing the exposure vertex will
be explained later). If her current position is different from v, she needs
to play her move deterministically. That is, she finds two edges wy and
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yv, where w is her current position and y is some vertex from V (Kn),
such that wy, yv /∈ E(B). She claims these edges and after that move,
wy, yv ∈ E(W ), where by W we denote a graph spanned by all Walker’s
edges.
Once she comes to the exposure vertex v, she starts tossing her coin for
edges incident with v with the second endpoint in Uv in the arbitrary
order, until she has a first success or until all edges incident with v are
exposed. Every edge e on which Walker has success when tossing her coin
is included in H. If this edge e is free, Walker claims it. If the exposure
failed to reveal a new edge in H, she declares her move a failure of type I.
If she has success on an edge, but that edge belongs to E(B), she declares
her move a failure of type II.
Let G′ be a graph containing all the edges in H ∩W .

We need to prove that G′ ∈ P. In order to do this we need to show that
following her strategy, Walker will achieve that a.a.s. dG′(v) ≥ (1−ε)dH(v)
holds for each v ∈ V (Kn), where 0 < ε ≤ 1/100. Since H is random, the
degree of v in H can be determined by using Chernoff’s inequality [1]. We
have

P
[
Bin(n− 1, p) <

99

100
(n− 1)p

]
= o

(
1

n

)
for p ≥ 10 lnn

εn . Thus, by the union bound, it holds that a.a.s.

dH(v) ≥ 99

100
(n− 1)p

for all vertices in V (Kn).
So, if we prove that the number of failures of type II is relatively small,
at most εdH(v), we get that dG′(v) ≥ (1 − ε)dH(v) for every v ∈ V (Kn).
Then, by the assumption on P, we know that G′ a.a.s. satisfies property
P.
Let fI(v) and fII(v) denote the number of failures of type I and type II,
respectively, for the exposure vertex v.
To keep the number of failures of type II small enough, Walker simulates
an auxiliary MinBox(n, 4n, p/2, 4b) game in which she takes the role of
Maker. To each vertex v ∈ V (Kn) Walker assigns the box Fv of size 4n at
the beginning of the game. For each box F the danger value is defined by
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dang(F ) = wB(F )− 4b · wM (F ).
We describe Walker’s strategy in detail.

Walker’s strategy. Walker’s strategy is divided into two stages.

Stage 1. After every Breaker’s move, she updates the simulated
MinBox(n, 4n, p/2, 4b) game, in the following way: for each of b edges
pq that Breaker claimed in his move, Walker assumes that he claimed one
free element from Fp and one from Fq.
In the first round, after Walker identifies the exposure vertex, say v, she
starts her move in some vertex v0 ∈ V (Kn), v0 6= v, and then finds some
vertex v1 ∈ V (Kn), such that edges v0v1 and v1v are free. This is pos-
sible since dB(v0) + dB(v) ≤ b + 1. Maker claims an element of Fv in
the MinBox(n, 4n, p/2, 4b) game. In the second round, Walker starts the
exposure process on the edges vv′, v′ ∈ Uv, that is, proceeds with Case 2
(see case distinction below).
In every other round r ≥ 3, Walker plays in the following way. Denote
by w Walker’s current position and suppose that it is her turn to make
a move. First, she updates the simulated MinBox(n, 4n, p/2, 4b) game,
as described above. After that, she checks whether an exposure vertex
exists and proceeds with the case distinction below. Otherwise, she finds
a vertex v such that in the simulated MinBox(n, 4n, p/2, 4b) game Fv is
a free active box of the largest danger. If no such box exists, then Walker
proceeds to Stage 2. Otherwise, she declares the vertex v as the new expo-
sure vertex, Maker claims an element of Fv in the MinBox(n, 4n, p/2, 4b)
game and then in the real game Walker proceeds with the following cases.

Case 1. w 6= v. Walker finds a vertex y ∈ V (Kn) such that edges wy
and yv are free or belong to E(W ), where v is the new exposure vertex.
Then, she moves to vertex v using these edges. If these edges were free
and Walker claimed them, then these edges are now part of the Walker’s
graph W . Walker proceeds with Case 2.

Case 2. Vertex in which Walker is currently positioned is the exposure
vertex. Let σ : [|Uv|]→ Uv be an arbitrary permutation on Uv. She starts
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tossing a biased coin for vertices in Uv, independently at random with
probability of success p, according to the ordering of σ.

2a. If this coin tossing brings no success, she increases the value of fI(v)
by 1 and in the simulated gameMinBox(n, 4n, p/2, 4b) Maker claims 2pn−
1 additional free elements from Fv or all remaining free elements if their
number is less than 2pn − 1. She updates Uv = ∅ and removes v from all
other Uσ(i) for each i ≤ |Uv|. In the real game Walker moves along some
edge which is in E(W ) and then returns to v by using the same edge.

2b. Suppose that first success happen at the kth coin toss. Walker de-
clares that vσ(k) is an edge of H.

- If the edge vσ(k) is free, Walker claims this edge and from now on
vσ(k) ∈ E(W ). She moves along this edge one more time in order to
return to vertex v. Also, this edge is included in G′. Walker removes
v from Uσ(i) and σ(i) from Uv, for all i ≤ k. Maker claims one free
element from box Fσ(k).

- If the edge vσ(k) already belongs to E(W ), Walker moves along
this edge twice. Also, this edge becomes part of graph G′. Walker
removes v from Uσ(i) and σ(i) from Uv, for all i ≤ k. Maker also
claims one free element from box Fσ(k).

- If the edge vσ(k) belongs to Breaker, then the exposure is a failure of
type II. She increments fII(v) and fII(σ(k)) by 1. She also updates
Uv := Uv \ {σ(i) : i ≤ k} and Uσ(i) := Uσ(i) \ {v} for each i ≤ k.
To make her move, Walker uses an arbitrary edge vu from her graph
and returns to v by using the same edge.

At the end of Walker’s move in Case 2, the vertex v is not exposure vertex
any more.

Stage 2. Walker tosses her coin on every unexposed edge uv ∈ E(Kn).
In case of success, she declares a failure of type II for both vertices u and
v.

Observation 3.6. At any point of Stage 1, there can be at most one
exposure vertex.
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Claim 3.7. During Stage 1, Breaker claims at most 4b elements in the
simulated MinBox game between two consecutive moves of Maker.

Proof. Suppose that Breaker finished his move in round t and now it is
Walker’s turn to make her move in this round. Suppose that in the previous
round, t− 1, Walker played according to her strategy from Case 2. Let w
be Walker’s current position. Walker identifies a free active box Fv which
has the largest danger. Maker claims an element from Fv. If w = v,
Walker will start her exposure process on the edges vv′ with v′ ∈ Uv in
round t and then in the following round, t+1, she will again identify a new
exposure vertex and Maker will claim an element from the corresponding
box. In this case between two Maker’s moves, Breaker claims b edges, that
is, 2b elements from all boxes. If w 6= v, Walker needs to play her move
deterministically in order to move from w to v and then in round t + 1
she will start her exposure process. After she identifies the new exposure
vertex in round t+ 2, Maker will claim an element from the corresponding
box. In this case between two Maker’s moves (in rounds t and t + 2),
Breaker claims 2b edges, that is, 4b elements from all boxes.

Claim 3.8. At any point during Stage 1, we have wM (Fv) < (1 + 2p)n
and wB(Fv) < n for every box Fv in the simulated game. In particular,
wM (Fv) + wB(Fv) < 4n, thus no box is ever exhausted of free elements.

Proof. According to Walker’s strategy, the number wM (Fv) increases by
one every time vertex v is the exposure vertex or when coin tossing brings
success on edge vv′, where v′ is exposure vertex. There can be at most
n− 1 exposure processes in which Walker can toss a coin on an edge that
is incident with v. So, both cases together can happen at most n−1 times.
Also, when Walker declares the failure of type I, wM (Fv) increases by at
most 2pn− 1. So, we have

wM (Fv) < n+ fI(v) · 2pn.

We claim that failure of type I can happen at most once. This is true,
because after the first failure of type I on v, when Maker receives at most
2pn − 1 additional free elements from Fv, the box Fv is not active any
more. So, Maker will never play on vertex v again. Therefore, wM (Fv) <
n+ 2pn = (1 + 2p)n.
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During Stage 1, we have wB(Fv) < n, because Breaker claims an element of
Fv in the simulated game MinBox(n, 4n, p/2, 4b) if and only if in the real
game he claims an edge incident with v. Therefore, wM (Fv)+wB(Fv) < 4n,
as stated.

Claim 3.9. For every vertex v ∈ V (Kn), Fv becomes inactive before
dB(v) ≥ ε(n−1)

5 .

Proof. Assume that Fv is an active box such that wB(Fv) = dB(v) ≥
ε(n−1)

5 . Since wB(Fv)− 4b · wM (Fv) ≤ 4b(lnn+ 1), according to Theorem
3.5, it follows that wM (Fv) ≥ wB(Fv)

4b − (lnn + 1). With b = ε
60p we have

wM (Fv) ≥ 3p(n − 1) − (lnn + 1) > 2pn, where p ≥ 10 lnn
εn . This is a

contradiction because Fv is active.

Claim 3.10. Walker is able to move from her current position to the new
exposure vertex.

Proof. Let w be Walker’s current position at the beginning of some round
t and let v be the new exposure vertex. This means that at the beginning
of round t− 1, the box Fw was active and we had dB(w) < ε(n−1)

5 . If Fw
is no longer active at the end of round t − 1, then after Breaker’s move
in round t we have dB(w) < ε(n−1)

5 + b. We need to show that Walker
can find a vertex y ∈ V (Kn) such that edges wy and yv are not in E(B).
Since Fv is a free active box and taking into consideration the value of b,
we have

dB(w) + dB(v) <
2ε(n− 1)

5
+ b < n− 2

and so Walker is able to move to v.

Claim 3.11. For every vertex v ∈ V (Kn) we have that a.a.s. Fv is active,
for as long as Uv 6= ∅. In particular, at the end of Stage 1 all edges of Kn

are exposed a.a.s.

Proof. Suppose that there is a vertex v such that Fv is not an active box
and Uv 6= ∅. Since Fv is not an active box it holds that wM (Fv) ≥ p

2 |Fv|.
Also, since Uv 6= ∅, we have that fI(v) = 0. Maker could increase wM (v)
at the moment when v became the exposure vertex, or when Walker had
success on edge vv′ where v′ is the exposure vertex. Consider the case
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when v was the exposure vertex. Since fI(v) = 0 it means that in the
exposure process Walker had success on at least p

2 |Fv| − 1 = 2np− 1 edges
incident with v. Also, every time coin tossing brought success for an edge
incident with v, the degree of vertex v increased in H by one. It follows
that dH(v) ≥ p

2 |Fv| − 1 > 2(n − 1)p. By using Chernoff’s inequality [1],
we have

P[Bin(n− 1, p) ≥ 2(n− 1)p] < e−(n−1)p/3 = o

(
1

n

)
.

Applying the union bound, it follows that with probability 1− o(1), there
exists no such vertex.
Now, suppose that at the beginning of Stage 2 there is an edge uv ∈ E(Kn)
which is not exposed. This means that Uv 6= ∅. So, Fv is an active box and
we have that wM (Fv) < 2pn. Since Fv is active it also holds that wB(Fv) <
ε(n−1)

5 , according to Claim 3.9. Therefore, since wM (Fv) +wB(Fv) < |Fv|,
the box Fv is free. But this is not possible at the beginning of Stage 2. A
contradiction.

Claim 3.12. For every vertex v ∈ V (Kn), a.a.s. we have fII(v) ≤ 9
10ε(n−

1)p.

Proof. Failures of type II happen in Stage 1 in case when Walker has
success on edge which is in E(B). During Stage 1, by Claim 3.9, for as
long as the box Fv is active, for some v ∈ Kn, we have dB(v) < ε(n−1)

5 . So,
for every v ∈ V (Kn) there is a non-negative integer m ≤ ε(n−1)

5 such that
fII(v) is dominated by Bin(m, p). Applying a Chernoff’s argument [1]
with p ≥ 10 lnn

εn we obtain

P
[
Bin(m, p) ≥ 9

10
ε(n− 1)p

]
≤

(
eε(n− 1)p/5
9
10ε(n− 1)p

) 9
10
ε(n−1)p

= o

(
1

n

)
.

Thus, a.a.s. fII(v) ≤ 9
10ε(n− 1)p for all v ∈ V (Kn).

According to Claim 3.11, Walker never played Stage 2 since she exposed
all the edges of Kn by the end of Stage 1. By Claim 3.12 we know that for
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each vertex v coin tossing has brought success for at most

9

10
ε(n− 1)p ≤ 90

99
εdH(v)

edges which were claimed by Breaker. So, it follows that for each vertex
v ∈ V (Kn) we have

dG′(v) ≥ dH(v)− 90

99
εdH(v) ≥ (1− ε)dH(v).

This completes the proof of Theorem 3.4.

Proof of Theorem 2.5. When we know that Theorem 3.4 holds, the proof
of this theorem is almost the same as the proof of Theorem 1.6 in [52].
Let C = C

(
1
6

)
, p = c lnn

n where c = max{C, 1000}, and let G ∼ G(n, p).
Note that the property P := “being Hamiltonian” is (p, 16)-resilient for
p ≥ c lnn

n .
Applying Chernoff’s inequality [1], we obtain

P
[
dG(v) <

5

6
np

]
< e−

np
72 = o

(
1

n

)
.

Thus, by the union bound, it holds that a.a.s. δ(G) ≥ 5
6np.

Let R ⊆ G be a subgraph such that dR(v) ≤ 1
6dG(v). For R′ = G−R we

have
dR′(v) ≥ 5

6
dG(v) ≥ 25

36
np >

2

3
np = (1/2 + 1/6)np.

Theorem 3.3 implies that graph R′ is Hamiltonian.
According to Theorem 3.4, Walker can create a graph G′ ∈ P in the(

2 : 1
360p

)
game on Kn. For p = c lnn

n it follows that Walker has a winning

strategy in
(
2 : n

360c lnn

)
Walker–Breaker Hamilton Cycle game. Setting

α = 1
360c completes the proof.

3.4 Concluding remarks

We saw that when Walker’s bias is 2, she can win both the Connectivity
and the Hamilton Cycle game. From theorems 2.3, 2.5 and 2.4 it follows
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that the threshold bias in the (2 : b) Walker–Breaker Connectivity game
and Hamilton Cycle game is of order of magnitude n/ lnn which is the
same order of magnitude as in the corresponding (1 : b) Maker–Breaker
games.

Analysing other games. Now, we wonder how the situation changes
in other games involving spanning structures, when Walker’s bias is 2. For
example, it is not hard to show that for b = o(

√
n) Walker can win in the

(2 : b) Pancyclicity game, that is, she can build a graph which consists of
cycles of any given length 3 ≤ l ≤ n. Indeed, since for p = ω(n−1/2) the
property P :=“being pancyclic” is (p, 1/2+o(1))-resilient (see Theorem 1.1
in [83]), by applying Theorem 3.4 with p and P we obtain that Walker has
the winning strategy in the

(
2 : 1

180p

)
Pancyclicity game on Kn.

It would be interesting to consider k-vertex connectivity game, for k ≥ 2,
on Kn to determine the largest value of b for which Walker can win the
(2 : b) Walker–Breaker k-vertex connectivity game on Kn.

Different board. Another question that comes naturally is what hap-
pens if we change the board to be the edge set of a general graph G or
some sparse graph. How many vertices could Walker visit then in both
unbiased and biased games?
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Chapter 4

WalkerMaker–WalkerBreaker
games

We study WalkerMaker–WalkerBreaker (or WMaker–WBreaker, for short)
games on Kn and prove theorems 2.6, 2.7 and 2.8. WMaker–WBreaker
game is played by two players WalkerMaker (WMaker) and WalkerBreaker
(WBreaker) who alternately claim edges of a graph that are not chosen
by the opponent, and both players have the constraint to claim edges
according to a walk. Unlike the standard Maker–Breaker Connectivity
game on Kn, where Maker wins in the optimal number of moves, n − 1,
Theorem 2.6 says that Maker, as a walker, will need to play at most two
moves more than it is optimal. Considering WBreaker’s side of the game,
Theorem 2.8 states that WMaker as the first player needs to play at least
n moves.

In the Hamilton Cycle game, it becomes more challenging for WMaker
to win fast. Theorem 2.7 shows that she needs at most five more moves
than is the case in the standard Maker–Breaker Hamilton Cycle game.

This chapter is organized in the following way: in Section 4.1. we
describe WMaker’s strategy and prove Theorem 2.6 and Theorem 2.7,
in Section 4.2 we prove Theorem 2.8 and in Section 4.3 we give some
concluding remarks.

At any point of the game, let M and B denote the graphs spanned
by edges of WMaker, respectively WBreaker, claimed so far. We use
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U to denote the set of vertices that are still unvisited by WMaker, i.e.
U = V (Kn) \ V (M). For some vertex v we say that it is visited by a
player if he/she has claimed at least one edge incident with v. A vertex is
isolated/unvisited if no edge incident to it is claimed.

4.1 Building spanning structure fast

In both Connectivity and Hamilton Cycle game, WMaker’s strategy will
be first to create a path of length n− 4 ensuring that the vertex she visits
for the first time has a very small degree in WBreaker’s graph, less or equal
than 6, and that after each round the following holds:

• WMaker is positioned at a vertex which is incident with at most one
WBreaker’s edge that has the second endpoint in U ,

• every WBreaker’s edge is incident with a vertex already visited by
WMaker, and

• at most two vertices that are unvisited by WMaker can belong to
WBreaker’s graph.

In the Connectivity game, in the second phase of her strategy, WMaker
needs to find a way to add three remaining untouched vertices to her tree.
In the Hamilton Cycle game, the second part of WMaker’s strategy will
be to close a cycle of length n − 2 or n − 1, and in the last, third, phase
of her strategy she will embed remaining vertices in the cycle by claiming
edges between a vertex she wants to build in the cycle, and two vertices
which are connected by an edge in the cycle.

Let us define the following strategy S, which WMaker will use in the first
part of both of the games in order to win. WBreaker starts the game.

Strategy S For her starting vertex, WMaker chooses the vertex v1,
in which WBreaker has finished his first move, and claims an edge v1u
such that dB(u) = 0 (ties are broken arbitrarily). In every other round
WMaker checks if there exists an edge e ∈ E(B), e = pq, s.t. p, q ∈ U ,
and from her current position w claims wp, or wq, whichever is free.
If both wp and wq are free she chooses wp if dB(p) > dB(q), and wq,
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if dB(q) > dB(p) (ties are broken arbitrarily). If no such edge exists,
WMaker from her current position w claims a free edge wu such that
u ∈ U and dB(u) = max{dB(v) : v ∈ U}, ties broken arbitrarily, for as
long as |U | ≥ 3. If all free edges wu are such that dB(u) = 0 for all u ∈ U ,
then WMaker claims an arbitrary free edge wu.

First we will show that WMaker can play according to the strategy
S, and then show that the rest of the following statements hold, which
will be used in proving Theorem 2.6 and Theorem 2.7.

Lemma 4.1. In the (1 : 1) WMaker–WBreaker game on E(Kn), WMaker
can follow strategy S for as long as |U | > 2.

