EMAp,
\?“h s

.5 N

\.‘L‘ROD \'()
—
—
| I—
—
—

<
T0AVH

Negative Deep Learning

Negativno duboko ucenje

University of Novi Sad
Faculty of Sciences
Department of Mathematics and Informatics

— Doctoral dissertation —

— Doktorska disertacija —

Candidate: Nemanja Milosevi¢
Mentor: dr Milo§ Rackovi¢

Novi Sad, 2021

KAS STy
S

CC BY-SA @®®
© 2021 Nemanja MiloSevic¢
This work is licensed under a Creative Commons Attribution Share Alike 4.0 Interna-

tional Licence https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/

“Zlato i blago, sine Alija, u ruci tvrdice su krpa, a krpa u ruci darezljiva dobriéine - zlato."

— Legenda o Ali-pasi, Enver Colakovi¢

Preface

Artificial Intelligence (Al) is one the fastest growing fields in Computer Science.
Recent developments in hardware and software mean that now, more than ever, Al
can be used in a large number of fields and problems. Even though the fields such
as Machine Learning and Deep Learning are already at a stage where they can be,
and are used every day, there is still a long way before we can use Al which performs
similarly to humans with confidence.

Al is now present in our day-to-day life. Even devices we wear, such as mobile
phones, or smart wear, are now capable of recognizing patterns in our behaviour
and reacting to a degree we allow them. A smart watch knows what type of exercise
we are performing just as our mobile phones know whose picture we are taking.

In an Al-driven world, we want algorithms and models which we can rely on. In
critical systems specifically, but also in every day life. The problem is that many
of the high performing models, especially deep neural networks, are difficult to un-
derstand and interpret. We need to develop methods and ways to validate models
behaviour, especially in difficult situations. A self-driving car must know how to
react if its cameras views are obscured by snow or ice. That is why, now and in
the future a great deal of attention must be given to improve robustness and in-
terpretability of the models we intend to rely on. New models, architectures and
specific solutions must be discovered and applied to the problems we are having. In
this thesis we describe several such models, a variety of negative deep learning mod-
els, which are more robust and perform better in difficult scenarios, when compared
to existing approaches. We show empirical results which demonstrate that negative
deep learning models when trained properly can bring robustness and performance
in agent environments, partial input classification, occlusions, adversarial attacks
and other challenging tasks.

This PhD thesis is split into five main parts.

In Part 1 we provide a short introduction and overview of the field, introducing
some aspects we will need later to define our negative deep learning models.

vi PREFACE

In Part 2 we discuss possible implementations of negative learning models and
provide some examples and where they can be applied.

In Part 3 we introduce the first negative learning model which can classify
instances based on their missing features. We provide detailed explanation on how
the model was implemented and tested. We also present all the different experiments
that were performed, their results and the discussion of the outcomes.

In Part 4 we discuss an interesting characteristic of the previous model we dis-
covered and how it led us to develop the Synergy model — another negative deep
learning model. We validate our assumptions again with various experiments and
results.

In Part 5 we discuss what we call "true" negative deep learning models, models
which only learn from negative data. We discuss existing approaches and show-
case one of our own: a negative Siamese Triplet Loss neural network. Finally, we
discuss how negative deep learning can be used in agent environments and provide
one example environment where the agent's behaviour can be controlled only with
negative rewards (punishments).

Acknowledgements

Firstly, | thank my mentor, Dr. Milo$ Rackovi¢ for the time we spent working on this
thesis, the initial idea of negative learning and the time spent working on the papers
which contributed to this thesis over the years. Among other things, he taught me
how to express myself in a clear, concise way, which greatly contributed to my
academic and teaching activities. | thank him for many long discussions and e-mail
threads we shared whenever | did not know how to proceed in my research. | would
also like to thank the members of the committee, Dr. Jelena Slivka, Dr. Milo$
Radovanovié, Dr. Srdan Skrbi¢ and Dr. Vladimir Lon&ar, for their time spent on
reading and commenting this thesis.

| thank the Faculty of Sciences, University of Novi Sad for some of the facilities
that were used during the development of this thesis, especially for the hardware
(axiom cluster) that was needed for all the experiments performed during production
of this PhD thesis.

A special thanks goes to professors Dr. Du$an Jakoveti¢ and Dr. Srdan Skrbi¢
for our successful cooperation on many international projects related to Machine
Learning and Artificial Intelligence which pushed me forwards in my knowledge and
capabilities.

The largest thanks goes to my family and friends for their continuous support
during my career.

vii

| thank my father Branislav for transferring his love for programming to me, my
mother Jasmina for teaching me to value important things in life and never give
up no matter what, my other mother Tamara for keeping our family together and
my brother Aljosa and sisters Tamara and Teodora for the endless time we spent
playing video games together.

| thank my friends Dragana, Doni, Milan and Tanja for constantly asking me
"how is the thesis going and when will you finish" and for all the PhD and research
related memes they have sent me over the years.

Finally 1 thank my world Natasa Sukur for everything she has done for me,
pushing me to move forwards in the hardest of times. Without her | would not be
who | am and without her support this thesis would never exist.

Rezime

U danasnje vreme upotreba dubokog ucenja radi prepoznavanja odredenih paterna
u podacima postala je nezamenljiv alat u mnogim sistemima. U kriti¢nim sistemima
pogotovo, duboke neuronske mreZe se Cesto koriste ¢ak i u scenarijima koji direktno
uticu na nase zivote. Upravo to je razlog Sto se u poslednje vreme u istrazivanju
sve vise stavlja akcenat na duboko razumevanje ovih modela i na modele koji su
dokazano pouzdani, robusni i sigurni za upotrebu.

U ovoj doktorskoj disertaciji istrazujemo negativne modele dubokog masinskog
uCenja kao novi pristup razvoju modela sa visokim performansama i jo$ vaznije
sa povecanom robustnoséu i pouzdanoséu u poredenju sa modelima danasnjice.
Takode se bavimo nadogradnjama postoje¢ih modela sa nasim negativnim pristupom
i pokazujemo kako se postoje¢i modeli mogu unaprediti bez velikih promena u
arhitekturi.

Kod modela za klasifikaciju slika (danas najrasprostranjenija primena dubokih
konvolutivnih neuronskih mreza) pokazaemo kako se ovi modeli mogu nadograditi
i izmeniti kako bi u obzir uzimali i negativne osobine — one osobine koje znamo da
postoje a nisu trenutno prisutne u ulaznim podacima.

Za sve modele predstavljene u ovoj disertaciji bice prikazana duboka analiza
procesa kao $to su negacije osobina, negativne aktivacione funkcije, zamrzavanje
slojeva neuronskih mreza, transfer znanja iz jedne mreze u drugu, fine-tuning pristup
treniranju, inverzije konvolutivnih filtera i drugo.

Dodatno znanje, u obliku negativnog znanja, moZze biti veoma bitan faktor u
ucenju i kreaciji modela koji imaju povecanu preciznost, pouzdanost i robustnost,
pogotovo u teskim situacijama. Definisemo teske situacije kao one situacije u kojima
je model suocen sa podacima koji su izmenjeni ili tezi za razumevanje na neki nacin,
bilo na prirodan nacin ili vestacki nac¢in. Na primer, modeli predstavljeni u ovom
radu su testirani u sluCajevima parcijalnih ulaza i okluzija gde su delovi ulaznih
podataka odstranjeni ili zaklonjeni na neki nacin. Negativni modeli u ovakvim
situacijama imaju znatno vise performanse u poredenju sa obi¢nim, tradicionalnim

X REZIME

modelima iste arhitekture. Za vestacki generisane situacije, govori¢emo o adver-
sarijalnim mrezama, podacima i napadima i kakve su performanse nasih negativnih
modela kada se suoce sa takvim podacima. Testirani su black-box i white-box ad-
versarijalni napadi i odabrani su oni napadi koji danas predstavljaju najnaprednije
mogucée metode za namerna kvarenja modela dubokog ucenja.

U ovoj disertaciji takode uvodimo pojam mreze sinergije, koja predstavlja spoj
normalne i negativne mreze i kao takva se moze koristiti i primeniti na bilo koji
postojeéi model. U sinergiji deo mreze ili cela mreza se dodaje na postoje¢i model
u kombinaciji sa odredenim modifikacijama kako bi se ukljucilo negativho duboko
uéenje. Pokazacemo da ovakvi modeli imaju joS vise performanse u poredenju
sa negativnim modelima i eksperimentisatemo sa raznim nacinima spajanja mreza.
Model sinergije ¢e biti testiran na CIFAR10 skupu podataka dok su negativni modeli
razvijani i testirani na MNIST i EMNIST skupovima podataka.

Na kraju, govori¢emo o modelima koji koriste "pravo" negativno ucenje, a to su
oni modeli koji koriste samo negativno znanje za ucenje. Biée dat prikaz postojecih
sli¢nih modela kao $to su Negative Sampling modeli, Noisy Label Classification
modeli i modeli koji koriste Noise Contrastive Estimation. Nas$ fokus je na dva
modela za koje éemo predloziti i implementirati nadogradnje a to su: negativna
Deep Q-Learning agentska neuronska mreza i negativna sijamska Triplet Loss mreza.
Oba ova modela mogu biti koris¢ena uz pomo¢ samo negativnih podataka, u nekim
slu¢ajevima za potpuno treniranje a u nekim slucajevima kao vid regularizacije.

Abstract

In recent times the use of Deep Learning as a tool for pattern recognition and more
has become essential for many tasks. In critical systems specifically these models
are often used in human life affecting environments and that is the reason for new
and recent research regarding these models and and their robustness and reliability.

In this thesis we explore negative deep learning as a new approach to developing
models which have higher performance and more importantly increased robustness
compared to normal models used today. Moreover, we show how many existing
models can be upgraded to employ some kind of negative deep learning without
large architectural changes.

We will discuss how image classification neural networks (most popular use case
of the convolutional neural network family) can be modified to take into consider-
ation missing (negative) features from input samples when making their decisions.

We provide deep explanation of the feature negating process, experimenting with
different activation functions, neural network layer freezing, Transfer Learning and
Fine Tuning approaches, convolutional kernel inversions and more.

We show that by employing this additional knowledge we create models with
increased robustness, especially in difficult scenarios. We define difficult scenar-
ios as those which are naturally or artificially difficult for modern neural networks.
For example, we benchmark our models in the cases of partial input examples and
occlusion against normal models of same architecture to show our modifications
bring performance and robustness is this type of classification tasks. For artifi-
cial scenarios, we show that our models are less susceptible to adversarial attacks,
both white-box and black-box. We test with state-of-the-art adversarial algorithms
and see various level of improvements for different attacks and datasets (MNIST,
EMNIST variants).

In this thesis we also introduce the notion of a Synergy model, a model which
is a pure upgrade of any neural network model where additional model, or part of
it, is appended with the negativity embedded into the underlying signal processing.

Xii ABSTRACT

We show that the Synergy models can generally outperform our negative models
without any performance penalty when comparing to normal models. We also
experiment with different state-of-the-art Ensemble network joining methods and
show how they differ in implementation effort and performance. The synergy models
is tested against more complex CIFAR1O dataset and its adversarial modifications,
both human and artificial.

Lastly we mention true negative deep learning models, which are those which
use only negative knowledge for learning. An overview of existing models is pro-
vided including Negative Sampling, Noisy Label Classification and Noise Contrastive
Estimation. We focus on two models for which we provide upgrades and implemen-
tations: a negative Deep Q-Learning agent in a Deep Reinforcement Learning Task
and a negative-only Siamese Triplet Loss network. Both these models, we show,
can be used in a negative-only scenarios, some for regularization purposes, some for
complete training.

Contents

[Preface] v
[Rezime] ix
xi

[1__Goals and Contributions of this Thesis| 3
[L1 Goals and Motivationl 3
(1.2 Contributions| 4
(1.3 Realization Planl oo 4
[L4 _Note on Related Work Sections 5

|2 Artificial Intelligence: A Brief Overview| 7
[2.1 History of Artificial Intelligence] 7
[2.2 Neural Networks Modern Hardware Development| 9
2.3 Modern Machine Learning{. 9
2.4 Deep Learning and its Common Uses| 10
2.5 Deep Neural Networks|. 11
2.6 Convolutional Neural Networks 12

2.6.1 Convolutional Kernels| 13
2.6.2 ImageNet| 15
27 Recurrent Neural Networksl 16
2.7.1 Modern RNNs, Memory and Attentive Models|. 17

xiv CONTENTS

2.8.1 Adversarial Learning| oL
2.8.2 Deep Reinforcement Learningf.

T Negative Learning

[3__Introduction to Negative Learning
3.1 Reasoning and Possible Benefits of Negative Learning Techniques|
3.2 Policy-based Algorithms and Negative Learningl

3.3 Negative Learning in Other Algorithms|

{4 Negative Deep Learning|
4.1 Negative Deep Learning — Introduction|.
4.2 Possible Models of Negative Deep Learningl
4.2.1 Missing Features|.
|4.2.2 Partial Input Sample Training/.
4.2.3 Negative Output Learning|.
4.2.4 Ensemble Networks and Upgrades of Existing Models|
4.2.5 Agent Environments|.o
4.3 Negative Deep Learning Use Cases|

MT Classification Based On Missing Features|

O Introduction|
5.1 Intuition Behind Missing Feature Representations|
5.2 Robustness of Image Classifiers|
5.2.1 Partial Input Classification|

27

29
30
31
31

33
33
34
34
34
35
35
36
36
37
39
39

CONTENTS XV

6 Implementation| 47
........................... 48
6.2 Used Model Architecturel 49
[6.3 The Negative Function| 50

6.3.1 Missing vs. Negative Features| 50

16.3.2 Activation Function Experiments| 51

16.3.3 Influence of the Negative Function in Forward and Backward |

| Passed| 52
6.3.4 Negative Feature Selection Process|. 52

[6.4 Training Process|. 53
6.4.1 Multi-phase Training| 53

7 Testing 57

(1 Results on the MNIST and PMNIST Datasets| 57
[r.1.1 Note About Model Choicel 57

|[7.1.2 Summary of the First Experiments| 59

[7.1.3 Influence of Multiple-step Training| 61

|7.1.4 Negative Convolutional Kernel Experiments| 61

[r.1.5 Other Activation Functions| 63

[£1.6 Corner Occlusions 66

(.2 Robustness to Adversarial Attacks| 68
[7.2.1 White-box Attacks (Fast Gradient Sign Method Attack on |

| the Negative Models) 68
[7.2.2 Black-box Attacks: Black Box Projected Gradient Descent |

| Attack on the Negative Models| 69

V Synergy of Traditional Classification, and Classification |

ased On Missing Features| 73
[8__Overview of Ensemble Learning Techniques| 75
|9 Synergy model| 77

[9.1 The Need for Ensemble "Synergy™ Models| 77
9.2 Model Description| 78
9.3 Model Architecturelo 79
9.3.1 Negating The Features| 81
[9.3.2 Shortcomings of Previous Model[. 82

[9.4 Training Processes|. 82

XVi CONTENTS

9.4.1 Synergy Network| 83

9.42 Other New Models| 85

9.5 Results and Discussion| 86
9.5.1 Testing with More Complex Models| 88

9.5.2 Testing with Partial Input Samples| 88

9.6 Different Network Joining Techniques| 91
@61 Addition 91

9.6.2 Multiplication|o 93

9.6.3 Separate Join Model Approach| 93

9.6.4 Neural Network Fusion in Multi-Modal Systems| 95

9.7 Synergy Robustness to Adversarial Attacks|. 97
9.7.1 White-box attacks: Fast Gradient Sign Method Attack on |

[the Synergy Models| 97
19.7.2 Black-box attacks: Black Box Projected Gradient Descent |

[Attack on the Synergy Models| 99
9.7.3 Other Attacks| o oo 99

9.8 Summary and Conclusions for the Synergy Models|. 101

[V True Negative Deep Learning 103
[10 Goals, Motivation and Implementations| 105
[10.1 Gradient Ascent Variationl 107
110.2 Negative Sampling|.o 109
110.3 Noisy Label Classification| 110
[10.4 Noise Contrastive Estimation Models 111
(11 Siamese Neural Networks and Our Upgrades| 115
|I11.1 Negative Learning with Triplet Loss Function and our Modifications| 116
|11.2 Initial Experiments and Results of our Approach| 117
[12 Negative Deep Reinforcement Learning| 121
[12.1 Motivation and Use-cases| 122
112.2 Deep Q Learning|. 123
112.3 Negative Rewards and Punishments| 124
112.3.1 Collision Avoidance in Open Environments with Negative |

| Deep Reinforcement Learning|. 124

112.3.2 Implementation| L. 125

CONTENTS

3 Thesis Conclusi F Work

VT Appendices|

114 Source Code and Reproducibility|

|Short Biography|

|Kratka biografijal

IKljucna dokumentacijska informacija|

|Key Words Documentation|

xvii

129

133
135
137
145
165
167
169
175

List of Figures

[2.1 Image Classification Deep Neural Network. Original source: |1] . . 12

[2.2 Example of a convolutional operation on input data. Taken from [15].| 14

2.3 Example of a DeepDream network output image. Original image |
[source: |I5[] 19

[2.4 Example of a Neural Style Transfer application. On the top left we |

‘ have an input image — a photograph. On the bottom left we have ‘

: an Gogh's Starry Night, used to extract style. And on the right we
have the resulting image, content from the input image, style from |

the Starry Night. Image taken from |15[]. 20

[5.1 A motivational example where classification based on missing fea- |
tures would work in our dataset. Digit "5" from the MNIST dataset
and its missing features named here: Feature 1 (on the left, circle-
like feature) and Feature 2 (on the right, corner-line feature).[. . . . 44

[6.1 Example of digit 3 in our validation set; From left to right: unmod- |

ifled — original version, horizontally cut image — top half removed, ‘
vertically cut image — left half removed, diagonally cut image — first

and third quadrants removed, "triple cut” image — three squares

L removed as described beforeo 48

[7.1 Input example #8 from CIFAR-10 validation set with various levels
of occlusion added. From left to right: original image, 10% removed,
20% removed, 30% removed] 67
[7.2 FGSM adversarial image generation process, ¢ = 0.007 (image taken |
| from original FGSM paper).|. 69

XX LIST OF FIGURES

[7.3 Accuracy of normal and negative (best chosen, which is NR) models |

| against FGSM.|.o oo 70
9.1 Synergy Model Architecture| 79
[9.2 Input examples: #2 (ship), #6418 (airplane), #7396 (ship)| 85

9.3 Input example #8 from CIFAR-10 validation set with various levels
of occlusion added. From left to right: original image, 10% removed,
20% removed, 30% removed] 89
9.4 Input example #3421 from CIFAR-10 validation set with various |
modes of box occlusion. From left to right: original image, SSK, |

SSKR,MSK_ MSKRY 90

9.5 Example of Visual Question Answering architecture from BLOCK |

| Fusion proposed method [69.|. 96
9.6 Accuracy of normal and synergy models against FGSM.| 98

110.1 2-D space of English words generated with word2vec. Words with |
| similar semantic meaning are close in the embedding space.|. 112

|11.1 Example of Face Identification Siamese Neural Network (e.g. [85])

training with triplet loss function. A triplet of data samples is used:
current sample for which we are training, a positive sample of the

| same class and a negative example of another class. After embed- |
| dings are computed and the distances are calculated the optimizer of |
the model minimizes the distance between same class samples and
maximizes the distance between the current sample and the negative

sample.|. 117
[11.2_Comparison of Siamese Model fine-tuning techniques. TSN network
is unmodified Iriplet loss Siamese Network, -N is the same net-

| work with the positive side ignored for updates and the TSN-P is the |
| same network with the negative side ignored for updates. TSN-N |
network manages to increase accuracy while the TSN-P network de-

grades it. Final (best) accuracies: 93.84% (1SN), 92.92% (1SN-P),
93.91% (TSN-N).|o 119

112.1 Example DQN environment for testing using only negative rewards
(punishments). A bird is the agent and the grey dots are the ob-
stacles that need to be avoided. Implementation with turtle Python
module and Keras (TensorFlow).| 126

LIST OF FIGURES

XXi

[12.2 DQN rewards for the open collision environment. Model converges ‘
quickly in just a few episodes bringing the reward to zero. Sudden
"dips” in the reward plot represent model instability because the en- |
vironment is stochastic i.e. the obstacles have randomized positions |

List of Tables

[7.1 Results with accuracy for all models and unmoditied testing datasets. ‘

ere, enotes the standard, unmodified network, enotes

the network only trained with layer negation and HN denotes Hybrid

network which was trained normally for a number of epochs but was

then switched to negate the output of the last convolutional layer.

The NR and ALT models are trained as explained in previous section.

NR model is the model which is not reset (NR) after the inversion

modification and the ALT model is extension of the NR model where

the normal and inversed training takes place in alternating (ALT)

epochs. All the values are percents which depict validation accuracy

of a network on a given dataset. Bold are the best models per dataset.| 58

72

Results with accuracy for all models used on newly introduced PM-

NIST validation sets. Bold are the best models per dataset.|.

58

73

Results with accuracy for all models used on newly introduced EMNIST-

MNIST validation sets. Bold are the best models per dataset.|

59

74

Results with accuracy for all models used on newly introduced EMNIST -

Balanced validation sets. Bold are the best models per dataset.|

59

75

Results with showing what models worked best with different test

and validation sets. 1he "Accuracy" column shows final, highest

accuracy achieved while the "Delta” column shows accuracy gain

over the standard unmodified network. Both "Accuracy” and "Delta”

columns are given in percentages.|.

76

Results with accuracy for all models used on newly introduced PM-

| NGT walidat Tncluded in th, I T ort i |

also the two-phase normal non-negative network (last column, TP

for two-phase network). Bold are the best models per dataset.| . . .

62

XXV LIST OF TABLES

[7.7 Results with accuracy for all models using direct kernel negation,
on MNIST/PMNIST validation sets. Bold are the best models per

dataset) 63
[7.8 _Results with accuracy for all models used on the PMNIST validation
sets while using sigmoid activation function. Bold are the best

| models perdataset.| L. 64

7.9 Results with accuracy for all models used on the PMNIST validation |
| sets while using fanh activation function. Bold are the best models |
| perdataset.| 65

[7.10 Results with accuracy for all models used on the PMNIST valida- |
| tion sets while using ReLLU6 activation function. Bold are the best |
| models perdataset.| L0 65
|7.11 Results with accuracy for all models used on the PMNIST validation

sets while using ReLUG activation function and the f(z) =3 —z

negation function. Bold are the best models per dataset.| 66
|7.12 Results with accuracy for all models used on the PMNIST validation

sets while using LeakyRe LU activation function (negative_slope =

0.1) and the () — 1—x negation function. Bold are the best mod-

els perdataset.| 66

[7.13 Results with accuracy for all models used on the new corner occlusion
validation sets. Bold are the best models per dataset. Hybrid no-

reset network performs best here|. 67

[7.14 Results with accuracy for all models against FGSM white-box at-

tacks. Bold are the best models per adversarial dataset. Please note
that the control results are slightly different than before as normal-

| ization of the dataset has been omitted as suggested by the authors |

[7.15 Results with accuracy for all models against PGD black-box attack. |
On the diagonal in italic font are the actual PGD white-box attack
accuracies (same Holdout and Target model). We can see more
severe damage caused by PGD in these cases. These results are
taken for the middle epsilon value: € = 0.15. | he last row presents
average accuracies when using different models as target models, |
where we see again the negative models outperforming the normal |
model. The results are generally better for greater e values. Full |
results are available in the code repository.|. 72

9.1 Performance of the negative and normal models.| 82

LIST OF TABLES XXV

[9.2 Performance of the negative and normal models (case counts). CIFAR- |
| 10 validation set has 10000 images.] 83

9.3 Cases when only one network is correct. Input sample is from the ‘
[validation set (index #2). C1 to C10 are output classes probabilities. |
Correct class is class 9 — 'ship. Rows represent three networks:

| normal CNN, negative CNN, and the synergy network which is the |
| sum of the previous two. Bold is the highest probability, per network.| 85

[9.4 Another case (#7396) where normal network is correct whilst the |
| negative network is incorrect. Correct class is class 9 — 'ship’| 85

[9.5 One of the extreme cases (#6418) where both networks are incor-

‘ rect and unconfident, but synergy of the models outputs the correct
| result. Correct class is class 1 — ‘airplane’| 86

9.6 Validation accuracies of the models. Accuracy is given as percentage. ‘
| Column "Delta™ represents the percentage difference between our |

[9.8 Validation accuracies of the models with testing with datasets with
| partial samples. C1 to C3 represent dataset with 10%, 20%, 30% of
| the input image removed. Best results in bold text.| 90

[9.9 Validation accuracies of the models when testing with datasets with |
| block removed partial samples. Best results in bold text.| 90

[9.10 Validation accuracies of the models when testing with w = 0.5. |
| With this parameter value the normal network is two times more |
| important than the negative network in the join process| 92

[9.11 Validation accuracies of the models when testing with w = 2.0 where |
| the negative network is twice the important when comparing it with |

[9.12 Validation accuracies of the models using multiplication when testing |
| with datasets with block removed partial samples. Best results in |
| bold text. 93

[9.13 Validation accuracies of the models when testing with datasets with |
| block removed partial samples. Best results in bold text. Last row |
represents the newly introduced Synergy network with the additional
layers at the end (SynergyF). The footer of the table represents the
difference between the normal synergy and the upgraded SynergyF

XXVi LIST OF TABLES

[9.14 Results with accuracy for both models against FGSM white-box at-

tacks. Please note that the control results are slightly different than
| before as normalization of the dataset has been omitted as suggested |
| by the authors of the FGSM attack. Synergy model outperforms the |
normal model in all test cases. Bold are the best models per adver- |
| sarialdataset) 97
[9.15 PGD black-box (and white-box) attacks results for various € values
when using normal and synergy models as the holdout model. First
two columns are the result when using the normal (SN) network as
the holdout whereas the last two columns show the results when

using synergy network as the holdout. BB Delta column presents

the difference of the models when using as a black-box attack.
Synergy network outperforms the normal network for € values smaller

| than 0.02 and is of very similar performance for greater values. At |

| higher € values both networks performance is severely degraded.| . . 99
[9.16 Synergy robustness to white-box state-of-the-art algorithms. Accu-
[racy on the new generate adversarial test sets. Delta column repre-

sents the difference between normal and synergy models. Synergy |

| model outperforms the normal model in all the tested adversarial |

| environments. Bold are the best models per adversarial dataset| . . 100

Part |

Introduction

Chapter 1

Goals and Contributions of
this Thesis

In this chapter we briefly present the reader with goals and motivation as well as
contributions and the realization plan of this PhD thesis.

1.1 Goals and Motivation

The main goal of this thesis is to explore negative learning application for Deep
Learning models. Negative learning is present in every-day life and it is a known
term in psychology and behaviour studies. With our research we are trying to
create a bridge between symbolic understanding of patterns and the innate low
interpretability of deep learning models. In other words, we are trying to extract
or, more precisely, deduce additional knowledge from existing data, similar to what
would a human do if presented with a certain task.

Another goal of this thesis is to define and implement negative deep learning
models so others can benefit from our work and use these models for various tasks.
We will define several negative models from negative convolutional neural networks,
synergy ensemble positive-negative networks, true negative networks (e.g. negative
Siamese networks) and negative agents.

For some of these models the goal is evaluate them in-depth in some use cases
where we hope they would perform well. For negative and synergy models the goal
is to have better performance with regard to robustness in difficult scenarios such
as partial inputs, occlusions, adversarial attacks etc.

4 CHAPTER 1. GOALS AND CONTRIBUTIONS OF THIS THESIS

For other models the goal is to evaluate the possibility of training and using
them with negative learning in mind.

1.2 Contributions

The contributions of this PhD thesis can be divided into several categories.

Broadly and most importantly, the introduction of negative deep learning as a
new paradigm in Machine Learning research is a great contribution to all researchers
in the field.

Our detailed in-depth explanations, examples and implementations of the pre-
sented models is also a great contribution to research. We also provide reproducible
and tested environments in which our models can be executed and our results
validated. Significant time was spent on various in-depth experiments with our pre-
sented models so that many questions from researchers wanting to experiment with
our models are immediately answered. For example for our negative models which
learn to classify on negative features we already experimented with different acti-
vation functions, layer freezing, transfer learning, fine-tuning, convolutional layer
inversion and other approaches. For our negative reinforcement learning agents
we already provide one example environment where these or similar agents can be
tested.

We also provide full source code and implementations for all the models and
experiments presented in this thesis which we believe is a necessity in modern re-
search.

1.3 Realization Plan

The realization plan and general development of the models and experiments in this
thesis closely follows the actual contents of the thesis.

First, we provide a short introduction and overview of the field (in Part[l) neces-
sary for defining negative deep learning models. After that we will discuss possible
implementations and provide some examples and their application (in Part @) In
the next part (Part@ we go in-depth with our first negative learning model which
can classify instances based on their missing features. We present all the different
experiments that were performed and the results. In Part[[V]we discuss in-depth the
Synergy model, another negative deep learning model. There, we discuss why it is
needed, how it was discovered and what are its advantages over previous negative
deep learning models. Then in Part [V| we examine what we call "true" negative

1.4. NOTE ON RELATED WORK SECTIONS 5

deep learning models, models which only learn from negative data. The main focus
is on our own: a negative Siamese Triplet Loss neural network. In the end, we also
discuss how negative deep learning can be used in agent environments and provide
one example for both the agent and the environment.

1.4 Note on Related Work Sections

During the production of this PhD thesis it was decided that the related work
discussion should be included in specific parts of the manuscript. Our feeling is that
this is a more natural approach as this thesis aims to cover a wide variety of fields
of Machine Learning research. Therefore, a singular related work section does not
exist but it rather split into parts which follow the natural flow of the document.

Chapter 2

Artificial Intelligence: A Brief
Overview

In the first part of this dissertation a short history of the field is presented with
focus on some models and approaches used later to define and describe negative
deep learning models.

Artificial intelligence is a universal field. Whether it is writing poetry, playing
chess, proving theorems, self-driving cars or any other intellectual task, throughout
history scientists have tried different artificial intelligence (Al) methods to bring the
machines closer to us humans. Even though we think Al is the "new and hot" field
in Computer Science, modern Al roots can be traced all the way to World War II.
The name was coined after (in 1956) but the science was there long before that.
From Alan Turing to Yann LeCun and others, generations have been working hard
to bring the dream closer to reality — a dream where machines can think, and reason.
From the iconic Turing test to the deep neural networks, we have come long way
but we still have loads to discover.

2.1 History of Artificial Intelligence

Many have tried to precisely define what Al means. Today, we know that a single,
all encompassing definition is very difficult to formulate. Al is concerned with rea-
soning, behaviour, thought process, rational thinking and other well-defined terms.
Therefore we define Al as a sum of everything that makes machines perform closely

8 CHAPTER 2. ARTIFICIAL INTELLIGENCE: A BRIEF OVERVIEW

to human level. In other words machines need to learn to do the "right thing", given
the knowledge we possess.

In the early days of Al, researchers sought ways to solve difficult problems for
humans. These problems proved to be easy for machines to comprehend through a
series of formal, mathematical rules. The real challenge today is solving the tasks
that easy for humans but hard to describe formally — problems that feel automatic,
intuitive like recognizing spoken words or faces in images. [1]

To try and provide the scientific world with an operational definition of intelli-
gence, Alan Turing (1950) devised the famous Turing Test. A machine (in other
words software) passes the test if a human asking series of questions cannon tell
whether the responses are coming from a person or a computer. To develop software
able to do this is not an easy task. The system would have to have many capa-
bilities including: natural language processing (so it can communicate), knowledge
representation (so it can store what it knows), automated reasoning (to draw con-
clusions from the knowledge) and machine learning (to adapt to new environments
and detect and understand patterns in knowledge). In addition to these capabilities
if we were not to avoid human-machine physical contact, the machine would also
have to be able to see (computer vision) and interact with the real physical world
(robotics). The six capabilities remain relevant today, 70 years after the Turing Test
was formulated.

Today, researchers are not pursuing the solution to the Turing Test actively as
before. The reason in believing that it is more important to study the underly-
ing principles of intelligence, than to imitate it. In [2] Al is defined through four
virtues of thinking humanly, thinking rationally, acting humanly and acting ratio-
nally. Whilst Turing test is simply a test of Al acting humanly, today we are more
concerned with designing systems which act rationally and help us make various
decisions.

With that in mind, comes the state-of-art-approach as of today — Deep Learning.

Our "seat of consciousness", the brain, is the main object of study in neu-
roscience. Even though even today, the exact way in which the brain functions
remains one of the great (if not the greatest) mysteries of science, the simple fact
that it does enables the drive of researchers to push further and further in the quest
of fully understanding the how and the why. In the 18th century, humanity was
certain that the brain is the center of reason in humans, and in the 19th century
we were made aware the brain contains many neurological cells called neurons.
(Golgi, Broca) In the early 20th century, Nicolas Rashevsky was the first to apply
mathematical models in studying the nervous system.

Neurons or nerve cells are built from two major parts: cell body (soma) which
contains a cell nucleus and a number of fibers called dendrites on of which is longer

2.2. NEURAL NETWORKS MODERN HARDWARE DEVELOPMENT 9

than the others (axon). Axon length is particularly interesting, some can be up
to a meter long. A typical biological neuron makes connections with 10 to 100000
other neurons at junctions which are called synapses. Signals are propagated though
neurons by the means of a complicated electrochemical reaction. The signals are
used to control brain activity but can also enable long-term changes in connections
between neurons. We believe that these mechanisms enable our brains to learn. It
is amazing to think that a structure of simple cells can lead to thoughts or that in
other words: brains cause minds (John Searle, 1992). [3]

2.2 Reappearance of Neural Networks with Modern
Hardware Development

With modern GPU (graphical processor unit) development, especially the develop-
ments related to the NVIDIA CUDA framework, deep neural network models were
suddenly possible and obtainable.

The human brain consists of around 100000000000 neurons (10'1). A modern
computer can have even more transistors, thus we are approaching singularity [4]
— a point in time where computers reach superhuman levels of performance. The
raw comparison is not especially informative (or right) since that even if one made
a computer with unlimited resources and capabilities, we still would not know how
to achieve brain's level of intelligence.

In the mid 1980s at least four different research groups revisited backpropagation
learning algorithm developed 20 years earlier by Bryson and Ho. [5] The so called
connectionist model was seen by some as a direct competitor to previously developed
symbolic models and also to the logicist approach. The current view is that all these
approaches are complementary, not excluding.

2.3 Modern Machine Learning

As algorithms developed and we learned more and more about intelligence, one thing
was very clear: Al systems must have the ability to acquire their own knowledge.
This is done by extracting knowledge (patterns) from raw data. The performance of
the system still relies heavily on the operator in crucial way and that is the was the
data is represented. This is why almost all algorithms require specific data presented
in a specific way in order to be useful. Each piece (called feature) of information
can be very important. Machine learning algorithm outcome is influenced by the

10 CHAPTER 2. ARTIFICIAL INTELLIGENCE: A BRIEF OVERVIEW

feature values, in other words the algorithm learns to correlate these feature values
and the outcome values.

In many tasks it is very difficult to define data structures in a way that it is
easy to extract meaningful feature values. This is why researchers rely on fields
like representation learning where the algorithm is forced to not only provide some
reasoning or outcome of the feature value inputs but also a different, more efficient
representation of the input features. These representations can be very complex
and difficult to interpret and that is why today we rely on stacking many simplified
versions of them. If we were to draw the structure of these algorithms we would
need a lot of space, because we can make them very deep. So deep in fact that
they are called: Deep Learning algorithms.

