Универзитет у Београду Машински факултет

Ненад З. Милошевић

Примена стереометријске методе мерења деформације на одређивање дијаграма стварни напон – стварна деформација хетерогених заварених спојева

докторска дисертација

Београд, 2021.

University of Belgrade Faculty of mechanical engineering

Nenad Z. Milošević

Application of stereometric deformation measurement method to assessment actual stress - strain diagram of heterogeneous welded joints

Doctoral Dissertation

Belgrade, 2021.

Ментор:

Проф др. Александар Седмак, професор емеритус Универзитет у Београду, Машински факултет

Комисија:

 Проф др. Александар Седмак, професор емеритус Универзитет у Београду, Машински факултет
Проф др. Радица Прокић Цветковић, редовни професор Универзитет у Београду, Машински факултет
Проф др. Гордана Бакић, редовни професор Универзитет у Београду, Машински факултет
Проф др. Вукић Лазић, редовни професор Универзитет у Крагујевцу, Машински факултет
Др. Игор Мартић, научни сарадник
Иновациони центар Машинског факултета у Београду

Захвалница

Прво бих желео да се захвалим колегама са Катедре за Технологију материјала, а пре свега професоркама Гордани Бакић, Радици Прокић Цветковић и Оливери Поповић на великој помоћи током усавршавања, рада на факултету и формирања ове дисертације. Такође желим да се захвалим колегама Братиславу Рајичићу и Александру Масларевићу на несебичној подршци.

Захвалио бих се и проф Вукићу Лазићу на помоћи током израде ове дисертације.

Такође, желим да се захвалим колегама Милошу Милошевићу, Милану Травици, Исааку Трајковићу и Горану Младеновићу на помоћи током припреме и извођења експеримента.

Овом приликом желим да се захвалим својој породици на свој пруженој подршци током одрастања и школовања. Захвалио бих се свом оцу који ме је увео у свет заваривања и својој мајци што није одустала од намере да упишем факултет и поред свих потешкоћа. Брату Ивану хвала за савете и пружену подршку. Захвалио бих се својој сестри која је увек била права подршка и ослонац. Мацо, пуно ти хвала за све!

Захвалио бих се и проф Андрији Миловановићу, који више није са нама а који је много допринео развоју мог критичког начина размишљања и самопоуздања.

Мојој Драгани велико хвала за сву пружену љубав и подршку као и за то што је учинила да ми писање ове дисертације буде изводљиво!

На крају, желим да се завалим свом ментору проф Александру Седмаку, који ми је током студирања био попут оца и без чије помоћи много тога не би било могуће. Професоре, много вам хвала за све што сте урадили за мене!

Михаилу и Лазару...

Примена стереометријске методе мерења деформације на одређивање дијаграма стварни напон – стварна деформација хетерогених заварених спојева

Резиме

Одређивање стварног дијаграма напон-деформација представља вишедеценијски проблем јер методе одређивања деформација, по све три осе, у реалном времену тек од недавно представљају реалност научног испитивања. Напретком оптичких метода за одређивање деформација, приликом испитивања затезањем дошло се до могућности мерења деформација узорка у реалном времену. Ову могућност је обезбедила примена стереометријског начина мерења деформација. Дакле применом две камере и софтверских пакета за обраду добијених резултата, коначно постоји прилика да се одреди стварни дијаграм затезања тј. стварни дијаграм напон-деформација. У оквиру ове дисертације приказана је методологија одређивања стварног дијаграма напондеформација за "undermatching" заварени спој, на мартензитном челику. Коришћена је корелација дигиталних слика (DIC) и метода коначних елемената (FEM) уз употребу софтверских пакета *Aramis* и *Abaqus*.

Дијаграм затезања који се најчешће користи назива се "инжењерски дијаграм", јер напони и деформације који су представљени на њему нису стварни тј. добијени су употребом формула које важе само до тренутка када на епрувети почне стварање "врата". Поред овог дијаграма често се користи и "стварни" дијаграм затезања, који се добија употребом коригованих формула којима је израчунат инжењерски дијаграм. Ни овај приступ не даје тачне вредности напона нити деформација јер не узима у обзир сужење епрувете и локалне промене димензија као ни концентрацију напона која се јавља на месту сужења. У оквиру ове дисертације, размотрен је приступ да троосно стање напона, које се јавља након стварања "врата", доводи до пораста напона ком је епрувета изложена и представљен је начин добијања потребних параметара за одређивање стварног дијаграма који узима у обзир и концентрацију напона на месту сужења која је, како ће се испоставити, доминантан параметар за пораст напона поред смањења површине попречног пресека епрувете. Представљена напонска анализа је урађена тако да нема утицаја основних и додатних материјала на добијене резултате напона. Може се закључити да је предложена метода погодна за одређивање параметара чврстоће и код осталих типова заварених спојева као и основних материјала у инверзном поступку. Дакле, приликом испитивања материјала код којих нису познате почетне вредности потребних димензија ("overmatching" заварени спојеви или основни материјали), може се установити инверзна метода преко мерења крајњих димензија и израчунавања почетних, чиме би се добиле све потребне димензије за употребу предложене методе.

Кључне речи: Стварни дијаграм напон-деформација, "undermatching" заварени спој, челик Р91, Armox 500T, DIC и FEM анализа

Научна област: Технологија материјала

Ужа научна област: Заваривање

УДК број: 621.791.052:539.4(043.3)

Application of stereometric deformation measurement method to assessment actual stress - strain diagram of heterogeneous welded joints

Abstract

Determining the actual stress-strain diagram is a decades-long problem, because real-time strain determination methods on all three axes have only recently become a reality of scientific testing. Advances in optical methods for determining strains during tensile testing have made it possible to measure sample strains in real time. This possibility was provided by the application of the stereometric method for strain measurement. Therefore, by applying two cameras and a software package for processing the obtained results, we are finally able to determine the actual tensile diagram, ie. Actual stress-strain diagram. This disertation presents the methodology for determining the actual stress-strain diagram for undermatching welded joints on martensitic steel. Used methods are digital image correlation (DIC) and FEM with software packages Aramis and Abaqus.

The tensile diagram which is commonly used is called an engineering diagram, because the stresses and strains presented are not true, ie. they are obtained using formulas that are valid only until cross section of the specimen begin to change, necking of the sample ocurs. In addition to the engineering diagram, there is also a 'true' diagram obtained by using corrected formulas. This principle to, does not provide true results because it does not take into account the reduction of cross section and stress concentration that occurs at the necking site of the specimen. This disertation considered an approach that the triaxial stress state that occurs after the formation of the neck leads to an increase in the stress to which the specimen is exposed and presented a method of obtaining the necessary parameters for determining the actual diagram, which includes the stress concentration at the necking site of the specimen. The presented stress analysis was done so that there is no influence of basic and filler materials on the obtained results of stresses. It can be concluded that the proposed method is suitable for determining the strength parameters in other types of welded joints as well as basic materials in the inverse process. Therefore, when testing materials for which we do not have initial values of required dimensions (overmatching welded joints or basic materials), we can establish an inverse method by measuring the final dimensions of the sample and calculating the initial ones, which would give all the necessary dimensions for using the proposed method.

Key words: Actual stress-strain diagram; Undermatching welds; Steel P91; Armox500T, DIC and FEM analysis

Scientific area: Material science and welding

Садржај

1.	Уво	од		15
	1.1.	Зав	аривање мартензитних челика	
	1.1	.1.	Заваривање челика X 10 CrMoVNb 9-1 (X10)	
	1.1	.2.	Заваривање панцирног челика Armox 500T	21
	1.2.	3ac	остали напони	22
2.	Me	рењ	е деформација	24
	2.1.	Сте	ереометрија	24
	2.2.	Кој	селација дигиталне слике (<i>DIC</i>)	25
3.	Сте	варн	и дијаграм напон – деформација	
	3.1.	Ана	алитичко одређивање стварне криве напон-деформација	
	3.2.	Hy	меричко одређивање – МКЕ	
4.	. Експеримент			
	4.1.	Зав	аривање и ИБР	
	4.2.	Пр	ипрема епрувета	44
	4.3.	По	ставка експеримента	46
5.	Рез	улт	ати	
	5.1	Епј	рувета <i>Р1-1</i>	50
	5.2	Епј	рувета <i>Р1-2</i>	60
	5.3	Епј	рувета <i>Р1-3</i>	65
	5.4	Епј	рувета <i>Р2-1</i>	70
	5.5	Епј	рувета <i>Р2-2</i>	76
	5.6	.6 Епрувета Р2-3		
	5.7	Епј	рувета <i>Р2-4</i>	
	5.8	Епј	рувета <i>С1-1</i>	97
	5.9	Епј	рувета <i>С1-3</i>	
	5.10	E	прувета С1-5	
	5.11	E	прувета <i>С2-3</i>	
	5.12	A	нализа преломних површина	
	5.1	2.1	Епрувета <i>С1-1 (SEM</i>)	
	5.1	2.2	Епрувета <i>С1-5 (SEM</i>)	
	5.1	2.3	Епрувета <i>Р1-3 (SEM</i>)	
	5.1	2.4	Епрувета <i>Р2-3 (SEM</i>)	
6.	Ди	скус	ија и закључак	
7.	Пр	илоз	и уз текст	
8.	Спи	асак	слика	

9.	Списак табела	. 139
10.	Литература	.140
Бі	иографија аутора	. 147
И	зјава о ауторству	.149
И	зјава о истоветности штампане и електронске верзије докторског рада	.151
И	зјава о коришћењу	.153

1. Увод

Велики део конструкција у свим гранама индустрије представљају заварене конструкције. Заваривање је најефикаснији начин спајања два метала без непотребног нагомилавања масе на месту споја. Иако веома развијена грана, заваривање се и данас суочава са изазовима приликом спајања одређених врста метала. Овоме доприноси и чињеница да се нови челици тј. нове легуре метала развијају непрестано са циљем да се добије што већа чврстоћа, као и други специфични захтеви, са што мањом масом и ценом. Поред развоја нових легура такође се развијају и нови композитни материјали који своја добра својства показују у правцу који је потребан за пренос оптерећења, док је остатак попуњен матрицом која све држи на окупу и по правилу има таква својства да што мање утиче на напонско стање и укупну цену материјала. Развијене су многе методе које доприносе бољој заварљивости тешко заварљивих метала и легура. Произвођачи уређаја за заваривање константно налазе нове начине да побољшају параметре битне за извођење завареног споја као и да у што већој мери елиминишу утицај заваривача на коначан квалитет споја.

Приликом заваривања материјал трпи огромне термичке шокове. Пре почетка заваривања материјал има температуру околине, а онда се у веома кратком временском интервалу његова температура промени до температуре топљења, а већ у наредном тренутку (услед удаљења извора заваривања) температура материјала је пала испод солидус линије, тј. материјал је поново у чврстом стању и топлоту великом брзином предаје околном ваздуху. Због овако великих температурских осцилација, у материјалу долази до структурних промена као и до формирања заосталих напона. Структурне промене су у великој мери познате и могу се предвидети са великом прецизношћу што није случај са заосталим напонима. Наиме, иако се структурне промене могу детектовати (а и предвидети) њихов утицај на расподелу напона и деформације није једнозначно одређен. Слична је ситуација и код заосталих напона. Код једноставних случајева, као што је заваривање плоче чији су крајеви слободни тј. не укљештени, може се предвидети карактер заосталих напона. Њихов интензитет је познат и може се одредити да ли се они суперпонирају са радним напонима или су другачијег знака па се поништавају. Ситуација се компликује када се у разматрање уведу и везе којима је плоча ограничена. Уколико се посматра плоча (профил) у конструкцији коју треба заварити са неком другом плочом или профилом, на карактер и интензитет заосталих напона ће поред термичких промена и веза једне плоче утицати и термичке промене и везе које се односе на другу плочу. Ово у многоме компликује предвиђање и одређивање карактера и интензитета заосталих напона у материјалу.

Одређивање утицаја структуре и заосталих напона на дијаграм напон-деформација истовремено може довести до погрешног тумачења резултата па је боље то извести одвојено. Другим речима, при анализи утицаја структурних промена тј. утицаја различитих области завареног споја, са другачијом структуром, на расподелу напона и деформације по завареном споју у целини, треба на неки начин искључити утицај заосталих напона. Ово се може извести жарењем ради уклањања заосталих напона пре самих испитивања, мада се заостали напони неће у потпуности уклонити или употребом аустенитног додатног материјала који обезбеђује релаксацију материјала и не захтева накнадну термичку обраду. Свакој термичкој обради након заваривања треба приступити са великим опрезом јер постоји могућност да накнадна термичка обрада доведе до погоршања механичких карактеристика споја што свакако није циљ.

Накнадна термичка обрада је обавезна код заваривања мартензитних челика предвиђених за рад на повишеној температури, тј. челика отпорних на пузање, када се они заварују додатним материјалом (ДМ) сличног хемијског састава. Челик *X 10 CrMoVNb 9-1 (X10*) коришћен је у овој дисертацији као представник мартензитних челика отпорних на пузање. Ови челици се по правилу заварују ДМ који обезбеђује да метал шава (МШ) има готово иста својства као и основни материјал (ОМ). Челици отпорни на пузање се могу заваривати и аустенитним додатним материјалом али тада долази до смањења временске чврстоће МШ па се овај начин заваривања користи искључиво у застојима како би се обезбедио рад елемента до следећег, планираног, ремонта. Пошто је циљ ове дисертације анализа напонско-деформационог поља тј. одговора материјала на примењено оптерећење, у сврху искључења заосталих напона из анализе, челик *X10* је заварен комбинацијом аустенитних ДМ.

Поред мартензитног челика отпорног на пузање (*X10*) у оквиру ове дисертације урађена је и напонско-деформациона анализа још једног мартензитног, панцирног челика *Armox 500T*.

Панцирни челици морају да испуне веома строге захтеве. Поред веома високе тврдоће и чврстоће ови челици морају поседовати и завидну жилавост како би обезбедили непробојност. *Armox 500T* је челик коришћен у овој дисертацији, првенствено јер поседује мартензитну структуру а заварује се феритним или аустенитним ДМ. При заваривању аустенитним ДМ, добија се МШ ниже чврстоће али веће жилавости која обезбеђује да се спој изведе без појаве прслина, а и са што мањим заосталим напонима. При изради возила и других објеката од овог челика, заварени спојеви се постављају у области са мањим напонима како се не би прекорачила затезна чврстоћа или граница течења МШ.

У оквиру анализе у овој дисертацији, иако веома различити, поменути материјали су заварени истим: поступцима, параметрима као и истом комбинацијом ДМ и без накнадне термичке обраде.

Напонско – деформациона анализа заварених конструкција најчешће се ради применом методе коначних елемената, јер је могуће анализирати комплетну конструкцију и тако увидети која су критична места која се касније могу детаљно анализирати. Приликом нумеричког моделирања конструкције један од најважнијих фактора, за добијање прецизних резултата, је свакако материјал конструкције, тј. његове механичке карактеристике које се уносе у модел. Представљање механичких карактеристика материјала, у погледу чврстоће, најједноставније је путем дијаграма затезања, тј. дијаграма напон – деформација. Стандардне методе одређивања дијаграма затезања као резултат дају инжењерски а не стварни дијаграм. Разлика између ова два дијаграма је у томе што се код конструисања инжењерског дијаграма за израчунавање напона током целог експеримента користи почетна димензија попречног пресека епрувете, а за израчунавање деформације се користи почетна дужина мерног дела епрувете. Овакав приступ не даје реалну слику јер се на епрувети током испитивања мењају димензије попречног пресека и дужине, а по достизању максималне силе оне су видљиве и голим оком у виду "врата" на епрувети. Поред тога, приликом анализе заварених конструкција, механичке карактеристике зона завареног споја се одређују одвојено без анализе међусобног утицаја ових зона. Овако добијене вредности не представљају реално понашање заварене конструкције.

У овој дисертацији је направљена анализа међусобног утицаја зона завареног споја на понашање завареног споја у целини, због чега су и изабрани спојеви са великим разликама у чврстоћи ОМ и МШ, као и конструисање дијаграма стварни напон – стварна деформација. Овако добијени дијаграми представљају стварну чврстоћу завареног споја јер поред смањења површине попречног пресека епрувете узимају у обзир и концентрацију напона која се јавља на месту сужења па и троосно стање напона.

Циљ одрећивања стварних дијаграма је, поред потребе за познавањем стварних вредности чврстоће завареног споја и укључивање стварних параметара у прорачун. Ово је посебно оправдано уколико се има у виду да се за прорачун и димензионисање делова који су изложени другим врстама оптерећења (не затезању) користе параметри чврстоће материјала добијени затезањем. Ако се има на уму то да различите врсте оптерећења доводе до различитих врста деформације, лако се може закључити да специфичност која се јавља код затезања (стварање врата на епрувети) неће бити присутна код свих типова оптерећења. Узимањем инжењерских вредности чврстоће у прорачунима за друге врсте оптерећења врши се предимензионисање елемената, а ако се зна да се у прорачун укључује и степен сигурности, лако се може закључити да је предимензионисаност елемената велика. Поред овога, познато је да се материјал који је претрпео локално пластично деформисање другачије понаша од почетног материјала тј. показује више вредности чврстоће (ојачање пластичном деформацијом). Можда материјал услед пластичне деформације није ојачао већ је почетна вредност чврстоће нетачна. Уколико се одреди тачна вредност чврстоће материјала она се неће мењати, већ ће долазити до утицаја деформације на начин израчунавања чврстоће чија ће максимална вредност бити позната.

1.1. Заваривање мартензитних челика

Заваривање мартензитних челика је широк појам. При даљем разматрању ове теме мора се увести подела у зависности од намене челика и начина на који је обезбеђена мартензитна структура. У оквиру ове дисертације, анализиран је челик отпоран на пузање *X 10 CrMoVNb 9-1 (X10)* и панцирни челик *Armox 500T*.

1.1.1. Заваривање челика *X 10 CrMoVNb 9-1 (X10)*

Челик *X10* је високолегирани мартензитни челик отпоран на пузање до 600°С. Хемијски састав овог челика приказан је у табели 1, а механичке карактеристике у табели 2.

ТАБЕЛА 1. ХЕМИЈСКИ САСТАВ ЧЕЛИКА Х101

С	0.08 – 0.12
Mn	0.3 – 0.6
Р	max 0.02
S	max 0.005
Si	0.2 – 0.5
Ni	max 0.4
Cr	8.0 – 9.5
Мо	0.85 – 1.05
Си	max 0.3
V	0.18 – 0.25
Ti	max 0.01
Zr	max 0.01
Al	max 0.02
Ν	0.03 - 0.07
Nb	0.06 - 0.1

Табела 2. Механичке карактеристике челика Х101

R _{p0.2} [MPa]	450
R _m [MPa]	630 - 830
A [%]	<i>min 19</i>
KV []] (-20°C)	27

Хемијски састав је специјално дизајниран како би обезбедио добру заварљивост и производност као и оптималне механичке карактеристике за отпорност на пузање.

Примена специјалне технике производње пружа овом челику побољшане карактеристике зоне утицаја топлоте при испитивању жилавости.

Контролисан, низак садржај угљеника пружа задовољавајућу заварљивост цеви и судова под притиском при производњи, док истовремено пружа висок допринос отпорности на пузање. Контрола удела осталих легирајућих елемената као што су азот и алуминијум такође доприноси побољшању карактеристика отпорности на пузање, што је првобитно постигнуто кроз његову снажну мартензитну структуру. [1-3]

¹ www.totalmateria.com

На слици 1, приказан је Шефлеров дијаграм за челик *X10*, са ког се види његова структура.

Слика 1. Шефлеров дијаграм за челик X10 [www.metallograf.de]

Добра временска чврстоћа може се постићи и додавањем одређених легирајућих елемената. У овом случају то је изведено додавањем 0,2% ванадијума, 0,06% ниобијума и 0,05% азота. Ови челици ојачавају при мартензитној трансформацији а додатно при таложењу карбида, нитрида и карбонитрида ниобијума и ванадијума. [1]

Резање челика *X10* као припрема за заваривање може бити изведена плазма поступком или другим прикладним поступком. Треба посебно обратити пажњу на унос водоника у материјал, било преко гаса за резање или из атмосфере.

Резање одређеним изворима топлоте може довести до отврдњавања зоне утицаја топлоте у близини резне површине. Уобичајена пракса међутим не доводи до пораста кртости материјала, али даља обрада може довести до тога.

Не препоручује се употреба гасног резања оксиацетиленским пламеном због високог садржаја хрома који материјалу даје одређену отпорност према пламену.

Када термичка обрада није предвиђена у поступку производње, изводи се накнадна термичка обрада према параметрима који су наведени у сертификату основног материјала и препоручује се када хладна деформација прелази 5%. [4, 5] Додатни материјал за заваривање треба да буде што приближнијег хемијског састава са основним материјалом. Поред ове препоруке у оквиру ове дисертације заваривање ће бити извршено додатним материјалом потпуно другачијег хемијског састава, тачније комбинацијом аустенитних ДМ. Један од разлога је добијање веће хетерогености споја због поређења деформације и крутости, на дијаграму напон – деформација.

Предгревање треба вршити на минимално 200°С уз одржавање међупролазне температуре испод 325°С. Овде предгревање нема за циљ избегавање закаљивања материјала (јер је свакако мартензитне структуре) већ избегавање великих температурских шокова који могу довести до појаве прслина. Препоручени опсег уноса топлоте креће се између 1.0 и 2.0 [*kJ/mm*] како би се смањио ризик од појаве хладних и топлих прслина. Посебну пажњу треба посветити избегавању уноса водоника у зону заваривања. Такође треба посветити пажњу приликом израде привремених и помоћних прикључака или носача, да се и они изведу препорученим параметрима заваривања. [4, 5]

Термичка обрада након заваривања (ТОНЗ) треба да обезбеди уклањање заосталих напона уз истовремено избегавање пада механичких карактеристика испод минималних вредности прописаних стандардом. Ово је други разлог за употребу аустенитног ДМ. Приликом употребе аустенитних ДМ елиминише се потреба за ТОНЗ, јер висока жилавост аустенита доводи до релаксације заосталих напона па термичка обрада није потребна. [4, 5]

Као поступци заваривања коришћени су, у комбинацији, *TIG* и *E* поступак. *TIG* поступком је заварен корени пролаз (са додатним "топлим пролазом") а пролази попуне су изведени Е поступком. Ова комбинација је усвојена због своје погодности за заваривање али и због што приближнијег извођења са спојевима на цевоводима термоелектрана у застоју.

Заваривање овог челика пуњеним жицама захтева још већу пажњу пошто многе пуњене жице не пружају адекватну жилавост на температури од 20°С, а и ретко се користи код заваривања у застоју па није даље разматрано.

Техника заваривања је такође веома важна. Како су широки и равни спојеви најбољи, техника са благим њихањем и великом брзином заваривања треба да буде примењена. Удубљене спојеве треба избегавати. Надвишење шава не треба да прелази 3,2 mm, за ручно електролучно заваривање како би се поспешило отпуштање претходних пролаза.

1.1.2. Заваривање панцирног челика Armox 500T

Armox 500T је панцирни челик мартензитне структуре предвиђен за најоштрије услове рада. Ови челици поседују високу густину са одличним механичким својствима, тј. ултра висока чврстоћа и висока тврдоћа у комбинацији са добром жилавошћу успешно се одупиру продирању пројектила. [6]

Хемијски састав челика и његове механичке карактеристике приказани су у табелама 3 и 4.

Табе<u>ла З. Хемијски састав за</u> Armox 500T^{2,3}

С	max 0.32
Mn	max 1.2
Р	max 0.01
S	max 0.003
Si	max 0.4
Ni	max 1.8
Cr	max 1.0
Мо	max 0.7
В	max 0.005

Табела 4.	Механичке	КАРАКТЕРИ	СТИКЕ ЗА	Armox	500T ^{2,3}
Indufin I.	ITEM IIII IIIE	IUII IIII III III		minion	0001

$R_{p0.2}$ [MPa]	min 1250
R _m [MPa]	1450 - 1750
A50 [%]	min 10
HBW	480 - 540
KV [J] (-40°C)	min 20
E [GPa]	207

При заваривању ових челика може доћи до појаве прслина због чега треба обратити посебну пажњу на остваривање што прецизнијег и чистијег споја. Прецизност је важна са становишта смањења заосталих напона, а уклањање масноћа и осталих нечистоћа због формирања непожељних једињења која такође доводе до настанка прслина. [6]

Након припреме површина треба обратити пажњу на припајање. Наиме, током извођења припоја брзина хлађења је висока и то може довести до појаве хладних прслина. Због тога се у областима са великим укрућењима препоручује извођење припоја минимално 50 mm дужине. [7]

Имајући у виду да су ови челици подложни хладним прслинама, треба водити рачуна о унетој количини топлоте. Унета количина топлоте зависи од јачине струје, напона и брзине заваривања. Механичке карактеристике завареног споја код ових челика у великој мери зависе од количине унете топлоте, па се она израчунава на следећи начин:

$$Q = \frac{k \cdot U \cdot I \cdot 60}{V \cdot 1000} \tag{1}$$

Где су: *Q*- унета количина топлоте [*kJ/mm*], *k* – коефицијент провођења топлоте , *U* – напон [*V*], *I* – јачина струје [*A*], *V* – брзина заваривања [*mm/min*]. [7, 8]

Када се разматра склоност материјала ка образовању хладних прслина, неизоставно је израчунавање еквивалента угљеника. Еквивалент угљеника служи као показатељ склоности материјала, преко његовог хемијског састава, ка образовању хладних прслина.

² <u>www.totalmateria.com</u>

³ <u>www.ssabox.com</u>

Еквивалент угљеника за ове челике се израчунава преко формуле:

$$CET = C + \frac{(M_n + M_o)}{10} + \frac{(C_r + C_u)}{20} + \frac{N_i}{40}$$
(2)

Добијена вредност *CET* показује колика температура предгревања је неопходна, узимајући у обзир и дебљину ОМ, да не дође до појаве хладних прслина. Уколико се заваривање врши аустенитним ДМ, из препорука произвођача можемо закључити да предгревање, не треба вршити до дебљина ОМ од 65 mm након чега је препоручена минимална температура предгревања од 100°C. Ове препоруке се односе само на спојеве који су изведени са уносом топлоте од 1,7 [kJ/mm] или више. Уколико се заварује са мањим уносом топлоте, минималну температуру предгревања треба подићи за 25°C, тј. за дебљине до 65 mm, на 50°C. [7]

Поред минималне температуре предгревања, треба водити рачуна и о максималној температури предгревања и међупролазној температури. Максимална температура предгревања и међупролазна температура за *Armox 500T* износи 200°С. [7]

Дакле иако није вршено предгревање, водило се рачуна о међупролазној температури. Мерење температуре је извођено на удаљености 75 mm од осе шава у оба правца.

1.2. Заостали напони

Комплексни циклуси грејања и хлађења који се појављују код заварених спојева, доводе до формирања термичких напона и неједнаке тежње материјала ка деформисању у близини завареног споја. Након смањења топлотног циклуса заваривања, неједнака напрезања остају у материјалу изазивајући заостале напоне услед заваривања. [9] Термин заостали напон, користи се за напон који се налази у самом материјалу без примењеног спољашњег оптерећења. [10] Постоји више термина у литератури који имају слично значење као и заостали напони, неки од њих су: унутрашњи напон, иницијални напон, неодвојив напон, реакциони напон, укључени напон, итд. Када је у питању заваривање, заостали напон представља напон који се налази у материјалу, након заваривања и хлађења до собне температуре, без примене спољашњег оптерећења. [9]

Нумеричка анализа процеса заваривања захтева много рачунских корака због узастопних итерација између грејања и хлађења. Поред тога, анализа заваривања је локално јако нестационаран и нелинеаран проблем, због веома високе температуре у малој области близу покретног извора заваривања. Стога су постојеће методе анализе ограничене на моделе испитних узорака који имају десетине хиљада степени слободе. Због тога је за анализу проблема који укључују заваривање, стварне опреме, потребна метода прорачуна која се односи на велике заваривачке проблеме са стотинама хиљада степени слободе. [11] Постоје два основна механизма за објашњење заосталих напона насталих процесом заваривања, а то су: структурна неусклађеност и неравномерна расподела нееластичног деформисања која се састоји од пластичних и топлотних деформација. Заостале напоне преко структурне неусклађености је једноставно објаснити па ће фокус бити на томе. На слици 2 су приказана три челична штапа истих дужина и попречног пресека, који су спојени крутим блоковима на крајевима. Ако се средњи штап загреје до 600°С и остави да се охлади до собне температуре док на друга два штапа није примењено никакво топлотно оптерећење, пошто је дилатација средњег штапа спречена од стране других штапова, притисни напон се формира у средњем штапу док се у друга два штапа формира, супротни, затезни напон. Притисни напон у средњем штапу расте линеарно еластично услед загревања (АВ крива на слици), све до достизања напона гњечења матријала, након чега, услед појаве пластичне деформације, долази до смањења притисног напона услед релаксације (ВС крива). [9, 10]

Током хлађења, мења се карактер напона у средњем штапу и он прелази из притисног у затезни и наставља да расте поново на линеарно еластичан начин (CD крива) све до достизања напона течења (тачка D). Затим поново имамо нелинеарно пластично понашање (DE крива) до собне температуре, што доводи до затезног заосталог напона у средњем штапу а до притисног заосталог напона у другим штаповима, који су нивоа половине заосталог напона у средњем штапу. [9] Из дате анализе заосталих напона за овај једноставан случај може се видети колико процеса и промена карактера напона се

одвија унутар материјала при само једном циклусу загревања и хлађења. Лако се долази до закључка да је веома тешко одредити карактер и интензитет заосталих напона у оквиру заварене конструкције где се заварени спојеви готово увек изводе у више пролаза. Заостали напони у материјалу као и стварни напони могу се добити посредно, мерењем деформације материјала. Циљ ове дисертације није анализа заосталих напона јер до њихове релаксације долази у МШ јер је ДМ аустенитни те самим тим има одличну жилавост и својства пластичности која доводе до релаксације, ово само појашњава још један од разлога за употребу аустенитног ДМ у овој дисертацији.

2. Мерење деформација

Мерење деформација у инжењерској пракси се може вршити на више начина. Уопштена подела се може представити као подела на контактно мерење, тј. директно мерење (екстензометри, мерне траке...) и на безконтактно мерење употребом одговарајућих уређаја, углавном камера, и одговарајућег софтвера за обраду добијених резултата. Безконтактне методе испитивања се веома брзо развијају и постоји велики број начина испитивања базираних на истом принципу. Безконтактно испитивање деформација је погодно како за стандардну примену (израчунавање напона, чврстоће, итд.), тако и за нестандардне случајеве као што су испитивања без разарања (ИБР). Оптичка метода је изузетно корисна код ИБР-а због могућности брзог и безконтактног мерења, при испитивању великих површина или сићушних тачака у кратком временском интервалу, као и за мерење делова са комплексном геометријом код којих је мерење подједнако добро као и код равних плоча. Дисконтинуитети на самој површини или у њеној близини могу бити регистровани индиректно, мерењем објекта у неоптерећеном стању и за време и након оптерећивања. Накнадним поређењем ових мерења се добија увид у сам дисконтинуитет. Оптерећење може бити различито, од уноса топлоте (загревања), статичке силе оптерећивања, динамичког оптерећивања па до таласања гаса код ласерског заваривања. [12-16]

Безконтактно мерење је новији метод испитивања који је довео до значајног олакшања самог процеса испитивања. Ово се највише примећује ког испитивања сложених геометријских облика или великих и нестандардних модела које готово да није могуће испитати другом методом. Значајна је и могућност посматрања деформација на локалном нивоу тј. стварних а не осредњених вредности деформација. Ово је веома значајно ког анизотропних структура у које спадају и заварени спојеви који су предмет овог испитивања. [12]

2.1. Стереометрија

Стереометријско мерење деформација врши се у три координате. Расподела деформација елемената конструкције се може добити праћењем промена просторних компоненти деформације, односно одређивањем величина компонената тензора деформације (координатне осе). Координате изабраних тачака мреже се мењају због померања (деформисања) тих тачака. [17] На део елемента који ће бити сниман се наноси мрежа (растер), сачињен од црних мрљица на белој позадини. Софтвер препознаје различите нивое осветљености пиксела и меморише нанету мрежу као почетну. Стереометријско мерење померања односно деформација је од посебног значаја код хетерогених материјала као и на местима концентрације напрезања и деформација. Разлике на локалном нивоу у погледу количине и брзине деформисања није могуће одредити на други начин бар не са таквом прецизношћу, односно величином посматране локалне зоне. Добијени подаци се могу користити и за одређивање параметара Механике лома. [17]

Недавно, технике обраде слика као што је корелација дигиталне слике (*Digital Image Corelation – DIC*) су почеле активно да се користе у процесу мерења деформација разних структура у складу са наглим напретком дигиталних камера, посебно са повећањем њихове резолуције.

2.2. Корелација дигиталне слике (DIC)

DIC је једноставна и брза техника за одређивање великог броја података о деформацији компоненте. На слици 3 је приказан пример испитивања овом методом. У горњем левом углу слике 3 се могу видети добијени резултати у одговарајућем софтверу. Добијени резултати, облика поља померања, су представљени са карактеристичним вредностима. Такође на слици 3 се могу видети и две лампе које се налазе поред камера и обезбеђују константну и високу осветљеност узорка. Проблеми који се могу решавати применом ове технике мерења напона односно деформације су веома разноврсни од статичких до динамичких. Предности овог поступка мерења у односу на стандардне поступке су многобројне. [12]

Неке од предности су:

- метода је безконтактна,
- богат скуп података састављен из више од 10000 тачака на површини,
- анализа се завршава постпроцесирањем,
- обезбеђује податке о облику, позицији, померању и деформацији,
- техника калибрације обезбеђује високу прецизност, итд.

Мане ове методе су малобројне али као једна може се навести немогућност мерења већ постојећег оштећења у материјалу, које може бити резултат нпр. заосталих напона.