Proof. In the first round, we know that WMaker for her starting position
chooses the vertex v1 in which WBreaker has finished his first move and
claims the edge v1u, u ∈ U, dB(u) = 0. So, obviously WMaker can follow
the strategy S in the first round. The rest of the proof goes by induction
on the number of rounds k. Now we show for k = 2. In the second round
WBreaker needs to claim an edge v1x, where x ∈ U \ {v0} or go along
the edge v1v0 again. Suppose first that he claimed v1x. As WMaker is
positioned at u, she can claim either of the edges uv0 and ux, as both edges
are free and it holds that dB(v0) = dB(x) = 1 and for all y ∈ U \ {x, v0}
it holds that dB(y) = 0. Otherwise, if he goes along v0v1 again, WMaker
claims uv0 as that is the only vertex in U such that dB(v0) = 1. So, she
plays according to S in the second round. Assume that she can follow
the strategy S for 2 ≤ k ≤ n − 4 rounds. Now assume that in round
k + 1 ≤ n − 3 WBreaker claimed an edge b1b2, and now it is WMaker’s
turn to play.
Suppose first that b1, b2 /∈ V (M). Denote WMaker’s current position by
w and suppose that WMaker is not able to visit either b1 or b2 in round
k + 1. It follows that wb1, wb2 ∈ E(B). Suppose that WBreaker claimed
these edges in the following order: b1w,wb2, b2b1. This means that, in
round t ≤ k in which WBreaker claimed edge b1w, WMaker moved to
some vertex different from b1 and w, and that contradicts the induction
hypothesis that WMaker followed the strategy in round t ≤ k.
Now suppose that at least one of {b1, b2} is in V (M), and suppose it
is b1 ∈ V (M). Let w denote WMaker’s current position. As k + 1 ≤
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n − 3, it holds that |U | ≥ 3. We will show that WMaker is always able
to claim a free edge incident to w whose other endpoint is in U . To
show that, we will prove that dB(w,U) ≤ 2 holds before WMaker’s move.
Suppose, for a contradiction that dB(w,U) > 2 before WMaker’s move in
this round. Suppose dB(w,U) = 3. This implies that there exist three
edges wa,wb, wc, such that {a, b, c} ⊆ U and suppose that they were
claimed in this order. Note that wc might be the edge b1b2. As WMaker
moved to w only in round k, and being that WBreaker is also a walker and
needs at least 4 moves to claim these 3 edges, the edge wa was claimed
by WBreaker in some round r < k. Since WMaker did not visit any
of the vertices {w, a} in that round, this leads to a contradiction with
the induction hypothesis that WMaker could follow her strategy in round
r.

Directly from the strategy S and the previous lemma, we obtain the
following corollary, which will be extensively used in the rest of the paper.

Corollary 4.2. In the (1 : 1) WMaker–WBreaker game on E(Kn) strategy
S guarantees WMaker that after each round, every WBreaker’s edge is
incident with some vertex v ∈ V (M).

Corollary 4.3. In the (1 : 1) WMaker–WBreaker game on E(Kn), as
long as |U | > 2, strategy S guarantees that after each round WMaker is
positioned at some vertex w such that dB(w,U) ≤ 1.

Proof. This already holds after the first round. Suppose that after some
round i > 1 WMaker is at vertex w such that dB(w,U) = 2, that is
wu,wu′ ∈ E(B), for some u, u′ ∈ U and suppose that WBreaker claimed
wu before wu′. Assume also that it is again WBreaker’s turn and he claims
some edge incident with u′ ∈ U in round i+ 1.
This contradicts Corollary 4.2, because when WBreaker claimed wu in
round i−1, WMaker visited some vertex different from w and u, and after
that round, wu was WBreaker’s edge not incident with V (M). It follows
that vertex in which WMaker is positioned at the end of each round can
have degree dB(w,U) ≤ 1.

Corollary 4.4. In the (1 : 1) WMaker–WBreaker game on E(Kn), the
strategy S guarantees WMaker that, as long as |U | > 2, after WBreaker’s
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move (and before WMaker’s move) in some round i ≥ 2, vertex w in
which WMaker finished her previous move, can have degree dB(w,U) ≤ 2.
If dB(w,U) = 2, then WBreaker finished his move in round i− 1 at vertex
w.

Lemma 4.5. In the (1 : 1) WMaker–WBreaker game on E(Kn), strategy
S guarantees WMaker that, as long as |U | > 2, after each round there can
be at most 2 vertices from U belonging to V (B).

Proof. The proof goes by induction on the number of rounds k. After the
first round, there is only one vertex from U visited by WBreaker. This is
the vertex that WBreaker chose for his starting position. Also, after the
second round, no matter how WBreaker plays, applying strategy S, there
can be at most one vertex in U ∩ V (B). Suppose that after 2 < k < n− 4
rounds, there were at most two vertices from U visited by WBreaker.
Assume that WBreaker played his move in round k + 1 and now it is
WMaker’s turn to play her move in round k + 1. Suppose that there are
at least 3 vertices in U ∩ V (B). Being that WBreaker is a walker, he can
visit one additional vertex from U in his move. So, there can be at most
3 vertices in U ∩ V (B). If WMaker cannot visit any of them in round
k + 1, it means that all three of them are adjacent to her current position
at vertex w, and so dB(w,U) = 3. As WBreaker claimed only one edge
in his (k + 1)st move, it must be an edge incident to w, and we obtain a
contradiction to Corollary 4.3 after round k.

Corollary 4.6. In the (1 : 1) WMaker–WBreaker game on E(Kn),
WMaker can build a path P of length n− 3 (with n− 2 vertices) in n− 3
moves by playing according to strategy S.

Proof. Suppose that WMaker already built a path P of length n − 4
(v(P ) = n − 3). Let U = {u1, u2, u3}. Let vertex w be WMaker’s cur-
rent position. If wui ∈ E(B) for every i ∈ {1, 2, 3}, this means that after
WBreaker’s move in this round we have dB(w,U) = 3 and this contradicts
Corollary 4.4.

Lemma 4.7. In the (1 : 1) WMaker–WBreaker game on E(Kn), strategy
S guarantees WMaker that for every vertex x ∈ U , dB(x) ≤ 6 holds at the
moment when WMaker visits it for the first time.
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Proof. Assume that WBreaker touched vertex x for the first time in some
round i using the edge ax. We will show that dB(x) ≤ 6 at the moment
WMaker visits it. We analyse the following cases:

Case 1 WMaker was already positioned at vertex a at the beginning of
round i, and after WBreaker claimed ax, there can be at most 2 additional
vertices u1, u2 from U visited byWBreaker before WMaker’s move in round
i, according to Lemma 4.5.
In our analysis, we will assume that both vertices u1, u2 ∈ U are in V (B).
When only one of vertices u1, u2 ∈ U is in V (B) or none of them belong
to V (B), the analysis is similar, but much simpler.

Case 2 WMaker’s current position is at some vertex w and she visits a
for the first time in round i. Beside the vertex x ∈ U there can be at most
one vertex from U visited by WBreaker after round i, according to Lemma
4.5. Denote this vertex with u′. In our analysis we will assume that there
exists such vertex u′ ∈ U ∩ V (B). Otherwise, the analysis is similar, but
much simpler.

Case 3 WMaker is at some vertex w 6= a at the beginning of round i and
a ∈ V (M). There can be at most 2 additional vertices u1, u2 ∈ U ∩ V (B)
before WMaker’s move in round i, according to Lemma 4.5.
In our analysis, we will assume that both vertices u1, u2 ∈ U are in V (B).
When only one of the vertices u1, u2 ∈ U is in V (B) the analysis is similar
but much simpler. If none of these two vertices belong to V (B), WMaker
moves from w to x in round i, which completes the analysis.

In the following we analyse all three cases separately.

Case 1 By Corollary 4.4 it is not possible that all three edges ax, au1, au2
are in E(B), and so WMaker can move to some ui, i ∈ {1, 2}, say u1.
If WBreaker in round i + 1 moves to vertex b ∈ V (M), then, if dB(x) >
dB(u2), following S, WMaker moves to x from u1. Otherwise, she moves
to u2 (suppose she moves to u2 even if dB(u2) = dB(x)). The edge u1u2 /∈
E(B), otherwise we will have a contradiction with Corollary 4.2 before
round i. Also, edges u1x, u2x /∈ E(B), since WBreaker visited x for the
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first time in round i by claiming ax. In the following round, i+2, WMaker
claims u2x applying strategy S, because after WBreaker’s move in this
round there will be no edges with both endpoints in E(B), or vertices
from U whose degree in B is larger than dB(x) = 2.
However, if WBreaker claims the edge xb, in round i + 1, for some b ∈
U, b /∈ {u1, u2}, WMaker must move from u1 to b or x. Since dB(x) = 2
and dB(b) = 1, the strategy S will tell her to choose the edge u1x. This
is as u1x, u1b /∈ E(B) (otherwise it would contradict Corollary 4.2 before
round i).
If WBreaker chose edge xu1 in round i+ 1, WMaker moves from u1 to u2
(u1u2 /∈ E(B) due to Corollary 4.2), and in round i+ 2 claims u2x.
If WBreaker chose edge xu2 in round i + 1, then, if dB(x) > dB(u2),
following S, WMaker moves to x. Otherwise, she moves to u2 (suppose she
moves to u2 even if dB(u2) = dB(x)). Now for all u ∈ U \ {x}, dB(u) = 0.
In round i+ 2, WMaker claims u2m1 for some m1 ∈ U , dB(m1) = 0. If in
round i+ 3, WMaker is not able to claim m1x, this means that:

i. WBreaker returned to x along u2x in round i+ 2 and in round i+ 3
he claimed xm1. Then, WMaker moves from m1 to some m2 ∈ U in
round i+3. So, in round i+4, she will be able to claim m2x. In that
moment we would have dB(x) = 3 because in this round WBreaker
could have either returned to x along m1x or claimed m1v, for some
v ∈ V (Kn), v 6= x (and dB(v) < dB(x)). The edge m2x is free in the
moment when WMaker wants to claim it. Otherwise, we will have a
contradiction to Corollary 4.2 before round i+ 3.

ii. WBreaker claimed edges u2y1 and y1y2 for some y1, y2 ∈ U , in rounds
i + 2 and i + 3, respectively. Since y1y2 ∈ E(B) is not incident
with V (M), WMaker must visit y1 or y2 from m1 in round i + 3.
Corollary 4.2 implies that edges y1m1, y2m1 /∈ E(B). Since dB(y1) >
dB(y2), WMaker moves to y1. If WBreaker moves to some vertex v /∈
U or to v = x, WMaker can claim y1x (and dB(x) ≤ 3). Otherwise,
if WBreaker claims y2y3 for some y3 ∈ U , in round i + 4, strategy
S will tell WMaker to claim y1y3, because edge y2y3 is not incident
with V (M). If WBreaker claims y3v′ for some v′ 6= x, WMaker visits
x along the edge y3x. Otherwise, if WBreaker claims y3x, WMaker
claims y3m2, for some m2 ∈ U (and it holds that dB(m2) = 0). At
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that point dB(x) = 3.
If dB(x) = 4 in round i+ 6, when WBreaker claimed xm2, WMaker
moves from m2 to y2, and afterwards, in round i + 7, she moves
from y2 to x, where dB(x) = 4. Since WBreaker finished his move
in round i+ 6 at vertex m2, he is not able to prevent WMaker from
visiting x in round i+ 7. If WBreaker claimed xu, u 6= m2, in round
i + 6, WMaker can visit x in this round by moving along the edge
m2x.

Case 2 WMaker is at vertex a at the beginning of round i + 1. If
WBreaker claims xb, where b ∈ V (M), then WMaker moves to u′ ∈ U
and in the following round claims u′x. This edge is free, otherwise it
would contradict Corollary 4.2 before round i.
From now on, suppose that WBreaker claimed xb, where b ∈ U in round
i+ 1. By S, WMaker must claim the edge ab. Also, Corollary 4.2 implies
that ab /∈ E(B).
Consider the following situations:

i. WBreaker claims edges bc and cx, c ∈ U , in rounds i+ 2 and i+ 3,
respectively.

a) Let c 6= u′. Then WMaker claims bu′, u′ ∈ U in round i+ 2. In
the following round, WMaker is able to claim u′x or u′c (due
to Corollary 4.2 before round i), but she will move to vertex x,
because 3 = dB(x) > dB(c) = 2.
In case b = u′, WMaker first moves from b to some m1 ∈ U in
round i+2, and then visits x along the edge m1x in round i+3.

b) If c = u′, then WMaker moves from b to some m1 ∈ U in
round i+ 2. Since dB(c) ≥ dB(x), after WBreaker claims cx in
round i+ 3, suppose that WMaker claims m1c (even if dB(c) =
dB(x), as otherwise WMaker claims m1x and that completes
the argument). Now for all u ∈ U \ {x}, it holds that dB(u) =
0. In the next round suppose that WBreaker claims xy1. If
y1 ∈ V (M), WMaker moves from c to some y ∈ U , in round
i + 4, and then claims yx in round i + 5, which completes the
analysis (at that moment dB(x) = 4).
If y1 ∈ U , WMaker moves from c to y1 and then she claims
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y1m2 for some m2 ∈ U in round i + 5. If WMaker is not able
to visit x in round i+ 6, this means one of the following:

b.1) WBreaker returned to x along the edge y1x in round i+ 5 and
then he claimed xm2 in round i+6. So, WMaker needs to move
to some m3 ∈ U in round i + 6 and in the following round she
is able to visit x by claiming the edge m3x, where dB(x) = 5.
WBreaker is not able to prevent WMaker from visiting x in
round i+ 7 since he finished his previous move at vertex m2.

b.2) WBreaker claimed y1y2 and y2y3, for some y2, y3 ∈ U , in rounds
i + 5 and i + 6, respectively. Since y2y3 is not incident with
V (M), WMaker needs to move from m2 to y2 or y3 in round
i+6 (both edges are free to claim at that moment, as otherwise
it would contradict Corollary 4.2 before round i + 5). Since
2 = dB(y2) > dB(y3) = 1, she moves to y2, as it is illustrated
in Figure 4.1.

Figure 4.1: WMaker’s and WBreaker’s moves in Case 2.i.b.2) when c = u′.
Dashed lines show WMaker’s moves and solid lines represent WBreaker’s moves.

If WMaker is not able to visit x in round i + 7, this means
that there is, again, an edge in E(B) not incident with V (M).
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That is, WBreaker claimed y3y4 for some y4 ∈ U . So, WMaker
moves to y4 (note that dB(y4) = 1, so WMaker can make this
move). In round i + 8, WBreaker can make degree 5 at vertex
x by claiming y4x and in this way he prevents WMaker from
visiting x. Then, WMaker claims y4m3 for some m3 ∈ U , again
it holds that dB(m3) = 0 and dB(y3) = 2, but the edge y4y3
is already taken by WBreaker. If she is not able to move to
x in round i + 9 because WBreaker claimed xm3 (and at this
moment dB(x) = 6), WMaker moves to y3 and in the following
round, i+ 10, she claims y3x. WBreaker is not able to prevent
WMaker from visiting x, because he finished his move at vertex
m3 in round i+ 9.

ii. WBreaker claims bc and cy1, for c, y1 ∈ U , in rounds i+ 2 and i+ 3,
respectively. In this case, WMaker first moves from b to some u ∈ U .
Then, according to the strategy S, she needs to move to c, since cy1
is not incident with V (M) and dB(c) > dB(y1). If b 6= u′ and c 6= u′,
then u = u′. If b = u′, WMaker already visited b. Also, if c = u′,
WMaker already visited c.
If in the next round WBreaker claims y1v, for some v ∈ V (M),
WMaker will be able to claim cx. Otherwise, if WBreaker claims
edge y1y2 for some y2 ∈ U , in round i + 4, WMaker needs to move
from c to vertex y2 (this is possible as dB(y2) = 1 and its only
neighbour in B is y1). If afterwards WBreaker claims y2v′ for some
v′ 6= x, then WMaker visits x along the edge y2x, where dB(x) = 2.
Otherwise, if WBreaker moves from y2 to x and dB(x) = 3, then
WMaker must move to some m ∈ U (at that point dB(m) = 0). In
round i+ 6, it is possible that dB(x) = 4 if WBreaker claims either
the edge xm or xy, for some vertex y 6= m. If WBreaker claims
xm, WMaker claims my1 and in the following round, i+ 7, WMaker
claims y1x. Whatever WBreaker plays in round i + 7, he will not
be able to prevent WMaker from visiting x. Otherwise, if WBreaker
claimed xy, y 6= m, in round i+ 6, WMaker visits x in this round.

iii. If WBreaker returned to x along the edge bx in round i + 2, then
WMaker moves to some m1 ∈ U along the edge bm1 (if b 6= u′

WMaker moves to m1 = u′ ). In round i + 3, WBreaker can claim
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xm1 and then dB(x) = 3 (otherwise, WMaker claims m1x and then
dB(x) = 2). In this case, WMaker must move to some m2 ∈ U
(m2m1 /∈ E(B), otherwise it is a contradiction to Corollary 4.2 after
round i + 1). Whatever WBreaker plays in round i + 4, he will not
be able to prevent WMaker from moving to vertex x along the edge
m2x, because WBreaker finished his move in round i+3 at the vertex
m1.

Case 3 According to Corollary 4.3, dB(w,U) ≤ 1 after round i − 1.
Since WBreaker claimed ax in round i, WMaker is able to move from
w to some ui, say u1, and to x, because dB(x) = 1 and x is adjacent
only to a in B. If dB(u1) > dB(x), she needs to move to u1. The edges
xu1, xu2, u1u2 /∈ E(B) due to Corollary 4.2. Otherwise, she moves to x
which completes the analysis.
In round i + 1, suppose that WBreaker claims xb. If b = u2, WMaker
moves to b = u2 since dB(b) > dB(x). The further analysis is similar to
Case 1 so we skip details.
If b = u1, then WMaker moves to u2 and in the following round, i+ 2, she
moves to x (this is possible as xu2 /∈ E(B)). At that moment dB(x) = 2.
If b ∈ U and b /∈ {u1, u2}, then WMaker needs to move from u1 to x or
b because xb is not incident with V (M). Since dB(x) = 2 and dB(b) = 1,
she moves to x.
If b ∈ V (M), WMaker first moves to u2, if dB(u2) ≥ dB(x) (suppose that
she moves to u2 even if dB(u2) = dB(x)), and then claims u2x. Otherwise,
she visits x in round i+1 along the edge u1x. In both cases at the moment
when WMaker visits x, dB(x) = 2.

Finally, we need the following two lemmas.

Lemma 4.8. In the (1 : 1) WMaker–WBreaker game on E(Kn), strategy
S guarantees that if WBreaker visits a vertex u ∈ U in some round 2 ≤
i ≤ n − 6 from a vertex m ∈ V (M), different from her current position,
WMaker will visit u at latest in round i+ 2.

Proof. Suppose that WMaker is at some vertex w at the beginning of round
i. Suppose that before WBreaker visits u arriving from m, he arrives to
m (in round i− 1) from some vertex b on his path. By Lemma 4.5 at that
point there are at most two vertices in U ∩ V (B), say p and q (note that
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one of them can be u).
First suppose that both of them exist. If WMaker couldn’t visit any of
them from her current position, say y, in round i − 1, that means that
one of the {p, q} is m (due to Corollary 4.4), which is not the case. So,
suppose that WMaker visits q in that round and q 6= u, i.e. w = q. Due
to Corollary 4.2, the edge wp /∈ E(B). After WBreaker’s move in round
i, if p = u, then WMaker visits u which completes the claim. Suppose
that u 6= p. Due to Corollary 4.2 wp,wu /∈ E(B). If dB(p) < dB(u), then
WMaker visits u in her ith move and the proof is complete. Otherwise
dB(p) ≥ dB(u) and suppose that WMaker visits p in her ith move even if
dB(p) = dB(q). Note that now for all v ∈ U \ {u} it holds that dB(v) = 0.
If WMaker cannot visit u in her (i+ 1)st move, this means that WBreaker
claimed the edge up in round i + 1, and WMaker visits some vertex t ∈
U . Whichever vertex WBreaker visits in round i + 2, strategy S will tell
WMaker to visit u in this round.
Now, suppose that there is only one vertex p ∈ U ∩V (B), when WBreaker
arrives at m in round i − 1. If WMaker cannot visit p in round i − 1,
then w is a vertex from U such that dB(w) = 0. After WBreaker’s ith

move, suppose that WMaker visits p by playing by S (otherwise the claim
is satisfied). If WMaker cannot visit u in her (i + 1)st move, this means
that WBreaker claimed the edge up in round i + 1, and WMaker visits
some vertex t ∈ U , and dB(t) = 0 and afterwards she visits u in round
i+ 2. This completes the claim.
If U ∩ V (B) = ∅ after WBreaker’s move in round i− 1, then WMaker can
visit u in round i along the edge wu.