2.4 Deep Learning and its Common Uses

Deep Learning uses stacked feature representations to define complex relationships
between input patterns and output data. With Deep Learning, we can build complex
concepts out of simpler concepts, and that is a very powerful paradigm.

The simplest example of this concept is a multilayer perceptron (MLP). [2] This
structure is a simple mathematical function mapping a set of input values to a set
of output values. However, the beauty of it is in that the complex function (MLP)
is built from other simpler functions of which they are many. Every calculation
of formulas applied to any data point inside a MLP can be thought as a new
representation of the input data. MLP’s and other similar models are often called
Universal Function Approximators.

The main idea of Deep Learning (DL) [6] and its stacked representations of
the input data provides one perspective in which we judge different DL algorithms.
Another perspective comes also from depth but in slightly altered way. By using
many layered representations of data we allow the machine to process data in a
series of steps which is very important for some tasks and makes the algorithms
learn better as they focus on smaller steps at a time. The deeper the network, the
larger is the number of steps taken towards the solution. Sequential reasoning is
powerful because later decisions can refer back to previous decisions.

Deep Learning has found its way into many different fields. It can be used for
classification, regression, clustering and many other tasks. For classification, neural
networks can be used for image classification [7], text classification [8], audio recog-
nition [9], graph classification [10] and many other tasks. In regression tasks, neural
networks can be used for time series analysis [11], recurrent networks are used for
text modelling [12] and in the field of Reinforcement Learning they can be used

2.5. DEEP NEURAL NETWORKS 11

for training problem solving agents [13]. Even for clustering tasks in unsupervised
learning where neural networks traditionally were not used, we see specific archi-
tectures (e.g. Variational Auto Encoders [1]) performing really well, often beating
traditional machine learning algorithms.

2.5 Deep Neural Networks

We already described partly how Deep Neural Networks function in the previous
section. In this section we can explain with more detail and understanding by
providing a simple example.

In Figure 2.I] we can see a simplified diagram of how a deep neural network
can classify images. Other machine learning algorithms, which do not used stacked
data representations often struggle with image related tasks. This is because the
raw sensory input (pixel data) is not a very good representation of knowledge found
in images, even though it is a good representation from a computer science stand-
point. If we were to write a single function mapping pixel data to an output class
representing object identity, it would be extremely complicated. Deep Learning can
solve this task with ease by breaking the complexity of the mapping functions into
a series of nested simpler representations, or layers. By creating a series of layers
which are able to extract increasingly abstract features from an image, we create
an algorithms which is able to process and distinguish between different classes of
objects and successfully classify them. The input layer is sometimes also called the
visible layer as it is the last data representation visible (and understandable) to us
humans. Following it, there is a series of hidden layers, called hidden because their
values are not given in the input data but rather calculated from the input data.
In a way, they represent hidden knowledge inside the input data. The model must
learn to determine which concepts from these hidden layers are useful for explaining
the relationships between input and output data. In our example, and visible in
the figure, every layer can detect increasingly abstract and complex structures in
input data (image). The first layer given pixels detects edges, by for example com-
paring brightness in neighboring pixels. The second layer, given edges can detect
corners and contours. The third layer given contours, and corners can detect whole
sub-objects in the image by finding specific groups of given inputs (contours, edges
etc.). Finally, the last layer which receives inputs of sub-objects present in an image
can be used to recognize the object in a given input image.

12 CHAPTER 2. ARTIFICIAL INTELLIGENCE: A BRIEF OVERVIEW

Output
{object identity)

3rd hidden layer

(object parts)

2nd hidden layer
{corners and

contours)

1st hidden layer

(edges)

Visible layer

(input pixels)

Figure 2.1: Image Classification Deep Neural Network. Original source: [1].

2.6 Convolutional Neural Networks

Convolutional Neural Networks (CNN's, sometimes called Convnets), introduced
by LeCun around 1995 are a specific and modern neural network architecture.
This architecture specializes in working with data which has spatial or grid-like rela-
tionships. Some examples include images (e.g. two dimensional grids for grayscale
image data), time-series data (which can be seen as a one dimensional grid), or other
sequence data. Convolutional neural network have found their way into many suc-
cessful implementations and are as of today one of the most common (and modern)
type of deep neural networks. The name convolutional neural network comes from
the mathematical operation of convolution, and it implies that a neural network uses
this operation for some operations (feature extraction). To define formally: "Convo-
lutional networks are simply neural networks that use convolution in place of general
matrix multiplication in at least one of their layers." Besides convolutions, some
other operations are usually required for a successful CNN implementation, like for
example pooling, which will be explained later. Convolutional neural networks take
inspiration from the animal world. Specifically, some animals have developed parts
visual cortexes where information is processed in way that the surrounding informa-
tion is also taken into consideration. In the case of image processing, for example,

2.6. CONVOLUTIONAL NEURAL NETWORKS 13

this simply means that we no longer look at the image pixel-by-pixel but rather we
look at groups of neighbouring pixels. This is a powerful concept in learning and
generalization in modern neural networks.

2.6.1 Convolutional Kernels

Convolutional Neural Networks can have many convolutional kernels or convolu-
tional filters. These kernels are used for calculating the convolutions and in them
the weights (knowledge) is stored similar to the weights on the synapses of fully-
connected neural networks. Here, we explain briefly what are convolutional filters,
what is the operation of convolution and what is the motivation behind using con-
volutions in neural networks.

In the most general mathematical terms, convolution is an operation on two
functions of a real-valued argument. In deep learning the term convolution is used
when we want to specify that we are using a convolutional operation to process the
input data or some hidden layer data. The correct terminology for two parameters
to the convolutional operation are: the input and the kernel (or filter). The output
of the operation is often called a feature map (map which shows where are some
features detected). The data processed in the case of CNN is always a multi-
dimensional array (tensor of usually three dimensions: width, height and depth —
for a color image input depth is the color channels) which is used as an input
parameter to a convolutional operation and another tensor called kernel.

The easiest way to explain the convolutional operation in CNN's is by a simple
example. In image processing operation of convolution means that a smaller sized
image (kernel) is slid over the larger input image. The operation computed during
the sliding is a simple element-wise multiplication. If a feature image matches a
part of the input image the output of the operation will be a non-zero number in
the resulting image (feature map). It is important to say that we do not define
convolutional filters, they are learned through back-propagation like other learnable
parameters in neural networks. One example of convolutional processing can be
seen in Figure |2.2

The main difference between a densely connected layer and a sparsely connected
convolutional layer is that the dense layer learns global patterns in input data (e.g.
pixel data in an image) and the convolutional layer learns local patterns (e.g. pat-
terns found in images — edges, shapes etc.).

This approach gives CNN's two interesting properties: patterns they detect are
translation invariant (it does not matter where they are in the input data) and they
can learn spatial hierarchies of patterns (first conv. layers learns local patterns, the
next one learns larger patterns etc. like we described in the previous section).

14 CHAPTER 2. ARTIFICIAL INTELLIGENCE: A BRIEF OVERVIEW

me/' Height
Input Input feature map
deplh

/¢\

@ @ 3 x 3 input patches

Dot product
with kernel

Output
depth Transformed patches

S

Output Output feature map
depth

e

Figure 2.2: Example of a convolutional operation on input data. Taken from .

2.6. CONVOLUTIONAL NEURAL NETWORKS 15

Convolutional layers in neural networks have two key parameters: size of patches
extracted from the input (usually squares of small dimension: e.g. 3x3 or 5x5)
and the depth of the output feature map (defined by the number of convolutional
kernels). Other than these parameters, we can also define padding (adding data
around the input data for compatibility reasons) and stride. Stride defines how a
convolutional filter is moved through the input data — how large is the movement
step.

Another important parameter is downsampling or pooling. We use pooling (usu-
ally max-pooling) to reduce the size of the output convolutional feature map. These
feature maps are propagated through many convolutional layers and it can be com-
putationally expensive to process them in full. That is why we opt for the down
sizing them by using the max pooling operation which only keeps maximum values
from parts of the feature map output. Another benefit of this operation is better
generalization — e.g. to classify an object it is not important where it is in the
image, but whether it is present anywhere on the image.

Convolutional Neural Networks can be and are used for many other image-related
and other tasks. Apart from the textbook example of image classification they can
be used for image segmentation [16], object detection [17], object detection in videos
[18], video classification [19], image superresolution [20], sentence classification [8]
and many other tasks.

2.6.2 ImageNet

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [21] is a widely known
competition in object detection. A dataset of billions of images and 1000 classes is
provided and different research teams compete every year to improve upon state-
of-the-art results. ImageNet challenge became widely known around 2012 when
Krizhevski et al. [7] demonstrated that CNN's can be used successfully for this use
case. The initial CNN model they demonstrated may be simple in today’'s terms,
but it brought down the state-of-the-art error rate of 26.1 percent to a new record of
15.3 percent — a huge leap forwards. Since then ImageNet challenge is dominated
by neural network models, and today's state-of-the-art models have top-5 errors
rate as down as 3.6 percent.

Another important consequence of the ImageNet challenge and the reason we
mention it here is that it introduced researchers to parameter sharing and transfer
learning. For the model to be validated it had to be shared, meaning that it's
parameters were publicly available. Most importantly, convolutional kernels were
shared and they could be freely used for other tasks. It is quite common today to
use pre-trained (meaning frozen, constant) convolutional layers in an image-related

16 CHAPTER 2. ARTIFICIAL INTELLIGENCE: A BRIEF OVERVIEW

neural network. As the ImageNet models are trained from all publicly available
images on the Internet, the convolutional layers are incredibly valuable as they
contain almost every imaginable image feature there is. In one of our negative
models, transfer learning is used as an important step in the training process.

2.7 Recurrent Neural Networks

Recurrent neural networks (RNNs) introduced by Rumelhart et al. in the 1980s
are a type of neural network used for processing sequential data. [15] As convo-
lutional networks are specialized for processing of grid-like inputs, such as images,
a recurrent neural network model is specialized for processing sequences of values.
As Convolutional Neural Networks can readily work with large images by looking
only at their parts, RNNs can usually work with long (or infinite) sequences. Where
feed-forward fully connected networks would fail with large sequences limited by
their architecture, these specialized models are made to look at parts of sequences
in order making them fully scalable. Also, like some CNNs can process images of
variable size, RNNs can be made so they can process sequences of variable length.

Jumping from classic fully connected networks to recurrent models requires a
special paradigm: parameter sharing across different parts of the model. Parameter
sharing makes it possible to apply the neural network model to examples of variable
form (different length) and generalize across them. If we are to have separate
parameters for each value in time, we could not generalize to sequence lengths not
seen during training. Sharing is important also to remove positional correlations in
the data. Sentences "l lived in Coimbra in 2020." and "In 2020, | lived in Coimbra"
have the same meaning, even though through the eyes of an algorithm they are
completely different. Similarly how CNN models are invariant to feature positions
in images, we want our sequence models to be invariant to term positions in them.
Some 1-D CNN models can be used for sequence models but in comparison to
RNNs they are shallow — they can only look at neighbouring parts of the sequence,
without memory.

In practice recurrent neural networks are implemented so they accept in addition
to the input a hidden state input which is usually the output of the last time step.

Recurrent networks can be split into many different categories, to name a few
common ones:

1. Recurrent neural networks producing output at every time step, and have
recurrent connections between hidden units

2.7. RECURRENT NEURAL NETWORKS 17

2. Recurrent neural networks producing output at every time step, and have
recurrent connections only from output of a step to the input to the next step
(like in the example above)

3. Recurrent neural networks with recurrent connections between hidden units
that accept the entire sequence and then produce a single output value

2.7.1 Modern RNNs, Memory and Attentive Models

In this section we will discuss some of most important sequence models.

One important RNN model to mention is the Sequence-To-Sequence model
(seq2seq [22]). This model uses an encoder-decoder architecture to map one se-
quence to another. The sequences do not have to have same length. This model is
used very successfully for Neural Translation Tasks.

One issue that recurrent neural networks have due to the vanishing gradient
phenomena [23] it is very difficult for them to take into consideration states from
many time steps before. Two successful approaches to this problems are the gated
recurrent unit (GRU) [24] model and the long short-term memory (LSTM) [25]
model. Both of these architectures use gates or self-loops to produce paths where
gradients can flow for a long period of time. LSTM model especially has found great
success in tasks like unconstrained handwriting recognition, speech recognition,
handwriting generation, machine translation, image captioning and parsing. [1]

Neural networks are very good at learning implicit connection in the data, but
they lack in the simple task of memorizing of facts. This is due to SGD (stochastic
gradient descent) requirement of many presentation of some input before it can be
stored in a way in the network parameters. Even stored, the input will not be kept
with high precision. Human beings are known to memorize facts though a "working
memory" system ([26]). The need for a model that can process information as
a sequence of steps (recurrent models) was clear and Weston et. al. introduced
memory networks [27] that include a set of memory cells. Memory networks, at
first, required supervised signal to know how to use their memory cells, but Graves
et. al. introduced Neural Turing machines [26] which were able to learn whether
to write or read data from memory cells without supervision. This allowed self-
contained end-to-end memory training with the use of content-based soft attention
mechanism. This attention mechanism has become standard way of introducing
memory to recurrent neural network models.

18 CHAPTER 2. ARTIFICIAL INTELLIGENCE: A BRIEF OVERVIEW

2.8 Generative Models

Even though artificial intelligence and specifically machine learning is mostly used
on existing data to find hidden patterns and meaning, it was always known that
with some modification, machine learning algorithms can be used to produce new,
unseen data. Deep neural networks have been used for many generative tasks such
as text generation, image style transfer, image generation etc. [15]

Our languages and artworks all have hidden statistical structures. Learning these
structures is what deep-learning algorithms excel at. These models can learn the
statistical latent space of images, music, and stories so they can sample this space
and create new works with many of the existing characteristics found in training
data.

For text generation, recurrent neural networks which are used for sequence mod-
eling as we already mentioned, can be used not only to predict or classify text but
rather to write it. Working with generative RNNs can be generalized to any se-
quence data, not just text. LSTM networks have been used with great success to
generate music, for example (e.g. Magenta [28]). The process of generating new
sequence data is quite straightforward. First, we train a RNN model which is used
to predict next items in a sequence e.g. next letter in a sentence. Then, with the
model trained we give it some initial starting text (often called conditioning data)
and ask it to generate the next value. Then we add that value to the starting
text, and repeat the process many times. The loop allows us to create sequences
of unlimited length. In sentence modeling, RNN models learn from human written
sentences and are able to produce very coherent and meaningful sentences. It is
very important to mention sampling strategy. It is not a good idea to use greedy
sampling as in normal RNN prediction models. Greedy sampling is a sampling strat-
egy where in every time step the best result is taken. If we were to use such strategy
with generative models, we would get repetitive and meaningless sequences. If we
introduce stochasticity or randomness to the process, we usually get much better
results.

Another area where generative models excel is image processing. DeepDream
[29] is an artistic image-modification experiment developed at Google. It quickly
became an Internet sensation because it generated some very weird-looking images
given an image output. The weirdness came from various artifacts taken from
convolutional layers of a CNN trained on the ImageNet dataset. It used reverse
convolutions, and gradient ascent on the input image in order to maximize the
activation of a specific filter (or many filters, entire layers even) in upper layers of
the CNN.

2.8. GENERATIVE MODELS 19

Figure 2.3: Example of a DeepDream network output image. Original image source:

[15).

Another image processing generative network which received major praise was
the Neural Style Transfer algorithm. This algorithm can be used to transfer
artistic style from one image to another while preserving content. Style, in this
context means textures, colors and visual patterns found in images, while content
represents the structure of an image. The style transfer is achieved by implementing
a specific loss function and minimizing it, like in almost all neural network applica-
tions.

The loss function would look something like this:

loss = distance(style(reference_image) — style(generated_image))

+ distance(content(original_image) — content(generated_image))

In this formula distance function is a norm function such as the L2 norm, content
is a function that takes an image and computes a content representation, style is a
function which does the same for style. Minimizing this function causes both the
style and content values of two images to be closely related. The interesting part of
this algorithm of course is how to define the content and style loss functions. To put
it simply we can use convolutional layers at various depth to extract image repre-
sentations. The depth is very important because we know that earlier convolutional
layers contain low-level local information about an image, and the deeper layers
contain more abstract global information. The style loss has a bit more additional

20 CHAPTER 2. ARTIFICIAL INTELLIGENCE: A BRIEF OVERVIEW

Figure 2.4: Example of a Neural Style Transfer application. On the top left we have
an input image — a photograph. On the bottom left we have Van Gogh's Starry
Night, used to extract style. And on the right we have the resulting image, content
from the input image, style from the Starry Night. Image taken from [15].

complexity: style can be captured at all layers in the network, and that is why Gatys
et al. (the original Neural Style Transfer authors) suggest usage of Gram matrices
which are the inner product of feature maps in a convolutional layer. This inner
product can be understood as a map of correlations between layer’s features. These
feature correlations contain the statistics of the patterns of a particular spatial scale,
which empirically were found to be the textures in an image.

Another popular generative method is the Variational Autoencoder (VAE)
model. Autoencoders are a special type of neural networks where the input and the
output are identical. The benefit of these models comes from their architecture. All
autoencoders have such structures that the input is reduced in size until one point
in the network and then increased in the next. These two parts of the model are
called the encoder and the decoder and the middle point in the network is called
the bottleneck. When a model like this is trained it is forced to learn a compressed
representation of the input so it can use that representation to decompress it and
produce that input again as the output. Autoencoders can also be used for clus-
tering [15], anomaly detection and many other unsupervised tasks — in which
traditionally neural networks are not used.

2.8. GENERATIVE MODELS 21

Autoencoders are also generative models. [32], [33] If we take the decoder part
and feed it some random inputs, we will get an output of some sorts which would
be similar to some parts of our training dataset. This way of sampling from latent
space of images for example to create new images or modify existing images is one
of the most popular and successful applications of generative models today. We
mentioned latent space and we define it as a low-dimensional vector space where
any point can be mapped to a realistic-looking image. When we create this latent
space we can sample from it, deliberately or at random and the output becomes a
previously unseen input (image). VAEs learn latent spaces that are well structured
where specific directions in the multidimensional vector space encode meaningful
variations in data. If we train a VAE with a dataset of portraits for example, one
such direct would be hair color or whether the person in the image is smiling.
[34] At the end we need to emphasize differences between traditional autoencoder
models and the variational autoencoder model mentioned here. VAEs differ from
normal AEs in that we impose various constrains on the latent space definition so
we force the model to learn better representations of features found in input data.
For example we can limit the latent space to be low-dimensional and sparse, forcing
the model to learn better. When comparing latent spaces of normal AEs and VAEs
it is apparent that VAEs have better defined structure. This is because VAEs in
addition to compressing input data into a fixed point in the latent space also turns
the data into parameters of a statistical distribution (mean and variance). This
means we assume that the input data has been generated by a statistical process
and that the randomness of the process should be considered during encoding and
decoding. The mean and variance parameters are then used to randomly sample one
element of the distribution to decode that element to the input to the model. The
randomness of this process improves both the latent space structure and continuity
and the robustness of the whole process.

2.8.1 Adversarial Learning

Generative Adversarial Networks (GANs) which were introduced in 2014 (Goodfellow
et. al.) [35] are another generative neural network model. They also can learn latent
spaces of images (or other data) similar to VAEs. GANSs can generate fairly realistic
synthetic images by forcing them to be statistically indistinguishable from the real
images.

The easiest way to explain generative adversarial networks is to imagine someone
trying to forge a Picasso painting. In the beginning the forger will perform poorly
because lacks authenticity. However the forger will then mix his own work with
actual Picasso paintings and show them to a trained art dealer. The art dealer will

22 CHAPTER 2. ARTIFICIAL INTELLIGENCE: A BRIEF OVERVIEW

tell him what he thinks about the pictures and how he was able to distinguish the
real pictures from the fake ones. He will also provide information about what he
looks for in authentic Picasso pictures. As this process is repeated, the forger will
use this information to become better and better at forging the pictures until the art
dealer cannot distinguish between actual Picasso paintings and the forger created
ones.

This is exactly how a GAN works. It is joint model of two networks: a forger
(generator) network and an adversary network. Hence the name generative adver-
sarial networks.

The generator network takes a random vector (random point in the latent space)
and produces a synthetic image. The adversary network takes as input image and
predicts whether the image is from the training set or from the generator network.
The generator network is trained to fool the adversary network, as it evolves and
creates more and more realistic looking images. The adversary (sometimes called
discriminator networks) meanwhile judges the work of the generator network.

GANs and other adversarial learning methods have found their use not only for
generating data but also for testing the robustness of trained neural networks. They
can be used for input modification (such as perturbations or occlusions) which are
then use to trick the trained network into a wrong classification output. Usually,
the goal is not just to modify the inputs so it wrongly classified but also for that
input to remain recognizable to the human eye. The modified input image can look
entirely normal but to be wrongly classified by a performant model. This is called
an adversarial attack and we will focus on this topic later in this manuscript.

2.8.2 Deep Reinforcement Learning

Another great success in the field of Machine Learning and specifically Deep Learning
was the introduction of deep reinforcement learning algorithms. In the scene set,
an agent enabled with a powerful neural network model must learn to perform some
task by trial and error, with any guidance from its human operator. DeepMind
demonstrated that this type of learning algorithm can be taught to play old Atari
games, reaching and surpassing human levels of play. [13] Deep Reinforcement
Learning models also made headlines when AlphaGo [36], a trained agent playing the
board game Go, was developed and defeated world champions on several occasions.
Another area where these algorithms have found great success is in robotics and
also in self-driving cars [37] — a very popular field nowadays. We will cover deep
reinforcement learning in more detail later in this manuscript.

2.9. FUTURE OF DEEP LEARNING AND TOWARDS AGI 23

2.9 Future of Deep Learning and Towards Artificial
General Intelligence

This section contains some authors speculations about the future of Deep Learning
and its uses.

Moving forwards towards new chapters in the field of Artificial Intelligence we
can expect that Deep Learning will move away from model only performing pattern
recognition and can achieve limited local generalization. We will need to develop
model able to develop abstractions and reasoning while achieving extreme global
generalization. Current Al programs that are able to reason are mostly hardcoded
by their programmers, even in most advanced Deep Reinforcement Learning ap-
proaches. In DeepMind's AlphaGo, for example, most of the learned intelligent
behaviour is designed and coded by expert programmers (e.g. Monte Carlo Tree
Search) and learning from data only happens in part of the system (value and policy
networks). In the future Al systems should be able to "code themselves" without
human involvement. [4]

The current neural network models are limited by their programming to be a set
of geometrical operations on an input vector. A model able to freely modify its own
code with a set of defined programming language rules would be able to achieve
much better results in all scenarios. In a way, computer programs could be replaced
with machine learning models which are self-programmed. One interesting research
field related to this is neural program synthesis. [38] Program synthesis consists
of automatic generation of simple programs by employing search algorithms (even
genetic, as in genetic programming) to explore a large space which contains all
possible programs. The search stops when a program with a matching specification
is found. The specification is often given as a pair of input-output pairs which is of
course reminiscent of machine learning. The difference is that instead of learning
parameter values (weights) in a hardcoded neural network we generate new source
code in a discrete search process.

These new programs won't be differential like the hardcoded neural network
models of today. Therefore backpropagation will need to be replaced with a more
suitable method. Whether that is genetic algorithms, evolution strategies, alter-
nating direction of multipliers [39] or other method [40], some things will need to
change. Gradient descent will probably stay because the gradient information will
always be useful for optimizing differentiable parametric functions.

Of course, all Deep Learning models will eventually become portable, in a way
that they can be trained and ran or various mobile hardware. We are already wit-
nesses of mobile chip development specifically with neural network image processing

24 CHAPTER 2. ARTIFICIAL INTELLIGENCE: A BRIEF OVERVIEW

in mind. Many of the mainstream machine learning frameworks and libraries already
support running models on mobile phones and other portable computers. Different
concepts like network compression, pruning and quantization [41] exist today to
ease the transition of resource-intensive models to relatively weak but increasingly
stronger devices we carry today.

In short, this perpetually learning model-growing paradigm can be interpreted as
AGI (artificial general intelligence) where models can learn and learn what to learn
and how to learn. This is not something easily achievable and with no clear way
of doing it, it will be years before we are close. When done, however, our lives will
change significantly.

2.10 Modern Neural Network Concepts

In this section, we briefly go over some of the state-of-the-art concepts and research
taking place in the field of Deep Learning.

2.10.1 AutoML

Automatic machine learning or AutoML [42] is a fairly new concept in the field
of Machine Learning. Today, most of the machine learning architectures are still
defined by their human operators. In the future, and today already we have some
methods of unsupervised architecture optimization. This allows the model to adjust
not only its parameters but its architecture as well. Some problems, it has been
shown, can be solved better and easier with a specific architecture which is hard to
conjure.

Going further, the main job of a deep learning expert nowadays is to structure
the training data and come up with a good set of hyperparameters and a good
architecture for a specific problem. Needless to say, this is a lot of work. With
Al's help several steps of this process can be automated. The data preparation (or
data cleaning, as it is often called) is very difficult to automate, because it often
requires domain knowledge as well as a clear, high-level understanding of what is to
be achieved and in what way. Hyperparameter tuning, however, is a different story.
It can be seen as a simple search procedure, or a trial-and-error process. In this case,
we already know the ideal outcome which is the minimization of the loss function
in training. But we want to find the best hyperparameter values. It is possible
today to use an AutoML framework, and set it up to find best hyperparameter
values for a certain problem. The most basic AutoML implementations would define
arrays of possible hyperparameter values and try various combinations of them. The

2.10. MODERN NEURAL NETWORK CONCEPTS 25

parameters can be basic values such as learning rate or momentum but they can
also be more complex like for example number of layers or number of units in a
hidden layer etc. One good example of this method is NAS or Neural Architecture
Search [43] method.

2.10.2 Transformers

Transformers are a deep learning model introduced in 2017. [44] They are used
specifically for sequential data similarly to recurrent neural networks. Unlike recur-
rent neural networks Transformers do not need to process the input data in order
making them easier to parallelize with loss in model quality when compared to
state of the art RNN models like LSTMs for example. This means that larger and
more complex models are possible to train and use, and also that larger amounts
of data can be used for training. One such use case is of course in text processing
where Transformers are currently state of the art models used for various tasks like
machine translation, document summarization, document generation, named entity
recognition, and others. They can also be used for other sequential data like for
example biological sequences. One research group even showed that a specialized
transformer architecture can be used for playing chess. In 2020, many language
models were made available by leaders in the Natural Language Processing field.
Most notable include: GPT-3, GPT-2, BERT, XLNet, RoBERTa and others. These
models attracted lot of attention because of their ability to generate stories or
volume of texts almost indistinguishable from human written text.

Speaking of attention, it is important to mention it here. In the paper "Attention
is all you need" [44] where Polosukhin et al. introduce Transformers it is shown that
attention is a very important parameter in neural network models used for sequential
data. As we briefly mentioned in previous sections regarding recurrent models,
today’s gated recurrent models (LSTM, GRU, etc.) use gates to simulate memory.
Attention mechanism not only allows the RNNs to remember many previous states
(solving the problem with older RNN models) but to distinguish what previous
states or previous information is important. In a neural machine translation task, for
example, it is obviously important to look at entire sentences for translation instead
of just the previous time step. The authors of the mentioned paper use attention-
like method but without the requirement for sequential processing of data, allowing
parallelization. Lastly, transformers are still an encoder-decoder architecture similar
to other models we mentioned in this manuscript.

26 CHAPTER 2. ARTIFICIAL INTELLIGENCE: A BRIEF OVERVIEW

2.10.3 Federated Learning

As mobile devices and sensory loT devices become more and more involved in ma-
chine learning workloads the need for decentralized training or collaborative learning
is increasingly apparent. Federated learning [45] is a machine learning technique
that trains a model across multiple devices. These devices can vary in architecture,
power or other capabilities. One specific point is that in federated learning there
is no single centralized data store where the training data resides. It is rather split
into chunks and every device (node) has limited amount of information for training.
In other words, nodes rely on each other for a performant model. This is very useful
in scenarios where many devices gather data (e.g. sensors in factories), because
that data can be processed immediately. Another benefit is from the data sharing
standpoint, as the data does not necessarily need to be shared across various devices
addressing critical issues such as data privacy, data security, data access rights and
access to heterogeneous data.

There are many ways in which federated learning can be implemented. One
closest to other topics in this manuscript is of course the decentralized deep neural
network model. In this scenario local models are created and trained with local data
samples and parameters such as weights and biases of the model are then shared
with other nodes. Other nodes choose how to use the knowledge shared with them,
usually this knowledge (parameters) is averaged with local parameters and then
taken into consideration. Federated stochastic gradient descent (FedSGD) and its
generalization Federated averaging (FedAvg) are commonly used.

It is important to mention that federated learning is not the same term as
distributed learning. Distributed learning has a different purpose: to train a single
model across many devices. The single model is often too large for a single node
or the training time is too long because of a large dataset. That is why we can use
a set of computing nodes which are used for their processing power.

Federated learning technique is used a lot for online learning (additional training
for existing models) as well as for critical systems where privacy is a priority. Some
examples include self-driving cards, Industry 4.0 use-cases (smart manufacturing
processes), medicine and others. [46] Federated learning is also accelerated by
recent hardware developments both in ARM chips and in network infrastructure like
5G broadband networking.

Part 11

Negative Learning

Chapter 3

Introduction to Negative
Learning

In this part of the manuscript we define negative learning as a term taken from
cognitive psychology and we describe ways of introducing it to the field of Deep
Learning.

Negative learning in psychology [47], [48] can be defined in many ways. One
way to define it is learning with a negative reward or a penalty. This approach
can be directly applied to agent-based algorithms like for example, Reinforcement
Learning algorithms. Learning with a negative reward or penalty is described so
that an agent can be penalized for its actions if they are deemed inadequate. For a
self-driving car for example some actions can be seen as positive and some can be
seen as negative. Positive action would be for example stopping at the stop sign,
while a negative action can be crashing or speeding. When training these agents, it
is necessary to do so with both positive and negative examples of behaviour. This
approach takes inspiration directly from human behaviour. Children for example are
often disciplined when behaving in a inappropriate way.

An algorithm which only uses negative samples for learning, hoping that if it
knows all the actions which should not be taken, will be able to deduce the correct
(positive) action, would be called a negative learning algorithm. It is difficult to say
whether it is a good approach for an algorithm to only learn using negative samples.
We will see in later sections that this is possible.

Negative learning can be defined also in the realm of two large sub groups of
machine learning problems: classification and regression.

30 CHAPTER 3. INTRODUCTION TO NEGATIVE LEARNING

In classification tasks a machine learning algorithm is needed to classify certain
input data. We differentiate binary (two-class) and multi-class classification. The
algorithm outputs to which class from a predefined set of classes the input belongs
to. It does so based on its features. During training many examples of the input and
output data are presented to the algorithm. It learns and changes its parameters so
it can classify all the provided input-output examples. Negative learning in this case
can be defined in several ways. We could ask for example to what classes the input
date does not belong. Another example would be if we asked what features need
to exist so we know the input data does not belong to a certain class. We will visit
these questions (and implement them) in the following parts of this manuscript.

Similarly, in a regression task a machine learning model is tasked to output a
real numbered value for a certain set of inputs. A negative learning model in this
case would be able to tell us not what the expected output for a certain point is, but
rather what scope of output values is not expected. We could also model regression
tasks as classification tasks, if we were to discretize the data of course.

There are other ways to define negative learning, but in this manuscript we will
focus on the three mentioned problems here: classification, regression and agent-
based environments.

3.1 Reasoning and Possible Benefits of Negative
Learning Techniques

There are many reasons why one would need to use techniques we describe here.

For one, positive examples may be unavailable during training. If we have
only negative examples for the model to learn from we need a model capable of
understanding that it is dealing with negative information.

Another reason is for increased robustness. As we will discover later, negative
models in some scenarios are proven to be more robust than their positive counter-
parts. Robustness here means that the model will have same or increased accuracy
in difficult situations. These difficult situations can be defined as situations where
traditionally machine learning models have issues: missing data, partial data, adver-
sary attacks etc. Negative samples can be seen as additional information available
for our model. This additional information can be very useful in difficult scenarios
when a model is not certain.

One more reason is increased performance of the models. Similarly to robustness
if the models use this additional negative data in a correct way, they can converge
quicker or have increased accuracy, precision or other important metrics.

3.2. POLICY-BASED ALGORITHMS AND NEGATIVE LEARNING 31

We will mention more use cases specifically for Negative Deep Learning in the
next chapter.

3.2 Policy-based Algorithms and Negative Learning

Policy-based algorithms are a natural contender for negative learning. As mentioned
earlier, policy-based algorithms (e.g. reinforcement learning algorithms) learn a
policy function based on which an agent behaves in an environment. This policy
function is learned in an iterative process of trial and error where the agent tests
various actions that are possible and how they affect the environment. The policy
function depends largely on the reward/penalty function where the agent is given a
numeric value denoting a positive (reward) or a negative (penalty) outcome of the
last action performed.

Negative learning in the case of policy-based algorithms can be seen as using
only negative values for the reward/penalty function. The policy learned in this
way would only have negative knowledge in its definition. In other words, the agent
would only know what not to do in certain situations. The action chosen would be
a randomly selected one, but the chosen action would certainly not be an action
which the policy function knows to incur a penalty. This is one of the purest forms
of negative learning, where the agent only knows what actions are not to be taken.

3.3 Negative Learning in Other Algorithms

In the task of binary classification, literature often separates the data into two
categories: positive and negative data. Positive meaning the data which has a
"True" value and negative meaning data with a "False" value. It is easy to define
negative learning as learning from only the negative parts of the data. One needs
to be careful in these scenarios as overfitting is highly probable for various models.
Overfitting is a case in machine learning when a model highly favours one output
class in a classification task. If we are only to train with negative data, it is highly
likely that our algorithm would learn to always output negative outcomes even when
data for a positive outcome is given. Negative Deep Learning as we will see later
makes more sense for multi-class classification problems but can also be used in
certain ways for binary classification.

One more interesting contender for negative learning is in the problem of anomaly
detection. In anomaly detection tasks, an algorithm is trained so it can recognize
certain irregularities in data. These irregularities are called anomalies and can be

32 CHAPTER 3. INTRODUCTION TO NEGATIVE LEARNING

defined as anything which differs from the normal data that the model saw during
training. However we can also define these models in reverse.

In anomaly detection problems algorithms (such as autoencoders) are trained on
filtered data which does not have anomalies. In a way the model is forced to learn
and memorize normal data so that later on it can recognize when anomalous data
is given. Negative learning version of this algorithm would be to train the model
on only the negative data (or anomalies). That way an algorithm would learn how
anomalies look like and would learn to recognize them among normal data points.
Some literature defines this as a traditional positive learning approach, so it is very
interesting that traditional anomaly detection can be seen as a negative learning
method.

Chapter 4

Negative Deep Learning

In this chapter we begin to define negative deep learning methods and provide
an overview of possible implementations and use cases. We also provide several
necessary definitions before we move to concrete examples in following chapters.

4.1 Negative Deep Learning — Introduction

By the term negative deep learning in this manuscript we consider all deep learning
models, existing and newly-introduced here, which use negative data. Negative
data can take many forms which we will discuss in later parts of the manuscript.
Negative data can be, depending on the task at hand, missing data, inverse data,
wrong data, noisy data, adversely generated data etc.

Negative deep learning models are special in that they can use this negative
data as additional information during the learning process. These models use the
negative data by employing special architectures and training processes (among
other changes) so they can differentiate normal and negative data during training.
The necessity and the benefits that we will see later are: increased robustness in
different scenarios like partial input classification, adversarial attacks etc, faster
convergence, possibility of fine-tuning of existing models and many others.