Слика З. Пример испитивања DIC методом [16]

Овај моћан метод за откривање деформација на површини компоненте се најчешће користи код одређивања променљивих за:

- тестирање материјала и карактеризацију,
- проучавање замора и отказа компонената,
- дуго праћење животног века компоненте,
- материјале са комплексним саставом или обликом,
- статичко и динамичко мерење деформација и померања.

Суштина корелационог поступка је заснована на *Matlab* алгоритму који користи нормализовану унакрсну корелацију за поређење делова слике са циљном сликом. Ова метода је графички објашњена на слици 4. [7]

Слика 4. Шематски приказ процеса корелације за један пиксел [12]

Овај поступак користи ниво интензитета сиве боје пиксела у посматраној области. Поступак враћа за сваки пиксел на циљној слици корелациону вредност између "-1" и "1". Вредност "1" значи да је део изворне слике у потпуности исти као део на циљној слици, "0" означава не постојање корелације а "-1" означава да је анализирана област код циљне слике негативна у односу на изворну слику. Пошто је DIC технологија заснована на сликама, координатни систем који се користи је заснован на пикселима. У овом поступку корелације X и Y координате су дефинисане унутар слике као што је приказано на слици 4. Корелациони квадрат је константно неједнак (већи) са посматраним пикселом који је у центру овог квадрата. Величина квадрата мора бити таква да садржи довољно детаља о површини узорка да би га учинила јединственим. На пример, да је узет само један пиксел као корелациони квадрат, постојало би много места на површини узорка који су исти. У поступку корелације величина овог квадрата може бити усвојена тј. променљива је. [12] Корелациони квадрат се упоређује са свим пикселима на циљној слици, враћајући корелациону вредност сваког пиксела, што резултира скупом података који су приказани на слици 5. [12]

Слика 5. Корелационе вредности површине на циљној слици [12]

Локација на циљној слици која најбоље одговара корелационом квадрату се јасно препознаје по врху са највећом корелационом вредношћу. Међутим, нове координате имају прецизност од једног пиксела што није довољно за мерење деформација. Да би се постигла већа прецизност, развијена је метода која користи корелационе вредности око врха дијаграма за добијање веће прецизности на нивоу подпиксела. Да би се ово обезбедило, полином шестог степена се провлачи кроз корелационе вредности пиксела који се налазе око пиксела са највећом корелационом вредношћу, употребом методе најмањих квадрата. Одређивањем координата свих тачака на нивоу подпиксела у функцији фитоване полиномне површине, нови максимум може бити одређен на подпиксел нивоу. У поступку корелације резолуција координата је дата на нивоу 0,01 пиксела. Утврђено је да није потребна виша резолуција тј. прецизност, код мерања деформација. [12, 18]

За мерење деформација међутим, поготову локалних, на различитим местима на узорку је потребно више тачака мреже за поређење. [12-14] За корелацију велике мреже са врстама и колонама мрежних тачака изворне слике и циљне слике је потребно нешто више рада. Прво, мрежа мора бити дефинисана тако да одговара сврси теста. За корелациони поступак је представљено неколико различитих начина дефинисања дистрибуције мреже. Један од начина је и употреба *Excel*-а за дефинисање мреже уз помоћ кога је могуће дефинисати било који начин дистрибуције и сваки могући облик. Генерално, сваки тест садржи више од једне слике, понекад и по неколико стотина слика, а све у зависности од врсте испитивања. Стандардно се за изворну слику узима прва слика из серије, мада корисник може да дефинише и неку другу слику, по потреби. Мрежа код изворне слике се пореди са сваком сликом из серије, што се види на слици 6. [12]

Слика 6. Шематски приказ DIC процеса за више мрежних тачака и више слика [10]

Ради јасноће, сваку мрежну тачку је дефинисао корисник дигиталном локацијом, па није потребан специјалан шаблон на површини узорка. Једини услов за површину узорка је да мора бити неправилна да би свака локација била јединствена. Понекад то захтева фарбу којом се обезбеђује тачкасти шаблон, али у много случајева је површина узорка довољно неправилна сама по себи. За корелацију мрежних тачака, алгоритам анализира сваки пиксел на циљној слици. Уколико је циљна слика 1600х1200 пиксела, ово може потрајати минут или више, у зависности од процесора. Ако је на пример, мрежа за корелацију састављена од 22 колоне и 12 врста и ради се вишеструко сликање, то изискује превише времена за представљање корелације испитивања на затезање за које је потребно између 100 и 500 слика. Ради решења овог проблема се свака мрежна тачка уместо корелације са целом циљном сликом, упоређује само са њеним малим делом. Величина ове циљне зоне се одржава што мањом ради смањења времена потребног за прорачун. Због тога је потребно да знамо где ће мрежна тачка отићи на циљној слици. [12]

Систем корелације дигиталне слике ради на принципу фотограметрије, обраде дигиталне слике и у већини случајева стерео сликању ради праћења особина у простору и додељивању њихових позиција глобалном координатном систему који је унапред одређен. Мерење се заснива на поређењу серије слика које су добијене у временском интервалу од микросекунде па до неколико година. Овом методом је могуће како 2D тако и 3D мерење, у зависности од броја камера. Експериментално добијени подаци су директно упоредиви са симулацијом коначним елементима. Примена ове методе као и методе коначних елемената је доста економична, ако се има у виду вредност контролних узорака који би морали бити израђени за проверу прорачуна, да не постоји могућност овакве провере. [12, 18] Калибрациони објекат има густу мрежу тачака познатих координата положаја које се користе за поређење са новим положајима тих тачака, у току и након деформисања. [18]

Због употребе *DIC* методе за различите тестове, корелациони поступак је развијен на бази кода у *Matlab*-у. Самим тим, употреба ове методе не зависи од типа теста, количине слика по тесту или величине и облика мреже. Овакве особине су добијене раздвајањем *DIC* процеса у три модула. [12, 18]

Први модул је задужен за дефинисање мреже, засноване на потребном нивоу деформације за исправну анализу. Постоје две стандардне врсте мрежа, једна је за испитивање затезањем а друга за тест пријањања. Оператер мора да дефинише величину и положај ових мрежа. Трећа могућа опција за добијање мреже је употреба *Excel* фајла у ком се мрежа може дефинисати од стране оператера у виду било ког облика и величине која је потребна за анализу. [12, 18]

Други модул је срж корелационог поступка, у њему се врши сама корелација. У суштини, овај модул служи да предефинише мрежу и да започне претрагу за сваком појединачном тачком на сликама у серији. Излаз из овог модула су четири фајла, два са координатама свих тачака мреже са сваке слике, трећи садржи све корелационе вредности за сваку тачку појединачно а четврти фајл садржи проверене вредности сваке тачке мреже. Структура ових фајлова је облика 3D матрице исте величине у којој свака вредност одговара једној тачки мреже на једној слици из серије. На пример, корелација мреже за 3 врсту, 2 колону и 5 слику ће изгледати у *3D* матрици као 3 *by* 2 *by* 5 (*x* са *y* са *z*). [12, 18]

Трећи модул је задужен за постпроцесирање у коме се излаз из другог модула користи за израчунавање параметара за које је корисник заинтересован. Овај модул је повезан са врстом испитивања и може га дефинисати сам корисник. Такође је могућ и унос података који су добијени на самој машини за испитивање ради усклађивања података о деформацији са подацима добијених *DIC*-ом, а све ради израчунавања напона, силе или других параметара. [12, 18]

3. Стварни дијаграм напон – деформација

Дијаграм затезања представља најкоришћенији дијаграм у инжењерству. И поред тога до данас није тачно одређено стварно понашање већине челика. Један од главних разлога за то је промена димензија попречног пресека епрувете (стварање "врата") након прекорачења затезне чврстоће тј. по достизању максималне силе. Овакво понашање епрувете не само да отежава израчунавање стварних вредности напона већ статичко испитивање преводи у квази-динамичко.

Наиме, испитивање затезањем спада у статичка испитивања јер се испитивање врши при мирном дејству силе (сила лагано расте). [20] Након достизања максималне силе долази до стварања "врата" на епрувети што доводи до пада силе. Кидалица наставља са оптерећивањем епрувете па сила постаје готово динамичка. Овакво понашање епрувета испољава све до коначног лома коме претходи стварање локалног "врата" на месту где ће доћи до лома. Стварни напон у епрувети расте и поред пада силе. Тренутна вредност силе се дели са тренутном површином попречног пресека и на тај начин се добија стварни напон. Стварни напон расте јер већи утицај на његову вредност има промена површине попречног пресека епрувете од промене силе на кидалици. Све наведене тврдње о стварном напону и деформацији представљају предмет анализе у оквиру ове дисертације.

Слика 7. Упоредни дијаграм затезања – стварни и инжењерски

На слици 7 шематски су приказани стварни и инжењерски дијаграм затезања и може се уочити да се разлика код ова два дијаграма примећује за вредности напона у близини и након достизања затезне чврстоће.

Тренутну површину попречног пресека није лако измерити али је могуће употребом безконтактних метода за мерење деформације тј. стереометријом. Међутим, треба имати у виду да поред смањења димензија попречног пресека долази и до његовог деформисања па сам облик попречног пресека најчешће није исти пре и после стварања "врата". Промена облика попречног пресека је посебно изражена након стварања локалног врата, пред сам лом. Детаљан дијаграм затезања, са карактеристичним подручјима је приказан на слици 8.

Слика 8. Инжењерски дијаграм затезања са карактеристичним областима [20]

Испитивање на затезање може се вршити преко два начина оптерећивања епрувете. Један начин је преко задавања пораста силе, на кидалици, у функцији времена а други, преко пораста издужења у функцији времена. За било какву детаљну анализу дијаграма боље је користити другу методу тј. задавање оптерећивања епрувете преко пораста издужења у функцији времена, осим уколико је циљ испитивања провера одговора материјала на пораст оптерећења у функцији силе. Са слике 8 може се уочити да прираштај силе (напона) није исти у означеним областима. То је случај због промене врсте деформације у материјалу као и због прерасподеле самих дислокација у његовој унутрашњости али и због црпљења деформационе способности материјала. Имајући то у виду, лако се може закључити да уколико се зада прираштај силе, који кидалица треба да испоштује, област након достизања максималне силе ће се значајно смањити и брже довести до лома јер је потпуно исцрпљен отпор материјала па сила има тренд опадања. Ово доводи до тежег уочавања карактеристичних тренутака на дијаграму након достизања максималне силе. Уколико се пак зада оптерећење преко померања добија се довољно места на дијаграму као и времена за анализу механизама који се одвијају у материјалу.

3.1. Аналитичко одређивање стварне криве напон-деформација

Постоји неколико начина за формирање дијаграма стварни напон – стварна деформација аналитичким методама. Већина аналитичких метода формирање дијаграма описује преко употребе стандардних механичких својстава материјала и математичких израза.

Инжењерски дијаграм се добија употребом следећих формула:

$$\sigma_{eng} = \frac{F}{A_0} \ [MPa] \tag{3}$$

$$\varepsilon_{eng} = \frac{\Delta l}{l_0} \cdot 100 \ [\%] \tag{4}$$

Даљи развој у одређивању стварног дијаграма огледа се у примени коригованих једначина које гласе:

$$\sigma_t = \sigma_{eng} \left(1 + \varepsilon_{eng} \right) \tag{5}$$

$$\varepsilon_t = \ln(1 + \varepsilon_{eng}) \tag{6}$$

Овакав начин одређивања стварног дијаграма затезања није дао задовољавајуће резултате па се приступило даљој анализи уз претпоставку да доминантан утицај на укупан напон који делује на епрувету има троосно стање које се јавља услед сужења епрувете.

Најзначајније резултате у овој области су остварили Scheider, Bridgman, LeRoy и Ostsemin а у последњих неколико година Zhiliang Zhang и Shengwen Tu.

Процес одређивања стварног дијаграма преко детаљније анализе започиње *Scheider* одређивањем ефективне деформације [21]:

$$\bar{\varepsilon} = \sqrt{\frac{4}{3} \left(\varepsilon_x^2 + \varepsilon_x \varepsilon_y + \varepsilon_y^2 \right)} \tag{7}$$

У формули 7 може се приметити да нема треће димензије (*Z*) јер је формула изведена применом једне камере за *DIC* снимање, дакле није постојала информација о деформацији у трећој димензији тј. о смањењу дебљине узорка. Даљим извођењем добија се формула за израчунавање напона у облику:

$$\sigma = \frac{F}{A_0} e^{(\varepsilon_{\chi})} \tag{8}$$

Мерењем средње вредности аксијалне деформације и уврштавањем у израз 8, добија се формула за стварни напон по *Scheider*-у:

$$\sigma_t = \frac{F}{A_0} e^{(\overline{\varepsilon_{\chi}})} \tag{9}$$

Након недовољне прецизности оваквог тумачења, у анализу се уводи троосно стање напона. Пошто услед стварања "врата" на епрувети долази до формирања троосног

стања напона ком је епрувета изложена, потребно је израчунати еквивалентни стварни напон који делује на епрувету.

Израчунавање еквивалентног стварног напона предложили су *Bridgman* [22], и *Ostsemin* [23] преко корекционих фактора:

$$\sigma_{eq} = \frac{\sigma_t}{c_B} \quad \text{rj.} \quad \frac{\sigma_t}{c_O} \tag{10}$$

C^{*B*} и *C*^{*O*} су аналитички корекциони фактори које су предложили *Bridgman* и *Ostsemin*, респективно а одређују се преко следећих израза:

$$C_B = \left[\left(1 + \frac{2R}{a} \right)^{1/2} ln \left\{ 1 + \frac{a}{R} + \left(\frac{2a}{R} \right)^{1/2} \left(1 + \frac{a}{2R} \right)^{1/2} \right\} - 1 \right]$$
(11)

$$C_O = \left(1 + \frac{a}{5R}\right) \tag{12}$$

где *а* и R представљају лигамент и полупречник заобљења на месту сужења, респективно. Може се међутим, приметити да би одређивање ових параметара без употребе *DIC* методе било веома компликовано ако не и немогуће.

Поред тога, анализа ових коефицијената показала је да они нису применљиви у одређивању стварних дијаграма за *'undermatching'* заварене спојеве.

У свом раду *Zhiliang Zhang* и *Shengwen Tu*, [24] су такође показали да примена *Bridgman*овог корекционог фактора не даје довољно прецизне резултате ни код примене на основне материјале.

Уколико се направи модел, са сужењем, и такав модел оптерети познатим напоном, оптерећење се у софтверу зада у виду притиска са предзнаком минус, који на месту без сужења има вредност нпр. 100 MPa, долази се до закључка да стварни напон на месту сужења није једнак количнику силе и тренутне површине попречног пресека епрувете на месту сужења, већ је виши (слика 9).

Слика 9. Поређење напона у минималном попречном пресеку са напонима на месту концентрације

Уколико се у софтверу погледају вредности за нормални и еквивалентни напон, посебно, може се доћи до закључка да није троосно напонско стање одговорно за овакве резултате (слика 10).

Слика 10. Поређење напона за исту епрувету, а)нормални напон, б) еквивалентни напон

Са слике 10 се може видети да је еквивалентни напон и нижи од нормалног за 2%. Најважнији податак са дијаграма затезања је свакако затезна чврстоћа, дакле максималан напон. Уколико се има у виду да концентрација напона на месту сужења доводи до пораста напона у материјалу, јасно је да је потребно одредити максималан напон тј. напон на месту концентрације напона, односно на месту сужења.

Дакле у анализу се креће са становишта да је максимални напон ком је епрувета изложена приликом сужавања виши од напона који се добија дељењем тренутне силе са тренутном површином попречног пресека епрувете. Израз за стварни напон може се дефинисати на следећи начин:

$$\sigma_{max}^{actual} = \sigma_T \cdot C_{NM} \tag{13}$$

Где је коефицијент С_{NM} променљива коју је потребно одредити и има вредност већу од 1.

Заварени спојеви представљају хетероген спој два или више материјала, па ће величина и димензије споја имати одређену улогу у начину деформисања епрувете па самим тим и у коначном фактору концентрације напона, јер концентрација напона првенствено зависи од геометријских параметара.

Имајући у виду да концентрација напона првенствено зависи од геометријски параметара, долази се до закључка да и облик епрувете утиче на њен начин деформисања након достизања максималне силе. Епрувете кружног или квадратног облика мање мењају облик попречног пресека при великим деформацијама али брзо наступа лома (кратка зона након достизања максималне силе), док код епрувета са правоугаоним попречним пресеком долази до веће промене облика попречног пресека, при великим деформацијама али се епрувета дуже супротставља оптерећењу, тј. дужи је део дијаграма након достизања максималне силе. [25] Ово имплицира да фактор концентрације напона за одређивање стварног напона ком је ерувета изложена, мора имати и део који се односи на облик и димензије епрувете.

Фактор концентрације напона С_{NM} треба раздвојити у два чиниоца:

$$C_{NM} = C_{ZS} + C_{EP} \tag{14}$$

Део фактора концентрације напона који се односи на заварени спој (*C*_{ZS}) треба да садржи геометријске променљиве које се односе на сам спој.

Ако се посматра заварени спој (слика 11) могу се видети сви геометријски параметри који могу утицати на концентрацију напона.

Слика 11. Геометријске карактеристике заварених спојева V и X

Истраживачи су у досадашњим анализама увек узимали у обзир полупречник заобљења али и лигамент који не утиче на концентрацију напона већ само описује тренутну димензију попречног пресека епрувете. Поред тога лигамент се налази унутар материјала управно на осу оптерећења, тако да не може утицати на концентрацију напона на површини. Дакле геометријске променљиве завареног споја које утичу на концентрацију напона су димензија по оси оптерећења, *b* која је директно пропорционална са концентрацијом напона али је повезана и са радијусом заобљења *R* који је индиректно пропорционалан концентрацији напона (када $R \rightarrow 0, \sigma \rightarrow \infty$). Дакле почетан облик фактора *Czs* има облик:

$$C_{ZS} = \frac{b}{R} \tag{15}$$

Ако се посматра овај количник може се закључити да ће однос временом значајно да се промени, јер ће са порастом *b* вредност за *R* драстично да пада. Ова појава се може ублажити и у исто време остати у форми променљиве ако се вредности за *R* у имениоцу дода вредност *b* која временом расте. Дакле овом корекцијом се однос ове две вредности не мења тако драстично са порастом оптерећења.

Нови облик овог дела коефицијента сада гласи:

$$C_{ZS} = \frac{b}{2 \cdot (R+b)} \tag{16}$$

Имениоц је помножен са два, јер се сужење попречног пресека одвија по две осе у исто време. Посматрајући коефицијент из књиге *T.L.Andersona* [26], може се видети да коефицијент концентрације напона има облик:

$$k_{\rm A} = 1 + \frac{2a}{h} \tag{17}$$

Дакле променљивим коефицијентима је потребно додати константу у виду броја 1. Коефицијент после ове корекције има облик:

$$C_{ZS} = 1 + \frac{b}{2 \cdot (R+b)} \tag{18}$$

Стварни дијаграм напон – деформација 35

Ненад З. Милошевић

Може се прећи на одређивање коефицијента облика епрувете. Током деформисања епрувете сужење које се јавља по ширини узето је у обзир преко радијуса заобљења а сужење које се јавља по дебљини епрувете није узето у обзир. Дакле у оквиру коефицијента који се односи на облик епрувете треба поред почетне ширине и дебљине епрувете укључити и смањење дебљине током времена. Смањење дебљине може се узети у обзир из односа:

$$C_{EP} = \frac{\Delta t}{t_0} \tag{19}$$

Где је *to*, почетна дебљина епрувете. Пошто је потребно анализирати различите облике епрувета, почетне димензије облика епрувете уводимо у коефицијент на следећи начин:

$$C_{EP} = \frac{\Delta t/t_0}{2 \cdot W_0/t_0} \tag{20}$$

Почетна ширина епрувете означена је са *W*₀. Добијени коефицијент сада има облик:

$$C_{NM} = C_{ZS} + C_{EP} = \left(1 + \frac{b}{2 \cdot (R+b)} + \frac{\Delta t/t_0}{2 \cdot W_0/t_0}\right)$$
(21)

Након сређивања двојног разломка добија се:

$$C_{NM} = C_{ZS} + C_{EP} = \left(1 + \frac{b}{2 \cdot (R+b)} + \frac{\Delta t}{2 \cdot W_0}\right)$$
(22)

Провера исправности коефицијента у софтверу Abaqus вршена је на следећи начин:

- Израђени су модели за сваки тип епрувете у карактеристичним тренутцима (део дијаграма затезања у ком се јавља промена нагиба криве) при чему се водило рачуна да постоји бар 5 тренутака, од промене нагиба до лома, који се моделирају за сваку епрувету, како би дијаграми могли што реалније да опишу кретање напона. Модели су израђени тако да су деформације које су измерене *DIC* методом за посматрани тренутак унете на сам модел. Дакле модели су израђени са сужењем, а вредности деформација смо измерили *DIC*-ом. Модели су израђени као четвртине стварне епрувете, дакле са две осе симерије.
- Након моделирања, у Abaqus-у су постављени гранични услови на следећи начин. Ослонци тј. везе су постављене тако да замењују одговор материјала за сваку осу симетрије. Дакле постављене везе одговарају двема осама симетрије. Оптерећење је задато у виду напона, преко команде за притисак са предзнаком минус. Вредност задатог напона је одређена на следећи начин. За посматрану епрувету и посматрани тренутак који се моделира (унете деформације) очита се вредност силе добијена са кидалице, та сила се подели са два (јер је површина епрувете на који је примењена сила подељена на два дела) и тако добијена вредност силе подели се са преосталим делом површине попречног пресека епрувете на месту који улази у чељусти кидалице. Тиме се добије стварно оптерећење којем је посматрана епрувета била изложена у том тренутку. Оптерећење се задаје на преостали део површине епрувете који иде у чељусти кидалице.
- Коришћена мрежа коначних елемената је унифицирана тј. коришћени су исти елементи и иста величина елемената за сваку епрувету и сваки моделирани тренутак. Коришћени су структурни елементи (квадри) а број елемената је повећаван у смеру ка МШ. Коришћени су алати за израду секција на моделима, тако да је свака епрувета имала исте сегменте и исти градијент величине
елемената. Елементи на самом МШ су били величине 0.4x0.2mm код сваке епрувете.

• Након израђене мреже и завршене анализе у *Abaqus*-у вршено је поређење добијених максималних напона на местима која одговарају лицу и наличју шава, са напонима који се добију употребом предложене формуле (формула 13 тј. 23).

Коначан облик предложене формуле гласи:

$$\sigma_{max}^{actual} = \sigma_T \cdot \mathcal{C}_{NM} = \frac{F}{A_{cur}} \cdot \left(1 + \frac{b}{2 \cdot (R+b)} + \frac{\Delta t}{2 \cdot w_0}\right)$$
(23)

Овако добијен коефицијент показао је задовољавајућу тачност код оба типа епрувета.

3.2. Нумеричко одређивање – МКЕ

Мада постоји неколико аналитичких начина за одређивање понашања материјала након достизања максималне силе и после почетка стварања врата, па самим тим и "стварних" дијаграма затезања, нема адекватних аналитичких решења за плочасте епрувете, све методе се односе на цилиндричне епрувете. [27] За одређивање понашања материјала код плочастих епрувета доминантан начин је примена експериментално-нумеричке анализе тј експериментални резулати се пореде са методом коначних елемената (МКЕ).

Анализа применом МКЕ може се вршити за било који облик и тип епрувете па тако и за плочасте епрувете.

Досадашња примена МКЕ за одређивање стварног дијаграма затезања односила се на итерацију почетне претпоставке о ојачавању материјала након стварања врата, тако што се минимизира разлика између измерених и претпостављених вредности физичких константи, [28-31] укупног рада у пољу мерне траке [32-35] или укупне силе са задатим степеном прираста изнад максималне силе [36-39].

Dunand и Mohr [36] су предложили употребу сегментне линеарне везе напона и деформације како би се описало понашање и ојачавање материјала у фази након стварања врата на епрувети. Модул ојачања материјала сваког сегмента добија се минимизирањем разлике између измерене и израчунате криве сила-издужење при затезању цилиндричних епрувета или главне криве сила-деформација из теста ударом.

Coppieters [33,34] је представио комбиновани аналитичко-експериментални приступ у покушају да квантификује деформационо ојачавање дуктилних плочастих материјала у области након стварања врата. Он је користио познате *Swift law* и *Voce law* моделе за предвиђање понашања материјала и његовог ојачавања у делу након стварања врата. Параметри који се користе код ових модела одређују се минимизирањем унутрашњег и спољашњег рада у зони врата на плочастим епруветама.

Kim је успео да одреди параметре за ове моделе употребом методе виртуелних поља (VFM). [35]

Ling [39] је предложио употребу линеарне апроксимације и релације ојачања материјала заједно, како би се што веродостојније представило ојачање материјала у зони након стварања врата на епрувети. Тежински параметар *w* одређује се итерацијама када се постигне задовољавајуће поклапање експеринментално одређених и нумерички израчунатих кривих сила-издужење.

Defaisse [40] је комбиновао два *Voce laws* модела са линеарним релацијама ојачања материјала како би добио криву напон-деформација за челик повишене чврстоће. У свом експерименту *Defaisse* је користио цилиндричне епрувете за затезање. Параметре је фитовао минимизирањем разлике између експериментално измерених и нумерички израчунатих зависности сила-минимално смањење попречног пресека епрувете.

Имајући у виду тему истраживања није тешко закључити да постоји прегршт различитих истраживача са различитим методама и приступима. Наведене су само неке

од многобројних. Заједничко за све методе је то што су све базиране на одређивање тзв. закона ојачања (*Power law*).

Ови закони по правилу имају две променљиве од којих је једна директно зависна од квантитета друге, било преко степена или множитеља.

Аутор је приликом дефинисања нумеричког приступа, водио рачуна о неколико параметара. Наиме, уколико се желе поредити експериментални и нумерички резултати, они се морају довести у непосредну везу. У случају ове дисертације то је урађено тако што су деформације које су мерене *DIC* методом, уношене у МКЕ преко самих модела који су моделирани са већ унетом деформацијом која је измерена за тај тренутак експеримента за који се прави модел.

Дакле МКЕ није коришћена за деформациону анализу већ искључиво за напонску анализу.

Имајући ово у виду може се рећи да је напонска анализа, представљена у оквиру ове дисертације независна од врсте материјала, тј. да треба проверити њену примену и на другим врстама материјала.

Нумерички модел који је коришћен у оквиру ове дисертације, је модел четвртине епрувете са тренутним димензијама и граничним условима који се односе на везе симетрије, по обе осе по којима је вршен "пресек" и на оптерећење. Оптерећење је задавано као напон (*pressure*) са негативним предзнаком, а квантитет је одређен употребом половине вредности силе за разматрани тренутак и половине површине попречног пресека епрувете на месту где долазе чељусти кидалице (најшири део).

За анализу је коришћен софтвер *Abaqus* а елементи мреже коначних елемената су бирани да буду квадри, дакле *3D* елементи са правоугаоним страницама и са осам чворова.

Добијене вредности напона приказане су увећано, са назначеним положајима, како би сам садржај слике био што видљивији.

4. Експеримент

Основни циљ и сама идеја експеримента већ су објашњени у уводном делу. У наставку следи детаљно објашњење припреме и израде епрувета као и поставке експеримента.

4.1. Заваривање и ИБР

Основни материјали из којих су израђене епрувете су облика цеви, за материјал *X10*, а за материјал *Armox 500T* облика плоче. Заваривање је изведено комбинацијом *TIG* и *E* поступка. За постизање константне брзине заваривања приликом спајања цеви израђен је уређај за обртање који је приказан на слици 12.

Слика 12. Изглед уређаја за постизање константне брзине обртања цеви при заваривању

Уређај је направљен тако да је могуће изводити заваривање у различитим положајима а потенциометар омогућава промену брзине ротирања цеви. Такође је могуће мењати и смер обртања цеви. Мењање смера обртања је постигнуто постављањем микроконтролера у електронски део уређаја. Како би се обезбедили мањи габарити уређаја а постигла одговарајућа редукција, која може да обезбеди и брзине које су мање од 1mm/min, на *3D* штампачу је израђена специјална двостепена ременица која даје довољан степен редукције брзине степ мотора.

Уређај је коришћен и код *TIG* и код *E* поступка заваривања уз промену брзине и смера ротирања цеви.

Цеви и плоче су припремљене на уобичајен начин, чишћењем и брушењем, уз контролу загревања материјала како не би дошло до нарушавања почетне микроструктуре. Припремљена цев након завршеног кореног и другог пролаза приказана је на слици 13.

Слика 13. Изглед цеви након TIG заваривања кореног и другог пролаза

Са слике 13 се може видети и припрема цеви за заштиту корене стране гасом. И код заваривања плоча коришћена је заштита корене стране а алат се такође може видети на слици 13. Сви параметри коришћени приликом заваривања су дати у оквиру *WPS* листи у прилогу ове дисертације.

За заваривање су коришћени следећи додатни материјали (ДМ):

- а) За *TIG* поступак *S Ni 6082 (EN ISO 18274)*
- b) За Е поступак Е 19.12.3 Nb R 26 (ISO 3581)

Хемијски састави и механичке карактеристике коришћених ДМ дати су у табелама 5 и 6.

		THE		an nganar -				1			
[%]	С	Si	Mn	Cr	Ni	Мо	Nb	Си	Ti	Р	S
S Ni 6082	тах 0.01	max 0.1	3.2	20.8	72.9	/	2.5	max 0.1	0.3	0.003	0.001
E 19.12.3 Nb R 26	0.02	0.9	0.7	18.0	12.0	2.7	0.4	max 0.5	/	0.02	0.02

Табела 5. Хемијски састави коришћених ДМ

Табела 6. Механичке карактеристике коришћених ДМ

	Rp0.2 [MPa]	R _m [MPa]	A5 [%]	KV [J], 20ºC
S Ni 6082	min 400	min 620	min 35	min 150
E 19.12.3 Nb R 26	min 400	min 590	min 30	min 47

Из табеле 5 може се видети да се хемијски састави додатних метаријала разликују али оба обезбеђују аустенитну микроструктуру што је и био циљ. Додатни материјал за *Е* поступак даје споју мало вишу чврстоћу него да је цео спој изведен ДМ за *TIG* поступак.

Сада се може приказати величина "undermatching"-а. Поређењем затезних чврстоћа види се да је "undermatching" код челика X10, поређењем минималних вредности, 93,65%, док је код Armoxa та разлика 40,69%. Различити степени "undermatching"-а изведени су са намером да се елиминише њихов евентуални утицај на коначне резултате.

Изглед завршног пролаза на плочи дат је на слици 14.

Слика 14. Изглед завршног пролаза на плочи Armox 500T

Након заваривања и цеви и плоче су подвргнуте пенетрантском, ултразвучном и радиографском тестирању због уочавања евентуалних грешака насталих приликом

заваривања. Сви делови на којима су откривене било какве неправилности су искључени из даље анализе. На слици 15 је приказана плоча након пенетранстког и радиографског испитивања.

Слика 15. Заварена плоча након пенетрантског и радиографског тестирања

На слици 16, приказан је део радиограма за плочу 2.

Слика 16. Део радиограма за заварену плочу 2

4.2. Припрема епрувета

Епрувете су исецане из заварених материјала на различите начине. Из цеви су епрувете исецане тоцилом уз хлађене емулзијом јер би се приликом сечења воденим млазом оштетила наспрамна површина цеви. Приказ исецања епрувете из цеви дат је на слици 17.

Слика 17. Исецање епрувета из цеви уз хлађење

Епрувете из плоче (материјал *Armox 500T*) исецане су воденим млазом, како се не би уносила додатна количина топлоте и тиме реметила постигнута микроструктура у материјалу добијена заваривањем. Након исецања епрувете су подвргнуте машинској обради како би се постигле потребне димензије и обезбедила паралелност и управност код свих епрувета, као и потребна финоћа површине. Обрада је вршена на глодалици и стоној брусилици. Дакле, након што се постигне паралелност и управност узорци се постављају на глодалицу где се врши обрада радијуса и након које се добија радни део епрувете припремљен без било каквих нежељених промена на површини. Приказ обраде на стоној брусилици и глодалици дат је на слици 18.

Слика 18. Обрада епрувета на брусилици и глодалици

Након завршене обраде вршена је контрола димензија и стања површина. Добијене су епрувете са димензијама приказаним на слици 19.

Слика 19. Димензије епрувета, а) С1 и С2 (Х10) и Б) Р1 и Р2 (Акмох 500Т)

Може се приметити да је попречни пресек радног дела епрувета типа *P* готово квадратног облика (7,5 x 7,4mm), док је попречни пресек епрувета типа *C* правоугаоног облика (10 x 8mm). Радијуси заобљења су исти код обе врсте епрувета и износе 5mm. Облик попречног пресека епрувете има велики утицај на резултате максималног напона ком је епрувета изложена. [25] Другачији облик попречног пресека, епрувета различитог типа, израђен је како би се елиминисао утицај облика епрувете на коначне резултате. То исто је урађено и у погледу врсте споја који је коришћен за заваривање. Наиме, спој на цевима је изведен у облику *V* шава док је код плоча, облик завареног споја *X*.

Епрувете је након обраде било потребно припремити за испитивање *DIC* методом. То значи да се на епрувете наноси слој беле фарбе преко кога се наноси насумични шаблон

црних тачака. Ово има за циљ да свака зона епрувете има јединствене димензије и комбинацију црних тачака.

	Епрувета 1	Епрувета 2	Епрувета З	Епрувета 4	Епрувета 5
Из цеви 1 (<i>X10</i>)	C1-1	/	С1-3	/	C1-5
Из цеви 2 (<i>X10</i>)	/	/	<i>C2-3</i>	/	/
Из плоче 1 (Armox 500T)	P1-1	P1-2	P1-3	/	/
Из плоче 2 (<i>Armox</i> 500T)	P2-1	P2-2	P2-3	P2-4	/

У табели 7 дат је приказ ознака анализираних епрувета.

4.3. Поставка експеримента

Експеримент је извођен на кидалици капацитета 100kN, а поставка експеримента је приказана на слици 20.