Lemma 4.9. Let 3 ≤ i ≤ n − 6 and VM denote V (M) before WMaker’s
move in round i − 1. In the (1 : 1) WMaker–WBreaker game on E(Kn),
strategy S guarantees that if WBreaker visits a vertex u ∈ U in some round
i and then a vertex m ∈ VM in round i+ 1, WMaker will visit u at latest
in round i+ 2.

Proof. Suppose WMaker is at some vertex w before her ith move.
WBreaker visits u in round i from some vertex b. We distinguish between
the two cases:

1. b ∈ V (M). If b 6= w, WMaker will visit u at latest in round i + 2,
due to Lemma 4.8;
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Otherwise, according to Lemma 4.5, there can be at most 2 other
vertices p, q in U ∩ V (B) when u is visited for the first time.
Suppose that both vertices exist. The edge pq /∈ E(B) due to Corol-
lary 4.2. As dB(w,U) ≤ 2 before her move in round i (Corollary 4.4),
she can visit one of the vertices in {p, q}. Suppose that the strat-
egy S tells her to visit q. In round i + 1, WBreaker moves to
some m ∈ VM , according to the assumption of the lemma. Still,
there are 2 vertices in U ∩ V (B), p and u and pu /∈ E(B). If
dB(u) > dB(p), then WMaker visits u which completes the proof.
Otherwise, dB(p) ≥ dB(u) and suppose WMaker visits p in round
i + 1 (even if dB(p) = dB(u)). No matter how WBreaker plays his
(i+2)nd move, WMaker visits u by playing according to the strategy
S in round i+ 2.
Suppose that only one other vertex, say p, exists in U ∩ V (B)
after WBreaker’s move in round i, that is {p, u} ∈ U ∩ V (B). If
dB(w,U) = 2, then, in round i, WMaker claims an edge wt, for some
t ∈ U and dB(t) = 0 (note that dB(v) = 0 for all v ∈ U \ {p, u}).
After that, the analysis is same as above, applied to t = q.
If dB(w,U) = 1, WMaker claims wp in round i. In the following
round, WMaker can visit u, as WBreaker moves to m ∈ VM and due
to Corollary 4.2 the edge pu /∈ E(B).

2. Let b ∈ U . There can be at most one more vertex, say p, in
U ∩ V (B). Since WMaker is at vertex w at the beginning of round
i and WBreaker is at vertex b, we have dB(w,U) ≤ 1, due to Corol-
lary 4.3 and Corollary 4.4. The edge bp /∈ E(B) due to Corollary 4.2.
WMaker needs to visit u or b, according to the strategy S. If she
visits u, this completes the proof. Otherwise, suppose she visits b. In
the following round, i+1, as WBreaker moves from u to some vertex
m ∈ VM , WMaker claims bp in this round. No matter how WBreaker
plays in round i+ 2, he will not prevent WMaker from visiting u in
this round by claiming the edge pu. If only b, u ∈ U ∩ V (B) after
WBreaker’s move in round i, then the analysis is almost the same as
the previous analysis with t = p, for some t ∈ U , such that dB(t) = 0
before WMaker’s move in round i+ 1.
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In the following we prove Theorem 2.6 and Theorem 2.7.

WMaker–WBreaker Connectivity game

Proof of Theorem 2.6. At the beginning of the game, all vertices are iso-
lated in WMaker’s graph and U = V (Kn). The strategy of WMaker in
this game is divided into following two stages.

Stage 1 In this stage WMaker builds a path P of length n− 4 in n− 4
rounds, by playing according to the strategy S, which is possible due to
Corollary 4.6.

Stage 2 During the course of this stage WMaker visits the three
remaining vertices in at most 5 additional moves. At the beginning of this
stage suppose that WMaker is at vertex w and U = {u1, u2, u3}. Assume
that it is WMaker’s turn to play her move in round n − 3. Corollary 4.4
implies that dB(w,U) ≤ 2.
First, suppose that vertex w is such that dB(w,U) ≤ 1. Let wu1 ∈ E(B).
Since WMaker visited w in round n − 4 this means that WBreaker must
have claimed wu1 in this round. Otherwise, if WBreaker claimed this
edge earlier, then we would have a contradiction to Corollary 4.2 before
round n − 4. If WBreaker finished his move in round n − 4 at vertex
u1, then in his (n − 3)rd move he could claim u1ui, for some i ∈ {2, 3}.
Suppose that u1u2 ∈ E(B) and WBreaker is at u2. This edge could not
exist earlier, because it would be a contradiction to Corollary 4.2. Also,
the edges u2u3, u1u3 /∈ E(B) because of Corollary 4.2. In round n − 3,
WMaker claims the edge wu3 and in the following round she moves to u1.
WBreaker is not able to prevent WMaker from claiming u3u1 because he
finished his (n− 3)rd move at the vertex u2.
In round n − 3, when WMaker visited u3 for the first time, we had
dB(u3) ≤ 6 (according to Lemma 4.7). Since u1, u2 were still unvisited by
WMaker in round n−3, we have dB(u1), dB(u2) ≤ 8, in round n−1. Since
dB(u1, V (P )) + dB(u2, V (P )) < v(P ), there exists a vertex v ∈ V (P ) such
that u1v and vu2 are free. She claims u1v in round n − 1. If WMaker
is not able to claim vu2 in round n, this means that WBreaker finished
his move in the previous round at vertex u2, so he was able to prevent
WMaker from visiting u2 by claiming u2v in his nth move. Then WMaker
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moves to some v′ ∈ V (P ) such that edges vv′ and v′u2 are free. We need
to prove that such vertex v′ exists.
Let P ′ = P \ {v, u1}.
Since dB(u2) ≤ 6 in round n − 3, we have dB(u2) ≤ 8 before WMaker’s
move in round n. So, if dB(v, V (P ′)) + dB(u2, V (P ′)) ≥ v(P ′) = n − 3,
it follows that dB(v, V (P ′)) ≥ n − 11. To make such a large degree at
vertex v, WBreaker needed at least 2(n− 11)− 2 moves because he is also
a walker. Since he played exactly n moves, this is not possible.
So, in round n WMaker claims vv′ and, in the last round, n + 1, she
moves to u2. WBreaker is not able to prevent WMaker from claiming
v′u2, because he finished his move in round n at vertex v.

Let dB(w,U) = 2 before WMaker’s move in round n − 3 and let
wu1, wu2 ∈ E(B). From Corollary 4.3 we know that WBreaker has moved
to u1 or u2 from vertex w in his last move, because at the end of round
n − 4 when WMaker came to w, we had dB(w,U) ≤ 1. Assume that
WBreaker is at vertex u2. Edges u1u2, u2u3, u1u3 /∈ E(B). Otherwise, this
would mean that WBreaker claimed some of these edges in some round
before round n− 3 and we would have a contradiction to Corollary 4.2.
WMaker claims wu3 in round n − 3. If in the following round WBreaker
moves to u3, WMaker claims u3u1 and then u1u2 in round n − 1.
WBreaker is not able to prevent WMaker from claiming u1u2 because he
finished his move in round n− 2 at vertex u3.
If WBreaker moves to u1 in round n− 2, WMaker claims u3u2. In round
n − 1 WMaker identifies a vertex v ∈ V (P ) such that edges u2v and
vu1 are free. Similarly as above we can prove that such vertex v exists.
WMaker claims u2v in round n− 1 and in round n, she claims vu1. Since
WBreaker must move from u1 in round n−1, he can not prevent WMaker
from claiming vu1 in the last round n.
Otherwise, WMaker can visit the remaining two vertices in two moves.

WMaker–WBreaker Hamilton Cycle game

Proof of Theorem 2.7. First, we describe WMaker’s strategy and then
prove that she can follow it. At the beginning of the game U = V (Kn).
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Stage 1 In the first n−4 rounds WMaker builds a path P of length n−4
(with n− 3 vertices) by playing according to the strategy S.

Stage 2 In the next at most 4 rounds, WMaker closes the cycle of length
n− 2 or n− 1.
Denote by v1 the vertex in which WMaker starts the game. In round n−3,
WMaker from her current position moves to vertex ui ∈ U , i ∈ {1, 2, 3}
which is not incident with v1 in B. If WMaker can claim the edge uiv1 in
her following move, then she claims it and creates a cycle of length n− 2.
Otherwise, she moves to uj along the edge uiuj , where i, j ∈ {1, 2, 3} and
i 6= j, in round n− 2.
If the edge ujv1 is free after WBreaker’s move in round n − 1, WMaker
claims this edge and closes the cycle of length n− 1.
Otherwise, she finds a vertex v ∈ V (P ) such that edges ujv and vv1 are
free. WMaker first claims the edge ujv and then in the following round,
n, she claims vv1 and thus closes the cycle of length n− 1.

Stage 3 Depending on how Stage 2 ended, WMaker completes the
Hamilton cycle in at most 8 rounds. The details follow in the analysis of
this stage.

We now prove that WMaker can follow her strategy.

Stage 1 Corollary 4.6 implies that WMaker can follow her strategy in
Stage 1 and build the path P of length n− 4, thus visiting n− 3 vertices
in n− 4 moves.

Stage 2 At the beginning of round n−3, WMaker is positioned at vertex
x and U = {u1, u2, u3}. We know that WMaker started the game at the
vertex v1 and we consider several cases.

Case 1 WBreaker is not positioned at vertex v1 at the beginning of
WMaker’s move in round n− 3.

Case 1.a Suppose that dB(x, U) = 2 before WMaker’s (n − 3)rd move.
Let u1x, u2x ∈ E(B). From Corollary 4.4 we know that u3x /∈ E(B),
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because after WBreaker’s move (and before WMaker’s move) in each round
we can have dB(x, U) ≤ 2. Also, WBreaker must be positioned at u1 or u2,
that is, one of the edges, u1x or u2x is the edge which WBreaker claimed in
his last move. Otherwise, we would have a contradiction to Corollary 4.3
and Corollary 4.4. Suppose that WBreaker finished his (n− 3)rd move at
vertex u1.

Claim 4.10. For all i ∈ {1, 2, 3}, v1ui /∈ E(B), before WMaker’s (n−3)rd

move.

Proof. Suppose that at least one of these three edges is in WBreaker’s
graph.
Based on the assumption of Case 1.a, we know that WBreaker claimed the
edge u2x in his (n− 4)th move, and the edge xu1 in his (n− 3)rd move. In
round n − 5 he moved to u2 from some vertex. Assume that this vertex
is v1. So, u2v1 ∈ E(B). Following the proof of Lemma 4.8 line by line
with m = v1, WMaker would visit u2 in round n− 4. A contradiction, as
she visited x in this round. Note that if the edge v1u2 existed earlier, the
analysis is either the same or if WBreaker claimed u2v1, by moving from
u2 to v1, in some round k ≤ n − 7, then by Lemma 4.9, WMaker could
visit u2 at latest in round k + 1 ≤ n− 6, which is a contradiction.
If u1v1 ∈ E(B), then it follows that WBreaker could claim it, at latest, in
round n − 6. By similar analysis as above, we can conclude that this is
also not possible.
Now suppose that v1u3 ∈ E(B). If WBreaker in some round k ≤ n − 7
moved from u3 to v1, then Lemma 4.9 implies that WMaker would visit u3
at latest in round n − 6. A contradiction. Otherwise, WBreaker in some
round k ≤ n−8 moved from his current position p to vertex v1 and then in
round k+ 1 he claimed v1u3. Applying Lemma 4.8 with m = v1, WMaker
visits u3 at latest in round k + 3 ≤ n− 5. A contradiction.

Claim 4.10 gives that in her (n − 3)rd move, WMaker can claim the edge
xu3 and in the following round, n−2, she can close a cycle of length n−2,
by claiming the edge u3v1.

Case 1.b Suppose that dB(x, U) = 1 before WMaker’s move in round
n − 3. Let xu1 ∈ E(B). Since WMaker visited x in round n − 4, this
means that WBreaker claimed xu1 in round n−4, as otherwise this would
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contradict Corollary 4.2 before round n−4. If WBreaker finished (n−4)th

move in x, after his move in round n − 3 we can have Case 1.a. which
we already considered. If WBreaker moved to some v on WMaker’s path
v 6= v1, then WMaker could close a cycle of length n − 2 in the next two
moves.
Assume that WBreaker finished his (n− 4)th move in u1.

Claim 4.11. After round n− 4, uiv1 /∈ E(B) for each i ∈ {1, 2, 3}.

Proof. Suppose that ∃i ∈ {1, 2, 3} such that v1ui ∈ E(B). Since WBreaker
moved from x to u1 in round n− 4, it follows that in round n− 5, he came
from some vertex p to x. We know that p /∈ {u1, u2, u3} following S and
due to Corollary 4.2. Thus, it could happen that WBreaker claimed u2p
(or u1p or u3p) in round n−6 and in round n−7, he claimed v1u2 (or v1u1
or v1u3). Let v1u2, u2p ∈ E(B). By Lemma 4.8 with m = v1, WMaker
visits u2 at latest in round n− 5. A contradiction.
If WBreaker moved from ui, i ∈ {1, 2, 3} to v1 in some round k ≤ n −
6, then by Lemma 4.9, WMaker could visit ui at latest in round k + 1.
A contradiction. Thus, after round n − 4, all edges u1v1, u2v1, u3v1 are
free.

If WBreaker, in his (n− 3)rd move, claims u1u2 (respectively to u1u3),
then WMaker moves from x to u3 (or u2). In the following round, n − 2,
she claims u3v1 (or u2v1), which is free according to Claim 4.11, and closes
the cycle of length n− 2.
If WBreaker, in his (n−3)rd move, claims u1v1, then WMaker moves to u2
or u3. Suppose WMaker claimed xu2. In the following round WBreaker
can claim v1u2. So, WMaker is not able to close the cycle of length n− 2
in round n− 2. In that case, she moves to u3 along u2u3 (u2u3 /∈ E(B) as
this contradicts Corollary 4.2 before round n−3). In round n−1, WMaker
moves from u3 to v1 and makes a cycle of length n− 1. WBreaker cannot
block her because he finished his (n−2)nd move at vertex u2. The analysis
is the same if WMaker claimed xu3 in round n− 3.

Case 1.c Suppose that dB(x, U) = 0 before WMaker’s move in round
n− 3.
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Claim 4.12. Before WMaker’s (n − 3)rd move, there can be at most two
vertices from U adjacent to v1 in B.

Proof. If u1v1, u2v1, u3v1 ∈ E(B), then WBreaker spent at least 4 moves
to do this. Assume that he claimed edges in this order: u1v1, v1u2, u2v1
and v1u3. Thus, he moved from u1 to v1 in round k ≤ n − 6. Applying
Lemma 4.9 we conclude that WMaker can visit u1 at latest in round k+1 ≤
n−5. A contradiction. Similarly, if WBreaker first visited u1 coming from
vertex v1 ∈ V (M) in round k ≤ n − 7, then by Lemma 4.8 with m = v1,
WMaker visits u1 at latest in round k + 2 ≤ n− 5. A contradiction.

Claim 4.12 implies that there can be at most two vertices from U ,
adjacent to v1 in B. If there are exactly 2 vertices, say u1, u2 adjacent to
v1, then in the similar way as in the proof of Claim 4.12, we can show
that WBreaker finished his last move, in round n− 3, in vertex u1 or u2.

In her (n − 3)rd move, WMaker claims xu3. Whatever WBreaker
plays in round n−2, he will not be able to prevent WMaker from claiming
u3v1 in this round. Thus, WMaker closes the cycle of length n − 2 in
round n− 2.

Case 2 Suppose that WBreaker is at vertex v1 after his move in round
n− 3.

Claim 4.13. It is not possible that at the same time uiv1, ujv1 ∈ E(B)
for some i, j ∈ {1, 2, 3}, i 6= j and that WBreaker is at v1 after his move
in round n− 3.

Proof. If the assertion of the claim was true, it would mean that WBreaker
spent at least three moves claiming edges in the following order: uiv1, v1uj
and ujv1, for some i, j ∈ {1, 2, 3}, i 6= j. This is not possible because of the
following. Let i = 1 and j = 2. Suppose that WBreaker came to vertex
u1 in round k ≤ n− 6 from some vertex p which was on his path because
WBreaker is a walker, and then to a vertex v1 ∈ V (M) in round k + 1.
By Lemma 4.9, WMaker visits u1 at latest in round k + 2 ≤ n − 4. A
contradiction.
If WBreaker came from v1 to u1 in some round k ≤ n − 6, then by
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Lemma 4.8 with m = v1, then WMaker would visit u1 at latest in round
k + 2 ≤ n− 4. A contradiction.

Claim 4.13 implies that there can be at most one edge v1ui ∈ E(B) for
i ∈ {1, 2, 3}. Thus, suppose that edge v1u2 ∈ E(B), that is, WBreaker
came from u2 to v1. WMaker is at vertex x. We know that dB(x, U) ≤ 1
because of Corollary 4.3 and because in his last move WBreaker moved
to v1. Suppose the edge xu1 is free. WMaker claims it. If edge v1u1 is
free at the beginning of WMaker’s (n− 2)nd move, then WMaker claims it
and closes the cycle of length n−2. Otherwise, this means that WBreaker
claimed this edge in his (n−2)nd move (Claim 4.13). In this case, WMaker
moves to u3. The edge u1u3 must be free due to Corollary 4.2 after round
n − 4. In round n − 1 WBreaker is not able to prevent WMaker from
claiming the edge u3v1 because he finished his previous move at vertex u1.
So, the cycle of length n− 1 is created in WMaker’s graph.
Therefore, WMaker is able to create a cycle of length n− 2 or n− 1.

Stage 3 Depending on how Stage 2 ended we analyse two cases.

Case 1 Suppose that WMaker created a cycle C of length n − 2. She
played exactly n − 2 rounds. WMaker’s current position is at vertex v1.
Denote by vn−2 the vertex which was last visited by WMaker in round
n − 3. Let U = {u1, u2}. In round n − 1 WMaker returns from v1 to
vertex vn−2. Lemma 4.7 guarantees that dB(ui) ≤ 6 for all i ∈ {1, 2, 3}
in round n − 3 (in which WMaker visited vn−2) and so in that moment
dB(ui, C) ≤ 6 for i ∈ {1, 2}. It follows that, after WBreaker’s move in
round n, vertices u1, u2, vn−2 can have degree at most 8 in B towards cy-
cle C. Since v(C) = n−2, by pigeonhole principle, there are 3 consecutive
vertices w1, w2, w3 on cycle C such that there are no WBreaker’s edges be-
tween {w1, w2, w3} and {u1, u2, vn−2}. Since n is large enough, there are
at least 4 such triples (with at least 6 vertices if triples are not disjoint).
If one of these 6 vertices, say t, is such that dB(t) ≥ (n + c)/4, for some
constant c ≥ 0, WMaker will choose another triple not containing such a
vertex. Taking into consideration that both players are walkers, there can
be at most one vertex in V (Kn), with such a large degree. Otherwise, this
would mean that WBreaker played more than n moves.
WMaker first claims the edge vn−2w2 in round n. If in the following round,
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Figure 4.2: WMaker’s cycle C of the length n− 1 after round n+ 2.
Left (right) figure illustrates the case when WMaker claimed u2w1 (u2w3) in

round n+ 2.