34 CHAPTER 4. NEGATIVE DEEP LEARNING

4.2 Possible Models of Negative Deep Learning

In this section we discuss several approaches to the negative deep learning model
implementation. Some of these approaches will be described in great detail in the
following parts of the manuscript.

4.2.1 Missing Features

One way of implementing negative deep learning is to use "missing features" in
input sample. Term "missing" is not entirely correct as it is very rare that a feature
is completely missing from an input sample, rather it is of low activation or low
importance. All neural network models use high importance features to learn certain
patterns in data. Low importance features (e.g. for a specific class) are also used,
but in our negative learning models [49] these features are deemed more important
than the others. This allows the model to learn the data patterns not by looking
at present, high importance features. The model learns from missing (negative)
features in the data and it prioritizes them in the learning process. In a way our
model is learning to deduce what pattern in the data should be recognized by
looking at all possible features and those which are missing. This perhaps seems
simply like a new approach to learning which will not have any benefits, but we
need to think what happens in certain scenarios which are proved to be difficult
for modern neural network. In partial input classification, the neural network model
should be able to recognize patterns in inputs which are not whole or complete.
This is where deduction is extremely important. If a human is shown a picture of
an animal which has the majority of its contents masked or removed, by observing
what features are missing we can eliminate many of the output classes. If feathers
are missing, for example, we can certainly say that it is very probably that the image
we are trying to recognize is not of a bird. This is what the classification based
on missing (we will call them negative in the future) features models are trying to
achieve.

4.2.2 Partial Input Sample Training

Similarly to CBOMF (Classification based on missing features [49]) we could achieve
similar results if we were to use partial inputs in training. In this way of learning the
model is never shown an entire input sample during training, rather only some parts
of the input samples. These parts can be obtained manually or for some problems
(e.g. in astronomy) they are the only data available, as the whole data is difficult
or impossible to obtain. By training the model on partial inputs, we force it to learn

4.2. POSSIBLE MODELS OF NEGATIVE DEEP LEARNING 35

the patterns in much finer detail and we expect that the knowledge obtained in this
way will also be applicable during testing and usage of the model, when larger or
whole input samples are presented to the model. The "negativity" of this model
comes from the fact that we can also use parts of the input samples to say what
they do not represent. This is additional manual knowledge introduced artificially
to the model. But, it is also possible to generate data like this automatically with
Negative Output Learning.

4.2.3 Negative Output Learning

During our research for this doctoral thesis, a laboratory in South Korea started
doing somewhat similar research to ours [50]. Their models and methods are vastly
different than ours, but the goal is similar, to introduce negative learning to deep
learning models as a new paradigm.

One approach they examined and which we will also subject to research in our
own way is the negative output learning. To explain it simply this is the purest form
of negative deep learning and it can be formulated as follows: A neural network is
presented with an input sample and which class it does not belong to. The process
of choosing the new "negative" output class is simple: we choose a random output
class, making sure it is not the positive "correct" one. The difference is in the
learning process and the loss function. Rather than trying to minimize the loss
function so the model always outputs which class an input sample does not belong
to, we use gradient ascent to "pull away" from the negative class and towards some
positive class. In the case of m-ary classification only one class is the positive one.

Our approach is similar, but without modifications to the loss function. We
simply modify the model so it learns which input samples do not belong to a certain
class. We also experimented with gradient ascent without modification of the loss
function by transforming the dataset so that the output one-hot vector (in m-ary
classification) is inverted so that the actual class has zero value and other classes
have the value of one. We will see that these models work best when used in
combination with traditional neural network models. This approach will be described
in great detail in later parts of the manuscript.

4.2.4 Ensemble Networks and Upgrades of Existing Models

In our experiments it was made clear that many negative deep learning models
work really well on their own. However, since the paradigm of learning changes
greatly it is sometimes beneficial to use these negative models in conjunction with
traditional deep learning models. This idea came from our first negative deep

36 CHAPTER 4. NEGATIVE DEEP LEARNING

learning model, the CBOMF model. This model when compared to a normal model
of same architecture shows increase in accuracy when testing on samples with parts
missing or occlusions. However, we discovered that the accuracy increase was not
absolute. In other words, our model learned to classify some new examples from
the testing portion of the dataset, but also lost the ability to classify samples which
the traditional model was able to classify. The number of these cases was smaller
than the newly classifiable samples, but the increase in accuracy was not absolute.
The best result would be of course, if our model was able to classify everything that
the normal model can classify and then on top of that to classify new previously
wrongly classified samples. One approach to this problem is to use an ensemble
model of the two networks: positive and negative which takes inspiration from the
Siamese neural network architecture. These models were named synergy networks
[49] and they will be discussed later in the manuscript.

4.2.5 Agent Environments

Lastly, negative models show promise in agent environments. The main problem
for agent based deep learning algorithms (e.g. Deep Q-Learning [13]) is that the
environments are often noisy and it is difficult to deduce what action should be
chosen at a certain point in time. By using negative models we could help the
agent to immediately discard many of the wrong actions so that the chances of
it selecting the correct action are greater. Also, in cases where there is no correct
action, we want to choose the action which is less incorrect in the negative modelling
type of thinking. These changes can be implemented with negative deep learning
models, e.g. negative output learning models where the agent would have additional
knowledge in every step which actions should not even be considered. Negative Deep
Reinforcement Learning models will be discussed towards the end of this manuscript.

4.3 Negative Deep Learning Use Cases

In this section, after we introduced several ways of having negative learning in deep
learning models, we discuss some of the use cases we discovered are compatible
with our new models. New use cases are certainly to be discovered, in this section
we only present those which are already tested with beneficial results.

4.3. NEGATIVE DEEP LEARNING USE CASES 37

4.3.1 Neural Network Robustness

Neural Network Robustness has become quite a hot topic in Deep Learning research,
especially in the last few years. [51] Neural networks, among other machine learning
models, have been used for some time as a "black-box" type of solution for many
different tasks. However, in recent times, many uses were found in which neural
networks perform critical, life influencing calculations and decisions. Therefore it
is important that they have the same or similar performance to humans in difficult
situations. When we say difficult situations, it means situations which were not
encountered during training or testing of the models and in which humans usually
perform much better than artificial models. One example we mentioned already is
in partial image classification, where humans are usually able to classify even parts
of the images and we want that same quality to exist in artificial neural network
models.

Object Detection and Image Classification with Occlusions

Neural networks, and especially convolutional neural networks have been used very
successfully in the field of computer vision. In computer vision tasks we perform im-
age learning which allows us to detect classes to which the image belongs to, objects
in images, different segments of an observed image (image segmentation), video pro-
cessing and many other tasks. Since images are well structured two-dimensional (or
three-dimensional for color images) arrays of pixel data, convolutional neural net-
works which work best with structured data perform very well. In fact, CNNs are
still, since their inception, state-of-the-art algorithms in many image related tasks.

Regarding negative learning and robustness in image related tasks, we will dis-
cover later on in this manuscript that several negative learning models exist which
significantly improve performance in the case of occlusions (object behind object,
or object behind mask), and partial inputs. If we present the models with addi-
tional negative learning information, they learn the image space better and are able
to classify better in difficult cases, which are very present in the real world. One
excellent example for this type of application is self-driving cars. A self-driving sys-
tem in cars must be able to correctly recognize road signs even if they are partially
obscured by other vehicles, trees and other common objects. This is where models
which are resilient to occlusions are not just necessary but essential for safety. One
similar example is in case of damaged or dirty camera lenses in self driving cars. The
system should not stop working if the image is blurry or partially damaged, again
the case for robust models.

38 CHAPTER 4. NEGATIVE DEEP LEARNING

Neural Adversarial Attacks

In recent years, many methods have been discovered in the field of Neural Adversarial
Attacks. [35] While some have been used for new applications previously thought
to be impossible like Generative Adversarial Networks [52], some have also been
used to show that neural networks are very sensitive models when it comes to
adversarial attacks. An adversarial attack is an attack in which the input signal is
modified slightly in a way that the model used to process it makes a mistake. For
example, in image classification we can add noise to the pixel data of an image so
it is wrongly classified by a highly performant model. Some of the most advanced
modern approaches to adversarial attacks can even modify images in a minimal way
so they still look the same to humans, while they are wrongly recognized by modern
CNNs. Adversarial attacks can also be used for other types of networks, not just
images.

Adversarial Attacks are also important in critical systems, as they can be used
by individuals with malicious intent. Therefore, we need to make models which are
less susceptible to these attacks, and we will show that negative learning models
presented in this dissertation are of better performance when compared to traditional
neural network models.

Depending on the algorithm and the openness of the model which is being
attacked we define two large subsets of adversarial attacks, black-box attacks and
white-box attacks. We will demonstrate performance of different negative neural
network models on both types of the attack in further parts of the document.

Black-box Attacks

Black-box attacks are one type of adversarial attacks used to fool neural networks
into wrongly processing some data. Black-box type of attack got its name from
the nature of the algorithm. To explain, this type of attacks is not aware of the
neural network internal structure, weights and other properties. It only uses it as
a black box. It makes different modifications to the synthetic input data (starting
from random) to see what noise can be added so that the attacked model makes
certain assumptions. Then that noise can be added to different real input samples,
and they are wrongly processed then.

White-box Attacks

White-box attacks differ from black-box attack in that they have full knowledge of
the attacked model and are using this information to directly influence the network
so that it makes mistakes. White-box attacks have full access to the network

4.3. NEGATIVE DEEP LEARNING USE CASES 39

parameters such as weights and biases. More importantly these attacks have access
to the network during the calculation of the gradients. In most approaches, these
gradients are then manipulated so the network makes the wrong prediction.

4.3.2 Negative Neural Networks for Regression Tasks

It is important to say that while we only mentioned classification tasks and the
usage of negative neural network models in that regards, they can also be used for
regression tasks. First way is if we discretize the output space so that a regression
tasks is perceived as a classification task. But, negative models can also be used for
regression tasks without modification. It is easy to think of what a negative sample
would look like in a regression task. In regression task we have data pairs of input
features and an output value. A negative sample would be different in that for a
certain set of input features we would know what the output should not be. So
our model could adjust its parameters so the output is pulled away from the given
negative output. The uses for this type of models are quite similar to other use case
we described already. For tasks where the output is unknown but we know what
the output certainly is not we could incorporate additional knowledge in the form
of negative samples which then can be used to improve our model performance.

4.3.3 Other Uses

Another important use which we did not mention so far for both classification and
regression tasks is inclusion of fail-safes in the deep learning models. The main issue
with many deep learning models used in critical systems is that it is discovered that
in certain critical scenarios unseen during training (e.g. late emergency braking in
self-driving cars) they perform poorly. The developers of these models than program
fail-safes in the code which prevent the model from making these mistakes in the
future. These fail-safes are usually hardcoded outside the models and are difficult
to maintain. The inclusion of negative-learning patterns can be perceived as a type
of fail-safe programming used to include specific scenarios into the deep learning
models. The difference is that these samples are properly integrated into the models,
and they do not differ in that way from other data used for training.

We mentioned already the type of synergy negative learning model where two
models are used in parallel to process some data with increased robustness. It is
important to state that the synergy model we define in this manuscript can be
used with any existing CNN (or other type of model). This is important from an
integration standpoint, where we want to upgrade existing models in critical system.
The synergy model can be seen as a pure upgrade of a traditional neural network

40 CHAPTER 4. NEGATIVE DEEP LEARNING

model, which is still being continuously used alongside the negative model. We will

also how how a special hyperparameter can be used which dictates which model
has greater importance, if necessary.

Part 11l

Classification Based On
Missing Features

Chapter 5

Introduction

In this part of this thesis we define the first negative deep learning model. Classifi-
cation Based on Missing Features negative deep learning model emphasizes missing
(also called negative or low-importance) features of the input sample providing ad-
ditional knowledge to the underlying neural network. This in turn creates a model
more robust to problems like partial input classification and classification with oc-
clusions as will be demonstrated.

As we mentioned in the introduction, artificial neural networks, notably Con-
volutional Neural Networks are widely used for classification purposes in different
fields such as image classification, text classification and others. It is not uncom-
mon therefore that these models are used in critical systems (e.g. self-driving cars),
where robustness is a very important attribute. All Convolutional Neural Networks
used for classification, always use present features to figure out what the output
class is. In other words, even though for many problems there is a finite set of fea-
tures that are possible only the features that are present are used for classification.
Here we discuss a novel approach of doing the opposite — classification based on
features not present in the input sample. Our approach is guided with intuition that
neural networks can and should also take into consideration the features that are
missing. For example for humans, when classifying images, it is beneficial to also
look what is not present in a given image, and if we know all the possibilities, then
we can deduce what the given image actually represents. Our modification to the
training process and models tries to mimic this ability.

The results show not only that this way of learning is indeed possible but also
that the trained models become more robust in certain scenarios. The approach

44 CHAPTER 5. INTRODUCTION

presented in this manuscript can be applied to any existing Convolutional Neural
Network model and does not require any additional training data.

5.1 Intuition Behind Missing Feature Representa-
tions

In this section we explain the intuition behind missing feature importance and rep-
resentations.

[*] i

Figure 5.1: A motivational example where classification based on missing features
would work in our dataset. Digit "5" from the MNIST dataset and its missing
features named here: Feature 1 (on the left, circle-like feature) and Feature 2 (on
the right, corner-line feature).

In Fig. we can see an example. Consider the given image of digit 5 (on the
left) and two illustrative, very high-level features from our network model. Digit 5
can be defined in many ways, one of which is as "a digit missing these two features"
(features are smaller squares on the right). To clarify, features are kernels (filters)
from the convolutional layers in our model. Circle-like Feature 1 given here is present
in digits 0, 6, 8, 9 while a sharp corner-line Feature 2 is present in digits 1, 2, 3 (e.g.
top-right corner, or the middle part), 4, and 7. Digit 5 does not have these features,
therefore we can check the input image and see if these features are missing. If
they are, we can safely assume that we are looking at digit 5. This is not the only
example where this is possible and this example is only given to clarify our way of
thinking about "missing feature classification".

In the following section section we discuss the motivation for developing more
robust models not only for image processing but for various fields in deep learning
applicable research.

5.2. ROBUSTNESS OF IMAGE CLASSIFIERS 45

5.2 Robustness of Image Classifiers

For a wide-spread adoption of systems that rely on neural networks it is needed
to improve the current standard ways for training so the networks can be better
prepared for intentional attacks and uncertain situations. It is very easy to describe
this problem on the now standard task where neural networks are used — image
classification [7]. Neural networks are widely used for image classification, especially
ones with convolutional layers. However, new research is taking place to investigate
how these networks can handle real-world situations where there is noise in the
image, the image is of low quality or where image is not given in full [51], [53].

5.2.1 Partial Input Classification

Classification based on missing features, as presented here, is a new area of research
in the neural network research field. We believe this new family of neural network
models can be used in many different scenarios. The main benefit of these models
described here is increasing robustness in partial input classification which is related
to the neural network robustness, a growing topic in neural network research [51].

Our approach of classification based on missing features, as we will show, cer-
tainly can improve image classification accuracy with convolutional neural networks
when they are faced with a task to classify an image by only seeing one part of it
(partial input samples).

One example which is to benefit from this approach is when working with traffic
signs. In self-driving cars — a critical system that uses neural networks [54], traffic
signs are processed as inputs from many cameras on a vehicle. These cameras are
not perfect, but they produce very high quality images and usually the model used
can easily detect and classify all traffic signs present in any given image. But what
happens when a traffic sign is obstructed by another object, for example a tree or
another car? A person in a similar situation can deduce what sort of a sign it is just
by looking at one part of it and it is reasonable to require from the CNN models to
be able to do the same.

Chapter 6

Implementation

In this chapter implementation of the classification based on missing features is
explained. It is shown that for the image classification problem it is not only possible
to train the models using only missing (negative) features, but also that these models
show an increase in robustness when compared to traditional models of the same
architecture.

In our experiment we decided to use widely known MNIST [55] dataset of hand-
written digits. In addition to MNIST we also validated our work with the Extended
MNIST dataset also known as EMNIST |[56].

MNIST dataset consists of 60000 training examples (pairs of images and labels)
and 10000 testing or validation examples. To try and mimic a real life scenario
where we wanted to test out our neural network model, we decided to make a few
other modified validation sets which also contain 10000 examples. The way we did
it is that we took the testing examples and removed some parts of every image,
while keeping the label intact. It is important to clarify that we did not modify the
training dataset. It is crucial to be able to train the network on the complete images,
because in a real-world scenario we are unlikely to have partial inputs available for
training. Also, we wanted to check if our network modification affects the standard,
unmodified inputs.

48 CHAPTER 6. IMPLEMENTATION

6.1 PMNIST Dataset

We did not want to limit ourselves to only one validation set because it is difficult
to decide what data should be removed from the images. So we created multiple
validation sets:

» Horizontal cut dataset (top half removed)
» Vertical cut dataset (left half removed)

= Diagonal cut dataset (two diagonal quarters of the image removed — top-right
and bottom-left)

= Triple cut dataset (three 929 pixel squares removed from coordinates (5, 5),
(17,10), and (7,16) — this is roughly 30% of the input image removed, but the
locations were chosen so that they cover vital parts of the digits (occlusion
simulation)

Figure 6.1: Example of digit 3 in our validation set; From left to right: unmodified
— original version, horizontally cut image — top half removed, vertically cut image —
left half removed, diagonally cut image — first and third quadrants removed, "triple
cut" image — three squares removed as described before.

We will refer to this dataset as PMNIST or partial MNIST dataset. The final
created dataset then consisted of:

= 60000 training examples (unmodified)

= 10000 test examples (unmodified)

= 10000 horizontally cut validation examples
= 10000 vertically cut validation examples

= 10000 diagonally cut validation examples

= 10000 "triple-cut" validation examples

6.2. USED MODEL ARCHITECTURE 49

For the EMNIST dataset, we did exactly the same for two of its subsets. We
first used the EMNIST-MNIST dataset whose structure is similar to MNIST dataset
to validate our results, and then we tried our networks on the EMNIST-Balanced
dataset which contains 131600 characters of digits and letters with 47 different
classes for classification.

The EMNIST-MNIST dataset, contains 60000 images and labels in the training
set and 10000 images and labels in the test set — exactly the same number of
samples as in MNIST dataset. We used the process described above to generate
four new validation sets, same as with PMNIST dataset. As for the EMNIST-
Balanced dataset the same 85/15% training and testing split was used to get a
training set of 112800 images and labels and a test set of 18800 images and labels.
Then, we generated four new test sets of size 18800, with different partial inputs
for validation, same as before.

As both EMNIST and MNIST datasets have images of the same size (28x28
pixels) we used the exact same model architecture except for the last layer in the
neural network which had to be changed to accommodate different number of classes
in different datasets. The model is described in great detail in the following section.

It is important to note that during training the test sets and the newly intro-
duced validation sets are not used. We want to completely avoid "peeking" at our
validation data. That is why we split our dataset into three subsets: for training,
testing and validation. All the models are trained and tested on complete input and
output images and then validated on all validation data sets.

Another important remark is that approach described in this manuscript can
work on any dataset, not just digits, letters etc. We chose these datasets because
we can very clearly describe the features and their presence in a sample. With other
datasets which have color or larger images this approach would still work but the
features would be more difficult to interpret.

6.2 Used Model Architecture

For the purpose of testing our theory a fairly standard model was used. The model
is a default example model used in machine learning frameworks (e.g. PyTorch
[57]), so it was a good starting point for us to experiment with.

The model consists of five layers ordered in a common way — a number of
convolutional layers followed by a number of fully connected layers:

1. Input layer — 2D grayscale image of size 28228 pixels

50 CHAPTER 6. IMPLEMENTATION

2. 2D Convolutional layer 1 — 20 kernels of size 525, with max-pooling of stride
2, and RelLU activation function

3. 2D Convolutional layer 2 — 50 kernels of size 525, with max-pooling of stride
2, and RelLU activation function

4. Fully-connected layer 1 — 500 neurons, ReLU activation function

5. Fully-connected layer 2 — 10 output neurons for MNIST and EMNIST-MNIST
cases, 47 output neurons for EMNIST-Balanced case, Softmax activation
function

We used SGD (Stochastic Gradient Descent) with learning rate of 0.01, and
momentum of 0.5. These values were also not changed from the given model.
Again, the given model was not modified in any way apart from introducing the
conditional negation of the output vector of the last convolutional layer, as described
in the following section. A performant model can used, and we will demonstrate
how it performs with our modifications later in the dissertation. More on the model
choice can be found in Section [.1.1l

6.3 The Negative Function

In the introductory section we showed an example where it is easy to see how missing
features can be used to classify a digit. While this example shows what we want
to do it requires some additional knowledge about the data used. We want to use
standard datasets without any additional knowledge so our approach can be used
in any scenario. The main question was how can we obtain the missing features in
the input sample. In this and the following sections we will explain how we can use
existing knowledge from convolutional layers obtained with normal training in our
modified approach.

6.3.1 Missing vs. Negative Features

We also realize that the features in these features vectors are not binary. For a
person it is very easy to decide whether a feature is either present or not present
in an image. Neural networks are more flexible and can also say "how much" a
feature is in a given sample. If the features were binary it would be trivial to find all
the missing features in an image by replacing values in the feature vector with their
opposites. Also, at this stage, it is very hard for us to say which missing features are

6.3. THE NEGATIVE FUNCTION 51

more important than others, we simply try to classify based on all missing features.
The term missing features is also not fully correct therefore, since it is very rare for
a feature to be completely missing from the input image. That is why we use the
term "negative feature" or "low-importance feature" interchangeably with the term
"missing feature" throughout this thesis to emphasize this property of the features
represented in an image.

6.3.2 Activation Function Experiments

For our approach of classification on missing features the model had to be modified
slightly. We modified the forward pass in the network to negate the vector which
represents what features are present in an image. When negated, this vector will
represent what features are not present in an image. To demonstrate on an example,
imagine a feature vector where 1 denotes a present feature and 0 denotes a missing
feature. By simply replacing zeros with ones and vice-versa we can obtain a vector
with all the missing features in the feature vector.

The negation process takes place between the exit of the last convolutional layer
in a network and the entry to the first fully connected layer. It can be applied after
the activation function application in the last convolutional layer, or by modifying
the activation function as we will cover later. At that point the signal passed through
the neurons is simply a feature vector describing what features were detected by
convolutional layers.

The negation operation largely depends on the activation function of the last
convolutional layer. We have to negate the vector in a way that it represents the
complete opposite of what would be the output of an unmodified network. The
term "negate" probably can be replaced with "invert" in cases of some activation
functions.

For example, for hyperbolic tangent function (tanh) which is used as an acti-
vation function in neural networks a simple negation is enough. The tanh function
always returns a value between —1 and 1. If we agree that a present feature is
represented by a value close to 1 and an absent feature is represented by a value of
close to —1, it is easy to see that negating a whole vector of tanh outputs would
provide us a vector of features that are missing.

Rectified linear unit (ReLU) [58] functions are also widely used in neural net-
works. The ReLU function is different than the tanh function in that it returns
values between zero and positive infinity. Here, simply negating the vector would
not work, but calculating a new vector is not complicated. The output with a pos-
itive value represents a present feature and the value of zero represents a missing

52 CHAPTER 6. IMPLEMENTATION

feature. If we apply a simple function as such:
f@)=1-u2

we will get a vector representing what features are missing from the input image.

In our model there were a total of 800 values (a vector of length 800) which is
the output of the last convolutional layer and the input to the first fully connected
layer. This vector represents all the present features and their positions in the input
sample. As we are using (ReLU) activation function, we can negate the vector
using the formula above.

6.3.3 Influence of the Negative Function in Forward and Back-
ward Passes

The implementation of the mentioned modification is very simple in PyTorch library.
We only need to modify the "forward" function of the neural net Python module to
negate the vector at a specific stage. The backwards pass is calculated automatically
with autograd [59].

6.3.4 Negative Feature Selection Process

At this point we explained how and why the features are negated. We also mention
that the features are not binary i.e. ones and zeros for present and missing features
but rather a real valued numbers. That is why we used the already mentioned term
of negative feature rather than missing feature. There is another issue with this
approach worth considering. In the process of negating the features we assume
that some features are positive or present. That features are then negated while
the other features are marked as important (high activation values). This approach
can be problematic as we mark all the low-activation features as important. Some
of these features may as well be irrelevant to the specific class example for which
we are training. It would be much better to know in advance which features are
viable for negation per-class so not all low-importance features are activated. This
activation can be seen as noise with which our models can work, as demonstrated,
but it certainly help to select features for negation beforehand.

Detecting Relevant Features per-class for Negation

In this section, we propose an idea for a solution for finding relevant features per
class. These selected features can be used for negation while the other irrelevant

6.4. TRAINING PROCESS 53

features are not modified. Similarly to convolutional activation atlases we want to
find what features are activated (their activation value is above a certain threshold)
for specific classes of images during training. With our modified training process
this can be achieved in the following way.

When the "pre-training" step of the process where the normal network is trained
and convolutional layers are obtained we can use this model before discarding parts
of it to extract what features (here output of the convolutional block) are important
per class. The number of features is finite and they are used as a one dimensional
tensor which is then passed as input to the fully-connected layers. For each class we
remember all the activations indices which we obtain with forward passes through
the network. Then, these indices are remembered and used for negation during
training. It is important to say that these indices can only be used during training
and not during testing. This is because to select certain features we have to know
the correct class which is not available during testing. This is an issue which has to
be considered in the future, because we want the model to behave the same in the
training and testing phases. We will revisit this idea in the future work and validate
our assumptions.

6.4 Training Process

In this section training processes related to the negative learning method are de-
scribed with the focus on two very important processes: multiple phase training and
convolutional kernel freezing. To successfully implement the classification based on
missing features model our experiments have shown that both of these techniques
have to be used.

6.4.1 Multi-phase Training

The training processes are also modified from the standard process. The unmodified
network is trained for 10 epochs in the provided model. After that, no significant
increase in accuracy is noted, as the network already gets around 99% accuracy on
the test set.

During the Negative Deep Learning model/hypothesis testing one interesting
concept was used — multi-phase training. Multiple phase training is a training pro-
cess where after a number of training epochs some layers are frozen and reused
and some of the layers are reset. In a way, multiple phase training is a regulariza-
tion technique similar to Dropout with P = 1.0 where some layers are completely
destroyed and retrained during training.

54 CHAPTER 6. IMPLEMENTATION

In our concrete example multiple phase training was used to extract and reuse
convolutional layers from an image classification model. After a number of epochs
all the convolutional kernels were extracted and used in other (negative) models.

ONN Model

The first training process tested is to simply apply the model upgrade we described in
the previous chapter and train the network normally. We called this model "ONN"
(only negate network). Although this approach gives us some improvements, it
does not represent fully what we wanted to do. Because the network is modified to
negate the vector representing the features in the input image, we observed that our
new model adapted to our layer inversion modification. The change affected the
backwards pass in the network so the convolutional filters in convolutional layers
were completely different opposed to the standard network. In other words, the
features found in input images were not the same — the network learned them in a
different way. As we wanted the features to remain the same and only to modify
the later stages of the network, we thought of the second training process which
allows this. Our goal is to classify on the same features but to emphasize those
which are missing.

Hybrid Training Mode (First Actual Negative Model)

The second process requires a few extra steps and is as follows. The training process
begins for a number of epochs where the "negation layer" is inactive. This is so that
the convolutional layers inside the network learn all the features in the training data.
In this step the filters inside the convolutional layers will learn both the high-level
and low-level features of digits given the digit images from the dataset. We do this
training step for 10 epochs, which is enough for the model to learn the features well
enough.

The next step consists of freezing the convolutional layers and resetting the
fully connected layers. The freezing of convolutional layers is necessary so that the
further training does not affect them. The features represented in the convolutional
kernels are learned already and we do not wish to modify them. The convolutional
layers are simply going to be used for feature extraction at this and future points.

Resetting the fully connected layers is also necessary as we want the network
to start over the learning process but to classify based on the missing features in
an image. Resetting the layers simply means re-initializing them with the same
initializer used in the model setup.

6.4. TRAINING PROCESS 55

With the features learned, convolutional layers frozen and fully connected layers
ready for new training, we can activate the modification in the model which will
negate or invert the output of the convolutional layer. This is made possible by
dynamic nature of execution which is available in PyTorch neural network library.
This is the main reason why it was chosen to be used for this work.

The training is then continued on for another 10 epochs, making it 20 epochs
in total which is more than normal training. It is important to clarify that while our
modified network is in total trained for 10 epochs more than the standard network its
fully connected layers are reset after the tenth epoch making it so the final models
are equal in quantity of training received. Convolutional layers only receive the 10
epochs of training also, before being frozen. This approach is a hybrid between
normal and our new way of training so we called it "HN" ("hybrid network").

More on Convolutional Kernel Freezing

For most of here mentioned models we use freezing of convolutional kernels. Freez-
ing is a process of setting convolutional layers as fixed, constant values after they
have been learned. The freezing of the convolutional layers is important from the
analysis standpoint as we want to test our model modifications which are currently
after the convolutional blocks. If we were not to freeze the convolutional layers, they
would change their parameters during training — and this is not desired behaviour.

Freezing of the layers is a procedural process where one has to iterate through
convolutional filter parameters (convolutional kernels) and mark them as constant.
In the PyTorch framework this is done with the requires_grad field.

Freezing of the convolutional layers (or other parts of a neural network models)
is a common technique when using pre-trained models. The idea behind pre-trained
models is simple: a model trained on a dataset (usually large, not easy to retrain)
is extended with few layers on top to be used for some different task. One example
where this approach is popular is with image classification. There, it is common
to use very deep and complex models trained on the ImageNet Dataset as frozen
feature extractors. In addition, a simple fully-connected neural network is added
"on-top" of the ImageNet model and trained to classify custom image datasets.

Modified Hybrid Training Processes

We also experimented with some modifications to the hybrid training process.
The first modification to our described process is to skip resetting the fully

connected layers after the features were learned (referred in the results tables as

"NR" — "no reset"). In a way, this means that the network continues training after

56 CHAPTER 6. IMPLEMENTATION

this step but in a different way. The reasoning for this approach is that there may
still be useful weights in our fully connected layer which can improve the model
accuracy even after we have trained with our inversion modification in place. We
wanted to try to combine standard training with our modified way to see if synergy
between standard and our training process has any effect.

Another modification we tried is to alternate between normal training and train-
ing with inversion modification. For a number of epochs, we train the network so
that one epoch the network is unmodified and another epoch is with the inversion
modification in place. This is an extension of the previous modification because we
wanted to make sure that the order of training is not important. This method we
called "ALT" method as it alternates between ways of training. We also noticed
that the "ALT" training model works best with smaller learning rates. When using
large learning rates, the model would change the weights too much when switching
from one way of propagation to another. This is something to be aware of, if using
this approach.

Note on Training Process

For all processes and models, because random initialization is used we made sure
to test several times to avoid any coincidental results. In development stages a
constant random seed method was used for reproducible results. The libraries used
for development have all been set to use determinism wherever possible.

Chapter 7

Testing

In this chapter we describe the testing processes where we validate our models and
we present the results.

7.1 Results on the MNIST and PMNIST Datasets

Since we are introducing a new neural network model in this work, we decided that
the best baseline in comparing the results would be a traditional neural network
with the same architecture ("SN"). This way we can be sure that our modification
in the model is what we are benchmarking.

7.1.1 Note About Model Choice

We are aware that a model architecture which would give even better results com-
pared to our own model probably exists. It is a very difficult task in finding such
a model, while making sure that our modification actually does affect the accuracy
increase. This is why we decided to test our approach on a very well-known model
to see how it behaves. Since our modification is simple and can be applied to any
CNN model, we will definitely experiment with other models (network architectures)
on our newly introduced validation sets to see how they perform.

After testing the models on the mentioned datasets we obtained the following
results. First, we present the results on unmodified testing sets.

As seen in Tab. [7.1] the modified network models performed better in almost all
of the standard unmodified test sets showing that classification on missing features

58 CHAPTER 7. TESTING

Dataset/Model SN ONN HN NR ALT

Unmodified MNIST ~ 99.13 98.90 99.18 99.21 99.05
Unmodified EMNIST-MNIST 99.18 99.07 99.16 99.15 99.00
Unmodified EMNIST-Balanced 87.14 87.62 87.38 86.78 87.92

Table 7.1: Results with accuracy for all models and unmodified testing datasets.
Here, SN denotes the standard, unmodified network, ONN denotes the network
only trained with layer negation and HN denotes Hybrid network which was trained
normally for a number of epochs but was then switched to negate the output of
the last convolutional layer. The NR and ALT models are trained as explained in
previous section. NR model is the model which is not reset (NR) after the inversion
modification and the ALT model is extension of the NR model where the normal
and inversed training takes place in alternating (ALT) epochs. All the values are
percents which depict validation accuracy of a network on a given dataset. Bold
are the best models per dataset.

does slightly improve accuracy when the input sample is given in full. We want to
emphasize that this method of training while longer and slower does not negatively
affect the network performance when the input is given in full. This is something we
were hoping for to be achieved. These results also show that our initial assumption
was correct — it is possible to train a neural network to classify based on missing
features.

In Tab. and we present the accuracy percentages on the newly
introduced validation sets. In Tab. [[.2] we show the results on the four PMNIST
validation sets while in Tab. [7.3]and [7.4] we present the result on the four validation
sets generated for EMNIST-MNIST and EMNIST-Balanced datasets, respectively.

Dataset/Model SN~ ONN HN NR ALT

Horizontal cut 44.71 48.96 52.33 56.07 41.60
Vertical cut 57.46 64.64 60.45 66.07 69.66
Diagonal cut 52.97 59.59 5540 56.01 62.49
Triple cut 40.68 34.62 41.19 41.73 46.40

Table 7.2: Results with accuracy for all models used on newly introduced PMNIST
validation sets. Bold are the best models per dataset.

7.1. RESULTS ON THE MNIST AND PMNIST DATASETS 59

Dataset/Model SN~ ONN HN NR ALT

Horizontal cut 49.07 51.34 54.76 48.70 48.73
Vertical cut 31.10 28.10 32.91 28.62 31.12
Diagonal cut 58.43 61.22 59.37 58.18 61.50
Triple cut 46.78 49.63 53.90 4899 47.44

Table 7.3: Results with accuracy for all models used on newly introduced EMNIST-
MNIST validation sets. Bold are the best models per dataset.

Dataset/Model SN ONN HN NR ALT

Horizontal cut 20.95 26.97 26.34 19.32 26.53
Vertical cut 2223 20.02 2219 1950 24.36
Diagonal cut 27.91 30.14 30.79 25.80 26.83
Triple cut 20.39 22.88 21.07 21.81 19.83

Table 7.4: Results with accuracy for all models used on newly introduced EMNIST-
Balanced validation sets. Bold are the best models per dataset.

When comparing our training processes or models (Tab. [7.5)), it is clear to see
that some of them perform better in certain scenarios. However, apart from the
0.02% accuracy loss on the unmodified EMNIST-MNIST test set, it is uniform that
the newly introduced models featuring some shape of classification based on missing
features outperform traditional neural network models, and in some cases by large
margins. This is the most important finding in this experiment with our new models.

We also notice that models which use convolutional layer freezing outperform
the model which just negates the convolutional feature vector (ONN). Also, strong
performance of ALT network suggests there is some benefit of combining traditional
neural network models with our newly introduced ones. As for choosing what model
would work best in a certain scenario, it is difficult to say with certainty. We suggest
trying different models and deciding by testing them.

The different datasets we used all behave similarly. We see the largest accuracy
increase of 12.2% with the vertical cut validation set in the PMNIST set.