Слика 20. Положај камера пре почетка експеримента

Пораст силе је контролисан константним издужењем епрувете, које је током целог експеримента износило 2mm/min. За добијање тачних дијаграма са кидалице а и за верификацију деформација добијених преко *Aramisa*, коришћен је екстензометар са чијим резултатима су поређени резултати деформација које смо добили у *Aramisu* за ту осу.

У току експеримента контролисано је како издужење и сужење, тако и промена димензија по дебљини.

Приказ поставке у Aramisu дат је на слици 21.

Слика 21. Анализа промене карактеристичних димензија епрувете

На слици 21 може се видети да су постављене секције које одговарају положају екстензометра и положају метала шава (подручје са највећом деформацијом). За приказани тренутак може се видети вредност издужења које је потребно упоредити са екстензометром (+5.115mm), сужење на месту где је оно највеће (-1.245mm) као и колика је промена дебљине гледано по дужини епрувете (*Section 0*) и по ширини епрувете на месту највећег сужења (*Section 1*). Одавде се може закључити да су све деформације потребне за прорачун стварног дијаграма укључене у анализу при оваквој поставци експеримента.

5. Резултати

Резултати добијени обрадом података о деформацијама у *Aramisu* могу се представити у виду различитих форми. Анализа посматраних тачака приказаних на слици 21 може се вршити преко добијања координата свих изабраних тачака на епрувети. Пример оваквог извештаја је приказан на слици 22.

ARAMIS

Project C1-1.dap

Number of Stages: 172 Number of Subprojects: 1

Stage Name:	Stage 0		_
Point Stage (undeformed)	0	Point Stage (deformed)	0

	Sections												
Sub-Project: Point-ID	Actual Data [%]	C (I	Coordina Deforme XYZ [mm]	te d)	(U	Coordinate (Undeformed) XYZ [mm]		Length (Deformed, Unwinded) [mm]	Length (Deformed, Projected) [mm]	Length (Undeformed, Unwinded) [mm]	Length (Undeformed, Projected) [mm]		
Name: Section Ekstenzome	tar, Section-ID:	0											
0:0	0.0000	-3.766	+20.949	+0.199	-3.766	+20.949	+0.199	0.000	0.000	0.000	0.000		
0:1	0.0000	-3.776	+20.130	+0.157	-3.776	+20.130	+0.157	0.820	0.819	0.820	0.819		
0:2	0.0000	-3.786	+19.314	+0.105	-3.786	+19.314	+0.105	1.638	1.635	1.638	1.635		
0:3	0.0000	-3.793	+18.496	+0.051	-3.793	+18.496	+0.051	2.457	2.453	2.457	2.453		
0:4	0.0000	-3.801	+17.676	+0.011	-3.801	+17.676	+0.011	3.278	3.273	3.278	3.273		
0:5	0.0000	-3.810	+16.858	-0.038	-3.810	+16.858	-0.038	4.098	4.091	4.098	4.091		
0:6	0.0000	-3.817	+16.042	-0.092	-3.817	+16.042	-0.092	4.916	4.908	4.916	4.908		
0:7	0.0000	-3.822	+15.224	-0.142	-3.822	+15.224	-0.142	5.736	5.726	5.736	5.726		
0: 8	0.0000	-3.830	+14.405	-0.194	-3.830	+14.405	-0.194	6.556	6.544	6.556	6.544		
0:9	0.0000	-3.837	+13.587	-0.238	-3.837	+13.587	-0.238	7.375	7.362	7.375	7.362		
0: 10	0.0000	-3.846	+12,767	-0.285	-3.846	+12,767	-0.285	8.197	8.182	8.197	8.182		
0: 11	0.0000	-3.857	+11.950	-0.334	-3.857	+11.950	-0.334	9.015	9.000	9.015	9.000		
0: 12	0.0000	-3. <mark>8</mark> 68	+11.131	-0.383	-3.868	+11.131	-0.383	9.836	9.818	9.836	9.818		
0: 13	0.0000	-3.883	+10.314	-0.431	-3.883	+10.314	-0.431	10.655	10.636	10.655	10.636		
0:14	0.0000	-3.898	+9.494	-0.476	-3.898	+9.494	-0.476	11.476	11.455	11.476	11.455		
0:15	0.0000	-3.919	+8.675	-0.523	-3.919	+8.675	-0.523	12.296	12.275	12.296	12.275		
0:16	0.0000	-3.941	+7.857	-0.574	-3.941	+7.857	-0.574	13.117	13.094	13.117	13.094		
0:17	0.0000	-3.962	+7.038	-0.622	-3.962	+7.038	-0.622	13.937	13.912	13.937	13.912		
0: 18	0.0000	-3.984	+6.219	-0.672	-3.984	+6.219	-0.672	14.758	14.732	14.758	14.732		
0: 19	0.0000	-4.006	+5.399	-0.721	-4.006	+5.399	-0.721	15.580	15.553	15.580	15.553		
0: 20	0.0000	-4.027	+4.580	-0.768	-4.027	+4.580	-0.768	16.400	16.371	16.400	16.371		
0: 21	0.0000	-4.040	+3.762	-0.813	-4.040	+3.762	-0.813	17.219	17.189	17.219	17.189		
0- 22	0 0000	4 004	12 042	A 055	4 024	12 042	A 955	10 040	10 000	10 040	10 000		

Слика 22. Пример дела извештаја из Aramisa са координатама посматраних тачака за епрувету C1-1

Након добијених комплетних извештаја са координатама свих потребних тачака може се приступити даљој анализи резултата. Како би се одредила тренутна површина попречног пресека епрувете, потребно је добијене податке претворити у површину. Ово се може урадити инсертовањем координата тачака у облику кривих у различите софтвере. Приликом прорачуна треба имати у виду да *Aramis* можда неће обухватити целу површину епрувете. У том случају потребно је прећи на процентуални рачун. Дакле потребно је утврдити колики је проценат сужења и промене дебљине епрувета показала приликом сликања *DIC* методом у односу на димензије које су обухватиле камере. Тако добијене проценте треба применити на стварне димензије епрувете и добијене вредности димензија узети као меродавне. Уколико се координате тачака унесу у софтвер добијају се површине приказане на слици 23.

Слика 23. Почетна и крајња површина попречног пресека епрувете Р1-1 израчуната у софтверу преко координата тачака

Са слике 23 могу се уочити разлике у површини и може се израчунати проценат смањења површине попречног пресека епрувете *P1-1* и тај проценат применити на стварне димензије епрувете како би се добило стварно смањење површине. Ово је један начин за одређивање тренутне површине попречног пресека епрувете. Може се уочити да би време потребно за анализу свих тренутака за једну епрувету било предуго а ако се узме у обзир да се испитивања никада не изводе на једној епрувети долази се до закључка да је потребна ефикаснија метода за израчунавање тренутне површине.

Уколико се примени принцип осредњавања за сваку осу засебно добијају се готово исте вредности процентуалног смањења површине попречног пресека епрувете. Дакле, димензије које су измерене за осу која представља ширину епрувете (џ оса) се узимају као меродавне док се димензије по оси управној на раван сликања (з оса), које представљају сужење епрувете осредњавају. Када се промене дебљине у свим посматраним тачкама осредње, добија се облик површине попречног пресека који одговара почетном. У анализу површине попречног пресека је укључена и претпоставка да ће се наспрамне стране епрувете исто деформисати. Ово омогућава да се анализа изведе доста брже, употребом једноставних метода прорачуна.

Треба напоменути да примењена анализа није потпуно тачна али добијена одступања су реда величине дела процента, што у коначном резултату не доводи до битније промене израчунатих напона, посебно уколико се има у виду да концентрација напона на месту сужења значајно повећава напон ком је епрувета изложена.

5.1 Епрувета Р1-1

Епрувете са ознаком *P*, су епрувете добијене из плоче основног материјала *Armox 500T* на којој је изведен *X* заварени спој. За ову епрувету изглед инжењерског дијаграма је приказан на слици 24.

Слика 24. Инжењерски дијаграм за епрувету Р1-1

Почетне вредности карактеристичних димензија су:

 b_{1_0} =9.064mm, b_{2_0} =9.049333mm, t_0 =7.5mm, w_0 =7.4mm, b_{1-2_0} =5.768mm.

Из претходних димензија може се закључити да вредности за t нису обавезно мање од вредности за w, јер се то односи на положај шава (слика 25). Такође, овде се може видети вредност b_{1-2} која постоји само код X споја а односи се на растојање подножја два лица шава (слика 25).

Слика 25. Ознаке карактеристичних димензија за епрувете типа Р

$$\sigma_{\rm T} = \sigma_{\rm eng} (1 + \varepsilon_{\rm eng}) \tag{24}$$

Септембар 2021

$$\varepsilon_t = \ln(1 + \varepsilon_{eng}) \tag{25}$$

Употребом формула 24 и 25 добија се "стварни" дијаграм који је такође приказан на слици 26, упоредо са инжењерским.

Слика 26. Упоредни приказ инжењерског и "стварног" дијаграма

За анализу и добијање стварног дијаграма потребно је анализирати вредности непосредно након границе течења материјала тј. непосредно након тих вредности деформације. За анализу епрувете *P1-1*, промене у геометрији настају након 60-ог тренутка експеримента. Тако да се као почетна тачка прорачуна усваја баш 60-ти тренутак. Подаци о димензијама, добијени из *Aramisa*, за 60-ти тренутак са усвојеном поставком тачака и секција, која је приказана на слици 21, имају облик табела, које су приказане у наставку (Табеле 8 и 9).

Name: S	Section SuzenjeX, Section-ID: 1										
Sectio	Actual	Coordin	ate (De	eformed)	Coordin	ate		Length	Length	Length	Length
ns Sub	Data	XYZ [mm]			(Undefo	rmed) X	YZ [mm]	(Defor	(Defor	(Undef	(Undefo
	[%]							med,	med,	ormed,	rmed,
								Unwind	Project	Unwind	Projecte
								ed)	ed)	ed)	d) [mm]
			1	•				[mm]	[mm]	[mm]	
00:00	0.4817	-4.608	-4.877	-1.88	-4.93	-6.056	-2.151	0	0	0	0
00:01	0.4775	-4.452	-4.879	-1.875	-4.774	-6.058	-2.145	0.156	0.156	0.156	0.156
00:02	0.4595	-3.768	-4.888	-1.855	-4.088	-6.066	-2.12	0.841	0.84	0.842	0.842
00:03	0.4702	-2.933	-4.905	-1.845	-3.25	-6.084	-2.106	1.676	1.675	1.681	1.68
00:04	0.4647	-2.097	-4.911	-1.822	-2.412	-6.088	-2.091	2.512	2.511	2.519	2.518
00:05	0.5422	-1.259	-4.923	-1.803	-1.574	-6.102	-2.07	3.35	3.349	3.358	3.357
00:06	0.5438	-0.423	-4.917	-1.797	-0.738	-6.097	-2.063	4.186	4.185	4.193	4.192
00:07	0.5305	0.414	-4.906	-1.776	0.101	-6.085	-2.038	5.024	5.023	5.033	5.031
00:08	0.5349	1.211	-4.894	-1.749	0.9	-6.075	-2.018	5.821	5.819	5.832	5.83

ТАБЕЛА 8. ИЗГЛЕД ИЗВЕШТАЈА ИЗ ARAMISA *ЗА СЕКЦИЈУ "СужењЕХ"*

Из приказане табеле се може вршити прорачун промене димензија епрувете на месту највећег сужења по X оси. Може се приметити да постоје подаци и за Y и Z осу. Ове податке је потребно разматрати у корелацији са подацима приказаним у табели 9.

Name:	Section El	kstenzo	enzometar, Section-ID: 0								
Sect	Actual	Coordi	nate		Coordin	nate		Length	Length	Length	Length
Sub-	Data [%]	(Defor	med) XYZ	Z [mm]	(Undeformed) XYZ			(Defor	(Defor	(Undefor	(Undefor
Proj:					[mm]			med,	med,	med,	med,
Point-								Unwin	Project	Unwinde	Projecte
ID								ded)	ed)	d) [mm]	d) [mm]
								[mm]	[mm]		
00:00	0.0893	-3.483	22.186	0.437	-3.778	20.947	0.264	0	0	0	0
00:01	0.1436	-3.492	21.37	0.369	-3.789	20.131	0.193	0.82	0.817	0.819	0.816
00:02	0.1605	-3.504	20.551	0.306	-3.8	19.314	0.125	1.641	1.636	1.639	1.633
00:03	0.1817	-3.513	19.732	0.232	-3.811	18.496	0.047	2.463	2.455	2.46	2.45
00:04	0.1633	-3.523	18.914	0.169	-3.822	17.679	-0.012	3.284	3.273	3.28	3.268
00:05	0.2345	-3.533	18.095	0.097	-3.832	16.862	-0.087	4.106	4.091	4.101	4.085
00:06	0.2152	-3.543	17.277	0.032	-3.843	16.046	-0.155	4.926	4.91	4.919	4.901
00:07	0.1083	-3.554	16.458	-0.034	-3.854	15.228	-0.227	5.748	5.729	5.741	5.719
00:08	0.1113	-3.563	15.639	-0.108	-3.865	14.41	-0.303	6.571	6.548	6.562	6.537
00:09	0.1613	-3.573	14.82	-0.174	-3.876	13.593	-0.375	7.392	7.367	7.383	7.355
00:10	0.1977	-3.584	14.001	-0.25	-3.887	12.775	-0.449	8.215	8.186	8.204	8.172
00:11	0.194	-3.592	13.181	-0.315	-3.898	11.958	-0.525	9.037	9.006	9.024	8.989
00:12	0.169	-3.605	12.363	-0.387	-3.908	11.141	-0.595	9.859	9.824	9.845	9.807
00:13	0.1805	-3.614	11.544	-0.456	-3.919	10.323	-0.667	10.681	10.643	10.666	10.625
00:14	0.2313	-3.625	10.722	-0.532	-3.93	9.503	-0.743	11.506	11.465	11.489	11.444
00:15	0.2271	-3.635	9.903	-0.595	-3.941	8.686	-0.81	12.328	12.284	12.309	12.261
00:16	0.1294	-3.645	9.084	-0.662	-3.952	7.869	-0.88	13.15	13.104	13.13	13.079

ТАБЕЛА 9. РЕЗУЛТАТИ ДОБИЈЕНИ ЗА СЕКЦИЈУ "ЕКСТЕНЗОМЕТАР" КОЈА ЈЕ ПОСТАВЉЕНА ПАРАЛЕЛНО СА ПРАВИМ ЕКСТЕНЗОМЕТРОМ

Септембар 2021

00:17	0.1349	-3.655	8.264	-0.731	-3.963	7.05	-0.957	13.972	13.923	13.952	13.898
00:18	0.1361	-3.667	7.443	-0.803	-3.974	6.23	-1.033	14.797	14.745	14.775	14.718
00:19	0.2597	-3.677	6.624	-0.877	-3.985	5.412	-1.106	15.619	15.564	15.597	15.536
00:20	0.2199	-3.685	5.802	-0.942	-3.995	4.593	-1.178	16.444	16.385	16.419	16.355
00:21	0.1214	-3.697	4.983	-1.017	-4.006	3.775	-1.258	17.266	17.205	17.241	17.173
00:22	0.205	-3.707	4.162	-1.084	-4.017	2.956	-1.333	18.09	18.026	18.064	17.993
00:23	0.2475	-3.718	3.34	-1.153	-4.028	2.136	-1.398	18.916	18.848	18.886	18.813
00:24	0.2449	-3.728	2.519	-1.226	-4.039	1.318	-1.473	19.739	19.669	19.708	19.631
00:25	0.1816	-3.737	1.697	-1.3	-4.05	0.497	-1.55	20.565	20.491	20.532	20.451
00:26	0.1894	-3.748	0.878	-1.364	-4.061	-0.321	-1.62	21.387	21.311	21.353	21.27
00:27	0.236	-3.758	0.055	-1.429	-4.072	-1.141	-1.682	22.212	22.133	22.176	22.09
00:28	0.2668	-3.768	-0.767	-1.492	-4.083	-1.962	-1.75	23.037	22.955	22.999	22.91
00:29	0.2349	-3.778	-1.59	-1.574	-4.093	-2.782	-1.836	23.864	23.778	23.824	23.731
00:30	0.337	-3.789	-2.41	-1.646	-4.104	-3.6	-1.913	24.687	24.598	24.646	24.549
00:31	0.5053	-3.798	-3.234	-1.719	-4.115	-4.421	-1.987	25.515	25.423	25.47	25.37
00:32	0.4525	-3.807	-4.058	-1.787	-4.126	-5.24	-2.049	26.341	26.247	26.292	26.189
00:33	0.4604	-3.816	-4.882	-1.856	-4.137	-6.061	-2.121	27.168	27.071	27.116	27.01
00:34	0.5352	-3.827	-5.708	-1.929	-4.148	-6.881	-2.2	27.997	27.896	27.94	27.83
00:35	0.4084	-3.839	-6.533	-1.999	-4.159	-7.702	-2.269	28.825	28.721	28.764	28.651
00:36	0.3984	-3.851	-7.357	-2.064	-4.17	-8.523	-2.34	29.652	29.546	29.588	29.473
00:37	0.4342	-3.862	-8.181	-2.132	-4.181	-9.344	-2.408	30.478	30.37	30.412	30.293
00:38	0.3718	-3.874	-9.004	-2.202	-4.191	-10.165	-2.479	31.305	31.193	31.236	31.114
00:39	0.262	-3.886	-9.827	-2.273	-4.202	-10.986	-2.551	32.131	32.016	32.06	31.935
00:40	0.3017	-3.895	-10.649	-2.346	-4.213	-11.806	-2.632	32.957	32.838	32.884	32.756
00:41	0.2481	-3.907	-11.474	-2.422	-4.224	-12.628	-2.706	33.785	33.663	33.71	33.578
00:42	0.264	-3.919	-12.295	-2.498	-4.235	-13.448	-2.786	34.61	34.484	34.534	34.398
00:43	0.3241	-3.929	-13.12	-2.561	-4.246	-14.269	-2.849	35.437	35.31	35.357	35.219
00:44	0.2497	-3.94	-13.945	-2.631	-4.257	-15.092	-2.919	36.265	36.135	36.183	36.042
00:45	0.1948	-3.951	-14.768	-2.71	-4.268	-15.914	-2.998	37.092	36.958	37.009	36.864
00:46	0.2503	-3.962	-15.591	-2.773	-4.279	-16.735	-3.066	37.918	37.781	37.833	37.685
00:47	0.2233	-3.973	-16.415	-2.848	-4.29	-17.557	-3.14	38.745	38.605	38.658	38.507
00:48	0.2168	-3.984	-17.238	-2.924	-4.301	-18.379	-3.214	39.571	39.428	39.483	39.329
00:49	0.3478	-3.996	-18.062	-2.999	-4.311	-19.2	-3.288	40.399	40.252	40.308	40.151
00:50	0.278	-4.006	-18.887	-3.073	-4.322	-20.022	-3.364	41.228	41.077	41.133	40.972
00:51	0.2032	-4.017	-19.71	-3.148	-4.333	-20.844	-3.44	42.053	41.9	41.959	41.794
00:52	0.22	-4.025	-20.37	-3.206	-4.342	-21.501	-3.501	42.716	42.56	42.619	42.452
00:53	0.2242	-4.027	-20.536	-3.221	-4.344	-21.667	-3.516	42.883	42.726	42.786	42.617
00:54	0.2987	-4.039	-21.361	-3.293	-4.355	-22.49	-3.585	43.711	43.551	43.612	43.441
00:55	0.2689	-4.051	-22.186	-3.373	-4.366	-23.313	-3.662	44.54	44.376	44.438	44.263
00:56	0.2608	-4.062	-23.01	-3.441	-4.377	-24.135	-3.733	45.367	45.2	45.264	45.086
00:57	0.3438	-4.072	-23.835	-3.511	-4.388	-24.959	-3.803	46.195	46.025	46.09	45.91
00:58	0.2132	-4.084	-24.66	-3.583	-4.399	-25.781	-3.877	47.024	46.851	46.916	46.732
00:59	0.1995	-4.095	-25.484	-3.657	-4.41	-26.604	-3.947	47.851	47.675	47.742	47.555
0.041	0.2419	-4.106	-26.309	-3.735	-4.421	-27.427	-4.024	48.679	48.499	48.568	48.378

0.042 361 0.0891 -4.118 -27.133	-3.813 -4.432 -28.25	-4.104 49.507 49.324 49	9.396 49.201
------------------------------------	----------------------	-------------------------	--------------

Комбинацијом вредности приказаних у табелама 8 и 9 може се доћи до потребних података за тренутак 60. Из табеле 8 може се добити вредност сужења по *X* оси, директно, одузимањем две вредности (дужина пре и након деформисања). Из табеле 8 може се још одузимањем средње вредности *Z* координата за деформисану и недеформисану епрувету, добити максимална разлика по тој оси, што представља теме радијуса заобљења на том делу МШ.

Конкретно за <u>тренутак 60</u> добијају се следеће вредности:

$$\Delta x_{60} = \Delta w = 5.83 - 5.819 = 0.011 mm \tag{26}$$

$$\Delta z_{60} = \Delta t_{60} = -2.08911 - (-2.120457) = 0.031347mm$$
(27)

$$A_0 = 7.5 \cdot 7.4 = 55.5 mm^2 \tag{28}$$

$$x_{60} = w_{60} = w_0 - \Delta x_{60} = 7.4 - 0.011 = 7.389mm \tag{29}$$

$$z_{60} = t_{60} = t_0 - 2 \cdot \Delta z_{60} = 7.5 - 2 \cdot 0.031347 = 7.437306mm$$
(30)

$$A_{60} = \frac{A_0}{1 + \frac{A_0 - t_{60} \cdot w_{60}}{A_0}} = 54.954 mm^2$$
(31)

$$l_{60} = l_0 + \Delta l_{60} = 50 + 0.092 = 50.092mm \tag{32}$$

$$F_{60} = 19694.6N \tag{33}$$

Вредност за силу очитана је из вредности добијених са кидалице. За вршење прорачуна још су потребне вредности, радијуса заобљења на месту лица МШ са једне и са друге стране и пораст дужина лица шавова. Радијуси заобљења се могу израчунати на следећи начин:

$$R_1 = \frac{b_1}{2 \cdot \sin\left(\frac{\alpha}{2}\right)} \tag{34}$$

$$tan\left(\frac{\alpha}{4}\right) = \frac{\Delta x}{b_1} \rightarrow \alpha$$
 (35)

Поступак је исти и за радијус на месту сужењу 2 тј. за друго лице шава.

Радијуси за тренутак 60 износе:

$$R_{1_{60}} = 1905.224338mm$$
$$R_{2_{60}} = 1899.125mm$$

Може се видети да су радијуси велики што је и очекивано имајући у виду да је епрувета тек почела да се деформише, тј. да се сужава.

Септембар 2021

("*undermatching*"), ако се има у виду да се сва деформације концентрише у МШ, тако да је целокупно издужење потрошено на пораст димензија шавова. Пошто су лица готово истих димензија нема потребе за корекцијом.

Лако се долази до података за дужине лица шавова:

$$b_{1_{60}} = b_{1_0} + \Delta l_{60} = 9.064 + 0.092 = 9.155859mm \tag{36}$$

$$b_{2_{60}} = b_{2_0} + \Delta l_{60} = 9.0493333 + 0.092 = 9.141192072mm \tag{37}$$

Сада се може прећи на израчунавање стварног дијаграма.

Прво је потребно израчунати тренутни напон у измереном попречном пресеку епрувете:

$$\sigma_{T_{60}} = \frac{F}{A_{60}} = \frac{19694.6N}{54.954mm^2} = 358.38 MPa \tag{38}$$

Формула 38, била би последња формула која одређује стварни напон када не би била присутна концентрација напона која се индукује на месту сужења епрувете. Концентрацију напона на месту сужења узима се у обзир преко коефицијента који је предложио аутор ове дисертације:

$$\sigma_{max}^{actual} = \sigma_T \cdot C_{NM} \tag{39}$$

$$C_{NM} = \left(1 + \frac{b}{2 \cdot (R+b)} + \frac{\Delta t}{2 \cdot w_0}\right) \tag{40}$$

Конкретно за тренутак 60 и епрувету Р1-1 добијају се вредности:

$$\sigma_{max_{1}}^{actual} = \sigma_{T_{60}} \cdot C_{NM_{1}}$$

$$\sigma_{max_{1}}^{actual} = 358.38 \cdot \left(1 + \frac{b_{1_{60}}}{2 \cdot (R_{1_{60}} + b_{1_{60}})} + \frac{\Delta t_{60}}{2 \cdot w_{0}} \right)$$

$$\sigma_{max_{1}}^{actual} = 360.7553 MPa$$
(41)

На исти начин долази се до вредности максималног напона за тачку 2...

$$\sigma_{\max_2}^{actual} = 360.7566 \,\text{MPa} \tag{42}$$

Вредности добијене у Abaqusu износе:

Stage
$$60 \rightarrow \sigma_{max_1}^{Abaqus}$$
=355.777 MPa (43)

Stage
$$60 \rightarrow \sigma_{max_2}^{Abaqus}$$
=355.772 MPa (44)

Сада се може прећи на тренутак 70.

За <u>тренутак 70</u> добијају се следеће вредности:

$$\begin{split} &\Delta x_{70} = \Delta w_{70} = 0.068 \text{mm}; \ \Delta z_{70} = \Delta t_{70} = 0.057583 \text{mm}; \ x_{70} = w_{70} = 7.332 \text{mm} \\ &z_{70} = t_{70} = 7.384834 \text{mm}; \ A_{70} = 54.17337 \text{mm}^2; \ l_{70} = 50.169 \text{mm}; \\ &F_{70} = 26350.28 \text{N}; \ R_{170} = 313,4122 \text{mm}; \ R_{270} = 312,4173 \text{mm}; \ b_{170} = 9.232741 \text{mm}; \\ &b_{270} = 9.218074 \text{mm}; \ b_{1\cdot270} = 5.772 \text{mm}; \\ &\sigma_{T_{70}} = 486.4065 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 497.1509 \,\text{MPa} \tag{45}$$

$$\sigma_{max_2}^{actual} = 497.1617 \, MPa \tag{46}$$

Вредности добијене у Abaqusu износе:

Stage 70
$$\rightarrow \sigma_{max_1}^{Abaqus} = 494.229 MPa$$
 (47)

Stage 70
$$\rightarrow \sigma_{max_2}^{Abaqus} = 494.244 MPa$$
 (48)

Може се приметити да је разлика између израчунатих и напона добијених у *Abaqusu* доста мала, прецизније, разлика износи:

- За таку 1: 0.59%
- За тачку 2: 0.59%

Вредности добијених напона из *Abaqusa* за разматрани тренутак приказане су на слици 27.

За <u>тренутак 90</u> добијају се следеће вредности:

$$\begin{split} &\Delta x_{90} = \Delta w = 0.566 \text{mm}; \ &\Delta z_{90} = \Delta t_{90} = 0.268494 \text{mm}; \ &x_{90} = w_{90} = 6.834 \text{mm}; \\ &z_{90} = t_{90} = 6.963011 \text{mm}; \ &A_{90} = 48.57528 \text{mm}^2; \ &l_{90} = 50.788 \text{mm}; \ &F_{90} = 36371.39 \text{N}; \\ &R_{190} = 43.00283861 \text{mm}; \ &R_{290} = 42.8753 \text{mm}; \ &b_{190} = 9.85079 \text{mm}; \\ &b_{290} = 9.836124 \text{mm}; \ &b_{1\text{-}290} \text{=} 5.780 \text{mm} \ &\sigma_{T90} = 748.7633 \ \text{MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 845.7075 \, MPa \tag{49}$$

$$\sigma_{max_2}^{actual} = 845.7916 MPa \tag{50}$$

Вредности добијене у Abaqusu износе:

$$Stage 90 \rightarrow \sigma_{max_1}^{Abaqus} = 823.175 MPa$$
⁽⁵¹⁾

Stage 90
$$\rightarrow \sigma_{max_2}^{Abaqus} = 823.093 MPa$$
 (52)

Приказ из Abaqusa дат је на слици 28.

Слика 28. Вредности еквивалентног напона за епрувету Р1-1, тренутак 90

За <u>тренутак 95.</u> измерене су следеће вредности:

$$\begin{split} \Delta x_{95} &= \Delta w_{95} = 0.741 \text{mm}; \ \Delta z_{95} = \Delta t_{95} = 0.35981 \text{mm}; \ x_{95} = w_{95} = 6.659 \text{mm}; \\ z_{95} &= t_{95} = 6.780381 \text{mm}; \ A_{95} = 46.77868 \text{mm}^2; \ l_{95} = 51.056 \text{mm}; \ F_{95} = 37068.7 \text{N}; \\ R_{195} &= 34.72694791 \text{mm}; \ R_{295} = 34.62688 \text{mm}; \ b_{1_{95}} = 10.11838 \text{mm}; \\ b_{2_{95}} &= 10.10371 \text{mm}; \ b_{1\cdot 2_{95}} = 5.785 \text{mm} \ \sigma_{T_{95}} = 792.4273 \ \text{MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 920.3545 \, MPa \tag{53}$$

$$\sigma_{max_2}^{actual} = 920.4538 \, MPa \tag{54}$$

Из Abaqusa се добија:

$$Stage 95 \rightarrow \sigma_{max_1}^{Abaqus} = 896.074 \, MPa \tag{55}$$

$$Stage 95 \rightarrow \sigma_{max_2}^{Abaqus} = 896.219 MPa$$
⁽⁵⁶⁾

Приказ положаја карактеристичних тачака и вредности, одговарајућих еквивалентних напона дат је на слици 29.

Слика 29. Вредности еквивалентног напона за епрувету Р1-1, тренутак 95

За тренутак 97 измерене су следеће вредности:

$$\begin{split} \Delta x_{97} &= \Delta w_{97} = 0.755 \text{mm}; \ \Delta z_{97} = \Delta t_{97} = 0.412963 \text{mm}; \ x_{97} = w_{97} = 6.645 \text{mm}; \\ z_{97} &= t_{97} = 6.674073 \text{mm}; \ A_{97} = 46.20984 \text{mm}^2; \ l_{97} = 51.212 \text{mm}; \ F_{97} = 35885.96\text{N}; \\ R_{197} &= 35.14171094 \text{mm}; \ R_{297} = 35.04199 \text{mm}; \ b_{1_{97}} = 10.27414 \text{mm}; \\ b_{2_{07}} &= 10.25947 \text{mm}; \ b_{1_{297}} = 5.94067 \text{mm} \ \sigma_{T_{97}} = 776.5869 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 907.7662 \, MPa \tag{57}$$

$$\sigma_{max_2}^{actual} = 907.8623 \, MPa \tag{58}$$

Вредности добијене у Abaqusu износе:

$$Stage 97 \rightarrow \sigma_{max_1}^{Abaqus} = 884.737 \, MPa \tag{59}$$

$$Stage 97 \rightarrow \sigma_{max_2}^{Abaqus} = 884.888 MPa \tag{60}$$

Приказ из Abaqusa дат је на слици 30.

Слика 30. Вредности еквивалентног напона за епрувету Р1-1, тренутак 97

Приказ поређења вредности добијених предложеном формулом и вредности добијених из *Abaqusa* дат је у табели 10.

Тренутак	Изарчунат	Abaqus	Разлика	Изарчунат	Abaqus	Разлика
	NM_1	NM_1	[%]	NM ₂	NM ₂	[%]
60	360.7553	355.777	1.40	360.7566	355.772	1.40
70	497.1509	494.229	0.59	497.1617	494.244	0.59
90	845.7075	823.175	<mark>2.74</mark>	845.7916	823.093	<mark>2.76</mark>
95	920.3545	896.074	2.71	920.4538	896.219	2.70
97	907.7662	884.737	2.60	907.8623	884.888	2.60

Табела 10. Поређење вредности напона за епрувету Р1-1

Из табеле 10 може се видети да је највећа разлика добијена за тренутак 90 и та разлика је 2.76%.

На основу добијених вредности, коначно се могу формирати стварни дијаграми напондеформација за спој изведен на епрувети *P1-1*. Добијени дијаграми су приказани на слици 31.

Слика 31. Стварни дијаграми напон-деформација упоређени са инжењерским и дијаграмом са правом површином п.п.

5.2 Епрувета *Р1-2*

Анализа се наставља на епрувети *P1-2*. Инжењерски дијаграм добијен за ову епрувету приказан је на слици 32.

Слика 32. Инжењерски дијаграм напон-деформација за епрувету Р1-2

Почетне вредности карактеристичних димензија су:

 $b_{1_0} = 7.398$ mm, $b_{2_0} = 7.0635$ mm, $t_0 = 7.5$ mm, $w_0 = 7.4$ mm, $b_{1-2_0} = 3.286$ mm.

Епрувета се покидала при 91тренутку, зато се у анализу укључује првих 90 тренутака. Следе подаци за карактеристичне тренутке, тј. за тренутке 60 – 90.

За <u>тренутак 60</u> измерене су следеће вредности:

 $\begin{array}{l} \Delta x_{60} = \Delta w = 0.016 \text{mm}; \ \Delta z_{60} = \Delta t_{90} = 0 \text{mm}; \ x_{60} = w_{60} = 7.384 \text{mm}; \\ z_{60} = t_{60} = 7.5 \text{mm}; \ A_{60} = 55.38026 \text{mm}^2; \ l_{60} = 50.107 \text{mm}; \ F_{60} = 20660.37 \text{N}; \\ R_{160} = 880.044 \text{mm}; \ R_{260} = 803.3433 \text{mm}; \ b_{160} = 7.504836 \text{mm}; \ b_{260} = 7.0635 \text{mm}; \\ b_{1\cdot 260} = 3.392836 \text{mm}; \ \sigma_{T_{60}} = 373.0638 \text{ MPa}. \end{array}$

$$\sigma_{max_1}^{actual} = 374.6411 \, MPa \tag{61}$$

$$\sigma_{max_2}^{actual} = 374.7140 MPa \tag{62}$$

Вредности добијене у Abaqusu износе:

Stage 60
$$\rightarrow \sigma_{max_1}^{Abaqus} = 373.923 MPa$$
 (63)

$$Stage \ 60 \ \rightarrow \ \sigma_{max_2}^{Abaqus} = 373.96 \ MPa \tag{64}$$

Добијене вредности напона са положајима карактеристичних тачака дате су на слици 33.