WBreaker claimed the edge wiu1 for some i ∈ {1, 2, 3}, then WMaker
chooses edge w2u2 (otherwise, if he claimed wiu2, we just interchange the
vertices u1 and u2) and in round n+ 2 closes the cycle C of length n− 1
by claiming either the edge u2w1 or u2w3, as both are free. This is illus-
trated on Figure 4.2. If WBreaker did not claim any of edges wiu1, wiu2,
for i ∈ {1, 2, 3}, in round n+ 1, then WMaker moves from w2 to either of
these two vertices u1, u2. In round n+2, she moves from chosen vertex (u1
or u2) to w1 or w2, because WBreaker could not claim both edges uiw1

and uiw2 in round n+ 2, where ui, i ∈ {1, 2}, is the vertex which WMaker
chose in the previous round.
Let U = {u1}. Suppose that WMaker finished her last move at w1. Con-
sider the following cases.

a) WBreaker finished his (n + 3)rd move at vertex u1. Then WMaker
returns from w1 to vertex u2 which now belongs to C. By similar rea-
soning as above, knowing that dB(u1, C) ≤ 11 and dB(u2, C) ≤ 11,
by pigeonhole principle, we conclude that there are three vertices
y1, y2, y3 on C such that there are no Breaker’s edges between
{y1, y2, y3} and {u1, u2}. Therefore, WMaker in round n+ 4 claims
u2y2 and then in rounds n+ 5 and n+ 6 claims y2u1, u1y1 (or u1y3),
respectively.
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b) WBreaker finished his (n + 3)rd move at some vertex v 6= u1. By
pigeonhole principle, as v(C) = n − 1 and dB(w1) < n/4 and
dB(u1) ≤ 10, WMaker can find three consecutive vertices y1, y2, y3
on C such that there are no Breaker’s edges between {y1, y2, y3} and
{w1, u1}. She first claims w1y2 and then y2u1 and u1y1 (or u1y3),
and completes the Hamilton cycle in round n + 5. This is possible
by using the same argument as above.

Case 2 Suppose that in Stage 2 WMaker created a cycle C of length
n− 1 (in at most n rounds). Denote by vn−1 the vertex from U that was
last visited by WMaker. In the last round of Stage 2, WMaker moved from
vn−1 to v1. Let U = {u}.
WMaker first moves from v1 to vn−1 in round k ≤ n + 1 (k = n + 1 if
WMaker finished her cycle in round n of previous stage).
If WBreaker finished his move in round k+1 ≤ n+2 at some vertex differ-
ent from u, then WMaker finds three consecutive vertices y1, y2, y3 on C,
such that there are no edges between {y1, y2, y3} and {u, vn−1} in B. Since
dB(vn−1), dB(u) ≤ 9 in round k + 1 ≤ n + 2 and since v(C) = n − 1, by
pigeonhole principle, such vertices y1, y2, y3 exist. She first claims vn−1y2
and in the following round the edge y2u. In the last round, k+ 3 ≤ n+ 4,
she claims uy1 or uy3 because WBreaker could not claim both edges.
If WBreaker finished his move in round k + 1 ≤ n + 2 at vertex u, then
WMaker moves from vn−1 to vn−2 in this round. In round k + 2 ≤ n + 3
WBreaker must move from u. In this round WMaker finds three con-
secutive vertices y1, y2, y3 on C, such that there are no edges between
{y1, y2, y3} and {u, vn−2} in B. These vertices exist as WMaker visited ver-
tex vn−2 in round n− 3 and in that moment we had dB(vn−2), dB(u) ≤ 6
(Lemma 4.7). Since dB(vn−2), dB(u) ≤ 9 in round k + 2 ≤ n + 3 and
since v(C) = n − 1, by pigeonhole principle, such vertices y1, y2, y3 ex-
ist. WMaker first claims the edge vn−2y2. In the following round WMaker
claims y2u and in the final round, k+4 ≤ n+5, she completes the Hamilton
cycle by claiming edge uy1 or uy3.
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4.2 WBreaker’s strategy

In this section we prove Theorem 2.8. We provide WBreaker with a strat-
egy which allows him to postpone WMaker’s winning by at least n moves.
Here, we suppose that WMaker starts the game and U = V (Kn).

Proof. WBreaker plays arbitrarily until |U | = 3. To be able to visit n− 3
vertices, WMaker needs to play at least n − 4 moves. Let u1, u2, u3 ∈ U
after round k ≥ n− 4.
If in round k+1 ≥ n−3 WMaker moves to some vertex v 6= ui, i ∈ {1, 2, 3},
then she will need at least 3 more moves to visit u1, u2, u3, which satisfies
the claim.
Suppose that in round k+1 ≥ n−3 WMaker moves to some ui, i ∈ {1, 2, 3}.
WBreaker moves to uj , j 6= i. WBreaker is able to move to uj since uj ∈ U
and there is no WMaker’s edge between WBreaker’s current position and
vertex uj .
Without loss of generality, suppose that WMaker has moved to u1 and
WBreaker to u2. If WMaker in round k + 2 moves to one of {u2, u3},
WBreaker claims the edge u2u3. As u2u3 ∈ E(B) from her current po-
sition, WMaker is not able to visit the remaining isolated vertex in her
graph in round k+ 3 ≥ n− 1, so she needs to make at least one additional
move to touch the remaining vertex. If WMaker moves to some vertex
v 6= ui, i ∈ {2, 3} in round k + 2 ≥ n − 2, then she will need at least two
more moves to visit u2, u3.
It follows that WMaker needs at least n moves to win in the Connectivity
game.

4.3 Concluding remarks

According to the theorems 2.6 and 2.8 WMaker needs t, n ≤ t ≤ n + 1
moves to make a spanning tree. From Theorem 2.7 it follows that she
needs at most n+ 6 moves to create a Hamilton cycle. As WMaker needs
at least n move to make a spanning tree, it follows that WMaker can not
create Hamilton cycle in less that n+ 1 moves.
Note that b = 1 is the largest WBreaker’s bias for which WMaker can win
in the Connectivity game and Hamilton Cycle game. For b = 2 WBreaker
can isolate a vertex in WMaker’s graph in the following way: in each round
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he can use one move to return to the fixed vertex along the previously
claimed edge, and the other to claim the edge between this particular
vertex and WMaker’s current position.
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Chapter 5

MBTD game on cubic graphs

We study Maker–Breaker total domination game on cubic graphs and prove
the theorems 2.9, 2.10, 2.11, 2.12, 2.13 and 2.14. Recall that the MBTD
game is played by two players Dominator and Staller. Dominator wants to
build a total dominating set, and Staller tries to prevent him. To determine
which connected cubic graphs are Dominator’s win and which are Staller’s
win, we classify cubic graphs according to the number of vertices lying in
two triangles, in one triangle and zero triangles.

This chapter is organized in the following way. In Section 5.1 we give
some additional notation and statements needed for proving stated the-
orems. In Section 5.2 we present the proofs of theorems 2.9, 2.10, 2.11,
2.12, 2.13 and 2.14. Concluding remarks we give in Section 5.3.

5.1 Preliminaries

We say that a vertex x ∈ V (G) is adjacent to some triangle Y ⊆ G, where
V (Y ) = {y1, y2, y3}, if xyi ∈ E(G), for some i ∈ {1, 2, 3}. Also, we say
that two triangles X ⊆ G and Y ⊆ G, with the vertex sets V (X) =
{x1, x2, x3} and V (Y ) = {y1, y2, y3}, are adjacent if xiyj ∈ E(G) for some
i, j ∈ {1, 2, 3}.
Assume that the MBTD game is in progress. We denote by d1, d2, ... the
sequence of vertices chosen by Dominator and by s1, s2, ... the sequence
of vertices chosen by Staller. At any given moment during this game,
we denote the set of vertices claimed by Dominator by D and the set of

68



5.1. PRELIMINARIES

vertices claimed by Staller by S. As in [60], we say that the game is the
D-game if Dominator is the first to play, i.e. one round consists of a move
by Dominator followed by a move of Staller. In the S-game, one round
consists of a move by Staller followed by a move of Dominator. We say
that the vertex v is isolated by Staller if all neighbours of v are claimed by
Staller. Following the notation from [59] we say that a graph G is

• D, if Dominator wins the game

• S, if Staller wins the game.

We point out some basic properties of the MBTD games given in [59].

Proposition 5.1. ([59], Corollary 2.2(ii)) Let G be a graph. Let V1, ..., Vk
a partition of V (G) such that Vi, i ∈ [k] := {1, ..., k}, induces a graph on
which Dominator wins the MBTD game, then Dominator wins MBTD
game on G.

Proposition 5.2. ([59], Proposition 2.4) Dominator wins in MBTD game
on cycle C4.

5.1.1 Traps

While playing against the Dominator, Staller’s best option to prevent
him from winning is to make different kinds of traps. In the following, we
define these traps.

Consider the MBTD game on graph G. Let v ∈ V (G) and let
u1, u2, u3 ∈ NG(v). Let u2 and u3 be free vertices. Let u1 ∈ S and
suppose that it is Staller’s turn to make her move. If Staller claims u2 (or
u3), she creates a trap for Dominator, that is, Staller forces Dominator to
claim u3 (or u2) as otherwise she isolates v.

Double trap. We say that Staller creates a double trap u − v in the
MBTD game on G, where u, v ∈ V (G) are free vertices if after Staller’s
move Dominator is forced to claim both vertices u and v. Since Dominator
can not claim two vertices in one move, in her next move Staller will claim
either u or v and isolate either a neighbour of u or a neighbour of v.
If Staller creates a double trap, Dominator loses the game.
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Diamond trap. Suppose that the MBTD game on the connected
cubic graph G is in progress. Let Z ⊆ G be a diamond with
the vertex set V (Z) = {z1, z2, z3, z4} and the edge set E(Z) =
{z1z2, z2z3, z3z4, z4z1, z2z4} and suppose that all vertices from V (Z) are
free. By claiming z1 (or z3) Staller creates a diamond trap on Z. That is,
she forces Dominator to claim a vertex from V (Z) \ {z1} (or V (Z) \ {z3}),
as otherwise, in her next move Staller will claim z3 (or z1) and create a
double trap z2 − z4.

Vertex-diamond trap. Suppose that the MBTD game on the con-
nected cubic graph G is in progress. Consider subgraph G′ ⊆ G
with the vertex set V (G′) = {v, y1, y2, z1, z2, z3, z4} where the ver-
tices z1, z2, z3 and z4 form a diamond Z with the edge set E(Z) =
{z1z2, z2z3, z3z4, z4z1, z2z4}. Let E(G′) = E(Z) ∪ {vy1, vy2, vz1}. Let
y2, z1, z2, z3, z4 be free vertices. Suppose that y1 ∈ S and it is Staller’s
turn to make her move. If Staller claims z1 she creates a vertex-diamond
trap y2−Z. That is, she forces Dominator to claim y2, as otherwise, Staller
can isolate v in her next move. Also, Staller has created a diamond trap on
Z which forces Dominator to claim V (Z) \ {z1}. In any case, Dominator
will lose the game.

5.1.2 Pairing strategy for Dominator.

In the MBTD game played on certain graphs Dominator, to win, will use
the pairing strategy. This means that the subset of the board of the game
can be partitioned into pairs such that every winning set (i.e. open neigh-
bourhood of a vertex in the graph) contains one of the pairs. When Staller
claims an element from some pair, Dominator will respond by claiming the
other element from that pair.

5.2 Graphs from D and S
First we consider MBTD game on a connected cubic graph which is the
union of vertex-disjoint diamonds and prove Theorem 2.9.

The proof of Theorem 2.9. The vertex set V (G) can be partitioned into
4-sets, each containing a C4. So, by Proposition 5.2 and Proposition 5.1
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Dominator wins on C4, and therefore on diamond.

Definition 5.3. Suppose that the MBTD game on the connected cubic
graph G on n ≥ 6 vertices is in progress.

1. By G1 denote a induced subgraph of G with the vertex set V (G1) =
{u0, u1, u2, u3, v0, v1, v2, v3} where the vertices u1, u2, u3 form a tri-
angle U and the vertices v1, v2, v3 form a triangle V . Let E(G1) =
E(U) ∪ E(V ) ∪ {u0u1, v0v1}. The subgraph is illustrated in Figure
5.1(a).

2. By G2 denote a subgraph of G with the vertex set
{x1, x2, x3, u1, u2, u3, v1, v2, v3, z1, z2, z3, v} where the vertices
x1, x2, x3 from a triangle X, u1, u2, u3 form a triangle U ,
v1, v2, v3 form a triangle V , and z1, z2, z3 form a triangle Z.
Let E(G2) = E(X)∪E(U)∪E(V )∪E(Z)∪ {v3v}. The subgraph is
illustrated in Figure 5.1(b).

3. By G3 denote a subgraph of G which contains a triangle U with
the vertex set {u1, u2, u3}, and a diamond Z with the vertex set
{z1, z2, z3, z4} and the edge set E(Z) = {z1z2, z2z3, z3z4, z4z1, z2z4}.
Let E(G3) = E(U) ∪ E(Z) ∪ {u2z1}. The subgraph is illustrated in
Figure 5.1(c).

4. By G4 denote a subgraph of G which contains a triangle U
with the vertex set {u1, u2, u3} and two diamonds, a diamond
Y with the vertex set {y1, y2, y3, y4} and the edge set E(Y ) =
{y1y2, y2y3, y3y4, y2y4}, and a diamond Z with the vertex set
{z1, z2, z3, z4} and the edge set E(Z) = {z1z2, z2z3, z3z4, z4z1, z2z4}.
Let E(G4) = E(U) ∪ E(Y ) ∪ E(Z) ∪ {u2y1, u3z1}. The subgraph is
illustrated in Figure 5.1(d).

To prove Theorem 2.10 and Theorem 2.11 we will need the following
lemmas.

Lemma 5.4. Consider the D-game on G1. If d1 = u0, then G1 is S. Also,
Staller wins S-game on G1.

Proof. We have d1 = u0. Then, s1 = v2. Consider the following cases:
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(a) (b) (c) (d)

Figure 5.1: Subgraph (a) G1 (b) G2 (Vertex v can belong to V (Z)∪V (X))
(c) G3 (d) G4.

Case 1. d2 ∈ {u1, u3, v1}. Then, s2 = v3 which forces d3 = v0. In her third
move, if d2 = u1, Staller claims v1 and creates a double trap u2−u3,
if d2 = u3, Staller claims u2 and creates a double trap u1− v1, and if
d2 = v1, Staller claims u1 Staller and creates a double trap u3 − u2.

Case 2. d2 ∈ {u2, v3, v0}. Then, by playing s2 = u3 Staller creates a double
trap u1 − v1. In her third move Staller isolates u2 or v3.

In the S-game, Staller can pretend that she is the second player and d1 =
u0 and win the game.

Lemma 5.5. Consider the MBTD game on G2. Let u1 ∈ S and suppose
that at least the vertices u2, u3, v1, v2, v3, v, z3 are free. Suppose that it is
Staller’s turn to make her move. Then, Staller wins.

Proof. Staller plays in the following way: s1 = u2 which forces d1 = z3 and
s2 = v2 which forces d2 = u3. By playing s3 = v1 Staller creates a double
trap v3 − v. In her next move Staller isolates either v2 or v3 by claiming
v3 or v.

Lemma 5.6. Consider the MBTD game on G3. Let u1 ∈ S and suppose
that at least the vertices u3, z1, z2, z3, z4 are free. Suppose that it is Staller’s
turn to make her move. Then, Staller wins.
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Proof. Staller plays s1 = z1 and creates a vertex-diamond trap u3 − Z.
Dominator can not win.

Lemma 5.7. Staller wins the S-game on G4.

Proof. Consider the S-game on G4. Staller plays in the following way:
s1 = y1 which forces d1 ∈ {y2, y3, y4} (a diamond trap on Y ), as otherwise
Staller will claim y3 in her second move and then in her third move she can
isolate y2 or y4. Next, s2 = u1 which forces d2 = u3. By playing s3 = z1
Staller creates a vertex-diamond trap u2 − Z.

Lemma 5.8. Consider the MBTD game on the connected cubic graph η
illustrated in Figure 5.2. In the D-game, if d1 ∈ {h1, h3}, Dominator wins.
Otherwise, Staller wins as the second player. In the S-game on η Staller
wins.

Figure 5.2: Graph η.

Proof. Consider the D-game and let d1 ∈ {h1, h3}. W.l.o.g. let d1 = h1.
To dominate vertices from V (Y )∪V (K) Dominator plays in the following
way:

Case 1. If Staller’s first move on V (Y ) ∪ V (K) is y1, Dominator responds
with k1. To cover the remaining vertices from V (Y ) ∪ V (K), Dom-
inator will use the pairing strategy on pairs (y2, k3) and (k2, k4).
If Staller claims y3, Dominator will claim an arbitrary free vertex
among {y2, k2, k3, k4}.
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Case 2. If Staller’s first move on V (Y ) ∪ V (K) is a vertex from {y2, y3},
Dominator responds with y1. To dominate the remaining vertices
from V (Y )∪V (K), Dominator will use the pairing strategy on pairs
(k1, k3) and (k2, k4).

Case 3. If Staller’s first move on V (Y ) ∪ V (K) is k1 (or k3), Dominator
responds with k3 (or k1). To cover the remaining vertices from
V (Y ) ∪ V (K), Dominator will use the pairing strategy where the
pairs are (y1, y3) (or (y1, y2)) and (k2, k4). If Staller claims y2 (or
y3), Dominator will claim an arbitrary free vertex from one of the
pairs.

To cover vertices from V (H) ∪ V (W ) ∪ V (M) Dominator plays in the
following way. First, he makes a pairing (h2, h4) and (m2,m4), and applies
a pairing strategy there. So, suppose, h2,m2 ∈ D. It is enough to consider
the following cases.

Case 1. If Staller’s first move on V (H)∪V (W )∪V (M) is h3, Dominator re-
sponds with w1. In order to cover vertices from V (W )∪V (M) Dom-
inator will use the pairing strategy on pairs (w2, w3) and (m1,m3).

Case 2. If Staller’s first move on V (H)∪ V (W )∪ V (M) is w1 (or w2), Dom-
inator responds with m1 (or m3). In order to cover vertices from
V (H) ∪ V (W ) ∪ V (M) Dominator will use the pairing strategy on
pairs (w2,m3) (or (w1,m1)) and (w3, h3).

Case 3. If Staller’s first move on V (H) ∪ V (W ) ∪ V (M) is w3, Dominator
responds with m1. In order to cover vertices from V (H) ∪ V (W ) ∪
V (M) Dominator will use the pairing strategy on pairs (w2, h3) and
(w1,m3).

Case 4. If Staller’s first move on V (H)∪V (W )∪V (M) is m1 (or m3), Dom-
inator responds with m3 (or m1). In order to cover vertices from
V (H) ∪ V (W ) ∪ V (M) Dominator will use the pairing strategy on
pairs (w1, w3) and (w2, h3) (or (w1, w2) and (w3, h3)).

Next, suppose that d1 ∈ {h2, h4}. W.l.o.g. let d1 = h2. Staller plays in the
following way: s1 = k1 which forces d2 ∈ V (K) \ {k1} (a diamond trap),
s2 = y3 which forces d3 = y1, s3 = h1 which forces d4 = y2 and s4 = h3
which forces d5 = h4. Next, s5 = w1. Afterwards,
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- if d6 = w2 (or d6 = w3), then s6 = m1 (or s6 = m3) and Staller creates a
vertex-diamond trap w3 −M (or w2 −M).

- if d6 ∈ {m1,m2,m4} (or d6 = m3), then s6 = w2 (or s6 = w3) and Staller
creates a double trap m3 − w3 (or m1 − w2). In her next move Staller
isolates either w3 or w1 (or, w2 or w1).

Next, suppose that d1 /∈ V (H). W.l.o.g. let d1 ∈ V (Y ) ∪ V (K). Then,
Staller plays on the subgraph G4 with the vertex set V (W )∪V (H)∪V (M).
By Lemma 5.7, Staller wins. In the the S-game, Staller uses the same
strategy.

Lemma 5.9. Consider the MBTD game on the connected cubic graph ω
illustrated in Figure 5.3, where the chain of diamonds adjacent to A can
consist of one or more diamonds. In the D-game, if d1 = a1 Dominator
wins, if d1 ∈ V (D1) Staller wins. In the S-game on ω Staller wins.

Figure 5.3: One example of graph ω.
Chain of diamonds consists of three diamonds.