7.1.2 Summary of the First Experiments

Here we present concisely the summary of experiments with the classification based
on missing features:

60

CHAPTER 7. TESTING

Dataset Best model Accuracy Delta

Unmodified - PMNIST NR 99.21 0.08

Horizontal cut - PMNIST NR 56.07 11.36
Vertical cut - PMNIST ALT 69.66 12.20

Diagonal cut - PMNIST ALT 62.49 9.52

Triple cut - PMNIST ALT 46.40 5.72

Unmodified - EMNIST-MNIST HN 99.16 -0.02
Horizontal cut - EMNIST-MNIST HN 54.76 5.69
Vertical cut - EMNIST-MNIST HN 3291 1.81
Diagonal cut - EMNIST-MNIST ALT 61.50 3.07
Triple cut - EMNIST-MNIST HN 53.90 7.12
Unmodified - EMNIST-Balanced ALT 87.92 0.78
Horizontal cut - EMNIST-Balanced ONN 26.97 6.02
Vertical cut - EMNIST-Balanced ALT 24.36 2.13
Diagonal cut - EMNIST-Balanced HN 30.79 2.88
Triple cut - EMNIST-Balanced ONN 22.88 2.49

Table 7.5: Results with showing what models worked best with different test and
validation sets. The "Accuracy" column shows final, highest accuracy achieved while
the "Delta" column shows accuracy gain over the standard unmodified network.
Both "Accuracy" and "Delta" columns are given in percentages.

It is possible to train a convolutional neural network to classify based on
missing features in the input sample.

Our approach of "negating" feature vectors before passing them to fully con-
nected layers implements this idea and shows that this simple modification
can help in a scenario where a partial input is given.

The performance of convolutional neural networks, as expected, degrades
greatly when we use partial inputs.

The PMNIST dataset and other partial datasets based on EMNIST dataset,
can be used for checking how a network behaves when given a partial input
to classify.

We also showed four similar but different training techniques to maximize
the usefulness of our modification. These training techniques can be used to
experiment with different datasets.

7.1. RESULTS ON THE MNIST AND PMNIST DATASETS 61

The results show that classification based on missing features is possible and
that these new models we introduced help in partial input scenarios. Our approach,
albeit much simpler than some other approaches (e.g. training with adversarial
examples) can also help with a very difficult real-world problem of having partial
inputs to classify in a critical environment. The partial input example is only one
of many use cases for our models that we hope to discover.

These results, although favorable are not of maximum performance that can
be extracted from the negative models as we will discuss later in this dissertation,
especially in As we will see, a combination of a normal neural network model
and its negative counterpart can perform even better.

7.1.3 Influence of Multiple-step Training

During the development of this model, as we mentioned before, a multiple-step
training process was used. In this process some layers were frozen and some layers
were reset which led to the network having hot starting training properties. Similarly
to fine-tuning of the model. In other words the network did not learn the patterns
from scratch but rather had a baseline in the form of trained convolutional layers. It
is therefore important to see how this process contributed to our overall result and
to validate that it is the change in our negative feature approach that brings the
performance increase and not the fine tuning of the network with the multiple-step
training process.

To do so we created a simple experiment where a normal network without the
negative path activated is trained for a number of epochs and then similarly to our
negative network we freeze the convolutional layers, reset the fully connected layers
and continue training. The process therefore is exactly the same as for training the
hybrid model but without the negative activation function.

In the Table the results are shown where the two-phase approach did not
bring the same level of improvement as our negative model approach. In some
cases the performance is severely degraded as can be seen in the table. This ex-
periment confirms our intuition about the negative model and proves that a simple
modification of the training process where multiple phases are added does not bring
increased performance.

7.1.4 Negative Convolutional Kernel Experiments

A valid question for our model definition is why not use negation on the convolu-
tional kernel themselves, rather than to use them after the activation function is
applied. While certainly possible, there is hardly any difference in trained models

62 CHAPTER 7. TESTING

Dataset/Model SN ONN HN NR ALT TP

Unmodified MNIST 99.13 98.90 99.18 99.21 99.05 96.79
Horizontal cut 44.71 48.96 5233 56.07 4160 24.84
Vertical cut 57.46 64.64 60.45 66.07 69.66 43.82
Diagonal cut 52.97 5959 5540 56.01 62.49 54.44

Triple cut 40.68 34.62 41.19 41.73 46.40 47.37

Table 7.6: Results with accuracy for all models used on newly introduced PMNIST
validation sets. Included in this table as a validation effort is also the two-phase
normal non-negative network (last column, TP for two-phase network). Bold are
the best models per dataset.

performance in our experiments. There are several advantages and disadvantages
to this approach.

The greatest advantage is in that to use negative learning we only need to negate
(apply new_kernel_weights = —old_kernel_weights and new_kernel_biases =
—old_kernel_biases) convolutional layers independently of our activation function
choice. As we mentioned earlier the negation function needs to take into consid-
eration what is the domain of value which are output from the last convolutional
layer and its activation function. If we are negating the kernels directly we can
do so without the additional knowledge (and implementation) about the activation
function.

From the implementation standpoint, another benefit is that we do not have
branches in our network forward pass as we had before. This allows us to use static
computational graphs (e.g. TensorFlow implementation) instead of dynamic graphs
(PyTorch) which can lead to increase in training and inference speed.

There are also however several disadvantages.

First of all, the kernels must be learned before they are negated eliminating
several of our newly implemented models. The pure negative (non-hybrid) model
cannot be trained consistently with other models in this way since we do not know
the kernels and their negation. In other words we need to use negation also during
the training of the kernel themselves, which in this scenario is not possible. Another
is the alternating hybrid model. As we cannot use branches in our forward (and
backward) pass to shift the weight changes from the gradient descent, we cannot
train this model. We could perhaps keep a copy of the kernel weights and biases
and somehow compute the updates, but it would be very complicated and probably
without any benefit to the performance.

7.1. RESULTS ON THE MNIST AND PMNIST DATASETS 63

We strongly believe that the dynamic, branched approach is better for its flexi-
bility. We are fully in control of the negation process only in this case.

We present here the results for the MNIST and PMNIST datasets (experi-
ments have been conducted for MNIST, PMNIST, EMNIST-Balanced and EMNIST-
MNIST datasets, all have similar results to our other experiments, code is available)
to show that negation of the kernels does not bring performance in comparison to
our "branched" dynamic approach of negating the signal after the activation func-
tion of the last convolutional layer. This network is exactly the same architecture as
all the other models we describe in this part, the only difference is that the negation
of the features is removed from the forward pass definition function and the kernel
are negated directly. The kernel negation process takes place after half of the total
number of epochs of training (same as with the other models, where we activated
the negative branch in the same time point). We present results for the hybrid and
hybrid-nr models as they are only ones compatible. We also include the baseline
model for easier reading.

Dataset/Model SN HN NR

Unmodified MNIST 99.01 98.74 98.62
Horizontal cut 4552 47.32 48.74
Vertical cut 60.37 58.36 60.15
Diagonal cut 56.47 60.87 57.10

Triple cut 41.83 4156 46.57

Table 7.7: Results with accuracy for all models using direct kernel negation, on
MNIST/PMNIST validation sets. Bold are the best models per dataset.

In Table we can see that we obtained very similar results to our other
experiments, leading us to believe that it is up to the researcher to choose what
implementation is better to use in which scenario taking into count the advantages
and disadvantages of both methods we propose here.

7.1.5 Other Activation Functions

So far we have shown how to negate the ReLU function and how it is possible to
use negative learning concepts when using this function. It is of course possible
to use other activation functions as we will show in this subsection. For our tests
we originally chose the ReLU activation function as it is today’s most popular and
performant choice in modern neural network architectures.

64 CHAPTER 7. TESTING

In this subsection we display results of our experiments with three additional
activation functions: sigmoid, tanh and ReLUG6. Sigmoid activation function
was one of the first non-linear activation function used for artificial neural networks.
As it outputs values in the range from 0 to 1 our negation formula f(z) =1 —«
can be used without further modifications. For the tanh activation function the
negation function had to be modified slightly as the tanh function outputs values in
the range from —1 to 1. It is therefore necessary to use a different negation function:
f(z) = —x. Lastly for the ReLU6 activation function, a modification of the ReLU
activation function with a hard ceiling at the value 6 we used f(z) =6 — .

All the results displayed in the following tables show that it is possible to use
negative learning concepts we mention here with different activation functions on
the MNIST dataset with this model. As for performance, it is also clear that there
are again benefits, especially in the case of partial inputs. It is important to note
however that these results are not directly comparable with the results we showed for
the ReLU model. Activation function choice is an important architecture change,
therefore the models become incomparable.

Presented results are for the MNIST/PMNIST dataset. Experiments have been
performed also on the EMNIST-MNIST and EMNIST-Balanced datasets with sim-
ilar findings. Full results are available in the source code repository of the thesis.

Dataset/Model SN~ ONN HN NR ALT

MNIST 93.07 9339 94.42 9439 91.03
Horizontal cut 32.62 33.64 33.75 3394 36.36
Vertical cut 35.28 33.99 39.50 38.65 38.76
Diagonal cut 54.44 5468 5549 57.94 49.79
Triple cut 43.67 44.17 4549 53.86 40.20

Table 7.8: Results with accuracy for all models used on the PMNIST validation sets
while using sigmoid activation function. Bold are the best models per dataset.

From the tables shown here we can see that in all cases there is at least one
variation of a negative model outperforming the traditional model, proving our
hypothesis.

For the ReLUG experiments we can see that some models are unable to con-
verge, the only negative model and the alternating model. We strongly believe
that is because of our negation function. This outlier proved very important as we
understood our negation function more accurately. It is very important to negate
the ReLU (and possibly other activation functions) in a way that there are negative

7.1. RESULTS ON THE MNIST AND PMNIST DATASETS 65

Dataset/Model SN~ ONN ~ HN NR ALT

MNIST 98.85 98.84 08.84 98.88 97.54
Horizontal cut 41.58 38.46 41.98 40.21 45.34
Vertical cut 43.91 43.68 48.84 52.35 47.30
Diagonal cut 54.11 5474 5450 5781 63.46
Triple cut 40.52 38.31 42.78 43.66 47.46

Table 7.9: Results with accuracy for all models used on the PMNIST validation sets
while using tanh activation function. Bold are the best models per dataset.

Dataset/Model SN ONN HN NR ALT

MNIST 99.02 10.32 98.94 97.61 9.58
Horizontal cut 41.37 10.32 44.57 3130 9.58
Vertical cut 57.17 10.32 57.33 63.42 9.58
Diagonal cut 55.68 10.32 62.15 59.87 9.58
Triple cut 40.65 10.32 42.57 41.76 9.58

Table 7.10: Results with accuracy for all models used on the PMNIST validation
sets while using ReLUG6 activation function. Bold are the best models per dataset.

values (for negative features) in the new output vector. These values when prop-
agated further through the network will be annulled naturally through other ReLU
activations. We assume this is important for our model, to learn what features need
to ignored in a way. To validate this assumption, we made a similar experiment us-
ing a different negation function for the ReLU6 activation function: f(x) =3 —z.
This will allow the strongly positive, present features to have values less than 0 in
the output vector.

As can be seen in the table, the results suggest that our hypothesis is correct,
some form of less than zero values when using rectified linear units (ReLU) is needed.
This idea will be examined in more detail in the future research.

Another example where this can be seen is if LeakyReLU activation function
is used. LeakyReLU function is very similar to ReLU function but it allows some
of the negative values to "leak through" whereas ReLU cuts off all negative values.
LeakyReLU can be defined as LeakyReLU (x) = max(0, x) + negative_slope *
min(0,x) where negative_slope is a variable factor which dictates how much
leaking of the close-to-zero values is allowed. With this activation function it is
extremely important to allow for some negative values to pass through as we men-

66 CHAPTER 7. TESTING

Dataset/Model SN ONN HN NR ALT

MNIST 99.02 98.92 99.04 99.14 99.04
Horizontal cut 41.37 4575 4428 4552 52.69
Vertical cut 57.17 5870 55.61 65.31 61.85
Diagonal cut 55.68 62.23 59.24 58.53 60.77
Triple cut 40.65 42.26 39.82 44.91 43.63

Table 7.11: Results with accuracy for all models used on the PMNIST validation
sets while using Re LU activation function and the f(z) = 3—x negation function.
Bold are the best models per dataset.

tioned before for the ReLUG6 activation function. This function is also tested and
can be used for negative learning with the same negation as ReLU, the results for
MNIST/PMNIST validation are in the following table.

Dataset/Model SN~ ONN HN NR ALT

MNIST 98.96 98.97 99.12 99.21 99.06
Horizontal cut 4257 53.36 49.05 5153 47.96
Vertical cut 60.32 65.43 61.17 69.80 63.84
Diagonal cut 54.16 61.20 59.97 57.98 60.69
Triple cut 41.19 40.07 38.89 4252 43.76

Table 7.12: Results with accuracy for all models used on the PMNIST validation
sets while using LeakyReLU activation function (negative_slope = 0.1) and the
f(x) =1 — x negation function. Bold are the best models per dataset.

7.1.6 Corner Occlusions

In addition to our previous experiments with removing parts of the image we decided
to experiment with one more special case of image occlusion — corner occlusion.
This type of occlusion is very common in modern images and it simply means that
one triangular part of the image (in our case bottom left corner) is removed, or
behind another object. An example on the CIFAR-10 dataset can be seen in Figure
1

We carried out all the experiments as before but with these new validation
datasets. The experiments were done with varying number of pixels removed from

7.1. RESULTS ON THE MNIST AND PMNIST DATASETS 67

Figure 7.1: Input example #8 from CIFAR-10 validation set with various levels of
occlusion added. From left to right: original image, 10% removed, 20% removed,
30% removed.

10% of the image to 50% of the image. The results can be seen in the following
table.

Dataset/Model SN~ ONN HN NR ALT

Occlusion, 10% 98.97 98.97 99.09 99.19 99.09
Occlusion, 20% 98.97 98.98 99.09 99.17 99.09
Occlusion, 30% 98.62 98.53 98.89 98.90 98.81
Occlusion, 40% 79.27 77.88 79.69 81.01 80.26
Occlusion, 50% 36.55 4553 41.76 49.35 43.64

Table 7.13: Results with accuracy for all models used on the new corner occlusion
validation sets. Bold are the best models per dataset. Hybrid no-reset network
performs best here.

We can see that the accuracy slowly decreases as we remove more image data,
as expected. We can also confirm that our models are more robust in comparison
with the normal baseline neural network in all the cases of corner occlusion, in some
cases (e.g. 50% occlusion) even by as much as 12.8 %, a great result. We can also
see that the MNIST dataset has high quality as all images are centered and roughly
the same size. Even with 30% of the corner data removed most of the relevant data
remains in the image.

Test have been performed on other datasets we mention here (EMNIST-MNIST,
EMNIST), with similar results. Full results can be found in the code repository.

Other occlusion variants (e.g. top-right or other corners) remain to be tested.

68 CHAPTER 7. TESTING

7.2 Robustness to Adversarial Attacks

A topic which should be mentioned here is adversarial attacks on neural networks
research [53].

There have been some research papers similarly exploring how to increase ro-
bustness of neural networks when the inputs have been tampered with. However,
our approach is not directly comparable with their approaches for many reasons
i.e. different network architectures, usage of partial inputs in training, usage of
adversarial examples in training, etc.

In [60] the MNIST [55] dataset used in our work was also used to investigate
robustness of neural networks. In our paper parts of the input image were removed
as will be explained later, while the authors in [60] describe a way to combine two
images as an adversarial example input.

[61] and [35] described also on the MNIST dataset different modifications to
the input image which affect the model greatly. In [61] MNIST dataset was used to
investigate how different elements in input images maximize some network activa-
tions. The second part of the paper describes an adversarial attack on the network
using previously gathered information. Our paper differs from this paper in that we
are investigating how missing features are affecting classification instead of what
features affect it the most, and that we are also using a convolutional neural net-
work, while in this paper a traditional multi-layer fully connected network is used.
Also in the mentioned paper, authors suggest that training with a mixture of ad-
versarial and clean examples is a way to achieve better performance. In our case,
we did not want to train on our generated adversarial (partial) examples, as will
be explained later. Similarly in [35] adversarial examples are being used to increase
neural network robustness, but they are being used during training.

7.2.1 White-box Attacks (Fast Gradient Sign Method Attack
on the Negative Models)

To evaluate our model robustness with regard to adversarial attack we first ex-
perimented with the most-popular white-box method: Fast Gradient Sign Method
(FGSM). [35] This white-box attack uses gradient information from the forward pass
of the model in combination with gradient ascent to maximize the loss function we
normally use for training. This method step is very similar to training the model
apart from that the model is in evaluation mode (locked weights) and gradient
ascent is used to modify the input image. That modified input image becomes an
adversarial example. The adversarial image is often indistinguishable (to humans)

7.2. ROBUSTNESS TO ADVERSARIAL ATTACKS 69

+.007 x =
. N x +
@ sign(Val 0.2.9)) ign(v,(0,2,))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Figure 7.2: FGSM adversarial image generation process, ¢ = 0.007 (image taken
from original FGSM paper).

from the original image but wrongly classified by the model. One example can be
seen in the Figure.

It is important to say that FGSM model is a adversarial attack whose purpose
is a simple general misclassification method rather than a targeted method whose
purpose would be to specifically make the model select a wrong targeted class.

FGSM is easy to implement, reference implementation from the PyTorch doc-
umentation was used for these experiments. FGSM only has one hyper-parameter:
€ which controls the multiplication factor of the gradient noise added to the input
image. It is very similar to learning rate in gradient descent when using normal
training techniques.

The results of the experiment with various € values can be seen in Table[7.14]and
Figure[7:3] We can see that for every e value most of the negative models outperform
the traditional model of the same architecture meaning that the negative models
presented here are more resilient to FGSM white box adversarial attack, a result we
were hoping for.

7.2.2 Black-box Attacks: Black Box Projected Gradient De-
scent Attack on the Negative Models
In contrast to the white-box adversarial attacks black-box attacks do not have

direct access to the attacked network parameters. Instead they use different data
to learn how to manipulate data in a way so that it is misclasified. One common

70 CHAPTER 7. TESTING

100 T T T
O normal model
—— negative model (NR)

70

60 - .

40

30

Accuracy on the adversarial testset
ot
o
I
|

10 |- .

3
0 | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3

€ - FGSM attack modifier

Figure 7.3: Accuracy of normal and negative (best chosen, which is NR) models
against FGSM.

7.2. ROBUSTNESS TO ADVERSARIAL ATTACKS 71

e/Model SN ONN HN NR ALT

(control) 0.0 98.79 98.78 98.92 98.98 98.92
0.05 93.70 9442 9499 05.07 94.61
0.1 77.34 80.09 80.88 81.35 81.96
0.15 47.23 5251 49.80 53.07 55.65
02 2039 2399 2041 2472 25.95
025 677 826 635 8.99 844
03 271 265 215 331 240

Table 7.14: Results with accuracy for all models against FGSM white-box attacks.
Bold are the best models per adversarial dataset. Please note that the control
results are slightly different than before as normalization of the dataset has been
omitted as suggested by the authors of the FGSM attack. Best models in bold.

way to use black-box attacks is to use a donor neural network (sometimes called
a Holdout network) which the attacking algorithm studies and tries to figure out
ways to manipulate it. Then this adversarial data generated based on the Holdout
network is used in adversarial attacks on other networks. One algorithm that can be
used in both white-box and black-box scenarios is the Projected Gradient Descent
(PGD) [62] adversarial attack. It is normally used as a black-box algorithm with
Holdout and Target networks but it can also be used as a white-box algorithm if
both networks are the same. PGD attack is very similar to the previously used
FGSM attack as it uses gradients from the Holdout network to try and maximize
the loss function and in that way create adversarial examples which are wrongly
classified. The difference between PGD and FGSM is that PGD limits the size of
the perturbation (e.g. number of pixels) to keep the changes local and direct while
the FGSM changes the entire input sample. The advantage of changing only local
parts of the image is that it is more likely that humans will still be able to classify
the input image correctly as only one part of it is changed. Another benefit of
this approach is in generative models where we can actually deduce what are the
differences in input data between specific class. For example if we have dataset of
images of animals, PGD will be able to learn that if a beak is added the image will
be classified as an image of a bird. If used in this way, PGD can provide us with
the most important features of a class in dataset.

We experimented with black-box PGD attack where we gave it all of our five
models for experimentation (one normal, four negative) as a Holdout model. Then

72 CHAPTER 7. TESTING

with the adversarial examples generated, we compare all the accuracies on the
adversarial testing datasets, results and comments in Table [7.15]

Holdout/Target | SN ONN HN NR ALT

SN 29.28 5486 52.67 57.80 60.95
ONN 5262 3333 56.14 5805 62.38
HN 4858 53.83 31.68 56.74 56.61
NR 51.31 53.62 5475 3581 59.27
ALT 50.56 54.38 5101 5522 37.70
Avg. acc. | 44.47 50.00 49.25 5272 5539

Table 7.15: Results with accuracy for all models against PGD black-box attack. On
the diagonal in italic font are the actual PGD white-box attack accuracies (same
Holdout and Target model). We can see more severe damage caused by PGD in
these cases. These results are taken for the middle epsilon value: ¢ = 0.15. The
last row presents average accuracies when using different models as target models,
where we see again the negative models outperforming the normal model. The
results are generally better for greater € values. Full results are available in the code
repository.

Part IV

Synergy of Traditional
Classification, and
Classification Based On
Missing Features

Chapter 8

Overview of Ensemble
Learning Techniques

In the previous part of this dissertation we have shown and experimented with a new
type of learning applicable to all convolutional neural networks: Classification Based
on Missing (low-impact) Features. In the case of partial inputs/image occlusion,
we have shown that our new method creates models that are more robust and
perform better when compared to traditional models of the same architecture. In
this part we explore an interesting characteristic of our newly developed models
in that while we see a general increase in validation accuracy we also lose some
important knowledge. Then we propose one discovered solution to overcome this
problem and validate our assumptions against CIFAR-10 image classification dataset
which has more complexity than the previously used MNIST dataset.

Ensemble Learning is a process in which multiple machine learning models are
used for a single task. The reason for doing this is that with more than one model
we can have more than one "opinion" and therefore we have greater probability
that the ensemble model as a whole will perform better. There are several ways
of "combining" Machine Learning models such as: bagging, boosting and stacking.
The choice of a technique when joining multiple models can be simplified as follows:
bagging is used to decrease the model's variance, boosting is used to decrease bias,
and stacking is used for increasing the predictive force of the classifier. Our synergy
approach as we will discuss later is an example of a stacking paradigm.

The simplest concrete example of an ensemble learning model is the Random
Forest model (an example of bagging type of an ensemble) which uses many decision

76 CHAPTER 8. OVERVIEW OF ENSEMBLE LEARNING TECHNIQUES

trees and a voting system in classification and regression tasks. By not limiting
the model to a single decision tree, we can learn much more information about the
patterns in the training data and incorporate that knowledge in different sub-systems
(decision trees) [2] of the ensemble learning model.

Ensemble Learning can also be used in Deep Learning. One good example is
in the multi-modal systems, where we need to make some decision or recognize
some pattern based on different heterogeneous data. For example if we have a
model which accepts an image and text describing that image and we want to
output whether the description is correct we would need to use a multi-modal
neural network system. In a such system one model would be used for processing
the image and another one would be used to process text. Together, they would
then produce some output. This has many benefits, the most obvious one is that
we can use different type of neural networks for different tasks which can mean that
we have increased performance. It is much better to use a recurrent model for text
and a convolutional model for images (this is just one example) rather than one
singular fully-connected model.

Our synergy network [63] described here takes inspiration from ensemble learning
models and the Siamese neural network model. In synergy networks as we will see,
we have two models working in parallel. These models share some weights and have
the same architecture but one of them is a negative model while the other is the
"positive" or a normal neural network model.

Some experiments with joining multiple networks in the synergy models [64]
and partial input and adversarial input classification [65] were performed as parts
of two offspring MSc theses written by Jasmina Gaj¢in and Mihailo 1li¢ in 2020.
Even though results and implementations from those manuscripts were not used in
this thesis | thank them for their contribution and work on these tasks and hope we
continue our collaboration.

Chapter 9

Synergy model

In our work we already tested and empirically proved that our way of negative
feature representation is suitable for training neural network models without any
loss in accuracy. Moreover, we tested our models in one difficult scenario where
algorithm robustness is important (object occlusion/partial inputs) and observed
significant increase in accuracy. On the MNIST [55], EMNIST [56] and our newly
introduced PMNIST (partial MNIST) datasets of grayscale images of handwritten
letters and digits we saw overall improvements in accuracy with some test cases
having large increases e.g. 12.20% increase in accuracy on the vertically cut (50%
image missing) PMNIST validation set.

The intuition behind our solution is that by training the classifier to classify on
negative (missing, low impact) features we obtain a more robust model in scenarios
where some input features are missing. This makes our models suitable for tasks
where some sort of an input mask is present e.g. occlusion, corrupt inputs.

9.1 The Need for Ensemble '"Synergy"' Models

Upon inspecting our negative models we discovered an interesting property that
led us to this new synergy model. When comparing the accuracies of normal and
negative models of same architecture, trained in the same way with same hyper-
parameters, we saw similar accuracies when testing on unmodified test sets. This
is expected, as both models converge quickly. In testing with partial inputs, even
though we gained some accuracy (in some cases more than 10%), by inspecting
which samples were correctly classified, we discovered that our new network was

78 CHAPTER 9. SYNERGY MODEL

wrongly classifying some instances which were correctly classified by the unmodified
network. Therefore, we have discovered that while our new models are overall more
accurate, the accuracy gain is not absolute.

9.2 Model Description

In our previous work [49] we showed that by using a simple activation function
modification between feature extracting part of a CNN (convolutional layers) and
classification (fully-connected) layers we can change the training process so the
model uses missing (low-impact) features for classification. The main idea and goal
of our method is to invert the feature extraction part of the network so that we
obtain what features are missing (or not of high importance) on an input sample.
Feature set is a finite set of features limited by the network architecture. In most
neural network models, the number of features can be calculated from the number
of convolutional layers in the network and their parameters: filter (kernel) size, num-
ber of filters, pooling characteristics (stride, type, width and height to consider),
convolutional characteristics (e.g. padding type) etc. Most importantly, the output
of the feature extractor is the place where we modify the signal before it is propa-
gated to the classifying part of the neural network. As we mentioned earlier, this
is very similar to negating the convolutional filter, but easier to implement because
we do not have to modify the convolutional layers of existing networks.

To overcome the loss of knowledge we discovered, we create an ensemble model
of two networks, one traditional and one negative. Both networks have the same
architecture and share the convolutional, feature extraction layers. As we discussed
in previous parts, we want to use the convolutional layers from the traditional model,
so that we know it is our modification of the learning process that leads us to ac-
curacy gains. This required some effort to make sure that our training process is
deterministic and also that some of the weights are shared between models. To clar-
ify, the shared parameters between the models are the frozen convolutional layers
obtained from an unmodified neural network. The usage of negative models without
shared parameters has also been tested, but it is incomparable to the unmodified
models because the convolutional layers (namely filter weights) are completely dif-
ferent. Since we want to focus on models that use classification based on negative
features, we want to make sure that the feature extraction parts of the networks
remain unchanged in all the testing scenarios.

A simplified architecture diagram can be seen in Figure [0.I] The convolutional
layers are shared while there are two sets of classification layers we are training. On
the left, a normal unmodified set of layers is trained while on the right we have a

9.3. MODEL ARCHITECTURE 79

Synergy Neural Network Model
Qutput

Fully Connected
Fully Connected Layers

Layers
A Feature Negation

Feature Extracting Convolutional Layers
(shared weights)

T Input sample

Figure 9.1: Synergy Model Architecture.

feature negation operation before the fully connected layers. We refer to the left
side of the network as the positive side and the right side of the network as the
negative side. The negation of the feature embedding vector is explained in Section
9.3.1]

9.3 Model Architecture

To carry out our experiments we decided to use a well known and widely used
neural network model. Even though our approach is viable for any convolutional
neural network (or any model with a feature extraction part) we decided to test on
a moderately complex neural network model from the PyTorch model library [57],
[59]. This model is well documented and known to work well with the CIFAR-10
dataset. The model is also fast to train which was useful in our testing.

The used neural network model consists of five layers:

1. 1st Convolutional Layer (convl), 3 input channels, 6 output channels, kernel
size 5 x 5, 2D max pooling (maxpool, kernel size 2 x 2, stride of 2)

2. 2nd Convolutional Layer (conv2), 6 input channels, 16 output channels, kernel
size 5 x 5, 2D max pooling (maxpool, kernel size 2 x 2, stride of 2)

3. 1st Fully Connected Layer (fcl), 400 input features, 120 output features
(neurons)

4. 2nd Fully Connected Layer (fc2), 120 input features, 84 output features (neu-
rons)

80 CHAPTER 9. SYNERGY MODEL

5. Output Layer (fc3), 84 input features, 10 output features (neurons)

The forward pass through the network of the input sample (x) can then be
represented as seen in Equations [0.I] and [0.2] ReLU activation function has been
omitted from the equations for brevity. The RelLU activation function is used for
fully-connected layers (fcl, fc2) and the convolutional layers (convl, conv2).

conv(x) = maxpool(conv2(mazpool (convl(x)))) (9.1)

Fn(z) = softmax(fc3(fc2(fcl(conv(x))))) (9.2)

The hyperparameters were also defined and are as follows:

= Loss function used is Cross Entropy Loss, suitable for problems of multi-class
classification

= Optimizer used is Stochastic Gradient Descent with learning rate of 0.001 and
momentum of 0.9

= Batch size is 4

= Number of epochs is 10

We are aware that there are more performant, complex, deeper (and wider)
models that can be used for this task, however we wanted to experiment with a
model that we know can be improved and to do so without introducing more depth
or width to the model. Our modifications to this model can be transferred to any
CNN model, but this model was sufficient for our experiments because we want to
show how to upgrade an existing model, without modifying its architecture. Later,
we will also present results with modification of widely known ResNet18 [66] model.

One similar architecture that we later discovered can be found in [67] where
a model of similar architecture to our Synergy network is presented. In that pa-
per a model where one feature extractor is used with multiple classification layers
afterwards is very similar to our Synergy network model. More interestingly, the au-
thors suggest the use of GRL (Gradient Reversal Layer) in a non-negative learning
paradigm, but rather for multi-domain feature normalization. This approach could
be of interest to us and possibly applicable to our negative learning approach. We
will definitely explore this model and GRL in more depth in the future.

9.3. MODEL ARCHITECTURE 81

9.3.1 Negating The Features

In the negative network we use negation or inversion of the output of the feature-
extracting convolutional layers. The process of obtaining the negative features
depends on the output of the last convolutional layer in the convolutional blocks.
Namely, it is very important which activation function is used in this last layer
so we know what range of values we can expect as the output. We are using
ReLU activation function throughout the convolutional layers of our models and
the outputs are strictly positive values. Therefore we can calculate what features
are missing (negative features) as they have very low, close to zero values.

It is important to note that the negation function can also be applied to the con-
volutional kernel directly as we described previously, when introducing the negative
model. As mentioned, in our approach we found it easier to apply the negation after
the activation function since it is easier to work with only positive, scaled values.
When Rel U activation function is applied, we can think of the output as the actual
feature-positional vector where present features have high values and all the other
features have values close to zero. It is yet to be determined if this approach is
somehow different to our approach and if it can help with performance.

For our negative model, we have experimented with different negation functions
[49], but have found that f(z) = 1 — = works best. When this function is applied
to the squashed output feature vector, we obtain a new vector where negative
features have values close to 1 and the present features have values either close to
0 or negative values. Either way, when these values are propagated through the
following layers which also use RelLU activations, only the low impact (negative)
features will be considered as they will have values close to one. It is important to
note that the convolutional layers almost never output binary outputs with regards
to whether a feature is missing or present. This is a shortcoming we hope to address
in the future with further research regarding the negation process. When negation
function is active, the forward pass through the network changes slightly compared
to the normal network as can be seen in the Equation We empbhasize that the
convolutional part of the network is trained and reused from the normal network
as can be seen in Equation The fully connected layers (fcln, fc2n, fc3n) are
different (do not share weights with previous model).

Fneg(x) = softmax(fedn(fe2n(feln(l — conv(x))))) (9.3)

82 CHAPTER 9. SYNERGY MODEL

Table 9.1: Performance of the negative and normal models.

Model Validation Accuracy Average Loss
Normal CNN 63.30 1.1513
Negative CNN 63.57 1.3377

9.3.2 Shortcomings of Previous Model

In this section we further clarify our intentions with the synergy model and the
shortcomings of the previously described negative model. Since the traditional
(unmodified) model is still useful for some scenarios and shows good performance,
we wanted to combine it with our new negative model so the knowledge loss is
minimal.

The conclusion that an improvement is possible came from a simple experiment
we performed. After training and testing both models normally, base metrics of
accuracy were obtained. As seen in Table[9.1I] both models perform similarly on the
unmodified CIFAR-10 test set with our negative model slightly outperforming the
traditional model. This test on the CIFAR-10 dataset also validates our previous
results obtained on the MNIST dataset.

The next step in our experiment was to see how many validation samples were
correctly classified by both models. We expected that our negative model would
correctly classify all the samples that the normal model correctly classified in addition
to some new previously wrongly classified examples, but this was not the case. In
Table we see that our new model simply learned to classify some other input
samples, and while the overall accuracy gain was present, this was not the desired
behaviour since we want our model to be an upgrade over a normal model as much
as possible.

9.4 Training Processes

The training processes for our model are very similar to our previous experiments
with the MNIST dataset. [49] The first step in the training process is to train
the normal, unmodified network. The training parameters have been described in
Section After the training of the normal model we freeze its convolutional
layers because they are to be used in other models.

The second network we train is the negative network. The training process is
the same as with the normal network apart from that the convolutional layers are

9.4. TRAINING PROCESSES 83

Table 9.2: Performance of the negative and normal models (case counts). CIFAR-10
validation set has 10000 images.

Case Occurrences
Normal CNN acc. 6330
Negative CNN acc. 6357
Normal CNN acc. & Negative CNN inacc. 1107
Negative CNN acc. & Normal CNN inacc. 1134
Both accurate 5223
Both inaccurate 2536

already trained and loaded before training. In a way, we are performing fine-tuning
of the network with the frozen convolutional layers from the normal network and
with the negation operation activated.

9.4.1 Synergy Network

After we train the normal network and the negative network, we can join these
models into a new model which we call synergy network. Synergy network is an
ensemble of two networks of the exact same architectures, where one network is
a traditional neural network model and the other one is a negative model. The
simplified architecture diagram can be seen in Figure[9.I] Both networks are already
trained, meaning that creating the synergy network does not require additional
training, rather just parameter copying.

It is important to note how the ensemble of the networks functions — or how
the models are merged. For now, in our experiments we are using a simple addition
of the probabilities for each class which are obtained from both neural networks
(Equation [0.6). The reasoning and the intuition for this is that we believe that
there is an issue where the probabilities for the correct class and some incorrect
class are very close in either the normal or the negative model outputs. Where we
expect an improvement in accuracy is exactly in these cases. In these cases we are
hoping that if an input sample yields very high output probability value for some
class in one model (either negative or normal) while the other model outputs very
close probabilities for two or more output classes, we will then consider the output
class that the both models have strong confidence in. The forward pass through
the synergy network can be represented with a set of equations (Equations
and [0.6). Please note that the convolutional block (conv) is shared between all

84 CHAPTER 9. SYNERGY MODEL

models and the fully connected layers have the same weights from models seen in

Equations [9.1] and

neg(x) = fedn(fe2n(feln(l — conv(x)))) (9.4)
normal(x) = fe3(fe2(fcl(conv(x)))) (9.5)
Fsyn(xz) = softmax(neg(x) + normal(z)) (9.6)

We have also thought of introducing a hyperparameter (w) giving preference to
output of either of the two models. This new parametrized synergy network can
be represented as seen in Equation [9.7] where the negative network influence to the
synergy network output is dependant on the hyperparameter value.

