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Title: Methods for assessment of electrical activity of smooth muscles 

Summary: Recording of the smooth stomach muscles' electrical activity can be performed by 

means of Electrogastrography (EGG), a non-invasive technique for acquisition that can 

provide valuable information regarding the functionality of the gut. While this method had 

been introduced for over nine decades, it still did not reach its full potential. The main reason 

for this is the lack of standardization that subsequently led to the limited reproducibility  and 

comparability between different investigations. Additionally, variability between many 
proposed recording approaches could make EGG unappealing for broader application. 

           The aim was to provide an evaluation of a simplified recording protocol that could be 

obtained by using only one bipolar channel for a relatively short duration (20 minutes) in  a 

static environment with limited subject movements. Insights into the most suitable surface 

electrode placement for EGG recording was also presented. Subsequently, different 

processing methods, including Fractional Order Calculus and Video-based approach f or the 

cancelation of motion artifacts – one of the main pitfalls in the EGG technique, was 
examined.  

           For EGG, it is common to apply long-term protocols in a static environment. Our 

second goal was to introduce and investigate the opposite approach – short-term recording in  

a dynamic environment. Research in the field of EGG-based assessment of gut activity in 

relation to motion sickness symptoms induced by Virtual Reality and Driving Simulation  was 

performed. Furthermore, three novel features for the description of EGG signal (Root Mean 

Square, Median Frequency, and Crest Factor) were proposed and its applicability for the 

assessment of gastric response during virtual and simulated experiences was evaluated. 

           In conclusion, in a static environment, the EGG protocol can be simplified, and its 

duration can be reduced. In contrast, in a dynamic environment, it is possible to acquire a 

reliable EGG signal with appropriate recommendations stated in this Doctoral dissertation. 

With the application of novel processing techniques and features, EGG could be a useful tool 

for the assessment of cybersickness and simulator sickness. 

 

Keywords: electrophysiology, smooth muscles, biosignals, electrogastrography, EGG 

instrumentation, EGG protocol, EGG processing, EGG features, sickness, virtual 
reality, driving simulation   

 
Scientific area: technical sciences, electrical engineering 
 

Specific scientific area: biomedical engineering 

  



 

Наслов: Методе за оцену електричне активности глатких мишића 
 
Резиме: Снимање електричне активности глатких мишића желуца може се реализовати 

употребом електрогастрографије (ЕГГ), неинвазивне методе која пружа значајне 

информације везане за функционисање органа за варење. Упркост чињеници да је 

откривена пре више од девет деценија, ова техника још увек није остварила свој пун 

потенцијал. Основни разлог за то је недостатак стандардизације који условљава 

ограничења у смислу поновљивости и упоредивости између различитих истраживања. 

Додатно, варијабилност која је присутна у примени различитих препоручених 

поступака снимања, може смањити интерес за употребу ЕГГ-а код широког опсега 

потенцијалних корисника. 

 Наш циљ је био да пружимо евалуацију поједностављене методе мерења тј. 

протокола који укључује само један канал током релативно кратког временског 

периода (20 минута) у статичким условима са ограниченим кретањем субјекта тј. у 

мировању. Такође, приказали смо наше ставове у вези најприкладније позиције 

површинских електрода за ЕГГ снимање. Презентовали смо и резултате испитивања 

метода, на бази обраде видео снимка као и фракционог диференцијалног рачуна, за 

отклањање артефаката помераја – једног од највећих изазова са којима је суочена ЕГГ 

метода. 

 За ЕГГ је уобичајено да се користе дуготрајни протоколи у статичким условима. 

Наш други циљ био је да представимо и оценимо употребљивост супротног приступа –  

краткотрајних снимања у динамичким условима. Реализовали смо истраживање на 

пољу оцене активности желуца током појаве симптома мучнине изазване виртуелном 

реалношћу и симулацијом вожње. За потребе методе за оцену електричне активности 

желуца, предложили смо три нова параметра за квантификацију ЕГГ сигнала 

(ефективну вредност амплитуде, медијану и крест фактор) и извршили процену њихове 

прикладности за оцену гастроинтестиналног тракта током коришћења виртуелне 

реалности и симулатора вожње. 

 Закључак је да ЕГГ протокол у статичким условима може бити упрошћен и 

његово трајање може бити редуковано, док је у динамичким условима могуће снимити 

одговарајући ЕГГ сигнал, али уз праћење препорука наведених у овој тези. Употребом 

нових техника за процесирање сигнала и прорачун одговарајућих параметара, ЕГГ 

може бити корисна техника за оцену мучнине изазване коришћењем симулатора и 

производа виртуелне реалности 

  

Кључне речи: електрофизиологија, глатки мишићи, биосигнали, електрогастрографија, 
ЕГГ инструментација, ЕГГ протокол, ЕГГ процесирање, ЕГГ параметри, мучнина 

виртуена реалност,симулација вожње 
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Preface 

 Research in the area of electrophysiological signal acquisition, focused on gastric 

electrical activity, in the past four years resulted in this Doctoral dissertation entitled 

“Methods for Assessment of Electrical Activity of Smooth Muscles“. It was conducted at 

the School of Electrical Engineering – University of Belgrade, under the mentorship of Assoc 

Prof. dr Nadica Miljković. The main topic of this Dissertation is the investigation and 

application of the procedures for the recording and analysis of biosignals originating from the 

smooth muscles of the stomach. It included a detailed review of existing scientific 

contributions, development of the hardware equipment for the recording, recom mendations 

for the recording protocol and conditions, and proposal of novel techniques for analysis and 

interpretation. The specific focus was on applying non-invasive electrogastrography technique 

for the recording of gastric electrical activity, especially in non-standard conditions. 

Motivation 

 Almost 100 years passed since the discovery of the method for detection of the smooth 

stomach muscles electrical activity – Electrogastrography (EGG) by Alvarez (1922) [1]. Since 

then, this procedure has advanced in many aspects, including recording apparatus, procedures, 

and analysis, but its clinical application remained limited to this day. The main reason for this 

is the lack of standardization in EGG, which produces many controversies among physicians 

regarding its usefulness and effectiveness. Although technological progress in 

electrophysiological methods in the past few decades offered several opportunities for 

additional improvement, substantial questions remained unanswered. It is believed that the 

pathway towards standardization and broader use of  EGG could be through detailed 

investigation of existing recommendations and proposal of novel techniques with valid 

evaluation approaches. Additionally, the paradigm shift from a long-term static recording of  

EGG towards short-term recording in a dynamic environment with a specific subject stimulus 

could increase interest in this method. For example, the occurrence of sickness symptoms in 

healthy volunteers, as a consequence of different stimulus, could be evaluated by EGG. 

 Overall, the possibility for further improvement of the methods for evaluation of the 

stomach smooth muscles via non-invasive cutaneous recording and its promising applications 
inspired this research. 

Aim and Research Questions 

 This research aimed to propose and evaluate novel approaches for EGG recording and 

analysis in the context of the overall improvement in the field. Simplification of recording 

protocol via custom-made apparatus was marked as groundwork for further advancement 

towards EGG application in a dynamic environment such as driving simulation and virtual 

reality. The performance and relevance of such applications are highly dependable on suitable 

processing and analysis methods proposed and evaluated in this Doctoral dissertation . Based 
on that, the initial two hypotheses were: 



 

1. With the appropriate instrumentation and clearly defined post-processing and signal 

analysis methods, it is possible to reduce and simplify the protocol for EGG recording for 

suitable adaptation of the EGG method to a wider application in clinical practice and for the 

research. In addition, such protocol should enable high-quality EGG acquisition with 

decreased noise presence.   

2. Electrogastrography as a non-invasive method can provide useful information 

regarding gastric electrical activity alterations in healthy subjects during driving simulation 
and virtual reality experiences. 

           Evaluation of the hypothesis was done by providing answers to the following research 

questions: 

1. Is it possible to acquire a reliable EGG signal via a custom-made open-source device by 

employing a simplistically designed short-term recording protocol with one recording 
channel? 

2. What are the perspectives of completely automated processing algorithms for artifact 
cancelation? 

3. Is it possible to record EGG in the dynamic environment, and what are the main guidelines 

that need to be followed? 

4. Which parameters should be used to quantify the EGG signal recorded in a dynamic 

environment? 

5. Is there a correlation between EGG alterations and the occurrence of nausea symptoms in a 
dynamic environment? 

Scientific Contributions 

 During the research following scientific contributions stood out: 

1.    Design and realization of custom-made open-source hardware for the recording of an 

electrogastrographic signal. The device was tested in the two studies published in journals 

with impact factor [2], [3] in 33 subjects, and used in overall more than 70 different protocols. 

2.    Recommendations for simple short-term single-channel EGG recording, evaluated in  20 

healthy subjects during fasting and postprandial phase of the gastric cycle.  

3.    Proposal of automatic algorithms for denoising EGG signal by application of  fractional 
calculus and video recording, evaluated in two case-studies. 

4.    Evaluation of EGG recordings in a dynamic environment (in 16 subjects overall) ,  with 

the corresponding discussion regarding recommendations that need to be fulfilled to  obtain 

suitable signals. 



 

5.    Assessment of three novel parameters for the description o f EGG signal – median 

frequency, crests factor, and root-mean-square value. The parameters were evaluated in  16 

subjects overall.  

6.    Application of EGG for the assessment of sickness induced by driving simulator and 

virtual reality in healthy subjects. Overall, the assessment procedure was tested in 16 subjects 
[3]. 

Dissemination of the Results 

 Main results of the research described in this Doctoral dissertation are presented in 
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Structure of the Doctoral Dissertation 

 This Dissertation consists of six chapters. Each of them provides descriptions and 

explanations of the related topics with state of the art perspective, enhanced with suitable 

illustrations and graphical presentations of the essential aspects. This Dissertation consists of 

six chapters. Each of them provides descriptions and explanations of the related topics with 

state of the art perspective enhanced with suitable illustrations and graphical presentations of 

the essential aspects. As previously mentioned, this work is primarily based on the two 

publications in the scientific journals with impact factor [2], [3] and four conference papers 

[4]-[7]. The Dissertation structure does not follow corresponding publications separately since 

the aim was to present the Author's overall scientific work. Chapter 1 is introductory, and it 

aims to provide basic knowledge of the EGG methodology. It is followed by the Chapter 

dedicated to an explanation of suitable apparatus for EGG recording (Chapter 2). The 

essential step in acquiring an electrical signal from the stomach smooth muscles is adequate 

instrumentation. Therefore, in Chapter 2 development process of the custom-made EGG 

device is presented. With the proper EGG instrumentation, the next step is a definition of the 

recording protocol described in Chapter 3 with key considerations regarding measurement 

protocol described in the following subchapters: 3.1. Duration of the Recording Session, 3 .2. 



 

Subject Posture, 3.3. Electrode Placement, and 3.4. Fasting or Postprandial? Each of them 

offers an overview of the current status from the literature, followed by the presentation of  

published contributions of this Dissertation and corresponding discussions. When EGG signal 

is suitably recorded, it should be properly analyzed and interpreted, which is the topic of 

Chapter 4. The main concerns are described in four subchapters: 4.1. EGG Signal Evaluation, 

4.2. Artifact Cancelation, 4.3. EGG Signal Feature Extraction, and 4.4. EGG Interpretation. In 

Chapter 5, one of the most challenging issues in the EGG area is addressed – recording of  an 

EGG signal in a dynamic environment. That was done by presenting the results of two 

investigations being result of this Dissertation [3], [6], regarding EGG application in a virtua l 

reality environment and during application of driving simulation. The overall conclusion of 

the research presented in this Doctoral dissertation is presented in Chapter 6.            

 In Chapter 1. Introduction a brief overview of the anatomy and physiology of the 

gastrointestinal tract is presented. Bases for the understanding of gastric electrical activity are 

also provided. A comprehensive historical overview, current status, and perspectives for 

future work in EGG are presented. 

 Chapter 2. Instrumentation for EGG recording is written as a guideline f or designing 

and realizing open-source hardware for EGG acquisition. It includes critical considerations, 

discussion regarding EGG recording with non-dedicated devices, review of commercially 

available devices, device development procedures, and proposals for further improvement.  

           The main aspects of the recording protocol are presented in Chapter 3. Recording 

protocol. It is divided into four subchapters covering the following topics: duration of  the 

recording session, subject posture, electrode placement, and meal intake. Each subchapter 

incorporated an overview of published results and discussion on possible improvements and a 

requirement for standardization. In this chapter, important considerations regarding the 

simplification of the protocol are presented. 

           In Chapter 4. Analysis and Interpretation of EGG signal essential guidelines for the 

evaluation, artifact cancelation, and feature extraction of EGG signals are provided. 

Discussion regarding differences between visual and automated evaluation approach is 

offered. Existing methods for the processing with the detailed explanations of novel video -

based and fractional-based approaches are presented. In addition to the description of 

commonly used parameters, median frequency, crest factor, and root-mean-square value are 

introduced as promising quantification techniques. 

           Chapter 5. Assessment of Gastric Myoelectrical Activity in Dynamic Environment, key 

takeaways regarding recording in a dynamic environment are provided. Subsequently, studies 

that included EGG assessment of smooth stomach muscles in healthy subjects during virtual 

reality and driving simulation experiences were presented and discussed. 

           The conclusion of the research described in this Doctoral dissertation with suggestions 
for future work is presented in Chapter 6. Conclusion.          



 

           In the Appendix A. Anatomy and Physiology of Gastrointestinal System, a medical 

basis for the understanding of the processes that take place in the stomach and can be 

evaluated using an electrogastrography is provided. 

              Appendix B. Methods for the Assessment of GI System includes an overview of 

clinically used methods for GI functionality evaluation. 
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1. Introduction 

 Smooth muscles are present in many organs of the human body, and they have an 

important role in processes that happen in the organism. The scope of this Doctoral 

dissertation is an assessment of the smooth muscles that are the functional part of the 

gastrointestinal system (GI), more precisely - the stomach. 

           As a part of GI, the stomach is a hollow organ which main function is storage and 

mixing of gastric content prior to its digestion and absorption that primarily takes place in the 

bowels. It can be stated that the mechanical part of the digestion process takes place in the 

stomach, which is why motility is its core property. Two layers of smooth muscles, circular 

and longitudinal, that can be found between serosa and mucosa, are responsible for rhythmical 

contractility of the gut. The question arises: What is the control mechanism behind this 

rhythmical activity?  [8]–[10] 

 The answer to this question lies in Gastric Electrical Activity (GEA) phenomena, 

which originates from the pacemaker region of the stomach. This area is populated with 

specialized cells called Interstitial Cells of Cajal (ICC), which can spontaneously generate 

electrical current. This automaticity is responsible for periodical contractions of the smooth 

muscles and the overall motility of the stomach. GEA can be divided into two superimposed 

components: 1) Electrical Control Activity (ECA) or slow waves, and 2) Electrical Response 

Activity (ERA) or spike potential. ECA presents as a slow periodical variation of resting 

potential (period around 20 seconds), while ERA is composed of the action potentials that can 

only occur when slow wave activity reaches appropriate amplitude. Spike potentials correlate 

with gastric contractions in a one-to-one manner, whereas ECA controls the maximum rate of 

those contractions. A detailed overview of GI anatomy and physiology with a specific f ocus 

on GEA is presented in Appendix A. [11]–[13]           

 As described, electrical activity is the control mechanism for the smooth stomach 

muscles. Its recording and analysis could provide valuable conclusions regarding the 

functionality of GI. While there are many different GI assessment techniques (see Appendix 

B), the only non-invasive one that could provide an insight into GEA is Electrogastrography 
(EGG). 

1.1. What is Electrogastrography? 

 There is a need for a safe and easy way to get a perception of the electrical signals 

from the gastrointestinal system. The solution can be found in a technique called 

Electrogastrography. It is a non-invasive method for the recording of the stomach electrical 

activity via surface electrodes placed on the abdomen [14]. Adjacent terms, 

electrogastrogram, and electrogastrograph, both abbreviated by EGG, stand for the signal 

recorded by this technique and the device used for it, respectively (see Figure 1.1.) [15]. 

Resulting EGG waveform represents slow wave activity, and it correlates with the invasively 

measured signal from the serosal and mucosal surface [16]. Its frequency in a healthy 

organism is about 3 cycles-per-minute (cpm) or 0.05 Hz, while the amplitude varies from 0.1 

mV to 0.5 mV [2]. Frequency content of EGG signal is discussed in many articles, and in 
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subchapter 1.3.1 overview of this topic will be presented. For the research described in  this 

Dissertation, it was adopted that EGG frequency ranges from 1 cpm to 10 cpm with three sub-

bands: 1) bradygastric (1-2 cpm), 2) normogastric (2-4 cpm), and 3) tachygastric band (4 -10 

cpm) [17]. Analysis of the EGG signal can give an insight into different stomach functionality 

processes and assist the examiner in making valid conclusions. EGG could benefit the 

clinicians as an additional diagnostic tool due to its safety and relative simplicity. Feature 

extraction from the EGG recording can be very challenging, and educated observation of  an 

expert could be required. An example of an EGG signal recorded from surface electrodes 

placed on the abdomen is presented in Figure 1.1. As it can be observed, it is required to have 

an adequate EGG device that will provide initial processing of raw electrical signal acquired 

by the surface electrode in order to have reliable EGG timeseries. 

 

Figure 1.1. Diagram of the recording process with the example of the signal. EGG timeseries 
used in this Figure is retained from the open-source EGG database (subject ID9 

postprandial) [18]. 

1.2. Historical Overview of Electrogastrography  

 After the initial introduction of electrogastrography by Alvarez [1] in 1922 for the 

following six decades, EGG was measured mainly from the mucosal or serosal membrane due 

to the inadequate equipment for the recording of low amplitude signals from the non-invasive 

electrodes placed on the skin [16]. It was reported in [19] that up until the 1960`s it was 

unclear if the signal acquired by EGG actual representation of GEA or an artifact produced by 

stomach motility. However, now it is clear that EGG provides a reliable recording of slow 

wave activity. Since then, advancements in signal acquisition and signal processing methods 
are continuously led to the further introduction of EGG in research and clinical practice.  

           In one of the first review articles by Stern et al. in 1987 [20], authors provided four 

important conclusions: 1) 3 cpm EGG activity correlates with the one recorded from the 

mucosal and serosal surface, 2) enhanced stomach contractility is represented as an increase 

in EGG amplitude, 3) tachygastric EGG activity also correlates with mucosal recordings, and 

4) low EGG frequency (~1cpm) remain unexplained from the physiological point of view. In 

1989 Pezzola and colleagues reported that EGG could be a useful tool for investigating 

unexplained nausea and vomiting [14].    
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 During the 1990`s interest in EGG increased [19]. In 1996 Lindberg et al. [21] 

presented results of the study conducted in 30 healthy volunteers using a 24-hours ambulatory 

recording. Although some interesting findings regarding an increase in DF in the postprandial 

state were found, the main conclusion was that further improvement of recording equipment 

is needed. Similar insights were presented by Bortolotti in terms that “the future of EGG rests 

in the hands of the electronic engineers“ [22]. Mintchev, with his associates during the late 

1990`s investigated the impact of external factors [23], the thickness of the abdominal wall 

[24], as well as effects of internal tachygastria [25] on EGG, and in the review article [26] 

concluded that cutaneous EGG recording highly correlates with internal Gastric Electrical 

Activity (GEA) and that it can be used for Gastric Motility Assessment (GMA). The 

introduction of Multichannel Electrogastrography (M-EGG) opened a possibility for 
investigating slow wave propagation by detecting a time lag between channels [27]. 

           In 1993 Chen and McCallum [28] reviewed the potential of EGG application in clinical 

practice. It was suggested that EGG could be used as an effective additional diagnostic tool 

for many gastrointestinal disorders. Gastric dyspepsia, non-ulcer dyspepsia, chronic idiopathic 

intestinal pseudo-obstruction, cyclic vomiting syndrome, idiopathic gastroparesis, nausea in  

pregnancy, helicobacter pylori, irritable bowel syndrome, and central nervous system 

disorders in children, are some of the conditions evaluated by EGG [29]–[36]. It was reported 

that these pathologies can affect EGG signal in the following manners: 1) occurrence of 

tachygastria, 2) occurrence of bradygastria, 3) inability to determine gastric rhythm, 3) 

absence of the dominant peak in the spectrum of the signal, and 5) absence of postprandial 

increase in EGG signal power [35].  

 

Figure 1.2. Graphical representation of the historical development of EGG. Portrait image of 

dr Walter C. Alwarez, public domain. 

 A multicenter study published by Simonian et al. in 2004. explored effects of gender, 

age, Body-Mass Index (BMI), and study location on EGG-based parameters [37]. While the 

Authors concluded that gender and age did not affect EGG, it was reported that subjects with 

BMI > 25 had a decrease in absolute Dominant Frequency (DF) and postprandial decrease in  

Percentage of Slow Wave Coupling (%SWC). Also, compared to American, in 
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European/Asian volunteers decrease in %SWC was reported. Reproducibility of EGG was 

investigated in [38], and it showed that parameters describing frequency content have better 

reproducibility than the ones regarding the power of the signal. It was also reported that 
gender, test meal, and GI disorders do not affect the reproducibility of the parameters [39]. 

1.3.  Current Status of EGG 

 Today, EGG is accepted as a reliable gastric electrical activity assessment technique, 

but it still remains mainly experimental methodology, without wide clinical application. The 

main reason for this is the lack of standardization regarding recording equipment, protocol, 

and signal analysis and interpretation. As one of the main aims of this Dissertation was to 

provide Author`s insights related to this issue, in this subchapter, a brief introduction into the 
current status of EGG will be discussed. 

           From the document prepared by the gastric section of the American Motility  Society 

Clinical GI Motility Testing Task Force [40] and review articles prepared by Murakami et al.  

[16] and Riezzo et al. [17], the following conclusions on the status of EGG can be listed: 

1.    There are many issues that need to be addressed prior to the implementation of a surface 
EGG in standard clinical practice. 

2.    There are no standard recommendations for EGG recording protocol. Resolving of this 

issue could result in a much wider application of the technique in the future.  

3.    When appropriately recorded, EGG is a valid measure of gastric electrical activity, and it 

can be a powerful diagnostic tool. 

           To present a more detailed insight into the current status of the EGG, answers to the 
following questions should be provided: 

1.    What is the most commonly used methodology for the recording and processing of EGG? 

2.    What features are used to describe EGG signal? 

3.    In what clinical applications is EGG used?      

           Although EGG signals are commonly acquired with low sampling rates (< 4 Hz), some 

researchers are suggesting that it could be beneficial to record EGG signal with higher rates 

(> 100 Hz) in order to have additional information regarding heart rate variability, breathing, 

or even a possibility to reconstruct spike potentials [41]–[43]. While many researchers 

recommend the usage of a long-term protocol (> 1 hour) [37], [40], the latest trends go 

towards a shorter duration of recording (20 minutes) [16], [2]. It has been suggested that the 

subject should be in a supine position to 45° inclination during the recording session [16], 

[17], [40], [44]. In the study designed to investigate the effects of posture on EGG acquisition, 

it is concluded that recording can be obtained suitably in a sitting position if the guidelines are 

carefully followed [45]. Several different approaches for surface electrode placement were 

introduced, including our 3-channel setup [2], [26], [44], [46], [47]. The general principle is to 
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use more than one bipolar channel due to the increased robustness of the protocol and the 

possibility to compare recordings from different channels. While artifacts with f requencies 

higher than EGG range are relatively simple for cancelation, one of the main setbacks for 

wider implementation of the method are movement artifacts that can have similar f requency 

content as EGG [16]–[17], [26], [44], [48], [49]. So far, the most reliable way for cancelation 

of motion artifact is manual extraction of compromised samples detected by educated visual 
observation [50].   

           Dominantly used parameter for the description of EGG is dominant frequency – 

position of the highest amplitude peak in the frequency spectrum [51]. Percentage of time, 

while DF is in each of the three frequency sub-bands (bradygastric, tachygastric, and 

normogastric), is also a frequently used feature [16]. Differences between the definition of 

three characteristic EGG ranges have a negative influence on the reproducibility of EGG 

analysis. This is why in subchapter 1.3.1. a detailed discussion of that issue is provided. 

Power of the signal can be used both independently and as a value used for the calculation of  

Power Ratio (PR) between the postprandial and fasting EGG [17]. Percentage of slow wave 

coupling can be calculated only for multichannel EGG, and it presents percentage of time 

during which dominant frequencies are similar between different channels [16]. The 

Instability Coefficient (IC) estimates level of DF variation – it is a ratio between standard 
deviation and mean value of DF [17]. 

           Today, despite the fact the EGG is not widely used in clinical practice, its medical 

application is not insignificant [35]. It is proven that many conditions and disorders can be 

evaluated using slow wave assessment: nausea and vomiting at pregnancy, motion sickness, 

central nervous system disorders in children, gastroparesis, diabetic gastropathy, Irritable 

Bowel Syndrome (IBS), gastric dyspepsia, etc. [14], [16], [29], [30], [32], [40], [33]–[53].                    

              The new trend in the assessment of gastric electrical response is High-Resolution 

(HR) mapping of the gastrointestinal tract [54]. This concept is inspired by cardiac 

electrophysiology, and it is based on the application of dense array electrodes placed on the 

tissue in order to track fine spatial electrical activations of cells [50]. There are some 

controversial findings suggesting that the effects of movement artifacts are much severe than 

it was thought [49], but the latest results had proven the validity of the method [50], [55]–

[57]. Despite the fact that by using HR mapping, more detailed insight into electrical activity  

of GI system could be obtained, the development of non-invasive methods such as cutaneous 

EGG is still “a key need“ in this field [50]. Application of active electrodes, which can be 
described as a minimally invasive procedure, was described and investigated in [58]. 