Proof. We first look at the D-game on ω. In his first move Dominator
claimed a1. When Staller plays on a diamond which is different from
H, Dominator will apply a pairing strategy on that diamond where one
pair consists of two opposite vertices of that diamond and remaining two
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vertices in diamond form the other pair. Since each diamond contains a
4-cycle, Dominator is able to cover all vertices from these diamonds, by
Proposition 5.2.
Dominator also makes a pairing (a2, a3) and (h2, h4), and apply the pairing
strategy when Staller plays there. Let a2, h2 ∈ D.

- If Staller’s first move on V (B) ∪ V (H) is b1, Dominator responds
with h1. If Staller in her next move claims a vertex from {b2, b3, h3},
Dominator claims the free vertex from {b2, h3} and in this way he
covers all vertices from the graph.

- If Staller’s first move on V (B) ∪ V (H) is b2 (or b3), Dominator re-
sponds with h1 (or h3). If Staller in her next move claims a vertex
from {b1, h3, b3} (or {b1, h1, b2}), Dominator claims the free vertex
from {b1, h3} (or {b1, h1}) and he covers all vertices.

- If Staller’s first move on V (B) ∪ V (H) is h1 (or h3), Dominator
responds with h3 (or h1). In his next move Dominator claims a free
vertex from {b1, b3} (or {b1, b2}).

Let d1 ∈ V (D1). Then, Staller, in her first move plays s1 = b1. If
d2 ∈ V (A)∪ V (B)∪ V (Di), then Staller can create b3 −H trap or b2 −H
trap by claiming h1 if d2 = b2, or h3 if d2 = b3. So, Dominator needs to
play his second move on H. If d2 ∈ {h1, h2, h4} (or d2 = h3), then s2 = b2
(or s2 = b3) forcing d3 = h3 (or d3 = h1). Next, s3 = a1 forcing d4 = b3
(or d4 = b2).
If chain of diamonds consist only of one diamond, say D1, then if
d1 ∈ {z1, z2, z4} Staller plays s4 = a2 creating z3 − a3 trap, and if d1 = z3
Staller plays s4 = a3 creating z1 − a2. Otherwise, if chain has more than
one diamond, then Staller claims a vertex from a diamond incident with
a3 and creates vertex-diamond trap.

Consider the S-game. Staller plays in the following way: s1 = h1
which forces d1 ∈ V (H) \ {h1} (a diamond trap), s2 = b1 which forces
d2 = b3, s3 = z1 which forces d3 ∈ V (D1) \ {z1} (a diamond trap) and
s4 = a3. Staller creates a double trap a1 − a2.

In the following we look at the graph on n vertices that consists on
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vertex-disjoint triangles and prove that if n = 6 Dominator wins in the
S-game while for every n > 6 Staller wins even as the second player.

The proof of Theorem 2.10. First, let n = 6. Consider the S-game. Let
U be a triangle with the vertex set {u1, u2, u3} and let V be a triangle
with the vertex set {v1, v2, v3}. Let uivi ∈ E(G) for every i ∈ {1, 2, 3}.
W.l.o.g. suppose that Staller in her first move chooses a vertex u1. Then
Dominator will choose a vertex from the opposite triangle V which is not
adjacent to u1, say a vertex v2. In her second move Staller needs to claim
u2, as otherwise Dominator will win after his second move. If s2 = u2,
then d2 = v3. In his third move Dominator will claim a free vertex from
{v1, u3} and win. One of these two vertices must be free after Staller’s
third move.

Let n > 6. Since the graph is cubic, the number of vertices needs
to be even, so we have the even number of triangles. Consider the D-game
on graph G. Suppose that in his first move Dominator claims some vertex
a1 which belongs to a triangle A with the vertex set V (A) = {a1, a2, a3}.

Case 1 Let a1b1 ∈ E(G) where b1 is a vertex of some triangle B with
the vertex set V (B) = {b1, b2, b3} and there is only one edge between A
and B. We consider the following subcases.

1.i. Triangle B is adjacent to one more triangle, say Y with the vertex
set V (Y ) = {y1, y2, y3}. So, there are two edges between B and Y , say
b2y2 and b3y3. Let y′1 ∈ NG(y1) for some y′1 ∈ V (G) \ {y2, y3}. Consider
a subgraph induced by {a1, b1, b2, b3, y1, y2, y3, y′1} where a1 is claimed by
Dominator and now it is Staller’s turn to make her move. By Lemma 5.4
it follows that Staller wins.

1.ii. Triangle B is adjacent to two more triangles, say Y with the vertex
set V (Y ) = {y1, y2, y3}, and W with the vertex set V (W ) = {w1, w2, w3}.
Let b2w2, b3y3 ∈ E(G). Let w′1 ∈ NG(w1) for some w′1 ∈ V (G) \ {w2, w3}
and let w′3 ∈ NG(w3) for some w′3 ∈ V (G) \ {w1, w2}.
In her first move Staller plays s1 = b1. The rest of the Staller’s strategy
depends on Dominator’s second move. So, we analyse the following cases.
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1.ii.1. d2 ∈ V (A).
Then, s2 = b2 which forces d3 = y3, s3 = w2 which forces d4 = b3.
If w′1 = ai (or w′3 = ai), for some i ∈ {2, 3}, and ai is claimed by
Dominator in his second move, then s4 = w1 (or w3). In this way
Staller creates a double trap w3−w′3 (or w1−w′1). In her next move
Staller isolates either w2 or w3 (or, either w2 or w1). Otherwise,
Staller can claim any of the vertices w1, w3 in her fourth move and
then play in the same way as above, i.e. she creates a double trap
and wins in the following move.

1.ii.2. d2 ∈ V (B).
W.l.o.g. let d2 = b3.

1.ii.2.1. Triangle Y is adjacent to two more triangles, say K with the vertex
set V (K) = {k1, k2, k3} and H = {h1, h2, h3}. Let y2k2 ∈ E(G) and
y1h1 ∈ E(G). Then, s2 = y3 which forces d3 = b2, s3 = y1 which
forces d4 = k2 and s4 = h1 which forces d5 = y2. Next, s5 = h2 and
Staller creates a double trap h3 − h′3, where h′3 ∈ NG(h3) for some
h′3 ∈ V (G) \ {h1, h2}. In her next move Staller isolates either h1 or
h3.
The statement holds also if h′3 ∈ (V (K) \ {k2}) ∪ (V (W ) \ {w2}) ∪
(V (A) \ {a1}).
It could be the case that one of these triangles K, H is the triangle
W . The statement also holds in this case.
If K = A, the statement also holds. If H = A, the proof is very
similar, but simpler, as the Staller wins in her fifth move.

1.ii.2.2. Triangle Y is adjacent to one more triangle, say K 6= A with the
vertex set V (K) = {k1, k2, k3}. Let y1k1, y2k2 ∈ E(G). Assume that
k′3 ∈ NG(k3) for some k′3 ∈ V (G) \ {k1, k2}. Since the graph induced
by {b3, y1, y2, y3, k1, k2, k3, k′3} is a variant of graph G1 where b3 ∈ D.
According to Lemma 5.4, Staller wins.
If K = W , the statement also holds.

1.ii.2.3. Triangle Y is adjacent to triangle A and there are two edges between
them, say y2a2, y1a3.
Then, Staller plays s2 = y3 which forces d3 = b2. By playing s3 = a2
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Staller creates a double trap a3−y1. In her next move Staller isolates
either a1 or y2.

1.ii.3. d2 ∈ V (Y ) ∪ V (W ). W.l.o.g. let d2 ∈ V (Y ).
Let w′1 ∈ NG(w1) and let w′3 ∈ NG(w3). Consider the following
subcases.

1.ii.3.1. d2 6= y3. W.l.o.g. let d2 = y1.
Then, s2 = w2 which forces d3 = b3 and s3 = b2 which forces d4 = y3.
It is enough to consider the case if one of the vertices w′1 and w′3 is
the vertex y1. Let, for example, w′1 = y1. Then, s4 = w1 and Staller
creates a double trap w3−w′3. In her next move Staller isolates either
w2 or w3.
Staller plays in the same way if y1 /∈ {w′1, w′3}.

1.ii.3.2. d2 = y3.
Then, s2 = w2 which forces d3 = b3, s3 = w1 which forces d4 = w′3
and s4 = w3. Staller creates a double trap b2−w′1. In her next move
Staller isolates either w2 or w1.

Case 2 Let C be a triangle with the vertex set V (C) = {c1, c2, c3} such
that a1c1, a2c2 ∈ E(G). Suppose that C is adjacent to some triangle B
with the vertex set V (B) = {b1, b2, b3}. If bia3 /∈ E(G), for all i ∈ {1, 2, 3},
then the analysis from Case 1 can be applied on B. Otherwise, consider
another triangle T adjacent to B and apply the adjusted analysis from
Case 1 on triangle T and its neighbours.
According to the analysed cases it follows that the graph G is S.

Next, we consider the connected cubic graph that consists of vertex-
disjoint triangles and diamonds, and prove Theorem 2.11.

The proof of Theorem 2.11. Consider the following cases.

Case 1 Let d1 = a1 ∈ V (A) where A is a triangle with the vertex set
V (A) = {a1, a2, a3}. Consider the following cases.

1.i. The vertex a1 is adjacent to a diamond H with the vertex set V (H) =
{h1, h2, h3, h4} where E(H) = {h1h2, h2h3, h3h4, h4h1, h2h4}. Let a1h1 ∈
E(G). Consider the following subcases.
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1.i.1. Vertex a2 is adjacent to a diamond D1 different from H and vertex
a3 is adjacent to a diamond D2 (which can be equal to one of the
diamonds D1, H).
Since the number of triangles must be even there exists at least one
more triangle, say X, with the vertex set V (X) = {x1, x2, x3} such
that one of the cases 1.i.1.a., 1.i.1.b., 1.i.1.c., 1.i.1.d., 1.i.1.e. and
1.i.1.f. from Figure 5.4 holds.

(a) (b) (c)

(d) (e) (f)

Figure 5.4: Subgraph (a) Case 1.i.1.a. (b) Case 1.i.1.b. (c) Case 1.i.1.c.
(d) Case 1.i.1.d. (e) Case 1.i.1.e. (f) Case 1.i.1.f.

For cases 1.i.1.a. and 1.i.1.b, consider S-game on the subgraph G4
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which vertex set is a union of V (X) and vertex sets of two diamonds
that are adjacent to X. By Lemma 5.7, Staller wins.

1.i.1.c. In case that one of the triangles Y and W is adjacent to k3, then,
w.l.o.g. suppose that triangle W is adjacent to k3. Then, Staller
plays in the following way:
s1 = k1 which forces d2 ∈ V (K) \ {k1} (a diamond trap), s2 = x2
which forces d3 = x3 and s3 = y3 which forces d4 = x1. Triangle Y
can be adjacent to some diamonds and/or triangles. The vertices of
these diamonds and/or triangles together with V (Y ) form one of the
subgraphs G1, G2 or G3. According to the lemmas 5.4, 5.5 and 5.6,
Staller wins.

1.i.1.d. Staller plays in the following way:
s1 = k1 which forces d2 ∈ V (K) \ {k1} (a diamond trap), s2 = x2
which forces d3 = x1 and s3 = y1 which forces d4 = x3. Triangle
Y can be adjacent to some diamonds and/or triangles. Vertices of
these diamonds and/or triangles together with V (Y ) form one of the
subgraphs G1, G2 or G3. According to the lemmas 5.4, 5.5 and 5.6,
Staller wins.

1.i.1.e. If the triangles X,Y, Z,W are adjacent only to triangles, then we
can use the analysis from the proof of Theorem 2.10 Case 1 where
X = B,Z = A and V (Z) 6⊆ D. Otherwise, if at least one of the
triangles are adjacent to diamond then we can have a subgraph from
Figure 5.4 (b), (c) or (d) for which we can apply an analysis from
the corresponding Case 1.i.1.b, 1.i.1.c or 1.i.1.d.

1.i.1.f. Consider the S-game on the subgraph G1 with the vertex set V (X)∪
V (Y ) ∪ {x′1, y′1}. By Lemma 5.4, Staller wins.

1.i.2. The vertices a2 and a3 are adjacent to the same triangle, say B,
where a2b2, a3b3 ∈ E(G).

1.i.2.a. B is adjacent to a triangle Y with the vertex set V (Y ) = {y1, y2, y3}.
Let b1y1 ∈ E(G). Then, there exists at least one more triangle, X
such that one of the cases from Figure 5.4 can occur, so adjusted
analysis from Case 1.i.1 can be applied.
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1.i.2.b. B is adjacent to a diamond K with the vertex set V (K) =
{k1, k2, k3, k4} where E(K) = {k1k2, k2k3, k3k4, k4k1, k2k4}. Let
b1k1 ∈ E(G). Then, s1 = k1 forces d2 = V (K) \ {k1}, s2 = b2
forces d3 = b3, s3 = a3 forces d4 = b1 and s4 = h1 creates a vertex-
diamond trap a2 −H.

1.i.2.c. B is adjacent to a diamond H, that is, b1h3 ∈ E(G). Since induced
subgraph with the vertex set V (A) ∪ V (B) ∪ V (H) is a connected
cubic graph, it follows that this graph is the graph G on 10 vertices.
In her first move Staller plays s1 = b1. Then

- if d2 = h1, Staller plays s2 = b3 which forces d3 = a2. Next, s3 = b2
and Staller creates a double trap a3 − h3. In her next move she
isolates either b3 or b1.

- if d2 ∈ V (H)\{h1}, Staller plays s2 = a2 which forces d3 = b3. Next,
s3 = a3 and Staller creates a double trap h1 − b2. In her next move
she isolates either a1 or b3.

- if d2 = a2 (or d2 = a3), Staller plays s2 = b2 (or s2 = b3) which
forces d3 = a3 (or d3 = a2). Next, s3 = h3 and Staller creates a
vertex-diamond trap b3 −H (or b2 −H).

- if d2 = b2 (d2 = b3), Staller plays s2 = a2 (or s2 = a3) which forces
d3 = b3 (or d3 = b2). Next, s3 = h1 and Staller creates a vertex-
diamond trap a3 −H (or a2 −H).
It follows that the graph G is S.

1.i.3. The vertex a2 is adjacent to a triangle, say T with the vertex set
V (T ) = {t1, t2, t3} and the vertex a3 is adjacent to a triangle, say B
with the vertex set {b1, b2, b3}. Let a2t2, a3b3 ∈ E(G).
There exists at least one more triangle, say X with the vertex set
V (X) = {x1, x2, x3}. If X is not adjacent to any of B, T , then one of
the cases from Figure 5.4 can occur, so adjusted analysis from Case
1.i.1 can be applied.
If X is adjacent to a triangle B or T and there are two edges between
them, then we can use Lemma 5.4, as we have subgraph G1.
Suppose that X is adjacent to at least one of the triangles B and
T and there is only one edge between X and that triangle. Let
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x1b1 ∈ E(G). Staller plays in the following way: s1 = h1 forcing
d2 ∈ V (H) \ {h1}, s2 = a3 forcing d3 = a2, s3 = b2 forcing d4 = b1
and s4 = x1 forcing d5 = b3.
If none of x2 and x3 is not adjacent to H then triangles and/or
diamonds adjacent to X together with V (X) can form one of the
subgraphs G1, G2 or G3 and according to the lemmas 5.4, 5.5, and
5.6, Staller wins the game on these subgraphs.
If x2 is adjacent to H and x3 is adjacent to some other diamond
K, then we can use subgraph G3 with V (G3) = V (X) ∪ V (K), and
according to Lemma 5.6, Staller wins.
Otherwise, suppose that x2 is adjacent to H and x3 is adjacent to
triangle, say Y with the vertex set V (Y ) = {y1, y2, y3} where x3y3 ∈
E(G). Then, s5 = y3 forcing d6 = x2. Triangle Y can be adjacent
to some diamonds and/or triangles. The vertices of these triangles
and/or diamonds different from A and H, which are adjacent to Y ,
together with V (Y ) and their neighbours form one of the subgraphs
G1, G2 or G3. According to the lemmas 5.4, 5.5, or 5.6, Staller wins
the game on these subgraphs.
If x3t3 ∈ E(G), then s5 = t3 forces d6 = x2. If t1 is adjacent to a
diamond then consider subgraph G3 and according to Lemma 5.6,
Staller wins. Let t1 be adjacent to a triangle W with the vertex set
V (W ) = {w1, w2, w3} and let t1w1 ∈ E(G). Then Staller plays s6 =
w1 which forces d7 = t2. Triangle W can be adjacent to triangles
and/or diamonds different from A,X,H. Vertices of these triangles
and/or diamonds together with W and their neighbours can form
one of the subgraphs G1, G2 or G3. So, according to lemmas 5.4, 5.5
or 5.6, Staller wins.

1.i.4. Let a2 be adjacent to a diamond and a3 to a triangle B with the
vertex set V (B) = {b1, b2, b3} and let a3b3 ∈ E(G).
If b1 and b2 are adjacent to two different diamonds, then consider
subgraph G4 and according to Lemma 5.7 Staller wins.
If b1 and b2 are adjacent to the same diamond K with the
vertex set V (K) = {k1, k2, k3, k4} and the edge set E(K) =
{k1k2, k2k3, k3k4, k4k1, k2k4}. Let b1k1, b2k3 ∈ E(G). Then, Staller
plays in the following way: s1 = h1 forcing d2 ∈ V (H)\{h1}, s2 = a3
forcing d3 = a2 and s3 = b1 forcing d4 = b2. By playing s4 = k3
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Staller creates b3 −K trap.
Otherwise, consider some triangle X and the very similar analysis
from previous Case 1.i.3 could be used.

So, the graph G is S.
1.ii. The vertex a1 is adjacent to a triangle, say B with the vertex set
V (B) = {b1, b2, b3}. Let a1b1 ∈ E(G). Consider the following subcases.

1.ii.1 The vertex b2 is adjacent to some diamond, say H, and the vertex
b3 is adjacent to a diamond, say K. Consider the S-game on the
subgraph G4 with the vertex set V (B) ∪ V (H) ∪ V (K). By Lemma
5.7, Staller wins. So, G is S.

1.ii.2 The vertices b2 and b3 are adjacent to the same diamond, say H
with the vertex set V (H) = {h1, h2, h3, h4} and the edge set E(H) =
{h1h2, h2h3, h3h4, h4h1, h2h4}, where b2h1, b3h3 ∈ E(G).

1.ii.2.a. If there are no more triangles in the graph G, then the vertices a2
and a3 are adjacent to the chain of diamonds. We have a graph ω
from Figure 5.3. According to Lemma 5.9, Dominator wins as the
first player.

1.ii.2.b. Otherwise, suppose that graph contains more triangles. If both a2
and a3 are adjacent to some diamonds which do not form a chain of
diamonds, then consider some triangleX which could not be adjacent
either to A or B. One of the cases from Figure 5.4 has to occur, so
adjusted analysis from Case 1.i.1 can be applied.

1.ii.2.c. At least one of a2, a3 are adjacent to some triangle. Let Y be a tri-
angle with the vertex set V (Y ) = {y1, y2, y3} such that a2y2 ∈ E(G).
If Y is adjacent to some diamond K with the vertex
set V (K) = {k1, k2, k3, k4} and the edge set E(K) =
{k1k2, k2k3, k3k4, k4k1, k2k4}, so there is at least one edge between Y
and K, say y1k1 ∈ E(G). Staller plays in the following way: s1 = k1
forcing d2 ∈ V (K) \ {k1}, s2 = y3 forcing d3 = y2, s3 = a2 forcing
d4 = y1, s4 = b1 forcing d5 = a3 and s5 = h1, so Staller creates
b3 −H trap.
If y1 and y3 are adjacent to the same triangle, then consider sub-
graph G1 of a given graph, so according to Lemma 5.4, Staller wins.
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Otherwise, suppose that y1 is adjacent to a triangle W with the
vertex set V (W ) = {w1, w2, w3} and let y1w1 ∈ E(G), and y3 is
adjacent to a triangle T . If there is no edge between A and W , or
if T = A, then Staller plays in the following way: s1 = h1 which
forces d2 ∈ V (H)\{h1}, s2 = b1 which forces d3 = b3, s3 = a2 which
forces d4 = a3, s4 = y3 which forces d5 = y1 and s5 = w1 which
forces d6 = y2. Triangle W can be adjacent to some triangles and/or
diamonds different from A, B and H. Vertices of these diamonds
and/or triangles together with V (W ) and their neighbours form one
of the subgraphs G1, G2 or G3. According to the lemmas 5.4, 5.5
and 5.6, Staller wins.
Otherwise, if there is an edge between A and W , then the analysis
above can be applied on triangle T and its neighbours, instead ofW .