Fsynp(x) = softmaz(neg(x) x w 4+ normal(x)) (9.7)

In Table we provide an example of some cases, where it is clear to see our
intention with the synergy model. For the example (taken from the validation set)
where normal network is incorrect and the negative network is correct we can see
the output probabilities. The normal network has the highest confidence that the
output class is class 2 (automobile), but also has relatively high probability for the
correct class 9 (ship). The negative network has high probabilities for both these
classes, but much higher for the correct class 9 leading to the synergy network
outputting the correct classification result. In Table we can see a similar case
where the normal network is correct while the negative network is incorrect. The
negative network, although incorrect, still outputs high probability for the correct
class, again leading to the synergy network being correct.

The most extreme cases, of which there are 78 in our experiment, are those in
which both networks are incorrect while the synergy network is correct. These cases
are the most interesting ones as they represent an absolute increase in performance
of our new joint model. In these cases, as seen in Table[9.5] we have both networks
yielding high probabilities for the correct class but even higher so for some incorrect
classes. As both networks are wrong but not confident in their decision, the joint
synergy model outputs the correct class.

In Figure the three mentioned input images are shown and they are indeed
difficult examples to classify, even to human eye.

It is extremely important to note that there are no cases where either of the
networks outputs the correct class and the synergy model outputs the incorrect class
meaning that we always have at least one model with correct classification and high

9.4. TRAINING PROCESSES 85

Table 9.3: Cases when only one network is correct. Input sample is from the
validation set (index #2). C1 to C10 are output classes probabilities. Correct class
is class 9 — 'ship. Rows represent three networks: normal CNN, negative CNN,
and the synergy network which is the sum of the previous two. Bold is the highest
probability, per network.

ci C2 C3 ¢4 ¢ Co Cr C8 (€9cC10

Nor. 3.05 4.44-1.25-2.72-0.83 -2.12 -2.45-3.31 2.012.62
Neg. 6.04 7.29-1.39 0.11-6.85 -8.49 -9.60-4.8911.55 3.22
Syn. 9.09 11.73-2.65-2.60-7.68 -10.61 -12.05-8.21 13.56 5.84

Table 9.4: Another case (#7396) where normal network is correct whilst the nega-
tive network is incorrect. Correct class is class 9 — "ship’.

Cl C2 C3 C4 C5 Co C7 (C8 (€9 C10

Nor. 2.70 3.24 -2.91 0.30 -2.79 -1.12 -1.30 -3.54 4.71 1.70
Neg. -1.12 -0.95 -2.21 2.19 -1.12 0.26 -1.79 -1.23 1.96 3.16
Syn. 1.57 2.29 -5.12 2.48 -3.91 -0.85 -3.09 -4.78 6.67 4.87

confidence — which is something we hoped to achieve. Also, from the given formulas
it is also clear to see that if both networks are correctly classifying the sample, it is
impossible for the synergy network to be outputting the wrong class.

9.4.2 Other New Models

In our experimentation we are also introducing two additional models, useful for
testing our changes. Both models are variations of the main synergy model.
Firstly, we introduce the "trained synergy" model. This is the model of the
same architecture as the synergy model described in the previous section, joint of
two parts: a traditional convolutional neural network and a negative network of the

Figure 9.2: Input examples: #2 (ship), #6418 (airplane), #7396 (ship).

86 CHAPTER 9. SYNERGY MODEL

Table 9.5: One of the extreme cases (#6418) where both networks are incorrect
and unconfident, but synergy of the models outputs the correct result. Correct class
is class 1 — 'airplane’.
Cl C2 C3 C4 GG Ce C7 C8 (9 C10
Nor. 3.52 4.45 -0.67 -2.84 1.20 -2.38 -2.50 -3.34 -0.41 0.83

Neg. 4.00 2.63 -0.31 -0.16 5.22 -2.03 -1.94 -2.73 0.42 -1.30
Syn. 7.53 7.07 -0.97 -3.00 6.43 -4.41 -4.44 -6.07 0.01 -0.48

same architecture (Figure . The difference comes in the training process. This
model is trained in a normal way, without any predefined parameters, for both the
convolutional and the fully-connected layers.

The idea behind this model is to test how parallel training of both parts of the
network (normal and negative) will affect the end result. Since both networks are
trained at the same time we are using information about both the present (high
importance) and negative (missing, low importance) features as can be seen in
Equation [0.6] The propagated error, in this case, is directly dependent on the sum
output of both of the networks.

Another model we introduce is very similar, with the exception of using the
convolutional layers from the normally trained network used for both models in the
synergy architecture. We refer to this model as hot starting trained synergy model.

This model has a similar purpose to the previous one: to use both parts of the
network during training. The difference here is to reuse the convolutional layers
from other models we defined to stop any changes to convolutional kernels while
training this way.

In the following section we will discuss more about our findings with both these
models.

0.5 Results and Discussion

In this section we present the full results for all the models trained and tested
on the CIFAR-10 dataset. In Table we first present the validation accuracies
of all the models. Please note that while the data is split into just training and
validation sets, we are not performing any fine-tuning of the parameters based on
the validation results. We are simply using the predefined parameters from the

9.5. RESULTS AND DISCUSSION 87

Table 9.6: Validation accuracies of the models. Accuracy is given as percentage.
Column "Delta" represents the percentage difference between our models and the
normal network.

Model Accuracy Delta
Normal 63.30 -
Negative 63.57 0.27
Synergy 66.98 3.68
Trained Synergy 63.32 0.02

Trained Synergy (hot-start) 64.28 0.98

PyTorch code repository. This is why we felt that there was no need for a triple
(train/validation/test) split of the dataset.

In the column Delta we see the difference between all the models and the normal
unmodified neural network. First, we can see that our negative model which uses
classification based on negative features outperforms the normal network by a very
small margin. This increase in accuracy is not absolute — we are not just correctly
classifying 0.27% more of validation dataset, rather the correctly classified dataset
subset is vastly different. Next model is the synergy network which is the best model
we see here. As previously mentioned, the synergy network is not trained but rather
a combination of the negative model and the normal model. We see a significant
increase in accuracy when using this model on the unmodified validation dataset,
and we will later demonstrate how the model performs on partial input data.

Last two models, as described in Section [9.4.2] represent simple tests whether
our approach is valid. The trained synergy proved that simply increasing the number
of parameters is not enough. Both the trained synergy and the hot starting trained
synergy models perform worse than the base synergy model as can be seen in Table
The reason for this, we believe, is that during training the error is calculated and
backpropagated on both the normal and negative parts of the network at the same
time making it harder to converge. This is especially notable for the trained synergy
model where we change a larger number of parameters (convolutional layers).

Regarding training performance, normal and negative models were comparable
in training time (with negative model being faster to train because of the copied
frozen convolutional layers) while trained synergy models took longer because of the
higher number of parameters to be calculated. The synergy network is not trained,
therefore not comparable in training times to others.

88 CHAPTER 9. SYNERGY MODEL

Table 9.7: Validation accuracies of the ResNet18 based models.

Model Accuracy Delta
Normal 92.52 -
Negative 92.48 -0.04
Synergy 92.54 0.02
Trained Synergy 89.47 -3.05

Trained Synergy (hot-start) 92.46 -0.06

9.5.1 Testing with More Complex Models

In this section we briefly display the results of our approach in training more complex
models. The first architecture we tried is the ResNet18 [66] neural network. First
of all, we achieve very similar and comparable results to the one reported in the
original paper. The implementation used was from the torchvision [68] library.

In Table we see the results of testing with CIFAR-10 validation set. Even
though our new models do not show meaningful increase in accuracy we are still
considering this to be a good result because it shows that even in the case of
very complex models of neural networks our approach does not negatively impact
performance.

When comparing the synergy model with the trained synergy model it is clear
to see that it is not the architecture change that benefits the accuracy but rather
our modified training process.

Further testing with case-by-case analysis similar to what we present in this
paper needs to be done in the future. We are looking forward to testing with other
highly complex models and expect to find more substantial accuracy gains.

Please note that this model is not directly comparable to the main model pre-
sented in this paper due to major difference in architecture, hyperparameters, input
processing and training characteristics. Full implementation is available at the code
repository as described in Section

9.5.2 Testing with Partial Input Samples

Since the main focus of our negative models [49] was to increase robustness in the
problem of partial input recognition, we also tested with partial inputs and present
some initial results here. The tests were done with our synergy model, not with
the ResNetl8 based one. To test our new models we opted to test with removal
of the lower left corner of test images to a certain degree. We have tested with

9.5. RESULTS AND DISCUSSION 89

Figure 9.3: Input example #8 from CIFAR-10 validation set with various levels of
occlusion added. From left to right: original image, 10% removed, 20% removed,
30% removed.

removing up to 30% of the input image. One example can be seen in Figure 9.3
Even at this initial stage of testing we see very promising results. In Table [0.8] we
can see that our main testing synergy model achieves the highest performance in all
three validation sets. Most interesting result is in the C3 dataset with 30% of the
input image removed. There, our negative model actually performs worse than the
normal network but the synergy network has strong increase in accuracy compared
to the normal model, proving our initial hypothesis.

We have also tested another scenario, where we removed blocks of pixels from
the input image. We created four new validation sets:

1. Single Square Kernel (SSK) - one fixed position square removed

2. Single Square Kernel Random (SSKR) - one randomly positioned square re-
moved

3. Multiple Square Kernel (MSK) - multiple (3) fixed position squares removed

4. Multiple Square Kernel Random (MSKR) - multiple (2) larger randomly po-
sitioned squares removed

The samples from these new validation sets can be seen in Figure The
results of this test are shown in Table 3.9l where we can see similar behaviour to the
previous test where corners of the images have been removed.

Similar to our previous work [49], it is important to note that these partial
samples are not used during training, rather just for testing. We are eager to test
with other input modifications and models in the future.

90

CHAPTER 9. SYNERGY MODEL

Figure 9.4: Input example #3421 from CIFAR-10 validation set with various modes
of box occlusion. From left to right: original image, SSK, SSKR, MSK, MSKR.

Table 9.8: Validation accuracies of the models with testing with datasets with
partial samples. C1 to C3 represent dataset with 10%, 20%, 30% of the input

image removed. Best results in bold text.

Model/Dataset Unmodified C1 C2 C3

Normal 63.30 62.95 60.93 56.33
Negative 63.57 63.47 61.19 55.31
Synergy 66.98 66.51 64.33 59.08
Trained Synergy 63.32 63.22 62.29 57.29

Trained Synergy (h.s.) 64.28 64.14 62.23 56.11

Table 9.9: Validation accuracies of the models when testing with datasets with
block removed partial samples. Best results in bold text.

SSK SSKR MSK MSKR

Model/Dataset Unmod.
Normal 63.30
Negative 63.57
Synergy 66.98
Trained Synergy 63.32

Trained Synergy (h.s.) 64.28

54.04 56.89 61.15 47.60
51.27 56.15 60.38 45.08
55.24 59.85 64.49 49.35
53.89 57.45 60.66 44.85
52.73 54.37 62.00 46.27

9.6. DIFFERENT NETWORK JOINING TECHNIQUES 91

9.6 Experiments with Different Network Joining Tech-
niques

In synergy nets, one of the questions which needs to be answered is on model
joining. In other words how can outputs of two models be joined and a single
result produced. In our classification problem, both networks are created in such a
way that they output probabilities, per-class for every known class in the dataset.
So the output of both networks is a one-dimensional vector of length N where
N = number of classes in the dataset. These two vectors of probabilities need to
be equally considered and joined so our joint model can make a prediction/decision.

9.6.1 Addition

The simplest way to join these two vectors, and in that way to join the two models:
the negative and the positive one, is to use addition. To use addition we would
sum the probabilities per-class. So the probability for the first class as an example
would be p(c0) = p,(c0) + pn(c0), where p(c0) is the probability of the first class
(we use zero indexing) and the p,(c0) and p,,(c0) represent the probabilities from
positive and negative networks respectably. We would do this operation for all the
classes which in turn means that we are simply using element-wise addition of the
both probability vectors as the output of the synergy net. This approach is currently
used in the models we display here.

Several upgrades to this process are possible.

One upgrade would be to use a hyperparameter w = "importance of negative
network" which would control how both probabilities are taken into count when
doing addition. With this parameter we can control the importance of both models,
which could be useful in some scenarios where one network heavily outperforms the
other one. If we are using this parameter the addition formula we mentioned before
would be slightly different, in that the probabilities output from the negative network
would be multiplied with the hyperparameter value: p(c0) = pp(c0) + pr(c0) * w

We have experimented with several values for the w hyperparameter. For this
dataset/model combination the parameter does not seem to bring large differences
in the results as can be seen in Table [0.10] and Table @111 We will continue to
experiment with this hyperparameter in the future, especially with regression tasks.

Another upgrade would be to divide the resulting probabilities with a number
of networks from which they are sourced. This is not necessary if we are doing
addition at the end of the model, since it is very likely that an argmax operation
would be used for a final predictions. If however we need the final probabilities or

92

CHAPTER 9. SYNERGY MODEL

Table 9.10: Validation accuracies of the models when testing with w = 0.5. With

this parameter value the normal network
negative network in the join process.

is two times more important than the

Model/Dataset Unmod. SSK SSKR MSK MSKR
Normal 62.63 52.60 52.20 59.15 47.15
Negative 63.53 51.63 53.63 60.31 45.67
Synergy 66.28 55.82 55.79 62.98 50.63

Trained Synergy 63.70
Trained Synergy (h.s.) 64.46

55.48 56.76 60.95 47.93
54.05 54.89 60.65 47.31

Table 9.11: Validation accuracies of the models when testing with w = 2.0 where
the negative network is twice the important when comparing it with the normal

network.
Model/Dataset Unmod. SSK SSKR MSK MSKR
Normal 62.36 52.46 51.66 58.69 47.45
Negative 62.95 51.97 53.37 60.22 46.14
Synergy 65.76 55.46 55.68 62.15 49.32

Trained Synergy 63.15
Trained Synergy (h.s.) 63.51

52.63 56.79 58.79 44.52
53.20 52.50 59.65 46.82

9.6. DIFFERENT NETWORK JOINING TECHNIQUES 93

Table 9.12: Validation accuracies of the models using multiplication when testing
with datasets with block removed partial samples. Best results in bold text.

Model/Dataset Unmod. SSK SSKR MSK MSKR
Normal 62.69 52.73 51.89 59.02 47.63
Negative 63.38 51.94 53.90 60.20 46.34
Synergy 56.24 45.70 44.21 52.30 41.09
Trained Synergy 64.27 53.36 55.20 60.48 48.38

Trained Synergy (h.s.) 56.21 46.69 49.27 52.21 38.40

they have to be used further in the model pipeline we would need to perform this
normalization process: p(c0) = (pp(c0) + pr(c0))/2.

9.6.2 Multiplication

It is also possible, in a similar fashion to use multiplication instead of addition. It
is clear that in this case the multiplication of the probabilities would bring higher
confidence in the resulting model, without regard to accuracy. For example, if
both networks output high probability for one class, its resulting probability would
be exponential. And if models are in disagreement (one outputs high probability,
other low) the resulting probability would be low. This means that the resulting
probabilities would be high only if both models agree. We have experimented
with multiplication and while it is possible to use it, it does not bring significant
performance improvement in model accuracy as can be seen in Table While
the synergy networks still outperform the normal network the performance is worse
than the synergy network with normal addition. This can be seen when comparing
Tables[9.9] and There may be another use case (dataset) or type of problem
(e.g. sequence modelling) where this approach could lead to additional performance
but it is yet to be tested.

9.6.3 Separate Join Model Approach

Both addition and multiplication bring linearity to our model joining. But it is
also possible to model the architecture in a way where we have non-linearity. The
easiest way to accomplish this is to use one or more fully connected layer (or other
architecture) neural network before the final output of the model. This neural
network model would consider (as its input) both the probabilities of the positive

94 CHAPTER 9. SYNERGY MODEL

and negative models and would output the final probabilities. If we are to model the
architecture in this way, we can then allow our model to learn specific information
about both our models and their performance. One example would be that we can
learn in what cases one model performs better than the other and what model to
prioritize. Another possibility is to also give the final neural network model insight
into the input data which both networks processed. Then, this model would be able
to learn what model performs better in which case. It is important to note here that
the synergy model would require small amount of training in this case, compared
to the synergy model we described before, where the normal and negative models
are simply joined.

We have experimented with various architectures for the joining model. We
tested with one-layer fully connected networks, multiple layer fully connected net-
work and convolutional networks. None of the models had significant (or any)
improvement over our previously described approaches. When the joining model is
learning it is difficult to outperform either the positive or the negative model, simply
because they are already at their peak performance. The joining model only has
information about the outputs of the two models and it cannot change them. In
a way its performance is limited by the performance of the models being joined.
Joining two models of similar performance cannot produce a model with additional
performance.

We mention here the convolutional network with one-dimensional convolutions
because it proved to work best. It is needed to explain why we believe using
convolutions here can important. Rather than simply concatenating the output
vectors we join them in a new tensor of dimension [batch_size, 2, num_classes].
Two is the number of joining models. This way the relation between probabilities for
specific classes are considered as they are neighbours in the resulting vector. When
convolutional kernels (of size 221 setup specifically for this task) are processing the
outputs of the two models they will consider this relationship and hopefully learn
from it. The model in theory can learn patterns (e.g. for certain classes) in which
a specific model is wrong and take that into consideration when making the final
decision.

In the Table some initial results with one convolutional and one fully-
connected layers added. While the accuracy changes are minimal, we can see that
this approach is at least plausible. One benefit is that it also removes the need to
choose what joining function needs to be used as it learned rather than chosen.

9.6. DIFFERENT NETWORK JOINING TECHNIQUES 95

Table 9.13: Validation accuracies of the models when testing with datasets with
block removed partial samples. Best results in bold text. Last row represents the
newly introduced Synergy network with the additional layers at the end (SynergyF).
The footer of the table represents the difference between the normal synergy and
the upgraded SynergyF model.

Model/Dataset Unmod. SSK SSKR MSK MSKR

Synergy 66.37 55.53 57.20 62.01 47.18
SynergyF 65.74 55.34 57.77 61.55 47.91
Delta -0.36 -0.19 0.57 -0.46 0.73

9.6.4 Neural Network Fusion in Multi-Modal Systems

The idea of joining several models with a smaller non-linear model which is usually
a fully connected neural network comes from the definition of multi-modal neural
networks. Multi modal neural network models need to operate on heterogeneous
data where it usually makes sense to use different modelling for different data types.
The best example is the VQA (visual question answering) problem where a model
is presented with an image and a question about it. The response should be a label
which represents a certain answer to the question. One example of BLOCK [69]
fusion architecture can be seen in Figure[9.5] taken from [69]. We mention BLOCK
fusion here as a state-of-the-art network joining technique. BLOCK uses fusion
based on the block-superdiagonal tensor decomposition (block technique is know
in the field of Signal Processing) and enables modelling very rich (i.e. full bilinear)
interactions between groups of features, while the block structure limits the whole
complexity of the model, which enables to keep expressive (i.e. high dimensional)
mono-modal representations.

We mention multi-modal architectures because these models need to employ
different model joining techinques of which some may be useful to us even though
so far our models operate on same type of data (images).

The literature presents many ways of joining models:

1. the two vectors are projected on a common space, and their summation is
projected to predict the answer;

2. the vectors are concatenated and passed at the input of a 3-layer MLP;

3. a bilinear interaction based on a count-sketching technique that projects the
outer product of between inputs on a multimodal space;

96 CHAPTER 9. SYNERGY MODEL

What is this person Question
holding ? embedding
BLOCK
% Fusion
i |

Image
embedding

Classification

skis

Figure 9.5: Example of Visual Question Answering architecture from BLOCK Fusion
proposed method [69].

4. a bilinear interaction where the tensor is expressed as a Tucker decomposition;

5. a bilinear interaction where the tensor is expressed as a CP (tensor rank,
CANDECOMP/PARAFAC) decomposition;

6. a bilinear interaction where each 3rd mode slice matrix of the tensor is con-
strained by its rank;

7. a bilinear interaction where the tensor is expressed as a Tucker decomposition,
and where its core tensor has the same rank constraint as (6);

[ee]

. a higher order fusion composed of cascaded (6);

©

. BLOCK fusion [69]

In the future work these methods could perhaps be used instead of our proposed
and tested methods described in previous sections. Some of the methods (methods
1 and 2) have already been tested here.

9.7. SYNERGY ROBUSTNESS TO ADVERSARIAL ATTACKS 97

9.7 Synergy Robustness to Adversarial Attacks

In this section we revisit adversarial attacks, similarly to what we did in Section
We will repeat the experiments we did with the negative model, this time using the
synergy model to see if it retains the robustness to adversarial attacks we found in
the negative models. The one major difference is that this time we are testing with
the CIFAR10 dataset, while we tested the older negative models with the MNIST
dataset which also lets us see how the model robustness changes when the dataset
is more complex.

9.7.1 White-box attacks: Fast Gradient Sign Method Attack
on the Synergy Models

First attack we experimented with is the FGSM method, the standard and most
popular white-box attack where gradients of the model are used in combination with
gradient ascent to make adversarial examples. We described this attack properties
in more detail in Section [.2l

In the Table[0.14]and Figure[9.6] we can see that the Synergy model outperforms
the normal model by a moderate margin. One remark is that both these models
(possibly related to the CIFAR10 dataset) are much more sensitive to the FGSM
attack so the € parameter had to reduced in order to get meaningful results.

¢/Model SN Synergy

(control) 0.0 58.07 62.86
0.005 42.12 45.95

0.01 30.04 32.45

0.02 1547 16.13

0.03 7.67 8.11

0.04 4.25 4.70

0.05 2.46 2.76

Table 9.14: Results with accuracy for both models against FGSM white-box attacks.
Please note that the control results are slightly different than before as normalization
of the dataset has been omitted as suggested by the authors of the FGSM attack.
Synergy model outperforms the normal model in all test cases. Bold are the best
models per adversarial dataset.

CHAPTER 9. SYNERGY MODEL

70 T T

—=— normal model
60 —— synergy model | |
0

50

40

30

20

Accuracy on the adversarial testset

10

| | | |
0 0.0050.01 0.02 0.03 0.04 0.05

0

€ - FGSM attack modifier

Figure 9.6: Accuracy of normal and synergy models against FGSM.

9.7. SYNERGY ROBUSTNESS TO ADVERSARIAL ATTACKS 99

9.7.2 Black-box attacks: Black Box Projected Gradient De-
scent Attack on the Synergy Models

We continue our testing with a PGD black box attack where we experimented both
with using normal and synergy models as donor models for generating adversarial
examples. We also use PGD as a white-box attack when selecting the same model
as target and holdout, similarly to what we did in our experiments with the negative
models.

In the Table [9.15) we can see the results when testing the models with PGD
attack. In Table [9.15| we can see the results when using the normal model as the
holdout (attacked) model and in Table are the results when using synergy model as
holdout. Important metric is how the accuracy changes when either of the models
is attacked.

¢/Target | SN (SN) Syn (SN) | SN (Syn) Syn (Syn) | BB Delta
| White-box Black-box | Black-box ~ White-box |

con. 0.0 58.07 62.86 58.07 62.86 -

0.005 31.12 41.24 37.28 32.56 3.96
0.01 18.24 28.32 25.77 17.84 2.55
0.02 2.42 6.71 6.76 2.84 -0.05
0.03 0.45 2.30 2.89 1.49 -0.59

Table 9.15: PGD black-box (and white-box) attacks results for various e values
when using normal and synergy models as the holdout model. First two columns
are the result when using the normal (SN) network as the holdout whereas the
last two columns show the results when using synergy network as the holdout. BB
Delta column presents the difference of the models when using PGD as a black-box
attack. Synergy network outperforms the normal network for € values smaller than
0.02 and is of very similar performance for greater values. At higher € values both
networks performance is severely degraded.

9.7.3 Other Attacks

In addition to PGD and FGSM attacks it is important to test other various versions
and upgrades of the adversarial attacks for deep neural network. We can report
that the synergy model performs well in these scenarios and outperforms the normal
network in most environments. The robustness to adversarial attacks is a very wide

100 CHAPTER 9. SYNERGY MODEL

field, so to keep the brevity of this document (and the sanity of its writer) we only
present here white-box comparisons of the normal network and the synergy network
for a fixed € value of 0.005. We test with the following algorithms:

= PGD - Projected Gradient Descent (control for previous experiments) [62]
= BIM - Adversarial Examples in the Physical World [70]

= CW - Towards Evaluating the Robustness of Neural Networks [51]

= RFGSM - Ensemble Adversarial Training: Attacks and Defences [71]

= FFGSM - Fast is better than free: Revisiting adversarial training [72]

= TPGD - Theoretically Principled Trade-off between Robustness and Accuracy
[73]

= MIFGSM - Boosting Adversarial Attacks with Momentum [20]

The results can be seen in Table default hyperparameters (from torchat-
tacks [74] library) were used.

Attack/Target ‘ Synergy Normal | Delta

PGD [62] 3256 31.12 | 1.44
BIM [70] 3290 3139 | 151
CW [51] 13.55 877 | 478
RFGSM [71] | 88.56 85.65 | 2.91
FFGSM [72] 35.90 3379 | 211
TPGD [73] 54.30 50.66 | 3.64
MIFGSM [20] | 34.51 32.64 | 1.87

Table 9.16: Synergy robustness to white-box state-of-the-art algorithms. Accuracy
on the new generate adversarial test sets. Delta column represents the difference
between normal and synergy models. Synergy model outperforms the normal model
in all the tested adversarial environments. Bold are the best models per adversarial
dataset.

9.8. SUMMARY AND CONCLUSIONS FOR THE SYNERGY MODELS 101

9.8 Short Summary and Conclusions for the Syn-
ergy Models

In this part we discussed our discovery of some shortcomings of our classification
based on missing features approach. Firstly, we validated our previous results on
the more complex CIFAR-10 dataset and then experimented with introducing an
ensemble synergy model of the traditional CNN and our negative CNN to further
boost performance. In our experiments we have showed that there is definitely a
possibility for more accurate models when using this approach. We have also shown
where the increase in performance comes from — the cases where one network is
uncertain and the other is highly confident. In our initial testing with partial input
data we also show that our modifications (that can be applied to any convolutional
neural network) lead to notable accuracy gains in these cases without any major
architectural changes.

While these models have only been tested on the unmodified CIFAR-10 vali-
dation set and the corner cut validation sets for now, our goal is to repeat our
experiments for various types of occlusion in images. Another area where it is pos-
sible to improve is combination of the two models inside the synergy model. As
previously described, we are only experimenting with simple probability summation
although other approaches are definitely possible. We will also experiment with
other ways of joining the networks, one being to add one or more fully connected
layers which are given the outputs of the two networks as inputs. The trained syn-
ergy models are also to be further examined. It is possible that with some parameter
optimization, accuracy can be improved.

We have also considered combining our models with newer neural architecture
search [43] and genetic algorithm methods [75] to try and discover more models
that can benefit from our changes.

Additionally, we want to experiment with more state of the art (e.g. [66], [76],
[77]) models which achieve very high accuracy on the CIFAR-10 and ImageNet [21]
datasets. While our work in this paper focused on a simpler and easier to train
model, we believe that the modifications described in this paper can also further
improve even the most complex models of today. We are also eager to try our
approach in regression tasks and we are already familiar with some application that
could benefit from this approach [78], [79].

Part V

True Negative Deep Learning

Chapter 10

Goals, Motivation and
Implementations

In this part of this PhD thesis we mainly present discussion and ideas for other,
pure, negative deep learning models. While many of these models are still in their
inception phase, we believe this path of research will yield in useful models for wide
variety of scenarios. The general goal is to explore this approach to learning and
what benefits it would bring while we also demonstrate some of our implementations
and contributions.

The main problem with true negative learning models, as we will present, is the
need for negative samples during training which are often difficult to obtain as they
require really specific use cases or manual labeling of large datasets. While other
approaches such as One-Class Classification which only provides positive examples of
a singular class or Negative Sampling which uses stochasticity for creating negative
samples are possible we believe a more "natural" formulation is required. For image
classification, for example, one useful scenario would be to have parts of the images
humanly processed and negatively labeled. This means that humans would look into
parts of images and deduce to which class they do not belong. This training data
would then be used for negative training and hopefully be similar in performance
to the normal model when the entire image is shown and outperform the normal
model when only partial input is given as it would learn to generalize better. This
approach brings an interesting concept which we hope to explore in the future:
partial input training. In partial input training we give the network only parts of
the input samples during training, but expect the network to also be able to classify

106 CHAPTER 10. GOALS, MOTIVATION AND IMPLEMENTATIONS

whole input samples. In a way it is a similar approach to random-crop normalization
in image classification tasks. This approach is interesting because it goes hand in
hand with negative learning we display in this thesis. If parts of the images can be
labeled as negative samples for certain classes this knowledge would, we strongly
believe, help the network learn better representation of patterns in training data
and to which classes these patterns do not belong, increasing overall performance
of the negative models.

We also consider combination of normal training and negative training similar
to our Synergy model and ALT model from before (Section [6.4.1). From our
experiments it is probable that negative learning can be used in combination with
normal learning to further increase performance.

At this stage, we can demonstrate two concrete examples as proof-of-concept
implementations which we developed: A negative Siamese Triplet-Loss Neural Net-
work and a negative Deep Reinforcement Learning (DQN) agent. Other models
mentioned in this part of the thesis are either our ideas for future work or some
approaches we believe are related or can be modified slightly to employ negative
learning.

In previous parts of this dissertation we described and focused on some specific
models of negative learning which use special feature representations in order to
deduce the output class in classification tasks. In this part we will discuss potential
and existing implementations of "true negative learning". With the term true neg-
ative learning we consider models which do not use special feature representation
but rather modified data and/or training process to implement negative learning. In
other words these model learn by recognizing patterns in the form of what is not the
output class based on the input data, where our models used unmodified input data
for a similar purpose. There exist several models which implement similar patterns
and we will discuss them in this part of the manuscript.

Goals of the true negative deep learning model is similar to the models we have
already seen. To learn additional information about the data based on negative
patterns in the data which can be missing information or the actual negative labels
(e.g. what something is not in classification tasks). This way of learning can
be implemented in several ways and there are already several models which use
something similar. In this chapter we will mention two groups of true negative deep
learning models. The first group is the models which work by modifying the dataset
(e.g. negative sampling) and the second group is the models which are using other
techniques (e.g. loss function modifications).

10.1. GRADIENT ASCENT VARIATION 107

10.1 Gradient Ascent Variation

Firstly we mention Gradient Ascent as the main idea behind "true negative learn-
ing" models. Gradient Ascent is a known modification of the Gradient Descent
optimization algorithm.

In Gradient Descent (and its variations, e.g. Stochastic Gradient Descent) a
model is optimized by minimizing the value of a certain loss function which describes
how the model is performing. The loss function is formulated so that the output
value is higher for higher error rate, or in other words the smaller the value the
better the model is performing. In some literature this process of minimization of
the loss function is called "walking the gradient" which explains the iterative nature
of the algorithm (small steps towards the minimum of the loss function).

Gradient Ascent is very similar to Gradient Descent but with one major modifi-
cation in that we walk the gradient uphill, maximizing the loss function.

Making the loss function output higher values may look like simply trying to
modify the model weights so the error rate is higher, and this is true to some
extent. We have already seen several examples where Gradient Ascent is used in
adversarial attacks, FGSM attack for example. But Gradient Ascent, we believe,
can also be used for negative learning, in combination with Gradient Descent. We
will now describe how we think this can be achieved.

This neural network model can be trained in two ways: normally until the model
converges and no further updates yield better performance and then fine-tuning it
with negative learning, or, by incorporating negative learning during the main train-
ing process. It is important to note that we also consider using various combinations
of positive and negative training. We already showed that one such model is some-
times outperforming other negative models and that is the ALT model from Section
In that model we use negative and positive learning process in variation and
that model shows that there is a possibility that this combined approach can be
beneficial.

One example which is easy to imagine is if the network becomes stuck in a
local minimum while learning. In that scenario it would perhaps be possible to use
negative learning for a number of steps to force the network to overcome this local
minimum as the loss function space would change its shape entirely.

Apart from helping with this problem, it is possible that this way of combined
training can help in other areas such as training time. We could, for example, train
first with only negative samples which would for some datasets allow the network
to learn faster and then fine-tune the network with normal training. We could also
try to randomly choose during training whether normal or negative training is used,
which could also aid in convergence times.

108 CHAPTER 10. GOALS, MOTIVATION AND IMPLEMENTATIONS

Another important thing to mention here which could also be relevant is the
ratio between positive and negative training samples. For now we mostly focus on
fine-tuning our models with a small number of negative samples, but it remains
to be experimented whether using higher percentage of negative samples during
training will help with performance somehow.

For any version of the Gradient Ascent approach, we would need negative input
samples, which in a m-ary classification problem would be inputs for which we know
they do not belong to a specific class (or a set of classes). In image classification
problems for example, we would define a negative input sample as an image or a
specific part of the image for which we want to tell our model to specifically care
about not belonging to a specific class. One good example can be seen in the Figure
[6.1] which we used to introduce the CBOMF model in previous parts of this thesis.
There, the presented missing features are a good candidate to use as negative input
patterns because for these patterns we know specifically to which class they do not
belong. When a negative pattern is presented to the model we would use Gradient
Ascent to reduce the weights and biases of the network leading to the negative
output class. In other words, we would walk uphill on the gradient away from the
output class, or "pull away" from it.

This can help in different scenarios such as the demonstrated one where parts of
the input are missing. It could also help with situations where network misclassifies
two similar classes in a more complex dataset. We could use the training data in
combination with confusion matrices to see what classes are often misclassified as
other classes, sample from the data and create negative samples for these cases.

This learning step can be achieved in at least three ways which are simple to
implement. We already mentioned the first way, which is to use gradient ascent
without further modification to the data. Secondly, we could invert the desired
output of the negative pattern. The output in the classification task would be an
inverted vector where we would have the opposite values of the one-hot vector used
during training. If done so, the weights and biases are changed during training
so that the parameters leading to the negative output class are reduced and the
parameters leading to other classes are increased. The third way to achieve this is
to invert the gradients during training with negative samples, without changes to
the data. This can be achieved by employing negative learning rate values or by
specifically negating the gradients in the backwards pass.

We would like to emphasize that the main goal for these models is, similarly
to other negative models, to achieve higher performance by providing additional
knowledge. Here, this additional knowledge would be specific negative input pat-
terns which exist naturally or are synthetically made to aid the network. For ex-
ample, if we have a model which often misclassifies two specific classes we could

10.2. NEGATIVE SAMPLING 109

provide additional negative samples so the network learns that if a certain pattern
is observed in the input sample what the output class is not.

We present this model only as an idea in this thesis, hoping to implement it
and evaluate it at a future time. While the implementation would be moderately
difficult, the main task or issue is finding a suitable dataset or manually creating
negative input samples. An useful idea there is that it is perhaps possible to gen-
erate negative samples by randomly selecting parts of the input patterns while also
randomly choosing a negative class to which they do not belong. Problem with
this approach is the randomness of the process which would bring instability. For
example, we cannot be sure that the randomly chosen input pattern is important
for a specific class just as we cannot be sure that the input pattern is a "negative"
example for some other class. One somewhat similar approach is presented in the
following section.

In our Negative Triplet-Loss Siamese model we will see a similar approach to
the Gradient Ascent we mention here. In Siamese models it is easier to control
the negative learning process as it is built in the model by using metric (similarity)
learning.