1.3.1. EGG Frequency Ranges – Different Approaches  

 As EGG field evolved, different frequency ranges for the calculation of corresponding 

parameters were used. In the middle 1980s, Abell and his colleagues stated that the normal 

frequency of EGG ranges from 1 cpm to 6 cpm and that everything above and below those 

limits can be classified as tachygastria and bradygastria, respectively [59], [60]. Over the 

course of time, investigators tended to use the narrower band for normogastria. Thus, in 1998. 

Sanmiguel et al. proposed the following frequency bands: 1) 1.0-2.5 cpm – bradygastria, 2) 

2.5 – 3.7 cpm – normogastria, and 3) 3.7-10.0 cpm – tachygastria [26]. These standards were 
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accepted with slight changes by Stern et al. – the upper limits for normogastria and 

tachygastria were changed to 3.75 cpm and 9.00 cpm [12]. In a more recent work following 

values were proposed for bradygastria, normogastria, and tachygastria, respectively: 

1.    Murakami et al. 2013 [16] – 1.00 cpm to 2.25 cpm, 2.25 cpm to 3.75 cpm, 3.75 cpm to 

9,.0 cpm; 

2.    Yin et al. 2013 [19] – 0.50 cpm to 2.00 cpm, 2.00 cpm to 4.00 cpm, 4.00 cpm to 9.00 
cpm; 

3.    Riezzo et al. 2013 [17] – 1.00 cpm to 2.00 cpm, 2.00 cpm to 4.00 cpm, 4.00 cpm to 10.00 

cpm 

 

Figure 1.3. Proposal for EGG frequency ranges derived from literature and graphically 
represented. 

 In this research, approach from Riezzo et al. was adopted [17]. Rationale behind that 

was to have the widest range of both normogastric and overall EGG range since there is no 

enough data that supports narrowing of corresponding bands. Our attitude was to  be careful 
when determining something as abnormal gastric rhythm without clear evidence for that.  

1.4. Further Improvement of EGG 

Although crucial steps in EGG development have been made, there is still a lot of  potential 

for further improvement. Additional efforts regarding different segments of the recording and 

processing techniques could be enhanced in order to enrich application of EGG in both 

clinical and research domains. The main aspects that should be revised include: 1) 

instrumentation, 2) protocol, 3) signal processing, 4) feature extraction, and 3) spectrum of 

application. 

           Devices for EGG recording nowadays offer relatively good signal quality and 

reliability, confirming that the first and the most important step in its development is finished. 
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The secondary goal should be to establish correspondence with today's sophisticated 

technological trends to make these devices easy-to-use and, by that, receptive to a broader 

range of consumers. 

           The recent trend in that area is the wireless transmission of the signal, and the first 

prototypes are already tested with satisfactory results [41], [61]. It should be mentioned that 

Poscente and colleagues published their research regarding an ingestible capsule that contains 

an electrical circuit for the recording of gastric electrical activity in the method called 

Enhanced Electrogastrography (EEGG) [62]. Optical mapping of gastric slow wave 

propagation presented in [63] is an exciting approach that uses different sensors but should 

deliver a similar signal. Software solutions for the visualization and analysis of the signal are 

available, but without a clear response from the end-users. Evaluation of the developed EGG 

interfaces by the clinicians and researchers in the corresponding area could be crucial for 

further improvement. As an increasing tendency in biomedical engineering worldwide, open -

source hardware and software could attract many innovators to contribute [3]. 

 Without the standardization of the EGG recording protocol, EGG will remain limited 

to the research and relatively unapplicable in the clinical practice. Time consumption 

combined with the complex recording setup for someone without engineering background 

results in a lack of interest in the method. Its simplification by minimizing session time 

duration and delivering clear guidelines for electrode placement and device manipulation 

could increase the end-users' attention. Results published in [2] suggested that for some 

relevant parameters, only one recording channel for 20 minutes protocol could be a suitable 

solution. Additional protocol considerations related to the body posture, test meal, different 

stressors that could induce alterations in EGG signal should be thoroughly examined. 

           Electrogastrogram is still challenging to process properly in order to extract artifacts 

and preserve all useful components. Specifically, the low frequency spectrum of  EGG is the 

main reason why traditional digital filtering gives promising results since there is a minimal 

overlapping with other electrophysiological signals. Despite that, there are still many 

problems related to the detection and cancellation of movement artifacts in EGG recordings in 

a dynamic environment. Besides, there are also breathing artifacts, electrical signals from 

skeletal muscles and hearth, and activity from other parts of the GI system that could interfere 

with the signal of interest. While it is considered that educated visual inspection is the most 

reliable way to discriminate between slow waves and noise [50], there are still expectations 

that automatic algorithms could substantially advance EGG signal preprocessing. Some of the 

proposals include the application of neural networks, adaptive filtering, Independent 

Component Analysis (ICA), and Empirical Mode Decomposition (EMD) [64]–[67]. In [5], 

video-based artifact cancelation was proposed by synchronously recording video and EGG 

and by rejecting erroneous parts of the signal. Results regarding the application of f ractional 

order calculus for extraction of Electrocardiographic (ECG) artifacts from 
electrogastrographic recordings were presented in [4]. 

           Commonly used parameters for the description of EGG listed in subchapter 1.4.3. 

could be supported by the addition of novel features. Especially when the analyzed signal is 

recorded in non-standard conditions, alternative approaches for quantification of  frequency 

content could be beneficial. Crest factor and median frequency were suggested in  [3], [6] as 
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the possible alternatives. While the spectrum remains the first step in the analysis of EGG, 

some signal power estimators, such as RMS, derived from the time domain, showed to be 

useful parameters for the determination of EGG alterations [3]. 

 As for any diagnostic technique, clinical application is imperative. The path to that 

goal could be through the research studies obtained in healthy subjects. In that journey, EGG 

could become a useful tool for many other fields. There are many ideas on how recording 

stomach electrical activity could help researchers evaluate the effects of different stressors on 

the human organism. Driving Simulators (DS), both with and without motion f eedback, can 

induce stomach distress [68]. Virtual Reality (VR) application is limited by the occasional 

onset of nausea reported by the users [69]. Also, various types of emotional stress af fect the 

gut [70], [70]–[74]. These are all examples in which the application of EGG can offer 

additional insight and help the developers with the improvement of existing systems. 
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2. Instrumentation for EGG Recording 

 The main prerequisite for a successful recording of the electrophysiological signals is 

suitable and reliable equipment. Essential parts of the EGG recording system include: 1) 

surface electrodes, 2) amplification and filtering circuit (i.e., EGG device), 3) Analog-to-

Digital (A/D) converter, and 4) acquisition software (see Figure 2.1.). The device should be 

dedicated for EGG due to the specific requirements for signal amplification and filtering, 
while A/D conversion and software could be commercially available ones. 

 

Figure 2.1. Schematic presentation of the EGG recording equipment.  

2.1. Key Considerations  

 Among the variety of considerations that should be considered when developing an 

EGG device, the key ones are: 1) properties of the signal, 2) artifact presence, and 3) 

amplification and filtering. 

2.1.1. Properties of the Signal 

           Characteristics of the electrophysiological signal are an important aspect to  consider 

when choosing or designing a recording device. The nature of the slow wave activity  makes 

EGG highly challenging in the means of signal acquisition. Namely, as discussed in  Chapter 

1, amplitude of the signal is varying from 0.1 mV to 0.5 mV, and frequency range is f rom 1 

cpm to 10 cpm. Compared to the most commonly recorded electrophysiological signals, 

amplitude is lower than in the electromyography (EMG) – 0.00 mV to 10.00 mV and 

electrocardiography (ECG) – 0.01 mV to 4.00 mV, while it is comparable with 

electroencephalography (EEG) – 0.01 mV to 0.10 mV [75]–[77]. This dictates a relatively 

high gain of amplification circuit or alternatively high-resolution analog-to-digital (A/D) 

conversion [47]. Additionally, hardware filtering is essential in order to avoid high frequency 
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signals that are not informative in terms of gastric electrical activity, as well as baseline drif t 

that may lead to saturation. Properties of EGG timeseries are illustrated on the example of the 

signal recorded in healthy volunteer presented in Figure 2.2.   

 

Figure 2.2. Properties of EGG clear signal marked on the signal recorded in a healthy 
subject. Lower left panel – EGG timeseries, upper left panel – zoomed EGG, right panel – 
frequency characteristic of EGG. Signal was retained from the open-source EGG signal 

database [18]. 

 

2.1.2. Artifact Presence 

           The presence of various artifacts in the EGG signal can also lead to unreliable 

recordings. Base on its origin, noise can be classified as physiological or non-physiological. 

  

 

Figure 2.3. Illustration of EGG artifact presented signal recorded with a sampling rate of 100 
Hz. 
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 The physiological ones include interfering electrical activity from the hearth – 

electrocardiography, skeletal muscles – electromyography (EMG), and distal parts of  the GI 

system relative to the stomach. Respiration signal can also be superimposed to slow waves. 

The non-physiological ones are electromagnetic interference (EMI) from the power grid with 

50 Hz or 60 Hz frequency and the ones coming from the movement of the subject and cables. 

While most artifacts could be extracted from the signal by applying digital filtering techniques 

with appropriate cut-off frequencies, the ones with frequency range overlapping wi th EGG 

one (most commonly movement artifacts) could be much more challenging for cancelation. 

Although there are some proposals for automatic extraction of those motion induced signal 

disturbances, the most reliable method for their detection and extraction is a visual inspection 

performed by an educated observer. In Figure 2.3. simulated EGG signal compromised with 

various artifacts is presented. [12], [40], [48], [49], [53], [55], [64]–[66], [5], [78], [79] 

2.1.3. Amplification and Filtering    

           Delivering the suitably filtered and amplified analog signal to the A/D converter is one 

of the prerequisites for reliable EGG recording. Therefore, it is crucial to carefully evaluate a 

selection of hardware amplifiers and filters that should be implemented in EGG device. 

Considering the nature of the signal (amplitude from 0.1 mV to 0.5 mV), a relatively high 

gain is required (~1000), which can amplify the DC component, resulting in a saturated 
output signal is presented in Figure 2.4.            

  

 

Figure 2.4. Example of saturated output signal if DC component is not canceled out from the 
signal using hardware HP filter. 

 Cancelation of DC component from the slow wave signal can resolve the saturation 

problem. That can be done using a high-pass (HP) filter with the careful selection of filter 

design and cut-off frequency in order to preserve the EGG range of interest.  Higher quality  

factor (Q) in active filters, compared to the passive ones, suggests that they are more suitable. 

Cut-off frequency should be equal to or less than 1 cpm (0.0167 Hz), which is the lower limit 

of EGG frequency range [17]. A low-pass filter should also be included in the EGG recording 
device to extract the higher frequencies artifacts, as described in subchapter 2.1.1.  
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Figure 2.5. Example of the suitable EGG signal after hardware amplification and filtering, 
prior to the A/D conversion and software preprocessing. 

 An illustrative example of what is expected as an output signal from an EGG device 

resulting from a static recording obtained in a healthy subject is presented in Figure 2.5. 

Timeseries should have a clear sinusoidal shape with amplitude in the expected range, without 

saturation in any part of the signal.   

2.2. EGG Recording with Non-dedicated Devices 

 In this context, non-dedicated devices are the ones used for all other 

electrophysiological measurements except EGG. It is customary that measurement equipment 

includes ECG, EMG, and EEG recording devices in many laboratories for biomedical 

research. Usage of those devices for gastric electrical activity acquisition could expand 
interest in EGG research, but the question arises: Are they suitable for EGG measurement?  

 It is not uncommon for the biosignals to present with baseline drift during recording 

because of subject and cable movements, breathing, or another external artifact. This could be 

resolved with the implementation of HP filters in order to cancel out components of the signal 

with frequencies lower than the ones of interest. For EMG and ECG, frequency range  is f rom 

20 Hz to 1000 Hz and from 0.05 Hz to 100 Hz, respectively [76], [80]. Consequently, devices 

for its acquisition have HP cut-off limit higher or equal to 0.05 Hz, which discards both EMG 

and ECG amplifiers as potential apparatuses for slow wave recording. On the contrary, EEG 

frequencies range from 0.01 Hz to several hundred Hz [81], and the corresponding devices 

should be able to acquire signals in that range suitably. Technical specification of those 

devices should be checked prior to the recording and confirmed that the f requency range is 

suitable for the EGG recording. Amplitude range of EEG and EGG is comparable, so the 
amplification should be appropriate. 

           It was reported that EGG could be recorded using EEG dedicated DC amplifiers [47]. 

The authors in those papers stated that it is possible to measure EGG signals with EEG 

devices constructed out of DC filters combined with a large analog-to-digital conversion 

range. Devices that were used are BioSemi (BioSemi B.V., Amsterdam, Netherlands) and 

BioMag (BioMag Laboratory, Helsinki, Finland) systems [47]. Comparable amplitudes 

between the EEG and EGG signals suggest that this is possible, but only if lack of HP filter 
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does not result in high amplitude baseline drift that could lead to signal saturation, and 

consequently, distortion of the signal. An interesting approach was described in the Doctoral 

dissertation entitled “Feasibility of incorporating electrogastrography into an undergraduate 

physiology laboratory curriculum” by Lauren Foropoulos [82]. Electrooculography (EOG) 

device ML317 (ADInstruments Ltd., Dunedin, New Zealand) was used for EGG recordings. 

Considering the fact that this device has a frequency range from DC to 500 Hz and an 

amplification gain of 1000 is comparable with EEG devices, in terms of EGG application, 

used in previously discussed research [47]. 

2.3. Commercially Available Devices 

 As the need for a reliable EGG recording system increased, various companies 

producing medical devices worked on its development. During the last few decades, different 

commercially available solutions were released. In this subchapter, the most commonly used 
instruments will be presented. 

 One of the companies dedicated to the research and development in EGG is 3CPM 

Company (Sparks, Maryland, USA). Their solution offers a comprehensive system including 

the amplifier, connector cables, A/D converter, and software. It is designed to record signals 

with a frequency range from 1 cpm to 15 cpm. Two recording channels are incorporated, one 

for EGG recording and one for respiration signal, in order to detect breathing artifacts in 

EGG. After the acquisition, the signal is stored, and Fourier transformation is performed. 

Produced report includes a Running Spectrum Analysis (RSA) plot and distribution of the 

power in the four frequency ranges (bradygastric, normogastric, tachygastric, and respiratory -

duodenal). In many publications [31], [83]–[85], signals acquired via described device were 

used. [86] 

 Biopac Systems, Inc. (Goleta, California, USA) offers EGG recording module 

EGG100C as a compatible part of their complete research system solution, with 

corresponding cables, A/D converters, and analysis software. It is a single channel module, 

with the possibility of recording more than one channel using multiple modules. This device 

incorporates filters with adjustable cut-off frequencies: High-pass (DC, 0.005 Hz or 0.05 Hz) 
and Low-pass (0.1 Hz or 1 Hz). Gain can also be set to 500, 1000, 2000, or 5000. [87] 

 One of the solutions is BioSignalPlux EGG Sensor from the PLUX – Wireless 

Biosignals, S.A. (Lisbon, Portugal). It is a wearable device for the user-friendly acquisition of 

gastric electrical activity. Since it gives analog output, it should be connected to the 

BioSignalPlux hub in order to digitalize signal. It has a gain of 6114 and bandwidth from 

0.01591 Hz to 0.1591 Hz. The possibility of multichannel recording is available by 
connecting more than one EGG sensor to 4-channel or 8-channel hub. [88] 

 Although it is still not commercially available, it is worth mentioning the 

EGGDWPack system [41]. This is a novel Matlab (Mathworks Inc., Natick, MA, USA) based 

software compatible with the wireless 4-channel EGG recording device described in  [89]. It 

incorporates preprocessing methods for artifact cancelation and digital filtering of the raw 

signal. The main innovation includes in this tool is the possibility to analyze heart-rate-
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variability (HRV) from EGG signal if it was acquired with appropriately high sampling 
frequency. 

 It should be mentioned that one of the first commercially available, FDA approved 

solution was provided by Medtronic Inc. (Dublin, Ireland). However, publicly available 

technical data regarding that device is scarce. 

2.4. Device Development 

           The research covered in this Doctoral dissertation was based on the analysis of the 

signals recorded using a custom-made EGG sensing system [3]. This device can be described 

as a 3-channel EGG recording amplifier with appropriate hardware filters for the extraction of 

non-EGG components of the signal. It receives input from the cables connected to the surface 

electrodes attached to the subject`s body and delivers an analog output signal that should be 
further digitalized.       

2.4.1. Motivation for Device Developement 

           Lack of standardization in the area of a non-invasive recording of gastric myoelectrical 

activity includes instrumentation related issues. Namely, there are no clear guidelines 

regarding the requirements that need to be fulfilled to declare EGG device reliable for the 

acquisition of slow wave activity from the abdominal surface. Common problems with EGG 

recording, already discussed in subchapter 2.1., demand a relatively high level of engineering 

knowledge in order to design a suitable acquisition circuit. Unlike other diagnostic techniques 

(electromyography, electrocardiography, or electroencephalography) for electrogastrography, 

there is limited literature regarding the technical details of the recording apparatus. Thus, 

documented experience concerning the process of EGG device production could be a 

significant contribution to this area. Every additional resource could be beneficial for further 

improvement in the field. Also, the aim was to introduce an open-source EGG device 

available for researchers and encourage all of them to participate in the further development 

of the designed device. It is our belief that this is the most appropriate direction towards 

overall advancement in EGG equipment by sharing knowledge and interactively work wit h 
the scientific community on common issues.  

          

2.4.2. Signal Acquisition Circuit 

 In this context, a signal acquisition circuit is defined as a hardware part of the EGG 

device that performs initial processing of the EGG signal from the surface electrodes and 

delivers suitable output to the A/D converter. Considering the nature of the signal, its three 

main tasks are: 1) amplification, 2) filtering of the baseline drift, and 3) cancelation of 

artifacts with frequencies higher than EGG range. 

 An instrumentational amplifier was used for the amplification due to its proven 

performance in the measurement equipment for biomedical applications. As for any 

differential amplifier, it is expected to extract common potentials that could be a problem 

when recording from the abdominal area of the body abundant with different biosignals. The 

device of choice was INA114BP with a common-mode rejection ratio (CMRR) of 115 dB and 
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settable gain from 1 to 10000. Additional features beneficial for the specific use are: 1) low-

cost, 2) operability on low power supply ±2.25 V that allows usage of battery supply, and 3) 

low offset voltage of 50µV maximum. The gain was set to 1000 using a 50 Ω resistor.  

                     

Figure 2.6. Sallen-Key topology for a) low-pass (left-hand panel) and b) high-pass (right-
hand panel) filter. C stands for a capacitor, R for a resistor, and OpAmp for an operational 

amplifier. 

           For the filtering part of the circuit, both low-pass (LP) and high-pass (HP) filters were 

realized as active 2nd order filters in Sallen-Key topology (see Figure 2.6.). To minimize the 

number of components, the most suitable option was dual operational amplifier TL072CP 

since one chip was sufficient for both HP and LP filter. Values of capacitors and resistors in  

Sallen-Key topology are determining cut-off frequency. For the LP filter, 2 .2  µF capacitors 

and 15 kΩ resistors were used in order to have a 4.820 Hz cut-off frequency. In the same 

manner, 1 µF capacitors and 10 MΩ resistors gave 0.014 Hz HP cut-off frequency. Schematic 

for one channel of the device is presented in Figure 2.7. a), while values of  the components 

are declared in Table 2.1. The complete device consisted out of three separate channels.  
[rreferenca1] 

Table 2.1. Components of the designed EGG device. 

Amplification LP filtering HP filtering 

Instrumentational 
amplifier 

Rg 
Operational 

amplifier 
Rlp Clp 

Operational 
amplifier 

Rhp Chp 

INA114BP 50 Ω TL072CP 15 kΩ 2.2 µF TL072CP 10 MΩ 1 µF 

            

 In Figure 2.7. b) frequency characteristic of the device is presented. It was calculated 

using an automatic system for frequency response analysis designed in a free software 

environment. The system included the following: 1) waveform generator - 33220A (Keysight 

Technologies, Inc. Santa Rosa, CA, USA), 2) digital oscilloscope - TBS 1052B-EDU 

(Tektronix, Inc. Beaverton, OR, USA), 3) personal computer - Ubuntu 16.04 LTS operating 

system, and 4) DC power supply - E3630A (Keysight Technologies previous Agilent). In 

total, 41 points were used to determine frequency characteristics in the range from 0.010 Hz 

to 100 Hz. The software that was used was designed in Python (Python Software Foundation, 

Wilmington, DE, USA). All three recording channels were tested, and the difference between 
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their characteristics was less than 2%. In Figure 2.7. characteristic for channel 1 was plotted.  
[27] 

   

Figure 2.7. a) Schematics for one channel of the EGG device. b) Frequency characteristic of 
the EGG device. Image is taken from [3]. (License: CC BY 4.0) 

           The device was assembled on the protoboard, and power supply (±15 V) was obtained 

from NI ELVIS II (National Instruments Inc., Austin, TX, USA) workstation, as well as A/D 

conversion [77]. 

2.4.3. Acquisition Software 

 An essential part of the EGG recording apparatus is acquisition software. Acq16ch 

program developed by N. Miljković, J. Jakić, and J. Jović, as a part of N. Miljković `s Master 

Thesis [90], and it was used for the acquisition in investigations published in [2], [3], [5]–[6]. 

The main properties that qualify this tool for the application as a part of the EGG recording 

are the following: 

1. It can record up to 16 channels, which is vital for multichannel EGG application. 

2. Option for manual sampling frequency setup allows investigators to record EGG with 
various sampling rates. 
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3. Data storage to .txt file makes obtained signals open for further processing in  various 
programming tools. 

 A screenshot of the Acq16ch interface is presented in Figure 2.8. 

 

Figure 2.8. The interface of Acq16ch acquisition software. 

2.4.4. Discussion of Scientific Contribution of the Designed EGG Device and Its 

Application 

 As it was discussed in subchapter 2.1.3. the main challenge in the development of  the 

custom-made EGG device was the design of HP filter with the cut-off frequency low enough 

not to interfere with frequency range of interest, and at the same time high enough to cancel 

out DC component and baseline drift. 

 The proposed methodology for analogue realization of the instrument with active filter 

provided appropriate frequency response of the system. In order to  evaluate the frequency 

characteristic of the EGG device with very low frequencies, we applied a modified version of 

the automated system for frequency characteristic measurement, initially described in  [91]. 

The modifications include modification of the synchronization method for the oscilloscope, as 

required by the low frequency of measured signals. Internal synchronization algorithms of the 

oscilloscope fail in this case, since they are designed for signals with the frequency above 10 

Hz. Also, it was required to modify the voltage scale auto-range algorithm in order to 

minimize the number of frames needed to be taken. It should be noted here that one period of 

the 1 mHz signal lasts 1000 s, which is almost 17 minutes, while at modest frequency of 1 

kHz it takes 1 ms, which is a million times shorter time span. This quantitative difference 

rescaled importance of certain algorithm parts and required significant algorithm 

modifications in order to record the frequency response within a reasonable time. The 

analogue realization was selected over digital as the EGG signals are of relatively small 
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amplitude, as we strived to avoid electro-magnetic interference, and as there was no ne ed f or 
mass production. 

 After preliminary in-lab testing, the system was applied for the recordings in 20 

healthy subjects for the investigation published in [2]. In total, the 800 minutes of EGG signal 

(20 subjects, 2 sessions, 20 minutes per session) were recorded (data are openly available on 

Zenodo [18]). Additional testing of the device was obtained in dynamic environment in 14 

healthy subjects during driving simulation and published in journal with impact factor [3]. 
Overall, including other tests, the device was examined in more than 50 subjects. 

 The performance of the device was tested in [2] in comparison to the results f rom the 

literature. Recently, a study from another research group from Slovenia showed that similar 

analogue realization gives results that are comparable with the commercially available Biopac 

EGG device (BIOPAC Systems, Inc., Goleta, USA) [92]. For the comparison of two devices, 

authors in [92] used protocol from this Doctoral dissertation published in study [2]. 

2.5. Improvement of the EGG Device 

 The main goal for further improving the device included the realization of signal 

acquisition circuit, described in subchapter 2.3.2., on a printed circuit board (PCB). This leads 

to the minimization of device volume and its packaging in a suitable plastic case, making it 

less sensitive to external artifacts. Testing of the improved device is still undergoing, so only a 
brief explanation of its design will be provided in this Doctoral dissertation 

   

Figure 2.9. PCB design for improved EGG device with marked parts. 

 PCB design and initial simulated testing were done using Altium Designer (Altium 

Ltd., California, USA). For the resistors, and capacitors surface-mount devices (SMD) were 

used. Resistance and capacitance of the components were the same as described in subchapter 
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2.3.2. For instrumentational amplifiers (INA114BP) and operational amplifiers (TL072CP), 

through-hole devices were utilized. Additional parts included through-hole connectors (DB9 

for input and three BNC connectors for output) and a power supply circuit. In order to provide 

±5 V voltage supply, 9 V battery was used in combination with low-dropout (LDO) voltage 

regulator to deliver 5 V, and subsequently, switching-voltage regulator to deliver -5 V. LE 

(Light Emitting) diode as an indicator of device status (On/Off), as well as switch were 
included. In Figure 2.9. PCB design with marked parts is presented. 

           The image of the improved current version of the EGG device with the PCB prototype 

is presented in Figure 2.10. 

   

Figure 2.10. The prototype of improved EGG device on PCB. 

           The image of the improved EGG device prototype in black plastic housing is presented 
in Figure 2.11. 