Слика 33. Вредности еквивалентног напона за епрувету Р1-2, тренутак 60

За тренутак 70 измерене су и израчунате следеће вредности:

$$\begin{split} &\Delta x_{70} = \Delta w_{70} = 0.082 \text{mm}; \\ &\Delta z_{70} = t_{70} = 7.5 \text{mm}; \\ &A_{70} = 54.89174 \text{mm}^2; \\ &l_{70} = 50.202 \text{mm}; \\ &F_{70} = 28169.62 \text{N}; \\ &R_{170} = 176.1037 \text{mm}; \\ &R_{270} = 160.9442 \text{mm}; \\ &b_{170} = 7.59969 \text{mm}; \\ &b_{270} = 7.26519 \text{mm}; \\ &b_{1-270} = 3.4877 \text{mm}; \\ &\sigma_{T70} = 513.185 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 523.8001 \, MPa \tag{65}$$

$$\sigma_{max_2}^{actual} = 524.2676 MPa \tag{66}$$

Вредности добијене у Abaqusu износе:

Stage 70
$$\rightarrow \sigma_{max_1}^{Abaqus} = 519.081 MPa$$
 (67)

$$Stage \ 70 \ \rightarrow \ \sigma_{max_2}^{Abaqus} = 519.332 \ MPa \tag{68}$$

Добијене вредности напона са њиховим положајима дате су на слици 34.

Слика 34. Вредности еквивалентног напона за епрувету Р1-2, тренутак 70

За тренутак 80 добијене су следеће вредности:

 $\begin{array}{l} \Delta x_{80} = \Delta w_{80} = 0.325 mm; \ \Delta z_{80} = \Delta t_{80} = 0 mm; \ x_{80} = w_{80} = 7.075 mm; \\ z_{80} = t_{80} = 7.5 mm; \ A_{80} = 53.16505 mm^2; \ l_{80} = 50.464 mm; \ F_{80} = 34261.48 N; \\ R_{180} = 47.61959 mm; \ R_{280} = 43.66012 mm; \ b_{180} = 7.861288 mm; \\ b_{280} = 7.526788 mm; \ b_{1\mathchar{-}280} = 3.7492877 mm; \ \sigma_{T80} = 644.4362 \ MPa. \end{array}$

$$\sigma_{max_1}^{actual} = 690.0924 \, MPa \tag{69}$$

$$\sigma_{max_2}^{actual} = 691.8168 \, MPa \tag{70}$$

Вредности добијене у Abaqusu износе:

Stage 80
$$\rightarrow \sigma_{max_1}^{Abaqus} = 671.677 MPa$$
 (71)

$$Stage 80 \rightarrow \sigma_{max_2}^{Abaqus} = 672.678 MPa$$
(72)

Добијене вредности напона са њиховим положајима дате су на слици 35.

Слика 35. Вредности еквивалентног напона за епрувету Р1-2, тренутак 80

За тренутак 90 добијене су следеће вредности:

$$\begin{split} &\Delta x_{90} = \Delta w_{90} = 0.817 \text{mm}; \ \Delta z_{90} = \Delta t_{90} = 0.1905 \text{mm}; \ x_{90} = w_{90} = 6.583 \text{mm}; \\ &z_{90} = t_{90} = 7.119 \text{mm}; \ A_{90} = 48.02713 \text{mm}^2; \ l_{90} = 50.894 \text{mm}; \ F_{90} = 37289 \text{N}; \\ &R_{190} = 21.23684 \text{mm}; \ R_{290} = 19.57388 \text{mm}; \ b_{190} = 8.290628 \text{mm}; \\ &b_{290} = 7.956128 \text{mm}; \ b_{1-290} = 4.178628 \text{mm}; \ \sigma_{T90} = 776.4153 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 905.4025 \, MPa \tag{73}$$

$$\sigma_{max_2}^{actual} = 908.5941 \, MPa \tag{74}$$

Вредности добијене у Abaqusu износе:

$$Stage 90 \rightarrow \sigma_{max_1}^{Abaqus} = 889.903 \, MPa \tag{75}$$

$$Stage 90 \rightarrow \sigma_{max_2}^{Abaqus} = 894.209 MPa \tag{76}$$

Приказ добијених напона са положајима карактеристичних тачака дат је на слици 36.

Слика 36. Вредности еквивалентног напона за епрувету Р1-2, тренутак 90

Приказ поређења вредности добијених предложеном формулом и вредности еквивалентних напона дат је у табели 11.

Тренутак	Изарчунат	Abaqus	Разлика	Изарчунат	Abaqus	Разлика
	NM_1	NM_1	[%]	NM_2	NM ₂	[%]
60	374.6411	373.923	0.192	374.7140	373.96	0.202
70	523.8001	519.081	0.909	524.2676	519.332	0.950
80	690.0924	671.677	2.742	691.8168	672.678	<mark>2.845</mark>
90	905.4025	889.903	1.742	908.5941	894.209	1.609

Табела 11. Поређење вредности напона за епрувету Р1-2

Из табеле 11 може се видети да је највећа разлика добијена за тренутак 80, код оба лица МШ.

На основу добијених вредности коначно се могу формирати стварни дијаграми напондеформација за спој изведен на епрувети *P1-2*.

σ [MPa] 700 600 500 400 P1-2-NM2-Abaqus P1-2-ActualStress-Strain-NM2 300 P1-2-NM1-Abagus P1-2-ActualStress-Strain-NM1 200 P1-2-ATrue-LTrue-Stress-Strain 100 P1-2-eng 0 0,5 1,0 0,0 1,5 2,0 8 [%] Слика 37. Стварни дијаграми упоређени са инжењерским и дијаграмом са правом површином п.п

Добијени дијаграми су приказани на слици 37.

5.3 Епрувета *Р1-3*

За епрувету Р1-З инжењерски дијаграм приказан је на слици 38.

Почетне вредности карактеристичних димензија су:

 $b_{1_0} = 7.393$ mm, $b_{2_0} = 6.572$ mm, $t_0 = 7.5$ mm, $w_0 = 7.4$ mm, $b_{1-2_0} = 4.1075$ mm.

Епрувета је покидана при 126 тренутку, зато се у анализу укључује првих 125 тренутака експеримента. Следе подаци за карактеристичне тренутке у опсегу 60 – 125.

За <u>тренутак 60</u> добијају се следеће вредности:

 $\begin{array}{l} \Delta x_{60} = \Delta w = 0.018 \text{mm}; \ \Delta z_{60} = \Delta t_{90} = 0 \text{mm}; \ x_{60} = w_{60} = 7.382 \text{mm}; \\ z_{60} = t_{60} = 7.5 \text{mm}; \ A_{60} = 55.36712 \text{mm}^2; \ l_{60} = 50.113 \text{mm}; \ F_{60} = 21379.44 \text{N}; \\ R_{160} = 782.505 \text{mm}; \ R_{260} = 620.6882 \text{mm}; \ b_{160} = 7.506 \text{mm}; \ b_{260} = 6.685 \text{mm}; \\ b_{1-2_{60}} = 4.152 \text{mm}; \ \sigma_{T_{60}} = 386.1396515 \ \text{MPa}. \end{array}$

$$\sigma_{max_{\perp}}^{actual} = 387.9740 \text{ MPa} \tag{77}$$

$$\sigma_{max_2}^{actual} = 388.1969 \text{ MPa} \tag{78}$$

Еквивалентни напони добијени у Abaqusu износе:

Stage 60
$$\rightarrow \sigma_{max_1}^{Abaqus} = 387.177 MPa$$
 (79)

$$Stage \ 60 \ \rightarrow \ \sigma^{Abaqus}_{max_2} = 387.292 \ MPa \tag{80}$$

Приказ положаја карактеристичних тачака, са вредностима напона, дат је на слици 39.

Слика 39. Вредности еквивалентног напона за епрувету Р1-3, тренутак 60

За <u>тренутак 90</u> добијају се следеће вредности:

$$\begin{split} &\Delta x_{90} = \Delta w_{90} = 0.242 \text{mm}; \ \Delta z_{90} = \Delta t_{90} = 0 \text{mm}; \ x_{90} = w_{90} = 7.158 \text{mm}; \\ &z_{90} = t_{90} = 7.5 \text{mm}; \ A_{90} = 53.76518 \text{mm}^2; \ l_{90} = 50.403 \text{mm}; \ F_{90} = 31210.36\text{N}; \\ &R_{190} = 62.84729 \text{mm}; \ R_{290} = 50.31941 \text{mm}; \ b_{190} = 7.796 \text{mm}; \ b_{290} = 6.975 \text{mm}; \\ &\sigma_{T_{90}} = 580.493951 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 612.5248 \text{ MPa} \tag{81}$$

$$\sigma_{max_2}^{actual} = 615.8285 \text{ MPa} \tag{82}$$

Вредности добијене у Abaqusu износе:

$$Stage 90 \rightarrow \sigma_{max_1}^{Abaqus} = 599.875 MPa \tag{83}$$

$$Stage 90 \rightarrow \sigma_{max_2}^{Abaqus} = 601.82 MPa \tag{84}$$

Приказ положаја карактеристичних тачака дат је на слици 40.

Слика 40. Вредности еквивалентног напона за епрувету Р1-3, тренутак 90

За тренутак 110 добијају се следеће вредности:

$$\begin{split} &\Delta x_{110} = \Delta w_{110} = 0.593 \text{mm}; \ \Delta z_{110} = \Delta t_{110} = 0.247111 \text{mm}; \ x_{110} = w_{110} = 6.807 \text{mm}; \\ &z_{110} = t_{110} = 7.252889 \text{mm}; \ A_{110} = 50.00812 \text{mm}^2; \ l_{110} = 50.797 \text{mm}; \ F_{110} = 35644.83 \text{N}; \\ &R_{1110} = 28.42654 \text{mm}; \ R_{2110} = 23.04124 \text{mm}; \ b_{1_{110}} = 8.19 \text{mm}; \ b_{2_{110}} = 7.369 \text{mm}; \\ &b_{1-2_{110}} = 4.271121 \text{mm}; \ \sigma_{T_{110}} = 712.7808383 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 804.3956 \text{ MPa} \tag{85}$$

$$\sigma_{max_2}^{actual} = 811.0424 \text{ MPa} \tag{86}$$

Вредности напона добијене у Abaqusu износе:

$$Stage \ 110 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 788.134 \ MPa \tag{87}$$

Stage 110
$$\rightarrow \sigma_{max_2}^{Abaqus} = 795.529 MPa$$
 (88)

Приказ добијених напона са положајима карактеристичних тачака дат је на слици 41.

Слика 41. Вредности еквивалентног напона добијене за епрувету Р1-3, тренутак 110

За тренутак 125 добијају се следеће вредности:

$$\begin{split} \Delta x_{125} &= \Delta w_{125} = 0.999 \text{mm}; \ \Delta z_{125} = \Delta t_{125} = 0.975111 \text{mm}; \ x_{125} = w_{125} = 6.401 \text{mm}; \\ z_{125} &= t_{125} = 6.524889 \text{mm}; \ A_{125} = 44.49184 \text{mm}^2; \ l_{125} = 51.43 \text{mm}; \ F_{125} = 31806.29 \text{N}; \\ R_{1125} &= 19.73056 \text{mm}; \ R_{2125} = 16.27378 \text{mm}; \ b_{1_{125}} = 8.823 \text{mm}; \ b_{2_{125}} = 8.002 \text{mm}; \\ b_{1-2_{125}} &= 5 \text{mm}; \ \sigma_{T_{125}} = 714.8791894 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 872.4278 \text{ MPa} \tag{89}$$

$$\sigma_{max_2}^{actual} = 879.8021 \text{ MPa}$$
⁽⁹⁰⁾

Вредности добијене у *Abaqusu* износе:

 $Stage \ 125 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 882.935 \ MPa \tag{91}$

$$Stage \ 125 \ \rightarrow \ \sigma_{max_2}^{Abaqus} = 897.175 \ MPa \tag{92}$$

Положаји карактеристичних тачака са одговарајућим вредностима еквивалентних напона приказане су на слици 42.

Слика 42. Вредности еквивалентног напона за епрувету Р1-3, тренутак 125

ТАБЕЛА 12. ПОРЕЂЕЊЕ ВРЕДНОСТИ НАПОНА ЗА ЕПРУВЕТУ Р1-3											
Тренутак	Изарчунат	Abaqus	Разлика	Изарчунат	Abaqus	Разлика					
	NM_1	NM_1	[%]	NM ₂	NM_2	[%]					
60	387.9740	387.177	0.206	388.1969	387.292	0.234					
90	612.5248	599.875	<mark>2.109</mark>	615.8285	601.82	<mark>2.328</mark>					
110	804.3956	788.134	2.063	811.0424	795.529	1.950					
125	872.4278	882.935	1.204	879.8021	897.175	1.975					

Из табеле 12 може се видети да је највећа разлика добијена за тренутак 90 и код једног и код другог лица МШ. На основу добијених вредности могу се формирати стварни дијаграми напон-деформација за спој изведен на епрувети *P1-3*.

Добијени дијаграми су приказани на сликама 43 и 44.

Слика 43. Стварни дијаграми са инжењерским и дијаграмом са правом површином п.п

Слика 44. Део дијаграма са слике 43

5.4 Епрувета Р2-1

За епрувету Р2-1 инжењерски дијаграм приказан је на слици 45.

Слика 45. Инжењерски дијаграм затезања за епрувету Р2-1

Почетне вредности карактеристичних димензија су:

 $b_{1_0} = 8.22$ mm, $b_{2_0} = 7.389$ mm, $t_0 = 7.5$ mm, $w_0 = 7.4$ mm, $b_{1-2_0} = 4.012$ mm

Епрувета се покидала при 119 тренутку, зато се у анализу укључује првих 118 тренутака. Следе подаци за карактеристичне тренутке у опсегу 80 – 118.

За тренутак 80 израчунате су следеће вредности:

$$\begin{split} \Delta x_{80} &= \Delta w = 0.128 \text{mm}; \ \Delta z_{80} = \Delta t_{80} = 0.040615 \text{mm}; \ x_{80} = w_{80} = 7.272 \text{mm}; \\ z_{80} &= t_{80} = 7.459385 \text{mm}; \ A_{80} = 54.272412 \text{mm}^2; \ l_{80} = 50.269 \text{mm}; \ F_{80} = 28432.27 \text{N}; \\ R_{1_{80}} &= 140.76659 \text{mm}; \ R_{2_{80}} = 114.560593 \text{mm}; \ b_{1_{80}} = 8.488587 \text{mm}; \ b_{2_{80}} = 7.657587 \text{mm}; \\ b_{1-2_{80}} &= 4.280587 \text{mm}; \ \sigma_{T_{80}} = 523.8807 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 540.2157 \, MPa \tag{93}$$

$$\sigma_{max_2}^{actual} = 541.7303 \, MPa \tag{94}$$

Вредности добијене у Abaqusu износе:

$$Stage \ 80 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 535.14 \ MPa \tag{95}$$

Stage 80
$$\rightarrow \sigma_{max_2}^{Abaqus} = 537.124 MPa$$
 (96)

Вредности еквивалентног напона са њиховим положајима приказани су на слици 46.

Слика 46. Вредности еквивалентног напона за епрувету Р2-1, тренутак 80

За тренутак 90 добијене су следеће вредности:

$$\begin{split} &\Delta x_{90} = \Delta w_{90} = 0.264 \text{mm}; \ \Delta z_{90} = \Delta t_{90} = 0.0795 \text{mm}; \ x_{90} = w_{90} = 7.136 \text{mm}; \\ &z_{90} = t_{90} = 7.4205 \text{mm}; \ A_{90} = 53.06447 \text{mm}^2; \ l_{90} = 50.416 \text{mm}; \ F_{90} = 31121.98 \text{N}; \\ &R_{190} = 70.68103 \text{mm}; \ R_{290} = 57.74408 \text{mm}; \ b_{190} = 8.635361 \text{mm}; \ b_{290} = 7.804361 \text{mm}; \\ &b_{1-290} = 4.427361 \text{mm}; \ \sigma_{T90} = 586.4937 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 621.5706 MPa \tag{97}$$

$$\sigma_{max_2}^{actual} = 624.5588 \, MPa \tag{98}$$

Вредности добијене у Abaqusu износе:

$$Stage \ 90 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 611.511 \ MPa \tag{99}$$

$$Stage 90 \rightarrow \sigma_{max_2}^{Abaqus} = 615.82 MPa \tag{100}$$

Приказ положаја добијених вредности дат је на слици 47.

Слика 47. Вредности еквивалентног напона за епрувету Р2-1, тренутак 90

Резултати

За <u>тренутак 100</u> добијене су следеће вредности:

$$\begin{split} &\Delta x_{100} = \Delta w_{100} = 0.423 \text{mm}; \ \Delta z_{100} = \Delta t_{100} = 0.204462 \text{mm}; \ x_{100} = w_{100} = 6.977 \text{mm}; \\ &z_{100} = t_{100} = 7.295538 \text{mm}; \ A_{100} = 51.25291 \text{mm}^2; \ l_{100} = 50.593 \text{mm}; \ F_{100} = 33453.08 \text{N}; \\ &R_{1100} = 45.99991 \text{mm}; \ R_{2100} = 37.7522 \text{mm}; \ b_{1_{100}} = 8.81209 \text{mm}; \ b_{2_{100}} = 7.98109 \text{mm}; \\ &b_{1-2_{100}} = 4.60409 \text{mm}; \ \sigma_{T_{100}} = 652.706 \ \text{MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 714.1906 \, MPa \tag{101}$$

$$\sigma_{max_2}^{actual} = 718.6762 \, MPa \tag{102}$$

Вредности добијене у *Abaqusu* износе:

$$Stage \ 100 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 702.009 \ MPa \tag{103}$$

Stage 100
$$\rightarrow \sigma_{max_2}^{Abaqus} = 710.346 MPa$$
 (104)

Приказ добијених вредности дат је на слици 48.

Слика 48. Вредности еквивалентног напона за епрувету Р2-1, тренутак 100

За тренутак 110 добијене су следеће вредности:

$$\begin{split} &\Delta x_{110} = \Delta w_{110} = 0.641 \text{mm}; \ \Delta z_{110} = \Delta t_{110} = 0.299385 \text{mm}; \ x_{110} = w_{110} = 6.759 \text{mm}; \\ &z_{110} = t_{110} = 7.200615 \text{mm}; \ A_{110} = 49.41759 \text{mm}^2; \ l_{110} = 50.813 \text{mm}; \ F_{110} = 35136.08 \text{N}; \\ &R_{1110} = 31.97481 \text{mm}; \ R_{2110} = 26.38971 \text{mm}; \ b_{1_{110}} = 9.031752 \text{mm}; \ b_{2_{110}} = 8.200752 \text{mm}; \\ &b_{1-2_{110}} = 4.823752 \text{mm}; \ \sigma_{T_{110}} = 711.0035 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 803.6859 \, MPa \tag{105}$$

$$\sigma_{max_2}^{actual} = 809.6690 \, MPa \tag{106}$$

Вредности добијене у *Abaqusu* износе:

$$Stage \ 110 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 782.214 \ MPa \tag{107}$$

$$Stage \ 110 \ \rightarrow \ \sigma_{max_2}^{Abaqus} = 788.833 \ MPa \tag{108}$$

Приказ добијених вредности дат је на слици 49.

Резултати

Ненад З. Милошевић

Слика 49. Вредности еквивалентног напона за епрувету Р2-1, тренутак 110

За тренутак 115 добијене су следеће вредности:

$$\begin{split} \Delta x_{115} &= \Delta w_{115} = 0.736 \text{mm}; \ \Delta z_{115} = \Delta t_{115} = 0.398333 \text{mm}; \ x_{115} = w_{115} = 6.664 \text{mm}; \\ z_{115} &= t_{115} = 7.101667 \text{mm}; \ A_{115} = 48.37494 \text{mm}^2; \ l_{115} = 50.954 \text{mm}; \ F_{115} = 35455.42 \text{N}; \\ R_{1_{115}} &= 28.7626 \text{mm}; \ R_{2_{115}} = 23.81892 \text{mm}; \ b_{1_{115}} = 9.172536 \text{mm}; \ b_{2_{115}} = 8.341536 \text{mm}; \\ b_{1-2_{115}} &= 4.964536 \text{mm}; \ \sigma_{T_{115}} = 732.9294 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 841.2652 MPa \tag{109}$$

$$\sigma_{max_2}^{actual} = 847.7066 MPa \tag{110}$$

Вредности добијене из Abaqusa износе:

Stage 115
$$\rightarrow \sigma_{max_1}^{Abaqus} = 820.488 MPa$$
 (111)

$$Stage \ 115 \ \rightarrow \ \sigma_{max_2}^{Abaqus} = 828.44 \ MPa \tag{112}$$

Положаји добијених напона приказани су на слици 50.

Слика 50. Вредности еквивалентног напона за епрувету Р2-1, тренутак 115

Резултати

За тренутак 118 имамо следеће вредности:

$$\begin{split} &\Delta x_{118} = \Delta w_{118} = 0.903 \text{mm}; \ &\Delta z_{118} = \Delta t_{118} = 0.445538 \text{mm}; \ &x_{118} = w_{118} = 6.497 \text{mm}; \\ &z_{118} = t_{118} = 7.054462 \text{mm}; \ &A_{118} = 47.2669 \text{mm}^2; \ &l_{118} = 51.058 \text{mm}; \ &F_{118} = 35072.79 \text{N}; \\ &R_{1_{118}} = 24.04943 \text{mm}; \ &R_{2_{118}} = 19.97225 \text{mm}; \ &b_{1_{118}} = 9.276376 \text{mm}; \ &b_{2_{118}} = 8.445376 \text{mm}; \\ &b_{1-2_{118}} = 5.068376 \text{mm}; \ &\sigma_{T_{118}} = 742.0158 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 867.6250 \, MPa \tag{113}$$

$$\sigma_{max_2}^{actual} = 874.6125 \, MPa \tag{114}$$

Вредности добијене у Abaqusu износе:

Stage 118
$$\rightarrow \sigma_{max_1}^{Abaqus} = 847.241 MPa$$
 (115)

Stage 118
$$\rightarrow \sigma_{max_2}^{Abaqus} = 856.200 MPa$$
 (116)

Приказ положаја добијених вредности дат је на слици 51.

Слика 51. Вредности еквивалентног напона за епрувету Р2-1, тренутак 118

У табели 13 приказани су резултати напона за епрувету *P2-1* и карактеристичне тренутке.

Тренутак	Изарчунат	Abaqus	Разлика	Изарчунат	Abaqus	Разлика
	NM_1	NM_1	[%]	NM ₂	NM_2	[%]
80	540.2157	535.14	0.948	541.7303	537.124	0.858
90	621.5706	611.511	1.645	624.5588	615.82	1.419
100	714.1906	702.009	1.735	718.6762	710.346	1.173
110	803.6859	782.214	<mark>2.745</mark>	809.6690	788.833	<mark>2.641</mark>
115	841.2652	820.488	2.532	847.7066	828.44	2.326
118	867.6250	847.241	2.406	874.6125	856.2	2.150

Табела 13. Поређење вредности напона за епрувету Р2-1

Из табеле 13 може се видети да је највећа разлика добијена за тренутак 110. Максимална разлика износи 2.745%.

На основу добијених вредности могу се формирати стварни дијаграми напондеформација за спој изведен на епрувети *P2-1*.

Добијени дијаграми су приказани на слици 52 и 53.

Слика 52. Стварни дијаграми упоређени са инжењерским и дијаграмима из Abaqus-а

Слика 53. Део дијаграма са слике 49, увећана карактеристична зона

5.5 Епрувета Р2-2

Слика 54. Инжењерски дијаграм затезања за епрувету Р2-2

Почетне вредности карактеристичних димензија су:

 $b_{1_0} = 6.58$ mm, $b_{2_0} = 6.568$ mm, $t_0 = 7.5$ mm, $w_0 = 7.4$ mm, $b_{1-2_0} = 4.1125$ mm

Епрувета је покидана при 117 тренутку, зато су у анализи разматрани првих 116 тренутака. Следе подаци за карактеристичне тренутке у опсегу 80 – 116.

За тренутак 80 добијене су следеће вредности:

$$\begin{split} \Delta x_{80} &= \Delta w_{80} = 0.097 \text{mm}; \ \Delta z_{80} = \Delta t_{80} = 0 \text{mm}; \ x_{80} = w_{80} = 7.303 \text{mm}; \\ z_{80} &= t_{80} = 7.5 \text{mm}; \ A_{80} = 54.78191 \text{mm}^2; \ l_{80} = 50.218 \text{mm}; \ F_{80} = 30815.9 \text{N}; \\ R_{180} &= 119.1177 \text{mm}; \ R_{280} = 118.6976 \text{mm}; \ b_{180} = 6.797665 \text{mm}; \ b_{280} = 6.785665 \text{mm}; \\ b_{1-280} &= 4.330165 \text{mm}; \ \sigma_{T80} = 562.5196 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 577.7037 \, MPa \tag{117}$$

$$\sigma_{max_2}^{actual} = 577.7291 \, MPa \tag{118}$$

Вредности добијене применом МКЕ и софтвера Abaqus износе:

$$Stage \ 80 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 571.539 \ MPa \tag{119}$$

Stage 80
$$\rightarrow \sigma_{max_2}^{Abaqus} = 571.548 MPa$$
 (120)

Положаји тачака, у којима су добијене поменуте вредности, приказани су на слици 55.

Слика 55. Еквивалентни напони добијени за епрувету Р2-2, тренутак 80

За тренутак 90 имамо следеће вредности:

$$\begin{split} &\Delta x_{90} = \Delta w_{90} = 0.209 \text{mm}; \ \Delta z_{90} = \Delta t_{90} = 0 \text{mm}; \ x_{90} = w_{90} = 7.191 \text{mm}; \\ &z_{90} = t_{90} = 7.5 \text{mm}; \ A_{90} = 53.97556 \text{mm}^2; \ l_{90} = 50.335 \text{mm}; \ F_{90} = 33810.25 \text{N}; \\ &R_{190} = 57.24138 \text{mm}; \ R_{290} = 57.04305 \text{mm}; \ b_{190} = 6.914486 \text{mm}; \ b_{290} = 6.902486 \text{mm}; \\ &b_{1-290} = 4.446986 \text{mm}; \ \sigma_{T90} = 626.3993 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 660.1548 \, MPa \tag{121}$$

$$\sigma_{max_2}^{actual} = 660.2071 \, MPa \tag{122}$$

Вредности добијене у *Abaqusu* износе:

$$Stage 90 \rightarrow \sigma_{max_1}^{Abaqus} = 647.197 MPa \tag{123}$$

$$Stage 90 \rightarrow \sigma_{max_2}^{Abaqus} = 647.209 MPa$$
(124)

Положаји тачака за добијене вредности напона дати су на слици 56.

Слика 56. Еквивалентни напони добијени за епрувету Р2-2, тренутак 90

За тренутак 100 добијене су следеће вредности:

$$\begin{split} &\Delta x_{100} = \Delta w_{100} = 0.374 \text{mm}; \\ &\Delta z_{100} = \Delta t_{100} = 0.374 \text{mm}; \\ &\Delta z_{100} = t_{100} = 7.5 \text{mm}; \\ &A_{100} = 52.82995 \text{mm}^2; \\ &I_{100} = 50.5 \text{mm}; \\ &F_{100} = 36246.23 \text{N}; \\ &R_{1100} = 33.59319 \text{mm}; \\ &R_{2100} = 33.47971 \text{mm}; \\ &b_{1_{100}} = 7.079232 \text{mm}; \\ &b_{2_{100}} = 7.067232 \text{mm}; \\ &b_{1-2_{100}} = 4.611732 \text{mm}; \\ &\sigma_{T_{100}} = 686.0925 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 745.8014 \, MPa \tag{125}$$

$$\sigma_{max_2}^{actual} = 745.8846 MPa \tag{126}$$

Применом МКЕ анализе и софтвера *Abaqus* добијају се следећи еквивалентни напони:

$$Stage \ 100 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 724.904 \ MPa \tag{127}$$

$$Stage \ 100 \ \rightarrow \ \sigma_{max_2}^{Abaqus} = 724.934 \ MPa \tag{128}$$

Положаји тачака у којима су добијене вредности из једначина 128 и 129, приказане су на слици 54.

Слика 57. Еквивалентни напони добијени за епрувету Р2-2, тренутак 100

За тренутак 110 израчунате су следеће вредности:

 $\begin{array}{l} \Delta x_{110}=\Delta w_{110}=0.602 mm; \ \Delta z_{110}=\Delta t_{110}=0.152667 mm; \ x_{110}=w_{110}=6.798 mm; \\ z_{110}=t_{110}=7.347333 mm; \ A_{110}=49.60891 mm^2; \ l_{110}=50.722 mm; \ F_{110}=37798.96 N; \\ R_{1110}=22.28631 mm; \ \ R_{2110}=22.2136 mm; \ \ b_{1_{110}}=7.300892 mm; \ \ b_{2_{110}}=7.288892 mm; \\ b_{1-2_{110}}=4.833392 mm; \ \sigma_{T_{110}}=761.9389 \ \text{MPa}. \end{array}$

$$\sigma_{max_{\star}}^{actual} = 863.8060 \, MPa \tag{129}$$

$$\sigma_{max_2}^{actual} = 863.9209 \, MPa \tag{130}$$

Из Abaqusa се добија:

Stage 110
$$\rightarrow \sigma_{max_1}^{Abaqus} = 830.326 MPa$$
 (131)

$$Stage \ 110 \ \rightarrow \ \sigma_{max_2}^{Abaqus} = 830.452 \ MPa \tag{132}$$

Резултати

Ненад З. Милошевић

Приказ положаја тачака у којима су добијене приказане вредности дат је на слици 58.

Слика 58. Еквивалентни напони добијени за епрувету Р2-2, тренутак 110

За тренутак 115 израчунате су следеће вредности:

$$\begin{split} &\Delta x_{115} = \Delta w_{115} = 0.761 \text{mm}; \ &\Delta z_{115} = \Delta t_{115} = 0.262 \text{mm}; \ &x_{115} = w_{115} = 6.639 \text{mm}; \\ &z_{115} = t_{115} = 7.238 \text{mm}; \ &A_{115} = 47.61825 \text{mm}^2; \ &l_{115} = 50.876 \text{mm}; \ &F_{115} = 37682.6\text{N}; \\ &R_{1_{115}} = 18.44645 \text{mm}; \ &R_{2_{115}} = 18.38773 \text{mm}; \ &b_{1_{115}} = 7.454655 \text{mm}; \ &b_{2_{115}} = 7.442655 \text{mm}; \\ &b_{1-2_{115}} = 4.987155 \text{mm}; \ &\sigma_{T_{115}} = 791.3479 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 919.2367 \, MPa \tag{133}$$

$$\sigma_{max_2}^{actual} = 919.3647 \, MPa \tag{134}$$

Из Abaqusa се добија:

Stage 115
$$\rightarrow \sigma_{max_1}^{Abaqus} = 880.912 MPa$$
 (135)

Stage 115
$$\rightarrow \sigma_{max_2}^{Abaqus} = 881.085 MPa$$
 (136)

Вредности добијене у *Abaqusu* са њиховим положајима дате су на слици 59.

Слика 59. Еквивалентни напони добијени за епрувету Р2-2, тренутак 115

За тренутак 116 израчунате су следеће вредности:

$$\begin{split} \Delta x_{116} &= \Delta w_{116} = 0.883 \text{mm}; \ \Delta z_{116} = \Delta t_{116} = 0.418806 \text{mm}; \ x_{116} = w_{116} = 6.517 \text{mm}; \\ z_{116} &= t_{116} = 7.081194 \text{mm}; \ A_{116} = 45.5785 \text{mm}^2; \ l_{116} = 50.912 \text{mm}; \ F_{116} = 37492.88 \text{N}; \\ R_{1_{116}} &= 16.10668 \text{mm}; \ R_{2_{116}} = 16.05582 \text{mm}; \ b_{1_{116}} = 7.4906 \text{mm}; \ b_{2_{116}} = 7.4786 \text{mm}; \\ b_{1-2_{116}} &= 5.0231 \text{mm}; \ \sigma_{T_{116}} = 822.6002 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 976.4389 \, MPa \tag{137}$$

$$\sigma_{max_2}^{actual} = 976.5779 \, MPa \tag{138}$$

Вредности добијене у Abaqusu износе:

$$Stage \ 116 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 935.526 \ MPa \tag{139}$$

Stage 116
$$\rightarrow \sigma_{max_2}^{Abaqus} = 935.765 MPa$$
 (140)

Положаји добијених вредности дати су на слици 60.

Слика 60. Еквивалентни напони добијени за епрувету Р2-2, тренутак 116

У табели 14 приказани су резултати израчунатих напона, применом предложене формуле и софтвера *Abaqus*, за епрувету *P2-2* и карактеристичне тренутке.

Тренутак	Изарчунат	Abaqus	Разлика	Изарчунат	Abaqus	Разлика	
	NM_1	NM_1	[%]	NM_2	NM_2	[%]	
80	577.7037	571.539	1.079	577.7291	571.548	1.081	
90	660.1548	647.197	2.002	660.2071	647.209	2.008	
100	745.8014	724.904	2.883	745.8846	724.934	2.890	
110	863.8060	830.326	4.032	863.9209	830.452	4.030	
115	919.2367	880.912	4.351	919.3647	881.085	4.345	
116	976.4389	935.526	<mark>4.373</mark>	976.5779	935.765	<mark>4.361</mark>	

Табела 14. Поређење вредности напона за епрувету Р2-2

Из табеле 14 се може видети да је највећа разлика добијена за тренутак 116, код оба лица МШ. Максимална разлика напона за епрувету *P2-2* износи 4.373%.

На основу добијених вредности могу да се формирају стварни дијаграми напондеформација за спој изведен на епрувети *P2-2*.

Добијени дијаграми су приказани на сликама 61 и 62.