10.2 Negative Sampling

In this section we describe negative sampling as a form of negative deep learning
knowledge. Negative sampling is a process of transforming a dataset in a way to
generate negative or wrong examples. In m-class classification problems this can
be done in several ways. The simplest way to generate negative samples is to use
the following process: for every sample in a dataset choose a random label which is
not equal to its actual label. This process can be repeated many times to generate
even more negative data. This data at first may seem to be not important, but
for negative models it represents viable and important knowledge. Another way
to use negative sampling is to choose a specific negative class for a sample we
are observing. This can be useful in some scenarios, for example to overcome
bad performance on two (or more) specific classes which are often very similar in
classification. Problem with this approach is that it often requires manual labeling.
This approach is somewhat similar to one-class classification problem where a model
is trained to recognize instances of a single class among many data points. In
these scenarios only examples of that single class are provided for training and the
algorithm needs to learn to detect instances of the targeted class among other data
which can be described as noise. The difference in Negative Sampling is that we

110 CHAPTER 10. GOALS, MOTIVATION AND IMPLEMENTATIONS

provide opposite information: for an instance we provide information to which class
it does not correspond to.

In the second case, manual labeling can be avoided if we use several models
for training. For example, we train one model and observe its results on a subset
of data from the validation set. In these results we can notice some classes in the
confusion matrix where the model is often confused in classification. Then we can
use that information to generate negative samples for our second negative model
which will use this additional knowledge of "problematic" classes in our dataset and
hopefully overcome them.

10.3 Noisy Label Classification

Where negative learning models showed promise is in the problem of noisy label
classification. Having dataset with clean labels is very rare in real world scenar-
ios, and even datasets which are used commonly for neural network training (e.g.
MNIST, CIFAR) have wrongly classified samples in them. These samples we called
noisy samples or samples with noisy labels.

During production of this dissertation, a lab from South Korea has also been
experimenting with negative models for tasks of noisy label classification. [50] In
the paper they use Negative learning models (with random negative sampling as
described above) to train models more robust to noisy labels. In the paper CNNs
are trained using a complementary, synthetic label as in "input image does not
belong to this complementary label". The main premise is that for noisy label
classification negative samples provide wrong information much less frequently than
normal unmodified data. This prevents the network from overfitting or remembering
the wrongly labeled data.

Their approach has some, albeit small similarities to the methods presented
in this dissertation. First of all, the models described in the paper only concern
robustness to noisy labels not general robustness of the model to input modifications
or adversarial attacks as we experimented. They also use negative sampling to
generate negative samples for training and a simple modification to the loss function
where the softmax output of the network is inverted (all classes have probability
value 1 apart from the actual class which has a value of 0). They also experiment
with a combination of positive and negative learning models (with somewhat similar
goals like our synergy network) to overcome bad performance on cleaner datasets
without noisy labels where normal, positive models outperform negative models.
This method can be used also for data filtering so that noisy labeled data can be
removed from the dataset used later on.

10.4. NOISE CONTRASTIVE ESTIMATION MODELS 111

In the paper it is demonstrated that the introduced negative models and negative
sampling in general can help in creating models more robust to noise in the label
data, both artificially added and the actual noise in the datasets, another use case
for the negative models related to robustness.

It is very possible that the models introduced in this paper could also be useful
for classification of partial or adversarial examples but this remains to be tested at
a future time. We will demonstrate our approach to "pure" negative training with
Siamese Neural Networks where the gradients are actually "pulled away" from the
negative class.

10.4 Noise Contrastive Estimation Models

Another negative model used most notably in Natural Language Processing is the
NCE (Noise Contrastive Estimation) [80] model.

This model tries to solve the issue of having large vocabularies in language tasks
where huge neural network models are needed, even for simple tasks.

One example would be in the next-word prediction tasks in which given a part of
the sentence a model would be able to predict the next written word. This system is
commonly used and needed for accessibility reasons or faster typing on for example
mobile devices. It is also used in grammar checking software. The models for next-
word prediction are trained on large corpuses of text. Before training the data is
processed so that unique words are found. This step is important because vocabulary
size defines the architecture of the model. If we have a densely connected network
we need to have the output layer of size of the vocabulary where every output
neuron represents a single word from the vocabulary. Then a softmax function is
used to process the output vector and we then obtain the next word index and the
word from the vocabulary. It is immediately apparent that this is an issue when we
have large vocabularies as our network needs to be very wide, especially if we have
multiple words as inputs.

NCE models work differently in that they do not learn how to classify (this task
can be looked upon like it is multi-class classification problem) but rather how to
separate actual word pairs (word that are supposed to be together, positive samples)
from the noisy pairs (negative samples). This is achieved by creating positive and
negative input samples, where positive samples are all of the same lenght which is
much shorter than the vocabulary and contain words found often together in the
input text dataset. Negative samples are formed in the opposite way: words which
are rarely used together are formed as negative samples. For NCE models it is very
important to define the window_size parameter which is used to define the length

112 CHAPTER 10. GOALS, MOTIVATION AND IMPLEMENTATIONS

man girl slower
\ father 4‘ slow /
son
cat king uee" boy

slowest
dog \4 mother k faster
\ cats daughter fast

France

dogs England longer
he fastest
Paris Italy \ she long
London \
himself longest

Rome herself

Figure 10.1: 2-D space of English words generated with word2vec. Words with
similar semantic meaning are close in the embedding space.

of the input data. NCE uses negative sampling to choose random words for the
creation of negative input samples but some variants also use words least frequently
used in pairs as an additional regularization technique (word2vec [81]).

Most notable implementation of this algorithm is in the unsupervised learning
word2vec [81] algorithm. In this algorithm this method is used to generate word
embeddings in a multidimensional space where words which are used together have
similar embeddings — they are close in the vector space. One example can be seen
in Figure [10.1]

The basic idea is to convert a multinomial classification problem (as it is the
problem of predicting the next word) to a binary classification problem. That is,
instead of using softmax to estimate a true probability distribution of the output
word, a binary logistic regression (binary classification) is used instead.

For each training sample, the classifier is fed a true pair (a center word and an-
other word that appears in its context) and a number of k& randomly corrupted pairs
(consisting of the center word and a randomly chosen word from the vocabulary).
By learning to distinguish the true pairs from corrupted ones, the classifier will ulti-
mately learn the word vectors —instead of predicting the next word (the "standard"
training technique), the optimized classifier simply predicts whether a pair of words
is good or bad.

word2vec [81] slightly customizes the process and calls it negative sampling. In
word2vec, the words for the negative samples (used for the corrupted pairs) are

10.4. NOISE CONTRASTIVE ESTIMATION MODELS 113

drawn from a specially designed distribution, which favours less frequent words to
be drawn more often.

Chapter 11

Siamese Neural Networks and
Our Upgrades

Siamese Neural Networks [82] are a special class of neural networks used in Similarity
Learning. Where many networks used for classification use data to learn what
patterns define a class and to recognize those patterns, Siamese networks learn to
model a similarity function which simply can tell us if a certain input pattern is
similar to another and how much similarity there is.

Siamese neural networks can be used for classification purposes if we have access
to training data during inference also. In these cases when an input sample is
presented we would simply try to find one similar to it in our training data and
output the probability (similarity) that the class is the same.

These models are called Siamese because they often contain two separate paths
or two neural networks of same or similar architecture (similar to our synergy net-
work) which are used for positive and negative processing. These models also often
share weights. To clarify, not all Siamese networks use negative processing but it is
certainly possible with a specific loss function, more details in the next section.

Siamese neural networks thrive in use cases where there is little data available.
Often we need a lot of data to train neural networks to consider every possible
input variation and situation, but in the case of Siamese networks, since we are
only learning a similarity measure we can use less data to achieve similar goals.
This is why these systems are used very often in face-recognition software where
we usually have a single image of a person we need to recognize. They are also

116 CHAPTER 11. SIAMESE NEURAL NETWORKS AND OUR UPGRADES

used for many other tasks: fingerprint recognition, signature verification, plagiarism
detection, object tracking etc.

One more benefit of these models in comparison to other classification deep
neural network is the ease of online training. One example would again be a face
recognition system in an organization. When a new person is hired to some organi-
zation if we were using a normal neural network, we would have to retrain it, because
the structure would have to different to accommodate the additional output class.
If we are using a Siamese network model, this is not needed as we only need some
additional training with the new data we have.

There are some disadvantages to these models however. Because we need to
compare the input to all the samples in the training dataset, inference times are
usually slower than the traditional CNNs or fully-connected networks. These models
also need regularization (weight decay is often used) to stop them from getting stuck
in local minims.

11.1 Negative Learning with Triplet Loss Function
and our Modifications

Siamese neural networks are often used with either Contrastive Loss [83] or Triplet
Loss [84] functions as a criterion. Contrastive loss, learns embeddings in which two
similar samples have a low Euclidean (or other) distance while two dissimilar points
have a large Euclidean distance. These embeddings are not suitable for negative
learning.

Triplet Loss function uses an interesting concept of negative learning in that it
uses negative samples as a regularizer. In triplet loss function, to compute a loss
we need three input samples. The main input sample used for training, called the
anchor is compared with two other samples from the dataset. The first comparison
is between the anchor and a random positive sample and the second comparison
is between the anchor and a random negative sample from the dataset. Positive
sample is a randomly selected sample for which we know it belongs to the same
class as the anchor, while the negative sample is a randomly chosen sample from the
training dataset which we know does not belong to the same class. The triplet loss
function tries to minimize the difference between the anchor and positive sample
and to maximize the difference between the anchor and the negative sample, thus
using negative learning as a regularization technique.

Person A Person A Person B
Current sample Positive Sample Negative Sample
High similarity Low similarity

Figure 11.1: Example of Face Identification Siamese Neural Network (e.g.)
training with triplet loss function. A triplet of data samples is used: current sample
for which we are training, a positive sample of the same class and a negative example
of another class. After embeddings are computed and the distances are calculated
the optimizer of the model minimizes the distance between same class samples and
maximizes the distance between the current sample and the negative sample.

11.2 Initial Experiments and Results of our Approach

For our experiments we decided to see what would happen if the negative samples
were used as main knowledge in training instead of just using them for regularization.

All the experiments were performed on Triplet loss Siamese Networks (TSN)
as they are the most interesting to us because of the negative samples. MNIST
dataset was used and a known good implementation of TSN was used as a base
of the implementation. For the loss function PyTorch MarginRankingLoss function
was used.

In our first experiment we simply tried to discard the positive side of the TSN.
This is done by removing the gradients from the positive side embedding generating
network. When the gradients are removed, there are no modifications to the weights
and biases based on the positive side. By using only the negative side of the network
the distance between the current sample and the negative sample will be maximized
during training. In theory, by maximizing the distances between the "wrong" classes
the distance to the correct class should remain the smallest. In our experiments
however the network quickly fails and never converges. It is quite possible that this
way of training with only negative samples needs to employ different parameters
(e.g. smaller learning rate) to be successful. Even though initial results did not
show promise this idea will be tested again in the future work.

In our second experiment we decided to see if this approach can be used as a fine-
tuning technique and there we found success. The experiment was to train a normal

118 CHAPTER 11. SIAMESE NEURAL NETWORKS AND OUR UPGRADES

model until it converges and stop the training before overfitting (either by limiting
number of epochs of training or by monitoring the training accuracy vs. testing
accuracy, we did the latter in the experiment). After the model is trained we then use
the negative-side-only approach to fine-tune the model. The idea is to use negative
samples to further push the performance of the model by correcting the weights
for negative samples. The results were two-fold: the trained model performance
was increased by a small margin and the model weights were not destructed during
negative-only training. We experimented with different parameters and found that
generally for fine-tuning of the model with negative samples only a smaller learning
rate (three or four orders of magnitude smaller) helped with performance. This is
generally the technique used for fine-tuning of the models. For validation we also
tried to continue training only with positive samples but the model's performance
remained unchanged or degraded, leading us to believe negative sample training can
be used as a fine-tuning final training step. Results of training are shown in Figure
el

Another idea is to use some combination of training similar to our method.
For example we could try to train only with negative side first and then fine-tune
with the positive or both sides. We could also use negative/positive side only if we
detect that the learning process is stuck in some local minimum. We tried various
combinations and can conclude that for initial training both sides of the network are
necessary or the error becomes to large to minimize during training. In Figure [11.2]
we demonstrate that negative fine-tuning outperforms positive fine-tuning when
both sides of the Siamese model are used for pre-training.

11.2. INITIAL EXPERIMENTS AND RESULTS OF OUR APPROACH 119

>
O
(o]
5
9
<C
c
i)
=
S
©
>
85 [s
—=— TSN
——TSN-N
—— TSN-P
80 | | | | | | | |

1 2 3 4 5 6 7 8 9 10
Epochs

Figure 11.2: Comparison of Siamese Model fine-tuning techniques. TSN network
is unmodified Triplet loss Siamese Network, TSN-N is the same network with the
positive side ignored for updates and the TSN-P is the same network with the
negative side ignored for updates. TSN-N network manages to increase accuracy
while the TSN-P network degrades it. Final (best) accuracies: 93.84% (TSN),
92.92% (TSN-P), 93.91% (TSN-N).

Chapter 12

Negative Deep Reinforcement
Learning

In this part of the dissertation we discuss negative learning suitable for agent envi-
ronments, namely with Deep Reinforcement Learning algorithms.

Reinforcement learning (RL) is a field in agent-based artificial intelligence. |[2]
Main parts of defining a RL problem are the agent and the environment. The
environment can be seen as "outside world" full of parameters and interactions
in which the agent lives and interacts. At every stem the agent has a partial or
complete observation of the state of the world and based on that state decides which
action to take. The environment can also change based on the agent’s decision.

Another important point is the concept of a reward signal. A reward is a signal
from the environment which the agent receives and it denotes how "good" or "bad"
the current world state is. The goal of the agent is to maximize its cumulative
reward, sometimes called return. All RL algorithms model ways how the agent can
learn to behave in order to maximize the return and achieve its goal.

When talking about RL algorithms, one important distinction is whether the
environment has discrete action spaces or continuous actions spaces. In an en-
vironment with a discrete action space only a finite number of moves (actions)
are available to the agent while in the continuous action space environments (e.g.
robotic hands) we do not have a finite number of moves and the actions are real-
valued vectors (e.g. move hand 10 centimeters over x axis). This distinction is
important because it dictates our algorithm selection as some algorithms work bet-

122 CHAPTER 12. NEGATIVE DEEP REINFORCEMENT LEARNING

ter in discrete action spaces and some algorithms can only be applied to one type
of the action space.

Another important term is policy. Policy (sometimes called simply agent) is
a rule used by the agent to make decisions. In RL we use parametrized policies:
policies whose outputs are computable functions that depend on a set of parameters
(e.g. weights of a neural network) which we can adjust to modify behaviour.

12.1 Motivation and Use-cases

Agent environment artificial intelligence has found many uses over the years. From
game programming to path finding navigation software a problem formulation of
agent and a changeable environment has been a foundation of computer science.
In this section we mention some of recent use cases to demonstrate the importance
and possibilities of Deep RL algorithms.

First interesting use case is described in "Resource Management with Deep
Reinforcement Learning" [86] where it is shown how a RL model can be trained to
automatically schedule computing resources and jobs with the objective to minimize
waiting time thus optimizing throughput of extremely large computer systems.

Another use case where RL represents a state-of-the-art solution is in the Traffic
Light Control problem [87], where a RL algorithm can be designed to control traffic
lights. The model takes into count traffic flow in lanes and current light states to
predict and generally optimize the traffic flow.

Of course, usage of reinforcement learning algorithms has found great success in
real-world agent problems — robotics. Some novel approaches even include models
which can learn from raw videos of humans (or robots) doing different tasks and
replicating that behaviour. [88]

Lastly we mention games, where RL algorithms dominate model leaderboards
in different competitions. [13|, [36] Game agent development was the use case
which really showed the possibilities in using these models. It is not rare that
these algorithms achieve super-human performance on various games beating even
most skillful of players. The most famous algorithms surely is Google's AlphaGo an
algorithm which can play the game of Go, a very complex board game.

12.2. DEEP Q LEARNING 123

12.2 Deep Q Learning

Deep Reinforcement Learning is a relatively new and exciting field of Machine Learn-
ing which aims to use new and modern Deep Learning models as agents for Rein-
forcement Learning problems.

In (Deep) Reinforcement Learning we split the models into two large groups:
model-free and model-based RL algorithms. Model-free RL algorithms learn a direct
mapping of state to action. Policy gradient methods are one example of a model-
free algorithm. Model-based algorithms work differently in that they learn a model
of their environment as an intermediate step in learning. Then the agent’s reward
and return needs to be maximized. Q-Learning is a model-based algorithms because
in the process of learning a Q-Table is created and this table maps states to actions.

A Q-table in non-deep Q-Learning is an actual table of state-action, g-value
pairs. At the beginning of training it is initialized to all zero values. The table
is used as "memory" to keep states, actions and their expected rewards. Q-value
represents the estimated optimal (maximum) future value of the reward. The agent
will randomly try actions and memorize what reward they have brought. In this trial
and error process the environment is modeled and remembered for future attempts
where the best known action is chosen.

There have been various upgrades to the Q-Learning algorithm. One particularly
interesting is the Epsilon-Greedy Exploration Strategy in which the agent sometimes
(randomly) chooses a random action instead of the known optimal one. This is so
the agent gains more experience and possibly finds better actions for states for
future use.

Updates to the Q-Table are done by using the Bellman Equation [89] (Equation
12.1]).

Q(St, A) = (1 — a)Q(St, Ar) + ax (R + A x maz,Q(S: + 1,a)) (12.1)

In the Bellman's equation, S represents the state, A represents the action, R
represents the reward from taking A, t is the time stamp, « is learning rate and the
A is the discount factor. The A discount factor causes rewards to lose their value
over time so more approachable immediate rewards are valued more highly. This is
a regularization technique which prevents local optimums.

In Deep Q-Learning the Q-Table is replaced with a neural network (DQN [13]).
The neural network model learns patterns in states so it can map input states to
(action, Q-value) pairs. Deep Q-Learning models usually suffer from instability in
large action spaces, and this is the reason most implementations have two networks

124 CHAPTER 12. NEGATIVE DEEP REINFORCEMENT LEARNING

(main, target) with the same architecture but different weights. The goal of this is
to allow our algorithm to backtrack in learning by replacing the weights between the
two networks periodically. The architecture of the DQN is very simple. The input
nodes are containing values that embed the state. The output nodes represent the
actions. Every output node represents a certain action while the value of the node
is the action's g-value.

The weight updates are a bit different than traditional neural network models as
a concept called Experience Replay is used. The main network samples and trains
on a batch of past experiences which are gathered for a number of steps. The main
network weights are then copied to the target network after a number of batches.

Experience Replay (ER) is a concept in RL and it can be summarised as storing
and replaying environment states (state, action, reward, next-state). The algorithm
then learns from this data. Experience Replay can be used in off-policy algorithms
to learn in offline fashion. Deep Q-Learning uses ER to learn in batches in order to
prevent the model from "wandering" away in a series of wrong actions.

12.3 Negative Rewards and Punishments

In terms of negative learning and reinforcement learning, a formulation where neg-
ative learning is used in agent environments is very natural. As we mentioned a key
component of learning in RL algorithms is the connection between state space, ac-
tion space and most importantly here the reward function. Reward function controls
the agent behaviour because we are always optimizing the behaviour so that the
reward is maximized. Therefore, to define a negative learning in agent environments
we simply define a reward function which only gives insight to the agent of which
actions are the worst. There could be many actions with neutral or positive reward
value but we do not optimize for that subset of actions. We only teach the agent
what not to do or in other words what action not to choose in any situation. We
define negative actions as actions which the agent "should not take".

12.3.1 Collision Avoidance in Open Environments with Nega-
tive Deep Reinforcement Learning

One example where this type of agent is beneficial can be easily described with col-
lision avoidance systems. In a collision avoidance system it usually is not important
which action is chosen by the agent if the action that is chosen is not leading to
failure (collision). A cumulative reward of 0 is perfect as this means there is no
penalties for collisions. One real-world example would be in self-driving cars or birds

12.3. NEGATIVE REWARDS AND PUNISHMENTS 125

in the sky. If we imagine that the sky is an infinite space in which several agents
are operating (flying) we can define a well rewarded system by defining a system in
which the agents do not collide and continue operating. This system can be defined
only by defining negative rewards (punishments) where a collision is to be avoided.
Positive and neutral rewards are implicit and not defined in this system. For ex-
perimentation, this environment has been defined as a OpenAl gym environment.
OpenAl Gym is a collection of environments for agent training and testing as well a
set of interfaces for defining new environments. This environment'’s goal is to show
a proof of concept results that training negative agents (agents with only negative
rewards) is possible. In the current implementation we only experimented with neg-
ative rewards, but it is also possible to experiment with negative actions. In this
environment we have four possible actions: move up, down, left and right. Negative
action can be defined as "do not move right" for example. In this case the agent
would randomly choose any of the three remaining actions. We experimented with
this approach and while it is possible to implement it is inherently more unstable
than just using normal actions. It is possible that for some environments negative
actions are necessary and that is why we mention them here.

12.3.2 Implementation

For testing a full DQN simulation environment was created (Figure [I12.1). In the
environment we have the main agent (bird) and the obstacles. The obstacles move
at constant speed in randomly selected direction and change direction upon colliding
with edges of the environment, while the agent is either human or machine con-
trolled. The number of obstacles and the velocity of obstacles is fully configurable.
The agent has four possible actions which are moving itself by small amount to
either of the four directions: up, down, left right. Action space is a vector of size 4
where only one element has a positive value (one hot vector). State is described as
a vector of size size = 2+ 4 % O where O is the number of obstacles. The 2 values
are the = and y coordinates of the agent and we add four additional values (x and
y coordinates, and dz and dy movement vector) for every obstacle. We add the
movement vector of the obstacles so the agent can predict the movement of them
and react accordingly.

Model Performance and Results

For solving this environment a standard DQN algorithm implementation was used.
The main point of the implementation is that the policy is implemented in a
completely negative way. Agent is only told what actions it must not take to solve

126 CHAPTER 12. NEGATIVE DEEP REINFORCEMENT LEARNING

DGN Simulation - 8 x

°

o

°

°

h o o
® °

°
°

Figure 12.1: Example DQN environment for testing using only negative rewards
(punishments). A bird is the agent and the grey dots are the obstacles that need to
be avoided. Implementation with turtle Python module and Keras (TensorFlow).

the solution. Agent is penalized for collisions and movements (to avoid unnecessary
movements) and is never rewarded in any way. A cumulative reward of 0 is the
perfect outcome for the agent and the closer the reward is to 0 the agent performs
better. In the experiment (result shown in the model converges quickly even
without positive rewards and tends to have the cumulative reward around zero for
most episodes. It usually never manages the perfect score of zero (no movement, no
collisions) as small movemements are necessary to avoid obstacles. The model has
been tested with varying number of obstacles (up to 500) and different parameters
(starting positions, obstacle movement vectors etc.). To account for stochasticity
of the model, several runs were made, all with very similar results and convergence
times.

We believe this example is a good introductory step towards negative agent
(policy) reinforcement learning models which can be used in conjunction with normal
models or as standalone models.

12.3. NEGATIVE REWARDS AND PUNISHMENTS 127

—250 ~

—500 ~

—750

reward

—1000 A

—1250 4

—1500 A

—1750 4

0 20 40 60 80 100
episodes

Figure 12.2: DQN rewards for the open collision environment. Model converges
quickly in just a few episodes bringing the reward to zero. Sudden "dips" in the
reward plot represent model instability because the environment is stochastic i.e.
the obstacles have randomized positions and movement vectors.

Chapter 13

Thesis Conclusions and
Future Work

This section provides a brief overview of the conclusions and planned future work.
Some of the conclusions and future work plans have also been included in specific
parts of the thesis and omitted here.

To conclude, in this PhD thesis we defined and experimented with Negative
Deep Learning models. We introduce several models that exist today and propose
and implement new ones. We also show various ways of creating negative models
and we believe a very important paradigm: combination of positive (normal) and
negative models and positive and negative training.

For the CBOMF model and Synergy model we show that these models have in-
creased robustness and performance (sometimes more than 10% accuracy increase)
in difficult scenarios such as occlusions or adversarial examples, both white-box and
black-box.

We experiment in great depth with feature negation process, testing different
activation functions, negative convolutions and other modifications of the process
we defined in our previous works. We also mention some new ideas for negative
learning models. Combination of positive and negative learning can be very useful
in various scenarios as well as carefully selecting the ratio of positive and negative
training data samples. We also experiment with different order of training for
positive and negative learning, showing how to fine-tune existing normal models
with negative learning techniques.

130 CHAPTER 13. THESIS CONCLUSIONS AND FUTURE WORK

For the "true" negative deep learning models we introduce negative Siamese
networks and show that they can be used for regularization and additional training of
the models. We also show that negative learning has its place in agent environments
and provide an example of negative policy algorithm in the form of Negative Deep
Q-Learning algorithm and one of its possible use cases (obstacle avoidance system).
We also discuss other possible true negative deep learning models and demonstrate
what are the current issues with developing them further. For example, lack of
negatively labeled dataset is the most apparent issue which we plan to solve with
manual labeling of some widely known datasets in the future. Existing solutions,
such as Negative Sampling as shown in Sections[10.2 and [I0.3] are flawed since they
use stochasticity for creating negative samples from existing positive samples. The
question is whether it is viable to do so, if we already have positive samples and
know what is their label. This is why we also mention partial input training and
partial input negative training as means to improve existing models.

Apart from the works presented in this thesis there is still a lot to experiment
with.

Firstly, we would like to experiment with other large network architectures which
yield even greater results e.g. EfficientNet [90] or DenseNet [76]. There, it would
be interesting to see if our approach can push further state-of-the-art models.

Next, in this thesis we focused on classification problems while only providing
ideas for future negative regression task implementation. It would be interesting to
see how our approaches can be applied to regression tasks. One idea that we have
already is to use our negative feature approach in multivariate time-series modelling
where in some use cases a missing feature can be of very high importance for the
resulting output.

The most promising aspect of this thesis would have to be the robustness to
adversarial attacks. We first presented our findings here in this thesis and the results
are very promising for both our negative feature approach and for the Synergy mod-
els. We will definitely generalize the experiments we performed here and continue
working in this direction, which was also the initial direction we hoped our models
would go.

For the negative agent models, we would like to continue working in a more
complex or real environment. One that we hope to try out in the future is the
CARLA [37] environment, the most complete and complex self-driving environment
where we would like to add our negative rules to the policy and define what the
agent (self driving car) should never do.

Lastly, in this thesis we demonstrated that one of our approaches can be used
as regularization step in training of Siamese models. We were not able to make the
model to train completely in a negative-learning way which is something we think

131

is possible. In the future we will definitely revisit this problem and try to see what
the issue with the model was.

We would also like to experiment with several of the negative learning process
uses presented in this thesis. For example, using negative learning to help overcome
local minimums during training remains to be tested as well as various ordering
of positive/negative training combinations and the ration of positive and negative
training samples.

Part VI

Appendices

Chapter 14

Source Code and
Reproducibility

The source code for our models and the training processes can be found on the
following links:

» github.com/nmilosev/phd_thesis|/- Manuscript

» github.com/nmilosev/negative—learning] - Classification Based
On Missing Features models

» lgithub.com/nmilosev/negative-learning—-synergyl|- Synergy mod-
els

» github.com/nmilosev/phd_additions|- All the additional experi-
ments for the CBOMF and Synergy models, Negative Siamese models, Neg-
ative Q-Learning models

We have taken some additional steps with the used libraries and tools so that our
results are reproducible, deterministic and testable in many different environments.

We recommend running the code experiments in a Docker [91] environment
using PyTorch official images (e.g. pytorch/pytorch:1.7.1-cudall.0-cudnn8
—runtime).

github.com/nmilosev/phd_thesis
github.com/nmilosev/negative-learning
github.com/nmilosev/negative-learning-synergy
github.com/nmilosev/phd_additions

Bibliography

[1]
2]
[3]
[4]

[5]

[6]
[7]

[8]
[9]

[10]

[11]

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning, 2.
MIT press Cambridge, 2016, vol. 1.

S. Russell and P. Norvig, “Artificial intelligence: A modern approach”, 2002.
J. R. Searle, "The rediscovery of the mind“. MIT press, 1992.

R. Kurzweil, “The singularity is near”, in Ethics and emerging technologies,
Springer, 2014, pp. 393-406.

Y. LeCun, D. Touresky, G. Hinton, and T. Sejnowski, “A theoretical
framework for back-propagation”, in Proceedings of the 1988 connectionist
models summer school, vol. 1, 1988, pp. 21-28.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, Nature, vol. 521,
no. 7553, pp. 436—444, 2015.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with
deep convolutional neural networks”, in Advances in Neural Information
Processing Systems, doi:110.1145/3065386, 2012, pp. 1097-1105.

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification”, arXiv preprint arXiv:1607.01759, 2016.

H. Lee, P. Pham, Y. Largman, and A. Ng, “Unsupervised feature learning
for audio classification using convolutional deep belief networks”, Advances
in Neural Information Processing Systems, vol. 22, pp. 1096-1104, 2009.

J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
“Graph neural networks: A review of methods and applications”, arXiv
preprint arXiv:1812.08434, 2018.

H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Deep

learning for time series classification: A review", Data Mining and
Knowledge Discovery, vol. 33, no. 4, pp. 917-963, 2019.

http://dx.doi.org/10.1145/3065386

138

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

BIBLIOGRAPHY

L. Zhang, S. Wang, and B. Liu, “Deep learning for sentiment analysis: A
survey”, Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 8, no. 4, e1253, 2018.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, |. Antonoglou, D. Wierstra,
and M. Riedmiller, "Playing atari with deep reinforcement learning”, arXiv
preprint arXiv:1312.5602 https://arxiv.org/abs/1312.5602,
2013.

Y. LeCun, Y. Bengio, et al., “Convolutional networks for images, speech,
and time series”, The Handbook of Brain Theory and Neural Networks,
vol. 3361, no. 10, p. 1995, 1995.

F. Chollet et al., Deep learning with Python. Manning New York, 2018,
vol. 361.

L. Yang, Y. Zhang, J. Chen, S. Zhang, and D. Z. Chen, “Suggestive
annotation: A deep active learning framework for biomedical image
segmentation”, in International Conference on Medical Image Computing
and Computer-assisted Intervention, Springer, 2017, pp. 399-407.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection”, in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 779-788.

G. Ciaparrone, F. L. Sanchez, S. Tabik, L. Troiano, R. Tagliaferri, and
F. Herrera, “Deep learning in video multi-object tracking: A survey”,
Neurocomputing, vol. 381, pp. 61-88, 2020.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and

L. Fei-Fei, "Large-scale video classification with convolutional neural
networks”, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2014, pp. 1725-1732.

C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 38, no. 2, pp. 295-307, 2015.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database”, in Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on,
doi:110.1109/cvprw.2009.52068438, leee, 2009, pp. 248-255.

I. Sutskever, O. Vinyals, and Q. V. Le, “"Sequence to sequence learning with
neural networks”, arXiv preprint arXiv:1409.3215, 2014.

https://arxiv.org/abs/1312.5602
http://dx.doi.org/10.1109/cvprw.2009.5206848

BIBLIOGRAPHY 139

[23]

[24]

[25]
[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

S. Hochreiter, “The vanishing gradient problem during learning recurrent
neural nets and problem solutions”, International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, vol. 6, no. 02, pp. 107-116, 1998.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling”, arXiv preprint
arXiv:1412.3555, 2014.

S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines”, arXiv
preprint arXiv:1410.5401, 2014.

J. Weston, S. Chopra, and A. Bordes, “Memory networks"”, arXiv preprint
arXiv:1410.3916, 2014.

A. Roberts, C. Hawthorne, and I. Simon, “Magenta.js: A JavaScript API for
augmenting creativity with deep learning”, in Joint Workshop on Machine
Learning for Music (ICML), 2018.

A. Mordvintsev, C. Olah, and M. Tyka, Inceptionism: Going deeper into
neural networks, 2015. [Online]. Available:
https://research.googleblog.com/2015/06/inceptionism—
going-deeper—-into—neural.htmll

L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic
style”, arXiv preprint arXiv:1508.06576, 2015.

J. An and S. Cho, "Variational autoencoder based anomaly detection using
reconstruction probability”, Special Lecture on IE, vol. 2, no. 1, pp. 1-18,
2015.

M. J. Kusner, B. Paige, and J. M. Herndndez-Lobato, “Grammar variational
autoencoder”, in International Conference on Machine Learning, PMLR,
2017, pp. 1945-1954.

Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin,
“Variational autoencoder for deep learning of images, labels and captions”,
arXiv preprint arXiv:1609.08976, 2016.

X. Hou, L. Shen, K. Sun, and G. Qiu, “Deep feature consistent variational
autoencoder”, in 2017 IEEE Winter Conference on Applications of
Computer Vision (WACV), IEEE, 2017, pp. 1133-1141.

[. J. Goodfellow, J. Shlens, and C. Szegedy, "Explaining and harnessing
adversarial examples”, arXiv preprint arXiv:1412.6572, 2014.

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

140 BIBLIOGRAPHY

[36] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifte,
G. Van Den Driessche, J. Schrittwieser, |. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of go with deep neural networks
and tree search”, Nature, vol. 529, no. 7587, pp. 484-489, 2016.

[37] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An
open urban driving simulator”, in Conference on Robot Learning, PMLR,
2017, pp. 1-16.

[38] R. Bunel, M. Hausknecht, J. Devlin, R. Singh, and P. Kohli, “Leveraging
grammar and reinforcement learning for neural program synthesis”, arXiv
preprint arXiv:1805.04276, 2018.

[39] B. Wahlberg, S. Boyd, M. Annergren, and Y. Wang, “An admm algorithm
for a class of total variation regularized estimation problems”, IFAC
Proceedings Volumes, vol. 45, no. 16, pp. 83-88, 2012.

[40] D. Jakoveti¢, J. Xavier, and J. M. Moura, “Fast distributed gradient
methods”, IEEE Transactions on Automatic Control, vol. 59, no. 5,
pp. 1131-1146, 2014.

[41] Y. Choi, M. El-Khamy, and J. Lee, “Towards the limit of network
quantization”, arXiv preprint arXiv:1612.01543, 2016.

[42] X. He, K. Zhao, and X. Chu, “Automl: A survey of the state-of-the-art”,
Knowledge-Based Systems, vol. 212, p. 106 622, 2021.

[43] T. Elsken, J. H. Metzen, F. Hutter, et al., “Neural architecture search: A
survey.”, J. Mach. Learn. Res., vol. 20, no. 55, pp. 1-21, 2019.

[44] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, "“Attention is all you need"”, arXiv preprint
arXiv:1706.03762, 2017.

[45] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions”, IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50-60, 2020.

[46] |. Arapakis, Y. Becerra, O. Boehm, G. Bravos, V. Chatzigiannakis,
C. Cugnasco, G. Demetriou, |. Eleftheriou, J. E. Mascolo, L. Fodor, et al.,
“Towards specification of a software architecture for cross-sectoral big data
applications”, in 2019 IEEE World Congress on Services (SERVICES), |EEE,
vol. 2642, 2019, pp. 394-395.

[47] B. F. Skinner, “Operant conditioning”, “The encyclopedia of education®,
vol. 7, pp. 29-33, 1971.

BIBLIOGRAPHY 141

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

J. Staddon and D. Cerutti, “Operant behavior”, Annual Review of
Psychology, vol. 54, pp. 115-144, 2003.

N. Milosevi¢ and M. Rackovi¢, “Classification based on missing features in
deep convolutional neural networks”, Neural Network World, vol. 221,
p. 234, 2019.