 

Figure 2.11. The prototype of improved EGG device in the plastic housing. 

 The corresponding subject to the device and device to A/D converter cables were also 

designed. 
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3. Recording Protocol 

 Well defined recording protocol is one of the prerequisites for reliable and 

reproducible EGG analysis. As for any experiment, variables that can affect results should be 

minimized in order for the conclusions to be significant. While for more commonly used 

diagnostic procedures, standard protocols exist, there is a lack of such guidelines for recording 

gastric myoelectrical activity. For ECG, there is a Clinical Guidelines by Consensus 

document for the Recording a Standard 12-Lead Electrocardiogram, approved method by the 

Society for Cardiological Science & Technology (SCST) [93]. For EMG, there is a SENIAM 

(Surface EMG for a Non-Invasive Assessment of Muscles) protocol that provides clear 

recommendations regarding the sensors and their placement for the recording [94]. For 

example, [94] contains the description of the commonly used electrodes, their size, shape, 

construction material, and inter-electrode distance. Additionally, there is a step-by-step 

procedure for electrode positioning that includes: 1) selection of the electrode type, 2) skin 

preparation, 3) subject`s posture, 4) determination of the electrode location, 5)  f ixation and 

positioning of the electrodes, and 6) connection testing. The document also includes practical 

guidelines for adequate application of the EMG. The technical and practical aspects of the 

document were evaluated by all the members of the SENIAM club (>100). A similar initiative 

is required for the standardization of the EGG. The first step towards that initiative is a public 

scientific discussion among the researchers in this field. In the self -published Letter to Editor 

[95], we pointed out to the overlooked elements regarding the characteristics of used 

instrumentation in [47]. Precise explanations regarding the EGG procedure in the published 

investigations are crucial. Unlike in standardized methods, in EGG it is not possible to  state 

that the measurements were done in accordance with the recommendations. The response to  

imprecise methodologies in the published references related to the EGG research could 

increase awareness of EGG research reproducibility and promote EGG standardization 

efforts.  

 Lack of a document analogous to SENIAM protocol [94] for EGG implicates that f or 

EGG recordings, researchers need to implement one of the published approaches or develop a 

new one, which results in limited comparability with reported results obtained by applying the 

different protocol.  

           This challenge is even more significant if it is considered that EGG is highly sensitive 

to artifacts. The main aspects of the protocol that can influence recording quality will be 

discussed in this chapter. They include: 1) the duration of the recording session, 2) the subject 

posture, 3) the electrode placement, and 4) the meal intake effect.       

3.1. Duration of the Recording Session 

           The motility of the smooth stomach muscles and its corresponding electrical signal 

with frequency around 3 cpm (slow waves) are much slower than the other commonly 

measured muscle contractions. Heart muscle is evoked approximately 60 to 100 times in  one 

minute, while skeletal muscle contraction, both voluntary and involuntary, can be detected 

almost immediately upon its activation using EMG. Consequently, to have an opportunity to  

evaluate the gastric electrical activity, it is crucial to utilize an appropriate recording duration 
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that is relatively long compared to the ECG or EMG protocols. There is a clear benef it with 

the long-term protocol since many different processes in the stomach cycle can be monitored. 

Thus, signals obtained by those protocols are more informative than the short-term ones. On 

the contrary, the longevity of the session is affecting subject`s comfort and potentially induces 

unwanted disturbances in the functionality of the GI tract. Reduction of the protocol duration 

can result in improved quality of signal, since there is higher chance that subject will avoid 

movement and subsequently minimize possibility of motion artifacts. Recording protocol 

should also be designed in relation to concrete application. Namely, when there is a need f or 

continuous monitoring of several phases of gastric electrical activity increased duration is 

justified. However, when the aim is to detect potential slow wave disturbances triggered by 

specific stimulus, it is rational to use short-term protocol. In conclusion, there is a need for the 

compromised duration of the recording session to enable assessment of at least one phase of 

the gastric cycle while being as short as possible. 

 

3.1.1. Existing Recommendations 

 In the literature, there are various recommendations for the EGG recording duration. 

To the best of the Author`s knowledge, the longest continuous EGG recording analysis was 

published in 1996. by Lindberg et al., and it was 24-hours ambulatory EGG [21]. While this 

research provided significant results regarding the GI system functionality and EGG 

reliability during a more extended period of time, it is only suitable for in -hospital patients 

already limited with movement and monitored for additional physiological parameters. The 

first publication that offered a review of existing protocols and suggested minimal values f or 

the EGG session duration was [40] by Parkman et al. They stated that fasting signal is usually  

recorded for 15-30 while postprandial signal acquisition lasts from 30-120 minutes. Based on 

that consensus, the opinion arises that 30 and 60 minutes for fasting and postprandial 

protocols, respectively, should be used. Chang et al. in [48] stated that the most optimal 

recording time for both fasting and postprandial recording is 30-60 minutes. Many 

publications supported 30 minutes or more for the acquisition duration [17], [19]. In  2004. a 

research group led by Hrair P. Simonian published results from one multicenter study in 

normal subjects [37] and one single-center study in symptomatic patients [96]. The same 

protocol duration was suggested and used in both patients and healthy subjects: 60 minutes 

fasting and two 60 minutes sessions for postprandial. In his review paper [16], Murakami and 

his colleagues stated that 20-minutes for both fasting and postprandial recording could be 

sufficient. The main reason for this shortening was the potential lack of cooperativity from the 

subject. Thus, they suggested recording protocol that could be finished in 1 hour, including 

both fasting and postprandial recording, test meal intake, and procedure-related explanation. 

In Figure 3.1. bar graph with suggested durations of EGG signal acquisition from different 

authors is presented. From the bar chart, it can be observed that there is a tendency of 

shortening the duration of EGG recording, which is precisely  what was followed in this 

Dissertation [2], [3], [6]. 
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Figure 3.1. Graphical overview of the existing suggestions for the duration of the EGG 
recording protocol. 

3.1.2. Simple Short-term Recording   

           Based on the recommendations from Murakami et al. [16], simple short-term EGG 

recordings were obtained, and the results of the analysis were published in [2]. This 

investigation provided one of the main results presented in this Dissertation. The idea was to  

test the hypothesis that it is possible to acquire reliable and informative EGG recordings with 

the protocol that will last up to 60 minutes, including two recordings and test meal intake. The 

study group consisted of 20 healthy volunteers who were asked not to eat for 6 hours and 

drink for 2 hours before the session. A fasting signal was obtained for 20 minutes, after which 

a meal was provided to the subject, followed by another 20 minutes recording. A graphical 

representation of the protocol is presented in Figure 3.2. Subjects were asked to limit 
movements and not to talk or laugh during the recording sessions.           

  

 

Figure 3.2. Short-term EGG recording protocol. Duration is limited to 1 hour, during which 
two 20-minutes recordings should be acquired (fasting and postprandial), including the time 

for test meal intake. 
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3.1.3. Discussion of the Recording Duration           

 Signals from all 20 participants were suitably obtained, showing satisfactory 

reliability. There was a statistically significant increase in dominant frequency for 

postprandial signals compared to the fasting ones. This was in accordance with previously 

published results [14], speaking in favor of the possibility of recording a usef ul 20 -minutes 
EGG signal.  

           The experience that was obtained from the recording sessions conducted in [2] showed 

that even this reduced duration protocol was uncomfortable for the subjects. That served as 

motivation to introduce even shorter baseline sessions for the EGG acquisition in subsequent 

investigations.  

           In [3], [6], it was stated that baseline EGG, for the calculation of resting parameters, 

can be recorded by using an even shorter protocol (5-15 minutes) but with the condition that 
during the recording, an educated observer should confirm the quality of the signal.    

           For the EGG signals recorded during some external stimuli, that are expected to 

produce changes in the signal parameters, it could be justified to limit the acquisition 

duration. In references [3], [6], such cases were reported, and a detailed description will be 
provided in Chapter 5.      

3.2. Subject`s Posture 

           While in the majority of published articles in the EGG area, a suggestion is to record in  

a supine position or mild inclination, in some applications, it is necessary for the subject to be 

in a sitting or even standing position. Data regarding the effects of body posture on the quality 

of EGG signal is scarce.   

           The intensity of motion-induced artifacts can be different if the recording is obtained in 

different subject posture. That can also affect position of the stomach relative to  t he surf ace 

electrodes [97]. Also, the influence of breathing artifacts can differ with various inclinations 

of the upper body. Wrinkling of the skin, dependable on the posture, at the contact area 

between self-adhesive electrodes and skin can induce additional artifacts [64]. 

3.2.1. Sitting, Supine or Standing Position? 

           The majority of EGG studies were performed in a supine position. The question is: Is 
there a possibility to record EGG in a sitting or standing position? 

           A partial answer to that question was offered via the research by Jondarenko et al. [45], 

in which 17 healthy participants were included. They underwent 30 minutes f asting and 90 

minutes postprandial EGG recording in both recumbent and sitting positions. Following 

parameters were calculated: 1) dominant frequency, 2) dominant frequency instability 

coefficient – DFIC, 3) dominant power – DP, 4) overall postprandial increment in the 

dominant power – ΔDP, 5) maximum instantaneous postprandial increment in the dominant 

power - Max_ΔDP, and 6) percentage of normogastria. There were no significant changes in  

parameters between supine and sitting positions, with the exception of DP in the postprandial 
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recording, which was significantly decreased in the sitting position compared to the 

recumbent. Based on the results, the Authors stated that EGG could be obtained in sitting 

posture, but it is required to follow recommendations regarding the procedure strictly. By 

doing so, it is possible to have EGG with comparable quality with the ones recorded in a 

supine position. 

   

Figure 3.3. Illustration of protocol for the EGG recording in supine, sitting, and standing 

posture, published in [7]. 

           Some level of extension to previously described research was provided in a published  

case study [7] performed in a healthy 24-year-old female subject. Postprandial EGG signals 

were recorded in supine, sitting, and standing positions. Protocol started with 10 minutes of 

relaxation after the meal consumption, followed by three short-term (5 minutes) recordings in  

each out of three body postures. Breaks between recordings lasted for 1 minute. The protocol 

is presented in Figure 3.3. Dominant frequency and percentage of normogastric power share 

(% normogastria) were calculated. Following results were obtained for supine, sitting, and 

standing posture, respectively: 1) DF -2.93 cpm, 3.10 cpm, and 2.75 cpm, 2) the percentage of 

normogastria share – 74.4 %, 30.0 %, and 45.2 %. Although larger study samples are needed 

for more significant conclusions, calculated normogastria percentage values speak in favor of  

more reliable recordings in supine, especially compared to the sitting position.  

3.2.2. Discussion of Subject`s Posture 

 Although, preliminary research presented in Dissertation showed that EGG signal 

changes when subject`s posture changes, additional measurements on larger sample are 

needed to confirm these findings. The majority of EGG studies are performed with subject in  

a supine posture, therefore the supine position should be the first choice if there is no specific 

reason to record EGG signals from subjects while sitting and standing. Once determined, 

subject`s position should be kept constant across trials and subjects in order to warrant the 

reproducibility.  

3.3. Electrode Placement 

           The actual position of self-adhesive surface electrodes on the skin over the portion of 

the abdomen around the stomach is referred to as electrode placement. This is one of the 
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crucial aspects of EGG protocol because the recorded signal characteristics correlate to a high 

degree with applied electrode placement. In 1987. Stern and colleagues stated that electrode 

placement “will not affect the frequency of the EGG, but will affect the amplitude and 

waveform of the EGG” [20]. Consequently, the lack of standard protocol influences the 

reproducibility of the method and comparability between results acquired with various setups. 

In parallel, ECG, EMG, and EEG have clear guidelines regarding the placement of surface 
electrodes [93], [94], [98]. 

           The majority of the proposed solutions include more than one channel for the 

acquisition of EGG [37], [96], [99]–[102]. Two main benefits from using more than one 

recording channel are: 1) increased robustness of the system – there is a possibility  that one 

channel is affected by artifacts while others are still suitable for the analysis, and 2) there is a 

possibility for comparison between different channels and calculation of parameters that 

require signals from more than one channel. On the contrary, a simplicity that arises from the 

application of only one channel could increase interest in this method, especially for 

researchers and clinicians without advanced engineering knowledge.       

3.3.1. Overview of Existing Electrode Placement Setups 

 Bipolar electrode configuration is preferable due to the increased Signal-to-Noise 

Ratio (SNR) and decrease of artifacts from the sources nearby. Due to that, in this overview, 

only bipolar solutions will be described. The positioning of the electrodes over the ribs should 

be avoided due to the possibility of extensive breathing artifacts [2]. In Figure 3.4. terms that 

will be used as markers for the explanation of electrode placement are presented. While some 

of the terms are self-explanatory (sternum, border of the rib cage, umbilicus), others are 

defined as following: 1) midline – the imaginary line that divides the body into left and right 

part, 2) midclavicular line – the imaginary vertical line that passes through the middle of the 

clavicle, 3) midaxillary line – the imaginary vertical line that divides posterior and anterior 

parts of the body, 4) xiphoid process - a small cartilaginous extension on the bottom of  the 

sternum [103]. 

 

Figure 3.4. Image of the human abdomen with anatomical landmarks that will be used for the 
description of electrode placement. Image of the body taken and adapted from “wait, active, 

activity, aerobics, attractive, body, caucasian, class, club, coaches, equipment, exercise, fit, 
fitness, gym, gymnastics, health, healthy, lifestyle, male, man, microphone” by www.audio-

luci-store.it. Accessed in November 2020. (License: CC BY 2.0)    
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           Stern et al. [20] suggested that one active electrode should be placed on the midline, 

above, and close to the umbilicus for single-channel acquisition. At the same time, the 

position of the second one should be around 6 cm to the left of the midline and just below the 

lowest rib (see Figure 3.5. a) ). Similar to the setup recommended in [20], in the “Handbook 

of Electrogastrography” by Kenneth L. Koch and Robert M. Stern [12], it is suggested 

following: 1) one active electrode should be attached around 10 cm above the umbilicus and 

around 6 cm to the left from the midline, with percussion to avoid rib cage in orde r to 

minimize breathing artifacts, 2) other active electrodes should be attached roughly 4 cm above 

the umbilicus on the midline in the near to the point that is in the middle between the xiphoid 

and navel, and 3) reference electrode should be placed on the right side of the abdomen 

around 10 to 15 cm from the midline, on the midclavicular line around 3 cm from the lo 

border of the rib cage (see Figure 3.5.a) ). In “Electrogastrography: a document prepared by 

the gastric section of the American Motility Society Clinical GI Motility Testing Task Force ” 

by Parkman et al. [40], it is stated that common electrode setup includes two active electrodes, 

one at the midline around the point that divides distance from navel and xiphoid process into 

equal segments, and another one 5 cm to the left of the midline, 2 cm below lowest rib, and in  

such manner that angle between the horizontal line and line that connects to active electrodes 

is around 30° (see Figure 3.5. b) ). In article [23] by Mintchev et al., five active electrodes 

were used and placed equidistantly between two points: 1) 5 cm to the left from the sternum, 

just below the costal margin, and 2) on the mid-clavicular line just below the right costal 

margin (see Figure 3.5. c) ). One of the most commonly used electrode placements was 

described in 1999 by Chen et al. [27]. It consists of six Ag/AgCl electrodes primarily 

designed for ECG recording (DNM, Dayton, OH). Four of those are active, one is common, 

and one is a reference. Active electrodes should be placed according to the following 

guidelines: 1) first one 2 cm cephalad the point that divides in half distance between the 

xiphoid process and the navel, 2) the second one in the same horizontal direction as the f irst 

one, 4 cm right from the midline, 3) the third one should be placed left from the midline, 

around 4-6 cm from the first electrode, on the line that makes 45° angle with the horizontal 

line, 4) the fourth one should be placed at the same line as the third one, 4 -6 cm from it.  The 

common electrode should be positioned at the point of a cross-section between the horizontal 

line connecting the fourth active electrode and midline. This setup provides a recording of 

four bipolar channels, each of them consisted of one active electrode and the common one  

(see Figure 3.5. d)). In order to calculate the vector of EGG, in [46], Tokumaru et al. proposed 

a setup where two bipolar channels were used. The first pair of electrodes were positioned 

horizontally, on the one fourth of the distance between the xiphoid  process and umbilicus, 

closer to the xiphoid - one electrode at the right and the other at the left midclavicular line. 

The second pair was placed along the left midclavicular line with the same distance between 

two electrodes as it is in the first pair (see Figure 3.5. e) ). The most recent setup was 

proposed by Wolpert et al. in [47], where they state that coverage of the stomach area can be 

suitable by placing eight electrodes, which is much simplified than the 17 that they initially  

used. Finally, they implemented the placement presented in Figure 3.5. f), which includes four 

pairs of electrodes (four bipolar channels) with a distance of around 4 cm between paired 

electrodes. Positions of three pairs were in the area below the left rib cage, while one pair was 

placed near the midline. The ground electrode was attached to the electrically neutral area 

near the iliac crest. A detailed explanation of the setup is provided in [47].  
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Figure 3.5. Proposed electrode placement from 6 selected publications that were used as 
guiding principles for electrode placement in this Dissertation. Image of the body taken and 

adapted from “wait, active, activity, aerobics, attractive, body, caucasian, class, club, 

coaches, equipment, exercise, fit, fitness, gym, gymnastics, health, healthy, lifestyle, male, 
man, microphone” by www.audio-luci-store.it. Accessed in November 2020. (License: CC BY 

2.0) 

 It should be mentioned that some researchers suggest an individualized approach – 

electrode placement corresponding to the determined position of the stomach in each subject. 

In order to implement that methodology, a suitable imaging technique is required prior to  the 

setup. It is reported that X-ray imaging [104] and sonography [12] could be used for this 

purpose.    

3.3.2. Simple Setup with One Channel 

           The robustness of the method, the possibility of signal propagation tracking as well as 

the calculation of parameters that include analysis of the signals from multiple channels are 

clear advantages of multichannel electrogastrography. Despite that, the chances are that the 

path towards standardization of EGG includes simplifying the recording setup – a process that 

favors the single-channel approach. Reproducibility of the results and the possibility of 

comparing data from various publications could increase if only one channel is applied. This 

could lead to significant advancements in the field. Consequently, greater interest in the 

method, from the side of both clinicians and researchers, could be achieved. Subject`s 

conformity during recording protocol could be increased as well. Also, there are many 

unanswered questions regarding the best position of the electrodes, vulnerability to the 

artifacts, and reliability of the recording using only one pair of electrodes. These are the main 

reasons and motivation why it was decided to investigate this simplistic approach to EGG 

recording and publish results in [2]. The idea was to compare results from three different 
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bipolar EGG channels in terms of reproducibility of previously published results in  order to  
answer the following questions: 

1. Is it possible to reliably record EGG using one channel? 

2. What is the most suitable surface electrodes position for single-channel EGG 

recording? 

 Answers to the listed questions were one of the main contributions of this Doctoral 

Dissertation. 

3.3.2.1. Methodology for Simple Single-channel Setup 

 In [2], three-channel electrogastrography signals were recorded in 20 healthy subjects, 

including 8 females and 12 males, from 20 to 31 years old (average 25.0 ± 2.7). Recording 

protocol explained in subchapter 3.1.2. included two 20 minutes recording, fasting and 

postprandial. The body posture in which signals were recorded was supine. To be included in 

this protocol, participants needed to fulfill the following criteria: 1) no history of 

gastrointestinal tract disorders, including unexplained nausea, stomach pain, and vomiting, 

and 2) not on any prescribed pharmacological therapy in the last six months. Inf ormative 

consent written according to the Declaration of Helsinki and approved by the Local Ethics 

Committee was signed by all study volunteers. Custom made acquisition apparatus (see 

subchapter 2.3.) was used, with 16-bits resolution and sampling frequency of 2  Hz. Signals 

were preprocessed in software package Matlab ver. R2013a (Mathworks Inc., Natick, MA, 

USA) – zero-phase Butterworth 3rd order band-pass filter (0,03-0,25 Hz) was applied to 
remove baseline drift and higher frequency artifacts such as breathing and ECG.   

           Novel electrode placement, illustrated in Figure 3.6., was implemented. Prior to the 

attachment of electrodes, careful skin preparation, including shaving of the hair and abrasive 

gel, was performed. The setup consisted of five electrodes – reference, common, and one f or 

each of the three recording channels. The reference electrode was placed on the electrically  

neutral area over the iliac bone (left midaxillary line), while the common one was positioned 

on the midline 8 cm above the umbilicus. Each of the three additional electrodes was placed 

to form one bipolar channel with the common one. Channel positions were not chosen to 

follow the pattern of wavefront propagation as it was common for multichannel setups. They 

were placed on the different anatomical landmarks of the stomach since this research aimed to 

determine from which site the most reliable signal can be obtained. Thus, the channel 1 (CH1) 

electrode was placed above the lesser curvature of the stomach and channel 3  (C H3) above 

the greater curvature. Channel 2 (CH2) electrode was positioned in a way that the line 

connecting common electrode and CH2 electrodes cuts in half angle between the horizontal 

line and line connecting common and CH1 electrode (~ 70°). Distances between channel 

electrodes and common were approximately 8-9 cm. 
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Figure 3.6. Presentation of electrode placement used in [2]. Image of the body taken and 
adapted from “wait, active, activity, aerobics, attractive, body, caucasian, class, club, 

coaches, equipment, exercise, fit, fitness, gym, gymnastics, health, healthy, lifestyle, male, 

man, microphone” by www.audio-luci-store.it. Accessed in November 2020. (Licensed CC BY 
2.0)   

 As the most commonly used parameter to describe the frequency content of EGG, 

dominance frequency was calculated to determine in which channel the most significant 

increase in frequency is present. It was defined as a maximum peak position in the signal 

spectrum determined using Fast Fourier Transform (FFT). Paired-sample t-test was used to 

compare DF data between fasting and postprandial signal in the entire study group to establish 
the statistical significance (p-value less than 0.05).  

3.3.2.2. Results for Simple Single-channel Setup 

           Average dominant frequencies for all 20 subjects for fasting and postprandial EGG 

signals, respectively, were: 1) channel 1 – 2.78 ± 0.36 cpm and 3.00 ± 0.40 cpm, 2) channel 2  

– 2.76 ± 0.37 cpm and 3.00 ± 0.36 cpm, and 3) channel 3 – 2.79 ± 0.36 cpm and 3.01 ± 0.36 

cpm. An increase in DF was statistically significant in all three channels, with p < 0.05 for 
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CH1 and CH3, and p < 0.001 for CH2. Bar graphs representing average DFs are presented in  
Figure 3.7. 

   

Figure 3.7. Average DF for fasting and postprandial recordings obtained in 20 subjects for 

the research published in [2]. 

3.3.2.3. Discussion for Simple Single-channel Setup 

           As expected, there was an overall increase in the frequency of recorded  EGGs af ter 

meal intake in each channel, speaking in favor of the possibility to acquire reliable signals 

with the usage of only one channel. If any of the proposed channels were used, without the 

other two, results that correlate with previously published ones [17], [21] would be acquired.  

In Table 3.1. overview of the selected publications demonstrating postprandial increase in DF 

is presented. The study performed on the larger study group would be beneficial to  confirm 

these results. However, this research strongly suggests that a single-channel technique is 
suitable for static EGG recording when multichannel parameters are not required. 

 It should be noticed that signals acquired from CH2 gave a stronger level of statistical 

significance. Thus, based on these results, bipolar EGG recording from correspondingly 

placed surface electrodes should give the most reliable signals. It is known that electrical 

activity of the stomach is most prominent in the region of greater curvature (rich with 

Interstitial Cells of Cajal) [11]. From that, it would be expected that CH3 is the most 

promising channel. What should be taken into account is the proximity of the lower GI part 

that could induce severe artifacts. Like that, breathing and ECG artifact could be inf luencing  

CH1 to a higher degree than the other two channels. In conclusion, the compromise between 

proximity to the greater curvature and distance from interfering noise sources, both 

incorporated into the placement of electrodes for CH2, could be the reason for i ts 

preferability.         
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Table 3.1. Overview of selected papers demonstrating postprandial DF increase.  

Reference Number of 

subjects 

Fasting DF 

[rcpm] 

Postprandial DF 

[rcpm] 

p-value 

Chen et al. 1991 

[15] 

10 2.95 3.29 p < 0.020 

Levanon et al. 1998 

[105] 

14 2.89 ± 0.05 3.17 ± 0.07 p < 0.007 

Simonian et al. 

2004 [37] 

61 2.89 ± 0.62 3.08 ± 0.27 p < 0.010 

Vargas-Luna et al. 

2019 [106] 

14 2.72 ± 0.16 2.83 ± 0.14 p < 0.003 

Popovic et al. 2019 

[2] 

20 2.76 ± 0.37 3.00 ± 0.36 p < 0.001 

 

3.4. Fasting or Postprandial? 

           One of the leading and often proposed questions is – What is the dif f erence between 

fasting and postprandial EGG recording? Due to the fact that the primary purpose of the 

stomach is storage, mixing, and digestion of the food, this question is reasonable. Many 

different variables could affect EGG recording (some of them – subject posture, electrode 

placement, already discussed in this chapter). However, meal intake is something that af fects 

the functionality of the GI tract, and as such, needs to be carefully examined. Depending on 

the length of the gastric cycle in each individual, different latencies for EGG changes after 

meal intake are expected. Itoh et al. in [107] stated that the approximate duration of the 

digestive cycle after meal intake is 4-5 hours. Based on that, the definition of fasting signal is 
any EGG recorded after 6 hours of food abstinence [19]. 