Слика 61. Стварни дијаграми за епрувету Р2-2, упоредно са дијаграмима из Abaqusa и инжењерским

Слика 62. Дијаграми са слике 58, приказани увећано

5.6 Епрувета Р2-3

Слика 63. Инжењерски дијаграм затезања за епрувету Р2-3

Почетне вредности карактеристичних димензија су:

 $b_{1_0} = 8.22 \text{mm}, b_{2_0} = 8.21 \text{mm}, t_0 = 7.5 \text{mm}, w_0 = 7.4 \text{mm}, b_{1-2_0} = 4.1075 \text{mm}$

Епрувета је покидана при 142 тренутку експеримента, па се у анализу укључује првих 141 тренутак. Следе подаци за карактеристичне тренутке у опсегу 90 – 141

За <u>тренутак 90</u> добијене су следеће вредности:

$$\begin{split} &\Delta x_{90} = \Delta w_{90} = 0.059 \text{mm}; \ &\Delta z_{90} = \Delta t_{90} = 0.3112 \text{mm}; \ &x_{90} = w_{90} = 7.341 \text{mm}; \\ &z_{90} = t_{90} = 7.1888 \text{mm}; \ &A_{90} = 52.9007 \text{mm}^2; \\ &l_{90} = 50.169 \text{mm}; \\ &F_{90} = 298.2153 \text{mm}; \\ &R_{190} = 298.2153 \text{mm}; \\ &R_{290} = 297.5048 \text{mm}; \\ &b_{1-290} = 4.2765 \text{mm}; \\ &\sigma_{T90} = 520.0695 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 538.1198 \, MPa \tag{141}$$

$$\sigma_{max_2}^{actual} = 538.1281 \, MPa \tag{142}$$

Из Abaqusa се добија:

$$Stage 90 \rightarrow \sigma_{max_1}^{Abaqus} = 538.863 \, MPa \tag{143}$$

Stage 90
$$\rightarrow \sigma_{max_2}^{Abaqus} = 538.9 MPa$$
 (144)

Положаји добијених вредности напона дати су на слици 64.

Слика 64. Еквивалентни напони добијени за епрувету Р2-3, тренутак 90

За тренутак 100 израчунате су следеће вредности:

$$\begin{split} \Delta x_{100} &= \Delta w_{100} = 0.114 \text{mm}; \ \Delta z_{100} = \Delta t_{100} = 0.3892 \text{mm}; \ x_{100} = w_{100} = 7.286 \text{mm}; \\ z_{100} &= t_{100} = 7.1108 \text{mm}; \ A_{100} = 52.03942 \text{mm}^2; \ l_{100} = 50.25 \text{mm}; \ F_{100} = 30265.04 \text{N}; \\ R_{1100} &= 157.3550 \text{mm}; \ R_{2100} = 156.9838 \text{mm}; \ b_{1100} = 8.47 \text{mm}; \ b_{2100} = 8.46 \text{mm}; \\ b_{1-2100} &= 4.3575 \text{mm}; \ \sigma_{T_{100}} = 581.5792 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 611.7261 \, MPa \tag{145}$$

$$\sigma_{max_2}^{actual} = 611.7427 MPa \tag{146}$$

Из Abaqusa се добија:

$$Stage \ 100 \ \rightarrow \ \sigma^{Abaqus}_{max_1} = 610.615 \ MPa \tag{147}$$

$$Stage \ 100 \ \rightarrow \ \sigma_{max_2}^{Abaqus} = 610.667 \ MPa \tag{148}$$

Положаји добијених вредности дати су на слици 65.

Слика 65. Еквивалентни напони добијени за епрувету Р2-3, тренутак 100

За тренутак 110 израчунате су следеће вредности:

$$\begin{split} &\Delta x_{110} = \Delta w_{110} = 0.219 \text{mm}; \ \Delta z_{110} = \Delta t_{110} = 0.4778 \text{mm}; \ x_{110} = w_{110} = 7.181 \text{mm}; \\ &z_{110} = t_{110} = 7.0222 \text{mm}; \ A_{110} = 50.85137627 \text{mm}^2; \\ &l_{110} = 84.11133 \text{mm}; \\ &R_{2110} = 83.91553 \text{mm}; \\ &b_{1-2_{110}} = 4.4685 \text{mm}; \\ &\sigma_{T_{110}} = 643.54109 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 694.1050 \, MPa \tag{149}$$

$$\sigma_{max_2}^{actual} = 694.1365 \, MPa \tag{150}$$

Из Abaqusa се добија:

$$Stage \ 110 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 689.177 \ MPa \tag{151}$$

Stage 110
$$\rightarrow \sigma_{max_2}^{Abaqus} = 689.24 MPa$$
 (152)

Положаји добијених вредности за тренутак 110 дати су на слици 66.

Слика 66. Еквивалентни напони добијени за епрувету Р2-3, тренутак 110

За тренутак 120 израчунате су следеће вредности:

 $\begin{array}{ll} \Delta x_{120} = \Delta w_{120} = 0.347 \text{mm}; \\ \Delta z_{120} = \Delta t_{120} = 0.5916 \text{mm}; \\ x_{120} = t_{120} = 6.9084 \text{mm}; \\ A_{120} = 49.46202 \text{mm}^2; \\ l_{120} = 50.502 \text{mm}; \\ F_{120} = 34803.34 \text{N}; \\ R_{1_{120}} = 54.8945915 \text{mm}; \\ R_{2_{120}} = 54.76899 \text{mm}; \\ b_{1_{120}} = 8.722 \text{mm}; \\ b_{2_{120}} = 8.712 \text{mm}; \\ b_{1_{-2_{120}}} = 4.6095 \text{mm}; \\ \sigma_{T_{120}} = 703.63766 \text{ MPa}. \end{array}$

$$\sigma_{max_1}^{actual} = 779.9994 \, MPa \tag{153}$$

$$\sigma_{max_2}^{actual} = 780.0470 \, MPa \tag{154}$$

Из Abaqusa се добија:

$$Stage \ 120 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 771.792 \ MPa \tag{155}$$

$$Stage \ 120 \ \rightarrow \ \sigma_{max_2}^{Abaqus} = 771.879 \ MPa \tag{156}$$

Резултати

Положаји добијених вредности за тренутак 120 дати су на слици 67.

Слика 67. Еквивалентни напони добијени за епрувету Р2-3, тренутак 120

За <u>тренутак 130</u> добијају се следеће вредности:

$$\begin{split} \Delta x_{130} &= \Delta w_{130} = 0.522 \text{mm}; \ \Delta z_{130} = \Delta t_{130} = 0.7676 \text{mm}; \ x_{130} = w_{130} = 6.878 \text{mm}; \\ z_{130} &= t_{130} = 6.7324 \text{mm}; \ A_{130} = 47.6122 \text{mm}^2; \ l_{130} = 50.686 \text{mm}; \ F_{130} = 36359.64 \text{N}; \\ R_{1_{130}} &= 38.117490 \text{mm}; \quad R_{2_{130}} = 38.032232 \text{mm}; \quad b_{1_{130}} = 8.906 \text{mm}; \quad b_{2_{130}} = 8.896 \text{mm}; \\ b_{1-2_{130}} &= 4.7935 \text{mm}; \ \sigma_{T_{130}} = 763.66225 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 875.5863 MPa \tag{157}$$

$$\sigma_{max_2}^{actual} = 875.6517 MPa \tag{158}$$

Из Abaqusa се добија:

Stage 130
$$\rightarrow \sigma_{max_1}^{Abaqus} = 866.033 MPa$$
 (159)

$$Stage \ 130 \ \rightarrow \ \sigma^{Abaqus}_{max_2} = 865.939 \ MPa \tag{160}$$

Положаји добијених вредности за тренутак 130 дати су на слици 68.

Слика 68. Еквивалентни напони добијени за епрувету Р2-3, тренутак 130

Тренутак пре лома, забележен је као <u>тренутак 141</u> а добијене вредности су следеће:

$$\begin{split} &\Delta x_{141} = \Delta w_{141} = 0.86\text{mm}; \ \Delta z_{141} = \Delta t_{141} = 1.1622\text{mm}; \ x_{141} = w_{141} = 6.54\text{mm}; \\ &z_{141} = t_{141} = 6.3378\text{mm}; \ A_{141} = 44.28778\text{mm}^2; \\ &l_{141} = 51.03\text{mm}; \\ &F_{141} = 25.08782\text{mm}; \\ &R_{2141} = 25.03407\text{mm}; \\ &b_{1-2141} = 5.1375\text{mm}; \\ &\sigma_{T_{141}} = 780.85422 \ \text{MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 947.3465 \, MPa \tag{161}$$

$$\sigma_{max_2}^{actual} = 947.4282 \, MPa \tag{162}$$

Из Abaqusa се добија:

$$Stage \ 141 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 948.326 \ MPa \tag{163}$$

Stage 141
$$\rightarrow \sigma_{max_2}^{Abaqus} = 948.554 MPa$$
 (164)

Положаји добијених вредности за тренутак 141 дати су на слици 69.

Слика 69. Еквивалентни напони добијени за епрувету Р2-3, тренутак 141

У табели 15 приказани су резултати израчунатих напона, применом предложене формуле и софтвера *Abaqus*, за епрувету *P2-3* у карактеристичним тренутцима.

Тренутак	Изарчунат	Abaqus	Разлика	Изарчунат	Abaqus	Разлика
	NM_1	NM_1	[%]	NM ₂	NM ₂	[%]
90	538.1198	538.863	0.138	538.1281	538.9	0.143
100	611.7261	610.615	0.182	611.7427	610.667	0.176
110	694.1050	689.177	0.715	694.1365	689.24	0.710
120	779.9994	771.792	1.063	780.0470	771.879	1.058
130	875.5863	866.033	<mark>1.103</mark>	875.6517	865.939	<mark>1.122</mark>
141	947.3465	948.326	0.103	947.4282	948.554	0.119

Табела 15. Поређење врелности напона за епрувету Р2-3	

Из табеле 15 се може видети да је највећа разлика добијена за тренутак 130, код оба лица МШ. Максимална разлика напона за епрувету *P2-3* износи 1.122%.

Добијени, стварни дијаграми су приказани на сликама 70 и 71.

Слика 70. Стварни дијаграми за епрувету Р2-3, упоредно са дијаграмима из Abaqusa и инжењерским

Слика 71. Дијаграми са слике 67, приказани увећано

5.7 Епрувета Р2-4

За епрувету Р2-4 инжењерски дијаграм приказан је на слици 72.

Слика 72. Инжењерски дијаграм затезања за епрувету Р2-4

Почетне вредности карактеристичних димензија су:

 $b_{10} = 9.05$ mm, $b_{20} = 9.03$ mm, $t_0 = 7.5$ mm, $w_0 = 7.4$ mm, $b_{1-20} = 4.1$ mm

Епрувета се покидала при 219-ом тренутку, зато се у анализу укључује првих 218 тренутака експеримента. Следе подаци за карактеристичне тренутке у опсегу 100 – 218.

За тренутак 100 израчунате су следеће вредности:

 $\Delta x_{100} = \Delta w_{100} = 0.077 \text{ mm}; \Delta z_{100} = \Delta t_{100} = 0.22267 \text{ mm}; x_{100} = w_{100} = 7.323 \text{ mm};$ $z_{100} = t_{100} = 7.2773$ mm; $A_{100} = 53.3764$ mm²; $l_{100} = 50.2$ mm; $F_{100} = 27800.13$ N; $R_{1_{100}} = 277.8196$ mm; $R_{2_{100}} = 276.6196$ mm; $b_{1_{100}} = 9.25$ mm; $b_{2_{100}} = 9.23$ mm; $b_{1-2_{100}} = 4.3$ mm; $\sigma_{T_{100}} = 520.831864$ MPa.

$$\sigma_{max_1}^{actual} = 537.0590 \, MPa \tag{165}$$

$$\sigma_{max_2}^{actual} = 537.0766 MPa \tag{166}$$

Из Abaqusa се добија:

Stage 100
$$\rightarrow \sigma_{max_1}^{Abaqus} = 533.929 MPa$$
 (167)

Stage 100
$$\rightarrow \sigma_{max_2}^{Abaqus} = 533.962 MPa$$
 (168)

Положаји добијених вредности напона дати су на слици 73.

Слика 73. Еквивалентни напони за епрувету Р2-4, тренутак 100

За тренутак 120 израчунате су следеће вредности:

$$\begin{split} &\Delta x_{120} = \Delta w_{120} = 0.208 \text{mm}; \ \Delta z_{120} = \Delta t_{120} = 0.43044 \text{mm}; \ x_{120} = w_{120} = 7.192 \text{mm}; \\ &z_{120} = t_{120} = 7.069556 \text{mm}; \ A_{120} = 51.2046 \text{mm}^2; \ l_{120} = 50.365 \text{mm}; \ F_{120} = 31553.43 \text{N}; \\ &R_{1120} = 106.5931 \text{mm}; \ R_{2120} = 106.141 \text{mm}; \ b_{1_{120}} = 9.415 \text{mm}; \ b_{2_{120}} = 9.395 \text{mm}; \\ &b_{1-2_{120}} = 4.465 \text{mm}; \ \sigma_{T_{120}} = 616.222855 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 659.1509 \, MPa \tag{169}$$

$$\sigma_{max_2}^{actual} = 659.1997 \, MPa \tag{170}$$

Из Abaqusa се добија:

$$Stage \ 120 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 650.052 \ MPa \tag{171}$$

Stage 120
$$\rightarrow \sigma_{max_2}^{Abaqus} = 650.122 MPa$$
 (172)

Положаји добијених вредности напона дати су на слици 74.

Слика 74. Еквивалентни напони за епрувету Р2-4, тренутак 120

За <u>тренутак 140</u> добијене су следеће вредности:

$$\begin{split} &\Delta x_{140} = \Delta w_{140} = 0.366 \text{mm}; \\ &\Delta z_{140} = \Delta t_{140} = 0.62978 \text{mm}; \\ &x_{140} = w_{140} = 7.034 \text{mm}; \\ &z_{140} = t_{140} = 6.87022 \text{mm}; \\ &A_{140} = 49.1465 \text{mm}^2; \\ &l_{140} = 50.565 \text{mm}; \\ &F_{140} = 34624.99 \text{N}; \\ &R_{1140} = 63.23919 \text{mm}; \\ &R_{2140} = 62.97676 \text{mm}; \\ &b_{1-2140} = 4.665 \text{mm}; \\ &\sigma_{T_{140}} = 704.526026 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 780.9957 \, MPa \tag{173}$$

$$\sigma_{max_2}^{actual} = 781.0795 \, MPa \tag{174}$$

Из Abaqusa се добија:

$$Stage \ 140 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 765.966 \ MPa \tag{175}$$

Stage 140
$$\rightarrow \sigma_{max_2}^{Abaqus} = 766.085 MPa$$
 (176)

Положаји добијених вредности напона дати су на слици 75.

Слика 75. Еквивалентни напони за епрувету Р2-4, тренутак 140

За <u>тренутак 160</u> добијене су следеће вредности:

$$\begin{split} &\Delta x_{160} = \Delta w_{160} = 0.484 \text{mm}; \ \Delta z_{160} = \Delta t_{160} = 0.847556 \text{mm}; \ x_{160} = w_{160} = 6.916 \text{mm}; \\ &z_{160} = t_{160} = 6.652444 \text{mm}; \ A_{160} = 47.39452 \text{mm}^2; \ l_{160} = 50.733 \text{mm}; \ F_{160} = 36223.88 \text{N}; \\ &R_{1160} = 49.55648 \text{mm}; \ R_{2160} = 49.35456 \text{mm}; \ b_{1_{160}} = 9.783 \text{mm}; \ b_{2_{160}} = 9.763 \text{mm}; \\ &b_{1-2_{160}} = 4.833 \text{mm}; \ \sigma_{T_{160}} = 764.305278 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 871.0785 \, MPa \tag{177}$$

$$\sigma_{max_2}^{actual} = 871.1857 \, MPa \tag{178}$$

Из Abaqusa се добија:

$$Stage \ 160 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 853.795 \ MPa \tag{179}$$

$$Stage \ 160 \ \rightarrow \ \sigma^{Abaqus}_{max_2} = 853.938 \ MPa \tag{180}$$

Резултати

Ненад З. Милошевић

Положаји добијених вредности напона дати су на слици 76.

Слика 76. Еквивалентни напони за епрувету Р2-4, тренутак 160

За тренутак 180 добијене су следеће вредности:

$$\begin{split} &\Delta x_{180} = \Delta w_{180} = 0.55 \text{mm}; \ \Delta z_{180} = \Delta t_{180} = 0.976 \text{mm}; \ x_{180} = w_{180} = 6.85 \text{mm}; \\ &z_{180} = t_{180} = 6.524 \text{mm}; \ A_{180} = 46.45185 \text{mm}^2; \ l_{180} = 50.822 \text{mm}; \ F_{180} = 36174.41 \text{N}; \\ &R_{1180} = 44.43586 \text{mm}; \ R_{2_{180}} = 44.25655 \text{mm}; \ b_{_{1180}} = 9.872 \text{mm}; \ b_{_{2_{180}}} = 9.852 \text{mm}; \\ &b_{1-2_{180}} = 4.922 \text{mm}; \ \sigma_{T_{180}} = 778.750696 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 900.8862 \, MPa \tag{181}$$

$$\sigma_{max_2}^{actual} = 901.0030 \, MPa \tag{182}$$

Из Abaqusa се добија:

$$Stage \ 180 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 883.908 \ MPa \tag{183}$$

$$Stage \ 180 \ \rightarrow \ \sigma_{max_2}^{Abaqus} = 883.948 \ MPa \tag{184}$$

Положаји добијених вредности напона дати су на слици 77.

Слика 77. Еквивалентни напони за епрувету Р2-4, тренутак 180

За тренутак 200 израчунате су следеће вредности:

$$\begin{split} &\Delta x_{200} = \Delta w_{200} = 0.622 \text{mm}; \\ &\Delta z_{200} = t_{200} = 6.493778 \text{mm}; \\ &A_{200} = 45.98406 \text{mm}^2; \\ &I_{200} = 50.904 \text{mm}; \\ &F_{200} = 37383.51\text{N}; \\ &R_{1_{200}} = 39.9795 \text{mm}; \\ &R_{2_{200}} = 39.81963 \text{mm}; \\ &b_{1_{200}} = 9.954 \text{mm}; \\ &b_{2_{200}} = 9.934 \text{mm}; \\ &b_{1_{200}} = 5.004 \text{mm}; \\ &\sigma_{T_{200}} = 812.966782 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 949.2692 \, MPa \tag{185}$$

$$\sigma_{max_2}^{actual} = 949.3988 \, MPa \tag{186}$$

Из Abaqusa се добија:

$$Stage \ 200 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 930.876 \ MPa \tag{187}$$

$$Stage \ 200 \ \rightarrow \ \sigma_{max_2}^{Abaqus} = 931.084 \ MPa \tag{188}$$

Положаји добијених вредности напона приказани су на слици 78.

Слика 78. Еквивалентни напони за епрувету Р2-4, тренутак 200

За тренутак 210 израчунате су следеће вредности:

$$\begin{split} &\Delta x_{210} = \Delta w_{210} = 0.763 \text{mm}; \\ &\Delta z_{210} = \Delta t_{210} = 1.13067 \text{mm}; \\ &x_{210} = w_{210} = 6.369333 \text{mm}; \\ &A_{210} = 44.8188 \text{mm}^2; \\ &l_{210} = 51.081 \text{mm}; \\ &F_{210} = 33.82023 \text{mm}; \\ &R_{1_{210}} = 33.68758 \text{mm}; \\ &b_{1_{210}} = 10.131 \text{mm}; \\ &b_{2_{210}} = 5.181 \text{mm}; \\ &\sigma_{T_{210}} = 844.887575 \text{ MPa}. \end{split}$$

$$\sigma_{max_{\star}}^{actual} = 1006.8096 \, MPa \tag{189}$$

$$\sigma_{max_2}^{actual} = 1006.9560 \, MPa \tag{190}$$

Из Abaqusa се добија:

$$Stage \ 210 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 989.383 \ MPa \tag{191}$$

$$Stage \ 210 \ \rightarrow \ \sigma^{Abaqus}_{max_2} = 989.576 \ MPa \tag{192}$$

Резултати

Ненад З. Милошевић

Положаји добијених вредности напона приказани су на слици 79.

Слика 79. Еквивалентни напони за епрувету Р2-4, тренутак 210

За тренутак 218 израчунате су следеће вредности:

$$\begin{split} \Delta x_{218} &= \Delta w_{218} = 0.876 \text{mm}; \ \Delta z_{218} = \Delta t_{218} = 1.24733 \text{mm}; \ x_{218} = w_{218} = 6.524 \text{mm}; \\ z_{218} &= t_{218} = 6.252667 \text{mm}; \ A_{218} = 43.87345 \text{mm}^2; \ l_{218} = 51.344 \text{mm}; \ F_{218} = 36315.2 \text{N}; \\ R_{1_{218}} &= 31.05097 \text{mm}; \ R_{2_{218}} = 30.93243 \text{mm}; \ b_{1_{218}} = 10.394 \text{mm}; \ b_{2_{218}} = 10.374 \text{mm}; \\ b_{1-2_{218}} &= 5.444 \text{mm}; \ \sigma_{T_{218}} = 827.72604 \text{ MPa}. \\ \sigma_{max_1}^{actual} &= 1001.2791 \text{ MPa} \end{split}$$
(193)

$$\sigma_{max_2}^{actual} = 1001.4270 MPa \tag{194}$$

Из Abaqusa се добија:

Stage 218
$$\rightarrow \sigma_{max_1}^{Abaqus} = 986.042 MPa$$
 (195)

$$Stage \ 218 \ \rightarrow \ \sigma^{Abaqus}_{max_2} = 986.265 \ MPa \tag{196}$$

Положаји добијених напона приказани су на слици 80.

Слика 80. Еквивалентни напони за епрувету Р2-4, тренутак 218

У табели 16 приказани су резултати израчунатих напона, применом предложене формуле и софтвера *Abaqus*, за епрувету P2-4 у карактеристичним тренутцима.

Тренутак	Изарчунат	Abaqus	Разлика	Изарчунат	Abaqus	Разлика
	NM_1	NM_1	[%]	NM ₂	NM ₂	[%]
100	537.0590	533.929	0.586	537.0766	533.962	0.583
120	659.1509	650.052	1.400	659.1997	650.122	1.396
140	780.9956	765.966	1.962	781.0795	766.085	1.957
160	871.0785	853.795	<mark>2.024</mark>	871.1857	853.938	<mark>2.020</mark>
180	900.8862	883.908	1.921	901.0030	883.948	1.929
200	949.2692	930.876	1.976	949.3988	931.084	1.967
210	1006.890	989.383	1.761	1006.956	989.576	1.756
218	1001.279	986.042	1.545	1001.427	986.265	1.537

ТАБЕЛА 16. ПОРЕЂЕЊЕ ВРЕДНОСТИ НАПОНА ЗА ЕПРУВЕТУ Р2-4

Из табеле 16 може се видети да је највећа разлика добијена за тренутак 160, код оба лица МШ.

Максимална разлика напона за епрувету *P2-4* износи 2.024%. На основу добијених вредности могу се формирати стварни дијаграми напон-деформација за спој изведен на епрувети *P2-4*.

Добијени дијаграми су приказани на сликама 81 и 82.

Слика 81. Стварни дијаграми за епрувету Р2-4, упоредо са инжењерским и дијаграмом са правом површином п.п.

Слика 82. Дијаграми са слике 77 приказани увећано

Након приказаних резултата за епрувету Р2-4, могу се табеларно приказати резултати за све епрувете типа Р (Табела 17).

D1 1	Изарчунат	Abaqus	Разлика	Изарчунат	Abaqus	Разлика
P1-1	NM_1	NM ₁	[%]	NM ₂	NM ₂	[%]
60	360.7553	355.777	1.40	360.7566	355.772	1.40
70	497.1509	494.229	0.59	497.1617	494.244	0.59
90	845.7075	823.175	<mark>2.74</mark>	845.7916	823.093	<mark>2.76</mark>
95	920.3545	896.074	2.71	920.4538	896.219	2.70
97	907.7662	884.737	2.60	907.8623	884.888	2.60
D1 7	Изарчунат	Abaqus	Разлика	Изарчунат	Abaqus	Разлика
P1-2	NM_1	NM_1	[%]	NM ₂	NM ₂	[%]
60	374.6411	373.923	0.192	374.7140	373.96	0.202
70	523.8001	519.081	0.909	524.2676	519.332	0.950
80	690.0924	671.677	2.742	691.8168	672.678	<mark>2.845</mark>
90	905.4025	889.903	1.742	908.5941	894.209	1.609
D1 2	Изарчунат	Abaqus	Разлика	Изарчунат	Abaqus	Разлика
P1-3	NM_1	NM_1	[%]	NM ₂	NM ₂	[%]
60	387.9740	387.177	0.206	388.1969	387.292	0.234
90	612.5248	599.875	<mark>2.109</mark>	615.8285	601.82	<mark>2.328</mark>
110	804.3956	788.134	2.063	811.0424	795.529	1.950
125	872.4278	882.935	1.204	879.8021	897.175	1.975

Табела 17.	РЕЗУЛТАТИ НАПОНСКЕ АНАЛИЗЕ ЗА СВЕ ИСПИТАНЕ ЕПРУВЕТЕ ТИПА	Р

Септембар 2021

P2-1	Изарчунат	Abaqus	Разлика	Изарчунат	Abaqus	Разлика
80	540 2157	535 1 <i>1</i> .	0948	541 7303	537 12 <i>1</i>	[%] 0.858
90	621 5706	611 511	1 645	624 5588	615.82	1 1 1 9
100	714 1906	702.009	1.045	718 6762	710 346	1.173
110	902 6050	702.007	$\frac{1.755}{2.745}$	900 6600	700 022	$\frac{1.175}{2.641}$
115	841 2652	920 499	2.745 2.522	847 7066	929 44	2.041 2.226
110	867 6250	847 241	2.552	974.6125	856.2	2.320
110	<u>Ирарициат</u>	047.241 Abaaus		074.0125 Изэрцицат	Abagus	
P2-2	Изарчунат NM₁	NM ₁	Газлика [%]	изарчунат NM2	NM_2	Газлика [06]
80	577 7037	571 539	1 079	577 7291	571 548	1 081
90	660 1548	647 197	2 002	660 2071	647 209	2 008
100	745 8014	724 904	2.883	745 8846	724 934	2.890
110	863 8060	830 326	4.032	863 9209	830 452	4 030
115	919 2367	880 912	4 351	919 3647	881.085	4 345
116	976 4389	935 526	4 373	976 5779	935 765	<mark>4 361</mark>
	Изарчунат	Abaaus	Разлика	Изарчунат	Abaaus	Разлика
P2-3	NM_1	NM ₁	[%]	NM ₂	NM ₂	[%]
90	538.1198	538.863	0.138	538.1281	538.9	0.143
100	611.7261	610.615	0.182	611.7427	610.667	0.176
110		(00.177)	0 715	694 1365	689 24	0 710
110	694.1050	089.177	0.715	071.1303	007.21	0.710
120	779.9994	771.792	1.063	780.0470	771.879	1.058
120 130	694.1050 779.9994 875.5863	771.792 866.033	1.063 1.103	780.0470 875.6517	771.879 865.939	1.058 1.122
120 130 141	694.1050 779.9994 875.5863 947.3465	889.177 771.792 866.033 948.326	1.063 1.103 0.103	780.0470 875.6517 947.4282	771.879 865.939 948.554	1.058 1.122 0.119
120 130 141	694.1050 779.9994 875.5863 947.3465 Изарчунат	889.177 771.792 866.033 948.326 Abaqus	0.713 1.063 1.103 0.103 Разлика	780.0470 875.6517 947.4282 Изарчунат	771.879 865.939 948.554 <i>Abaqus</i>	1.058 1.122 0.119 Разлика
120 130 141 P2-4	694.1050 779.9994 875.5863 947.3465 Изарчунат <i>NM</i> 1	889.177 771.792 866.033 948.326 Abaqus NM ₁	0.713 1.063 1.103 0.103 Разлика [%]	780.0470 875.6517 947.4282 Изарчунат <i>NM</i> 2	771.879 865.939 948.554 Abaqus NM ₂	1.058 1.122 0.119 Разлика [%]
120 130 141 P2-4 100	694.1050 779.9994 875.5863 947.3465 Изарчунат <i>NM</i> 1 537.0590	689.177 771.792 866.033 948.326 Abaqus NM1 533.929	0.713 1.063 1.103 0.103 Разлика [%] 0.586	780.0470 875.6517 947.4282 Изарчунат <i>NM</i> 2 537.0766	771.879 865.939 948.554 <i>Abaqus</i> <i>NM</i> ₂ 533.962	1.058 1.122 0.119 Разлика [%] 0.583
120 130 141 P2-4 100 120	694.1050 779.9994 875.5863 947.3465 Изарчунат <i>NM</i> 1 537.0590 659.1509	689.177 771.792 866.033 948.326 Abaqus NM1 533.929 650.052	0.713 1.063 1.103 0.103 Разлика [%] 0.586 1.400	780.0470 875.6517 947.4282 Изарчунат <i>NM</i> 2 537.0766 659.1997	771.879 865.939 948.554 Abaqus NM2 533.962 650.122	1.058 1.122 0.119 Разлика [%] 0.583 1.396
120 130 141 P2-4 100 120 140	694.1050 779.9994 875.5863 947.3465 Изарчунат <i>NM</i> 1 537.0590 659.1509 780.9956	689.177 771.792 866.033 948.326 Abaqus NM1 533.929 650.052 765.966	0.713 1.063 1.103 0.103 Разлика [%] 0.586 1.400 1.962	780.0470 875.6517 947.4282 Изарчунат <i>NM</i> 2 537.0766 659.1997 781.0795	771.879 865.939 948.554 Abaqus NM2 533.962 650.122 766.085	1.058 1.122 0.119 Разлика [%] 0.583 1.396 1.957
120 120 130 141 P2-4 100 120 140 160	694.1050 779.9994 875.5863 947.3465 Изарчунат <i>NM</i> 1 537.0590 659.1509 780.9956 871.0785	689.177 771.792 866.033 948.326 Abaqus NM1 533.929 650.052 765.966 853.795	0.713 1.063 1.103 0.103 Разлика [%] 0.586 1.400 1.962 2.024	780.0470 875.6517 947.4282 Изарчунат <i>NM</i> 2 537.0766 659.1997 781.0795 871.1857	771.879 865.939 948.554 Abaqus NM2 533.962 650.122 766.085 853.938	1.058 1.122 0.119 Разлика [%] 0.583 1.396 1.957 2.020
120 120 130 141 P2-4 100 120 140 160 180	694.1050 779.9994 875.5863 947.3465 Изарчунат <i>NM</i> 1 537.0590 659.1509 780.9956 871.0785 900.8862	689.177 771.792 866.033 948.326 Abaqus NM1 533.929 650.052 765.966 853.795 883.908	0.713 1.063 1.103 0.103 Разлика [%] 0.586 1.400 1.962 2.024 1.921	780.0470 875.6517 947.4282 Изарчунат <i>NM</i> 2 537.0766 659.1997 781.0795 871.1857 901.0030	771.879 865.939 948.554 Abaqus NM2 533.962 650.122 766.085 853.938 883.948	1.0581.1220.119Разлика[%]0.5831.3961.9572.0201.929
120 120 130 141 P2-4 100 120 141 P2-4 100 120 140 160 180 200	694.1050 779.9994 875.5863 947.3465 Изарчунат <i>NM</i> 1 537.0590 659.1509 780.9956 871.0785 900.8862 949.2692	689.177 771.792 866.033 948.326 Abaqus NM1 533.929 650.052 765.966 853.795 883.908 930.876	0.713 1.063 1.103 0.103 Разлика [%] 0.586 1.400 1.962 2.024 1.921 1.976	780.0470 875.6517 947.4282 Изарчунат <i>NM</i> 2 537.0766 659.1997 781.0795 871.1857 901.0030 949.3988	771.879 865.939 948.554 Abaqus NM2 533.962 650.122 766.085 853.938 883.948 931.084	1.0581.1220.119Разлика[%]0.5831.3961.9572.0201.9291.967
120 120 130 141 P2-4 100 120 140 160 180 200 210	694.1050 779.9994 875.5863 947.3465 Изарчунат <i>NM</i> 1 537.0590 659.1509 780.9956 871.0785 900.8862 949.2692 1006.890	689.177 771.792 866.033 948.326 Abaqus NM1 533.929 650.052 765.966 853.795 883.908 930.876 989.383	0.7131.0631.1030.103Разлика[%]0.5861.4001.9622.0241.9211.9761.761	780.0470 875.6517 947.4282 Изарчунат <i>NM</i> 2 537.0766 659.1997 781.0795 871.1857 901.0030 949.3988 1006.956	771.879 865.939 948.554 Abaqus NM2 533.962 650.122 766.085 853.938 883.948 931.084 989.576	1.0581.1220.119Разлика[%]0.5831.3961.9572.0201.9291.9671.756

5.8 Епрувета *С1-1*

Епрувете са ознаком *C*, су епрувете добијене из цеви основног материјала *X10* на којој је изведен *V* заварени спој. Епрувете су исецане уз контролу унете количине топлоте како се не би нарушила добијена микроструктура. За епрувету *C1-1* изглед инжењерског дијаграма приказан је на слици 83.

Слика 83. Инжењерски дијаграм за епрувету С1-1

Почетне вредности карактеристичних димензија су:

 $b_{1_0}=13.148mm$, $b_{2_0}=5.74mm$, $t_0=8mm$, $w_0=10mm$.

Карактеристичне димензије се на епрувети мере према слици 84.

Слика 84. Положаји карактеристичних димензија на епруветама типа С

Епрувета се покидала при 171 тренутку, зато се у анализу укључује првих 170 тренутака. Следе подаци за карактеристичне тренутке у опсегу 70 – 170.