Y. Kim, J. Yim, J. Yun, and J. Kim, “NInl: Negative learning for noisy
labels”, in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 101-110.

N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks", in 2017 IEEE Symposium on Security and Privacy (SP),
doi:10.1109/sp.2017.49, IEEE, 2017, pp. 39-57.

[. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, "“Generative adversarial networks”,
arXiv preprint arXiv:1406.2661, 2014.

O. Bastani, Y. loannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and
A. Criminisi, “Measuring neural net robustness with constraints”, in
Advances in Neural Information Processing Systems, 2016, pp. 2613-2621.

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., "End to end learning
for self-driving cars”, arXiv preprint arXiv:1604.07316, 2016,
doi:110.1109/1ivs.2017.7995975.

Y. LeCun, “The mnist database of handwritten digits”,
http://yann.lecun.com/exdb/mnist/, 1998.

G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “Emnist: An extension
of mnist to handwritten letters”, arXiv preprint arXiv:1702.05373, 2017.
A. Paszke, S. Gross, S. Chintala, and G. Chanan, “Pytorch”, Computer
software. Vers. 1.5.0 https://pytorch.org, 2020.

A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve
neural network acoustic models”, in Proc. ICML, vol. 30, 2013, p. 3.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch”, NIPS 2017 Workshop Autodiff Submission
https://openreview.net/forum?id=BJJsrmfCZ, 2017.

http://dx.doi.org/10.1109/sp.2017.49
http://dx.doi.org/10.1109/ivs.2017.7995975
http://yann.lecun.com/exdb/mnist/
https://pytorch.org
https://openreview.net/forum?id=BJJsrmfCZ

142

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

BIBLIOGRAPHY

A. Globerson and S. Roweis, “Nightmare at test time: Robust learning by
feature deletion”, in Proceedings of the 23rd International Conference on
Machine Learning, doi:|10.1145/1143844.1143889, ACM, 2006,
pp. 353-360.

C. Szegedy, W. Zaremba, |. Sutskever, J. Bruna, D. Erhan, |. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks"”, arXiv preprint
arXiv:1312.6199 https://arxiv.org/abs/1312.6199, 2013.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks”, arXiv preprint
arXiv:1706.06083, 2017.

N. MiloSevi¢ and M. Rackovi¢, “Synergy between traditional classification
and classification based on negative features in deep convolutional neural
networks”, Neural Computing and Applications (NCAA), 2020.

J. Gajcin, "Primena integrisanja klasi¢ne i neuronske mreze zasnovane na
nedostaju¢im osobinama u problemima klasifikacije”, MSc Thesis, University
of Novi Sad, Faculty of Sciences, 2020.

M. 1li¢, “Primena kombinovanja klasi¢nih i neuronskih mreza zasnovanim na
nedostaju¢im osobinama u problemima klasifikacije”, MSc Thesis, University
of Novi Sad, Faculty of Sciences, 2020.

K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image
recognition”, in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770-778.

Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by
backpropagation”, in International Conference on machine learning, PMLR,
2015, pp. 1180-1189.

FacebookAl, “Torchvision”, Computer software. Vers. 0.6.0
https://pytorch.org, 2020.

H. Ben-Younes, R. Cadene, N. Thome, and M. Cord, “Block: Bilinear
superdiagonal fusion for visual question answering and visual relationship
detection”, in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, 2019, pp. 8102-8109.

A. Kurakin, |. Goodfellow, and S. Bengio, Adversarial examples in the
physical world, 2017. arXiv: 1607.02533 [cs.CV].
F. Tramer, A. Kurakin, N. Papernot, |. Goodfellow, D. Boneh, and

P. McDaniel, “Ensemble adversarial training: Attacks and defenses”, arXiv
preprint arXiv:1705.07204, 2017.

http://dx.doi.org/10.1145/1143844.1143889
https://arxiv.org/abs/1312.6199
https://pytorch.org
https://arxiv.org/abs/1607.02533

BIBLIOGRAPHY 143

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free: Revisiting
adversarial training”, arXiv preprint arXiv:2001.03994, 2020.

H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, and M. Jordan,
“Theoretically principled trade-off between robustness and accuracy”, in
International Conference on Machine Learning, PMLR, 2019,

pp. 7472-7482.

H. Kim, “Torchattacks: A pytorch repository for adversarial attacks”, arXiv
preprint arXiv:2010.01950, 2020.

F. Assuncdo, N. Lourenco, P. Machado, and B. Ribeiro, “Fast denser:
Efficient deep neuroevolution”, in European Conference on Genetic
Programming, Springer, 2019, pp. 197-212.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks”, in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2017, pp. 4700-4708.

S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks”, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017,

pp. 1492-1500.

P. Pecev, M. Rackovi¢, and M. Ivkovi¢, "A system for deductive prediction
and analysis of movement of basketball referees”, Multimedia Tools and
Applications, vol. 75, no. 23, pp. 16389-16416, 2016,
doi:|10.1007/s11042-015-2938-1.

P. Pecev and M. Rackovic, “Ltr—-mdts structure—a structure for multiple
dependent time series prediction”, Computer Science and Information
Systems, vol. 14, no. 2, pp. 467-490, 2017,

doi: |10.2298/CSIS150815004P.

A. Mnih and K. Kavukcuoglu, “Learning word embeddings efficiently with
noise-contrastive estimation”, Advances in Neural Information Processing
Systems, vol. 26, pp. 2265-2273, 2013.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space”, arXiv preprint arXiv:1301.3781, 2013.

G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for
one-shot image recognition”, in ICML Deep Learning Workshop, Lille,
vol. 2, 2015.

http://dx.doi.org/10.1007/s11042-015-2938-1
http://dx.doi.org/10.2298/CSIS150815004P

144

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

BIBLIOGRAPHY

I. Melekhov, J. Kannala, and E. Rahtu, “Siamese network features for image
matching”, in 2016 23rd International Conference on Pattern Recognition
(ICPR), IEEE, 2016, pp. 378-383.

X. Dong and J. Shen, “Triplet loss in siamese network for object tracking”,
in Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 459-474.

R. R. Varior, M. Haloi, and G. Wang, “Gated siamese convolutional neural
network architecture for human re-identification”, in European Conference
on Computer Vision, Springer, 2016, pp. 791-808.

H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource management
with deep reinforcement learning”, in Proceedings of the 15th ACM
workshop on hot topics in networks, 2016, pp. 50-56.

M. A. Wiering, “Multi-agent reinforcement learning for traffic light control”,
in Machine Learning: Proceedings of the Seventeenth International
Conference (ICML’2000), 2000, pp. 1151-1158.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,

M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et
al., “Human-level control through deep reinforcement learning”, nature,

vol. 518, no. 7540, pp. 529-533, 2015.

L. Baird and A. W. Moore, “Gradient descent for general reinforcement
learning”, Advances in Neural Information Processing Systems, pp. 968-974,
1999.

M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional
neural networks”, in International Conference on Machine Learning, PMLR,
2019, pp. 6105-6114.

D. Merkel, “Docker: Lightweight linux containers for consistent development
and deployment”, Linux Journal, vol. 2014, no. 239, p. 2, 2014.

Prosireni izvod

Uvod

Masinsko ulenje je postalo sastavni deo softvera koji svakodnevno koristimo i na
koji se oslanjamo. U ovoj disertaciji definiSemo novu porodicu algoritama dubokog
masinskog ucenja gde podrazumevamo rad sa dubokim neuronskim mrezama, danas
najnaprednijim algoritmima masinskog ucenja. Nova porodica modela koju nazi-
vamo negativni modeli ili modeli negativnog dubokog ucenja namenjeni su kao
nadogradnje postoje¢ih modela. Svrha ovih novodefinisanih modela je da pobolj3aju
performanse postoje¢ih modela uvodenjem dodatnog negativnog znanja u proces
treniranja. Negativni modeli predstavljeni u ovoj disertaciji mogu biti koris¢eni kao
Ciste nadogradnje postojeé¢ih modela a bice prikazano kakav je njihov uticaj na per-
formanse u situacijama koje mogu biti problemati¢ne Cak i za najnaprednije modele
danasnjice kao sto su okluzije, delimicni ulazni podaci, Sum u ulaznim podacima i
sli¢no.

Negativnho duboko ucenje

Pre same definicije negativnih modela potrebno je da definiSemo Sta se podrazumeva
pod negativnim ucenjem. Negativno uenje je pojam koji se Cesto koristi u psihologiji
pogotovo kod izuCavanja ponasanja gde se negativno ucenje Cesto izjednacCava sa
kaZnjavanjem u procesu ucenja. [47], [48] Nasa definicija se razlikuje od ove defini-
cije po tome $to mi u sferi masinskog ucenja i dubokog uenja definiSemo negativno
uCenje na jednostavniji nacin: kao ponasanje do kojeg ne zelimo da dode. Ovakva
definicija najlakSe se objasnjava na primeru. Kod problema klasifikacije pod neg-
ativnim ucéenjem podrazumevamo nacin na koji mozemo modelu i algoritmu za
treniranje tog modela defisati koji podaci ne odgovaraju odredenim klasama. Kod
problema regresije, na sli¢an nacéin definifemo negativne podatke (negativne pa-

146 PROSIRENI 1IZVOD

terne) kao one kojima treniramo model na takav nadin da izlazni podaci ne treba
da "lice" na neki negativan patern.

U agentskim okruzenjima definicija je ista kao definicija psihologije kaznjavanja
ili negativnih nagrada koju smo spomenuli iznad. Drugim reCima, kod modeliranja
algoritama namenjenih radu u agentskim okruzenjima, modeliramo dedukciju gde
je nasa pretpostavka da ¢e agent koji u svim situacijama zna Sta ne treba da uradi,
na kraju izvrsiti akciju koja vodi ka optimalnom resenju.

U nekim algoritmima, definisatemo i pojam negativnih osobina, kao osobine ili
specifi¢nosti ulaznih podataka na osnovu kojih znamo kako izlazni podaci ne treba
da izgledaju.

Osim prednosti koje smo spomenuli kao S$to je potencijalno uvecanje perfor-
mansi, negativni modeli imaju i drugih prednosti. Na primer, moguce je posto-
janje problema za koje postoje samo negativni podaci (na primer, kod agenata). U
takvim scenarijima bitno je koristiti algoritme koji znaju da obrade negativne po-
datke kako bi njihova primena bila uspesna. Drugi razlog, kojim ¢emo se najvise
baviti u okviru ove disertacije je povecana robustnost negativnih modela. Stepen
robustnosti definiSemo kao osobinu algoritama masinskog ucenja koja nam govori
koliko je trenirani model otporan na razne izmene (namerne ili nenamerne) ulaznih
podataka. U okviru ove disertacije pokaza¢emo kako se negativni modeli ponasaju
u nekim teskim situacijama i kako takve situacije utiCu na performanse modela
dubokog ulenja. Jedan primer je adversarijalno uéenje [52] gde se modeli mogu
izuCavati i gde mozemo generisati podatke sa specificnom namenom koja vodi ka
greSskama u predvidanju izlaznih podataka. Kao Sto ¢emo pokazati u ovoj disertaciji,
negativni modeli u vedini situacija imaju veu otpornost na razne adversarijalne na-
pade i druge oblike izmenjenih ulaznih podataka.

Modeli negativhog dubokog ucenja

Modele negativnog dubokog ucenja definiSemo kao modele koji mogu da na neki
nac koriste negativne podatke. Negativni podaci mogu biti definisani na vise nacina
kao Sto su nedostajuéi podaci, obrnuti podaci, pogresni podaci, podaci sa Sumom,
adversarijalni podaci i sli¢no. Specifi¢nost negativnih dubokih modela ogleda se
u tome Sto mogu da ove negativne podatke koriste kako dodatne informacije u
svom obucavanju. Procesi obucavanja zahtevaju specifi¢ne izmene kako bi negativni
podaci mogli biti upotrebljeni.

147
Moguéi modeli

Prvi negativni model koji spominjemo je model koji koristi nedostajuce ili negativne
osobine. [49] Negativne osobine definiSemo kao osobine (paterne) ulaznih podataka
za koje znamo da postoje ali koji nisu prisutni u odredenim ulaznim podacima. Sve
neuronske mreze koriste pozitivne osobine kako bi "zapamtile" odredene paterne
u ulaznim podacima koji se kasnije koriste za buduéa predvidanja. Cak i u ovim
modelima, nedostatak neke osobine (koji se ogleda u niskoj aktivaciji specifi¢nih
neurona) se takode uzima u obzir prilikom zaklju¢ivanja. Negativne osobine kod
negativnih modela se proglasavaju najvaznijim osobinama, i to je najvaznija raz-
lika ovih modela kada ih poredimo sa tracionalnim modelima dubokih neuronskih
mreza. Moze se rei da negativni modeli uce i trenirani su na takav nacin da ko-
riste dedukciju gde ¢e modi da zakljuCuju na osnovu osobina koje znamo da postoje
ali trenutno nisu prisutne. Ovo je pogotovo vazno kod specifi¢nih problema kao
sto su klasifikacija delimicnih ulaza, na primer kod klasifikacije slika. Ljudima je
veoma prirodno da u ovakvim problemima koriste dedukciju gde ¢e znanjem o os-
talim slikama i postoje¢im klasama mo¢i da nadomeste nedostajuée podatke na slici
koju trenutno posmatraju. Modeli koji koriste nedostajuée osobine pokusavaju da
modeliraju ovakav nacin razmisljanja.

Drugi model koji je sli¢an i koji spominjemo je model treniran na osnovu par-
cijalnih (negativnih) ulaznih podataka. Primoravanjem modela na ovakav nacin
treniranja olekujemo da ¢e se paterni u ulaznim podacima nauciti na takav nacin
gde ¢e znanje biti upotrebljivo ¢ak i kod kompletnih ulaznih podataka. Negativnost
ovih modela dolazi iz ¢injenice da je lako definisati i da parcijalni ulazi ne pripadaju
nekim klasama (kod problema klasifikacije). Na taj nain, vestackim putem dobi-
jamo negativne podatke koji nam i ovde sluze za profinjenje modela koje bi vodilo
povecanim performansama.

Negativni podaci, pored nacina koji smo upravo opisali, mogu da se dobiju i
na jos jedan slican nacin. DefiniSemo model koji uci negativne izlazne podatke.
Ovakav pristup je najcistiji i najnaivniji pristup negativnom dubokom uéenju. Kod
ovakvog ucenja kod problema klasifikacije, u toku treniranja neuronskoj mreZi da-
jemo ulazne podatke i klase kojima ti podaci ne pripadaju. Odabir klase (ili klasa)
kojima podaci ne pripadaju moze biti dobro definisan ili nasumican (&esce koriséen).
Implementacija ovakvog pristupa nije jednostavna jer zahteva odredene izmene kod
samog algoritma ucenja gde se funkcija greske (eng. loss function) definiSe na takav
nacin da ne Zelimo da je minimizujemo u procesu gradijentnog spusta kao Sto je
slu¢aj u normalnom treniranju. Ovde koristimo gradijentni uspon gde pokusavamo
da se Sto vise udaljimo od negativne izlazne klase.

148 PROSIRENI 1IZVOD

Jog jedan model o kom éemo kasnije biti vise detalja je takozvani spojeni (eng.
Ensemble Learning) model. Spojeni modeli su modeli koji se sastoje iz vise samostal-
nih modela. lako negativni modeli rade dobro, $to se moze videti iz nasih eksperime-
nata, u nekim situacijama je bolje ukoliko ih koristimo u kombinaciji sa normalnim
(pozitivnim) modelima. [63] Ova osobina otkrivena je dubljom analizom modela
za klasifikaciju na osnovu nedostajuéih osobina, gde je uo¢eno da negativni modeli
pored generalno bolje preciznosti u procesu negativnog ucenja izgube deo znanja koji
pozitivni modeli poseduju. Kombinacijom pozitivhog i negativhog modela dobijamo
joS vecu preciznost.

Klasifikacija na osnovu nedostajucih osobina

Prvi model koji analiziramo je model za klasifikaciju na osnovu nedostajuéih osobina
(CBOMF model). [49] Sve konvolutivne neuronske mreze u problemima klasifikacije
koriste pozitivne ili prisutne osobine kako bi odlucile koja je ispravna izlazna klasa.
Novina CBOMF modela je $to radi upravo obrnuto — koristi nedostajuce osobine
u ulaznim podacima kako bi zakljucio koja je ispravna izlazna klasa. Ova ideja je
nastala intuitivno iz ljudskog ponasanja. Na primer, kada ljudi klasifikuju slike, Cesto
je pozeljno gledati i koje osobine (boje, teksture, objekti) nedostaju na slikama i
ako su sve izlazne klase poznate, Cesto je moguce dedukcijom zakljuditi o ¢emu se
radi. Jedan primer ovakvog razmisljanja moZzemo videti na slici

[+] i

Ponovljena Slika Motivacioni primer gde je klasifikacija na osnovu negativnih
osobina moguca. Slika cifre 5 iz MNIST skupa podataka i njene dve nedostajuée
osobine. Osobina 1 (levo) prisutna je u ciframa 0, 6, 8 i 9 dok je osobina 2
(desno) prisutna u ciframa 1, 2, 3, 4, i 7. Nedostatak ove dve osobine u
negativnom modelu znadi da posmatramo primerak cifre 5.

Nase modifikacije postoje¢ih modela imitiraju ovaj proces. Rezultati koje ¢emo
prikazati pokazuju da je ovakav trening prvenstveno mogué sa implementacione
strane, i da vodi ka modelima koji imaju pove¢anu robustnost. Proces koji je opisan
u ovoj disertaciji moze biti primenjen na bilo koju konvolutivnu neuronsku mrezu
bez dodatnih podataka.

149

Upotreba ovakvih modela moze imati vrlo Siroku primenu, pogotovo u prob-
lemima klasifikacije slika, na koje se i mi fokusiramo u ovoj disertaciji. Povecana
robustnost je veoma vazna u kriti¢nim sistemima kao $to su na primer autonomni
automobili. Kod autonomne voznje agent (najées¢e duboka neuronska mreza u
kombinaciji sa drugim algoritmima) upravlja vozilom na osnovu niza senzora i kam-
era na vozilu. Kamere koje se koriste daju sliku visoke rezolucije kako bi sistem
mogao uoditi objekte na putu. U svakodnevnoj upotrebi, sa druge strane, lako se
moze desiti da su vazni objekti (npr. saobradajni znaci) na neki nacin sakriveni,
iza drugih objekata kao $to su drvece, drugi automobili i sli¢no. Sistem mora imati
sposobnost da neometano radi i u ovakvom okruZenju, odnosno da je sposoban da,
na primer, prepozna o kom se saobra¢ajnom znaku radi na osnovu delimi¢ne slike
istog, slicno kako i vozaci rade u svakodnevnom Zivotu.

Implementacija ovakvog modela pocinje sa definicijom jednog negativnog skupa
podataka Cija je namena testiranje negativnih modela u teskim situacijama. U
nasim prvim eksperimentima koristili smo MNIST [55] skup rukom pisanih cifara,
koji smo prosirili sa dodatnim validacionim skupovima. MNIST skup podataka
sadrzi 60000 slika za trening i 10000 slika za validaciju, dok se nas prosireni skup
nazvan PMNIST (eng. Partial MNIST, delimi¢ni MNIST) sastoji od ovih 70000
slika i dodatnih 40000 validacionih slika. Cetiri dodatna validaciona skupa dodata
su kako bismo bili u moguénosti da testiramo kako se negativni modeli ponasaju
u problemima klasifikacije parcijalnih ulaza. Primeri slika iz validacionih skupova
mogu se videti na slici 6.1}

Ponovljena slika [6.1} Primer validacionih skupova PMNIST skupa podataka.
Primer cifre 3 iz validacionog skupa sa modifikacijama, sa leva na desno: originalna
slika, horizontalno secena slika, vertikalno secena slika, dijagonalno secena slika i

"triple cut" slika u kojoj su uklonjena tri kvadrata dimenzija 9x9 piksela.

Isti proces ponvoljen je i na EMNIST [56] skupu podataka koji pored cifara
sadrzi i rukom pisana slova engleske abecede. Za testiranje je odabran model sa
relativno jednostavnom arhitekturom iz repozitorijuma biblioteke za rad neuronskim
mrezama PyTorch. [57] Neuronska mreza ima dva konvolutivna sloja i jedan skriveni
povezani sloj. U kasnijim testiranjima koriS¢en je i napredniji Residual Network

150 PROSIRENI 1IZVOD

(ResNet) model kako bismo ispitali kako se naSe izmene pona3aju kod upotrebe sa
najnaprednijim modelima danasnjice.

Da bismo mogli koristiti zakljucivanje na osnovu negativnih osobina moramo im-
plementirati izmene u samoj arhitekturi modela kroz uvodenje negativne aktivacione
funkcije. Ova modifikacija se implementira negacijom postojece aktivacione funkcije
Ciji rezultat je niz postojecih osobina u ulaznom paternu. Ovaj niz mozemo zamisliti
kao niz fiksne duzine gde su postojete osobine predstavljene vrednostima blizu 1
a nedostajuce osobine imaju vrednost blizu 0. Pozicija negacije je izuzetno bitna.
Aktivaciona funkcija se negira samo jednom i to na prelazu iz konvolutivnih slojeva
u povezane (guste, eng. Dense, Fully-Connected) slojeve. U tom trenutku signal
koji prolazi kroz neuronsku mrezu predstavlja upravo niz ekstrahovanih osobina koji
smo spomenuli i njegovom negacijom dobijamo negativne osobine. Proces negacije
zavisi od aktivacione funkcije koris¢ene u poslednjem konvolutivnom sloju. Posma-
tramo koje su moguce izlazne vrednosti (i njihovo znalenje) i definisemo funkciju
negacije koja ¢e na neki nacin obrnuti izlazne vrednosti. Na primer ukoliko se koristi
sigmoidna ili ReLU funkcija, funkcija negacije f(z) = 1 —x u nasim eksperimentima
daje dobre rezultate.

Za implemntaciju ove izmene koris¢ena je dinami¢na priroda PyTorch biblioteke
za rad sa neuronskim mrezama gde je dovoljno modifikovati samo "forward" funkciju
koja definise kako se signal propagira unapred. Operacije za ucenje i propagaciju
unazad nije bilo neophodno menjati.

VaZno je napomenuti da osobine o kojima govorimo nisu binarne (0 ili 1) veé
su to realne vrednosti. Vrednosti negativnih osobina gotovo nikad nisu tacno 0 vec
su to niske vrednosti kojima mi dajemo vecu vaznost. Vazno je napomenuti i da
proces koji smo opisali negira sve osobine, i da postoji mogucnost da se detekcijom
i negacijom samo osobina relevantnim za odredene klase moze doéi do jos boljih
rezultata. To je pravac istrazivanja koji tek treba biti istrazen.

Proces treniranja negativnih modela je sli¢an klasi¢chom treniranju neuronskih
mreza sa manjim izmenama. Dve najvaznije izmene su treniranje u vise faza i zam-
rzavanje konvolutivnih slojeva. Treniranje u vise faza podrazumeva da se za treni-
ranje negativnih modela koriste postojeci konvolutivni slojevi iz pozitivnih modela.
Ovaj korak je neophodan kod poredenja pozitivnih i negativnih modela kako bismo
bili sigurni da je nasa izmena u arhitekturi dovela do promene performansi a ne
neki drugi faktor. Drugim recima Zelimo da poredimo modele koji detektuju iste
osobine: pozitivni modeli rade sa postoje¢im osobinama a negativni modeli rade sa
nedostaju¢im osobinama.

U eksperimentalnoj fazi testirani su i negativni modeli koji ne koriste viSefazno
treniranje (ONN model) ali ovi modeli ne predstavljaju ono $to je bila namera: da se

151

iste osobine ekstrahuju a zatim negiraju. Ukoliko ne koristimo viSefazno treniranje,
treniranjem mreza dobi¢emo kompletno druge osobine (konvolutivne filtere).

Svi ostali negativni modeli (HN, ALT, NR) koje ¢emo prikazati koriste vise-
fazno treniranje i zamrzavanje konvolutivnih slojeva. Zamrzavanje konvolutivnih
slojeva je joS jedan nacin da se osiguramo da se prilikom treniranja negativnih mod-
ela konstantno koriste iste osobine. U suprotnom doslo bi do izmena parametara
ovih slojeva i negativni i pozitivni modeli bi bili neuporedivi. Vazno je spomenuti da
prilikom poredenja negativnih i pozitivnih modela uvek koristimo modele iste arhitek-
ture (osim negacije propagiranog signala kod negativnih modela) sa istim brojem
skrivenih neurona i drugim parametrima. Takode, koristimo iste hiperparametre kao
Sto su broj epoha, korak ucenja i sli¢no. Radi lakSeg razumevanja sledi kratak opis
Cetiri modela za koje prikazujemo rezultate

= ONN - only negative network: negativni model koji ne koristi zamrzavanje
konvolutivnih slojeva i viSefazno treniranje. Ovaj model koristi samo negaciju
aktivacione funkcije na izlasku iz poslednjeg konvolutivnog sloja.

= HN - hybrid network: negativni model koji koristi negativhu aktivacionu
funkciju, visefazno treniranje i zamrzavanje konvolutivnih slojeva.

= NR - no reset: model isti kao HN model koji ne koristi resetovanje povezanih
slojeva u viSefaznom treniranju

= ALT - alternating: model koji koristi naizmenic¢no treniranje izmedu pozitivne
i negativne aktivacione funkcije.

Prvo prikazujemo rezultate treniranja na neizmenjenom MNIST skupu podataka.
Cilj ovog testa bio je da ispitamo da li je uopSte moguée trenirati negativne mod-
ele na nacin koji smo opisali. Rezultati se mogu videti u tabeli gde je vidljivo
da negativni modeli koje smo opisali mogu biti trenirani da koriste negativne os-
obine uz veoma sli¢ne (visoke) performanse u poredenju sa pozitivnim modelima
iste arhitekture.

Dataset/Model SN~ ONN HN NR ALT

MNIST 99.13 98.90 99.18 99.21 99.05
EMNIST-MNIST 99.18 99.07 99.16 99.15 99.00
EMNIST-Balanced 87.14 87.62 87.38 86.78 87.92

Ponovljena tabela[7.1} Rezultati testiranja na nepromenjenim skupovima
podataka.

152 PROSIRENI 1IZVOD

Slededi rezultati u tabeli prikazuju kako se modeli ponasaju u situacijama
kada postoje parcijalni ulazi. Celi rezultati svih modela mogu se pronadi u disertaciji,
dok ovde prikazujemo samo najbolje modele gde je jasno vidljivo da se u skoro svim
slu¢ajevima negativni modeli bolje snalaze sa parcijalnim ulazima.

Dataset Best model Accuracy Delta

Unmodified - PMNIST NR 99.21 0.08

Horizontal cut - PMNIST NR 56.07 11.36
Vertical cut - PMNIST ALT 69.66 12.20

Diagonal cut - PMNIST ALT 62.49 9.52

Triple cut - PMNIST ALT 46.40 5.72

Unmodified - EMNIST-MNIST HN 99.16 -0.02
Horizontal cut - EMNIST-MNIST HN 54.76 5.69
Vertical cut - EMNIST-MNIST HN 3291 1.81
Diagonal cut - EMNIST-MNIST ALT 61.50 3.07
Triple cut - EMNIST-MNIST HN 53.90 7.12
Unmodified - EMNIST-Balanced ALT 87.92 0.78
Horizontal cut - EMNIST-Balanced ONN 26.97 6.02
Vertical cut - EMNIST-Balanced ALT 24.36 2.13
Diagonal cut - EMNIST-Balanced HN 30.79 2.88
Triple cut - EMNIST-Balanced ONN 22.88 2.49

Ponovljena tabela Prikaz najboljih modela za sve validacione skupove.
"Accuracy" kolona prikazuje preciznost na kraju treninga dok "Delta" kolona
prikazuje razliku izmedu prikazanog negativnog modela i pozitivhog modela iste
arhitekture. Obe kolone predstavljaju procente korektno klasifikovanih validacionih
slika.

Prilikom testiranja modela i procesa, testirane su razne modifikacije opisanog
procesa:

= Testiranje uticaja viSefaznog treniranja: Kako bismo bili sigurni da je nasa
modifikacija negacije osobina dovela do povecanih performansi a ne sam pro-
ces viSefaznog treniranja, napravljen je ekspirement gde je viSefazno treniranje
upotrebljeno nad obi¢nim pozitivhim modelima. Nisu uocene greske u nasem
procesu a visefazno treniranje je u nekim slucajevima ¢ak imalo negativan
uticaj na preciznost modela.

= Testiranje negativnih konvolutivnih filtera: Umesto negacije aktivacione funkcije,
takode je eksperimentisano i sa negacijom samih konvolutivnih filtera. Eksper-

153

imentalno je pokazano da ovakva izmena ne dovodi do izmene rezultata neg-
ativnih modela te da je moguce koristiti umesto negacije aktivacione funkcije.

= Druge aktivacione funkcije: Pored testiranja modela koji koriste danas na-
j€esce koriscene Rel U aktivacione funkcije, eksperimentima je utvrdeno da je
mogude negirati i sigmoid, tanh, LeakyReLU i ReLUG6 aktivacione funkcije
bez veéih izmena u rezultatima.

= Okluzije: Pored validacije sa parcijalnim ulazima, negativni modeli su testirani
i sa okluzijama i to sa ugaonim okluzijama od 10 do 50 odsto. | kod ovakvog
tipa nedostajucih podataka, negativni modeli daleko nadmasuju performanse
obi¢nih modela.

Posebno interesantni eksperimenti su eksperimenti sa adversarijalnim napadima.
Negativni modeli opisani u ovoj disertaciji testirani su i sa white-box i sa black-box
adversarijalnim napadima. Razlika ove dve vrste napada ogleda se u tome koliko je
napadacu informacija dostupno prilikom generisanja adversarijalnih podataka. Kod
black-box napada napadac je ogranien i nema znanje o arhitekturi mreze dok se
kod white-box napada napadadu omogucava pristup svim parametrima (pogotovo
gradijentima) napadnutih modela. Koris¢eni su FGSM (Fast Gradient Sign Method)
[35] white-box napad i PGD (Projected Gradient Descent) [62] napad na negativne
modele gde su pokazali poveanu otpornost na ove tipove napada u odnosu na
klasi¢ne modele. Primer poredenja moze se videti na slici[7.3| gde poredimo klasi¢an
i negativni model, oba napadnuta FGSM napadom.

Sinergija negativnog i klasi¢cnog ucenja

Negativni modeli opisani u ovoj disertaciji doprinose na preciznosti i robustnosti u
teskim i adversarijalnim situacijama, kao Sto smo pokazali. Medutim, ovi mod-
eli imaju jo$ jednu karakteristiku a to je da dodatne performanse koje proizilaze
iz dodatnog negativnog znanja nisu pravi nadskup znanja koje poseduju normalni
modeli. Drugim recima, povecan broj ispravno klasifikovanih primera nam govori da
su negativni modeli generalno bolji od obi¢nih modela neuronskih mreza, ali daljim
ispitivanjem slu€ajeva moze se utvrditi da postoje slucajevi u kojima normalna mreza
radi bolje od negativne mreze. Da bi se ovaj nedostatak nadomestio, predlazemo
arhitekturu sinergije, spajanje dva modela istih arhitektura gde je jedan pozitivan a
drugi negativan. Deo tezina, odnosno parametri konvolutivnih slojeva su deljeni dok
se parametri povezanih skrivenih slojeva ¢uvaju odvojeno za pozitivan i negativan
deo. Arhitektura modela moze se videti na slici 0.1

154 PROSIRENI 1IZVOD

100 T T T

90 | —8— normal model |
2 —— negative model (NR)
é 80 |- .
= 70f |
3
£ 60 :
3
& 50| .
()
=
Soa0f .
o
o 30| i
e
3 20 |
<

10 :

0 | | | | | p
0 0.05 0.1 0.15 0.2 0.25 0.3

€ - FGSM attack modifier

Ponovljena slika Preciznost normalnog i negativnog (NR) modela napadnutih
FGSM adversarijalnim napadom za razne faktore napada ()

155

Synergy Neural Network Model

Output
A T
Fully Connected
Fully Connected Layers
Layers T
A Feature Negation

T

Feature Extracting Convolutional Layers
(shared weights)

T Input sample

Ponovljena slika [9.1} Arhitektura sinergije.

Ispitavanjem broja korektno klasifikovanih sluCajeva moze se videti da postoji
moguénost za implementaciju modela visih performansi ukoliko bi se napravio spoj
modela. Naime, ispitan je broj slu¢ajeva u kojima je makar jedna od dve ispitivane
mreze imala tacnu izlaznu klasu i uoceno je da je taj broj veéi od broja ispravno
klasifikovanih validacionih slu¢ajeva oba pojedina¢na modela. Na CIFAR-10 skupu
podataka, teoretska preciznost spojene mreze bi bila 74.54%.

Implementacija sinergije je jednostavna jer su oba modela ve¢ unapred treni-
rana na nacin koji smo opisali u prethodnom poglavlju. Model sinergije ne zahteva
nikakvo dodatno treniranje. VaZna napomena je da se izlazni podaci oba modela
moraju spojiti i da postoji vise nacina na koji se modeli mogu spojiti. Najjed-
nostavniji nacin koji je korisCen je izraCuvanje zbira verovatnoéa po klasama koje
nam daju oba modela. Razlog upotrebe ovakvog spoja je intuicija da je u sluca-
jevima gde dolazi do pogresne klasifikacije razlika verovatnoa za ispravnu klasu i
pogresnu klasu koja je krajnji rezultat veoma mala i da se dodavanjem verovatnoca
drugog modela ova greSska moze ispraviti. Ovakvi slucajevi postoje i najbolje je
pokazati na primeru o ¢emu se radi. Jedan primer moZze se videti u tabeli[9.3] gde je
normalna mreza pogresno klasifikovala jedan primer, dok je negativna mreza bila is-
pravna. Zbir rezultata u modelu sinergije ponovo vodi ka tacnoj klasifikaciji. Postoje
slu¢ajevi i kada je obrnuto: normalna mreza ispravno klasifikuje a negativna mreza
pogresno klasifikuje. Postoje i ekstremni slucajevi gde su obe mreze pogresno klasi-

156 PROSIRENI 1IZVOD

Ponovljena tabela[0.3} Jedan slucaj kada je samo jedna mreza ispravno
klasifikovala primer iz validacionog skupa (na poziciji #2). C1 do C10 su
verovatnoée po klasama. Ispravna klasa je klasa 9 — "brod’. Redovi predstavljaju
tri mreze: normalnu, negativnu, i sinergiju kao zbir prethodne dve. Podebljanim
tekstom obelezene su najvise verovatnode.

Cl C2 C3 C4 ¢ C6 Cr C8 (€9cC10

Nor. 3.05 4.44-1.25-2.72-0.83 -2.12 -2.45-3.31 2.012.62
Neg. 6.04 7.29-1.39 0.11-6.85 -8.49 -9.60-4.8911.55 3.22
Syn. 9.0911.73-2.65-2.60-7.68-10.61 -12.05-8.21 13.56 5.84

Ponovljena tabela Ekstremni sluéaj (#6418) gde su obe mreze pogresile, ali
sinergija modela daje tacan rezultat. Ispravna klasa je klasa 1 — "avion’.