           In order to have a comprehensive overview of this topic, the following questions will 

be discussed in the next chapters: 

1. In what manner meal intake affects EGG signal? 

2. Is there a different EGG response to various types of a meal? 

3. For what EGG application is more suitable to record in fasting, and for what in a 

postprandial phase of the gastric cycle? 
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3.4.1. Effects of Meal Intake on EGG Signal 

           The first effects of meal intake were reported over five decades ago, in the article 

published by Nelsen and Kohatsu in 1968. [108]. They stated that there is an increase in  the 

frequency content of EGG after food consumption. This observation was subsequently 

confirmed in many articles [15], [17], [19]. From research conducted in 10 healthy subjects 

[15], Chen et al. reported an increase in dominant frequency after solid mean intake from 3.0 

cpm to 3.3 cpm. This speaks in favor of faster contractility, connected to the enhanced 

mechanical response of smooth muscles required to mix the food in the stomach after f ood 

ingestion. 

 

Figure 3.8. Graphical representation of meal intake effect on EGG parameters.  

 In addition to the heightened frequency, there is a reported increase in the amplitude 

and power of EGG signal postprandially [12], [19], [40]. Chen et al. in 1991 [15] reported that 

the power of EGG signal raised after both water and solid meal intake. A power increase of  

the gastric slow wave after drinking water was observed in 8 out of 10 subjects. Average 

increase was 3 dB (p < 0.01) and 6 dB (p < 0.01), for water and solid food intake, 

respectively. Postprandial amplitude was in average two times higher for the postprandial 

state compared to fasting. Explanation of this phenomenon could lie in a more prominent 

occurrence of spike potentials during the postprandial period. Namely, as explained in 

subchapter 1.3. spike potentials are related to the contractions of the stomach smooth muscle. 

Thus, it is expected that they occur more frequently after meal intake. Considering the fact 

that they are superimposed to slow-wave activity, it is plausible that they increase the value of 

EGG amplitude, and consequently, power. 

 Simonian et al. in [37], during research conducted in 61 healthy subjects observed a 

postprandial increase in the percentage of time during which DF was within the normogastric 

range (2-4 cpm). This parameter raised from 76.9 ± 20.2 % to 80.7 ± 15.1 % as a result of 

meal intake. 

 Results, presented in [2], confirmed the postprandial increase in DF. From many 

investigations that were not dedicated to the examination of meal intake, it was suggested that 
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these changes in power and increase in normogastria percentage are consistent among healthy 
subjects.    

           Based on the literature review, the expected increase of the three discussed parameters 

is presented in Figure 3.8. 

3.4.2. Gastric Response to Different Type of Meal 

           Extension to the research regarding the effect of meal intake on EGG signal 

characteristics is provided by investigating corresponding changes relative to the meal 

structure. Standardization of the EGG recording procedure should include recommendations 

for test meal, which implies that research in this area can substantially contribute to the f ield. 

Test meals that are used for examinations published in several articles are listed in Table 3.1.  

Table 3.2. Overview of used meals in several different research articles. Information 
regarding meal description or characteristics is not available in each reference, which is why 

description and/or characteristics are presented. 

Reference Meal description and/or characteristics 

Chen et al. 1991 
The meal consisted out of turkey breast sandwich, banana , and 
oatmeal-raisin cookies. 

Cucchiara et al. 1992 
The solid-liquid meal consisted out of bread, butter, ham, and 
fruit juice – 300 kcal. 

Ferdinandis et al. 2002 
The meal with high carbohydrate level, low fat - 165-170 kcal.  
Varying consistency of meals - solid, semisolid, and liquid. 

Geldof et al. 1986 
The meal included 250 ml of yoghurt with 20 g of sugar - 990 
kJ, 8-75 g of protein, 8.75 g of fat, and 30 g of carbohydrate. 

Holmvall et al. 2002 

 

The liquid nutritional drink - Fresubin (Fresenius Kabi, 
Stockholm, Sweden) or Nutridrink (Nutricia Nordica AB, 

Stockholm, Sweden) - 1.0 to 1.5 kcal/ml (35% from fat, 49% 
from carbohydrates, and 16% from protein. 
 
Several different flavors were available. 

Jednak et al. 1999 
The meal included soda crackers – 400 kcal (one nutrient 

predominant – protein, carbohydrate, or fat). 

Jondarenko et al. 2005 
The meal included slice of bread (50 g) scrambled egg fried on 

butter (10 g), and a glass of milk (250 ml, 1.5% fat). 

Lin et al. 1999 

The meal consisted out of Sunny Fresh Free Cholesterol (120 
g) and Fat Free Egg Product (Sunny Fresh Foods, Inc., 
Monticello, USA) (60 kcal), two slices of whole bread (120 
kcal), jelly (30 g, 75 kcal), and water (120ml). 

Parkman et al. 2003 
The meal included an egg sandwich and water - 32% protein, 
46% carbohydrate, and 22% fat. 

Popović et al. 2019 

The commercially available oatmeal – 274 kcal (14.15% 

protein, 61.6% carbohydrates, 8.42% lipids, 5.94% fibers) 

and 100 ml of squeezed orange juice - 30 kcal. 

Vargas-Luna et al. 2019 

The solid meal included two scrambled eggs and 120 mL of 
water. 
Liquid meal - milk (240 mL, 2% fat). 
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 In 1998. Levanon et al. published an article entitled “Effects of meal volume and 

composition on gastric myoelectrical activity” [105], in which they aimed to “investigate the 

effect of meal volume and composition on postprandial myoelectrical activity”. In the stu dy, 

14 healthy participants from 22 to 41 years old (average 30.7 ± 1.8, 7 female and 7 male) 

were included. They underwent EGG recording, fasting and postprandial, with four dif ferent 

test meals: 1) reference - turkey sandwich, chips (potato), chocolate cookie, and 1/2 cup of  

orange juice, 2) reduced-calory meal, 3) high-fiber meal, and 4) low-volume meal. While 

meals with reduced volume and increased fiber content did not produce any significant 

changes compared to the reference meal, reduced-calory meal failed to induce frequency, 

power, and normogastiric percentage increase. It was suggested that meals with lower calory 

content than usual are not suitable for the EGG recording protocol. 

 Effects of meal temperature on the characteristics of EGG were also  examined in 

[119]. Concretely, a shift in dominant frequency after meal intake was observed regarding the 

same liquid meal (36 kcal, 300 mL) served at three different temperatures –  4°C, 27°C, and 

55°C. The study group was consisted out of 10 healthy volunteers ranging from 20 to 27 years 

old. Results suggested that longer duration and higher magnitude of frequency change is 

connected to the coldest meal (4°C). It is suggested that the temperature of the meal should be 

taken into account when recording and analyzing EGG signals. 

           The study published by Ferdinandis et al. [110] aimed to explore the effects of meal 

consistency variation on EGG signal. It was obtained in 18 healthy participants, 21 to 35 years 

old, including 6 males and 12 females. On three separate days, subjects were asked to  eat an 

isocaloric meal (165-170 kcal) with different consistency (solid, semisolid, and liquid). While 

solid and semisolid meals induced a statistically significant increase in signal power, liquid 

meal failed to do the same. Additionally, intake of these meals did not result in an increase in  

frequency content, which is consistent with results published in [105], where it is stated that 

reduced-calory meals do not induce frequency shift. 

           Patients with functional dyspepsia did not show an increase in the power or frequency 

of the EGG after a meal, compared to the fasting state [106]. This was observed in the study, 

which included two subject groups: 1) healthy control group – 14 subjects and 2) f unctional 

dyspepsia group – 12 subjects. On the contrary, in research published in [111], there was no 

significant difference in EGG parameters between 20 healthy subjects and 10 patients with 

functional dyspepsia. Those controversial findings suggest that the s tudy group should be 

much higher in order to deliver reliable conclusions. 

           Exciting results were provided by Jendak et al. [32] considering EGG performance in  

pregnancy. This research was obtained in 14 pregnant women (20-35 years old) who reported 

nausea during the first trimester. Effects of six 400 kcal meals with different compositions 

(distribution of protein, carbohydrates, and lipids) and two non-caloric meals (water and 

sugar-free gelatin) were examined. Based on the findings, meals with a higher percentage of  

protein statistically significantly (p < 0.05) decreased both reported nausea occurrence and the 

percentage of gastric dysrhythmias detected by EGG. This result also supports the fact that 
gastric dysrhythmias assessed by EGG correlate with nausea occurrence.              
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3.4.3. Application of Fasting and Postprandial EGG 

           Following the previous subchapter, an issue that needs to be addressed is in what 

applications fasting and in what postprandial EGG should be used. Although the most suitable 

way to get an insight into the gastrointestinal tract functionality is to record both before and 

after a test meal, sometimes that protocol is not convenient. Thus, discussion regarding the 
appropriate phase of the gastric cycle for EGG recording could be highly beneficial. 

           After a meal, slow waves are presented with higher amplitude [19]. Therefore clearer 

signal with easier detection of cycles speaks in favor of using postprandial signals in the 

majority of applications. Additionally, if the aim is to study digestive processes, it is 

reasonable to acquire the signal when the stomach is more active. Increased percentage of 

normogastria postprandially [37] implicates that there are higher chances to obtain an 

unusable signal (without slow wave activity) if the recording is done during fasting. This 

resulted in many specific examinations that used only EGGs after the test meal for the 

analysis. One more issue that should not be overlooked is the reproducibility of the recording 

protocol. While for postprandial recordings, uniformity of the meal and the latency between 

meal intake and recording onset are easily achievable, the period of fasting before subject 

arrives for the recording is subjective and depends on the confidence between the researcher 

and study participant.     

 In examinations where an additional stimulus is presented to the subject (drum 

rotation, virtual reality, driving simulation, etc. [6], [112]–[114]), a previously ingested meal 

can induce severe symptoms of nausea as reported in [3]. In those circumstances, recording in  

a fasting state can be much more convenient. As already stated in subchapter 3.4.1. 

postprandial increase in EGG amplitude could be induced by the incidence of peak potentials 

superimposed to slow wave activity. Although the occurrence of peak potentials correlates 

with the gastric contractions, the main aim of EGG remains solely detection and analysis of 

slow waves. It should also be stated that in 1992. Riezzo et al. studied the reproducibility  of 

the EGG recording prior to the meal and, based on the signals acquired in three consecutive 

days and concluded that there are no significant changes in parameters extracted f rom EGG 

signal [53]. Thus, EGG recorded in fasting state could be a reliable method for the slow wave 

assessment technique. 

  



36 
 

4. Analysis and Interpretation of EGG Signal 

 Reliable recording of EGG should be followed by suitable analysis and interpretation 

of the signal in order to obtain relevant conclusions. Over the course of years, many 

researchers made their efforts to make significant advantages in the processing and 

interpreting of EGG signal. It should be stated that the first stage in the analysis of the signal 

is its evaluation. The reliability of the results is highly dependent on the signal quality. Thus, 

assessment of EGG usability is a crucial step towards suitable extraction of features. 

Evaluation of the signal does include not only a decision regarding its fitness for further 

analysis but also the determination of noise presence and the ability for its cancelation . Only 

after a signal is evaluated and prepared for the analysis, it is suitable to obtain parameter 

calculation, i.e., feature extraction. Considering that, in this chapter, the following challenges 
will be addressed: 

1. evaluation and noise detection in EGG signal; 

2. preprocessing, including methods for artifact cancelation; 

3. quantification of EGG signal. 

           These steps are prerequisites to acquire reliable parameters that can give the researcher 

opportunity to deliver significant conclusions based on the comparison of numerical values 

and statistical analysis. 

           Quantification of the commonly used electrophysiological signal is essential, but it has 

even higher significance in the case of EGG. Exemplified, from ECG signal timeseries, e ven 

without quantification, a skilled interpreter can determine many valuable conclusions –  heart 

rate, conduction disturbances, presence of arrhythmias, etc. On the other hand, EGG signal in  

time is highly challenging for interpretation, and it requires quantification to deliver valuable 
and useful information.    

4.1. EGG Signal Evaluation 

 As already stated, assessment of signal quality should be the first step towards suitable 

analysis and interpretation. That process could be divided into two subprocesses: 1) 

determination of signal usability and 2) recognition of artifacts. A signal can be defined as 

adequate for further analysis if it is not contaminated with severe artifacts or if  the artif acts 

can be extracted using established methods. Due to the lack of standard techniques to quantify 

the quality of the signal, the primary approach is visual observation [50]. Different 

computational methods had been introduced, but results regarding their performance are still 
scarce. 

4.1.1. Visual Observation 

 In 2019 O`Grady et al. in [50] stated that since many physiological or external artifacts 

can mimic slow wave activity, it is still necessary to introduce educated visual observation to  

discriminate between artifacts and gastric myoelectrical activity. This statement clearly 
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describes the current status in the field of EGG evaluation. Namely, there is still a need for 

insight from an expert in order to proceed with EGG analysis. Visual assessment of EGG 

signal can be performed from both timeseries and frequency spectrum. 

 In the majority of applications, EGG is recorded for a relatively long time (over 20 

minutes), so observation of the whole signal cannot provide many conclusions. As presented 

in Figure 4.1. it is suggested that separate parts of the signals should be zoomed and 

evaluated. The first thing that could be determined from the signal in the time domain is its 

amplitude. It should be within the determined range – from 100 µV to 500 µV [2]. While 

slight variations out of the range do not mean that signal is unusable if the amplitude is much 

lower than expected, it could indicate problems with recording equipment or physiological 

absence of slow waves. On the contrary, values significantly higher than 500 µV could imply 

that there is probably a severe motion artifact that affects the signal. It is expected that EGG 

in healthy subjects has a sinusoidal shape of the signal, with a period around 20 s, detectable 

visually. Lack of this periodicity in the parts of timeseries does not discard signal from further 

analysis. Still, if there is a lack of it in the whole recording, probably, interpretation of the 
signal would not give valuable information. 

                     

Figure 4.1. Illustration of the principle of zooming signal in order to obtain suitable v isual 

observation. The EGG signal used is from a free, open-source EGG database (subject ID9 
postprandial) [18]. 

           A spectrum of the suitable recorded EGG signal from a healthy subject should contain 

a strong dominant peak at the frequency around 3 cpm (0.05 Hz) [40]. In specific cases, when 

recording is obtained in patients with gastrointestinal disturbances, or when they report 

symptoms of nausea, there can be more than one peak in the frequency characteristic. That 

phenomenon does not mean that the signal should be rejected from further processing since 

many more parameters could be calculated for a description of frequency content. If there is a 

“flat” spectrum of EGG signal, meaning that there is no variability in the magnitude on the 

whole frequency range, that signal is not suitable for further analysis. The main question that 

can be answered from the visual observation of frequency spectrum is: Is it possible to  easily  
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extract existing artifacts? If there are apparent artifacts superimposed on the slow wave 

activity in timeseries, but their frequency content is in a separate range from the EGG (<1 

cpm and >10 cpm), digital filtering can resolve that problem. Examples of the acceptable and 
unacceptable spectrum are presented in Figure 4.2.     

   

Figure 4.2. Presentation of frequency spectrums of suitable (left panel) and unsuitable – 
severely nauseated (right panel) EGG signals. The appropriate EGG signal that was used is 
from the free, open-source EGG database (subject ID9 postprandial) [18]. In contrast, the 

unsuitable signal was obtained during the testing of the device described in Chapter 2.  

4.1.2. Quantification Methods 

 In our article [3] entitled “Lessons Learned: Gastric Motility Assessment During 

Driving Simulation” an algorithm for the evaluation of EGG signal is presented. This method 

aimed to determine which signal, from the three recorded via different channels, is the most 

suitable for the analysis. Initial assumptions were: 1) abrupt changes in the signal can 

correspond to movement artifact and 2) from the suitable recorded signals, free of severe 

noise presence, most adequate for the analysis is the one with the lowest power. To 

incorporate those hypotheses in the evaluation algorithm, maximum peak-to-peak amplitude 

and power of the signals were calculated. In the first step, out of the three signals, the ones 

with maximum peak-to-peak amplitude 100 % higher than any of the other two were 

excluded. Out of the remaining signals, the one with the lowest power was selected. The 

diagram of the algorithm is presented in Figure 4.3. To the best of the Author `s knowledge, 

this is the first automated algorithm for choosing the most appropriate recording channel. 

Compared to the visual observation, it delivered satisfactory results,  mainly in terms of 

avoiding channels with substantial artifact power that could result in the false calculation of 

the features. In the corresponding protocol, electrode placement suggested in [2] and designed 

in order to cover the pacemaker region of the stomach, was used. Therefore, it is hypothesized 

that EGG signals from all recorded channels will deliver similar or the same amount of 

information regarding slow wave activity as long as there are no severe artifacts  [2]. 

Subsequently, this algorithm provided channel selection by discarding compromised signals 

with excessive power originating from noise. This promising automated method should be 

further tested in different recording conditions and in a larger study group. Future research 

might be directed towards developing an estimator of usefulness of the signal, which could be 
used for the evaluation of automated algorithms.  



39 
 

           A fractal dimension approach to EGG signal assessment is proposed in  [115] f or the 

examination of electrode surface area impact on electrogastrogram. Although this paper was 

not aiming to evaluate EGG signal quality, the principle can be transferred to it. Considering 

the nature of signal acquired by EGG devices, which is before the preprocessing often 

presented as breathing artifact and ECG artifact superimposed on slow wave activity, 

calculation of its fractal dimension could be an exciting approach. 

           Matsuura et al. reported in [116] the application of the Wayland algorithm to evaluate 

EGGs recorded in a supine and sitting position. This method, described as determinism 

evaluation of timeseries, could be a promising tool for assessing EGG usability in specific 

applications. 

   

Figure 4.3. Schematic presentation of the evaluation algorithm for the selection of the most 
suitable out of the three EGG signals recorded with a 3-channel device [3]. EGG CH1, EGG 
CH2, and EGG CH3 are signals recorded using channels 1, 2, and 3, respectively. Max_PP1, 

Max_PP2, and Max_PP3 are calculated maximum peak-to-peak amplitudes from 
corresponding signals. 

4.1.3. Artifact Recognition 

           For the suitable evaluation of the signal, an experienced examiner needs to  be able to  

recognize the most commonly detected artifacts in the EGG recording. They include the 

following: 1) ECG (pulse rate) artifact, 2) breathing (respiratory) artifact, and 3) motion 

artifact. Suitable detection of its presence and severity is a crucial step towards deciding 

should the corresponding EGG be included in the analysis. There are two approaches for 

artifact identification, but the best practice is to use both timeseries and frequency spectrum of 

the signal.   

           Artifacts, especially ones with frequencies higher than the EGG range, are more 

prominent when a signal is recorded with a higher sampling rate. Therefore, it was decided to  

use the example of EGG recorded with the device described in Chapter 2. and a sampling 

frequency of 100 Hz. The corresponding signal was acquired in a healthy 23-year-old female 

(57 kg, 168 cm) in static conditions, supine posture after meal ingestion.   

4.1.3.1. Timeseries Approach 

           Interfering artifacts coming from the heart muscle will be presented as superimposed, 

relatively sharp (depending on the hardware filters cut-off rates) peaks that occur periodically. 

Considering that the heart rate in healthy subjects varies from 60 bps (beats per minute) to 

100 bps [117], it is expected that period between peaks is approximately 0.6 to  1.0 seconds. 
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Assuming that subject does not have any cardiac rhythm disorders and if no physical or 

psychological stress has been induced, this period should not change abruptly. In Figure 4.4. 

the example of ECG artifact (R and T waves) in timeseries of EGG signal is presented. It 

should be stated that based on our experience, T waves are not commonly present as a part of  

ECG artifacts in EGG timeseries. 

 

Figure 4.4. Example of ECG artifact presented in the signal recorded using device described 
in Chapter 2, with sampling frequency 100 Hz. 

           Similar to ECG, a respiratory artifact is a superimposed periodical signal with a period 

ranging from 0.86 s to 15 s [118]. Those deflections tend to be smoother than the ECG peaks, 

and the period can change suddenly (if the subject takes a deep breath). The illustration of 
breathing artifact is presented in Figure 4.5. 

 

Figure 4.5. Example of EGG signal compromised with respiratory artifacts. Signal was 
recorded using the device described in Chapter 2, with a sampling frequency of 100 Hz.  
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           Motion artifacts are arguably the most challenging issue in the EGG preprocessing. 

This is due to the fact that their frequency is often overlapping the EGG f requency content. 

Their identification is usually commonly done by the observation of timeseries. Motion 

artifacts are presented with abrupt changes in the amplitude given with the values higher than 

the rest of the slow wave activity. In Figure 4.6. apparent motion artifact in EGG signal is 

presented. In [3], motion artifacts were visually identified, and compromised samples  were 

extracted from the timeseries manually. During the research described in this Dissertation, the 

gained experience revealed that this type of noise is often present in EGGs acquired by using 
a dynamic protocol. 

  

Figure 4.6. Example of motion artifact presence in EGG timeseries. The signal that was used 
is from the free, open-source EGG database (subject ID4 postprandial) [18]. 

           It should be mentioned that a 50 Hz (or 60 Hz) common power grid artifact can also be 

observed in EGG signals, mostly if a recording is obtained with a high sampling f requency. 

One example is provided in Figure 4.7. 

   

Figure 4.7. Example of noise visually detected 50 Hz artifact in EGG signal. Signal was 
recorded using the device described in Chapter 2, with a sampling frequency of 100 Hz.  
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4.1.3.2. Frequency Domain Approach 

           Observation of signal spectrum can reveal frequencies of the ECG and breathing 

artifact. Depending on the individual characteristics of each subject, it is expected that ECG 

artifact should be represented with frequency component from 1.0 Hz to 1.67 Hz (60 bpm to 

100 bpm) [117], while breathing artifact should be around 0.08 Hz to 0.7 Hz (from 4.8 to  43 

breaths-per-minute) [119]. In the recording that can be denoised from these two artifacts using 

digital filtering, its frequency content should be easily identified and separated from the EGG 
content, as presented in Figure 4.8. 

   

Figure 4.8. Illustration of the identification of ECG and respiratory artifact from EGG 
frequency characteristics. Signal was recorded using the device described in Chapter 2, with 

100 Hz sampling frequency. 

           Unlike ECG and respiration, motion artifacts could be unidentifiable f rom f requency 

characteristic due to the overlapping with EGG content. Depending on the severity of the 

artifact, it is expected that there is a low-frequency component that almost completely covers 
EGG dominant frequency. 

4.1.4. Discussion on EGG Quality Assessment  

 Ideally, method for EGG signal evaluation in terms of noise contamination should be 

automated since it would reduce time for the analysis and improve reproducibility and 

comparability of the results from various investigations. This subchapter provided the 

groundwork for further research on assessment of EGG quality. To this day visual observation 

remains the method of choice for the assessment of signal quality [50]. The empirical method 

for determination of the best recording channel in three-channel EGG recording presented in  

subchapter 4.1.2. [3] showed promising results for automatic discrimination among signals 

recorded in the same subject simultaneously, from different channels. While neural networks 

were already used for EGG artifact detection [61], to the best of the Autor`s knowledge they 

were not applied for signal evaluation. This could be one of the directions for future 
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improvements of EGG signal quality assessment techniques. Also, fractal analysis, used in 

[115], could be applied due to the fractal nature of the raw EGG signal (periodical artifacts 

superimposed on slow wave activity).                 

4.2. Artifact Cancelation 

           It was already stated that artifact presence is one of the main pitfalls in  the recording 

and analyzing EGG signals. That was a motivation for many investigators to design suitable 

methodology for artifact extraction. The majority of artifacts are in the frequency range that 

does not include the EGG range. Consequently, those noises can be extracted from the signal 

by applying digital filters with appropriate cut-off rates. On the contrary, disturbances in EGG 

with the frequency content that overlaps EGG requires different techniques. There are two 

approaches for addressing this issue: 1) manual extraction of artifacts and 2) automatic 

algorithms. While manual extraction offers confidence based on an educated EGG observer `s 
decision, automated methods are more convenient and suitable for large data bases. 

4.2.1. Digital Filtering 

           Even though EGG recording devices usually have a band-pass filter implemented, it is 

still beneficial to do additional preprocessing with a relatively narrow band digital filter [47]. 

This will extract the possible artifacts with corresponding frequency content outside of the 

band defined by cut-off frequencies. Thus, the major decision to consider is related to the 

determination of the cut-off values. Some recommendations from the relevant literature are 

presented in Table 4.1. 

  

Table 4.1. Recommendations for cut-off frequencies values from the literature. DF stands for 
the dominant frequency of EGG signal. 

Reference Lower cut-off frequency 

range [rHz] 

Higher cut-off frequency 

range [rHz] 

Mintchev et al. 1996 [23] 0.020 0.100 

Sanmiguel et al. 1998 [26] 0.020 0.150 

Amaris et al. 2002 [79] 0.000 0.300 

Komorowski et al. 2015 [43] 0.015 0.150 

Wolpert et al. 2020 [47] DF – 0.015 DF + 0.015 

Popovic et al. 2019 [2] 0.030 0.250 

             

 It should be mentioned that in [47] suggestion was to determine cut-off frequencies 
relative to the dominant frequency of the EGG, as specified in Table 4.1.  
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 In our research [2] relatively wider band, compared to the values in Table 4.1., was 

used – 0.03 Hz to 0.25 Hz. The rationale behind it was to ensure the saving of all EGG 

components. When establishing cut-off frequencies for digital filters, the adopted f requency 

range (see subchapter 1.3.1.) needs to be considered. For example, we use EGG f requency 

range from 1 cpm to 10 cpm, which corresponds to 0.017 Hz to 0.17 Hz. Because this range is 

wider than some other commonly used ones, it is reasonable to apply a wider band-pass filter 

range. If the recording is more prone to breathing artifacts, as could be the case in sitting 

posture recordings, the upper cut-off limit should be decreased. In [6], we applied Butterworth 
3rd order band-pass filter with frequency band 0.03-0.2 Hz.      