За тренутак 70 имамо следеће вредности:

$$\begin{split} &\Delta x_{70} = \Delta w_{70} = 0.201 \text{mm}; \ \Delta z_{70} = \Delta t_{70} = 0 \text{mm}; \ x_{70} = w_{70} = 9.799 \text{mm}; \\ &z_{70} = t_{70} = 8 \text{mm}; \ A_{70} = 78.42368 \text{mm}^2; \ l_{70} = 50.611 \text{mm}; \ F_{70} = 46084.13 \text{N}; \\ &R_{170} = 233.5977736 \text{mm}; \ R_{270} = 44.56251 \text{mm}; \ b_{170} = 13.703 \text{mm}; \ b_{270} = 5.9823 \text{mm}; \\ &\sigma_{T_{70}} = 587.6303 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 603.9106 \, MPa \tag{197}$$

$$\sigma_{max_2}^{actual} = 622.4051 \, MPa \tag{198}$$

Из Abaqusa се добија:

$$Stage \ 70 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 599.204 \ MPa \tag{199}$$

$$Stage \ 70 \ \rightarrow \ \sigma_{max_2}^{Abaqus} = 611.440 \ MPa \tag{200}$$

Положаји добијених вредности напона приказани су на слици 85.

Слика 85. Еквивалентни напони за епрувету С1-1, тренутак 70

За тренутак 100 имамо следеће вредности:

$$\begin{split} \Delta x_{100} &= \Delta w_{100} = 0.554 \text{mm}; \ \Delta z_{100} = \Delta t_{100} = 0.13655 \text{mm}; \ x_{100} = w_{100} = 9.446 \text{mm}; \\ z_{100} &= t_{100} = 7.863455 \text{mm}; \ A_{100} = 74.660114 \text{mm}^2; \ l_{100} = 52.151 \text{mm}; \ F_{100} = 53537.5 \text{N}; \\ R_{1100} &= 104.72793 \text{mm}; \ R_{2100} = 20.0724 \text{mm}; \ b_{1100} = 15.224 \text{mm}; \ b_{2100} = 6.64632 \text{mm}; \\ \sigma_{T100} &= 717.08302 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 767.4839 \, MPa \tag{201}$$

$$\sigma_{max_2}^{actual} = 811.1664 \, MPa \tag{202}$$

Из Abaqusa се добија:

Stage 100
$$\rightarrow \sigma_{max_1}^{Abaqus} = 755.853 MPa$$
 (203)

Резултати

Stage 100
$$\rightarrow \sigma_{max_2}^{Abaqus} = 797.719 MPa$$

Положаји добијених вредности напона приказани су на слици 86.

Слика 86. Еквивалентни напони за епрувету С1-1, тренутак 100

За тренутак 130 имамо следеће вредности:

$$\begin{split} &\Delta x_{130} = \Delta w_{130} = 0.914 \text{mm}; \\ &\Delta z_{130} = \Delta t_{130} = 0.43886 \text{mm}; \\ &x_{130} = t_{130} = 7.56114 \text{mm}; \\ &A_{130} = 70.098984 \text{mm}^2; \\ &l_{130} = 53.905 \text{mm}; \\ &F_{130} = 56452 \text{N}; \\ &R_{1_{130}} = 78.8494289 \text{mm}; \\ &R_{2_{130}} = 15.21301 \text{mm}; \\ &b_{1_{130}} = 16.954 \text{mm}; \\ &b_{2_{130}} = 7.401579 \text{mm}; \\ &\sigma_{T_{130}} = 805.31838 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 894.2466 MPa \tag{205}$$

$$\sigma_{max_2}^{actual} = 954.7766 MPa \tag{206}$$

Из Abaqusa се добија:

Stage 130
$$\rightarrow \sigma_{max_1}^{Abaqus} = 879.803 MPa$$
 (207)

Stage 130
$$\rightarrow \sigma_{max_2}^{Abaqus} = 954.022 MPa$$
 (208)

Положаји добијених вредности напона приказани су на слици 87.

Слика 87. Еквивалентни напони за епрувету С1-1, тренутак 130

Резултати

(204)

За тренутак 150 имамо следеће вредности:

$$\begin{split} &\Delta x_{150} = \Delta w_{150} = 1.128 \text{mm}; \ \Delta z_{150} = \Delta t_{150} = 0.5443636 \text{mm}; \ x_{150} = w_{150} = 8.872 \text{mm}; \\ &z_{150} = t_{150} = 7.455636 \text{mm}; \ A_{150} = 68.191315 \text{mm}^2; \\ &l_{150} = 55.037 \text{mm}; \\ &F_{150} = 73.091314 \text{mm}; \\ &R_{2150} = 14.15886 \text{mm}; \\ &b_{1_{150}} = 18.125 \text{mm}; \\ &b_{2_{150}} = 7.9128 \text{mm}; \\ &\sigma_{T_{150}} = 829.4439 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 934.4265 MPa \tag{209}$$

$$\sigma_{max_2}^{actual} = 1000.6997 \, MPa \tag{210}$$

Из *Abaqusa* се добија:

$$Stage \ 150 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 920.411 \ MPa \tag{211}$$

Stage 150
$$\rightarrow \sigma_{max_2}^{Abaqus} = 1002.08 MPa$$
 (212)

Положаји добијених вредности напона приказани су на слици 88.

Слика 88. Еквивалентни напони за епрувету С1-1, тренутак 150

За тренутак 170 имамо следеће вредности:

$$\begin{split} &\Delta x_{170} = \Delta w_{170} = 1.543 \text{mm}; \\ &\Delta z_{170} = \Delta t_{170} = 1.04873 \text{mm}; \\ &x_{170} = t_{170} = 6.95127 \text{mm}; \\ &A_{170} = 63.2329 \text{mm}^2; \\ &l_{170} = 55.829 \text{mm}; \\ &F_{170} = 48342.18\text{N}; \\ &R_{1170} = 58.053598 \text{mm}; \\ &R_{2170} = 11.37677 \text{mm}; \\ &b_{1170} = 18.866 \text{mm}; \\ &b_{2170} = 8.2363 \text{mm}; \\ &\sigma_{T_{170}} = 764.5096 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 898.3530 \, MPa \tag{213}$$

$$\sigma_{max_2}^{actual} = 965.1214 MPa \tag{214}$$

Из Abaqusa се добија:

$$Stage \ 170 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 901.605 \ MPa \tag{215}$$

$$Stage \ 170 \ \rightarrow \ \sigma^{Abaqus}_{max_2} = 1004.67 \ MPa \tag{216}$$

Резултати

Положаји добијених вредности напона приказани су на слици 89.

Слика 89. Еквивалентни напони за епрувету С1-1, тренутак 170

У табели 18 приказани су резултати израчунатих напона, применом предложене формуле и софтвера *Abaqus*, за епрувету *C1-1* у карактеристичним тренутцима.

Тренутак	Изарчунат	Abaqus	Разлика	Изарчунат	Abaqus	Разлика
	NM_1	NM_1	[%]	NM ₂	NM_2	[%]
70	603.9106	599.204	0.785	603.9106	611.44	1.793
100	767.4839	755.853	1.539	811.1664	797.719	1.686
130	894.2466	879.803	<mark>1.642</mark>	954.7766	954.022	0.079
150	934.4265	920.411	1.523	1000.6997	1002.08	0.138
170	898.3530	901.605	0.362	965.1214	1004.67	<mark>4.098</mark>

Табела 18. Поређење вредности напона за епрувету С1-1

Из табеле 16 се може видети да је највећа разлика добијена за тренутак 130, код лица МШ тј. за тренутак 170 код корена. Максимална разлика напона за епрувету *С1-1* износи 4.01%. На основу добијених вредности могу бити формирани стварни дијаграми напондеформација за спој изведен на епрувети *С1-1*. Добијени дијаграми су приказани на сликама 90 и 91.

Слика 90. Стварни дијаграми за лице и корен МШ, епрувета С1-1

Слика 91. Дијаграми са слике 87 приказани уз увећање

5.9 Епрувета С1-3

За епрувету С1-З изглед инжењерског дијаграма приказан је на слици 92.

Слика 92. Инжењерски дијаграм затезања за епрувету С1-3

Почетне вредности карактеристичних димензија су:

 b_{10} =13.15mm, b_{20} =4.92mm, t_0 =8mm, w_0 =10mm.

Резултати

Епрувета је претрпела лом при 136 тренутку, зато се у анализу укључује првих 135 тренутака експеримента. Следе подаци за тренутке у опсегу 60 – 135.

За тренутак 60 имамо следеће вредности:

$$\begin{split} \Delta x_{60} &= \Delta w_{60} = 0.12 \text{mm}; \Delta z_{60} = \Delta t_{60} = 0.0335 \text{mm}; x_{60} = w_{60} = 9.88 \text{mm}; \\ z_{60} &= t_{60} = 7.9665 \text{mm}; \ A_{60} = 78.72952 \text{mm}^2; \ l_{60} = 50.273 \text{mm}; \ F_{60} = 42361.77 \text{N}; \\ R_{1_{60}} &= 375.3986 \text{mm}; \ R_{2_{60}} = 52.57563 \text{mm}; \ b_{1_{60}} = 13.423 \text{mm}; \ b_{2_{60}} = 5.022141 \text{mm}; \\ \sigma_{T_{60}} &= 538.0672 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 548.2560 MPa \tag{217}$$

$$\sigma_{max_2}^{actual} = 562.4263 MPa \tag{218}$$

Из Abaqusa се добија:

Stage 60
$$\rightarrow \sigma_{max_1}^{Abaqus} = 546.634 MPa$$
 (219)

Stage 60
$$\rightarrow \sigma_{max_2}^{Abaqus} = 560.257 MPa$$
 (220)

Положаји добијених вредности напона приказани су на слици 93.

Слика 93. Еквивалентни напони за епрувету С1-3, тренутак 60

За тренутак 80 имамо следеће вредности:

$$\begin{split} \Delta x_{80} &= \Delta w_{80} = 0.481 \text{mm}; \ \Delta z_{80} = \Delta t_{80} = 0.140333 \text{mm}; \ x_{80} = w_{80} = 9.519 \text{mm}; \\ z_{80} &= t_{80} = 7.85967 \text{mm}; \ A_{80} = 75.13163 \text{mm}^2; \ l_{80} = 51.222 \text{mm}; \ F_{80} = 49861.46\text{N}; \\ R_{1_{80}} &= 107.477 \text{mm}; \ R_{2_{80}} = 15.14849 \text{mm}; \ b_{1_{80}} = 14.372 \text{mm}; \ b_{2_{80}} = 5.377205 \text{mm}; \\ \sigma_{T_{80}} &= 663.6547 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 707.4502 \, MPa \tag{221}$$

$$\sigma_{max_2}^{actual} = 755.2416 MPa \tag{222}$$

Из Abaqusa се добија:

Stage 80
$$\rightarrow \sigma_{max_1}^{Abaqus} = 702.769 MPa$$
 (223)

$$Stage \ 80 \ \rightarrow \ \sigma_{max_2}^{Abaqus} = 761.197 \ MPa \tag{224}$$

Резултати

Положаји добијених вредности напона приказани су на слици 94.

Слика 94. Еквивалентни напони за епрувету С1-3, тренутак 80

За тренутак 100 имамо следеће вредности:

$$\begin{split} &\Delta x_{100} = \Delta w_{100} = 0.79 \text{mm}; \ \Delta z_{100} = \Delta t_{100} = 0.213833 \text{mm}; \ x_{100} = w_{100} = 9.21 \text{mm}; \\ &z_{100} = t_{100} = 7.78617 \text{mm}; \ A_{100} = 72.48888 \text{mm}^2; \ l_{100} = 52.292 \text{mm}; \ F_{100} = 53710.6\text{N}; \\ &R_{1100} = 75.65806 \text{mm}; \ R_{2100} = 10.76078 \text{mm}; \ b_{1100} = 15.442 \text{mm}; \ b_{2100} = 5.777539 \text{mm}; \\ &\sigma_{T100} = 740.9495 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 811.6692 \, MPa \tag{225}$$

$$\sigma_{max_2}^{actual} = 878.2941 MPa \tag{226}$$

Из Abaqusa се добија:

$$Stage \ 100 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 806.673 \ MPa \tag{227}$$

$$Stage \ 100 \ \rightarrow \ \sigma_{max_2}^{Abaqus} = 894.974 \ MPa \tag{228}$$

Положаји добијених вредности напона приказани су на слици 95.

Слика 95. Еквивалентни напони за епрувету С1-3, тренутак 100

За тренутак 120 имамо следеће вредности:

$$\begin{split} \Delta x_{120} &= \Delta w_{120} = 1.098 \text{mm}; \ \Delta z_{120} = \Delta t_{120} = 0.321167 \text{mm}; \ x_{120} = w_{120} = 8.902 \text{mm}; \\ z_{120} &= t_{120} = 7.678833 \text{mm}; \ A_{120} = 69.83619 \text{mm}^2; \ l_{120} = 53.454 \text{mm}; \ F_{120} = 55662 \text{N}; \\ R_{1120} &= 63.0461 \text{mm}; \ R_{2120} = 9.061524 \text{mm}; \ b_{1_{120}} = 16.604 \text{mm}; \ b_{2_{120}} = 6.2123 \text{mm}; \\ \sigma_{T_{120}} &= 797.0366 \ \text{MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 892.9115 MPa \tag{229}$$

$$\sigma_{max_2}^{actual} = 971.9243 MPa \tag{230}$$

Из Abaqusa се добија:

$$Stage \ 120 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 889.891 \ MPa \tag{231}$$

Stage 120
$$\rightarrow \sigma_{max_2}^{Abaqus} = 1002.02 MPa$$
 (232)

Положаји добијених вредности напона приказани су на слици 96.

Слика 96. Еквивалентни напони за епрувету С1-3, тренутак 120

За тренутак 130 имамо следеће вредности:

$$\begin{split} &\Delta x_{130} = \Delta w_{130} = 1.307 \text{mm}; \\ &\Delta z_{130} = \Delta t_{130} = 0.406167 \text{mm}; \\ &x_{130} = w_{130} = 8.693 \text{mm}; \\ &z_{130} = t_{130} = 7.593833 \text{mm}; \\ &A_{130} = 68.09466 \text{mm}^2; \\ &l_{130} = 54.074 \text{mm}; \\ &F_{130} = 55821.15\text{N}; \\ &R_{1_{130}} = 57.07238 \text{mm}; \\ &R_{2_{130}} = 8.270236 \text{mm}; \\ &b_{1_{130}} = 17.224 \text{mm}; \\ &b_{2_{130}} = 6.444265 \text{mm}; \\ &\sigma_{T_{130}} = 819.7581 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 931.4275 \, MPa \tag{233}$$

$$\sigma_{max_2}^{actual} = 1015.9139 \, MPa \tag{234}$$

Из Abaqusa се добија:

$$Stage \ 130 \ \rightarrow \ \sigma^{Abaqus}_{max_1} = 932.011 \ MPa \tag{235}$$

Stage 130
$$\rightarrow \sigma_{max_2}^{Abaqus} = 1058.12 MPa$$
 (236)

Положаји добијених вредности напона приказани су на слици 97.

Слика 97. Еквивалентни напони за епрувету С1-3, тренутак 130

За тренутак 135 имамо следеће вредности:

$$\begin{split} &\Delta x_{135} = \Delta w_{135} = 1.488 \text{mm}; \ \Delta z_{135} = \Delta t_{135} = 0.493 \text{mm}; \ x_{135} = w_{135} = 8.512 \text{mm}; \\ &z_{135} = t_{135} = 7.507 \text{mm}; \ A_{135} = 66.59701 \text{mm}^2; \\ &l_{135} = 54.415 \text{mm}; \\ &F_{135} = 52.20823 \text{mm}; \\ &R_{2_{135}} = 7.628247 \text{mm}; \\ &b_{1_{135}} = 17.565 \text{mm}; \\ &b_{2_{135}} = 6.571848 \text{mm}; \\ &\sigma_{T_{135}} = 820.9178 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 944.4841 \, MPa \tag{237}$$

$$\sigma_{max_2}^{actual} = 1055.1265 \, MPa$$
 (238)

Из Abaqusa се добија:

$$Stage \ 135 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 950.366 \ MPa \tag{239}$$

Stage 135
$$\rightarrow \sigma_{max_2}^{Abaqus} = 1088.13 MPa$$
 (240)

Положаји добијених вредности напона приказани су на слици 98.

Слика 98. Еквивалентни напони за епрувету С1-3, тренутак 135

У табели 19 приказани су резултати израчунатих напона, применом предложене формуле и софтвера *Abaqus*, за епрувету *C1-3* у карактеристичним тренутцима.

Тренутак	Изарчунат	Abaqus	Разлика	Изарчунат	Abaqus	Разлика
	NM_1	NM_1	[%]	NM ₂	NM ₂	[%]
60	548.2561	546.634	0.297	562.4263	560.257	0.387
80	707.4502	702.769	<mark>0.667</mark>	755.2416	761.197	0.788
100	811.6692	806.673	0.619	878.2941	894.974	1.899
120	892.9115	889.891	0.339	971.9243	1002.02	3.096
130	931.4275	932.011	0.063	1015.9139	1058.12	<mark>4.15</mark> 4
135	944.4841	950.366	0.623	1055.1265	1088.13	3.128

Табела 19. Поређење вредности напона за епрувету С1-3

Из табеле 19 се може видети да је највећа разлика добијена за тренутак 80, код лица МШ тј. за тренутак 130 код корена. Максимална разлика напона за епрувету *С1-3* за лице шава износи 0.667% док за корен МШ износи 4.154%. На основу добијених вредности могу се формирати стварни дијаграми напон-деформација за спој изведен на епрувети *С1-3*. Добијени дијаграми су приказани на слици 99.

5.10 Епрувета С1-5

За епрувету С1-5 инжењерски дијаграм приказан је на слици 100.

Слика 100. Инжењерски дијаграм напон-деформација за епрувету С1-5

Почетне вредности карактеристичних димензија су:

 b_{10} =12.352mm, b_{20} =5.753mm, t_0 =8mm, w_0 =10mm.

Епрувета је претрпела лом при 101 тренутку експеримента, зато се у анализу укључују првих 100 тренутака. Следе подаци за карактеристичне тренутке у опсегу 60 – 100.

За тренутак 60 имамо следеће вредности:

$$\begin{split} \Delta x_{60} &= \Delta w_{60} = 0.196 \text{mm}; \ \Delta z_{60} = \Delta t_{60} = 0.0 \text{mm}; \ x_{60} = w_{60} = 9.804 \text{mm}; \\ z_{60} &= t_{60} = 8 \text{mm}; \ A_{60} = 78.46214 \text{mm}^2; \\ l_{60} &= 50.146 \text{mm}; \\ F_{60} &= 43214.81 \text{N}; \\ R_{160} &= 205.3227 \text{mm}; \\ R_{260} &= 44.22403 \text{mm}; \\ b_{160} &= 12.686 \text{mm}; \\ b_{260} &= 5.885 \text{mm}; \\ \sigma_{T_{60}} &= 550.7728 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 566.7976 MPa \tag{241}$$

$$\sigma_{max_2}^{actual} = 583.1152 MPa \tag{242}$$

Из Abaqusa се добија:

$$Stage \ 60 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 562.206 \ MPa \tag{243}$$

Stage 60
$$\rightarrow \sigma_{max_2}^{Abaqus} = 573.403 MPa$$
 (244)

Положаји добијених вредности напона приказани су на слици 101.

Слика 101. Еквивалентни напони за епрувету С1-5, тренутак 60

За <u>тренутак 70</u> имамо следеће вредности:

$$\begin{split} &\Delta x_{70} = \Delta w_{70} = 0.387 \text{mm}; \ \Delta z_{70} = \Delta t_{70} = 0.0 \text{mm}; \ x_{70} = w_{70} = 9.613 \text{mm}; \\ &z_{70} = t_{70} = 8 \text{mm}; \ A_{70} = 77.01935 \text{mm}^2; \ l_{70} = 50.447 \text{mm}; \ F_{70} = 46976.18 \text{N}; \\ &R_{170} = 109.808 \text{mm}; \ R_{270} = 23.57012 \text{mm}; \ b_{170} = 13.032 \text{mm}; \ b_{270} = 6.028 \text{mm}; \\ &\sigma_{T70} = 609.927 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 642.2803 \, MPa \tag{245}$$

$$\sigma_{max_2}^{actual} = 672.0363 \, MPa \tag{246}$$

Из Abaqusa се добија:

Stage 70
$$\rightarrow \sigma_{max_1}^{Abaqus} = 633.931 MPa$$
 (247)

Stage 70
$$\rightarrow \sigma_{max_2}^{Abaqus} = 656.582 MPa$$
 (248)

Положаји добијених вредности напона приказани су на слици 102.

Слика 102. Еквивалентни напони за епрувету С1-5, тренутак 70

За тренутак 80 имамо следеће вредности:

$$\begin{split} &\Delta x_{80} = \Delta w_{80} = 0.55 \text{mm}; \ \Delta z_{80} = \Delta t_{80} = 0.0 \text{mm}; \ x_{80} = w_{80} = 9.45 \text{mm}; \\ &z_{80} = t_{80} = 8 \text{mm}; \ A_{80} = 75.82938 \text{mm}^2; \\ &l_{80} = 50.923 \text{mm}; \\ &F_{80} = 49500.36 \text{N}; \\ &R_{180} = 81.01428 \text{mm}; \\ &R_{280} = 17.50892 \text{mm}; \\ &b_{180} = 13.339 \text{mm}; \\ &b_{280} = 6.182 \text{mm}; \\ &\sigma_{T80} = 652.786 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 698.9291 \, MPa \tag{249}$$

$$\sigma_{max_2}^{actual} = 737.9562 \, MPa \tag{250}$$

Из Abaqusa се добија:

$$Stage \ 80 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 692.810 \ MPa \tag{251}$$

$$Stage 80 \rightarrow \sigma_{max_2}^{Abaqus} = 727.236 MPa$$
(252)

Вредности напона добијене у Abaqusu са њиховим положајима дате су на слици 103.

Слика 103. Еквивалентни напони за епрувету С1-5, тренутак 80

За <u>тренутак 90</u> имамо следеће вредности:

$$\begin{split} &\Delta x_{90} = \Delta w_{90} = 0.713 \text{mm}; \ \Delta z_{90} = \Delta t_{90} = 0.018769 \text{mm}; \ x_{90} = w_{90} = 9.287 \text{mm}; \\ &z_{90} = t_{90} = 7.981231 \text{mm}; \ A_{90} = 74.52406 \text{mm}^2; \ l_{90} = 51.442 \text{mm}; \ F_{90} = 51339.88 \text{N}; \\ &R_{190} = 65.70989 \text{mm}; \ R_{290} = 14.3433 \text{mm}; \ b_{190} = 13.671 \text{mm}; \ b_{290} = 6.356 \text{mm}; \\ &\sigma_{T90} = 688.9035 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 748.8715 MPa \tag{253}$$

$$\sigma_{max_2}^{actual} = 795.3185 \, MPa \tag{254}$$

Из Abaqusa се добија:

$$Stage 90 \rightarrow \sigma_{max_1}^{Abaqus} = 740.201 MPa$$
(255)

$$Stage 90 \rightarrow \sigma_{max_2}^{Abaqus} = 784.208 MPa$$
(256)

Положаји добијених вредности напона приказани су на слици 104.

Слика 104. Еквивалентни напони за епрувету С1-5, тренутак 90

За тренутак 100 имамо следеће вредности:

$$\begin{split} &\Delta x_{100} = \Delta w_{100} = 0.929 \text{mm}; \\ &\Delta z_{100} = \Delta t_{100} = 0.305231 \text{mm}; \\ &x_{100} = w_{100} = 7.694769 \text{mm}; \\ &A_{100} = 70.95285 \text{mm}^2; \\ &l_{100} = 51.994 \text{mm}; \\ &F_{100} = 54.12106 \text{mm}; \\ &R_{2100} = 12.09705 \text{mm}; \\ &b_{1100} = 14.151 \text{mm}; \\ &b_{2100} = 6.64 \text{mm}; \\ &\sigma_{T_{100}} = 724.6142 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 810.7696 \, MPa \tag{257}$$

$$\sigma_{max_2}^{actual} = 864.0665 MPa \tag{258}$$

Из Abaqusa се добија:

$$Stage \ 100 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 800.468 \ MPa \tag{259}$$

Stage 100
$$\rightarrow \sigma_{max_2}^{Abaqus} = 870.028 MPa$$
 (260)

Положаји добијених напона приказани су на слици 102.

Слика 105. Еквивалентни напони за епрувету С1-5, тренутак 100

Резултати

У табели 20 приказани су резултати израчунатих напона, применом предложене формуле и софтвера *Abaqus*, за епрувету *C1-5* у карактеристичним тренутцима.

	1110-071		прановни нише		. 0	
Тренутак	Изарчунат	Abaqus	Разлика	Изарчунат	Abaqus	Разлика
	NM_1	NM_1	[%]	NM ₂	NM ₂	[%]
60	566.7976	562.206	0.817	583.1152	573.403	1.694
70	642.2803	633.931	<mark>1.317</mark>	672.0363	656.582	<mark>2.354</mark>
80	698.9291	692.81	0.883	737.9562	727.236	1.474
90	748.8715	740.201	1.171	795.3185	784.208	1.417
100	810.7696	800.468	1.287	864.0665	870.028	0.690

Табела 20. Поређење вредности напона за епрувету С1-5

Из табеле 20 можемо видети да је највећа разлика добијена за тренутак 70, код лица МШ, као и код корена МШ. Максимална разлика напона за епрувету *C1-5* износи 1.317% за лице МШ и 2.354% за корен МШ. На основу добијених вредности могу се формирати стварни дијаграми напон-деформација за спој изведен на епрувети *C1-5*.

Добијени дијаграми су приказани на слици 106.

Слика 106. Стварни дијаграми за лице и корен МШ, епрувета С1-5

5.11 Епрувета С2-3

За епрувету С2-3 изглед инжењерског дијаграма приказан је на слици 107.

Слика 107. Инжењерски дијаграм напон-деформација за епрувету С2-3

Почетне вредности карактеристичних димензија су:

 b_{10} =14.775mm, b_{20} =7.401mm, t_0 =8mm, w_0 =10mm.

Епрувета се покидала при 111 тренутку испитивања, зато су у анализу укључени првих 110 тренутака. Следе подаци за карактеристичне тренутке у опсегу 60 – 110.

За тренутак 60 измерене су следеће вредности:

$$\begin{split} \Delta x_{60} &= \Delta w_{60} = 0.097 \text{mm}; \ \Delta z_{60} = \Delta t_{60} = 0.0 \text{mm}; \ x_{60} = w_{60} = 9.903 \text{mm}; \\ z_{60} &= t_{60} = 8 \text{mm}; \ A_{60} = 79.23145 \text{mm}^2; \ l_{60} = 50.264 \text{mm}; \ F_{60} = 41499.43 \text{N}; \\ R_{160} &= 580.3078 \text{mm}; \ R_{260} = 143.3409 \text{mm}; \ b_{160} = 15.005 \text{mm}; \ b_{260} = 7.457 \text{mm}; \\ \sigma_{T_{60}} &= 523.7747 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 530.3756 \, MPa \tag{261}$$

$$\sigma_{max_2}^{actual} = 536.7250 \, MPa \tag{262}$$

Из Abaqusa се добија:

$$Stage \ 60 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 527.969 \ MPa \tag{263}$$

$$Stage \ 60 \ \rightarrow \ \sigma_{max_2}^{Abaqus} = 531.374 \ MPa \tag{264}$$

Вредности добијене у Abaqusu са њиховим положајима дате су на слици 108.

Слика 108. Еквивалентни напони за епрувету С2-3, тренутак 60

За тренутак 70 измерене су следеће вредности:

$$\begin{split} &\Delta x_{70} = \Delta w_{70} = 0.266 \text{mm}; \ \Delta z_{70} = \Delta t_{70} = 0.0 \text{mm}; \ x_{70} = w_{70} = 9.734 \text{mm}; \\ &z_{70} = t_{70} = 8 \text{mm}; \ A_{70} = 77.92714 \text{mm}^2; \ l_{70} = 50.683 \text{mm}; \ F_{70} = 46421.53 \text{N}; \\ &R_{170} = 222.1803 \text{mm}; \ R_{270} = 54.5524 \text{mm}; \ b_{170} = 15.373 \text{mm}; \ b_{270} = 7.614 \text{mm}; \\ &\sigma_{T_{70}} = 595.7043 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 614.9794 \, MPa \tag{265}$$

$$\sigma_{max_2}^{actual} = 632.1845 \, MPa \tag{266}$$

Из Abaqusa се добија:

$$Stage \ 70 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 608.330 \ MPa \tag{267}$$

Stage 70
$$\rightarrow \sigma_{max_2}^{Abaqus} = 618.223 MPa$$
 (268)

Положаји добијених вредности напона приказани су на слици 109.

Слика 109. Еквивалентни напони за епрувету С2-3, тренутак 70

За тренутак 80 добијене су следеће вредности:

$$\begin{split} &\Delta x_{80} = \Delta w_{80} = 0.419 \text{mm}; \ \Delta z_{80} = \Delta t_{80} = 0.0 \text{mm}; \ x_{80} = w_{80} = 9.581 \text{mm}; \\ &z_{80} = t_{80} = 8 \text{mm}; \ A_{80} = 76.7828 \text{mm}^2; \ l_{80} = 51.17 \text{mm}; \ F_{80} = 49311.46 \text{N}; \\ &R_{180} = 147.1377 \text{mm}; \ R_{280} = 36.31245 \text{mm}; \ b_{180} = 15.698 \text{mm}; \ b_{280} = 7.79 \text{mm}; \\ &\sigma_{T80} = 642.2201 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 673.1764 \, MPa \tag{269}$$

$$\sigma_{max_2}^{actual} = 698.9391 \, MPa \tag{270}$$

Из Abaqusa се добија:

$$Stage \ 80 \ \rightarrow \ \sigma_{max_1}^{Abaqus} = 662.977 \ MPa \tag{271}$$

$$Stage 80 \rightarrow \sigma_{max_2}^{Abaqus} = 678.515 MPa \tag{272}$$

Положаји добијених вредности напона приказани су на слици 110.

Слика 110. Еквивалентни напони за епрувету С2-3, тренутак 80

За тренутак 90 добијају се следеће вредности:

$$\begin{split} &\Delta x_{90} = \Delta w_{90} = 0.58 \text{mm}; \Delta z_{90} = \Delta t_{90} = 0.067529 \text{mm}; x_{90} = w_{90} = 9.42 \text{mm}; \\ &z_{90} = t_{90} = 7.932471 \text{mm}; \ A_{90} = 75.05031 \text{mm}^2; \\ &l_{90} = 51.692 \text{mm}; \\ &F_{190} = 110.904 \text{mm}; \\ &R_{290} = 27.58657 \text{mm}; \\ &b_{190} = 16.03 \text{mm}; \\ &b_{290} = 7.979 \text{mm}; \\ &\sigma_{T90} = 685.6619 \text{ MPa}. \end{split}$$

$$\sigma_{\max_1}^{actual} = 731.2718 MPa \tag{273}$$

$$\sigma_{max_2}^{actual} = 764.8898 \, MPa \tag{274}$$

Из Abaqusa се добија:

$$Stage 90 \rightarrow \sigma_{max_1}^{Abaqus} = 717.686 MPa$$
(275)

$$Stage 90 \rightarrow \sigma_{max_2}^{Abaqus} = 742.125 MPa$$
(276)

Положаји вредности напона добијених у Abaqusu приказани су на слици 111.

Слика 111. Еквивалентни напони за епрувету С2-3, тренутак 90

За тренутак 100 измерене су и израчунате следеће вредности:

$$\begin{split} &\Delta x_{100} = \Delta w_{100} = 0.751 \text{mm}; \\ &\Delta z_{100} = \Delta t_{100} = 0.199765 \text{mm}; \\ &x_{100} = w_{100} = 9.249 \text{mm}; \\ &z_{100} = t_{100} = 7.800235 \text{mm}; \\ &A_{100} = 72.84679 \text{mm}^2; \\ &l_{100} = 52.238 \text{mm}; \\ &F_{100} = 53012.59 \text{N}; \\ &R_{1_{100}} = 89.62346 \text{mm}; \\ &R_{2_{100}} = 22.51123 \text{mm}; \\ &b_{1_{100}} = 16.391 \text{mm}; \\ &b_{2_{100}} = 8.189 \text{mm}; \\ &\sigma_{T_{100}} = 727.7272 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 791.2532 \, MPa \tag{277}$$

$$\sigma_{max_2}^{actual} = 832.0532 \, MPa \tag{278}$$

Из *Abaqusa* се добија:

Stage 100
$$\rightarrow \sigma_{max_1}^{Abaqus} = 774.807 MPa$$
 (279)

Stage 100
$$\rightarrow \sigma_{max_2}^{Abaqus} = 811.297 MPa$$
 (280)

Положаји добијених вредности приказани су на слици 112.

Слика 112. Еквивалентни напони за епрувету С2-3, тренутак 100

За <u>тренутак 110</u> измерене су и израчунате следеће вредности:

$$\begin{split} &\Delta x_{110} = \Delta w_{110} = 0.992 \text{mm}; \ \Delta z_{110} = \Delta t_{110} = 0.577176 \text{mm}; \ x_{110} = w_{110} = 9.008 \text{mm}; \\ &z_{110} = t_{110} = 7.422824 \text{mm}; \ A_{110} = 68.7173 \text{mm}^2; \ l_{110} = 52.714 \text{mm}; \ F_{110} = 52281.3 \text{N}; \\ &R_{1110} = 71.22469 \text{mm}; \ R_{2110} = 18.47759 \text{mm}; \ b_{1_{110}} = 16.782 \text{mm}; \ b_{2_{110}} = 8.505 \text{mm}; \\ &\sigma_{T_{110}} = 760.8171 \text{ MPa}. \end{split}$$

$$\sigma_{max_1}^{actual} = 855.3135 \, MPa \tag{281}$$

$$\sigma_{max_2}^{actual} = 902.6794 \, MPa \tag{282}$$

Из Abaqusa се добија:

$$Stage \ 110 \ \rightarrow \ \sigma^{Abaqus}_{max_1} = 839.592 \ MPa \tag{283}$$

Stage 110
$$\rightarrow \sigma_{max_2}^{Abaqus} = 898.759 MPa$$
 (284)

Положаји добијених вредности напона приказани су на слици 113.