1.ii.3 The vertex b2 is adjacent to a diamond, say H with the vertex set
V (H) = {h1, h2, h3, h4}, where b2h1 ∈ E(G) and vertex b3 is adjacent
to a triangle, sayW , with the vertex set V (W ) = {w1, w2, w3}, where
b3w3 ∈ E(G). IfW is the part of a subgraphG1, that isW is adjacent
to one more triangle and there are two edges between them, then by
Lemma 5.4, Staller wins. Otherwise, Staller plays in the following
way:
s1 = h1 which forces d2 ∈ V (H) \ {h1} (a diamond trap), s2 = b1
which forces d3 = b3, s3 = w3 which forces d4 = b2. Triangle W can
be adjacent to diamonds and/or triangles.

1.ii.3.a. If these diamonds and/or triangles are different from A and H, then
vertices of these diamonds and/or triangles together with V (W ) and
their neighbours form one of the subgraphs G2 or G3. According to
the lemmas 5.5 and 5.6, Staller wins.

1.ii.3.b. If at least one of the vertices w1, w2 is adjacent to A, e.g. let w2a2 ∈
E(G), then by playing s4 = a2 Staller creates a double trap a3−w1.
In her next move Staller isolates either a1 or w2.

1.ii.3.c. If w2 is adjacent to some diamond K with the vertex set V (K) =
{k1, k2, k3, k4}, where w2k1 ∈ E(G), then Staller plays s4 = k1 and
creates a vertex-diamond trap w1 −K.
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1.ii.3.d. If w1h3 ∈ E(G) and w2 is adjacent to some triangle different from A,
say R, with the vertex set V (R) = {r1, r2, r3} where w2r2 ∈ E(G).
Then, Staller plays s4 = r2 and forces d5 = w1. Next,

- if there is at least one edge between R and A, say a3r3, then Staller
plays s5 = a3 and creates a double trap a2 − r1. In her next move
she isolates a1 or r3.

- if there are no edges between R and A, then R is adjacent to other
diamonds and/or triangles. The vertices of these diamonds and/or
triangles together with V (R) form one of the subgraphs G1, G2 or
G3. According to the lemmas 5.4, 5.5 or 5.6, Staller wins.
So, G is S.

1.ii.4 The vertex b2 is adjacent to a triangle, say W , with the vertex set
V (W ) = {w1, w2, w3}, where b2w2 ∈ E(G) and the vertex b3 is
adjacent to a triangle, say Y , with the vertex set V (Y ) = {y1, y2, y3},
where b3y3 ∈ E(G).
Depending of the type of the neighbours of triangle W we can use
the adjusted analysis from the proof of Theorem 2.10 for the Case
1.ii or analysis from the previous Case 1.ii.3. So, the graph G is S.

1.iii. The vertex a1 is adjacent with triangle B with the vertex set V (B) =
{b1, b2, b3} and there are two edges between them, a1b1, a2b2 ∈ E(G).
If there exists a diamond, say H adjacent to B or connected with B
by a path of triangles (see Figure 5.5), then Staller for her first move
plays h1, and then follows the strategy illustrated on Figure 5.5. She
creates a3 − b3 trap.

Otherwise, the adjusted analysis from Case 2 in the proof of Theorem 2.10
can be applied to prove that Staller wins.

Case 2 d1 ∈ V (Z) where Z is a diamond with the vertex set V (Z) =
{z1, z2, z3, z4} and the edge set E(Z) = {z1z2, z2z3, z3z4, z4z1, z2z4}. Sup-
pose that d1 ∈ {z1, z2}. Consider the following subcases.

2.i. If both z1 and z3 are adjacent to some diamonds then there exists a
triangle X adjacent to some triangles or diamonds different from Z, such

86



5.2. GRAPHS FROM D AND S

Figure 5.5: Possible situation for Case 1.iii.

that one of cases from Figure 5.4 can occur. So, adjusted analysis from
Case 1.i.1 can be applied.

2.ii. Suppose that z1 is adjacent to a diamond and z3 is adjacent to a
triangle, say B. Adjusted analysis from Case 1.ii can be applied on B to
prove that Staller wins.

2.iii. Suppose that z1 is adjacent to a triangle A with the vertex set V (A) =
{a1, a2, a2} and let z1a3 ∈ E(G) and z3 is adjacent to a diamond.
If a1 is adjacent to a diamond H and a2 is adjacent to a diamond K, then
we can consider subgraph G4 on which, by Lemma 5.7, Staller wins.
If a1 and a2 are adjacent to the same diamond, then we can find some
triangle X adjacent to some triangles and/or diamonds different from A
and Z. So, one case from Figure 5.4 can occur and adjusted analysis from
Case 1.i.1 can be applied.
If triangle A is adjacent to some triangle B with the vertex set V (B) =
{b1, b2, b3} and are two edges between A and B then we can consider
subgraph G1 and by Lemma 5.4 Staller wins. Otherwise, if there is only
one edge between A and B, then, we can use adjusted analysis from Case
1.ii.

2.iv. The vertex z1 is adjacent to a triangle, say A, with the vertex
set V (A) = {a1, a2, a3}, where z1a1 ∈ E(G) and the vertex z3 is
adjacent to a triangle, say B, with the vertex set V (B) = {b1, b2, b3},
where z3b1 ∈ E(G). If there are two edges between A and B, let
a2b2, a3b3 ∈ E(G). Consider the MBTD game on the subraph G1 with the
vertex set V (A)∪V (B)∪{z1, z3}. By Lemma 5.4, Staller wins. So, G is S.
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Next, suppose that there is one edge between A and B, and let
a3b3 ∈ E(G).
If graph G contains only these two triangles A and B, then suppose
that triangle A is adjacent to a diamond, say K, with the vertex set
V (K) = {k1, k2, k3, k4} and E(K) = {k1k2, k2k3, k3k4, k4k1, k2k4}. Let
a2k1 ∈ E(G). We differentiate between the following cases:

- If b2k3 ∈ E(G), Staller plays in the following way: s1 = a1 which
forces Dominator to claim a vertex from V (K)∪{a3}, as otherwise if
Staller claims k1 in her second move she will create a vertex-diamond
trap a3 −K.
If d2 = a3, then s2 = b3 which forces d3 = a2, s3 = b2 which forces
d4 = z3. Next, s4 = k3 and Staller creates a vertex-diamond trap
b1 −K.
Otherwise, if d2 = k1 (or d2 ∈ {k2, k3, k4}), then s2 = b3 which forces
d3 = a2, s3 = b2 which forces d4 = z3. Next, s4 = b1 (or s4 = a3)
and Staller creates a double trap a3 − k3 (or k1 − b1). In her next
move Staller isolates either b3 or b2 (or, a2 or b3). So, G is S.

- Triangle B is not adjacent to a diamond K. Then, there exists at
least one more diamond, say M different from K with the vertex
set V (M) = {m1,m2,m3,m4} adjacent to B, where b2m1 ∈ E(G).
Staller plays in the following way:
s1 = m1 which forces d2 ∈ V (M) \ {m1} (a diamond trap), s2 = b3
which forces d3 = b1 and s3 = a1 which forces d4 = a2. Next, s4 = k1
and Staller creates a vertex-diamond trap a3 − K. Dominator can
not win. So, G is S.

Otherwise, graph G contains at least four triangles. Consider some
triangle X different from A and B. One of the cases from Figure 5.4
must hold and adjusted analysis from Case 1.i.1 can be applied. So, G is S.

Next, suppose there are no edges between A and B.
If graph G contains only these two triangles A and B, then consider the
following

- Let K with the vertex set V (K) = {k1, k2, k3, k4} be a diamond
adjacent to A where a2k1 ∈ E(G), and let M with the vertex set
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V (M) = {m1,m2,m3,m4} be a diamond adjacent to B, where
b2m1 ∈ E(G). If a3k3, b3m3 ∈ E(G), then we have the graph η
(see Figure 5.2). By Lemma 5.8, if d1 ∈ {z1, z3}, Dominator wins in
the D-game. Otherwise, Staller wins.

- Otherwise, at least one of the triangles A,B is adjacent to two more
diamonds (different from Z). Let K and L be two diamonds with
the vertex sets V (K) = {k1, k2, k3, k4} and V (L) = {l1, l2, l3, l4},
respectively, such that a2k1, a3l1 ∈ E(G). Staller plays on subgraph
G4 with the vertex set V (A)∪V (K)∪V (L). By Lemma 5.7, Staller
wins. Statement also holds if L = M . So, G is S.

Otherwise, graph G contains at least four triangles. Consider some triangle
X different from A and B. One of the cases from Figure 5.4 must holds
and adjusted analysis from Case 1.i.1 can be applied. So, G is S.
2.v. Vertices z1 and z3 are adjacent to the same triangle, say A. Then, we
can have situations from Figure 5.6. If we have Case 2.v.(a), then there
exists a triangle X such that one of the cases from Figure 5.4 must holds
and adjusted analysis from Case 1.i.1 can be applied.
If it is Case 2.v.(b), then according to Lemma 5.9, since d1 ∈ {z1, z2},
Staller wins.
For Case 2.v.(c) consider subgraph G4 on V (B) ∪ V (H) ∪ V (K). By
Lemma 5.7, Staller wins. For Case 2.v.(d) we can apply adjusted analysis
from Case 1.ii.3.
For Case 2.v.(e) we can apply adjusted analysis from Case 1.ii.4.

Before we give the proof for Theorem 2.12, we give the winning strategy
Dominator in the MBTD game on G1 = GP (n, 1) where n ≥ 3. Note
that it is already proven in [59] that GP (n, 1) is D (precisely, the authors
considered the prism P2�Cn, which is equivalent to GP (n, 1)). Here we
give a shorter proof for that.

Claim 5.10. MBTD game on GP (n, 1), n ≥ 3 is D.

Proof. Let V (G1) = {u1, u2, ..., un, v1, v2, ..., vn} and let E(G1) =
{ui−1ui, vi−1vi|i ∈ {2, ..., n}} ∪ {u1un, v1vn} ∪ {uivi|i ∈ {1, ..., n}}.
If n is even, then V (G1) can be partitioned into 4-sets, each inducing a C4.
So, by Proposition 5.2, Dominator wins.
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(a) (b) (c)

(d) (e)

Figure 5.6: Possible situations for Case 2.v.
(a) Case 2.v.a. (b) Case 2.v.b. (c) Case 2.v.c. (d) Case 2.v.d. (e) Case 2.v.e.

Let n be odd. Then, Dominator uses the pairing strategy where the pairs
are (ui, vi−1) for i ∈ {2, ..., n} and (u1, vn). We need to prove that this is
his winning strategy. Suppose that at some point of the game we have a
situation that Staller’s set contains vertices ui, ui+2, vi+1. This means that
vertex ui+1 stays uncovered by Dominator. This is not possible, because
when Staller claimed vertex ui+2 (or vi+1), Dominator, according to his
strategy, must claim vertex vi+1 (or ui+2) and in this way he covers vertex
ui+1. A contradiction.

The proof of Theorem 2.12. Consider Generalized Petersen graph G2 =
GP (n, 2).
Let n = 6. Suppose that in his first move Dominator claims some vertex
l which belongs to internal polygon (see Figure 5.7(a)). Staller responds
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with s1 = u. We consider the following cases:

Case 1. d2 ∈ {z, t, v, w, y}.
Then, s2 = t2 which forces d3 = t1. By playing s3 = r1 Staller
creates a double trap r− r2. In her next move Staller isolates either
r2 or r.

Case 2. d2 ∈ {t1, t2}.
Then, s2 = z which forces d3 = w. By playing s3 = r2 Staller creates
a double trap r − r1. By claiming r or r1 in her next move, Staller
will isolate either r1 or r.

Case 3. d2 ∈ {r, r1, r2}.
Then, s2 = z which forces d3 = w. By playing s3 = t2 Staller creates
a double trap y − t1. In her next move Staller isolates either l or t.

Next, suppose that Dominator plays his first move on the external poly-
gon. Let d1 = y. Then, Staller responds with s1 = u. If d2 ∈ {z, t, v, w, l}
or d2 ∈ {t1, t2}, then Staller can use the same strategy as in Case 1 or
Case 2, respectively.
Otherwise, if d2 ∈ {r, r1, r2}, then Staller plays in the following way:
s2 = t1 which forces d3 = t2. Next, by playing s3 = w, Staller creates
l − z trap. By claiming z or l in her next move Staller will isolate v or y.

Let n = 7. Due to symmetries of the graph, the vertex l can be
the first Dominator’s move (see Figure 5.7(b)). Staller responds with
s1 = u. We consider the following cases:

Case 1. d2 ∈ {t, r, w, z, y2}.
Then, s2 = t1 which forces d3 = t2 and s3 = r1 which forces d4 = r2.
Next, s4 = v and Staller creates a double trap y3 − y1. In her next
move Staller isolates either w or z.

Case 2. d2 ∈ {v, t1, t2, y3}.
Then, s2 = w which forces d3 = z. By playing s3 = r2 Staller creates
a double trap r1 − y1. In her next move Staller isolates either r or
y3.

Case 3. d2 ∈ {r1, r2, y1}.
Then, s2 = w which forces d3 = z, s3 = t which forces d4 = y2 and
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s4 = r which forces d5 = v. Next, s5 = t2 and Staller creates a
double trap y3 − t1. In her next move Staller isolates either r2 or t.

Let n = 8 and suppose that in his first move Dominator claims a vertex
l which belongs to internal polygon (see Figure 5.7(c)). Staller responds
with s1 = u. We consider the following cases:

Case 1. d2 ∈ {v, r, t1, t2, y1, y2, y5, }.
Then, s2 = r2 which forces d3 = r1 and s3 = t which forces d4 = y3.
Next, by playing s4 = w Staller creates a double trap y4 − z. By
claiming z or y4 in her fifth move, Staller isolates either v or t1.

Case 2. d2 ∈ {w, t, y3, y4, z}.
Then, s2 = t1 which forces d3 = t2 and s3 = r1 which forces d4 = r2.
Next, by playing s4 = v Staller creates a double trap y1 − y5. By
claiming y5 or y1 in her fifth move, Staller isolates either w or z.

Case 3. d2 ∈ {r1, r2}.
Then, s2 = t2 which forces d3 = t1, s3 = r which forces d4 = y2 and
s4 = t which forces d5 = v. Next, by playing s5 = w Staller creates
a double trap y4 − z. By claiming z or y4 in her sixth move, Staller
isolates v or t1.

Next, suppose that Dominator plays his first move on the external
polygon. Let d1 = y2. Then, Staller responds with s1 = u. If
d2 ∈ {v, r, t1, t2, y1, y2, y5, } or if d2 ∈ {w, t, y3, y4, z}, then Staller can use
the same strategy as in Case 1 or Case 2, respectively. If d2 ∈ {r1, r2},
then Staller plays in the following way: s2 = w which forces d3 = z,
s3 = y4 which forces d4 = t. Next, by playing s4 = t2 Staller creates l− t1
trap. By playing l or t1 in her next move Staller will isolate either y3 or
t.

Consider Generalized Petersen graph G2 = GP (n, 2) where n ≥ 9.
After Dominator’s first move, Staller can find subgraph τ ⊆ G2 such that
d1 /∈ V (τ). Suppose that in his first move Dominator claims some vertex l
which belongs to internal polygon (see Figure 5.8(a)). Consider subgraph
τ ⊆ G2 with the vertex set {u, v, w, z, t, t1, t2, r1, r2, y1, y2, y3, y4, y5, y6}
where the vertices u and v are at distance 4 from the vertex l on the
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(a) (b) (c)

Figure 5.7: (a) Generalized Petersen graph GP (6, 2) (b) Generalized Pe-
tersen graph GP (7, 2) (c) Generalized Petersen graph GP (8, 2).

internal polygon. The subgraph τ is illustrated in Figure 5.8(b). In her
first move Staller claims s1 = u. It is enough to consider the cases when
d2 ∈ {v, w, t, t1, t2, y4, y5, y6}.

Case 1. d2 ∈ {w, t, y4, y5}.
Then, s2 = t1 which forces d3 = t2 and s3 = r1 which forces d4 = r2.
Next, by playing s4 = v Staller creates a double trap y1 − y6. In her
next move Staller isolates either w or z by claiming y6 or y1.

Case 2. d2 = {v, t1, t2, y6}.
Then, s2 = r2 which forces d3 = r1 and s3 = t which forces d4 = y4.
Next, by playing s4 = w Staller creates a double trap y5 − z. In her
next move Staller isolates either t1 or v by claiming y5 or z.

In the following we prove Theorem 2.13.

The proof of Theorem 2.13. Consider the cubic bipartite graph on n ver-
tices with the vertex set {u1, ..., un/2, v1, ..., vn/2}. Let U = {u1, ..., un/2}
and V = {v1, ..., vn/2} be a bipartition of the graph. Add an edge from
each ui to vi, vi+i and vi+2 (with indices modulo n/2).

W.l.o.g. suppose that s1 = ui ∈ U , for some i ∈ {1, 2, ..., n/2}. Then
d1 = ui−1 ∈ U , modulo n/2. Note that every two vertices ui−1 and ui

93



CHAPTER 5. MBTD GAME ON CUBIC GRAPHS

(a) (b)

Figure 5.8: (a) Generalized Petersen graph GP (9, 2) (b) subgraph τ .

from U have two common neighbours in V , vi and vi+1 (and every two
vi−1, vi ∈ V have two common neighbours in U , ui−1, ui−2). In every
other round r ≥ 2, Dominator plays in the following way. If Staller
claims a vertex which is a common neighbour of two vertices, say uk−1
and uk such that for example, uk−1 ∈ D and uk ∈ S, then Dominator
responds by claiming the other common neighbour of these two vertices.
Otherwise, if Staller claimed some vertex ul (or vl) which is not common
neighbour of any two vertices, x, y ∈ U or V , such that, for example,
x ∈ D and y ∈ S (or vice versa), then Dominator claims a free vertex
ul−1 or ul+1, with preference ul−1 (or, vl−1 or vl+1 with preference
vl−1) modulo n/2. If Dominator can not find such a free vertex, he
claims an arbitrary free vertex from the graph with the preference that a
vertex is a neighbour of vertex which is claimed by him earlier in the game.

We prove that this is a winning strategy for Dominator. Suppose
that vi, vi+1, vi+2 ∈ S for some i ∈ {1, 2..., n/2} modulo n/2, that is,
Staller isolated vertex ui. This means that when Staller claimed vi,
Dominator responded with vi−1, but then when Staller claimed vi+1 (or
vi+2), according to his strategy Dominator had to take vi+2 (or vi+1). A
contradiction.

Finally, we consider MBTD game on the connected cubic graph which
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is disjoint union of claws and prove Theorem 2.14.