4.2.2. Manual Extraction of Artifacts 

           Extraction of the samples compromised with severe artifacts is sometimes the only 

option to perform suitable EGG signal preprocessing [3]. This is mainly the case when noise 

induced by the subject`s motion during the recording session is present. The main reason f or 

removing the noisy part of the signal is its ef fect on frequency content. Namely, while it is 

possible to disregard that part in the timeseries, its contribution to the corresponding spectrum 

cannot be overlooked. It can lead to a false conclusion about the lack of dominant f requency 
or its shift. In Figure 4.9. the example of misleading effect of motion artifact is presented. 

 

 

Figure 4.9. Benefits of manual extraction of movement artifacts exemplified. The signal that 
was used is from the free, open-source EGG database (subject ID4 postprandial) [18]. 

 The severity of motion artifacts could be increased when EGG signal is recorded in  a 

dynamic environment, since complete limitation of subject`s body movements is not 

attainable. That was the case in the EGG recordings obtained during driving simulation 

presented in [3]. In accordance with the recommendations from [50] educated visual 
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observation of the signals was performed to detect and cancel motion artifact. Corresponding 
procedure included following steps [3]: 

1. Experienced EGG researcher visually observed signals and detected the ones with 

motion artifacts. 

2. The compromised samples of the signals with detected artifacts were marked. 

3. Corresponding samples were deleted from the timeseries. 

 The examples of EGG signals recorded during driving simulation [3] that underwent 

previously described manual artifact cancelation are presented in Figure 2.10.  

 

Figure 4.10. Sample EGG signals recorded for the study published in [3], that underwent 
manual extraction of movement artifacts.  

4.2.3. Video-based Artifact Cancelation 

           One of the techniques that can be used to detect subject movements is the analysis of  

video signal obtained during EGG session. In [5], the method for motion artifacts cancelation 

via camera recording analysis was introduced. Additionally, it was tested through the case 
report. 

 In many electrophysiological recording protocols, there is a need for a camera that 

synchronously records the subject. The rationale behind that is to make a correlation between 

changes in signal parameters and physical activity of the corresponding subject or to provide 

any additional input to the measurement notebook. In EGG, there is a substantial need f or  an 

algorithm that offers the opportunity to link parts of the signal compromised by noise with 
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movements from the subject in order to confirm the presence of the movement artif act. This 

can be done by including a recording of the video in the protocol. An alysis of that two-

dimensional signal could be used as an automatic method for artifact cancelation.     

4.2.3.1. Method for Video-based Artifact Elimination 

           Video recorded in grayscale was used for the analysis since the proposed algorithm 

does not require color frames. Analysis of video recording was performed in the f ollowing 
steps: 

1. Mean value of all frames was calculated. The original video was used to generate a 

new sequence of images by subtracting the mean frame from other frames.  

Rationale: As this video recording should be stationary (the subject is still asked to limit 

movements), the mean frame will represent the subject`s image while not moving. 

Considering that, after subtraction of it from other frames, most of the resulting ones will have 

pixels with values close to zero, except the ones in which there was a change originating from 

the subject`s movement. 

2. Sequence of two-dimensional images was converted into the one-dimensional signal 

by summing absolute pixel values from each frame and assigning obtained values to the 

corresponding sample of the new signal.  

Rationale: Analysis of 1D signal is more convenient, takes less memory, and could increase 

algorithm performance. 

3. Samples that exceeded the empirically determined threshold - 15 % of the maximum 

signal amplitude was declared as the one that corresponds to the presence of movement in the 

video.  

Rationale: By following the previous step, it can be deduced that samples of 1D signal with 

higher values have a greater chance to correlate to the actual movement of the subject in  the 
video.   

 

Figure 4.11. Scheme of video-based motion artifact cancelation introduced in [5]. 
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           Explained analysis of video recording results in points in time that correlate with the 

movement. Samples of synchronously recorded EGG signal that correspond with these points 

in time were extracted from the timeseries. The diagram of the algorithm is presented in 
Figure 4.10. 

           The algorithm was tested on EGG recording acquired in the healthy male subject (25 

years old, 93 kg, 180 cm). The session lasted for 90 minutes, and it was obtained in a 

postprandial state while the volunteer was in a supine position. Power shares of spectrum in 

normogastric range (2-4 cpm) were calculated for the signal before and after video-based 

artifact cancelation.     

4.2.3.2. Results for Video-based Artifact Elimination 

           Normogastric power shares were 33 % and 40 % for the EGG signal prior and after 

removal of possibly affected samples, respectively. The algorithm resulted in  247 removed 
samples (123.5 s) from the original signal. 

4.2.3.3. Discussion of Video-based Artifact Elimination 

           Performance of the algorithm was beneficial in terms of an increase in  normogastric 

content that was expected in this subject (postprandially, without any digestive disturbances)  

as a consequence of noise removal. While the percentage increase was not substantial, it 

should be stated that only 0.02 % of the samples were excluded. This implies that parts of the 

signal with no explicit slow wave activity were deleted, which speaks in favor of suitable 

detection of compromised samples by video-based artifact cancelation algorithm. In order to  

determine the effect of discarded artifact duration, intensity, and occurrence frequency on the 

resulting EGG signal quality, further investigation on a larger sample is required.    

 Due to the fact that this method was tested in only one subject (case study), an 

empirically set threshold of 15 % of the maximum amplitude should be considered 
preliminary and further examined. 

           As the direction for future work, besides testing in a larger study group, tendency 

should be to examine the influence of different video-recording techniques on the algorithm 

performance. Namely, different frame area or angle could have substantial effects on the 

method. The ultimate goal would be to develop a video-based movement artifact recognition 

algorithm that would work in real-time and give both subject and examiner feedback that 
there is a potential problem with the recording procedure. 

           Ultimately, approach that uses strategically positioned accelerometers with the purpose 

to detect movement should be designed. This could lead to an alternative approach or ideally  

combined approach that would incorporate benefits from both methods.   

4.2.4. Fractional Approach for Noise Cancelation 

           Application of Fractional Calculus (FC) in combination with commonly used 

averaging filters for the extraction of ECG artifact from EMG signal recorded on pectoralis 

major muscle was presented in [120], [121]. Extension of that research was directed  towards 

the opposite approach – cancelation of EMG artifact from ECG [122], [123]. The reported 
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multipolarity of FC as an additional tool for noise cancelation was the motivation for the 

algorithm presented in [4], where the combination of FC and Savitzky-Golay filter (SG) was 

applied for processing of high-sampled semi-synthetic EGG signal contaminated with 
artifacts originating from the heart muscle. 

           Although EGG is the most commonly recorded with sampling frequencies above or 

equal to 4 Hz [41], more frequent acquisition of samples can be beneficial and increase the 

amount of useful information derived from the signal. Expectations are that with a higher 

sampling rate, there is a possibility of detecting electrical response activity, which cor relates 

with smooth muscles contractions. Investigators in [43] proposed 200 Hz, while in  [124], it 

was even higher (250 Hz). The main challenge with high sampling rate acquisition is the 

interference of ECG signal. Due to the relatively high amplitude (up to 10 mV) compared to  

EGG, ECG presents a significant disruption of EGG signal quality [76]. While smoothing 

filter, like SG, provides satisfactory results, this approach will also extract spike potential. The 

idea behind the research presented in [4] was to test non-inferiority of SG and FC 

combination, compared to the SG only, which can be the foundation for further improvement 

of FC based algorithms for artifact cancelation in EGG signals. The proposed approach was 

tested on the semi-synthetic signal. 

4.2.4.1. Fractional Order Calculus (FC) 

           Calculation of derivatives with non-integer order can be referred to as fractional order 

calculus. It can also be described as expanded ordinary differential calculus. Its application is 

widespread and includes biomedical signal analysis, as well as modeling of biological systems 

and medical image processing [125], [126]. Form of FC that was used in [4] is def ined in  its 

general manner [127], [128] by the equation: 

                           𝑎𝐷𝑡
𝛼𝑓(𝑡) = 𝑙𝑖𝑚
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in which Γ() stands for gamma function, 𝑎 for upper limit, α is the order of fractional 

derivative of function 𝑓(𝑡), while 𝑛 = [(𝑡 − 𝑎)/𝑇],  𝑡 > 𝑎, and T is sampling period for 

fractional order derivative numerical calculation. 

4.2.4.2. Savitzky-Golay (SG) Filter 

           This Finite Impulse Response (FIR) digital filter, most commonly used for signal 

smoothing, was introduced by Abraham Savitzky and Marcel J. E. Golay in 1964. [129]. It is 

applied in many areas, including image and signal processing, chemistry, and spectroscopy 

[130]. The main advantage of SG over other averaging filters is its ability to preserve some 

amount of useful high-frequency content while performing low-pass filtering [131]. It uses a 

polynomial function of defined order for fitting a set of points in an odd sample size window. 

This fitting is done in the least square manner. Equations that were used in [4] for the 
implementation of the SG filter are following:                                                  
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𝜀𝑛 = ∑ (𝑝(𝑛) − 𝑥(𝑛))
2𝑀

𝑛=−𝑀                                                   (2) 

                                                         𝑝(𝑛) =  ∑ 𝑎𝑘𝑛𝑘𝑁
𝑘=0                                                          (3) 

where 𝜀𝑛 stands for mean squared error (window size is 2𝑀 + 1, centered at 𝑛 = 0) which 

was minimized. Coefficients of fitting polynomial 𝑝(𝑛) are 𝑎𝑘 , while N was its order. In order 

to obtain output, calculations were done for each sample. 

4.2.4.3. Method for Application of SG Filter and FC for Signal Separation 

 The semi-synthetic signal was made as a combination of EGG signal recorded with the 

device described in Chapter 2. in the healthy female subject (28 years old, 167 cm, 53 kg) 

after test meal ingestion (postprandial recording). The sampling rate for recording was set at 2  

Hz, but afterward, the signal was upsampled to 1 kHz and preprocessed with Butterworth 3rd 

order band-pass filter (with cut-off frequencies of 0.03 Hz and 0.20 Hz). An artif icial pulse 

rate signal was designed with a 60 bpm heart rate and the sampling rate of 1 kHz in order to  

be compatible with the previously described EGG signal. Adjacent waves of ECG (P and T) 

were extracted due to the low possibility of its prominence in EGG. Signal was additionally 

normalized to its maximum amplitude and superimposed to EGG. Gaussian white noise was 

also added to simulate more realistically in vivo conditions. The process of semi-synthetic 

signal production is graphically described in Figure 4.11. 

   

Figure 4.12. Production of semi-synthetic EGG signal contaminated with severe ECG 
artifact. 
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           A two-step procedure was obtained to extract pulse rate signal from semi-synthetic 
timeseries: 

1.    FC with order from 0 to 1.2 with the step of 0.1, including the shorter step size (0.02) 

from 0.9 to 1, was applied to semi-synthetic signal; 

2.    SG filter with window size ranging from 99 ms to 999 ms (step 100 ms) was applied to  

semi-synthetic signal after FC. 

 

Figure 4.13. Scheme of testing protocol for performance evaluation of FC and SG 

combination applied on the semi-synthetic signal.   

 By applying combinations of different FC orders and SG window widths on both 

signal with and without Gaussian white noise, 374 different output signals were acquired and 

subsequently evaluated using signal-to-noise ratio (SNR) – where the signal was the semi-

synthetic timeseries after FC and SG application, and the noise was synthetic NS-ECG signal. 
Described protocol is schematically presented in Figure 4.12. 

4.2.4.4. Results of Application of SG Filter and FC for Signal Separation 

           For the signal without Gaussian white noise, SNR had its highest value (25.2 dB) f or 

SG window size 999 ms and FC order from 0 to 0.9 and from 1.1 to 1.2. With Gaussian white 

noise, SNR was 8.3 dB for SG window size 999 ms and FC order from 0 to 0.94 and from 1.1 
to 1.2. Results are graphically presented in Figure 4.13. 

 

Figure 4.14. SNR values for the outputs of the algorithm with different combinations of FC 

order and SG window width, when the input was: a) without Gaussian white noise, and b) 
with Gaussian white noise. The figure is taken and modified from [120] with permission from 

the publisher. 
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4.2.4.5. Discussion of Application of SG Filter and FC for Signal Separation 

           Although there were no clear benefits from the addition of fractional calculus to 

Savitzky-Golay filter, these results suggest that there is no inferiority when fractional order is 

not close to 1. From the actual example presented in Figure 4.14. it can be observed that pulse 

rate peaks are entirely extracted from the signal and that now clear slow waves are present. 

           For more relevant conclusions regarding the suitability of fractional calculus as an 

additional tool for artifact cancelation from EGG timeseries, it is necessary to evaluate its 

performance on an actual high sampled large EGG signal database. 

   

Figure 4.15. Exemplified illustration of combined SG and FC algorithm performance on the 
semi-synthetic signal. The image was taken and adapted from [4] with permission from the 

publisher. 

 

4.2.5. Effect of Pathologies and Physiological State on EGG Artifact  

 As any other electrophysiological procedure, EGG can be affected by the individual 

characteristics of both healthy subjects and patients. One of the conditions that can inf luence 

EGG recording is obesity [132]. Namely, thickness of the tissue between surface electrode 

and smooth stomach muscles is correlated with the decrease in signal power [132]. This could 

potentially lead to inability to record EGG signal, but to the best of the Author`s knowledge, 

the limitations for EGG recording in relation to the obesity are still undetermined. Pathologies 

related to the myocardial muscle could influence amplitude and shape of ECG signal (mainly 

R-peaks) [133], [134] and subsequently influence manifestation of ECG noise in EGG signal. 

Additionally, cardiac arrhythmias influence ECG in the terms of intervals between two R-

peaks [135], which could also be visible on EGG signal compromised with ECG interference.  

It should be mentioned that artifacts originating from the heart muscle, in majority of the 

cases, can be canceled from the EGG signal by the application of digital filters.  In Table 4.2. 



52 
 

an overview of specific pathologies and physiological states that can interfere EGG signal are 
presented.  

 

Table 4.2. Overview of pathologies that could influence artifact manifestation in EGG 

signals. 

Individual 

Characteristics 

Influence Reference 

Obesity Thickness of the tissue at the site of 

surface electrodes could decrease the 

power of the slow wave signal and 

subsequently affect SNR. 

Riezzo et al. 1991 [132] 

Dilated 

Cardiomyopathy 

Due to the increased size of the heart left 

ventricle amplitude of R waves could be 

increased. Subsequently it can be expected 

that ECG artifacts in EGG would be more 

prominent.  

Feldman et al. 1985 

[133] 

Hypertrophic 

Cardiomyopathy 

Increased thickness of the myocardial wall 

can influence amplitude of R waves, and 

subsequently affect ECG artifacts in  EGG 

signal. 

Madias 2013 [134] 

Cardiac 

arrhythmias 

Irregular heart rhythm which is present in 

various cardiac arrhythmias can inf luence 

manifestation of ECG artifact in EGG 

signal. 

Antzelevich et al. 2011 

[135] 

 

4.2.6. Discussion of Artifact Cancelation 

           Advancements in EGG signal processing are going in the direction of entirely 

automatic extraction of noise from the timeseries. Several novel approaches were proposed in  

the last few decades for computerized artifact cancelation from EGG. 

            In 1993. one of the first articles regarding adaptive filtering was published by Chen et 

al. [78]. They were mainly focused on the cancelation of motion and respiratory artifacts. The 

main aim was to compare time-domain, frequency-domain, and transform-domain of adaptive 

filtering. Based on the results, it was stated that frequency-domain adaptive filtering offers the 

best performance, especially for the breathing artifacts extraction. The extension of this work 

was presented in the following investigations [43], [136]. Komorowski and his colleagues 
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described an interesting approach for denoising high-sampled EGG signal that included 

adaptive filtering based on the ECG derived respiratory signal [43]. The principle was to 

calculate respiratory signal by using the fact that R-wave amplitude depends on the breathing 

rate. Subsequently, they used the estimation of respiratory signal to determine adequate 

filtering parameters. Additionally, in 2018, the same authors (Komorowski et al.) introduced a 

method that combined Noise-Assisted Empirical Mode Decomposition (NI-MEMD) and 

adaptive filtering [136]. NI-MEMD was used to extract reference signal that was later used 

for adaptive filtering. 

           Empirical Mode Decomposition (EMD), as a technique for disintegration of the signal 

in its basic components, is often used for biosignal processing [137]–[141]. It was introduced 

to EGG field in 2000. by Liang et al. [66], where promising results regarding its performance 

were reported. Similarly, in 2007. Peng et al. investigated the possibility of Independent 

Component Analysis (ICA) application to separate smooth muscle electrical activity from 

artifacts [65]. They concluded that this approach could be used for the reliable extraction of 

gastric slow wave activity. Consequently, in 2018. Sengottuvel et al. proposed a method 
incorporating both EMD and ICA and obtained promising results [64]. 

 It should be mentioned that several investigators proposed a neural networks approach 

for denoising and analysis of EGG signal [61], [142], [143]. In the paper by Haddab et al. 

[61], a three-layer neural network was used to detect motion artifacts. 

           Although many different solutions were offered over the course of time, none of them 

has proven their efficacy. That suggests that in the future, researchers in this area should be 

focused on the evaluation of different algorithms on large databases of various EGG signal. 

Only by obtaining that kind of analysis, there is a chance to conclude which methodology is 
most suitable to be standard EGG preprocessing technique.             

4.3. EGG Signal Feature Extraction 

            A prerequisite for the suitable analysis of EGG signal is to quantify its characteristics, 

which can be done by performing feature extraction. Resulting parameters are medium toward 

acquisition of scientific discoveries and expansion of knowledge in the corresponding area. 

Thus, one of the main challenges in every field, including electrogastrography, is the 
definition of standard parameters.       

4.3.1. Standard Features 

           Lack of standardization in EGG research did not bypass the parametrization of signals. 

There are still no recommendations regarding which parameters should be used. Despite that, 

it can be stated that there is a variety of commonly accepted quantifications of  EGG signals 

that are widely used. They can be divided into two groups based on the domain f rom which 

they are calculated: 1) time-domain parameters and 2) frequency domain parameters. 

Additionally, to incorporate both time and frequency domain benefits, Running Spectrum 
Analysis was introduced [17].   
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4.3.1.1. Time-domain 

           Two main parameters that can be calculated from EGG signal in time are its amplitude 
and power. 

           Amplitude of the signal is calculated in µV or mV, and it can change during the 

recording. Those changes can be an indicator of alterations in the contractility of smooth 

muscles. It is believed that spike potentials that occur during stomach contractions could 

increase amplitude of the signal [144]. From the work of Chen et al. [15], it is suggested that 

changes in amplitude do not correlate between mucosal and cutaneous recording. This is 

because the different abdominal anatomy of each subject can influence amplitude of EGG 

signal. Consequently, analysis of EGG amplitude should be taken with caution. 

 Power of the signal calculated from timeseries can also be used. It should be utilized 

as a comparator between two recordings in the same subject. In [19], it is reported that it is 

generally accepted that if a ratio between power of the signal recorded after some event and 

the power of the signal recorded prior to it is higher than one, that event resulted in increased 

contractility of stomach muscles. On the contrary, ratio values less than  one suggests that 
there was inhibition in contractility. 

4.3.1.2. Frequency Domain 

           One of the milestones in electrogastrography was the introduction of spectral analysis 

by Stevens et al. in 1974. [145]. After that, most parameters for the description of non-

invasively recorded gastric electrical activity were derived from the frequency domain. In this 
chapter, the most commonly used features will be described. 

           Dominant frequency can be defined as the position of maximum magnitude peak in the 

spectrum of the EGG signal [17]. From the recordings performed in healthy subjects, this 

peak should be easily identifiable around 3 cpm (0.05 Hz). Its magnitude is also used as it 
correlates with a predominance of frequency content in a corresponding frequency range.  

           As it was stated in Chapter 1. three frequency ranges are defined: 1) normogastric –  2  

cpm to 4 cpm, 2) bradygastric – 1 cpm to 2 cpm, and 3) tahygastric – 4 cpm to 10 cpm [17]. 

Based on this division, many parameters can be calculated. Namely, spectral power of the 

signal in the mentioned limits (with slight alterations explained in subchapter 1.3.1.) is widely 

used [16], [37], [5], [96]. It describes frequency content in terms of ranges of interest f or the 

interpretation of EGG. Overall power is also used, mainly as a factor in power ratio defined as 

a ratio between postprandial and fasting power. It is suggested that if value of PR is less than 

one, it indicates that there is prolonged GI emptying [17].     

 Instability coefficient can be determined by calculating mean value and standard 

deviation of DF from different recordings acquired in the same subject and dividing standard 

deviation with mean value. Lesser variation in DF will result in lower IC, and subsequently in  

more stable DF in related subjects [17].    
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4.3.1.3. Running Spectral Analysis 

           Running Spectral Analysis (RSA) was introduced by van der Schee et al. in 1982 [146] 

to overcome the inability to perform observation of frequency domain EGG parameters 

variability over time. This method offers the possibility to analyze spectrums of the equally 

long portions of the signal. It is used for both visual observation and calculation of 
parameters. 

           RSA is obtained by dividing EGG timeseries into a uniformly long part, calculating 

Fast Fourier Transformation for each, and plotting them to form a pseudo-3D chart, as 
presented in Figure 4.15. 

           The signal used for the example of RSA was recorded in a healthy 28 -year-old male 

(205 cm, 112 kg) postprandially while resting for 40 minutes. The subject was asked to  limit 

movements and not to speak or laugh. From the visual analysis of RSA, it can be concluded 

that there was a clear dominant peak around 3 cpm during the whole session. A slight increase 

in DF is also observable, which is consistent with the reported postprandial increase in  EGG 

frequency [2].    

 

Figure 4.16. Example of Running Spectral Analysis of EGG signal recorded in healthy 

volunteer for 40 minutes. 

           The most commonly used parameters that can be derived from RSA are following: 

1.    % of time in which DF was in each out of three EGG ranges [19]; 

2.    % of slow wave coupling (% SWC) – the percentage of time during which DF is similar 

among different recording channels in multichannel EGG [16]; 
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3.    instability coefficient (IC) for one EGG recording [40]. 

4.3.2. Novel Parameters 

           One of the directions in EGG methodology improvement is the development of new 

parameters for the quantification of signal characteristics that will improve the assessment of 

the GI tract. For the purposes of research published in [3], [6], three novel parameters  were 

introduced. They include: 1) Root-Mean-Square (RMS) value of EGG signal in time, 2) 

Median Frequency (MF) of EGG spectrum, and 3) Crest Factor (CF) of EGG spectrum. Each 

of these parameters was tested in the corresponding investigation and gave promising results 

for assessing the gut state in a variety of recording conditions. Their usability was examined 

mainly for dynamic EGG recordings described in Chapter 5. Those preliminary results 

revealed that there are many benefits in using these novel features for the description of 
altered EGG signals.      

4.3.2.1. Root Mean Square 

           Root Mean Square (RMS) value is widely used in signal processing, but prior to the 

results published in [3], to the best of the Authors` knowledge, it was not used for the analysis 

of EGG signal. It provides an estimation of mean amplitude and power value. Thus, it can be 

used as an alternative for mentioned parameters. The equation that defines it and provides 

guidance for its calculation is following: 

                                                     𝑅𝑀𝑆 =  √
1

𝑁
∑ 𝑠𝑖𝑔(𝑖)2𝑁

𝑖=1                                                          

(4) 

where 𝑠𝑖𝑔(𝑖) are samples of EGG signal and N is its length in samples. 

           The example of RMS value of the EGG signal is presented in Figure 4.16.  

   

Figure 4.17. Example of calculated RMS value calculated on EGG signal from open-source 
database [18] (subject ID7 postprandial). 

           Based on the fact that amplitude and power of the signal rise postprandially, it can be 

expected that RMS will have the same response to the ingestion of test meal. In [3], it was 

suggested that there is an increase in RMS value during and after subject was experiencing 

driving simulation. Additionally, as reported in [147], violent video stimulus can also result in 

EGG RMS increase.    
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4.3.2.2. Median Frequency 

           Although dominant frequency is the most commonly used EGG param eter, it has its 

limitations. Namely, it is highly dependent on the presence of one dominant peak in the signal 

spectrum. This can lead to an inability to calculate DF or even error in determining its value 

when EGG frequency characteristic has more than one peak in the normogastric area. This is 

not often the case for the signals acquired in healthy subjects while resting, but f or patients 

with gastrointestinal disorders or healthy volunteers exposed to some kind of stimulus that can 

provide gastric disturbances. Therefore, it is relatively common that the spectrum of EGG 

does not have a clear dominant peak. Considering the fact that it is crucial to have a suitable 

quantification method for these signals, there is a need for an adequate parameter.  

 Median frequency is mainly used for the analysis of EMG signals in frequency domain 

[148], [149]. It can be described as an indicator of a shift in frequency of spectral power 

density, making it suitable for evaluating changes in frequency content of EGG s ignal. By 

definition, MF divides power spectrum into two parts with equal areas under the curve, as 
presented in Figure 4.17. 

           For the recording acquired in a healthy subject while resting, MF is expected to 

correlate with DF. For the EGGs with altered spectral characteristics, it follows the trend of 

the frequency shift. Namely, if there is an increase in the tachygastric frequency range, it will 
be expected for MF to have higher values. 

 

Figure 4.18. Example of signal with illustrated method form median frequency calculation. 
EGG signal is taken from the free, open-source EGG database [18] (subject ID6 

postprandial).   