Cl C2 C3 C4 ¢ C6 Cr C8 (9 C10

Nor. 3.52 4.45 -0.67 -2.84 1.20 -2.38 -2.50 -3.34 -0.41 0.83
Neg. 4.00 2.63 -0.31 -0.16 5.22 -2.03 -1.94 -2.73 0.42-1.30
Syn. 7.53 7.07 -0.97 -3.00 6.43 -4.41 -4.44 -6.07 0.01 -0.48

fikovale primer a sinergija odnosno zbir te dve mreze ispravno klasifikovala primer,
$to se moZe videti u tabeli [0.5]

Pored modela sinergije u disertaciji opisujemo i druge sli¢cne modele. Svrha nekih
od modela su validacija pristupa, na primer imamo model trenirane sinergije koji
ima istu arhitekturu kao sinergija ali se trenira na uobicajeni nacin. Poenta ovakvog
modela je da vidimo da li se jednostavnim poveéanjem broja parametara moze dodi
do sli¢nih performansi ili je nas pristup ispravan.

Rezultati modela sinergije mogu se videti u tabeli Kod modela sinergije ko-
ris¢en je kompleksniji CIFAR-10 skup slika u boji gde su ponovljeni rezultati opisani
u prethodnom delu a koji se odnose na negativne modele. Kod samog negativnog
modela vidimo veoma mali porast u preciznosti dok je kod sinergije taj porast dosta
veli. Takode vidimo da se jednostavnim povecanjem broja parametara ne dobija isti
rezultat ¢ak i kod upotrebe istih konvolutivnih slojeva (hot-start trenirana sinergija)
$to vodi ka zakljuCku da su nasa intuicija i proces implementacije ispravni.

Jos jedan validacioni eksperiment je izveden gde je ispitano kako se izmene
opisane ovde mogu primeniti na moderne modele neuronskih mreza koji imaju visoku
slozenost. Testirana je ResNet18 [66] arhitektura gde se mogu videti sli¢ni rezultati
kao i za nas jednostavniji model. lako je dobitak na preciznosti minimalan vazno
je napomenuti da testirani model veé ima izuzetno visoku preciznost od preko 90%

157

Ponovljena tabela[9.6} Validaciona preciznost modela u procentima. Kolona
"Delta" predstavlja razliku izmedu novih modela (negativnih i sinergije) i
normalnog modela.

Model Accuracy Delta
Normal 63.30 -
Negative 63.57 0.27
Synergy 66.98 3.68
Trained Synergy 63.32 0.02

Trained Synergy (hot-start) 64.28 0.98

Ponovljena tabela Validaciona preciznot modela zasnovanih na ResNet18

modelu.
Model Accuracy Delta
Normal 92.52 -
Negative 92.48 -0.04
Synergy 92.54 0.02
Trained Synergy 89.47 -3.05

Trained Synergy (hot-start) 92.46 -0.06

pa nije realisti¢no oclekivati velika unapredenja. Svakako, pokazano je da nasim
modifikacijama moguce popraviti Cak i najnaprednije modele danasnjice. Rezultati
se mogu videti u tabeli

Kao i kod negativnih modela, fokus je bio takode i na robustnosti. lz tog
razloga model sinergije testiran je i sa parcijalnim i sa adversarijalnim validacionim
skupovima. Sazetak eksperimenata je sledeéi:

= Za testiranje modela sinergije koriSéeno je viSe vrsta okluzija. Ugaone okluzije
od 10 do 30 procenata, zatim nasumicni i fiksirani crni kvadrati varijabilnih
dimenzija na slikama. U svim slucajevima model sinergije je nadmasio i nor-
malne modele i negativne modele kao Sto se moze videti u poglavlju [9.5.2
Na slici [9.6] moze se videti poredenje normalne mreze i modela sinergije protiv
FGSM white-box napada.

» Kod adversarijalnih primera koriséen je veci broj white-box i black-box napada:
FGSM, PGD, BIM, CW, RFGSM, FFGSM, TPGD, MIFGSM gde je sinergija u
svim situacijama imala vedi nivo otpornosti na napade u poredenju sa obi¢nim
modelima.

158 PROSIRENI 1IZVOD

70 T T
—=— normal model
60, —— synergy model | |

50

40

30

20

Accuracy on the adversarial testset

10

i

0 | | | |
0 0.0050.01 0.02 0.03 0.04 0.05

€ - FGSM attack modifier

Ponovljena slika Preciznost normalnog modela i modela sinergije protiv
FGSM napada.

159

Takode su izvedeni i eksperimenti za razliite nacine spajanja pozitivne i nega-
tivne mreze:

= Prosto sabiranje verovatnoca kako je ve¢ opisano, prosireno je hiperparametrom
w koji definiSe u kojem stepenu koji deo mreze utiCe na krajnji rezultat. U
nasim eksperimentima uocene su veoma male razlike za razne vrednosti ovog
hiperparametra.

= Spajanje mnozenjem verovatnoca je takode testirano, bez velikih razlika u
odnosu na sabiranje. ldeja izmedu mnoZenja verovatnoca je da ée se visoke
verovatnoée eksponencijalno uvecati u rezultatu sinergije dok ¢e se manje
verovatnodée ponistiti.

» Dodatni slojevi takode mogu biti dodati na spoju dve mreze kao nelinearni
nacin spajanja. Moguce je koristiti jedan ili vise skrivenih slojeva ili ¢ak konvo-
lutivne slojeve. Prisup sa jednodimenzionalnim konvolutivnim slojem najvise
obecava i eliminiSe potrebu za odabirom nacina spajanja jer se on moze nauditi
kroz standarni proces ucenja i treniranja neuronskih mreza.

Pravo negativno ucenje

Na kraju predstavljamo "prave" negativne modele, odnosno modele koji koriste neg-
ativne podatke prilikom treniranja. Problem ovih modela je Sto zahtevaju specifi¢ne
sluCajeve koris¢enja gde su negativni podaci prirodno dostupni ili se mogu lako iz-
generisati na vestacki nacin. lz ovog razloga vecina ovakvih modela spomenutih
u ovoj disertaciji su predstavljeni kao inicijalne verzije algoritama sa veoma malo
testiranja.

Jedan primer koji ¢emo istrazivati u budué¢em radu je kod klasifikacije slika.
Ukoliko bi postojao skup podataka negativno ru¢no obelezenih slika odnosno kom-
binacija slika i klasa kojima ne pripadaju, onda bi se ti podaci mogli koristiti za neg-
ativno treniranje. U teoriji ovakav model bi generalizovao isto ili bolje u poredenju
sa obi¢nim modelom, pogotovo u situacijama gde imamo parcijalne ulaze.

U ovoj disertaciji predstavljamo dva implementirana modela: Negativnu sijam-
sku Triplet-Loss mreZu i negativnog DRL (Deep Reinforcement Learning) agenta.
Takode prikazujemo i neke modele koji su jo$ uvek u idejnoj fazi. Ciljevi svih ovih
modela su sli¢ni kao i za modele koje smo prethodno definisali: da koriste dodatno
negativno znanje radi povecanja performansi i robusnosti.

Modeli koji koriste Gradient Ascent (gradijentni uspon) su prvi kandidat za prave
negativne modele. Gradient Ascent se koristi u nekim adversarijalnim napadima
(npr. FGSM) kako bi model naterao da pogresi modifikacijom gradijenata tako da

160 PROSIRENI 1IZVOD

vode ka pogresnoj klasi. Gradient Ascent modeli mogu da koriste isti ovaj koncept u
kombinaciji sa negativnim podacima da "odvuku" svoje parametre od pogresne klase
koja je data kao negativni primer. JoS jedan koncept koji bi mogao biti iskoris¢en
je negativni sampling podataka. To je proces u kom se skup trening podataka
transformise u negativni skup podataka. Naime, za svaki podatak u skupu zna
se ispravna klasa (u problemima klasifikacije) i vestacki samim tim se znaju i sve
pogredne (negativne klase). lteracijom kroz skup i biranjem nasumicnih pogresnih
klasa moze se generisati vestacki negativni skup podataka.

Prvi implementirani model pravog negativnog ucenja koji predstavljamo je neg-
ativna sijamska mreza. Sijamske neuronske mreze [82] su specifi¢ne po tome Sto
uce sli¢nost ulaznih paterna. Sijamska arhitektura podrazumeva dve mreze koje
su trenirane da predstave podatke u kompresovanom obliku a zatim se posmatra
sli¢nost tih oblika i na osnovu te sli¢nosti donosimo zakljuCke. Ovakvi modeli imaju
razne prednosti u poredenju sa obi¢nim modelima, na primer, prilikom dobijanja
novih podataka nije potrebno trenirati ceo model ispoletka. Zbog ove osobine
koriste se ve¢ duze vreme za identifikaciju ljudi na osnovu fotografija [85], izmedu
ostalog. Sijamske mreZe takode ne zahtevaju velike skupove podataka za treniranje,
$to je isto velika prednost.

Postoji posebna kategorija sijamskih mreza na koju se fokusiramo, takozvane
Triplet sijamske mreze. Ove mreze prilikom treniranja uce sli¢nosti (radi klasi-
fikacije) izmedu ulaznih podataka (isto kao i ostale sijamske mreze) ali koristi ure-
dene trojke podataka. Koriste tri ulazna podatka: glavni podatak koji se obraduje,
nasumicno odabrani podatak iste klase i nasumi¢no odabrani podatak negativne
(nasumiéne pogresne) klase. Ovakve mreze pokusavaju da ucenjem minimizuju ra-
zlike u sli¢nosti izmedu odredenog podatka i pozitivnog primerka a maksimizuju
razlike izmedu istog odredenog podatka i negativnog primerka.

Nasi eksperimenti sa ovim mrezama podrazumevaju scenario gde se negativni
primerak koristi kao osnovni izvor znanja. U nasim eksperimentima pokuSana su
dva pristupa. Prvi pristup je da se u potpunosti eliminiSe pozitivna strana sijamske
arhitekture, ali taj eksperiment dovodi do nemoguénosti mreze da konvergira. Jed-
nostavno reeno, nasumicno treniranje sa negativnim klasama mozda nikada nece
dovesti do konvergencije modela. Drugi pristup je da se Cisto negativno ucenje ko-
risti samo kao tehnika za fine-tuning (dodatni trening) modela. U ovom pristupu
vec trenirani sijamski model se unapreduje koris¢enjem Cistog negativnog ucenja, $to
je sli¢no nasem pristupu kod ostalih modela. Ovaj pristup je ispitan i zakljueno je
da je moZe dovesti do poboljsanja performansi i prevenciji overfitting-a u treniranju.
Rezultati se mogu videti na slici [I1.2]

Drugi implementirani model je negativni Deep Reinforcement Learning (DRL)
agent. U treniranju DRL agenata veoma je vazan koncept nagrade gde agent

161

>
@
5
3
<
c
i)
=
=
©
>
85 - s
—— TSN
—— TSN-N
—— TSN-P
80 .

1 2 3 4 5 6 7 8 9 10

Ponovljena slika [I1.2} Poredenje finetuning pristupa kod sijamskih triplet-loss
neuronskih mreza. TSN je neizmenjena sijamska mreza, TSN-N je ista mreza gde
se pozitivna strana zanemaruje prilikom finetuning-a, TSN-P je ista mreza gde se

negativna strana zanemaruje prilikom finetuning-a. TSN-N mreza uspeva da

poveca svoju preciznost dok TSN-P mreZa ne uspeva. Konacne preciznosti su:
93.84% (TSN), 92.92% (TSN-P), 93.91% (TSN-N).

162 PROSIRENI 1IZVOD

pokusava da optimizuje svoje ponasanje kako bi se nagrada uveéala. U ovom kon-
ceptu takode postoji i druga strana a to je koncept kazne u slucaju da agent pogresi.
Nasa ideja da ispitamo da li se agenti mogu trenirati koristei samo negativne na-
grade (kazne). U ovom scenariju agent nikada nije nagraden ve¢ uvek bira onu
akciju za koju je kazna najmanja. Drugim reCima, agent je treniran da se fokusira
na akcije "koje ne treba da uradi". Jedan primer u kojem mozemo ispitati ovakvo
ponasanje je izbegavanje prepreka gde je agent treniran da izbegava prepreke koje
su nasumicno generisane i usmerene prema poziciji agenta u dvodimenzionalnom
svetu. Ovakav sistem je direktno primenljiv na mnoga druga okruzenja na primer
na automonomne automobile. Za eksperiment je koris¢en DQN [13] agent gde je
isti treniran na nacin da izbegava nasumicno generisane prepreke. Ovo okruzenje
je pogodno za ovakav eksperiment jer Cesto ne postoji specificna akcija koju agent
treba da uradi ve¢ samo akcije koje agent ne treba da uradi. Agent ima Cetiri
moguce akcije odnosno Cetiri smera u kojima moze da se krece: gore, dole, levo i
desno. Kako agent nikad nije nagraden, kumulativna vrednost nagrade 0 je najbolji
mogudi rezultat.

Zakljucak eksperimenta je da je ovakav nacin treniranja negativnih agenata
mogu¢ i primenljiv na razne probleme koje éemo istraziti u buduéem istrazivanju.
Test okruzenje je moguce videti na slici dok se rezultati (nagrade) mogu videti
na slici [12.21

o
o
o
N of ¢
Y o
o
o
o
o

Ponovljena slika [12.1} Primer DQN okruzenja za testiranje negativnih nagrada.
Ptica je agent a sive tacke su nasumicne prepreke koje treba izbeéi.
Implementacija sa Turtle Python modulom i Keras (Tensorflow) modelom.

163

—250 A

=500 ~

=750 A

reward

—1000 1

—1250 A

—1500 4

—1750 1 — T T T T T
0 20 40 60 80 100
episodes

Ponovljena slika[I2.2} DQN nagrade za okruzenje za izbegavanje prepreka. Model
konvergira veoma brzo, nakon nekoliko epizoda dostize nagradu 0. Iznenadni pad
vrednosti nagrade predstavljaju nestavilnost modela zbog stohastic¢ke prirode
okruzenja.

Zakljucak

Ova doktorska disertacija bavi se negativnim modelim negativnog ucenja. Prikazani
su i definisani novi i postoje¢i modeli uz dodatak modela koji kombiniju normalno
i negativno ucenje. Za CBOMF modele i modele sinergije pokazali smo da imaju
vece performanse i robustnost u poredenju sa obi¢nim modelima iste arhitekture.

U disertaciji su prikazani razni eksperimenti sa negacijom delova neuronskih
mreza i kako se ove negacije mogu smisleno primeniti. Takode su prikazane i
razne modifikacije procesa treniranja neuronskih mreza koji nam omogucavaju da
koristimo negativno ucenje.

Za modele pravog negativnog ucenja prikazane su dve implementacije: negativne
sijamske neuronske mreze i negativni agenti pojacanog ucenja gde smo prikazali da
se i ovakvi modeli mogu produbiti i poboljsati negativnim ucenjem.

164 PROSIRENI 1IZVOD

IstraZzivanje predstavljeno u ovoj disertaciji predstavlja prve korake u novoj porod-
ici dubokih neuronskih mreza za koje smo sigurni da ¢e pronadi upotrebu u mnogim
modernim sistemima.

Short Biography

Nemanja MiloSevi¢ was born on 20.11.1992 in Ruma.

He finished “Jovan Jovanovi¢ Zmaj” elementary
school in Ruma in 2007, followed by high school “Gim-
nazija Stevan Puzi¢”, Ruma, in 2011. The same year
he enrolled into the Faculty of Sciences in Novi Sad to
study computer science. He obtained his BSc diploma
in June of 2014, and a masters degree in September of
2016. In 2020 he participated in Erasmus+ Doctoral
Student Exchange Program, studying at University of
Coimbra, Portugal for six months.

He has been involved in teaching at the Department
of Mathematics and Informatics, Faculty of Sciences in Novi Sad, as a teaching and
research assistant since 2016.

He has conducted theoretical and practical exercises in several computer sci-
ence courses for undergraduate and master students, including Artificial Intelligence
1, Databases 1 and 2, Business Software Development, Python Development and
Computer Networks.

He coauthored four papers as conference proceedings and journal articles. He
was a conference presenter more than ten times both on national and international
conferences. He participated as a Machine Learning researcher on both national
(GRASP - Graphs in Space: Graph Embeddings for Machine Learning on Complex
Data) and international projects including H2020 projects (I-BiDaas - Industrial-
Driven Big Data as a Self-Service Solution, C4110T - Cyber security 4.0: Protecting
the Industrial Internet of Things).

He is a supporter of Open Source Software and a contributor to several open
source software projects most notably, Fedora Project and PyTorch.

Novi Sad, 2021 Nemanja Milosevi¢

Kratka biografija

Nemanja MiloSevi¢ se rodio 20. novembra 1992. godine
u Rumi.

Zavrsio je osnovnu $kolu “Jovan Jovanovi¢ Zmaj”
u Rumi 2007. godine, a zatim srednju Skolu “Gim-
nazija Stevan Puzi¢" u Rumi 2011. godine. Iste go-
dine upisuje osnovne akademske studije informatike na
Prirodno-matematickom fakultetu u Novom Sadu. Za-
vrSava trogodisnji program u junu 2014. godine a master
diplomu dobija u septembru 2016. godine. 2020. godine
ucestvuje na Erasmus+ razmeni doktorskih studenata sa
Univerzitetom u Koimbri, Portugal gde je bio doktorski
student u Sestomesecnom periodu.

Nemanja je asistent u nastavi na Departmanu za matematiku i informatiku
Prirodno-matematickog fakulteta u Novom Sadu od 2016. godine. Drzao je vezbe
iz nekoliko predmeta na osnovim i master studijama: Vestacka Inteligencija 1, Baze
podataka 1 i 2, Razvoj poslovnih sistema, Ralunarske MreZe i Seminarski rad A -
Python.

Nemanja je koautor na Cetiri rada objavljenim na medunarodnim konferencijama
i u medunarodnim Casopisima. Drzao je viSe od deset predavanja na medunarod-
nim konferencijama. Kao istraziva¢ u oblasti masinskog ucenja ucestvovao je na
drzavnim (GRASP - Graphs in Space: Graph Embeddings for Machine Learning
on Complex Data) kao i na medunarodnim projektima ukljudujuéi i Horizon 2020
projekte I-BiDaaS i C4110T.

Otvoreno podrzava razvoj slobodnog softvera i deo je razvojnog tima viSe pro-
jekata otvorenog koda od kojih su najznacajniji Fedora Project i PyTorch.

Novi Sad, 2021. Nemanja MiloSevié

Univerzitet u Novom Sadu
Prirodno-matematicki fakultet
Kljuéna dokumentacijska informacija

Redni broj:

RBR
Identifikacioni broj:
IBR

Tip dokumentacije:
TD

Tip zapisa:

TZ

Vrsta rada:

VR

Autor:

AU

Mentor:

MN

Naslov rada:

NR

Jezik publikacije:

JP

Jezik izvoda:

JI

Zemlja publikovanja:
P

Monografska dokumentacija
Tekstualni stampani materijal
Doktorska disertacija
Nemanja Milo3evic¢

dr Milos Rackovié

Negativno duboko ucenje
engleski
srpski/engleski

Srbija

Uze geografsko podrudje: Vojvodina

UGP

170 KLJUCNA DOKUMENTACIJSKA INFORMACIJA

Godina: 2021

GO

Izdavad: autorski reprint

4

Mesto i adresa: Novi Sad, Trg D. Obradovi¢a 4

MA

Fizi¢ki opis rada: 13/206 (xxvi + 180)/91/31/20/0/14

(broj poglavlja/strana/lit. citata/tabela/slika/grafika/priloga)

FO

Naucna oblast: Racunarske nauke

NO

Naucna disciplina: Masinsko ucenje

ND

Predmetna odrednica

PO

Kljucne reci: Vestacka inteligencija, Masinsko ucenje, Duboko
uCenje, Neuronske mreze, Konvolutivne neuronske
mreze, Robustnost, Robustnost neuronskih mreza,
Negativno ucenje

UDK

Cuva se:

cu

Vazna napomena:
VN

lzvod:

171

U danasnje vreme upotreba dubokog ucenja radi prepoznavanja
odredenih paterna u podacima postala je nezamenljiv alat u
mnogim sistemima. U kriti¢nim sistemima pogotovo, duboke neu-
ronske mreze se Cesto koriste Cak i u scenarijima koji direktno uticu
na nase zivote. Upravo to je razlog Sto se u poslednje vreme u
istrazivanju sve vise stavlja akcenat na duboko razumevanje ovih
modela i na modele koji su dokazano pouzdani, robusni i sigurni za
upotrebu.

U ovoj doktorskoj disertaciji istrazujemo negativne modele dubokog
masinskog ucenja kao novi pristup razvoju modela sa visokim per-
formansama i jos vaznije sa pove¢anom robustnos¢u i pouzdano$¢u
u poredenju sa modelima danasnjice. Takode se bavimo nadograd-
njama postoje¢ih modela sa nasim negativnim pristupom i pokazu-
jemo kako se postojeéi modeli mogu unaprediti bez velikih promena
u arhitekturi.

Kod modela za klasifikaciju slika (danas najrasprostranjenija pri-
mena dubokih konvolutivnih neuronskih mreza) pokazacemo kako
se ovi modeli mogu nadograditi i izmeniti kako bi u obzir uzimali
i negativne osobine — one osobine koje znamo da postoje a nisu
trenutno prisutne u ulaznim podacima.

Za sve modele predstavljene u ovoj disertaciji bie prikazana duboka
analiza procesa kao Sto su negacije osobina, negativne aktivacione
funkcije, zamrzavanje slojeva neuronskih mreza, transfer znanja iz
jedne mreze u drugu, fine-tuning pristup treniranju, inverzije kon-
volutivnih filtera i drugo.

172

V4

KLJUCNA DOKUMENTACIJSKA INFORMACIJA

Dodatno znanje, u obliku negativnog znanja, moze biti veoma
bitan faktor u ucenju i kreaciji modela koji imaju poveanu pre-
ciznost, pouzdanost i robustnost, pogotovo u teskim situacijama.
DefiniSemo teske situacije kao one situacije u kojima je model
suoCen sa podacima koji su izmenjeni ili tezi za razumevanje na
neki nacin, bilo na prirodan nacin ili vestacki nac¢in. Na primer,
modeli predstavljeni u ovom radu su testirani u sluc¢ajevima parci-
jalnih ulaza i okluzija gde su delovi ulaznih podataka odstranjeni ili
zaklonjeni na neki nacin. Negativni modeli u ovakvim situacijama
imaju znatno viSe performanse u poredenju sa obi¢nim, tradicional-
nim modelima iste arhitekture. Za vestacki generisane situacije,
govoricemo o adversarijalnim mrezama, podacima i napadima i
kakve su performanse nasih negativnih modela kada se suoce sa
takvim podacima. Testirani su black-box i white-box adversarijalni
napadi i odabrani su oni napadi koji danas predstavljaju najnapred-
nije moguce metode za namerna kvarenja modela dubokog ucenja.
U ovoj disertaciji takode uvodimo pojam mreze sinergije, koja pred-
stavlja spoj normalne i negativhe mreze i kao takva se moze ko-
ristiti i primeniti na bilo koji postoje¢i model. U sinergiji deo
mreze ili cela mreza se dodaje na postoje¢i model u kombinaciji
sa odredenim modifikacijama kako bi se ukljucilo negativno duboko
ucCenje. Pokaza¢emo da ovakvi modeli imaju jos$ vise performanse u
poredenju sa negativnim modelima i eksperimentisaéemo sa raznim
nacinima spajanja mreza. Model sinergije ¢e biti testiran na Cl-
FAR10 skupu podataka dok su negativni modeli razvijani i testirani
na MNIST i EMNIST skupovima podataka.

Na kraju, govoricemo o modelima koji koriste "pravo" negativno
ucenje, a to su oni modeli koji koriste samo negativno znanje za
uCenje. Bice dat prikaz postojecih slicnih modela kao sto su Neg-
ative Sampling modeli, Noisy Label Classification modeli i modeli
koji koriste Noise Contrastive Estimation. Nas fokus je na dva mod-
ela za koje ¢emo predloziti i implementirati nadogradnje a to su:
negativna Deep Q-Learning agentska neuronska mreza i negativna
sijamska Triplet Loss mreza. Oba ova modela mogu biti koris¢ena
uz pomo¢ samo negativnih podataka, u nekim slu¢ajevima za pot-
puno treniranje a u nekim slucajevima kao vid regularizacije.

Datum prihvatanja teme od strane

Senata:

25.06.2020.

173

DP
Datum odbrane:
DO
Clanovi komisije:
(Naucni stepen/ime i prezime/zvanje/fakultet)

KO
Predsednik: dr Srdan Skrbi¢, redovni profesor,

Univerzitet u Novom Sadu, Prirodno-matematic¢ki fakultet
Mentor: dr Milo$ Rackovié, redovni profesor,
B Univerzitet u Novom Sadu, Prirodno-matematicki fakultet
Clan: dr Milos Radovanovi¢, profesor,
. Univerzitet u Novom Sadu, Prirodno-matematicki fakultet
Clan: dr Jelena Slivka, docent,
B Univerzitet u Beogradu, Fakultet tehnickih nauka
Clan: dr Vladimir Lond&ar, nauéni saradnik,

Institut za fiziku, Zemun

University of Novi Sad
Faculty of Science
Key Words Documentation

Accession number:
NO

Identification number:
INO

Document type:
DT

Type of record:
TR

Contents code:
CcC

Author:

AU

Mentor:

MN

Title:

TI

Language of text:

LT

Language of abstract
LA

Country of publication:

CpP

Locality of publication:

LP

Monograph documentation
Textual printed material
Doctoral dissertation
Nemanja MiloSevic¢

Dr. Milo$ Rackovi¢

Negative Deep Learning
English

Serbian/English

Serbia

Vojvodina

176 KEY WORDS DOCUMENTATION

Publication year: 2021

PY

Publisher: Author's reprint

PU

Publ. place: Novi Sad, Trg D. Obradovica 4
PP

Physical description: 13/206 (xxvi + 180)/91/31/20/0/14
(no. chapters/pages/bib. refs/tables/figures/graphs/appendices)
PO

Scientific field: Computer Science

SF

Scientific discipline: Machine Learning

SD

Subject/Key words: Artificial Intelligence, Machine Learning, Deep Learn-

ing, Neural Networks, Convolutional Neural Networks,
Robustness, Neural Network Robustness. Negative

Learning
SKW

ucC

Holding data:
HD

Note:

N

Abstract:

177

In recent times the use of Deep Learning as a tool for pattern
recognition and more has become essential for many tasks. In crit-
ical systems specifically these models are often used in human life
affecting environments and that is the reason for new and recent
research regarding these models and and their robustness and reli-
ability.

In this thesis we explore negative deep learning as a new approach
to developing models which have higher performance and more im-
portantly increased robustness compared to normal models used
today. Moreover we show how many existing models can be up-
graded to employ some kind of negative deep learning without large
architectural changes.

We will discuss how image classification neural networks (most
popular use case of the convolutional neural network family) can
be modified to take into consideration missing (negative) features
from input samples when making their decisions.

We provide deep explanation of the feature negating process, exper-
imenting with different activation functions, neural network layer
freezing, Transfer Learning and Fine Tuning approaches, convolu-
tional kernel inversions and more.

178

AB

KEY WORDS DOCUMENTATION

We show that by employing this additional knowledge we create
models with increased robustness, especially in difficult scenarios.
We define difficult scenarios as those which are naturally or ar-
tificially difficult for modern neural networks. For example, we
benchmark our models in the cases of partial input examples and
occlusion against normal models of same architecture to show our
modifications bring performance and robustness is this type of clas-
sification tasks. For artificial scenarios, we show that our models are
less susceptible to adversarial attacks, both white-box and black-
box. We test with state-of-the-art adversarial algorithms and see
various level of improvements for different attacks and datasets
(MNIST, EMNIST variants).

In this thesis we also introduce the notion of a Synergy model, a
model which is a pure upgrade of any neural network model where
additional model, or part of it, is appended with the negativity
embedded into the underlying signal processing. We show that
the Synergy models can generally outperform our negative models
without any performance penalty when comparing to normal mod-
els. We also experiment with different state-of-the-art Ensemble
network joining methods and show how they differ in implementa-
tion effort and performance. The synergy models is tested against
more complex CIFAR10 dataset and its adversarial modifications,
both human and artificial.

Lastly we mention true negative deep learning models, which are
those which use only negative knowledge for learning. An overview
of existing models is provided including Negative Sampling, Noisy
Label Classification and Noise Contrastive Estimation. We focus on
two models for which we provide upgrades and implementations: a
negative Deep Q-Learning agent in a Deep Reinforcement Learning
Task and a negative-only Siamese Triplet Loss network. Both these
models, we show, can be used in a negative-only scenarios, some
for regularization purposes, some for complete training.

Accepted on Senate: 25.06.2020.

AS
Defended:
DE

Thesis Defend Board:
(Degree/first and last name/title/faculty)

DB

President:

Mentor:

Member:

Member:

Member:

179

Dr. Srdan Skrbi¢, full professor,

University of Novi Sad, Faculty of Sciences

Dr. Milos Rackovié, full professor,

University of Novi Sad, Faculty of Sciences

Dr. Milos Radovanovi¢, professor,

University of Novi Sad, Faculty of Sciences

Dr. Jelena Slivka, assistant professor,

University of Novi Sad, Faculty of Technical Sciences
Dr. Vladimir Loncar, research associate,

Institute of Physics, Zemun

Osaj Obpaszay uunu cacmagnu 0eo O0OKmMoOpcKe oucepmayuje, 0OHOCHO
O0OKMOPCKO2 YMEeMHUUKO2 npojekma Koju ce opanu na Ynusepsumemy y Hoeom
Caoy. Ilonywen Obpasay ykopuuumu uza mekcma OOKMOpPCKe
oucepmayuje, 0OHOCHO OOKMOPCKO2 YMEMHUUKO2 NPOojeKma.

[Inan Tpermana nojgaTaka

Ha3zuB npojexkra/mcrpakuBama

HeratuBHo ny6oko yueme (Negative Deep Learning)

Ha3uB MHCTUTYIIMje/MHCTUTYHja Y OKBHPY KOjUX Ce CIIPOBO/IM HCTPAKNBAH:€

a) [TpuponHo-maTemaruuky axynrer, Yausepsuretr y Hoom Can

Ha3uB nporpamMa y 0KBUpPY KOT Ce peajiu3yje HCTPaKUBame

1. Onuc mogaraka

1.1 Bpcra ctymuje
VY 0BOj CTY/IMjH HUCY NIPUKYIIJbAHH TIOJIALIH.

2. Ilpukyn/bame nogaTaka

3. Tperman nogaraka u npareha fokymenranuja

4. Be30eHOCT MOJATAKA M 3aIITHTA NOBEP/bUBHX HHpOpPMALHja

5. locTynHOCT nmoaaTaka

6. Y1ore u 0AroBOpHOCT

Haunonanan TIOpTajl OTBOPEHE HAayKe — open.ac.rs -

	Preface
	Rezime
	Abstract
	I Introduction
	1 Goals and Contributions of this Thesis
	1.1 Goals and Motivation
	1.2 Contributions
	1.3 Realization Plan
	1.4 Note on Related Work Sections

	2 Artificial Intelligence: A Brief Overview
	2.1 History of Artificial Intelligence
	2.2 Neural Networks Modern Hardware Development
	2.3 Modern Machine Learning
	2.4 Deep Learning and its Common Uses
	2.5 Deep Neural Networks
	2.6 Convolutional Neural Networks
	2.6.1 Convolutional Kernels
	2.6.2 ImageNet

	2.7 Recurrent Neural Networks
	2.7.1 Modern RNNs, Memory and Attentive Models

	2.8 Generative Models
	2.8.1 Adversarial Learning
	2.8.2 Deep Reinforcement Learning

	2.9 Future of Deep Learning and Towards AGI
	2.10 Modern Neural Network Concepts
	2.10.1 AutoML
	2.10.2 Transformers
	2.10.3 Federated Learning

	II Negative Learning
	3 Introduction to Negative Learning
	3.1 Reasoning and Possible Benefits of Negative Learning Techniques
	3.2 Policy-based Algorithms and Negative Learning
	3.3 Negative Learning in Other Algorithms

	4 Negative Deep Learning
	4.1 Negative Deep Learning – Introduction
	4.2 Possible Models of Negative Deep Learning
	4.2.1 Missing Features
	4.2.2 Partial Input Sample Training
	4.2.3 Negative Output Learning
	4.2.4 Ensemble Networks and Upgrades of Existing Models
	4.2.5 Agent Environments

	4.3 Negative Deep Learning Use Cases
	4.3.1 Neural Network Robustness
	4.3.2 Negative Neural Networks for Regression Tasks
	4.3.3 Other Uses

	III Classification Based On Missing Features
	5 Introduction
	5.1 Intuition Behind Missing Feature Representations
	5.2 Robustness of Image Classifiers
	5.2.1 Partial Input Classification

	6 Implementation
	6.1 PMNIST Dataset
	6.2 Used Model Architecture
	6.3 The Negative Function
	6.3.1 Missing vs. Negative Features
	6.3.2 Activation Function Experiments
	6.3.3 Influence of the Negative Function in Forward and Backward Passes
	6.3.4 Negative Feature Selection Process

	6.4 Training Process
	6.4.1 Multi-phase Training

	7 Testing
	7.1 Results on the MNIST and PMNIST Datasets
	7.1.1 Note About Model Choice
	7.1.2 Summary of the First Experiments
	7.1.3 Influence of Multiple-step Training
	7.1.4 Negative Convolutional Kernel Experiments
	7.1.5 Other Activation Functions
	7.1.6 Corner Occlusions

	7.2 Robustness to Adversarial Attacks
	7.2.1 White-box Attacks (Fast Gradient Sign Method Attack on the Negative Models)
	7.2.2 Black-box Attacks: Black Box Projected Gradient Descent Attack on the Negative Models

	IV Synergy of Traditional Classification, and Classification Based On Missing Features
	8 Overview of Ensemble Learning Techniques
	9 Synergy model
	9.1 The Need for Ensemble "Synergy" Models
	9.2 Model Description
	9.3 Model Architecture
	9.3.1 Negating The Features
	9.3.2 Shortcomings of Previous Model

	9.4 Training Processes
	9.4.1 Synergy Network
	9.4.2 Other New Models

	9.5 Results and Discussion
	9.5.1 Testing with More Complex Models
	9.5.2 Testing with Partial Input Samples

	9.6 Different Network Joining Techniques
	9.6.1 Addition
	9.6.2 Multiplication
	9.6.3 Separate Join Model Approach
	9.6.4 Neural Network Fusion in Multi-Modal Systems

	9.7 Synergy Robustness to Adversarial Attacks
	9.7.1 White-box attacks: Fast Gradient Sign Method Attack on the Synergy Models
	9.7.2 Black-box attacks: Black Box Projected Gradient Descent Attack on the Synergy Models
	9.7.3 Other Attacks

	9.8 Summary and Conclusions for the Synergy Models

	V True Negative Deep Learning
	10 Goals, Motivation and Implementations
	10.1 Gradient Ascent Variation
	10.2 Negative Sampling
	10.3 Noisy Label Classification
	10.4 Noise Contrastive Estimation Models

	11 Siamese Neural Networks and Our Upgrades
	11.1 Negative Learning with Triplet Loss Function and our Modifications
	11.2 Initial Experiments and Results of our Approach

	12 Negative Deep Reinforcement Learning
	12.1 Motivation and Use-cases
	12.2 Deep Q Learning
	12.3 Negative Rewards and Punishments
	12.3.1 Collision Avoidance in Open Environments with Negative Deep Reinforcement Learning
	12.3.2 Implementation

	13 Thesis Conclusions and Future Work

	VI Appendices
	14 Source Code and Reproducibility
	Bibliography
	Prošireni izvod
	Short Biography
	Kratka biografija
	Ključna dokumentacijska informacija
	Key Words Documentation