The proof of Theorem 2.14. The graph G is a connected cubic graph on
4k vertices formed with k ≥ 2 disjoint claws Ci, i ∈ {1, ..., k}. Let
V (Ci) = {xi, yi, zi, ti}, where ti is a center of Ci, for every i ∈ {1, ..., k}.
First, suppose that k = 2. Let E(G) = E(G[C1]) ∪ E(G[C2]) ∪
{x1x2, y1y2, z1z2, x1y2, y1z2, z1x2}.
The graph can be partitioned into two 4-sets, {x1, t1, y1, y2} and
{z1, z2, t2, x2} each inducing a C4 (see Figure 5.9(a)). By Proposition 5.2
and Proposition 5.1, Dominator wins.
Let k = 3. Let E(G) = E(G[C1]) ∪ E(G[C2]) ∪ E(G[C3]) ∪
{xi−1xi, yi−1yi, zi−1zi|i ∈ {2, 3}} ∪ {x1x3, y1y3, z1z3}.
It is enough to consider the case when d1 ∈ V (C1). The cases when
d1 ∈ V (C2) or d1 ∈ V (C3) are symmetric.

Case 1. d1 = x1.
Then, s1 = t1. After Dominator’s second move either all vertices
from C2 are free or all vertices from C3 are free. Suppose that all
vertices from C3 are free. Also, at least two of the vertices x2, y2, z2
must be free. Suppose that x2 and z2 are free. Then, s2 = z3 which
forces d3 = z2. By s3 = x3 Staller creates a double trap x2 − y3. In
her next move Staller isolates either x1 or t3.
If d1 ∈ {y1, z1}, the proof is very similar.

Case 2. d1 = t1.
Then, s1 = t2.

Case 2.1. d2 = t3. Then, s2 = z3 which forces d3 = z1. By playing
s3 = x3, Staller creates a double trap x1 − y3. In her fourth
move Staller isolates either x2 or t3.

Case 2.2. d2 ∈ {xi, yi, zi}, i ∈ {1, 2, 3}.
Let d2 = xi. If i = 1, then Staller will make her next move
on C3 and she will force Dominator to play his next move on
C1, if i = 3, Staller will make her next move on C1 and force
Dominator to play on C3. If i = 2, then she can make her next
move either on C1 or C3.
Suppose that d2 = x1. Then, s2 = z3 which forces d3 = z1. By
playing s3 = y3 Staller creates a double trap y1 − x3. In her
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fourth move Staller isolates either y2 or t3.
The proof is very similar if d2 = yi or d2 = zi, i ∈ {1, 2, 3}.

(a) (b)

Figure 5.9: (a) Two claws (b) Three consecutive claws.

Let k ≥ 4. After Dominator’s first move, Staller can find three consecutive
claws Ci−1, Ci Ci+1 such that all vertices from these three claws are free.
Suppose that these three claws are C2, C3 and C4. Staller will play on
a subgraph with the vertex set V (C2), V (C3) ∪ V (C4), and the edge set
E(G[C2])∪E(G[C3])∪E(G[C4])∪{xi−1xi, yi−1yi, zi−1zi|i ∈ {3, 4}} (Figure
5.9(b)). In her first move Staller plays s1 = t3.
If d2 ∈ V (C2), then Staller will make her next move on C4 and she will force
Dominator to play his next move on C2, if d2 ∈ V (C4), Staller will make
her next move on C2 and force Dominator to play on C4. If d2 ∈ V (C3),
then she can make her moves either on C2 or C4.
Suppose that d2 ∈ V (C2) ∪ V (C3).
Let d2 = x2 or d2 = t2. Then, s2 = z4 which forces d3 = z2. By playing
s3 = y4 Staller creates a double trap y2−x4. In her next move she isolates
either y3 or t4.
The cases when d2 ∈ {y2, z2} are symmetric. If d2 ∈ {x3, y3, z3}, Staller
can apply the same strategy.

Remark 5.11. Note that if in the D-game on the connected cubic graph
G on n ≥ 6 vertices after Dominator’s first move Staller can find at least
one of the subgraphs G1, G4, τ , or subgraph which consists of three consec-
utive connected claws as in Figure 5.9(b), such that all vertices from that
subgraph are free, then the graph G is S.

96



5.3. CONCLUDING REMARKS

5.3 Concluding remarks

We considered several types of connected cubic graphs in the MBTD game
and determined which are D and which are S. We saw that Dominator
wins in the game on the connected cubic graph if all vertices are of type
1 (each vertex lies on a diamond). When the graph is a disjoint union
of triangles, then if the number of triangles in graph is 2, graph is D,
otherwise the graph is S. In the game when some vertices are of type
1 and some are of type 2, then Dominator can win in the game on the
graph ω, and on the graph η, but only as the first player. In all other
cases, Staller wins. Regarding graphs where all vertices are of type 3
(each vertex lies in zero triangles), we know that a cubic bipartite graph,
graph GP (n, 1), n ≥ 3, and graph GP (5, 2) are D, while GP (n, 2), where
n ≥ 6 is S. If the graph is a union of k vertex-disjoint claws, Dominator
wins only if k = 2, while in all other cases Staller wins.

In order to determine the outcome of the game, we have focused on
finding a representative subgraph of the given graph. Related to this,
another interesting type of subgraph of the cubic graph G on which Staller
wins as the first player in the MBTD game is the following graph, which
will be denoted by Q.

Graph Q. Let Q be a subgraph of the graph G which consists of
two even cycles Cl and Cm with the vertex sets V (Cl) = {x1, x2, ..., xl}
and V (Cm) = {y1, y2, ..., ym}, respectively, where E(Cl) = {xixi+1|i ∈
{1, 2..., l−1}}∪{xlx1} and E(Cm) = {yiyi+1|i ∈ {1, 2...,m−1}}∪{ymy1}
for l,m ≥ 4. Suppose that between Cl and Cm there is a path P with
the vertex set V (P ) = {u1, u2, ..., ut}, where t ≥ 1 is odd. Suppose
that for each k ∈ {1, 3, 5, ..., t} there exist a different vertex vk, such
that ukvk ∈ E(G). Let x1u1, y1ut ∈ E(G). If l > 4, then for every two
xi+2, xi+4 ∈ Cl, for i ∈ {0, ..., l − 2} there exists a different neighbour
x′i+2 ∈ NG(xi+2) and x′i+4 ∈ NG(xi+4). Also, if m > 4, then for every two
yi+2, yi+4 ∈ Cm, for i ∈ {0, ...,m − 2} there exists a different neighbour
y′i+2 ∈ NG(yi+2) and y′i+4 ∈ NG(yi+4).

Staller’s strategy in the S-game is illustrated in Figure 5.10(a) and
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5.10(b) where l = 6, m = 8 and t = 5.
If x1 lies on a diamond, then in his first move Dominator is forced to claim
a vertex from that diamond. In the following, Staller uses the strategy
illustrated in Figure 5.10(b).

(a)

(b)

Figure 5.10: Staller’s strategy in the S-game on Q when (a) d1 ∈ V (P ) ∪
V (C8) (b) d2 ∈ V (C6).
Vertices claimed by Dominator are denoted by cycles and vertices claimed by
Staller by crosses. Traps are denoted by red squares.

As we can see from this paper, finding a suitable subgraph makes it easier
to determine the winner of the game and helps in characterization of cubic
connected graphs. However, we have not covered all connected cubic
graphs, so there are still open problems related to this topic. Therefore, it
would be interesting to find some other subgraphs that could contribute
to expanding the class of cubic connected graphs for which the winner is
known in MBTD game.
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Biased games. We are curious to know what will happen in the biased
setup of MBTD game. Given two positive integers, a and b, representing
the biases of Staller and Dominator, respectively, in the biased (a : b)
MBTD game, Staller claims exactly a and Dominator claims exactly b
elements of the board in each move. Now, if the biases of the players are
the same, i.e. fair (a : a) game, for a ≥ 2, we wonder whether the outcome
of the games change compared to the outcome of the (1 : 1) MBTD games
that were previously studied.
Finally, we wonder how the situation changes if biased non-fair (a : b)
MBTD games are played, i.e. the games in which a 6= b.
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Teorija kombinatornih igara bavi se istraživanjem igara u kojima učestvuju
dva igrača sa potpunom informacijom i bez elemenata slučajnosti. Za
razvoj moderne teorije kombinatornih igara zaslužan je Džon Konvej
(John Conway) koji je u knjigama „O brojevima i igrama” [35] iz 1976.
i „Pobjednički način za vaše matematičke igre” [19] (zajedno sa Elvinom
Berlekampom (Elwyn Berlekamp) i Ričardom Gajom (Richard Guy)) iz
1982. postavio njene temelje, analizirao veliki broj igara i predstavio
značajne koncepte. Konvejeva teorija obuhvata igre kao što su Nim koje
su zasnovane na algebarskim argumentima i pojmu dekompozicije. Igrama
koje ne obuhvata Konvejeva teorija, bavi se grana kombinatorike koja se
naziva teorija pozicionih igara. U pozicione igre spadaju popularne igre kao
što su Iks-Oks, Heks, ali i apstraktne igre na grafovima i hipegrafovima.
Za početak sistematskog proučavanja teorije pozicionih igara na grafovima
i hipergrafovima uzima se Hejls-Džuit teorema (Hales–Jewett theorem)
[64] iz 1963. godine, koja se smatra temeljem moderne Remzijeve teorije,
i Erdoš-Selfridž kriterij (Erdős-Selfridge criterion) [44] koji predstavlja
centralni koncept u teoriji algoritama.
Jožef Bek (József Beck) zaslužan je za dalji razvoj ove oblasti. Teoriju
pozicionih igara oblikovao je u koherentnu kombinatornu disciplinu i u
svojoj monografiji [9] pokrio je mnoge njene aspekte. Monografija autora
Hefeca (Hefetz ), Kriveleviča (Krivelevich), Stojakovića i Saboa (Szabó)
[67] takode pruža detaljan uvod u teoriju pozicionih igara i predstavlja
rezultate novijih istraživanja u ovoj oblasti.

Poziciona igra je hipegraf (X,F) gdje je X skup, uglavnom konačan, a
F ⊆ 2X . U igri učestvuju dva igrača koji naizmjenično uzimaju slobodne
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elemente skupa X. Igra traje sve dok se i posljednji element iz X ne
zauzme. Skup X se naziva tabla igre, a F familija pobjedničkih skupova.
U igri konfigurǐsu još dva parametra, pozitivni cijeli brojevi a i b koji
definǐsu bias igre. U (a : b) igri, prvi igrač uzima a elemenata po potezu,
a drugi igrač uzima b elemenata po potezu. U igrama bez biasa važi da je
a = b = 1. U zavisnosti od pravila koja odreduju koji igrač je pobjednik,
pozicione igre možemo podijeliti u nekoliko kategorija, a dvije osnovne
katagorije su: jake igre i slabe igre. U jakim igrama prvi igrač koji uzme
sve elemente nekog skupa F ∈ F je pobjednik. Igra je neriješena, ako
u trenutku kada na tabli ne ostane nijedan element, nijedan igrač nije
ostvario zadati cilj. Igra Iks-Oks spada u jake igre i igra se na 3 × 3
kvadratnoj mreži. Tabla igre se sastoji od 9 elemenata, a familija F se
sastoji od 8 pobjedničkih skupova koji uključuju sve redove, sve kolone i
dijagonale mreže.

Kada analiziramo determinističke igre prvo na što pomislimo je prim-
jena komjuterskog algoritma grube pretrage. Iako je to teorijski moguće, u
praksi nije izvodljivo u nekom razumnom vremenu, s obzirom da je u nekim
igrama potrebno ispitati i analizirati veliki broj mogućnosti i slučajeva.
Stoga, bilo bi poželjno imati neke generalne alate i algoritme koji nam
mogu pomoći za analizu ovih igara.
Argument krade strategije je moćan alat koji potvrduje i dokazuje intuiciju
da biti prvi igrač je uvijek prednost.

Teorema 5.1. (Argument krade strategije, [9]) U jakoj pozicinoj igri, prvi
igrač može da obezbijedi bar neriješen rezultat.

Za neke igre argument Remzijevog tipa se može iskoristiti da se dokaže
da ishod neriješeno nije moguć i da prvi igrač pobjeduje. Argument tvrdi
da ako hipergraf F nije 2-obojiv, onda prvi igrač ima pobjedničku strate-
giju u jakoj igri nad hipergrafom F . Argument krade strategije i argument
Remzijevog tipa su trenutno jedini generalni alati za jake pozicione igre.
Oba alata, iako veoma moćna, nǐsta ne govore o tome kako pobjednička
strategija prvog igrača treba da izgleda. Eksplicitna pobjednička strategija
poznata je samo za nekoliko jakih igara kao što je igra savršenog mečinga,
igra Hamiltonove konture [47] i igra k-povezanosti [48].
Jake igre je veoma teško analizirati. Razlog je činjenica da jake igre nisu
hipergraf monotone, što znači da dodavanje grane u hipegraf igre može
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da promijeni ishod igre (vidjeti [10]). Takode, u jakim igrama drugi igrač
se jedino može boriti za neriješen ishod. Ovo prirodno vodi do koncepta
Mejker–Brejker igara koje su poznate još pod nazivom slabe igre.

Mejker–Brejker igre

Mejker–Brejker igre igraju dva igrača Mejker i Brejker koji imaju suprotne
ciljeve. Mejker pobjeduje ako uzme sve elemente nekog pobjedničkog
skupa, a Brejker pobjeduje u suprotnom, tj. ako spriječi Mejkera u
ostvarenju njegovog cilja. Ove igre su relaksacija jakih igara, pa se
često nazivaju slabim igrama. Primjer Mejker–Brejker igre je popularna
igra Heks koja se igra na tabli u obliku romba koja se sastoji od n × n
šestouglova (tradicionalno se igra na tabli 11× 11). Mejkeru se dodjeljuje
par suprotnih strana romba crvene boje, a Brejkeru par suprotnih strana
romba plave boje. Igrači naizmjenično boje svojom bojom po jedan
neobojen šestougao. Cilj svakog igrača je da napravi put od uzastopnih
šestouglova izmedu svojih strana romba. Heks nije jaka igra jer igrači
imaju različite pobjedničke skupove. Heks teorema (Hex Theorem) Džona
Neša (John Nash) [57] tvrdi da svako crveno/plavo bojenje table daje
put koji povezuje dvije suprotne strane romba. Dakle, heks igra se ne
može završiti neriješeno, pa je možemo posmatrati kao Mejker–Brejker
igru tako što za pobjedničke skupove uzmemo sve puteve izmedu crvenih
strana romba. Mejker pobjeduje ako do kraja igre osvoji jedan od tih
puteva. Brejker pobjeduje ako blokira Mejkera tako što će napraviti svoj
put izmedu plavih strana romba.

Kao što za jake igre, tako i za slabe igre važi da prvi igrač ima prednost.
Stoga, ako Mejker pobjeduje u igri kao drugi igrač, onda on pobjeduje u
istoj igri i kao prvi igrač. Isto važi i za Brejkera, [67].
Sljedeći rezultat daje jednostavan kriterij koji garantuje pobjedničku
strategiju Brejkera na hipergrafu F .

Teorema 5.2. (Erdoš-Selfridž kriterij, [44]) Neka je F hipergraf. Onda,∑
A∈F

2−|A| <
1

2
⇒ Brejker pobjeduje.
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Ako je Brejker prvi igrač, onda je uslov
∑

A∈F 2−|A| < 1 dovoljan da mu
osigura pobjedu.

Ako je hipegraf igre k-uniforman (tj. svi pobjednički skupovi su reda
k), onda prema teoremi 5.2, Brejker pobjeduje ako je |F| < 2k−1.
Uopšteni kriterij za Mejkerovu pobjedu dao je Bek u [9].

Teorema 5.3. [9] Neka je (X,F) poziciona igra. Neka je ∆2(F) =
max{|{A ∈ F : {u, v} ⊆ A| : u, v ∈ X} Ako je∑

A∈F
2−|A| >

1

8
∆2|X|,

onda Mejker ima pobjedničku strategiju u (1 : 1) igri (X,F).

Mejker–Brejker igre se uglavnom igraju na skupu grana nekog grafa
G(V,E), tj. X = E(G), gdje su pobjednički skupovi svi skupovi grana
podgrafova od G koji posjeduju neko svojstvo grafa. Najčešće razmatrane
Mejker–Brejker igre su igre koje se igraju na tabli E(Kn), kao što su
igra savršenog mečinga - pobjednički skupovi su svi skupovi koji sadrže
bn/2c nezavisnih grana grafa Kn, igra povezanosti - pobjednički skupovi
su pokrivajuća stabla od Kn, igra Hamiltonove konture - pobjednički
skupovi su grane Hamiltonovih ciklusa od Kn, igra najmanjeg stepena
- pobjednički skupovi su svi podgrafovi od Kn pozitivnog minimalnog
stepena c i igra k-povezanosti - pobjednički skupovi su k-povezani
podgrafovi od Kn.
Prvi koji je istraživao igru povezanosti na tabli E(Kn) bio je Leman
(Lehman) [88] koji je pokazao da u igri bez bijasa Mejker može da pobijedi
za n− 1 poteza što je i najkraće moguće vrijeme za pobjedu u ovoj igri.
Istraživanje igre Hamiltonove konture ima dugu istoriju. U svom radu [27]
iz 1978. godine, Hvatal (Chvátal) i Erdoš (Erdős) su razmatrali (1 : 1)
igru Hamiltonove konture na tabli E(Kn) gdje su pokazali da Mejker
pobjeduje za dovoljno veliko n. Kasnije je Papajoanau (Papaioannou)
u [94] pokazao da Mejker pobjeduje za svako n ≥ 600. U istom radu
postavio je hipotezu da je minimalan broj n za koji Mejker, kao prvi igrač,
pobjeduje u (1 : 1) igri Hamiltonove konture jednak 8. Hefec (Hefetz )
i Štih (Stich) su u [77] unaprijedili rezultat iz [94] pokazavši da Mejker
pobjeduje za svako n ≥ 9. Konačno, u [103], dokazano je da nezavisno od
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toga ko je prvi igrač, Mejker pobjeduje ako i samo ako je n ≥ 8.

U Mejker–Brejker igrama u kojima nije teško odrediti koji igrač je pob-
jednik, zanimljivije je istražiti pitanje koliko brzo igrač sa pobjedničkom
strategijom može da pobijedi. Brze pobjedničke strategije Mejkera u
(1 : 1) igri Hamiltonove konture proučavali su Hefec i autori u [72] koji su
pokazali da Mejkeru treba bar n + 1, a najvǐse n + 2 poteza da pobijedi.
Da je optimalan broj poteza n+ 1 dokazali su Hefec i Štih u [77].
Brze pobjedniče strategije proučavane i za druge Mejker–Brejker igre
bez biasa, kao što su igra savršenog mečinga, igra k-povezanosti, T -igra
(vidjeti [29, 48, 72]).

Kako bi se nadoknadila Mejkerova prednost u igrama bez biasa, jedna
od mogućnosti je da se Brejkeru dozvoli da uzima vǐse od jedne grane po
potezu, tj. da se analiziraju (1 : b) Mejker–Brejker igre.

Mejker–Brejker igre sa biasom

Motivisani brzom pobjedom Mejkera u igrama bez biasa, Hvatal i Erdoš su
u [27] istraživali (1 : b) igre u kojima Brejker po potezu uzima b > 1 grana.
Primijetili su da su (1 : b) Mejker–Brejker igre bias monotone, što znači
da ako Brejker pobjeduje u nekoj (1 : b) Mejker–Brejker igri (X,F), onda
on takode pobjeduje i u (1 : b + 1) igri (X,F). Dakle, postoji jedinstven
pozitivan cio broj bF takav da Mejker pobjeduje u (1 : b) igri (X,F) ako
i samo ako je b ≤ bF , gdje je F 6= ∅ i min{|A| : A ∈ F} ≥ 2. Ovaj broj
naziva se granični ili kritični bias igre (X,F).

Dva kriterija za pobjedu u Mejker–Brejker igrama sa biasom

Generalni kriterij za Brejkerovu pobjedu u igrama sa biasom dao je Bek
[5]. Njegov kriterij je uopštenje teoreme 5.2.

Teorema 5.4. (Proširena Erdoš-Selfridž teorema, [5]) Ako je∑
A∈F

(1 + b)−|A|/a <
1

1 + b
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onda Brejker, kao drugi igrač, ima pobjedničku strategiju u (a : b) Mejker–
Brejker igri (X,F). Ako je Brejker prvi igrač onda je uslov

∑
A∈F (1 +

b)−|A|/a < 1 dovoljan da mu osigura pobjedu.