4.3.2.3. Crest Factor 

           Many parameters are used to describe EGG frequency content, but there was a lack of 

the one that will describe its shape. As there is an expectation that the usual shape of EGG is 

characterized with a clear dominant peak, it was decided that crest factor, as the measurement 
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of peak prevalence, could be a suitable choice for the assessment of EGG spectrum 
morphology. 

           CF is defined as the ratio between peak amplitude and RMS value. The principle of its 

calculation is presented in Figure 4.18. 

 

Figure 4.19. Calculation of crest factor presented graphically with the example of EGG 

frequency characteristic. Used EGG signal is from the free, open-source EGG database [18] 
(subject ID1 postprandially). 

 Based on its nature, it is expected that CF has higher values for clean EGG signals 

with a spectrum characterized by a majority of frequency content in the dominant peak. On 

the contrary, signals with variations in frequency content throughout the recording should 

have decreased CF values. The first application of crest factors published in [3], [6] showed 

encouraging results. It is suggested that it can quantify alterations of a frequency spectrum in 
a highly efficient manner. 

4.3.2.4. Novel Parameters – Discussion 

 Novel parameters were proposed with the aim to describe spectrum alterations induced 

by different states of gastrointestinal tract caused by the virtual reality experiences and 

application of driving simulator.  

 RMS is commonly used for EMG signal analysis, mainly for the estimation of  signal 

power and contraction intensity of skeletal muscles [150]. Consequently, it was rational to 

introduce this parameter into the area of smooth muscle electrical activity assessment, 

especially due to the fact that EGG amplitude can be changed in response to external stimuli  

[151]. Scientific studies published in [3], [6] and in detail explained in Chapter 5, aimed to 

examine influence of motion sickness during virtual reality and driving simulation on EGG. It 

was expected that amplitude of the signal will increase as an effect of induced sickness 

symptoms. Therefore, having the parameter that can be used for the estimation of signal 

amplitude, such as RMS, was required.  

 MF is commonly used as a descriptor of EMG signal in studies of muscle fatigue as its 

changes are correlated with the frequency shifts of signal spectrum [152], [153]. MF was 

introduced for EGG assessment in this Dissertation as it was hypothesized that MF would be 
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more sensitive to the frequency spectrum alterations than DF, which depends only on the 

position of the most dominant peak in the spectrum [40]. As MF divides the spectrum into the 

two parts with same areas under the curve, it was hypothesized that it would  be af fected by 

even slight changes i.e., shifts in the frequency content. Finally, the results presented in 

Dissertation showed that MF was essential for an adequate comparison between the frequency 

characteristic of the baseline EGG and the one recorded during driving simulation or virtual 
reality application [3], [6]. 

 In order to assess the shape of EGG spectrum in terms of peak prominence, we used 

CF. Previously, this parameter was used in order to determine the level of ECG noise in  the 

EMG signal by assessing the prominence of ECG artifact [120]. CF parameter was used in 

order to assess the prevalence of the dominant peak over the rest of EGG spectrum. CF, 

unlike MF or DF, describes frequency characteristics of the dominant peak amplitude of EGG 

signal in relation to the power of the rest of the signal. Thus, CF can reveal alterations in  the  

signal characteristics not being related to the frequency shift, but still being sensitive to the 

presence of frequency components that are not part of dominant peak. In conclusion, CF is an 

ultimate parameter for the description of spectrum shape, and it can be of crucial importance 

for quantification of changes EGG frequency changes caused by the measurements in 

dynamic environment [3], [6].              

 Due to their above mentioned characteristics, RMS, MF, and CF can vary 

independently. This speaks in favor of using all three parameters for parameterization of EGG 

signal.  

4.4. EGG Interpretation 

 In the terms of its application, it is important to have in mind two EGG approaches –  

clinical and non-clinical. While instrumentation and the basis of its analysis remains the same 

in both, there are differences in the protocol and interpretation that should be pointed out. The 

aim of this Dissertation was to provide insights in common challenges and recommendations 

for further improvement of EGG, which could enhance both diagnostic and research 

application. However, corresponding studies [2]–[7] were non-clinical, meaning that only 
healthy participants were included in the protocols. 

 Clinical application of EGG as a diagnostic procedure remains limited due to the lack 

of the standardization [35]. Despite that, there were many clinical studies reporting promising 

results regarding different patient conditions (gastric and non-ulcer dyspepsia, chronic 

idiopathic intestinal pseudo-obstruction, cyclic vomiting syndrome, idiopathic gastroparesis, 

nausea in pregnancy, helicobacter pylori, irritable bowel syndrome, and central nervous 

system disorders in children) [29], [32], [34]–[36], [38], [83]. One of the challenges in the 

EGG-based diagnostics is scarce benchmark data obtained in healthy subjects. As a result of  

the investigation published in [2], recordings obtained in 20 healthy subjects with calculated 
parameters are published in an open access repository with CC license [18].          
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5. Assessment of Gastric Myoelectrical Activity 

in Dynamic Environment 

 Electrogastrography is often described as an additional diagnostic tool, which implies 

that its main application should be in clinical conditions for the assessment of the 

gastrointestinal tract in patients with various digestive disorders. Although this is the primary 

role of EGG, there is still no wide clinical application. On the contrary, many researchers are 

still proposing diverse EGG based techniques for the evaluation of smooth muscle electrical 

activity in healthy subjects. The rationale for that is in the fact that even healthy subjects can 

experience symptoms of GI disorders (nausea, vomiting, stomach pain, etc.) when they are 

exposed to various external stimuli. EGG signal parameters` response could be an exciting 

marker of these symptoms and subsequently provide relevant information for understanding 

corresponding phenomena. The main challenge in this area is to acquire a reliable EGG 

signal, in a dynamic environment, synchronously with a stimulus that could induce symptom 

and subsequently perform adequate analysis and interpretation. 

 In this Chapter, published results regarding the application of EGG in non -standard 

conditions during Virtual Reality (VR) and Driving Simulation (DS) will be presented with a 
comprehensive discussion regarding its relevance and usefulness.        

5.1. Introduction to EGG Recording in Dynamic Environment 

           The phenomenon with a major, mainly negative, effect on the traveling, virtual reality , 

or simulation experience is motion sickness (MS). It can be defined as an expected response 

from a healthy subject to unusual motion perception, real or simulated (virtual). The 

occurrence of MS is often described as unpleasant, and as such, it has a negative influence on 

the modern technology that can induce it. One of the challenges in addressing this issue is an 
assessment of corresponding physiological responses. [154]–[156] 

           Since any modality of sickness is correlated with a gut feeling, thus - gastrointestinal 

system, it was sensible to approach this task using techniques for GI evaluation. The non -

invasiveness of EGG recommends itself as the first choice. Implementation of EGG as an 

assessment method for MS requires modifications in its methodology. Namely, while EGG is 

most commonly recorded in static conditions for a long-lasting period of time, this novel 

application dictates dynamicity and a decrease in recording time. Thus, the recording protocol 

will be different from the one commonly used in static conditions. Additionally, an alternate 

approach toward analysis and interpretation was also needed. 

           Nausea as an symptom was evaluated by electrogastrography and EGG showed 

promising results [30], [32], [36], [59], [157]–[160]. In the paper published by Bob Cheung 

and Peter Vaitkus in 1998. [161], an overview of EGG applications related to motion sickness 

in the previous ten years was presented. It was suggested that there were some controversial 

results. Many investigations reported promising findings regarding the correlation of EGG 

parameters and visually, simulator and flight induced sickness [112]–[114], [161]. There were 

also some promising results regarding the evaluation of pharmaceuticals usage for MS. 
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However, some attempts to confirm these findings failed [161]. This suggests that there is a 

need for careful discussion and assessment of EGG technique as an MS evaluation tool, which 

is the focus of this research.            

5.2. Protocol for EGG Recordings in Dynamic Environment 

           The importance of recording protocol to the reliability of EGG signal is substantial. 

Even slight variances in the setup could induce changes in the timeseries that subsequently 

reflects on the EGG parameters values. While recommendations for the recording in static 

conditions are discussed in many articles [48], [97], [105], [162], information regarding 

acquisition of EGG in a dynamic condition is scarce. Many investigators in their research 

considered some parts of a dynamic protocol, like subject posture [113] or limited duration of 

recording [163]. Still, overall assessment, to the best of the Author`s knowledge, was not 

reported. This was a motivation for providing a comprehensive analysis regarding important 
segments of recording protocol by following the questions defined in Chapter 3: 

1. How long should dynamic EGG recording last? 

2. In what posture should it be obtained? 

3. What are the recommendations regarding electrode placement? 

4. Should it be done in a fasting or postprandial state? 

           While it is common for EGG to be recorded for more than 30 minutes [40], in  some 

circumstances, for the sake of subjects comfortability, it is preferable to have short term 

recording (5-15 minutes) [163]. In one of the first articles that addressed MS [114] by Stern et 

al., baseline EGG was recorded for 15 minutes in resting state, 15 minutes during circular 

vection drum rotation, and additional 15 minutes afterward. Tokumaru et al. in [46] proposed 

slightly decreased longevity of acquisition – 8 minutes prior, 16 minutes during, and 16 

minutes after the rotational stimulus. Benson et al. used 5 minutes of baseline for the same 

application followed with 4 minutes sequences during drum rotation [164]. Kim et al.  [165] 

addressed biofeedback in a VR environment, 5 minutes before, 9.5 minutes during, and 1 

minute post VR experience. Five minutes of baseline recording in a healthy subject 

corresponds to approximately 15 slow waves of EGG, which could be enough to determine 

the resting parameters. Undeniably, a longer duration (~15 minutes) for baseline recording is 

beneficial in terms of decreased chances to have an unusable recording. On the contrary, 

shortening of it increases subject`s comfortability and procedure efficiency. Duration of EGG 

acquisition, while a stimulus is ongoing, depends on its stimulus longevity, but post stimulus 

recording can be useful to determine time for which EGG parameters will return to the resting 

values. In [147], during and after EGG recordings were analyzed as one continuous signal. 

This could be the most optimal practice as it provides an overall assessment of stimulus-

induced EGG alterations. 

           Investigations related to the body posture effects on EGG reported that supine position 

is the most reliable for its acquisition [45], [116], [166]. For various dynamic protocols  such 

as EGG recording during driving simulation where subject should hold the wheel and control 
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the vehicle, that is not an option. Therefore, the results suggesting that adequate EGG in 

sitting position are viable were substantial [166]. Investigations published in [113], [114], 

[164], [165] confirmed that suggestion because each EGG was recorded while subject was in  

a sitting position. While for driving simulation, there is no possibility to perform recordings in 

a supine position, for VR, that is an option. However, in [6], it was decided to use a sitting 

position with minimal inclination since subjects usually experience VR while sitting.  

           Regarding electrode placement, in the majority of researches oriented towards a 

dynamic environment, one of the commonly used approaches, described in subchapter 3.3.1., 

was applied [112]–[114]. Based on the fact that there is a higher chance of artifact presence in 

the dynamic recording setup compared to the static one, it is beneficial to use more than one 

channel to increase robustness and in parallel to decrease chances that recording is not 

suitable for the analysis. Sub-analysis performed in [3] suggested that CH1 is the least 

suitable for acquisition, while CH2 and CH3 outperformed it. Precisely, out of  9 EGGs 

recorded with the 3-channel EGG device, CH1 signal was used only in one case, while CH2 

and CH3 were more suitable in the remaining 8 (4 recordings each). 

           In Figure 5.1. Tendencies related to protocol changes from static to dynamic 
environment, derived as a takeaway from our research presented in [3], [6]. 

 

Figure 5.1. Shift from static to dynamic EGG protocol in terms of recording duration, 

posture, and electrode placement. 

           It is a known fact that amplitude of the signal and percentage of normogastry increases 

after a meal, which is why it is more suitable to evaluate slow wave activity f rom the signal 

recorded postprandially [2]. Despite that, it has been reported that EGG protocol, which 

included stimuli that could induce sickness, was recorded in a fasting phase of the gastric 

cycle [113]. In [114], participants were asked not to consume any food four hours prior to the 
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measurement, while in [168] and [165], that time was decreased to two hours. It should be 

said that protocols used in investigations [114], [165], [168] cannot be stated as fasting due to  

the fact that 6 hours of food abstention is required for fasting protocol [19]. In [6], the 

compromise between fasting and postprandial was made by asking subjects not to eat one 

hour before the protocol to prevent the occurrence of severe nausea. The limitation of this 

approach is the lack of information about the phase of the gastric cycle. Standard fasting 

protocol (6 hours of fasting prior to the recording session) was applied for the DS assessment 

using EGG [3]. 

5.2.1. Virtual and Augmented Reality 

 The terms virtual and augmented reality are parts of the so-called “virtuality 

continuum”, defined in [169] as a continuum ranging from the reality itself to computer-

generated virtual reality. While VR can be defined as an environment in which subject 

experience telepresence, augmented reality is described as a technique that expands real-

world experience [169]. Their application is still mainly in the video games industry, but there 

are clear tendencies that they could be beneficial in medicine, the transportation industry, 

education, and science [169]–[173]. To achieve their full potential, these technologies must be 

improved. One of the main pitfalls of these technologies that should be resolved is the 

occurrence of sickness symptoms while using virtual and augmented reality  products [154]. 

EGG technology as a promising technique for assessment of gastric motility and consequently 

for assessment of sickness was applied in order to evaluate the electrical potentials of the 

stomach during virtual and augmented reality experiences.  

           The potential occurrence of sickness in virtual and augmented reality was assessed by 

EGG measurements in two studies. In the first study, VR experience was delivered with the 

Oculus Rift. Namely, different VR videos were played to subjects and EGG signals were 

recorded and used to assess sickness [6]. This investigation is further described in detail in 

subchapter 5.3. EGG During Virtual Reality Experience. The other study presented in the 

subchapter 5.4. and published in [3] was focused on EGG recording during a driving 

simulation.   

           Driving simulation with included motion feedback platform introduces additional and 

real sensation to the virtual reality provided by software simulation, i.e., the computer-

generated environment and can be classified as augmented rather than virtual reality [169].  

5.3. EGG During Virtual Reality Experience 

 In this subchapter the introductory considerations regarding the application of EGG 

for assessment of GI system during VR experience are presented. Results of the research 

published in [6] are presented with comprehensive discussion. Finally, recommendations for 

the future work illustrated with the results of unpublished case-study are given.    

5.3.1. What is Cybersickness? 

           The introduction of virtual reality environment into the various f ields of technology 

presents substantial advancement. In the time when online content is available worldwide, 

including shopping, museum, interactive video games, driving, and flying simulators, VR 
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provides enhanced and similar to real-life experiences. While its application is commonly 

related to the entertainment industry, it has a much wider application. Its usability in training 

and education is significant. Namely, driving and flying simulators provide an option f or the 

basic training of future drivers and pilots, as well as the possibility to test and enhance their 

preparedness in a critical situation in a completely safe manner. The introduction of VR in 

those simulators can increase the potential of mimicking real-life situations and consequently 
give an advancement of related training activities. [174]–[171] 

           One of the main challenges in the VR industry is the occurrence of sickness that can 

include various unpleasant symptoms (e.g., nausea, vomiting, dizziness, general discomfort, 

sweating). Cybersickness (CS) is the most suitable term for this phenomenon. In general, 

cybersickness can be defined as any form of sickness related to the application of virtual 

reality, driving or flight simulators. Its underlying cause remains unrevealed, but there are 

some insights suggesting that conflict between gut and brain sensory input can play a major 

role. This is why appropriate technology for the evaluation of physiological response in  VR 

users should be applied to address this issue. Literature in this area is scarce, and there is a 
substantial need for further improvement. [69], [177]–[182] 

5.3.2. Importance of Biofeedback in VR Environment 

           Virtual reality provides an enhanced digital content experience, and as such, it has an 

important impact on information technologies. As stated in [183], it is a path to the 

revolutionary new era of entertainment, education, social interactions, and many other 

essential aspects that substantially affect the quality of life. To expand to its full potential,  it 

needs to fulfill one of the main conditions – comfortability for the consumer. Number one 

obstacle towards this could be physical discomfort that is reported, mainly in terms of 

cybersickness. The path towards the solution could be through answering the questions: 1) 

What are the triggers for the reported symptoms? and 2) What should be changed in the 

technology to suppress these triggers? Implementation of biofeedback that applies non -

invasive techniques for the assessment of the human body could be beneficial for both finding 

the reasons for discomfort and resolving them. Alternatively, it could be used to notif y users 

that they could expect the occurrence of unwonted symptoms and provide them the 

opportunity to prevent it.            

5.3.3. Overview of Related Work - Biofeedback in VR Environment 

           Chardonnet et al. in [184] reported a method for evaluation of visually induced motion 

sickness in virtual reality using postural sway signal. This signal estimates variations in the 

body`s center of gravity (CoG), and it could provide promising results regarding sickness 

assessment. Subjects were asked to navigate in three-dimensional VR, and frequency-domain 

analysis of postural sway signal was performed. The authors concluded that this technique 
could be used for acquiring an insight into the motion sickness occurrence in virtual reality. 

 Heart rate variability (HRV) as a signal usually derived from ECG offers an insight 

into the variability of heart inter-beat intervals. In [185], it was used to assess cybersickness 

induced by applying a head mount VR device - Oculus Rift DK2 (Oculus VR, Facebook 

Technologies, LLC.). HRV signal was acquired by recording 2-lead ECG. Results showed 

that four out of 13 subjects that reported severe nausea symptoms had a statistically 
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significant change in HRV signal compared to the other 9 study participants. It should be 

noted that in the two participants, ECG signals were not usable due to the electrode 

detachment, which illustrates the complexity of recording electrophysiological signals in a 

dynamic environment. The same group of authors provided some extension to this research in  

[186] by developing a classifier for the determination of CS occurrence. They used ECG, 

electrooculographic (EOG), respiratory, and skin conductivity signals for the classif ica tion. 

The methodology was tested in 66 subjects. Binary approach (no CS/ yes CS) showed 82% 

while tertiary classifier (no/mild/severe CS) showed 56 % classification accuracy.    

           Lin et al. in [187] studied the effects of motion sickness on electroencephalographic 

(EEG) signal. Following protocol was used: “three-stage experimental protocol is designed 

for this study. Before each experiment, a 10-minute practice session was held to  ensure the 

subjects are used to the environment. After the practice session, subjects were asked to  wear 

an EEG electrode cap and then begin the first stage of the experimental protocol, a 10-minute 

straight road called “the Baseline Stage”. Next, “the Motion Sickness Stage”, which consists 

of a 40-minute consecutive-curve road, is aimed to induce motion sickness, and the final stage 

is a 15-minute straight road for rest.”. Power increase in the frequency range from 8 Hz to 10 

Hz was observed in most of the subjects, while in some, there was a power increase in the 18 

Hz to 20 Hz range. The authors stated that the effects of cybersickness are detectable on EEG 

tracings. The investigation described in [188] included ECG signal in addition to EEG for the 

assessment. 

           The most comprehensive study was performed by Dennison et al. [178] in which 

various physiological assessment techniques were used (electrocardiography, 

electrogastrography, electrooculography, pulse oximetry, breathing rate, and galvanic skin 

response - GSR) for the assessment of cybersickness while using a display monitor and head 

mount display (HMD). ECG recordings suggested that there is a significant increase in  heart 

rate during HMD application. Frequency of blinking according to the EOG was also increased 

as well as skin conductance and breathe rest. Pulse oximetry signal did not present any 

significant alterations. The results derived from EGG signals suggested that there is a 

frequency shift towards higher frequencies (% tachygastric power increase, % bradygastric 
power decrease) during the HMD phase, compared to the resting.   

5.3.4. Methodology for EGG-based Assessment of Cybersickness 

 In [6] procedure for EGG based assessment of cybersickness in a virtual environment 

is described, and outcome measures were discussed. In the following subchapters overview of 

that work will be presented. 

5.3.4.1. Measurement Setup for EGG-based Assessment of Cybersickness 

           Experience of VR was delivered to the subject by using head-mounted device Oculus 

Rift Consumer Ver 1. (Oculus VR, Facebook Technologies, LLC.) with the following 

characteristics [189]: 1) resolution – 1080x1200 per eye (two OLED displays), 2) refresh rate 

– 90 Hz, 3) field of view - 110°, 4) 360° positional tracking, 5) ergonomic design, and 6) 

integrated headphones for 3D audio (see Figure 5.2. a)). Required desktop computer 

(operating system - Windows 10, CPU - Intel(R) Core(TM) i7-3770K, 3.50 GHz RAM - 24.0 

GB, graphic card - GeForce GTX TITAN) was placed around 50 cm from the subject. EGG 
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was recorded with the device described in Chapter 2. Subject posture was supine, and 

electrode placement was 3-channel one described in [2] as suggested in subchapter 5 .2. Two 

roller coaster experience VR videos were used – Rock Falls VR (RF VR) and T-Rex 

Kingdom VR (TRK VR) [190]. The illustration of the recording setup is presented in  Figure 

5.2.b). 

 

Figure 5.2. a) Oculus Rift Consumer Version 1 (Oculus VR, Facebook Inc., Menlo Park, 
California, USA), and b) recording setup used for virtual reality experience in [6]. Image 

from the public domain [189]. 

5.3.4.2. Measurement Procedure for EGG-based Assessment of Cybersickness 

           The study was obtained in three healthy female subjects (29.0±2.6 years old, 172.7±2.9 

cm, and 68.0±7.0 kg) that signed, Local Ethics Committee approved, Informed Co nsent 

created in accordance with the Declaration of Helsinki. Participants stated that they are not 

pregnant and did not take any medications 4 months prior to the study. 

           The procedure was done in the following phases: 

1. Skin preparation and electrode placement followed by 10-15 minutes to establish 

satisfactory electrode-skin contact [17]. 

2. Acquisition of 5 minutes baseline EGG signal while subjects were asked to  rest with 
open eyes.     

3. EGG signal acquisition during VR experience (RF VR) for 4 minutes followed by 10 
minutes of the continuous recording after the end of the video. 

4. Four days of pause between recordings for the subject to completely recover for 

possibly induced cybersickness. 
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5. Recording of new baseline EGG in same conditions as in Phase 2. for 5 minutes. 

6. Acquisition of EGG during VR experience with different video than in Phase 3. (TRK 
RF) for 6 minutes and 20 seconds, followed by 10 minutes after-video recording. 

   

Figure 5.3. Graphical representation of the recording procedure applied in [6] 

           The described measurement procedure is graphically presented in Figure 5.3.  

5.3.4.3. Calculated Parameters for EGG-based Assessment of Cybersickness 

 Prior to the feature extraction, a signal was preprocessed by applying Butterworth 5th 

order band-pass filter (0.0167 Hz – 0.3333 Hz). To quantify recorded EGG signals following 

parameters were calculated: 1) total spectral power, 2) spectral power in three specific EGG 

ranges (bradygastric – 1 cpm to 2 cpm, normogastric – 2 cpm to 4 cpm, and tachygastric - 4  

cpm to 10 cpm), 3) median frequency, and 4) crest factor of power spectrum density . While 

the first two parameters are commonly used, MF and CF are novel parameters (see subchapter 

4.3.2.) designed for numerical description of non-standard EGG spectrums and were f or the 

first time presented in this research. These parameters were derived from Power Spectrum 

Density, calculated by the function that implements Hamming windowing (50 % overlap). 

Additionally, subjects were asked to describe the subjective feeling of cybersickness on the 

scale from 0 – no nausea to 10 – almost vomiting. Since commonly used statistical tests were 

not suitable for the study group of three participants, interpretation of the results was done 
based on the corresponding trends (increase/decrease) in the feature values.  
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5.3.5. EGG Parameters Variation Induced by VR 

           Total power, median frequency, and crest factor values are presented in  Table 5.1. 

Table 5.1. Total power, median frequency, and crest factor values calculated for the signals 
recorded for research published in [6]. 

Subject 

Recording no. 1 - RF VR 

Resting sequence VR sequence Post VR sequence 

TP  

[rmV/Hz] 

MF 

[rHz] 
CF 

TP 

[rmV/Hz] 

MF 

[rHz] 
CF 

TP 

[rmV/Hz] 

MF 

[rHz] 
CF 

ID1 2.21 3.75 7.60 57.35 2.81 6.04 1.85 3.75 6.05 

ID2 3.20 3.75 5.21 5.26 3.75 5.19 7.70 3.28 7.63 

ID3 1.30 3.28 5.90 101.39 2.81 6.17 30.17 3.75 5.55 
 Recording no. 2 - TRK VR 

ID1 1.21 2.81 5.48 249.28 2.34 7.33 10.03 2.48 8.47 

ID2 0.91 3.75 7.26 103.84 3.75 5.61 72.81 3.75 9.15 

ID3 5.35 3.28 6.04 56.38 2.81 7.18 20.83 3.75 8.31 

   Graphical representation of spectral power percentage in three EGG ranges is 

presented graphically in Figure 5.4. 

 

Figure 5.4. Percentages of power chares in characteristic EGG frequency ranges calculated 
for each subject, in resting, VR, and post VR EGG recording, for both recording sessions (RF 

VR and TRK VR). Taken and adapted from [6] with permission from the publisher. 
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     Bar graphs of CF values are presented in Figure 5.5. 

   

Figure 5.5. Crest factor values for each subject, in resting, VR, and post VR EGG recording, 
for both recording sessions (RF VR and TRK VR). 

           Subjective feelings of nausea reported by subjects for the first recording were 0, 7, and 
3, and for the second 2, 5, and 2, for subject ID1, ID2, and ID3, respectively.  