Слика 113. Еквивалентни напони за епрувету С2-3, тренутак 110

У табели 21 приказани су резултати израчунатих напона, применом предложене формуле и софтвера *Abaqus*, за епрувету *C2-3* у карактеристичним тренутцима.

	I ADEJI	A 2 1. HOI E DEIDE L	л едности папо	IA JA EIII J DEI J CZ	-5	
Тренутак	Изарчунат	Abaqus	Разлика	Изарчунат	Abaqus	Разлика
	NM_1	NM_1	[%]	NM_2	NM_2	[%]
60	530.3756	527.969	0.456	536.7251	531.374	1.007
70	614.9795	608.33	1.093	632.1845	618.223	2.258
80	673.1764	662.977	1.538	698.9391	678.515	3.010
90	731.2718	717.686	1.893	764.8898	742.125	<mark>3.067</mark>
100	791.2532	774.807	<mark>2.123</mark>	832.0532	811.297	2.558
110	855.3135	839.592	1.873	902.6794	898.759	0.462

Табела 21. Поређење врелности	напона за епрувету С2-3

Из табеле 21 се може видети да је највећа разлика добијена за тренутак 100, код лица МШ, тј. за тренутак 90 код корена. Максимална разлика напона за епрувету *C2-3* износи 3.07%.

На основу добијених вредности могу се формирати стварни дијаграми напондеформација за спој изведен на епрувети *C2-3*. Добијени дијаграми су приказани на слици 114.

Након приказаних резултата за епрувету *С2-3*, могу се табеларно приказати резултати за све епрувете типа С (Табела 22).

	THEBUILT		minorite minor			
C1 1	Изарчунат	Abaqus	Разлика	Изарчунат	Abaqus	Разлика
<i>C1-1</i>	NM_1	NM_1	[%]	NM ₂	NM_2	[%]
70	603.9106	599.204	0.785	603.9106	611.44	1.793
100	767.4839	755.853	1.539	811.1664	797.719	1.686
130	894.2466	879.803	<mark>1.642</mark>	954.7766	954.022	0.079
150	934.4265	920.411	1.523	1000.6997	1002.08	0.138
170	898.3530	901.605	0.362	965.1214	1004.67	<mark>4.098</mark>
(1)	Изарчунат	Abaqus	Разлика	Изарчунат	Abaqus	Разлика
61-5	NM_1	NM_1	[%]	NM ₂	NM ₂	[%]
60	548.2561	546.634	0.297	562.4263	560.257	0.387
80	707.4502	702.769	<mark>0.667</mark>	755.2416	761.197	0.788
100	811.6692	806.673	0.619	878.2941	894.974	1.899
120	892.9115	889.891	0.339	971.9243	1002.02	3.096
130	931.4275	932.011	0.063	1015.9139	1058.12	<mark>4.154</mark>
135	944.4841	950.366	0.623	1055.1265	1088.13	3.128
C1 F	Изарчунат	Abaqus	Разлика	Изарчунат	Abaqus	Разлика
C1-5	NM_1	NM_1	[%]	NM ₂	NM_2	[%]
60	566.7976	562.206	0.817	583.1152	573.403	1.694
70	642.2803	633.931	<mark>1.317</mark>	672.0363	656.582	<mark>2.354</mark>
80	698.9291	692.81	0.883	737.9562	727.236	1.474
90	748.8715	740.201	1.171	795.3185	784.208	1.417
100	810.7696	800.468	1.287	864.0665	870.028	0.690
(2) 2	Изарчунат	Abaqus	Разлика	Изарчунат	Abaqus	Разлика
62-5	NM_1	NM_1	[%]	NM_2	NM_2	[%]
60	530.3756	527.969	0.456	536.7251	531.374	1.007
70	614.9795	608.33	1.093	632.1845	618.223	2.258
80	673.1764	662.977	1.538	698.9391	678.515	3.010
90	731.2718	717.686	1.893	764.8898	742.125	<mark>3.067</mark>
100	791.2532	774.807	<mark>2.123</mark>	832.0532	811.297	2.558
110	855.3135	839.592	1.873	902.6794	898.759	0.462

ТАБЕЛА 22. РЕЗУЛТАТИ НАПОНСКЕ АНАЛИЗЕ ЗА СВЕ ИСПИТАНЕ ЕПРУВЕТЕ ТИПА С

5.12 Анализа преломних површина

Анализа преломних површина вршена је употребом скенинг електронског микроскопа (SEM). Анализиране су епрувете *C1-1, C1-5, P1-3* и *P2-3*.

SEM је употребљен за одређивање врсте лома и анализу преломне површине.

5.12.1 Епрувета *С1-1* (*SEM*)

Слика 115. Преломна површина епрувете С1-1, а) Изглед без увећања, б) Увећање 500х, в) 1000х, г) 1000х ВЅЕ

Преломна површина која одговара жилавом лому се на фотографијама које су добијене *SEM* – ом препознаје преко комбинације деформисаних делова који су налик чаши и

купи.[41-43] Ово је карактеристичан изглед жилавог лома а механизам којим је лом настао се назива спајање микрошупљина. [44] Жилав лом материјала се одвија дужи временски период у односу на крти лом. Током пораста пластичне деформације долази до раста шупљина које су постојале у околини малих укључака у материјалу. Како оптерећење даље расте тако и ове микро шупљине расту. Када достигну одговарајућу величину и када оптерећење довољно порасте тј. када се стекну потребни услови, долази до комбинације ових микро шупљина и њиховог спајања у макро шупљине, које на крају и доводе до коначног лома материјала.

Спајање микрошупљина у макро шупљине се најчешће одвија у деловима материјала који представља фронт прслине. Микрошупљине које постоје око малих укључака у материјалу почињу да расту са порастом количине пластичне деформације у материјалу. [41,42] Иницијална прслина се формира на најслабијем месту у структури.

Након формирања прслине, микро шупљине које се налазе испред њеног врха, својом комбинацијом и преласком у макро шупљине омогућавају пропагацију прслине кроз материјал, која на крају доводи до коначног лома материјала. Округле шупљине се још називају и "јамице". За "јамице" се каже да су шупљине једнаких оса и до раздвајања долази нормално на раван лома. Ако постоје смичућа напрезања, спојене микрошупљине ће се издужити у смеру смицања. [45]

Са слике 115 може се видети да је код епрувете С1-1 наступио жилави лом, јер је добијен карактеристичан изглед лома који је настао спајањем микрошипљина. Ово је било и очекивано имајући у виду да је за заваривање коришћен аустенитни ДМ. Такође се могу видети укључци *Cr* означени на слици. Закључак о врсти укључака се може извести на основу слике 115 г) где је у *Backscattered (BSE)* режиму дошло до "нестајања" укључка са слике, што доводи до закључка да укључак има нижи атомски број од околног материјала. Атомски број хрома је нижи и од железа и од никла, што доводи до закључка да је у питању укључак хрома.

5.12.2 Епрувета *С1-5 (SEM*)

Слика 116. Преломна површина епрувете С1-5, а) Изглед без увећања, б) Увећање 45х, в) 1000х, г) 1000х

Са слике 116 могу се уочити укључци али и формирана секундарна прслина. На слици 116 такође је могуће уочити и присуство честица оксида у сверном облику. Ова честица је означена на слици 118.

5.12.3 Епрувета *Р1-3* (SEM)

Слика 117. Преломна површина епрувете Р1-3, а)Изглед без увећања, б) Увећање 200х, в) 500х, г)1500х

На слици 117 г) може се уочити укључак хрома у чијој близини се формирала секундарна прслина, која је означена на слици. На слици 117 б) може да се уочи количина укључака која се издвојила у заваренем споју. Ово је очекивана појава, уколико се има у виду да је ДМ који је коришћен за заваривање садржао приближно 20% хрома. Хром доприноси чврстоћи споја и отпорности за рад на високим температурама али такође утиче и на пад жилавости, што овде није било изражено јер је коришћени ДМ такође поседовао и велику количину никла.

5.12.4 Епрувета *Р2-3 (SEM*)

Слика 118. Преломна површина епрувете Р2-3, а)Изглед без увећања, б)Увећање 500х, в) Увећање 1500х

Са слике 118 се може видети како изгледа оксидна честица када се нађе на површини прелома. На истом делу слике могуће је приметити и формирање секундарне прслине. Код ове епрувете лом је такође настао спајањем микрошупљина.

6. Дискусија и закључак

Из приказаних резултата може се закључити да на стварни, максимални, напон ком је епрувета изложена током испитивања на затезање, након стварања "врата" на епрувети, највише утиче концентрација напона која се јавља на месту сужења а не троосно стање напона, како су одређени истраживачи претпостављали.

Стреометријска метода мерења деформација се успешно користи за различите врсте испитивања [46] а показала се као адекватна метода за одређивања стварних дијаграма затезања тј. дијаграма напон – деформација код заварених спојева. [47] На старту спроведених испитивања у разматрање су узете две претпоставке које се односе на најутицајнији фактор у погледу максималног напона ком је епрувета изложена током испитивања на затезање. Прва претпоставка је као најутицајнији параметар апострофирала троосно стање напона, које се јавља на месту сужења епрувете, док је друга као најутицајнији параметар означила фактор концентрације напона на месту сужења.

Употребом стереометријског мерења деформације дошло се до вредности деформација за сваки тренутак испитивања, за све епрувете како једног тако и другог типа. Добијене вредности деформација се могу употребити на више начина у даљој анализи. Најчешћи случај употребе измерених деформација се односи на формирање зависности између напона и деформације које се касније уносе у софтвер за анализу коначним елементима и прати се напонско – деформационо поље разматраног узорка. Употреба МКЕ у напонско-деформационој анализи се заснива на одређивању вредности деформације за посматрани случај и израчунавању напона преко добијених вредности за деформацију.

Како би се испитивање фокусирало на одређивање једног од наведена два најутицајнија фактора, односно одређивању напона, урађена је провера вредности напона на већ деформисаној епрувети (епрувета измоделирана са сужењем на себи) која је оптерећена дефинисаним напоном. На слици 10 је приказана таква анализа а резултат доводи до закључка да троосно стање напона не даје максимални напон ком је епрувета изложена, јер је добијена нижа вредност еквивалентног напона у односу на нормални напон. Дакле троосно стање напона као доминантан фактор за добијање стварног, максималног, напона ком је епрувета изложена приликом испитивања на затезање је искључено из даље анализе.

Моделирање заварених спојева методом коначних елемената не представља лак задатак. [48-50] Заварени спојеви представљају хетерогену анизотропну структуру и моделирање својстава материјала завареног споја представља својеврстан проблем. [50-53] Ма колико прецизно да се одреде параметри отпорности и параметри деформације свих зона завареног споја појединачно, остаје непознат начин понашања завареног споја у целини, јер у анализи није разматран међусобни утицај појединих зона завареног споја. [54] Ситуација се додатно компликује уколико се у анализу укључе и различити типови тј. облици заварених спојева. Досадашња пракса је предвиђала моделирање завареног споја са одвојеним зонама (МШ, ЗУТ, ОМ) и задавање одређених механичких карактеристика овим зонама. [55-60] Након формираног модела у анализу би се укључило оптерећење и након завршеног прорачуна као резултат је добијано напонско деформационо поље. Овако добијене вредности представљају резултат унетих параметара и димензија моделираних зона. Што су димензије (и одблик) моделираних зона завареног споја ближе стварним вредностима то су и резултати прецизнији, наравно уколико су механички параметри свих зона правилно одређени. Овакав приступ проблему не доводи до траженог решења, јер су добијени резултати непоуздани и односе се само на посматрани случај са свим његовим специфичностима.

Како би анализа стварног дијаграма затезања била прецизна и веродостојна потребно је од две непознате променљиве експериментално измерити једну и искористити је за израчунавање друге. Управо ово је урађено у оквиру ове дисертације.

Током испитивања, деформације епрувете су мерене и сликане употребом две камере по све три димензије, односно коришћена је стереометријска метода мерења деформације. Након завршеног испитивања слике са вредностима деформације су обрађиване у софтверу Арамис и коришћене за израчунавање стварних димензија епрувете у сваком тренутку експеримента. Свакој слици, тј. деформацији је додељена вредност силе која је очитана са кидалице. Ово представља полазну основу за формирање напонске анализе.

Анализа коначним елементима представља одличан алат за напонску анализу али је потребно непосредно повезати нумеричко и експериментално испитивање. [54] Ово је извршено тако што су модели различитих епрувета, за различите тренутке испитивања, моделирани са измереном деформацијом, на себи. Дакле модели епрувета које су нумерички анализиране већ су на себи поседовале деформације које су измерене *DIC* методом за то оптерећење. За сваку испитану и моделирану епрувету је по преласку у зону пластичности вршено моделирање минимално четири епрувете у различитим стадијумима експеримента, од преласка у зону пластичности до лома. Оваквом поставком се долази до примене методе коначних елемената само на напонску анализу, дакле након завршене анализе посматране су само вредности добијених напона. Оваква анализа је показала да троосно стање напона у епрувети након стварања врата није параметар који доприноси порасту напона у епрувети. Поред тога, дошло се до закључка да је за пораст напона одговорна концентрација напона која се јавља на месту сужења епрувете.

Имајући у виду да концентрација напона искључиво зависи од димензија тј. од промене геометрије предложена је аналитичка метода за оцену стварног, максималног, напона ком је епрувета изложена током испитивања затезањем. Израз којим се израчунава максимални, стварни напон је

$$\sigma_{max}^{actual} = \sigma_T \cdot C_{NM} \tag{285}$$

$$\sigma_{max}^{actual} = \frac{F}{A_{current}} \cdot \left(1 + \frac{b}{2 \cdot (R+b)} + \frac{\Delta t}{2 \cdot w_0}\right)$$
(286)

као што је наведено у једначини 23. Из једначине 286 се може видети да је за одређивање максималног, стварног напона поред познавања тренутне површине попречног пресека епрувете A_{current} потребно одредити и друге геометријске параметре. Геометријски параметри се односе на димензије метала шава и саме епрувете.

Одређивање потребних параметара је могуће *DIC* методом. Анализирајући једначину 285, може се приметити да у израчунавању овог напона не фигуришу параметри материјала. Ово наводи на закључак да је анализа која је урађена у оквиру ове дисертације независна од врсте основног и додатног материјала за заваривања. Даље се може закључити да је оправдана претпоставка да предложена метода може успешно бити коришћена и за друге типове заварених спојева а можда и за основне материјале.

Ове закључке и претпоставке је потребно проверити даљим испитивањима.

Вредности напона које су добијене употребом предложене формуле, у којој фигуришу димензије које су измерене стереометријски, показују да је стварна чврстоћа материјала виша од вредности која се користи у пракси.

Наиме, вредност затезне чврстоће која се користи је вредност која је добијена инжењерски, тј. употребом инжењерског приступа при израчунавању. У формули за израчунавање овог напона фигурише почетна површина попречног пресека епрувете и до сада је преовладавало мишљење да овај напон и није потребно израчунати као стварни јер након достизања инжењерске затезне чврстоће, сва деформациона способност елемента је исцрпљена и он након тога није у могућности да преноси оптерећење.

Овакво становиште је оправдано за елементе који су у раду оптерећени на затезање, међутим вредност затезне чврстоће се користи и за прорачун носивости елемената који су изложени другим врстама оптерећења. Феномен стварања "врата" на епрувети се јавља једино код испитивања затезањем. Дакле уколико се вредност параметра чврстоће израчуна, непрецизно, код методе испитивања која сама по себи поседује специфичну деформацију, таква вредност чврстоће није применљива на друге врсте оптерећења. Другим речима параметар чврстоће материјала не би требао да зависи од врсте испитивања тј. потребно је одредити стварну чврстоћу материјала.

Да би се одредила стварна чврстоћа материјала или конкретно у случају ове дисертације, завареног споја потребно је одредити стварне вредности напона и измерити стварне вредности деформација.

Напони који су добијени као резултат приказане анализе представљају стварну чврстоћу завареног споја који је изведен на два, различита, основна материјала. Предложеном аналитичком методом су израчунати максимални напони у одређеним тренутцима испитивања и упоређени су са анализом коначним елементима, ради одређивања тачности.

Максималне и минималне разлике аналитички и нумерички израчунатих напона за испитане епрувете типа *P* су приказане у табели 23.

Епрувета	Максимална разлика [%]	Минимална разлика [%]
P1-1	2.76	0.59
P1-2	2.845	0.192
P1-3	2.328	0.206
P2-1	2.745	0.858
P2-2	4.373	1.079
P2-3	1.122	0.103
P2-4	2.024	0.583

ТАБЕЛА 23. МАКСИМАЛНЕ И МИНИМАЛНЕ РАЗЛИКЕ ЗА ЕПРУВЕТЕ ТИПА Р

У табели 24 су приказане максималне и минималне разлике за епрувете типа С.

Епрувета	Максимална разлика [%]	Минимална разлика [%]
С1-1	4.098	0.079
С1-3	4.154	0.063
<i>C1-5</i>	2.354	0.690
<i>C2-3</i>	3.067	0.456

ТАБЕЛА 24. МАКСИМАЛНЕ И МИНИМАЛНЕ РАЗЛИКЕ ЗА ЕПРУВЕТЕ ТИПА С

Из табела 23 и 24 се може видети да је највећа разлика која је добијена поређењем аналитички и нумерички израчунатих напона, за оба типа епрувета, 4.373%, док је минимална разлика, свега 0.063%. Ова разлика се појављује за једну епрувету и један тренутак док су код осталих епрувета те разлике мање. Табеле 23 и 24 показују колика је прецизност предложене формуле за израчунавање максималних стварних напона којима је епрувета изложена током испитивања на затезање.

Према приказаним вредностима може се закључити да је предложена аналитичка метода прецизна и резултати примене ове методе веродостојно описују стварно напонско стање унутар епрувете током испитивања на затезање.

На слици 119 су приказани инжењерски дијаграми за све епрувете типа Р.

Са слике 119 се може закључити да вредност затезне чврстоће МШ ни за једну епрувету, типа *P*, не прелази 700 *MPa*. Међутим, на стварним дијаграмима који су приказани у поглављу "Резултати", (Слике 31, 37, 43, 52, 61, 70 и 81) може се видети да се стварна чврстоћа ових епрувета креће у опсегу од приближно 900 – 1000 *Mpa*.

Слика 119. Инжењерски дијаграми за све епрувете типа Р

Сви инжењерски дијаграми за епрувете типа С, приказани су на слици 120.

Слика 120. Инжењерски дијаграми за све епрувете типа С

Може се закључити, са слике 120, да су и затезне чврстоће МШ епрувета типа C у истом опсегу као и за епрувете типа P. Ово је било очекивано уколико се има у виду да су заварени спојеви изведени као "*undermatching*" спојеви и да је коришћен исти ДМ за заваривање. Стварни напони за епрувете типа C се могу видети на сликама представљеним у поглављу "Резултати" (Слике 90, 99, 106 и 114) а максимални напони се крећу у опсегу од приближно 900 – 1100 *MPa*. Нешто више вредности напона проистичу из чињенице да су епрувете типа C правоугаоног попречног пресека па је фактор концентрације напона нешто виши у односу на квадратне епрувете, какве су епрувете типа P.

Имајући у виду да је иста формула коришћена за оба типа епрувета и да ни код једне епрувете разлика није прешла 5% може се сматрати да је предложена формула адекватна за коришћење и даље истраживање.

Са слика 119 и 120 се може приметити да је укупна деформација коју су епрувете претрпеле битно различита за два типа епрувета. Деформација које су показале епрувете типа *C* је неколико пута већа од деформације која се јавља код епрувета типа *P*. Разлог за овакво понашање епрувета различитог типа и поред тога што је коришћен исти ДМ за заваривање је разлика у односу чврстоћа ОМ и ДМ. Наиме, степен "*undermatchinga*" је много нижи код епрувета типа *P*, тј *Armox 500T* има много већу чврстоћу од коришћеног ДМ. Ово доводи до несразмерне расподеле деформације и до бржег лома епрувете. Код епрувета типа *C* чврстоће ДМ и ОМ су доста приближније па је материјал имао повољнију расподелу деформације што је резултирало знатно већем деформисању епрувете пре лома.

На основу резултата испитивања, њихове анализе и дискусије, може да се закључи да је основни научни допринос ове дисертацији уведена и јасно формулисана аналитичка метода за одређивање стварног дијаграма напон-деформација, која узима у обзир концентрацију напона услед сужења епрувете, а која је независна од врсте основног и додатног материјала за заваривање, односно примењива је на заварене спојеве било да је метал шава веће или мање чврстоће од основног метала.

Осим тога, као битни научни доприноси ове дисертације могу да се наведу:

- Успостављање процедуре верификације аналитичких резултата употребом нумеричких меода, тј. методе коначних елемената у чије моделирање је уведена експериментална метода одређивања деформација.
- Утврђен је фактор концентрације напона на месту сужења на епрувети након достизања максималне силе.
- Утврђен је утицај деформацијског стања, одређеног *DIC*-ом, на конструисање стварног дијаграма напон-деформација код заварених спојева.

a the Cashill

7. Прилози уз текст

ICI D.O.	D.							Inspe	ction	certit	ficate	3.1		
Macvans 11080 B Serbia	ska 8 eograd	l, Zemun						as per No. : Rev. 0	: EN 10	204 2016-2	203100 Page	6940-9 1 of 1	900008-01	4
PO no.						2						of	17.11.	201
Order no,							103100	4770						
Delivery n	ote/pos	./splitt					203100	6940/00	0080/90	8000		of	22.11.	201
Product Trade nar Standard	ne designa	ation					GTAW BOEHL EN ISO AWS AS	rod/wire ER NIB/ 18274: 3 5.14: ER	AS 70/20 S Ni 608 NiCr-3	0 -IG 92 (NiCr	20Mn3N	lb)		
Dimensio Heat no. Quantity Chemical	n compos	sition in %	of the pi	roduct			2,4 x 10 102584 10,0 KG	00 mm						
C	Si	Mn	P	S	Cr	Ni	Cu	Ti	Nb	Fe	1	1		-
< 0,01	< 0,1	3,2	0,003	0,001	20,8	72,9	< 0,1	0,3	2,5	0,2		-		
Mechanic	al prope	erties					EN 1020	04: 2.2						-
Tensile t	est n prepa	ration			-				acc	ording t		SO 6892	2-1/09	
Т	ReL	/ Rp 0,2	F	tp 1,0	1	Rm	A (L	o = 5d)	7		W	3H	Rem	ark
- Composition		MPa		MPa		MPa		%	9	6	PW	ΉT		-
20°C	2	: 400				≥ 620	2	: 35						
Impact te	est	ration							acc	ording to	EN IS	0 148-1	1/10	
Т	Impa	act energy		Average	L	ateral exp	pansion	Shear	fracture	e	WBH	0 0 0 0 0 0	Rema	ks
-		KV/J		KV/J		mm	1		%		PWHT	Г		
-196°C		≥ 32												
20°C	1	≥ 150												
20°C The produ tested in a	ct BOEH	≥ 150 ILER NIBAS ce with that	S 70/20-I	G meets t ation. Proc	ne requir luced ac	rements of t cording to A	the filler me AWS A5.01	etal specifi , class S3	cation AS	ME sec I	I, part C, .	AWS A5.	14: ERNICr-3	wh

Септембар 2021

		Specifikacija t WPS	tehnologije z - Armox 500	ldent br. Revizija: Datum:		
NAZIV PRO			Spoi ploča			
TIP SI	POJA		BW		N A P O M E N A :	
Broi c	rteža			4. OBLIK ZLEBA BW - sučeoni spoi (LV X U K)		
POZICIJA-BROJ	(OZNAKA ŠAVA)		, B		FW - ugaoni spoj	
			Armox 500T		S -secenje makazama G - gasno sečenje	
					P - sečenje plazmom	
nivo kvalitet:			V (SKICA) B		M - mašinsko sečenje	
	a zav. spoja eme žleha	Sečenie	u vodenim mlaz	zom		
DODATNI M	IATERIJAL	S Ni6082 (Nibas 70/20-IG)	S Ni6082 (Nibas 70/20-	E 19 12 3 Nb R 12	nm - bez dodatnog materijala Wm - sa dodatnim materijalom (SRPS, DIN, ISO, fab.	
prečnik	(mm)	Φ2,4	Φ2,4	Ф3,25	0211aka)	
temper. (°C)/v	reme suš. (h)	/	/	300ºC/2h	6. PREDGREVANJE	
vrsta	gasa	Ar	Ar	/	EG - električni grejač	
temp. predgre	vanja Tv (°C)	/	/	/	PT - peć za termičku obradu TS - termo krede	
temp. međupr	olaza Tz (ºC)	80	80	80	CT - kontaktni termometar	
temp. održav	anja Th (⁰C)	/	/	/	TE - termo-par LT – laserski termometar	
postupak	merenja	LT	LT	LT		
pribor za	grejanje	/	/	/	7. PARAMETRI ZAVARIVANJA	
postupak z	avarivanja	141	141	111	111 - REL(E) 141 - TIG 131 - MIG 311 - G	
položaj za	ivarivanja	PA	PA	PA	135 - MAG 12 - EPP	
jačina st	truje (A)	125	130-135	100	136 - MAG(punjena zica)	
napon l	uka (V)	/	/	/	BW FW PA položen u koritu	
vrstas	struje	DC	DC	DC	PB / horizont.	
pola	ritet	-	-	+	PC horizont. /	
Prečnik i vrsta	a volframove	Φ2,4 (2%	Φ2,4 (2%	1	PD / nadglav.	
elektrod	le (mm)	Lantan)	Lantan)	/	PE nadglav. /	
brzina zavariv	/anja (m/min)	0,2	0,3	0,3	PF vertikalni na gore PG vertikalni na dole	
protok gas	sa (l/min)	5+5 (koren)	5+5 (koren)	/		
broj pr	rolaza	1	2	3, 4	10. KONTROLA V - vizuelna kontrola	
ATEST ZAV	VARIVAČA	Prema	SRPS EN ISO 960	06	RT - radiografska kontrola	
TERMIČKA	vrsta	/	/	/	MT - magnetofluks	
OBRADA	temp. (°C)/(h)	/	/	/	PT - penetranti	
		V (100%)	V (100%)	V (100%)	TP - test phtiskom	
KONTROLA	(vrsta, %,)	/	/	RT (100%)		
		1	/	/		
	<u>Skica žleba</u>			Redosled	zavarivanja	
	60°			3		
	$\leq \lambda$		1 2 2			
00				t	4	
4	<u> </u>					
dio:	Kontrol	isao:	Odobrio:	<u> </u>	Strana 1 od 1	

8. Списак слика

СЛИКА 1. ШЕФЛЕРОВ ДИЈАГРАМ ЗА ЧЕЛИК Х10 [WWW.METALLOGRAF.DE]	.19
СЛИКА 2. ДИЈАГРАМ РАСПОДЕЛЕ ЗАОСТАЛИХ НАПОНА	.23
СЛИКА 3. ПРИМЕР ИСПИТИВАЊА DIC МЕТОДОМ [16]	.25
СЛИКА 4. ШЕМАТСКИ ПРИКАЗ ПРОЦЕСА КОРЕЛАЦИЈЕ ЗА ЈЕДАН ПИКСЕЛ [12]	.26
СЛИКА 5. КОРЕЛАЦИОНЕ ВРЕДНОСТИ ПОВРШИНЕ НА ЦИЉНОЈ СЛИЦИ [12]	.27
СЛИКА 6. ШЕМАТСКИ ПРИКАЗ DIC ПРОЦЕСА ЗА ВИШЕ МРЕЖНИХ ТАЧАКА И ВИШЕ СЛИКА [10]	.28
СЛИКА 7. УПОРЕДНИ ДИЈАГРАМ ЗАТЕЗАЊА – СТВАРНИ И ИНЖЕЊЕРСКИ	.30
СЛИКА 8. ИНЖЕЊЕРСКИ ДИЈАГРАМ ЗАТЕЗАЊА СА КАРАКТЕРИСТИЧНИМ ОБЛАСТИМА [20]	.31
СЛИКА 9. ПОРЕЂЕЊЕ НАПОНА У МИНИМАЛНОМ ПОПРЕЧНОМ ПРЕСЕКУ СА НАПОНИМА НА МЕС	СТУ
КОНЦЕНТРАЦИЈЕ	.33
СЛИКА 10. ПОРЕЂЕЊЕ НАПОНА ЗА ИСТУ ЕПРУВЕТУ, А)НОРМАЛНИ НАПОН, Б) ЕКВИВАЛЕНТНИ НАПОН	.34
СЛИКА 11. ГЕОМЕТРИЈСКЕ КАРАКТЕРИСТИКЕ ЗАВАРЕНИХ СПОЈЕВА V И Х	.35
СЛИКА 12. ИЗГЛЕД УРЕЂАЈА ЗА ПОСТИЗАЊЕ КОНСТАНТНЕ БРЗИНЕ ОБРТАЊА ЦЕВИ ПРИ ЗАВАРИВАЊУ	.40
СЛИКА 13. ИЗГЛЕД ЦЕВИ НАКОН ТІG ЗАВАРИВАЊА КОРЕНОГ И ДРУГОГ ПРОЛАЗА	.41
СЛИКА 14. ИЗГЛЕД ЗАВРШНОГ ПРОЛАЗА НА ПЛОЧИ ARMOX 500T	.42
СЛИКА 15. ЗАВАРЕНА ПЛОЧА НАКОН ПЕНЕТРАНТСКОГ И РАДИОГРАФСКОГ ТЕСТИРАЊА	.43
СЛИКА 16. ДЕО РАДИОГРАМА ЗА ЗАВАРЕНУ ПЛОЧУ 2	.43
СЛИКА 17. ИСЕЦАЊЕ ЕПРУВЕТА ИЗ ЦЕВИ УЗ ХЛАЂЕЊЕ	.44
СЛИКА 18. ОБРАДА ЕПРУВЕТА НА БРУСИЛИЦИ И ГЛОДАЛИЦИ	.45
СЛИКА 19. ДИМЕНЗИЈЕ ЕПРУВЕТА, А) С1 И С2 (Х10) И Б) Р1 И Р2 (ARMOX 500T)	.45
СЛИКА 20. ПОЛОЖАЈ КАМЕРА ПРЕ ПОЧЕТКА ЕКСПЕРИМЕНТА	.46
СЛИКА 21. АНАЛИЗА ПРОМЕНЕ КАРАКТЕРИСТИЧНИХ ДИМЕНЗИЈА ЕПРУВЕТЕ	.47
СЛИКА 22. ПРИМЕР ДЕЛА ИЗВЕШТАЈА ИЗ ARAMISA СА КООРДИНАТАМА ПОСМАТРАНИХ ТАЧАКА ЗА ЕПРУВЕ	ЕТУ
C1-1	.48
СЛИКА 23. ПОЧЕТНА И КРАЈЊА ПОВРШИНА ПОПРЕЧНОГ ПРЕСЕКА ЕПРУВЕТЕ Р1-1 ИЗРАЧУНАТА У СОФТВИ	ЕРУ
ПРЕКО КООРДИНАТА ТАЧАКА	.49
СЛИКА 24. ИНЖЕЊЕРСКИ ДИЈАГРАМ ЗА ЕПРУВЕТУ Р1-1	.50
СЛИКА 25. ОЗНАКЕ КАРАКТЕРИСТИЧНИХ ДИМЕНЗИЈА ЗА ЕПРУВЕТЕ ТИПА Р	.50
СЛИКА 26. УПОРЕДНИ ПРИКАЗ ИНЖЕЊЕРСКОГ И "СТВАРНОГ" ДИЈАГРАМА	.51
СЛИКА 27. ВРЕДНОСТИ ЕКВИВАЛЕНТНОГ НАПОНА ЗА ЕПРУВЕТУ Р1-1, ТРЕНУТАК 70	.56
СЛИКА 28. ВРЕДНОСТИ ЕКВИВАЛЕНТНОГ НАПОНА ЗА ЕПРУВЕТУ Р1-1, ТРЕНУТАК 90	.57
СЛИКА 29. ВРЕДНОСТИ ЕКВИВАЛЕНТНОГ НАПОНА ЗА ЕПРУВЕТУ Р1-1, ТРЕНУТАК 95	.58
СЛИКА 30. ВРЕДНОСТИ ЕКВИВАЛЕНТНОГ НАПОНА ЗА ЕПРУВЕТУ Р1-1, ТРЕНУТАК 97	.59
СЛИКА 31. СТВАРНИ ДИЈАГРАМИ НАПОН-ДЕФОРМАЦИЈА УПОРЕЂЕНИ СА ИНЖЕЊЕРСКИМ И ДИЈАГРАМОМ	CA
ПРАВОМ ПОВРШИНОМ П.П	.60
СЛИКА 32. ИНЖЕЊЕРСКИ ДИЈАГРАМ НАПОН-ДЕФОРМАЦИЈА ЗА ЕПРУВЕТУ Р1-2	.60
СЛИКА 33. ВРЕДНОСТИ ЕКВИВАЛЕНТНОГ НАПОНА ЗА ЕПРУВЕТУ Р1-2, ТРЕНУТАК 60	.61
СЛИКА 34. ВРЕДНОСТИ ЕКВИВАЛЕНТНОГ НАПОНА ЗА ЕПРУВЕТУ Р1-2, ТРЕНУТАК 70	.62