Sljedeća teorema daje dovoljan uslov za Mejkerovu pobjedu u igrama
sa biasom.

Teorema 5.5. (Uopšteni kriterijum za Mejkerovu pobjedu, [5]) Ako je

∑
A∈F

(
a+ b

a

)−|A|
>

a2b2

(a+ b)3
·∆2(F) · |X|,

onda Mejker kao prvi igrač ima pobjedničku strategiju u (a : b) igri (X,F),
gdje je ∆2(F) = max{|{A ∈ F : {u, v} ⊆ A}| : u, v ∈ X,u 6= v}.

Granični bias u Mejker–Brejker igrama

U (1 : b) Mejker–Brejker igri osnovni zadatak je odrediti granični bias igre.
Granični bias proučavan je u mnogim radovima. U [27] Hvatal i Erdoš su
pokazali da je za igru povezanosti granični bias izmedu (1/4 − ε)n/ lnn i
(1 + ε)n/ lnn za svako ε > 0. Donju granicu unaprijedio je Bek u [5].
Pitanje odredivanje graničnog biasa za igru Hamiltonove konture bio je
dugo otvoren problem koji je istraživan u [20, 27, 84] i vjerovalo se da je
granični bias reda lnn/n. Problem je riješio Krivelevič (Krivelevich) u [81]
čiji rezultat je potvrdio hipotezu. Rješenju problema pomagao je rezultat
Gebauer (Gebauer) i Saboa (Szabó) iz [58] gdje je data strategija za Mejk-
era koja mu omogućuje da pobijedi u igri minimalnog stepena protiv biasa
reda n/ lnn. Odredivanje graničnog biasa za igru minimalnog stepena bio
je bitan korak da se odredi granični bias za igru Hamiltonove konture.
Koncept asimetričnih igara kombinovan sa brzim pobjedničkim strategi-
jama istraživali su Ferber (Ferber), Hefec (Hefetz ) i Krivelevič (Krivele-
vich) u [49], i Mikalački i Stojaković u [90].

Mejker–Brejker igre sa dvostrukim biasom

Za mnoge asimetrične (a : b) Mejker–Brejker igre identitet pobjednika je
poznat za slučaj kada je a = 1. Medutim, postoje igre u kojima mala prom-
jena Mejkerovog i Brejkerovog biasa može promijeniti ishod igre. Primjer
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jedne takve igre je diametar-2 igra gdje je tabla igre E(Kn), a pobjednički
skupovi su sva pokrivajuća stabla od Kn diametra 2. U (1 : 1) igri poznato
je da Brejker pobjeduje. Povećanjem Mejkerovog i Brejkerovog biasa za 1,
situacija se mijenja i Mejker je pobjednik u (2 : 2) što je pokazano u [3].
Igre u kojima su biasi Mejkera i Brejkera oba veća od 1 se često nazivaju
igre sa dvostrukum biasom. Kako su i (a : b) bias monotone, može se
definisati opšti granični bias igre kao jedinstven pozitivan cio broj takav
da u (a : b) igri (X,F) Mejker pobjeduje ako i samo ako b ≤ bF (a). Opšti
granični bias za igru povezanosti i igru Hamiltonove konture procijenjen
je za svako a > 1 u [76, 89]. Brze pobjedničke strategije u fer igrama sa
dvostrukim biasom istraživali su Klemens (Clemens) i Mikalački u [33].

Različite varijante Mejker–Brejker igara

Postoje različite varijante i modifikacije Mejker–Brejker igara. U radovima
[61, 62, 82] proučavane su Mejker–Brejker igre na Kn u kojima jedan od
igrača igra nasumično, dok drugi igrač igra prema optimalnoj strategiji. U
radovima [50, 95] proučavane su Mejker–Brejker igre gdje se prije svakog
poteza baca novčić i Mejker igra svoj potez sa vjerovatnoćom p nezavisno
od drugih poteza.
U [102] Stojaković i Sabo predložili su novi pristup koji nadoknaduje
Mejkerovu prednost u igrama bez biasa. Oni su posmatrali Mejker–Brejker
igre na tabli koja se dobija uklanjanjem elemenata table nezavisno sa
vjerovatnoćom 1 − p za dato 0 < p < 1. Slučajni graf G(n, p) se dobija
bacanjem novčića za svaku granu grafa Kn nezavisno sa vjerovatnoćom p
kako bi se odredilo da li grana treba da bude element table X. Postavlja
se pitanje odredivanja granične vjerovatnoće za postojanje Mejkerove
strategije kojom bi osvojio pobjednički skup u igri koja se igra na tabli
slučajnog grafa G(n, p). Mejker–Brejker igre na slučajnim grafovima
istraživane su u [30, 32, 66, 70, 91, 93, 101, 100, 102].

Tačer–Izolator (Toucher–Isolator) igre su varijanta Mejker–Brejker
igara koja se igra na skupu grana datog grafa G. Prvi igrač (Tačer) ima
za cilj da dotakne što veći broj čvorova grafa, a drugi igrač (Izolator)
pokušava da minimizuje taj broj. Ove igre prvi su predložili Dauden
(Dowden), Kang (Kang), Mikalački i Stojaković u [41], a dalje su
proučavane u [23, 96, 97].
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Avojder–Enforser igre (Avoider–Enforcer) su igre u kojima igrači, Avo-
jder i Enforser, imaju suprotne ciljeve od onih koje imaju Mejker i Brejker.
Naime, Avojder pokušava da izbjegne osvajanje pobjedničkog skupa, dok
Enforser pokušava da ga natjera na to. Postoje dvije verzije ove igre,
striktna - gdje svaki igrač uzima po potezu tačan broj elementa odreden
njegovim biasom, i monotona - gdje igrači uzimaju bar onoliko elemenata
po potezu koliko je odredeno njihovim biasom. Ove igre proučavane su u
mnogim radovima (vidjeti [4, 13, 28, 51, 63, 68, 69, 71, 73]).

Vejter–Klijent (Waiter–Client) i Klijent–Vejter (Client–Waiter) igre
su blisko povezane se Mejker–Brejker i Avojder–Enforser igrama. Glavna
razlika su pravila po kojima igrači biraju elemente. U (a : b) igri obje vrste
Vejter nudi Klijentu a+b slobodnih elemenata, Klijent bira a, a preostalih
b uzima Vejter. Ako je u posljednjoj rundi ostalo 1 ≤ t ≤ a+ b elementa,
onda Klijent uzima max{0, t − b} elementa, a Vejter uzima min{t, b}. U
Vejter–Klijent igrama, Vejterov cilj je da natjera Klijenta da uzme sve
elemente nekog pobjedničkog skupa, dok Klijent pokušava da izbjegne
osvajanje pobjedničkog skupa. U Klijent–Vejter igrama, Klijent pobjeduje
ako osvoji sve elemente nekog pobjedničkog skupa, dok u suprotnom Ve-
jter pobjeduje. Vejter–Klijent i Klijent–Vejter igre je prvi proučavao Bek
[7]. Dalja istraživanja radena su u [12, 14, 15, 31, 36, 37, 38, 39, 74, 75, 85].

Varijante Mejker–Brejekr igara koje su od posebnog interesa za ovu dis-
ertaciju su Voker–Brejker igre (Walker–Breaker games) i Mejker–Brejker
igre totalne dominacije (Maker–Breaker total domination games).

Mejker–Brejker igre sa ograničenjima

Mejker–Brejker igre koje se igraju na skupu grana datog grafa G gdje
Mejker mora da bira grane kao da se šeta kroz graf, odnosno grana koju
bira u trenutnom potezu mora biti incidentna sa čvorom u kojem je
završio svoj prethodni potez, nazivaju se Voker–Brejker igre. Ove igre
uveli su nedavno Espig (Espig), Friz (Frieze), Krivelevič (Krivelevich) i
Pegden (Pegden) u [45].
Nije teško primijetiti da Brejker jednostavno može da izoluje čvor iz
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Vokerovog grafa. Nakon prvog Vokerovog poteza Brejker fiksira čvor koji
Voker nije dodirnuo u svom prvom potezu, a potom u svakom narednom
potezu uzima grane izmedu tog fiksiranog čvora i Vokerove trenutne
pozicije.
Kako Voker nije u mogućnosti da dodirne sve čvorove grafa, postavlja
se pitanje koliko najvǐse čvorova Voker može da dodirne. Ovo pitanje
razmatrano je u [45] i pokazano je da najveći broj čvorova koje Voker
može da dodirne u (1 : b) igri je n − 2b + 1 gdje je b konstanta. U svom
radu [45], autori su predložili mnogo interesantnih pitanja za dalji razvoj
ovih igara. Jedno od tih pitanja istraživali su Klemens (Clemens) i Tran
(Tran) u [34], gdje su pokazali da u igri bez biasa Voker može da napravi
ciklus dužine n − 2, dok u igri sa biasom dužina najvećeg ciklusa koji
Voker može da napravi je n−O(b) gdje je b ≤ n

ln2 n
.

Pošto Voker ne može da napravi pokrivajuću strukturu ni za jedno
b ≥ 1, postavlja se pitanje da li se situacija mijenja ako se Vokerov bias
poveća za 1 ili ako su oba igrača ograničena da biraju grane kao da se
šetaju kroz graf.

Mejker–Brejker igre (totalne) dominacije

Mejker–Brejker igre dominacije su prvi put proučavali Dušen (Duchêne),
Gledel (Gledel), Paro (Parreau) i Reno (Renault) u [42]. Igra se igra na
skupu čvorova datog grafa G, a igrači se zovu Dominator (Dominator) i
Stoler (Staller) prema ulogama koje imaju u igri. U Mejker–Brejker igri
dominacije, koja igra na datom grafu G(V,E), tabla igre je X = V (G), a
familija pobjednički skupovi su zatvorena susjedstva svih čvorova iz datog
grafa. Stoler je Mejker i pobjeduje ako uspije da osvoji neki čvor v i sve nje-
gove susjede, a Dominator je Brejker i pobjeduje ako čvorovi koje uzme u
toku igre formiraju dominirajući skup. U radu [42] autori su istraživali koji
igrač ima pobjedničku strategiju, a u radu [60] fokus je bio na istraživaju
minimalnog broja poteza koji su potrebni da Dominator pobijedi u igri za
koju ima pobjedničku strategiju.
Mejker–Brejker igre totalne dominacije (MBTD igre) uveli su Gledel
(Gledel), Hening (Henning), Iršič (Iršič) i Klavžar (Klavžar) u [59]. Pob-
jednički skupovi su otvorena susjedstva svih čvorova datog grafa. Stoler
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pobjeduje ako uspije da uzme sve susjede nekog čvora, a Dominator
pobjeduje ako čvorovi koje je uzeo tokom igre formiraju totalni domini-
rajući skup.
U [59] autori su istraživali ishod u MBTD igrama koje se igraju na mrežama
i grafovima koje su Dekartov proizvod puteva i ciklusa. Klasifikovali su
kaktus grafove (povezane grafove u kojima svaka dva ciklusa imaju naj-
vǐse jedan zajednički čvor) u zavisnosti od ishoda igre. U istom radu [59]
autori su primjetili da klasifikacija kubnih grafova u zavisnosti od ishoda
MBTD igre nije jednostavan zadatak s obzirom da postoji beskonačno
mnogo povezanih kubnih grafova u kojima Stoler pobjeduje, a uslov min-
imalnog stepena grafa nije dovoljan da garantuje pobjedu Dominatora u
slučaju kada je Stoler prvi igrač.
Ovo otvara pitanje da se klasifikuju povezani kubni grafovi na kojima Dom-
inator pobjeduje i oni povezani kubni grafovi na kojima Stoler pobjeduje
u igri totalne dominacije, kao što je sugerisano u [59].

Rezultati

Voker–Brejker igre sa dvostrukim biasom

U glavi 3 istražujemo (2 : b) Voker–Brejker igre na Kn kako bismo odredili
granični bias u igri povezanosti i igri Hamiltonove konture. Kao što je
ranije istaknuto, u Voker–Brejker igrama na Kn, Voker ne može da napravi
pokrivajuću strukturu kada igra sa biasom 1, jer Brejker može jednostavno
da izoluje čvor iz Vokerovog grafa. Pokazujemo da se situacija mijenja sa
povećanjem Vokerovog biasa za 1. Dajemo odgovore na sljedeća pitanja
koja su predložena u [34]:

Pitanje 5.6 ([34], Problem 6.4). Koja je najveća vrijednost biasa b za koji
Voker ima strategiju da napravi pokrivajuće stablo u (2 : b) Voker–Brejker
igri na Kn?

Pitanje 5.7 ([34], Problem 6.5). Da li postoji konstanta c > 0 takva da
Voker ima strategiju da napravi Hamiltonovu konturu u

(
2 : cn

lnn

)
Voker–

Brejker igri na Kn?

Da bi se mogao dati odgovor na pitanje 5.6 potrebne su sljedeće dvije
teoreme. Prva teorema daje donju granicu za granični bias u (2 : b) Voker–
Brejker igri povezanosti.
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Teorema 5.8. Za svako 0 < ε < 1
4 i dovoljno veliko n, Voker ima

strategiju da pobijedi u (2 : b) Voker–Brejker igri povezanosti na Kn za
b ≤

(
1
4 − ε

)
n

lnn .

Teorema 5.9 daje daje gornju granicu za granični bias u (2 : b) Voker–
Brejker igri povezanosti.

Teorema 5.9. Za svako ε > 0 i b ≥ (1 + ε) n
lnn , Brejker ima strategiju da

pobijedi u (2 : b) Voker–Brejker igri povezanosti na Kn, za dovoljno veliko
n.

Sljedeća teorema daje donju granicu za granični bias u (2 : b) Voker–
Brejker igri Hamiltonove konture.

Teorema 5.10. Postoji konstanta α > 0 takva da za svako dovoljno veliko
n i b ≤ α n

lnn Voker ima strategiju da pobijedi (2 : b) Voker–Brejker igri
Hamiltnove konture na Kn.

VokerMejker–VokerBrejker igre bez biasa

U glavi 4 istražujemo VokerMejker–VokerBrejker igre (ili VMejker–
VBrejker igre, kraće). Podsjetimo se da su to Mejker–Brejker igre u kojima
su oba igrača ograničeni po pitanju izbora grana, tj. i Mejker i Brejker
moraju da biraju grane kao da se šetaju kroz graf. Fokusiraćemo se na
VokerMejker–VokerBrejker igre bez biasa sa ciljem pronalaska brze pob-
jedničke strategije za VokerMejkera u igri povezanosti i igri Hamiltonove
konture. Dokazujemo sljedeće teoreme:

Teorema 5.11. U (1 : 1) VMejker–VBrejker igri povezanosti na E(Kn),
VMejker ima strategiju da pobijedi za najvǐse n+ 1 poteza.

Teorema 5.12. U (1 : 1) VMejker–VBrejker igri Hamiltonove konture na
E(Kn), VMejker ima strategiju da pobijedi za najvǐse n+ 6 poteza.

Takode, razmatramo koliko dugo VBrejker, kao drugi igrač, može da
prolongira VMejkerovu pobjedu.

Teorema 5.13. U (1 : 1) VMejker–VBrejker igri povezanosti na E(Kn),
VBrejker, kao drugi igrač, ima strategiju da odloži VMejkerovu pobjedu za
bar n poteza.

110
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MBTD igra na kubnim grafovima

U glavi 5 istražujemo Mejker–Brejker igre totalne dominacije na kubnim
grafovima. Bavimo se karakterizacijom povezanih kubnih grafova na ko-
jima Dominator pobjeduje i onih povezanim kubnim grafovima na kojima
Stoler pobjeduje. U kubnim grafovima sa n ≥ 6 čvorova, za svaki čvor
važi jedna od sljedeće tri mogućnosti, [80]:

tip 1. čvor pripada tačno dvama trouglovima

tip 2. čvor pripada jednom trouglu

tip 3. čvor ne pripada nijednom trouglu.

Dakle, kubni grafovi se mogu klasifikovati prema broju čvorova tipa 1, tipa
2 i tipa 3. Ako sa T1, T2 i T3 označimo broj čvorova tipa 1, tipa 2 i tipa 3,
redom, onda su ovi brojevi povezani sljedećom formulom, [80]:

T1 = 2k1, T2 = T1 + 3k2, T1 + T2 + T3 = n,

gdje su k1 i k2 nenegativni cijeli brojevi, a n označava broj čvorova u grafu.
Ako kubni graf sadrži čvor tipa 1, onda taj graf sadrži bar jedan dijamant
(graf K4 bez jedne grane). U daljem, pod trouglom podrazumijevaćemo
indukovan graf K3 koji nije dio dijamanta.
Uzimajući u razmatrane navedene tipove kubnih grafova, dokazujemo
sljedeće teoreme.

Teorema 5.14. Neka je G povezan kubni graf sa n ≥ 6 čvorova koji
je unija čvorno-disjunktnih dijamanata. Tada, Dominator pobjeduje u
MBTD igri na G.

Teorema 5.15. Neka je G povezan kubni graf sa n ≥ 6 čvorova takav da
svaki čvor pripada tačno jednom trouglu, tj. G je unija čvorno-disjunktnih
trouglova. Ako je n = 6, Dominator pobjeduje u MBTD igri. Ako je n > 6,
Stoler pobjeduje.

Teorema 5.16. Neka je G povezan kubni graf sa n ≥ 6 čvorova koji
je unija čvorno-disjunktnih trouglova i dijamanata. Tada, postoje samo
dva tipa takvih grafova na kojima Dominator pobjeduje. U svim ostalim
slučajevim, Stoler pobjeduje.
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Uopšteni Petersenovi grafovi privukli su dosta pažnje još od njihove
definicije. U [59] autori su pokazali da u MBTD igri na grafu P2�Cn, za
n ≥ 3, Dominator pobjeduje. Ovaj graf je ekvivalentan uopštenom Pe-
tersenom grafu GP (n, 1). Za graf GP (5, 2) dokazano je u [59] da Stoler
pobjeduje. Sljedeća teorema daje karakterizaciju grafova GP (n, 2) za
svako n ≥ 6.

Teorema 5.17. U MBTD igra na GP (n, 2) za n ≥ 6 Stoler pobjeduje.

Istražujemo i MBTD igre na kubnim bipartitnim grafovima i dokazu-
jemo sljedeću teoremu.

Teorema 5.18. U MBTD igri na kubnom bipartitnom grafu Dominator
pobjeduje.

Konačno, posmatramo MBTD igru na grafu G koji je unija čvorno-
disjunktnih K1,3 i dokazujemo sljedeću teoremu.

Teorema 5.19. Neka je G povezna kubni graf sa n ≥ 6 čvorova formiran
kao unija k ≥ 2 čvorno-disjunktnih K1,3. Za k = 2, Dominator pobjeduje.
Za k ≥ 3, Stoler pobjeduje.
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[13] M. Bednarska-Bzdȩga. Avoider–Forcer Games on Hypergraphs with
Small Rank. The Electronic Journal of Combinatorics, 21(1):#P1.2,
2014.
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Journal of Combinatorial Theory, Series A, 114(5):840–853, 2007.

[74] D. Hefetz, M. Krivelevich, and W. Tan. Waiter–Client and Client–
Waiter planarity, colorability and minor games. Discrete Mathemat-
ics, 339(5):1525–1536, 2016.

[75] D. Hefetz, M. Krivelevich, and W. Tan. Waiter–Client and Client–
Waiter Hamiltonicity games on random graphs. European Journal
of Combinatorics, 63:26–43, 2017.
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[100] M. Stojaković. Games on Graphs. PhD thesis, ETH Zürich, 2005.
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Croitoru M. (eds) Graph-Based Representation and Reasoning. ICCS
2014. Lecture Notes in Computer Science, volume 8577. Springer,
Cham, 2014.

121



BIBLIOGRAPHY
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