5.3.6. Relation Between Virtual Reality Experience and EGG Parameters 

           While MF did not reveal any substantial shift between baseline values and the ones 

calculated for VR and post-VR EGG, TP showed an increase from baseline to VR in each 

subject for both recordings. Lack of expected MF alterations could be the conseque nce of 

low-frequency noise presence induced by more extensive movement from the subject during 

VR. An increase in TP is consistent with the results presented in [163], and it can be an 

indicator of more frequent smooth muscle contractility during VR. As an estimator of  peak 

prominence, Crest factor was expected to have lower values during the VR experience. This 

trend was not confirmed in the corresponding study group. Still, a promising result is that in  

subject ID2, which experienced the most severe nausea symptoms, it was decreased from 

baseline to VR. 

           From the spectral power shares, it can be observed that there was a decrease in 

normogastria, which is in agreement with the results presented in [161]. Additionally, this 

portion of power was transferred to both bradygastric and tachygastric range. While it was 

expected to have a higher share of tachygastria, considering the findings from [178], 

bradygastria increase was not. This can be explained by the presence of motion artifacts since 

manual extraction of possibly contaminated parts of the signal (described in subchapter 4.2.2.) 

was not performed. 

           It should be stated that this preliminary protocol was not designed to induce severe 

cybersickness, which was in accordance with relatively low sickness self-assessed values, 

except in ID2. Results obtained in subject ID2, especially regarding the decrease in 

normogastric power share between baseline and VR sequence, suggest that there could be a 
correlation between EGG and SSQs. 
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5.3.7. Can EGG Provide Valuable Insight into VR Induced Cybersickness? 

           Research presented in [6] was aiming to provide preliminary insight into the 

assessment of VR induced cybersickness and to address main issues regarding methodology. 

Considering that, it can be concluded that EGG signal is susceptible to alterations induced by 

VR experience. Feature extraction using common methods could fail to give an adequate 

representation of those changes. Thus, the development of reliable quantification methods f or  

the description of corresponding variations is the first step towards broader usage of EGG 

signal as biofeedback medium in VR environment. Inconclusive results based on the median 

frequency suggested that there could still be a problem with motion artifacts and that progress 

in the noise cancelation area is required for further advancement. Description of PSD shape 

by CF showed the most promising results. It could be a critical factor in introducing EGG as a 

standard for assessing user`s physiological status during VR experiences. 

5.3.8. Limitations and Introduction to Future Work on Assessment of VR experience using 

EGG 

           To deliver more significant conclusions, research needs to be done in a larger study 

group. That would enable investigators to perform valid statistical analysis, leading to 

clearance of different parameter variations trends. The possibility of misleading results as a 

consequence of individuality that could be present in the anatomical, physiological, or 
psychological characteristics of study participants would be minimized. 

 Insight into the information regarding the time of subject`s most recent meal intake 

could be beneficial in order to analyze the influence of the gastric cycle phase on EGG signal. 

Additionally, in a larger study group, the physical characteristics of subjects could be included 

in the sub-analysis. Level of experience in VR environment should be obtained from each 

volunteer as it could be an important factor for different gastric response in any individual. In  

[6], obtained, simplified sickness evaluation was mainly done in order to have an idea of 

possible VR effects on the subject. To acquire reproducible results, some of the widely used 

sickness questionnaires should be used, such as Pensacola Motion Sickness  Questionnaire, 

Pensacola Diagnostic Index, Kennedy`s Simulator Sickness Questionnaire, Nausea Profile, 

Virtual Reality Symptom Questionnaire [177], [191]. 

 In addition to resolving limitations, there are many proposals that can improve the 

significance of the extended research. Based on the case study that served as motivation, ideas 

for future work will be described in the following subchapter.   

5.3.8.1. Case Study – Groundwork for Research Extension 

           This case study was realized to obtain an insight into the possibilities for the extension 

of the research presented in [6]. The same equipment was used as well as the setup for the 

recording including the position of the subject relative to the desktop computer, its posture, 

electrode placement, preparation, and inclusion criteria. Following differences were added: 1) 

instead of recording over two separate days, both VR videos were played to the subject on the 

same day, with 10 minutes pause between them, 2) continuous EGG signal was acquired 

during the complete protocol, including 8 minutes prior to the first VR video (baseline EGG), 

10 minutes between two VR video, and 8 minutes after the second one, and 3) subject (female 
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28 years old, 162 cm, 54 kg) reported severe sickness symptoms during prior VR experiences. 
Due to the onset of nausea, the second VR video was stopped after approximately 2 minutes.  

 In Figure 5.6. recorded EGG signal was presented, with zoomed baseline and first VR 

segments of the signal, and corresponding PSDs.    

   

Figure 5.6. EGG signal from the case study during VR experience with zoomed segments of 
the signal (baseline and first VR video) and corresponding PSDs. 

           From the visual observation of the entire signal, it is possible to detect abrupt changes 

in amplitude of the signal, which correlate with the beginning of the first and the second VR 

videos. These amplitude changes will affect power of the signal. Thus, RMS value, as well as 

signal power calculated both from time and frequency domain, would suitably describe 

observed changes. There is a clear visual difference in the characteristic of the zoomed 

signals. In addition to the amplitude, it is also noticeable that the oscillatory pattern present in  

the baseline signal is missing in the VR part. This is reflected in PSD graphs where for the 

baseline, there is a dominant peak around 3 cpm with its harmonics, while for the VR, PSD is 

disturbed, there is a lack of a single dominant peak, and frequency content is shifted towards 

higher values. Values of CF and MF confirm this. It should be noticed that in timeseries like 

this, the onset of amplitude increase could be determined and even automatically detected. 

That would open a possibility to calculate time latencies between the onset of symptoms, 

amplitude change, and beginning of VR experience. Additionally, time f rom the end of the 
video to the return of amplitude to the baseline values could also be of interest.  

           Based on the previous discussion, the following guidelines for future work can be 

proposed: 
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1. Inclusion of subjects with the reported occurrence of cybersickness in prior VR 

experiences. Rationale: To investigate phenomena of VR induced symptoms, it is benef icial 

to cause its occurrence. Frequent consumers of VR products can develop resistance  to 

cybersickness, and consequently, its gastric myoelectrical activity could remain in baseline 

form during the VR video. The focus should be on the users that feel discomfort associated 

with the VR application. On the other side, this can provide ethical issues as subjects can have 
these unpleasant symptoms during the study conduction. 

2. Parameters from the time domain should be included. Rationale: While frequency 

domain parameters are more reliable in the typical long-term EGGs, for the description of 

abrupt changes in short dynamic recording, the ones derived from the timeseries could be 
beneficial. 

3. Calculation of latencies between critical events. Rationale: As already stated, the 

possibility of detecting the point in time when EGG variation happens should be used for this. 

Determination of timewise correlation between the onset of symptoms and changes in  signal 

could improve understanding of the underlying process, which is the first step towards a 

solution.   

5.4. EGG During Driving Simulation 

           Transportation industry went through many positive changes since the middle of the 

20th century. Today, the number of people that frequently travel via different means of 

transportation is multiplied. While that had a substantial beneficial influence on the various 

areas of life, including business, education, culture, entertainment, and overall quality of lif e, 

it also increased safety concerns. Following technological advancement, different tools for 

transportation safety improvement had been designed. Driving Simulator (DS) could be 

considered as one of those since it is mainly used for training and on -road testing in a safe 

manner. [68], [192], [193] 

           Since DS was first introduced during World War II [194], it was improved in many 

aspects. Despite that, there are still many challenges that need to be addressed. The f ocus of  

this subchapter will be the possibility of an EGG-based assessment of sickness symptoms 

induced during a driving simulation. 

5.4.1. Driving Simulation – Benefits and Challenges 

           Driving simulation is an alternate technique to the traditional on-road assessment of 

driving skills. Its clear advantages are: 1) complete safety of the user, 2) simple application, 3) 

cost efficiency, 4) possibility to easily change driving conditions, and 5) induction of specific 

situations and evaluation of driver`s response to them. [68], [195] 

           On the contrary, simulated conditions can never be identical to the real ones. As much 

as this technology advanced over time, there are many factors that will probably never be as 

realistic as in the real on-road experience. This leads to the problem of transferability of driver 

evaluation obtained via DS to its actual capabilities. Besides, there are also many issues 
regarding DS reliability. [68] 



73 
 

           One of the main pitfalls in the DS field is the occurrence of sickness symptoms in 

subjects during a simulation. It includes, but is not restricted to, nausea, dizziness, extensive 

sweating, headache, and vomiting. The occurrence of such physical sensations during driving 

simulation is called simulator sickness (SS). This phenomenon has a significant negative 

influence on the usability of DS. General discomfort suffered by the user can influence 

driving performance and lead to ambiguous conclusions. It can limit the simulation duration if 

the user feels severe symptoms and increase the number of dropouts. The overall quality  of 

the experience can also be compromised with the consequence of decreased future interest in  

DS. Thus, this issue needs to be addressed. The pathway towards the reduction and possible 

elimination of SS could lead to reliable assessment procedures. [154], [196]–[198] 

5.4.1.1. Assessment of Simulator Sickness 

           Simulator Sickness Questionnaires (SSQ) were designed to determine if there was an 

occurrence of sickness and, if yes, to provide a quantified estimation of its severity [199]. 

They can reveal what the most common symptoms of SS are and how they  manifest in 

different conditions or user population. Keshavartz et al. in [200] compared the performance 

of the simplified approach using the Fast Motion Sickness Scale (FMS), which uses values 

from 0 to 20 to describe the severity of nausea with SSQ. Results showed a high level of 

correlation, but the authors stated that FMS still has many limitations. The main downside of 

self-reporting methods for SS evaluation is that they are not designed to provide relevant 
information regarding the underlying cause of SS. [201]            

           In [202], Min et al. reported a study conducted in 20 healthy adult participants (10 

female and 10 male, 20 to 28 years, the average age of 23.4 ± 1.8 years) regarding 

physiological measurements evaluation of cybersickness. Following techniques were used: 1) 

electrocardiography, 2) electroencephalography, 3) galvanic skin response (GSR), and 4) skin 

temperature. The protocol consisted out of the 5 minutes baseline recording f ollowed by 60 

minutes of simulation. Graphic DS was used, and participants were asked to drive in  a f our -

lane street at 60±10 km/h speed. Before the protocol, all subjects did 10 minutes of practice 

on DS. ECG signal presented with a significant increase in heart rate during the simulation 

compared to the resting. Regarding brain activity, results showed a significant increase in δ 

wave activity in 5 minutes, while θ, α, and β wave activity decreased in 5 to 35 minutes, 

compared to the baseline. Skin temperature decreased significantly after the beginning of  the 

DS, while the GSR signal increased, but without statistical significance. This research 

confirmed a measurable physiological response to DS experience, suggesting that there is a 

potential of using biofeedback as a tool for the improvement of future simulators regarding 

subject conformity.     

           One of the physiological signals that could provide additional information regarding 

the gastrointestinal tract functionality during driving simulation is EGG. The advantage of 

signal originating from stomach smooth muscles could be in the possibility to provide an 

insight into the gut response that is commonly related to the occurrence of sickness 

symptoms. To the best of Authors` knowledge, the introduction of EGG based assessment of 
simulator sickness was published in our paper [3].   
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5.4.2. Methodology for EGG-based Assessment of Simulator Sickness 

           The investigation published in [3] was preliminary research that primarily aimed to 

define the appropriate methodology for the recording and analyzing EGG signals in  the DS 

environment. Due to that, it was entitled “Lessons Learned: Gastric Motility Assessment 

During Driving Simulation”. The scope of the paper was to provide a detailed description of  

measurement equipment, protocol, signal analysis, and feature extraction, as well as to present 

suitable discussion. The secondary goal was to report variability of the results and their 

correlation with different driving simulation phases. The importance of motion f eedback in 

DS environment is substantial. In addition to enhancement in terms of more realistic 

experience, it can also decrease the incidence of sickness symptoms. This is most possibly a 

consequence of reduced sensory conflict in the human organism. [155] In this research we 

primarily wanted to test the influence of motion feedback on signal quality, but also its impact 

on the EGG features. Due to that we created the protocol in which we have phase without and 

phase with motion. Ultimately, the following research questions were defined: 

1. Could EGG signal be reliably measured in a driving simulation environment using an 

open-source EGG device presented in Chapter 2? 

2. What are the most promising parameters for the description of slow wave activity 

signal acquired during driving simulation? 

3. Can the signals acquired during different modalities of DS and baseline period be 
discriminated by EGG signal analysis?     

4. In what manner motion feedback influence quality of the signal and its corresponding 

features?  

The following subchapters will be dedicated to answering these questions. 

 

5.4.2.1. Measurement Setup for EGG-based Assessment of Simulator Sickness 

           The driving simulation was obtained using the Nervtech 4DOF motion car driving 

simulator. It includes a racing car seat with a set of three pedals and a steering wheel, all 

manufactured by Fanatec (Endor, Landshut, Germany). Image reproduction was done using 

three 49“ curved displays and SCANeR software (AVSimulation, Bouligne-Billancourt, 

France). The driving simulator includes 4DOF motion platform that mimic car movements 

and improves realistic feeling of the experience. This system incorporates four electro motors 

that allows platform to move in the X, Y and Z directions. Besides, it can also slide 

horizontally in order to simulate movement of the rear part of the car. Overall, the simulator 

have 4 degrees of freedom. These features enable the simulator to realistically mimic real-lif e 

driving conditions including sudden turns, breaking, and rough terrain. In Figure 5.7. used 

Nervtech driving simulator is presented. [203] 
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Figure 5.7. Nervtech 4DOF motion car driving simulator during a driving simulation. The 
image was taken and modified from [3]. (License: CC BY 4.0) 

 

           For the recording of EGG signal, the device described in Chapter 2  was used, with a 

sampling frequency set to 2 Hz. Electrode placement was the same as proposed in subchapter 

3.3.2. An additional part of the equipment was Force Sensing Resistor (FSR). It was 

introduced as a tool for synchronization between EGG and DS. It was used in  the f orm of  a 

push button that was pressed at the beginning and the end of each phase of driving simulation 

described in the following subchapter.   

5.4.2.2. Measurement Procedure for EGG-based Assessment of Simulator Sickness 

           The study group consisted out of 13 healthy participants, 4 females and 9 males (29 ± 8 

years old, 73 ± 19 kg, 177 ± 8 cm), which signed informed consent compliant with the Code 

of Ethics of the University of Ljubljana and in accordance with the Declaration of Helsinki. 

Table 5.2. shows detailed demographic data of the subjects. Inclusion criteria were following: 

1) no known history of gastrointestinal or vestibular disorders, 2) not pregnant, 3) no chronic 

or acute diagnosed pathologies, 4) not on any pharmaceutical therapy in the past 6  months, 

and 5) abstinence from eating for 6 hours and drinking for 2 hours prior to the start of the 
recording session. 
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Table 5.2. Demographic data of subjects included in the study published  in [3]. (License: CC 
BY 4.0) 

Subject 

  Age 

[ryears

] 

 

Sex 
Height [rcm] 

Weight 

[rkg] 

Driving 

experience 

[ryears] 

Driving 

simulator 

experience 

[rYes/No] 

ID1 23 F 173 60 5 Yes 

ID2 23 M 172 60 5 No 

ID3 26 F 169 56 8 No 

ID4 23 M 180 88 4 No 

ID5 32 M 192 115 14 Yes 

ID6 47 M 182 87 29 No 

ID7 23 M 173 65 5 Yes 

ID8 40 F 160 49 15 Yes 

ID9 25 F 169 59 6 Yes 

IDN1 26 M 183 97 6 Yes 

IDN2 27 M 181 75 9 Yes 

IDN3 33 M 177 60 15 Yes 

IDN4 35 M 186 78 17 No 

 

 EGG recording was obtained continuously through four different stages: 

1. Initial 5 minutes of a test drive in order for subjects to become familiar with the 

operation. 

2. Baseline EGG recording for additional 5 minutes. 

3. Recording during operation of the driving simulator with included motion feedback 

for 5 minutes. 

4. Recording during operation of driving simulator without motion feedback for 5 

minutes. 

 Phases 3. and 4. were altered for each subject. Prior to the test drive and during the 

pauses between different sequences, subjects were asked to fill simulator sickness 

questionnaire proposed in [201]. Used SSQ could give a sickness score ranging from 0 to 

235.62, and a nausea sub-score from 0 to 200.34. The timeline of the described protocol with 
the example of EGG timeseries and signals from FSR is presented in Figure 5.8. 
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Figure 5.8. Illustration of recording protocol timeframes with the example of the recorded 
EGG and FSR signal for synchronization. Image is taken from [3]. (License: CC BY 4.0) 

5.4.2.3. Calculated Parameters for EGG-based Assessment of Simulator Sickness 

           Preprocessing of the signal was done by applying Butterworth 3rd order band -pass 

filter (0.03-0.25 Hz). Manual motion artifact cancelation was done as described in subchapter 

4.2.2. Out of the three recording channels, EGG from only one of them w as analyzed. The 
channel selection was made by using the algorithm described in subchapter 4.1.2.  

           After the most suitable channel was determined, the following EGG parameters were 

calculated: 1) dominant frequency, 2) median frequency, 3) crest factor, and 4) root mean 

square value of the timeseries. Parameters were obtained for each phase of the measurement 

and each subject. Also, SSQ values were calculated. Additionally, from calculated PSD, the 

percentage of normogastric spectral power share was derived from each signal segment.  

           Statistical analysis was done to determine the significance of variation between 

calculated parameters for baseline, driving without, and driving with motion feedback 

included. A paired-sampled t-test was applied and results characterized by a p-value less than 

0.05 were considered significant.    

5.4.3. Results for EGG-based Assessment of Simulator Sickness 

           One of the subjects experienced severe sickness and nausea, which resulted in the 

recording interruption. Due to the artifact presence that could not be resolved with commonly 

used methods (see subchapter 4.2.) EGG signals recorded in three subjects were excluded 

from the analysis. Summarized, in 9 out of 13 subjects (69%), suitable EGGs were acquired. 

           For the analyzed signals, MF, DF, RMS, and CF values are presented in Figure 5.9. for 
resting, drive with motion, and drive without motion. 
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Figure 5.9. Dominant and median frequencies (upper panel), root mean square (middle 
panel), and crest factor (bottom panel) values for resting (R), motion (M), and no motion 

(NM) driving simulation. Parameters calculated for subjects ID1-ID9 and initially presented 
in [3]. (License: CC BY 4.0) 

           Variations in parameters for different protocol phases were statistically significant only 

for RMS values between resting and drive with motion – p = 0.03. Between resting and 

motion with motion, there was no statistical significance – p = 0.10. For RMS values, box 

plots are presented in Figure 5.10. 

   

Figure 5.10. RMS values for three phases of the protocol (resting, motion drive, no motion 
drive) presented using box plots. The difference between the left and right panel is in the 

range of y-axes, which is zoomed in the right one for better visualization. Results originally 

presented in [3]. (License: CC BY 4.0) 
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 The relation between RMS values and spectral power percentage in normogastric 

range is presented via scatter plot in Figure 5.11. For the four signal segments that underwent 

manual artifact cancelation (ID2 and ID5 resting, ID3 drive with motion, and ID4 drive 

without motion), both values prior to and after noise extraction are presented and connected 

with arrows. 

 

Figure 5.11. Scatter plot presenting the relation between RMS value and % of normogastric 

power share for resting, driving with and without motion. Four segments that underwent 
manual artifact cancelation are presented with both values prior and after it – connected with 

arrows. Results originally presented in [3]. (License: CC BY 4.0) 

           Results of SSQs are presented in Table 5.3. Considering the fact that Total SSQ scores 

of 0, 78.54, 157.08, and 235.65, and Nausea SSQ scores of 0, 66.78, 133.56, and 200.34 

correspond to none, mild, moderate, and severe symptoms, respectively, almost all of the 
subjects reported non to mild symptoms.    

Table 5.3. Nausea and Total SSQ scores reported by the subjects included in the research 

published in [3]. (License: CC BY 4.0) 

Subject 
Resting No motion drive Motion drive 

Nausea Total Nausea Total Nausea Total 

ID1 28.6 49.2 0.0 19.0 0.0 34.2 

ID2 28.6 30.0 28.6 18.8 / / 

ID3 9.5 15.0 9.5 31.5 19.1 22.7 

ID4 19.1 11.3 28.6 37.6 38.2 68.0 

ID5 38.2 18.7 38.2 15.1 57.2 68.1 

ID6 0.0 7.6 19.1 15.0 19.1 7.5 

ID7 28.6 22.6 28.6 7.5 9.5 7.5 

ID8 0.0 11.2 9.5 11 0.0 0.0 

ID9 9.5 26.4 76.3 117.4 47.7 71.8 

IDN1 47.7 68.1 57.2 83.2 57.2 56.5 

IDN2 0.0 0.0 19.0 18.9 0.0 0.0 

IDN3 9.5 7.5 38.2 49.2 / / 

IDN4 0.0 0.0 0.0 0.0 9.5 3.7 



80 
 

5.4.4. Key Takeaways Regarding EGG-based Assessment of Simulator Sickness 

           As the main aim of the research conducted as part of this Doctoral dissertation and 

published in [3] was to acquire and document first experiences regarding EGG application 

during driving application, in this subchapter, we will present key takeaways obtained f rom 

the corresponding investigation. They include conclusions related to the: 1) recording setup 

and protocol, 2) preprocessing of the signal, 3) influence of motion, and 4) quantification of 

the signal.   

5.4.4.1. Recording Setup and Protocol 

           A detailed discussion of the main considerations regarding recording protocol and 

setup for EGG acquisition in dynamic conditions was presented in subchapter 5.2. Hear, a 
brief point-by-point summary of derived conclusions will be stated. It includes the following: 

1. Although it was suggested to record EGG in a supine position, it is possible to obtain a 

suitable signal in sitting posture. 

2. Short-term baseline EGG recording and EGG recorded during driving experience are 

more comfortable for the subject, and they can provide reliable information. Continuous EGG 

recording during different phases of the protocol should be considered with a suitable 

synchronization tool. 

3. Electrode placement with multiple channels should be used to enhance the robustness 

of the technique. The setup described in [2] showed promising results, especially for channels 
1 and 3. 

5.4.4.2. Preprocessing of EGG Signal 

 In addition to digital software filtering, signals recorded in [3] underwent manual 

artifact cancelation, which provided promising results. Namely, by observing Figure 5. it can 

be concluded that in two out of four signal segments, in which manual noise cancelation was 

performed, there was a substantial increase in the normogastric spectral power share. 

Furthermore, RMS values that were included in the statistical analysis were also altered. 

These results suggest a considerable influence of manual noise cancelation and that it can 

increase the reliability of calculated parameter. In conclusion, driving simulator EGG 

recording should be carefully visually examined by an educated observer and cleared f rom 
motion artifacts. 

5.4.4.3. Influence of Motion Feedback 

 It was expected that motion feedback, as a mechanical feature, cou ld increase noise 

presence and even be a contraindication for EGG acquisition. Based on the presented 

findings, there was no significant difference in any parameter between drive with and without 

it. This is a promising result which suggests that motion feedback could be included in EGG 

assessed driving simulations. This opens the possibility for evaluation of the theory that it 

could reduce the occurrence of SS. Although in this research results that support that theory 

were not acquired, it should be additionally tested in high-fidelity driving simulator with 

improved motion feedback, on a larger study group.     
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5.4.4.4. Feature Extraction 

           While both MF and DF failed to provide statistically significant discrimination 

between baseline and driving simulator EGG sequences, results from [3] were significant for 

the evaluation of mentioned parameters suitability for the description of EGG. Out of  the 18 

analyzed driving EGG segments, DF was in normogastric range (2-4 cpm) in 17 (95 %), while 

MF was in that range on only 6 (33 %). These results are in agreement with the suggestion 

from subchapter 4.3.2.2. that MF is more sensitive and that it could replace DF for the 

quantification of EGGs with altered PSD. This is exemplified in Figure 5.12. where th e 

spectrum of one resting EGG and one recorded while driving simulation are presented with 

marked values of MF and DF. While DF failed to describe frequency shift towards higher 
values from baseline to driving, MF did it in a suitable manner. 

 RMS value was the only parameter with a statistically significant change from 

baseline to driving without motion. Although the same trend towards drive with motion was 

not significant, RMS showed promising results as an estimator of the amplitude and power 
increase in driving simulator EGG signals. 

           Since baseline EGGs were not recorded in ideal conditions, their dominant peaks were 

not drastically higher than the rest of the spectrum. This could be the reason why crest f actor 

was not successful in quantifying alterations in spectrum between resting and driving 

sequences. Despite that, based on the results from [6], CF remains one of the features that 

should be evaluated in future studies cause it could prove reliable results in discriminating 
EGGs recorded in dynamic conditions. 

 

Figure 5.12. Examples of resting and driving EGGs with calculated spectrums and marked 
DF and MF values. The figure is taken from [3]. (License: CC BY 4.0) 
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5.4.5. Preliminary Results with Application of Suggested Guidelines 

 In [204], results regarding EGG based assessment of simulator sickness was presented. 

The methodology was designed in accordance with the guidelines suggested in [3]. 

Modifications were following: 1) timeframes for the EGG recordings were prolonged for 

baseline and driving simulation sequences to approximately 15 minutes, 2) additional 15 

minutes of EGG was recorded after the end of DS, 3) one parameter to describe alterations in  

power of the signal (RMS) and one for variation in frequency spectrum (CF) were calculated, 

and 4) simulation was performed as driving in autonomous vehicle – no need f or extensive 

movement from the subject. The study group consisted out of 30 healthy volunteers.  

           These preliminary results showed a non-significant increase in RMS and a signif icant 

CF increase (p < 0.05). The main takeaway from this initial research is confirmation that CF 
could be a beneficial parameter for quantifying PSD shape. 