СЛИКА 35. ВРЕДНОСТИ ЕКВИВАЛЕНТНОГ НАПОНА ЗА ЕПРУВЕТУ Р1-2, ТРЕНУТАК 80	63
СЛИКА 36. ВРЕДНОСТИ ЕКВИВАЛЕНТНОГ НАПОНА ЗА ЕПРУВЕТУ Р1-2, ТРЕНУТАК 90	63
СЛИКА 37. СТВАРНИ ДИЈАГРАМИ УПОРЕЂЕНИ СА ИНЖЕЊЕРСКИМ И ДИЈАГРАМОМ СА ПРА	вом
ПОВРШИНОМ П.П	64
СЛИКА 38. ИНЖЕЊЕРСКИ ДИЈАГРАМ ЗАТЕЗАЊА ЗА ЕПРУВЕТУ Р1-3	65
СЛИКА 39. ВРЕДНОСТИ ЕКВИВАЛЕНТНОГ НАПОНА ЗА ЕПРУВЕТУ Р1-3, ТРЕНУТАК 60	66
СЛИКА 40. ВРЕДНОСТИ ЕКВИВАЛЕНТНОГ НАПОНА ЗА ЕПРУВЕТУ Р1-3, ТРЕНУТАК 90	66
СЛИКА 41. ВРЕДНОСТИ ЕКВИВАЛЕНТНОГ НАПОНА ДОБИЈЕНЕ ЗА ЕПРУВЕТУ Р1-3, ТРЕНУТАК 110	67
СЛИКА 42. ВРЕДНОСТИ ЕКВИВАЛЕНТНОГ НАПОНА ЗА ЕПРУВЕТУ Р1-3, ТРЕНУТАК 125	68
СЛИКА 43. СТВАРНИ ДИЈАГРАМИ СА ИНЖЕЊЕРСКИМ И ДИЈАГРАМОМ СА ПРАВОМ ПОВРШИНОМ П.П.	69
СЛИКА 44. ДЕО ДИЈАГРАМА СА СЛИКЕ 43	69
СЛИКА 45. ИНЖЕЊЕРСКИ ДИЈАГРАМ ЗАТЕЗАЊА ЗА ЕПРУВЕТУ Р2-1	70
СЛИКА 46. ВРЕДНОСТИ ЕКВИВАЛЕНТНОГ НАПОНА ЗА ЕПРУВЕТУ Р2-1, ТРЕНУТАК 80	71
СЛИКА 47. ВРЕДНОСТИ ЕКВИВАЛЕНТНОГ НАПОНА ЗА ЕПРУВЕТУ Р2-1, ТРЕНУТАК 90	71
СЛИКА 48. ВРЕДНОСТИ ЕКВИВАЛЕНТНОГ НАПОНА ЗА ЕПРУВЕТУ Р2-1, ТРЕНУТАК 100	72
СЛИКА 49. ВРЕДНОСТИ ЕКВИВАЛЕНТНОГ НАПОНА ЗА ЕПРУВЕТУ Р2-1, ТРЕНУТАК 110	73
СЛИКА 50. ВРЕДНОСТИ ЕКВИВАЛЕНТНОГ НАПОНА ЗА ЕПРУВЕТУ Р2-1, ТРЕНУТАК 115	73
СЛИКА 51. ВРЕДНОСТИ ЕКВИВАЛЕНТНОГ НАПОНА ЗА ЕПРУВЕТУ Р2-1, ТРЕНУТАК 118	74
СЛИКА 52. СТВАРНИ ДИЈАГРАМИ УПОРЕЂЕНИ СА ИНЖЕЊЕРСКИМ И ДИЈАГРАМИМА ИЗ ABAQUS-A	75
СЛИКА 53. ДЕО ДИЈАГРАМА СА СЛИКЕ 49, УВЕЋАНА КАРАКТЕРИСТИЧНА ЗОНА	75
СЛИКА 54. ИНЖЕЊЕРСКИ ДИЈАГРАМ ЗАТЕЗАЊА ЗА ЕПРУВЕТУ Р2-2	76
СЛИКА 55. ЕКВИВАЛЕНТНИ НАПОНИ ДОБИЈЕНИ ЗА ЕПРУВЕТУ Р2-2, ТРЕНУТАК 80	77
СЛИКА 56. ЕКВИВАЛЕНТНИ НАПОНИ ДОБИЈЕНИ ЗА ЕПРУВЕТУ Р2-2, ТРЕНУТАК 90	77
СЛИКА 57. ЕКВИВАЛЕНТНИ НАПОНИ ДОБИЈЕНИ ЗА ЕПРУВЕТУ Р2-2, ТРЕНУТАК 100	78
СЛИКА 58. ЕКВИВАЛЕНТНИ НАПОНИ ДОБИЈЕНИ ЗА ЕПРУВЕТУ Р2-2, ТРЕНУТАК 110	79
СЛИКА 59. ЕКВИВАЛЕНТНИ НАПОНИ ДОБИЈЕНИ ЗА ЕПРУВЕТУ Р2-2, ТРЕНУТАК 115	79
СЛИКА 60. ЕКВИВАЛЕНТНИ НАПОНИ ДОБИЈЕНИ ЗА ЕПРУВЕТУ Р2-2, ТРЕНУТАК 116	80
СЛИКА 61. СТВАРНИ ДИЈАГРАМИ ЗА ЕПРУВЕТУ Р2-2, УПОРЕДНО СА ДИЈАГРАМИМА ИЗ ABAQUS	ЗА И
ИНЖЕЊЕРСКИМ	81
СЛИКА 62. ДИЈАГРАМИ СА СЛИКЕ 58, ПРИКАЗАНИ УВЕЋАНО	81
СЛИКА 63. ИНЖЕЊЕРСКИ ДИЈАГРАМ ЗАТЕЗАЊА ЗА ЕПРУВЕТУ Р2-3	82
СЛИКА 64. ЕКВИВАЛЕНТНИ НАПОНИ ДОБИЈЕНИ ЗА ЕПРУВЕТУ Р2-3, ТРЕНУТАК 90	83
СЛИКА 65. ЕКВИВАЛЕНТНИ НАПОНИ ДОБИЈЕНИ ЗА ЕПРУВЕТУ Р2-3, ТРЕНУТАК 100	83
СЛИКА 66. ЕКВИВАЛЕНТНИ НАПОНИ ДОБИЈЕНИ ЗА ЕПРУВЕТУ Р2-3, ТРЕНУТАК 110	84
СЛИКА 67. ЕКВИВАЛЕНТНИ НАПОНИ ДОБИЈЕНИ ЗА ЕПРУВЕТУ Р2-3, ТРЕНУТАК 120	85
СЛИКА 68. ЕКВИВАЛЕНТНИ НАПОНИ ДОБИЈЕНИ ЗА ЕПРУВЕТУ Р2-3, ТРЕНУТАК 130	85
СЛИКА 69. ЕКВИВАЛЕНТНИ НАПОНИ ДОБИЈЕНИ ЗА ЕПРУВЕТУ Р2-3, ТРЕНУТАК 141	86
СЛИКА 70. СТВАРНИ ДИЈАГРАМИ ЗА ЕПРУВЕТУ Р2-3, УПОРЕДНО СА ДИЈАГРАМИМА ИЗ ABAQUS	SAИ
ИНЖЕЊЕРСКИМ	87
СЛИКА 71. ДИЈАГРАМИ СА СЛИКЕ 67, ПРИКАЗАНИ УВЕЋАНО	87

СЛИКА 72. ИНЖЕЊЕРСКИ ДИЈАГРАМ ЗАТЕЗАЊА ЗА ЕПРУВЕТУ Р2-4	
СЛИКА 73. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ Р2-4, ТРЕНУТАК 100	
СЛИКА 74. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ Р2-4, ТРЕНУТАК 120	
СЛИКА 75. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ Р2-4, ТРЕНУТАК 140	90
СЛИКА 76. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ Р2-4, ТРЕНУТАК 160	91
СЛИКА 77. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ Р2-4, ТРЕНУТАК 180	91
СЛИКА 78. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ Р2-4, ТРЕНУТАК 200	92
СЛИКА 79. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ Р2-4, ТРЕНУТАК 210	93
СЛИКА 80. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ Р2-4, ТРЕНУТАК 218	93
СЛИКА 81. СТВАРНИ ДИЈАГРАМИ ЗА ЕПРУВЕТУ Р2-4, УПОРЕДО СА ИНЖЕЊЕРСКИМ И ДИЈАГРА	мом са
ПРАВОМ ПОВРШИНОМ П.П.	94
СЛИКА 82. ДИЈАГРАМИ СА СЛИКЕ 77 ПРИКАЗАНИ УВЕЋАНО	95
СЛИКА 83. ИНЖЕЊЕРСКИ ДИЈАГРАМ ЗА ЕПРУВЕТУ С1-1	97
СЛИКА 84. ПОЛОЖАЈИ КАРАКТЕРИСТИЧНИХ ДИМЕНЗИЈА НА ЕПРУВЕТАМА ТИПА С	97
СЛИКА 85. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ С1-1, ТРЕНУТАК 70	98
СЛИКА 86. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ С1-1, ТРЕНУТАК 100	99
СЛИКА 87. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ С1-1, ТРЕНУТАК 130	99
СЛИКА 88. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ С1-1, ТРЕНУТАК 150	
СЛИКА 89. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ С1-1, ТРЕНУТАК 170	
СЛИКА 90. СТВАРНИ ДИЈАГРАМИ ЗА ЛИЦЕ И КОРЕН МШ, ЕПРУВЕТА С1-1	
СЛИКА 91. ДИЈАГРАМИ СА СЛИКЕ 87 ПРИКАЗАНИ УЗ УВЕЋАЊЕ	
СЛИКА 92. ИНЖЕЊЕРСКИ ДИЈАГРАМ ЗАТЕЗАЊА ЗА ЕПРУВЕТУ С1-3	
СЛИКА 93. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ С1-3, ТРЕНУТАК 60	
СЛИКА 94. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ С1-3, ТРЕНУТАК 80	
СЛИКА 95. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ С1-3, ТРЕНУТАК 100	
СЛИКА 96. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ С1-3, ТРЕНУТАК 120	
СЛИКА 97. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ С1-3, ТРЕНУТАК 130	
СЛИКА 98. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ С1-3, ТРЕНУТАК 135	
СЛИКА 99. СТВАРНИ ДИЈАГРАМИ ЗА ЛИЦЕ И КОРЕН МШ, ЕПРУВЕТА С1-3	
СЛИКА 100. ИНЖЕЊЕРСКИ ДИЈАГРАМ НАПОН-ДЕФОРМАЦИЈА ЗА ЕПРУВЕТУ С1-5	
СЛИКА 101. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ С1-5, ТРЕНУТАК 60	
СЛИКА 102. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ С1-5, ТРЕНУТАК 70	
СЛИКА 103. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ С1-5, ТРЕНУТАК 80	
СЛИКА 104. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ С1-5, ТРЕНУТАК 90	
СЛИКА 105. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ С1-5, ТРЕНУТАК 100	
СЛИКА 106. СТВАРНИ ДИЈАГРАМИ ЗА ЛИЦЕ И КОРЕН МШ, ЕПРУВЕТА С1-5	
СЛИКА 107. ИНЖЕЊЕРСКИ ДИЈАГРАМ НАПОН-ДЕФОРМАЦИЈА ЗА ЕПРУВЕТУ С2-3	
СЛИКА 108. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ С2-3, ТРЕНУТАК 60	
СЛИКА 109. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ С2-3, ТРЕНУТАК 70	
СЛИКА 110. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ С2-3, ТРЕНУТАК 80	

СЛИКА 111. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ С2-3, ТРЕНУТАК 90
СЛИКА 112. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ С2-3, ТРЕНУТАК 100
СЛИКА 113. ЕКВИВАЛЕНТНИ НАПОНИ ЗА ЕПРУВЕТУ С2-3, ТРЕНУТАК 110
СЛИКА 114. СТВАРНИ ДИЈАГРАМИ ЗА ЛИЦЕ (NM1) И КОРЕН (NM2) МШ, ЕПРУВЕТА С2-3118
СЛИКА 115. ПРЕЛОМНА ПОВРШИНА ЕПРУВЕТЕ С1-1, А) ИЗГЛЕД БЕЗ УВЕЋАЊА, Б) УВЕЋАЊЕ 500Х, В)
1000Х, Г) 1000Х BSE
СЛИКА 116. ПРЕЛОМНА ПОВРШИНА ЕПРУВЕТЕ С1-5, А) ИЗГЛЕД БЕЗ УВЕЋАЊА, Б) УВЕЋАЊЕ 45Х, В) 1000Х,
Г) 1000Х
СЛИКА 117. ПРЕЛОМНА ПОВРШИНА ЕПРУВЕТЕ Р1-3, А)ИЗГЛЕД БЕЗ УВЕЋАЊА, Б) УВЕЋАЊЕ 200Х, В) 500Х,
Г)1500Х
СЛИКА 118. ПРЕЛОМНА ПОВРШИНА ЕПРУВЕТЕ Р2-3, А)ИЗГЛЕД БЕЗ УВЕЋАЊА, Б)УВЕЋАЊЕ 500Х, В)
УВЕЋАЊЕ 1500Х
СЛИКА 119. ИНЖЕЊЕРСКИ ДИЈАГРАМИ ЗА СВЕ ЕПРУВЕТЕ ТИПА Р 129
СЛИКА 120. ИНЖЕЊЕРСКИ ДИЈАГРАМИ ЗА СВЕ ЕПРУВЕТЕ ТИПА С

9. Списак табела

ТАБЕЛА 1. ХЕМИЈСКИ САСТАВ ЧЕЛИКА Х10	ТАБЕЛА 2. МЕХАНИЧКЕ КАРАКТЕРИСТИКЕ
ЧЕЛИКА Х10 ¹	
ТАБЕЛА З. ХЕМИЈСКИ САСТАВ ЗА ARMOX 500Т. ³	ТАБЕЛА 4. МЕХАНИЧКЕ КАРАКТЕРИСТИКЕ ЗА
ARMOX 500T ^{2,}	
ТАБЕЛА 5. ХЕМИЈСКИ САСТАВИ КОРИШЋЕНИХ ДМ	
ТАБЕЛА 6. МЕХАНИЧКЕ КАРАКТЕРИСТИКЕ КОРИШЋЕНИХ ,	ДМ42
ТАБЕЛА 7. ОЗНАКЕ ИСПИТАНИХ ЕПРУВЕТА	
ТАБЕЛА 8. ИЗГЛЕД ИЗВЕШТАЈА ИЗ ARAMISA ЗА СЕКЦИЈУ	"СУЖЕЊЕХ"52
ТАБЕЛА 9. РЕЗУЛТАТИ ДОБИЈЕНИ ЗА СЕКЦИЈУ "ЕКСТЕНЗОМЕТАР" КОЈА ЈЕ ПОСТАВЉЕНА ПАРАЛЕЛНО СА	
ПРАВИМ ЕКСТЕНЗОМЕТРОМ	
ТАБЕЛА 10. ПОРЕЂЕЊЕ ВРЕДНОСТИ НАПОНА ЗА ЕПРУВЕТУ	⁷ P1-1
ТАБЕЛА 11. ПОРЕЂЕЊЕ ВРЕДНОСТИ НАПОНА ЗА ЕПРУВЕ	ТУ Р1-264
ТАБЕЛА 12. ПОРЕЂЕЊЕ ВРЕДНОСТИ НАПОНА ЗА ЕПРУВЕ	ТУ Р1-368
ТАБЕЛА 13. ПОРЕЂЕЊЕ ВРЕДНОСТИ НАПОНА ЗА ЕПРУВЕ	ТУ Р2-174
ТАБЕЛА 14. ПОРЕЂЕЊЕ ВРЕДНОСТИ НАПОНА ЗА ЕПРУВЕ	ТУ Р2-280
ТАБЕЛА 15. ПОРЕЂЕЊЕ ВРЕДНОСТИ НАПОНА ЗА ЕПРУВЕ	ТУ Р2-386
ТАБЕЛА 16. ПОРЕЂЕЊЕ ВРЕДНОСТИ НАПОНА ЗА ЕПРУВЕ	ТУ Р2-494
ТАБЕЛА 17. РЕЗУЛТАТИ НАПОНСКЕ АНАЛИЗЕ ЗА СВЕ ИС	ПИТАНЕ ЕПРУВЕТЕ ТИПА Р95
ТАБЕЛА 18. ПОРЕЂЕЊЕ ВРЕДНОСТИ НАПОНА ЗА ЕПРУВЕ	ТУ С1-1101
ТАБЕЛА 19. ПОРЕЂЕЊЕ ВРЕДНОСТИ НАПОНА ЗА ЕПРУВЕ	ТУ С1-3107
ТАБЕЛА 20. ПОРЕЂЕЊЕ ВРЕДНОСТИ НАПОНА ЗА ЕПРУВЕ	ТУ С1-5112
ТАБЕЛА 21. ПОРЕЂЕЊЕ ВРЕДНОСТИ НАПОНА ЗА ЕПРУВЕ	ТУ С2-3117
ТАБЕЛА 22. РЕЗУЛТАТИ НАПОНСКЕ АНАЛИЗЕ ЗА СВЕ ИС	ПИТАНЕ ЕПРУВЕТЕ ТИПА С 119
ТАБЕЛА 23. МАКСИМАЛНЕ И МИНИМАЛНЕ РАЗЛИКЕ ЗА	ЕПРУВЕТЕ ТИПА Р128
ТАБЕЛА 24. МАКСИМАЛНЕ И МИНИМАЛНЕ РАЗЛИКЕ ЗА	ЕПРУВЕТЕ ТИПА С128

10. Литература

- 1. Ennis, P. J., A. Czyrska-Filemonowicz. Recent advances in creep-resistant steels for power plant applications. Sadhana 28.3-4 (2003): 709-730.
- Czyrska-Filemonowicz A, Penkalla H J, Zielinska-Lipiec A, Ennis P J 2001 Proc. 9th Int. Conf. on Creep Resistant Metallic Materials, Prague, (ed.) J Purmensky, pp 204–212
- Ehlers R J, Quadakkers W J 2001 Oxidation von ferritischen 9–12% Cr-Staehlen in wasserdampfhaltigen Atmosphaeren bei 550 bis 650° C. Doctoral thesis, Research Centre Juelich, Juel-3883, ISSN 0944–2952 Forschungszentrum, Juelich, Germany
- 4. Welding "Grade 91" Alloy Steel, Sperko engineering Services, http://www.sperkoengineering.com/html/Grade%2091%20R%2010-05.pdf, 2005.
- 5. Cromelso 91. Special alloy steel (9Cr1Mo0.2V) with high temperature creep resistance.
- Saxena, Ambuj, et al. Influence of welding consumables on tensile and impact properties of multi-pass SMAW Armox 500T steel joints vis-a-vis base metal. Defence technology 14.3 (2018): 188-195.
- 7. SSAB-Armox-Workshop-recommendations
- 8. http://www.oxelosund.ssab.se/ Welding recommendations
- Syahroni, Nur, and Mas Irfan Purbawanto Hidayat. 3D finite element simulation of T-joint fillet weld: Effect of various welding sequences on the residual stresses and distortions. Numerical Simulation-From Theory to Industry. IntechOpen, 2012.
- 10.Masubuchi, K. Analysis of Welded Structures: Residual Stresses, Distortion, and Their Consequences (International Series on Materials Science and Technology). (1980).
- 11.Kawaguchi, Akihiro, et al. Large-scale computation of welding residual stress. Progress in Nuclear Science and Technology 2 (2011): 613-619.

- 12. Lemmen, H. J. K., et al. The power of Digital Image Correlation for detailed elasticplastic strain measurements. WSEAS international conference on engineering mechanics, structures, engineering geology. Crate Island, Greece. 2008.
- 13. Tung, Shih-Heng, and Chung-Huan Sui. Application of digital-image-correlation techniques in analysing cracked cylindrical pipes. Sadhana 35.5 (2010): 557-567.
- 14.Reynolds, A. P., and F. Duvall. Digital image correlation for determination of weld and base metal constitutive behavior. WELDING JOURNAL-NEW YORK- 78 (1999): 355-s.
- 15.De Strycker, Maarten, et al. Measuring welding deformations with the digital image correlation technique. Welding Journal 90.6 (2011): 107S-112S.
- 16. The Principals of Digital Image Correlation <u>www.Trilion.com</u>
- 17.N. Gubeljak, Application of Stereometric Measurement on Structural Integrity, Structural Integrity and Life, Vol. 6, No. 1-2, 2006, p. 65-74.
- 18.<u>https://support.gom.com</u>
- 19.Hwang, Joong-Ki. Revealing the small post-necking elongation in twinninginduced plasticity steels. Journal of Materials Science 55.19 (2020): 8285-8302.
- 20. R. Prokić Cvetković, O. Popović, Mašinski materijali 1, Mašinski fakultet, Beograd
- 21. Scheider, I., Brocks, W. and Cornec, A. (2004) 'Procedure for the Determination of True Stress-Strain Curves From Tensile Tests With Rectangular Cross-Section Specimens', Journal of Engineering Materials and Technology, 126(1), pp. 70-76. doi: 10.1115/1.1633573.
- 22. Studies in Large Plastic Flow and Fracture Percy Williams Bridgman, Harvard University Press (no date). Available at: <u>https://www.hup.harvard.edu/catalog.php?isbn=9780674731349</u>
- 23. Ostsemin, A. A. (1992) 'Stress in the least cross section of round and plane specimens in tension', Strength of Materials, 24(4), pp. 298-301. doi: 10.1007/BF00777347.

- 24. Shengwen Tu, Xiaobo Ren, Jianying He, Zhiliang Zhang, Stress-strain curves of metallic materials and post-necking strain hardening characterization: A review, FFEMS, (2019), DOI: 10.1111/ffe.13134
- 25.Zhang Z., J. Ødegård and C. Thaulow. "Novel methods for determining true stress strain curves of weldments and homogenous materials." (2013).
- 26.Anderson, TL, Fracture Mechanics Fundamentals and Practical Application, CRC Press, 2005
- 27.TU, Shengwen, et al. Stress–strain curves of metallic materials and post-necking strain hardening characterization: A review. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43.1: 3-19.
- 28.Wang L, Tong W. Identification of post-necking strain hardening behavior of thin sheet metals from image-based surface strain data in uniaxial tension tests. Int J Solids Struct. 2015;75:12-31.
- 29.Brenner, R.; Lebensohn, R. A.; Castelnau, O. Elastic anisotropy and yield surface estimates of polycrystals. International Journal of Solids and Structures, 2009, 46.16: 3018-3026.
- 30.Brunet, Morestin; Morestin, Fabrice. Experimental and analytical necking studies of anisotropic sheet metals. Journal of Materials Processing Technology, 2001, 112.2-3: 214-226.
- 31.Joun, ManSoo; Eom, Jea Gun; Lee, Min Cheol. A new method for acquiring true stress–strain curves over a large range of strains using a tensile test and finite element method. Mechanics of Materials, 2008, 40.7: 586-593.
- 32.Coppieters S, Sumita S, Yanaga D, Denys K, Debruyne D, Kuwabara T. Identification of post-necking strain hardening behavior of pure titanium sheet. Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems; 2016:59-64.
- 33.Coppieters S, Cooreman S, Sol H, Van Houtte P, Debruyne D. Identification of the post-necking hardening behaviour of sheet metal by comparison of the internal and external work in the necking zone. J Mater Process Technol. 2011;211(3):545-552.

- 34.Coppieters S, Kuwabara T. Identification of post-necking hardening phenomena in ductile sheet metal. Exp Mech. 2014;54 (8):1355-1371.
- 35.Kim J-H, Serpantié A, Barlat F, Pierron F, Lee M-G. Characterization of the postnecking strain hardening behavior using the virtual fields method. Int J Solids Struct. 2013;50(24):3829-3842.
- 36.Dunand M, Mohr D. On the predictive capabilities of the shear modified gurson and the modified Mohr–Coulomb fracture models over a wide range of stress triaxialities and lode angles. J Mech Phys Solids. 2011;59(7):1374-1394.
- 37.Zhano KS, Li ZH. Numerical analysis of the stress-strain curve and fracture initiation for ductile material. Eng Fract Mech. 1994;49(2):235-241.
- 38.Zhao K, Wang L, Chang Y, Yan J. Identification of post-necking stress–strain curve for sheet metals by inverse method. Mech Mater. 2016;92:107-118.
- 39. Ling Y. Uniaxial true stress-strain after necking. AMP J Technol. 1996;5(1):37-48.
- 40.Defaisse C, Mazière M, Marcin L, Besson J. Ductile fracture of an ultra-high strength steel under low to moderate stress triaxiality. Eng Fract Mech. 2018;194:301-318.
- 41.George A. Pantazopoulos, A Short Review on Fracture Mechanisms of Mechanical Components Operated under Industrial Process Conditions: Fractographic Analysis and Selected Prevention Strategies, Metals 2019, 9, 146; doi: 10.3390/met9020148
- 42.Haiyan Yu, You Wang, Fracture performance of high strength steels, aluminium and magnesium alloys during plastic deformation, MATEC Web of Conferences 21, 07001 (2015), doi: 10.1051/matecconf/20152107001
- 43.Maksuti Rr., Fractographic Analysis of Welded joint surface, Machines. Technologies. Materials., Year X, Issue 12, (2016), p.p. 34-37.
- 44.Ronald J. Parrington, P.E., Fractography of metals and plastic, IMR Test Labs, 131 Woodsedge Drive, Lansing, NY 14882
- 45.Brad L. Boyce, Ping lu, Blythe G. Clark, Jay Douglas Caroll, The morphology of tensile failure in tantalum, Metallurgical and Materials Transactions A, june (2012), doi: 10.1007/s11661-013-1814-8

- 46.Yuan, W.J., Zhang, Z.L., Su, Y.J., Qiao, L.J., Chu, W.Y. (2012), Influence of specimen thickness with rectangular cross-section on the tensile properties of structural steels, Materials Science and Engineering: A, Volume 532(15), Pages 601-605,
- 47. Cheng, C.H., Jie, M., Chan, L.C., Chow, C.L. (2007) True stress–strain analysis on weldment of heterogeneous tailor-welded blanks—a novel approach for forming simulation, International Journal of Mechanical Sciences Vol. 49(2), p. 217-229
- 48.Tu, S., Ren, X., He, J., Zhang, Z. (2018), A method for determining material's equivalent stress-strain curve with any axisymmetric notched tensile specimens without Bridgman correction, International Journal of Mechanical Sciences 135 (2018) 656-667.
- 49.Younise, B., Sedmak, A., Milosevic, N., Rakin, M. Medjo, B. (2020), True Stressstrain Curves for HSLA Steel Weldment – Iteration Procedure Based on DIC and FEM. Procedia Structural Integrity, Vol. 28, p. 1992-1997
- 50.Younise, B., Rakin, M., Gubeljak, N., Medjo, B., Sedmak, A. (2011) Numerical simulation of constraint effect on fracture initiation in welded specimens using a local damage model Structural integrity and life, Vol. 11(1), p. 51-56
- 51.Milosevic, N., Sedmak, A., Jovicic, R. (2018), Analysis of strain distribution in overmatching V groove weld using digital image correlation, Procedia Structural Integrity, Vol. 13, pp. 1600-1604
- 52.Banks-Sills, L., Sedmak, A. (2020) Linear elastic and elasto-plastic aspects of interface fracture mechanics, Structural integrity and life, 20(3), p. 203-210
- 53. Milosevic, N., Sedmak, A., Martic, I., Prokic-Cvetkovic, R. (2021), Novel procedure to determine actual stress-strain curves, Structural integrity and life, 21(1), p. 37-40
- 54.N. Milosevic, B. Younise, A. Sedmak, M. Travica, N. Mitrovic, Evaluation of true stress-strain diagrams for welded joints by application of Digital Image Correlation, прихваћено за објављивање у часопису Engineering Failure Analysis, 2021
- 55.Ling, Y. (1996), Uniaxial True Stress-Strain after Necking, AMP Journal of Technology, Vol. 5 June, 1996, p. 37-48.
- 56.Bashir, Y., Micromechanical fracture analysis of high strength steel weldments, doctoral thesis, University of Belgrade, 2014
- 57.B. Božić, S. Sedmak, B. Petrovski, A. Sedmak: "Crack gowth resistance of weldment constituents in a real structure", Bulletin T. Cl de l'Academie serbe des Sciences at des Arts, Classe des Sciences techniques. No 25, Beograd, 21-24, 1989
- 58.M. Milosevic, N. Mitrovic, R. Jovicic, A. Sedmak, T. Maneski, A. Petrovic, T. Aburaga, Measurement of Local Tensile Properties of Welded Joint Using Digital Image Correlation Method, Chemicke listy 2012 106 ():S485-S488
- 59.R. Jovicic, S.A. Sedmak, I. Samardzic, A. Sedmak, U. Tatic, M. Milosevic, Possibilities of Predicting the Behaviour of Ferrite-Austenite Welded Joints in Pressure Equipment During Exploitation, Technical Gazette 2017 24 (5):1361-1368
- 60.M. Milošević, N. Milošević, S. Sedmak, U. Tatić, N. Mitrović, S. Hloch, R. Jovičić, Digital image correlation in analysis of stiffnes in local zones of welded joints, Tehnički vjesnik 23, 1 (2016), 19-24, DOI: 10.17559/TV-20140123151546

Биографија аутора

Ненад З. Милошевић рођен је 18.10.1987. године у Београду. Машински факултет Универзитета у Београду уписује 2008. године. Основне академске студије (ОАС) завршава са просечном оценом 8,33. Одмах након основних уписује и мастер академске студије (МАС) на Машинском факултету у Београду на модулу за Заваривање и заварене конструкције и завршава их са просечном оценом 9,47. Током студирања добио је похвале за одличан успех на трећој години ОАС, првој и другој години МАС као и похвалу за студента који је први завршио студије из генерације уписане на факултет школске 2008/2009 године. Одмах након завршених студија, 2013. године запошљава се у фирму "Велестрој" и одлази на рад у Руску федерацију. У граду Тјумену ради на изради рафинерије "Антипински НПЗ". У мају 2014. године одлази у Москву на место руководиоца пројекта. На Машински факултет Универзитета у Београду, запошљава се 2015. године на позицију асистента. Одржавао је наставу на ОАС из предмета Машински материјали 1 и 2 а на МАС, на модулу за Заваривање и заварене конструкције, из предмета Технологија заваривања и Механика лома и интегритет конструкција. Од 2021. године ради у Иновационом центру Машинског факултета у Београду као истраживач сарадник. Завршио је курс за међународног и европског инжењера заваривања (IWE/EWE) 2017. године у Центру за обуку особља у заваривању на Машинском факултету у Београду. Члан је друштва за интегритет и век конструкција (ДИВК) као и друштва за унапређење заваривања у Србији (ДУЗС). Поред одржавања наставе радио је и на припреми материјала и лабораторија за потребе курса за међународне инжењере и технологе заваривања. Говори енглески и руски језик. Учествовао је као аутор или коаутор у изради више научних радова, једном поглављу у међународној монографији, једног практикума као и у изради једног малог патента и два техничка решења.

Изјава о ауторству

Име и презиме аутора <u>Ненад 3. Милошевић</u>

Број индекса Д14/2013

Изјављујем

да је докторска дисертација под насловом

Примена стереометријске методе мерења деформације на одређивање дијаграма стварни напон – стварна деформација хетерогених заварених спојева

- резултат сопственог истраживачког рада;
- да дисертација у целини ни у деловима није била предложена за стицање другедипломе према студијским програмима других високошколских установа;
- да су резултати коректно наведени и
- да нисам кршио/ла ауторска права и користио/ла интелектуалну својину других лица.

Потпис аутора

У Београду, _____

Изјава о истоветности штампане и електронске верзије докторског рада

Име и презиме аутора Ненад 3. Милошевић
Број индекса <u>Д14/2013</u>
Студијски програм Машинско инжењерство
Наслов рада Примена стереометријске методе мерења
<u>деформације на одређивање дијаграма стварни напон – стварна</u>
деформација хетерогених заварених спојева
Ментор Александар Седмак професор емеритус

Изјављујем да је штампана верзија мог докторског рада истоветна електронској верзији коју сам предао ради похрањивања у **Дигиталном репозиторијуму Универзитета у Београду.**

Дозвољавам да се објаве моји лични подаци везани за добијање академског назива доктора наука, као што су име и презиме, година и место рођења и датум одбране рада.

Ови лични подаци могу се објавити на мрежним страницама дигиталне библиотеке, у електронском каталогу и у публикацијама Универзитета у Београду.

Потпис аутора

У Београду, _____

Изјава о коришћењу

Овлашћујем Универзитетску библиотеку "Светозар Марковић" да у Дигитални репозиторијум Универзитета у Београду унесе моју докторску дисертацију под насловом:

<u>Примена стереометријске методе мерења деформације на одређивање дијаграма</u> <u>стварни напон – стварна деформација хетерогених заварених спојева</u>

која је моје ауторско дело.

Дисертацију са свим прилозима предао/ла сам у електронском формату погодном за трајно архивирање.

Моју докторску дисертацију похрањену у Дигиталном репозиторијуму Универзитета у Београду и доступну у отвореном приступу могу да користе сви који поштују одредбе садржане у одабраном типу лиценце Креативне заједнице (Creative Commons) за коју сам се одлучио/ла.

- 1. Ауторство (СС ВҮ)
- 2. Ауторство некомерцијално (СС ВУ-NС)
- 3. Ауторство некомерцијално без прерада (СС ВУ-NC-ND)
- 4. Ауторство некомерцијално делити под истим условима (СС BY-NC-SA)
- 5. Ауторство без прерада (СС ВҮ-ND)
- 6. Ауторство делити под истим условима (СС ВУ-SA)

(Молимо да заокружите само једну од шест понуђених лиценци. Кратак опис лиценци је саставни део ове изјаве).

Потпис аутора

У Београду, _____

1. **Ауторство**. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце, чак и у комерцијалне сврхе. Ово је најслободнија од свих лиценци.

2. **Ауторство – некомерцијално**. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела.

3. **Ауторство – некомерцијално – без прерада**. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела. У односу на све остале лиценце, овом лиценцом се ограничава највећи обим права коришћења дела.

4. **Ауторство – некомерцијално – делити под истим условима**. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или сличном лиценцом. Ова лиценца не дозвољава комерцијалну употребу дела и прерада.

5. **Ауторство – без прерада**. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца дозвољава комерцијалну употребу дела.

6. **Ауторство – делити под истим условима**. Дозвољавате умножавање, дистрибуцијуи јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или сличном лиценцом. Ова лиценца дозвољава комерцијалну употребу дела и прерада. Слична је софтверским лиценцама, односно лиценцама отвореног кода.