5.4.6. Conclusion Regarding EGG-based Assessment of Simulator Sickness 

 In conclusion, answers to three research question defined in subchapter 5.4.1.1 are 
following: 

1. EGG could be recorded in a driving simulator environment by following guidelines for 

recording protocol. More research should be obtained for a precise evaluation of its 

application for the assessment of simulator sickness. Since EGG recording during driving 

simulation is possible, it could be assumed that slow wave activity can also be suitably 

obtained during autonomous driving simulation. Since autonomous driving is one of the 

growing areas in the transportation industry, extension of this research can be f ocused on it  

[176].     

2. Based on acquired results, RMS and CF are the most promising parameters for 

describing variation in EGG signal during a driving simulation. The usefulness of MF and DF 

is yet to be determined. However, results from published research give an advantage to  MF 

for the description of altered EGG spectrums. 

3. Results regarding EGG based discrimination between driving and baseline sequences, 

obtained in two preliminary studies, are not sufficient for the firm conclusion. Despite that, 

assessment of smooth muscle electrical activity showed promising results in this area, and it 

should be the focus of future research. 

4. Based on the acquired results, motion feedback did not influence EGG signal quality , 

which is promising for future investigations. However, in this research differences between 

EGG parameters calculated for motion and no motion drives were not found. Next step in 

examining effects of motion feedback on EGG features should be testing on larger study 
group with high-fidelity simulator (improved motion feedback).  
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6. Conclusion 

 In this Doctoral dissertation, an overall approach toward electrogastrography as a 

method for the assessment of smooth muscles electrical activity, was presented. After the 

initial introduction into the anatomical and physiological concepts, as well as EGG as a 

method, a detailed explanation of the design process for custom-made open-source EGG 

device was provided. For the future of electrogastrography, it is of substantial importance to  

improve equipment availability, which is why the described device could increase interest in  

this area. Our aspirations towards open-source hardware resulted in the device that could be 

replicated by any investigator attracted to EGG methodology. Consequently, it could lead to  

many significant conclusions from different researchers` experiences regarding protocol, 

preprocessing, and analysis. Insights presented in Chapter 3. speak in favor of recording wi th 

simplistic protocol by using only one channel for a limited time duration. Introduction of this 

relatively easy-to-use method aimed to motivate the wider scientific community to contribute 

to the field. This approach could be useful in clinical practice due to the limited time 

resources for medical staff training and education. While educated visual observation remains 

the golden standard for evaluating and processing EGG, presented automated methods 

showed promising results. Our algorithm for the selection of the most suitable EGG channel 

is, to the best of our knowledge, the first method for that purpose. For the described protocol, 

it delivered beneficial outcomes. Additional testing and development of a video -based and 

fractional approach for artifact cancelation should be performed. Still, even at this moment, 

they could be applied as a useful tool in specific EGG protocols. Delivery of adequately 

preprocessed signal is one of the main prerequisites for suitable feature extraction. Having 

that in mind, this Dissertation provided valuable conclusions and laid the foundation for 

future work. While standardization of EGG and its wide application in clinical practice 

remains the future goal, results presented in Chapter 5. imply that EGG in virtual reality  and 

driving simulation could already give valuable insights. Namely, provided results suggest that 

it can be used as a tool for the evaluation of sickness symptoms. While this application could 

improve the design of DS and VR systems, it could also substantially increase interest in  the 

EGG recording in the long run. Subsequently, that could lead to resolving the majority of 
current issues in the field. 

           Main conclusions derived from this research will be provided in the form of answers to 
the research questions stated in the Preface. 

           Is it possible to acquire a reliable EGG signal via a custom-made open-source device 

by employing a simplistically designed short-term recording protocol with one recording 
channel? 

           Yes, it is. Based on the results presented in subchapter 3.1.2. in static recording 

conditions, while a subject is resting, one channel should be sufficient to obtain a reliable 

EGG signal. Protocol duration of 20 minutes was suitable to provide a postprandial increase 
in DF. 

           What are the perspectives of completely automated processing algorithms for artifact 
cancelation? 
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           In terms of ECG and ECG artifacts, the method that included fractional calculus and 

Savitzky-Golay filter showed promising results. Considering the fact that this evaluation was 

done by using semi-synthetic signals, more significant conclusions should be derived from the 

in vivo acquired data. The video-based approach is one of the directions toward resolving the 

artifact issue. Results from the described case study were encouraging, and further 

investigation in a larger study group should confirm that. 

           Is it possible to record EGG in the dynamic environment, and what are the main 
guidelines that need to be followed? 

           Results showed that EGG-based assessment in a dynamic environment is possible with 

the careful application of protocol and analysis related recommendations presented in 

subchapter 5.2. motion While subject could be in a sitting position and recording can be 

obtained in a short-term time window, motion artifacts could still be present. This is why 

educated visual observation of timeseries and manual cancelation of movement noise should 

be performed.   

           What novel parameters should be used to quantify EGG signal recorded in a dynamic 
environment? 

           Crest factor and median frequency were more suitable in describing non-standard EGG 

frequency characteristics than the commonly used DF. CF provides an estimation of spectrum 

shape and peak prominence, while MF follows the shift in frequency content regardless of the 

dominant peak presence, which is not the case when DF is used. RMS could be a useful 

approach for the estimation of power and amplitude of EGG timeseries.   

           What are first the results regarding the correlation between EGG alterations and 

occurrence of nausea symptoms in a dynamic environment? 

           Preliminary results showed that there are noticeable alterations in EGG timeseries and 

spectrum related to the VR and DS environment and the occurrence of nausea. The most 

promising results regarding the quantification of observed changes were obtained by applying 

CF and RMS. More reliable conclusions should be derived from the investigations on a  larger 
study group. 

           The research described in this Doctoral dissertation confirmed the initial hypotheses: 

1. With the appropriate instrumentation and clearly defined post-processing and signal 

analysis methods, it is possible to reduce and simplify the protocol for EGG recording for 

appropriate adaptation of the EGG method to wider clinical and research application. In 

addition, such protocol should enable high-quality EGG acquisition with decreased noise 

presence.   

2. Electrogastrography as a non-invasive method can provide useful information 

regarding gastric electrical activity alterations in healthy subjects during driving simulation 
and virtual reality. 
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6.1. The Most Important Scientific Contributions 

 In summary, the following scientific contributions should be stated as the most 

important ones: 

1. Custom-made open-source EGG device was designed and realized. In addition, 

important experiences derived from that process were described in this Dissertation.   

2. Short-term (20 minutes) single-channel EGG protocol was developed and evaluated in  
20 healthy subjects. 

3. Video-based and fractional order calculus approaches were used for the design of 

novel automated algorithms for noise cancelation from EGG signal. 

4. Comprehensive evaluation of EGG measurement in dynamic environment was 

performed, and corresponding recommendations regarding recording protocol, signal 
processing and analysis were delivered. 

5. Three novel, promising EGG features (median frequency, crests factor, and root-mean-

square) were proposed and their application was evaluated. 

6. EGG-based assessment of sickness induced by driving simulation and virtual reality in 

healthy subjects was introduced and investigated. 

6.2. Further Improvement 

           While this Dissertation provided a valuable contribution, many approaches could be 

useful for further improvement in the field. Besides the extensions of presented ideas, novel 

ones include the following: 

1. Testing and verification of improved EGG device presented in Chapter 2.  

Investigation of differences between the performance of circuit realized on protoboard and 

PCB. Testing of different types of passive components implemented in the device. Rationale:  

This technical investigation will provide final conclusions regarding the most appropriate 

methods for the design of EGG equipment. Following that, further improvement of the device 

could lead to the introduction of an EGG holter-monitor, able to record continuously slow 

wave activity while a subject is performing usual daily activities. 

2. Development of algorithms for the evaluation of EGG signal based on the fractal 

dimension calculation. Rationale: Considering the nature of raw EGG signal that could 

present with periodical artifacts (ECG and respiratory), it is sensible to quantif y the level of 

noise contamination using fractal dimension. This estimation could be beneficial for the 

classification of the signal prior to preprocessing in terms of its feasibility to provide 

information regarding both gastric slow waves and additionally heart or breathing rate. 

3. Application of EGG based assessment of gastrointestinal disturbances triggered by 

different psychological stressors. Rationale: In [147], the aim was to induce alterations in 

EGG features by playing violent video content to subjects during EGG acquisition. 
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Preliminary results were promising and suggested that, especially with novel parameters 

presented in this Doctoral dissertation, it could be possible to evaluate physiological effects 

on the gastrointestinal system via EGG. 

4. Assessment of sickness symptoms induced by long-term exposure to online video 

conferences, learning, or meeting platforms. Rationale: In this challenging period when, due 

to the SARS-CoV-2 virus crisis, in-person contacts are restricted, recent tendencies are to 

replace the majority of educational, business, and scientific meetings in the virtual world. This 

will increase the number of people that are using this type of communication, and 

consequently, increase the number of subjects that have sickness symptoms while using it. 

Similarly, as for the simulator sickness and cybersickness, EGG could be a valuable tool f or 
the assessment of related symptoms. 
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Appendix A – Anatomy and Physiology of 

Gastrointestinal System 

 The main purpose of the gastrointestinal system, alternatively called the alimentary 

tract or the gut, is to support the nutritional needs of the human organism. For large molecules 

to be decomposed into the smaller ones that can be further absorbed via adequate structures, 

as food for metabolism, the functionality of this system is essential. Intake of carbohydrates, 

fats, proteins, vitamins, minerals, and fibers is required to keep the body energized, as well as 

for the growth and repair of tissues. General health of the organism is also dependent on all 

the processes that take place in the GI system. [r1, 2] 

7.1. Anatomical Overview of GI System 

           There are two parts of the gastrointestinal system: 1) luminal GI and 2) hepato-biliary-
pancreatic GI [205]. The scheme of its structure is presented in Figure 7.1. 

                     

Figure 7.1. Schematic presentation of gastrointestinal (GI) system. Image is designed based 
on the information from [205]. 

           Luminal (or tubular) GI can be described as a structure consisting of hollow organs 

with specific functions. It includes the following: 1) pharynx, 2) esophagus, 3) stomach, 4) 

small intestine, 5) large intestine, and 6) anus. Additionally, the small intestine can be 

structurally divided into duodenum, jejunum, and ileum, while the large intestine consists of  

the colon, cecum, and rectum. Essential parts of luminal GI are sphincters, structures that can 

be described as separators between different GI organs. From the pharynx to the anus, there 

are: 1) upper esophageal, 2) lower esophageal, 3) pyloric, 4) sphincter of Oddi, 5) ileocecal, 
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6) internal anal, and 7) external anal sphincter. Hepato-biliary-pancreatic GI includes: 1) 

salivary glands (parotid, sublingual, and submandibular), 2) pancreas, 3) gallbladder, and 4) 

liver. The anatomical position and shape of the GI system structures are presented in  Figure 
7.2. [r1, 2, 4, 5] 

 

 

Figure 7.2. Illustration of the GI system organs. Image taken and adapted from: Blausen.com 
staff (2014). “Medical gallery of Blausen Medical 2014”. WikiJournal of Medicine 1 (2). 

DOI: 10.15347/wjm/2014.010. ISSN 2002-4436. Accessed in May 2020. (License: CC BY 4.0) 

           Cross-section of the luminal GI is similar through its full length with some changes in  

structure and function of layers in different organs. From the inside to outside, there are five 

major gut layers: 1) mucosa, 2) submucosa, 3) circular smooth muscle layer, 4) longitudinal 

smooth muscle layer, and 5) serosa. The mucosa can be divided into three sublayers: 1) 

epithelium, 2) lamia propria, and 3) muscularis mucosa. Two clusters of parasympathetic 

ganglions that are creating the enteric nervous system of the GI tract can be found in the 

submucosal layer – Meissner`s plexus, and between the two muscle layers – myenteric plexus 

(see Figure 7.3.). [r1, 2, 6, 7] 
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Figure 7.3. Cross-section of luminal GI with corresponding layers marked. 

7.2. Functionality of the GI System 

           Gastrointestinal system functionality is a complex process that includes four main 

subprocesses: 1) digestion, 2) absorption, 3) secretion, and 4) motility. In order for food to be 

processed and adequately delivered to the cells of the human organism, all of these 

subprocesses need to be perfectly synchronized. Secretion can be described as the activatio n 

of secretory glands that release substances essential for digestion and absorption. 

Decomposition of the ingested food into the smaller parts suitable for the absorption is 

referred to as digestion. A vital part of the GI function is its motility that is  taking place 

during the whole gastric cycle and, with the help of gravity, pushes and mixes nutrients 

through luminal GI. It should be stated that some of the subprocesses are dominantly related 

to distinct parts of the GI. Digestion and mixing of food are occurring mainly in the stomach, 

while absorption in the small intestine. [r2, 4, 8–10] 

           Control of releasing and holding gastric content, defined as gut tone, is regulated by the 

sphincters. These structures are made from the smooth muscles. Their contractility gives 

sphincters valvular nature capable of opening and closing at the appropriate moment, based 

on the needs determined by the gastric cycle phase. [8], [213] 

           Other processes that are simultaneously taking place in the GI system are: 

 -  storage and excretion of waste material; 

 - hepato-biliary-pancreatic GI secretion, which helps lubrication, absorption, and 

digestion of different structures; 

 -  secretion of GI hormones. [9], [209], [214] 

 Since the gastrointestinal environment is open to various external influences, its 

protective role is critical. Warning for the body that the food is not suitable for the ingestion is 

provided via the senses of smell and taste, followed by the vomit reflex, which helps the 



90 
 

organism to remove dangerous substances. Also, stomach acid and natural bacterial flora are 

capable of killing or preventing the reproduction of unwanted bacteria in the GI tract. Finally , 

in the wall of the gut part of the immune system, called Peyer`s patches, provides the first 
response to possible antigens found in the nutrients. [9] 

7.3. Focus on the Anatomy and Physiology of the Stomach 

           The organ with the largest lumen in the tubular GI is the stomach. It is J shaped, and 

according to the Gray`s Anatomy of the human body [10], its position can be described by the 

following statements: “It lies in the epigastric, umbilical, and left hypochondriac regions of 

the abdomen, and occupies a recess bounded by the upper abdominal viscera, and completed 

in front and on the left side by the anterior abdominal wall and the diaphragm.” It is separated 

from the esophagus by the lower esophageal sphincter and from the small intestine by pyloric 

sphincter (see Figure 7.4.) [214]. The stomach lies in the stomach bed, comprised of the 

diaphragm, left adrenal gland, kidney, pancreas, and transverse colon [207]. Precise size, 

shape, and position of the stomach are challenging to determine because they can diverge 

depending on the body posture and amount of the ingested food. The stomach can be 

anatomically divided into five main parts (see Figure 7.4.), from the esophagus to  the small 

intestine: 1) cardia, 2) fundus, 3) body, 4) antrum, and 5) pylorus. Lesser curvature on the 

right lateral wall and greater curvature on the left lateral wall are connecting anterior and 

posterior surfaces of the stomach [206], [215]. The blood supply for the stomach comes f rom 

the four main arterial branches: 1) the left gastric artery – along the lesser curvature, 2) the 

splenic artery – across a posterior abdominal wall, 3) the common hepatic artery that supplies 

the right gastric artery - along the lesser curvature, and 4) gastroduodenal artery (towards 

pylorus and duodenum) [8]. Regarding innervations, the stomach has both sympathetic (from 

autonomic coeliac plexus) and parasympathetic (from the vagal nerve) supply. As already 

explained in subchapter 7.1. the stomach has its two intrinsic plexuses – Meissner`s and 
myenteric [211]. 
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Figure 7.4. Illustration of stomach anatomy with specific parts marked. Image taken and 
adapted from: “Digestive System for labeling” by Rambling Professor . Accessed in October 

2020. (License: CC BY SA 2.0) 

           Three core processes that are happening in the stomach are motility, digestion, and 

secretion, while absorption can only take place in it for some liquids. Its main role is to 

receive food from the esophagus through the lower esophageal sphincter and deliver it to  the 

small intestine through the pyloric sphincter [9]. While the food is in the stomach, few 

fundamental processes occur. First, nutrients are mixing with the digestive juices f orming a 

substance called chyme. The proximal part of the stomach, body and fundus are dilating in  

order to store whole content. The stomach volume is approximately 2-3 L. Contractions are 

happening mainly in the distal part of the stomach, near to the pylorus, f orming a motion that 

mixes the chyme. After each contraction, smaller parts of the chyme, suitable for the next 

phase of digestion, pass through the pylorus into the duodenum. On the contrary, larger parts 

are being pushed back into the body of the stomach for further processing. By performing this 

procedure, illustrated in Figure 7.5., the stomach ensures proper transport of the suitably 

processed food towards the distal end of the luminal GI for further digestion and absorption. 

The contractility of the stomach is mainly determined by its electrical activity that will be 

explained in the following subchapter. [8], [209], [212], [215]       

   

Figure 7.5. Illustration of gastric motility. The first phase is fasting, followed by the food 
intake, and the last part is active mixing with stomach contractions. 

7.4. Electrical Activity of the Stomach 

           As an organ with periodical motility, the stomach is also presenting with electrical 

activity - control mechanism for its contractions. Electrical signals that can be recorded both 

invasively and non-invasively are definite proof that there is an organized f low of ions that 

dictates mechanical activity of the stomach. There are both sympathetic and parasympathetic 

nervous systems behind this phenomenon, combined with stomach intrinsic nervous plexuses, 
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described in subchapter 7.3. To understand functionality and processes that are taking place in 
the GI tract, it is essential to have an insight into its electrical activity. 

   

Figure 7.6. Graphical presentation of stomach electrical activity and its propagation. Image 
of the stomach anatomy taken and adapted from: “Digestive System for labeling” by 

Rambling Professor. Accessed in October 2020. (License: CC BY-SA 2.0) 

           The pacemaker region of the stomach is placed near the fundus at the greater curvature. 

Electrical signals originate from the stomach pacemaker region. They are propagating through 

the body of the stomach, towards the distal portion of the stomach, i.e., pylorus (Figure 7.6.).  

In that zone, electrical signal has the highest amplitude as a consequence of its thick layer. 

Electrical signal originating from the stomach pacemaker region is periodical with a period of  
around 20 seconds. [12], [216]–[219]                           

7.5. Interstitial Cells of Cajal         

           The pacemaker region of the stomach is populated with Interstitial Cells of Cajal (ICC) 

– cells capable of spontaneous generation of electrical current that are coupled with smooth 

muscle cells of the stomach [12]. They are located in the inner muscular layer and innervated 

by the myenteric plexus [11], [13]. Light microscopy of the single ICC provided evidence 

regarding its “firing” ability. Sanders et al. stated that “The initiation of pacemaker activity in  

the ICC is caused by a release of Ca2+ from inositol 1,4,5-trisphosphate (IP3) receptor-

operated stores, uptake of Ca2+ into mitochondria, and the development of unitary currents. 

Summation of unitary currents causes depolarization and activation of a dihydropyridine-

resistant Ca2+ conductance that entrains pacemaker activity in a network of ICC, resulting in  

the active propagation of slow waves.” [11]. This localized microscopically approach 

delivered significant findings that supported previously derived conclusions based on the 

macroscopic investigation regarding electrical activity of the stomach [144], [145].     

7.6. Electrical Control and Electrical Response Activity 

 Invasive recording of the stomach electrical activity from the serosal surface revealed 

that it could be divided into two main components: 1) electrical control and 2) electrical 

response activity [26]. Electrical Control Activity (ECA), alternatively called Basic Electrical 

Rhythm (BER), represents slow variation of resting potential between -60 mV to -75 mV and 

from -20 mV to -40 mV [12], [220]. These variations are a consequence of the shifting 
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between depolarization and repolarization of the electrically active cells in the stomach 

approximately three times a minute, which is why ECA is often called slow waves. As 

discussed in subchapter 7.5. ECA originates from Interstitial cells of Cajal (pacemaker region) 

and propagates very rapidly towards the distal portion of the stomach. Described electrical 

activity, except in rare cases, cannot provoke contraction of the stomach smooth muscle. In  

order for that to happen, more intense alterations in membrane potential differences need to  

take place. Those abrupt variations are called Electrical Control Activity (ECA) or spike 

potentials. ECA can happen only during the depolarization phase of slow waves if the 

threshold potential is achieved. The operating principle is illustrated in Figure 7.7. A high 

degree of correlation between the spike potentials and stomach contraction was demonstrated. 

Based on this, it can be stated that ECA dictates the maximal frequency of gastric motions, 
while ERA is responsible for actual contractions. [14], [20], [22], [26], [51], [99], [216] 

   

Figure 7.7. Representation of slow waves and spike potentials. The figure presents the semi-
synthetic signal synthesized from recorded slow waves and artificial spike potentials.  

  



94 
 

Appendix B – Methods for the Assessment of 

Gastrointestinal System 

 Although in approximately 80 % of the cases, the GI system diagnosis comes from the 

patient's history and symptoms [9], it is crucial to have suitable diagnostic tools to confirm or 

exclude initial assumptions. Additionally, to design a research protocol that examines the 

effects of different stressors on the GI tract, it is crucial to have at hand evaluation techniques 

that will deliver quantified results. Based on the information from [9], [206], [210], [221], 
[222], following clinical and diagnostic procedures are described: 

           - blood tests; 

           - swab or stool samples for microbiological assessment; 

           - biopsy for histological or cytological approach; 

           - breath test; 

           - esophageal manometry; 

           - endoscopic procedures; 

           - imaging procedures. 

           Blood tests provide an insight into hematological and biochemical balance and can be 

used to evaluate the functionality of GI organs. If further investigation is needed, commonly it 

includes a swab or a stool sample in which different types of parasites, fungi, bacteria, or 

viruses can be found that can explain disturbances in GI performance. Sometimes inspection 

of actual tissue (histological approach) or cell (cytological approach) is needed. This method 

is called a biopsy, and it requires a sample of corresponding tissue or cells examined by light 

or electron microscopy. 

           The breath test method is based on the assumption that some enzymes can trigger a 

reaction that subsequently can produce gas like hydrogen or carbohydrate in the gut lumen. If  

a suitable substance that will react with the corresponding enzyme is given to the subject, then 

the resulting gas will be detectable in the breath. 

           Measurement of the pressure changes using the probe placed through the nasal cavity 

into the esophagus is called esophageal manometry. It is expected that the pressure wave will 

propagate through the esophagus to the lower esophageal sphincter, which should then open 

to allow the substance to pass into the stomach while releasing the pressure. Disturbances 

from the expected measurements can be correlated to gastric motility disorders. 
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Figure 8.1. a) Photograph of fiber optic gastroscope (“PFS -F III fiber optic gastroscope 

with accessories (gastroscopes)” Accessed in July 2020. (License: CC BY-NC-SA 4.0). b) 
Example of the image taken during a gastroscopy (“My Duodenum” by MindSpigot), 

Accessed in July 2020. (License: CC BY-NC-SA 2.0.)  

           An endoscope can be described as the probe with the camera on the distal end, which 

allows an examiner to get an insight into the inner lumen of the GI system (see Figure 8.1.).  

The two most commonly applied endoscopic procedures are gastroscopy and colonoscopy. 

Gastroscopy, alternatively called OesophagoGastroDuodenoscopy – OGD, is used to  assess 

the upper gastrointestinal tract up to the duodenum. The probe is placed through the mouth 

and esophagus while a subject is laid on the left side. Prior to OGD, overnight fasting is 

mandatory. Mild sedation could be performed in order to increase patient comfort. 

Colonoscopy is a similar procedure, with the difference is that an endoscope is inserted 

through the rectum and anal canal to examine the lower part of GI, mainly the large intestine. 

It is more uncomfortable for the subject, so stronger sedation may be applied. Besides the 

camera, some probes have an ultrasonic transducer at the distal end to record ultrasonographic 

images – the corresponding procedure is called an endoscopic ultrasound. With an endoscope 

application, selected therapeutic procedures could be performed (lesion or polyp removal, 
bleeding control, gallstones removal, etc.). 

           Non-invasive visualization is frequently used in diagnostic tools, and gastroenterology 

is not an exception. The most commonly used imaging techniques for assessment of GI 

system are: 1) radiography (with and without contrast), 2) angiography, 3) Computerized 

Tomography – CT, 4) Magnetic Resonance Imaging – MRI, 5) radioisotope scanning, and 6) 

ultrasonography. A different absorption rate of X-rays from various structures allows 

visualization of the borderlines between the GI organs. By additional insertion of contrast 

media into the luminal GI (most commonly barium), visualization quality can be enhanced. 

This can provide better insight into potential shape and position abnormalities. Angiography 

can be described as radiography with a contrast of blood vessels. It is useful to  evaluate the 

blood supply to the GI organs. Computerized tomography and magnetic resonance imaging 

can give a detailed 3D overview of GI structures (see Figure 8.2.b)) being ideal for the 

detection of tumorous tissue. Radioisotope imaging working principle is the detection of 

radioisotope accumulation (most commonly Iridium-99) near so-called hot and cold lesions 
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on the parts of hepato-biliary-pancreatic GI that can be correlated with organ abnormalities. 

Ultrasonography is based on the reflection of high-frequency sound waves. It is less precise 

and detailed than other imaging techniques, but it is entirely non-invasive and safe to  use in  
pregnancy.               

   

Figure 8.2. a) CT scanner photograph (“64F56219-4C85-459F-B2B3-4BD0E6FDA219-735” 

by J.G. Accessed in July 2020. (License: CC BY-NC-SA 2.0). b) Example of one slice image of 
GI System from CT scanner (“File:GIST CT image.jpg” by Inversitus). Accessed in July 

2020. (License: CC BY-SA 3.0.) 
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